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Summary

The most important variable in the semiconductor manufacturing process is the

linewidth or critical dimension (CD), which is the single variable with the most

direct impact on the device speed and performance. In this thesis, we discuss one

of the key parameters that has an impact on the final CD : the depth-of-focus

(DOF). Parameters and processes that affect the DOF will be discussed. One of

the processes is chemical mechanical polishing (CMP) process, which has become

an indispensable semiconductor processing module used in fabrication facilities

worldwide to achieve the global planarization. This capability is absolutely re-

quired to increase the number of wiring levels in the integrated circuits without

the limitation of DOF issue. To reduce the within-wafer-nonuniformity (WIWNU)

in the CMP process, a combination of statistics process control (SPC) and ad-

vanced process control (APC), namely run-to-run control (R2R), is investigated.

The lack of in-situ measurements of the products qualities of interest, in this case,

the surface thickness uniformity, makes run-to-run control the only viable scheme.

Run-to-run control is further necessitated by the non-stationery nature of most

semiconductor processes. The literature contains many variations of R2R control

schemes to control the CMP process such as Exponential Weighted Moving Aver-

age (EWMA), Predictor Corrector Controller (PCC), Optimizing Adaptive Quality

Controller (OAQC), Model Predictive Controller (MPC). In this thesis, we analyze

the performance of these R2R control schemes and propose a self-tuning predictor-

corrector controller (SPCC). This allows for automatically adjusting the forecasting

viii



Summary ix

parameters in the face of changing process noise and disturbances. Simulation re-

sults depicts an order of magnitude improvement in terms of removal rate and

WIWNU when compared to conventional R2R controllers.

A related problem that affects the DOF is wafer warpage. We propose in this

thesis an approach to predict the wafer warpage by monitoring the bake plate

temperature during the baking of the wafer in the microlithography sequence.



Chapter 1

Introduction

1.1 Motivation

Advances in modelling and control are required to meet future technical challenges

in microelectronics manufacturing. The implementation of closed-loop control on

key unit operations has been limited due to a dearth of suitable in-situ measure-

ments, variations in process equipments and wafer properties. An advanced control

framework for integrating factory control and equipment scheduling, supervisory

control, feedback control, statistical process control and fault detection/diagosis

in microelectronics is urgently needed to meet the development of the whole chip-

based industry.

In this thesis, we mainly discuss the baking of wafer in the microlithography

process and chemical mechanical polishing (CMP) process affect the depth of focus

(DOF) . DOF is defined as the range of focus which keeps the resist profile of a given

feature within all specifications (linwidth, sidewall angle, and resist loss ) while

maintaining at least the specified exposure latitude. Variation in DOF affects the

critical dimension uniformity. To improve the DOF, both the thickness variation

issue in the baking process and within-wafer-non-uniformity (WIWNU) in the CMP

process are discussed into details. To solve the thickness variation, in another

1
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term, wafer warpage, an automatic fault detection methodology is proposed and a

physical model of the baking system is presented. Airgap estimation will be done

through experiments in the future. As for the WIWNU, a combination of statistics

process control (SPC) and advanced process control (APC), namely run-to-run

control, is investigated and we contribute our self-tuning PCC Controller with a

magnitude of improvement in terms of WIWNU. With the aid of the automatic

fault detection in thickness variation and improved WIWNU in CMP process, the

DOF requirement is met to the next-generation device manufacturing.

1.1.1 Overview of semiconductor manufacturing

The semiconductor manufacturing industry is arguably the fastest evolving major

industry in the world. Semiconductors, sometimes referred to as computer chips

or integrated circuits (ICs), contain numerous electrical pathways which connect

thousands or even millions of transistors and other electronic components. These

transistors store information on the semiconductors, either by holding an electrical

charge or by holding little or no charge. An integrated circuit consists of several

layers of carefully patterned thin films, each layer is chemically altered to achieve

the desired electrical characteristics. Although the design of integrated circuits is

normally done by electrical engineers, these device are manufactured through a

series of physical and/or chemical batch unit operations similar to the way that

specially chemical are made; From 30 to 300 process steps are typically required

to construct a set of circuits on s single crystalline substrate called a wafer. The

wafers are 100-300mm in diameter, 400-700 µm thick are served as the substrate

upon which microelectronic circuits (device) are built. Circuits are constructed by

depositing thin films (0.01-10µm) of material of carefully controlled composition in

specific patterns and then etching these films to exacting geometries (0.35-10µm).

Success in the industry requires constant attention to the state of art in process
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Table 1.1. Silicon integrated circuit technology roadmap

Year 2003 2004 2007 2010 2013 2016
DRAM 1/2 PITCH (nm) 100 90 65 45 32 22
MPU / ASIC 1/2 PITCH (nm) 100 90 65 45 32 22
Maximum reference clock speed (MHz) 2500 2500 2500 2500 5000 5000
Wafer size (mm) 300 300 300 300 450 450
Interconnect levels 8 9 10 10 11 11

tools, process chemistries and physics, and techniques for processing and process

improvement. In the US, a technology “roadmap” for design features of integrated

circuits has been promulgated by the international technology roadmap of semicon-

ductor (ITRS) (2003); Table 1 gives the ITRS roadmap for the design parameters

over a 13-year period. As the wafer diameter increases from 12 to 18 in (300-

450mm) and the DRAM 1/2 PITCH shrinks from 90-22 nm, more chips will be

placed on each wafer. The manufacturing costs can ne lowered by 25-40%, which

will require fewer factories to meet chip demand. The new “fabs” that will be con-

structed in the 21st century will incorporate increased robotic handling, utilize a

high level of in-situ diagnostics instead of post-process testing, and employ realtime

process control to achieve much higher levels of accuracy and reduced variation in

key quality variables.

The two major fronts along which product advancements are made in this in-

dustry are minimum feature size and wafer critical dimension. At the time of

this writing, the “state-of-the-art” minimum feature size was in the 130 to 100

nm range, while processing on 300mm wafers was becoming more prevalent. As

feature size shrink are wafer size increase, the industry must innovate to maintain

acceptable product yield, throughput, and overall equipment effectiveness (OEE).

Some manufacturing capability attributes, such as non-product wafer (NPW) us-

age and wafer scrap, must actually be improved in the transition to larger wafer

sizes because of the increased value of 300mm wafers (raw and processed). Faults

introduced in any stage of manufacturing will often only show up in final elec-
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tronic testing, and the consequent device loss may be (cost-wise) quite devastating

especially with the large-diameter wafers.

Although a number of solutions,including improved equipment design and pro-

cess innovation, will continue to aid in making these transitions cost effective, it

has become clear that they are no longer sufficient. Specifically, it has become

generally accepted that process and wafer quality sensing and subsequent process

tuning will be required to complement these equipment and process improvements.

The microelectronics industry has adopted a broad definition of advanced process

control (APC) which is considered to include four components, namely fault detec-

tion, fault classification, fault prognosis, process control. In its most basic mode,

APC monitors the process and determines the necessary manipulated variable ac-

tion. The controller also monitors the adjustments to ensure they satisfy operating

constraints and generates the necessary alarms. Recently, the definition of APC

has been expanded to include not just a single machine, but to encompass the

entire fab. The ultimate motivation for APC in microelectronics manufacturing is

improved device yield. A typical semiconductor manufacturing process can have

several hundred unit operations, any of which could be a yield limiter if a given

unit operation is out of control. It is difficult to evaluate the potential yield for

a given a lot before the wafers reach the end of production line. Therefore, it is

essential that each one of steps in the manufacturing process be operated as closely

as possible to the specification for the operation. In the APC process, fault detec-

tion and diagnosis can potentially be automated, reducing the time spent in these

operations. The main form of process tuning that is being implemented as a stan-

dard process and equipment control solution is run-to-run (R2R) control, which is

now a proven and available technology, and has become a critical component of

the success of existing and next generation fabrication facilities.
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1.1.2 Process monitoring, fault detection and diagnosis

According to SEMATECH, overall equipments effectiveness (OEE) numbers typi-

cally show process tools actively producing product wafer only 30 % of time. Run-

ning test wafers and both scheduled and unscheduled downtime represent almost

another 30%. Fully optimized OEE can theoretically double the wafers output in

a fab. Equipment monitoring and fault detection is at a early state of implementa-

tion within the semiconductor industry. Through the equipment analysis, a better

understanding is obtained on the affects of aging, cleaning and maintenance cycles

on process tool performance. Emerging equipment monitoring and fault detection

technologies can provide fabs with all these capabilities by tracking key signals

critical to the process step.

Current fault detection is often off-line. The same data can be used to com-

pare tool-to-tool, wafer-to-wafer, or lot-to-lot variations. It can also be used to

evaluate the effects of maintenance or clean cycles on yield, develop programs of

conditions based vs time-based maintenance, and analyze “what-if” scenarios to im-

prove process performance via equipment remodeling. Benefits from implementing

these strategies in production including improving the predictability and quality

of process results, reducing scrap and decreasing the number of test wafers. The

capability of handling these functions from anywhere in the fab will be necessary

as companies head toward high speed network data access.

Fault detection identifies the problematic conditions or faults by examining the

fab data. Once a faulty behavior is identified, the diagnosis process attempts to

identify its possible cause. This process is usually done by a team of engineers.

Anyway, fault detection and diagnosis can potentially be automated, at least par-

tially, reducing the time spent in these operations. Fault detection and diagnosis

represent a very high level of data processing. Typical fault detection and diagnosis

used first principle model or empirical models, sophisticated statistical analysis and
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symbolic processing. Techniques like neural network, principle component analysis

and expert systems are beginning to be used to perform automated fault detection

and diagnosis.

1.1.3 CMP and thickness variation in microlithography

Lithography is the key technology in semiconductor manufacturing, because it

is used repeatedly in a process sequence that depends on the device design. It

determines the device dimensions, which affect not only the device’s quality but also

its product amount and manufacturing cost. It is a kind of art made by impressing,

in turn, several flat embossed slabs, each covered with greasy ink of a particular

color, onto a piece of paper. The various colors or levels must be accurately aligned

with respect to one another within some registration tolerance. Several methods

can be used to make ultra large scale integration (ULSI) circuit patterns on wafers

such as optical lithography, electron lithography, x-ray lithography and ion-beam

lithography. The most common process is to make the the master photomask using

an electron beam exposure system and replicating its image by optical printers.

The exposing radiation is transmitted through the “clear” part of a mask. The

opaque part of the circuit pattern blocks some of the radiation. The resist, which

is sensitive to the radiation and has resistance to the etching, is coated on the

wafer surface. The mask is aligned within the required tolerance on the wafer;

then radiation is applied through the mask, the resist image is developed, and the

layer underneath the resist is etched.

In general, dynamic random access memories (DRAMs) have been used as the

indicator of progress in ULSI technology. The most advanced DRAM currently

in mass production is the 1G bit type with 0.15µm geometry. If we consider the

resolution, optical lithography is considered almost impossible to use for devices

that has less than 0.2µm geometry because of its resolution limit. We have only
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two choices: electron beam direct writing or an x-ray technology. However optical

lithography still has a margin over next-generation device manufacturing because

some commercially available resists can resolve down to 0.2µm, optical lithography

still has a margin over next-generation manufacturing. Therefore design of focus

(DOF), which is defined as the total amount od defocus allowed without violating

a given linewidth tolerance, has become very tight because the wavelength has

been reduced and the numerical aperture (NA) has been increased. There are two

process namely baking process and CMP process who can affect the DOF. Once

we can solve the thickness variation issue present in the baking process and reduce

the within-wafer-non-uniformity (WIWNU) of the wafer, we can increase our DOF

to meet the manufactuability requirements.

