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Summary

Many problems across Artificial Intelligence (AI), Computer Science and Opera-

tions Research (OR) can be modeled easily by a Constraint Network. More im-

portantly, Constraint Programming (CP) systems have shown that many difficult

real life problems can be efficiently solved under this model. A constraint network

describes a problem as a set of variables with finite values and a set of constraints

among certain variables. Some of its applications include problems in manufactur-

ing, transportation, telecommunication, logistics and bio-informatics.

Since finding a solution for a constraint network is NP-hard, a systematic search

procedure is employed. Pruning the search space by making an active use of con-

straints proves to be an effective way to make the search procedure practical. This

can be abstracted into the concept of various levels of local consistency in a con-

straint network. Arc consistency is one such well known local consistency.

In this thesis, we consider two aspects of consistency. Firstly, as a pruning

facility, enforcing arc consistency on a constraint network is at the core of a search

procedure. It is desirable to make such an algorithm as fast as possible. I have

several contributions on this aspect. AC-3, an algorithm to enforce arc consistency

on a network of binary constraints, has been widely employed by the researchers

and practitioners since its invention in 1977 by Mackworth. However, its worst-case

time complexity was not regarded as optimal although it performs well in practice.

We show that AC-3.1, a new implementation of AC-3, is of optimal worst case

complexity and better experimental performance than the traditional understand-

viii



SUMMARY ix

ing of AC-3. The implementation techniques can also be applied to other levels of

local consistency, for example path consistency. We also study arc consistency on

non-binary constraints, each of which may involve more than two variables. It is

NP-hard to enforce arc consistency on a general non-binary constraint. We identify

a class of constraints—monotonic constraints. Arc consistency can be efficiently

enforced on them. The important and ubiquitous linear arithmetic inequalities

belong to this class.

Secondly, consistency is also used as a tool to identify properties to help glob-

ally solve particular constraint networks. Across many fields of computer science,

it is desirable to infer global information through local computation. So is the case

for constraint networks where the computation of local consistency is desirable to

ensure the existence of a solution of the network. We propose a new framework

on the relationship between local consistency and global consistency. It unifies a

number of well-known results. More importantly, several new results are derived

from the framework. For example, I show that a certain level of local consistency

in a network of tree convex constraints implies global consistency. This is a gen-

eralization of existing work on row convex constraints. Another example is that a

network, with properly m-tight constraints on certain variables, can be made glob-

ally consistent by making it relationally m + 1-consistent—another type of local

consistency. This is a significant improvement over existing work on consistency

and tightness of constraints.

Along the line of the second aspect, I also study a special class of constraints—

functional constraints which are a primitive in CP Languages. Efficient and elegant

algorithms are designed to solve a network of binary functional constraints. They

can also be employed to solve some other problems efficiently, for example a network

of 0/1/All constraints.
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Chapter 1

Introduction

1.1 Context

Our research focuses on the the issue of efficiency in solving a constraint network,

from a perspective of consistency techniques.

A constraint network (CN) consists of a set of variables each of which can take a

value from a finite domain, and a set of constraints among variables. The constraint

satisfaction problem1 (CSP) is to find an assignment of values to variables such that

all constraints in the network are satisfied.

CSPs originated from the study of, and provides a uniform framework [Mac77a]

for, various problems in artificial intelligence (AI). Its strong modeling ability lies

in that a constraint can be of any form, in contrast to the strict restrictions on

constraints in other models. For example, in Linear Programming [Dan63], only

linear arithmetic constraints are allowed to describe a problem.

CSP can be employed to model traditional puzzle-solving problems, combina-

torial problems, and many artificial intelligence tasks including vision, language

comprehension, diagnosis, temporal and spatial reasoning and many others.

1We are talking about the classical CSP here. There are many variations of CSP nowadays,
e.g. continuous CSP etc.

2
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The ability of CSP to deal with arbitrary constraints was not fully exploited

until the emergence of Constraint Programming (CP) over finite domains in the

mid 1980s [JL87, VH89]. The CP paradigm makes it possible for a user to express

various complex constraints through some programming language. The paradigm

employs the CSP model to solve the constraints generated dynamically by a pro-

gram. It has thus expanded the application of CSP to a wide range of industrial

problems, and increased the interest in the study of CSP in the last two decades.

Among the most successful CP systems are CHIP [VH89] and ILOG [ILO00].

While CSP is a very expressive model, it is also an NP-hard problem. For

example, the graph k-colorability problem can be formulated as a CSP and it is

well known as an NP-complete problem [GJ79]. The finiteness of the domains of

variables suggests that a search algorithm is sufficient to solve a CSP. The main

problem is the efficiency of the search procedure. The great success of CSP in

real life problems benefits among others2 mainly from the progress of the study of

search strategies and the introduction and development of consistency techniques.

In the last three decades, much theoretical and empirical work has been done on

these two directions.

Backtracking [GB65] is a well known search strategy. A lot of improvements

over it, for example backjumping, learning and cutset decomposition [Dec90b], are

proposed and explored. Associated with the backtracking based search strategies

are heuristics, for example, on which variable and which value of the variable should

be tried first. Some of the heuristics significantly decrease the time to find a first

solution for a wide range of problems (see [HE80, page 301] and [VH89, page 129]).

The most distinct feature of CSP solving techniques may be the consistency

techniques, also widely called constraint propagation in the community of AI. The

2For example, as pointed out before, the convenience provided by a programming language
and the flexibility and efficiency of CSP solving techniques make it practical to solve challenging
combinatorial problems, both academic and commercial[VH89, ILO00].
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idea of constraint propagation might have been in existence for a long time. How-

ever, its usefulness and importance were not realized until Waltz’s work on a scene

labeling problem [Wal72] and Fikes’ on a problem solver REF-ARF [Fik68]. The

essential idea behind consistency is that before assigning a value to a new variable

in a search procedure, the constraints are actively used to prune the search space.

The pruning is to exclude certain values or combination of values, which are not a

part of any final solution of the problem, from further consideration.

Abstracting away application oriented details from the empirical work by Waltz

and the theoretical work by Montanari [Mon74], Mackworth [Mac77a] introduced

node-consistency, arc-consistency and path-consistency as well as algorithms to en-

force those consistencies on a constraint network. The identification of the time

complexity of the arc-consistency enforcing algorithm by Mackworth and Freuder

[MF85] in 1985 raised further interest of the community in consistency techniques.

Since then the study of consistency techniques has been greatly widened and deep-

ened.

Arc-consistency (AC) is one of the most useful consistencies. Its variations

are widely used in practical systems. The optimal AC enforcing algorithm was

discovered by Mohr and Henderson [MH86] in 1986 and subsequently more efficient

AC algorithms were developed for both general and special constraints.

Together with the complexity result of AC, the generalization of basic consis-

tency to k-consistency [Fre78], where k can be any number of variables involved

in a problem, made it possible to understand the nature of solving a constraint

network from the perspective of consistency. In fact, many interesting results have

been found. For example, by restricting the topological structure of a constraint

network or the semantics of constraints, sufficient conditions to ensure the global

consistency of those networks have been identified [Fre82, Fre85, vBD95, vBD97].

Certain constraints [Mon74, CCJ94, DBVH97, JCG97] are also identified such that

the network of such constraints can be solved efficiently.
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1.2 Results

The research work reported in this thesis considers two roles of consistency tech-

niques in efficiently solving a CSP. Firstly, low level consistency is used to prune

the search space. Specifically, arc consistency and its variations have been at the

core of most CP systems. It is thus very important to devise fast AC algorithms to

improve the overall performance of a CP system. Secondly, for certain constraint

networks, some level of local consistency implies global consistency. It is desirable

to identify the properties of those networks since local consistency can be computed

more efficiently than global consistency.

We find that AC-3, a classical arc consistency algorithm [Mac77a] for a network

of binary constraints, can be implemented with optimal worst case complexity of

O(ed2) [ZY01] where e is the number of constraints and d the size of domain. This

is surprising since AC-3 has long been considered by the community as an algo-

rithm of complexity O(ed3) which is the main result in Mackworth and Freuder’s

important paper [MF85]. This theoretical complexity bound complements the fact

that AC-3 is empirically efficient (see the empirical work by Wallace [Wal93]). Our

empirical study also shows that the new implementation of AC-3 is much faster

than the traditional understanding of AC-3 in [MF85] and comparable to the state-

of-the-art algorithm AC-6 [BC93]. We believe the efficiency and simplicity of AC-3

will make it continue to be a choice for empirical study and constraint systems.

The implementation idea proposed here also leads to a simple path consistency

algorithm with the best known worst case complexity.

To enforce arc consistency on a network of non-binary constraints is an NP-

complete problem. We report a new class of constraints [ZY00, ZW98]—monotonic

constraints—on which arc consistency can be enforced in O(er3d) where r is the

maximum arity of constraints in the network. As an example, the ubiquitous linear

inequality belongs to this class. This result generalizes the work in [VHDT92].
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Van Beek and Dechter [vBD95, vBD97] have identified several properties of

constraint networks such that local consistency guarantees global consistency in

those networks. Motivated by their work, we first find that consistency can be

studied from a perspective of set intersection. We then establish a framework to

relate results on set intersection to results on consistency (including a relation-

ship between local and global consistency) in a constraint network. Under this

framework, a number of new properties of constraint networks, where some level of

consistency is ensured or global consistency is implied by local consistency, are iden-

tified [ZY02a, ZY03b, ZY03a]. For example, by enforcing relational m-consistency

on a network with certain properly m-tight constraints, the global consistency of

the network is guaranteed. This is an improvement over existing work [vBD97].

We also study a special network of functional constraints where local consistency

guarantees global consistency. We find that a network of functional constraints can

be made globally consistent in O(ed) [ZYJ99], the cost of an optimal AC algorithm

[VHDT92]. Variable elimination is introduced to elegantly and efficiently solve

this problem. We also propose an algorithm to solve a network, where functional

constraints are incrementally added, with almost the same time as O(ed) [ZY02b].

An application of the variable elimination method is also exhibited to design an

algorithm to make a network of implicational constraints globally consistent in

O(e(n + d)), where n is the total number of variables in the network. The new

algorithm improves existing algorithms [Kir93, CCJ94].

1.3 Organization of the Thesis

This thesis consists of five parts. The first part contains two chapters. Chapter 1

includes a general introduction of constraint networks and our contributions. The

necessary concepts and ideas in constraint networks are reviewed in chapter 2.

The second part studies the consistency as a pruning facility in a search pro-
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cedure. Specifically, efficient algorithms are designed for arc consistency enforcing.

The new implementation of AC-3 is presented in chapter 3. The monotonic con-

straints and algorithms to enforce AC on them are studied in chapter 4.

Functional constraints, a tractable CSP, are studied in part III. Chapter 5

includes a variable elimination method to solve functional constraints and its ap-

plication to solve implicational constraints. Algorithms to solve an incremental

network with functional constraints are proposed in chapter 6.

In part IV, we present several properties on set intersection, the relationship

between consistency and set intersection, and then a framework on the relationship

between local and global consistency. It is followed by several applications of the

framework where various new and existing consistency results are obtained.

Part V concludes the thesis by summarizing the results reported here.



Chapter 2

Preliminaries on Constraint

Networks

It has been recognized for a long time that some complex problems can be solved

by generating all possible solution candidates and checking whether there is any

candidate which satisfies the requirements imposed by those problems. This search

technique may be inherent in the reasoning of a human being. However, the sys-

tematic study of search probably started after the emergence of computer science.

The breakthrough to bring search to the attention of scientists and mathemati-

cians is the discovery of the backtracking, coined by D. H. Lehmer (see [GB65]).

Golomb and Baumert [GB65] are among the first who formulated the method

of backtracking search and realized its potential application to a wide class of

problems, beyond combinatorial problems. As claimed by Golomb and Baumert,

backtrack had been independently “discovered” and applied by many people. This

justifies again “when the time is ripe for certain things, these things appear in dif-

ferent places in the manner of violets coming to light in early spring” by Wolfgang

Bolyai. In order to highlight the generality of backtracking, Golomb and Baumert

model a problem as one of determining the value of variables vector (x1, x2, ..., xn)

from the space of the Cartesian product X1 × X2 × · · · ×Xn such that the value

8
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of the vector maximizes the criterion function φ(x1, x2, · · · , xn). On the one hand,

under this framework backtrack as a programming principle can be applied to a

wide spectrum of problems. On the other hand, the framework is too general to

facilitate further effective exploration of search.

The next propelling source of search is from Artificial Intelligence (AI). Many

systems are built to solve problems arising in AI. One of the earliest is Waltz’s

[Wal75] system to recognize objects from line drawings.1 In this system, a filtering

algorithm is employed to avoid combinatorial explosion of scene labeling, assigning

meaningful labels to line segments and regions in a drawing (scene). It plays a

critical role in the efficiency of Waltz’s system. At the same time, based on his

experience in picture processing, Montanari realized that constraint manipulation

is a common part shared by many problems from different fields. He introduced a

network of constraints to model a general class of problems and defined a binary

constraint as a relation on two variables. Solutions of a binary constraint network

with n variables can be regarded as a non-binary constraint on all the n variables.

Given a binary constraint network, his question is to find an equivalent binary net-

work which is minimal in the sense that compared with other equivalent networks,

it allows the minimal number of pairs in every constraint. However, this question

is NP-hard. So, Montanari introduced a closure operation on a constraint network

to obtain an approximation of the minimal network. To some extent the closure of

a network is closer to the non-binary constraint implied by the original network.

For several problems the closure simply results in the non-binary relation. In other

words, the non-binary relation can be efficiently computed from the closure.

Motivated by Waltz’s filtering algorithm and the systems using similar tech-

niques (e.g. [Fik68]), and Montanari’s closure operation, Mackworth [Mac77a]

proposed the following unified framework. First, the task from different areas is

1This problem is NP-complete [KP88].
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modeled as a constraint satisfaction problem. In the following excerpt, a predicate

means a constraint.

The task specification is formulated to consist of a set of variables,

each of which must be instantiated in a particular domain, and a set of

predicates that the values of the variables must simultaneously satisfy.

Second, the concept of consistency is introduced to overcome the thrashing

problem in a backtracking search. The insight behind the consistency is that the

search space should be pruned by removing those inconsistent values or combination

of values which will never be a part of a solution. Although his arc consistency

and path consistency are from Waltz’s filtering and Montanari’s closure operation

respectively, Mackworth’s introduction of different levels of consistencies has greatly

motivated the research in CSP (e.g.[Fre78]).

Under the framework of CSP, backtracking search has been studied extensively.

For example, backjumping [Gas79, SS77], constraint recording [Dec90b] and conflict

directed backjumping (CBJ) [Pro93] have been proposed to improve backtracking.

The search efficiency can be significantly improved by exploiting various heuristics

like the variable ordering [GB65, HE80] and value ordering.

The power of the CSP model and techniques is not fully exploited until a major

breakthrough in Logic Programming. In 1987, Jaffar and Lassez proposed the

Constraint Logic Programming (CLP) scheme CLP(X ) which elegantly combines

logic programming and a constraint domain X . Under this scheme, a logic program

is regarded as a dynamic generator of constraints in X and the satisfiability (and a

solution) of the constraints is tested (and found) by a constraint solver embedded

in the CLP system. Naturally, the CLP scheme provides a programming interface

for CSP, and techniques developed for CSP can be easily employed by the solver.

CHIP [VH89] was one of the most influential CLP [JL87] over finite domain CSPs.

The CLP combined with CSP has been a great success in industrial applications
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[VH89, JM94, ILO00]. It benefits from the efficient techniques developed for solving

CSP, the modeling ability of CSP, the flexibility of the host languages, and the

ability of the seamless and natural embedding of CSP into the host languages.

2.1 A Review on Sets and Graphs

We recall some notations and vocabularies from sets and graphs before we give

a detailed description of a constraint network. They are only used to facilitate

exposition in this thesis and thus are presented in an intuitive, rather than formal,

way.

Given any two sets A and B, we use A ∪ B, A ∩ B and A − B to denote the

union, intersection and difference of A and B respectively. A − B is the set of

elements which are in A but not in B.

The Cartesian product of A and B, denoted by A×B, is

A×B = {(a, b) | a ∈ A, b ∈ B}.

A relation c on sets D1, · · · , Dk is a subset of the Cartesian products D1 × D2 ×

· · ·Dk. c is a universal relation if c = D1 ×D2 × · · ·Dk.

A directed graph is a set of vertices (or nodes), and a set of arrows (or arcs),

with each arrow joining one vertex to another. It is denoted by a tuple (V,E)

where V = {x1, · · · , xn} and E is a subset of V × V . An arrow has a direction

and is usually denoted by a tuple (xi, xj). If we replace the arrow in a directed

graph by an undirected edge, the graph becomes an undirected graph. An edge is

denoted by a set {xi, xj} where the order of the vertices doesn’t matter.

An edge is incident to a vertex if the vertex is one end of the edge. An arc is

incident to a vertex if the vertex is the ending vertex of the arc. A neighbor of

a vertex is a vertex in the graph such that there is an edge (or arrow) between
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them. A walk in a graph is a sequence of alternative vertices and edges (or arrows)

where each edge (or arrow) joins the vertices before and after it. It is denoted by

xixi+1 · · · xj where the edges are usually omitted if there is only one edge (or arrow)

between two vertices. If there are no repeated edges in a walk, the walk is called

a path. A simple path is a path without repeated vertices. The reverse of a path

is the reversed sequence of the path. For example, the reverse of xixi+1 · · · xj is

xj · · · xi+1xi. A closed walk is a walk whose starting vertex is the same as its ending

vertex. A circuit (also called cycle or loop) is a closed walk without repeated edges

in it.

A complete graph is one where there is an edge between any pair of vertices.

A graph is connected if for any two vertices there is a walk between them.

An acyclic directed graph is a graph which contains no cycle.

A tree is a connected undirected graph without any circuit. For a tree, we know

that between any two nodes there is a unique simple path. A tree is denoted by a

tuple (T,E). (T1, E1) is a subtree of (T,E) if it is a tree, T1 ⊆ T , and E1 ⊆ E.

Usually, after we designate a node in a tree as the root, the tree is called a rooted

tree. The level of a node in the tree is defined as the length of the path from the

node to the root. Now we can distinguish the nodes in a rooted tree. x1 is the

parent of x2 if x1 is a neighbor of x2 and its level is lower than x2’s. x2 is also

called a child of x1.

2.2 Constraint Satisfaction Problem

Most definitions of constraint satisfaction problem used in the literature follow the

conventions by Mackworth [Mac77a] and Montanari [Mon74]. Constraint network,

another terminology equivalent to constraint satisfaction problem, is also frequently

used. They are usually interchangeable. However, in this thesis we differentiate

them following the definition of a problem from the NP-complete literatures [GJ79].
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A CSP is a problem whose instance is a constraint network and the question is to

find an assignment of values to variables such that all constraints in the network

are satisfied simultaneously.

A constraint network R(N,D,C) is defined as a set of variables N = {x1, x2,

· · · , xn}; a set of finite domains D = {D1, D2, · · · , Dn} where domain Di, for all

i ∈ 1..n, is a set of values that variable xi can take; and a set of constraints

C = {cS1, cS2 , · · · , cSe} where Si, for all i ∈ 1..e, is a subset of {x1, x2, · · · , xn} and

each constraint cSi
is a relation defined on the domains of all variables in Si. The

arity of constraint cSi
is the number of variables in Si. Throughout this thesis, n

denotes the number of variables, r the maximum arity of the constraints in the

network, d the size of the largest domain, and e the number of constraints in C

in a constraint network. We list in Appendix A the convention of the symbols

frequently used in this thesis.

A solution of a network is an assignment of values to variables so that all the

constraints in the network will be satisfied by the assignment.

A constraint satisfaction problem is a problem whose instance is a constraint

network and whose question is to find a solution of the constraint network. A CSP

is satisfiable if its network has a solution. The solution space of a CSP, a relation

on all variables in N , is the set of all solutions. Two CSPs (and CNs) are equivalent

if and only if they have the same solution space.

CSPs are abundant in computer science and specially in Artificial Intelligence

[Mac92], and Operations Research [NW88].

Example. The graph k-colorability problem is whether k colors are sufficient

to color the nodes of a graph such that no two neighbors have the same color.

It can be easily cast into a CSP as follows. The variables {x1, x2, · · · , xn} are

to represent the nodes of the graph, all the variables share the same domain {

color1, color2, · · · , colork } which consists of all the colors available, and the con-

straints are that for all i, j ∈ 1..n, xi �= xj if there is an edge between xi and xj.
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The CSP is to find whether there is a solution for this network. �

In the problem above, note that every constraint involves at most two variables.

Binary constraint network or binary CSP is specially used to denote this class of

problems. A binary constraint cij denotes the constraint between the variables

xi and xj. For the problem of interest here, we require that ∀a, b a ∈ Di, b ∈

Dj, (a, b) ∈ cij if and only if (b, a) ∈ cji. In other words, cij and cji are understood

as one constraint. When cij and c−1
ji = {(a, b) | (b, a) ∈ cji} are different, an

intersection of these two constraints (relations) will result in one relation on i and

j. Most early work on CSPs stems from the study of binary constraint networks.

A binary constraint network can be naturally represented by an undirected or

directed graph. An undirected graph induced by a constraint network R(N,D,C)

is G = (V,E) where V = N and E = {{xi, xj} | ∃cij ∈ C}. The (topological)

structure of the graph representation of a constraint network has motivated a lot

of interesting work on CSP (see [Dec92a]).

2.2.1 Representation of Constraints

In this subsection, we restrict our attention to only binary CSP. Constraint plays a

central role in the model of constraint network. It is necessary to make a constraint

as concrete as possible so that they can be manipulated.

A constraint on variables xi (with finite domain Di) and xj (with finite domain

Dj) will restrict the values that xj can take when xi take some value. Naturally,

a constraint is simply defined as a relation on Di and Dj by Montanari [Mon74].

(a, b) ∈ cij implies that when xi and xj are assigned values a and b respectively,

the constraint between i and j is satisfied.

Now, we can immediately apply set operations like intersection and union to

constraints. Most importantly, we can compose two constraints cij and cjk in the
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following way to get a new constraint between i and k:

cjk ◦ cij = {(p, q) | ∃r ∈ Dj, (p, r) ∈ cij ∧ (r, q) ∈ cjk}.

Following the convention used in composing functions, we define composition of

sets as a right associative operation.

We can assume there is only one constraint cij between xi and xj because if

there is more than one constraint we can simply take their intersection as the final

constraint between xi and xj under the relation model.

In addition to the set representation, a relation can also be typically represented

by a matrix. This representation is very useful in understanding some of the results

in CSP and thus we include it here. The rows of the matrix are indexed by the

values of one domain and the columns by those of the other domain. The entry

is a boolean value to indicate whether the tuple of row index and column index is

allowed by the constraint. The composition of two constraints can be computed

by the multiplication of their matrices.

Example. Let the domain of variable i be {John, Allan, Peter }, the domain of

j { short, tall }, and the constraint cij = {(John, short), (Allan, tall), (Peter, short)}.

short tall
John 
 1 0 �

cij = Allan | 0 1 |
Peter � 1 0 


There are cases where other form of representation of a constraint is used more

conveniently and intuitively. As an example, the arithmetic expression of a con-

straint composes of variables, integers, operations (addition, minus, multiplication,

and division) and relations =,≤, �=. For example,

i2 + j2 �= 100
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where the domain for i and j are the integer interval [1..20]. The arithmetic con-

straints are so important that an independent field of mathematical programming,

especially (integer) linear programming, is devoted to this topic. [Dan63, NW88]

are good references for this topic.

There are also some constraints frequently arising from real life CSP problems.

They are taken as primitives in CSP systems. For example, the all different con-

straint states that all the variables of concern should take different values. The

cardinality constraint is proposed [VHD91] to represent non-primitive constraints

met in real life application.

2.2.2 Solving a CSP

Given the finiteness of the domain for each variable, it is always possible in principle

to find a solution for a CSP if it exists. In order to get an assignment of variables

from respective domains, we simply check all possible assignments exhaustively to

see whether there is any assignment satisfying all the constraints simultaneously.

This paradigm is called generate and test in logic programming [VH89]. The back-

tracking paradigm is an improvement over generate and test. In this paradigm,

variables are instantiated one by one. After each instantiation of a variable, all

the constraints involving instantiated variables will be checked. If some constraint

is not satisfied, we stop instantiating the rest variables because the constraint is

still violated no matter how to instantiate them. In other words, a portion of the

search space is pruned. A new value will be chosen for the current variable. If no

more values for the variable satisfy the related constraints, backtracking occurs. It

goes back to a previous variable and chooses a new value for it. The process will

be repeated until a solution is found or there is no choice of value for the first vari-

able. Given a CSP (V,D,C), an illustrative algorithm for backtracking paradigm

is shown in the next section.
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Example. The N queens problem is to put N queens on an N by N chess

board so that no two queens attack each other, that is, no two queens are on the

same row, the same column, or the same diagonal. Here we consider the 5 queens

problem.

We model the problem in the following way. Since no two queens can be put

into the same column, there is only one queen in each column. For all i ∈ 1..5, the

variable xi means the row occupied by the queen at column i. The domain of any

variable will range from the first row to the fifth row, that is {1, 2, · · · , 5}. The row

constraint that no two queens are on the same row is translated into xi �= xj for

all i, j ∈ {1, 2, · · · , 5} such that i �= j; the diagonal constraint that no two queens

are on the same diagonal into |xi− xj| �= |i− j| for all i, j ∈ {1, 2, · · · , 5} such that

i �= j.

A generate and test search to this problem is to systematically assign possible

values to five variables simultaneously and then check if the assignment satisfies

all the constraints imposed. For example, we generate a candidate solution by the

following way. First we try an assignment (1, 1, 1, 1, 1) for variables from x1 to x5.

It violates the row constraint. Next we try (1, 1, 1, 1, 2) and it still fails the row

constraint. After about 359 trials, we hit a solution (1, 3, 5, 2, 4).

Although x1 = 1 and x2 = 1 violate the row constraint, the generate and test

method still tries to instantiate x3 to x5 with all the possible combinations. This

drawback is overcome by backtracking search in the following way. Let’s instantiate

the variables in the order of x1, x2, · · · , x5. First let x1 = 1 and no constraint is

violated. Next, let x2 = 1 and the row constraint is violated. So, we choose 2

for x2 which fails the diagonal constraint. 3 will be a choice for x2. Continue this

process, after 15 trials we hit a solution (1, 3, 5, 2, 4). We are lucky here and there

is no backtracking taking place. �
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2.3 Consistency Techniques

As shown in the previous section, to find a solution for a CSP is not difficult in

principle. Given the NP-completeness of the CSP, to find a polynomial algorithm to

solve it may be futile. Most efforts in the CSP community are devoted to improving

the backtracking algorithms.

One observation, which is made as early as in 1965 [GB65], is that the domains

of uninstantiated variables can be shrunk by precluding those values which are

not compatible with the instantiated variables according to some constraints. The

preclusion of the values is also called an active use of constraints to prune the

domain of uninstantiated variables. By employing a similar idea, Waltz [Wal72]

successfully managed the combinatorial explosion of the backtracking search.

At roughly the same time, Montanari conducted a theoretical study on the

constraint processing in picture processing [Mon74]. He found that certain binary

constraint networks can be solved (or otherwise approximated) by introducing a

closure operation on constraints.

