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Summary

In this thesis, we present two numerical methods for studying solutions of the Za-

kharov system (ZS). We begin with the vector ZS derived from the two-fluid model,

and simplify the vector ZS to get the standard ZS, then extend it for multicompo-

nent plasma and finally get the generalized ZS. Furthermore, Conservation laws of

the system are proven, relation to the nonlinear Schrödinger equation (NLS), plane

wave and soliton wave solutions, as well as well-posedness of the ZS are reviewed.

Then we proposed two numerical methods for the approximation of the generalized

Zakharov system. The first one is the time-splitting spectral (TSSP) method, which

is explicit, keeps the same decay rate of a standard variant as that in the gener-

alized ZS, gives exact results for the plane-wave solution, and is of spectral-order

accuracy in space and second-order accuracy in time. The second one is to use

the discrete singular convolution (DSC) for spatial derivatives and the fourth-order

Runge-Kutta (RK4) for time integration, which is of high (the same as spectral) or-

der accuracy in space and can be applied to deal with general boundary conditions.

Furthermore, extension of TSSP to the vector ZS as well as ZS for multi-component

plasma are presented. In order to test accuracy and stability, we compare these two

methods with other existing methods: Fourier pseudospectral method (FPS) and

wavelet-Galerkin method (WG) for spatial derivatives combining with RK4 for time

vii



Summary viii

integration, as well as the standard finite difference method (FD) for solving the ZS

with a solitary-wave solution. Furthermore, extensive numerical tests are presented

for plane waves, colliding solitary waves in 1d, a 2d problem as well as a damped

problem of a generalized ZS.

The thesis is organized as follows: In Chapter 1, the physical background of the

Zakharov system is introduced, and we review some existing results and report our

main results. In Chapter 2, the Zakharov system are derived and their properties are

analyzed. Chapter 3 is devoted to present the time-splitting spectral discretization

and DSC algorithm of the generalized Zakharov system. In Chapter 4, we compare

the accuracy and stability of different methods for the ZS with a solitary wave

solution, as well as present numerical results for plane waves, soliton-soliton collisions

in 1d, 2d problem, the generalized ZS with a damping term and ZS for multi-

component plasma. Finally, some conclusions based on our findings and numerical

results are drawn in Chapter 5.
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ṽe Velocity oscillations of the electrons
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Chapter 1
Introduction

1.1 Physical background

Zakharov [52] derived the Zakharov system(ZS) governing the coupled dynamics

of the electric-field amplitude and of the low-frequency density fluctuations of the

ions. Later, it has become commonly accepted that ZS is a general model to govern

interaction of dispersive and nondispersive waves. It has important applications

in plasma physics (interaction between Langmuir and ion acoustic waves [52]), in

the theory of molecular chains (interaction of the intramolecular vibrations forming

Davydov solitons with the acoustic disturbances in the chain [17]), in hydrodynamics

(interaction between short-wave and long-wave gravitational disturbances in the

atmosphere [35]), and so on. In three spatial dimensions, ZS was also derived to

model the collapse of caverns [52]. Since then a combined numerical and analytical

attack has been launched on ZS. As is well known, ZS is not exactly integrable [37],

so the numerical solution is very important.

1
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1.2 The problem

The problem we will study numerically is the generalized Zakharov system(ZS),

which describes the propagation of Langmuir waves in plasma:

i Et + ∆ E − αN E + λ|E|2 E + iγ E = 0, x ∈ R
d, t > 0, (1.1)

ε2Ntt − ∆N + ν∆(|E|2) = 0, x ∈ R
d, t > 0, (1.2)

E(x, 0) = E0(x), N(x, 0) = N0(x), Nt(x, 0) = N (1)(x), x ∈ R
d; (1.3)

where t is time , x is the spatial coordinate, the complex unknown function E(x, t) is

the slowly varying envelope of the highly oscillatory electric field, the real unknown

function N(x, t) is the deviation of the ion density from its equilibrium value, ε

is a parameter inversely proportional to the acoustic speed, γ ≥ 0 is a damping

parameter, and α, λ, ν are all real constants.

The general form of (1.1) and (1.2) covers many different generalized Zakharov sys-

tems arising in various physical applications. For example: a) when ε = 1, ν = −1,

λ = 0, γ = 0 and α = 1, the system of eqs. (1.1) and (1.2) reduces to the well-known

Zakharov system, which has been first derived by Zakharov [52] to describe the

interaction between Langmuir (dispersive) and ion acoustic (approximately nondis-

persive) waves in a plasma. Since then, it has become commonly accepted that

the ZS is a general model governing the interaction of dispersive and nondispersive

waves; b) when ε = 1, ν = −1 and λ 6= 0, a cubic nonlinearity is added to the

first equation (1.1); c) when γ > 0, a linear damping term is added to the ZS; d)

when ε → 0 (corresponding to infinite acoustic speed) in (1.2), one gets N = ν|E|2,
which, together with (1.1), leads to the well-known nonlinear Schrödinger equation

(NLS) without (γ = 0) or with (γ > 0) a linear damping term:

i Et + ∆ E + (λ − αν)|E|2 E + iγ E = 0, x ∈ R
d, t > 0.
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1.3 Review of existing results

The global existence of a weak solution of the Zakharov equations in 1d is proven

in [40], and the existence and uniqueness of the smooth solution for the equations

are obtained under the ground that smooth initial data are prescribed. The well-

posedness of the ZS was recently improved in [10] for d = 1, 2, 3, and extended for

the case with generalized nonlinearity [15].

On the other hand, numerical methods for the standard Zakharov system, i.e. ε = 1,

ν = −1, λ = 0, γ = 0 in (1.1) and (1.2), were studied in the last two decades. Payne

et al. [31] proposed a Fourier spectral method for the 1d Zakharov system. They

used only two-thirds of the Fourier components for a particular mesh in the fast

Fourier transform in order to suppress the aliasing errors in their algorithm [31].

Of course, this is not an optimal way to use spectral method. In [19, 20], Glassey

presented an energy-preserving implicit finite difference scheme for the system and

proved its convergence. Later, Chang et al. [12] considered an implicit or semiex-

plicit conservative finite difference scheme for the ZS, proved its convergence, and

extended their method for the generalized Zakharov system [13]. More numerical

study of soliton-soliton collisions for a (generalized) Zakharov system can be found

in [29, 24, 25].

1.4 Our main results

In this thesis, we propose a time-splitting spectral (TSSP) approximation and a

discrete singular convolution (DSC) algorithm for the generalized Zakharov sys-

tem. TSSP is explicit, easy to extend to high dimension, and gives exact results

for plane-wave solutions of the ZS. For stability, TSSP requires k = O(h). In fact,

the spectral method has showed greatly success in solving problems arising from

many areas [4, 11, 21] and the split-step procedure was presented for differential
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equations [39] and applied to Schrödinger equation [18, 27, 42] and KDV equation

[43]. Recently, the time-splitting spectral approximation was studied and used for

nonlinear Schrödinger equation in the semiclassical regimes in [7] and applied to the

numerical study of the dynamics of Bose-Einstein condensation [8] as well. Very

promising numerical results were obtained due to its exponentially high order accu-

racy in space. The approach for the ZS is based on a time splitting for (1.1) which

keeps the same decay rate in time of
∫

Rd |E(x, t)|2 dx as that in (1.1) and (1.2).

Another method we will present for ZS is the discrete singular convolution(DSC)

method which was recently proposed by Wei [45] as a potential approach for the

numerical discretization of spatial derivatives. The main merit of the DSC method

is that it is of high (the same as spectral) order accuracy in space and can be

applied to deal with complex geometries and general boundary conditions. So far

this method has been successfully applied to solve many problems in science and

engineering, such as eigenvalue problems of both quantum [47] and classical [48]

origins, analysis of stochastic process [45, 46], simulation of fluid flow in simple [49]

and complex geometries, and nanoscale pattern formation in a circular domain [23].

DSC method has the theory of distribution as its mathematical foundation [38].

And numerical analysis indicates that the DSC method has spectral convergence for

approximating appropriate functions [3, 4]. The accuracy and stability of TSSP and

DSC will be compared with other existing methods like finite difference method.

The numerical results demonstrate the high accuracy and efficiency of these two

proposed methods for the ZS.

This thesis consists of four Chapters arranged as following. Chapter 1 introduce

the physical background of the Zakharov system, and we also review some existing

results and report our main results. In Chapter 2, the Zakharov system, which

governs the coupled dynamics of the electric-field amplitude and of the low-frequency

density fluctuations of the ions, is derived and its properties are analyzed. Chapter 3

is devoted to present the time-splitting spectral discretization and DSC algorithm for
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the generalized Zakharov system and some other existing methods are introduced,

too. Furthermore, extension TSSP to ZS for multi-component and vector ZS. In

Chapter 4, we will compare the accuracy and stability of different methods for the

ZS with a solitary wave solution, and also present the numerical results for plane

waves, soliton-soliton collisions in 1d, 2d problems and the generalized ZS with a

damping term. Finally, some conclusions based on our findings and numerical results

are drawn in Chapter 5.



Chapter 2
The Zakharov system

In this Chapter, We firstly review the derivation of the vector ZS from the two-

fluid model [41], and simplify the vector ZS to get the standard ZS, then extend

it in a multicomponent plasma and finally get the generalized ZS with a damping

term. Furthermore, Conservation laws of the system are proved and relation to the

nonlinear Schrödinger equation(NLS), plane wave and soliton wave solutions, as well

as well-posedness of the ZS are reviewed.

2.1 Derivation of the vector Zakharov system

This section is devoted to derive the Zakharov system from the two-fluid model [41].

Here we will use a more formal approach based on the multiple-scale modulation

analysis. Following from [41], we will consider a plasma as two interpenetrating

fluids, an electron fluid and an ion fluid, and denote the mass, number density

(number of particles per unit volume) and velocity of the electrons (respectively of

the ions), by me, Ne(x, t) and ve(x, t) (respectively mi, Ni(x, t) and vi(x, t)). The

continuity equations for these fluids read

∂tNe + ∇ · (Neve) = 0, (2.1)

∂tNi + ∇ · (Nivi) = 0, (2.2)

6



2.1 Derivation of the vector Zakharov system 7

and the momentum equations read

me Ne(∂tve + ve · ∇ve) = −∇pe − e Ne

(
E +

1

c
ve × B

)
, (2.3)

mi Ni(∂tvi + vi · ∇vi) = −∇pi + e Ni

(
E +

1

c
vi × B

)
, (2.4)

where −e and e represent the charge of the electron and the ions assumed to reduce

to protons, respectively; pe and pi are the pressure. For small fluctuations, we write

∇pe = γe Te ∇Ne and ∇pi = γi Ti ∇Ni, where γe and γi denote the specific heat

ratios of the electrons and the ions and Te and Ti their respective temperatures in

energy units. The electric field E and magnetic field B are provided by the Maxwell

equations

∇ · E = 4πρ, (2.5)

∇ · B = 0, (2.6)

∇× E = −1

c
∂tB, (2.7)

∇×B =
4π

c
j +

1

c
∂tE , (2.8)

where ρ = −e(Ne − Ni) and j = −e(Neve − Nivi) are the densities of total charge

and total current, respectively.

Equations (2.7) and (2.8) yield

1

c2
∂ttE + ∇× (∇× E) +

4π

c2
∂tj = 0, (2.9)

and using equations (2.1)-(2.4), we have

∂tj = e(∇ · (Neve)ve + Neve · ∇ve + 1
me

∇pe + eNe

me
(E + 1

c
ve × B))

−e(∇ · (Nivi)vi + Nivi · ∇vi + 1
mi
∇pi + eNi

mi
(E + 1

c
vi × B)). (2.10)

In order to get the vector Zakharov system from the two-fluid model just mentioned,

as in [41], we consider a long-wavelength small-amplitude Langmuir oscillation of

the form

E =
ε

2
(E(X, T )e−iωet + c.c.) + ε2Ê(X, T ) + · · · , (2.11)
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where the complex amplitude E depends on the slow variables X = εx and T =

ε2t, the notation c.c. stands for the complex conjugate and Ê(X, T ) denotes the

mean complex amplitude. It induces fluctuations for the density and velocity of

the electrons and of the ions whose dynamical time will be seen to be τ = εt, thus

shorter than T . We write

Ne = N0 +
ε2

2
(Ñe(X, τ)e−iωet + c.c.) + ε2N̂e(X, τ) + · · · , (2.12)

Ni = N0 +
ε2

2
(Ñi(X, τ)e−iωet + c.c.) + ε2N̂i(X, τ) + · · · , (2.13)

ve =
ε

2
(ṽe(X, τ)e−iωet + c.c.) + ε2v̂e(X, τ) + · · · , (2.14)

vi =
ε

2
(ṽi(X, τ)e−iωet + c.c.) + ε2v̂i(X, τ) + · · · , (2.15)

where N0 is the unperturbed plasma density.