In this thesis, we first discuss a new way, an online fault detection in the process

of baking of semiconductor wafer, whose aim is to help us to detect the thickness

variation of the wafer. This process is included in photolithography step in semi-

conductor manufacturing process. A general requirement of these systems is a

capability to reject the load disturbance induced by a placement of a cold sub-

strate on the bake plate. When a wafer or reticle is placed on the bake plate, the

temperature of the bake plate drops and then is gradually rejected by the heater

controller. The temperature disturbance is gainfully used to estimate the airgap

between the wafer and the heater surface. Warpage of the wafer can affect device

performance, reliability and line-width control during various microlithographic

patterning steps. There are a few factors accounting for the wafer warpage or bow-

ing during its processing, one of the reasons is exactly due to stress by CMP pro-

cessing on the wafer surface causes wafers to bend. Current methods for measuring

wafer warpages include capacitive measurement probes, shadow moire techniques,

pneumatic-electro-mechanical systems. However, these are off-line methods. Hence

they increase process steps, the relevant equipment and operation cost and prolong

the production cycle. In chapter 2, we have presented a physical model of the bak-
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ing system and an automatic airgap estimation will be done through experiments

in the future. In real life application, we can directly get how many wafers with

the warpage are out of our specification, therefore they need not further processed

or inspected. It is cost-effective and labour-saving. Comparatively, it is easily

implemented on line and does not increase system complexity and equipment cost.

Although chemical-mechanical planarization (CMP) has been used for years to

produce smooth damage-free silicon wafer surfaces, it has only recently become an

essential step in the device fabrication sequence. CMP is being used to provide

unprecedented planarity of inter-layer dielectric silicon dioxide and in lithography-

limited sub-micron trench isolation (Warnock, 1991). CMP improved on the al-

ternate planarization techniques in many ways. The basic process is to deposit

the silicon oxide thicker than the final thickness you want and polish the material

back until the step heights are removed. This gives you a good flat surface for the

next level. In addition, the process can be repeated for every level of wiring that is

added. CMP is the only technique that performs global planarization of the wafer.

This is absolutely required to increase the number of wiring levels in the integrated

circuits. Prior to CMP, DOF issues due to global planarization problems limited

the total number of IC wiring levels to 3 - 4. With CMP, current state of the art

IC production is able to achieve 7 - 8 wiring levels.

The control of CMP is chronically poor,arising from poor understanding of the

process, degradation (wear out) of polishing pads, inconsistency of the slurry, varia-

tion in pad physical properties, and the lack of in-situ sensors (Boning et al., 1996).

The nature of the polishing environment means that it is not possible to obtain

real-time measurements of the surface planarity although indirect end-point de-

tection methods do exists (Bibby and Holland, 1998), however they are still not

reliable enough to be used in actual manufacturing environment. Ex-situ mea-

surement of surface thickness and uniformity are thus required to characterize the

process. Due to the lack of in-situ measurements of surface thickness and the non-
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stationery nature of the CMP process , Run-to-run controllers have been widely

used. We compare the traditional run-to-run control algorithms like EWMA, PCC,

OAQC and herein contribute our self-tuning PCC Controller with a magnitude of

improvement in terms of WIWNU. With the aid of the automatic fault detection in

thickness variation and improved WIWNU in CMP process, the DOF requirement

is met to the next-generation device manufacturing.

1.2 Contribution

In this thesis, we first discuss about the automated fault detection in microlithog-

raphy process and then investigated the advanced process control, namely run-

to-run control in CMP process. The aim of this thesis is to employing advanced

techniques to improve DOF in microlithography process to meet the future device

manufacturing requirements.

In the early part of this thesis, we put forward one method by combining the

dynamics of bake plate and wafer, we thus present a physical model of the baking

system and airgap estimation will be done through experiments in the future.

As for the process control in CMP process, we focus on the APC control

methodology. We compared the traditional EWMA controller, PCC Controller

and OAQC controller and then proposed a self-tuning PCC controller. The per-

formance of the EWMA controller and PCC controller depends heavily on the

proper selection of the weighting factors or forecasting parameters. That makes it

inconvenient to be used in a manufacturing environment where the nature of the

disturbance is usually unknown. The issue of the difficulty in choosing EWMA

weights for a MIMO process is raised by Smith and Boning (Smith and Bon-

ing, 1996). The effects of drift, noise, target change, and model error on the

optimal EWMA weight are investigated. The authors distill these various process

disturbance and model error down to a single disturbance state of noise and drift.
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This state can be mapped to optimal EWMA weights using an artificial neural

network (ANN) . During controller operation, the disturbance state is estimated

and passed to the neural network that determines the optimal EWMA weights

to be used by the observer. Some probabilistic tuning methods have also been

proposed for the EWMA controller but they are yet to be developed for the PCC

controller (Hamby et al., 1998). For PCC controller, though an extra degree of

freedom is obtained using two EWMA filters, tuning of the second EWMA filter

is not as intuitive as it is for a single EWMA controller. Therefore, the ability to

dynamically update the two weighting factors is necessary to achieve the best per-

formances of the controller. If the variability of the adjustments can be neglected,

the following approach for tuning PCC controllers was suggested by Del Castillo

(Castillo, 2002). There is a trade-off between the magnitude of the transient effect

and the long-run(asymptotic) variance when choosing the weights. In the long run,

the PCC eliminates the offset and the process will be on the target on average.

Therefore, the author proposes an optimization based approach for choosing the

appropriate weights for PCC controller. The difficulty and uncertainty of tuning

the forecasting parameters in the PCC controller is the motivation of this thesis.

In this thesis, a methodology for self tuning the two forecasting parameters by

using variable step size least mean square estimation in PCC controller is devel-

oped and discussed in full detail. Simulation results depicts an order of magnitude

improvement in terms of the removal rate and non-uniformity when compared to

conventional R2R controllers.

1.3 Organization

This thesis is organized as follows. Chapter 2 first proposes a prediction of wafer

warpage in photolithography semiconductor process, we present a physical model

of the baking system as the first step. Chapter3 further presents a brief view of
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chemical mechanical polishing process. The blanket wafer performance metrics

is also introduced in this chapter and the first investigation of the modelling of

CMP process is discussed as well. Chapter4 further investigates the process mod-

elling for CMP process by using design of experiments and response surface model

and then discussed model-based run-to-run control algorithm, including EWMA,

PCC, OAQC and MPC, A performance benchmark is then used to compare the

control effect among these model based controllers. In chapter5, we propose a self-

tuning PCC controllers to automatically select the optimal weighting factors in

PCC controller, and via the simulation of the benchmark problem, we prove that

our self-tuning PCC controllers can achieve an order of magnitude improvement

in terms of the removal rate and non-uniformity when compared to conventional

R2R controllers. Conclusions are drawn in Chapter 6.



Chapter 2

Modeling of wafer warpages

during baking in microlithography

2.1 Introduction

Photolithography may be considered as the most critical step in the semiconductor

manufacturing process. It is estimated that lithography accounts for nearly one

third of the total wafer fabrication cost (Quirk and Serda, 2001). As shown in

Figure 2.1 the micro-lithography sequence includes numerous baking steps such as

the soft bake, post-exposure bake, and post-develop bake (hard bake). In some

cases, additional bake steps are employed. Thermal processing of semiconductor

wafers is commonly performed by placement of the substrate on a heated plate

for a given period of time. The heated plate (or chuck) is held at a constant

temperature by a feedback controller that adjusts the (resistive or radiant, in the

case of susceptors) heater power in response to a temperature sensor embedded in

the plate near the surface. The wafer is placed on proximity pins. Processes that

utilize this thermal approach span a large temperature range and include photore-

sist processing, chemical vapour deposition (CVD) and rapid thermal annealing

(Campbell, 1996), (Schaper et al., 1994).

12
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Figure 2.1. The photo-resist processing and exposure steps are used in the lithog-
raphy sequence

A general requirement for these systems is an ability to reject the load distur-

bance induced by placement of a cold substrate on the bakeplate (Ho et al., 2000).

When a wafer or reticle is placed on the bakeplate, the temperature of the bake

plate drops and then is gradually rejected by the heater controller. In this chapter,

we show how the temperature disturbance can be gainfully used to estimate the

airgap between the wafer and the heater surface. A warped wafer and a flat wafer

would give different airgap. Wafer warpages is a common feature in semiconductor

manufacturing. For example, silicon nitride deposition can induce strong tensile

stress on the silicon wafer, this stress also contributes to the wafer warpage which

has an effect on the breakdown voltage of DRAM device, warpage of about 80 µm

is reported in Song et al. (I.S. et al., 1999). In silicon thinning and stress relief,

wafer warpages up to 260 µm is observed (Hendrix et al., 2000). Gettering and dis-

location density in silicon wafers also affect wafer warpages, Kishino et al. (Kishino

et al., 1993) reported warpage range from 40− 120 µm for a change of 1000 cm−3

in dislocation density. Fukui and Kurita (Fukui et al., 1997) reports InP wafer

warpage of 60 µm induced during its processing. The processing of semiconductor

wafers in the manufacturing of integrated circuits requires that the wafer to be

extremely flat (Sheats and Smith, 1998), (Thompson et al., 1994). This is espe-

cially critical during the lithography process (Exposure step) where knowledge of

wafer flatness is extremely important. Warpage is also a critical issue in thin wafer

processing in the smart card industry (Hendrix et al., 2000).
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Table 2.1. Product critical level post-exposure bake requirements

Year of First Product Shipment 1999 2001 2004 2007 2010 2013
Technology Node (nm) 180 130 90 65 45 33

Post-Exposure Bake (PEB) 5 4 2 2 1 1
sensitivity (nm/0C)

The information of wafer warpage is critical for precise temperature control,

equipment design, process optimization and routine monitoring. Temperature uni-

formity control is an important issue in photoresist processing with stringent spec-

ification as shown in Table 2.1. Of these, the most important or temperature sen-

sitive step is the post-exposure bake step (PEB). Temperature metrology during

PEB is vital for reducing critical dimension (CD) variability and effective profile

control in deep ultra-violet (DUV) lithography. The precise temperature control

can promote chemical modifications of the exposed portions of the photoresists

(Sheats and Smith, 1998). Excessive temperature variations will affect the kinet-

ics of the acid catalytical reaction in the resist. For such chemically-amplified

photoresists, the temperature of the substrate during this thermal step has to be

controlled to a high degree of precision for CD control. For commercially available

DUV resist systems, a representative post exposure bake latitude for CD varia-

tion is about 5nm /◦C. Requirements call for temperature to be controlled within

0.1◦C at temperatures between 70◦C and 150◦C for 1 or 2 minutes to reduce CD

inconsistencies.

Sturtevant et al. (Sturtevant et al., 1993) reported a 9% variation in CD per 1◦C

variation in temperature for a DUV photoresist. APEX-E resist has been shown

to display a sensitivity close to 12 nm/◦C, and UVIIHS 4 to 10 nm/◦C. A number

of recent investigation also shows the importance of proper bake plate operation

on CD control (Crisalle et al., 1998) (Mohondro and Gaboury, 1993). According

to the International Technology Roadmap for Semiconductors (2000), the PEB
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resist sensitivity to temperature will be more stringent for each new lithography

generation as depicted in Table 2.1. By the year 2010, the PEB resist sensitivity

is expected to be only 1 nm/◦C; making temperature control even more critical.

To meet future temperature requirements for advanced lithography processes, it is

important to reduce temperature variation of the baking process.

There are several origins of wafer warpage which can be induced during its

processing (Fukui et al., 1997): 1. stress by mechanical processing (e.g. CMP

or backgrinding ) on the wafer surfaces causes wafers to bend, sometimes it will

cause wafer to be fractured; 2. stress by heating processing (e.g. rapid thermal

processing) also causes wafers to bend, the mismatch in the coefficient of thermal

expansion among different layers in silicon substrates induces some distortion at

the wafer level; 3. stress are also induced during slicing and lapping of wafers.

Current methods for measuring wafer warpages include capacitive measurement

probes, shadow Moire techniques (Wei et al., 1998), pneumatic-electro-mechanical

systems. An innovative alternative for full-field, whole-wafer measurement is de-

veloped using a laser light source and the modified shadow moire technique (Wei

et al., 1998). The shadow moire method does not require wafers to be contacted

or rotated, thus reducing the vibration and enhancing the fidelity of measurement.

In addition, the whole wafer surface can be obtained through fringe patterns which

can then be analyzed by computers to automate the measuring process.

