
Chapter 1

Introduction to Group Weighing
Matrices

In this chapter, we shall first study the history of group weighing matrices fol-

lowed by some of their basic properties. Then we shall discuss an application of

group weighting matrices, namely, perfect ternary sequences and arrays. Lastly,

some results regarding character theory that will be used heavily throughout our

discussion will be introduced.

1.1 Weighing Matrices

Let M be a square matrix of order n. Let In be the n × n identity matrix. A

weighing matrix of order n and weight w, denoted by W (n,w), is a square matrix

M of order n with entries from {−1, 0, 1} such that

MMT = wIn

where MT is the transpose of M .

Weighing matrices can be regarded as a generalization of the well-known Hadamard

matrices H(w), where Hadamard matrices have only ±1 entries and n = w. Let

M = (mij) be a W (n,w). If mij = m1,j−i+1 for all i and j where j− i+1 is reduced

modulo n, then M is called a circulant weighing matrix.
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Example 1.1.1 Let M1 =

0 1 1
1 0 1
1 1 0

 and M2 =

−1 1 1
1 −1 1
1 1 −1

. Then it can

be checked that M =

(
M1 M2

M2 −M1

)
is a W (6, 5).

Example 1.1.2 Let M be the following matrix:

−1 0 0 1 0 1 1
1 −1 0 0 1 0 1
1 1 −1 0 0 1 0
0 1 1 −1 0 0 1
1 0 1 1 −1 0 0
0 1 0 1 1 −1 0
0 0 1 0 1 1 −1


.

It is a circulant weighing matrix with MMT = 4I7.

In 1960, Statisticians were the first to become interested in weighing matrices due

to its application in finding optimal solutions to the problem of weighing objects.

You may refer to [47] and [48] for further details and insights on why these matrices

have been termed weighing matrices. Later in 1975, Sloane and Harwitt in [50]

further indicated that weighing designs are also applicable to other problems of

measurements such as length, voltages, resistances, concentrations of chemical etc..

In section 1.3, we shall learn that certain types of weighing matrices, are equivalent

to perfect sequences and arrays that are used in the area of digital communication.

1.2 Group Weighing Matrices

Recently, a group ring approach has been introduced to study weighing matrices,

see [2, 5, 7, 29]. As a consequence, finite group representation theory has become

an important tool in studying weighing matrices under this new approach.

Let G be a finite group and let R = Z or C (in more general situations, R is a

commutative ring with 1). Let R[G] be the set of all the formal sums
∑

g∈G αgg

where αg ∈ R with the addition and multiplication defined as follows:
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For all
∑

g∈G αgg,
∑

g∈G βgg ∈ R[G],

∑
g∈G

αgg +
∑
g∈G

βgg =
∑
g∈G

(αg + βg)g,(∑
g∈G

αgg

)(∑
g∈G

βgg

)
=
∑
g∈G

(∑
h∈G

αgh−1βh

)
g.

Then R[G] is called a group ring. For any t ∈ Z and A =
∑

g∈G agg ∈ R[G],

we define A(t) =
∑

g∈G agg
t. Also, we use supp(A) = {g ∈ G | ag 6= 0} for

A =
∑

g∈G agg ∈ R[G] to denote the support of A.

Let S be a subset of G. Following the usual practice of algebraic design theory,

we identify S with the group ring element S =
∑

g∈S g in R[G]. Let Ḡ be a finite

group too. For any group homomorphism φ from G to Ḡ, we shall extend it to

a ring homomorphism from R[G] to R[Ḡ] such that for A =
∑

g∈G agg ∈ R[G],

φ(A) =
∑

g∈G agφ(g) ∈ R[Ḡ].

Lemma 1.2.1 Let G = {g1, g2, . . . , gn} be a group of order n. Let Φ : G −→

GL(n,C) be the regular representation of G such that for g ∈ G,Φ(g) = (Φ(g)ij)

where

Φ(g)ij =

{
1 if gig

−1
j = g,

0 otherwise.

Then Φ is a one to one function with Φ(g(−1)) = Φ(g)T .

The proof of the above lemma can be found in [22].

Proposition 1.2.2 Let G = {g1, g2, . . . , gn} be a group of order n. Suppose A =∑n
i=1 aigi ∈ Z[G] satisfies

(W1) A has 0, ±1 coefficients and

(W2) AA(−1) = w.

Then the group matrix M = (mij), where mij = ak if gigj
−1 = gk, is a W (n,w).
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Proof Let Φ : G −→ GL(n,C) be the regular representation of G such that for

g ∈ G,Φ(g) = (Φ(g)ij) where

Φ(g)ij =

{
1 if gig

−1
j = g,

0 otherwise.

Clearly M = Φ(A). Thus by Lemma 1.2.1,

MMT = Φ(A)Φ(A)T

= Φ(A)Φ(A(−1))

= Φ(AA(−1))

= Φ(w)

= wIn.

A weighing matrix constructed in Proposition 1.2.2 is called a group weighing

matrix and shall be denoted as W (G,w). If G = {g1, · · · , gn} is a cyclic group such

that gi = gi−1
2 , then M is a circulant weighing matrix. There are quite a number

of work recently done on circulant weighing matrices [5, 7, 8, 29, 30].

For the convenience of our study of group weighing matrices using the notation

of group rings, we say that A ∈ Z[G] is a W (G,w) if it satisfies conditions (W1)

and (W2) given in Proposition 1.2.2. In particular, if A has only ±1 coefficients,

M is a group Hadamard matrix and we say that A is an H(G,w). When G is

cyclic, then A is called a CW (n,w).

Remark 1.2.3 Let G be a finite group having H as a subgroup.

1. If A ∈ Z[H] is a W (H,w), then A is also a W (G,w).

2. If A is a W (G,w), then it is clear that both Ag and gA are also W (G,w) for

any g ∈ G.
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Let A ∈ Z[G] be a W (G,w). If the support of A is contained in a coset of a

proper subgroup H in G, we say that A is a trivial extension of a W (H,w). If A is

not a trivial extension of any W (H,w) for H � G, A is called a proper W (G,w).

Note that Hg = g(g−1Hg). Thus a right coset Hg of H in G is a left coset of

g−1Hg in G. So we only need to check left cosets.

Throughout this thesis, we shall use Cn to denote a cyclic group of order n.

Example 1.2.4 Let G = 〈a〉 ∼= C7. Let A = −1 + a + a2 + a4 ∈ Z[G]. Clearly

AA(−1) = 4. Thus, A is a proper CW (7, 4) with the weighing matrix as given in

Example 1.1.2

Example 1.2.5 Let G = 〈b〉 × 〈c〉 ∼= C3 × C6 where o(b) = 3 and o(c) = 6. Let

A = −1 + c + c2 + c4 + c5 + bc2 + b2c4 − b2c − bc5 ∈ Z[G]. It can be shown that

A is a proper W (G, 9) and with a suitable arrangement of the elements of G, the

corresponding weighing matrix has the form

Γ1 Γ2 Γ3

Γ3 Γ1 Γ2

Γ2 Γ3 Γ1

 where

Γ1 =


−1 1 1 0 1 1
1 −1 1 1 0 1
1 1 −1 1 1 0
0 1 1 −1 1 1
1 0 1 1 −1 1
1 1 0 1 1 −1

,Γ2 =


0 0 1 0 0 −1
−1 0 0 1 0 0
0 −1 0 0 1 0
0 0 −1 0 0 1
1 0 0 −1 0 0
0 1 0 0 −1 0

,Γ3 = Γ2
T .

Note that Γi are circulant matrices for all i.

Remark 1.2.6 In general, the group weighing matrix of abelian group G ∼= Cn ×

Cm can be arranged in the form of


Γ1 Γ2 · · · Γn

Γn Γ1 · · · Γn−1
...

...
...

Γ2 Γ3 · · · Γ1

 where Γi are m × m

circulant matrices for all i. This family of matrices is called block circulant matrix.

Particularly if n = 2, then the group weighing matrixes are called double circulant

matrix.
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We shall now prove an important basic property of group weighing matrices.

Proposition 1.2.7 Let G be a finite group of order n and A be a W (G,w). Then

w = ν2 for some positive integer ν. Furthermore, the number of +1 coefficients

of A is equal to (ν2 ± ν)/2 and the number of −1 coefficients of A is equal to

(ν2 ∓ ν)/2.

Proof Define

Ψ1 : G −→ C

as the principal representation of G, i.e. Ψ1(g) = 1 for every g ∈ G.

Let A =
∑

g∈G agg ∈ C[G]. Then

w = Ψ1(AA
(−1)) = Ψ1(A)Ψ1(A

(−1)) = Ψ1(A)2 = Ψ1(A
(−1))

2

implies that w = ν2 for some ±ν = Ψ1(A) ∈ Z.

Let A+ = {g ∈ G | ag = 1} and A− = {g ∈ G | ag = −1}. Then

±ν = Ψ1(A) = Ψ1(A
(−1)) =

∑
g∈G

ag = |A+| − |A−|. (1.1)

Comparing the coefficient of identity in AA(−1) = w. Obviously,

|A+|+ |A−| =
∑
g∈G

ag
2 = ν2. (1.2)

By solving the equations (1.1) and (1.2), we will get

|A+| = ν2 ± ν

2
and |A−| = ν2 ∓ ν

2
.

1.3 Perfect Ternary Sequences and Arrays

Let a = (a0, a1, · · · , an−1) be an 0,±1 sequence, then a is called a ternary sequence.

Let s be any nonnegative integer. The value

Auta(s) =
n−1∑
i=0

aiai+s mod n
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is called a periodic autocorrelation coefficient of a. If s 6≡ 0 mod n, then the

coefficient is called out of phase. In a lot of engineering applications, such as signal

processing, synchronizing and measuring distances by radar, sequences with small

out of phase autocorrelation coefficients (in absolute values) are required. The

ideal situation is that Auta(s) = 0 for all s 6≡ 0 mod n. Such a sequence is called a

perfect ternary sequence.

Example 1.3.1 Let a =
(
−1 1 1 1

)
and b =

(
−1 1 1 0 1 0 0

)
. Each

is a ternary sequence. Both a and b are perfect ternary sequences as

Auta(s) =
4−1∑
i=0

aiai+s mod 4 =

{
4 if s ≡ 0 mod 4,

0 if s 6≡ 0 mod 4.

and

Autb(s) =
7−1∑
i=0

aiai+s mod 7 =

{
4 if s ≡ 0 mod 7,

0 if s 6≡ 0 mod 7.

Let a =
(
a0 a1 · · · an

)
and A =

∑n−1
i=0 aig

i ∈ Z[G] where G = 〈g〉 is a cyclic

group of order n. Then it is clear that each Auta(s) is the coefficient of gs in AA(−1).

Hence the existence of a perfect ternary sequence is equivalent to the existence of

a circulant weighing matrix.

At first, engineers were looking for binary sequences (i.e. ±1 sequences) with

perfect periodic correlation. Unfortunately, the only example we know so far is

the sequence a in Example 1.3.1, see [52]. Later, they started to look for ternary

sequences. Perfect ternary sequences were known in the literature since 1967 [15].

In 70’s-80’s, a lot of example of perfect ternary sequences were constructed [23, 25,

32, 42].

Let Π = (π(j1,j2,··· ,jr))0≤ji<si,1≤i≤r be an r dimensional s1 × s2 × · · · × sr array. If

each entry of Π takes the value of 0 and ±1 only, then Π is called a ternary array.

Let u1, u2, · · · , ur be nonnegative integers. A periodic autocorrelation coefficient
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of Π is defined as

AutΠ(u1, u2, · · · , ur) =

s1−1∑
j1=0

· · ·
sr−1∑
jr=0

π(j1,j2,··· ,jr)π(j1+u1 mod s1,j2+u2 mod s2,··· ,jr+ur mod sr).

Let Υ = {(u1, u2, · · · , ur) | there exists an i such that ui 6≡ 0 mod si}. If AutΠ

(u1, u2, · · · , ur) = 0 for all u = (u1, u2, · · · , ur) ∈ Υ, then Π is called a perfect

ternary array denoted as PTA. The number of nonzero entries in Π are called the

energy of Π, denoted by e(Π).

Let A =
∑s1−1

j1=0 · · ·
∑sr−1

jr=0 π(j1,j2,··· ,jr)g1
j1 · · · gr

jr ∈ Z[G] where G = 〈g1〉 × 〈g2〉 ×

· · · 〈gr〉 is an abelian group isomorphic to Cs1 × Cs2 × · · · × Csr . Note that each

AutΠ(u1, u2, · · · , ur) is the coefficient of g1
u1 · · · gr

ur in AA(−1). The readers may

refer to [2] for the detail of the following result.

Proposition 1.3.2 The existence of an r dimensional s1× s2×· · ·× sr PTA with

e(Π) = w is equivalent to the existence of a W (G,w) where G is isomorphic to

Cs1 × Cs2 × · · · × Csr .

Note that the perfect ternary sequence b given in Example 1.3.1 is a one di-

mensional ternary array that is equivalent to the circulant weighing matrix given

in Example 1.2.4.

Example 1.3.3 Let Π =

−1 1 1 0 1 1
0 0 1 0 0 −1
0 −1 0 0 1 0

 be a 2 dimensional ternary

array that is equivalent to the group weighing matrix given in Example 1.2.5. Note

that Π is a perfect ternary sequence with

AutΠ(u1, u2) =
2∑

j1=0

5∑
j2=0

π(j1,j2)π(j1+u1 mod 3,j2+u2 mod 6)

{
9 if (u1, u2) /∈ Υ,

0 if (u1, u2) ∈ Υ.

Arrays with perfect periodic correlation function are also found to have ap-

plications in higher dimensional engineering problems [32, 33, 37]. Similar to

sequences, at first binary case is of special interest due to some technical and
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theoretical aspects. However perfect binary arrays only exist in small numbers

[12, 13, 14, 27, 34, 55]. In 1990, Antweiler, Bömer and Lüke started to consider

perfect arrays with 0,±1 entries and they found that the number of perfect arrays

increase if the arrays are allowed to have more degrees of freedom [1, 2]. For more

details on ternary arrays, the readers may refer to [2].

1.4 Character Theory

In this thesis, most of the discussions will be on abelian group. It is well known that

all irreducible representations of an abelian group are essentially the characters of

the group. Thus, characters will play an important role throughout our discussion.

In this section, we shall discuss in brief those results of character theory that will

be heavily used throughout our discussion.

Let G be an abelian group and G∗ be the set of all characters of G. Then G∗

is a group with respect to the multiplication defined as follows: for any χ1, χ2 ∈

G∗, χ1χ2 is a character of G that maps g to χ1(g)χ2(g) for all g ∈ G. The

principal character of G denoted by χ0 is the identity of G∗ that maps all g in G

to 1. Any character of G is called nonprincipal if it is not the principal character.

Furthermore, it can be shown that G ∼= G∗.

Theorem 1.4.1 (Fourier Inversion Formula) Let G be a finite abelian group

and G∗ be the group of all characters of G. Let A =
∑

g∈G αgg ∈ C[G]. Then

αg =
1

|G|
∑
χ∈G∗

χ(A)χ(g−1).

