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ABSTRACT 
 

 

A computationally efficient channel estimation scheme based on the decoupled 

maximum likelihood (DEML) algorithm is introduced for space-time block coded 

(STBC) system. The BER performance of the STBC system with the DEML channel 

estimator is obtained under spatially uncorrelated and correlated flat Rayleigh fading 

channels. It is shown that the DEML channel estimator could perform well only under 

uncorrelated fading channels. When the fading channels are correlated, a 

decorrelation algorithm is applied on the correlated signals before the DEML channel 

estimator is used. A general procedure on the generation of correlated Rayleigh fading 

envelops is also introduced in such case. In addition, an iterative ML detector is 

introduced to improve the system performance with the DEML channel estimator, 

both under uncorrelated and correlated fading channels. 

 x



CHAPTER 1 
 

INTRODUCTION 
 

 

1.1 BACKGROUND 

 

The next generation wireless communication systems are required to carry much 

higher data rates than those available today. Given a limited radio spectrum, the only 

way to support high data rates is to develop new spectrally efficient techniques. It has 

been shown recently that multiple input multiple output (MIMO) systems have great 

potential to increase the spectral efficiency significantly. MIMO systems can be 

realized with multi-element array antennas. 

 

Space-time coding has been proposed recently to obtain coded diversity for 

communication systems with multiple transmit and receive antennas, which combines 

error control coding and transmit diversity to achieve diversity and coding gains over 

un-coded systems without expanding system bandwidth. There are various approaches 

in the literature, including space-time block codes (STBC) [1]–[3], space-time trellis 

codes (STTC) [4], space-time turbo trellis codes [5] and layered space-time (LST) 

architectures [6]. 

 

STBC, introduced in [1]-[3], is able to achieve full diversity made possible by 

the large number of transmit and receive antennas. A strong feature of STBC is its 

simple maximum likelihood decoding algorithm based only on linear receiver 

processing. The codes are constructed using orthogonal designs and exist only for few 
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sporadic values of the number of transmit antennas. Recently, many new space-time 

techniques based on STBC have been explored. The differential STBC proposed in 

[7] has simple differential encoding and decoding algorithms, while the unitary space-

time modulation (USTM) proposed in [8] can be applied when the CSI is not known 

at both the transmit and the receive antennas. However, this approach requires 

exponential encoding and decoding complexity. 

 

The decoding of space-time codes requires the perfect channel state 

information (CSI) at the receiver. The space-time decoder will use them to extract 

symbol estimates. However, in practical scenarios, channel fading coefficients are not 

always known to transmitter and receiver. In the absence of perfect CSI at the receiver, 

a channel estimator must be used to estimate the channel coefficients. Then these 

channel estimates are used as if they were perfectly known at the receiver to extract 

symbol estimates. 

 

1.2 CONTRIBUTION OF THIS THESIS 

 

In this thesis, we have presented a computationally efficient channel estimation 

method for STBC system based on the DEML algorithm. The BER performances of 

the STBC systems with DEML channel estimator are given, both under spatially 

uncorrelated and correlated flat Rayleigh fading channels. The DEML channel 

estimator performs well when incident signals are uncorrelated. It can be directly 

applied to STBC system under spatially uncorrelated fading channel. When the 

incident signals are correlated, the DEML channel estimator has some performance 

degradation. Thus for STBC system under spatially correlated fading channels, the 
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correlated signals have to be decorrelated before the DEML channel estimator is 

applied. A common decorrelation approach used for highly correlated sources is the 

spatial smoothing (SS) [27] algorithm. This technique resides in dividing the sequence 

of received signals into sub arrays and summing the estimated spatial correlation 

matrices obtained from each sub array to form a smoothed correlation matrix. Grenier 

has brought a significant improvement to the spatial smoothing technique by 

smoothing the estimated source space instead of the entire space. This approach is 

called the DEESE algorithm [28] and was later extended to the complexity reduced 

DEESE algorithm [29] by Grenier. 

 

We have also obtained the BER performance of the STBC system under 

spatially correlated fading channels. To study the performance of STBC system under 

correlated fading channels, we have presented a general method on the generation of 

correlated Rayleigh fading sequences. In this method, independent fading processes 

with desired autocorrelations are first generated and then multiplied by a coloring 

matrix. Some selected envelope and phase plots for various correlation coefficients ρ  

are given and compared. And the BER performance of STBC system with different ρ  

is also shown and discussed. 

 

In addition, an iterative ML detector is introduced in STBC systems both 

under the spatially uncorrelated and spatially fading channels to improve the system 

performance with DEML channel estimator. The iterative ML detector can obtain, 

after convergence, the performance of the exact ML detector in the case of unknown 

 and Q , without significantly increasing computational complexity. H
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1.3 ORGANIZATION OF THESIS 

 

The outline of the thesis is as follows. In Chapter 2, an overview of space-time coding 

is given. The space-time coding is based on combining error control coding and 

transmitter diversity techniques, which can provide spectral efficiency for wireless 

communications. A specific type of space-time codes, STBC is introduced. In Chapter 

3, an overview of channel estimation methods is presented. From the moment-based 

methods to the ML approaches, we outline the basic ideas behind some new 

developments. The assumptions, identifiability conditions and their performances are 

given. The proposed DEML channel estimator is explained in Chapter 4. Its properties 

are also given in this chapter. In Chapter 5, the BER performance of STBC system 

with DEML channel estimator under spatially uncorrelated flat Rayleigh fading 

channels is shown. An iterative ML detector is introduced to improve the system BER 

performance with DEML channel estimator. In Chapter 6, the BER performance of 

STBC system with DEML channel estimator under spatially correlated flat Rayleigh 

fading channel is shown. A general procedure on the generation of correlated 

Rayleigh fading envelopes and a decorrelation algorithm are developed. Finally, 

conclusions and future works are given in Chapter 7. 
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CHAPTER 2 
 

OVERVIEW OF SPACE-TIME CODING 
 

 

In this chapter, we first introduce a brief background on diversity techniques. Space-

time coding is based on combining error control coding and transmitter diversity 

techniques, which can provide spectral efficiency for wireless communications. The 

principle, system model, and some approaches of space-time coding are given. Lastly, 

a specific type of space-time codes, STBC, is introduced. 

 

2.1 DIVERSITY TECHNIQUES 

 

It is well known that significant degradations may occur in the performance of 

wireless communication system over Rayleigh fading channels. Such degradation in 

system performance will often requires the signals to be transmitted with an excessive 

power just to overcome the deleterious fading effects. However, this will cause more 

cost in design and application. 

 

One method commonly employed to overcome the performance degradation 

in wireless communication system due to fading is diversity. The goal of diversity is 

to reduce the fade depth and/or the fade duration by supplying the receiver with 

multiple replicas of the transmitted signals that have passed over independent fading 

channels. Given that the channels are independent, the probability that all the channels 

will fade below a certain threshold at the same time is significantly lower than the 

probability that one channel fades below the threshold. 
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Several diversity techniques have been employed in wireless communication 

systems, including time diversity, frequency diversity, space diversity, and etc. 

 

1) Time Diversity: Channel coding in combination with limited interleaving is 

used to provide time diversity. However, while channel coding is extremely effective 

in fast fading environments (high mobility), it offers very little protection under slow 

fading (low mobility and fixed wireless access) unless significant interleaving delays 

can be tolerated. 

 

2) Frequency Diversity: The fact that signals transmitted over different 

frequencies induce different multipath structure and independent fading is exploited to 

provide frequency diversity (sometimes referred to as path diversity). In TDMA 

systems, frequency diversity is obtained by the use of equalizers when the multipath 

delay spread is a significant fraction of a symbol period. Global system for mobile 

communication (GSM) uses frequency hopping to provide frequency diversity. In DS-

CDMA systems, RAKE receivers are used to obtain path diversity. When the 

multipath delay spread is small, compared to the symbol period, however, frequency 

or path diversity does not exist. 

 

3) Space Diversity: Space diversity is achieved by using multiple antennas that 

are separated and/or differently polarized at the transmitter/receiver to create 

independent fading channels. It can be realized with transmitter diversity and/or 

receiver diversity. The obvious advantage of transmitter diversity is that the 
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complexity of having multiple antennas is placed on the transmitter. The portable 

receivers can use just a single antenna and still benefit from the diversity gain. 

 

Different diversity techniques can be combined together. For example, space 

and time diversity can be combined together by using space-time coding techniques. 

When possible, cellular systems should be designed to encompass all forms of 

diversity to ensure adequate performance. However, not all forms of diversity can be 

available at all times. 

 

2.2 SPACE-TIME CODING 

 

Space-time (ST) coding is based on combining error control coding and transmitter 

diversity techniques. It is an effective and practical way to approach the capacity of 

MIMO wireless channels. Coding is performed in both spatial and temporal domain to 

introduce spatial and temporal correlation into signals transmitted from different 

antennas and different time periods. The spatial-temporal correlation of the code is 

used to exploit the MIMO channel fading and to minimize transmission errors at the 

receiver. By doing so, space-time coding can achieve diversity and coding gain over 

un-coded systems without sacrificing the bandwidth. 

 

Consider the space-time coded system with M  transmit and  receive 

antennas. Usually it has three functions: encoding and transmitting signals at the 

transmitter; combining scheme at the receiver and the decision rule for maximum 

likelihood detection. In the absence of perfect CSI at the receiver, channel estimation 

N
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should be done at the receiver. In the following, we will briefly introduce the ST 

transmitter, system transmission model and the ST receiver. 

 

The transmitted data are encoded by a space-time encoder. The encoder 

chooses the symbols to transmit so that both the coding and the diversity gains at the 

receiver are maximized. The coded data sequence is applied to a serial-to-parallel (S/P) 

converter producing parallel data sequence. At each time instant the parallel output 

are simultaneously transmitted by different antennas. All transmitted signals have the 

same transmission duration T . 

 

We assume that the frame length is P . An M P×  space-time codeword 

matrix is obtained by arranging the transmitted sequence in an array as 

11 12 1

21 22 2

1 2

P

P

M M M

s s s
s s s

s s s

⎡ ⎤
⎢ ⎥
⎢=
⎢
⎢ ⎥
⎢ ⎥⎣ ⎦

S

"
"

# # % #
" P

⎥
⎥

 (2.2.1) 

The  row of  is the signal sequence transmitted from the  transmit antenna 

over the P  transmission periods. The 

thm S thm

T× thp  column of  is the signal sequence 

transmitted simultaneously at time , over the 

S

pt M  transmit antennas. 