However, these are off-line methods. Hence they increase process steps, the

relevant equipment and operation cost and prolong the production cycle. In this

paper, we put forward one method by combining the dynamics of bakeplate and

wafer to modelling heat dynamics based on temperature measurement of bakeplate

and wafer. We will conduct the parameter estimation and validate our simulation

through the experiments in the future.

This chapter is organized as follows. In Section 2.2, we present a physical model

of the baking system. Conclusions are presented to propose the future work and
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assess the future application of advanced systems techniques to the lithography

process in Section 2.4.

2.2 Modelling of baking process in microlithog-

raphy

Conventional thermal systems utilize separate bake plates and chill plates to accom-

plish the baking steps. These units are comprised of large thermal mass systems

that are held constant at the set-point temperature. The substrate is placed on

the bake or chill plate. The substrate typically rests about 5 mils (thousandths of

an inch) from the surface of the plate on small pins, as opposed to direct contact,

to prevent contamination. The plates are typically single or dual zones systems.

To further understand the limitations of these conventional bake systems, a math-

ematical model is developed for the bake operation.

2.2.1 Thermal modeling

We assume that the substrate used for baking is a silicon wafer. Spatial dis-

tributions of temperature and other quantities in a silicon wafer is most naturally

expressed in a cylindrical coordinate system. The assumed system consists of three

main parts, the bakeplate, airgap and wafer. The bakeplate is also assumed to be

cylindrical in shape with the same diameter as the wafer. The system is discretized

spatially into N radial elements as shown in Figure 2.2.
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Figure 2.2. Thermal model of wafer-bakeplate system

The energy balance equations for the system are as follows:

Cp1θ̇p1 = −θp1 − θp2

Rp1

− θp1 − θw1

Ra1

+ q1,

Cpiθ̇pi =
θp(i−1) − θpi

Rp(i−1)

− θpi − θp(i+1)

Rpi

− θpi − θwi

Rai

+ qi, 2 ≤ i ≤ N − 1,

CpN θ̇pN =
θp(N−1) − θpN

Rp(N−1)

− θpN

RpN

− θpN − θwN

RaN

+ qN ,

Cw1θ̇w1 =
θp1 − θw1

Ra1

− θw1 − θw2

Rw1

− θw1

Rwz1

,

Cwiθ̇wi =
θw(i−1) − θwi

Rw(i−1)

+
θpi − θwi

Rai

− θwi − θw(i+1)

Rwi

− θwi

Rwzi

2 ≤ i ≤ N − 1,

CwN θ̇wN =
θw(N−1) − θwN

Rw(N−1)

+
θpN − θwN

RaN

− θwN

RwN

− θwN

RwzN

.
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where

θpi = Tpi − T∞ : i th plate element temperature

θwi = Twi − T∞ : i th wafer element temperature

Cpi : thermal capacitance of i th plate element

Cwi : thermal capacitance of i th wafer element

Rpi : thermal conduction resistance between the i th and i + 1 th plate element

Rwi : thermal conduction resistance between the i th and i + 1 th wafer element

Rwzi : thermal convection loss of the ith wafer element

Rai : thermal conduction resistance between the i th plate and i th wafer element

qi : heat flux into the i th plate element

The various thermal resistances and capacitances are given by

Rpi =
ln

(
i+1/2
i−1/2

)

2πkptp
(K/W ) 1 ≤ i ≤ N − 1

RpN =
1

h(πDtp)
(K/W )

Rwi =
ln

(
i+1/2
i−1/2

)

2πkwtw
(K/W ) 1 ≤ i ≤ N − 1

RwN =
1

h(πDtw)
(K/W )

Rwzi =
1

hAzi
(K/W )

Rai =
ta

kaAzi
(K/W )

Cpi = ρpcp (tpAzi) (J/K) 1 ≤ i ≤ N

Cwi = ρwcw (twAzi) (J/K) 1 ≤ i ≤ N

Azi = π∆r2
[
i2 − (i− 1)2

]
(m2) 1 ≤ i ≤ N

where Azi is the cross-sectional area of element i normal to the axial heat flow.

tp, tw and ta are the bakeplate thickness, wafer thickness and airgap between the

wafer and the bakeplate. ρp and ρw are the density of the bakeplate and wafer

respectively. cp and cw are the specific heat capacity of the bakeplate and wafer

respectively. The width of each element is given by ∆r = D/2/N . Some numerical
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values are helpful to analyze the dynamics. We consider the commercial aluminum

hot plate for photoresist processing shown in Figure 2.3.

Figure 2.3. Commercial bake-plate.

The system dimensions used in the modeling are as follows. The diameter of

the wafer/airgap/heater-plate, D = 0.3 m (300 mm wafer); the wafer thickness,

tw = 8.6× 10−4 m; and the bakeplate thickness, tp = 1.78× 10−2 m. Most ther-

mophysical properties are temperature dependent. However, for the temperature

range of interest from 150C to 1500C, it is reasonable to assume that these thermo-

physical properties remained fairly constant. Average values are used. The thermal

properties of pure aluminum, silicon and air are obtained from (Ozisik, 1985) and

(Raznjevic, 1976).

2.2.2 Simulation

The performance of conventional bake systems can be analyzed by simulating the

above energy balance equations. Figures 2.4 and 2.5 shows the wafer and bakeplate

temperature profile when a flat 300 mm wafer is dropped onto a fixed, uniform

temperature bakeplate 1000C above ambient temperature. As expected, the tem-

perature at the edge is lower than the center. The maximum drop in bakeplate
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temperature is also fairly uniform except at the edge which has a larger drop as

shown in Figure 2.5 (b).
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Figure 2.4. Flat wafer dropped on a bakeplate: (a) Wafer temperature, (b) Peak-
to-peak wafer temperature nonuniformity, (c) Steady-state wafer temperature.

Figures 2.6 and 2.7 shows the wafer and bakeplate temperature profile when

a warped 300 mm wafer is dropped onto a fixed, uniform temperature bakeplate

1000C above ambient temperature. The wafer is warped in a bow-shaped (airgap

between the wafer and bakeplate varies from 5−7 mils from center to edge). Notice

that the wafer temperature nonuniformity is now more severe compared to that

of a flat wafer. Such temperature nonuniformity is undesirable for temperature

sensitive photoresist processing, we do need a nonuniform bakeplate temperature

to give a uniform wafer temperature. Of interest here is that there is significant

difference in the maximum drop in bakeplate temperature across the bakeplate as

shown in Figure 2.7 (b). By monitoring the bakeplate temperature profile, we are

able to estimate the wafer warpage. This can be achieved easily in practice by

embedding temperature sensors in the bakeplate.
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Figure 2.5. Flat wafer dropped on a bakeplate: (a) Bakeplate temperature profile,
(b) Maximum temperature drop across bakeplate.
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Figure 2.6. Warped wafer(center to edge airgap: 105µm → 145µm) dropped on
a bakeplate: (a) Wafer temperature, (b) Peak-to-Peak wafer temperature nonuni-
formity, (c) Steady-state wafer temperature.
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Figure 2.7. Warped wafer (center to edge airgap: 105µm → 145µm) dropped on
a bakeplate: (a) Bakeplate temperature profile, (b) Maximum temperature drop
across bakeplate.

2.3 Predicting wafer warpage

In this section, we show how the temperature disturbance can be used to estimated

the airgap between the wafer and the heater surface. As we have seen in Figure

2.5, the plate temperature drops to a minimum before the PID controller rejects

the disturbance and returns to the steady state. If we investigate the temperature

drop at the center of hotplate, and regard it as the average of the temperature drop

across the whole hotplate, we can actually predict the wafer warpage by inspecting

the maximum temperature drop.

From the model we have set up, we change the number of the airgap parameters

in the modeling and then get the different temperature profiles. We then plot the

maximum temperature drop versus different airgaps in Figure 2.8,

From Figure 2.8, we can see that with the rise of airgap, the maximum temper-

ature drop of the hotplate is decreased because the heat convection and conduction

between the hotplate and wafer are decreased due to the larger airgap. Actually
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Figure 2.8. Maximum temperature drop of hotplate versus airgap

we can use this property to predict the wafer warpage just by simply checking

out the maximum temperature drop of the hotplate in the baking wafer process.

Thus the fault detection is easily implemented on-line, automated and therefore

cost-effective and labour saving. For example, in Figure 2.9, a schematic of the

system under consideration is shown. The system consists of 3 basic sections: the

heater, the airgap and the silicon wafer. The silicon wafer is placed on the pin of

the hotplate instead of being attached to the hotplate directly. Assume that we

have measured that the height of the pin is 3 µm, and then we put a cold wafer

to the hotplate, the temperature of the bake plate drops and then is gradually

rejected by the heater controller. Actually we can inspect the maximum tempera-

ture drop and then put it into Figure 2.8 to check the corresponding airgap, if this

airgap is equivalent to the height of the pin, in other words, airgap = 3µm, then

we can judge that this wafer is unwarped. Instead, if the airgap we have inspected
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from corresponding maximum temperature drop is less than the height of the pin,

for example, only 1µm, then we can say that the wafer is warped in the baking

process, as shown in Figure 2.10.

Figure 2.9. Unwarped wafer profile

Airgap estimation based only on the temperature measurement from bake plate

and wafer is easily implemented and we only need the maximum wafer tempera-

ture drop for the first time and it will reduce contamination induced by putting

temperature sensors on wafer in the subsequent processes. Therefore, it is cost

effective for semiconductor manufacturer to get the wafer warpage arising from

heating process. It will be greatly helpful to improve the CD control due to the

temperature variation throughout heating process. The basic underlying principle

is that we combine the maximum bake plate temperature drop and airgap together

in our modeling part and build up the corresponding relation between them. In

our prediction, what we have to emphasize is that the airgap we obtained is the

average warpage on wafer surface (only one point in the center). Warpage profile

on whole surface can be mapped out if we have multiple sensors embedded in the

bakeplate.
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Figure 2.10. Warped wafer profile (deflexed)

2.4 Conclusion

The lithography manufacturing process will continue to be a critical area in semi-

conductor manufacturing that limits the performance of microelectronics. Enabling

advancements by computational, control and signal processing methods are effec-

tive in reducing the enormous costs and complexities associated with the lithog-

raphy sequence. In this thesis, we have presented a physical model of the baking

system and airgap estimation will be done through experiments in the future.



Chapter 3

The chemical and mechanical

polishing process

Although chemical-mechanical polishing (CMP) has been used for years to produce

smooth damage-free silicon wafer surface, it has only recently become an essential

step in the device fabrication sequence. CMP has been used in the global planariza-

tion of oxide and tungsten process and now is being used to provide unprecedented

planarity of inter-layer dielectric silicon dioxide, copper and in lithography limited

sub-micron trench isolation (Warnock, 1991). It is projected that the observed

effectiveness of the CMP process will lead to the widespread use of this process at

various stages of integrated circuit (IC) fabrication, for a variety of high perfor-

mance and application specific ICs, and for a variety of materials.

3.1 Introduction

The CMP process involves a silicon wafer, attached to a carrier by vacuum, being

pressed face down into a polishing pad. The polishing environment is flooded

with a colloidal slurry which physically enhances abrasion and helps prevent re-

deposition of the oxide or metals. The polish table is rotated while the wafers also

26
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rotate about their axis and orbit about the polish table ((Boning et al., 1996)).

Figure 3.1 shows a schematic of a simple CMP machine.

Figure 3.1. Baseline CMP experiment

Abrasive particles in the slurry cause mechanical damage on the sample surface,

loosening the material for enhanced chemical attack or fracturing off the pieces

of surface into a slurry where they dissolve or are swept away. The process is

tailored to provide enhanced material remove rate from high points on surfaces

(compared to low areas), thus affecting the planarization (Steigerwald et al., 1997).

Note chemistry alone will not achieve planarization because most chemical actions

are isotropic. Mechanical grinding alone, theoretically, may achieve the desired

planarization but is not desirable because of extensive associated damage of the

material surfaces. Here it is pointed out that there are three main players in this

process (Steigerwald et al., 1997):

• The surface to be polished;

• The pad-the key media enabling the transfer of mechanical forces to the

surface being polished; and

• The slurry- that provides both chemical and mechanical effects.
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Most of the input and output variables to CMP could be categorized in one of

the above groups. Temperature, pressure, relative velocity of the surface being

polished with respect to pad (which is usually rotating ), and pre- and post-CMP

cleaning that may affect the final acceptance criteria for the polished surface are

other parameters that play important roles.