Corollary 1.4.2 Let G be an abelian group and A,B ∈ Z[G]. Then A = B if and

only if χ(A) = χ(B) for all χ ∈ G∗.

The proof of Theorem 1.4.1 can be found in [11]. Corollary 1.4.2 links between

the characters of an abelian group G and its group weighing matrices W (G,w).
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Proposition 1.4.3 Let G be a finite abelian group. For any A ∈ Z[G] with 0,±1

coefficients, A is a W (G,w) if and only if χ(A)χ(A) = w for all χ ∈ G∗.

The finite Fourier transform is a mapping from C[G] to C[G∗] such that it maps

A ∈ C[G] to

Â =
∑
χ∈G∗

χ(A)χ ∈ C[G∗].

Define τg(χ) = χ(g) ∀g ∈ G. It can be shown that {τg | g ∈ G} = G∗∗. By

identifying the element τg in G∗∗ with g ∈ G, we can regard G as the group of

characters of G∗. The following result on finite Fourier transform will be used

while we discuss symmetric group weighing matrices in chapter 5.

Proposition 1.4.4 Let G be a finite abelian group and A ∈ C[G]. Then
̂̂
A =

|G|A(−1).

Below are other important results on character theory that will be frequently

used throughout our discussion. We refer to [11] for the proof of the next lemma.

Lemma 1.4.5 (Ma’s Lemma) Let p be a prime, and let G be a finite abelian

group with a cyclic Sylow p-subgroup. If A ∈ Z[G] satisfies χ(A) ≡ 0 mod pt for

all characters χ of G, then there exist X1, X2 ∈ Z[G] such that

A = ptX1 + PX2

where P is the unique subgroup of G of order p.

For any positive integer v, we use ζv to denote the complex vth root of unity

e2π
√
−1/v.

Lemma 1.4.6 Let G be an abelian group and A ∈ Z[G] such that χ(A) are rational

for all χ ∈ G∗, then A(t) = A for all integers t relatively prime to |G|.
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Proof Let v be the exponent of G and let t be an integer relatively prime to v.

The mapping σ : ζv 7→ ζt
v is an element of Gal(Q(ζv)/Q). Let χ be any character

of G. We have χ(A(t)) = σ(χ(A)) = χ(A). So A(t) = A.

Let G be an abelian group of order n and let t be an integer with (t, n) = 1.

Let A ∈ Z[G]. We say that t is a multiplier of A if A(t) = hA for some h ∈ G.

Furthermore, we say that t is a multiplier that fixes A if A(t) = A. By [10], we

can always replace A with gA for some g ∈ G such that A(t) = A. Hence one may

assume that t fixes A if t is a multiplier of A.

Let H be a subgroup of G. A character χ of G is called principal on H if

χ(h) = 1 for all h ∈ H; otherwise χ is called nonprincipal on H. The set H⊥ =

{χ ∈ G∗ | χ is principal on H} is a subgroup of G∗ with |H⊥| = |G|/|H|.
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Chapter 2

Constructions of Group Weighing
Matrices

In this chapter, we shall mainly study the constructions of group weighing matrices.

Some of the constructions are new. Generally, the constructions will be divided

into five categories.

2.1 Some Inductive Constructions of Group Weigh-

ing Matrices

The first example is a well known construction given in [2].

Construction 2.1.1 Let H,G be finite groups. If there exists a W (H, k1) A and

a W (G, k2) B, then AB is a W (H ×G, k1k2).

Throughout the whole thesis, we shall denote (n1, n2) as the greatest common

divisor of n1 and n2 and ηH be the natural epimorphism from G to G/H where G

is a group having H as its subgroup.

The next construction is important as it provides most of the proper circulant

weighing matrices of even weight.

Construction 2.1.2 Let G = 〈α〉 × H be a group where o(α) = 2s. Suppose

there exist B ∈ Z[H] and C ∈ Z[G/〈α2s−1〉] such that B is a W (H,w) and C is
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a W (G/〈α2s−1〉, w). Let C1 ∈ Z[G] such that η〈α2s−1 〉(C1) = C. If there exists a

g ∈ G such that the supports of B, α2s−1
B, gC1 and gα2s−1

C1 are disjoint, then

X = h[(1− α2s−1

)B + g(1 + α2s−1

)C1],

for any h ∈ G, is a W (G, 4w).

For further details of the proof, please refer to [29].

Example 2.1.3 Let G = 〈α〉 × 〈β〉 ∼= C28 where o(α) = 4 and o(β) = 7. Choose

B = −1 +β+β2 +β4 which is the CW (7, 4) given in Example 1.2.4, g = α, h = 1

and C1 = α2βB. Clearly the supports of B, α2B, αC1 and α3C1 are disjoint. Thus

by Construction 2.1.2, X is a proper CW (28, 16) as B is proper and α ∈ supp(X).

Inductively, we can construct proper CW (22(r−1) · 7, 22r) for all r.

2.2 Constructions Using Difference Sets

By [42], we know that some of the earliest examples of cyclic group weighing

matrices are from difference sets. In fact in this section we shall show that a lot of

proper group weighing matrices can be constructed from difference sets. Before we

go deeper into the discussion, we need the following basic properties of difference

sets. For the proofs of the properties of difference sets, please refer to [11].

Let G be a finite group of order n. Let D ∈ Z[G], |D| = k and D has only

coefficients 0 and 1. Then D is an (n, k, λ)-difference set if and only if D satisfies

the group ring equation

DD(−1) = k − λ+ λG. (2.1)

Lemma 2.2.1 If D is an (n, k, λ)-difference set, then

k(k − 1) = λ(n− 1)
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Corollary 2.2.2 If D is an (n, k, λ)-difference set with 0 < k < n and k− λ ≤ λ,

then k > n
2
.

First, we have a well-known construction of group Hadamard matrices by using

difference sets.

Construction 2.2.3 Let D be a (4m2, 2m2−m, m2−m)-difference set in a group

G. Then A = D − (G−D) = 2D −G is a proper W (G, 4m2).

Remark 2.2.4 In Construction 2.2.3, A has only ±1 coefficients and hence A is

an H(G, 4m2).

Example 2.2.5 Let G = K×Z2
m1
×· · ·×Z2

mr
×Z4

p1
· · ·×Z4

ps
where K is an abelian

group of order 22d+2 and exponent at most 2d+2, d,m1, · · · ,mr are nonnegative

integers such that mi = 3ij for some nonnegative integer ij and p1, . . . , ps are odd

primes. By Theorem 12.15 in Chapter VI of [11], we know that difference sets

required by Construction 2.2.3 exist in G. Hence there exists a proper W (G, 4m2)

where m = 2d3i1+···+irp2
1 · · · p2

s.

Construction 2.2.6 Let G = 〈θ〉 ×G′ be a finite group where o(θ) = 2. Suppose

that G admits a (|G|, k, λ)-difference set X ∪ θY where X,Y ⊆ G′. Then X −Y is

a W (G′, k − λ).

Proof As the coefficient of each g inX and Y is either 0 or 1, X−Y has coefficients

0, 1 and -1 only. Note that by Equation (2.1),

(X + θY )(X + θY )(−1) = XX(−1) + Y Y (−1) + θY X(−1) + θXY (−1)

= k − λ+ λG′ + θλG′.

Thus, by comparing coefficients, we get

XX(−1) + Y Y (−1) = k − λ+ λG′ and Y X(−1) +XY (−1) = λG′.
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Thus, we get (X − Y )(X − Y )(−1) = k − λ and the result follows.

Theorem 2.2.7 In Construction 2.2.6, suppose G is abelian, k − λ > 1 and let

A = X − Y .

1. If (n, k, λ) 6= (4m2, 2m2 −m, m2 −m) for any even integer m, then A is a

proper W (G′, k − λ).

2. If (n, k, λ) = (4m2, 2m2 −m, m2 −m) for some even integer m, then either

A is a proper W (G′,m2) or an H(K,m2) for a subgroup K of G′ of index 2.

Proof Assume that A, constructed in Construction 2.2.6, is not a properW (G′, k−

λ). Then there exists a proper subgroup K in G′ such that

hD = S + θT + 〈θ〉U

for some h ∈ G′, S, T ⊂ K, U ⊂ G′ and S, T, U are pairwise disjoint. Since

A = h−1(S − T ) is a W (G′, k − λ),

|S|+ |T | = k − λ and |U | = 1

2
(k − |S| − |T |) =

λ

2
.

Without the loss of generality, we can choose K to be a maximal subgroup of

G′ and thus |K| = |G′|/p = n/(2p) for some prime divisor p of n/2. Note that

n = 2p|K| ≥ 2p(|S|+ |T |) = 2p(k − λ). Since

h(G\D) = T + θS + 〈θ〉(G\(S ∪ T ∪ U)),

we can always assume that k = |D| ≤ n/2 and hence k−λ > λ by Corollary 2.2.2.

Let U =
∑p−1

i=0 giWi where Wi ⊂ K and {g0 = 1, g1, . . . , gp−1} is a complete

set of coset representatives of K in G′. By comparing the sum of coefficients of

elements in G\(〈θ〉 ×K) in both sides of Equation (2.1), we have

4(|S|+ |T |)(|U | − |W0|) + 4

(
|U |2 −

p−1∑
i=0

|Wi|2
)

= λ

(
n− n

p

)
.
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This implies

λ2 + 2λ(k − λ)− 4

(
p−1∑
i=0

|Wi|2 + (k − λ)|W0|

)
= λ

(
n− n

p

)
.

Thus n/p > n− λ− 2(k− λ) = n− k− (k− λ). Since n ≥ 2p(k− λ) and k ≤ n/2,

we obtain n/p > n(p− 1)/(2p) and hence p = 2.

Now, let x = |S| + |T | + 2|W0| ≥ |S| + |T | = k − λ and y = 2|W1| ≤ 2(|W0| +

|W1|) = 2|U | = λ. Then

x+ y = k and 2xy = λ
(
n− n

2

)
=
λn

2

and hence x, y = (k ±
√
k2 − λn)/2 = (k ±

√
k − λ)/2 by Lemma 2.2.1. Since

x ≥ k − λ > λ ≥ y, we have

x =
k +

√
k − λ

2
.

By x ≥ k − λ and k2 = λn − λ + k, we obtain n ≤ 4(k − λ). However, we know

that n ≥ 2p(k − λ) = 4(k − λ). Hence n = 4(k − λ) and by a well-known result of

Menon [41], (n, k, λ) = (4m2, 2m2−m, m2−m) for some integer m. Note that for

this case, |supp(A)| = m2 = |K|. So A is an H(K,m2) and m must be even.

Example 2.2.8 Let D be a (qd+1(1 + qd+1−1
q−1

), qd( qd+1−1
q−1

), qd( qd−1
q−1

)) McFarland dif-

ference set [40] in G = E × K, where q is a prime power, E is an elementary

abelian group of order qd+1, and K is any group of order (1 + qd+1−1
q−1

).

If q is odd and d is even, then 1 + qd+1−1
q−1

is even and we can choose K such that

K = 〈θ〉 × K ′ where o(θ) = 2 and |K ′| = 1
2
(1 + qd+1−1

q−1
). Thus, by Construction

2.2.6, there exist proper W (E ×K ′, q2d).

If q = 2r with r ≥ 2, then E can be written as E = 〈θ〉×E ′, where θ is any nonzero

element of E. Thus, by Construction 2.2.6, there exist proper W (E ′ ×K, q2d).

If q = 2, then (n, k, λ) = (4m2, 2m2 −m,m2 −m), where m = 2d. For this case,

the group weighing matrices constructed by Construction 2.2.6 may not be proper.
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Example 2.2.9 Let D be a ( qd+1−1
q−1

, qd−1
q−1

, qd−1−1
q−1

) Singer difference set [49] in a

cyclic group G. Note that if q ≡ 1 mod 4 and d ≡ 1 mod 4, then 2|| qd+1−1
q−1

and by

Construction 2.2.6, there exist proper CW ( qd+1−1
2(q−1)

, qd−1).

Example 2.2.10 Let G′ = Z2 × Z2
m1

× · · · × Z2
mr

× Z4
p1
× · · · × Z4

ps
and G =

Z2 × G′ where m1, · · · ,mr are nonnegative integers such that mi = 3ij for some

nonnegative integer ij and p1, . . . , ps are odd primes. By Theorem 12.15 in Chapter

VI of [11], we know that (4m2, 2m2 −m, m2 −m)-difference sets exist in G with

m = 3i1+···+irp2
1 · · · p2

s. Since m is odd, by Construction 2.2.6, there exists proper

W (G′,m2).

2.3 Constructions Using Divisible Difference Sets

In this section, we shall give a construction of group weighing matrices from di-

visible difference sets. However, more attention will be given to relative difference

sets, which is a special type of divisible difference sets.

Let G be a finite group of order n and N be a subgroup of G with order

n′. Let D ∈ Z[G], |D| = k and D has only coefficients 0 and 1. Then D is

a ( n
n′
, n′, k, λ1, λ2)-divisible difference set if and only if D satisfies the group ring

equation

DD(−1) = k − λ1 + (λ1 − λ2)N + λ2G. (2.2)

If λ1 = 0, then D is a ( n
n′
, n′, k, λ2)-relative difference set. The following is a basic

property of relative difference sets. The details of the proof can be found in [19].

Proposition 2.3.1 Let D be a ( n
n′
, n′, k, λ)-relative difference set in G relative to

N . Then |D ∩Ng| ≤ 1 for all g ∈ G.
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The next result tells us that the existence of a relative difference set implies the

existence of a “series” of relative difference sets via projections. For further details,

refer to [19].

Proposition 2.3.2 Let D be a ( n
n′
, n′, k, λ)-relative difference set in G relative

to N . If U is a normal subgroup of G contained in N and ηU is the natural

epimorphism from G to G/U , then ηU(D) is a ( n
n′
, n′

u
, k, λu)-relative difference set

in G/U relative to N/U , where u = |U |.

Construction 2.3.3 Let G = 〈θ〉 × G′ be a finite group where o(θ) = 2. Let

N = 〈θ〉 ×N ′ be a subgroup of G where N ′ is a subgroup of G′. Suppose G admits

a (|G|/|N |, |N |, k, λ1, λ2)-divisible difference set X ∪ θY where X, Y ⊂ G′, then

X − Y is a W (G′, k − λ1).

Proof Clearly, the coefficients of X − Y are 0 , 1 and -1 only. Let X + θY be a

divisible difference set. Then by Equation (2.2), we get

(X + θY )(X + θY )(−1) = XX(−1) + Y Y (−1) + θY X(−1) + θXY (−1)

= k − λ1 + λ1N
′ − λ2N

′ + λ2G
′ + θ(λ1N

′ − λ2N
′ + λ2G

′)

By comparing coefficients, we get,

XX(−1) + Y Y (−1) = k − λ1 + λ1N
′ − λ2N

′ + λ2G
′, (2.3)

Y X(−1) +XY (−1) = λ1N
′ − λ2N

′ + λ2G
′. (2.4)

Hence, we get (X − Y )(X − Y )(−1) = k − λ1.