From the momentum equation (2.3), considering the leading order and noting that

the magnetic field B is of order ε2, we can easily get

me Ne

(
iωeṽe

ε

2
e−iωet

)
= e Ne

(
E

ε

2
e−iωet

)
,

thus the amplitude of the electron velocity oscillations is given by

ṽe = − ie

meωe
E. (2.16)

Neglecting the velocity oscillations of the ions due to their large mass, we take

ṽi = 0. (2.17)

Applying (2.16) and (2.17) into the continuity equations (2.1) and (2.2), at the order

of ε2, we have

−iωeÑe
ε2

2
e−iωet + N0∇ · ṽe

ε2

2
e−iωet = 0,

thus the density fluctuations are obtained as

Ñe = −i
N0

ωe
∇ · ṽe = − eN0

meω2
e

∇ · E, (2.18)

Ñi = 0. (2.19)
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At leading order, the equation for the electric field (2.9) with j = −e(Neve − Nivi)

becomes

− 1

c2
ω2

eE
ε

2
e−iωet +

4π

c2
iωeeN0ṽe

ε

2
e−iωet = 0,

from which, with (2.16), we finally get the electron plasma frequency

ωe =

√
4πe2N0

me

. (2.20)

At the order of ε3, if no large-scale magnetic field is generated, then the equation

(2.9) with (2.10) implies that

−2i
ωe

c2
∂TE

ε3

2
e−iωet + ∇× (∇×E)

ε3

2
e−iωet

−4πe2N0γeTe

c2m2
eω

2
e

∇(∇ · E)
ε3

2
e−iωet +

4πe2N̂eE

c2me

ε3

2
e−iωet = 0,

and thus

−2i
ωe

c2
∂TE + ∇× (∇×E) − γeTe

mec2
∇(∇ · E) +

4πe2

c2me

N̂eE = 0, (2.21)

where, resulting from (2.17) and (2.19), the contribution of the ions is negligible.

We rewrite the amplitude equation (2.21) as

i∂T E − c2

2ωe

∇× (∇× E) +
3v2

e

2ωe

∇(∇ · E) =
ωe

2

N̂e

N0

E, (2.22)

where the electron thermal velocity ve is defined by

ve =

√
Te

me
(2.23)

and γe is taken to be 3 [41, 30, 44].

It is seen from (2.3), (2.4) and (2.17) that the mean electron velocity v̂e and the

mean ion velocity v̂i satisfy

me

(
∂τ v̂e +

1

4
(ṽe · ∇ṽe + ṽe · ∇ṽe)

)
= −γeTe

N0
∇N̂e − eÊ , (2.24)

mi∂τ v̂i = −γiTi

N0
∇N̂i + eÊ , (2.25)
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where

1

4
(ṽe · ∇ṽe + ṽe · ∇ṽe) =

e2

4m2
eω

2
e

∇|E|2, (2.26)

and ṽe denotes the conjugate of ṽe and me∂τ v̂e is negligible because of the small

mass of the electron. Furthermore, Ê denotes the leading contribution (of order ε3)

of the mean electron field. We thus replace (2.24) by

e2

4meω2
e

∇|E|2 = −γeTe

N0

∇N̂e − eÊ . (2.27)

The system is closed by using the quasi-neutrality of the plasma in the form

N̂e = N̂i, (2.28)

v̂e = v̂i, (2.29)

which we denote by N and v, respectively. Then from the continuity equations, one

gets

∂τN + N0∇ · v = 0. (2.30)

Adding (2.27) to (2.25) and noting (2.30), we have

∂τv = − c2
s

N0
∇N − 1

16πmiN0
∇|E|2, (2.31)

with the speed of sound cs,

c2
s = η

Te

mi

, η =
γeTe + γiTi

Te

. (2.32)

Finally, we obtain the vector Zakharov equations [28, 44, 30, 53] from equations

(2.22), (2.30) and (2.31) as

i∂T E− c2

2ωe
∇× (∇× E) +

3v2
e

2ωe
∇(∇ · E) =

ωe

2

N

N0
E, (2.33)

ε2∂TT N − c2
s∆N =

1

16πmi
∆|E|2. (2.34)
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This Zakharov system governs the coupled dynamics of the electric-field amplitude

and of the low-frequency density fluctuations of the ions and describes the dynamics

of the complex envelope of the electric field oscillations near the electron plasma

frequency and the slow variations of the density perturbations.

In order to obtain a dimensionless form of the system (2.33)-(2.34), we define the

normalized variables

t′ =
2η

3
µm ωe T, x′ =

2

3
(ηµm)1/2 X

ζd
, (2.35)

N ′ =
3

4η

1

µm

N

N0
, E′ =

1

η

1

µ
1/2
m

(
3

64πN0Te

)1/2

E. (2.36)

with

ζd =

√
Te

4πe2N0

, µm =
me

mi

, (2.37)

where ζd is the Debye length and µm is the ratio of the electron to the ion masses.

Then defining

a =
c2

3v2
e

=
c2

3ω2
eζ

2
d

(2.38)

and plugging (2.35)-(2.36) into (2.33)-(2.34), and then removing all primes, we get

the following dimensionless vector Zakharov system in three dimension

i∂tE − a∇× (∇× E) + ∇(∇ · E) = NE, (2.39)

ε2∂ttN − ∆N = ∆|E|2. (2.40)

2.2 Simplification and generalization

When we choose a = 1 in (2.39), the system (2.39)-(2.40) collapses to the standard

vector Zakharov system

i∂tE + ∆E = NE, (2.41)

ε2∂ttN − ∆N = ∆|E|2. (2.42)
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If E = (E1, E2, E3), it can be written as following:

i∂tE1 + ∆E1 = NE1, (2.43)

i∂tE2 + ∆E2 = NE2, (2.44)

i∂tE3 + ∆E3 = NE3, (2.45)

ε2∂ttN − ∆N = ∆(|E1|2 + |E2|2 + |E3|2). (2.46)

In the case when E2 = E3 = 0, the system (2.43)-(2.46) leads to scalar case, or the

standard ZS:

i∂tE + ∆E = NE, (2.47)

ε2∂ttN − ∆N = ∆|E|2. (2.48)

Let us consider a physical situation when the dispersive waves interact with two

different acoustic modes (e.g., in a multicomponent plasma), which may be described

by the following generalization of ZS:

i∂tE + ∆E + 2(N1 + N2)E = 0, (2.49)

ε2
1∂ttN1 − ∆N1 + ν1∆|E|2 = 0, (2.50)

ε2
2∂ttN2 − ∆N2 + ν2∆|E|2 = 0, (2.51)

and assume that 1/ε2
2 � 1/ε2

1, so the fast nondispersive component N2 can be

excluded by means of the relation N2 = ν2|E|2, and the system (2.49)-(2.51) turns

into the system

i∂tE + ∆E + 2λ|E|2E + 2NE = 0, (2.52)

ε2∂ttN − ∆N + ν∆|E|2 = 0 (2.53)

with λ = ν2, ε = ε1, ν = ν1. Mathematically, When ε → 0, λ > 0, the system

(2.52)-(2.53) will be blowup, therefore in practice, if a linear damping term is added

to arrest blow up, one arrives at the generalized ZS (1.1)-(1.2).
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2.3 Relation to the nonlinear Schrödinger equa-

tion(NLS)

Note that in the “subsonic limit”, where the density fluctuations are assumed to

follow adiabatically the modulation of the Langmuir wave. Letting ε → 0 in (2.40),

one gets N = −|E|2. Plugging into (2.39), the vector ZS collapses to the vector NLS

equation

i∂tE − a∇× (∇× E) + ∇(∇ ·E) + |E|2E = 0. (2.54)

For the generalized ZS (1.1)- (1.2), in the case of ε → 0 (corresponding to infinite

acoustic speed), one gets N = ν|E|2, which, together with (1.1), leads to the well-

known nonlinear Schrödinger equation(NLS) without (γ = 0) or with (γ > 0) a

linear damping term:

i Et + ∆ E + (λ − αν)|E|2 E + iγ E = 0.

2.4 Conservation laws of the system

There are at least three conservation laws in the generalized ZS (1.1)-(1.2) without

damping (γ = 0) describing the propagation of Langmuir waves in plasma.

Theorem 2.4.1. The generalized Zakharov system (ZS) (1.1)-(1.2) without damp-

ing term (γ = 0) preserves the conserved quantities. They are the wave energy

D =

∫

Rd

|E(x, t)|2 dx (2.55)

the momentum

P =

∫

Rd

[
i

2

(
E∇E − E∇E

)
− ε2α

ν
NV

]
dx, (2.56)
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and the Hamiltonian

H =

∫

Rd

[
|∇E|2 + αN |E|2 − λ

2
|E|4 − α

2ν
N2 − αε2

2ν
|V|2

]
dx, (2.57)

where the flux V is introduced through the equations

Nt = −∇ · V, (2.58)

Vt = − 1

ε2
∇(N − ν|E|2). (2.59)

Proof. Multiplying (1.1) by E, the conjugate of E, we get

iEtE + E∆E − αN |E|2 + λ|E|4 = 0. (2.60)

Then calculating the conjugate of (1.1) and multiplying it by E, one finds

−iEtE + E∆E − αN |E|2 + λ|E|4 = 0. (2.61)

Subtracting (2.61) from (2.60) and then multiplying both sides by −i, one gets

EtE + EtE + i(E∆E − E∆E) = 0. (2.62)

Integrating over Rd, integration by parts, (2.62) leads to the conservation of the

wave energy

D′(t) =
d

dt

∫

Rd

|E(x, t)|2 dx = 0.

From (1.1), noting (2.58), (2.59), one has the conservation of the momentum

d

dt
P =

i

2

∫

Rd

(Et∇E + E∇Et − E∇Et − Et∇E) dx − ε2α

ν

∫

Rd

(NtV + NVt) dx

= i

∫

Rd

(Et∇E − Et∇E) dx − ε2α

ν

∫

Rd

(NtV + NVt) dx

= i

∫

Rd

[
∇E(i∆E − iαNE + iλ|E|2E) −∇E(−i∆E + iαNE − iλ|E|2E)

]
dx

−ε2α

ν

∫

Rd

(NtV + NVt) dx

= α

∫

Rd

N∇|E|2 dx +
ε2α

ν

∫

Rd

V∇ · V dx +
α

ν

∫

Rd

∇(N − ν|E|2)N dx

= 0.
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Noting (2.58), (2.59) and multiplying (1.1) by Et, the conjugate of Et, we write it

T =

∫

Rd

[
i|Et|2 + Et∆E − αNEEt + λ|E|2EEt

]
dx = 0. (2.63)

Then the real part of T is

0 = Re(T ) = Re

∫

Rd

[
Et∆E − αNEEt + λ|E|2EEt

]
dx

= Re

∫

Rd

[
−∇E∇Et −

α

2
(N |E|2)t +

α

2
Nt|E|2 +

λ

4
|E|4t

]
dx

= −1

2

∫

Rd

[
(|∇E|2 + αN |E|2 − λ

2
|E|4)t +

α

2
Nt|E|2

]
dx

= −1

2

∫

Rd

[
(|∇E|2 + αN |E|2 − λ

2
|E|4)t −

α

2
|E|2∇ · V

]
dx

= −1

2

∫

Rd

[
(|∇E|2 + αN |E|2 − λ

2
|E|4)t +

α

2
∇|E|2 · V

]
dx

= −1

2

∫

Rd

[
(|∇E|2 + αN |E|2 − λ

2
|E|4)t +

α

2
(
ε2

ν
Vt +

1

ν
∇N) ·V

]
dx

= −1

2

∫

Rd

(
|∇E|2 + αN |E|2 − λ

2
|E|4

)

t

dx

+
αε2

2ν

∫

Rd

(
1

2
|V|2)t dx− α

2ν

∫

Rd

N∇ · V dx

= −1

2

∫

Rd

(
|∇E|2 + αN |E|2 − λ

2
|E|4

)

t

dx

+
αε2

2ν

∫

Rd

(
1

2
|V|2)t dx +

α

2ν

∫

Rd

NNt dx

= −1

2

∫

Rd

(
|∇E|2 + αN |E|2 − λ

2
|E|4 − α

2ν
N2 − αε2

2ν
|V|2)

)

t

dx,

which implies the conservation of Hamiltonian

d

dt
H = 0.

�

For the standard ZS (ε = 1, ν = −1, λ = 0, γ = 0 and α = 1), the conserved
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quantities collapse

D =

∫

Rd

|E(x, t|2 dx, (2.64)

P =

∫

Rd

[
i

2

(
E∇E − E∇E

)
+ NV

]
dx, (2.65)

H =

∫

Rd

[
|∇E|2 + N |E|2 +

1

2
N2 +

1

2
|V|2

]
dx, (2.66)

where the flux V is introduced through the equations

Nt = −∇ · V, (2.67)

Vt = −∇(N + |E|2). (2.68)

In the one-dimensional case the conserved quantities become

D =

∫ ∞

−∞

|E(x, t)|2 dx, (2.69)

P =

∫ ∞

−∞

[
i

2
(E(x, t)Ex(x, t) − E(x, t)Ex(x, t)) − ε2α

ν
NV (x, t)

]
dx, (2.70)

H =

∫ ∞

−∞

[
|Ex(x, t)|2 + αN |E|2 − λ

2
|E|4 − α

2ν
N2 − αε2

2ν
V (x, t)2

]
dx, (2.71)

where the flux V is introduced through the equations

Nt = −Vx, (2.72)

Vt = −(N + |E|2)x. (2.73)

Similar to the derivation of the conservation of the wave energy in Theorem 2.4.1.

one gets the decay rate of the wave energy D when γ 6= 0,

D(t) =

∫ b

a

|E(x, t)|2 dx = e−2γt

∫ b

a

|E0(x)|2 dx = e−2γtD(0), t ≥ 0.