What is so unique about CMP? CMP achieves planarization of the nonpla-

narized surfaces. Nonplanarized surface topography is a result of the fabrication

process that ends up with a deposition of the film on a previously patterned surface,

with a pattern generated by an etching. The generation of surface topography by

several deposition, pattern etch and planarization processes have been examined

by Pai et al. Only CMP is universally applicable to cause global planarization.

There are several advantages of CMP as follows (Steigerwald et al., 1997):

• Achieves global planarization.

• Universal or materials insensitive-all types of surfaces can be planarized.

• Useful even for multi-material surfaces.

• Reduces severe topography allowing for fabrication with tighter design rules

and additional interconnection levels.

• Provides an alternate means of patterning metal eliminating the need of

reactive ion etching or plasma etching for difficult-to-etch metals and alloys.

• Leads to improved metal step coverage.

• Helps in increasing reliability, speed and yield of sub-0.5 µm devices/circuits.

• Expected to be a low cost process.

• Does not use hazardous gases in dry etching process.
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The most important advantage is that CMP process achieves global planarization

which is essential in building multilevel interconnections. However, there are also

several cost advantages to using CMP. The increase in processing complexity re-

quired by many planarization schemes increases both cost and defect densities.

Alternatively, CMP planarization involves only one step and often reduces or elim-

inates some defects. Nonplanarity defects such as metal stringers, which form when

the thick metal film at the edge of a step is not completely etched, and poor step

coverage are eliminated by global planarization. Because CMP levels the wafer

surface, film particles from previous processing can be readily removed. Indeed,

companies often find a reduction in defect densities upon implementing CMP pro-

cesses, in spite of post-CMP cleaning treatments being a relatively undeveloped

area. Reduced defect densities translate to increased die yields and decreased die

cost. However, there are also some disadvantages of CMP, which arise from the

fact that CMP is a new process which remains unoptimized. As a result of the

process immaturity, process windows are narrow, requiring an increased level of

wafer metrology to obtain the desired results. Anyway, the promise of global pla-

narity leading to improved performance is likely to make the required investment

extremely cost effective.

3.2 The CMP variables and manipulations

The CMP process is quite complicated, involves large number of variables. This

section lists and discusses these variables in two categories: output variables and

input variables. It must be noted that many input variables will primarily affect

either the chemical or mechanical component. However, there is a danger in as-

signing a variable as being either strictly a chemical or mechanical variable. The

chemical and mechanical components are inseparable, so that variables cannot be

listed as affecting only the mechanical component or only the chemical component.
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For example, velocity and pressure can be thought of as primarily mechanical vari-

ables. However, changing the velocity and/or pressure will affect slurry transport

across the wafer and also the thickness of the fluid layer between the pad and wafer.

Slurry transport and fluid layer thickness will then affect the diffusion of chemical

reactants and products to and from the wafer surface, which in turn affects reaction

rates. Pressure may affect the abrasive size and shape, pad performance, the film

stack and then effect old preexisting wafer curvature. This section examines these

variables and how the variable is expected to influence the CMP process and the

final result.

3.2.1 Output variables in CMP

Polish Rate: Units of (nm/min) or ( µm/min). Polish rate is the film thickness

removed divided by the polish time. Higher polish rates lead to shorter process

times and are thus desirable. However, if the polish rate is too high, the process is

difficult to control. Note that the polish rate can be significantly higher for wafers

with topography than for un-patterned wafers. This is because the contact area

with pad is smaller for wafers with topography.

Planarization Rate: Planarization rate is the time it takes to reduce the to-

pography of the wafer surface to the desired level. In the CMP of oxide and other

ILDs, because the end goal is surface planarization not simply material removal,

the planarization rate is as important a metric as polish rate.

Surface Quality: Surface quality is an indication of the expected yield and

reliability of the interconnections. A rough ILD film is more susceptible to low

breakdown strength and high leakage. A rough metal film is more susceptible to

corrosion and electromigation. Roughness is minimized by properly balancing the

chemical and mechanical components of the CMP process. High , particle densities

lower die yields. Particle densities may be reduced by using an effective post-polish
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clean sequence and by choice of slurry constituents. A high degree of corrosion

resistance of metal films is required to ensure reliability. High corrosion resistance

is ensured by forming a passivating film on the metal during or immediately after

the CMP step.

3.2.2 Input variables in CMP

Slurry chemicals: A large variety of materials (metals, alloys, insulators, semi-

conduct -ors, etc.) are being polished. Each has a different chemistry as far as

chemical interactions with the slurry is concerned. Slurry chemicals affect primar-

ily the chemical component, e.g., etch rate. However, chemical reactions modify

the mechanical properties of the film, pad, and abrasive surfaces, which in turn

affect the mechanical component.

Slurry Abrasive: The slurry abrasive provides the mechanical action of CMP.

Size and concentration slurry have a different effect on mechanical abrasion. How-

ever, the abrasive can also have a chemical effect as in the case of glass polishing

with ceria abrasive where the ceria forms a chemical bond with the glass surface or

in the case of alumina, which seems to create surface defects on SiO2 films polished

in pH, in the range of 5 to 8.

Slurry flow rate: Units of (liters/min) or (ml/min). The rate at which slurry

is delivered to the center of the pad. Slurry flow rate affects how quickly new

chemicals and abrasives are delivered to the pad and reaction by-products and

used abrasive are removed from the pad. The slurry flow rate also affects how

much slurry in on the pad and therefore will affect the lubrication properties of

the system.

Temperature: Units of (oC). Because CMP is in part a wear process, temper-

ature increases are to be expected. Temperature can also be controlled to some

extent by maintaining the temperature of the polish table with recirculating water
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or by heating the slurry and measuring the temperature at the pad. The pri-

mary effect of temperature is on reaction rates. However, dramatic changes in the

temperature of the surface will affect the mechanical properties of the film.

Pressure: Units of (kPa) or (psi). Pressure is the load applied to the wafer

divided by the wafer area. Note that if the surface is rough or has topography,

the contact area is less than the geometric area, and hence the pressure is in-

creased until such time as the surface is made smooth. Mechanical abrasion rate

is proportional to pressure. Pressure also affects planarization.

Pad Velocity: Units of rotations per minute (rpm) or (cm/sec). If the wafer

is rotated off the axis of the pad , which is common, the pad velocity is also the

average relative velocity of the pad with respect to the wafer. Mechanical abrasion

rate is also proportional to velocity. Velocity also affects slurry transport across

the wafer and the transport of the reactants and products of chemical reactions to

and from the wafer surface.

Wafer Velocity: Units of rotations per minute(rpm) or (cm/sec). The velocity

of the wafer affects the average velocity across the wafer. If the pad and wafer

rotational velocities match, the average velocity is the same at every point on the

wafer.

Pattern Geometries: Feature size and pattern density affect localized pressure

distribution and therefore affect the removal rate at the feature scale. Small fea-

tures polish quicker than large features, and small pattern densities polish faster

than large pattern densities. Feature size and pattern density thus affect planariza-

tion rates in ILD polishing and metal dishing and ILD erosion in metal polishing.

Polish Pad: The polish pad affects virtually all of the above listed output

variables and interacts with most of the input variables.

Pad Conditioning: Pad conditioning techniques improve and stabilize perfor-

mance.

Wafer Curvature: Wafer curvature affects the distribution the applied load
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across the wafer. If a wafer is bowed up in the center, for example, more of the

applied load is distributed to the center of the wafer, and therefore the pressure

is greater in the center. This also contributes to feature size dependence that is

variable across the wafer.

Wafer Size: The diameter of the wafer being polished will play a very significant

role not only in determining the force, relatively velocity on different areas of the

wafer, but also the feed rate of the slurry and integrity of the abrasive under the

wafer. A CMP process for large size wafers will thus face the significant problem

of the uniform supply of slurry under the wafer.

3.3 Blanket wafer performance metrics

The performance of the CMP process is gauged by several different metrics. In

particular, the removal rate (RR) of material on blanket sheet film wafers is often

used to judge how quickly a process will remove step heights on patterned wafers.

Processes with higher removal rates are generally considered better. The RR is

determined by measurements of the oxide film thickness before and after polishing

at each several sites on the wafer.

The “removal rate” metric most often used is the average of the amount removed

at each site, divided by the fixed polish time. Differences between polish rates at

the center and the edge of the wafer may arise due to wafer asymmetry, non-

constant relative pad velocity from the edge to the center, non-uniform slurry and

by-product transport under the wafer, wafer bowing due to pressure or tool design,

or machine drift with tool or pad age of any of these parameters. As a result,

the uniformity of the polishing process across the surface of the wafer is also of a

concern. In order for all devices on the wafer to be polished to the same amount, the

Within-wafer non-uniformity (WIWNU) of a polished unpatterned blanket wafer is

desired to be small (typically 5% or less ). The calculation of the WIWNU metric
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varies in the industry (Smith and Boning, 1999). One common calculation used

is the standard deviation of the amount removed (AR) over the sites on the wafer,

divided by the average AR over the several sites, times 100. Other approaches

include the standard deviation of the removal rate or post-polish thickness profiles.

These two blanket wafer metric are generally used to develop CMP processes, as

well as to monitor the CMP process on a lot to lot basis. In addition, particle

and scratching tests are performed on unpatterned wafers. Particles and wafer

scratching caused by CMP can create severe failures in manufactured circuits (Kim

et al., 1999), and thus must be carefully monitored.

3.4 An introduction to CMP process problems

The key knowledge of the chemical, structural, and mechanical properties of the

surface to be polished establishes the polishing parameter space including the chem-

istry and mechanical force. CMP of a single material is thus easier compared to

that of a surface consisting of different materials spaced at different surface cover-

age. A complex set of phenomena occurs that control this feature size dependence,

the most important of which is related to the elastic behavior of the pad. Ideally

one would expect he pad to be rigid and chemically inert so that it can carry abra-

sives and chemicals all across the surface being polished. For real situations pads

are not rigid, leading to several issues: changes occurring in pad properties as pol-

ishing continues, cyclic changes, solvent/chemical effects on rigidity, and erosion.

Similarly pads are not chemically and physically inert materials, thus leading to

the following changes in surface and possibly bulk chemistry of the pad ingredients

(changes affected by mechanical forces and changes that affect mechanical proper-

ties) , surface bonding between abrasive and pad, electrochemical effects, and the

necessity to recondition or regenerate the pad to cause reproducible polishing be-

havior. Thus there is a need for understanding these changes in pads as a function
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of the use and during actual use.

The slurry is the third important key player among the three above. Slur-

ries provide both the chemical action through the solution chemistry and the me-

chanical action through the abrasives. High polishing rates, planarity, selectivity,

uniformity, post-CMP ease of cleaning including environmental health and safety

issues, shelf-life,and dispersion ability are the factors considered to optimize the

slurry performance. Finally the last important step of the complete CMP-process

sequence is the cleaning. Removal of the slurry from the surface without leaving

any macroscopic, microscopic, or electrically active defects is very important in

making the process useful.

As for the recipe parameters, typically, there are three principal parameters in

a CMP recipe including the down force, the platen rotation speed, and the carrier

rotation speed. Another variable in CMP recipe is the back pressure. Usually, if

the non-uniformity problem is identified to be a center-slow-edge-fast process, back

pressure can be used to push the back of a wafer and accelerate the center polish

rate. Thus the uniformity can be improved accordingly.