Corollary 2.3.4 In Construction 2.3.3, if X+θY is a relative difference set, then

X − Y is a W (G′, k).
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Theorem 2.3.5 In Construction 2.3.3, if X + θY is a relative difference set and

k > 1, then the W (G′, k) constructed is always proper.

Proof Since k > 1, λ2 6= 0. Then by Equation (2.3) and Equation (2.4), we have

〈X, Y 〉 = G′. Also by Proposition 2.3.1, we know that X ∩ Y = ∅. Hence X − Y

cannot be contained in a coset of a proper subgroup of G′.

Note that by Proposition 2.3.2, we can always get a proper W (G′, k) from Con-

struction 2.3.3, if there exists a ( n
n′
, n′, k, λ2)-relative difference sets G where n

n′
is

odd and 2‖n′. Below are some examples of this case.

Example 2.3.6 Let q be a power of prime such that q ≡ 3 mod 4 and d is odd.

Then 2‖q − 1. Let n′ = 2a such that n′ | q − 1. Thus, by [3], there exists a cyclic

relative difference set of parameters ( qd−1
q−1

, n′, qd−1, qd−2(q−1)
n′

). Thus by Construction

2.3.3, we have a proper CW ( (qd−1)n′

2(q−1)
, qd−1).

Example 2.3.7 Let q = 2r for some positive integer r and d is odd. Then 2‖2(q−

1) and qd−1
q−1

is odd. Let n′ = 2a such that a | q − 1. Thus, by Theorem 1.2 in [3],

there exists a cyclic relative difference set of parameters ( qd−1
q−1

, n′, qd−1, qd−2(q−1)
n′

).

Thus by Construction 2.3.3, we have a proper CW ( (qd−1)n′

2(q−1)
, qd−1) for all possible a.

The problem of finding relative difference sets with the parameters given in the

examples above are known as the Waterloo Problem. The details of this problem

can be found in [46].

Remark 2.3.8 The problem of determining whether X − Y is proper, if we use

divisible different sets with λ1 6= 0 in Construction 2.3.3, is still open. So we do

not go into the details for this case.
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2.4 Construction Using Hyperplane

The following Proposition is a generalization of Theorem 2.4 of [2].

Proposition 2.4.1 Let H be a subgroup contained in the center of a finite group

G. Let Di ∈ Z[H] with 0,±1 coefficients for i = 0, 1, · · · , r. If

1.
∑r

i=0DiD
(−1)
i = w, where w is an integer, and

2. DiD
(−1)
j = 0 for all i 6= j,

then A =
∑r

i=0 giDi is a W (G,w), where g1, . . . , gr are elements of G such that

for any pair of i, j ∈ {0, 1, . . . , r}, if supp(Di) ∩ supp(Dj) 6= ∅, then gi and gj are

contained in two different cosets of H.

Proof Since H is contained in the center of G, we have gDi = Dig for all g ∈ G

and i = 1, 2, . . . , r. So

AA(−1) =
r∑

i=0

r∑
j=0

giDiD
(−1)
j g−1

j

=
r∑

i=0

DiD
(−1)
i +

∑
i6=j

giDiD
(−1)
j g−1

j

= w

Obviously, the coefficients of A are 0,±1 and thus, A is a W (G,w).

Inspired by the construction of McFarland difference sets [40], we have a new

construction of group weighing matrices using Proposition 2.4.1. First, we need

the following lemma for checking whether a group weighing matrix is proper.

Lemma 2.4.2 Let G be an abelian group and S ⊂ G. Then S is contained in a

coset of a proper subgroup in G if and only if there exists a nonprincipal character

χ of G such that |χ(S)| = |S|.
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Proof If |χ(S)| = |S|, then S is contained in a coset of ker(χ). On the other

hand, if S is contained in a coset of a subgroup H of G, then |χ(S)| = |S| for all

characters χ that are principal on H.

Let q be a prime power. We also need some basic properties of vector spaces

over GF (q), the finite field of order q.

Let L be an (s + 1)-dimensional vector space over GF (q), where s ≥ 1. A s-

dimensional subspace of L is called a hyperplane of L. It can be shown that there

are totally r = qs+1−1
q−1

=
∑s

i=0 q
i hyperplanes in L. Let H0, H1, . . . , Hr−1 be all the

hyperplanes in L. Then

|Hi ∩Hj| =
|Hi||Hj|
|HiHj|

=

{
qs−1 if i 6= j,

qs if i = j.

Thus

HiHj =

{
qs−1L if i 6= j,

qsHi if i = j.
(2.5)

Also it can be proved that

r−1∑
i=0

Hi = q−1(r − 1)L+ qs (2.6)

For further details, please refer to [11].

Construction 2.4.3 Let q be a prime power and let L be an (s+ 1)-dimensional

vector space over GF (q) where s ≥ 1 and if q is odd, then s must be even. Let

H0, H1, . . . , Hr−1, r = 1 + q + · · ·+ qs, be all hyperplanes in L. Let G be any finite

group such that L, as an additive group, is contained in the center of G and let

g0, g1, . . . , g(r−1)/2 be elements of G. If s > 1, then each of g0, g1, . . . , g(r−1)/2 must

be contained in different cosets of L in G and hence |G/L| ≥ (r + 1)/2. Define

A = ±g0H0 +

(r−1)/2∑
i=1

gi(H2i −H2i−1).

Then A is a W (G, q2s).
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Proof Let D0 = H0 and Di = H2i − H2i−1 for i = 1, 2, · · · , r−1
2

. By Equation

(2.5), we have DiD
(−1)
j = 0 for all i 6= j. By Equation (2.6), we have

(r−1)/2∑
i=0

DiD
(−1)
i =

(r−1)/2∑
i=0

D2
i = qs

r−1∑
i=0

Hi − (r − 1)qs−1L = q2s.

Hence by Proposition 2.4.1, A is a W (G, q2s).

Theorem 2.4.4 In Construction 2.4.3, let ηL be the natural epimorphism from G

to G/L. If G is abelian and q > 2, then A is proper if and only if {ηL(g0), ηL(g1),

. . . , ηL(g(r−1)/2)} is not contained in any coset of any proper subgroup in G/L.

Proof Let S = supp(A). Then

S = g0H0 +

(r−1)/2∑
i=1

gi [H2i +H2i+1 − 2(H2i ∩H2i−1)]

and |S| = rqs − (r − 1)qs−1. Let χ be a nonprincipal character of G. Suppose χ is

nonprincipal on L. Since χ is principal on exactly one Hi,

|χ(S)| ≤ qs + (r − 1)qs−1 < |S|

if q > 2. Now assume χ is principal on L. Then χ = χ′ ◦ ηL for some character χ′

of G/L. Thus

χ(S) = qsχ(g0) + 2(qs − qs−1)
[
χ(g1) + · · ·+ χ(g(r−1)/2)

]
.

Thus, |χ(S)| = |S| if and only if χ′(ηL(g0)) = χ′(ηL(g1)) = · · · = χ′(ηL(g(r−1)/2)).

This is equivalent to {ηL(g0), ηL(g1), . . . , ηL(g(r−1)/2)} is contained in a coset of a

proper subgroup in G/L. Thus, the theorem follows by Lemma 2.4.2.

Example 2.4.5 In Construction 2.4.3, let ηL be the natural epimorphism from G

to G/L. Suppose q > 2 and G is abelian such that G/L = 〈θ1〉 × · · · × 〈θf〉 where

o(θj) = nj for some positive integer nj for all j and f ≤ (r − 1)/2. If we choose

J = {g0, g1, . . . , g(r−1)/2} such that 1, θ1, . . . , θf ∈ ηL(J), then by Theorem 2.4.4, A

is a proper W (G, q2s).
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2.5 Construction Using Finite Local Ring

We shall now give another construction of group weighing matrices using Propo-

sition 2.4.1. This time, we need to use a principal local ring (or a chain ring).

Let R be a finite local ring of characteristic a power of 2 with its maximal ideal I

generated by a prime element π. Note that R is a finite evaluation ring such that

every element in R can be written as πru for some unit u in R. The following are

some properties of R.

1. R/I ∼= GF (2d) for some integer d.

2. |Is−1| = 2d where s is the smallest positive integer such that Is = (πs) = 0.

3. if 2 = πtu1 and s = qt + s′, where u1 is a unit in R and 0 ≤ s′ < t, then

R ∼= Zds′

2q+1 × Zd(t−s′)
2q is an additive group.

For further details, please see [24, 39].

Define ϕ to be a mapping from R to R such that ϕ(πru) = πru−1 for all units

u in R and r ∈ {0, 1, . . . , s}.

Construction 2.5.1 Use the notation above. Let {S1, S2, . . . , S2d} be a partition

of R such that for any coset a+ Is−1 in R, |Si ∩ a+ Is−1| = 1 for all i. Define

Ei = {(a, b) ∈ R×R | ϕ(a)b ∈ Si}

for i = 1, 2, . . . , 2d−1. Let G be any finite group such that R × R, as an additive

group, is contained in the center of G and let g1, g2, . . . , g2d−1 be elements (not

necessarily distinct) of G. Then

A =
2d−1∑
i=1

gi(E2i−1 − E2i)

is a W (G, 22sd).
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Proof Clearly, A has only 0,±1 coefficients because {E1, E2, . . . , E2d} is a partition

of R×R. LetDi = E2i−1−E2i and χ be any character of the additive group of R×R.

By the results in [28], Di = D
(−1)
i for all i; χ(Di) = ±2sd for one i ∈ {1, 2, . . . , 2d−1};

and χ(Di) = 0 for all other i. Thus by Corollary 1.4.2, we have

2d−1∑
i=1

D2
i = 22sd and DiDj = 0

for i 6= j. Thus A =
∑2d−1

i=1 gi(E2i−1 − E2i) is a W (G, 22sd).

Below are two examples of local rings.

Example 2.5.2 Let R = Z8. Then I = (2), R/I ∼= F2 and I3 = (0) i.e., d = 1

and s = 3. As I2 = (4) = {4, 0}, S1 = {0, 1, 2, 3} and S2 = {4, 5, 6, 7} satisfy the

requirement of Construction 2.5.1. Note that

0 = 23 ·1 1 = 20 ·1 2 = 2·1 3 = 20 ·3 4 = 22 ·1 5 = 20 ·5 6 = 2·3 7 = 20 ·7,

and ϕ(i) = i for all i in R. Thus

E1 = {(0, 0), (0, 1), (0, 2), (0, 3), (0, 4), (0, 5), (0, 6), (0, 7), (1, 0), (2, 0), (3, 0), (4, 0),

(5, 0), (6, 0), (7, 0), (1, 1), (1, 2), (1, 3), (2, 1), (2, 4), (2, 5), (3, 1), (3, 3), (3, 6),

(4, 2), (4, 4), (4, 6), (5, 2), (5, 5), (5, 7), (6, 3), (6, 4), (6, 7), (7, 5), (7, 6), (7, 7)};

E2 = {(1, 4), (1, 5), (1, 6), (1, 7), (2, 2), (2, 3), (2, 6), (2, 7), (3, 2), (3, 4), (3, 5),

(3, 7), (4, 1), (4, 3), (4, 5), (4, 7), (5, 1), (5, 3), (5, 4), (5, 6), (6, 1), (6, 2),

(6, 5), (6, 6), (7, 1), (7, 2), (7, 3), (7, 4)}.

Example 2.5.3 Let R = Z4[ξ] = {0, 1, 2, 3, ξ, 2ξ, 3ξ, 1 + ξ, 1 + 2ξ, 1 + 3ξ, 2 + ξ,

2+2ξ, 2+3ξ, 3+ξ, 3+2ξ, 3+3ξ} where ξ2 = 3+ξ. Then I = (2ξ) = {0, 2, 2ξ, 2+2ξ},

R/I ∼= GF (22) and I2 = (0) i.e., d = 2 and s = 2. Then S1 = {0, 1, 1 + ξ, 2 + ξ},

S2 = {2, 3, 3+ξ, ξ}, S3 = {2ξ, 1+2ξ, 1+3ξ, 2+3ξ} and S4 = {2(1+ξ), 3+2ξ, 3(1+

ξ), 3ξ} satisfy the requirement of Construction 2.5.1. Note that ξ3 = 3 and
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a φ(a)

0 2ξ2 · 1 0
1 2ξ0 · 1 1
2 2ξ1 · 1 + 3ξ 2ξ1 · ξ = 2 + 2ξ
3 2ξ0 · 3 3
ξ 2ξ0 · ξ 1 + 3ξ
2ξ 2ξ1 · 1 2ξ
3ξ 2ξ0 · 3ξ 3 + ξ

1 + ξ 2ξ0 · 1 + ξ 2 + ξ
1 + 2ξ 2ξ0 · 1 + 2ξ 1 + 2ξ
1 + 3ξ 2ξ0 · 1 + 3ξ ξ
2 + ξ 2ξ0 · 2 + ξ 1 + ξ
2 + 2ξ 2ξ1 · ξ 2ξ1 · 1 + 3ξ = 2
2 + 3ξ 2ξ0 · 2 + 3ξ 3 + 3ξ
3 + ξ 2ξ0 · 3 + ξ 3ξ
3 + 2ξ 2ξ0 · 3 + 2ξ 3 + 2ξ
3 + 3ξ 2ξ0 · 3 + 3ξ 2 + 3ξ

We will not list out each Ei for i = 1, 2, 3, 4 as the size of R×R is quite large.

Theorem 2.5.4 In Construction 2.5.1, let ηR×R be the natural epimorphism from

G to G/(R×R). If G is abelian, then A is proper if and only if {ηR×R(g1), ηR×R(g2),

. . . , ηR×R(g2d−1)} is not contained in any coset of any proper subgroup in G/(R×R).

Proof Let S = supp(A). Then

S =
2d−1∑
i=1

gi(E2i−1 + E2i)

and |S| =
∑2d

i=1 |Ei| = |R × R| = 22sd. Let χ be any nonprincipal character of G.

Suppose χ is nonprincipal on R × R. By the results in [28], χ(Ei) = 2sd − 2(s−1)d

for one i ∈ {1, 2, . . . , 2d}; and χ(Ei) = −2(s−1)d for all other i. So

|χ(S)| ≤ 2sd − 2(s−1)d + (2d − 1)2(s−1)d < |S|.

Now assume χ is principal on R×R. Then χ = χ′ ◦ ηR×R for some character χ′ of

G/(R×R). Thus

χ(S) =
2d−1∑
i=1

χ(gi)(|E2i−1|+ |E2i|).
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Thus, |χ(S)| = |S| if and only if χ′(ηR×R(g1)) = χ′(ηR×R(g2)) = · · · = χ′(ηR×R(g2d−1)).

This is equivalent to {ηR×R(g1), ηR×R(g2), . . . , ηR×R(g2d−1)} is contained in a coset

of a proper subgroup in G/L. The theorem follows by Lemma 2.4.2.

Example 2.5.5 In Construction 2.5.1, let ηR×R be the natural epimorphism from

G to G/(R × R). Suppose G is abelian such that G/(R × R) = 〈θ1〉 × · · · × 〈θf〉

where o(θj) = nj for some positive integer nj for all j and f ≤ 2d−1 − 1. If we

choose J = {g1, g2, . . . , g2d−1} such that 1, θ1, . . . , θf ∈ ηR×R(J), then by Theorem

2.5.4, A is a proper W (G, q2sd).