2.5 Well-posedness of the Zakharov system (ZS)

Based on the conservation laws, C.Sulem and P.L.Sulem [40] prove the wellposedness

for the standard ZS (2.47)-(2.48).
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Theorem 2.5.1. In one dimension, for initial conditions, E0 ∈ Hp(R), N0 ∈
Hp−1(R), and N (1) ∈ Hp−2(R) with p ≤ 3, there exists a unique solution E ∈
L∞(R+, Hp(R)), N ∈ L∞(R+, Hp−1(R)) for (2.47)-(2.48).

Theorem 2.5.2. In dimensions 2 and 3, for initial conditions E0 ∈ Hp(Rd), N0 ∈
Hp−1(Rd), and N (1) ∈ Hp−2(Rd) with p ≤ 3, there exists a unique solution E ∈
L∞([0, T ∗), Hp(Rd)), N ∈ L∞([0, T ∗), Hp−1(Rd)) for (2.47)-(2.48), where time T ∗

depends on the initial conditions.

2.6 Plane wave and soliton wave solutions

In one spatial dimension, the generalized ZS (1.1)- (1.2) collapses to

i Et + Exx − αN E + λ|E|2 E + iγ E = 0, a < x < b, t > 0, (2.74)

ε2Ntt − Nxx + ν(|E|2)xx = 0, a < x < b, t > 0, (2.75)

which admits plane wave and soliton wave solutions.

Firstly, it is instructive to examine some explicit solutions to (2.74) and (2.75). The

well-known plane wave solutions [29] can be given in the following form:

N(x, t) = d, a < x < b, t ≥ 0, (2.76)

E(x, t) =





c ei( 2πrx
b−a

−ωt), ω = αd + 4π2r2

(b−a)2
− λc2, γ = 0,

c e−γte
i
“

2πrx
b−a

−ωt−λc2

2γ
(e−2γt−1)

”

, ω = αd + 4π2r2

(b−a)2
, γ 6= 0,

(2.77)

where r is an integer and c, d are constants.

Secondly, as is well known, the standard ZS is not exactly integrable. Therefore the

generalized ZS cannot be exactly integrable, either. However, it has exact one-soliton

solutions to (2.74) and (2.75) for γ = 0 [24, 25]:

Es(x, t; η, V, ε, ν) =

[
λ

2
− αν

2ε2
(1/ε2 − V 2)−1

]−1/2

Us, x ∈ R, t ≥ 0,(2.78)

Us ≡ 2iη sech[2η(x − V t)] exp
[
iV x/2 + i(4η2 − V 2/4)t + iΦ0

]
, (2.79)

Ns(x, t; η, V, ε, ν) =
ν

ε2
(1/ε2 − V 2)−1|Es|2, (2.80)
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where η and V are the soliton’s amplitude and velocity, respectively, and Φ0 is a

trivial phase constant.

Finally, we will consider the periodic soliton solution with a period L in 1d of the

standard ZS, that is, d = 1, ε = 1, α = 1, λ = 0, γ = 0 and ν = −1 in (1.1)-(1.2).

The analytic solution of the ZS (2.74)-(2.75) was derived in [26] and used to test

different numerical methods for the ZS in [31, 19, 12]. The solution can be written

as

Es(x, t; v, Emax) = F (x − vt) exp[iφ(x − ut)], (2.81)

Ns(x, t; v, Emax) = G(x − vt), (2.82)

where

F (x − vt) = Emax · dn(w, q), G(x − vt) =
|F (x − vt)|2

v2 − 1
+ N0,

w =
Emax√

(2(1 − v2))
· (x − vt), q =

√
(E2

max − E2
min)

Emax
,

φ = v/2,
v

2
L = 2πm, m = 1, 2, 3 · · · , u =

v

2
+

2N0

v
− E2

max + E2
min

v(1 − v2)
,

L =
2
√

2(1 − v2)

Emax
K(q) =

2
√

2(1 − v2)

Emax
K ′

(
Emin

Emax

)
,

with dn(w, q) a Jacobian elliptic function [22, 1], L the period of the Jacobian elliptic

functions, K and K ′ the complete elliptic integrals of the first kind [22, 1] satisfying

K(q) = K ′
(√

1 − q2
)
, and N0 chosen such that 〈Ns〉 = 1

L

∫ L

0

Ns(x, t) dx = 0.

In Chapter 4, we will present some numerical examples with one of these three

solutions as exact solution: plane waves, solitary wave and periodic soliton solution,

to demonstrate the efficiency of our proposed methods for the ZS.



Chapter 3
Numerical Methods for the Zakharov

System

In this chapter we present the time-splitting spectral discretizations and DSC algo-

rithm for the generalized ZS (1.1), (1.2) and (1.3) with periodic boundary conditions.

For simplicity of notation we shall introduce the method in one spatial dimension

(d = 1). Generalizations to d > 1 are straightforward by tensor product grids and

the results remain valid without modifications. For d = 1, the problem becomes

i Et + Exx − αN E + λ|E|2 E + iγ E = 0, a < x < b, t > 0, (3.1)

ε2Ntt − Nxx + ν(|E|2)xx = 0, a < x < b, t > 0, (3.2)

E(x, 0) = E0(x), N(x, 0) = N0(x), Nt(x, 0) = N (1)(x), a ≤ x ≤ b, (3.3)

E(a, t) = E(b, t), Ex(a, t) = Ex(b, t), t ≥ 0, (3.4)

N(a, t) = N(b, t), Nx(a, t) = Nx(b, t), t ≥ 0. (3.5)

Furthermore, we supplement (3.1)-(3.5) by imposing the compatibility condition

E0(a) = E0(b), N0(a) = N0(b), N (1)(a) = N (1)(b),

∫ b

a

N (1)(x) dx = 0. (3.6)

As is known in Chapter 2, the generalized ZS has the property

D(t) =

∫ b

a

|E(x, t)|2 dx = e−2γt

∫ b

a

|E0(x)|2 dx = e−2γtD(0), t ≥ 0. (3.7)

19
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When γ = 0, D(t) ≡ D(0), i.e., it is an invariant of the ZS [12]. Moreover, the ZS

also has the following properties

∫ b

a

Nt(x, t) dx = 0,

∫ b

a

N(x, t) dx =

∫ b

a

N0(x) dx = const., t ≥ 0. (3.8)

In some cases, the boundary conditions (3.4) and (3.5) may be replaced by

E(a, t) = E(b, t) = 0, N(a, t) = N(b, t) = 0, t ≥ 0. (3.9)

We choose the spatial mesh size h = ∆x > 0 with h = (b − a)/M for M being an

even positive integer, the time step being k = ∆t > 0 and let the grid points and

the time step be

xj := a + jh, j = 0, 1, · · · , M ; tm := mk, m = 0, 1, 2, · · · .

Let Em
j and Nm

j be the approximations of E(xj, tm) and N(xj , tm), respectively.

Furthermore, let Em and Nm be the solution vectors at time t = tm = mk with

components Em
j and Nm

j , respectively.

3.1 Time-splitting spectral discretizations (TSSP)

3.1.1 The numerical method

By TSSP from time t = tm to t = tm+1, equation (3.2) in the generalized ZS is

discretized by Fourier spectral method in space and second-order central difference

scheme in time, and equation (3.1) is solved in two splitting steps. One solves first

iEt + Exx = 0, (3.10)

for the time step of length k, and then

iEt = αN E − λ|E|2 E − iγ E, (3.11)
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for the same time step. Equation (3.10) will be discretized in space by the Fourier

spectral method and integrated in time exactly. For t ∈ [tm, tm+1], multiplying (3.11)

by E, the conjugate of E, we get

iEtE = αN |E|2 − λ|E|4 − iγ|E|2. (3.12)

Then calculating the conjugate of the ODE (3.11) and multiplying it by E, one finds

−iEtE = αN |E|2 − λ|E|4 + iγ|E|2. (3.13)

Subtracting (3.13) from (3.12) and then multiplying both sides by −i, one gets

d

dt

(
|E(x, t)|2

)
= Et(x, t)E(x, t) + Et(x, t)E(x, t) = −2γ|E(x, t)|2 (3.14)

and hence

|E(x, t)|2 = e−2γ(t−tm)|E(x, tm)|2, tm ≤ t ≤ tm+1. (3.15)

Substituting (3.15) into (3.11), we obtain

iEt(x, t) = αN(x, t) E(x, t) − λe−2γ(t−tm)|E(x, tm)|2 E(x, t) − iγ E(x, t). (3.16)

Integrating (3.16) from tm to tm+1, and then approximating the integral of N on

[tm, tm+1] via the trapezoidal rule, one obtains

E(x, tm+1) = e−i
R tm+1

tm
[αN(x,τ)−λe−2γ(τ−tm)|E(x,tm)|2−iγ] dτ E(x, tm)

≈





e−ik[α(N(x,tm)+N(x,tm+1))/2−λ|E(x,tm)|2] E(x, tm), γ = 0,

e−γk−i[kα(N(x,tm)+N(x,tm+1))/2+λ|E(x,tm)|2(e−2γk−1)/2γ] E(x, tm), γ 6= 0.

From time t = tm to t = tm+1, we combine the splitting steps via the standard

Strang splitting:

ε2
Nm+1

j − 2Nm
j + Nm−1

j

k2
−
(
Df

xxN
m − νDf

xx|Em|2
)∣∣

x=xj
= 0, (3.17)

E∗
j =

M/2−1∑

l=−M/2

e−ikµ2
l
/2(Êm)l eiµl(xj−a),

E∗∗
j =





e−ik[α(Nm
j +Nm+1

j )/2−λ|E∗

j |
2] E∗

j , γ = 0,

e−γk−i[kα(Nm
j +Nm+1

j )/2+λ|E∗

j |
2(e−2γk−1)/2γ] E∗

j , γ 6= 0,

Em+1
j =

M/2−1∑

l=−M/2

e−ikµ2
l
/2(Ê∗∗)l eiµl(xj−a), 0 ≤ j ≤ M − 1, m = 0, 1, · · · ; (3.18)
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where (Û)l, the Fourier coefficient of a vector U = (U0, U1, U2, . . . , UM)T with U0 =

UM , is defined as

(Û)l =
1

M

M−1∑

j=0

Uj e−iµl(xj−a), µl =
2πl

b − a
, l = −M

2
, . . . ,

M

2
− 1, (3.19)

and Df
xx, a spectral differential operator approximation of ∂xx, is defined as

Df
xxU

∣∣
x=xj

= −
M/2−1∑

l=−M/2

µ2
l (Û)l eiµl(xj−a). (3.20)

The initial conditions (3.3) are discretized as

E0
j = E0(xj), N0

j = N0(xj),
N1

j − N−1
j

2k
= N

(1)
j , j = 0, 1, 2, · · · , M − 1, (3.21)

where

N
(1)
j =





N (1)(xj), 0 ≤ j ≤ M − 2,

−
M−2∑

l=0

N (1)(xl), j = M − 1.
(3.22)

This type of discretization for the initial condition (3.3) is equivalent to the use of the

trapezoidal rule for the periodic function N (1). The discretization error converges

to 0 exponentially fast as the mesh size h goes to 0.

Note that the spatial discretization error of this method is of spectral-order accuracy

in h and time discretization error is of second-order accuracy in k, which will be

demonstrated in Chapter 4 by our numerical results.

Note that a main advantage of the time-splitting spectral method is that if a constant

r is added to the initial data N0(x) in (3.3), then the discrete function Nm+1
j obtained

from (3.17) gets added by r and Em+1
j obtained from (3.18) gets multiplied by the

phase factor e−ir(m+1)k, which leaves the discrete function |Em+1
j |2 unchanged. This

property also holds for the exact solution of the ZS, but does not hold for the finite

difference schemes proposed in [19, 12] and the spectral method proposed in [31], in

contrast.
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Remark 3.1.1. If the periodic boundary conditions (3.4) and (3.5) are replaced

by (3.9), then the Fourier basis used in the above algorithm can be replaced by

the sine basis. In fact, the generalized Zakharov system (3.1) and (3.2) with the

homogeneous periodic boundary condition (3.9) and initial condition (3.3) can be

discretized by

ε2
Nm+1

j − 2Nm
j + Nm−1

j

k2
−
(
Ds

xxN
m − νDs

xx|Em|2
)∣∣

x=xj
= 0, (3.23)

E∗
j =

M−1∑

l=1

e−ikη2
l
/2(Ẽm)l sin(ηl(xj − a)),

E∗∗
j =





e−ik[α(Nm
j +Nm+1

j )/2−λ|E∗

j |
2] E∗

j , γ = 0,

e−γk−i[kα(Nm
j +Nm+1

j )/2+λ|E∗

j |
2(e−2γk−1)/2γ] E∗

j , γ 6= 0,

Em+1
j =

M−1∑

l=1

e−ikη2
l
/2(Ẽ∗∗)l sin(ηl(xj − a)), 1 ≤ j ≤ M − 1, m = 0, 1, · · · ,(3.24)

where (Ũ)l, the sine-transform coefficients of a vector U = (U0, U1, U2, · · · , UM)T

with U0 = UM = 0, are defined as

ηl =
πl

b − a
, Ũl =

2

M

M−1∑

j=1

Uj sin(ηl(xj − a)), l = 1, 2, · · · , M − 1, (3.25)

and Ds
xx, a spectral differential operator approximating ∂xx based on sine-basis, is

defined as

Ds
xxU |x=xj

= −
M−1∑

l=1

η2
l (Ũ)l sin(ηl(xj − a)). (3.26)

3.1.2 For plane wave solution

Choose the initial data in (3.4)-(3.5) as

N0(x) = d, N (1)(x) = 0, a < x < b, (3.27)

E0(x) = c ei 2πrx
b−a , a < x < b, (3.28)

then 1d generalized ZS (2.74)-(2.75) admits the plane wave solution (2.76)-(2.77). In

this case, our numerical method TSSP gives exact solution provided M ≥ 2(|r|+1).
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Plugging (3.27)-(3.28) into (3.21)-(3.22), we get

N−1
j = N1

j , (3.29)

E0
j = c ei

2πrxj

b−a , j = 0, 1, 2, · · · , M − 1, (3.30)

and note (3.19), we also get

(Ê0)l = c eiµra δlr, l = −M

2
, . . . ,

M

2
− 1, (3.31)

with

δlr =





0, l 6= r,

1, l = r,
µr =

2πr

b − a
.