A pad conditioner or pad dresser, is used to condition the polish pad to retrieve

polish rate. If this is not done, the surface of a pad can become glazed and the pad

austerity lost. A pad conditioner consists of diamond grit or similar silicon carbide

materials. These, extremely hard materials can scrape off the topmost layer of a

pad during conditioning; if properly deployed, A pad conditioner can help flatten

a polish pad and improve polish uniformity. Failure will lead to the surface being

roughened and the non-uniformity worsened. No matter how good the consumable,

recipes and equipment are in CMP, there is an intrinsic non-uniformity problem,

in which a wafer is always polished more at its edge and less at its center. This is

due to the fact that the relative velocity between a rotating wafer and a rotating

platen is larger for positions at the edges than those at the center. Hence a polish

profile can be generated on the polish pad. The areas contacting the wafer center
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are less polished and the areas contacting the wafer edge are more polished. Once

this kind of polish profile is formed on a polish pad, the normal polish uniformity is

lost. In other words, the intrinsic non-uniformity problem can trigger an extrinsic

problem on the polish pad. The only way to counter this is using edge and less at

its center. This is due to the fact that the relative velocity between a rotating wafer

and a rotating platen is larger for positions at the edges than those at the center.

Hence a polish profile can be generated on the polish pad. The areas contacting

the wafer center are less polished and the areas contacting the wafer edge are more

polished. Once this kind of polish profile is formed on a polish pad, the normal

polish uniformity is lost. In other words, the intrinsic non-uniformity problem can

trigger an extrinsic problem on the polish pad. The only way to counter this is to

use a pad conditioner. A pad conditioner can intentionally condition more at some

places and less at others. Another concern with the use of pad conditioner is the

down force during conditioning. This down force must be as low as possible, as long

as the polish rate remains stable. If the down force is set too high, the resultant

high wear rate shortens the pad life. Once the grooves on the pad are worn out, the

pad can no longer deliver slurry. The pad conditioner can intentionally condition

more at some places and less at others. Another concern with the use of pad

conditioner is the down force during conditioning. This down force must be as low

as possible, as long as the polish rate remains stable. If the down force is set too

high, the resultant high wear rate shortens the pad life.

In the end,the primary purpose of using CMP in back-end interconnect pro-

cesses is to planarize the surface. A question arises, however, as to how much

sacrificial thickness maybe required for polishing away to planarize the surface.

Intuitively, the more the thickness polished, the better would be the planarity

achieved; however, at the same time, the across-wafer final non-uniformity be-

comes worse.
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3.5 CMP modeling

Modelling blanket wafer polishing is the first step in understanding the polish

characteristics and in exploring the appropriate control algorithm. Polish process

optimization and control depend on accurate delineation of the roles of macroscopic

process parameters, such as down force and relative speed, on polish rate and uni-

formity. Such analysis is highly simplified for blanket wafer polishing. Successful

CMP process modelling also entails a good understanding of the polish mechanism,

which is easier to infer from blanket wafer polishing.

The earliest glass polishing model, which can be applied to oxide dielectric

polishing, was proposed by Preston (Preston, 1927), using the first principle mod-

elling. According to the model, the polish rate at any position on the wafer is given

by equation 3.1:

4H

4t
= −Kp(

L

A
)
4S

4t
(3.1)

where Kp is the Preston’s coefficient, L is the applied load, A is the contact area,

and4S is the relative distance travelled between pad and wafer position of interest.

The model assumes mechanical abrasion and the chemical effects are lumped into

the coefficient. It is usually written as in equation 3.2:

dH

dt
= −KpPV (3.2)

where P and V are local pressure and relative velocity, respectively. Cook(Cook,

1990) has attempted an extension to Preston’s model by incorporating a mechanism

in the model. He assumes the slurry particles are responsible for polishing, then

models their penetration into the surface as an Hertzian penetration problem. The

polish rate is then given by equation 3.3:

4H

4t
= − 1

2E
PV (3.3)
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which is identical to Equation 3.1with Preston’s coefficient replaced by 1
2E

where E

is the Young’s modulus of the surface being polished.Based on mechanistic models

of particle-based wear, other non linear dependencies on pressure and velocity have

also been proposed (Tung, 1997).

An controller uses a process model to approximate what change in process

setting is necessary to counteract an observed drift in the process output and/or

changes in the incoming wafer characteristics. A model used for control does not

need to be perfect not as detailed as a simulation model. Thus, mostly black box

models for the process are developed and used for control. To obtain a black box

model, design of experiments (DOE) is done to identify the important process

variables that affect the process output and give the polynomial model. A linear

regression fit is then obtained as given in equation 3.4

Yi = AXi + Ci−1 + εi + δi (3.4)

where Yi is the output at batch i, A is the process gain. The process noise, εi, is

assumed to be normally distributed white noise. The parameters δi and Ci−1 in the

above equation represent the drift and the estimate of the intercept, respectively.

Most of Run to Run controllers (Boning et al., 1996) (Campbell, 1999) (Bulter and

Stefani, 1994) (Castillo and Hurwitz, 1997) employ this kind of process model in

their control algorithms.

3.6 Conclusion

In this chapter, we introduced a critically important semiconductor process step

both in the front-end process and back-end semiconductor process, Chemical Me-

chanical Polishing Process. We further set this process as the interest of our

run-to-run controller and therefore discussed about its output variables and in-
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put variables. In addition, Wafer performance metrics are also investigated with a

introduction to CMP process problems. The chapter ends with a brief introduction

to the first principle modelling of CMP process. It is just the inherent character of

CMP process, its non-stationery process disturbance and Ex situ measurement of

output due to the nature of polish environment, leading to the popular investiga-

tion of run-to-run controller in the use of controlling CMP process, which will be

discussed in the next chapter.



Chapter 4

Run to run control in CMP

process

4.1 Introduction

The newer approach to solving process problems in the semiconductor manufac-

turing industry is through a combination of SPC and automatic process control

(APC) known as run-to-run control (R2R) (Sachs et al., 1995) (Castillo and Hur-

witz, 1997). Run-to-run controllers generally are model-based controllers coupled

with an observer of some type. The final element of the run-to-run controller is

the control law which specifies how the recipe for the process should be updated

(Castillo and Hurwitz, 1997). The task of R2R controller is thus to update the

recipe of the manipulated variables for the next wafer by compensating for process

changes without increasing the variability of the product. The literature contains

both single and multivariate R2R controllers applied to CMP process, such as

the MIT Gradual Model Exponentially Weighted moving average (EWMA) con-

troller (Boning et al., 1996), Predictor Corrector Controller (PCC) (Bulter and

Stefani, 1994), Optimizing Adaptive Quality Controller (OAQC) (Castillo and

Yeh, 198) and Model Predictive R2R controller(MPR2RC) (Campbell, 1999). A

40
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comparison is made between the various R2R controllers proposed in the literature

in this section. Before the comparison of Run-to-Run control algorithms, Design

of Experiments (DOE) and Response surface modelling (RSM) are also introduced

to provide the process model for controller use. Often a model used for control

does not need to be perfect. If a controller is not successful in cancelling all of

the output drift after one run, feedback will tell the controller to change the input

again so that in the second run, the output will be moved even closer to target.

This iterative behavior is the fundamental reason why feedback control is robust

to a modest amount of error in the control model, and it is also the reason why

feedback control can counteract unmodeled disturbance.

4.2 CMP process modeling

4.2.1 Design of experiments

Experimental design methods have found broad application in many disciplines. In

fact, We may view experimentation as part of the scientific process and as one of

the ways we learn about how systems or process work. Generally, we learn through

a series of activities in which we make conjectures about a process, perform exper-

iments to generate data from the process, and then use the information from the

experiment to establish new conjectures, which lead to new experiments, and so

on. Experiment design is a critically important tool in the engineering world for

improving the performance of a manufacturing process. It also has extensive ap-

plication in the development of new processes and play a major role in engineering

design activities, where new products are developed and existing ones improved.

Some application of experimental design in engineering design include

• Evaluation and comparison of basic design configurations.

• Evaluation of material alternatives.
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• Selection of design parameters so that the product will work well under a

wide variety of field conditions, that is, so that the product is robust.

• Determination of key product design parameters that impact product per-

formance.

The aim of DOE in this thesis is that we want to find the most influential input

variables among the input variables to CMP process and further set up a linear

regression model as our process model.

In general, experiments are used to study the performance of processes and

systems. The process can be represented by the model shown in figure 4.1. We can

Figure 4.1. General model of a process or system

usually visualize the process as a combination of machines, methods, people,and

other resources that transform some input (often a material) into an output that

has one or more observable responses (Montgomery, 1996). Some of the process

variables x1, x2, ..., xp are controllable, whereas other variables z1, z2, ..., zq are

uncontrollable. The objectives of the experiment may include the followings:

• Determining which variable are most influential on the response y.
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• Determining where to set the influential x’s so that y is always near the

desired nominal value.

• Determining where to set the influential x’s so that variability in y is small.

• Determining where to set the influential x’s so that the effects of the uncon-

trollable variables z1, z2, ..., zq are minimized.

The general approach to planning and conducting the experiments is called the

strategy of experimentation. There are several strategies that an experimenter

could use. When there are several factors in the experiments, the correct approach

to dealing with it is to conduct a factorial experiment. This is an experiment

strategy in which factors are varied together, instead of one at a time. Generally,

if there are K factors, each at two levels, the factorial design would require 2k runs.

In our case, since CMP is a MIMO process, all four parameters-Relative velocity,

back-pressure, profile, down-force could be investigated in a 24 full factorial design.

In a 2k factorial design, it is easy to express the results of the experiment in

terms of a regression model in the following forms 4.1:

y = β0 + β1x1 + β2x2 + ... + βkxk + ε (4.1)

where y is the response variable, the x’s are a set of regressor or predictor variables,

the β’s are the regression coefficients and ε is an error term, assumed to be normally

distributed between 0 and σ2. In general, the regression coefficients in these models

are estimated using the method of least squares; that is , the β’s are chosen so as

to minimize the sum of the squares of the errors (the ε’s) .

However, as the number of factors in a 2k factorial design increases, the num-

ber of runs required for a complete replicate of the design rapidly outgrows the

resource of most experiments. If the experiments can reasonably assume that cer-

tain high-order interactions are negligible, then information on the main effects are
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Table 4.1. 24−1 design matrix for WCMP process-DOE

TTspeed TRspeed Downforce BSP RR Nu%
50 50 311 138 2389 4.32
50 50 414 276 2707 3.64
50 100 311 276 2247 3.35
50 100 414 138 2988 4.2
90 50 311 276 3420 9.9
90 50 414 138 4385 11.1
90 100 311 138 3607 6.55
90 100 414 276 4672 15.7

low-order interactions may be obtained by running only a fraction of the complete

factorial experiment. In our experiments, we have four factors, each at two levels,

are on interest. But the experiments cannot afford to run all 24 = 16 treatment

combinations and we also really assume the second-order interaction are negligi-

ble, then it suggests a one-half fraction of a 23 design. A 23 factorial design in

the 4 parameters-table speed, top-ring speed, down-force and back pressure was

performed as described in Table 4.1

4.2.2 Response surface modelling

In the case of 2k design, it is extremely easy to find the least square estimates of

the β’s. The least square estimate of any regression coefficient β is simply one-half

of the corresponding factor effect estimate. If the output variable y is plotted with

respect to the two process variables x1 and x2 in a 3D plane, it is called response

surface plot, and the regression model used to generate the graph is called first-

order response surface model.

The regression model built up in the DOE data in the last section is obtained

as follows, where we use relative velocity to take place of table speed velocity and
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top-ring velocity thus only 3 factors are in our interest.
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 (4.2)

where x1 is the relative speed, x2 is the down-force, and x3 is the back pressure.

Figure 4.2, 4.3 shows the response surface plot obtained by the DOE data listed

in 4.2:
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Figure 4.2. Response surface models for removal rate

Inspection of the response surface makes interpretation of the results of an

experiment very simple. From the response surface plot (RSM) , the experimenter

might select an optimum set of conditions for doing the process. It can also be used

in process robustness studies and process improvement and optimization. Thus the

objective of every designed experiment is a quantitative model of the process.
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Figure 4.3. Response surface models for non-uniformity

4.3 Model-based run to run control algorithm

There are many different methods that a run-to-run controller can be formulated

in order to perform the necessary control tasks.However, most all controllers will

have a similar structure, regardless of the detail. The final element of the Run-to-

Run controllers is the control law which specifies how the recipe for the process

should be updated (Castillo and Hurwitz, 1997).