26



Chapter 3

Some Results on Abelian Group
Weighing Matrices

In this chapter, we study mainly abelian group weighing matrices. First, we study

some structures of W (G, p2t) where p is an odd prime and G is an abelian group

having cyclic Sylow p-subgroup. Section 3.1 gives some results of these W (G, p2t)

in [5]. Some useful lemmas in [5] that will be needed in our later discussion are

also given. Section 3.2 is the discussion of our main results which is a continuation

of the work given in Section 3.1. Apart from the first two sections, the last section

that is section 3.3 is a thorough study of the existent of proper circulant weighing

matrices with weight 9.

3.1 Some Known Results on Abelian Groups Weigh-

ing Matrices with Odd Prime Power Weight

Let G be an abelian group having cyclic Sylow p-subgroup where p is an odd prime.

Below are some results of W (G, p2t) in [5]. The proof of these results can be found

in [5].

Theorem 3.1.1 Let G = 〈α〉 ×H where o(α) = ps, exp(H) = e, (p(p− 1), e) = 1

and p is a prime greater than 3. Then, a proper W (G, p2r) for all r ≥ 1 does not

exist.
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Theorem 3.1.2 Let G = 〈α〉×H where o(α) = p, exp(H) = e, (p, e) = 1 and p is

a prime greater than 7. If e is odd or e is strictly divisible by 2 or e ≤ (p2 + 1/2),

then a proper W (G, p2) does not exist.

Theorem 3.1.3 Let G = 〈α〉×H where o(α) = ps, p is an odd prime, exp(H) = e,

s > 1, and (p, e) = 1. Then, a proper W (G, p2) does not exist .

The following are some useful lemmas in [5] that will be needed to prove our

main results in the next section.

Lemma 3.1.4 Let G = 〈α〉 ×H be an abelian group of exponent v = pse where p

is an odd prime, o(α) = ps, exp(H) = e, s ≥ 2 and p - e. Let t be an integer such

that t ≡ 1 + ps−1 mod ps and t ≡ 1 mod e. If A ∈ Z[G] satisfies

1. χ(A)χ(A) = w for all characters χ of G which are nonprincipal on P1 where

P1 = 〈αps−1〉 is the subgroup of G of order p and (w, e) = 1; and

2. σ : ζv 7→ ζt
v fixes every prime ideal divisor of wZ[ζv],

then

A = αc(X0 + P1X1)

where c ∈ Z, X0 ∈ Z[〈αp〉×H] and the support of X1 is contained in G\(〈αp〉×H),

and hence

(α−cA)(t) = α−cA(t).

Lemma 3.1.5 Let G = 〈α〉 ×H be an abelian group of exponent v = pse where p

is an odd prime, o(α) = ps, exp(H) = e and (p, e) = 1. Suppose A ∈ Z[G] such

that χ(A)χ(A) = p2r for all characters χ of G such that χ(α) = ζps. Let t be a

primitive root modulo ps and t ≡ 1 mod e. Then there exists an integer b such that

(αbA)(t) = βαbA+ P1X
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where β ∈ H, o(β) | (p − 1, e), P1 = 〈αps−1〉 is the subgroup of G of order p, and

X ∈ Z[G].

Lemma 3.1.6 Let G = 〈α〉×H where o(α) = p, exp(H) = e, (p, e) = 1 and p is an

odd prime. Let t be a primitive root modulo p and t ≡ 1 mod e. Suppose A ∈ Z[G]

such that A(t) = βA for some β ∈ H. Let m = o(β), {h1, h2, . . . , hv} be a complete

set of coset representatives of 〈β〉 in H and Qj = {αtiβj−i | i = 0, 1, . . . , p− 2} for

j = 0, 1, . . . ,m− 1. Then,

A = 〈β〉
v∑

k=1

akhk +
m−1∑
j=0

v∑
k=1

bjkQjhk

where ak and bjk are integers.

Lemma 3.1.7 Let G = 〈α〉 ×H where o(α) = p, exp(H) = e, (p, e) = 1 and p is

an odd prime. Then there is no element A ∈ Z[G] such that AA(−1) = p2 − p〈α〉

and the coefficients of A are 0,±1.

3.2 Some New Results on Abelian Group Weigh-

ing Matrices with Odd Prime Power Weight

Our main results in this section is a continuation of the work done in Section 3.1

The following lemma is a slightly generalized version of Lemma 3.1.7.

Lemma 3.2.1 Let G = 〈α〉 ×H where o(α) = p, exp(H) = e, (p, e) = 1 and p is

an odd prime. Then there is no element A ∈ Z[G] such that AA(−1) = pu−pu−1〈α〉,

u ∈ Z\{1} and the coefficients of A are 0,±1.

Proof It is obvious that our claim is true for u < 1. Assume that there exists

A ∈ Z[G] such that AA(−1) = pu − pu−1〈α〉, u > 1 and the coefficients of A are
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0,±1. Let t be a primitive root modulo p and t ≡ 1 mod e. By Lemma 3.1.5, there

exists an integer b such that

(αbA)(t) = βαbA+ 〈α〉X (3.1)

for some β ∈ H, and X ∈ Z[G] where m = o(β) is a divisor of p− 1. As χ(A) = 0

for χ ∈ 〈α〉⊥ and χ(〈α〉) = 0 for χ ∈ G∗\〈α〉⊥, we have 〈α〉A = 0 by Corollary 1.4.2.

By multiplying equation (3.1) with 〈α〉, we get 〈α〉X = 0. Hence (αbA)(t) = βαbA.

Let {h1, h2, . . . , hv} be a complete set of coset representatives of 〈β〉 in H and

Qj = {αtiβj−i | i = 0, 1, . . . , p− 2} for j = 0, 1, . . . ,m− 1. By Lemma 3.1.6,

αbA = 〈β〉
v∑

k=1

akhk +
m−1∑
j=0

v∑
k=1

bjkQjhk (3.2)

where ak, bjk = 0,±1. Note that 〈α〉Qj = [p−1
m

]〈α〉〈β〉. By multiplying both sides

of Equation (3.2) by 〈α〉, we get ak + p−1
m

∑m−1
j=0 bjk = 0 and thus

p− 1

m

m−1∑
j=0

bjk = −ak

for all k. So it is either m = p− 1 or ak = 0 for all k.

Now we multiply equation (3.2) by 〈β〉. Note that 〈β〉Qj = 〈β〉(〈α〉 − 1). If

ak = 0 for all k, then
∑m−1

j=0 bjk = 0 for all k. Hence 〈β〉αbA = 0, which is a

contradiction, as 〈β〉AA(−1) 6= 0.

Assume that m = p−1. Let x1 and x2 be respectively the number of +1 and −1

coefficients in A. By AA(−1) = pu − pu−1〈α〉, we have x1 + x2 = pu − pu−1 and by

〈α〉A = 0, we have x1 − x2 = 0. Hence x1 = x2 = pu−pu−1

2
= pu−1(p−1)

2
. By equation

(3.2), since o(β) = m = p − 1 and |Qj| = p − 1, x1 and x2 must be divisible by

p− 1, which is impossible.

Lemma 3.2.2 Let G = 〈α〉 ×H where o(α) = ps, exp(H) = e, (p, e) = 1 and p is

an odd prime. Let A ∈ Z[G] satisfy χ(A)χ(A) = p2r for all characters nonprincipal
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on P1 where P1 = 〈αps−1〉 is the subgroup of G of order p. Then

A = αc(X0 + P1X1)

for some integer c and X0 ∈ Z[P1 ×H] and X1 ∈ Z[G \ (P1 ×H)].

Proof By Lemma 3.1.4, we get

A = αc1(X0,1 + P1X1,1)

for c1 ∈ Z, X0,1 ∈ Z[〈αp〉 ×H] and the support of X1,1 is contained in G\(〈αp〉 ×

H). Note that χ(X0,1)χ(X0,1) = p2r for all characters χ of 〈αp〉 × H which are

nonprincipal on P1. By applying Lemma 3.1.4 again, we get

X0,1 = αpc2(X0,2 + P1X2)

for c2 ∈ Z, X0,2 ∈ Z[〈αp2〉×H] and the support of X2 is contained in G\(〈αp2〉×H).

Thus

A = αc1+pc2 [X0,2 + P1X1,2]

where the support of X1,2 = α−pc2X1,1 + X2 is contained in G\(〈αp2〉 × H). By

applying Lemma 3.1.4 repeatedly s− 1 times, we will get the result of this lemma.

Remark 3.2.3 Recently, a more general version of Lemma 3.2.2 was proved in-

dependently by Leung and Schmidt [31]. Their result is too involved to be stated

here.

Lemma 3.2.4 Let G = 〈α〉 ×H where o(α) = ps, exp(H) = e, (p, e) = 1 and p is

an odd prime. Let Pi be the subgroup of 〈α〉 of order pi, i.e. Pi = 〈αps−i〉. Then

there is no element A = X0 + P1X1 + · · ·+ Ps−1Xs−1 in Z[G] that satisfies

1. AA(−1) = p2r − p2r−sPs;
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2. the coefficients of A are 0,±1;

3. Xi ∈ Z[Pi+1 ×H] for all i; and

4. the supports of X0, P1X1, . . . , Ps−1Xs−1 are disjoint.

Proof Assume that there exists A ∈ Z[G] that satisfies the conditions listed in

the lemma. For each i = 0, 1, . . . , s − 1 and for each g ∈ supp(PiXi), without

the loss of generality, we can assume that not all the coefficients of αkps−i−1
g,

k = 0, 1, . . . , p− 1, in PiXi are the same; otherwise, we can re-define Xi and Xi+1

so that g ∈ supp(Pi+1Xi+1).

Let ηPs−1 be the natural epimorphism from G to G/Ps−1. Let

Y = ηPs−1(X0 + P1X1 + · · ·+ Ps−2Xs−2) ∈ Z[ηPs−1(H)].

Note that by the assumption of the coefficients of X0, P1X1, . . . , Ps−2Xs−2, the

coefficients of Y lie between ±(ps−1 − 1).

Now, let η′ = τ ◦ ηPs−1 where τ is the natural epimorphism from G/Ps−1 to

(G/Ps−1)/ηPs−1(Ps) ∼= G/Ps. By Condition 1, we have η′(A)η′(A)(−1) = 0. This

implies that χ(η′(A)) = 0 for all characters χ of (G/Ps−1)/ηPs−1(Ps). Hence η′(A) =

0. On the other hand, η′(A) = η′(Y )+ps−1η′(Xs−1). So η′(Y ) ≡ 0 mod ps−1. Since

Y ∈ Z[ηPs−1(H)] and η′|ηPs−1
(H) is bijective, we get Y ≡ 0 mod ps−1 and hence

Y = 0.

Thus ηPs−1(A) = ps−1ηPs−1(Xs−1). This implies that

ηPs−1(Xs−1)ηPs−1(Xs−1)
(−1) =

1

p2(s−1)
ηPs−1(AA

(−1))

= p2(r−s+1) − p2(r−s+1)−sηPs−1(Ps)

= p2(r−s+1) − p2(r−s+1)−sps−1〈ηPs−1(α)〉

= p2(r−s+1) − p2(r−s+1)−1〈ηPs−1(α)〉
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where o(ηPs−1(α)) = p. Note that ηPs−1(Xs−1) ∈ Z[〈ηPs−1(α)〉× ηPs−1(H)]. Thus by

Lemma 3.2.1, ηPs−1(Xs−1) does not exist.

Theorem 3.2.5 Let G = 〈α〉 ×H where o(α) = ps, s ≥ 2, exp(H) = e, (p, e) = 1

and p is an odd prime. Let Pi be the subgroup of 〈α〉 of order pi, i.e. Pi = 〈αps−i〉.

If A is a W (G, p2r), then

A = αc(X0 + P1X1 + · · ·+ Ps−1Xs−1)

where c ∈ Z, Xi ∈ Z[Pi+1 × H] and the supports of X0, P1X1, . . . , Ps−1Xs−1 are

disjoint.

Proof We prove by mathematical induction.

By Lemma 3.2.2, we get

A = αc(W0 + P1W1)

where c ∈ Z, W0 ∈ Z[P1 ×H] and W1 ∈ Z[G \ (P1 ×H)]. Let

D = {g ∈ supp(W0) | the coefficients of g, αps−1
g, . . . , α(p−1)ps−1

g in W0 are the same}.

We can rewrite

A = αc(X0 + P1Z1)

where X0 ∈ Z[P1×H] and Z1 ∈ Z[G] such that supp(X0) = supp(W0) \D and the

supports of X0 and Z1 are disjoint. Note that for each g ∈ supp(X0), not all the

coefficients of αkps−1
g, k = 0, 1, . . . , p− 1, in X0 are the same.

Now suppose that for 0 ≤ u ≤ s− 3,

A = αc(X0 + P1X1 + · · ·+ Pu−1Xu−1 + PuZu)

where Xi ∈ Z[Pi+1×H], Zu ∈ Z[G], the supports of X0, P1X1, . . . , Pu−1Xu−1, PuZu

are disjoint and for each g ∈ supp(PiXi), 0 ≤ i ≤ u− 1, not all the coefficients of

αkps−i−1
g, k = 0, 1, . . . , p− 1, in Xi are the same.
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Let X = X0 + P1X1 + · · ·+ Pu−1Xu−1 ∈ Z[Pu ×H]. Then

A = αc(X + PuZu).

Let ηPu be the natural epimorphism from G to G/Pu and let ᾱ = ηPu(α). We have

ηPu(A) = ᾱc[ηPu(X) + puηPu(Zu)]

where ηPu(X) ∈ Z[ηPu(H)]. From the inductive assumption, the coefficients of

ηPu(X) lies between ±(pu − 1).

On the other hand, by Lemma 3.2.2, we get

ηPu(A) = ᾱd(Y0 + 〈ᾱps−u−1〉Y1)

where d ∈ Z, Y0 ∈ Z[〈ᾱps−u−1〉 × ηPu(H)], Y1 ∈ Z[ηPu(G)\(〈ᾱps−u−1〉 × ηPu(H))].

Then

ᾱd(1− ᾱps−u−1

)Y0 = (1− ᾱps−u−1

)ηPu(A)

= ᾱc
[
(1− ᾱps−u−1

)ηPu(X) + pu(1− ᾱps−u−1

)ηPu(Zu))
]
.

We now claim that ᾱc ∈ ᾱd〈ᾱps−u−1〉. Assume that it is not. Then

supp
(
ᾱd(1− ᾱps−u−1

)Y0

)
∩ supp

(
ᾱc(1− ᾱps−u−1

)ηPu(X)
)

= ∅.

So,

ᾱc(1− ᾱps−u−1

)ηPu(X) ≡ 0 mod pu ⇒ ηPu(X) ≡ 0 mod pu ⇒ ηPu(X) = 0.

Let χ be any character of G. If χ is nonprincipal on Pu, then

χ(X)χ(X) = χ(A)χ(A) = p2r.