Mackworth quickly realized the importance of Waltz and Montanari’s work and

unified the preclusion and closure operation as different levels of consistencies, that

is arc consistency and path consistency. His work greatly promoted research both

in finding practically efficient search algorithms through achieving different levels

of consistency [HE80], and in understanding constraint solving through the concept

of consistency [Fre82].

Example. Consider again the 5 queens problem. The backtracking search can

further be improved by preclusion. Let x1 = 1. Immediately we know the no

queens can be put at the first row, the first column, or the diagonal as shaded in

Fig 2.1. Now, let x2 = 3, the first place available for x2. Squares in the third row,

the second column, and the two diagonals passing x2, will be shaded (see Fig 2.2).

Now, the choices for other variables are almost unique. Here we make at most six



CHAPTER 2. PRELIMINARIES ON CONSTRAINT NETWORKS 19

choices of values for variables in total before a solution is found. �

 
    

 
  

  
   

 
    

 
  

 
 

 
  

 
 

Figure 2.1: The chess board after putting a queen on the first column

 

 
    

 
   

  
    

 
    

 
     

 
 

Figure 2.2: The chess board after putting a queen on the second column

The idea of the preclusion can be generalized to the arc consistency in a binary

network.

Definition 1 Given a binary constraint network (N,D,C). A constraint cij is

consistent with respect to i if and only if ∀a ∈ Di, there exists b ∈ Dj such that

(a, b) ∈ cij. cij is consistent if it is consistent with respect to both i and j. The

network is arc consistent if and only if every constraint in the network is consistent.

Note in the above definition, to check the consistency of a constraint, we need

to check two directions: from i to j and from j to i. In this consideration, the

undirected edge in the associated graph of a network is better represented by two

arrows. The name of arc consistency is from the fact that a constraint should be
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consistent along every arrow (also called arc in graph texts) in the directed graph.

Now the definition above can be simplified as follows:

Definition 2 Given a binary constraint network (N,D,C) and its associated di-

rected graph (V,E). An arc (i, j) ∈ E is consistent if and only if ∀a ∈ Di, there

exists b ∈ Dj such that (a, b) ∈ cij. The network is arc consistent if all arcs are

consistent.

Later, Freuder [Fre78] generalizes arc consistency and path consistency to k-

consistency. To define k-consistency, we need the following notations. An instan-

tiation ā = (a1, · · · , aj) of variables Y = {x1, · · · , xj} is to assign a value ai in Di

to variable xi for all i ∈ 1..j. An extension of ā to a variable x(/∈ Y ) is denoted by

(ā, u) where u ∈ Dx. An instantiation of Y is consistent if it satisfies all constraints

in R which don’t involve any variable outside Y . For example, in the five queens

problem, the instantiation (1, 3) of x1 and x2 satisfies all constraints on x1 and x2

(other constraints involving one of x1 and x3 are ignored). So, instantiation (1, 3)

of {x1, x2} is consistent. The following definition of k-consistency is on a general

constraint network.

Definition 3 A constraint network R is k-consistent if and only if for any con-

sistent instantiation ā of any distinct k − 1 variables, and for any new variable x,

there exists u ∈ Dx such that (ā, u) is a consistent instantiation of the k variables.

R is strongly k-consistent if and only if it is j-consistent for all j ≤ k. A strongly

n-consistent network is called globally consistent.

The intuition behind this definition is that a certain level of consistency in a net-

work implies that any consistent instantiation of some variables can be extended to

a new variable. Node consistency is 1-consistency, arc consistency is 2-consistency,

and path consistency is 3-consistency. Typically a given constraint network is not

k-consistent even for small k. Consistency-enforcing algorithms are employed to
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achieve a certain level of consistency on the constraint network so that those partial

instantiations not extensible to a new variable will be removed.

Local consistency is also used in this thesis to denote k-consistency when k < n.

Now, a backtracking search with consistency-enforcing algorithm is given below.

algorithm Search((N,D,C))
begin

i← 0; backtracking ← false;
while i < n do //exsits a variable not assigned yet

if not backtracking then
Choose a variable xj from N − {v0, · · · , vi−1};
vi ← xj; //vi is the current variable
Si ← Dj; //Si is the current domain

endif
backtracking ← true;
while Si is not empty do // search a value for current var vi

choose a value a for vi;
Si ← Si − {a};
enforce certain level of consistency on the network;
if the domain of some variable is empty then

restore the domains of variables N − {v0, · · · , vi};
else //a is a valid value for vi

backtracking ← false;
break;

endif
endwhile
if backtracking then

i← i− 1; // backtrack to the previous variable
if i < 0 then break; endif

else i← i + 1; // progress to the next variable
endwhile
if backtracking then report unsatisfiability;
else report the solution;

end

Figure 2.3: A search procdure with consistency enforcing for constraint networks

In practice, it is typical to use the low level consistencies to improve the effi-

ciency of a search algorithm. The higher level consistencies are mainly used to study
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the properties of certain constraint networks. For example, it is interesting to iden-

tify the situations when the local consistency is sufficient to solve a CSP globally.

A wealth of results from the early work of Montanari and Freuder [Mon74, Fre82]

to more recent work such as van Beek and Dechter [vBD97], have been obtained.

They enhanced our understanding of constraint solving. More discussion on this

topic is in Chapter 7 on set intersection and consistency.

2.4 On the Model of CSP

The key techniques to solve CSP have proven to be useful in widely different fields

from AI to Operations Research and even to Numerical Analysis. As a result many

new variations of CSP are identified and studied. Among others there are numerical

CSP [Lho93], continuous CSP [Fal94], and temporal CSP [DMP91].

There are two models in computer science which are very close to the model

of CSP. The first one is the backtracking programming by Golomb and Baumert

[GB65]. Their intention is to make the backtracking so general that it is applica-

ble to as many applications as possible. So, their model is to find an assignment

of n variables {x1, x2, · · · , xn} with finite domains to maximize a criteria function

φ(x1, x2, · · · , xn). The constraint is absent from their model while there is a criteria

function. Because of the generality of this model, there is little research done on

this model, although the necessity of pruning search space and choosing a good

variable to instantiate was realized in [GB65]. In contrast, by introducing con-

straints explicitly, the CSP model, together with the progress in other fields of AI

and programming languages, has motivated a lot of research on finding efficient

search algorithms and heuristics. Thanks also to the introduction of constraints,

deeper understanding of constraint solving is obtained [Fre82, vBD97, JCG97].

The other is the relational model of data in database, which includes a set

of relations on variables (attributes) with finite domains, and a relational algebra
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[Cod70, RG00]. Abstractly, the relational model of data is exactly a constraint

network. This leads to interesting interactions [Dec90a, Mon74, Var00] between

the studies of database and CSP, despite the apparent difference between the pur-

poses of database and CSP. An example to show the relationship between CSP and

relational database is the following. If we take the solutions of a CSP as a relation

on all variables, the relation can be simply obtained by a natural join [Cod70] of

constraints (relations in database term) in the network. Benefiting from the rela-

tional algebra, the bucket elimination proposed by Dechter [Dec99] makes a heavy

use of the join operation and has some applications in CSP and belief networks.

It is interesting to compare the join operation and the k-consistency proposed by

Freuder [Fre78].



Part II

Consistency as Pruning in Search
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Arc consistency and its variations have been accepted as an effective way to

prune the search space. Since they are frequently called by a search procedure

to solve a CSP, it is necessary to explore the most efficient way to enforce arc

consistency on a network. In the first chapter of this part, we re-examine the simple

and widely used AC-3 algorithm by Mackworth, and propose a new algorithm AC-

3.1 which is comparable to the state-of-the-art algorithms both theoretically and

experimentally.

Traditionally is studied in binary constraint networks. In the last decade, a

lot of effort in CSP community has focused on non-binary networks as the CSP

techniques have been finding more and more applications which naturally involve

non-binary constraints. The much higher cost of general arc consistency algorithms

in the non-binary setting imposes more challenges on the design of efficient algo-

rithms. In the second chapter of this part, we study the arc consistency on a special

while applicable class of constraints, monotonic constraints and linear arithmetic

constraints. Efficient algorithms are also presented.



Chapter 3

A New Arc Consistency

Algorithm

In this chapter, we confine our discussion to binary constraint networks. Since

Waltz’s successful application of arc consistency (AC) to solve problems in under-

standing line drawings, there have been many algorithms developed to improve the

efficiency of arc consistency. Among them are AC-3 [Mac77a], AC-4 [MH86], AC-6

[Bes94] and AC-7 [BFR99]. The AC-3 algorithm was proposed by Mackworth in

1977 [Mac77a]. Its worst case complexity was not known until Mackworth and

Freuder carried out an analysis in 1985 [MF85] which states that the complexity

of AC-3 is of O(ed3), where e is the number of constraints and d the size of largest

domain. Because of its great impact on the study of CSP, this result itself has been

deeply rooted in the CSP community (e.g. [Wal93, BFR99]). Therefore AC-3 is

typically considered to be non-optimal. With time complexity O(ed2), other algo-

rithms such as AC-4, AC-6, AC-7 are considered worst case optimal. As far as we

are aware, there has not been any result showing that AC-3 can be implemented

with optimal worst case time complexity.

We show that AC-3 does achieve worst case optimal time complexity of O(ed2)

under a proper implementation [ZY01]. It is a bit surprising since AC-3 is a coarse

26
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grained arc revision algorithm [Mac77a] while the known optimal algorithms are all

based on fine grained value revision. Experiments are also conducted to examine

the practical efficiency of the new AC-3 implementation. On easy CSP instances,

it is comparable to the traditional implementation of AC-3 which is known to be

substantially better than the optimal fine grained algorithms. On hard instances

like those from the phase transition, it is significantly better than the traditional

AC-3 and is comparable to the best known algorithms such as AC-6 in terms of

running time.

It is also found that the idea behind the new AC-3 implementation immediately

leads to a new path consistency algorithm which has the same theoretical time and

space complexity as the best known ones [Sin96].

AC-3 is re-examined also for other reasons. It is one of the simplest AC al-

gorithms, and is known to be practically efficient [Wal93]. The simplicity of arc

revision in AC-3 makes it convenient for implementation and amenable to vari-

ous extensions for many constraint systems. Thus while AC-3 is considered as

being sub-optimal, it often is the algorithm of choice and can outperform other

theoretically optimal algorithms.

Techniques to enforce arc consistency are reviewed in section 3.1 before a formal

analysis of traditional AC-3 is presented in section 3.2. The new AC-3 algorithm

and its complexity analysis are presented in section 3.3, and an algorithm on path

consistency is proposed in section 3.4. Experimental results on AC-3 and other arc

consistency algorithms are listed in section 3.5. A comparison of AC-3 with other

algorithms is discussed in section 3.6. Section 3.7 concludes this chapter.

3.1 Techniques to Enforce Arc Consistency

This section serves to give an intuition of techniques employed in the evolution of

arc consistency algorithms.
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3.1.1 Arc Consistency

As discussed in the preliminaries (Section 2.2), we know that it is convenient to

associate a binary constraint network with a graph. Knowing that a constraint (re-

lation) can also be visualized by a graph, we also introduce the following notation.

Definition 4 The value based constraint graph of a network (N, D, C) is G=(V,

E) where V = {i.a | i ∈ N, a ∈ Di} and E = {(i.a, j.b) | (a, b) ∈ cij}. A more

rigorous name for the traditional constraint graph may be variable based constraint

graph.

Notation. In the following presentation, variable xi is sometimes replaced, for

simplicity and clarity, by its subscript i when there is no confusion. In this case,

we use i or j to denote a variable. Small letters a or b will be used to represent a

value in the domain of a variable. i.a (or x.a) is used to denote a value a ∈ Di (or

a ∈ Dx).

In this section, the value based graph is used in our drawing to illustrate a

constraint network. Note that for simplicity undirected edges are used in the

drawing. Each undirected edge (e.g. {i.a, i.b }) should be understood as an edge

with two directions ( (i.a, i.b) and (i.b, i.a)). �

We begin with some basic concepts underlying an arc consistency algorithm

through the following example.

In the network shown in Fig 3.1, there are three variables {x, y, z} whose do-

mains are {1, 2, 3}. The constraint between x and z is a special one while all the

others are the identity relation where each value of a variable is related to the same

value in the domain of the other variable. A DOMINO problem is a generaliza-

tion of this example to n variables {x1, x2, · · · , xn} and d values in the domain

{1, 2, 3, · · · , d}. The special constraint, called trigger constraint, is on x1 and xn. It

is defined as c1n = {(d, d)}∪ {(x, x + 1) | x < d}. For all i < n, there is an identity

constraint on i and i + 1



CHAPTER 3. A NEW ARC CONSISTENCY ALGORITHM 29

 
 
 
 
 
 
 
 
 

1 
2 
3 

1 
2 
3 

1 
2 
3 

y  

z  x  

Figure 3.1: Example of DOMINO problem

A close look at the network shows that the value 1 in the domain of z is not

related to any value in x. The value z.1 is invalid or not supported. The value z.2

and x.1 satisfy czx. x.1 is called a support of z.2. According to the Definition 2

of arc consistency, the arc (z, y) is not consistent. It is easy to verify that arcs

(x, y), (y, x), (y, z), (z, y), and (x, z) are consistent respectively.

In order to make the network arc consistent, we need to enforce the arc (z, x)

consistent. Removing z.1 from Dz is sufficient! A careful reader may realize that

the removal of z.1 will make the arc (y, z) no longer consistent since y.1 is not

supported now. It is not hard to see that the removal of z.1 result in an domino

effect on the values of domains of all variables until each domain has only one

value 3 (d in the general DOMINO problem) left. A similar effect may occur in

enforcing arc consistency on any constraint network. A more general term in the

AI community to describe this effect is constraint propagation. An arc consistency

algorithm needs to iteratively inspect each arc and make it consistent if necessary,

until all arcs are consistent. Intuitively such an algorithm terminates finally. It is

because some value(s) will be removed each time a constraint is made arc consistent

and the total number of values in the network is finite.
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3.1.2 AC-3

The question now is how to inspect arcs after some values are removed. There are

two main approaches. The first is simply re-inspect the whole constraint network

whenever a value is removed. This idea is reflected in the algorithm AC-1 [Mac77a].

It is not very interesting under this context and not discussed in detail although it

is an interesting algorithm in the parallel computing. The other one is re-inspect

only those constraints involving the variable whose value(s) have been removed.

Specifically, if some values of x are removed, only arcs incident to x would be re-

inspected. AC-3 embeds this idea and some other minor considerations [Mac77a].

The algorithm of AC-3 will be given in Section 3.2.

Consider the DOMINO network (Fig 3.1) again. z.1 is removed when (z, x) is

inspected. No matter whether they have been inspected before, (y, z) and (x, z)

will be re-inspected since the removed value may be a support of some value in y

(and x respectively) with respect to (y, z) (and (x, z) respectively). However, (z, y)

need not be inspected at this stage because the removal of values in Dz does not

affect its consistency. A further observation made by Mackworth [Mac77a] is that

(x, z) needs not be re-inspected either. since all the removed values in z are not

supports of any value in x (e.g. z.1). One minor advantage of AC-3 claimed in

[Mac77a] is that arcs like (x, z) will not be re-inspected.
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Figure 3.2: Example for algorithm AC-4
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3.1.3 AC-4

Immediately after the publication of the complexity results on AC-3, Mohr and

Henderson [MH86] designed a worst case optimal algorithm, named AC-4 by them.

The key idea behind AC-4 is that when a value of a variable is removed, only

some, not all, values in the domain of its neighbor variable will be re-inspected.

They are exactly those for which the removed value provided support. Consider

the constraint in Fig 3.2.

Assume z.1 is removed in the inspection of a relevant constraint. We know that

the affected values in x will be 1, 2, 3 since z.1 supports each of them. So, a list

SUPPORT(z.1, x) is used to store all values that z.1 supports, i.e. SUPPORT(z.1,

x) = {1, 2, 3}. In a network, for any arc (i, j) and a ∈ Di, we establish a list

SUPPORT(i.a, j).

Now a question is how to know whether each value in SUPPORT(z.1, x) (say

x.1) is still valid after z.1 is removed. One way is to remove z.1 from SUPPORT(x.1,

z) and then check if SUPPORT(x.1, z) is empty. Its emptiness means that x.1

no longer supports any value in z and is thus not supported, resulting in the

removal of x.1. Noting that what we need is whether x.1 has a support but not

what are the supports of x.1, Mohr and Henderson just use an extra structure

COUNTER(x.1, z) to denote the number of supports of x.1 (or equivalently the

number of values in z that x.1 supports). Now, if z.1 is removed, it is sufficient to

decrement COUNTER(x.1, z), and remove x.1 if it is zero. Obviously, we need a

COUNTER structure for each arc (i, j) ∈ E and each a ∈ Di.

To establish the SUPPORT(x.1, z) and COUNTER(x.1, z), a traditional way

in the CSP community is to search the supports from z.1 to z.3 in turn since for

a practical AC algorithm, a constraint is not always so explicit as in our draw-

ing. After scanning all elements in Dz, we have SUPPORT(x.1, z) = {1, 2} and

COUNTER(x.1, z) = 2 since x.1 has two supports z.1 and z.2. In the same manner,



CHAPTER 3. A NEW ARC CONSISTENCY ALGORITHM 32

we have

SUPPORT(x.2, z) = {1, 2}, COUNTER(x.2, z) = 2;

SUPPORT(x.3, z) = {1}, COUNTER(x.3, z) = 1;

SUPPORT(z.1, x) = {1, 2, 3}, COUNTER(z.1, x) = 3;

SUPPORT(z.2, x) = {1, 2}, COUNTER(z.2, x) = 2;

SUPPORT(z.3, x) = {}, COUNTER(z.3, x) = 0.

After this initialization, we know that z.3 will be removed. Now assume x.3

is removed as a result of the initialization of some other relevant constraint on x.

SUPPORT(x.3, z) = {1} tells us that x.3 is a support of z.1. So, the removal of

x.1 will decrease the number of supports of z.1 by one, i.e. COUNTER(z.1, x) =

2. By dint of the SUPPORT structure, we avoid checking the value of z.2 since it

has nothing to do with x.3!

Remark. The minor trick in AC-3 (Section 3.1.2) is also applicable to AC-4.

Consider a constraint cxz. Let z.a be removed because of the removal of a value

in x. We need not inspect the values in SUPPORT(z.a, x) because they all have

been removed (so that z.a is removed).

The clever way of AC-4 to inspect only the affected values leads to an optimal

worst case complexity of O(ed2). The initialization of SUPPORT and COUNTER

takes O(ed2). The SUPPORT structures of all values with respect to all relevant

arcs are exactly the value based constraint graph. In the propagation phase to

remove invalid values, each directed edge (for example (x.1, z.1)) in the value based

constraint graph will be examined at most once. So the propagation phase has a

time complexity of the number of edges in the value based graph. In summary,

the final complexity is O(ed2) and thus optimal because it needs O(ed2) to check

whether a network is arc consistent. Now it seems to be the time to conclude

the story of AC algorithms. However, there are more stories to tell [MF93] on the

efficiency of AC algorithms for general constraints. They are shown in the following

subsections.
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3.1.4 AC-6

Through his experimental study of AC algorithms, Wallace shows that AC-4 al-

ways has a poor performance [Wal93]. It is observed that in AC-4 the SUPPORT

structures are expensive to construct while most of them are not used in later

stages because for an ordinary network only a limited number of values will be

removed finally. Bessiere remedies this problem through a simple but nice observa-

tion [BC93, Bes94]. Recall that the purpose of inspecting the consistency of an arc

is to justify each value in one variable by finding a support in the other variable.

It is enough to find one support for a value. Another support will be looked for

only after the current one becomes invalid.

Consider the previous example in Fig 3.2 again. To know whether x.1 is valid,

we find a support z.1 for it. We then proceed to x.2, and find a support z.1 for

x.2. Similarly we find a support z.1 for x.3. Now if z.2 or z.3 is removed, nothing

needs to be done with respect to (x, z) because we know that z.1 is the key value

to support the values in x as discovered in the previous process. What to do if z.1

is removed? We need to know which values in x depend on it. It can be easily

done in the previous process by recording them. When justifying x.1, we find z.1

and record lightSUPPORT(z.1, x) = {1} so that a new support for x.1 will be

looked for once z.1 is removed. After inspecting x.2 and x.3, lightSUPPORT(z.1,

x) = {1, 2, 3} while the lightSUPPORT structures for z.2, z.3 are empty. When

justifying values of domain of z with respect to (z, x), we have lightSUPPORT(x.1,

z) = {1, 2} and there is no support for z.3. So, z.3 will be removed after the

inspection of (z, x).

Now let z.1 be removed because of some other constraint on z. It means we need

to find a new support for all those values in lightSUPPORT(z.1, x), currently sup-

ported by z.1 with respect to (x, z). For x.1, we find z.2 and let lightSUPPORT(z.2,

x) = {1}. By inspecting x.2 and x.3, we have lightSUPPORT(z.2, x) = {1, 2},
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and remove x.3 because there is no support for x.3. Note that in searching new

support for x.1, we just continue from the one after z.1, not from the scratch.

AC-6 is used by Bessiere to name this algorithm. It is clear that AC-6 only does

the necessary work, saving a lot of effort compared with the SUPPORT structures

in AC-4. Some readers may be confused by the gap of numbers in the name of AC-4

and AC-6. AC-5 [VHDT92] is not discussed here because technically it makes use

of both arc propagation (like AC-3) and value propagation (like AC-4) and serves

other purposes. AC-2 [Mac77a] is also omitted here since it is similar to AC-3.

3.1.5 Bidirectionality

We conclude this section by illustrating bidirectionality. AC-7 [BFR99] is essen-

tially an AC-6 equipped with the ability to make use of bidirectionality. Bidi-

rectionality means that given a constraint cij, a value of xi and its support in xj

support each other. In fact we have made use of it implicitly in previous presenta-

tion where we do not distinguish support and supported. Consider the example in

Fig 3.3.
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Figure 3.3: Example for bidirectionality

In justifying values in x according to constraint (x, z), AC-6 establishes

lightSUPPORT(z.1, x) = {2},

lightSUPPORT(z.2, x) = {1},

and removes x.3. Bidirectionality comes in when justifying values in z with re-
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spect to (z, x). When we try to justify z.1, lightSUPPORT(z.1, x) shows that

x.2 is a support. After checking the validity of x.2 (because the inspection of

another constraint may remove x.2), we set lightSUPPORT(x.2, z) = {1} as in

AC-6. In the same way we find a support x.1 for z.2 and set lightSUPPORT(x.1,

z) = {2}. Since lightSUPPORT(z.3, x) is empty, we have to search a support for

it from scratch (or where we stop in a previous such search) and find x.1. Now

lightSUPPORT(x.1, z) = {2, 3}. Assume x.1 is removed by some other constraint

on x. We need to find supports for z.2 and z.3, and we always try to find sup-

ports from lightSUPPORT(z.2, x) and lightSUPPORT(z.3, x) first. Since they are

empty, we search the domain of x, and find that z.2 is not supported and a support

of z.3 is x.2. Next assume z.1 is removed. x.2 is supported by z.1 and thus we

need to find a new support for it. We find z.3 directly from lightSUPPORT(x.2,

z). Here bidirectionality helps save effort by reusing the result in finding a support

for z.3 before.

3.2 Algorithm AC-3 and Its Complexity Analysis

As it is clear in the previous section, the central issue of an arc consistency algorithm

is to decide what (constraints or values) to be inspected further when some value

is removed. Once the strategy is decided, the rest follows in a straightforward

way. As an example, we show in this section a specific algorithm, AC-3, and its

complexity analysis. There are two considerations to choose AC-3. Firstly, it is a

background for our further investigation in the next section. Secondly, the other

algorithms follow exactly the same algorithm structure and data structure.

The presentation of AC-3 follows [Mac77a, MF85] with a slight change in no-

tation and node consistency removed.

When the consistency of an arc (i, j) is checked, we also remove those invalid

values in xi to make (i, j) consistent if necessary. This process is called revising arc



CHAPTER 3. A NEW ARC CONSISTENCY ALGORITHM 36

(i, j), or revising the domain of xi with respect to (i, j) to emphasize the removal

of invalid values. Each removed value of xi may affect the consistency of all arcs

incident into i, {(k, i) | (k, i) ∈ E}. All removed values in revising (i, j) actually

share the same set of arcs to re-inspect. So, for each revision of (i, j), only one

set of arcs will be re-inspected as long as some value is removed. The procedure

REVISE((i, j)) in Fig 3.4 implements the above revision of (i, j). It uses DELETE

to indicate whether there is any value removed from the domain of xi.

procedure REVISE((i, j))
begin

DELETE ← false;
for each a ∈ Di do

1. if there is no b ∈ Dj such that (a, b) ∈ cij then
delete a from Di;
DELETE ← true

endif
return DELETE

end

Figure 3.4: Procedure REVISE for AC-3

We will show in the next section that different implementations of line 1 (in

REVISE) cause different worst case complexities. As such, we argue that it is more

useful to think of AC-3 as a framework rather than a specific algorithm.

algorithm AC-3
begin

1. Q← {(i, j) | cij ∈ C or cji ∈ C, i �= j}
2. while Q not empty do
3. select and delete any arc (i, j) from Q;
4. if REVISE((i, j)) then
5. Q← Q ∪ {(k, i) | (k, i) ∈ C, k �= i, k �= j}

endwhile
end

Figure 3.5: The AC-3 algorithm
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The removal of values in xi causes a set of arcs to be revised again. Since each

time only one arc can be revised, a set1 Q is used to hold the affected arcs. Let

us look at the main algorithm of AC-3 in Fig 3.5. At the beginning, we need to

check whether all arcs are consistent. So, they are put into Q in line 1. Obviously,

the algorithm shouldn’t terminate as long as there is any arc in Q, leading to the

while loop in line 2. Line 3 just takes an arc (i, j) and removes it from the Q. It is

revised in line 4. The return value of REVISION being true means some value in

Di is removed and thus the arcs incident to i, {(k, i)|cki ∈ C}, go into Q for future

revision (line 5). Note the trick that (j, i) is not included in the set. The while

loop can be intuitively understood as constraint propagation, i.e. propagating the

effect of the removed values.

It is time now to have an analysis of the complexity of AC-3. The traditional

understanding is given by the following theorem. A more intuitive proof than the

one in [MF85] is shown here, which also facilitates the complexity analysis in the

next section.

Theorem 1 [MF85] Given a network (N, D, C), the time complexity of AC-3

is O(ed3). The working space complexity, excluding the space for the constraint

network, of AC-3 is O(ed).

Proof. The key operation of AC-3 is to revise an arc. Consider the times of

revision of each arc (i, j). (i, j) is revised if and only if it enters Q. Arc (i, j) enters

Q if and only if some value of j is deleted (line 2–3 in Fig 3.5). So, arc (i, j) enters

Q at most d times and thus is revised d times. The complexity of REVISE((i, j))

in Fig 3.4 is at most d2. Hence, given that the number of arcs are 2e, the time

complexity of AC-3 is O(ed3).