 

The received signals are arranged into an N P×  matrix , given by X

11 12 1

21 22 2

1 2

P

P

N N NP

x x x
x x x

x x x

⎡ ⎤
⎢ ⎥
⎢=
⎢
⎢ ⎥
⎢ ⎥⎣ ⎦

X

"
"

# # % #
"

⎥
⎥

 (2.2.2) 
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The  row of  is the signal sequence received at the  transmit antenna over the 

 transmission periods. The 

thn X thn

P T× thp  column of  is the signal sequence received 

simultaneously at time , over the  receive antennas. 

X

pt N

 

Signals arriving at different receive antennas undergo independent fading. The 

signal at each receive antenna is a noisy superposition of the faded versions of the 

transmitted signals. A flat Rayleigh fading channel is assumed. At time t , the 

received signal at receive antenna n  is given by 

1
1

, ,  ..., ,  1,  ...,  
M

nt nm mt nt P
m

x h s w t t t n N
=

= + = =∑  (2.2.3) 

where  is the fading attenuation for the path from transmit antenna m  to receive 

antenna  at time , which is a independent complex Gaussian random variable with 

zero mean and variance 

nmh

n t

1 2  per dimension.  is the additive noise component at 

receive antenna n  at time , which is an independent sample of the zero mean 

complex Gaussian random variable with variance 

ntw

t

2σ . 

 

According to (2.2.3), the received signal vector can be related to the 

transmitted signal vector by 

= +X HS W  (2.2.4) 

where S  is the M P×  complex transmitted signal matrix as given in (2.2.1),  is the 

 complex received signal matrix as given in (2.2.2), W  is the  additional 

noise matrix and H  is the  channel coefficient matrix. In this notation, all 

signals and noise matrices are function of time. 

X

N P× N P×

N M×
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The received signals are decoded by a space-time decoder. We assume that the 

space-time decoder is based on the maximum likelihood Viterbi algorithm. The 

Viterbi algorithm tracks valid space-time code sequences in the code trellis and 

selects one that is closet to the received sequence based on the Euclidean distance 

path metric. 

 

Assuming perfect CSI, the branch metric of the Viterbi algorithm at time t  is 

computed as 

2

1 1

N M

nt nm mt
n m

x h s
= =

−∑ ∑  (2.2.5) 

The path metric is given by 

2

1 1 1

P N M

nt nm mt
t n m

x h s
= = =

−∑∑ ∑  (2.2.6) 

The Viterbi algorithm selects the path with the lowest accumulated path metric as the 

decoded codeword. 

 

In the absence of perfect CSI, a channel estimator must be applied to get the 

channel estimates and then these channel estimates are used for decoding. 

 

There are various approaches of space-time codes in their coding structures, 

including ST block codes (STBC) [1]-[3], ST trellis codes (STTC) [4], ST turbo trellis 

coded modulation (TCM) [5] and layered ST (LST) architectures [6]. STTC offers the 

maximum possible diversity gain and the coding gain without any sacrifice in the 

transmission bandwidth. The decoding of these codes, however, would require the use 

of a vector form of the Viterbi decoder. When the number of transmit antennas is 
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fixed, the decoding complexity of STTC increases exponentially with transmission 

rate. On the contrary, STBC can offer a much simple way of obtaining transmitter 

diversity without any sacrifice in bandwidth and without requiring huge decoding 

complexity. 

 

2.3 SPACE-TIME BLOCK CODING 

 

In addressing the issue of decoding complexity in space-time codes, Alamouti [1] 

discovered a remarkable space-time block coding scheme for transmission with two 

transmit antennas, which supports maximum-likelihood detection based only on linear 

processing at the receiver. This scheme was later generalized in [2]-[3] to an arbitrary 

number of antennas and is able to achieve the full diversity promised by the number 

of transmit and receive antennas. 

 

In Alamouti’s scheme, during any given transmission period two signals are 

transmitted simultaneously from two transmit antennas. The transmission matrix is 

given by 

*
1 2

*
2 1

d d
d d
⎡ ⎤−

= ⎢
⎣ ⎦

2S ⎥  (2.3.1) 

where  is the complex conjugate of . *d d

 

During the first transmission period, two signals,  and , are 

simultaneously transmitted from transmit antenna one and transmit antenna two, 

respectively. During the second transmission period, signal 

1d 2d

*
2d−  is transmitted from 
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transmit antenna one and signal  is transmitted from transmit antenna two, 

simultaneously. It is clear that the encoding is done in both space and time domain. 

*
1d

 

The key feature of Alamouti’s encoding scheme is that 

( 2 2*
1 2d d= +2 2 2S S Ii )  (2.3.2) 

where  is the Hermitian (transpose conjugate) of  and  is the  identity 

matrix. 

*
2S 2S 2I 2 2×

 

Let us assume that one receive antenna is used at the receiver. The channel 

fading coefficients from the first and second transmit antennas to the receive antenna 

are denoted by  and , respectively. At the receive antenna, the received signals 

over two consecutive transmission periods, denoted by 

11h 12h

11x  and 12x , respectively, can 

be expressed using (2.2.3) as 

11 11 1 12 2 11

* *
12 11 2 12 1 12

x h d h d w

x h d h d w

= + +

= − + +
 (2.3.3) 

where  and  are additive complex noise at the receive antenna at these two 

consecutive transmission periods, respectively. 

11w 12w

 

If the channel fading coefficients,  and , can be perfectly recovered at 

the receiver, the receiver will use them as the CSI in the decoder. A combiner forms 

the following combined signals 

11h 12h

* *
1 11 11 12 1

* *
2 12 11 12 12

d h x h x

d h x h x

= +

= −

�

�
2

 (2.3.4) 

Substituting for 11x  and 12x  from (2.3.3), the combined signals can be written as 
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( )
( )

2 2 * *
1 11 12 1 11 11 12 12

2 2 * *
2 11 12 2 11 12 12 11

d h h d h w h w

d h h d h w h w

= + + +

= + − +

�

�
 (2.3.5) 

 

As the signal  depends only on  and the signal  depends only on , 

we can decide on  and  by applying the maximum likelihood rule on  and  

separately. These combined signals are sent to a maximum likelihood detector which 

selects a symbol , for each transmitted symbol , from the M-ary signals 

set, such that the Euclidean distance between the two symbols  and  is minimum, 

where  is the estimate of the transmitted symbol . The complexity of the decoder 

is linearly proportional to the number of antennas and the transmission rate. The 

distinguished feature of this type of space-time codes is a very simple maximum 

likelihood decoding algorithm based only on linear processing at the receiver. 

1d� 1d 2d� 2d

1d 2d 1d� 2d�

ˆ , 1,id i = 2 id

id� îd

îd id

 

In general, a space-time block code is defined by an M P×  transmission 

matrix G , here M  represents the number of transmit antennas and P  represents the 

number of time periods for transmission of one block of symbols. The K  modulated 

symbols 1 2, , ...,  are encoded by a space-time block encoder to generate M  

parallel signal sequences of length P  according to the transmission matrix . The 

entries of this matrix are linear combination of these 

G

K  modulated symbols and their 

conjugates. 

Kd d d

 

These coded sequences will be transmitted through M  transmit antennas 

simultaneously in P  transmission periods. The  row of G  is the signal sequence thm
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transmitted from the  transmit antenna over the P  transmission periods. The thm thp  

column of G  is the signal sequence transmitted simultaneously at time , over the pt

M  transmit antennas. 

*G G

M

 

In order to achieve full transmit diversity of M , the transmission matrix G  is 

constructed based on orthogonal designs such that 

( 2 2 2  (2.3.6) )1 2 Kd d d= + + + MIi "

where  is the Hermitian of  and  is the *G G MI M  identity matrix. ×

 

The rate of a space-time block code is defined as the ratio between the number 

of symbols the encoder takes as its input and the number of transmission periods. It is 

given by 

/R K P=  (2.3.7) 

The rate of a space-time block code with full transmitter diversity is less than or equal 

to one ( 1R ≤ ). The code with full rate ( 1R = ) requires no bandwidth expansion while 

the code with rate 1R <  will have the bandwidth expansion of 1 R . 

 

Note that orthogonal designs are applied to construct space-time block codes. 

The rows of the transmission matrix are orthogonal to each other. The orthogonality 

enables to achieve the full transmitter diversity for a given number of transmit 

antennas. In addition, it allows the receiver to decouple the signals transmitted from 

different antennas. Consequently, a simple maximum likelihood decoding, based only 

on linear processing at the receiver can be performed. 
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CHAPTER 3 
 

OVERVIEW OF BLIND CHANNEL ESTIMATION 
 

 

In this chapter, a review of recent blind channel estimation algorithms is presented. 

From the moment-based methods to the maximum likelihood (ML) methods, we 

outline basic ideas behind some new developments. The assumptions, identifiability 

conditions and their performance are given. 

 

3.1 INTRODUCTION 

 

There have been considerable interests in the so called “blind” problem. The impetus 

behind the increased research activities in blind techniques is perhaps their potential 

application in wireless communications, which are currently experiencing explosive 

growth. 

 

 kw

Channel 

 

Figure 3-1: Schematic of blind channel estimation 

 

The basic blind channel estimation problem involves a channel model shown 

in Figure 3-1, where only the observed signal is available for processing in the 

identification and estimation of channel. This is in contrast to the identification and 

h  
ks  ky  kx  
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estimation problem in classical input-output system where both input and observation 

are used. 

 

The essence of blind channel estimation rests on the exploitation of channel 

structures and properties of inputs. Existing blind channel estimation algorithms are 

classified into the moment-based methods and the ML methods. We further divide 

these algorithms based on the modeling of the input signals. If input is assumed to be 

random with prescribed statistics (or distributions), the corresponding blind channel 

estimation schemes are considered to be statistical. On the other hand, if the input 

does not have a statistics description, or although the source is random but the 

statistical properties of the source are not exploited, the corresponding estimation 

algorithms are classified as deterministic. Figure 3-2 shows a map for different classes 

of algorithms. 