If χ is principal on Pu, then χ = χ′ ◦ ηPu , for some character χ′ of G/Pu. Hence

χ(X)χ(X) = χ′(ηPu(X))χ′(ηPu(X)) = 0.
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So XX(−1) = p2r − p2r−uPu which is impossible by Lemma 3.2.4. Thus ᾱc ∈

ᾱd〈ᾱps−u−1〉.

Note that ᾱd = ᾱc+jps−u−1
for some j. So, ᾱd(Y0 + 〈ᾱps−u−1〉Y1) = ηPu(A) =

ᾱc(ηPu(X) + puηPu(Zu)) implies

puᾱcηPu(Zu) = ᾱc(Y ′
0 + 〈ᾱps−u−1〉Y ′

1).

where Y ′
0 ∈ Z[〈ᾱps−u−1〉 × ηPu(H)] and Y ′

1 ∈ Z[ηPu(G)]. We can choose Y ′
0 and Y ′

1

such that the supports of Y ′
0 and 〈ᾱps−u−1〉Y ′

1 are disjoint and for each h ∈ supp(Y ′
0),

not all the coefficients of ᾱkps−u−1
h, k = 0, 1, . . . , p − 1, in Y ′

0 are the same. This

follow by

αcPuZu = αc(PuXu + Pu+1Zu+1)

for some Xu ∈ Z[Pu+1 ×H], Zu+1 ∈ Z[G] and the support of PuXu and Pu+1Xu+1

are disjoint.

Hence

A = αc(X0 + P1X1 + · · ·+ PuXu + Pu+1Zu+1)

whereXi ∈ Z[Pi+1×H], Zu+1 ∈ Z[G], the supports ofX0, P1X1, . . . , PuXu, Pu+1Zu+1

are disjoint and for each g ∈ supp(PiXi), 0 ≤ i ≤ u, not all the coefficients of

αkps−i−1
g, k = 0, 1, . . . , p − 1, in Xi are the same. Therefore, the theorem follows

by induction.

Corollary 3.2.6 Let G = 〈α〉×H where o(α) = ps, s ≥ 2, exp(H) = e, (p, e) = 1

and p is an odd prime. Let A ∈ Z[G] be a W (G, p2r) where r ≤ s − 1. Then A is

not proper.

Proof

Let Pi be the subgroup of 〈α〉 of order pi, i.e. Pi = 〈αps−i〉. By Theorem 3.2.5,

there exists an integer c such that

α−cA = X0 + P1X1 + · · ·+ Ps−1Xs−1 (3.3)
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where Xi ∈ Z[Pi+1 ×H] and the supports of X0, P1X1, . . . , Ps−1Xs−1 are disjoint.

Note that the coefficients of elements in each PiXi are 0,±1.

Let ηPs−1 be the natural epimorphism from G to G/Ps−1. Let α = ηPs−1(α).

Then

α−cηPs−1(A) = ηPs−1(X) + ps−1ηPs−1(Xs−1)

where X = X0 + P1X1 + · · · + Ps−2Xs−2 ∈ Z[Ps−1 × H]. Suppose r < s −

1. By comparing the coefficients of the identity in both sides of the equation

ηPs−1(A)ηPs−1(A)(−1) = p2r, the only possible solution is ηPs−1(Xs−1) = 0. This

implies Ps−1Xs−1 = 0, i.e. A = X is not proper.

Now, assume that r = s−1. As the coefficient of the identity in ηPs−1(A)ηPs−1(A)(−1)

is p2r, we know that either ηPs−1(X) = 0 or ηPs−1(Xs−1) = 0. If ηPs−1(Xs−1) = 0,

our claim is true. Suppose ηPs−1(X) = 0, i.e. Ps−1X = 0. Note that by Equation

(3.3), χ(X)χ(X) = χ(A)χ(A) = p2r if χ is nonprincipal on Ps−1 and χ(X) = 0 if

χ is principal on Ps−1. So XX(−1) = p2r − p2r−s+1Ps−1. By Lemma 3.2.4, X does

not exist.

3.3 The Study of the Existence of Proper Circu-

lant Weighing Matrices with Weight 9

By [2], we know that CW (n, 9) only exist for n which are multiples of 13 and 24.

In this section, we shall further prove that proper CW (n, 9) only exist for n =

13, 26, 24. Recall that if K is a subgroup of G, then ηK is the natural epimorphism

from G to G/K.

Example 3.3.1 Let G = 〈g〉 where o(g) = 26. Let

A = g + g3 + g9 + g2 + g6 + g18 − g4 − g12 − g10.
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Then A is a proper CW (26, 9). Let η〈g13〉 : G −→ G/〈g13〉. It can be shown that

η〈g13〉(A) is a proper CW (13, 9).

Example 3.3.2 Let G = 〈h〉 × 〈g〉 where o(h) = 3 and o(g) = 8. Let

A = −1 + (1− g4)(g + g3) + (h+ h2)(1 + g4).

Then A is a proper CW (24, 9).

Throughout this section, we shall denote Ordn(p) as the smallest positive integer

γ such that pγ ≡ 1 mod n or in other words, γ is the smallest positive integer such

that pγ − 1 ≡ 0 mod n where p is a prime. For an element h of a group, θ(h, p) will

be identified as the set {h, hp, hp2
, . . . }.

We first consider the case where (n, 3) = 1. The proof of the following lemma

can be found in [10].

Lemma 3.3.3 Let G be an abelian group with |G| = n and (n, p) = 1 where p is a

prime. If A ∈ Z[G] such that AA(−1) = p2r, then there exists g ∈ G such that

(gA)(p) = gA.

Lemma 3.3.4 Let G be a group of order n and (n, p) = 1 where p is a prime.

Let A =
∑s

i=1 aiXi ∈ Z[G] where a1, a2, . . . , as are distinct nonzero integers and

X1, X2, . . . , Xs are pairwise disjoint subsets of G. If AA(−1) = p2r and the support

of A are not contained in any coset of any proper subgroup G, then n is a divisor

of the smallest common multiple of p− 1, p2 − 1, . . . , p|u|− 1 where u = max{|Xi| |

i = 1, 2, . . . , s}

Proof By Lemma 3.3.3, we know that there exists g ∈ G such that

(gA)(p) = gA. (3.4)
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Clearly, (gA)(gA)(−1) = p2r and the support of gA is not contained in any coset of

any proper subgroup of G too. Also, gA =
∑s

i=1 aigXi where gX1, gX2, . . . , gXs

are pairwise disjoint subsets of G and a1, a2, . . . , as are distinct nonzero integers.

Without the loss of generality, we can assume that |X1| ≥ |Xi| for all i ≥ 2. Let

h ∈ supp(gA). Then by Equation (3.4), if h ∈ gXi, then θ(h, p) ⊂ gXi. Thus for

all h ∈ supp(gA),

|θ(h, p)| = Ordo(h)p ≤ |gXi| = |Xi| ≤ |X1|.

As the support of gA is not contained in any coset of any proper subgroup of G,

G = 〈supp(gA)〉. Since every h ∈ supp(gA), o(h) | pt−1 where t = Ordo(h)p ≤ |X1|,

n is a divisor of the smallest common multiples of p− 1, p2 − 1, . . . , p|u| − 1.

Lemma 3.3.5 Let G be a cyclic group of order n and (n, p) = 1 where p is a prime.

Let A =
∑s

i=1 aiXi ∈ Z[G] such that AA(−1) = p2r with a1, a2, . . . , as are distinct

nonzero integers; X1, X2, . . . , Xs are pairwise disjoint subsets of G and |X1| > |Xi|

for all i ≥ 2. If q is a prime divisor of n such that qf | n and ordqf (p) ≥ |Xi| for

all i ≥ 2, then

A = C + a1

d∑
i=1

θ(hi, p)

for some h1, h2, . . . , hd ∈ X1 and supp(C) ⊂ K where K = {g ∈ G | qf - o(g)} is a

proper subgroup of G.

Proof For any h ∈ supp(A), if qf | o(h), then |θ(h, p)| ≥ ordqf (p). This implies

that h ∈ supp(X1) and thus θ(h, p) ⊂ X1. So we can write

A = C + a1

d∑
i=1

θ(hi, p)

for some h1, h2, . . . , hd ∈ supp(X1) and supp(C) ⊂ K.

Theorem 3.3.6 If (n, 3) = 1, then there exists a proper CW (n, 9) if and only if

n = 13 or n = 26.

38



Proof Let G be a cyclic group of order n and let A ∈ Z[G] be a proper CW (n, 9).

Clearly, hA is a proper CW (n, 9) for h ∈ G if and only if A is a proper CW (n, 9).

Consider gA for the g ∈ G such that (gA)(3) = gA. By Proposition 1.2.7, we

can assume that gA = X1 −X2, where X1, X2 are disjoint subsets of G such that

|X1| = 6 and |X2| = 3. By the choice of g, we know that Xi
(3) = Xi for all i. Thus

if h ∈ supp(Xi), then θ(h, 3) ⊂ supp(Xi) too. By Lemma 3.3.4, n is a divisor of

the smallest common multiples of 3− 1, 32− 1, . . . , 36− 1, i.e 24× 5× 7× 112× 13.

Note that

3− 1 = 2 ⇒ Ord23 = 1;

32 − 1 = 23 ⇒ Ord223 = Ord233 = 2;

33 − 1 = 2× 13 ⇒ Ord133 = Ord13×23 = 3;

34 − 1 = 24 × 5 ⇒ Ord243 = Ord53 = Ord24×5 = Ord23×5 = Ord22×5 = 4;

35 − 1 = 2× 112 ⇒ Ord113 = Ord1123 = Ord2×113 = Ord2×1123 = 5;

36 − 1 = 13× 7× 23 ⇒ Ord73 = Ord7×133 = Ord7×23 = Ord7×223

= Ord7×233 = Ord13×223 = Ord13×233

= Ord13×7×23 = Ord13×7×223 = Ord13×7×233 = 6.

(3.5)

Case 1: Assume that n = 11a for some positive integer a.

There exists an element h ∈ supp(gA) such that 11 | o(h) as A is proper.

Note that θ(h, 3) = 5 and o(h) = 11, 112, 2× 11, 2× 112. By Lemma 3.3.5

gA = C + θ(h, 3)

where supp(C) ⊂ K = {g ∈ G | 11 - o(g)}. Let H be a subgroup of G such

that

|H| =

{
11 if o(h) = 11 or 2× 11,

112 if o(h) = 112 or 2× 112.
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Then

ηH(gA) = ηH(C) + 5µ.

where µ ∈ G/H, o(µ) = 1 or 2 and the coefficients of ηH(C) are 0± 1. This

is a contradiction as the coefficient of ηH(1) in ηH(gA)ηH((gA)(−1)) is at least

(5− 1)2 + (4− 1) = 19.

Case 2: Assume that n = $a where $ ∈ {24, 5, 7} for some positive integer a.

There exists an element h ∈ supp(gA) such that $ | o(h) as A is proper.

Note that θ(h, 3) = 4 if $ = 24 or 5; and θ(h, 3) = 6 if $ = 7. By Lemma

3.3.5,

gA = C + θ(h, 3)

where supp(C) ⊂ K = {g ∈ G | $ - o(g)}. Let H be a subgroup of G such

that

|H| =

{
23a if $ = 24,

a if $ = 5 or 7.

Note that $a | 24 × 5× 7× 112 × 13 and K ⊂ H. Then

ηH(gA) =


−1 + 4ηH(h) if $ = 24,

−1 + θ(ηH(h), 3) if $ = 5,

−3 + θ(ηH(h), 3) if $ = 7.

where ηH(h) is not the identity. Therefore, the coefficient of ηH(1) in ηH(gA)

ηH((gA)(−1)) is either 17, 5 or 15. This contradictsAA(−1) = ηH(gA) ηH((gA)(−1)) =

9.

Case 3: Assume that n = 22 × 13× a where a = 1 or 2.

Let h ∈ G. Note that

|θ(h, 3)| =


1 if o(h) = 1 or 2

2 if o(h) = 4 or 8

3 if o(h) = 13 or 26

6 if o(h) = 52 or 104.
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(a) Suppose that o(h) 6= 13 or 26 for all h ∈ X2 . Then X2 ⊂ P where P

is the Sylow 2-subgroup of G. Since A is proper,

ηP (gA) = −3 +X or Y

where X, Y ⊂ G/P such that |X| = 6 and |Y | = 3. The coefficient

of ηP (1) in (−3 + X)(−3 + X(−1)) is 15 and the coefficient of ηP (1) in

Y Y (−1) is 3. Both contradict with ηP (gA)ηP ((gA)(−1)) = 9.

(b) Suppose X2 = θ(h1, 3) for some h1 ∈ G of order 13 or 26.

If X1 ⊂ P where P is the Sylow 2-subgroup of G, then ηP (gA) =

6 − θ(ηP (h1)), a contradiction. Hence there exists h2 ∈ X1 such that

13 | o(h2). If o(h2) = 52 or 104, then

ηP (gA) = 2X − Y or Z

where X, Y, Z ⊂ G/P , X ∩ Y = ∅, |X| = |Y | = |Z| = 3, and both cases

contradict with ηP (gA)ηP ((gA)(−1)) = 9. So o(h2) = 13 or 26. Since A

is proper, X1 = g1 + θ(g2, 3) + θ(h2, 3) where o(g1) = 1 or 2, o(g2) = 4

or 8 and o(h2) = 13 or 26. Let L be a subgroup of G of order 26. Then

ηL(gA) =

{
1 + 2ηL(g2) if o(g2) = 4

1 + θ(ηL(g2), 3) if o(g2) = 8.

This contradicts with ηL(gA)ηL((gA)(−1)) = 9.

We shall now consider the case where (n, 3) 6= 1. By Theorem 3.1.3, we know

that all CW (n, 32) where 3s | n with s > 1 are not proper. Thus, we can assume

3 ‖n. The following lemma is a particular case of Lemma 3.5 of [5].

Lemma 3.3.7 Let G = P × H be an abelian group where P = 〈α〉, o(α) = 3,

and (3, |H|) = 1. Let A ∈ Z[G] such that AA(−1) = 9. Then for t ≡ 2 mod 3 and
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t ≡ 1 mod |H|, there exists an integer b such that

(αbA)(t) = β(αbA) + ε(1− β)Pg

where g, β ∈ H, o(β) = 1 or 2 and ε = ±1.

We first consider the case where o(β) = 2.

Lemma 3.3.8 Let G = P ×H be an abelian group where P = 〈α〉, o(α) = 3, and

(3, |H|) = 1. Let A ∈ Z[G] such that for t ≡ 2 mod 3 and t ≡ 1 mod |H|,

A(t) = βA+ (1− β)Pg. (3.6)

where g, β ∈ H and o(β) = 2. Let K = 〈α, β〉 and let A =
∑

h∈I hAh where I is

the complete set of coset representatives of Kand Ah = ah +ahββ+ahαα+ahα2α2 +

ahβαβα + ahβα2βα2 ∈ Z[K]. Then

Ah = ah(1 + β) + ahα(α+ α2) + ahα2(α2 + αβ) (3.7)

if hK 6= gK and otherwise

Ag = ag + (ag − 1)β + agαα+ (agα − 1)α2β + agα2α2 + (agα2 − 1)αβ. (3.8)

In particular, if the coefficients of A are 0,±1, then ag, agα, agα2 ∈ {0, 1} and

|supp(Ag)| = 3.