The only extra space used by the algorithm is the set Q. From the above

analysis, each arc enters it at most d times and thus 2e arcs imply that the set has

1Of course other data structures like queue and stack can also perfectly serve the purpose.
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at most 2ed arcs in it. The working space complexity of O(ed) follows. �

Remark. In the implementation of an AC algorithm, a queue, rather than a

set, is always used. There are many ways to organize the queue. One of them is

to replace the arcs in the queue as the variables (nodes) whose domain have been

modified. Whenever we take a variable from the queue, we simply revise all arcs

incident to it. One disadvantage of this method is that it fails to play the minor

trick2 of AC-3 mentioned above. Its advantage is that the space occupied by the

queue of variables can be easily controlled to be O(n) by entering a variable into

the queue only once (an array with n flags may be used to indicate whether a

variable is in the queue or not). Similarly, the space complexity of the original

queue of arcs can be decreased to O(e).

3.3 AC-3.1: A New View of AC-3

The traditional view of AC-3 with the worst case time complexity of O(ed3) (de-

scribed by Theorem 1) is based on a naive implementation of line 1 in Fig 3.4 that

b is always searched from scratch. Hereafter, for ease of presentation, we call this

implementation AC-3.0. The new approach to AC-3 in this thesis, called AC-3.1,

makes use of the observation that b in line 1 of Fig 3.4 does not need to be searched

from scratch even though the same arc (i, j) may enter Q many times. The search

is simply resumed from the point where it stopped in the previous revision of (i, j).

This idea is implemented by procedure EXISTb((i, a), j) in Fig 3.6.

Assume without loss of generality that each domain Di is associated with a total

ordering. For each (i, j) ∈ E and a ∈ Di, ResumePoint((i, a), j) records the first

support b ∈ Dj found in the previous revision of (i, j). The succ(b,D0
j ) function,

where D0
j denotes the domain of j before arc consistency enforcing, returns the

2However, in our experiments, the trick to enter only relevant arcs into the queue costs more
than it saves.
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successor of b in the ordering of D0
j or NIL, if no such element exists. NIL

is a value not belonging to any domain and precedes all values in any domain.

ResumePoint((i, a), j) needs to be initialized with NIL in the main algorithm.

procedure EXISTb((i, a), j) // ResumePoint is initialized in main algorithm
begin

b← ResumePoint((i, a), j);
1. if b ∈ Dj then // b is still in the domain

return true;
else

2. while ((b← succ(b,D0
j ) and (b �= NIL))

if b ∈ Dj and (a, b) ∈ cij then
ResumePoint((i, a), j) ← b;
return true

endif;
return false

endif
end

Figure 3.6: Procedure for searching b in REVISE(i, j)

Theorem 2 The worst case time complexity of AC-3 can be achieved in O(ed2).

The working space complexity is O(ed).

Proof. Here it is helpful to regard the execution of AC-3.1 on a network as a

sequence of calls to EXISTb((i, a), j).

For each arc (i, j), let us examine the time spent on justifying an a ∈ Di. As in

Theorem 1, an arc (i, j) enters Q at most d times. So, with respect to (i, j), any

value a ∈ Di will be passed to EXISTb((i, a), j) at most d times. Let the complexity

of each execution of EXISTb((i, a), j) be tl (1 ≤ l ≤ d). tl can be considered as 1 if

b ∈ Dj (see line 1 in Fig 3.6) and otherwise it is sl which is simply the number of

elements in Dj skipped before the next support b is found (the while loop in line

2). The total time spent on a ∈ Di with respect to (i, j) is
∑d

1 tl ≤
∑d

1 1 +
∑d

1 sl

where sl = 0 if tl = 1. Observe that in EXISTb((i, a), j), the while loop (line 2) will
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skip an element in Dj at most once with respect to a ∈ Di. Therefore,
∑d

1 sl ≤ d.

This gives
∑d

1 tl ≤ 2d.

For each arc (i, j), we have to check at most d values in Di and thus at most

O(d2) time will be spent on checking arc (i, j). Thus, the complexity of the new

implementation of AC-3 is O(ed2) since the number of arcs in the constraint network

is 2e.

For each arc (i, j), and for each value a ∈ Di we have to remember its resumption

point. The total number of arcs is 2e and the maximum number of values in any

domain is d. Hence the working space complexity is O(ed). �

Remark. The space complexity of AC-3.1 is not as good as that of the tra-

ditional implementation of AC-3, which can achieve O(e) easily by using a smart

queue as discussed in the remark of the previous section. The additional space

to remember the resumption point, needed by AC-3.1, is very hard to compress.

However, the extra space required by AC-3.1 is the same as that of AC-6.

3.4 A New Path Consistency Algorithm with the

Flavor of AC-3.1

In studying how to solve a network of binary constraints, Montanari introduced

path consistency in 1974 [Mon74]. In this section, we assume3 there is a constraint

between any two variables in a network. If a network does not satisfy this as-

sumption, the universal constraint is introduced on any pair of variables which is

unconstrained.

Definition 5 Given a network (N,D,C) and its undirected graph. A path i0i1 · · · im

is consistent if and only if for any (a, b) ∈ ci0im there exists a value al for each node

3[BSH99] does not make this assumption. But the algorithm there can achieve path consistency
only on the constraint networks with special topological structure.
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Figure 3.7: Example for path consistency

il (that is, variable xil) in the path such that constraints

ci0i1 , ci1i2 , · · · , cil−1il, · · · , and cim−1im .

are satisfied. A network is path consistent iff all its paths are consistent.

Montanari noticed that in order to make the network path consistent it is

sufficient to make any path of length two consistent.

Example. Consider the constraint network in Fig 3.7. It is easy to verify that

the network is arc consistent. However, it is not path consistent because the path

ikj is not consistent. We have (a, a) ∈ cij, that is, from i.a we can reach j.a along

arc (i, j). In the path from i to j through k, the only tuples allowed are (i.a, k.a)

and (k.a, j.b). In other words, from i.a we can not reach j.a along the path ikj.

Intuitively, if we take a value a for variable i, constraints along the path ikj tell

that a can never be assigned to j although it is allowed by constraint cij. Hence,

the path ikj is not consistent. In order to make it consistent, we simply remove

the tuples (a, a) from the arc (i, j). For (b, b) ∈ cij, along the path ikj we can find

(b, a) ∈ cik and (a, b) ∈ ckj. In other words, (b, b) satisfies not only cij but also

the constraint implied by the path ikj. Finally, cij = {(b, b)}. Following the same

way, we have cik = {(b, b)} and ckj = {(b, b)}. Now the modified network is path

consistent. Note that in contrast to the revision of domains in arc consistency, here

it is the constraints that are revised, which of course may lead to the removal of
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values. �

If some tuple (a, b) ∈ cik is removed, for all j ∈ N(j �= i or k), we need to

check whether the paths ikj and kij are consistent. It is done by the procedure

REVISE PATH in Fig 3.10. Specifically, to check ikj, for every (a, u) ∈ cij, not

all tuples in cij but only tuples starting with a, we need to find a support r ∈ Dk

such that a, r, u will satisfy the constraints along the path. Similarly we need to

find a support r ∈ Di for each (b, u) ∈ ckj with respect to i. See the picture in

Fig 3.8 where we need to find a support in Di or Dk for each edge in ckl or cil for

all l ∈ N − {i, k} after the deletion of (a, b) ∈ cik.

b 

a 

All the rest variables: },{ kiN −  k  

i  

j  

Figure 3.8: The way of propagation in path consistency after the deletion of (a, b)
from constraint cik

The same idea behind AC-3.1 applies here. Specifically, in order to find a new

support for each (a, u) ∈ cij with respect to a variable, say k, it is not neces-

sary to start from scratch every time. We start from where we stopped before.

ResumePoint((i, a), (j, u), k) is used to remember that point. The PC algorithm,

which is partially motivated by the algorithm in [CJ96], is shown in Fig 3.9.

Theorem 3 The time complexity of the algorithm PC is O(n3d3) with working

space complexity O(n3d2).

Proof. The complexity of PC depends on the procedure REVISE PATH whose

second loop is to find a support for the tuple (i.a, j.u) with respect to k. The while
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algorithm PC
begin

INITIALIZE(Q);
while Q not empty do

Select and delete any ((i, a), j) from Q;
REVISE PATH((i, a), j, Q))

endwhile
end

procedure INITIALIZE(Q)
begin

for any i, j, k ∈ N do
for any a ∈ Di, b ∈ Dj such that (a, b) ∈ cij do

if there is no r ∈ Dk such that (a, r) ∈ cik ∧ (r, b) ∈ ckj

then
cij(a, b)← false;
cji(b, a)← false;
Q← Q ∪ {(i, a), j} ∪ {(j, b), i}

else ResumePoint((i, a), (j, b), k) ← r
end

Figure 3.9: Algorithm to enforce path consistency

procedure REVISE PATH( (i, a), k,Q)
begin

for any j ∈ N, j �= i, j �= k do
for any u ∈ Dj such that (a, u) ∈ cij do

r ← ResumePoint((i, a), (j, u), k);
1. while not ((r �= NIL) ∧ (a, r) ∈ cik ∧ (r, u) ∈ ckj) do

r ← succ(r,D0
k);

if r = NIL then
Q← Q ∪ {((i, a), j} ∪ {((j, u), i)};

else ResumePoint((i, a), (j, u), k)) ← r
endfor

end

Figure 3.10: Revision procedure for PC algorithm



CHAPTER 3. A NEW ARC CONSISTENCY ALGORITHM 44

loop in line 1 (Fig 3.10) either takes constant time if the condition is not satisfied,

or skips several values in Dk otherwise. For the second case, no matter how many

times we try to find a support for (i.a, j.b), at most we skip d values since totally

we have only d values in Dk.

Now we need to know how many times it is necessary to find a support for

(i.a, j.u) with respect to k. It is necessary to find such a support if and only if

some tuple (a, u) is removed from cik. So we need find such a support d times.

From the first paragraph, for these d times we have at most d constant checks and

d skips in total. As a result, to find a support for (i.a, j.u) with respect to k we

need 2d steps. Given that i, j, k can be any variables from N and a, u any values

from corresponding domains, we have n3d2 possible (i.a, j.b)’s and k’s. Hence, the

total time cost is n3d2 × 2d, that is O(n3d3).

The main working space is for the structure ResumePoint((i, a), (j, u), k). The

size of this structure is the number of combinations of possible choices for i, j, k, a, u,

that is O(n3d2). �

The time complexity and space complexity of the PC algorithm here are the

same as the best known theoretical results [Sin96]. However, this PC algorithm is

simpler than those algorithms reported in [Sin96].

3.5 Preliminary Experimental Results

In this section, we present preliminary experimental results on the efficiency of

AC-3. While arc consistency can be applied after each instantiation in the context

of search (such as [BR96]), we focus on an experimental evaluation of the standing

alone arc consistency algorithms.

The experiments are designed to compare the empirical performance of the new

AC-3.1 algorithm with both the classical AC-3.0 algorithm and a state-of-the-art

algorithm, AC-6, on a range of CSP instances with different properties. AC-6 is
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chosen4 as a representative of state-of-the-art algorithms because of its good timing

performance over the problems of concern (see [BFR99]).

There have been many experimental studies on the performance of general

arc consistency algorithms [Wal93, Bes94, BFR99]. Here, we adopt the choice of

problems5 used in [BFR99], namely some random CSPs, Radio Link Frequency

Assignment problems (RLFAPs) and the Zebra problem. The Zebra problem is

discarded as it is too small for benchmarking. In addition, we propose the DOMINO

problem as a new benchmark to study the worst case performance of AC-3.

Randomly generated problems: As in [FBDR96], a class of random CSP

instances is characterized by n, d, e and the tightness of each constraint. The tight-

ness of a constraint cij is defined to be |Di ×Dj| − |cij|, the number of pairs NOT

permitted by cij. A class of randomly generated CSPs is denoted by a tuple (n, d, e,

tightness). We use the first 50 instances of each of the following classes of problems

generated using the initial seed 1964 (as in [BFR99]): (i) P1: underconstrained

CSPs (150, 50, 500, 1250) where all generated instances are already arc consistent;

(ii) P2: over constrained CSPs (150, 50, 500, 2350) where all generated instances

are inconsistent in the sense that some domain becomes empty in the process of

arc consistency enforcing; and (iii) problems in the phase transition [GMP+97] P3:

(150, 50, 500, 2296) and P4: (50, 50, 1225, 2188). The P3 and P4 problems are fur-

ther separated into the arc consistent instances, labeled as ac, which can be made

arc consistent at the end of arc consistency enforcing; and inconsistent instances

labeled as inc. More details on the choices for P1 to P4 can be found in [BFR99].

RLFAP: The RLFAP [CdGL+99] is to assign frequencies to communication

links to avoid interference. We use the real-life CELAR6 instances of RLFAP which

4We note that AC-6p has a slightly better performance than AC-6. However, we believe that
its heuristic of propagating deletion first may also apply to AC-3 algorithms. Further discussions
can be found in the next section.

5We thank Christian Bessiere for providing benchmarks and discussions for our experiment
on AC algorithms.

6We acknowledge the generosity of the French Centre d’Electronique de l’Armement for pro-
viding the CELAR benchmarks.
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AC-3.0 AC-3.1 AC-6
P1 #ccks 100,010 100,010 100,010

time(50) 0.65 0.65 1.13

P2 #ccks 494,079 475,443 473,694
time(50) 1.11 1.12 1.37

P3(ac) #ccks 2,272,234 787,151 635,671
time(25) 2.73 1.14 1.18

P3(inc) #ccks 3,428,680 999,708 744,929
time(25) 4.31 1.67 1.69

P4(ac) #ccks 3,427,438 1,327,849 1,022,399
time(21) 3.75 1.70 1.86

P4(inc) #ccks 5,970,391 1,842,210 1,236,585
time(29) 8.99 3.63 3.54

Table 3.1: Randomly generated problems

are available at ftp://ftp.cs.unh.edu/pub/csp/archive/code/benchmarks.

RFLAP AC-3.0 AC-3.1 AC-6
#3 #ccks 615,371 615,371 615,371

time(20) 1.47 1.70 2.46

#5 #ccks 1,762,565 1,519,017 1,248,801
time(20) 4.27 3.40 5.61

#8 #ccks 3,575,903 2,920,174 2,685,128
time(20) 8.11 6.42 8.67

#11 #ccks 971,893 971,893 971,893
time(20) 2.26 2.55 3.44

Table 3.2: CELAR RLFAPs

DOMINO: A DOMINO problem instance is characterized by two parameters

n and d. Recall that the trigger constraint will make only one value invalid and

that value will trigger the domino effect on the values of all domains until each

domain has only one value d left. So, each revision of an arc in AC-3 algorithms

can only remove one value while AC-6 only does the necessary work. This problem

is used to illustrate the differences between AC-3 like algorithms and AC-6. The

results show that arc revision oriented algorithms may not be so bad in the worst
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Figure 3.11: Running time for randomly generated problems

case as one might imagine.

d AC-3.0 AC-3.1 AC-6
100 #ccks 17,412,550 1,242,550 747,551

time(10) 5.94 0.54 0.37

200 #ccks 136,325,150 4,985,150 2,995,151
time(10) 43.65 2.21 1.17

300 #ccks 456,737,750 11,227,750 6,742,751
time(10) 142.38 5.52 2.69

Table 3.3: DOMINO problems

Some details of our implementation of AC-3.1 and AC-3.0 are as follows. We

implement domain and related operations by employing a doublely-linked list. The

Q in AC-3 is implemented as a queue of variables into which arcs incident will be

revised [CJ96]. A new variable will be put at the end of the queue. Variables in

the queue are treated in a FIFO order. The code is written in C++ compiled by

g++. The programs are run on a Pentium III 600 processor with Linux.

For AC-6, we note that in our experiments, using a single currently supported
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Figure 3.12: Running time for CELAR RLFAPs

list of values (see [Bes94]) is faster than using multiple lists with respect to related

constraints proposed in [BFR99]. This may be one reason why AC-7 is slower than

AC-6 in [BFR99]. The experimental data reported below is produced by an AC-6

with a single list.

The performance of arc consistency algorithms here is measured along two di-

mensions: running time and number of constraint checks (#ccks). A raw constraint

check tests if a pair (i.x, j.y) satisfies constraint cij. In this experiment we assume

constraint check is cheap and thus the raw constraint and additional checks (e.g.

line 1 in Fig 3.6) in both AC-3.1 and AC-6 are counted. In the tabulated experi-

ment results, #ccks represents the average number of checks on tested instances,

and time(x) the time in seconds on x instances.

The results for randomly generated problems are listed in Table 3.1 and Fig 3.13.

For the underconstrained problems P1, AC-3.1 and AC-3.0 have similar running

time. No particular slowdown for AC-3.1 is observed. In the over constrained

problems P2, the performance of AC-3.1 is close to AC-3.0 but some constraint

checks are saved. In the hard phase transition problems P3 and P4, AC-3.1 shows
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Figure 3.13: Running time for DOMINO problems

significant improvement over AC-3.0 in terms of both the number of constraint

checks and the running time. It is better than or close to AC-6 in timing although

it has more checks.

The results for CELAR RLFAP are given in Table 3.2 and Fig 3.12. In simple

problems, RLFAP#3 and RLFAP#11, which are already arc consistent before the

execution of any AC algorithm, no significant slowdown of AC-3.1 over AC-3.0 is

observed. For RLFAP#5 and RLFAP#8, AC-3.1 is faster than both AC-3.0 and

AC-6 in terms of timing.

The reason why AC-6 takes more time while making less checks can be explained

as follows. The main contribution to the slowdown of AC-6 is the maintenance of

the currently supported list associated with each value of all domains. In order

to achieve space complexity of O(ed), when a value in the currently supported list

is removed, the space occupied in the list by that value has to be released. Our

experiment shows that the overhead of maintaining the list doesn’t compensate

for the savings from less checks under the assumption that constraint checking is

cheap.

The DOMINO problem is designed to show the gap between AC-3 implemen-

tations and AC-6. Results in Table 3.3 and Fig 3.13 show that AC-3.1 is about
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half the speed of AC-6. This can be explained by a variation of the proof in section

3. In AC-3.1 the time spent on justifying the validity of a value with respect to a

constraint is at most 2d while in AC-6 it is at most d.

The DOMINO problem also shows that AC-3.0 is at least an order of magnitude

slower in time and more in number of constraint checks than AC-3.1 and AC-6.

This can be justified by the fact that AC-3.0 achieves its worst case complexity on

DOMINO problem.

In summary, our experiments on randomly generated problems and RLFAPs

show the new approach to AC-3 is stable and efficient on both simple problems

and hard problems compared with the traditional view of AC-3 and state-of-the-

art algorithms.

3.6 Related Work and Discussion

Our work reported here is related to the development of general purpose arc con-

sistency algorithms, for example AC-3, AC-4, AC-6, AC-7 and the work of [Wal93].

We summarize previous algorithms before discussing how our algorithm gives an

insight into AC-3.

Conventionally, the arc consistency algorithms are named chronologically. How-

ever, this may not exhibit the intrinsic relationship among the algorithms and is

misleading in some sense. We prefer to classify the well known algorithms according

to their methods of propagation (see Section 3.1).

As far as we know, there are two approaches employed in efficient AC algo-

rithms: arc oriented and value oriented propagation. The former originates from

AC-1 and its underlying computation model is the variable based constraint graph.

The latter originates from AC-4 and its underlying computation model is the value

based constraint graph.7 The key idea of value oriented propagation is that once

7As far as we know, Perlin [Per92] is the first to make value based constraint graph explicit in
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a value is removed only those values related to it will be checked. Thus it is more

fine grained than arc oriented propagation. We sometimes also call algorithms

working with variable based graph coarse grained algorithms, and those working

with value based graph fine grained algorithms. An immediate observation is that

compared with variable based constraint graph, time complexity analysis in value

based constraint graph is straightforward (as discussed in section 3.1).

Given a computation model of propagation, the algorithms differ in the im-

plementation details. For variable based constraint graph, AC-3 [Mac77a] can be

thought of as an “open implementation”. The approach in [MF85] can be regarded

as a realized implementation. The new view of AC-3 presented in this chapter can

be thought of as another “implementation” with optimal worst case complexity. It

simply remembers the result obtained in previous revision of an arc while in the

old one, the choice is to be lazy, forgetting previous effort. There are still other

algorithms falling into the scope of this model. For example [CJ96] is devoted to

improving the space complexity. For value based constraint graph, AC-4 is the

first implementation and AC-6 is a lazy version of AC-4 (see Section 3.1). AC-7

is based on AC-6 and it exploits the bidirectionality. [Per92] and [KD94] use this

model explicitly.

AC-4 does not perform well in practice [Wal93, BFR99] because it always

reaches the worst case complexity both theoretically and in actual problem in-

stance when constructing the SUPPORT structure. Other algorithms like AC-3

and AC-6 can take advantage of many instances where the worst case doesn’t

occur. In practice, both artificial and real life problems rarely make algorithms

behave in the worst case except for AC-4. However, the value based constraint

graph induced from AC-4 provides a convenient and accurate tool for studying arc

consistency.

arc consistency enforcing algorithm.
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Given that both variable and value based constraint graphs can lead to worst

case optimal algorithms, we consider their strength on some special constraints:

functional, anti-functional (Chapter 5), and monotonic (Chapter 4) constraints.

For coarse grained algorithms, it can be shown that arc consistency on mono-

tonic and anti-monotonic constraints can be enforced with time complexity of

O(ed) (e.g. using our new view of AC-3). Fine grained algorithms like AC-4

and AC-6 can deal with functional constraints efficiently. We remark that the par-

ticular distance constraints in RLFAP can be enforced to be arc consistent in O(ed)

by using a coarse grained algorithm. It is difficult for coarse grained algorithms to

deal with functional constraints and tricky for fine grained algorithms to deal with

monotonic constraints.

We also notice that general properties or knowledge of a CSP can be isolated

from a specific arc consistency enforcing algorithm. Examples are AC-7 and AC-

inference. AC-7 is the result of applying bidirectionality to AC-6. However, bidirec-

tionality is also applicable to course grained algorithms, and in fact originates from

the study of the latter [BFR99, Gas78]. We are aware that its potential may not be

fully exploited under the variable based graph model. The idea of metaknowledge

on a single constraint or a network [BFR99] may be applied to algorithms of both

computation models.

Other propagation heuristics [WF92] such as propagating deletion first [BFR99]

are also applicable to algorithms of both models.

Now let us compare the new approach to various arc consistency algorithms.

AC-3.1 and AC-6 use different computation model of propagation. From a technical

perspective, the time complexity analysis of the new AC-3 is different from that of

AC-6 whose worst case time complexity analysis is straightforward. One common

point shared by AC-3.1 and AC-6 is that they have to face the same problem: the

recorded value may be removed from its domain before we use it and thus we need

to check whether it is still in the domain each time we need it. This makes some
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portions of the new implementation of the AC-3.1 similar to AC-6. We remark

that the proof technique in the traditional view of AC-3 may not directly lead to

the new AC-3 and its complexity results.

[Wal93] gives detailed experiments comparing the efficiency of AC-3 and AC-4.

Our work complements this in the sense that with the new implementation, AC-3

now has optimal worst case time complexity.

The number of raw constraint checks8 is frequently used to evaluate practical

efficiency of CSP algorithms. It can be shown that if the same ordering of variables

and values are processed, AC-3.1 and the classical AC-6 have the same number of

raw constraint checks. AC-3.0 and AC-4 will make no less raw constraint checks

than AC-3.1 and AC-6 respectively.

At last, we remark that the coarse grained algorithms are simpler and can be

easily integrated into specific applications.

In summary, there are two computation models underlying known algorithms.

As is shown in this chapter, it is possible to develop competitive algorithms in

both models in terms of worst case complexity and empirical performance. In

order to further improve the efficiency of arc consistency enforcing, more properties

(both general like bidirectionality and special like monotonicity) of constraints and

heuristics are desirable.

3.7 Summary

In this chapter we present a natural implementation of AC-3 whose complexity

is better than the traditional understanding. AC-3 was not previously known to

have worst case optimal time complexity9 even though it is known to be practically

8In theory, applying bidirectionality to all algorithms will result in a decrease of raw con-
straint checks. However, if the cost of a raw constraint check is cheap, the overhead of using
bidirectionality may not be compensated as demonstrated by [BFR99]

9We notice that Bessiere and Regin have independently developed an algorithm AC-2001
[BR01], similar to AC-3.1, with optimal worst case complexity.
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efficient. Our new implementation brings AC-3 to O(ed2) on par with the other

optimal worst case time complexity algorithms. Techniques in the new implemen-

tation can also be used with path consistency algorithms.

While worst case time complexity gives us the upper bound on the time com-

plexity, in practice, the running time and number of constraint checks for various

CSP instances are the prime consideration. Preliminary experiments show that

the new implementation significantly reduces the number of constraint checks and

the running time of the traditional one on hard arc consistency problems. Fur-

thermore, the running time of AC-3.1 is competitive when compared with the best

algorithms, based on the benchmarks from the experiment results in [BFR99]. The

raw constraint checks required by both AC-3.1 and AC-6 are the same. We con-

jecture that based on the CELAR instances, the new approach to AC-3 may lead

to a more robust AC algorithm for real world problems than other algorithms.

We also show how the new AC-3 leads to a new algorithm for path consistency.

We conjecture from the results of [CJ96] that this algorithm can be a practical

implementation for path consistency.



Chapter 4

Arc Consistency on Non-binary

Monotonic and Linear Constraints

In the previous chapter, we focused on binary constraints. Indeed they were the

main concern in the study of arc consistency before the 1990s. In the 1990s,

more and more applications are brought to the realm of Constraint Satisfaction

Problem through Constraint Programming (CP) systems. They can be naturally

and conveniently modeled by non-binary constraints, which involve more than two

variables. Some typical examples of non-binary constraints include the all different

constraint, the cardinality constraint [Reg96] and linear arithmetic constraints. To

deal with new applications efficiently, it is necessary to study non-binary constraint

networks.

There are two main approaches to deal with non-binary networks. The first

is to avoid altogether the question of a non-binary network. This is achievable

since it is always possible to translate a non-binary network into a binary one

[DP89, RPD90]. The standard techniques for binary networks can then be used

to solve the transformed CSP, thus solving the original non-binary CSP. A recent

paper [BvB98] examined this approach in detail.

The second approach is to develop consistency techniques directly for non-

55
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binary constraints. One obvious way is to extend techniques developed in the binary

network for non-binary network. AC-3 was generalized by Mackworth [Mac77b] to

the algorithm NC to deal with non-binary constraints. Later GAC-4 [MM88] was

proposed to make use of the (support) technique developed in AC-4 (see Section

3.1). It improves the complexity of NC, at the cost of a complex data structure and

thus higher space complexity. To initialize that data structure, it always reaches

its worst case complexity as AC-4 does for any instance. The time complexity of

GAC-4 is O(edr) where e is the number of constraints, d is the size of the domain

and r the maximum arity of constraints in a network. Unlike their counterparts

for binary network, NC and GAC-4 may not be practical due to their high time

complexity. A more feasible approach is the GAC-schema [BR97] based on single

support, and multidirectionality that is a generalization of bidirectionality to non

binary constraint, but it has the same worst case time complexity as GAC-4.

Another possibility in the second approach is to design specialized techniques

to exploit the semantics of particular non-binary constraints. Efficient consistency

algorithms have been developed for particular classes of constraints. Examples

are the algorithms for the global all different constraint and cardinality constraint

[Reg96].