Plugging (3.29), (3.30) and (3.31) into (3.17)-(3.18) with m = 1, we have

N1
j = N0

j = d, (3.32)

E∗
j = c eiµrxj e−ikµ2

r/2, (3.33)

and

E∗∗
j =





c eiµrxj e−ik[αd−λc2+µ2
r/2], γ = 0,

c eiµrxj e−ikµ2
r/2 e−i λc2

2γ
(e−2γk−1)−γk−ikαd γ 6= 0.

(3.34)

Then we obtain

E1
j =





c ei(µrxj−ωk), ω = αd + 4π2r2

(b−a)2
− λc2, γ = 0,

c e−γke
i
“

µrxj−ωk−λc2

2γ
(e−2γk−1)

”

, ω = αd + 4π2r2

(b−a)2
, γ 6= 0.

(3.35)

By induction, we get

Nm+1
j = d, (3.36)

Em+1
j =





c ei(µrxj−ωt), ω = αd + 4π2r2

(b−a)2
− λc2, γ = 0,

c e−γte
i
“

µrxj−ωt−λc2

2γ
(e−2γt−1)

”

, ω = αd + 4π2r2

(b−a)2
, γ 6= 0,

(3.37)

with

t = tm+1 = (m + 1)k, m = 1, 2, · · · .
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Here we use the identity

M−1∑

j=0

ei2π(r−l)j/M =





0, r − l 6= nM,

M, r − l = nM.
for n integer (3.38)

Thus in this case our numerical method TSSP really gives exact results provided

that the number of grid points M ≥ 2(|r| + 1).

3.1.3 Conservation and decay rate

Let U = (U0, U1, · · · , UM)T with U0 = UM , f(x) a periodic function on the interval

[a, b], and let ‖ · ‖l2 be the usual discrete l2-norm on the interval (a, b), i.e.,

‖U‖l2 =

√√√√b − a

M

M−1∑

j=0

|Uj|2, ‖f‖l2 =

√√√√b − a

M

M−1∑

j=0

|f(xj)|2. (3.39)

Then we have

Theorem 3.1.1. The time-splitting spectral discretization TSSP (3.17), (3.18) of

the generalized ZS possesses the following properties (in fact, they are the discretized

version of (3.7) and (3.8)):

‖Em‖2
l2 = e−2γtm‖E0‖2

l2, m = 0, 1, 2, · · · , (3.40)

b − a

M

M−1∑

j=0

Nm+1
j − Nm

j

k
= 0, m = 0, 1, 2, · · · . (3.41)

and

b − a

M

M−1∑

j=0

Nm
j =

b − a

M

M−1∑

j=0

N0
j =

b − a

M

M−1∑

j=0

N0(xj), m = 0, 1, 2, · · · (3.42)
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Proof. From (3.18) in the scheme of TSSP, noting (3.39), (3.19), one has

M

b − a
‖Em+1‖2

l2 =
M−1∑

j=0

∣∣Em+1
j

∣∣2 =
M−1∑

j=0

∣∣∣∣∣∣

M/2−1∑

l=−M/2

e−ikµ2
l
/2(Ê∗∗)l eiµl(xj−a)

∣∣∣∣∣∣

2

= M

M/2−1∑

l=−M/2

∣∣∣e−ikµ2
l
/2 (Ê∗∗)l

∣∣∣
2

= M

M/2−1∑

l=−M/2

∣∣∣(Ê∗∗)l

∣∣∣
2

=
1

M

M/2−1∑

l=−M/2

∣∣∣∣∣
M−1∑

j=0

E∗∗
j e−iµl(xj−a)

∣∣∣∣∣

2

=
M−1∑

j=0

∣∣E∗∗
j

∣∣2

=





M−1∑

j=0

∣∣∣e−ik[α(Nm
j +Nm+1

j )/2−λ|E∗

j |
2] E∗

j

∣∣∣
2

, γ = 0,

M−1∑

j=0

∣∣∣e−γk−i[kα(Nm
j +Nm+1

j )/2+λ|E∗

j |
2(e−2γk−1)/2γ] E∗

j

∣∣∣
2

, γ 6= 0,

= e−2γk
M−1∑

j=0

∣∣E∗
j

∣∣2 = e−2γk
M−1∑

j=0

∣∣∣∣∣∣

M/2−1∑

l=−M/2

e−ikµ2
l
/2(Êm)l eiµl(xj−a)

∣∣∣∣∣∣

2

= e−2γkM

M/2−1∑

l=−M/2

∣∣∣e−ikµ2
l
/2(Êm)l

∣∣∣
2

= e−2γkM

M/2−1∑

l=−M/2

∣∣∣(Êm)l

∣∣∣
2

=
e−2γk

M

M/2−1∑

l=−M/2

∣∣∣∣∣
M−1∑

j=0

Em
j e−iµl(xj−a)

∣∣∣∣∣

2

= e−2γk
M−1∑

j=0

∣∣Em
j

∣∣2

=
Me−2γk

b − a
‖Em‖2

l2 = · · · =
Me−2γtm+1

b − a
‖E0‖2

l2, m ≥ 1. (3.43)

Thus the equality (3.40) is proved. Here we use the identities (3.38) and

M/2−1∑

l=−M/2

ei2π(k−j)l/M =





0, k − j 6= nM,

M, k − j = nM,
for n integer. (3.44)

From the equality (3.17), it follows that

Nm+1
j − Nm

j

k
−

Nm
j − Nm−1

j

k
=

k

ε2

(
Df

xxN
m − νDf

xx|Em|2
)∣∣

x=xj
, 0 ≤ j < M.

(3.45)

Summing the above equality for j from 0 to M −1, noting (3.20), (3.19) and (3.38),
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we obtain

M−1∑

j=0

Nm+1
j − Nm

j

k
−

M−1∑

j=0

Nm
j − Nm−1

j

k

=
k

ε2

M−1∑

j=0

(
Df

xxN
m − νDf

xx|Em|2
)∣∣

x=xj

= − k

ε2

M−1∑

j=0

M/2−1∑

l=−M/2

µ2
l

[
(N̂m)l − ν(|̂Em|2)l

]
eiµl(xj−a)

= − k

ε2

M−1∑

j=0

M/2−1∑

l=−M/2

µ2
l

[
(N̂m)l − ν(|̂Em|2)l

]
ei2πlj/M

= − k

ε2

M/2−1∑

l=−M/2

µ2
l

[
(N̂m)l − ν(|̂Em|2)l

] M−1∑

j=0

ei2πlj/M

= 0, m = 1, 2, · · · . (3.46)

By induction, we get

M−1∑

j=0

Nm+1
j − Nm

j

k
=

M−1∑

j=0

N1
j − N0

j

k
, m = 1, 2, · · · . (3.47)

Applying (3.21) to (3.17) with m = 1, we have

N1
j − N0

j

k
= N

(1)
j +

k

2ε2

(
Df

xxN
0 − νDf

xx|E0|2
)∣∣

x=xj
, j = 0, 1, 2, · · · , M. (3.48)

Summing (3.48) with respect to j from 0 to M − 1, noting (3.22) and proceeding

analogously to (3.46), we get

M−1∑

j=0

N1
j − N0

j

k
=

M−1∑

j=0

N
(1)
j +

M−1∑

j=0

k

2ε2

(
Df

xxN
0 − νDf

xx|E0|2
)∣∣

x=xj
= 0+0 = 0. (3.49)

Obviously equality (3.41) is a combination of (3.47) and (3.49). Combining (3.49)

and (3.21), we obtain

M−1∑

j=0

N1
j =

M−1∑

j=0

N0
j =

M−1∑

j=0

N0(xj). (3.50)

Thus equality (3.42) follows from (3.41) and (3.50) by induction. �
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3.2 Other numerical methods

We present in this section discrete singular convolution (DSC) method proposed

in [45], and in order to compare the accuracy and stability, we also consider the

Fourier pseudospectral (FPS) method proposed in [36] and wavelet-Galerkin (WG)

method proposed in [32] and [2] for spatial derivatives, both of which use RK4 for

time discretization, as well as the finite difference (FD) method proposed in [12] for

Zakharov system. We rewrite (3.1), (3.2) into the following form:

Et = iExx − iαNE + iλ|E|2E − γE, (3.51)

Nt = F, (3.52)

Ft =
1

ε2
[Nxx − ν(|E|2)xx]. (3.53)

3.2.1 Discrete singular convolution (DSC-RK4)

Discrete singular convolution (DSC) method, proposed in [45], provides a general

approach for numerical realization of singular integrations. It has been successfully

applied to many areas such as signal processing and numerical solutions to differ-

ential equations and so on. By an appropriate approximation to a singular kernel,

the discrete singular convolution can be an extremely efficient, accurate and reliable

algorithm for practical applications.

From the distribution theory, the singular convolution means

Φ(x) =

∫

R

T (x − y)ϕ(y)dy, (3.54)

where T (x) is a singular kernel. Here we mainly consider Dirac delta function δ(x),

or called delta distribution. First of all, delta distribution has the sifting property

ϕ(0) =

∫

R

δ(y)ϕ(y)dy, (3.55)
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for any continuous function. And subsequently we can show that it has the property

of reproducing kernel, that is,

ϕ(x) =

∫

R

δ(x − y)ϕ(y)dy, (3.56)

for any continuous function. Obviously if delta distribution could be discretized,

the singular integral (3.56) would be discretized and thus ϕ(x) be approximated in

terms of delta distribution and the sampling values of ϕ. Unfortunately, however,

it is not true because delta distribution has strong singularity and it cannot be

discretized directly as a result. Therefore some regularization and approximation of

delta distribution are necessary in order to utilize its reproducing property. This is

the reason why we will have to choose a good classical approximation to it.

Suppose that Tα(x) is a classical smooth approximation of delta distribution, then

the singular convolution (3.56) can be regularized as

ϕ(x) ≈
∫

R

Tα(x − y)ϕ(y)dy. (3.57)

Note that Tα(x) is classical and can be discretized and hence

ϕ(x) ≈
∞∑

i=−∞

Tα(x − xi)ϕ(xi)∆xi. (3.58)

After truncation, we obtain the formulae of DSC algorithm

ϕ(x) ≈
W∑

i=−W

Tα(x − xi)ϕ(xi)∆xi, (3.59)

where 2W + 1 is the computational bandwidth, or effective kernel support, which is

usually smaller than the whole computational domain, xj is sampling point or grid

point, ∆xi = xi − xi−1.

For more details about DSC method, please refer to [45].

Actually there are many delta sequences which can be generated by dilation of some

functions including Shannon kernel sinπx
πx

, Gaussian e−x2
, etc. Nevertheless, a good

choice in numerical computation is regularized Shannon kernel(RSK) sinπx
πx

e−
x2

2σ2 .
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With RSK kernel, DSC method has been testified as a robust method for solving

differential equation numerically. Furthermore, it has been proved in [3] that DSC

method with RSK kernel has spectral convergence for bandlimited functions.

Now we will review how to discretize the second order spatial derivative of a function

u(x) by using RSK kernel [45, 50]

uxx(x) ≈
W∑

j=−W

δ
(2)
h,σ(x − xj)u(xj) (3.60)

and

δh,σ(x) =
sin π

h
x

π
h
x

exp(− x2

2σ2
) (3.61)

is the regularized Shannon’s kernel dilated by 1
h
, δ

(2)
h,σ is a symbol for the second

order derivative of δh,σ(x) with respect to x. The detailed expression for δ
(2)
h,σ(x) can

be easily given as:

δ
(2)
h,σ(x) =





−π
h

sin(πx
h

) exp(− x2

2σ2 )

x
− 2

cos(πx
h

) exp(− x2

2σ2 )

x2

−2
cos(πx

h
) exp(− x2

2σ2 )

σ2
+ 2

sin(πx
h

) exp(− x2

2σ2 )

πx3/h

+
sin(πx

h
) exp(− x2

2σ2 )

πσ2x/h
+

x sin(πx
h

) exp(− x2

2σ2 )

πσ4/h
, (x 6= 0),

−3 + π2σ2/h2

3σ2
, (x = 0).