Proof First, we consider Ah where hK 6= gK. In this case Ah
(t) = βAh. Note

that if Ah = ah + ahββ + ahαα+ ahα2α2 + ahβαβα + ahβα2βα2, then

βAh = ahβ + ahβ + ahβαα+ ahααβ + ahβα2α2 + ahα2α2β; (3.9)

Ah
(t) = ah + ahββ + ahα2α+ ahαα

2 + ahβα2βα + ahβαβα
2. (3.10)

By comparing the coefficients of (3.9) and (3.10), we know that ah = ahβ, ahα2 =

ahβα and ahα = ahβα2 . Thus

Ah = ah(1 + β) + ahα(α+ α2) + ahα2(α2 + αβ).
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Now, let us consider Ag. By (3.6),

Ag
(t) = βAg + (1− β)P.

This implies that ag = agβ + 1, agα2 = agβα + 1 and agα = agβα2 + 1. Hence

Ag = ag + (ag − 1)β + agαα+ (agα − 1)α2β + agα2α2 + (agα2 − 1)αβ.

If the coefficients of A are 0,±1, it is obvious that ag, agα, agα2 cannot be −1 and

hence |supp(Ag)| = 3.

Lemma 3.3.9 Let G = P × H be a cyclic group where P = 〈α〉, o(α) = 3, and

(3, |H|) = 1. If A ∈ Z[G] is a proper CW (n, 9), then

A = B + (P − 1)C + (P − 2)D + PE

where B,C,D,E ∈ Z[H], coefficients of B,C,D,E are 0,±1 and the supports of

B,C,D,E are pairwise disjoint.

Proof By Lemma 3.3.7, for t ≡ 2 mod 3 and t ≡ 1 mod |H|, there exists an integer

b such that

(αbA)(t) = β(αbA) + ε(1− β)Pg

where g, β ∈ H, o(β) = 1 or 2 and ε = ±1. By replacing A with αbA and if ε = −1,

replacing g with gβ, we can assume

A(t) = βA+ (1− β)Pg. (3.11)

Suppose o(β) = 2. Then Lemma 3.3.8 can be applied. By using the notation of

Lemma 3.3.8, we have the following 4 cases.

Case 1: All the elements in the support of Ag have coefficient 1.

Case 2: There are 2 elements in the support of Ag that have coefficient −1 and

one element in the support of Ag that has coefficient 1.
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Case 3: All the elements in the support of Ag have coefficient −1.

Case 4: There are 2 elements in the support of Ag that have coefficient 1 and

one element in the support of Ag that has coefficient −1.

By Proposition 1.2.7, we can assume that A = X1 − X2 where X1, X2 are

disjoint subsets of G such that |X1| = 6 and |X2| = 3. Since all elements in Ah

with coefficients +1 and −1 for Kh 6= Kg come in pairs as in (3.7), either one or

three of the coefficients of Ag are −1 in order to have |X2| = 3. Hence case 1 and

case 2 are impossible.

If all the elements in the support of Ag have coefficient−1, then we have ηK(A) =

−3g + X where X = ηK(X1) and g /∈ supp(X). By comparing the coefficient of

ηK(1) in the equation ηK(A)ηK(A(−1)) = 9, we have X = 0, a contradiction.

If there are 2 elements in the support of Ag that have coefficient 1 and one

element in the support ofAg that have coefficient−1, then ηK(A) = g(1+2h1+2h2−

2h3) where h1, h2, h3 are nonidentity elements in G/K. Note that contradiction

occurs as the coefficient of ηK(1) in the equation ηK(A)ηK(A(−1)) is 13 if h1, h2 and

h3 are all distinct; 21 if h1 = h2 6= h3; and 5 if h3 = h1 or h2.

Let β = 1 in (3.11) and thus A(t) = A. Let A =
∑

h∈J hBh, where J is the

complete set of coset representatives of P and Bh ∈ Z[P ]. For h ∈ J , Bh =

δ1 + δ2(α + α2) where δ1, δ2 = 0,±1. We shall now sort each coset into a different

category such that A can be written in the following form

A = B + (P − 1)C + (P − 2)D + PE

where if δ1 = ±1 and δ2 = 0, then h ∈ supp(B); if δ1 = 0 and δ2 = ±1, then

h ∈ supp(C); if δ1 = −δ2 = ±1, then h ∈ supp(D); and if δ1 = δ2 = ±1, then

h ∈ supp(E).
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Theorem 3.3.10 If (n, 3) 6= 1, then there exists a proper CW (n, 9) if and only if

n = 24.

Proof Let G = P ×H be a cyclic group where P = 〈α〉, o(α) = 3, |H| = e′ and

(3, e′) = 1. If A ∈ Z[G] is a proper CW (n, 9), by Lemma 3.3.9,

A = B + (P − 1)C + (P − 2)D + PE (3.12)

where B,C,D,E ∈ Z[H], coefficients of B,C,D,E are 0,±1 and the supports of

B,C,D,E are pairwise disjoint. By comparing the coefficient of α in AA(−1) = 9,

we obtain

|supp(C)| − |supp(D)|+ 3|supp(E)| = 0. (3.13)

By (3.12), ηP (A) = ηP (B) + 2ηP (C) + ηP (D) + 3ηP (E). If |supp(E)| ≥ 1, then

the coefficient of ηP (1) in ηP (A)ηP (A)(−1) > 9 as |supp(D)| is not 0 in this case

by (3.13). Hence |supp(ηP (E))| = 0 and thus |supp(E)| = 0 as E ∈ Z[H]. Now

by (3.13), |supp(ηP (C))| = |supp(ηP (D))| and thus by comparing the coefficient of

ηP (1) in ηP (A)ηP (A)(−1) = 9,

|supp(ηP (B))|+ 5|supp(ηP (C))| = 9.

SinceA is proper, |supp(ηP (C))| 6= 0. We have |supp(ηP (B))| = 4 and |supp(ηP (C))| =

|supp(ηP (D))| = 1. Hence

ηP (A) = ηP (B) + 2γh1 + εh2

where γ, ε = ±1 and h1, h2 are distinct elements in (G/P )\supp(ηP (B)). By

Lemma 3.3.3, there exists g ∈ G/P such that

(gηP (A))(3) = gηP (A).

Let us write

X = γgηP (A) = 2h+X1 −X2
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where h = gh1 and X1 and X2 are disjoint subsets of G/P . Note that

X(3) = X and XX(−1) = 9.

By X(3) = X, we have o(h) = 1 or 2. By XX(−1) = 9, we get

4 + |X1|+ |X2| = 9 and 2 + |X1| − |X2| = ±3. (3.14)

By solving (3.14), we get either |X1| = 0 and |X2| = 5 or |X1| = 3 and |X2| = 2.

By Lemma 3.3.4, e′ is a divisor of the smallest common multiples of 3 − 1, 32 −

1, . . . , 35 − 1, i.e. 24 × 5× 112 × 13.

Case 1: Assume that n = 11a for some positive integer a.

There exists an element x ∈ supp(X) such that 11 | o(x) as A is proper.

Since θ(x, 3) = 5, we have |X1| = 0 and |X2| = 5. Note also that o(x) =

11, 112, 2 × 11, 2 × 112. Without the loss of generality, we can assume that

x = gh2 and hence

γg0A = −
4∑

i=1

x0
3i

+ (P − 1)h0 + (P − 2)x0

where g0, h0, x0 ∈ H such that ηP (g0) = g, ηP (h0) = h, ηP (x0) = x. Note

that 11 | o(x0) and o(h0) = 1 or 2. Let K = 〈x〉. Then ηK(γg0A) =

−6+P +(P −1)h0 if o(h0) = 2 and 2 - o(x), otherwise ηK(γg0A) = −7+2P .

Note that in both situations, the coefficient of ηK1 in ηK(AA(−1)) > 9.

Case 2: Assume that n = $a, where $ ∈ {24, 5} for some positive integer a.

There exists an element x ∈ supp(X) such that $ | o(x) as A is proper. Since

θ(x, 3) = 4, we have |X1| = 0 and |X2| = 5. Then X = 2h − θ(x, 3) − x′,

o(x′) = 1 or 2 and x′ 6= h. Let K be a subgroup of G such that

|K| =

{
23a if $ = 24,

a if $ = 5.
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Clearly x′, h ∈ K. Then

ηK(X) =

{
1− 4ηK(x) if $ = 24,

1− θ(ηK(x), 3) if $ = 5.

where ηK(x) is not the identity. This is a contradiction as the coefficient of

ηK(1) in ηK(X)ηK((X)(−1)) are respectively, 17 and 5.

Case 3: Assume that n = 13a for some positive integer a. There exists an element

x ∈ supp(X) such that 13 | o(x) as A is proper. Note that o(x) = 13 or 26.

Since θ(x, 3) = 3 and there are at most two elements f in G/P such that

f 3 = f , we have

X = 2h− y − y3 ± θ(x, 3)

where y ∈ G/P and o(y) = 4 or 8. Let χ ∈ G∗ such that χ(y) = −1 and

χ(x) = 1. Thus, χ(h) = 1. Then we have χ(X) = χ(X(−1)) = 4 ± 3. Hence

XX(−1) 6= 9.

Thus e′ = 23 = 8.

By Theorems 3.3.6 and 3.3.10, we come to the following conclusion.

Theorem 3.3.11 There exists a proper CW (n, 9) if and only if n = 13, 26 or 24.
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Chapter 4

Generalized Dihedral Group
Weighing Matrices

In this chapter, we shall first give some basic properties of generalized dihedral

group weighing matrices and then followed by a construction of generalized dihedral

group weighing matrices of even weight. Lastly, we shall give some non-existent

results of proper generalized dihedral group weighing matrices.

4.1 Basic Properties of Generalized Dihedral Group

Weighing Matrices

Let DH = H ∪ θH be a group where H is a finite abelian group, o(θ) = 2 and

hθ = θh−1 for all h ∈ H. The group DH is called a generalized dihedral group.

If H ∼= Cm, then DH is the dihedral group of order 2m. We shall denote Dm as

dihedral group of order 2m. Below is a basic property of DH .

Lemma 4.1.1 All subgroups K of DH are of the form

i) K is a subgroup of H; or

ii) K = L ∪ θµL where L is a subgroup of H and µ ∈ H.

Proof If K is a subgroup of H, then clearly, K is a subgroup of DH . It is also

obvious that K in (ii) is a subgroup of DH .
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Assume that K is not a subgroup of H. Let L = K ∩H and let θµ, µ ∈ H, be

an element of K. Then, g ∈ L implies θµg ∈ K.

On the other hand, let g ∈ K\L, i.e. g = θh for some h ∈ H. But θµg ∈ K

implies µ−1h ∈ K ∩ H = L. So h ∈ µL or g ∈ θµL. Hence K has the form of

L ∪ θµL.

Assume that there exists a W (DH , w) says A. Write A = X + θY ∈ Z[DH ],

where X, Y ∈ Z[H].

Proposition 4.1.2 If A = X + θY is a W (DH , w), where X, Y ∈ Z[H], then

XX(−1) + Y Y (−1) = w and XY (−1) = Y X(−1) = 0. (4.1)

Proof As AA(−1) = w, we have

w = (X + θY )(X + θY )(−1)

= XX(−1) + Y Y (−1) + θ(Y X(−1) +X(−1)Y ).

By comparing the coefficients of the above equation , we haveXX(−1)+Y Y (−1) = w

and 2Y X(−1) = Y X(−1) +X(−1)Y = 0.

Example 4.1.3 Let G = D4 = 〈a〉 ∪ θ〈a〉, where θ2 = 1 and o(a) = 4. Let

A = X + θY ∈ Z[G], where X = 1 + g, Y = 1 − g ∈ Z[G], and g = a2. Note that

XY (−1) = Y X(−1) = 0 and thus AA(−1) = 4. Hence A is a W (G, 4) and has the

form of

(
∆1 ∆2

∆2
T ∆1

T

)
where

∆1 =


1 0 1 0
0 1 0 1
1 0 1 0
0 1 0 1

 and ∆2 =


1 0 −1 0
0 1 0 −1
−1 0 1 0
0 −1 0 1

 .

Remark 4.1.4 In general, with a suitable ordering of elements in Dm, every

W (Dm, w) can have a matrix form of

(
∆1 ∆2

∆2
T ∆1

T

)
, where ∆1 and ∆2 are both

circulant matrices.
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Lemma 4.1.5 Let A = X + θY be a W (DH , w) with X, Y ∈ Z[H]. Then X, Y

satisfy (4.1) if and only if either χ(X)χ(X(−1)) = w, χ(Y ) = 0 or χ(Y )χ(Y (−1)) =

w, χ(X) = 0 for all χ ∈ H∗.

Proof The lemma follows by the fact that X, Y satisfy (4.1) if and only if

χ(X)χ(X(−1)) + χ(Y )χ(Y (−1)) = w and χ(X)χ(Y (−1)) = χ(Y )χ(X(−1)) = 0

for all χ ∈ H∗.

Let A = {χ ∈ H∗ | χ(XX(−1)) = w} and B = {χ ∈ H∗ | χ(Y Y (−1)) = w}. In

addition, we know that A = {χ ∈ H∗ | χ(Y ) = 0} and B = {χ ∈ H∗ | χ(X) = 0}.

By Proposition 4.1.5, we know that {A,B} is a partition of H∗. Thus, |H| =

|A|+ |B|.

Proposition 4.1.6 |A| = |H|a
w

and |B| = |H|b
w

where a and b are the coefficients of

1 in XX(−1) and Y Y (−1) respectively.

Proof Recall from page 10 that for g ∈ H, we have τg ∈ H∗∗ such that τg(χ) =

χ(g). By the Fourier Inversion Formula, we have for any g ∈ H,

τg(A) =
∑
χ∈A

χ(g)

=
1

w
{
∑

χ∈H∗

χ(XX(−1))χ(g)}

=
|H|
w
{ 1

|H|
∑

χ∈H∗

χ(XX(−1))χ(g)}

=
|H|
w

(coefficient of g−1 in XX(−1)).

Similarly, we can show that τg(B) = |H|
w

(coefficient of g−1 in Y Y (−1)) for any g ∈

H. If g = 1, then τg(A) =
∑

χ∈A χ(1) = |A| and τg(B) =
∑

χ∈B χ(1) = |B|. Thus,

|A| = |H|a
w

and |B| = |H|b
w

.
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4.2 A Construction of Generalized Dihedral Group

Weighing Matrices with Even Weight

We shall now give a construction of generalized dihedral group weighing matrices

with even weight. The construction is similar to Construction 2.1.2. Before that,

we need the following lemma.