Model-based controllers coupled with a filter are often used as Run-to-Run

controller. Four such controllers (EWMA, PCC, and OAQC) are briefly explained

in this section. Performances of these schemes are compared using simulation

results.
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4.3.1 EWMA controller

EWMA controller is identical to the Internal Model Control (IMC) scheme. Block

diagram in Figure 4.4 explains the operation of this controller. The error between

the outputs of the process and its model is used as feedback to rectify the process

so that the error is minimized.

Figure 4.4. Block diagram of EWMA controller

The process is represented by the following linear regression model,

Yi = AXi + Ci−1 + εi + δi (4.3)

where Yi is the output at batch i, A is the process gain. We assume that the

process gain, A, is constant and can be obtained from off-line DOE data. The

control input (recipe) , Xi, at the ith batch is obtained from the past errors upto

the (i− 1)th batch. The deviation of the output from the desired value is assumed

to be caused by process noise and equipment-related drift, such as wear and tear

of the pad. The process noise, εi, is assumed to be normally distributed white

noise. The parameters δi and Ci−1 in the above equation represent the drift and

the estimate of the intercept, respectively.



Chapter 4. Run to run control in CMP process 48

The EWMA controller only adapts the offset term Ci based on the exponen-

tial smoothing of the previous estimates of the offset. The intercept is updated

recursively by a filter of the form:

Ci = ω(Yi − AXi) + (1− ω)Ci−1 (4.4)

where ω is the exponential weighting factor or tuning parameter of the filter, which

takes a value between 0 and 1 based on the desired properties. Small values of ω are

appropriate for systems with small deterministic drifts and relatively larger process

noise. On the other hand, highly correlated output errors are better compensated

for using higher values of the weighting factors.

The control recipe for EWMA controller is a plant inverse of the form:

Xi+1 =
T − Ci

A
(4.5)

where T is the target of the control process. Extension to MIMO systems may

require optimization to find the constrained least-squared solutions to the control

law.

From an advance process control (APC) point of view, the most interesting

theoretical result is the ability to interpret the EWMA as an integral controller

with a measurement delay of one run. It has been show (Sachs et al., 1995) that

for a pure gain system,the resulting control law can be written as:

Xi = −ω

A

i−1∑
i=1

(Yi − T ) + X1 (4.6)

Hence an EWMA controller can be regarded as an optimal PID controller for

a second-order dynamic process under the ARIMA (1,1) disturbance (Box and

Jenkins, 1994). Box and Jenkins also show that an EWMA-based controller is

a minimum mean square error (MMSE) controller when the underlying process
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disturbance follows the ARIMA (1,1) process.

4.3.2 Predictor corrector controller

Predictor Corrector Control (PCC), is an extension of the standard EWMA scheme

(Bulter and Stefani, 1994). The controller, shown in Fig 4.5, includes a prediction

filter in addition to the smoothing filter of EWMA. Unlike EWMA controller which

assumes locally constant value for the intercept, this control law predicts the future

changes in the value of the intercept.

Figure 4.5. Block diagram of PCC controller

The equations describing the two filters of PCC are given below:

Ci = ω1(Yi − AXi) + (1− ω1)Ci−1

Pi = ω2(Yi − AXi − Ci−1) + (1− ω2)Pi−1 (4.7)

where ω1, ω2 are the weights for the first and second EWMA equations, respec-
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tively, and Pi is used to compensate for the error incurred by Ci. In other words,

Pi is the drift speed, which is used to compensate for the drifting process. Ci+Pi is

then used to estimate the offset at run i+1 and the process recipe at i+1 becomes

Xi+1 =
T − (Ci + Pi)

A
(4.8)

This modification of the EWMA controller makes it possible to compensate for

the lag in target tracking when a process in undergoing a drift. With appropriate

choice of ω1, ω2, PCC controller can remove the drift completely from the process

(Bulter and Stefani, 1994). However, tuning the second filter is not as intuitive as

a single EWMA filter.

Similarly, from the APC standpoint, the estimate for Ci + Pi in the run i+1

can be rewritten as (Chen and Guo, 2001):

Ci + Pi = ωI

i∑
j=1

ej + ωII

i∑
j=1

j∑

k=1

ek + C0 + (ω1i + 1)P0 (4.9)

where ek = Yk − T ,ωI = ω1 + ω2 − ω1ω2 ,ωII = ω1ω2. This is equivalently an

Integral-double-Integral(I-II)controller. In this I-II controller, the process recipe

is proportional to the summation of the output errors and to the summation of

summations of the output errors. This controller can be shown to be an MMSE

controller for the processes subject to ARIMA (2,2) disturbance (Box and Jenkins,

1994).

4.3.3 OAQC controller

The Optimizing Adaptive Quality Controller (OAQC) is designed to seek and

maintain optimum operating conditions for a MIMO nonlinear quadratic process

(Castillo and Yeh, 198). It consists of two elements:

1) An online recursive least squares estimator for identification of controller
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parameters.

2) A Run to Run controller for control regulation.

Figure 4.6 shows the control diagram of OAQC controller.

Figure 4.6. Block diagram of OAQC controller

In OAQC, second-order MIMO Hammerstein transfer function of the model for

one step ahead forecast is of the following form

Ŷi = LYi−1 + Mi + NX (4.10)

where N is process gain matrix, M is the constant drift speed matrix.

A two-step process is used to update the control recipe at the following run.

First, the model parameters L, M , and N are updated using recursive least square

estimation algorithm. Defining θi = [L N M ]T and φi = [Yi−1 Xi i]T such that

Ŷi+1 = θT
i ∗ φi. We can estimate the parameters for output at run j by using the

formulae shown below (Chamness et al., 2001).
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The optimal controller that minimizes the objective function φ = ‖T − ŷi‖2
W +

‖Xi −Xi−1‖2
τ is given by the following 4.12:

Xi = (NT WN + τ)−1(NT W (T −Mi− LYi−1) + τXi−1) (4.12)

where τ and W are weighting matrices in the objective function.

The OAQC controller provides the optimum estimation of the non-linear regres-

sion model such that the best control action is achieved. Once optimal operating

conditions is reached, the OAQC maintains the process under control running at

that conditions. Hence the OAQC acts both as an “optimizer” and as a “con-

troller”. Moreover, the OAQC accounts for process nonlinearity because of recur-

sive parameter estimation, and the initialization of the control model need not be

very accurate.

4.3.4 MPC controller

It has also been proposed (Mullins et al., 1997) that run-to-run control be imple-

mented using linear model predictive control (Muske and Rawlings, 1993). The

LMPC run-to-run controller uses a traditional state-space model for the process.
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However, instead of time as the independent variable of the state-space model,

batch number is the independent variable. A series of batches is equivalent to the

time samples of a continuous process. By modelling a series of batches,dynamic

behavior can be incorporated into the model. Now disturbance are modelled as

dynamic behavior of the system, instead of unknown disturbances. Like the PCC,

this allows offset free target tracking if there is no model mismatch. There are

several advantages of the MPC formulation that the authors cite as motivating

factors of their proposal. These include direct extension to higher order dynam-

ics, MIMO systems, system with time-delay, and systems with input and output

constraints. Also, the tuning objectives of the MPC algorithm allows weighting

of inputs, outputs, and input rates of change for optimal specification of closed

loop performance. The authors illustrated the use of MPC in simulation of CMP

process.

Although model predictive control has traditionally been applied for real-time

control of continuous processes, it can be easily be applied to the run-to-run control

problem with- out major modification (Campbell and Toprac, 2001). For a discrete

parts manufacturing process, the in- dependent variable in the state-space model

becomes run number, rather than time. This algorithm uses a kalman filter to

determine the drift of the process and the process model is used to predict the

future behavior of the system (Campbell and Toprac, 2001) (Campbell, 1999) .

yi = Dui + di

di+1 = di + αi

(4.13)

In standard state-space form, we have,

xi+1 = Axi + wi

yi = Cxi + Dui
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where,

A =




I I

0 I


 , C = [I 0] , xi =




di

αi




and wi is normally distributed noise in the process states. Kalman filter gain is

then computed and states are estimated by the following equation 4.14

x̂i+1 = Ax̂i + J(yi − ŷi)

ŷi = Cx̂i + Dui (4.14)

The unconstrained solution for model predictive control (MPC) algorithm is given

by

ui = DT (DDT )−1(T − Cx̂i −Dui−1) + ui−1 (4.15)

4.4 Performance analysis

Performances of the three control algorithms are compared through simulation

using the benchmark process model (plant) described by (Ning et al., 1996):

y[n] = C + f(u[n]) + εn + δn (4.16)

where δn is a linear drift with constant drift speed δ = [−17 1.5]
′

and εn is a

normally distributed white noise with mean zero and covariance

Λ =




665.64 0

0 5.29


 (4.17)

f(u[n]) is a full second-order polynomial function of the inputs with the follow-

ing form:
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f(u[n]) =
3∑

i=0

3∑
j=0

β(i, j)u(i)u(j) (4.18)

where

β =




1386.5 381.02 −112.19 3778.8 −21.301 8.7159 24.953

1520.8 2365.6 2923.5 281.66 −3.9419 −1.0754 1.406

37.082 −17.642 −11.974 −164.99 28.150 249.17 0.025067

0.33797 −72.274 −94.222 −26.175 −13.505 36.691 32.929




The simulation model for the EWMA and PCC controllers have the form given

in Equation 4.3, and with the outputs: Removal Rate and Within Wafer Non-

uniformity. We used

A =




5.018 −0.665 16.34 0.845

13.67 19.95 27.52 5.25


 C =



−138.21

−627.32


 (4.19)

The target removal rate (T) and the target Non-uniformity are assumed to

be 1800 and 300, respectively. Initial non-uniformity is set to 150. Simulation

of the process is done using the three control schemes. The EWMA controller is

simulated with ω = 0.6 and the PCC with ω1 = 0.6 and ω2 = 0.3. Controlled

response (Removal rate and Non-uniformity) is shown in figure 4.7 and figure 4.8.

The results obtained with the three control schemes are compared quantita-

tively by calculating the mean squared error (MSE) between the response and the

target for each run.

It is evident from Fig 4.7 that all three algorithms provide good control of the

simulated CMP process (with linear drift and normally distributed white noise).

Process drift is well compensated for keeping the removal rate near the target value.

The best result is obtained for both removal rate and non-uniformity using PCC.
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Figure 4.7. Removal rate comparison of three R2R control algorithms

Table 4.2. Comparison of results using PCC, EWMA and OAQC

MSE Removal Rate Non-Uniformity
PCC 2353 16
EWMA 2467 18
OAQC 2868 19

The mean square error for both removal rate and non-uniformity is summarized in

the following table.

The weighting factors used in the PCC algorithm are fixed parameters. How-

ever, the drift can be removed completely from the process only with the appropri-

ate choice of these factors. T. Smith used a self-tuning EWMA controller with the

help of artifical neural network (ANN) function approximation which dynamically

updates the controller parameters (Smith and Boning, 1996). Such strategy needs

significantly large amount of training data to find out the functional mapping be-

tween the disturbance state of the process and the corresponding weighting factors
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Figure 4.8. Non-uniformity comparison of three R2R control algorithms

of EWMA. Poor training of the ANN may cause fluctuations in the weighting

factors, resulting in additive noise and poor tracking of drift.

4.5 Conclusions

In this chapter, process model is first obtained via DOE and RSM. Then different

run-to-run controllers which have a similar structure coupled with a filter are com-

pared and further simulated to evaluate their performance in CMP process control.

Of these controllers, simple EWMA and PCC are the most used in semiconductor

manufacturing while the optimum value of the weights of their algorithms is always

difficult to select. A solution for automatically tuning the weights of the EWMA

and PCC is developed in the next chapter.
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Self-tuning PCC controller

5.1 Introduction

Proper choice of controller parameters is critical to the performance of the system.

Usually process engineers tune the controller according to the disturbance state

(magnitude of drift and random noise), this should be a very tiring work.Additi -

onally, in PCC controller, there exist two weighting factors. Two tuning parameters

allow more flexibility in tuning than EWMA. However, tuning the second filter is

not as intuitive as a single EWMA controller. Therefore the ability to dynamically

update the double EWMA filter weighting factors is important and essential for

maximum controller performance.