 

Blind Channel Estimation 

Statistical 
Methods 

Deterministic 
Methods

Maximum 
Likelihood

Moment 
Methods

Maximum 
Likelihood

Moment 
Methods 

Subspace 
Methods 

Moment 
Matching

 

Figure 3-2: Classification of blind channel estimation methods. 
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3.2 THE SUBSPACE METHODS 

 

Many recent blind channel estimation techniques exploit subspace structures of 

observations. The key idea is that the channel (or part of the channel) vector is in a 

one-dimensional subspace of either the observation statistics or a block of noiseless 

observations. These methods are often referred to as the subspace methods, which are 

considered as parts of the moment methods sometimes. They are attractive because of 

the closed form identification. On the other hand, as they rely on the property that the 

channel lies in a unique direction (subspace), they may not be robust against 

modelling errors, especially when the channel matrix is close to being singular. The 

second disadvantage is that they are often more computationally expensive. 

 

3.2.1 DETERMINISTIC SUBSPACE METHODS 

 

Deterministic subspace methods do not assume that the input source has a specific 

statistical structure. A more striking property of deterministic subspace methods is the 

so-called finite sample convergence property. Namely, when there is no noise, the 

estimator produces the exact channel using only a finite number of samples, provided 

that the identifiably condition is satisfied. Therefore, these methods are most effective 

at high SNR and for small data sample scenarios. On one hand, deterministic methods 

can be applied to a much wide range of source signals. On the other hand, not using 

the source statistics affects its asymptotic performance, especially when the 

identifiability condition is close to be violated. 

 

1) Assumptions: The following conditions are assumed: 
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1.1) The noise sequence  is zero mean, white with known covariance kw 2σ ; 

1.2) The channel has known order ; L

 

The assumption that the channel order L  is known may not be practical. To 

address this problem, there are three kinds of approaches. First, channel order 

detection and parameter estimation can be performed separately. There are well 

known order detection schemes that can be used in practice. Second, some statistical 

subspace methods require only the upper bound of . Third, channel order detection 

and parameter estimation can be performed jointly. Similarly, the noise variance 

L

2σ  

may be unknown in practice, but it can be estimated in many ways. 

 

2) Identifiability: Under above assumptions, the channel coefficients can be 

uniquely identified up to a constant factor from the noiseless observation sequence  

if: 

ky

2.1) The sub-channels are coprime; 

2.2) The source sequence  has linear complexity greater than ; ks 2L

 

3) Examples: Some approaches of the deterministic subspace methods are 

described below. 

 

The cross relation (CR) approach [10] wisely exploits the multi-channel 

structure. It is very efficient for small data sample applications at high SNR. The main 

problem of this approach is that the channel order L  cannot be over estimated. For 

finite samples, this algorithm may also be biased. 
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The noise subspace approach [11] exploits the structure of the filtering matrix 

directly. There is a strong connection between the CR approach and the noise 

subspace approach. They are different only in their choices of parameterizing the 

signal or the noise subspace. Similar to the CR approach, the noise subspace approach 

also requires the knowledge of the channel order L  and it is suitable for short data 

size applications. Although it is a bit more complex than the CR approach, it appears 

to offer improved performance in many cases. 

 

Although deterministic approaches enjoy the advantage of having fast 

convergence, they share some common difficulties. For example, the determination of 

the channel order is required and often difficult. Second, the adaptive implementation 

of these algorithms is not straightforward. Recently, a new approach based on the 

least squares smoothing (LSS) of the observation process is proposed [12]. The key 

idea of LSS rests on the isomorphic relation between the input and the observation 

spaces. This approach has two attractive features. First, it converts a channel 

estimation problem to a linear LSS problem for which there are efficient adaptive 

implementations using lattice filters. Second, a joint channel order detection and 

channel estimation algorithm can be derived that determines the best channel order 

and channel coefficients to minimize the smoothing error. 

 

3.2.2 SECOND-ORDER STATISTICAL SUBSPACE METHODS 

 

In statistical subspace approaches, it is assumed that the source is a random sequence 

with known second-order statistics. 
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1) Assumptions: Although algorithms discussed here can be extended in many 

different ways, we shall assume the following assumptions in our discussion. 

1.1) The source sequence  is zero mean, white with unit variance; ks

1.2) The noise sequence , uncorrelated with , is zero mean, white, with 

known covariance 

kw ks

2σ ; 

1.3) The channel order  is known; L

 

Most algorithms of the statistical methods can be extended to cases where the 

noise is colored but with known correlations. Some statistical methods do not require 

knowledge of the channel order. Instead, they require the upper bound of the channel 

order. 

 

2) Identifiability: Under above assumptions, the channel can be uniquely 

identified up to a constant factor from the autocorrelation matrix  if and only if 

the sub-channels are coprime. 

xxR

 

3) Examples: Some approaches of the second-order subspace methods are 

described below. 

 

3.1) Identification via Cyclic Spectra: This approach [13] exploits the 

complete cyclic statistics of the received and source signals, as well as the FIR 

structure of the channel model. The disadvantage of this algorithm is that it requires 

the convergence of the source statistics, which means that even when there is no noise, 

there is estimation error for any fixed sample size, although the algorithm is mean 

square consistent. 
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3.2) Identification via Filtering Transform: This approach [14] introduces a 

two-step closed form identification algorithm. It first finds the filtering matrix and 

then estimates the channel from the estimated filtering matrix. The implementation of 

this algorithm requires the channel order and the noise variance. While it is consistent, 

this approach may not perform well for two reasons. First, the algorithm fails to take 

advantage of the special structure of the filtering transform. Second, the performance 

of such a two-step procedure is often affected by the quality of the estimation in the 

first step. 

 

3.3) Identification via Linear Prediction: This approach [15] uses all second-

order statistics of the received signal and it is mean square consistent. It does not 

require the exact channel order, thus it is robust against over-determination of the 

channel order. Derived from the noiseless model, the linear prediction idea is no 

longer valid in the presence of noise. However, when channel parameters are 

estimated from the automation functions, the effect of noise can be lessened by 

subtracting the terms related to the noise correlation. The main disadvantage of this 

algorithm is that it is a two-step approach whose performance depends on the 

accuracy of the estimates from the first step. 

 

3.2.3 OTHER RELATED SUBSPACE APPROACHES 

 

Some related approaches have been developed recently which can be applied to the 

general subspace methods to improve performance. For example, the weighted 

subspace approach, successfully used in the direction of arrival estimation in array 
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signal processing, employs an additional weighting matrix which is chosen optimally. 

The optimal selection of the weighted matrix is, however, nontrivial, and it is often a 

function of the true channel parameters. A practical solution is to use a consistent 

estimate of the channel to construct the optimal weighting matrix. 

 

3.3 OPTIMAL MOMENT METHODS 

 

When the source has a statistical model, most subspace methods are part of the 

moment methods. They all can be viewed as estimating channel parameters from the 

estimated second-order moments of the received signals. For the class of consistent 

estimators, asymptotic normalized mean square error (ANMSE) can be used as a 

performance measure. Small ANMSE is desired in blind channel estimators using the 

second-order moment methods. The optimal moment methods with the minimum 

ANMSE can be achieved with some certain conditions. The moment matching 

approach is motivated by the existence of a moment method that achieves the 

minimum ANMSE. While moment matching methods have a robust performance 

against channel order selection and the channel condition, they are unfortunately not 

easy to implement because of the existence of local minima in the optimization. 

 

3.4 THE ML METHODS 

 

One of the most popular parameter estimation algorithms is the ML method. Not only 

can such methods be derived in a systematic way, but more importantly, the class of 

ML estimators are usually optimal for large data records as they approximate the 

minimum variance unbiased estimators. Asymptotically, under certain regularity 
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conditions, the variances of ML estimators approach the Cramer-Rao Bound (CRB), 

which is the lower bound on variances for all unbiased estimators. Unfortunately, 

unlike subspace based approaches, the ML methods usually cannot be obtained in 

closed form. Their implementations are further complicated by the existence of local 

minima. However, ML approaches can be made very effective by including the 

subspace and other suboptimal approaches as initialization procedures. 

 

We will briefly introduce the general formulation of the ML estimation, which 

can be found in many textbooks. The problem at hand is to estimate the deterministic 

(vector) parameter θ  given the probabilistic model of the observation. Specifically, 

let ( ; )f y θ  be the probability density function of random variable Y  parameterized 

by θ ∈Θ . Given an observation Y y= , θ  is estimated by maximizing 

(ˆ arg max ; )f y
θ

θ θ
∈Θ

=  (3.4.1) 

where ( ; )f y θ , when viewed as the function of θ , is referred to as the likelihood 

function. 

 

3.4.1 DETERMINISTIC ML APPROACHES 

 

The deterministic ML (DML) approach assumes no statistical model for the input 

sequence . In other words, both the channel coefficient vector H  and the input 

source vector S  are parameters to be estimated. 

ks

 

Consider the channel model in Figure 3-1, the DML problem can be stated as 

follows: given X , estimate  and S  by H
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{ } ( )ˆˆ , arg max ;f=DML DML
H,S

H S X H S,

)

 (3.4.1.1) 

where  is the density function of the observation vectors  parameterized 

by both the channel coefficients  and the input source S . 

( ; ,f X H S X

H

 

1) Assumptions: In considering the deterministic model, we assume the 

following assumptions. 

1.1) The noise sequence  is zero mean Gaussian with known covariance kw 2σ . 

1.2) The channel has known order . L

 

The assumptions for DML are almost the same as those for the deterministic 

subspace methods, except that the noise in DML is assumed to be Gaussian. The noise 

variance can also be considered as part of the parameters to be estimated in some 

approaches. 

 

2) Identifiability: It is not surprising that the identifiability condition for DML 

is the same as that for the deterministic second-order moment methods. Specifically, 

the channel is identifiable if the sub-channels are coprime and the source sequence 

has linear complexity greater than 2 1L + . The reason is that, when the noise is 

Gaussian, all information about the channel in the likelihood function resides in the 

second-order moments of the observations. 

 

3) Examples: Some approaches of the DML methods are given below. The 

iterative quadratic ML (IQML) approach [16] transforms the DML problems into a 

sequence of quadratic optimization problems for which simple solutions can be 
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obtained. The two-step maximum likelihood (TSML) approach [17] uses the CR 

methods to obtain an initial estimate of the channel and then this initial estimate is 

used for optimization. 

 

3.4.2 STATISTICAL ML APPROACHES 

 

In statistics ML (SML) approaches, we consider the statistical model where the source 

sequence  is random with known distribution. In such formulation, the only 

unknown parameter is the channel vector. 

ks

 

Consider the channel model in Figure 3-1, the SML problem can be stated as 

follows: given X , estimate  by H

(ˆ arg max ;f=SML
H

H )X H

)

 (3.4.2.1) 

where  is the density function of the observation vectors X  parameterized 

by . 