(3.62)

In our computations, we choose W=50 and σ = 5h.

Therefore, the second-order derivative of a function u(x) at the grid point x = xj is

approximated by

uxx|x=xj
=

W∑

l=−W

δ
(2)
h,σ(lh)uj+l, (3.63)

and thus we get an ordinary differential system of (3.1) and (3.2), then the classical

fourth-order Runge-Kutta method (RK4)[33] is used to evaluate E and N at each

time step for the time integration.
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3.2.2 Fourier pseudospectral method (FPS-RK4)

In general, spectral methods refer to all those global methods that can be interpreted

as projection methods over a finite-dimensional space of polynomials with respect

to an appropriate inner product. Three most important spectral formulations are

the Galerkin, tau, and collocation methods. The spectral method employed in the

present work is the collocation scheme with the discrete Fourier basis as the trial

functions and is referred as the Fourier pseudospectral (FPS) method. In general,

the Fourier pseudospectral method is implemented with the use of the periodic

boundary conditions.

We still consider eqs. (3.51)-(3.53). As reviewed in [21], the discrete Fourier trans-

form (DFT) of a function u(x, t) is defined as

(û)l =

M−1∑

j=0

uj e−iµl(xj−a), µl =
2πl

b − a
, l = −M

2
, · · · ,

M

2
− 1,

and its inverse discrete Fourier transform is given by

uj =
1

M

M/2−1∑

l=−M/2

(û)l eiµl(xj−a), j = 0, 1, · · · , M − 1.

For the use of the fast Fourier transform(FFT) for the DFT and its inverse, M has

to be chosen as the powers of 2.

If u(x) is a sufficiently smooth function of its variables, its spatial derivatives can

be evaluated as

dnu

dxn

∣∣∣∣
x=xj

=

M/2−1∑

l=−M/2

(iµl)
n(û)l eiµl(xj−a), (3.64)

where (û)l is defined as (3.19). This expression constitutes the basis of the Fourier

pseudospectral (FPS) method. For the time integration, the classical fourth-order

Runge-Kutta method (RK4) is used to evaluate E and N at each time step. Some

detail of FPS-RK4 can also be found in [51].
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3.2.3 Wavelet-Galerkin method (WG-RK4)

We also try to use the wavelet-Galerkin method to evaluate the spatial derivatives

uxx. The wavelet-Galerkin solution of the periodic problem is slightly more com-

plicated than the finite difference solution, since the solution procedure consists of

solving a set of simultaneous equations in wavelet space and not in physical space.

This means that we have to transform uxx into wavelet space, solve the set of si-

multaneous equations to get the solution in wavelet space, and then transform the

solution from wavelet space back into physical space. Using the idea of [32] and [2],

the wavelet-Galerkin method entails representing the function u and uxx as expan-

sions of scaling functions at a particular scale J :

u(x) =
∑

k

c̃k2
J
2 φ(2Jx − k), (3.65)

uxx(x) =
∑

k

g̃k2
J
2 φ(2Jx − k); (3.66)

where c̃k and g̃k are the wavelet coefficients of u and uxx, respectively, i.e., they

define the function in the wavelet space, and the scaling function φ is defined by a

dilation equation of the form

φ(x) =
∑

akφ(2x − k). (3.67)

Compactly supported scaling functions, such as those belonging to the Daubechies

family of wavelets [16], have a finite number of nonzero filter coefficients ak. We

denote the number of nonzero filter coefficients by L.

By transformation of variable

y = 2Jx,

we can get

U(y) = u(x) =
∑

k

ckφ(y − k), ck = 2
J
2 c̃k, (3.68)

F (y) = uxx(x) =
∑

k

gkφ(y − k), gk = 2
J
2 g̃k. (3.69)
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Refer to [2], we have

Fk(U) = Fk(F )/Fk(KΩ). (3.70)

The notation Fk is used for the coefficient in the Fourier space, the convolution

kernel KΩ = 22J ·(Ω0, Ω1, · · · , ΩL−2, 0, · · · , 0, Ω2−L, · · · , Ω−1), where

Ωl =

∫
φ′′(y)φ(y − l) dy

is the connection coefficient. The method for computing these coefficients was pre-

sented in [9]. Conversely, one gets

Fk(F ) = Fk(U) · Fk(KΩ). (3.71)

Therefore, in eqs. (3.51)-(3.53), the spatial derivatives can be evaluated by (3.71)

with h = 1
2J . For the time integration, we again use the classical fourth-order Runge-

Kutta method (RK4). In our computations, we use DAUB12 wavelet basis [9, 16],

i.e., L=12.

3.2.4 Finite difference method (FD)

Finite difference (FD) method is the oldest method for numerical solution of partial

differential equations, and was already in use by Euler in 1768. It is one of the

dominant approaches for solving problems in science and engineering, e.g., in elec-

tromagnetic wave simulations. Here we review the finite difference method proposed

for the standard ZS [12], i.e., in (3.1)-(3.2) with ε = 1, ν = −1, α = 1, λ = 0 and

γ = 0:
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i
Em+1

j − Em
j

k
+

1

2

(
Em+1

j+1 − 2Em+1
j + Em+1

j−1

h2
+

Em
j+1 − 2Em

j + Em
j−1

h2

)

=
1

4
(Nm

j + Nm+1
j )(Em+1

j + Em
j ), (3.72)

Nm+1
j − 2Nm

j + Nm−1
j

k2
− (1 − 2θ)

Nm
j+1 − 2Nm

j + Nm
j−1

h2

−θ

(
Nm+1

j+1 − 2Nm+1
j + Nm+1

j−1

h2
+

Nm−1
j+1 − 2Nm−1

j + Nm−1
j−1

h2

)

=
|Em

j+1|2 − 2|Em
j |2 + |Em

j−1|2
h2

. (3.73)

In computations, E0
j , N0

j and N1
j are obtained from initial data

E0
j = E0(xj), N0

j = N0(xj), (3.74)

N1
j = N0

j + kN1(xj) +
k2

2
(
N0

j+1 − 2N0
j + N0

j−1

h2

+
|E0

j+1|2 − 2|E0
j |2 + |E0

j−1|2
h2

). (3.75)

In our computation, we choose θ = 0.5.

3.3 Extension TSSP to Zakharov system for multi-

component plasma

For d = 1, ZS for multi-component plasma (2.49)-(2.51) with periodic boundary

conditions can be written as

i∂tE + Exx + 2
∑

J

NJE = 0, (3.76)

ε2
J∂ttNJ − (NJ)xx + νJ(|E|2)xx = 0, J = 1, 2, (3.77)

E(x, 0) = E0(x), NJ(x, 0) = N0
J (x), (NJ)t(x, 0) = N

(1)
J (x), a ≤ x ≤ b, (3.78)

E(a, t) = E(b, t), Ex(a, t) = Ex(b, t), t ≥ 0, (3.79)

NJ(a, t) = NJ (b, t), (NJ)x(a, t) = (NJ)x(b, t), t ≥ 0. (3.80)
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The idea to construct the TSSP for the ZS (3.1)-(3.5) can be easily extended to the

ZS for multi-component plasma (3.76)-(3.80). the detail scheme is following:

ε2
J

(NJ)m+1
j − 2(NJ)m

j + (NJ)m−1
j

k2
−
(
Df

xxN
m
J − νJDf

xx|Em|2
)∣∣

x=xj
= 0,(3.81)

E∗
j =

M/2−1∑

l=−M/2

e−ikµ2
l
/2(Êm)l eiµl(xj−a),

E∗∗
j = eik

P

J((NJ )m
j +(NJ )m+1

j ) E∗
j , J = 1, 2

Em+1
j =

M/2−1∑

l=−M/2

e−ikµ2
l
/2(Ê∗∗)l eiµl(xj−a), 0 ≤ j ≤ M − 1, m = 0, 1, · · · . (3.82)

The initial conditions (3.78) are discretized as

E0
j = E0(xj), (NJ)0

j = N0
J (xj), J = 1, 2 (3.83)

(NJ)1
j − (NJ)−1

j

2k
= N

(1)
J (xj), j = 0, 1, 2, · · · , M − 1, (3.84)

where

N
(1)
J (xj) =





N
(1)
J (xj), 0 ≤ j ≤ M − 2,

−
M−2∑

l=0

N
(1)
J (xl), j = M − 1.

(3.85)

3.4 Extension TSSP to vector Zakharov system

The idea to construct the TSSP for ZS (3.1)-(3.5) can be easily extended to the

vector ZS (2.39)-(2.40). Consider vector ZS (2.39)-(2.40) with periodic boundary

condition for E and N as following:

i∂tE − a∇× (∇×E) + ∇(∇ · E) = NE, (3.86)

ε2∂ttN − ∆N = ∆|E|2, x ∈ [a1, b1] × [a2, b2] × [a3, b3], (3.87)

E(x, 0) = E0(x), N(x, 0) = N0(x), Nt(x, 0) = N (1)(x), (3.88)

where x = (x, y, z). Denote h1 = b1−a1

M1
and h2 = b2−a2

M2
, h3 = b3−a3

M3
as the mesh sizes

in x, y, z direction, respectively, and choose M1, M2, M3 as even positive integers,

and time step k = ∆t > 0, the grid points and time step as
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xj := a1 + jh1, j = 0, 1, · · · , M1; yp := a2 + ph2, p = 0, 1, · · · , M2;

zs := a3 + sh3, s = 0, 1, · · · , M3; tm := mk, m = 0, 1, 2, · · · .

Let Em
j,p,s and Nm

j,p,s be the approximations of E(xj, yp, zs, tm) and N(xj , yp, zs, tm),

respectively.

Following the idea to construct the TSSP for the ZS (3.1)-(3.5), from time t = tm to

t = tm+1, we extend the splitting steps via the standard Strang splitting to vector

ZS (3.86)-(3.88) [5]:

ε2
Nm+1

j,p,s − 2Nm
j,p,s + Nm−1

j,p,s

k2
−
(
DfNm + Df (|Em|2)

)∣∣
x=(xj ,yp,zs)

= 0, (3.89)

E∗
j,p,s =

M1/2−1∑

l=−M1/2

M2/2−1∑

g=−M2/2

M3/2−1∑

r=−M3/2

Bl,g,r(k/2) (Êm)l,g,r e
i
“

2ljπ
M1

+ 2pgπ
M2

+ 2srπ
M3

”

,

E∗∗
j,p,s = e−ik(Nm

j,p,s+Nm+1
j,p,s )/2 E∗

j,p,s,

Em+1
j,p,s =

M1/2−1∑

l=−M1/2

M2/2−1∑

g=−M2/2

M3/2−1∑

r=−M3/2

Bl,g,r(k/2) (Ê∗∗)l,g,r e
i
“

2ljπ

M1
+ 2pgπ

M2
+ 2srπ

M3

”

, (3.90)

where

Bl,g,r(t−tm) =





I3, l = g = r = 0,(
I3 +

e−i(1−a)(t−tm)R2
l,g,r − 1

R2
l,g,r

Al,g,r

)
e−ia(t−tm)R2

l,g,r , otherwise,

with

R2
l,g,r = µ2

l + ζ2
g + η2

r , Al,g,r =




µ2
l µlζg µlηr

µlζg ζ2
g ζgηr

µlηr ζgηr η2
r


 =




µl

ζg

ηr



(

µl ζg ηr

)
.

This is due to A2
l,g,r = R2

l,g,rAl,g,r, which leads to

eAl,g,r =

∞∑

n=0

An
l,g,r

n!
= I3 +

∞∑

n=1

An
l,g,r

n!
= I3 +

∞∑

n=1

R
2(n−1)
l,g,r

n!
Al,g,r

= I3 +

∞∑

n=1

R2n
l,g,r

R2n!
Al,g,r = I3 +

eR2
l,g,r − 1

R2
Al,g,r,
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where I3 is the 3 × 3 identity matrix. Where (Û)l,g,r is defined as

(Û)l,g,r =
1

M1

1

M2

1

M3

M1−1∑

j=0

M2−1∑

p=0

M3−1∑

s=0

Uj,p,s e
−i

“

2ljπ

M1
+ 2pgπ

M2
+ 2srπ

M3

”

, (3.91)

with

µl =
2πl

b1 − a1
, l = −M1

2
, . . . ,

M1

2
− 1,

ζg =
2πg

b2 − a2
, g = −M2

2
, . . . ,

M2

2
− 1,

ηr =
2πr

b3 − a3

, r = −M3

2
, . . . ,

M3

2
− 1, (3.92)

and Df , a spectral differential operator approximation of ∆ = ∂xx + ∂yy + ∂zz, is

defined as

DfU
∣∣
x=(xj ,yp,zs)

= −
M1
2

−1∑

l=−
M1
2

M2
2

−1∑

g=−
M2
2

M3
2

−1∑

r=−
M3
2

(µ2
l + ζ2

g + η2
r)(Û)l,g,r e

i
“

2ljπ
M1

+ 2pgπ
M2

+ 2srπ
M3

”

. (3.93)

The initial conditions (3.88) are discretized as

E0
j,p,s = E0(xj , yp, zs), N0

j,p,s = N0(xj , yp, zs),

N1
j,p,s − N−1

j,p,s

2k
= N

(1)
j,p,s, j = 0, · · · , M1, p = 0, · · · , M2, s = 0, · · · , M3,

with

N
(1)
j,p,s = N (1)(xj , yp, zs), j 6= M1 − 1&p 6= M2 − 1&s 6= M3 − 1

and N
(1)
M1−1,M2−1,M3−1 is chosen such that

M1−1∑

l=0

M2−1∑

g=0

M3−1∑

r=0

N
(1)
j,p,s = 0,

which implies that

N
(1)
M1−1,M2−1,M3−1 = N (1)(xM1−1, yM2−1, zM3−1) −

M1−1∑

l=0

M2−1∑

g=0

M3−1∑

r=0

N (1)(xl, yg, zr).