Lemma 4.2.1 Let H be an abelian group. Let G = 〈α〉×H be a group with o(α) =

2s. Suppose there exists an E ∈ Z[H] and C ∈ Z[G/M ] where M = 〈α2s−1〉, such

that E is a W (H,w) and C is a W (G/M,w). Let C1 ∈ Z[G] such that ηM(C1) = C

where ηM is the natural epimorphism from G to G/M . Let Y = (1− α2s−1
)E and

X = (1 + α2s−1
)C1. Then

XY (−1) = 0 and XX(−1) + Y Y (−1) = 4w

Proof Note that

XY (−1) = (1 + α2s−1

)(1− α2s−1

)C1E
(−1) = 0

XX(−1) = (2 + 2α2s−1

)C1C1
(−1)

Y Y (−1) = (2− 2α2s−1

)EE(−1).

Let χ be a character of G. Suppose χ ∈ M⊥, i.e. χ(α2s−1
) = 1. Then χ = χ′ ◦ ηM

for some χ′ ∈ G/M∗. Hence χ(Y Y (−1)) = 0 and χ(XX(−1)) = 4χ′(CC(−1)) = 4w.

Suppose χ /∈ M⊥, i.e. χ(α2s−1
) = −1. Then χ(XX(−1)) = 0 and χ(Y Y (−1)) =

4χ(EE(−1)) = 4w.

Thus χ(XX(−1) + Y Y (−1)) = 4w for every χ ∈ G∗. Hence, the result follows by

Corollary 1.4.2.

Construction 4.2.2 Let H be an abelian group. Let G = 〈α〉×H be a group with

o(α) = 2s. Suppose there exists an E ∈ Z[H] and C ∈ Z[G/M ],M = 〈α2s−1〉 such
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that E is a W (H,w) and C is a W (G/M,w). Let C1 ∈ Z[G] such that ηM(C1) = C

where ηM is the natural epimorphism from G to G/M . Let Y = (1− α2s−1
)E and

X = (1+α2s−1
)C1. Then A = X + θY is a W (DG, 4w). In addition, A is proper if

for any proper subgroup K of H, supp(X) or supp(Y ) is not contained in a cosets

of K.

Proof The result is clear by Lemma 4.1.1, Lemma 4.2.1 and Lemma 4.1.5.

Example 4.2.3 Let G = 〈α〉 × 〈β〉 ∼= C14 where o(α) = 2 and o(β) = 7. Choose

E = −1 + β + β2 + β4 which is the proper CW (7, 4) given in Example 1.2.4,

and C1 = E. Let Y = (1 − α)E and X = (1 + α)C1. Clearly supp(X) and

supp(Y ) are not contained in the cosets of the same proper subgroup of G. Thus

by Construction 4.2.2, we have a proper W (DG, 16). Similarly, if there exists a

proper W (H,w) where H is abelian, then there exists a proper W (DH , 4w).

4.3 Some Non-existent Results of Proper Gener-

alized Dihedral Group Weighing Matrices

We start the study of the non-existence results of W (DH , w).

Proposition 4.3.1 Let H be an abelian group with size m and A is a W (DH , w).

If (m,w) = 1, then A is a trivial extension of a W (H,w).

Proof If (m,w) = 1, then either A = 0 or B = 0 by Proposition 4.1.6. This

implies that either χ(X)χ(X) = 0 or χ(Y )χ(Y ) = 0 for all χ ∈ H∗. This follows

by either χ(X) = 0 or χ(Y ) = 0 for all χ ∈ H∗, which means that X = 0 or Y = 0

by Corollary 1.4.2. Hence, A is a trivial extension of a W (H,w).
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Proposition 4.3.2 Let H be an abelian group with e = exp(H). Let r be some

positive integer such that rn ≡ 1 mod e. Let G be a semi-direct product of H with

K where K = 〈β〉 is a cyclic group of order n and hβ = βhr for all h ∈ H. If there

exists a proper W (DH , w), then there is a proper W (G,w).

Proof Suppose A = X + θY is a proper W (DH , w), where X, Y ∈ Z[H]. By

Proposition 4.1.2,

(X + βY (r))(X + βY (r))(−1)

= XX(−1) + βnY (rn)Y (−rn) + βY (r)X(−1) + βn−1X(rn−1)Y (−rn)

= XX(−1) + Y Y (−1) + βn−1X(rn−1)Y (−1) + βY (r)X(−1)

= w.

Hence, X + βY (r) is a W (HK,w).

Suppose that A is not proper. Then supp(X + βY ) ⊂ aL where L is a proper

subgroup of G. Let K ′ = H ∩ L. For any h1, h2 ∈ supp(X), since supp(X) ⊂ aL,

a−1h1, a
−1h2 ∈ L and hence

h1
−1h2 = (a−1h1)

−1(a−1h2) ∈ H ∩ L = K ′.

So supp(X) ⊂ h1K
′ where h1 ∈ supp(X). Similarly, supp(Y ) is also contained in

a coset of K ′. As A is proper, by Lemma 4.1.1, we have K ′ = H and thus H ⊆ L.

Because of X 6= 0 and Y 6= 0, there exists g1 ∈ supp(X) and g2 ∈ supp(Y ) and

hence a−1g1, a
−1βg2 ∈ L. Since H ⊆ L, g1, g2 ∈ L. This implies

β = (a−1g1)
−1(a−1βg2)g1

rg2
−1 ∈ L

and thus L = G. Therefore A is proper.

Proposition 4.3.3 Let G be an abelian group and H is a subgroup of G such that

G/H is cyclic. If there exists a proper W (DH , w), then there is a proper W (G,w).

53



Proof Suppose A = X + θY is a proper W (DH , w), where X, Y ∈ Z[H]. Let

α ∈ G\H such that G/H = 〈ηH(α)〉 where ηH is the natural epimorphism from G

to G/H. Define A′ = X + αY . Then

A′A′(−1)
= XX(−1) + Y Y (−1) + α−1XY (−1) + αY X(−1) = w.

Similar to the proof in Proposition 4.3.2, we can prove that A′ is proper.

Corollary 4.3.4 If there exists a proper W (DH , w) where H is an abelian group,

then there exists a proper W (H ×K,w) for any cyclic group K.

Proof This corollary is a particular case of Proposition 4.3.2 as well as Proposition

4.3.3.

Corollary 4.3.5 Let H = 〈α〉 × H ′ be an abelian group with o(α) = ps and

(exp(H ′), p) = 1. No proper W (DH , p
2f ) exists for any odd prime p and f ≥ 1.

Proof Assume that there exists a proper W (DH , p
2f ). Define G = 〈γ〉 ×H ′ such

that γpi
= α and i + s > f . By Proposition 4.3.3 there exists a proper W (G, p2f )

as G/H ∼= Cpi . But by Corollary 3.2.6, W (G, p2f ) is not proper as f < i+ s where

pi+s = o(γ). Contradiction occurred and thus no proper W (DH , p
2f ) exists where

p is an odd prime and f ≥ 1.

Note that examples of proper W (DH , 2
2f ) do exist for f > 0 by Construction

4.2.2.
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Chapter 5

Symmetric Abelian Group
Weighing Matrices

In this chapter we shall concentrate on symmetric group weighing matrices of an

abelian group G. We first give some properties of symmetric group weighing ma-

trices. Next we give some constructions of symmetric abelian group weighing ma-

trices. Some of the constructions are particular case of those given in chapter 2.

Lastly we shall study some exponent bounds on abelian groups that admit sym-

metric group weighing matrices.

5.1 Some Properties of Symmetric Group Weigh-

ing Matrices

Let A ∈ Z[G] be a W (G,w). It can be easily checked that the weighing matrix

constructed by A is symmetric if and only if

(W3) A(−1) = A.

In short, A ∈ Z[G] is a symmetric W (G,w), denoted as SW (G,w) if it satisfies

conditions (W1), (W2) (given in Proposition 1.2.2) and (W3).

Lemma 5.1.1 Let G be an abelian group. If A ∈ Z[G] satisfies A2 = ν2 for some

integer ν, then for any character χ of G, χ(A) = ±ν. In particular, if A is an
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SW (G, ν2), then for any character χ of G, χ(A) = ±ν.

Proof The first part of the lemma is obvious and the second part is a consequence

of conditions (W2) and (W3).

Lemma 5.1.2 Let G be an abelian group and A is an SW (G, ν2), then A(t) = A

for all integers t relatively prime to n = |G|.

Proof The result is clear by Lemma 5.1.1 and Lemma 1.4.6.

Let G be a group of order n. Recall that as given in section 1.4, for every g ∈ G,

g can be used as a character in G∗∗. Suppose A ∈ Z[G] satisfies χ(A) = ν or $ for

all characters χ of G where ν and $ are two distinct integers. By Lemma 1.4.6,

A(−1) = A. Define

A∗(ν) =
∑

χ∈G∗,χ(A)=ν

χ ∈ C[G∗].

Then by finite Fourier transform,

Â = νA∗(ν) +$

(∑
χ∈G∗

χ− A∗(ν)

)
= (ν −$)A∗(ν) +$

∑
χ∈G∗

χ,

Hence by Proposition 1.4.4,

nA = nA(−1) =
̂̂
A = (ν −$)Â∗(ν) +$n.

We have the following lemma.

Lemma 5.1.3 Use the notation above. For any g ∈ G

g(A∗(ν)) =


−$n
ν −$

+
n

ν −$
(the coefficient of 1 in A) if g = 1

n

ν −$
(the coefficient of g in A) if g 6= 1

In particular, if A is an SW (G, ν2), then for any g ∈ G,

g(A∗(ν)) =


n

2
+

n

2ν
ε0 if g = 1

± n

2ν
if g 6= 1 and g ∈ supp(A)

0 if g 6= 1 and g /∈ supp(A)

where ε0 is the coefficient of 1 in A, which is either 0 or ±1.
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Theorem 5.1.4 Let G be an abelian group of order n. If there exists an SW (G, ν2),

then n must be divisible by 2ν.

Proof By Lemma 5.1.3, g(A∗(ν)) are rational for all g ∈ G. Since g(A∗(ν)) =∑
χ∈A∗(ν) g(χ) =

∑
χ∈A∗(ν) χ(g) are contained in Z[ζn] ∩ Q = Z, we conclude that

n/(2ν) is an integer.

The following result will be used in section 5.2 and section 5.3.

Lemma 5.1.5 Let G = 〈θ〉 ×H where o(θ) = 2 and H is an abelian group of odd

order. If A is an SW (G, ν2) where ν is odd, then

hA = 1 + (1 + θ)B + (1− θ)C

where h = ±1 or ±θ, B,C ∈ Z[H], coefficients of B,C are 0,±1, the support of

1, B, C are pairwise disjoint, B(−1) = B, C(−1) = C,

(1 + 2B)(1 + 2B(−1)) = ν2 and (1 + 2C)(1 + 2C(−1)) = ν2.

Proof Since A2 = AA(−1) = ν2, A(2) ≡ A2 ≡ 1 mod 2. We have

1. either 1 or θ is contained in supp(A) but not both; and

2. for any g ∈ H\{1}, either both g and θg are contained in supp(A) or both

not.

So hA = 1 + (1 + θ)B + (1 − θ)C where h = ±1 or ±θ, B,C ∈ Z[H], coefficients

of B,C are 0,±1 and the support of 1, B, C are pairwise disjoint. Note that

B(−1) = B and C(−1) = C as (hA)(−1) = hA. Finally (1 + 2B)(1 + 2B(−1)) = ν2

and (1 + 2C)(1 + 2C(−1)) = ν2 as (hA)(hA)(−1) = ν2.

57



5.2 Constructions of Symmetric Group Weigh-

ing Matrices

We shall first go through the construction in chapter 2 that will give us symmetric

weighing matrices. Note that a difference set (divisible difference set) D is said

to be reversible if D(−1) = D. The following construction is a particular case of

Construction 2.2.3.

Construction 5.2.1 Let D be a reversible (4m2, 2m2−m, m2−m)-difference set

in a group G. Then A = D − (G−D) = 2D −G is a proper SW (G, 4m2).

Example 5.2.2 Let G = Zb
4 ×Z2

2c1 × · · · ×Z2
2cr where b, c1, . . . , cr are nonnegative

integers and let H = Z2
2 × Z2d

3 × Z4
p1
× · · · × Z4

ps
where d is a nonnegative integer

and p1, . . . , ps are odd primes. By Theorem 14.46 in Chapter VI of [11], we know

that reversible Hadamard difference sets required by Construction 5.2.1 exist in G

and G × H. Hence there exist proper SW (G, 4m2
1) and SW (G × H, 4m2

2) where

m1 = 2b+c1+···+cr−1 and m2 = 2b+c1+···+cr3dp2
1 · · · p2

s.

The next construction is a particular case of Construction 2.2.6.

Construction 5.2.3 Let G = 〈θ〉 ×H where o(θ) = 2. If there exists a reversible

(v, k, λ)-difference set D = X ∪ θY , X, Y ⊂ H, in G, then A = X − Y is an

SW (H, k − λ).

Example 5.2.4 Let D be a (4000, 775, 150)) McFarland Difference set in G =

Z2
5 × Z5

3. Thus by Construction 5.2.3 and Theorem 2.2.7, there exists a proper

SW (Z2
4 × Z5

3, 625).

Example 5.2.5 Let H = Z2×Z2d
3 ×Z4

p1
× · · · ×Z4

ps
and G = Z2×H where d is a

nonnegative integer and p1, . . . , ps are odd primes. By Theorem 14.46 in Chapter
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VI of [11], we know that reversible (4m2, 2m2 −m, m2 −m)-Hadamard difference

sets exist in G with m = 3dp2
1 · · · p2

s and hence there exist proper SW (H,m2) as m

is odd.

By [11], we know that if D is a reversible difference set, then either D is a

(4000, 775, 150)-difference set or D is a (4m2, 2m2−m, m2−m)-Hadamard differ-

ence set.

Construction 5.2.6 Let G = 〈θ〉 ×G′ be a finite group where o(θ) = 2. Let N =

〈θ〉×N ′ be a subgroup of G. Suppose G admits a reversible (|G|/|N |, |N |, k, λ1, λ2)-

divisible difference set X ∪ θY where X, Y ⊂ G′, then X−Y is an SW (G′, k−λ1).

It is clear that Construction 5.2.6 is a particular case of Construction 2.3.3.

Below are two examples constructed from two known families of reversible relative

difference sets.

Example 5.2.7 By [4], We know that if there exists a reversible (4m2, 2m2 ±

m,m2 ± m)-Hadamard difference set D′ in a group K, then D = ({0} × D′) ∪

({1} × (G\D′)) is a reversible (4m2, 2, 4m2, 2m2)-relative difference set in Z2 ×K

relative to Z2×{1}. Thus by Construction 5.2.6 and Theorem 2.3.5, we have proper

SW (K, 4m2). Note that the weighing matrices constructed are actually Hadamard

matrices. These matrices are the same as those constructed using Construction

5.2.1.

Example 5.2.8 Let R be a finite local ring with maximal idea I such that R/I ∼=

GF (2d) and Is = 0. Let H be an elementary 2-group with 2t elements where

0 < t ≤ d. By [28], we know that there exists a reversible (22sd, 2t, 22sd, 22sd−t)-

relative difference set in H×R×R relative to H×{0}×{0}. Thus by Construction

5.2.6 and Theorem 2.3.5, we have proper SW (H ′, 22sd − 22sd−t) where H ′ is an
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elementary 2-group with 2t−1 elements. In Construction 5.2.11, we shall study a

more general construction which gives us all the matrices in this example.