( ;f X H

H

 

1) Assumptions: The SML estimation hinges on the availability and the 

evaluation of the likelihood function. Although the SML methods can be applies to 

more general cases, we shall make the following assumptions in our discussion. 

1.1) Components of the source  and the noise W  are jointly independent; S

1.2) The noise sequence  is zero mean Gaussian with covariance kw 2σ ; 

1.3) Components of the source S  are independent, identically distributed 

(i.i.d.) with known probability density function. 
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2) Identifiability: Identifiability remains to be an important issue in the SML 

approach. The identifiability condition tells when the SML method can be applied. A 

main issue is whether the likelihood function provides sufficient information to 

distinguish different models. Under above assumptions, the channel parameter is 

identifiable by the likelihood function if and only if one of the following conditions is 

satisfied: 

2.1) The source S  is non-Gaussian; 

2.2) The sub-channels are coprime; 

 

Obviously, parameters identifiable by the moment methods are identifiable by 

the likelihood function. It is not surprised to see that the class of channels identifiable 

by the SML methods is larger than that by the moment methods. 

 

3) Examples: The expectation-maximization (EM) algorithm was proposed in 

[18] to transform the complicated optimization in (3.4.2.1) to a sequence of quadratic 

optimizations. The performance of the EM algorithm depends on its initialization, 

which may be facilitated by the moment techniques such as those described in Section 

3.2. When the EM algorithm converges globally, the estimate achieves asymptotically 

the CRB for the case of i.i.d. sequences. 
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CHAPTER 4 
 

DEML CHANNEL ESTIMATOR 
 

 

In this chapter, we will present a computationally efficient channel estimation method 

based on the decoupled maximum likelihood (DEML) algorithm. The DEML channel 

estimator decouples the multi-dimensional problem of the exact ML estimator into a 

set of one-dimensional problems and hence is computationally efficient. The 

properties of the DEML channel estimator are also given in this chapter. 

 

4.1 PROBLEM FORMULATION 

 

Space-time coding has been shown to be a promising technique for increasing the 

capacity of wireless systems. The decoding of space-time codes requires the perfect 

CSI at the receiver. In the absence of perfect CSI at the receiver, a channel estimator 

must be used to estimate the channel coefficients. Then these channel estimates are 

used as if they were perfect known at the receiver to extract symbol estimates. 

 

Although many high-resolution estimation algorithms have been devised in the 

past few decades, these research efforts are mainly put on the areas, where a priori 

knowledge is not available to the receivers. These algorithms are developed without 

considering any knowledge of the input signals, except for some general statistical 

properties such as the second-order ergodicity. Several deterministic or statistical 

estimators are also devised for such applications. The deterministic estimators, such as 

the DML estimators, model the unknown signals as the unknown deterministic 
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parameters. The statistical estimators, such as the SML estimators, model the 

unknown signals as random processes. 

 

But in some applications especially in a mobile communication system, a 

priori knowledge is known to the receivers, although the actual transmitted symbol 

stream is unknown. In such a system, a known preamble is added to the message for 

training purposes. Such extra information may be exploited to enhance the accuracy 

of the estimates and may be used to simplify the computational complexity of the 

estimation algorithms. 

 

Consider the wireless communication system with M  transmit antennas and 

 receive antennas. The received data vector can be modelled as  N

= +X HS W  (4.1.1) 

where  is the  complex received signal vector, S  is the X N T× M T×  complex 

transmitted signal vector, W  is the N T×  additive noise vector and H  is the  

channel coefficient matrix. In this notation, all signal and noise vectors are function of 

time. 

N M×

 

The waveforms of the transmitted signals are assumed to be known and the 

fading channel is assumed to be quasi-static. The noise vector is assumed to be a 

complex Gaussian random vector with zero-mean and arbitrary covariance matrix Q  

and is sampled to be temporally white, i.e. 

*
,[ ( ) ( )]i jE w t w t i jδ= Q  (4.1.2) 

where ( )  denotes the complex conjugate transpose, and *i ,i jδ  is the Kronecker delta 

function. The unknown covariance matrix Q  models both thermal noises caused by 
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the sensor output receivers and all other outside radio interference and jamming. 

Finally the signal and the noise vectors are assumed to be uncorrelated, i.e. 

( ) ( )*

1

1lim lim 0
L

l lL Ll
t t

L L→∞ →∞
=

=∑S W SW*1
=  (4.1.3) 

with probability 1. 

 

The problem of interest herein is to determine the channel coefficients matrix 

 and the noise covariance matrix Q  from the H L  independent data samples 

( ) ( ) ( )1 2 Lt t tX , X , ..., X . 

 

4.2 DEML CHANNEL ESTIMATOR 

 

We consider below a large sample estimator based on the DEML algorithm for 

estimating channel coefficients matrix H  and noise covariance matrix Q . It is easy to 

see that an exact ML estimator requires a multi-dimensional search over the parameter 

space and is computationally burdensome. We shall show below that the DEML 

channel estimator decouples the K-dimensional search problem into K one-

dimensional search problems for an arbitrary sensor array and hence it is 

computationally efficient. 

 

The log-likelihood function of the received signals ( ) , 1,2,...,lt l L=X  is 

proportional to (within an additive constant) [9] 

( )({ ) }*11ln tr
L

−− −Q Q X - HS X - HS  (4.2.1) 
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where i  denotes the determinant, {}tr ⋅  denotes the trace operation and ( )  denotes 

the conjugate transpose. 

*
⋅

 

It is easy to show that maximizing this likelihood function with respect to Q  

yields 

*1ˆ ( )( )
L

= − −Q X HS X HS  (4.2.2) 

where  is the estimate of . Q̂ Q

 

Substituting (4.2.2) in (4.2.1), we can see that maximizing the log-likelihood 

function is equivalent to minimizing 

( )( )*1
L

− −X HS X HS  (4.2.3) 

 

Let the “covariance matrix” ,  and  be defined as follows. SXR SSR XXR

( ) ( )*

1

1 L

l l
l

t t
L L=

=∑SXR S X� *1 SX  (4.2.4) 

( ) ( )*

1

1 L

l l
l

t t
L L=

=∑SSR S S� *1 SS  (4.2.5) 

( ) ( )*

1

1 L

l l
l

t t
L L=

=∑XXR X X� *1 XX  (4.2.6) 

Now we can calculate 

( ) ( )

*

* * *

** * *

1 ( )( )
L

− −

=

=

XX SX SX SS

-1 -1
SX SS SS SX SS XX SX SS SX

F X HS X HS

R - HR - R H + HR H

H - R R R H - R R + R - R R R

�

-1

 (4.2.7) 
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Since the matrix  is positive definite and the second and third terms in 

(4.2.7) do not depend on , it follows that 

SSR

H

≥ * -1
SX SSH=R R

F F |  (4.2.8) 

 

Since the whole sample covariance matrix F  is minimized, the estimate 

 of  will minimize any non-decreasing function of F  including the 

determinant of F , which is 

ˆ * -1
SX SSH = R R H

F  in (4.2.3). Thus we get the estimate of  as: H

ˆ * -1
SX SSH = R R  (4.2.9) 

It is easy to see that  is a consistent estimate of . Ĥ H

 

Substituting (4.2.9) back into (4.2.2), the estimate of  is given as Q

ˆ * -1
XX SX SS SXQ = R - R R R  (4.2.10) 

It is also easy to see that  is a consistent estimate of . Q̂ Q

 

In this way, we decouple the multi-dimensional problem of the exact 

maximum likelihood estimator in (4.2.1) into a set of one-dimensional problems as 

given by (4.2.9) and (4.2.10). A decoupled maximum likelihood (DEML) channel 

estimator is formed. 

 

If the incident signals are uncorrelated with each other, all estimates 

mentioned above are consistent and large sample realizations of the ML estimates, it 

follows that the estimation method is asymptotically statistically efficient, according 

to the general properties of ML estimators. 
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If the incident signals are moderately correlated, the DEML estimator is no 

longer a large sample ML estimator. The performance of the DEML estimator has 

small degradation. But the asymptotic statistical performance is still close to that of 

CRB’s [9]. 

 

If the incident signals are highly correlated, the performance of the DEML has 

obvious degradation. Thus the DEML channel estimator can not be used on the highly 

correlated incident signals directly. In such cases, a decorrelation algorithm must be 

applied on the correlated incident signals before the DEML channel estimator can be 

used on them. 

 

4.3 PROPERTIES 

 

We will now give some significant advantages of the DEML estimator for 

uncorrelated signals with known waveforms as compared with other standard ML 

estimators for uncorrelated signals with unknown waveforms. 

 

First, the large sample and asymptotically statistically efficient DEML 

estimator is much more computationally efficient than any existing large sample ML 

estimators for unknown waveform signals. It has been shown that for the case of 

uncorrelated and unknown waveform signals, the K-dimensional estimation problem 

can also be asymptotically decoupled into K one-dimensional problems with the 

standard ML estimators. These ML estimators, however, require the eigen-

decomposition of the array covariance matrix, which is computationally expensive. 
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On the contrary, the cost function associated with the DEML estimator does not 

require any eigen-decomposition. Moreover, on a parallel computer, the DEML 

estimator can be naturally implemented in a parallel fashion, i.e., by calculating the 

estimate of the channel coefficient matrix in (4.2.9) and the estimate of the noise 

covariance matrix in (4.2.10) in parallel. 

 

Second, the accuracy provided by the DEML estimator for uncorrelated 

signals with known waveforms is superior to that of the best one provided by the 

estimators for unknown waveform signals. In fact, when unknown waveform signals 

are modelled as unknown deterministic parameters and the number of array sensors is 

finite, no estimator can achieve its CRB, which is bound to be greater than or equal to 

the CRB for signals with known waveforms due to the parsimony principle. 

 

Third, the DEML estimator has no constraints on the number of incident 

signals at all, provided that the number of data samples is large enough, while the 

estimators for unknown waveform signals require that the number of signals be less 

than the number of array sensors. 