In this chapter, we address the issue of efficiency of arc consistency enforcing

algorithms. We found that even with a restriction of non-binary constraints to

linear constraints, to enforce arc consistency on a network remains intractable. We

identify a general class of monotonic non-binary constraints, which includes linear

inequalities as a special case, with tractable algorithms. A network of monotonic

constraints can be made arc consistent in time O(er3d). A network of linear in-

equalities can be made arc consistent in time O(er2d) by using bounds consistency

which exploits the special properties of a projection function.

We first present some background material for arc consistency on non-binary

network. In Section 4.2, bounds based propagation is formalized as bounds consis-
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tency on linear constraints. An efficient bounds consistency algorithm is proposed

for linear constraints. In Section 4.3 we consider arc consistency on linear inequali-

ties. A new class of monotonic constraints is identified and a polynomial algorithm

is developed to enforce AC on those constraints. In Section 4.4, we examine arc

consistency for linear equations. Related work is discussed in the last section.

4.1 Arc Consistency on Non-binary Constraints

A constraint in a non-binary network may be defined and represented in a number

of ways. It can be represented explicitly as a set of allowed (or disallowed) tuples,

implicitly as an arithmetic expression, or by any predicate whose semantics is

defined by a particular definition/program code. cS is used to denote both the

(representation) form of a constraint among variables in S and the set of tuples

that satisfy the constraint.

Notation. Again in the presentation of this chapter a variable xi and its index

i are used interchangeably when there is no confusion. For a constraint c without

subscript S, vars(c) and |vars(c)| is used to denote the set and the number of

variables that occur in c respectively.

Definition 6 Given a network (N,D,C) and a constraint cS ∈ C where S =

{i1, · · · , ir}, we define a solution of constraint cS to be any tuple (vi1 , · · · , vir) ∈ cS.

If cS is empty, we say that there is no solution for cS.

We also use cS(vi1, · · · , vir) to denote that (vi1 , · · · , vir) is a solution of cS.

The following definition of arc consistency for non-binary constraints [Mac77b]

is a natural generalization of the one for binary networks.

Definition 7 Given a network (N,D,C), a constraint cS ∈ C is arc consistent

with respect to D iff ∀i ∈ S and ∀v ∈ Di, v is valid with respect to cS, that is v is a
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component of a solution of cS. A network (N,D,C) is arc consistent iff all cS ∈ C

are arc consistent.

The arc consistency for non-binary network is sometimes also called hyper-arc

consistency. We remark that the definition of arc consistency is similar to relational

arc consistency [vBD95]. Enforcing higher level of consistency such as relational

path consistency on non-binary networks is NP-complete in general (see Section

4.4).

The task of an arc consistency algorithm is to remove those invalid values from

the domains of variables with respect to each constraint. In a binary network, the

representation of a constraint may not be so important for this process. In the

non-binary case, the representation form of a constraint may fundamentally affect

the complexity of an arc consistency algorithm. For example, the all different

constraint can be represented in a number of ways. Suppose that we represent the

all different constraint using an explicit tuples as in GAC-4, the arc consistency

algorithm has a polynomial complexity with respect to the size of input. However,

the set of allowed tuples could be too huge to make the algorithm practical in terms

of space and time. The GAC-schema of [BR97] is proposed to partly address this

problem. However, it is a general framework and does not address how to deal

with special constraints such as linear arithmetic constraints efficiently.

4.2 Bounds Consistency on Linear Constraints

In the first subsection, we introduce a special class of non-binary networks—linear

arithmetic constraints and define bounds consistency on them. In the second sub-

section, we present an algorithms to enforce bounds consistency and its complexity

analysis.
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4.2.1 Linear Constraint and Bounds consistency

We denote the set of integers by Z.

Definition 8 A linear arithmetic constraint c{x1,···,xr} is of the form

a1x1 + a2x2 + · · ·+ arxr� b

ai ∈ Z for i ∈ 1..r, b ∈ Z, and � ∈ {=,≤}.

A linear constraint network is one where every constraint is a linear arithmetic

constraint and each domain contains only a finite number of integers. Other linear

arithmetic constraints with (<,>,≥) can be easily transformed into the above

form.

Essentially, the problem of enforcing arc consistency on a single constraint is

related to that of finding all solutions of the given constraint. This may be quite

expensive. One well known way to reduce this cost is to relax domains of the

variables so that they form a continuous real interval bounded by the maximum

and minimum values of the corresponding domains. Since variables can now take

real values and are no longer discrete, it is easy to make the constraint arc consis-

tent with respect to the real intervals1. Some basic interval arithmetic operations

[Moo66] are introduced to simplify our presentation.

Assume that each variable x is associated with an interval [l, u]. [x] denotes the

interval [l, u] associated with x, and 〈x〉 denotes a vector with two components l

and u:

〈x〉 =

⎛
⎜⎜⎝

l

u

⎞
⎟⎟⎠

Let us now define two types of operations on x: interval operation and literal

operation.

1Note that, here, the arc consistency of a constraint network with infinite domains is a straight-
forward extension of the arc consistency of a network with finite domains.
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Given [x] = [l1, u1], [y] = [l2, u2], and a a real number, the interval operations

are defined in the usual fashion:

[x] + [y] = [l1 + l2, u1 + u2],

[x]− [y] = [l1 − u2, u1 − l2],

[x]− a = [l1 − a, u1 − a],

a[x] =

⎧⎪⎪⎨
⎪⎪⎩

[al1, au1], a > 0

[au1, al1], a < 0,

[x] ∩ [y] = [max(l1, l2),min(u1, u2)].

The literal operations are defined as a pairwise vector operation, which differs in

subtraction from the interval counterpart:

〈x〉 ± 〈y〉 =

⎛
⎜⎜⎝

l1 ± l2

u1 ± u2

⎞
⎟⎟⎠ .

We also need the transformation between [ ] and 〈 〉.

〈[x]〉 =

⎛
⎜⎜⎝

l

u

⎞
⎟⎟⎠ where [x] = [l, u],

and

[〈x〉] = [l, u] where 〈x〉 =

⎛
⎜⎜⎝

l

u

⎞
⎟⎟⎠ .

To relate the consistency and interval operations, consider the example

3x− 4y = 0, [x] = [y] = [1, 10].
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Clearly, y cannot take the value 10 no matter what value x takes. More pre-

cisely, given any value of x in [1, 10], y can only take a value in [3/4, 30/4]. So,

the set of valid values of y with respect to the above constraint is [3/4, 30/4] ∩

[1, 10]=[3/4, 30/4]. The above process to remove invalid values can be formalized

as follows.

Definition 9 The projection function πi of a constraint c on xi is

πi(c) =
−1

ai
(a1x1 + · · ·+ ai−1xi−1 + ai+1xi+1 + · · ·+ arxr − b).

Given an interval for each variable, we can define the interval version of the pro-

jection of c on xi as:

Πi(c) =
−1

ai

(a1[x1] + · · ·+ ai−1[xi−1] + ai+1[xi+1] + · · ·+ ar[xr]− b).

We call Πi(c) the natural interval extension of πi(c).

In the above example, πy(c) = 3
4
x. Its natural interval extension Πy = 3

4
[x].

We now define the function Proji(c) as follows:

Proji(c) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Πi(c) if �′ is =

[−∞, Ub(Πi(c))] if �′ is ≤

[Lb(Πi(c)), +∞] if �′ is ≥

where

�′ =

⎧⎪⎪⎨
⎪⎪⎩
≥ if ai is negative and � is ≤

� otherwise

Ub([l, u]) = u,

Lb([l, u]) = l.

We have the following property on arc consistency on a single constraint.
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Proposition 1 Given a constraint c with initial domains ([x1], · · · , [xr]), c is arc

consistent with respect to new domains ([x1] ∩ Proj1(c), · · · , [xr] ∩Projr(c)).

Proof. This is an immediate consequence of the intermediate value theorem from

calculus. �

The relaxation of the domain of a variable from discrete to a continuous real

interval allows efficient arc consistency enforcement on a single linear constraint.

It can be done by computing once Proji(c) for each i ∈ 1..r. Unlike the discrete

case, iteration is not necessary here. However, for a network of constraints, this

process should be iterated and may not terminate [JMSY94].

We now define bounds consistency. Instead of using the real interval relaxation,

we restrict the interval to the Z-interval whose upper bound and lower bound have

to be integers. The Z-interval representation of a set A of reals is �A = [
u�, �v
]

where 
u� is the ceiling of the minimum real values in A and �v
 is the floor of the

maximum real values in A.

Definition 10 A constraint c is bounds consistent with respect to (�Dx1 , · · · ,

�Dxr) iff ∀xi ∈ vars(c), �Dxi
⊆ �Proji(ci). A linear constraint network (N,

D, C) is bounds consistent with respect to (�D1, · · · ,�Dm) iff every ci ∈ C is

bounds consistent.

4.2.2 A bounds Consistency Algorithm and Its Complexity

We now describe an AC-3 like algorithm to achieve bounds consistency (BC) on

a network of linear constraints. Recall that in AC-3, one constraint is actually

treated as two arcs. However, here we take a non-binary constraint as a whole,

rather than r (arity) directions (arcs). Another difference is that the REVISE

procedure here is specialized for BC and linear constraints. A queue is employed

to hold those constraints that need to be revised when the domain of some of its

variables is changed. The algorithm is listed in Fig 4.1.
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Algorithm BC
begin

Q← {c|c ∈ C};
while (Q not empty) do
begin

select and delete c from Q;
REVISE(c,Q);

end
end
procedure REVISE(c,Q)
begin

for each x ∈ vars (c) do
begin

if [x] �⊆ �Projx(c) then
begin

1. [x]← [x] ∩�Projx(c);
2. Q← {c ∈ C | x ∈ vars (c)}

end
end

end

Figure 4.1: Algorithm BC
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We point out that the operation in line 1 of BC differs from the narrowing

operation [BO97] in that the Z-interval representation performs inward rounding

while the [BO97] performs an outward rounding operation. The operation on c

defined by REVISE is not idempotent [BO97].

Lemma 1 Given a linear constraint network (N,D,C), the worst case time com-

plexity of algorithm BC is O(er3d)

Proof. The worst case complexity of BC depends on the number of constraints

ever entering the queue Q. A constraint c enters Q iff some value in some domain

involved in c is deleted. For each variable xi ∈ N , assume it appears in ki con-

straints. The number of constraints ever entering Q is at most
∑n

i=1 d · ki. Let α

be
∑n

i=1 ki. A loose estimate of ki can be simply e which means the variable can

appear in any constraint in the network. However, a relatively tighter estimation

for α is as follows. Consider the bipartite graph Gm,e with vertices sets N and C.

There is an edge between xi ∈ N and cj ∈ C iff xi appears in cj. α is exactly the

number of edges of Gm,e. Since the degree of cj is not more than r we have that

the number of edges in Gm,e is less than re, that is α ≤ re. The complexity of

procedure REVISE is at most r2. Therefore the complexity of BC is O(er3d). �

This proof has a flavor of the proof in [MF85]. Using the proof technique in the

previous chapter, we can have a simple proof. We know that a constraint c enters

Q iff some value in some domain involved in c is deleted. Since c has at most r

variables, it enters Q at most rd times. Hence time spent on c is rd · r2. Finally,

we know that there are e constraints in the network.

The naive algorithm can be improved by making REVISE more efficient.

Proposition 2 Given a non-binary linear arithmetic constraint network (N,D,C),

bounds consistency can be achieved in time O(er2d)

Proof. To improve the efficiency of BC, one way is to make REVISE faster.

Specifically, when we revise cj, we need to compute r projections.
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Let constraint cj be

aj1x1 + aj2x2 + · · ·+ ajrxr � bj.

Let

fj = aj1x1 + aj2x2 + · · ·+ ajrxr − bj

Let Fj be the natural interval extension of fj. Now, for any xi ∈ cj

Πi(cj) = − 1

aji

[〈Fj〉 − 〈aji
[xi]〉]. (4.1)

since we have that

[〈Fj〉 − 〈aji
[xi]〉] = [〈[aj1 [x1] + · · · aji

[xi] + · · · ajr [xr]− bj〉 − 〈aji
[xi]〉]

= aj1 [x1] + · · ·+ aji−1
[xi−1] + aji+1

[xi+1] + · · ·+ ajr [xr]− bj

Note fj is not a projection function and the use of the literal 〈〉 operations in Πi(cj).

Fj in Equation 4.1 can be computed in time of r. For all i ∈ 1..r, according to its

definition, Proji(cj) can now be computed in constant time by using Equation 4.1.

Hence, REVISE can be implemented in linear time of r. So, the BC algorithm is

of time complexity O(er2d). �

Remark. When cj is revised, Fj is computed only once in terms of the intervals

of all variables involved. In the procedure of the revision, the intervals of some

variables in cj may be updated, resulting in the later revision of cj (line 2 in Fig 4.1).

So, the Πi(cj) calculated by using current Fj may not be up to date. However, the

accurate value for Πi(cj) will be obtained in the next round of revision of cj.

4.3 Linear Inequalities and Monotonic Constraints

We now consider arc consistency on a network of linear inequalities.
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Proposition 3 Given a non-binary network (N,D,C) with integer domains and

only linear inequalities, it is arc consistent if it is bounds-consistent.

Proof. Assume the network is bounds-consistent. Now we show that any con-

straint cj is arc consistent with respect to D. Consider any variable xi, xi ∈

vars(cj), and any value v, v ∈ Di. Let l and g be the least and greatest integers in

Di. Let us first assume that the coefficient of xi in cj ai > 0, we have xi ≤ πi(c).

Since the network is bounds-consistent, we have [l, g] ⊆ �Proji(cj), which means

that v ≤ g ≤ Ub(Proji(cj)) where Ub(Proji(cj)) is obtained by letting

xk = vk,∀k ∈ 1..r, k �= i.

where vk is either the lower bounds or the upper bounds of Dk depending on the

interval operation. So, (v1, · · · , vi−1, v, vi+1, · · · , vr) satisfies cj. Similarly, when

ai < 0, we can prove v is part of a solution of cj. �

The following theorem follows from the above proposition.

Theorem 4 A network of linear inequalities can be made arc consistent in worst

case time complexity of O(er2d).

In fact, this result can be generalized to a bigger class of constraints, the non-

binary monotonic constraints. We begin by recalling the definition of binary mono-

tonic constraint in [VHDT92].

Definition 11 [VHDT92] Given a binary network (N,D,C), a constraint c ∈ C

is monotonic with respect to domain TD = ∪n
i=1Di iff there exists a total ordering

on TD such that for all values v, w ∈ TD, c(v, w) implies c(v′, w′) for all v′ ≤ v

and w′ ≥ w.



CHAPTER 4. AC ON MONOTONIC AND LINEAR CONSTRAINTS 67

An example of an arithmetic constraint which is monotonic under this definition

is x ≤ y, [x] = [y] = [1, 10]. However, with this definition, the linear inequality

x + y ≤ 10, [x] = [y] = [1, 10]

is not a monotonic constraint. Consider x = 5, y = 5 satisfying the inequality.

x′ = 5 and y′ = 6, where x′ ≤ x and y′ > y under the natural ordering, are not a

solution of the inequality. In fact, there is no total ordering on TD which makes

this constraint monotonic under the above definition.

However, a binary network of both kinds of constraints can be made arc consis-

tent in time O(ed) by algorithm BC. Thus we see that this definition of monotonic-

ity is stronger than necessary and does not fully exploit the special properties of

inequalities which may lead to more efficient arc consistency algorithms. We intro-

duce the following generalization of binary monotonic constraint which remedies

this problem. Here, the total ordering requirement on the union of all the domains

in [VHDT92] is relaxed.

Definition 12 Given a binary network (N,D,C), a constraint cij ∈ C is mono-

tonic iff there exists total orderings ≤1 and ≤2 on Di and Dj respectively such that

∀v ∈ Di,∀w ∈ Dj,

c(v, w)

implies

c(v′, w′) for all v′ ≤1 v, w ≤2 w′.

The constraint

x + y ≤ 10, [x] = [y] = [1, 10]

is now monotonic if we assume the natural ordering on x, and the reverse of natural

ordering on y. A generalization of monotonicity to non-binary constraints is as
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follows.

Definition 13 Given a non-binary network (N,D,C), a constraint cS ∈ C is

monotonic with respect to variable i ∈ S iff there exists total orderings ≤1, · · · ,≤r

on D1 to Dr respectively such that ∀v ∈ Di,∀vj ∈ Dj,

cS(v1, · · · , vi−1, v, vi+1, · · · , vr)

implies

cS(v′
1, · · · , v′

i−1, v
′, v′

i+1, · · · , v′
r)

for all v′ ≤i v, v1 ≤1 v′
1, · · · , vi−1 ≤i−1 v′

i−1, vi+1 ≤i+1 v′
i+1, · · · , vr ≤r v′

r.

A constraint cS ∈ C is monotonic iff cS is monotonic with respect to all variables

of S.

Immediately we have the following result.

Lemma 2 A non-binary linear arithmetic inequality is a monotonic constraint.

Another example of a monotonic constraint is

x ∗ y ≤ z,Dx = Dy = Dz = {1, . . . , 100}.

For finite domain constraints, our definition of monotonic constraints is more gen-

eral than the monotonic functions defined in [Hyv92].

In order to achieve arc consistency on monotonic constraints, the REVISE in

algorithm BC should be modified as in Fig 4.2. It is important to note that the

new algorithm doesn’t require an explicit projection function. At the initialization

phase of BC, for any constraint c and i ∈ vars(c), we explicitly store the particular

ordering of each domain involved which makes c monotonic with respect to i.

Example. Consider a constraint network with x + y < 0, y + z > 0, z − x < 0

and Dx = Dy = {1, 2, 3} and Dz = −3,−2,−1. We draw the constraints cxy
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procedure REVISE(cj, Q)
begin

for each xi ∈ vars (cj) do
begin
∀k ∈ 1..r, vk ← the greatest value in Dk wrt xk;
DELETE = 0;

1. while ( (v1, · · · , vr) /∈ cj) do
begin

remove vi from Di;
if Di is empty then

Exit and report inconsistency;
DELETE = 1;
vi ← the greatest value in Di

end
if DELETE then

Q← {ck ∈ C | xi ∈ vars (ck)}
end

end

Figure 4.2: Procedure REVISE for monotonic constraints

and cxz in Fig 4.3 where the values in a domain is in increasing order from top

to bottom. To revise cxy, we first revise x. According to Fig 4.3(a), the greatest

values in x and y are 3 and −3 respectively. For 3 + (−3) = 0, 3 is removed from

Dx. The next greatest value is 2. Now we can stop revising x since 2 + (−3) < 0.

To revise y, the greatest values in y and x are −1 and 1 respectively. −1 is removed

since (−1) + 1 = 0. The next greatest value −2 is supported by 1 in x. We finish

the revision of y and thus the constraint cxy. Similarly, when cyz is revised, −3

in Dy and 1 in z are removed. After revising cxz and cxy in sequence, we have an

empty domain for x.

Theorem 5 Given a network (N,D,C) which contains only monotonic constraints,

it can be made arc consistent in time complexity of O(er3d) if the complexity of

evaluating c(v1, · · · , vr) is O(r).
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Figure 4.3: An example for enforcing AC on monotonic constraints

The sketch of the proof is as follows. In a similar fashion to Proposition 3, we can

show that arc consistency can be achieved on monotonic constraints.

The complexity of the algorithm depends on the number of executions of line 1

in the REVISE of Fig 4.2. Consider expanding one execution of the algorithm BC

according to line 1. Executions of line 1 fall into two groups. One group contains

executions without any value removed. The other group contains those with at

least one value removed. Because REVISE can be executed at most r2ed times,

the complexity of executions of the first group is r3ed under the assumption of the

linear time evaluation for c. As for the second group, we cluster the computation

around variables. Now the total computation is

n∑
i=1

r · (di,1 + di,2 + · · ·+ di,l) ≤
n∑

i=1

r · d ≤ er2d

where di,j(j : 1..l) denotes the number of elements removed from Di in some exe-

cution of the while loop in line 1 on i, and l is the total number of such executions.

Since n ≤ r · e, the complexity of the second group will be smaller than the first

group and thus the complexity of the algorithm is O(er3d). �

We remark that, as in Proposition 2, by using the special semantics of monotonic

constraint, it may be possible to decrease the complexity of the arc consistency

algorithm by a factor r.



CHAPTER 4. AC ON MONOTONIC AND LINEAR CONSTRAINTS 71

We now would like to briefly discuss how to embed the monotonic arc consis-

tency algorithm into a fine grained algorithm. AC-6 is used as an example. To

simplify the discussion, we will illustrate the idea using a binary monotonic con-

straint cxy given in Fig 4.4. In the initialization phase of AC-6 for cxy, we only need

cxy

yx

f

e

g..............................................................................................

...................................................................................................

..........................................................................................................................

................................................................................................... ........
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.........
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a

c
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Figure 4.4: A monotonic constraint

the least value in x and the greatest value in y (no need to find support for any

other values because of the monotonic property). The ordering used here makes

a the least value in x and g the greatest value in y. In the implementation, we

can easily associate the values a and g with the revision process for cxy. Now, any

deletion of values of b, c, e, or f by other constraints will not invoke the revision of

constraint cxy. Only when a (or g) is removed will monotonic constraint revision be

invoked. After its execution, the monotonic revision process, will be associated to

the current least (or greatest) values. This approach conforms to the lazy principle

behind AC-6.

4.4 Linear Equations

We now consider non-binary networks where the constraints are linear equations.

Bounds-consistency on a network of equations no longer implies arc consistency

when the domains are discrete although it does if we relax the discrete domains to

Z-intervals.

Unfortunately, the problem of enforcing arc consistency on a single linear equa-

tion is a very hard problem. Recall from the definition (see Section 4.1) that the
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arc consistency of a single constraint implies its satisfiability.

Consider the one-line integer programming problem: Is there a solution for

a1x1 + a2x2 + · · ·+ arxr = b

where a1, · · · , ar, b are constant positive integers, and xi ∈ {0, 1} for all i ∈ 1..r? It

is NP-complete [Pap81]. Therefore enforcing arc consistency on a single equation is

NP-complete. Of course, to enforce arc consistency on a network of linear equations

is also NP-complete.

This observation highlights the computational difficulty with arc consistency on

non-binary constraints. Arc consistency is tractable on linear inequalities (mono-

tonic constraints), but intractable on arbitrary linear constraints such as linear

equations. Let us look at the arc consistency on different representations of a

constraint. One can choose to represent a linear equation

a1x1 + a2x2 + · · ·+ arxr = b

as two inequalities

a1x1 + a2x2 + · · ·+ arxr ≤ b

a1x1 + a2x2 + · · ·+ arxr ≥ b.

If the discrete domains are approximated by Z-interval, arc consistency enforc-

ing gives the same resulting domains on both representations, in the same time

complexity. Without any approximation, the two inequalities can still be made arc

consistent as shown in Section 4.3. However, the resulting domains don’t make the

original equation arc consistent since arc consistency on inequalities only ensures

the satisfiability of each inequality separately and not both. This also shows that

on a network of linear inequalities, enforcing relational path consistency is NP-
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complete while relational arc consistency can be achieved in polynomial time. For

the relational consistency, see Chapter 7.5.

4.5 Related Work

A substantial body of work on non-binary constraints comes from the continuous

domain rather than the discrete domain. The early work [Hyv92, OV93] focused

mainly on issues of correctness, convergence, and searching strategy etc. In more

recent work the emphasis is on using numerical methods such as Newton methods

[BMVH94] and Aitken acceleration [LL98] to speed up convergence. Our definition

of bounds-consistency is similar to arc B consistency [Lho93] and interval consis-

tency [BMVH94, DMP91] but differs in that bounds-consistency uses an inward

rounding operation. The time complexity of filtering algorithms in the continuous

domain, on the other hand, is usually not treated for the following reasons. Firstly

for real/rational intervals, the interval Waltz filtering algorithm may not terminate

given arbitrary linear constraints [Dav87]. Secondly for floating point intervals, the

domain is huge and thus the worst case time complexity may not be of practical

relevance. The efficiency is gained not so much by reducing the time complexity,

but by faster convergence using numerical methods. In [Lho93], existing complex-

ity results from general discrete arc consistency algorithm are used to bound their

filtering algorithms. Thus, the work in the continuous case does not directly help

in obtaining more efficient algorithms and the consequent time complexity analysis

in the discrete case.

Non-binary discrete constraints, including integer linear constraints [NW88],

are widely used for modeling and solving real life problems in finite domain CP

systems [CD96, ILO00, VH89] underlying which is essentially a CSP model. Such

systems employ various techniques based on the propagation of bounds for arith-

metic constraints [Lau78]. The use of bounds based propagation techniques is not
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new and originated as early as in 1978 [Lau78]. However, the efficiency and level

of consistency of such techniques are not studied and described in detail.

In this chapter, we have addressed the question of what level of consistency can

be achieved efficiently on non-binary linear constraints. The observation from Sec-

tion 4.4 shows that arc consistency on non-binary linear equations is not tractable.

We carefully introduce and formalize the notions of bounds-consistency in the con-

text of discrete networks. It is shown that arc consistency for the networks of linear

inequalities can be achieved with a simple AC-3 like algorithm in time complexity

of O(er3d). Where an efficient implementation of REVISE is possible as is the

case with the projection of linear inequalities, the time complexity is improved to

O(er2d).

Given that arc consistency on a single non-binary constraint can be NP-complete,

we identify a general class of monotonic constraints (which need not be linear) for

which arc consistency can be efficiently enforced.

The work reported in this chapter extends the results on binary network in

[VHDT92] to non-binary network. It also complements the GAC-schema [BR97]

by showing the difficulty of arc consistency enforcing and identifying some tractable

class of constraints.

Some open questions are suggested by the results here. What are other general

classes of non-binary constraints for which enforcing arc consistency is efficient?

What is the optimal worst case time complexity for arc consistency on linear in-

equalities and monotonic constraints?



Part III

Solving Functional Constraints

75



76

Binary functional constraints are an important class of constraints in a con-

straint programming system [VH89, VHDT92]. In this part, a variable elimination

method is developed to find solutions for a network of functional constraints both

efficiently and elegantly. Two types of networks are considered: static networks

and incremental networks. A network is static if all constraints in the network

are known a priori. A network is incremental if constraints are added into the

network incrementally and the satisfiability of the network is tested each time a

constraint is added. For a static network of functional constraints, an algorithm

with optimal worst case time complexity of O(ed) is designed, where e is the num-

ber of constraints and d is the size of the domain. For an incremental network

of functional constraints, an incremental algorithm is designed with “almost” the

same time complexity as that of the static one. The elimination method may also

lead to efficient algorithms for networks containing both functional constraints and

other kinds of constraints. For example, it is shown that a network of 0/1/All con-

straints [Kir93] can be made minimal with a time complexity of O(e(d + n)) that

significantly improves the time complexity and level of consistency over existing

work.



Chapter 5

Variable Elimination and Its

Application

We know that CSP is NP-complete in general. However, in real life constraint

satisfaction problems, there are many important classes of constraints which can

be solved in polynomial time and thus are tractable. Binary functional constraints

are one such class of constraints. For any value taken by one variable, a functional

constraint allows at most one value for the other variable.