This type of discretization for the initial condition (3.88) is equivalent to the use

of the trapezoidal rule for the periodic function N (1) and such that the properties

(3.8) is satisfied in the discretized level. The discretization error converges to 0

exponentially fast as the mesh size h = max{h1, h2, h3} goes to 0.



Chapter 4
Numerical Examples

In this chapter, we present numerical results of the ZS with a solitary wave solution in

1d to compare the accuracy and stability of different methods described in Chapter 3.

We also present numerical examples including plane waves, soliton-soliton collisions

in 1d, as well as a 2d problem and damped problem of the ZS to demonstrate

the efficiency and spectral accuracy of the time-splitting spectral method (TSSP)

and discrete singular convolution method (DSC-RK4) for the generalized Zakharov

system.

In the examples 1, 3 and 4, 6, 8, the initial conditions for (1.3) are always chosen such

that |E0|, N0 and N (1) decay to zero sufficiently fast as |x| → ∞. We always compute

on a domain, which is large enough such that the periodic boundary conditions (3.4)-

(3.5) do not introduce a significant aliasing error relative to the problem in the whole

space.

4.1 Comparisons of different methods

Example 1 The standard ZS with a solitary-wave solution, i.e., we choose d = 1,

ε = 1, α = 1, λ = 0, γ = 0 and ν = −1 in (1.1)-(1.3). The well-known solitary-wave

38
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solution of the ZS (1.1)-(1.3) in this case is given in [29, 25]

E(x, t) =
√

2B2(1 − C2) sech(B(x − Ct)) ei[(C/2)x−((C/2)2−B2)t], (4.1)

N(x, t) = −2B2 sech2(B(x − Ct)), −∞ < x < ∞, t ≥ 0, (4.2)

where B, C are constants. The initial condition is taken as

E0(x) = E(x, 0), N0(x) = N(x, 0), N (1)(x, 0) = Nt(x, 0), −∞ < x < ∞,

(4.3)

where E(x, 0), N(x, 0) and Nt(x, 0) are obtained from (4.1), (4.2) by setting t = 0.

We present computations for two different regimes of the acoustic speed, i.e. 1/ε:

Case I. O(1)-acoustic speed, i.e. we choose ε = 1, B = 1, C = 0.5 in (4.1),

(4.2). Here we test the spatial and temporal discretization errors, conservation of

the conserved quantities as well as the stability constraint of different numerical

methods. We solve the problem on the interval [-32, 32], i.e., a = −32 and b = 32

with periodic boundary conditions. Let Eh,k and Nh,k be the numerical solution of

(1.1), (1.2) in 1d with the initial condition (4.3) by using a numerical method with

mesh size h and time step k. To quantify the numerical methods, we define the error

functions as

e1 = ‖E(·, t) − Eh,k(t)‖l2 , e2 = ‖N(·, t) − Nh,k(t)‖l2,

e =
‖E(·, t) − Eh,k(t)‖l2

‖E(·, t)‖l2
+

‖N(·, t) − Nh,k(t)‖l2

‖N(·, t)‖l2
=

e1

‖E(·, t)‖l2
+

e2

‖N(·, t)‖l2

and evaluate the conserved quantities by using the numerical solution (i.e., replacing

E and N by their numerical counterparts Eh,k and Nh,k, respectively) as

D =

∫ ∞

−∞

|E(x, t)|2 dx,

P =

∫ ∞

−∞

[
i

2
(E(x, t)Ex(x, t) − E(x, t)Ex(x, t)) + N(x, t)V (x, t)

]
dx,

H =

∫ ∞

−∞

[
|Ex(x, t)|2 + N |E|2 +

1

2
N2 +

1

2
V (x, t)2

]
dx,

where V is the flux and its value is determined from the continuity equation

Nt + Vx = 0. (4.4)
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First, we test the discretization error in space. In order to do this, we choose a

very small time step, e.g., k = 0.00001 such that the error from time discretization

is negligible comparing to the spatial discretization error, and solve the ZS with

different methods under different mesh sizes h. Table 4.1 lists the numerical errors

of e1 and e2 at t = 2.0 with different mesh sizes h for different numerical methods.

Mesh h = 1.0 h = 1
2

h = 1
4

TSSP
e1

e2

9.810E-2

0.143

1.500E-4

1.168E-3

2.286E-9

2.201E-8

DSC-RK4
e1

e2

0.151

0.243

1.955E-4

2.347E-3

3.452E-9

4.692E-8

WG-RK4
e1

e2

0.697

0.968

1.866E-2

3.651E-2

1.403E-5

5.677E-5

FD
e1

e2

0.491

0.889

0.120

0.209

2.818E-2

4.726E-2

Table 4.1: Spatial discretization error analysis: e1, e2 at time t=2 under k = 0.00001.

Secondly, we test the discretization error in time. Table 4.2 shows the numerical

errors of e1 and e2 at t = 2.0 under different time steps k and mesh sizes h for different

numerical methods. For the FD method, due to its second-order convergence rate

in space, we list errors for larger time steps k in order to view the convergence rate

in time.

Thirdly, we test the conservation of conserved quantities. Table 4.3 presents the

quantities and numerical errors at different times with mesh size h = 1
8

and time

step k = 0.001 for different numerical methods.
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h Error k = 0.01 k = 0.0025 k = 0.000625 k = 0.00015625

TSSP 1
4

e1 4.631E-5 2.894E-6 1.809E-7 1.148E-8

e2 1.029E-4 6.429E-6 4.024E-7 3.338E-8

1
8

e1 4.631E-5 2.894E-6 1.809E-7 1.129E-8

e2 1.029E-4 6.429E-6 4.018E-7 2.513E-8

DSC-RK4 1
4

e1 2.822E-9 3.442E-9 3.452E-9 3.452E-9

e2 4.693E-8 4.692E-8 4.692E-8 4.692E-8

1
8

e1 — 4.338E-12 3.756E-13 3.765E-13

e2 — 3.789E-12 6.194E-14 6.276E-14

FPS-Rk4 1
4

e1 2.078E-9 2.185E-9 2.192E-9 2.192E-9

e2 5.990E-8 5.989E-8 5.989E-8 5.989E-8

1
8

e1 — 4.342E-12 7.369E-14 7.218E-14

e2 — 3.762E-12 1.467E-14 4.899E-15

WG-RK4 1
4

e1 1.399E-5 1.403E-5 1.403E-5 1.403E-5

e2 5.677E-5 5.677E-5 5.677E-5 5.677E-5

1
8

e1 8.172E-9 8.506E-9 8.508E-9 8.508E-9

e2 4.239E-8 4.221E-8 4.221E-8 4.221E-8

h Error k = 0.8 k = 0.2 k = 0.05 k = 0.0125

FD 1
4

e1 0.802 3.480E-2 2.855E-2 2.820E-2

e2 0.674 9.012E-2 5.005E-2 4.743E-2

1
8

e1 0.809 1.753E-2 7.363E-3 6.961E-3

e2 0.656 5.491E-2 1.427E-2 1.167E-2

Table 4.2: Time discretization error analysis: e1, e2 at time t=2.
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Fourthly, we compare the stability constraint for different numerical methods and

list the results in Table 4.4. There the error e is computed at time t = 5.0.

Time e D P H

TSSP 1.0 5.323E-7 3.0000000000 3.397277646 0.519446033

2.0 7.127E-7 3.0000000000 3.397277653 0.519446032

DSC-RK4 1.0 1.966E-13 3.0000000000 3.397343618 0.519445999

2.0 2.813E-13 3.0000000000 3.397343618 0.519445999

FPS-RK4 1.0 9.631E-14 3.0000000000 3.397343618 0.519445999

2.0 1.184E-13 3.0000000000 3.397343618 0.519445999

WG-RK4 1.0 3.064E-8 3.0000000000 3.397343618 0.51944599

2.0 2.319E-8 3.0000000000 3.397343618 0.51944599

FD 1.0 4.745E-3 3.0000000000 3.394829741 0.510115589

2.0 8.983E-3 3.0000000000 3.394791238 0.510076710

Table 4.3: Conserved quantities analysis: k = 0.001 and h = 1
8
.

Case II: ‘Subsonic limit’ regime, i.e. we choose ε � 1, B = 1 and C = 1/2ε in (4.1),

(4.2). Here we test the ε-resolution of different numerical methods. We solve the

problem on the interval [-8, 120], i.e., a = −8 and b = 120 with periodic boundary

conditions. Figure 4.1 shows the numerical results of TSSP at t = 1 when we choose

the meshing strategy: ε = 1
8
, h = 1

2
, k = 1

50
; ε = 1

32
, h = 1

8
, k = 1

800
; ε = 1

128
,

h = 1
32

, k = 1
12800

corresponding to h = O(ε) and k = O(εh) = O(ε2). FPS-RK4

gives similar results at the same meshing strategy.

From Tables 4.1-4.4 and Figure 4.1, we can draw the following observations:
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h DSC-RK4 TSSP FPS-RK4 WG-RK4 FD (θ = 1
2
) FD(θ = 0)

1
2

k 1
16

1
4

1
16

1
8

1
2

1
2

e 1.125E-3 0.101 1.645E-3 4.388E-2 0.702 0.207

1
4

k 1
64

1
8

1
64

1
32

1
4

1
4

e 2.458E-8 1.466E-2 3.526E-8 4.815E-5 0.167 4.194E-2

1
8

k 1
256

1
16

1
256

1
128

1
8

1
8

e 2.465E-11 3.163E-3 4.936E-11 2.552E-8 3.937E-2 1.009E-2

1
16

k 1
1024

1
32

1
1024

1
512

1
16

1
16

e 2.869E-13 7.812E-4 2.659E-13 9.147E-12 9.758E-3 2.499E-3

Table 4.4: Stability analysis: time t = 5.0.

(1) For TSSP, the spatial discretization error is of spectral order accuracy and the

time discretization error is of second-order accuracy. TSSP conserves D exactly

and P , H very well (up to 8 digits). The stability constraint of TSSP is weaker, it

requires k = O(h) for ε = O(1). Furthermore, it is explicit, easy to program, less

memory requirement, easy to extend to 2d and 3d cases and keeps more properties

of the generalized ZS in the discretized level. Of course, the finite difference method

is easy to program.

(2) DSC-RK4 can also obtain the exponentially high order accuracy in space. Ta-

ble 4.3 shows that DSC-RK4 can conserve D, P and H very well. The stability

constraint of DSC-RK4 is k = O(h2) for ε = O(1). Furthermore, DSC-RK4 is ex-

plicit and can be applied to deal with complex geometry and more general boundary

conditions.

(3) FD, FPS-RK4 and WG-RK4 give good approximations of the standard ZS with

the solitary-wave solution. FPS-RK4 and WG-RK4 are explicit and of spectral order

accuracy and high order accuracy in space, respectively. The stability constraint of

these two methods is k = O(h2) for ε = O(1). FD is implicit, time reversible and
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Figure 4.1: Numerical solutions of the electric field |E(x, t)|2 at t = 1 for Example

1 in the ‘subsonic limit’ regime by TSSP (3.17), (3.18). a). ε = 1
8
, h = 1

2
, k = 1

50
;

b). ε = 1
32

, h = 1
8
, k = 1

800
; c). ε = 1

128
, h = 1

32
, k = 1

12800
corresponding to h = O(ε)

and k = O(εh) = O(ε2).

of second order accuracy in both space and time. The stability constraint of FD is

k = O(h) for ε = O(1).

(4) In the ‘subsonic limit’ regime, i.e. 0 < ε � 1, the ε-resolution is: For TSSP,

h = O(ε) and k = O(εh); for DSC-RK4, h = o(ε) and k = O(εh) when the

bandwidth w in (3.60) is fixed and h = O(ε) and k = O(εh) when w = O(1/ε); for
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FPS-RK4, h = O(ε) and k = O(εh); for WG-RK4 and FD: h = o(ε) and k = O(εh).

In general, the numerical study on the standard ZS with periodic boundary condition

suggests that TSSP, DSC-RK4 and FPS-RK4 have much better spatial resolution

than FD and WG-RK4. It is obvious that TSSP is easy to program and less memory

requirement, keeps more properties of the generalized ZS in discretized level and its

stability constraint is weaker, where DSC-RK4 algorithm can be applied for complex

geometry and general boundary conditions. For more comprehensive comparisons

between the DSC-RK4 and FPS-RK4 for PDEs, we refer to [51]. In summary, for

generalized ZS with periodic boundary conditions or in the whole space with initial

data decaying to zero sufficiently fast as |x| → ∞ which can be approximated in a

bounded domain with periodic boundary conditions, we recommend to use TSSP;

for generalized ZS in a complex geometry or with non-periodic boundary conditions,

we recommend to use DSC-RK4.