 

Fourth, the DEML channel estimator can handle the case of unknown spatially 

colored noise with little additional difficulties. The estimators for unknown waveform 

signals, however, fail to handle this case. This advantage of the DEML channel 

estimator is particularly useful for estimating the incident signals with known 

waveforms in the presence of unknown interfering and jamming signals that are not 

completely correlated with any of these known waveform signals. This is especially 

true when the number of interfering and jamming signals is large and when some of 
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the interfering and jamming signals are wideband. The unknown noise covariance 

matrix Q  may be used to accommodate both the presence of these interfering and 

jamming signals and any other noise, including the thermal noise. 
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CHAPTER 5 
 

PERFORMANCE OF DEML CHANNEL ESTIMATOR UNDER 
SPATIALLY UNCORRELATED FADING CHANNEL 

 

 

In this chapter, we deal with the STBC system under spatially uncorrelated flat 

Rayleigh fading channel. First, the STBC system model is summarized. The DEML 

channel estimator performs well when the incident signals are uncorrelated with each 

other. Thus it can be applied directly to the uncorrelated STBC system. In addition, an 

iterative ML detector is introduced to improve the system performance with the 

DEML estimator. The system BER performances and some discussions are given at 

the last part of this chapter. 

 

5.1 SYSTEM MODEL 

 

Consider a STBC system with M  transmit and  receive antennas. The N K  

modulated symbols 1 2, , ..., Kd d  are encoded by a space-time block encoder. The 

output of the encoder is arranged into 

d

M  blocks, each containing P  complex 

modulation signals, described by matrix S  as follows 

11 12 1

21 22 2

1 2

P

P

M M M

s s s
s s s

s s s

⎡ ⎤
⎢ ⎥
⎢=
⎢
⎢ ⎥
⎢ ⎥⎣ ⎦

S

"
"

# # % #
" P

⎥
⎥

 (5.1.1) 

 

The entries of the matrix are linear combinations of these K  corresponding 

symbols and their conjugates, which belong to a finite complex constellation Ψ  with 
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Ψ  elements. The  row of  is the signal sequence transmitted from the  

transmit antenna over the P  symbol periods. The 

thm S thm

thp  column of  is the signal 

sequence transmitted simultaneously at time , over the 

S

pt M  antennas. 

t

 

The channel is assumed to be flat Rayleigh fading and quasi-static. The fading 

coefficient between the  transmit antenna and the  receive antenna is defined as 

, which is independent with respect to both m  and  and is a complex Gaussian 

random variable with zero mean and variance 

thm thn

nmh n

1 2 . It remains constant within, but 

changes to a new independent realization, every  symbol periods. P

 

Let  be the transmitted signal at the  transmitter and time t . The 

received signal at the  receiver and time  is given by 

mts thm

thn t

1

, 1,  ...,  ,  1,  ...,  
M

nt nm mt nt
m

x h s w  (5.1.2) T n N
=

= + = =∑

where  denotes additive noise at the  receiver and time t , which is independent 

with respect to both n  and t . It is the complex Gaussian noise with zero mean and 

variance 

ntw thn

2σ . 

 

The average energy of the transmitted symbols from each transmit antenna is 

normalized to be one. So the average energy of the received signal at each receive 

antenna is M . If we define the signal-to-noise ratio as SNR , we can get the noise 

variance 2 = . (2 )M SNRσ

 

Equation (5.1.2) can be re-written in matrix form as: 
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= +X HS W  (5.1.3) 

where  is the  complex received signal matrix, S  is the X N T× M T×  complex 

transmitted signal matrix,  is the W N T×  additive noise matrix and H  is the  

channel coefficient matrix. In this notation, all signal and noise matrices are function 

of time. 

N M×

 

Although the spatial covariance of the additive noise W  is difficult to 

determine, it can be written as E w *
,[ ( ) ( )]i j , where Q  denotes the unknown 

spatial covariance matrix and ,i jδ  is the Kronecker delta function. 

i jt w t δ= Q

 

 

Figure 5-1: The STBC system with two transmit and one receive antennas 
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In Figure 5-1, the STBC system with two transmit antennas and one receive 

antenna is shown. It has four function parts: encoding and transmitting signals at the 

transmitter; channel estimation; combining scheme at the receiver and the decision 

rule for maximum likelihood detection. Here we use the same encoding scheme as 

that of Alamouti’s scheme in [1] and we will introduce a DEML based channel 

estimator for the STBC system. Also an iterative ML detector is introduced to 

improve the system performance with the DEML estimator. 

 

5.2 CHANNEL ESTIMATION 

 

The channel estimation problem in STBC system is to determine the channel 

coefficients matrix H  and the noise covariance matrix Q  from the  independent 

data samples 

L

( ) ( ) ( )1 2 Lt t tX , X , ..., X . 

 

For the STBC system with uncorrelated fading channel, the incident signals 

are uncorrelated with each other. We can apply the DEML channel estimator directly 

to this kind of system. According to Chapter 4, the estimate of the channel coefficient 

matrix with DEML channel estimator is given by: 

ˆ * -1
SX SSH = R R  (5.2.1) 

And the estimate of the noise variance matrix with DEML channel estimator is given 

by: 

ˆ * -1
XX SX SS SXQ = R - R R R  (5.2.2) 

where 

1
L

*
SXR = SX  (5.2.3) 
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1
L

= *
SSR SS  (5.2.4) 

*1
L

=XXR XX  (5.2.5) 

 

According to the properties of DEML channel estimator, all estimates 

mentioned above are consistent and large sample realizations of the ML estimates. It 

follows that the DEML channel estimator is asymptotically statistically efficient and 

computationally efficient in this kind of STBC system. 

 

5.3 ML DETECTOR 

 

The log-likelihood function of the received signals  can be written as: X

( ) ( )( ){ }*11lnL tr
L

−= − − − −X H,Q,S Q Q X HS X HS  (5.3.1) 

where i  denotes the determinant, { }Tr i  denotes the trace operation and ( )  

denotes the conjugate transpose. 

*i

 

5.3.1 COHERENT ML DETECTOR 

 

If the channel coefficient matrix H  and the noise covariance matrix Q  are assumed 

to be known, the detection of the symbols 1 2, , ..., Kd d d  would amount to 

maximizing (5.3.1) with respect to D , where D  is the set of transmitted symbols 

{ } 1

K
k k

d
=

, or equivalently to minimizing 

2

1 1 1
arg min

L N M

nt nm mt
D t n m

x h s
= = =

−∑∑ ∑  (5.3.1.1) 
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This can be reduced to minimize 

2 2 2

,
arg min ( 1 ) , 1, ...,

i
i i nm i

d m n
d d h d i K

⎛ ⎞
− + − + =⎜ ⎟

⎝ ⎠
∑�  (5.3.1.2) 

for detecting the symbols seperately [2] and where 

*
, ( )

1 1
( ), 1, ...,

t

L N

i nt n i t
t n

d x h i iε δ
= =

= =∑∑� K  (5.3.1.3) 

 

The definition of ( )itε  and ( )itδ  is described below. Given an orthogonal 

design, the columns of the transmission matrix G  are all permutations of the first 

column of G  with possibly different signs. The sign of  in the  column of G  is 

denoted as 

id tht

( )itδ . Let tε  denote the permutations corresponding to these columns. 

Then ( )it jε =  means that  is up to a sign change in the id ( ),th thj t  element of . 

More detail information about 

G

( )itε  and ( )itδ  can be found in [2]. 

 

This is a very simple decoding strategy which decouples the multi-

dimensional detection problems in (5.3.1.1) into K  scalar detection problems in 

(5.3.1.2). The detector in (5.3.1.2) will be referred to as coherent ML detector. Note 

that the decisions in (5.3.1.2) do not depend on the training block . This is natural 

since  are the sufficient statistics for the detection problems when H  

and Q  are known. 

TX

1 2, , , LX X X"

 

5.3.2 EXACT ML DETECTOR 
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In the more realistic case that the channel coefficient matrix H  and the noise 

covariance matrix Q  are unknown, the likelihood function in (5.3.1) needs to be 

maximized with respects to  and Q . H

 

It can be shown that the maximization of (5.3.1) with respect to H  and Q  

yields 

( ) ( )

( )

( )

arg max ,

arg max ,

L D L

L

L D

=

=

H,Q

H,Q

X X S

X H,Q S

X H,Q

�  (5.3.2.1) 

 

We will refer to the decision that follows from the maximization of (5.3.2.1) 

with respect to D  as the exact ML detector. Note that, however, the maximization of 

(5.3.2.1) is not attractive since it requires a search over KΨ  possible sequences of . 

In what follows, we will present an iterative approach to maximizing (5.3.1) which 

decouples the search into a sequence of simple detection problems similar to that in 

the coherent ML detector. 

D

 

5.3.3 TRAINING-BASED ML DETECTOR 

 

An approximation to the exact ML detector in (5.3.2.1) can be easily derived by using 

the received training block  to estimate the channel coefficient matrix H  and the 

noise covariance matrix Q  with the DEML channel estimator described in Section 

5.2, and then these estimates are used as if they were known in the coherent ML 

TX
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detector in (5.3.1.2). The obtained detector will be referred to as training-based ML 

detector. 

 

The training-based ML detector therefore consists of the following steps: 

Step 1. Obtain initial estimates of H  and  based on the training block  

with the DEML channel estimator. 

Q TX

Step 2. Use the estimates obtained in step 1 to detect the symbols with the 

coherent ML detector. 

 

5.3.4 ITERATIVE ML DETECTOR 

 

The symbols detected in the training-based ML detector can be used to re-estimate the 

channel coefficient matrix H  and the noise covariance matrix Q  with the DEML 

estimator. Proceeding in this way, we get the iterative ML detector. 

 

The iterative ML detector consists of the following steps: 

Step 1. Obtain the initial estimates of H  and Q , using either estimates from 

previous block of data, or estimates from the training block (if this is the first part of 

transmission). 

Step 2. Use the estimates of H  and  to detect the symbols with the 

coherent ML detector. 

Q

Step 3. Re-estimate  and  using the DEML estimator described in 

Section 5.2 with the detected symbols in step 2. 

H Q

Step 4. Repeat step 2 and step 3 until convergence or until a pre-imposed 

iteration number. 
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Some remarks on the iterative ML detector: 

 

1. If only step 1 and step 2 are taken, the iterative ML detector is referred to 

as the training-based ML detector. 

 

2. The training-based initialization in step 1 is somewhat ad-hoc, yet the 

remaining part of the algorithm is nothing but the cyclic maximization of the 

likelihood function. Hence the above algorithm obtains, after convergence, the exact 

ML detector in the case of unknown  and Q . H

 

3. The maximum of (5.3.1) is unique with probability 1, so the iterative ML 

detector will converge in no more than KΨ  steps. 

 

4. Each step has a computational complexity of the same order as that of the 

training-based detector in Section 5.3.3. The increase in computational complexity 

induced by our iterative scheme compared to the training-based ML detector is 

therefore proportional to the number of iterations. 