To properly select the weighting factors in PCC controller, first let us see how

one might choose a value for ω in single EWMA filter situation. It is important

to consider first how ω affects the control output. A high value of ω increases the

impact of the current model error on the control action. Hence a high value of ω

has a fast dynamic response. On the other hand, if there is noise in the process,

a high value of ω would also cause control actions to increase the variance to the

output. In other words, it increases the process noise. On the contrary, small value

of ω smoothes the previous model errors and then has less sensitivity to the noise

58
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with relatively slow dynamic response and less control action over true disturbance.

Therefore it would seem that given a fixed amount of noise and expectations on

the disturbances, one could choose an optimal value for this parameter. However,

for any value of ω,results reveal that there is always a steady-state error (Boning et

al., 1995). This is caused by the fact that each time the EWMA updates the model

to compensate for the amount the process has drifted, the process drifts again in

the following run. Similar weighting consideration and simulation can be applied

to controllers that eliminate this offset, which motivate the use of PCC control.

However, there is still difference between the true offset and the predicted offset

due to the change of the noise and drift. Here we propose a minimum variance

controller to realize the adaptive optimization.

5.2 Adaptive filter theory

The performance of the EWMA controller and PCC controller depends heavily

on the proper selection of the weighting factors or forecasting parameters. In this

chapter, a methodology for self tuning the two forecasting parameters by using

variable step size least mean square estimation in PCC controller is developed and

discussed in full detail.

5.2.1 Introduction

Clearly, depending upon the time required to meet the final target of the adaption

process, which we call convergence time, and the complexity/resources that are

available to carry out the adaption, we can have a variety of adaption algorithms

and filter structures. The term filter is commonly used to refer to any devices or sys-

tem that takes a mixture of particles/elements from its input and process them ac-

cording to some specific rules to generate a corresponding set of particles/elements

as its output. In the context of signals and systems,particles/elements are the fre-



Chapter 5. Self-tuning PCC controller 60

quency components of the underlying signals and, traditionally, filters are used to

retain all the frequency components that belong to a particle band of frequencies,

while rejecting the rest of them, as much as possible. Filters may be either linear

or non-linear. We only consider linear filters in discrete time signals. Thus, all

the signals will be represented by sequences, such as x(n). Figure 5.1 depicts a

general schematic diagram of a filter emphasizing the purpose for which it is used

in different problems addressed/discussed in this book. In particular, the filter is

Figure 5.1. Schematic diagram of a little emphasizing its role in reshaping the
input signal to match the desired signal

used reshape certain input signals such a way that its output is a good estimate of

the given desired signal. The process of selecting the filter parameters (coefficients)

so as to achieve the best match between the desired signal and the filter output

is often done by optimizing an appropriate defined performance function. The

performance function can be defined in a statistical or deterministic framework.

In the statistical approach, the most commonly used performance function is the

mean-square value of the error signal. For stationery input and desired signals,

minimizing this mean square error results is the well-known Wiener filter, which is

said to be optimum in the mean square sense. In the deterministic approach, the

usual choice of performance function is a weighted sum of the squared error signal.

Minimizing this function results in a filter which is optimum for the given set of

data.

As mentioned in the above, the filter required for estimating the given signal
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can be designed using either the stochastic or deterministic formulations. In the

deterministic formulation, the filter design requires the computation of certain

average quantities using the given set of data that the filter should process. On the

other hand, the design of Wiener filter requires a priori knowledge of the statistics

of the underlying signals and a large number of realizations of the underlying signal

sequence which is not practical in the reality. So we use adaptive filters to solve this

problem. The most commonly used structure in the implementation of adaptive

filters is the transversal structure, depicted in Figure 5.2. Here, the adaptive filter

Figure 5.2. Adaptive transversal filter

has a single input, x(n), and an output, y(n). The sequence d(n) is the desired

signal. The output, y(n), is generated as linear combination of the delayed samples

of the input sequence, x(n), according to the equation

y(n) =
N−1∑
i=0

wi(n)x(n− i) (5.1)

where the wi(n) are the filter tap weights (coefficients) and N is the filter design.
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We refer to the input samples, x(n-i), for i=0, 1, ..., N-1, as the filter tap inputs.

The tap weights, wi(n)s, which may vary in time, are controlled by the adaption

algorithm.

According to the Wiener filter theory, which comes from the stochastic frame-

work, the optimum coefficients of a linear filter are obtained by minimizing of its

mean-square error (MSE). As already noted, the minimization of MSE requires

certain statistics obtained through ensemble averaging,which may not be possi-

ble in practical applications. To come up with simple recursive algorithms, very

rough estimates of the required statistics are used. In fact, the celebrated least-

mean-square (LMS) algorithm, which is the most basic and widely used algorithm

in various adaptive filtering applications. It turns out that this very rough esti-

mate of the MSE, when used with a small step-size parameter in searching for the

optimum coefficients of the Wiener filter, leads to a very simple and yet reliable

adaptive algorithm. The main disadvantage of the LMS algorithm is that its con-

vergence behavior is highly dependent on the power spectral density of the filter

input. When the filter input is white, i.e. its power spectrum is flat across the

whole range of frequencies, the LMS algorithm converge fast. However, when cer-

tain frequency bands are not well excited, some slow modes of convergence appear,

resulting in very slow convergence compared with the case of white input. Another

problem is step-size parameter. A large step-size parameter may be required to

minimize the transient time of the LMS algorithm. On the other hand, to achieve

a small misadjustment a small step-size parameter has to be adopted. In next

section, the variable step size LMS (VSLMS) algorithm which is introduced in this

section is an effective solution to this problem (Boroujeny, 1998).
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Table 5.1. Summary of the LMS algorithm

Input: Tap-weight vector,w(n),
Input vector,x(n),
and desired output, d(n)

Output: Filter output,y(n),
Tap-weight vector update,w(n+1).

1. Filtering:
y(n) = wT (n)x(n)

2. Error estimation:
e(n) = d(n)− y(n)

3. Tap-weight vector adaptation:
w(n + 1) = w(n) + 2µe(n)x(n)

5.2.2 Variable step-size LMS algorithm

Before we introduced the Variable step size LMS Algorithm, let us review roughly

what the LMS is. The LMS algorithm was first proposed by Widrow and Hoff

in 1960 and is the most widely used adaptive filtering algorithm, which can be

attributed to its simplicity and robustness to signal statistics. Table 5.1 summa-

rizes the LMS algorithm. The major problem of the LMS recursion is its slow

convergence when the underlying input process is highly colored.

We can also notice that the step-size parameter, µ, plays a significant role

in controlling the performance of the LMS algorithm. There are conflicting re-

quirements between the fast convergence speed and a small mis-adjustment, so a

compromised solution has to be adopted.

The VSLMS algorithm works on the basis of a simple heuristic that comes from

the mechanism of the LMS algorithm. Each tap of the adaptive filter is given a

separate time-varying step-size parameter and the LMS recursion is written as in
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equation 5.2

wi(n + 1) = wi(n) + 2µi(n)e(n)x(n− i), for1mmi = 0, 1, ..., N − 1, (5.2)

where wi(n) is the ith element of the tap weight vector w(n) and µi(n) is its

associated step-size parameter at iteration N. The adjustment of the step-size

parameter µi(n) is done as follows. The corresponding stochastic gradient term

gi(n) = e(n)x(n − i) is monitored over successive iterations of the algorithm and

µi(n) is increased if the latter term consistently shows a positive or negative direc-

tion. As the weights converge to their optimum values, the change of the signs is

detected and the step size parameters are gradually reduced to some minimum val-

ues. To ensure that the step-size parameters do not become too large or too small,

upper and lower limits should be specified for each step-size parameter. Following

the above argument, the VSLMS algorithm step-size parameters, the µi(n)s, may

be adjusted using the following recursion:

µi(n) = µi(n− 1) + ρsign[gi(n)]sign[gi(n− 1)] (5.3)

where ρ is a small positive step-size parameter. This results in the following alter-

native step-size parameter update equation:

µi(n) = µi(n− 1) + ρgi(n)gi(n− 1) (5.4)

The derivation to determine the range of the step-size parameters that ensure the

stability of the VSLMS algorithm is very difficult, because of the time-variation

of the step-size parameters. Here, we adopt a simple approach by assuming that

the step-size parameters vary slowly so that for the stability analysis they may

be assumes fixed and use the analogy between the resulting VSLMS algorithm

equations and the conventional LMS algorithm to reach a result which has been
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found to be reasonable. The set of update equations 5.2 may be written in the

vector form as

w(n + 1) = w(n) + 2µ(n)e(n)x(n) (5.5)

where µ(n) is a diagonal matrix consisting of the step-size parameters µ0(n), µ1(n),

..., µN−1(n). Equation 5.5 may further be rearranged as

v(n + 1) = (I− 2µ(n)x(n)xT)v(n) + 2µ(n)e0(n)x(n) (5.6)

where v(n) = w(n) − w0 is the weight-error vector. Now we may argue that to

ensure the stability of the VSLMS algorithm, the scalar step-size parameter µ

should be replaced by the diagonal matrix µ(n). This leads to the inequality

tr[µ(n)R] <
1

3
(5.7)

as a sufficient condition which assures the stability of the VSLMS algorithm. Al-

though the inequality 5.7 may be used to impose some dynamic bounds on the

step-size parameters µi(n) as the adaptation of the filter proceeds, this leads to a

rather complicated process. Instead, in practice we usually prefer to limit all µi(n)s

to the same maximum value, say µmax. The minimum bound that may be imposed

on the variable step-size parameter, the µi(n)s, can be as low as zero. However,

in actual practice a positive bound is usually used so that the adaptation process

will be on all the time and possible variations in the adaptive filter optimum tap

weights can always be tracked. Here, we use the notation µmin to refer this lower

bound. Table 5.2 summarizes an implementation of the VSLMS algorithm.
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Table 5.2. Summary of an implementation of variable step-size LMS algorithm
Input: Tap-weight vector, w(n),

Input vector, x(n),
Gradient terms g0(n− 1), g1(n− 1), ..., gN−1(n− 1) ,
Step-size parameters, µ0(n− 1), µ1(n− 1), ..., µN−1(n− 1)
and desired output, d(n)

. Output: Filter output, y(n),
Tap-weight vector update, w(n+1),
Gradient terms g0(n), g1(n), ..., gN−1(n),
and updated step-size parameters, µ0(n), µ1(n), ..., µN−1(n)

1. Filtering:
y(n) = wT (n)x(n)

2. Error estimation:
e(n) = d(n)− y(n)

3. Tap-weight vector adaptation:
For i=0,1,...,N-1

gi(n) = e(n)x(n− i)
µi(n) = µi(n− 1) + ρsign[gi(n)]sign[gi(n− 1)]
ifµi(n) > µmax, µi(n) = µmax

ifµi(n) < µmin, µi(n) = µmin

wi(n + 1) = wi(n) + 2µi(n)gi(n)
end

5.3 Self-tuning PCC controller strategy

We use a recursive algorithm to optimize the weighting factors of a PCC controller.

The objective is to minimize the mean square error between the measured offset and

the estimated offset using the variable step size LMS algorithm. The algorithm

hinges on simple representation of the optimal double EWMA filter weighting

factors.

Let us consider the simple process model given in last chapter and the standard

PCC controller.

Ci = ω1(Yi − AXi) + (1− ω1)Ci−1

Pi = ω2(Yi − AXi − Ci−1) + (1− ω2)Pi−1
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Then the control recipe is,

Xi+1 =
T − (Ci + Pi)

A
(5.8)

Choice of the two weighting factors is not as intuitive as single EWMA controller.

We use an adaptive self-tuning algorithm to find the optimum values for the weight-

ing factors. The block diagram in figure 5.3 describes the architecture of the pro-

posed controller.