Functional constraints occur naturally in scene labeling [Kir93, KP88, PT93]

and other problems [SS77]. More importantly, functional constraints are imple-

mented in Constraint Programming (CP) systems as a primitive. For example, in

Constraint Logic Programming (CLP) languages [DVHS+88, JM94, CD96], “equal-

ity”, a functional constraint, is essential. Even when a constraint store of a CP

system does not initially contain any functional constraints, during search or exe-

cution of a constraint program, some constraints may become functional as a result

of variable instantiation or as a result of domain reduction.

The functional constraint is first studied by van Hentenryck et al. [VHDT92].

They propose an efficient algorithm AC-5 to enforce arc consistency (AC) on a

network of functional constraints. This algorithm has a time complexity of O(ed)

77
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while O(ed2) is the optimal worst case time complexity of an algorithm, for example

AC-6 [Bes94] and AC-3.1 (Chapter 3), to enforce AC on a network of general

constraints. Later, networks of functional constraints were found to be tractable

by Kirousis [Kir93] and Cooper et al. [CCJ94].

In this chapter, we propose a variable elimination method to solve a network of

functional constraints. Based on the elimination method, an algorithm is designed

to globally solve a static network of functional constraints, where constraints are

given a priori. It has the optimal time complexity of O(ed), the same cost as the

fastest arc consistency enforcing algorithm AC-5.

We also demonstrate the application of the variable elimination by investigat-

ing a class of 0/1/All constraints, also called implicational constraints in [Kir93].

0/1/All constraints represent a significant class of scene labeling problems. Cooper

et al. and Kirousis studied them and proposed polynomial algorithms to find a

solution for a network of 0/1/All constraints independently [CCJ94, Kir93]. It is

interesting to find that the variable elimination method can be employed to effi-

ciently solve 0/1/All constraints. Specifically, we show that the 0/1/All network

can be made minimal in O(e(d + n)), improving the early results in terms of both

time complexity and the level of consistency.

Preliminaries and definitions are given in Section 5.1. The variable elimination

method and an algorithm to solve a static network of functional constraints are

presented and analyzed in Section 5.2. The algorithm for solving 0/1/All network is

presented and analyzed in Section 5.3. This chapter is concluded with a discussion

on related work.

5.1 Functional Constraints

Functional constraints and minimal network are reviewed in this section.

Definition 14 A binary constraint cij is functional iff for every a ∈ Di (respec-
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tively b ∈ Dj) there exists at most one b ∈ Dj (respectively a ∈ Di) such that

cij(a, b)holds.

The most common varieties of functional constraints are equality constraints.

A typical functional constraint in linear arithmetic is a binary linear equation like

2x + 3y = 5. Functional constraints also include nonlinear equations like x = y2

where x, y ∈ 1..10. Other applications of functional constraints include problems

in scene labeling [Kir93].

Definition 15 Functional network denotes a network with only functional con-

straints.

The minimal network was defined first by Montanari [Mon74]. In its original

definition, the constraint graph is forced to be a complete graph. However, in the

following definition, we consider only those constraints explicitly in the network.

Definition 16 A binary constraint network (N,D,C) is minimal if each pair of

values allowed by each constraint c ∈ C is a part of a solution of the network.

In general, a constraint network may not be minimal. As usual, we can remove

those pairs which can not be extended to any solution of the network. If we regard

each constraint as a set, this process reduces the constraint to its minimal size.

That is why the word minimal is used. Note that the minimality in the definition

is with respect to the topological structure (associated graph) of the network. So

a network is minimal doesn’t mean it is minimal among all equivalent networks.

There may be many networks, with different topological structures, equivalent to

a given network.

Since CSP is NP-complete, making a network minimal is consequently an NP-

hard task in general. However, in polynomial time, a functional network can be

transformed into another network, with a possibly different constraint graph and
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constraints, which is minimal with respect to the new topological structure. A

network of 0/1/All constraints can also be made minimal in polynomial time.

Remark. In the study of arc consistency, given a value a ∈ Di and a constraint

cij, the support(s) of a is not assumed to be known beforehand. In other words, we

have to try each value in Dj to find a support. However, for a functional constraint

cij and any value a ∈ Di, we assume that in constant time, we can determine

whether a has a support in Dj and its value if there is one.

5.2 An Elimination Algorithm

In this section, we introduce the variable elimination method and an algorithm to

globally solve a static network of functional constraints.

k 

l 

j i 
k 

l 

j i 

Figure 5.1: Elimination of variable j

Consider a functional constraint cij in a static network (N,D,C). Variable j

(or i) can be eliminated in the following way to get a new network (N,D,C ′). Let

Cj = {cjk | cjk ∈ C} − {cji} denote the set of all constraints, except cij, involving

variable j. C ′ = (C − Cj) ∪ {(cjk ◦ cij) ∩ cik | cjk ∈ Cj}. Recall that ◦ denotes a

composition of two relations.

In the new network, there is only one constraint (cij) on j and thus j can be

regarded as being eliminated.

For example, in Fig 5.1 after the elimination of j, the original network of

{cij, cjl, cjk} becomes {cij, cil, cik} where cil is the composition of cij and cjl, and

cik the composition of cij and cjk.

The variable elimination process has the following property.
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Property 1 Given a functional network (N,D,C) and a constraint cij ∈ C. The

new network (N,D,C ′) after the elimination of variable j or i is equivalent to

(N,D,C).

Proof. Without loss of generality, assume variable j is eliminated. ai denotes

a value in the domain of variable i.

Assume (a1, a2, · · · , an) is a solution of (N,D,C). We need to show it satisfies

C ′. The difference between C ′ and C is that it has new constraints C ′
j = {c′ik ∈

C ′ | ∃cjk ∈ Cj}. Consider any c′ik ∈ C ′
j. Since c′ik = (cjk ◦ cij) ∩ cik, where

cjk, cik ∈ C, (ai, aj) ∈ cij and (aj, ak) ∈ cjk imply (ai, ak) ∈ c′ik(∈ C). Hence ai and

ak satisfies c′ik.

Conversely, we need to show that any solution (a1, a2, · · · , an) of (N,D,C ′) is a

solution of (N,D,C). Given the difference between C ′ and C, it is only necessary

to show the solution satisfies Cj = {cjk ∈ C | cjk /∈ C ′}. Consider any cjk ∈ Cj.

According to variable elimination, we have c′ik ∈ C ′ such that c′ik = (cjk ◦ cij)∩ cik.

We know (ai, aj) ∈ cij and (ai, ak) ∈ c′ik. Since c′ik = (cjk ◦ cij) ∩ cik, there exists

u ∈ Dj such that (ai, u) ∈ cij and (u, ak) ∈ cjk. However, as (ai, aj) ∈ cij and cij is

functional, u has to be aj . So, aj and ak satisfy cjk. �

We assume the constraint graph of a functional network is connected in the

rest of this section. If it is not connected, the following presentation still perfectly

applies to each connected component.

Definition 17 A network (N,D,C) is canonical if and only if

C = {ci1, ci2, · · · , ci(i−1), ci(i+1), · · · , cin}

for some i.

In other words, all constraints in a canonical network share one and only one

common variable and form a tree with height of 1.
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In terms of the property of variable elimination we can immediately reduce a

network by eliminating one variable after another. Let NE be the set of already

eliminated variables and NU be N−NE. Take a variable j from NU such that there

exists a constraint cjk where k ∈ NU , and eliminate j, resulting in NE = NE ∪ {j}

and NU = NU−{j}. The elimination process is repeated until there is one variable

left in NU . Now we show that the reduced network is canonical.

Assume n ≥ 2 and the constraint graph of the network is connected. First, we

show that the elimination process terminates with |NU | = 1. When j is chosen to

be eliminated, there always exists cjk with k ∈ NU because the variable elimination

preserves the connectedness of the graph.

Next, we show the property that there are no constraints between variables

in NE, and for any variable j ∈ NE, there is a unique constraint in the network

involving j (of course, the other variable in the constraint is from NU). It is easy

to be verified when the first variable is eliminated. Assume the property holds

after m rounds of elimination. Now, let us choose j ∈ NU and a constraint cjk

where k ∈ NU . If there is no constraint between any variable in NE and j, the

property still holds after the elimination. Otherwise, let constraint ck′j be the

unique one on j and k′ ∈ NE. After the elimination of j, ck′j is discarded while

a unique new constraint ck′k is introduced. In this case, the property holds again

after the elimination. In summary, no matter what the original network is, the

final reduced network has one variable not eliminated, called free variable, and

only one constraint between the free variable and every other variable. Hence, it is

canonical. The reduced network is also called a canonical form of the original one.

Given the special structure of a canonical form, an arc consistency enforcing

algorithm is sufficient to make it minimal. An instantiation of the free variable will

lead to a valid instantiation of all other variables. This instantiation of all variables

makes up a solution of the network.

A close look at the above reduction reveals that a proper ordering of variables
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procedure Static-Eliminate (inout (N,D,C), out consistent)
{ consistent ← true;
1. Take any i ∈ N , L← {j | ∃cij ∈ C};

while (L �= ∅) {
Select and delete j ∈ L;

2. Di ← {x ∈ Di | ∃y ∈ Dj such that (x, y) ∈ cij};
if (Di = ∅) then {

consistency ← false;
return;
}

3. for each cjk ∈ C − {cij} {
4. c′ik ← cjk ◦ cij;
5. C ← C − {cjk};

if ∃cik ∈ C then c′ik ← c′ik ∩ cik;
L← L ∪ {k};
C ← C ∪ {c′ik};
}
}
}

Figure 5.2: Elimination algorithm for static functional constraints

to eliminate is necessary to avoid redundant composition of constraints. In a static

network, we simply choose any variable as a free variable and eliminate all its

neighbors until there is no new neighbors generated (note that elimination will

produce new neighbors for the free variable). A detailed algorithm is listed in

Fig 5.2. The algorithm uses a set L to hold the neighbors of the free variable

to be eliminated. It also revises (line 2) the domain of the free variable in each

elimination step, in order to check the satisfiability of the network. Note in the

algorithm, it is not necessary to revise the domain of Di in the for loop (at line 3)

because the revision will ultimately be done later by line 2.

Example. Fig 5.3 shows how the algorithm works step by step. After k is

eliminated, we introduce a new neighbor k1 for i. In the final step we eliminate

k1 and revise the domain of i by removing a. Now we obtain a canonical network.

Since the domain of the free variable i is not empty, the original constraint network
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is satisfiable.
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Figure 5.3: An example for eliminating variables in a constraint network

Theorem 6 Given a functional network, its satisfiability can be determined by the

algorithm in Fig 5.2 in O(ed) time.

Proof. Algorithm Static-Eliminate finally changes the original constraint net-

work to a canonical one. The revision of the domain of the free variable in line 2

in Fig 5.2 will tell the satisfiability of the network.

The complexity of the algorithm depends on the number of executions of line 3

in Fig 5.2. Let C0 be the initial set of constraints in the network. Any constraint

cjk ∈ C0 will be checked only once because it is excluded from further consideration

in line 5. Any new constraint produced in line 4 will never satisfy the loop condition

in line 3 because it is directly incident on the free variable i. Therefore it is only

considered once at line 2. So, the for loop is executed at most |C0| = e times. Each

operation in the algorithm can be done in time of at most d. Hence the algorithm

has a complexity of O(ed) �

Corollary 1 A functional network can be transformed in O(ed) time to an equiv-

alent network which is minimal.
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Proof. A canonical form can be obtained by the elimination algorithm. It can

be verified that every value of the free variable in the canonical network is part of

a solution of the network thanks to the revision of the domain of the free variable.

To make the network minimal, it is only necessary to revise the domains of all the

other variables. �

Without the revision of the domain of the free variable in the elimination al-

gorithm, the canonical form may not be minimal. For example a network with

Dx = Dy = {a, b} and C = {cyx, cxz} where cyx = {(a, a)} and cxz = {(a, a), (b, b)}

is canonical but not minimal. It is minimal if we remove the value b from the

domain of x (consequently (b, b) will be implicitly removed from cxz).

5.3 Solving 0/1/All Constraints

As pointed out in the previous section, a network with mixed types of constraints

may benefit from the variable elimination. In this section we investigate efficient

algorithms to solve a network of 0/1/All constraints. More information and moti-

vation can be found in [Kir93, CCJ94].

Definition 18 ([CCJ94]) A constraint cij, is a directed 0/1/All constraint if for

each value a ∈ Di (cij satisfies the following):

1. for any value b ∈ Dj, (a, b) /∈ cij; or

2. for any value b ∈ Dj, if ∃u ∈ Di such that (u, b) ∈ cij, then (a, b) ∈ cij; or

3. there is a unique value b ∈ Dj, (a, b) ∈ cij.

A constraint cij is functional if either condition 1 or condition 3 is satisfied for both

cij and cji. A constraint cij is 0/1/All constraint iff both cij and cji are directed

0/1/All constraint. A two-fan constraint cij, also called an “All” constraint, is a

constraint where there exist a ∈ Di and b ∈ Dj such that cij = ({a} ×Dj) ∪ (Di ×
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{b}). A fan-out constraint is a constraint cij such that cij = {a} × S for some a

in Di and S ⊂ Dj, or cij = S × {b} for some b in Dj and S ⊂ Di.

 
 

a 
 
 
b 
 
 
c 

a 
 
 
b 
 
 
 

y  x  

Figure 5.4: cxy is a directed 0/1/All constraint but cyx is not

Condition 1 in the definition means that there is no support in Dj for a value

a. Condition 3 means that there is a unique support for the value a. If neither

condition 1 nor condition 3 is true for a, condition 2 implies that if one value in Di

is related to some value b ∈ Dj and it is not the only one then all values in Di are

related to b. That cxy is directed 0/1/All does not mean that cyx is also directed

0/1/All. Consider the example in Fig 5.4. For each value in x, there is a unique

support in y. So cxy is directed 0/1/All. However, for cyx and value y.a, neither

condition 1 nor 2 is satisfied. To satisfy condition 2, we need (a, b) ∈ cyx because

of (b, b) ∈ cyx. Contradiction. Hence cyx is not directed 0/1/All.

Examples of two-fan constraint and fan-out constraint are illustrated in Fig 5.5.
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Figure 5.5: Two-fan (left) and fan-out (right) constraints



CHAPTER 5. VARIABLE ELIMINATION AND ITS APPLICATION 87

0/1/All constraints have two nice properties which can be verified in accordance

with the definition.

Property 2 ([CCJ94]) After enforcing arc-consistency on 0/1/All constraints,

any 0/1/All constraint is trivial, bijective or two-fan.

A trivial constraint is either empty or universal.

Property 3 ([CCJ94]) The set of 0/1/All constraints is closed under the opera-

tions involved in path consistency: 1) Intersection of constraints; 2) Composition

of constraints.

Definition 19 ([vBD95]) A binary relation cij represented as a (0, 1)-matrix is

row convex if and only if in each row all of the ones are consecutive; that is, no

two ones within a single row are separated by a zero in that same row.

Both functional and 0/1/All constraints are row convex. For row convex con-

straints there is the result:

Theorem 7 ([vBD95]) For a path-consistent complete constraint network, if there

exists an ordering of the domains D1, · · · , Dn such that all constraints are row con-

vex, the network is minimal and strongly n-consistent.

It is obvious that a path consistency enforcing algorithm will make the 0/1/All

constraint network minimal by Theorem 7 and Property 2 and 3, and thus the

problem is solved. However, the complexity of a typical path algorithm is high,

such as O(n3d3) in [MH86] and O(n3d2) in [DBVH97]. The rest of this section

presents more efficient algorithms.

Remark. For any 0/1/All constraint cij and any value a ∈ Di, we assume in

constant time we know whether i.a has no support, one support, or all elements

in Dj as supports. For the case of one support, the support can be accessed in

constant time.
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5.3.1 Arc Consistency on 0/1/All Constraints

First we enforce arc consistency on 0/1/All constraints. As shown by the Prop-

erty 2, it simplifies the presentation and analysis of our algorithms although it may

not be necessary for solving 0/1/All constraint network.

The categorisation lemma in [CCJ94] shows that in an arc consistency algo-

rithm a 0/1/All constraint can be dealt with in the same way as functional and

monotonic constraints in [VHDT92]. An adaptation of AC-5 (see [VHDT92]) to

0/1/All constraints will result in an algorithm of complexity of O(ed).

5.3.2 The Elimination Phase

After making the 0/1/All constraints arc consistent, we remove the universal con-

straints. The new network, called an 1/All network, contains only functional and

two-fan constraints.

Definition 20 Given a 1/All network, a functional block is a maximum connected

sub graph of the network, which has a spanning tree containing only functional

constraints.

Definition 21 A functional constraint cij is bivalued if and only if |Di| ≤ 2 and

|Dj| ≤ 2.

The algorithm to solve 0/1/All constraints is presented in Fig 5.6. First, elim-

ination is applied only to the functional blocks (line 1), which is implemented by

line 1 in the algorithm Eliminate shown in Fig 5.7. Now, there is a free variable

for each functional block. Let us hide the eliminated variables together with all

constraints between the free variable and eliminated variable from the network (see

line 2 to line 3 in Fig 5.6). The solution of the new network can be easily extended

to a solution of the original one by instantiating the eliminated variables according
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to the value of the free variables. The algorithm A in line 4 is to find a solution for

the new network, and will be discussed in next subsection.

Algorithm OA-algorithm
{ Enforce arc consistency on (N,D,C) and remove universal constraints;
1. Eliminate ((N,D,C), consistent);

if consistent then {
2. EV ← { all eliminated variables };

FC ← { constraints between free variables and eliminated variables};
N ← N − EV ;

3. C ← C − FC;
Enforce arc consistency on (N,D,C) and remove universal constraints;

4. A((N,D,C));
instantiate variables in EV wrt FC;
}
else report inconsistency
}

Figure 5.6: Algorithm for 0/1/All constraints

The algorithm Eliminate (in Fig 5.7) differs from the algorithm Static-Eliminate

only in that the former deals with a network with several functional blocks.

An immediate question is, after elimination, what kinds of constraints there are

in the new network. We know that constraints are generated by composition and

then intersection of constraints during the elimination process. An exhaustive ex-

amination shows that there are only three types of constraints: bivalued functional;

fan-out; and two-fan constraints (see the switch statement in line 2 of Fig 5.7) if

no empty constraint (inconsistency) has occurred during elimination. The current

functional constraints result from the intersection of two-fan constraints and thus

allow only two valid values for each variable involved in the constraints. By en-

forcing arc consistency on the network and removing fan-out constraint (universal

constraints), we have only bivalued functional constraints and two-fan constraints.

If we continue variable elimination with respect to bivalued functional constraints,

we will inevitably fall into a situation similar to an incremental network where the
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time complexity of the algorithm becomes O(edα(2e, n)) (see Chapter 5). Here we

want an algorithm with complexity of O(ed).

procedure Eliminate (inout (N,D,C), out consistent)
{ FC = {cij | cij ∈ C is functional};

V = {i, j | ∃cij ∈ FC};
consistent ← true;
while (V �= ∅) {

select and delete i ∈ V ;
L← {j | ∃cij ∈ FC};
while (L �= ∅) {

Select and delete j ∈ L;
Di ← {x ∈ Di | ∃y ∈ Dj such that (x, y) ∈ cij}; // revise domain Di

if (Di = ∅) then {
consistency ← false;
return;
}
for each cjk ∈ C − {cji} {

1. if cjk ∈ FC then L← L ∪ {k};
c′ik ← cjk ◦ cij;
C ← C − {cjk};
if ∃cik ∈ C then c′ik ← c′ik ∩ cik;

2. switch (c′ik) {
case ∅ : consistency ← false;

return;
case functional:
case fan-out:
case two-fan: cik ← c′ik;
}

} // until L = ∅; process one connected component
} // until V = ∅; process all components
}

Figure 5.7: Elimination algorithm for functional constraints

5.3.3 The A (“All”) Algorithm

In this subsection, we study two-fan constraints (also called “All” constraints) and

present an algorithm for a network with both two-fan constraints and bivalued

functional constraints which is simply called mixed network in this subsection.
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For ease of presentation, we introduce the following notations:

Definition 22 Given a two-fan constraint cij. The pivot of cij in Di is defined

to be the value a ∈ Di such that ∀b ∈ Dj (a, b) ∈ cij, and denoted by pj
i . The

coordinate of any value in Dj with respect to cij is defined to be pj
i .

A variable i is fully two-fan constrained if and only if all constraints incident to

i are two-fan constraints. The values of the domain of a fully two-fan constrained

variable fall into two classes. One, called the pivot class, consists of the pivots of

all incident constraints, while the other, called the nonpivot class, includes all the

other values.

A two-fan constraint cij can be simply represented by the two pivots (pj
i , pi

j).

pj
i is the only value in Di which is supported by any value in Dj, and every other

value has a unique support, pi
j, in Dj .

A search procedure is employed to solve the mixed network. Before presenting

the algorithm, we highlight some properties of two-fan constraints. First recall

an observation made in [CCJ94]. To emphasize its importance, we formalize it as

follows.

Definition 23 Given a network (N,D,C), an instantiation of a set of variables

S ⊆ N is separable, if it satisfies all constraints among S, and for any constraint

cij ∈ C between a variable i ∈ S and a variable j ∈ N −S, cij allows j to take any

value under the current instantiation of i.

For a network with only one two-fan constraint cij, the instantiation of i by the

pivot pj
i is separable.

Proposition 4 Given a CSP with network (N,D,C) and a separable instantiation

of a set of variables. If the CSP is satisfiable, then the instantiation is part of some

solution of the CSP.
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The correctness of the above proposition is immediate. This proposition implies

that after a separable instantiation is found, we can exclude further consideration

of those instantiated variables and all constraints involved in at least one of those

variables. Thus, we get a smaller problem to work on. It can be shown that repeat-

ing this process will at last decompose the mixed network into a set of separable

instantiations and the combination of them is a solution to the original problem.

The identification of a separable instantiation is achieved by the A-propagate

procedure(Fig 5.8). It works as follows. First, select a starting variable i and

instantiate it to a value a. The next step is to try to instantiate its neighbor vari-

ables that have not been done so yet. For any uninstantiated neighbor k such that

there exists cik ∈ C, we have two cases. In the case that a is pk
i , the identification

procedure is stopped along the direction of cik. Otherwise, no matter whether cik

is two-fan or functional, we have a unique choice in Dk and thus we need apply the

identification process to the neighbors of k since in the direction of cik the instan-

tiation has not yet been found to be separable. Finally we get a set of variables

whose instantiation is separable. A trivial case is that the set of variables is N

itself.

One problem in the procedure above is that the instantiation step for a variable

may fail. This failure occurs when the instantiation step tries to instantiate a

variable to two different values, which is a contradiction. It is also possible that

there is no value to assign to a variable. This case is easier and can be addressed

in the same spirit as discussed below. The algorithm in [CCJ94] simply returns to

the starting variable and select the next value available. However, there is a better

and faster way to resolve the failure.

Proposition 5 In the procedure of identifying a set of variables with separable

instantiations, if there is a contradiction, then for the starting variable there are at

most two possible values leading to a solution of the problem.
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procedure A-Propagate(in a, i,N , out M, con, p1, p2)
{ L← ∅;

for each j ∈ N aj ← null;
ai ← a;
con ← true;
for each j such that cij ∈ C {

if cij is bivalued functional {
let (ai, b) ∈ cij;
aj ← b; aj .coordinate← NIL;
L← L ∪ {(aj, j)};
} else { // two-fan constraints

aj ← pi
j; aj .coordinate← pj

i ;
L← L ∪ {(aj, j)};
}
}
while (L �= ∅ and con) {

Delete first element (b, j) from L
for each cjk

if there is only one u such that (b, u) ∈ cjk then
if ak = null then {

L← L ∪ {(u, k)};
ak ← u;
u.coordinate← b.coordinate;
} else if xk �= u then {

con ← false;
p1 = b.coordinate;
p2 = u.coordinate;
M ← all the other uninstantiated variables

}
} // until L = ∅ or not con;
}

Figure 5.8: A-Propagate for a network with two-fan constraints and bivalued func-
tional constraints
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Proof. Let the starting variable be i. If there is any bivalued functional

constraint incident to i, the domain of i has at most two values and thus the

proposition is true. Otherwise, let j be the variable where the contradiction occurs.

Now let us trace the cause of the assignment of two different values v1 and v2 to

the same variable j. If v1 (respectively v2) is caused by the instantiation of only

one variable k, we keep tracing the cause of the instantiation of k. Otherwise, if

the instantiations of more than one variables enforce j to take v1 (respectively v2),

we just choose any variable and continue tracing the cause of its instantiation. The

trace stops at the starting variable i. Let j1 (respectively j2) be the second last

variable in tracing v1 (respectively v2). The instantiations of j1 and j2 must be pi
j1

and pi
j2

. In the chain of variables from j1 to j (respectively j2 to j), pi
j1

(respectively

pi
j2

) of j1 (respectively j2) leads to the unique instantiation of any variable after it.

Hence, as long as j1 and j2 take the same instantiations, we will have at least one

contradiction at j. The only way to exclude the instantiation pi
j1

of j1, or pi
j2

of

j2, is to instantiate i with the coordinate of pi
j1

and pi
j2

. For all other values, the

contradiction still remains at j. �

Definition 24 Given a CSP, a value a ∈ Di is almost globally valid if and only

if a is part of a separable instantiation of the CSP.

Property 4 Given a fully two-fan constrained variable i, we have

• for the nonpivot class of i: if one of the values is almost globally valid, then

any value will also be almost globally valid;

• for the pivot class of i: if three of the values are almost globally valid, then

any value will also be almost globally valid.

Proof. Consider the nonpivot class of i. Since none of the values in the class

is a pivot, we have to choose the pivot of any neighbors of i no matter what value

we take for i from the nonpivot class. This proves the claim on nonpivot class. For
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the pivot class, assume there exists some pivot which is not almost globally valid.

We have at most two valid pivots in terms of Proposition 5, which contradicts the

assumption that there are three valid values in the pivot class. �

Remark. Obviously, in a mixed network, a variable which is not fully two-fan

constrained has at most two values in its domain since there is a bivalued functional

constraint incident to it.

To find a solution of a mixed network, we only need to identify separable in-

stantiations recursively until all the variables are instantiated. The algorithm A is

given in Fig 5.9.

Algorithm A (in (N,D,C))
{ Select any value a ∈ Di for any variable i ∈ N

A-Propagate(a, i,N,M, consistent, i1, i2);
if not consistent then { // contradiction occurs

if ∃cij ∈ C such that cij is bivalued functional then {
let b be the other value in Di;
A-Propagate(b, i, N,M, consistent,−,−);
} else {

A-Propagate(pi1
i , i, N,M, consistent,−,−); // try the first

if not consistent then
A-Propagate(pi2

i , i, N,M, consistent,−,−); // try the second
} //end of the process of fully two-fan constrained variable
} // end of the process of contradiction
if consistent then {

1. N ← N −M ;
if N �= ∅ then A((N,D,C));

} else report no solution for (N,D,C);
}

Figure 5.9: Algorithm for a network with two-fan constraints and bivalued func-
tional constraints

Theorem 8 A two-fan network can be made minimal in time complexity of O(en).