 

5.4 PERFORMANCES AND DISCUSSIONS 

 

Some simulation results are presented to demonstrate the BER performance of the 

STBC system with DEML channel estimator under uncorrelated flat Rayleigh fading 

channel. These simulations are done for different number of transmitters and receivers, 
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and for different encoding, decoding and modulation schemes [19]. Also the 

simulation results of the STBC system with perfect CSI are shown and compared. 

 

Firstly we consider a STBC system with two transmitters ( 2M = ) and 

different number of receivers ( 1,2N = ). The simulations are done for BPSK 

modulation scheme under flat Rayleigh fading channel. The symbols are encoded into 

the  complex orthogonal design as 2 2×

*
1 2

*
2 1

d d
d d
⎡ ⎤−

= ⎢
⎣ ⎦

2S ⎥  (5.4.1) 

which corresponds to the encoding scheme proposed in [1] and 2, 2K P= = . 

 

We consider the detection for every ten consecutive transmission blocks of 

which the first one is used as the training block. The training overhead is therefore 

1 10 10%= . Each sequence of these ten transmission blocks contains 2 1  

samples and carries 18 information bits. 

0 20× =

 

In Figure 5-2 and Figure 5-3, we show the BER performance of STBC system 

with DEML channel estimator under uncorrelated flat Rayleigh fading channel. For 

comparison, we also show BER performance of the STBC system with perfect 

channel state information. We can see that the DEML channel estimator performs 

well in the STBC system under uncorrelated flat Rayleigh fading channel. There is 

small degradation in the BER performance of the STBC system with DEML channel 

estimator. This degradation, however, is partially because of the training block 

introduced in this system, which is treated as the noise signal in estimation problem. 

We note that increasing the iteration number of the iterative ML detector can improve 
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system BER performance. Three iterations are sufficient to make the system BER 

performance to converge to within 2 dB of that of the system with perfect channel 

state information. 

 

Secondly we consider a STBC system with four transmitters ( 4M = ) and 

different number of receivers ( 1,2N = ). The simulations are done for QPSK 

modulation scheme under uncorrelated flat Rayleigh fading channel. The symbols are 

encoded into complex orthogonal design as: 

* * * *
1 2 3 4 1 2 3 4

* * * *
2 1 4 3 2 1 4 3

* * *
3 4 1 2 3 4 1 2

* * * *
4 3 2 1 4 3 2 1

d d d d d d d d
d d d d d d d d
d d d d d d d d
d d d d d d d d

⎡ ⎤− − − − − −
⎢ ⎥−⎢=
⎢ − −
⎢ ⎥

− −⎢ ⎥⎣ ⎦

4S *

− ⎥
⎥

 (5.4.2) 

which is the same as the encoding scheme in [2] with 1 2  rate and . 4, 8K P= =

 

We consider the detection for every ten consecutive transmission blocks of 

which the first one is used as the training block. The training overhead is therefore 

1 10 10%= . Each sequence of these ten transmission blocks contains 4 1  

samples and carries 36 information bits. 

0 40× =

 

In Figure 5-4 and Figure 5-5, we show BER performance of STBC system 

with DEML channel estimator under uncorrelated flat Rayleigh fading channel. For 

comparison, we also show the BER performance of STBC system with perfect 

channel state information. Same results can be found as that of the STBC system with 

two transmitters. The DEML channel estimator performs well in the STBC system 

under uncorrelated flat Rayleigh fading channel. There is small degradation in the 

BER performance of the STBC system with DEML channel estimator. This 

 45



degradation, however, is partially because of the training block introduced in this 

system, which is treated as the noise signal in estimation problem. Increasing the 

iteration number of the iterative ML detector can improve system BER performance. 

Only three iterations are needed for convergence of the system BER performance to 

within 2 dB of the system with perfect channel state information. 
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Figure 5-2: BER performance of STBC system with DEML channel estimator, two 
transmitters and one receiver 
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Figure 5-3: BER performance of STBC system with DEML channel estimator, two 
transmitters and two receivers. 
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Figure 5-4: BER performance of STBC system with DEML channel estimator, 
four transmitters and one receiver. 
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Figure 5-5: BER performance of STBC system with DEML channel estimator, 
four transmitters and two receivers. 
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CHAPTER 6 
 

PERFORMANCE OF DEML CHANNEL ESTIMATOR UNDER 
SPATIALLY CORRELATED FADING CHANNEL 

 

 

In this chapter, we deal with the STBC system under spatially correlated flat Rayleigh 

fading channel. A general procedure on the generation of correlated Rayleigh fading 

sequence is presented. The DEML estimator can not be applied to correlated fading 

channel directly. A decorrelation algorithm is introduced to this kind of STBC system 

before the DEML channel estimator is used. The BER performance of this kind of 

STBC system and some discussions are given at the last part of this chapter. 

 

6.1 SYSTEM MODEL 

 

The STBC system under correlated fading channel has the same system model as that 

of the STBC system under uncorrelated fading channel, which is described in Chapter 

5. The only difference is that the fading channel is correlated. In the following, we 

will present a general procedure on the generation of correlated Rayleigh fading 

sequences. 

 

Computer simulation of cross-correlated fading processes has become an 

important research topic due to the increased interest in using antenna arrays to 

improve cellular mobile communications. Simulators which can accurately capture 

the characteristics of correlated diversity channels are needed to enable realistic 

performance assessments of multiple antenna systems. The simulation of narrowband 
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fading channels, in particular, requires the generation of cross-correlated Rayleigh 

fading sequences. Typically, the sequences must have specified auto-correlation and 

cross-correlation statistics. Since the desired fading coefficients are complex Gaussian 

variables, they can be generated in principle by factorization of the desired correlation 

matrix, followed by linear transformation of sequences of un-correlated variables [20, 

pp. 254-256]. Unfortunately, the expensive computational requirements of this direct 

method makes it impractical to implement. 

 

Recently, several authors have published efficient methods of generation two 

[22], [23] or any number [24], [25] of cross-correlated Rayleigh fading channels. In 

all these approaches, independent fading processes with desired autocorrelations are 

first generated and then multiplied by a coloring matrix. The method was first 

proposed by Ertel and Reed [22] for generating two Rayleigh sequences with desired 

cross-correlation from two uncorrelated Rayleigh sequences each having a required 

autocorrelation. It was generalized and physically interpreted to model specified delay 

spread and frequency separation in [23]. Later on, it was extended to generate any 

number of cross-correlated sequences from un-correlated Rayleigh sequences by 

Natarajan [24] and Beaulieu [25] separately. 

 

Let  and  denote the complex Gaussian samples of the Rayleigh fading 

signals. They can be expressed in complex format as: 

1s 2s

1 1 1

2 2 2

i

i q

s s js

s s js

= +

= +
q  (6.1.1) 

The envelopes of the received signals are given by: 
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2 2
1 1 1 1

2 2
2 2 2 2

i q

i q

r s s s

r s s s

= = +

= = +
 (6.1.2) 

Correlation values between  and  are: 1s 2s

{ } { } { } { }
{ } { }
{ } { }
{ } { }

2 2 2 2
1 1 2 2

1 1 2 2

1 2 1 2 1

1 2 1 2 2

0

i q i q

i q i q

i i q q

i q q i

E s E s E s E s

E s s E s s

E s s E s s

E s s E s s

µ

µ

µ

= = = =

= =

= =

= − =

 (6.1.3) 

 

The normalized cross-correlation coefficient between  and  is expressed as 

[21], 

1r 2r

2(1 ) ( )
1 2

2
2

iE λ πλ
λρ π

+ −
+=

−
 (6.1.4) 

where 

2 2
2 1

2
2µ µλ

µ
+

=  (6.1.5) 

is the squared magnitude of the cross-correlation coefficient between  and , and 1s 2s

( )iE η  denotes the complete elliptic integral of the second kind with modulus η . 

 

Equation (6.1.4) gives us an expression for the cross-correlation coefficient ρ  

of the Rayleigh faded envelopes in terms of λ , which itself is a function of the 

correlation properties of  and . We will use this relationship to determine the 

correlation properties of the complex Gaussian random variables that are needed to 

obtain the desired value of 

1s 2s

ρ . 
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Unfortunately, given ρ , it is not possible to solve λ  from (6.1.4) in a closed 

form. Rather a root-finding algorithm, such as finite difference Newton’s method, 

must be applied. The relation between ρ  and λ  is given in [21, Table II], and is 

reproduced here as Table 6-1. 

 

ρ λ ρ λ 

0.00 0.00000 0.50 0.72543 
0.05 0.23337 0.55 0.75922 
0.10 0.32945 0.60 0.79123 
0.15 0.40277 0.65 0.82168 
0.20 0.46424 0.70 0.85070 
0.25 0.51807 0.75 0.87842 
0.30 0.56644 0.80 0.90494 
0.35 0.61065 0.85 0.93033 
0.40 0.65152 0.90 0.95463 
0.45 0.68964 0.95 0.97787 

 

Table 6-1: Values of ρ vs. λ 

 

Choosing 1 2µ µ= , the correlation matrix of [ ]1 2, Ts s=S  can be calculated as 

( )

( )

2 2

2 2

1 1
2

1 1
2

x x

x x

j

j

δ λδ

λδ δ

⎡ ⎤−⎢ ⎥
⎢=
⎢ ⎥+⎢ ⎥⎣ ⎦

SSR ⎥  (6.1.6) 

where 2 2xδ µ=  is the desired signal power. 

 

Performing Cholesky decomposition on , we find a lower triangular 

matrix L  such that , where 

SSR

*=SSR LL

( ) 2

0
1 1 1
2

x

x xj

δ

λδ δ

⎡ ⎤
⎢ ⎥= ⎢ ⎥+ −
⎢⎣

L
λ

⎥⎦  (6.1.7) 
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is called the coloring matrix. 

 

Assume  and  are two unit power uncorrelated Rayleigh fading signals. 