4.2 Applications of TSSP

4.2.1 Plane-wave solution of the standard Zakharov system

Example 2 The standard ZS with a plane-wave solution, i.e., we choose d = 1,

ε = 1, α = 1, λ = 0, γ = 0 and ν = −1 in (1.1)-(1.3) and consider the problem on

the interval [a, b] with a = 0 and b = 2π. The initial condition is taken as

E(x, 0) = E0(x) = ei7x, N(x, 0) = N0(x) = 1, Nt(x, 0) = N (1)(x) = 0, 0 ≤ x ≤ 2π.

(4.5)

It is easy to see that the ZS (3.1), (3.2) with the periodic boundary conditions (3.4),

(3.5), and initial condition (4.5) admits the plane wave solution [29]

E(x, t) = ei(7x−ωt), with ω = 72 + 1 = 50, (4.6)

N(x, t) = 1, a ≤ x ≤ b, t ≥ 0. (4.7)
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We solve this problem by using the time-splitting spectral method (TSSP) on the

interval [0, 2π] with mesh size h = π
8

(i.e., 17 grid points in the interval [0, 2π]) and

time step k = 0.01. Figure 4.2 shows the numerical results at t = 2 and t = 4.

From Figure 4.2, we can see that the time-splitting spectral method really provides

the exact plane-wave solution of the Zakharov system.

4.2.2 Soliton-soliton collisions of the standard Zakharov sys-

tem

Example 3 Soliton-soliton collisions in 1d of the standard ZS, i.e., we choose d = 1,

ε = 1, α = 1, λ = 0, γ = 0 and ν = −1 in (1.1)-(1.3). Here we use this solution

(2.81)-(2.82) to test our method TSSP and DSC-RK4. The values of the various

parameters used in our computations are given in Table 4.5.

Parameter set L Emax Emin v u N0

A 160 1.0 1.0535×10−31 0.628319 2.24323 0.0227232

B 160 0.5 1.0535×10−18 0.628319 -0.27094 0.0227232

C 160 1.0 1.0535×10−38 0.314159 -3.22992 0.0227232

Table 4.5: Parameter values for analytic solutions of the periodic Zakharov system.

In the following we will study soliton-soliton collisions using the time-splitting spec-

tral method. The initial data is chosen as

E(x, 0) = Es(x + p, 0, v1, E
1
max) + Es(x − p, 0, v2, E

2
max),

N(x, 0) = Ns(x + p, 0, v1, E
1
max) + Ns(x − p, 0, v2, E

2
max),

Nt(x, 0) =
∂Ns(x + p, 0, v1, E

1
max)

∂t
+

∂Ns(x − p, 0, v2, E
2
max)

∂t
,

where x = ∓p are initial locations of the two solitons. We present computations for

three cases:
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Figure 4.2: Numerical solutions at t = 2 (‘left’) and t = 4 (‘right’) in Example 1. ‘—

’: exact solution given in (4.6)-(4.7), ‘+ + +’: numerical solution. a). Re(E(x, t)):

real part of E, b). Im(E(x, t)): imaginary part of E, c). N .

I. Collision of two solutions with equal amplitudes and opposite velocities.

E1
max = E2

max = Emax = 1.0, v1 = −v2 = v = 0.628319, (parameter set A).
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II. Collision of two solutions with different amplitudes and opposite velocities.

E1
max = 0.5, v1 = 0.628319, (parameter values set B),

E2
max = 1.0, v2 = −0.628319, (parameter values set A).

III. Collision of two solutions with equal amplitudes and opposite velocities but dif-

ferent speeds.

E1
max = 1.0, v1 = 0.314159, (parameter value set C),

E2
max = 1.0, v2 = −0.628319, (parameter value set A).

We solve the problem in the interval [−80, 80], i.e., a = −80 and b = 80 with mesh

size h = 5
16

and time step k = 0.01. We take p = 10. Figure 4.3 shows the values

of |E(x, t)| and N(x, t) at various times for case I, Figure 4.4 for case II and Figure

4.5 for case III.

Case I which was already used in [31, 12, 19] to test their numerical methods corre-

sponds to collision of two solutions with equal amplitudes and opposite velocities.

In this case, the time t = 15.9 corresponds to the time when the two solutions are

at the same position and the time t = 31.8 corresponds to a time when the collision

is nearing completion (cf. Figure 4.3). From the figure we can see that during the

collision waves are emitted, and that after the collision the two solutions have a re-

duced value of Emax. Comparison of our graphical results (under mesh size h = 5
16

)

with those (under mesh size h = 1
20

) of [31, 19, 12] shows excellent qualitative agree-

ment. This also demonstrates that the time-splitting spectral method TSSP has

a better resolution than the finite difference method proposed in [19, 12]. Case II

corresponds to the collision of a right-going soliton with a smaller peak value of E1
max

and a left-going soliton with a larger value of E2
max. They have equal speeds. In

this case, during the collision waves are emitted and exchanged, and that after the

collision the peak value of the left-going soliton becomes bigger than its value before



4.2 Applications of TSSP 49

−40 −20 0 20 40

0

1

x

|E
|

t = 0.0 

−40 −20 0 20 40

0

1

x

|E
|

t = 12.7 

−40 −20 0 20 40

0

1

2

x

|E
|

t = 15.9 

−40 −20 0 20 40

0

1

x

|E
|

t = 19.1 

−60 −20 0 20 60

0

1

x

|E
|

t = 25.5 

−80 −40 0 40 80

0

1

x

|E
|

t = 31.8 

Figure 4.3: Numerical solutions at different times in Example 3 for case I: Electric

field |E(x, t)|.

collision and the peak of the other becomes much smaller (cf. Figure 4.4). This

means that the soliton with larger peak value will absorb part of the other wave

during their collision. Case III corresponds to a collision of a right-going soliton

with a smaller speed |v1| and a left-going soliton with a larger speed |v2|. They have

equal amplitudes. Again, waves are emitted and exchanged during collision. After

the collision, the peak value of the left-going soliton becomes larger than its value

before collision and the peak of the other becomes much smaller (cf. Figure 4.5).

This means that the soliton with larger speed will absorb part of the other wave
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Figure 4.3 (cont’d): Ion density N(x, t).

during their collision.

The same results can also be obtained by the DSC-RK4 with mesh size h = 5
16

and

time step k = 0.01.

4.2.3 Solution of 2d standard Zakharov system

Example 4 A 2d problem of the standard ZS, i.e., we choose d = 2, ε = 1, α = 1,
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Figure 4.4: Numerical solutions at different times in Example 3 for case II: Electric

field |E(x, t)|.

λ = 0, γ = 0 and ν = −1 in (1.1)-(1.3). The initial condition is taken as

E(x, y, 0) =
2

ex2+2y2 + e−(x2+2y2)
ei5/cosh(

√
4x2+y2),

N(x, y, 0) = e−(x2+y2), Nt(x, y, 0) = 0.

We solve the problem on the rectangle [−64, 64]2 with mesh size h = 1
4

and time

step k = 0.01. Figure 4.6 shows the surface plots of |E|2 and N at time t = 2.0,

Figure 4.7 shows the contour plots of |E|2 and N at different times.

From Figure 4.6-4.7, we can see that the time-splitting spectral method can really
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Figure 4.4 (cont’d): Ion density N(x, t).

be applied to solve 2d Zakharov system.

4.2.4 Soliton-soliton collisions of the generalized Zakharov

system

Example 5 Soliton-soliton collisions in 1d of the generalized ZS, i.e., we choose

d = 1, ε = 1, α = −2 and γ = 0 in (1.1)-(1.3). We use the family of one-soliton

solutions (2.78)-(2.80) to test our methods TSSP and DSC-RK4. The initial data
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Figure 4.5: Numerical solutions at different times in Example 3 for case III: Electric

field |E(x, t)|.

is chosen as

E(x, 0) = Es(x + p, 0, η1, V1, ε, ν) + Es(x − p, 0, η2, V2, ε, ν),

N(x, 0) = Ns(x + p, 0, η1, V1, ε, ν) + Ns(x − p, 0, η2, V2, ε, ν),

Nt(x, 0) =
∂Ns(x + p, 0, η1, V1, ε, ν)

∂t
+

∂Ns(x − p, 0, η2, V2, ε, ν)

∂t
,

where x = ∓p are initial locations of the two solitons.

In all the numerical simulations reported in this example, we set λ = 2, and Φ0 = 0.

We only simulated the symmetric collisions, i.e., the collisions of solitons with equal
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Figure 4.5 (cont’d): Ion density N(x, t).

amplitudes η1 = η2 = η and opposite velocities V1 = −V2 ≡ V . Here, we present

computations for four cases:

I. Collision between solitons moving with the subsonic velocities, V < 1/ε = 1.

Case 1: ν = 0.2, η = 0.3, V = 0.5;

Case 2: ν = 2, η = 0.3, V = 0.045;

Case 3: ν = 2, η = 0.3, V = 0.45.

II. Collision between solitons in the transonic regime, V > 1/ε = 1.

Case 4: ν = 2.0, η = 0.3, V = 3.0.
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Figure 4.6: Numerical solutions in Example 4. Surface-plot at time t = 2.0: a).

Electric field |E(x, y, 2.0)|2, b). Ion density N(x, y, 2.0).

We solve the problem on the interval [-128,128], i.e., a = -128 and b = 128 with

mesh size h = 1
4

and time step k = 0.005. We take p = 10. Figure 4.8 shows the

evolution of the dispersive wave field |E|2 for case 1, Figure 4.9 shows the evolutions

of the dispersive wave field |E|2 and the acoustic (nondispersive) field N for case 2,

Figure 4.10 for case 3 and Figure 4.11 for case 4.

Case 1 corresponds to a soliton-soliton collision when the ratio ν/λ is small, i.e.,

the generalized ZS (3.1), (3.2) is close to the NLS equation. As is seen, the collision

seems quite elastic (cf. Figure 4.8). Case 2 and case 3 correspond to the fusion

of the colliding subsonic solitons into the new soliton in the system (3.1), (3.2) at

the different velocities. At very small values of V , the collision results in the direct

fusion of the colliding solitons into a new solitonlike state, its amplitude and width

are almost constant in time (cf. Figure 4.9). With the growth of V , the appearing

soliton demonstrates irregular oscillations in its amplitude and size; the oscillations

are accompanied by a conspicuous emission of the acoustic waves (cf. Figure 4.10).

Case 4 corresponds to the collision of two transonic solitons. Note that the emission

of the sound waves is inconspicuous at this value of V (cf. Figure 4.11).
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Figure 4.7: Contour-plots at different times. Left: Electric field |E|2; Right: ion

density N .

From Figures 4.8-4.11, we can see that the time-splitting spectral method can re-

ally be applied to solve soliton-soliton collisions of generalized Zakharov system.

Furthermore, the DSC-RK4 can also achieve similar results.

4.2.5 Solutions of the damped Zakharov system

In this subsection we present numerical tests of the TSSP for solving the generalized

ZS in 2d with a damping term. In our computations, the initial condition and
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Figure 4.8: Evolution of the wave field |E|2 in Example 5 for case 1.
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Figure 4.9: Numerical solutions in Example 5 for case 2. a). Evolution of the wave

field |E|2; b). Evolution of the acoustic field N .

parameters α, λ, ε, ν are always chosen such that the initial Hamiltonian H(0) < 0.
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Figure 4.10: Numerical solutions in Example 5 for case 3. a). Evolution of the wave

field |E|2; b). Evolution of the acoustic field N .
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Figure 4.11: Numerical solutions in Example 5 for case 4. a). Evolution of the wave

field |E|2; b). Evolution of the acoustic field N .

Example 6 A 2d damped problem of the generalized ZS. We choose d = 2 in

(1.1)-(1.3) and present computations for three cases:

Case 1: α = 20, λ = 0, ε = 1, ν = −1;

Case 2: α = 1, λ = 20, ε = 1, ν = −1;

Case 3: α = 1, λ = 0, ε = 0.1, ν = −20,
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with different linear damping term γ = 0.8, γ = 0.1, γ = 0.

The initial condition is taken as

E(x, y, 0) =
1√
π

e−
x2+y2

2 ,

N(x, y, 0) =
ν

π
e−(x2+y2), Nt(x, y, 0) = 0.

It is easy to see the initial condition satisfies N(x, y, 0) = ν|E(x, y, 0)|2, so λ > 0 or

α · ν < 0 correspond to the focusing NLS, which is possible blow up.

We solve the problem on the rectangle [−4, 4]2 with mesh size h = 1
32

and time step

k = 0.001 for cases 1 and 2 and the rectangle [−10, 10]2 with mesh size h = 5
64

and

time step k = 0.0001 for case 3. Figures 4.12-4.14 show the surface plots of |E|2

and N at different times with γ = 0.8, 0.1 and 0 for case 1, Figures 4.15-4.17 for

case 2 and Figures 4.18-4.20 for case 3. Figure 4.21 shows D(t), H(t), N(0, 0, t) and

|E(0, 0, t)|2 as functions of time with γ = 0.8, 0.1 and 0 for three cases.

From our numerical results we see that the time-splitting spectral method can still

be applied to solve the 2d problem of the generalized ZS with a linear damping term.