Construction 5.2.9 In Construction 2.4.3, if gi
2 = 1 for all i, then A is an

SW (G, q2s).

Example 5.2.10 In Construction 5.2.9, suppose q > 2. Let K = 〈θ1〉 × · · · ×

〈θf〉 be an elementary 2-group and f ≤ (r − 1)/2. We can choose the set J =

{g0, g1, . . . , g(r−1)/2} such that J is not contained in any coset of any proper subgroup

in K. In particular, choose J such that 1, θ1, . . . , θf ∈ J . Then by Construction

5.2.9 and Theorem 2.4.4, A is a proper SW (K × L, q2s) where L is the (s + 1)-

dimensional vector space over GF (q) that is given in Construction 2.4.3.

Construction 5.2.11 In Construction 2.5.1, if gi
2 = 1 for all i, then A is an

SW (G, 22sd).

Example 5.2.12 In Construction 5.2.11, Let K be an elementary 2-group such

that |K| ≤ 22d−1−1 and let g1, g2, . . . , g2d−1 be elements (not necessarily distinct) of

K. Same as Example 5.2.10, we can choose the set J = {g1, g2, . . . , g2d−1} such that

J is not contained in any coset of any proper subgroup in K. Then by Construction

5.2.11 and Theorem 2.5.4, A is a proper SW (K×R×R, 22sd) where R is the local

ring that is given in Construction 2.5.1.

The idea of the next construction comes from Lemma 5.1.5.

Construction 5.2.13 Let H be a finite group and B,C ∈ Z[H] such that the

coefficients of B,C are 0,±1, the supports of 1, B, C are pairwise disjoint,

(1 + 2B)(1 + 2B(−1)) = ν2 and (1 + 2C)(1 + 2C(−1)) = ν2
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for some integer ν. Let G = 〈θ〉 ×H where o(θ) = 2. Then

A = 1 + (1 + θ)B + (1− θ)C

is a W (G, ν2). Furthermore, if B(−1) = B and C(−1) = C, then A is an SW (G, ν2).

Proof Note that (1 + 2B)(1 + 2B(−1)) = (1 + 2C)(1 + 2C(−1)) = ν2 implies

B +B(−1) + 2BB(−1) = C + C(−1) + 2CC(−1) = (ν2 − 1)/2. Thus

AA(−1) = [1 + (1 + θ)B + (1− θ)C]
[
1 + (1 + θ)B(−1) + (1− θ)C(−1)

]
= 1 + (1 + θ)

[
B +B(−1) + 2BB(−1)

]
+ (1− θ)

[
C + C(−1) + 2CC(−1)

]
= 1 + (1 + θ)

ν2 − 1

2
+ (1− θ)

ν2 − 1

2
= ν2.

Example 5.2.14 Let H = Z4
p1
× · · · × Z4

ps
where for each i, pi is a prime and

pi ≥ 5. Let G = 〈θ〉×H where o(θ) = 2. By Theorem 14.46 in Chapter VI of [11],

we have an SW (G, ν2) say A with ν = p2
1p

2
2 · · · p2

s. Thus by Lemma 5.1.5

hA = 1 + (1 + θ)B + (1− θ)C

where h = ±1 or ±θ, B,C ∈ Z[H], coefficients of B,C are 0,±1, the support of

1, B, C are pairwise disjoint, B(−1) = B, C(−1) = C,

(1 + 2B)(1 + 2B(−1)) = ν2 and (1 + 2C)(1 + 2C(−1)) = ν2.

By comparing the coefficient of the identity of the two equations above, we learn

that |supp(B)| = |supp(C)| = (ν2 − 1)/4. Since pi ≥ 5 for all i, both supp(B)

and supp(C) cannot be contained in any coset of any proper subgroup of H. Let

G′ = 〈θ〉 × K1 × K2 × K3 be a group such that K1 × K2
∼= K2 × K3

∼= H. Let

φ : H → K1×K2 and ψ : H → K2×K3 be isomorphisms such that φ−1(g) = ψ−1(g)

for all g ∈ K2. Note that if the supports of 1, B, C are pairwise disjoint, then the

supports of 1, φ(B), ψ(C) are pairwise disjoint. Then

A′ = 1 + (1 + θ)φ(B) + (1− θ)ψ(C)
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is a proper SW (G′, ν2) as it is clear that φ(B)(−1) = φ(B), ψ(C)(−1) = ψ(C);

(1 + 2φ(B))(1 + 2φ(B(−1))) = ν2 and (1 + 2ψ(C))(1 + 2ψ(C(−1))) = ν2.

5.3 Exponent Bounds on Abelian Groups Admit

Symmetric Group Weighing Matrices

In this section, we shall study the exponent bounds on abelian groups that admit

symmetric group weighing matrices.

Theorem 5.3.1 Let G be an abelian group of order n and exponent e. Let p be

a prime divisor of n such that pr||n and ps||e. Suppose there exists an SW (G, ν2)

such that pt||ν. Then s ≤ r − t if p is odd; and s ≤ r − t+ 1 if p = 2.

Proof Assume that s > r− t if p is odd; and s > r− t+ 1 if p = 2. Let K be a p-

subgroup of G such that the Sylow p-subgroup of G/K is a cyclic group of order ps

and let ηK : G→ G/K be the natural epimorphism. Let A be an SW (G, ν2). Since

ηK(A)2 = ηK(A2) = ν2, we have χ(ηK(A)) = ±ν ≡ 0 mod pt for all characters χ of

G/K. By Ma’s Lemma (Lemma 1.4.5), there exist X1, X2 ∈ Z[G/K] such that

ηK(A) = ptX1 + PX2

where P is the unique subgroup of G/K of order p. Let h be any element of P .

Then

(1− h)ηK(A) = pt(1− h)X1.

The coefficients on the left-hand-side lie between −2pr−s and 2pr−s. Since 2pr−s <

pt, the only possible solution is (1 − h)ηK(A) = 0. So we have hηK(A) = ηK(A)

for all h ∈ P , i.e. ηK(A) = PX for some X ∈ Z[G/K]. But ηK(A)2 = pPX2

contradicts that of ηK(A)2 = ν2.
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For the next bound, we need to work on the dual group, i.e. the group of char-

acters. The notation used below follows that is defined in page 56 of Section 5.1.

Lemma 5.3.2 Let G be an abelian group of exponent e and let p be a prime divisor

of e such that ps||e. Suppose A ∈ Z[G] satisfies χ(A) = ν,$ for all characters χ

of G where ν and $ are two distinct integers. If there is g ∈ supp(A) such that

ps | o(g), then there exists a p-subgroup K∗ of G∗ such that the Sylow p-subgroup

of G∗/K∗ is a cyclic group of order ps and

η∗K∗(A∗(ν)) 6≡ 0 mod P ∗

where η∗K∗ : G∗ → G∗/K∗ is the natural epimorphism and P ∗ is the unique subgroup

of G∗/K∗ of order p.

Proof Let g ∈ G such that g is an element in the support of A and ps|o(g). We

use g as a character of G∗. Let

K∗ = ker(g) ∩ (the Sylow p-subgroup of G∗).

Note that K∗ is a p-subgroup of G∗ such that the Sylow p-subgroup of G∗/K∗ is

a cyclic group of order ps. Let η∗K∗ : G∗ → G∗/K∗ be the natural epimorphism.

Then there exists a character h of G∗/K∗ such that h ◦ η∗K∗ = g. Assume that

η∗K∗(A∗(ν)) ≡ 0 mod P ∗

where P ∗ is the unique subgroup of G∗/K∗ of order p. Since ker(h) = ker(g)/K∗,

h is nonprincipal on P ∗ and hence

g(A∗(ν)) = h(η∗K∗(A∗(ν))) = 0.

This contradicts Lemma 5.1.3 and that g is an element in the support of A.
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Theorem 5.3.3 Let G be an abelian group of exponent e and let p be a prime

divisor of e such that ps||e. Suppose there exists a proper SW (G, ν2) such that

pt||ν. Then s ≤ t if p is odd; and s ≤ t+ 2 if p = 2.

Proof Assume that s > t if p is odd; and s > t + 2 if p = 2. Let K∗ be

any p-subgroup of G∗ such that the Sylow p-subgroup of G∗/K∗ is a cyclic group

of order ps and let η∗K∗ : G∗ → G∗/K∗ be the natural epimorphism. Suppose

pr|| |G|. Let A be an SW (G, ν2). By Lemma 5.1.3, for all characters h of G∗/K∗,

h(η∗K∗(A∗(ν))) ≡ 0 mod pt′ where t′ = r − t if p is odd and t′ = r − t− 1 if p = 2.

By Ma’s Lemma (Lemma 1.4.5), there exist Y1, Y2 ∈ Z[G∗/K∗] such that

η∗K∗(A∗(ν)) = pt′Y1 + P ∗Y2

where P ∗ is the unique subgroup of G∗/K∗ of order p. Following the same ar-

gument as in the proof of Theorem 5.3.1, we have η∗K∗(A∗(ν)) = P ∗Y for some

Y ∈ Z[G∗/K∗]. By Lemma 5.3.2, A cannot be proper.

As a consequence of Theorems 5.1.4 and 5.3.3, we have the following corollary.

Corollary 5.3.4 Let G be an abelian group of order n. Suppose there exists a

proper SW (G, ν2). Then n and ν have the same odd prime divisors.

The bound in Theorem 5.3.3 can be improved for the following case. First, we

need a lemma.

Lemma 5.3.5 Let G be a cyclic group of order ps where p is a prime. If A ∈ Z[G]

such that A(t) = A for all integers t relatively prime to p, then

A = b0P0 + b1P1 + · · ·+ bsPs

where b0, b1, . . . , bs are integers and for i = 1, . . . , s, Pi is the unique subgroup of

order pi in G.
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Proof This result is a consequence of the fact that if g ∈ Pi\Pi−1 for some i, then

{gt | (t, p) = 1} = Pi\Pi−1.

Theorem 5.3.6 Let p be a prime such that p ≥ 5. If there exists a proper

SW (G, p2t) where G is an abelian group of order 2pr, then exp(G) = 2ps for s < t.

Proof Let G = 〈θ〉 ×H be a group where o(θ) = 2 and H is an abelian group of

order pr and exponent ps. By Theorem 5.3.3, it suffices to show that there is no

proper SW (G, p2s). Suppose A ∈ Z[G] is an SW (G, p2s). By Lemma 5.1.5,

hA = 1 + (1 + θ)B + (1− θ)C

where h = ±1 or ±θ, B,C ∈ Z[H], the coefficients of B,C are 0,±1, the supports

of 1, B, C are pairwise disjoint, B(−1) = B, C(−1) = C,

(1 + 2B)(1 + 2B(−1)) = p2s and (1 + 2C)(1 + 2C(−1)) = p2s.

For any character χ of H,

χ(B) = (−1± ps)/2 and χ(C) = (−1± ps)/2.

Let K∗ be a subgroup of H∗ such that H∗/K∗ is a cyclic group of order ps and

let ρ : H∗ → H∗/K∗ be the natural epimorphism. Let ν = (−1 + ps)/2 and

$ = (−1 − ps)/2. Note that for any character h of H∗/K∗, h ◦ ρ is a character

of H∗. Also, we know that h ◦ ρ is the principal character of H∗ when h = 1. By

Lemma 5.1.3, as n = |H| = pr and 1 /∈ supp(B), we have

h(ρ(B∗(ν))) =

{
1
2
(pr + pr−s) if h = 1

0,±pr−s if h 6= 1.

By Lemma 1.4.6 and Lemma 5.3.5, we can write

ρ(B∗(ν)) = b0P
∗
0 + b1P

∗
1 + · · ·+ bsP

∗
s (5.1)
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where b0, b1, . . . , bs are integers and for i = 1, . . . , s, P ∗
i is the unique subgroup of

order pi in H∗/K∗. Here, P ∗
s = H∗/K∗ and P ∗

0 = {χ0} where χ0 is the identity

element in H∗/K∗. Note that the coefficients of the left hand side of (5.1) lie

between 0 and pr−s while bi + bi+1 + · · · + bs is the coefficient of Pi ∗ \Pi−1∗ in

ρ(B ∗ (µ)). Thus for i = 0, 1, . . . , s,

0 ≤ bi + bi+1 + · · ·+ bs ≤ pr−s.

Let h0 = 1 and for i = 1, . . . , s, let hi be the character ofH∗/K∗ that is nonprincipal

on P ∗
i but principal on P ∗

i−1. Then b0 = h1(ρ(B
∗(ν))). Note that hi(ρ(B

∗(ν))) =

pi−1bi−1 + pi−2bi−2 + · · · + b0 and thus bip
i = hi+1(ρ(B

∗(ν))) − hi(ρ(B
∗(ν))) for

i = 1, . . . , s. Hence, |bipi| ≤ 2pr−s for i = 1, . . . , s − 1. Note also that hs+1 = h0.

Hence bsp
s = 1

2
[pr + (1− 2ε)pr−s], where ε = 0,±1. Thus

1. b0 = 0,±pr−s;

2. for i = 1, . . . , s− 1, |bi| ≤ 2pr−s−i; and

3. bs = 1
2
[pr−s + (1 − 2ε)pr−2s], where ε = 0,±1, and hence 1

2
(pr−s − pr−2s) ≤

bs ≤ 1
2
(pr−s + 3pr−2s).

If b0 = −pr−s, then

b0 + b1 + · · ·+ bs ≤ −pr−s + (2pr−s−1 + · · ·+ 2pr−2s+1) +
pr−s + 3pr−2s

2

=
−(p− 5)pr−s − (p− 3)pr−2s

2(p− 1)
< 0,

is a contradiction.

If b0 = pr−s, then

b0 + b1 + · · ·+ bs ≥ pr−s − (2pr−s−1 + · · ·+ 2pr−2s+1) +
pr−s − pr−2s

2

= pr−s +
(p− 5)pr−s + (3p+ 1)pr−2s

2(p− 1)
> pr−s,
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is also a contradiction.

The only possible solution is b0 = 0. But this means

ρ(B∗(ν)) ≡ 0 mod P ∗
1 .

By Lemma 5.3.2, B is contained in a subgroup of H of exponent ps−1. Following

the same argument, C is also contained in a subgroup of H of exponent ps−1. So

A is not proper.

Corollary 5.3.7 Let p be a prime such that p ≥ 5. There exists no SW (G, p2) in

any abelian group G of order 2pr.

For all the known examples, the Sylow p-subgroups of the groups that admit

symmetric group weighing matrices are all elementary except p = 2. Also, for

p ≥ 5, we do not have any symmetric group weighing matrices of weight ν2 such

that p2t+1||ν.
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[33] Lüke H. D., Zweidimensionsionale Folgen mit perfekten periodischen Korrela-

tionfunktionen, IEEE Trans. Aerosp. Electron. Syst., 41(1987), 131-137.
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