The correlation matrix for 

1u 2u

[ ]1 2, Tu u=U  is 

{ }E= *
UU 2R UU = I  (6.1.8) 

where  denotes the  identity matrix. 2I 2 2×

 

Calculating S =  gives the desired correlation matrix, since LU

{ } { }* *E E= =* *
SSSS LUU L LL R=  (6.1.9) 

The components of U  are Gaussian and the components of S  are weighted sums of 

, then S  still has a bivariate Gaussian distribution as needed. U

 

In summary, the procedure for generating the correlated Rayleigh fading 

signals is as follows: 

1. From the desired correlation coefficient ρ  find the appropriate value of λ  

using Table 6-1; 

2. Specify the desired signal power 2
xδ ; 

3. Generate two unit power uncorrelated Rayleigh fading signals  and , 

and let 

1u 2u

[ ]1 2, Tu u=U ; 

4. Calculate the coloring matrix L  using (6.1.7); 

5. Calculate , the envelopes of S  are the desired Rayleigh faded 

samples. 

S = LU
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After discussing the theoretical aspect on how to generate two correlated 

Rayleigh fading envelopes, some simulations are performed as follows. 

 

Firstly, two sets of correlated Rayleigh fading envelopes are generated from 

the independent fading processes with desired autocorrelations. All the parameters, 

like ρ , λ  and 2
xδ , are set to desired values. In order to obtain the relatively smooth 

envelop plots, a pre-designed digital Doppler filter with 1 12df T =  is used to filter 

the sequence. 

 

Secondly, these correlated Rayleigh fading sequences are used in the STBC 

system. The BER performance of the STBC system with different correlation 

coefficients ρ  is shown and compared in [26]. 

 

Some selected envelope and phase plots for various ρ  are given as follows. 

Figure 6-1a shows two cross-correlated Rayleigh distributed sequences with 0.0ρ = . 

The corresponding phase sequences for Figure 6-1a are presented in Figure 6-1b. The 

cross-correlated Rayleigh distributed sequences with 0.3,0.6,0.9ρ =  are shown in 

Figure 6-2a, Figure 6-3a and Figure 6-4a separately. The corresponding phase 

sequences for these cross-correlated Rayleigh distributed sequences are presented in 

Figure 6-2b, Figure 6-3b, and Figure 6-4b respectively. From all this diagrams we can 

see that the sequences with small value of ρ  are less correlated both in the envelope 

and in the phase than those with large value of ρ . 
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The simulation results of STBC system (two transmitters and one receiver) 

with different correlation coefficients are shown in Figure 6-5. The BER performance 

of the STBC system under uncorrelated fading channels is shown in Figure 6-6 for 

comparison. From Figure 6-5 we can see that the curve marked with 0.0ρ =  shows 

BER performance for the un-correlated flat Rayleigh fading channels. It is the same as 

that of [1] with two transmitters and one receiver, which is shown in Figure 6-6. The 

curve marked with 1.0ρ =  shows the BER performance for full correlation. It is 

equivalent to a STBC system with one transmitter and one receiver, which is shown in 

Figure 6-6 too. For 0.6ρ ≤ , the BER performance curves are still very close to that of 

the system with un-correlated channels, which means they can still be treated as low 

correlation. Even for the deep correlation, like 0.9ρ = , when SNR is large enough, 

the BER performance is still not far away from un-correlated one. 
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Figure 6-1a: Correlated Rayleigh Fading Envelopes (ρ = 0.0) 
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Figure 6-1b: Phases of the corresponding sample sequences (ρ = 0.0) 
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Figure 6-2a: Correlated Rayleigh Fading Envelopes (ρ = 0.3) 
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Figure 6-2b: Phases of the corresponding sample sequences (ρ = 0.3) 
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Figure 6-3a: Correlated Rayleigh Fading Envelopes (ρ = 0.6) 
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Figure 6-3b: Phases of the corresponding sample sequences (ρ = 0.6) 

 58



0 50 100 150
10

−1

10
0

10
1

10
2

Sample

E
nv

el
op

e 
A

m
pl

itu
de

s1
s2

 

Figure 6-4a: Correlated Rayleigh Fading Envelopes (ρ = 0.9) 
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Figure 6-4b: Phases of the corresponding sample sequences (ρ = 0.9) 
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Figure 6-5: BER performance of correlated flat Rayleigh fading STBC system 
(two transmitters and one receiver) with different correlation coefficients. 
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Figure 6-6: BER performance of uncorrelated flat Rayleigh fading STBC system 
with different number of antennas. 
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6.2 CHANNEL ESTIMATION 

 

The channel estimation problem in STBC system is to determine the channel 

coefficients matrix H  and the noise covariance matrix Q  from the L  independent 

data samples . ( ) ( ) ( )1 2 Lt t tX , X , ..., X

 

The covariance matrix of the received signals can be calculated as 

{ } 2E σ= = +* *
XX SSR XX HR H I  (6.2.1) 

where  is the covariance matrix of the transmitted signals, SSR 2σ  is the noise 

covariance and I  is the M M×  unitary matrix. 

 

We notice that  is diagonal when the transmitted signals are uncorrelated, 

non-diagonal and non-singular when the transmitted signals are partially correlated, 

and non-diagonal but singular when some of the transmitted signals are fully 

correlated (or coherent). 

SSR

 

According to Chapter 4, the estimate of the channel coefficient matrix with 

DEML channel estimator is given by: 

ˆ * -1
SX SSH = R R  (6.2.2) 

And the estimate of the noise variance matrix with DEML channel estimator is given 

by: 

ˆ * -1
XX SX SS SXQ = R - R R R  (6.2.3) 

where 
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1
L

= *
SXR SX  (6.2.4) 

1
L

= *
SSR SS  (6.2.5) 

*1
L

=XXR XX  (6.2.6) 

 

For the STBC system with correlated fading channel,  is singular or close 

to be singular. It can not be used in the DEML estimator in (6.2.2) and (6.2.3) directly. 

Thus the DEML estimator can not be used in STBC system with correlated fading 

channel directly. A decorrelation algorithm must be applied to the correlated STBC 

system to get the modified covariance matrix before the DEML estimator is used. 

SSR

 

6.3 DECORRELATION ALGORITHM 

 

Received signal sequence of size L  is divided into overlapping sub array signal 

sequences of size , where N  is the number of receive antennas, i.e. signal 

sequences {

N

}1,..., N  form the first sub array, signal sequences { }2,..., 1N +  form the 

second sub array, etc. 

 

Let  denote the vector of received signals at the  sub array. Following 

the notation of (5.1.3), we can write 

kX thk

( )k-1
kX = HD S + Wk  (6.3.1) 

where ( )kD  denotes the  power of the thk M M×  diagonal matrix and is given by [27] 

( ) { }0 1 0,..., Mj jdiag e eω τ ω τ− −=kD  (6.3.2) 
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The covariance matrix of the  sub array is therefore given by thk

( ) ( )( )*
2

k k
σ= k-1 k-1 *

X X SSR HD R D H + I  (6.3.3) 

 

The spatial smoothed covariance matrix is defined as the sample means of the 

sub array covariance: 

1

1 K

kK =

= ∑ k kXX X XR R  (6.3.4) 

where  is the number of sub arrays. Using (6.3.3), we can rewrite (6.3.4) 

as 

1K L N= − +

( ) ( )( )*
2

1

1 K

kK
σ

=

⎛= ⎜
⎝ ⎠
∑ k-1 k-1 *

XX SSR H D R D H⎞ +⎟ I  (6.3.5) 

or more compactly as 

2σ= +*
XX SSR HR H I  (6.3.6) 

where 

( ) ( )( *

1

1 K

kK =

= ∑ k-1 k-1
SS SSR D R D )  (6.3.7) 

is the modified covariance matrix of the transmitted signals. 

 

It was shown in [27] that when K M≥ , the modified covariance matrix SSR  

will be non-singular regardless of the coherence of the transmitted signals. In this 

way, we get the smoothed covariance matrix. Then the DEML channel estimator as 

given by (6.2.2) and (6.2.3) is applied on this smoothed covariance matrix. 

 

6.4 PERFORMANCES AND DISCUSSIONS 
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We consider a STBC system with two transmitters and one receiver. Simulations are 

done for a BPSK modulation scheme under correlated flat Rayleigh fading channel, 

using DEML channel estimator [26]. The transmitted signals are encoded into the 

 complex orthogonal design with the same encoder as given by [1]. An iterative 

ML detector discussed in Chapter 5 is used to improve the system performance. 

2 2×

 

We consider the detection for every ten consecutive transmission blocks of 

which the first one is used as the training block. The training overhead is therefore 

1 10 10%= . Each sequence of these ten transmission blocks contains 2 1  

samples and carries 18 information bits. 

0 20× =

 

In Figure 6-7, we show the BER performance of STBC system with coherent 

BPSK under moderately correlated flat Rayleigh fading channel. The correlation 

coefficient is chosen as 0.3ρ = . The performances of the DEML channel estimator 

with and without the decorrelation algorithm are shown. As we mentioned in Section 

6.1, it can be treated as moderate correlation for correlation coefficient 0.3ρ = . We 

can see that the DEML channel estimator can still perform reasonably well without 

the decorrelation algorithm. With the decorrelation algorithm, the performance can be 

improved, but not that much. 

 

In Figure 6-8, we show BER performance of STBC system with coherent 

BPSK under highly correlated flat Rayleigh fading channel. The correlation 

coefficient is chosen as 0.9ρ = . The performances of the DEML channel estimator 

with and without the decorrelation algorithm are shown. It is treated as highly 
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correlated fading for correlation coefficient 0.9ρ = . We can see that the channel 

estimation errors can result in a significant performance loss without the decorrelation 

algorithm. The DEML channel estimator can not be directly used without the 

decorrelation algorithm. With the decorrelation algorithm, the performance of the 

DEML channel estimator can be greatly improved, and the channel estimation errors 

are almost the same as those of moderately correlated fading. 
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Figure 6-7: BER performance of STBC system with DEML estimator, under 
moderately correlated fading (ρ = 0.3). 
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Figure 6-8: BER performance of STBC system with DEML estimator, under 
highly correlated fading (ρ = 0.9). 
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CHAPTER 7 
 

CONCLUSION AND FUTURE WORKS 
 

 

In this thesis, we have presented a computationally efficient channel estimation 

method for STBC system based on the decoupled maximum likelihood (DEML) 

algorithm. The DEML channel estimator decouples the multi-dimensional problem of 

the exact ML estimator into a set of one-dimensional problems and hence is 

computationally efficient. The BER performances of the STBC system with the 

DEML channel estimator both under spatially uncorrelated and correlated flat 

Rayleigh fading channels are shown. 

 

If the incident signals are uncorrelated with each other, all estimates of the 

DEML channel estimator are consistent and large sample realizations of the ML 

estimates, it follows that the estimation method is asymptotically statistically efficient, 

according to the general properties of ML estimators. 