Proof. The A algorithm is correct according to Proposition 4 and 5. The

complexity of A-Propagate is at most e and it is called at most n times. The A
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algorithm finds (at least) one solution to the network. To achieve the minimality,

it can be slightly modified using Property 4 to check (a constant number of values

of) each variable by A-Propagate rather than skipping a set of variables (M) in

the main loop (see line 1). The time complexity is still O(en). �

Theorem 9 A 0/1/All network can be enforced to be minimal in a time complexity

of O(ed + en).

Proof. The transformation of an 0/1/All CSP to a 1/All CSP takes O(ed) (see

Section 5.3.1). Consider the OA-algorithm (see Section 5.3.2). In the elimination

procedure, it can be verified that the type of c′ik at line 2 will be of only four types as

shown in the algorithm according to Property 3. After the elimination procedure,

there are only two-fan functions and bivalued functions. So, they can be made

minimal in O(en) in accordance with the previous theorem. Now, a revision of the

domains of all eliminated variables with respect to their free variables will make the

whole network minimal. The complexity of the elimination procedure is still O(ed)

since all operations involved in 0/1/All constraints can be done with a complexity

of at most d. �

5.4 Related Work

For functional constraints, there are two classes of related work. The first class

includes work [VHDT92, Liu95, AB96, Zha98] which is done mainly in the con-

text of arc consistency. [VHDT92] focuses on efficient arc consistency algorithms

on functional constraints and does not consider finding a global solution. [Liu95]

proposes a more efficient arc consistency algorithm for increasing functional con-

straints. [AB96] introduces a new kind of consistency, label-arc consistency, and

shows that functional constraints with limited extensions to other constraints can

be solved globally. However, analytical results are not given there. [Zha98] embeds
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the techniques dealing with functional constraint in arc-consistency algorithms in a

similar way to [Liu95] and observes the problem of conflict of orienting from which

all the above mentioned algorithms (except [VHDT92]) suffer. The other class of

work (e.g. [Dav93]) aims at the tractability (in the context of NP-completeness)

rather than more efficient algorithms.

Motivated by the above work, we propose an elimination algorithm to globally

solve functional constraints both efficiently and elegantly. Its complexity of O(ed)

to achieve minimality on static constraints is the same as that of the best algorithm

achieving arc-consistency [VHDT92]. Note that AC is not sufficient to decide the

satisfiability of a functional network. For example, the network in the following

picture is arc consistent but has no solution.
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Conceptually, variable elimination can be regarded as a generalization of Gaus-

sian elimination. One of its application is that a system of linear equations with

at most two variables per equation can be solved linearly ([AS80]).

Another relevant work in CSP is bucket elimination [Dec99]. It is designed

mainly for a general CSP (NP-complete) and has been useful as an abstract tool.

As such the time and space complexity of the algorithm in [Dec99] is high. Our

work here may motivate more efficient bucket elimination algorithms for special

classes of constraints.

The directly related work on 0/1/All constraints are [CCJ94] and [Kir93], both

of which give a sequential algorithm with time complexity ofO(ed(n+d)) to find one

solution (note that the non-binary 0/1/All constraints system defined in [Kir93]

can be treated as a binary constraint system). Here, we obtain better results
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with a time complexity of O(en) for a network with only “All” constraints and

O(e(d + n)) for network with 0/1/All constraints. Furthermore, minimality of the

network is also achievable with the same time complexities. Thus, compared with

[CCJ94, Kir93], we obtain a higher degree of consistency on 0/1/All constraints,

with more efficient algorithms.



Chapter 6

Solving Functional Constraints

Incrementally

The constraint store of a Constraint Programming (CP) system can be modeled as a

CSP and processed by the help of techniques developed to solve a CSP. Constraints

are added to this constraint store as a CP program is executed, while in the study

of CSP all constraints are assumed to be known a priori.

It is interesting to study the incrementality of the store to design more efficient

CSP techniques and thus improve the efficiency of the hosted CP system. It is also

necessary to do so since CP systems play a key role in the successful application of

CSP to real life problems and wider areas across AI and OR.

Given that functional constraints are primitive in CP systems [VHDT92], it is

worthwhile to study functional constraints in an incremental context. Due to their

incremental nature, arc consistency enforcing algorithms can still be directly used,

without compromising efficiency, in an incremental CSP. However, a direct em-

ployment of some other algorithms for static CSP may be inefficient. For example,

to invoke the variable elimination process, developed in the previous chapter, each

time a constraint is added is not efficient.

An incremental algorithm is proposed in this chapter. It solves an incremen-

99
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tal system of only functional constraints in O(edα(2e, n)) where α is the inverse

Ackermann function.1 It is significant to observe that incremental solving can be

achieved with almost the same cost as the static algorithm in previous chapter.

In a general CSP consisting of both functional and non-functional constraints,

the algorithm above while efficient does not establish global consistency on as

many constraints as possible. We present another algorithm for a general CSP

which establishes global consistency, in O(ed2 log e) time, on all constraints as

long as they are between variables connected through a path of only functional

constraints. This time complexity is still close to that of general arc consistency

algorithms typically used in CP systems.

6.1 Incremental Network

In a finite domain CP system, a constraint store, essentially a constraint network,

is maintained incrementally. A constraint may be added to or removed from the

constraint store during the execution of a program. The constraint solver is required

to determine whether the constraint store is consistent (to a certain degree) each

time a new constraint is added. To capture the incremental property of a constraint

store, we introduce the notion of an incremental system or incremental network.

Initially at time 0, the system is empty. At any later time t, some new variables

with their associated domains and constraints may be added to the system. In this

chapter, when we refer to a functional constraint, we mean that it is functional

when it is added into the system unless it is explained otherwise.

Usually in CP systems, the removal of constraints only happens during back-

tracking which is implemented by restoring the state of the constraint store together

with its associated data structures.2 So we consider only the addition of constraints

1The inverse Ackermann function grows extremely slowly and for all practical purposes, we
have α(2e, n) ≤ 4.

2Arbitrary removal of constraints is not provided in most CP systems. It remains a research
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into the store. More details on constraint solving in the context of CLP languages

and systems can be found in [JM94].

Recall that a functional network denotes a network containing only functional

constraints. A mixed network here denotes one with functional constraints and

other general constraints. A functional block of a constraint network denotes a

maximum connected subnetwork which has a spanning tree containing only explicit

functional constraints. An explicit functional constraint is one which is functional

when it is added into the system.

For example, the network in Fig 6.1 (a) is functional. The part of a network

shown in Fig 6.1 (b) is a functional block where c13 drawn with dark lines is not

functional.

6.2 Solving Incremental Functional Networks

To solve an incremental functional network, a naive approach is to apply the vari-

able elimination method developed in Chapter 5 to the network each time a new

constraint is added. It leads to an algorithm with worst case complexity of O(e2d).
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a  b  c  a  b  c  

5 

3 

4 

1 

2 

(a) (b) 

Figure 6.1: (a) A functional network; and (b) A functional block

To decide the satisfiability of the network, we observe that it is not necessary

challenge since semantically it leads to non-monotonic behavior. There is little work on the
algorithmic aspect either.
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to apply the variable elimination every time a new constraint is added. It suffices

to do so when the newly added constraint forms a circuit with those already in the

network.

Example. Consider the network in Fig 6.1(a). There are four variables

{1, 2, 3, 4} with the domain {a, b, c} in the network. Constraints are added into

the network in the order of c12, c34, c13 and c24. The idea to deal with the con-

straints is illustrated as follows.

1. c12 = {(a, a), (b, b), (c, c)}. We first mark a variable, say 2, as eliminated with

respect to c12. Then mark 1 as free, and revise the domain of 1 with respect

to c21, i.e. remove values in D1 which are not allowed by c21.

2. c34 = {(a, a), (b, c), (c, b)}. Mark 4 as eliminated and 3 as free, revising D3

wrt c34.

3. c13 = {(a, a), (b, b), (c, c)}. Both 1 and 3 are free variables. The property we

will maintain is that in any connected component of the constraint graph,

there is only one free variable. Thus, we keep, say 1, as free and eliminate 3.

Then revise D1 with respect to c31. So far, no real elimination has occurred

but we can verify that there is a solution for the current network since D1

(the domain of the free variable 1) is not empty.

4. c24 = {(a, a), (b, c), (c, b)}. Now both variables 2 and 4 have been eliminated.

We require that a new constraint is allowed only on free variables rather

than eliminated ones. Since an eliminated variable is marked with respect

to a particular constraint, we can follow the chain of such constraints until

a free variable is found. From variable 4 we get 3 and from 3 we get 1

which is free. Elimination also occurs during this tracing. A new constraint

c′14 = {(a, a), (b, c), (c, b)} is obtained by composing c13 and c34, and 4 can

now be marked as eliminated with respect to c14. Now discard c34 from the
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network. Similarly we trace 2 to free variable 1. The fact that 2 and 4 share

the same free variable 1, implies a circuit is formed. Further eliminating 2 (wrt

c12) leads to a new constraint c′′14 = {(a, a), (b, b), (c, c)}. The intersection

of c′14 and c′′14 gives c14 = {(a, a)}. Revising D1 with respect to c14 causes

D1 = {a}. Discard constraint c24, c′14, and c′′14 from the network. Now the

network contains {c12, c14, c13} and is satisfiable.

Intuitively, we try to maintain any connected component in the network as close

to its canonical form (see Chapter 5) as possible. �

The circuit detection in the above process can be achieved by (a) maintaining all

connected components and (b) checking whether two given variables are in the same

component. Operation (a) can be implemented efficiently by union; and operation

(b) by find in the disjoint set union algorithm [Tar75]. Each connected component

is maintained as a set of variables which is represented by a tree structure. Each

variable has a field to point to its parent. Fig 6.2 shows a connected component

containing variables form 1 to 6. The representative variable (6 in the example) of

a connected component is at the root of the tree. It is distinguished from other

variables by its field pointing to itself.
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Figure 6.2: Data structure for variables in the same connected component

We define the following two operations:

• Find(i) returns the representative variable of the component to which i be-

longs.
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• Union(i,j) merges two disjoint components represented by i and j, and returns

one representative variable for the new component.

There are many ways to implement union and find. To obtain a fast algorithm,

we use both strategies of union by rank and path compression. Union by rank

makes the representative variable of the component with more variables the new

representative for the merged component. For example, in Fig 6.3 the representa-

tive 4 points to 1 in the new component. After finding the path from a variable i

to its representative variable, path compression is applied to relocate the pointers

of all variables along the path to the root. For the example in Fig 6.4, after the

representative of variable 5 is found, the parent of 5 is changed to be the root.

1 

2 3 

4 

5 

1 

2 3 
5 

4 

Figure 6.3: Example of union(1, 4)
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Figure 6.4: Example of find(5)

A new constraint cij merges two connected components into one if i and j are in

different components; otherwise it results in a circuit. Checking whether a circuit

arises after the addition of cij amounts to checking whether find(i) = find(j).

Variable elimination is triggered by each occurrence of path compression in

the find function. Assume find(i) returns j as the representative variable and the
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path from i to j is i1(= i), i2, · · · , ik(= j). Elimination is applied to ik−1, · · · , i2

in sequence. The eliminations are not necessary for enforcing global consistency

but is simply an efficient way to prepare the network for the case of a circuit.

Algorithms for find, union, and an auxiliary operation init are shown in Fig 6.5. Init

is invoked whenever a new variable is added into the network. In the algorithms,

p[i] represents the parent of variable i, and h[i] the rank, the number of variables

in the tree rooted at i.

procedure Init(in i){ p[i]← i; h[i]← 0; }

procedure Union(in i, j) // i,j are roots
{ if (h[i] > h[j]) then {

p[j]← i;
return i;
} else {

p[i]← j;
if (h[i] = h[j]) then h[j]← h[j] + 1;
return j;
}
}

procedure Find(in i, inout(N,D,C))
{ if (i �= p[i]) then {

k ← Find(p[i], (N,D,C));
cki ← c(p[i])i ◦ ck(p[i]); // eliminate p[i]
C ← (C − c(p[i])i) ∪ {cki};
p[i]← k;
}
return p[i];
}

Figure 6.5: Disjoint set union algorithms for functional constraints

The algorithm for solving functional constraints incrementally is shown as pro-

cedure Pure-Eliminate in Fig 6.6. Its input includes the constraint cij to be added

and a network (N,D,C) which is a previous output of the algorithm itself or

C = ∅. It outputs a new network (N,D′, C ′) and whether (N,D,C ∪ {cij}) is sat-
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isfiable. Pure-Eliminate will first test whether i and j are in the same connected

component. Let k and l be the representative variables of i and j respectively.

Immediately after the find(i) and find(j), there is a constraint directly between i

and k (and a constraint between j and l) because of the elimination accompanying

path compression.

If the test result is negative, the two connected components represented by k

and l are unioned together, and the new constraint ckl (line 2) added to the network.

Let k be the representative element for the new connected component. Domain Dk

is revised wrt ckl (line 3) in order to determine the satisfiability of the network.

Otherwise, a circuit results from adding cij. The elimination is now triggered

to establish global consistency. By eliminating variables i and j in sequence (line

1) with respect to cki and constraint ckj respectively, the constraint ckk is obtained

(line 1). Note the two eliminations here are equivalent to one elimination and

intersection discussed in the example above. Dk is then revised with respect to ckk

(line 3). Idk in the algorithm denotes the identity relation on Dk. It means that

an element in Dk is only related to (or supported by) itself.

procedure Pure-Eliminate (inout (N,D,C), in cij, out consistent)
{ consistent ← true;

k ← find(i, (N,D,C)); l ←find(j, (N,D,C));
1. ckl ← cjl ◦ (cij ◦ cki);

if (k �= l) then {
2. C ← C ∪ {ckl };

if (union(k, l) �= k) then swap k and l;
} else ckk ← ckk ∩ Idk;

3. Dk ← {x ∈ Dk | ∃y ∈ Dl such that (x, y) ∈ Ckl}
if (Dk = ∅) then consistent ← false;
}

Figure 6.6: Incremental elimination for functional constraints

Theorem 10 Given that at time t, a total of e constraints are added into an in-

cremental functional network which has n variables. The algorithm Pure-Eliminate
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determines the satisfiability of the network incrementally in worst case time com-

plexity of O(edα(2e, n)).

Proof. We first prove that the algorithm can decide the satisfiability of the

network correctly.

Let C be the set of all constraints added incrementally into the network until

time t, N the set of variables, and D the set of domains. Let the final output

of Pure-Eliminate be (N,D′, C ′). Given the fact that all operations in the algo-

rithm are variable eliminations and domain revisions, according to Property 1 (see

Section 5.2), (N,D′, C ′) is equivalent to the original network (N,D,C) because

domain revisions obviously preserve the equivalence. If Pure-Eliminate returns in-

consistency, there is no solution for (N,D,C). Otherwise, we only need to prove

(N,D′, C ′) is satisfiable. Specifically, for the root variable r of any connected com-

ponent of the network (N,D′, C ′), every value in Dr can be extended to a solution

of the network. The proof is given inductively on e.

When e = 1, the claim is true because there is now only one constraint and the

revision of Dr is sufficient to make the network consistent.

The following proposition will be useful later.

Proposition 6 Given any connected component G = (V,E) in the graph of (N,D′, C ′)

where V and E are the set of vertices and edges respectively. ∀u ∈ V,∀v ∈ N − V ,

there is no constraint between u, v in (N,D′, C ′).

This is a consequence of the use of find and union in the algorithm, and C is empty

at time 0.

Assume for the first m constraints, the algorithm outputs network (Nm′
, Dm′

, Cm′
)

(graph Gm′
) with the property claimed above. Now, consider the addition of a

constraint cij to (Nm′
, Dm′

, Cm′
). Let (N (m+1)′, D(m+1)′ , C(m+1)′) (graph Gm+1′)

be the output of Pure-Eliminate. First assume i and j are in different connected

components and with representative variables k and l respectively, and k is the
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representative variable of the new component merging k and l in G(m+1)′. Clearly

all connected components except k and l in G(m+1)′ are the same as those in Gm′
.

So according to Proposition 6, we only need to show that all values in Dk can be

extended to a solution of the newly formed connected component. According to

line 3 in Fig 6.6, for any value a ∈ Dk, there exists b ∈ Dl satisfying constraint ckl.

The induction hypothesis implies that a can be extended to a solution of the com-

ponent k, and b to a solution of the component l in Gm′
. Proposition 6 shows that

there is no constraint between variables in components k and l except the newly

added ckl. Hence, a combination of the two solutions of components k and l in Gm′

gives a solution to the new connected component in G(m+1)′. In a similar manner,

the claim can be proved when i and j are in the same connected component.

The complexity of the algorithm depends on the total number of executions

of find and union because all other operations in the algorithm accumulate to a

complexity of O(ed) while find has a complexity scaled up to d times of its usual

complexity. For e constraints and n variables, we have 2e find operations and at

most n-1 union operations. Hence, the complexity of the algorithm isO(edα(2e, n))

[Tar75] where α is the inverse Ackermann function. �

6.3 On Incremental Mixed Networks

In practice, a CP system deals with mixed rather than functional networks. Obvi-

ously, the Pure-Eliminate algorithm can be directly applied to a mixed functional

network by simply ignoring the non-functional constraints. While this is efficient

in time, it does not fully exploit the properties of functional constraints. Func-

tional constraints can interact with the non-functional ones through composition

and intersection.

Example. Consider the functional block in Fig 6.1(b). There are variables

{1, 2, 3, 4, 5, . . .} with domain {a, b, c} in the network. Constraints are added into
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the network in the order of c12, c34, c13, some constraints on 5, c15 and c53. They

will be processed by Pure-Eliminate as follows:

1. c12 = {(a, a), (b, b), (c, c)}. Revise D1 with respect to c21.

2. c34 = {(a, a), (b, c), (c, b)}. Revise D3 with respect to c43.

3. c13 = {(a, c), (b, b), (b, a), (c, c)}, a non-functional constraint. So ignore it.

4. Some other constraints on 5 and other variables are added.

5. c15 = {(a, a), (b, b), (c, c)}. Because of the other functional constraints on 5,

we mark 5 as free and 1 as eliminated.

6. c53 = {(a, a), (b, b), (c, c)}. Mark 5 as free and 3 as eliminated.

Nothing is pruned here although c13 could have been actively used to prune D5.

To get a better pruning, we eliminate a variable as soon as possible as follows.

1. c12 = {(a, a), (b, b), (c, c)}. Revise D1 with respect to c21.

2. c34 = {(a, a), (b, c), (c, b)}. Revise D3 with respect to c43.

3. c13 = {(a, c), (b, b), (b, a), (c, c)}. Ignore it.

4. Some other constraints on 5.

5. c15 = {(a, a), (b, b), (c, c)}. Eliminate 1 immediately. As a consequence two

new constraints are added. The first is c′52 = {(a, a), (b, b), (c, c)}, the com-

position of c51 and c12. The second is c′53 = {(a, c), (b, b), (b, a), (c, c)} (the

composition of c51 and c13). Revise D5 with respect to the two new con-

straints. Discard c12 and c13.

6. c53 = {(a, a), (b, b), (c, c)}. Eliminate 3. Add c′54 = {(a, a), (b, b), (c, c)} (the

composition of c′53 and c34) and c′55 = {(a, c), (b, b), (b, a), (c, c)} (the compo-

sition of c′53 and c35). D5 is revised to be {b, c} (wrt c′55). Discard c′53 (non-

functional) and c′55. Now the final network has constraints {c51, c
′
52, c53, c

′
54},
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revised domains and is satisfiable. Note. Here we use only compositions of

constraints. An alternative way is to intersect c′53 and c53 first and then to

eliminate 3. �

In order to make an active use of a non-functional constraint added earlier into

the network, one of its variables is eliminated as soon as a functional constraint

on it is added. This contrasts sharply with the strategy used in Pure-Eliminate.

When a functional constraint is added, the variable with fewer constraints incident

to it will be eliminated to decrease the cost of elimination. Let nc[i] denote the

number of constraints incident to i; p[i] = j and p[j] = j if i is eliminated with

respect to cij, otherwise p[i] = i and p[j] = i. As before, when i is eliminated wrt

cij, we can safely say j is the free variable of i, or j has one eliminated variable i.

At time 0, for all i ∈ N , nc[i] = 0 and p[i] = 0 where 0 /∈ N .

The algorithm Mixed-Eliminate given in Fig 6.7 works as follows. Assume a

constraint cij is added. If any one or both i and j are eliminated, cij needs to be

expressed with respect to correct free variables k and/or l (line 1-3), by eliminating

i (wrt cki) and/or l (wrt clj) in line 4. Furthermore, if cij is functional, one of k

and l has to be eliminated wrt the newly formed ckl. The for loop in line 7 is

to eliminate the variable l. In line 8, the new ckm is not checked whether it is a

functional constraint. However, one may check it and initiate more elimination

operations if necessary to reach a minimal (sub)network of more constraints. The

parameter (N,D,C) of the algorithm is either initially empty or a previous output

of the algorithm.

Theorem 11 Given that at time t, a total of e constraints have been added into a

mixed network with n variables. Algorithm Mixed-Eliminate makes any functional

block in the network minimal in a worst case time complexity of O(ed2 log e).

Proof. Let C be the set of all constraints added into the network until time

t, N the set of variables and D the set of domains. It can be shown that each
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procedure Mixed-Eliminate (inout (N,D,C), in cij, out consistent)
{ consistent ← true;
1. k ← i; l ← j;
2. if (p[i] �= 0) then k ← p[i];
3. if (p[j] �= 0) then l← p[j];
4. ckl ← ckl ∩ (cjl ◦ (cij ◦ cki));
5. if cij is functional then Eliminate((N,D,C), ckl, consistent);

else { nc[k]← nc[k] + 1;nc[l]← nc[l] + 1; }
}

procedure Eliminate (inout (N,D,C), in cij, out consistent)
{ if (nc[i] > nc[j]) then { k ← i; l← j }

else { k ← j; l ← i }
C ← C ∪ {ckl};
Revise Dk wrt ckl;
if (Dk = ∅) then {

consistent ← false;
return;
}
if (k = l) then return;

7. for all clm ∈ C do {
8. ckm ← (clm ◦ ckl) ∩ ckm;

C ← (C − {clm}) ∪ {ckm};
p[m]← k;
}
p[l]← k;
nc[k]← nc[k] + nc[l];
nc[l]← 1;
}

Figure 6.7: Incremental elimination algorithm for mixed constraints
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functional block (N r, Dr, Cr) in (N,D,C) is eventually transformed into a canon-

ical form (N r, Dr′ , Cr′) by Mixed-Eliminate. Specifically, in the canonical form,

there is only one free variable r from N r and there is one and only one functional

constraint between the free variable and any other variable in N r. Any non-explicit

functional constraint cij ∈ C between variables in the same functional block will

be transformed to a constraint crr on r or a functional constraint between r and i

(or j) ∈ N r because at last one of i and j is eliminated. Clearly, because of the

continuous revision of Dr, any value in Dr can be extended to a solution of the

functional block. So, each functional block is minimal.

The cost of all operations in the algorithm is bounded by O(d2). For example,

the composition of a functional constraint and a non-functional constraint has a

cost of O(d2). The complexity of the algorithm is determined by the number of

times, from time 0 to time t, a constraint is processed (say clm) in the for loop (line

8) in Eliminate. For any constraint clm ∈ C, each time it is processed, the number

of constraints under k (line 8) is at least twice the nc counter of l (Note the next

appearance of clm in line 8 will be under the name of ckm when k is eliminated).

Given e constraints in total, clm will be processed at most log e times. Hence the

complexity of the algorithm is O(ed2 log e). �

In practice, arc consistency enforcing is widely used as a pruning facility in a

constraint solver in CP systems. The above theorem shows that Mixed-Eliminate

may be used in a practical solver since its cost is comparable to that of the optimal

arc consistency enforcing algorithms (see Chapter 3).

6.4 Discussion

As discussed in the previous chapter, there is a lot of work related to functional

constraints. However, little work takes the incrementality into consideration.

Two algorithms, Pure-Eliminate and Mixed-Eliminate, have been proposed to
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solve functional constraints in an incremental system. They are especially useful

for CP systems [JM94]. When applied to a CP system with mixed constraints, the

first algorithm is more efficient while the second may achieve more pruning than

the first. The choice between the two algorithms in a CP system will depend on the

trade-off between efficiency of the consistency algorithm and its pruning ability.

In summary, our results are both significant and promising because:

• such functional constraints are an important class which occurs in many

problems, and is a primitive for most CP systems.

• minimality is achieved on the functional block.

• the time complexities are low and almost the same as corresponding optimal

AC algorithms.

• they are applicable to other constraint domains like Gaussian elimination and

unification.



Part IV

Set Intersection and Consistency
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As shown in Chapter 5, there is a canonical form for functional constraints.

From the canonical form, it is straightforward to test the satisfiability and find a

solution of the original network if necessary. A similar effort in CSP community

is to identify, under certain conditions, “forms” of a network which imply the

satisfiability of the network. One of the “forms” discovered by researchers is local

consistency (k-consistency).

A major progress in the community of CSP is that local consistency in a network

with particular properties is sufficient to guarantee global consistency. In this part,

we present a framework to study the relationship between the local consistency and

global consistency of a network. Under this framework, results on set intersection

problem can be lifted to results on the consistency of a network. The set intersection

problem is: under what condition the intersection of a class of sets is not empty.

The framework unifies several well-known consistency results including van Beek

and Dechter’s work on row convex, m-tight, and m-loose constraints. Thanks to

the framework, some new results on local consistency and global consistency are

also discovered. They improve our understanding of convex and tight constraints.



Chapter 7

Set Intersection and Consistency

A pure backtracking search procedure is not efficient for most CSP problems. From

the work by Waltz [Wal72, Mon74, Mac77a], it is observed that arc consistency

enforcing can significantly improve the efficiency of a search procedure by pruning

the search space. A natural question arises: to what extent can we prune the

search space so that no backtracking is needed? The introduction of the concept

of k-consistency [Fre78](see Section 2.3) is an attempt to answer this question. A

problem can then be solved without backtracking by enforcing strong n-consistency,

where n is the number of all variables. Although this operation is too expensive to

be of any practical use, it plays a role in understanding the solving of some classes

of CSP problems with particular properties.

An interesting progress is that certain properties of constraint networks are

identified such that, a certain level of local consistency is sufficient to guarantee

global consistency, that is strongly n-consistency, on these networks.

This progress is significant in terms of the following considerations. As observed

by Dechter [Dec92b], in resource-bounded reasoning, at any inference step it is

desirable to examine only a few data items and to avoid decision where to store

intermediate results. This kind of locality is involved in all realistic models of

human reasoning. In constraint based reasoning, this principle of locality has well

116
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been distilled into local consistencies. There are natural relationships between local

consistency and global consistency in real life reasoning tasks. For example, the

scene labeling scheme [Wal75] (essentially an arc consistency enforcing algorithm)

of Waltz often leads to globally consistent objects. Secondly, local consistency is

obviously more efficient to compute.

The existing work has mainly focused on two classes of properties of a constraint

network: topological properties of the associated graph of the network and semantic

properties of constraints. One example of the first class is that if a constraint

network forms a tree, arc consistency is sufficient to make the network minimal in

the sense defined in Section 5.1. Freuder identifies a parameter width of a graph

[Fre82, Fre85]. Given the width of the graph of a network, a certain level of

consistency in the network is sufficient to ensure global consistency. Dechter and

Pearl generalizes the results on trees to hyper-trees [DP89].