As we see in Figures 4.12-4.21, numerical results also confirm that the solutions will

be blown up if the initial Hamiltonian H(0) < 0. Case 1 and Case 3 correspond to

α ·ν < 0, the blowup is arrested if the damping parameter γ is bigger than a certain

value. As shown in the following Figures, blowup is arrested for γ = 0.8 while the

solutions blow up for γ = 0.1 and γ = 0. Results also show a very sharp spike

with a peak value that increases when parameter ε decreases as can be seen from

Figures. Case 2 corresponds to λ > 0, the blowup is arrested as well if the damping

parameter γ is bigger than a certain value. When there is no blowup or blowup is

arrested, the spectral order accuracy of TSSP can still be observed.
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4.2.6 Solutions of the Zakharov system for multi-component

plasma

In this subsection we present numerical test of the TSSP (3.81)-(3.82) for solving

the ZS with two components appearing in [24, 25] in 1d.

Example 7 Soliton-soliton collisions in 1d of the ZS with multicomponent. We

choose d = 1 in (2.49)-(2.51). We use the family of one-soliton solutions (2.78)-

(2.80) to test our method TSSP. The initial data is chosen as

E(x, 0) = Es(x + p, 0, η1, V1, ε1, ν1) + Es(x − p, 0, η2, V2, ε1, ν1),

N1(x, 0) = Ns(x + p, 0, η1, V1, ε1, ν1) + Ns(x − p, 0, η2, V2, ε1, ν1),

∂N1

∂t
(x, 0) =

∂Ns(x + p, 0, η1, V1, ε1, ν1)

∂t
+

∂Ns(x − p, 0, η2, V2, ε1, ν1)

∂t
,

N2(x, 0) = ν2|Es(x + p, 0, η1, V1, ε1, ν1)|2 + ν2|Es(x − p, 0, η2, V2, ε1, ν1)|2,
∂N2

∂t
(x, 0) = ν2

∂|Es(x + p, 0, η1, V1, ε1, ν1)|2
∂t

+ ν2
∂|Es(x − p, 0, η2, V2, ε1, ν1)|2

∂t
,

where x = ∓p are initial locations of the two solitons.

In all the numerical simulations reported in this example, we set λ = 2ν2, and

Φ0 = 0. We only simulated the symmetric collisions, i.e., the collisions of solitons

with equal amplitudes η1 = η2 = η and opposite velocities V1 = −V2 ≡ V . Here, we

present computations for four cases:

Case 1: ε1 = 1.0, ν1 = 0.2, η = 0.3, V = 0.5;

ε2 = 0.1, ν2 = 1.0, η = 0.3, V = 0.5;

Case 2: ε1 = 1.0, ν1 = 0.2, η = 0.3, V = 0.5;

ε2 = 1.0, ν2 = 1.0, η = 0.3, V = 0.5;

Case 3: ε1 = 1.0, ν1 = 2.0, η = 0.3, V = 3.0;

ε2 = 0.1, ν2 = 1.0, η = 0.3, V = 3.0;

Case 4: ε1 = 1.0, ν1 = 2.0, η = 0.3, V = 3.0;

ε2 = 1.0, ν2 = 1.0, η = 0.3, V = 3.0.
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We solve the problem on the interval [-128,128], i.e., a = -128 and b = 128 with

mesh size h = 1
4

and time step k = 0.005. We take p = 10. Figure 4.22 shows the

evolution of the dispersive wave field |E|2 for case 1-4.

Case 1 and Case 3 correspond to a soliton-soliton collision when 1/ε2
2 � 1/ε2

1. That

means the dispersive waves interact with two far different acoustic modes. Note

that Figures 4.22-a, 4.22-c, 4.22-e, and compare them with Figure 4.8, Figure 4.11-

a, 4.11-b, respectively. The numerical results confirm that, as was stated in Chapter

2, the generalized ZS (1.1)-(1.3) with d = 1, α = −2 and γ = 0 can be obtained

from ZS (2.49)-(2.51) with two different components. Case 2 and Case 4 correspond

to soliton-soliton collision at the same scale, e.g., 1/ε2
2 = 1/ε2

1. Again, we compare

Figures 4.22-b, 4.22-d, 4.22-f with Figure 4.8, Figure 4.11-a, 4.11-b, respectively. We

observe that ZS (2.49)-(2.51) can not reduce to one component at the same scale.

4.2.7 Dynamics of 3d vector Zakharov system

Example 8 Dynamics of 3d vector Zakharov system, i.e., we choose d = 3, a = 2

and ε = 1 in (3.86), (3.87). The initial conditions are taken as

Ej(x, y, z, 0) = e2i(λ1x−λ2y+2λ3z)(γ1jγ2jγ3j)
1/4 e−

1
2
(γ1jx2+γ2jy2+γ3jz2)

√
3π3/4

, j = 1, 2, 3,

N(x, y, z, 0) = e−2(x2+y2+z2),

Nt(x, y, z, 0) ≡ 0;

with

γ11 = 1, γ21 = 2, γ31 = 4; γ12 = 4, γ22 = 2, γ32 = 1; γ13 = 2, γ23 = 4, γ33 = 1.

We solve the vector ZS for two different initial parameters:

I. Zero initial phase data, i.e. λ1 = λ2 = λ3 = 0;

II. Nonzero initial phase data, i.e. λ1 = λ2 = λ3 = 1.
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From (3.86), (3.87), after a simple analysis, we get

d

dt
‖Ej(t)‖2 =

d

dt

∫

Rd

|Ej(x, t)|2 dx

= 2(a − 1) Im

∫

Rd

∂Ej

∂xj
∇ ·E dx, t ≥ 0, j = 1, · · · , d.(4.8)

Plugging the above initial data into (4.8) at t = 0, we obtain for case I:

d||E1(t)||2
dt

∣∣∣∣
t=0

=
d||E2(t)||2

dt

∣∣∣∣
t=0

=
d||E3(t)||2

dt

∣∣∣∣
t=0

= 0 (4.9)

and for case II:

d||E1(t)||2
dt

∣∣∣∣
t=0

> 0,
d||E2(t)||2

dt

∣∣∣∣
t=0

> 0,
d||E3(t)||2

dt

∣∣∣∣
t=0

< 0. (4.10)

In the two cases, the wave energy for each component of the electron field are set

the same.

We solve the problem in the box [−16, 16]3 with mesh size h = 1
4

and the time step

k = 0.001. Figure 4.23 shows the time evolution of the total wave energy ||E(t)||2l2,
and the wave energy of the three components of the electric field ||E1(t)||2l2, ||E2(t)||2l2,
||E3(t)||2l2 for the two cases.

From Figure 4.23, we can see that the total wave energy ||E(t)||2l2 is conversed in the

two cases. In case 1, the conservation of the wave energy of the third component of

the electron filed is due to the symmetry of the initial data. The predication in (4.9)

is confirmed (cf. 4.23a) and the wave energy of the first component increases after a

short period, on the other hand the wave energy of the second component decreases

in order to keep the conservation of the total wave energy. In case 2, the predication

of (4.10) is confirmed (cf. 4.23b), and time evolution of the wave energy for the first

two components forms almost the same pattern (increasing-decreasing-increasing)

when the pattern for the third component is opposite due to conservation of the

total wave energy. The wave energy fluctuates much larger in case 2 than that in

case due to the nonzero initial phase in the electron field. Furthermore, the wave

energy for each component almost does not change after some time. This implies

that the electron does exchange from one component to another after some time.
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Figure 4.12: Numerical results in Example 6 for case 1. Surface-plot of the electric

field |E(x, y, t)|2 and ion density N(x, y, t) with γ = 0.8 at different times: a). t = 0,

b). t = 0.5, c). t = 1.0.
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Figure 4.13: Numerical results in Example 6 for case 1. Surface-plot of the electric

field |E(x, y, t)|2 and ion density N(x, y, t) with γ = 0.1 at different times: a). Before

blow up (t=0.7), b). After blow up (t=1.333).
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Figure 4.14: Numerical results in Example 6 for case 1. Surface-plot of the electric

field |E(x, y, t)|2 and ion density N(x, y, t) with γ = 0 at different times: a). Before

blow up (t=0.5), b). After blow up (t=1.177).
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Figure 4.15: Numerical results in Example 6 for case 2. Surface-plot of the electric

field |E(x, y, t)|2 and ion density N(x, y, t) with γ = 0.8 at different times: a). t = 0,

b). t = 0.5, c). t = 1.0.
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Figure 4.16: Numerical results in Example 6 for case 2. Surface-plot of the electric

field |E(x, y, t)|2 and ion density N(x, y, t) with γ = 0.1 at different times: a). Before

blow up (t=0.2), b). After blow up (t=0.473).
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Figure 4.17: Numerical results in Example 6 for case 2. Surface-plot of the electric

field |E(x, y, t)|2 and ion density N(x, y, t) with γ = 0 at different times: a). Before

blow up (t=0.2), b). After blow up (t=0.442).
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Figure 4.18: Numerical results in Example 6 for case 3. Surface-plot of the electric

field |E(x, y, t)|2 and ion density N(x, y, t) with γ = 0.8 at different times: a). t = 0,

b). t = 0.5, c). t = 1.0.
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Figure 4.19: Numerical results in Example 6 for case 3. Surface-plot of the electric

field |E(x, y, t)|2 and ion density N(x, y, t) with γ = 0.1 at different times: a). Before

blow up (t=0.2), b). After blow up (t=0.4594).
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Figure 4.20: Numerical results in Example 6 for case 3. Surface-plot of the electric

field |E(x, y, t)|2 and ion density N(x, y, t) with γ = 0 at different times: a). Before

blow up (t=0.2), b). After blow up (t=0.4316).



4.2 Applications of TSSP 72

a). 0 0.5 1 1.5 2
−4

−2

0

2

4

6

8

10

H(t) 

10D(t) 

25|E(0,0,t)|2 

5N(0,0,t) 

0 0.5 1 1.5 2
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3
x 10

4

H(t) 

10000D(t) 

200|E(0,0,t)|2 

100N(0,0,t) 

0 0.5 1 1.5
−2

−1

0

1

2

3

4

5
x 10

4

H(t) 

10000D(t) 

200|E(0,0,t)|2 

100N(0,0,t) 

b). 0 0.5 1 1.5 2
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

H(t) 

D(t) 

|E(0,0,t)|2 

N(0,0,t) 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−300

−200

−100

0

100

200

300

400

H(t) 

|E(0,0,t)|2 

150D(t) 

5N(0,0,t) 

0 0.1 0.2 0.3 0.4 0.5 0.6
−300

−200

−100

0

100

200

300

400

H(t) 

150D(t) 

|E(0,0,t)|2 

5N(0,0,t) 

c). 0 0.2 0.4 0.6 0.8 1
−15

−10

−5

0

5

10

10H(t) 

10D(t) 

10|E(0,0,t)|2 

N(0,0,t) 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
−2

0

2

4

6

8

10
x 10

4

H(t) 

N(0,0,t) 

50000D(t) 

30|E(0,0,t)|2 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

−2

0

2

4

6

8

10

12
x 10

4

H(t) 

N(0,0,t) 

50000D(t) 

30|E(0,0,t)|2 

Figure 4.21: Numerical results in Example 6 for three cases: Energy, electric field

and ion density as functions of time with γ = 0.8 (left: no blow up) , γ = 0.1 (center:

blow up) and γ = 0 (right: blow up). a). Case 1, b). Case 2, c). Case 3.
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Figure 4.22: Evolution of the wave field |E|2 and the acoustic field N1 in Example

7. a). Case 1, b). Case 2, c)&e). Case 3, d)&f). Case 4.
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Figure 4.23: Evolution of the total wave energy ||E(t)||2l2, and the wave energy of the

three components of the electric field ||E1(t)||2l2, ||E2(t)||2l2, ||E3(t)||2l2 in Example 8

for: a). Case I, b). Case II.



Chapter 5
Conclusion

We derived the Zakharov system (ZS) which governs the coupled dynamics of the

electric-field amplitude and of the low-frequency density fluctuations of the ions

and also analyzed its properties. We then presented two numerical methods: the

time-splitting spectral method (TSSP) and discrete singular convolution method

(DSC-RK4) for numerical discretization of the Zakharov system (ZS). We showed

that the method of TSSP is explicit, easy to extend to high dimensions, easy to

program, less memory requirement, weaker stability constraint, and time reversible

and time transverse invariant if the generalized ZS is. Furthermore it keeps the same

decay rate of wave energy in the generalized ZS, and gives exact results for plane-

wave solutions of ZS. Numerical results for a solitary wave solution demonstrate that

the method is of spectral-order accuracy in space and second-order accuracy in time

as well as ‘good’ ε-resolution in the ‘subsonic limit’ regime, i.e. 0 < ε � 1. The

method is applied successfully to simulate soliton-soliton collisions of the ZS, a 2d

problem as well as the generalized ZS with a damping term. Furthermore, extension

of TSSP to standard vector ZS and ZS for multi-component plasma are presented.

Numerical results demonstrate the efficiency and high accuracy of TSSP for these

problems. As a local method, the DSC-RK4 can compete with the standard Fourier

pseudospectral method (FPS-RK4) in terms of accuracy and stability. In addition,

the number of grid points and boundary conditions are limited to the power of

75



76

2 and periodic in the TSSP, FPS-RK4 and WG-RK4 methods. There are no such

limitations in the DSC-RK4 algorithm. Numerical results demonstrate the efficiency

and high accuracy of the two proposed methods.
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