 

If the incident signals are moderately correlated, the DEML estimator is no 

longer a large sample ML estimator. The performance of the DEML channel 

estimator has small degradation. But the asymptotic statistical performance is still 

close to that of CRB’s. 

 

If the incident signals are highly correlated, the performance of the DEML 

channel estimator has obvious degradation. Thus the DEML channel estimator can not 

be applied to the correlated STBC system directly. In such cases, a decorrelation 
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algorithm must be applied on the correlated incident signals before the DEML 

channel estimator is used. 

 

We have also obtained the BER performance of the STBC system under 

correlated fading channels. To study the performance of STBC system under 

correlated fading channels, we have presented a general method on generation of 

correlated Rayleigh fading sequences. In this method, independent fading processes 

with desired autocorrelations are first generated and then multiplied by a coloring 

matrix. Some selected envelope and phase plots for various ρ  are given and 

compared. The sequences with small value of ρ  are less correlated both in the 

envelope and in the phase than those with great value of ρ . The BER performance of 

STBC system with different correlation coefficients is also shown. For 0.6ρ ≤ , the 

BER performance curves are still very close to that of the system with uncorrelated 

channels, which means they can still be treated as low correlation. Even for the deep 

correlation, like 0.9ρ = , when SNR is large enough, the BER performance is still not 

far away from uncorrelated one. 

 

In addition, we have presented an iterative ML detector to improve the system 

BER performance with the DEML channel estimator. The iterative ML detector can 

obtain, after convergence, the exact ML detector in the case of unknown H  and , 

without increasing much more computational complexity. From the simulation results, 

we can see that the iterative ML detector can improve the system BER performance 

with the DEML channel estimator. Only few iteration numbers is required to make the 

system BER performance curve to converge enough. 

Q
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The current work can be easily modified to accommodate cases that are more 

complicated. In future, more fading channel models can be considered. The 

performance of the DEML channel estimator can be evaluated in these fading 

channels and is made for comparison. Most analysis and simulations given in this 

thesis are based on a very simple STBC system model, which uses two transmit 

antennas and different number of receive antennas. In future, more complicated STBC 

system model can be used. The performance of the DEML channel estimator under 

certain type of STBC system can be analysed. 

 

Furthermore, different space-time codes, as descried in Chapter 2, and 

different channel estimation methods, as described in Chapter 3, can be used. The 

system performance of different types of space-time coded systems with different 

types of channel estimators can be analysed and compared with our results. 

 69



REFERENCES 

 

[1] S. M. Alamouti, “A simple transmit diversity scheme for wireless 

communications,” IEEE J. Select. Areas Commun., vol. 16, pp. 1451–1458, Oct. 

1998. 

 

[2] V. Tarokh, H. Jafarkhani, and A. R. Calderbank, “Space–time block codes 

from orthogonal designs,” IEEE Trans. Inform. Theory, vol. 45, pp. 1456-1467, 

Jul. 1999. 

 

[3] V. Tarokh, H. Jafarkhani, and A. R. Calderbank, “Space-time block coding 

for wireless communications: performance results,” IEEE J. Select. Areas 

Commun., vol. 17, pp. 451-460, Mar. 1999. 

 

[4] V. Tarokh, N. Seshadri, and A. R. Calderbank, “Space–time codes for high 

data rate wireless communication: performance analysis and code construction,” 

IEEE Trans. Inform. Theory, vol. 44, no. 2, pp. 744–765, Mar. 1999. 

 

[5] W. Firmanto, Z. Chen, B. Vucetic, J. Yuan, “Design of space-time turbo 

trellis coded modulation for fading channels,” IEEE GLOBECOM ’01, vol. 2, pp. 

1093-1097, Dec. 2001. 

 

[6] G. J. Foschini, Jr., “Layered space-time architecture for wireless 

communication in a fading environment when using multi-element antennas,” Bell 

Labs Tech. J., pp. 311-335, 1999. 

 70



 

[7] V. Tarokh, H. Jafarkhani, “A differential detection scheme for transmit 

diversity,” IEEE, J. Select. Areas Commun., vol. 18, pp. 1169-1174, July 2000. 

 

[8] B. M. Hochwald and T. L. Marzetta, “Unitary space-time modulation for 

multiple-antenna communications in Rayleigh flat fading,” IEEE Trans. Inform. 

Theory, vol. 46, pp. 543-564, Mar. 2000. 

 

[9] J. Li, B. Halder, P. Stoica, and M. Viberg, “Computationally efficient 

angle estimation for signals with known waveforms,” IEEE Trans. Signal 

Processing, vol. 43, pp. 1995-2163, Sep. 1995. 

 

[10] Y. Hua, “Fast maximum likelihood for blind identification of multiple FIR 

channels,” IEEE Trans. Signal Processing, vol. 44, pp. 661-672, Mar. 1996. 

 

[11] E. Moulines, P. Duhamel, J. F. Cardoso, and S. Mayrargue, “Subspace-

methods for the blind identification of multichannel FIR filters,” IEEE Trans. 

Signal Processing, vol. 43, pp. 516-525, Feb. 1995. 

 

[12] L. Tong and Q. Zhao, “Joint order detection and blind channel estimation 

by least squares smoothing,” IEEE Trans. Signal Processing, vol. 47, pp. 2345-

2355, Sep. 1999. 

 

 71



[13] L. Tong, G. Xu, B. Hassibi, and T. Kailath, “Blind identification and 

equalization of multipath channels: a frequency domain approach,” IEEE Trans. 

Inform. Theory, vol. 41, pp. 329-334, Jan. 1995. 

 

[14] L. Tong, G. Xu, and T. Kailath, “Blind identification and equalization 

based on second-order statistics: a time domain approach,” IEEE Trans. Inform. 

Theory, vol. 40, pp. 340-349, Mar. 1994. 

 

[15] K. Abed-Meraim, E. Moulines, and P. Loubaton, “Prediction error method 

for second-order blind identification,” IEEE Trans. Signal Processing, vol. 45, pp. 

694-705, Mar. 1997. 

 

[16] Y. Bresler and A. Macovski, “Exact maximum likelihood parameter 

estimation of superimposed exponential signals in noise,” IEEE Trans. Audio, 

Speech, Signal Processing, vol. ASSP-34, pp. 1081-1089, Oct. 1986. 

 

[17] Y. Hua, “Fast maximum likelihood for blind identification of multiple FIR 

channels,” IEEE Trans. Signal Processing, vol. 44, pp. 661-672, Mar. 1996. 

 

[18] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likelihood from 

incomplete data via EM algorithm,” J. Royal Statist. Soci., vol. 39, ser. B, 1977. 

 

[19] J. G. Sheng, A. Nallanathan and T. T. Tjhung, “Computationally efficient 

channel estimation for space-time block coded system,” in Proc. IEEE VTC’03, 

Apr. 2003. 

 72



 

[20] A. Leon-Garcia, Probability and Random Processes for Electrical 

Engineering, Addison-Wesley, 1990. 

 

[21] W.C Jakes, Ed., Microwave Mobile Communications, New York: IEEE 

Press, 1974. 

 

[22] R. B. Ertel and J. H. Reed, “Generation of two equal power correlated 

Rayleigh fading envelops,” IEEE Commun. Lett., vol. 2, pp. 276-278, Oct. 1998. 

 

[23] N. C. Beaulieu, “Generation of Correlated Rayleigh Fading Envelopes,” 

IEEE Commun. Lett., vol. 3, pp. 172-174, Jun. 1999. 

 

[24] B. Natarajan, C. Nassar and V. Chandrasekhar, “Generation of correlated 

Rayleigh fading envelops for spread spectrum applications,” IEEE Commun. Lett., 

vol. 4, pp. 9-11, Jan. 2000. 

 

[25] N. C. Beaulieu, and M. L. Merani, “Efficient simulation of correlated 

diversity channels,” IEEE WCNC 2000, vol. 1, pp. 207-210, 2000. 

 

[26] J. G. Sheng, A. Nallanathan and T. T. Tjhung, “Channel Estimation for 

Space-Time Block Coded System under Spatially Correlated Rayleigh Fading 

Channel,” to appear in Proc. IEEE PIMRC’03, Sep. 2003. 

 

 73



[27] T. Shan, M. Wax, and T. Kailath, “On spatial smoothing for direction-of-

arrival estimation of coherent signals,” IEEE Trans. Acoust., Speech, Signal 

Processing, vol. ASSP-33, pp. 806-811, Aug. 1985. 

 

[28] D. Grenier and E. Bosse, “Decorrelation performance of DEESE and 

spatial smoothing techniques for direction-of-arrival problems,” IEEE Trans. 

Signal Processing, vol. 44, no. 6, pp. 1579-1584, Jun. 1996. 

 

[29] C. Lagarde and D. Grenier, “Complexity-reduced direction-of-arrival 

estimation method for highly correlated sources,” in Proc. IEE Radar, Sonar and 

Navig., vol. 147, no.4, pp. 157-161, Aug. 2000. 

 74



AUTHOR’S PUBLICATIONS 

 

[1] J. G. Sheng, A. Nallanathan, and T. T. Tjhung, “Computationally efficient 

channel estimation for space-time block coded system,” in Proc. IEEE VTC’03, 

Apr. 2003. 

 

[2] J. G. Sheng, A. Nallanathan, and T. T. Tjhung, “Channel estimation for 

space-time block coded system under spatially correlated Rayleigh fading 

channel,” to appear in Proc. IEEE PIMRC’03, Sep. 2003. 

 75


	Thesis_Toc.pdf
	ACKNOWLEDGEMENT i
	TABLE OF CONTENTS ii
	LIST OF TABLES iv
	LIST OF FIGURES v
	LIST OF SYMBOLS AND ABBREVIATIONS vii
	ABSTRACT x
	CHAPTER 1:  INTRODUCTION 1
	CHAPTER 2:  OVERVIEW OF SPACE-TIME CODING 5
	CHAPTER 3:  OVERVIEW OF BLIND CHANNEL ESTIMATION 15
	CHAPTER 4:  DEML CHANNEL ESTIMATOR 27
	CHAPTER 5:  PERFORMANCE OF DEML CHANNEL ESTIMATOR UNDER UNCO
	CHAPTER 6:  PERFORMANCE OF DEML CHANNEL ESTIMATOR UNDER CORR
	CHAPTER 7:  CONCLUSION AND FUTURE WORKS 67
	REFERENCES 70
	AUTHOR’S PUBLICATIONS 75