An example of the second class is that path consistency in a network, where the

domain of each variable has two or less values, ensures global consistency [vBD95,

page 550]. In fact, there are many results in this class. Montanari shows that

for monotone constraints, path consistency implies global consistency [Mon74].

Dechter discovers that a certain level of consistency in a network whose domains

are of limited size ensures global consistency [Dec92b]. Van Beek and Dechter gen-

eralizes the monotone constraints to a much larger class of row convex constraints

[vBD95]. Later, they make use of the looseness and tightness of a constraint to

study the consistency inside a network [vBD97]. Another line of work starting

from Schaefer’s [Sch78] work on boolean satisfiability to the work of Jeavons et. al.

[JCG97] on closure properties on constraints also falls into this class.

We observe that k-consistency is closely related to set intersection results. Here,

we propose a framework1 relating consistency in a network to set intersection re-

1Our work can be related to the first class in those cases where the network topology leads to
some set intersection property.
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sults. It unifies a number of well known results on semantic properties of con-

straints, for example those in [vBD95, vBD97]. Our framework allows the study of

properties of consistency on a particular network from the perspective of properties

of set intersection. For example, we have the following property of set intersection.

For a collection of convex sets, if every two (2) of them intersect, then the inter-

section of all the sets is not empty. The interesting point is that local information

on intersection of every pair of sets gives global information on intersection of all

sets. Intuitively, this can be related to getting global consistency from local con-

sistency. In fact, by dint of convex sets, a special class of constraints—row convex

constraints—is identified. Our framework enables us to lift the result on convex sets

to this result. If a binary network of row convex constraints is (2+1)-consistent

(path consistency), it is globally consistent. This example will be elaborated in

Section 7.3.

In this chapter, we first present the properties on intersection of tree convex sets,

small sets and large sets in Section 7.1. The framework is developed in Section 7.2.

It consists of a lifting lemma and a proof schema. The schema provides a generic

way of using the lifting lemma to obtain consistency results from properties of set

intersection.

We then demonstrate several applications of the framework. Specifically, a class

of tree convex constraints is identified and the property of consistency on a network

of such constraints is presented in Section 7.3. It generalizes the existing work on

row convex constraints [vBD95]. A new result on the tightness of constraints is

presented in Section 7.4. It advances the existing work [vBD97] in the aspect that

a certain level of local consistency still ensures global consistency on a network

where only some constraints are tight. Finally, tree convexity and tightness are

studied under relational consistency and directional consistency in Section 7.5.

An important result is that networks with certain constraints satisfying tightness

restrictions can be made globally consistent by enforcing some level of relational
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consistency.

This chapter is summarized in the last section.

7.1 Properties of Set Intersection

The set intersection property which we are concerned with is:

Given a collection of l finite sets, under what conditions is the intersec-

tion of all l sets not empty?

We use S to denote a collection of l sets: {E1, E2, · · · , El}, and U the union of all

the sets in S, that is U =
⋃

i∈1..l
Ei.

A well known example is for mutually intersecting real intervals there is a real

number common to all intervals.

For a collection of arbitrary sets, we may not have any answer for the intersec-

tion problem. In this section, we study two special types of sets. The first type is

restricted to be “convex” in some sense, and the second type is restricted by the

size of sets involved.

7.1.1 Sets with Convexity Restrictions

Definition 25 Given a set U and a total ordering “�” on it, a set A ⊂ U is

convex if the elements in it are consecutive under the ordering, that is

A = {v ∈ U | minA � v � maxA}.

Given S and U , the sets in S are convex if there is a total ordering on U such that

every set in S is convex under the ordering.

A convex set E contains every element in U between its least (min E) and

greatest (maxE) elements under the ordering �.
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Note that when we say a set E is convex, we need a reference set U and an

ordering on it. So, any finite set is convex with respect to itself, under any total

ordering. For any two sets Ei and Ej , there exists an ordering such that they are

convex under the same ordering with respect to Ei ∪ Ej . The ordering may be

defined as follows. We adopt any ordering for the elements in Ei − Ej . We do so

for those in Ei ∩ Ej and in Ej − Ei respectively. Finally, we let all elements in

Ei − Ej be smaller than those in Ei ∩ Ej which in turn are smaller than those in

Ej − Ei. For example, E1 = {1, 2} and E2 = {0, 2, 3} are convex with respect to

U = {0, 1, 2, 3} under ordering 1 � 2 � 0 � 3. E1 consists of the first two elements

and E2 the last three elements.

As an example of a collection of more than two sets, {1, 9}, {3, 9}, and {5, 9}

are not convex. It can be verified by exhausting all possible orderings on the set

{1, 3, 5, 9}.

So, an interesting question is whether a collection S of more than two sets is

convex with respect to U .

Proposition 7 The convexity of a collection of sets S={E1, E2, · · · , El} can be

tested in

O(l + |U |+
∑

i∈1..l

|Ei|).

Proof. Construct a matrix A in the following way. A[i, j] = 1 where i ∈ 1..l and

j ∈ U if and only if the set Ei contains the element j. S is convex if and only if

A is row convex (whose definition is in Section 5.3). In terms of the theorem by

Booth and Lueker [vBD95, page 551], the proposition follows. �

The following result on the intersection of convex sets is a variation of van Beek

and Dechter’s lemma 3.1 in [vBD95].

Lemma 3 (Convex Sets Intersection) Assume the sets in S are convex under
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a common total ordering on U .

⋂
i∈1..l

Ei �= ∅

if and only if for every Ei, Ej ∈ S,

Ei

⋂
Ej �= ∅.

Proof. The necessary condition for the intersection of all the sets to be non-empty

is immediate. Next we prove the sufficient condition. Now we try to find an a ∈ U

such that a ∈ E1, a ∈ E2, · · · , a ∈ El. Since sets in S are convex, a must satisfy

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min E1 � a � maxE1,

min E2 � a � maxE2,

...

min El � a � maxEl.

In other words, a is no smaller than the greatest of the elements in the left column

to a, and no greater than the least of the elements in the right column to a:

max{minE1, minE2, · · · , min El} � a � min{maxE1, max E2, · · · , max El}. (7.1)

For any set Ei ∈ S, since it intersects every other set in S, the least element in Ei

is no greater than the greatest element of any set in S (including itself) :

min Ei � min{maxE1, maxE2, · · · , maxEl}.

Hence,

max{minE1, min E2, · · · , min El} � min{maxE1, max E2, · · · , max El}.
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It implies that there exists an a satisfying constraint 7.1 and thus

⋂
i∈1..l

Ei �= ∅

�

The convexity of a collection of sets imposes a strong restriction on the relation-

ship among the sets of concern in the sense that all sets are dense under a common

total ordering. The Hasse diagram of a total ordering is a chain. Recall that Hasse

diagram is a graph for a total ordering (relation) by removing edges which can be

obtained by transitivity and reflexivity. We now generalize the chain to a tree.

Definition 26 Given a set U and a tree T with vertices U . A set A ⊆ U is tree

convex if and only if there exists a subtree of T whose set of vertices is exactly A.

A set of S is tree convex if there is a tree on U under which every set in S is tree

convex.

b

a

dc

e

Figure 7.1: A tree with nodes {a, b, c, d, e}

Example. Consider a set U = {a, b, c, d, e} and a tree in Fig 7.1. The subset

{a, b, c, d} is tree convex. So is the set {b, a, c, e} since the elements in the set

consists of a subtree. However, {b, c, e} is not tree convex for it does not form a

subtree of the given tree.

Consider again the example of {1, 9}, {3, 9}, and {5, 9} again. The three sets

are not convex but tree convex. A tree on {1, 3, 5, 9} can be constructed with 9
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being the root and 1, 3, 5 being its children. Each set covers the nodes of one branch

of the tree. Therefore they are tree convex. �

The tree convexity describes certain relationship among the sets of concern. For

the tree convex sets, we have the following property on intersection.

Lemma 4 (Tree convex Sets Intersection) Assume the sets in S are tree con-

vex.
⋂

i∈1..l

Ei �= ∅

if and only if for every Ei, Ej ∈ S, Ei
⋂

Ej �= ∅.

Proof. Let T be a tree such that there exists a subtree Ti for each Ei ∈ S. We

take T as a rooted tree and thus every Ti (i ∈ 1..l) can be regarded as a rooted

tree whose root is exactly the node nearest to the root of T . Let ri denote the root

of Ti for i ∈ 1..l.

To prove
⋂

i∈1..l

Ei �= ∅,

we want to show the intersection of the trees {Ti | i ∈ 1..l} is not empty. The

following propositions on subtrees are necessary in our main proof.

Proposition 8 Let T1, T2 be two subtrees of a tree T , and T = T1 ∩ T2. T is a

tree.

If T = ∅, it is a trivial tree. Now let T �= ∅. Since T is a portion of T1, there is

no circuit in it. It is only necessary to prove T is connected. That is to show, for

any two nodes u, v ∈ T , there is a path between them. u, v ∈ T1 and u, v ∈ T2

respectively imply that there exist paths P1 : u, · · · , v in T1 and P2 : u, · · · , v in T2

respectively. Recall that there is a unique path from u to v in T and that T1 and

T2 are subtrees of T . Therefore, P1 and P2 cover the same nodes and edges, and

they are in T , the intersection of T1 and T2. P1 is the path we want.



CHAPTER 7. SET INTERSECTION AND CONSISTENCY 124

Proposition 9 Let T1, T2 be two subtrees of a tree T , and T = T1 ∩ T2. T is not

empty if and only if at least one of the roots of T1 and T2 is in T .

Let r1 and r2 be the roots of T1 and T2 respectively. If r1 ∈ T , the proposition is

correct. Otherwise, we show r2 ∈ T . Assume the contrary r2 /∈ T . Let r be the

root of T and v the root of T (T is a tree in terms of Proposition 8). We have paths

P1 : r1, · · · , v in T1; P2 : r2, · · · , v in T2; and P3 : r, · · · , r1, and P4 : r, · · · , r2 in T .

The assumption tells that r1 �= r2. From the closed walk P3P1P
′
2P

′
4 where P ′

2 and

P ′
4 are the reverse of P2 and P4 respectively, we can construct a circuit containing

at least r1 and r2. It contradicts that there is no circuit in T .

Further we have the following observation.

Proposition 10 Let the root of T be r. Given two subtrees T1 and T2 of T with

roots r1 and r2 respectively. Let r1 be not closer to r than r2, and T the intersection

of T1 and T2. r1 is the root of T if T is not empty.

Let r1 be farther to the r than r2. Assume r2 is the root of T . Since r1 is farther

to r than r2, r2 is not possible to be a node of T1. It contradicts that r2 ∈ T .

Let T =
⋂

i∈1..l
Ti. We are ready now to prove our main result T �= ∅. We select a

tree Tmax from T1, T2, · · · , Tl such that its root rmax is the farthest away from r of

T among the roots of the concerned trees. In terms of Proposition 10, that Tmax

intersect with every other trees implies that rmax is a node of every Ti (i ∈ 1..l).

Therefore, rmax ∈ T . �

Recall that a partial order can be represented by an acyclic directed graph, or

Hasse diagram. It is tempting to further generalize the tree convexity to partial

convexity in the following way.

Definition 27 Given a set U and a partial order on it. A set A ⊂ U is partially

convex if and only if A is the set of nodes of a connected subgraph of the partial

order. Given S and U , the sets in S are partially convex if there is a partial

ordering on U such that every set in S is convex under the ordering.
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However, for this generalization, we do not have a result similar to Lemma 4.

See the following example. Each of the three sets {c, b, d}, {d, f, a} and {a, e, c}

b

c a d

e f

Figure 7.2: A partial order with nodes {a, b, c, d, e}

consists of the nodes of some subgraph in Fig 7.2. They are partially convex and

intersect pairwise, but the intersection of the three sets is empty.

7.1.2 Sets with Cardinality Restrictions

Motivated by the observation in [vBD97, lemma 3.2 in page 556], we have the

following result on arbitrary sets where the only restriction is that each set has

a bounded number of elements. The name of the following lemma is after that

restriction.

Lemma 5 (Small Sets Intersection) Let S={E1, E2, · · · , El} be a collection of

sets. For any Ei ∈ S, assume Ei is finite and |Ei| ≤ m (< l).

⋂
i∈1..l

Ei �= ∅

if and only if the intersection of any m + 1 sets from S is not empty.

Proof.

The necessary condition is immediate.

The sufficient condition is proven by induction on l, the number of sets in S.

The base case is l = m + 1 and the lemma is trivially true. Assuming that the
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lemma is true when l = k (> m), we show that it is also true when l = k + 1.

Without loss of generality, the subscripts of the k + 1 sets are numbered from

1 to k + 1. Let Ai be the intersection of all k sets in S−{Ei}:

Ai = E1 ∩ · · · ∩ Ei−1 ∩ Ei+1 ∩ · · · ∩ Ek+1, for 1 < i ≤ k + 1.

In accordance with the inductive hypothesis, the intersection of every k sets

in S is not empty since the intersection of every m + 1 sets from S is not empty.

Hence, |Ai| ≥ 1.

If Ai ∩ Aj �= ∅ for some i, j ∈ 2..k + 1, i �= j,

⋂
i∈1..k+1

Ei = Ai ∩ Aj �= ∅.

Assume the contrary that Ai ∩Aj = ∅ for all distinct i and j. According to the

construction of Ai’s,

E1 ⊇
⋃

i∈2..k+1

Ai.

Therefore,

|E1| ≥
∑

i∈2..k+1

|Ai| ≥ k > m

which contradicts |E1| ≤ m. �

Motivated by [vBD97, lemma 4.1 in page 561], we consider the following re-

strictions on a collection of sets: 1) each set is with size larger than some number

m; but 2) there is a small number of sets in the collection, and 3) the union U of

all sets has limited size d. The name of the large sets intersection lemma is after

the first restriction. In this case, if the intersection of all sets is empty, then for any

a ∈ U , a is excluded by some set Ei. However, since Ei is large, it can exclude at

most d−m elements in U . All sets in S can exclude at most l× (d−m) elements

in U . For l is also small (such that l(d−m) < d), some element in U may not be



CHAPTER 7. SET INTERSECTION AND CONSISTENCY 127

excluded by any set, which means that the intersection of all sets is not empty.

Lemma 6 (Large Sets Intersection) For all Ei ∈ S, assume Ei is finite and

|Ei| ≥ m. Let | ⋃
i∈1..l

Ei| = d. If l ≤ 
d/(d−m)� − 1, then

⋂
i∈1..l

Ei �= ∅.

Proof. Let U =
⋃

i∈1..l
Ei, and Ai = U − Ei for all i ≤ l. It is immediate that

⋃
i∈1..l

Ai ⊆ U.

We know

|
⋃

i∈1..l

Ai| ≤
∑

i∈1..l

|Ai|.

For |Ai| ≤ d−m, we have

∑
i∈1..l

|Ai| ≤
∑

i∈1..l

(d−m) = l(d−m) < d.

Hence,
⋃

i∈1..l
Ai is a proper subset of U . There exists x ∈ U such that x /∈ Ai for all

i ≤ l, which implies that x ∈ Ei for all i ≤ l. �

The small sets intersection Lemma 5 can be generalized to the following one.

Lemma 7 (Small Set Intersection) Given a collection of sets S. Assume there

is a set E ∈ S such that |E| ≤ m < l.

⋂
i∈1..l

Ei �= ∅

if and only if the intersection of any m + 1 sets (from S ) is not empty.

Proof. When re-examining the proof of Lemma 5, it is easy to find that we

only make use of the cardinality of E1. If we substitute E for E1 in that proof, it

will be a proof for this lemma. �
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A special case of this lemma is a set with only one element.

Corollary 2 (Singleton Set Intersection) Given a collection of sets S. As-

sume there is a set E ∈ S such that |E| = 1.

⋂
i∈1..l

Ei �= ∅

if and only if all sets mutually intersect.

This result is straightforward. Since E has only one element and its intersection

with any other set is not empty, the element in E is the one shared by all sets.

7.2 Set Intersection and Consistency

In this section we relate set intersection and k-consistency in constraint networks.

Furthermore, a proof schema is proposed to lift properties on set intersection to

properties on consistencies in a particular network.

Underlying the concept of consistency is whether an instantiation of some vari-

ables can be extended to a new variable such that all relevant constraints to the

new variable are satisfied. A relevant constraint to a variable x is a constraint

where only x is uninstantiated and all others are instantiated. Each relevant con-

straint allows a set (possibly empty) of values for the new variable. This set is

called the extension set below. The satisfiability of all relevant constraints depends

on whether the intersection of their extension sets is non-empty (see Lemma 8).

Definition 28 Given a constraint cSi
, a variable x ∈ Si and any instantiation ā

of Si − {x}, the extension set of ā to x with respect to cSi
is defined as

Ei,x(ā) = {b ∈ Dx | (ā, b) satisfies cSi
}.

An extension set is trivial if it is empty; otherwise it is non-trivial.
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Throughout this chapter, it is usually the case that an instantiation ā of Y −{x}

is given and Y −{x} is a superset of Si−{x}. Let b̄ be the instantiation obtained

by restricting ā to the variables only in Si − {x}. For ease of presentation, we still

use Ei,x(ā), instead of Ei,x(b̄), to denote the extension of b̄ to x under constraint

cSi
. Some of the three parameters i, ā and x may be omitted from an expression

hereafter whenever they are clear from the context.

Example. Consider the network with variables {x, x1, x2, x4, x5}:

cS1 = {(a, b, d), (a, b, a)}, S1 = {x1, x2, x};

cS2 = {(b, a, d), (b, a, b)}, S2 = {x2, x4, x};

cS3 = {(b, d), (b, c)}, S3 = {x2, x};

cS4 = {(b, a, d), (b, a, a)}, S4 = {x2, x5, x};

D1 = D4 = D5 = {a}, D2 = {b}, Dx = {a, b, c, d}.

Let ā = (a, b, a) be an instantiation of variables Y = {x1, x2, x4}. The relevant con-

straints to x are cS1 , cS2, and cS3 . cS4 is not relevant since it has two uninstantiated

variables. The extension sets of ā to x with respect to the relevant constraints are:

E1(ā) = {d, a}, E2(ā) = {d, b}, E3(ā) = {d, c}.

The intersection of the extension sets above is not empty, implying that ā can be

extended to satisfy all relevant constraints cS1, cS2 and cS3.

Let ā = (b, b) be an instantiation of {x2, x}. E1,x1(ā) = ∅ and it is trivial.

In other words, when an instantiation has a trivial extension set, it can not be

extended to satisfy the constraint of concern. �

The relationship between k-consistency and set intersection is characterized by

the following lemma which is a direct consequence of the definition of k-consistency.

Lemma 8 (Set Intersection and Consistency; lifting) A constraint network

R is k-consistent if and only if for any consistent instantiation ā of any (k − 1)
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distinct variables Y = {x1, x2, · · · , xk−1}, and any new variable xk,

⋂
cS∈CY

ES(ā) �= ∅

where CY is the set of all relevant constraints to xk.

The proof is straightforward and omitted. The insight behind this lemma is a

view of consistency from the perspective of set intersection.

Example. Consider the example above. We would like to check whether

the network is 4-consistent. Consider the instantiation ā of Y again. This is a

consistent instantiation for there is no direct constraint among the variables in Y .

To extend it to x, we need to check the first three constraints. The extension

is feasible because the intersection of E1, E2, and E3 is not empty. Similarly, by

exhausting all consistent instantiations of any three variables, we know the network

is 4-consistent. Conversely, if we know the network is 4-consistent, immediately we

can say the intersection of the three extension sets of ā to x is not empty. �

In a word, with this lemma, consistency information can be obtained from the

intersection of extension sets, and vice versa. Using this view of consistency as

set intersection, some results on set intersection properties, including all those in

Section 7.1, can be lifted to get various consistency results for a constraint network

through the following proof schema.
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Proof Schema

1. (Consistency to Set) From a certain level of consistency in the constraint

network, we derive information on the intersection of certain extension sets

according to Lemma 8.

2. (Set to Set) From the local intersection information of the extension sets,

information may be obtained on intersection of more extension sets according

to set intersection properties (for example the lemmas given in Section 7.1).

3. (Set to Consistency) From the new information on the intersection of the

extension sets, higher level of consistency is obtained according to Lemma 8.

4. (Formulate conclusion on the consistency of the constraint network). �

Given the proof schema, Lemma 8 is also called the lifting lemma.

In the following sections, we demonstrate how the set intersection properties

and the proof schema are employed to obtain both new and well known results on

consistency of a network.

7.3 Application I: Global Consistency on Tree

Convex Constraints

The notion of extension set plays the role of a bridge between the restrictions to

set(s) and properties of special constraints. The sets in Lemma 3 are restricted to

be convex. If all extension sets of a constraint are convex, the constraint is row

convex.

Definition 29 A constraint cS is row convex with respect to x if and only if the

sets in

A = {ES,x | ES,x is a non-trivial extension of some instantiation of S − {x}}

are convex. It is row convex if under a common total ordering on the union of

involved domains, it is row convex with respect to every x ∈ S.
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Example. Consider the constraint {(a, b), (a, c), (b, a), (b, b), (c, b)} on x1 and

x2 with D1 = D2 = {a, b, c}. Its matrix representation is:

x1

a

b

c

x2

a b c⎡
⎢⎢⎢⎢⎢⎢⎣

0 1 1

1 1 0

0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎦

Assume a total ordering a � b � c on the domains. By instantiating x1, we get

extension sets to x2:

E(a) = {b, c}, E(b) = {a, b}, E(c) = {b}.

They are convex because E(a) contains all elements from b to c, E(b) from a to

b, and E(c) from b to b. In fact, it is clearer to see that from the matrix. When

x1 = a, 1’s in the first row of the matrix are consecutive. So are the 1’s in the

second row and third row respectively when x1 = b and x1 = c respectively. This

is exactly why this kind of constraint is named as row convex. Similarly, extension

sets of any instantiation of x2 are also convex. Therefore, the constraint is row

convex. However the following constraint

x1

a

b

c

x2

a b c⎡
⎢⎢⎢⎢⎢⎢⎣

0 1 1

1 1 0

1 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦
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is not row convex, since no matter what ordering on the domain is used, there

always exists some row whose 1’s are not consecutive. In other words, there always

exists an extension set which missed some value between its least and greatest. For

example, under the ordering (a, b, c), Ex2(c) = {a, c} where b is missed. �

Definition 30 A constraint network is row convex if and only if all constraints

are row convex under a common total ordering on the union of all domains.

The tree convex set naturally introduces the following special constraint.

Definition 31 A constraint cS is tree convex with respect to x if and only if the

sets in

A = {ES,x | ES,x is a non-trivial extension set of some instantiation of S − {x}}

are tree convex. cS is tree convex iff under a common tree on the union of involved

domains, it is tree convex with respect to every x ∈ S.

Definition 32 A constraint network is tree convex if and only if there exists a

tree on the union of all domains in the network such that every constraint is tree

convex under the tree.

The consistency results on those special networks can be derived from the prop-

erty of set intersection by the proof schema. We now have the main result of this

section.

Theorem 12 (Tree Convexity) Let R be a tree convex network of constraints

with arity at most r. R is globally consistent if it is strongly 2(r−1)+1 consistent.

Proof. The network is strongly 2(r − 1) + 1 consistent by assumption. We

prove by induction that the network is k consistent for any k ∈ {2r, · · · , n}.

Consider any instantiation ā of any k−1 variables and any new variable x. Let

the number of relevant constraints be l. For each relevant constraint there is one
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extension set of ā to x. So we have l extension sets. If the intersection of all l sets

is not empty, we have a value for x such that the extended instantiation satisfies

all relevant constraints.

(Consistency to Set) Consider any two of the l extension sets: E1 and E2. The

two corresponding constraints involve at most 2(r− 1)+1 variables since the arity

of a constraint is at most r and each of the two constraints has x as a variable.

According to the consistency lemma, that R is 2(r− 1) + 1-consistent implies that

the intersection of E1 and E2 is not empty.

(Set to Set) Since all relevant constraints are tree convex under the given tree,

the extension sets of ā to x are tree convex. Hence, the fact that every two of the

extension sets intersect shows that the intersection of all l extension sets is not

empty, in terms of the tree convex sets intersection lemma.

(Set to Consistency) In terms of consistency lemma, R is k-consistent. �

Since a row convex constraint is tree convex, we have the following result on

row convex constraint originally discovered by van Beek and Dechter [vBD95].

Corollary 3 (Row Convexity) [vBD95] Let R be a row convex network of con-

straints with arity at most r. R is globally consistent if it is strongly 2(r − 1) + 1

consistent.

Alternatively, this result can be lifted from Lemma 3.

Theorem 7 in Chapter 5, a special case of the corollary above, deals with a

network with binary constraints.

7.4 Application II: on Tightness and Looseness

of Constraints

In this section, we study constraint networks in terms of the tightness of con-

straints. Specifically, the m-tight and m-loose properties [vBD97] of a constraint
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are introduced to describe the tightness of a constraint.

7.4.1 Tightness of Constraints

The m-tight property of a constraint is related to the cardinality of extension set

in the following way.

Definition 33 A constraint cSi
is m-tight with respect to x ∈ Si if and only if for

any instantiation ā of Si − {x},

|Ei,x| ≤ m or |Ei,x| = |Dx|.

A constraint cSi
is m-tight if and only if it is m-tight with respect to every x ∈ Si.

For example, the constraint x ≤ y, where x ∈ {1, 2, · · · , 10} and y ∈ {1, 2, · · · , 10},

is 9-tight. Note here |Ex(10)| > 9 when y = 10. However, the constraint is still

9-tight since |Ex(10)| = 10, the size of the domain of x.

Definition 34 A constraint network is weakly m-tight at level k if and only if for

every set of variables {x1, · · · , xl}(k ≤ l < n) and a new variable, there exists an

m-tight constraint among the relevant constraints after an instantiation of the l

variables.

Now, Lemma 7 on small set intersection results in the following theorem.

Theorem 13 (Weak Tightness) If a constraint network R with constraints of

arity at most r is strongly ((m + 1)(r − 1) + 1)-consistent and weakly m-tight at

level ((m + 1)(r − 1) + 1), it is globally consistent.

Proof. Let j = (m + 1)(r − 1) + 1. The constraint network R will be shown

to be k-consistent for all k (j < k ≤ n).

Let Y = {x1, · · · , xk−1} be a set of any k − 1 variables, and ā be an instanti-

ation of all variables in Y . Consider any additional variable xk. Without loss of
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generality, let the relevant constraints be cS1, · · · , cSl
, and Ei be the extension set

of ā to xk with respect to cSi
for i ≤ l.

(Consistency to Set) Consider any m + 1 of the l extension sets. All the corre-

sponding m + 1 constraints contain at most (m + 1)(r− 1) + 1 variables including

xk. Since R is (m + 1)(r − 1) + 1-consistent, according to the set intersection and

consistency lemma, the intersection of m + 1 extension sets is not empty.

(Set to Set) The network is weakly m-tight at level ((m+1)(r−1)+1). So, there

must be an m-tight constraint among the relevant constraints cS1 , · · · , cSl
. Let it

be cSi
. We know its extension set |Ei| ≤ m. For the intersection of every m + 1

of the extension sets is not empty, all l extension sets share a common element in

terms of the small set intersection lemma.