Figure 5.3. Block diagram of self-tuning PCC controller

We now derive the recursive algorithm. PCC controller equation can also be

re-structured as

Ci = Ci−1 + ω1(Yi − T + Pi−1) (5.9)

Pi = Pi−1 + ω2(Yi − T ) (5.10)

If Cm and Pm are the measured values for the intercept and drift speed, respec-

tively, then

Cm = Ci + e1 (5.11)

Pm = Pi + e2 (5.12)
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Equation 5.11 and 5.12 can be re-written as

Cm = Ci−1 + ω1(Yi − T + Pi−1) + e1

Cm − Ci−1 = ω1(Yi − T + Pi−1) + e1 (5.13)

and

Pm − Pi−1 = ω2(Yi − T ) + e2 (5.14)

Combining these two equations,we get

Cm − Ci−1 + Pm − Pi−1 = ω2(Yi − T ) + e2 + ω1(Yi − T + Pi−1) + e1 (5.15)

Writing these equations using vector notation,

d(i) = WX + e(i) (5.16)

where d(i) = Cm − Ci−1 + Pm − Pi−1,W=[ω2 ω1], X = [Yi − T Yi − T + Pi−1]
T .

Then the variable step size algorithm (Boroujeny, 1998) is used to minimize the

error e(i) = d(i)−WX as follows:

g(i) = e(i)(Yi − T ) (5.17)

µ(i) = µ(i− 1) + ρg(i)g(i− 1) (5.18)

ω1(i) = ω1(i)
−1 + 2µ(i)g(i)−1 (5.19)

ω2(i) = ω2(i)
−1 + 2µ(i)g(i)−1 (5.20)
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subject to the constraint

if ω1(i) > ω1max, ω1(i) = ω1max

if ω1(i) < ω1min, ω1(i) = ω1min (5.21)

if ω2(i) > ω2max, ω2(i) = ω2max

if ω2(i) < ω2min, ω2(i) = ω2min (5.22)

The algorithm can be explained as follows. The gradient g(i) in Equation 5.17

is monitored over successive iterations of the algorithm and µ(i) is increased if

the latter term consistently shows a positive or negative direction. This happens

when the adaptive filter has not yet converged. As the adaptive filter tap weights

converge to some vicinity of their optimum values, the average of the stochastic

gradient terms approaches zero and hence they change signs more frequently. This

is detected by the algorithm and the corresponding step size parameters are grad-

ually reduced to some minimum values. If the process and the environment change

and the algorithm begins to hunt for a new optimum point, then the gradient term

will indicate consistent (positive or negative) directions, resulting in an increase in

the corresponding step size parameters. To ensure that the weights do not go out

of bounds, they are restricted between a maximum and a minimum value. The al-

gorithm searches for the optimum value within these bounds. The feedback factor

µ, ρ should be selected carefully to ensure proper functioning of the algorithm.
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5.4 Simulation results

Performance of the self tuning control design is evaluated using simulation with

the benchmark process model given in (Chamness et al., 2001), (Ning et al., 1996),

which has been already employed in chapter III. The EWMA and PCC controllers

are used for comparison. All the three algorithms are simulated under the same

conditions: i.e. the same noise, drifting, disturbance, model and model error. The

output matrix consists of removal rate and non-uniformity. The process is buried in

normally distributed white noise εk and linear drift δk. The control recipe includes

four parameters (speed, down force, back pressure and pad profile). Mean Square

Error (MSE) is calculated and taken as the main metric for evaluation.

5.4.1 Linear process model

The process model (Equation 5.23) is used here as both the real process model and

the internal model of the controller.

Y k = θuT
k + C + εk + δk (5.23)

where δk is a linear drift with constant drift speed δ = [−17 1.5]
′

and εk is a

normally distributed white noise with mean zero and covariance

Λ =




665.64 0

0 5.29




and θ, the system gain and C, the intercept are given by the following values

θ =




50.18 −6.65 163.4 8.45

13.67 19.95 27.52 5.25


 , C =



−1382.60

−627.32


 .

The simulation results for the self-tuning PCC (SPCC) as compared with
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EWMA and PCC is shown in Figure 5.4.
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Figure 5.4. Comparison of MSE between the controllers for a linear perfect model
under drift

From Table 5.3, it can be seen that the compensation effect of SPCC is much

better than EWMA and PCC as measured by the MSE for the simulated number

of runs. A 25% improvement in the within-wafer non-uniformity is achieved for

the SPCC when compared to the PCC (i.e. MSE decreases from 12Å to 9Å). The

weights of ω1 and ω2 are 0.6 and 0.2 respectively.

But when there is some model error, which is common in real applications,

the SPCC has faster convergence characteristic as shown in Figure 5.5, where the

process model was taken as 80% of each parameters of the real process. SPCC is

shown to track the target much faster than EWMA and PCC under this circum-

stance. Again, the MSE has decreased from 2266Å/min to 1967Å/min and 13Å to

11Å for the removal rate and within-wafer non-uniformity respectively between the

PCC and SPCC controllers. The weights of ω1 and ω2 are 0.6 and 0.3 respectively.
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MSE Perfect model Imperfect
model

Under impulse
disturbance

Nonlinear
model

1RR 2NU RR NU RR NU RR NU
EWMA 2405 14 2357 18 13760 1564 2365 14

PCC 2266 12 2266 13 10946 1571 2197 12
SPCC 2021 9 1967 11 8760 1492 1985 9

1RR : Removal rate (Å/min)
2NU : Within-wafer Non-uniformity (Å)

Table 5.3. Comparison between EWMA, PCC and SPCC for CMP model under
different conditions

Simulations are also performed for the case when there is a large impulse dis-

turbance during the operation as shown in Figure 5.6.

This type of disturbance usually occurs when the pad is changed. The simula-

tion result shows that PCC and SPCC is better than EWMA because EWMA is

suitable only for process with slowly varying drifts. It is hard for it to compensate

for large variance in several runs. The impulse disturbance in the simulation was

experimented by changing the model parameters of the real process. The resulted

shifting value equals to the target value plus 310 (Deng et al., 1999).

In Figures 5.7 and 5.8, the variation of the weighting factors in the SPCC and

SEWMA is shown. In order to compare the variation of weighting factors in SPCC

and SEWMA controllers, we selected the same initial ω1 value. Figure 5.7 shows

that the two weighting factors in the SPCC controller decreased to a steady-state

value. In the case of SEWMA, the weighting factor has increased, which would

induce additional process noise.
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Figure 5.5. Comparison of MSE between the controllers for a imperfect model
under drift
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Figure 5.6. Comparison of MSE between the controllers for a impulse disturbance
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Figure 5.7. Weighting factors variation in SPCC controller
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5.4.2 Nonlinear process model

Simulation was done by assuming that the real process is non-linear and assuming

a linear model for control purposes. The nonlinear model that is used is benchmark

process model as given in (Chamness et al., 2001), (Ning et al., 1996). The real

process model is given as

Yk = C + f(Xk) + εk + δk

where δk is a linear drift with constant drift speed δ = [−17 1.5]
′

and εk is a

normally distributed white noise with mean zero and covariance

Λ =




665.64 0

0 5.29




and f(uk) is a full second-order polynomial function of the inputs with the following

form:

f(uk) =
3∑

i=0

3∑
j=0

βi,juiuj

where

β =




1386.5 381.02 −112.19 3778.8 −21.301 8.7158 24.953

1520.8 2365.6 2923.5 281.66 −3.9419 −1.0754 1.406

37.082 −17.642 −11.974 −164.99 28.150 249.17 0.025067

0.33797 −72.274 −94.222 −26.175 −13.505 36.691 32.929




The simulation results of the control effect of the algorithms are shown in Figure

5.9.

From Table 5.3, it can be inferred that SPCC provides a better performance

even though the process is non-linear. We see an improvement in the MSE of 10%
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Figure 5.9. Comparison of MSE between the controllers for a non-linear model

in removal rate and 25% in within-wafer non-uniformity between the SPCC and

PCC controllers.

5.5 Conclusions

A scheme for adaptively tuning the weights of the PCC controller is proposed in

this chapter. This allows for automatically adjusting the forecasting parameters in

the face of changing process noise and disturbances. Simulation results depicts an

order of magnitude improvement in terms of the removal rate and non-uniformity

when compared to conventional R2R controllers.



Chapter 6

Conclusions

6.1 Findings and conclusions

Lithography is the key technology in semiconductor manufacturing, because it

is used repeatedly in a process sequence that depends on the device design. It

determines the device critical dimensions, which affect not only the device’s qual-

ity but also its product amount and manufacturing cost.To meet future technical

challenges in microelectronics manufacturing especially in lithography process, it

requires the Advanced Process Control (APC), namely a set of automated method-

ologies to achieve desired process goals on operating individual process steps. It is

commonly considered to include 4 components named fault detection, fault classifi-

cation, fault prognosis and process control. This paper reviews APC methodology

in semiconductor processing, and covers the key unit operations of lithography

and chemical-mechanical planarization. In this thesis, we mainly discuss about

the wafer baking process in the lithography semiconductor manufacturing process

and Chemical Mechanical Polishing (CMP) process which will affect the Depth

of Focus (DOF). To improve the DOF, both the thickness variation issue in the

baking process and Within-Wafer Non-Uniformity (WIWNU) in the CMP process

are discussed into details. To solve the thickness variation, in another term, wafer

77
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warpage, an automatic fault detection methodology is proposed and we have pre-

sented a physical model of the baking system and air-gap estimation will be done

through experiments in the future. As for the Within-Wafer Non-Uniformity in

the CMP process, a combination of Statistics Process Control (SPC) and APC,

namely Run-to-Run Control, is investigated. A proposed auto-tuning Run to Run

control strategy is further presented and discussed. CMP has been used in the

global planarization of oxide and tungsten process and now is being used to pro-

vide unprecedented planarity of inter-layer dielectric silicon dioxide, copper and in

lithography limited sub-micron trench isolation. It is projected that the observed

effectiveness of the CMP process will lead to the widespread use of this process at

various stages of integrated circuit (IC) fabrication, both in the front-end semicon-

ductor manufacturing process and back-end semiconductor manufacturing process

for a variety of high performance and application specific ICs, and for a variety of

materials.

Due to the lack of in-situ measurements of surface thickness and the process

environment buried in drift as well, run-to-run controller has proven higher poten-

tial to reduce the process variance in many discrete semiconductor manufacturing

process. In this thesis, we only investigate the use of various run-to-run control

scheme in CMP process, evaluating and analyzing their performance in a bench-

mark problem, chapter 3. All of these controller can largely reduce the within-wafer

non-uniformity. Of these controllers, simple EWMA and PCC are the most used

in semiconductor manufacturing while the optimum value of the weights of their

algorithms is always difficult to select. A solution for automatically tuning the

weights of the EWMA and PCC is developed in the chapter 4. We use a recursive

algorithm to optimize the weighting factors of a PCC controller. The objective is

to minimize the mean square error between the measured offset and the estimated

offset using the variable step size LMS algorithm. The algorithm hinges on simple

representation of the optimal double EWMA filter weighting factors. Simulation



Chapter 6. Conclusions 79

results depict an order of magnitude improvement in terms of the removal rate and

non-uniformity when compared to conventional R2R controllers. With the aid of

the automatic fault detection in thickness variation and reduced WIWNU via run-

to-run control in CMP process, the DOF requirement is met to the next-generation

device manufacturing.

6.2 Suggestion for future work

6.2.1 Multi zone wafer warpage estimation

In this thesis, we have presented a physical model of the baking system, further the

estimation of thickness variation will be done through experiments in the future.

Therefore the wafer need not further processed or inspected and this technique will

prove to be cost-effective and labour saving. It will be greatly helpful to improve

the CD control due to the temperature variation throughout the process.

6.2.2 Integral control of different performance metrics in

CMP process

Goals on various metrics such as removal rate, within-wafer non-uniformity, within-

die non-uniformity and wafer-to-wafer non-uniformity must be addressed in the

future for us to find an integral controller. This thesis has only taken the wafer

to wafer and within wafer non-uniformity problem in CMP. As the critical dimen-

sion reduces much in the future, we have to pay more attention to the within-die

non-uniformity. Variations in oxide thickness within a die can cause across die

capacitance variations that can lead to timing problems in the device. An inte-

grated controller for wafer to wafer, within wafer and within die variations is thus

increasingly becoming important.
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