(Set to Consistency) From the lifting lemma, R is k-consistent. �

Immediately we have the following result which is a main result in [vBD97].

Corollary 4 (Tightness) [vBD97] If a constraint network R with constraints

that are m-tight and of arity at most r is strongly ((m + 1)(r − 1) + 1)-consistent,

then it is globally consistent.

Again this result can be lifted directly from Lemma 5.

It is interesting to observe that Corollary 4 requires every constraint to be m-

tight while in the weak tightness theorem it may not be necessary for all constraints

to be m-tight. To see the difference, consider the following example.

Example. In this example, we are interested in how many tight constraints

are necessary to make a constraint network weakly m-tight. Therefore we omit

the semantics of constraints and focus on the topological structure of the network.

Now we construct a constraint network with variables {1, 2, 3, 4, 5}. In the network,

there is a constraint between any pair of variables and among any three variables.

Let the network be strongly 4-consistent. The network is shown in Table 7.1.
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Binary Constraints on variables Ternary Constraints on variables

12 123
13 124
14 125
15 134
23 135
24 145
25 234
34 235
35 245
45 345

Table 7.1: A network with complete binary and ternary constraints

Since the network is already strongly 4-consistent, we can simply ignore the

instantiations of less than 4 variables. This is why we introduce the level at which

the network is weakly m-tight. The interesting level here is 4. For each possibility

of extending four instantiated variables to the other one, the relevant constraints

are listed in Table 7.2. In the table an entry like 1234→ 5 stands for extending the

instantiation of variables {1, 2, 3, 4} to variable 5, and an entry like 125 stands for a

constraint on variables {1, 2, 5}. To make the network weakly m-tight at level 4, one

choice is to make constraints (suffixed by * in the Table 7.2) on {1, 2, 5} and {1, 3, 4}

m-tight. Alternatively, it is sufficient for the constraints (suffixed by + in the table)

on {1, 5}, {2, 3} and {3, 4} to be m-tight. However, the tightness corollary requires

all binary and ternary constraints to be m-tight. The improvement of the weak m-

tightness theorem is significant in this consideration. Further results can be found

in the next section. �

7.4.2 Looseness of Constraint

The next result is a consequence of the large sets intersection lemma. For large

sets, their intersection is not empty as long as they are large enough. It means

that there is certain level of consistency in a constraint network characterized by
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extension relevant constraints
1234→ 5 125*, 135 , 145 , 235, 245, 345, 15+, 25 , 35 , 45
2345→ 1 231 , 241 , 251*, 341, 351, 451, 21 , 31 , 41 , 51+
3451→ 2 132 , 142 , 152*, 342, 352, 452, 12 , 32+, 42 , 52
4512→ 3 123 , 143*, 153 , 243, 253, 453, 13 , 23+, 43 , 53
5123→ 4 124 , 134*, 154 , 234, 254, 354, 14 , 24 , 34+, 54

Table 7.2: Relevant constraints in extending the instantiation of four variables to
the other one

a large set. This is in contrast to the previous results where global consistency is

implied by certain level of local consistency.

The m-loose property of a constraint is related to the cardinality of the extension

set in the following way.

Definition 35 A constraint cSi
is m-loose with respect to x ∈ Si if and only if for

any instantiation ā of Si − {x},

|Ei| ≥ m.

A constraint cSi
is m-loose if and only if it is m-loose with respect to every x ∈ Si.

For example, the constraint x ≤ y, where x ∈ {1, 2, · · · , 10} and y ∈ {1, 2, · · · , 10},

is 1-loose.

The large set intersection lemma is lifted to the following result on constraint

looseness.

Theorem 14 (Looseness) Given a constraint network with domains that are of

size at most d and constraints that are m-loose and of arity r, r ≥ 2. It is strongly

k-consistent, where k is the maximum value such that

binomial(k − 1, r − 1) ≤ 
d/(d−m)� − 1.
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Proof. Let Y = {x1, x2, · · · , xK−1} be a set of any K−1 variables where K ≤ k,

ā a consistent instantiation of the variables in Y , and xK be any new variable. Let

l be the number of relevant constraints to xK . It can be shown that

l ≤ binomial(K − 1, r − 1) ≤ binomial(k − 1, r − 1) ≤ 
d/(d−m)� − 1.

So, according to Lemma 6, the intersection of extension sets to xK is not empty.

Hence, the constraint network is strongly k-consistent. �

To extend an instantiation of k − 1 variables to a new variable, the number of

extension sets (of the relevant constraints) matters when we try to apply the large

sets lemma. We introduce the concept of extension degree for this number.

Definition 36 Given a constraint network R and a set of variables Y ⊆ N . The

involvement degree of a variable x ∈ (N − Y ) with respect to Y is the number

of relevant constraints when extending an instantiation of Y to x. The extension

degree of Y is the maximum involvement degree of all variables in N − Y . The

extension degree of a positive number k(< n) is the maximum extension degree of

all subsets (of N) with k variables.

Note the extension degree may not be an increasing function of k.

Example. Let D = {a, b, c}. Define a constraint network R with variables

{x1, x2, x3, x}, domains being D, and constraints

{cS1 = D ×D ×D − {(a, a, a)},

cS2 = D ×D ×D − {(a, a, b)}}

where S1 = {x1, x2, x} and S2 = {x2, x3, x}. Let us use R to illustrate the concept

of extension degree.

Consider a set of variables Y = {x1, x2, x3}. The involvement degree of x with

respect to Y in R is two. So, the extension degree of Y is two. The extension
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degree of 3 is also two since the extension degree of any subset of {x1, x2, x3, x}

with 3 variables is at most two. It can be verified that the extension degrees of 1

and 2 are zero and one respectively. �

Now a tighter lower bound of the inherent level of consistency is obtained by

using extension degree.

Theorem 15 (Looseness) A constraint network with domains that are of size

at most d and constraints that are m-loose, is strongly k-consistent, where k = n

if the extension degree of any number from 1 to n − 1 is less than or equal to


d/(d−m)�− 1; otherwise, k is the least number whose extension degree is greater

than 
d/(d−m)� − 1.

This theorem is a consequence of Lemma 6.

In fact, the looseness Theorem 14 is a revised version of the following theorem

by van Beek and Dechter [vBD97] which may overestimate the level of consistency

[ZY03b].

Theorem 16 (Looseness) [vBD97] A constraint network with domains that are

of size at most d and constraints that are m-loose and of arity at least r, r ≥ 2,

is strongly k-consistent, where k is the minimum value such that the following

inequality holds,

binomial(k − 1, r − 1) ≥ 
d/(d−m)� − 1.

Here is a counter-example to Theorem 16.

Example. We construct a new network R′ from R in the previous example by

adding a constraint

cS3 = D ×D ×D − {(a, a, c)}

where S3 = {x1, x3, x}.
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It is easy to verify that in R′, every constraint is 2-loose and the arity of each

constraint is r = 3.

In terms of Theorem 16, R′ is strongly 4-consistent because the minimum k

which satisfies

binomial(k − 1, 2) ≥ 
d/(d−m)� − 1 = 
3/(3− 2)� − 1 = 2

is 4. Consider the consistent instantiation (a, a, a) of variables {x1, x2, x3}. Its

extension sets to x with respect to cS1, cS2 , and cS3 are {b, c}, {a, c}, and {a, b}

respectively. Their intersection is empty, indicating that (a, a, a) is not extensible

to x. Hence, R′ is not strongly 4-consistent.

Theorem 14 implies that R′ is strongly 3-consistent since the maximum k which

satisfies

binomial(k − 1, 2) ≤ 
d/(d−m)� − 1 = 
3/(3− 2)� − 1 = 2

is 3. It is not difficult to verify that R′ is strongly 3-consistent. �

Example. To illustrate the difference between Theorem 14 and Theorem 15,

look at the network R again.

According to Theorem 15, R is strongly 4-consistent because the extension

degree of every number from 0 to 3 is not greater than 
d/(d − m)� − 1(= 2).

However, it is only strongly 3-consistent in terms of Theorem 14.

It can be verified that R is strongly 4-consistent.�

Remark. 1) The problem in Theorem 16 does not affect the other theorems

and corollary in [vBD97] on looseness of constraint. 2) Theorem 14 deals with a

network of constraints with the same arity r while the statement in Theorem 16

deals with a network of constraints with arity of at least r. We find that Theorem 14

could be refined to deal with the latter case. However, the computation of k in
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the refined version may be more complex than that in the current version. 3)

Theorem 15 gives a more accurate estimation of k—the level of consistency—in a

network than Theorem 14. Unlike Theorem 14, the estimation of k in Theorem 15

doesn’t depend on the arities of the constraints in the network.

7.5 Application III: Relational Consistency and

Directional Consistency

In the study of constraint networks, there are other definitions of consistency in

addition to k-consistency used in this thesis. The the lifting lemma can be adapted

to them. In this section, we will show the application of lifting lemma in the context

of relational consistency and directional consistency.

7.5.1 Relational Consistency

Relational consistency is first introduced in [vBD95]. A weak version, which is used

here, is proposed in [vBD97] and mainly serves to make the theory on tightness of

constraints more elegant.

Definition 37 [vBD97] A constraint network is relationally m-consistent if and

only if given

(1) any m distinct constraints cS1, · · · , cSm, and

(2) any x ∈ ∩m
i=1Si, and

(3) any consistent instantiation ā of the variables in (∪m
i=1Si − {x}),

there exists an extension of ā to x such that the extension is consistent with the

m relations. A network is strongly relationally m-consistent if it is relationally

j-consistent for every j ≤ m.

In relational consistency, variables are no longer of concern. Instead, constraints

are the basic unit of consideration. Intuitively, relational m-consistency concerns
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whether all m constraints meet at every one of their shared variables. It makes

sense because different constraints interact with each other exactly through the

shared variables.

Relationally 1-, and 2-consistency are also called relationally arc, and path

consistency, respectively.

All the results on small set intersection and tree convex set intersection in

Section 7.1 can be lifted to results expressed by relational consistency.

Here is a new version of weak tightness under relational consistency.

Theorem 17 (Weak Tightness) If a constraint network R of constraints with

arity of at most r is strongly relationally (m + 1)-consistent and weakly m-tight at

level of (m + 1)(r − 1) + 1, it is globally consistent.

Proof. Let j = (m + 1)(r − 1) + 1. The constraint network R will be shown

to be k-consistent for all k (j < k ≤ n).

Let Y = {x1, · · · , xk−1} a set of any k − 1 variables, and ā be an consistent

instantiation of all variables in Y . Consider any additional variable xk. Without

loss of generality, let RS1, · · · , RSl
be relevant constraints, and Ei be the extension

set of ā to xk with respect to RSi
for i ≤ l.

(Consistency to Set) Consider any m + 1 of the l extension sets. Since the R

is relationally (m + 1)-consistent, the intersection of m + 1 extension sets is not

empty.

(Set to Set) The network is weakly m-tight. So, there must be an m-tight

constraint in the relevant constraints RS1, · · · , RSl
. Let it be RSi

. We know its

extension set |Ei| ≤ m. For every m + 1 of the extension sets have a non-empty

intersection, all l extension sets share a common element in terms of the small set

intersection lemma (Lemma 7).

(Set to Consistency) From the lifting lemma, we have that R is k-consistent. �
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Comparing with the weak tightness theorem in previous section, the exposition

of the result is neater and the proof is simpler.

For the sake of completeness, we also give here a new version of the tree convex

theorem. The proof is omitted since it is a simplified version of one in Section 7.3

as hinted by the proof above.

Theorem 18 (tree convex) Let R be a tree convex constraint network. R is

globally consistent if it is strongly relationally path consistent.

7.5.2 Make a Constraint Network Globally Consistent

Now let us turn to the main result in this section. Consider the weak m-tightness

Theorem 13 based on strong k-consistency. Generally, a weakly m-tight network

may not have the level of local consistency required by the theorem. It is tempting

to enforce such a level of consistency on the network to make it globally consistent.

However, this procedure may result in constraints with higher arity.

For example, consider a network with variables {x, x1, x2, x3}. Let the domains

of x1, x2, x3 be {1, 2, 3}, the domain of x be {1, 2, 3, 4}, and the constraints be that

all the variables should take different values:

x �= x1, x �= x2, x �= x3, x1 �= x2, x1 �= x3, x2 �= x3.

This network is strongly path consistent. In checking the 4-consistency of the

network, we know that the instantiation (1, 2, 3) of {x1, x2, x} is consistent but can

not be extended to x3. To enforce 4-consistency, it is necessary to introduce a

constraint on {x1, x2, x} to make (1, 2, 3) no longer a valid instantiation.

To make the new network globally consistent, the newly introduced constraints

with higher arity may in turn require higher local consistency according to Theo-

rem 13. Therefore it is difficult to predict an exact level of consistency (variable

based) to enforce on the network to make it globally consistent.
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Once resorting to relational consistency, it is possible to obtain global consis-

tency through enforcing local relational consistency on the network. In order to

achieve our main result, we need a stronger version of m-tightness—proper m-

tightness.

Definition 38 A constraint cSi
is properly m-tight with respect to x ∈ Si iff for

any instantiation ā of Si − {x},

|Ei,x| ≤ m.

A constraint cSi
is properly m-tight iff it is properly m-tight with respect to every

x ∈ Si.

For example, the constraint x ≤ y, where x ∈ {1, 2, · · · , 10} and y ∈ {1, 2, · · · , 10},

is 9-tight but not properly 9-tight. It is properly 10-tight since |Ex(10)| = 10 when

y = 10.

Note when the extension set is the same as the domain of the extended variable,

it does not affect the m-tightness of a constraint, but it does play a role in deciding

the proper m-tightness of a constraint.

A constraint is m-tight if it is properly m-tight. The converse may not be true.

Definition 39 A constraint network is weakly properly m-tight at level k if and

only if for every set of variables {x1, · · · , xl}(k ≤ l < n) and a new variable,

there exists a properly m-tight constraint among the relevant constraints after an

instantiation of the l variables.

Let us re-examine the network in Table 7.1. Two sets of m-tight constraints were

given to make the network weakly m-tight in the previous section. A careful look

at the Table 7.2 immediately tells many other possible sets of m-tight constraints

to make the network weakly m-tight. More specifically, we have the following

observation.
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Proposition 11 A constraint network is weakly properly m-tight (and weakly m-

tight respectively) if the constraint between every two variables is properly m-tight

(and m-tight respectively).

It can be verified that the proper tightness of the binary constraints is preserved

during the procedure to enforce local consistency on a network like the one in

Proposition 11. So we have the following result.

Theorem 19 (Weak Proper-Tightness) Given a network whose constraint on

every two variables is properly m-tight. It is globally consistent after it is made

relationally m + 1-consistent.

This theorem follows immediately from the discussion above and Theorem 17. The

implication of this theorem is that as long as we have several properly m-tight

constraints on certain combinations of variables, the network can be made globally

consistent by enforcing relational m + 1-consistency.

We remark that this result is an improvement over van Beek and Dechter’s result

on tightness (Corollary 4 in this chapter). Their result requires all constraints to be

m-tight. This requirement may be violated by the newly introduced constraints in

the process of enforcing the intended level of relational consistency on the network.

7.5.3 Directional Consistency

A description of directional consistency is from [vBD97, page 560]:

A backtracking algorithm constructs and extends partial solution by

instantiating the variable in some linear order. Global consistency im-

plies that for any ordering of the variables the solutions to the constraint

network can be constructed in a backtrack-free manner; ...... Dechter

and Pearl [DP87] observe that it is often sufficient to be backtrack-free

along a particular ordering of the variables and that local consistency

can be enforced with respect to that ordering only.
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This special kind of local consistency is called directional consistency.

Definition 40 A constraint network R is directionally k-consistent with respect

to an ordering on variables if and only if for any consistent instantiation ā of any

distinct k − 1 variables, and for any new variable xk after those variables, there

exists u ∈ Dk such that (ā, u) is a consistent instantiation of the k variables. R is

strongly directionally k-consistent if and only if it is directionally j-consistent for

all j ≤ k.

A strongly directionally n-consistent network can be solved without backtrack-

ing.

The weak m-tightness at level k of a network can be weakened to directionally

weak m-tightness in the same way as we weaken k-consistency to directional k-

consistency. The tree convexity of a network can also be weakened to directional

tree convexity.

The small set intersection lemma and tree convex sets intersection lemma can be

lifted to obtain results on directional consistencies in a directionally weak m-tight

network and a directionally tree convex network respectively.

Consider the network in Table 7.1 again. Let us order the variables as (1, 2, 3, 4, 5).

To make the network directionally weak m-tight, in contrast to the possibilities in

Table 7.2, it is only necessary to consider the extension of the instantiations of

{1, 2, 3, 4} to 5. Furthermore, only one of the relevant constraints to 5 to be m-

tight, for example the one on {1, 2, 5}. In other words, we may need even less

number of m-tight constraints to make the network directionally weakly m-tight.

The requirement on tightness of a constraint can also be relaxed. In fact, the

m-tightness of the constraint on {1, 2, 5} with respect to 5 is sufficient.

We don’t list the results on directional consistency here. However, they are

obviously more effective in practice since they need less computation and require

weaker properties on a constraint network.
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7.6 Summary

We present a relationship between k-consistency and set intersection, and several

properties on intersection of tree convex, small and large sets. A proof schema is

provided to lift set intersection properties to consistency properties in a particular

network. It allows us to study consistency from a new perspective of set intersec-

tion. The following are some examples on the relationship between set intersection

and consistency. Let us rephrase some results reported in the previous sections

in a binary constraint network. From Lemma 3, we know that the intersection of

all n convex sets is not empty if the (local) intersection of every two sets is not

empty. The consistency result is that given a corresponding row convex constraint

network, strongly local (2+1)-consistency (or, arc and path consistency) in such

a network implies global consistency (strongly n-consistency). Given a collection

of small sets with at most m elements, that every m+1 sets intersect induces the

intersection of all sets in the collection (Lemma 5). The small set is then used to

characterize the m-tightness of a constraint. Global consistency follows strongly

(m+1)-consistency in a network with m-tight constraints. In Lemma 6, all large

sets with at least m elements simply intersect without any local intersection infor-

mation. The m-looseness of a constraint is characterized by large sets with at least

m elements. Hence, a certain level of consistency depending on m is inherent in a

constraint network with m-loose constraints. It suggests that more consistency re-

sults may be obtained by purely inspecting certain set intersection problems. One

possible direction is to get a lower requirement on the local intersection information

identified in Lemma 5 by imposing some additional structure on the sets.

We have demonstrated how the schema is used to derive existing consistency

results [vBD95, vBD97] on networks with special properties. In addition to the

results shown here, some other results can also be obtained by the lifting lemma.

For example, the work of David [Dav93, Dav95] can be obtained by lifting the
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singleton set Corollary 2. The work of Faltings and Sam-Haroud [SHF96] is on

convex constraint networks in continuous domains and the idea there is to lift

Helly’s theorem on intersection of convex sets in Euclidean spaces.

Some new consistency results are discovered through the study of set intersec-

tion. Firstly, we generalize convex set to tree convex set while pairwise intersection

of such sets still implies the intersection of all sets. Thanks to tree convex set,

we identify a class of tree convex constraints which is a superset of row convex

constraints [vBD95]. In a tree convex constraint network, global consistency is

ensured by a certain level of local consistency.

Secondly, we show that in the small sets lemma, it is not necessary for all sets to

be small. It is sufficient for one set to be small. This observation leads to that in a

network of arbitrary constraints, local consistency implies global consistency when-

ever there are some m-tight constraints on certain variables (e.g. Theorem 13).

This is an improvement over van Beek and Dechter’s work on tightness [vBD97]

where all constraints in a network are required to be m-tight. When the net-

work does not have the required local consistency, global consistency may not be

obtainable by enforcing such a level of local consistency. The reason is that the

original property of the network may no longer hold after the introduction of new

constraints in the process of enforcing the intended relational consistency. An in-

teresting result we obtain is that as long as the constraint between every pair of

variables is properly m-tight in an arbitrary network, global consistency can be

achieved by enforcing a certain level of relational consistency (Theorem 19).

A promising line of work is to find more properties under which a network is

weakly properly m-tight. Another direction is to find other classes of sets with

intersection properties which will likely give useful consistency results.
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Chapter 8

Conclusion

We have studied the consistency techniques from the following three aspects. The

first is on the pruning aspect of consistency. The second is on predicting the

level of consistency in a network. The third can be regarded as a special case of

the second. It puts more emphasis on identifying tractable problems in CSP and

designing efficient algorithms for them.

8.1 On the Pruning Aspect of Consistency

When pruning the search space is a main concern, usually a low level of consistency

is enforced on the problem in practice. Specially, arc consistency is a good choice

because of its relatively low cost and high pruning ability. Many efforts have

been made to obtain efficient arc consistency algorithms. In this research, we

develop an algorithm AC-3.1 which can be considered as a natural and simple new

implementation of the traditional and influential AC-3. AC-3.1 is of optimal worst

case time complexity. The result is surprising because for the last two decades AC-

3 is regarded as a non-optimal algorithm but we show that it can be turned into an

optimal algorithm. It is also an exciting result because AC-3 is simple, practically

efficient, and widely used in the research community. The new implementation
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brings AC-3 on a par with other worst case optimal algorithms, for example the

AC-6 (considered as the best algorithm by the community), and provides more

choices for users.

While worst case time complexity gives us the upper bound on the time com-

plexity, in practice, the running time and the number of constraint checks for

various CSP instances are the prime consideration. Our preliminary experiments

show that AC-3.1 significantly reduces the number of constraint checks and the

running time of the traditional implementation of AC-3 on hard arc consistency

problems. Furthermore, the running time of AC-3.1 is competitive with the known

best algorithms on the benchmarks from [BFR99]. The experiment done in [BR01]

also shows some advantage of AC-3.1 (called AC-2001 in [BR01]) over other al-

gorithms in maintaining arc consistency[SF94] during the search. We believe that

AC-3.1 leads to a more robust AC algorithm for real world problems than other

algorithms.

We also show how the idea behind AC-3.1 is employed to obtain a new algo-

rithm for path consistency which is of best known worst case time complexity. We

conjecture from the results of [CJ96] that this algorithm may also give a practical

implementation for path consistency.

For general non-binary constraints, enforcing arc consistency becomes more ex-

pensive and its pruning ability may not outweigh its cost. In fact, to enforce arc

consistency on a constraint network is NP-hard, which indicates that the prun-

ing as simple as an arc consistency enforcing becomes very time consuming in a

non-binary network. This suggests that we should be very careful in choosing a

pruning strategy in solving non-binary constraint networks. It also suggests that

it is worthwhile to study arc consistency on constraints with special properties. To

this end, we identify a class of monotonic constraints on which arc consistency can

be enforced in polynomial time. This result immediately implies that the ubiqui-

tous linear inequalities can be made arc consistent efficiently. It also guarantees



CHAPTER 8. CONCLUSION 153

that bounds consistency algorithms used by most constraint solvers [VH89] achieve

arc consistency on linear inequalities, which may not be realized before. A more ag-

gressive pruning strategy than arc consistency on a network with simple constraints

may be intractable. For example, achieving relational path consistency becomes

an NP-complete problem even for a network of two non-binary linear inequalities.

The work reported here extends the results in [VHDT92] and complements the

GAC-schema [BR97].

8.2 On Efficient Solving of Functional Constraints

An elimination algorithm is proposed to solve functional constraints both efficiently

and elegantly. Its complexity of O(ed) to achieve minimality on a static network

of functional constraints is the same as that of the best algorithm achieving arc-

consistency [VHDT92].

An incremental variable elimination algorithm is designed to meet the require-

ments of a constraint programming system [JM94]. Its practical feasibility is sug-

gested by the fact that the cost of the incremental algorithm is still much lower than

that (O(ed2)) of a typical operation—arc consistency enforcing—widely adopted

in constraint programming systems.

One application of our elimination algorithm for functional constraints is to

solve 0/1/All constraints. 0/1/All constraints are studied in [CCJ94] and [Kir93],

both of which give a sequential algorithm with time complexity of O(ed(n + d)) to

find one solution. In this thesis, we obtain faster algorithms with a time complexity

of O(en) to solve a network with only “All” constraints and O(e(d+ n)) to solve a

network with 0/1/All constraints. Furthermore, a network of 0/1/All constraints

can also be made minimal in the same time complexity. Compared with [CCJ94,

Kir93], a higher degree of consistency is obtained with more efficient algorithms.
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8.3 On Predicting Consistency in a Constraint

Network

As is shown by existing work in constraint networks, studying higher levels of

consistency greatly helps to understand how to solve a problem. Progress has

been made to understand the relationship between local consistency and global

consistency in some constraint networks. In this thesis, a framework is proposed

to predict the consistency in a network from a perspective of set intersection. It

allows us to look at various results obtained so far, for example, those on row

convex, m-tight and m-loose constraints respectively, in a uniform way. It leads to

several new results on the level of consistency in a network as well as simplifying

the derivations of existing results.

We have presented several properties on set intersection. They are either new or

derived from the observations of other researchers. The new results include the tree

convex sets intersection lemma and small set intersection lemma. The properties

on set intersection are lifted to results on the consistency in a constraint network,

through the lifting lemma and the proof schema.

The tree convex sets intersection lemma leads to the result that a network

with tree convex constraints is globally consistent if it has a certain level of local

consistency. It generalizes the well known result on row convex constraints [vBD95].

The small set intersection lemma leads to the weak tightness theorem which

generalizes the result on m-tight constraints by van Beek and Dechter [vBD97].

An interesting new result is that a weakly properly m-tight network can be made

globally consistent by enforcing local relational consistency. In the previous work

on tightness of constraint, we could only predict the global consistency of a network

through a certain level of local consistency already present in the network. For a

network without the desired level of local consistency, we may not be able to achieve

global consistency by enforcing such level of consistency because the enforcing
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process may change the property of the constraint network. We have found that

for an arbitrary network where the constraint on every two variables is properly m-

tight, it can be made globally consistent by enforcing relational m + 1-consistency

on the network.

In summary, the framework not only unifies many existing results, but also

exhibits much potential as a general technique for obtaining more results on con-

sistency in constraint networks as shown in this thesis.



Appendix A

List of Symbols

The symbols frequently used in this thesis and their meanings are listed below.

A×B the Cartesian product of two sets A and B
N the set of variables in a network
xi a variable in a network
i, j, k simplified notations for variables in a network
x, y, z variables in a network
D the collection of domains in a network
Di the domain of variable xi

i.a a value a in the domain of variable i
C the collection of constraints in a network
cS a non-binary constraint on a set S of variables
cij a binary constraint on variable i and j
c a general constraint or a value in a domain, depending on context
vars(c) the set of the variables in constraint c
(i, j) an arc (directed edge) from variable i to variable j
cjk ◦ cij the composition of constraint cij and cjk

n the number of variables in a network
d the size of the largest domain in a network
r the maximum arity of the constraints in a network
e the number of constraints in a network
a, b, ... the values in a domain
(a1, a2, ..., al) an instantiation of a set of l variables
ā an instantiation of a set of variables

pj
i the pivot of cij in the domain of variable i

E the set of edges of a graph before Chapter 7
Ei an arbitrary set or a general extension set in Chapter 7
Ei,x(ā) the extension set of the instantiation ā to x wrt a constraint cSi
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