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Summary

The “intelligence” of controllers may be improved by embedding a prior infor-

mation about the process into the control scheme. One such intelligent control

scheme utilizes a neurofuzzy controller as the feedforward controller. The data

that is used to train the neurofuzzy controller on-line is obtained by adding the

feedback error to the control action, in a method known as the feedback error

learning strategy. Practical systems have successfully been controlled by the feed-

back learning algorithm. This thesis aims at improving the performance of such

controllers by including the feedback error and its history in the learning rule.

Emphasis is placed on developing a stability criteria and studying an alternative

method for commissioning the adaptive controller. Analysis of the performance

of the adaptive neurofuzzy controller is also extended to non-linear plants, with a

liquid level plant and a pH neutralization process being used as test beds.

First, a stability guide for the neurofuzzy control scheme that is controlling a

linear time invariant plants is established through insights gained from examining

the stability of the learning algorithms individually. Simulation results verifying

the feasibility of the stability criteria are presented.

Moving on to analyzing nonlinear plants, a comparison of the various feedback

error learning strategies is performed by using a liquid level plant as the test

bed. The study shows that the proposed feedback error learning rule strategy

is be better suited for this control problem. Simulation results indicate that the

proposed strategy’s performance is superior to the other learning strategies, while

experimental results demonstrate the feasibility of the proposed strategy in real

world conditions.

ix



Summary x

As much as the incorporation of a prior information about the process may

bring about more “intelligent” controllers, there is the associated difficulty in ascer-

taining the information’s accuracy when the process dynamics changes drastically.

The pH neutralization process, with its severe nonlinearity and sensitivity, is used

to test whether there is merit in including structural information into the control

scheme. Although the control task may be simplified by the inclusion of structural

information, the controller has difficulties coping with changes to the buffering

conditions. Even when the structural information is adapted on-line, simulation

results show that the neurofuzzy control scheme is able to cope best without using

the structural information. Also, the feasibility of using the neurofuzzy control

scheme to handle an actual pH process is verified experimentally.



Chapter 1

Introduction

1.1 Adaptive Neurofuzzy Control

The never ending quest to improve the performance of control systems has led to

the establishment of several major fields of research since the start of the modern

control era. One such field is intelligent control, where the original inspiration

came from either from nature or the human being. Within this field, fuzzy logic

and neural networks are two popular research directions because they possess the

universal approximation capability (Wang, 1992).

Fuzzy logic control has its roots in mimicking the reasoning capabilities of

human beings. Through the incorporation of existing operator knowledge into a

linguistic rule base, automated control of complex plants that have traditionally

proved difficult to model can be achieved. However, the performance of these

early fuzzy controllers depends entirely upon the initial design, and it is difficult to

cope with unexpected changes in operating conditions or improve upon the existing

controller’s performance. This handicap is especially crippling in today’s cutthroat

industries, for process control is an important competitive advantage that one can

have over its competitors.

Numerous methods, from training fuzzy logic controllers using conventional

adaptive control approaches (Wang, 1994) to fuzzy relational modelling, have been

used to identify the parameters of a fuzzy logic model (Czogala and Pedrycz, 1981).

1



Chapter 1. Introduction 2

One approach for adapting a fuzzy logic based controller is established when it was

shown that a B-spline neural network is equivalent to a fuzzy network structure

(Brown and Harris, 1994). This paves the way for fuzzy logic networks to be trained

by neural network training algorithms. Unlike fuzzy logic, neural networks, which

imitate the massive parallel structure of the human brain, usually treat the system

to be modelled as a “black box”, and train its adjustable parameters to minimize

some performance criterion. Although good performance can be obtained, it is

often difficult to obtain meaningful insights about the network. This problem

can be alleviated by combining the linguistic reasoning of fuzzy systems with the

learning abilities of neural networks by leveraging on the established equivalence

relationship to form neurofuzzy networks. The combination of the two research

directions of emulating the power of human beings is important, as one way to

improve upon existing controllers is to make them more “intelligent” through the

ability to embed more a prior knowledge into the controller, which in turn results

in better control performance.

1.2 The Feedback Error Learning Strategy

To equip the neurofuzzy control scheme with learning capabilities, this thesis ex-

plores the usage of an interesting learning control scheme developed for robot

manipulators (Kawato et al., 1987). This control scheme, shown in Figure 1.1, is

generally known as the Feedback Error Learning Strategy(FELS).

The learning control system consists of two parts- a feedforward controller,

F , and a feedback controller, C. The aim of the feedforward controller is to

compensate for the system dynamics in order to obtain good tracking accuracy.

Assuming that the plant is stable, the feedforward controller having been trained

to model the inverse plant dynamics in an ideal situation, or F = P−1, will drive

the output of the plant y to be equal to the reference r.

In the real world, the system will always be subjected to disturbances. The

role of the feedback controller in the control scheme is to stabilize and minimize

the deteriorative effects of the such stochastic or random disturbances. It also
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Figure 1.1. Feedback Error Learning Control Scheme

determines the minimum tracking performance at the beginning of the learning

process as the feedforward controller at the start of the learning process is unlikely

to have good performance when untrained.

Many methods have been proposed to enable the feedforward controller to learn

the inverse plant dynamics. In general, they can be divided into indirect and direct

estimation methods. In indirect estimation methods like adaptive inverse control

(Widrow and Walach, 1996), a model of the plant is estimated before inverting the

stable part to obtain the feedforward controller; whereas direct estimation methods

do without the model in the estimation of the inverse model. Instead of designing

a feedforward controller on the basis of a model, Kawato et al. (1987) proposed

and implemented the feedforward controller as a function approximator. During

control, the input-output relationship of the function approximator is adapted in

such a way that it learns the inverse plant with the reproducible disturbances di-

rectly. The main difficulty lies in the selection of a learning signal that indicates

how the input-output relationship should be adapted. Mimicking the way the neu-

rons in our brain obtained the learning signal, Kawato et al. (1987) demonstrated

that when the output of the feedback controller is used as a learning signal as

in Figure 1.1, the function approximator is able to learn the inverse plant with

reproducible disturbances.

This control scheme has been applied to a number of applications, such as
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an automatic braking system for automobiles(Ohno et al., 1994), camera system

(Bruske et al., 1997), robot manipulators (Kim et al., 1996) and welding (Tzafestas

et al., 1997). The applications showed that the control scheme considerably im-

proved upon the performance of the feedback controller and that it was able to

obtain a good tracking performance without extensive modelling. When the FELS

is compared to conventional adaptive control (Kraft and Campagna, 1990; Kim et

al., 1996; Tzafestas et al., 1997), similar tracking performance can be expected from

both schemes when an accurate plant model is made available for the latter. How-

ever, adaptive control is preferred in this instance as it converges comparatively

faster. The tables are turned when an accurate plant model is unavailable, as the

adaptive controller fails to obtain satisfactory tracking performance, unlike FELS.

This conclusion demonstrates the usefulness of the FELS in real world situations,

where accurate plant models are often difficult to obtain.

However, there are a few shortcomings in the function approximator that is

used in the original formulation- the Multi-Layer Perceptron (MLP). Training of

the MLP is often very slow due to the ill-conditioned performance surface imposed

by the usage of the sigmoid function (Haykin, 1999). This is especially so when

the data used to train the MLP is highly correlated, which inevitably occur in

control problems. Moreover, the weights of the MLP may get trapped in local

minima and fail to converge, as the trained weights are dependent on their initial

values. Therefore, it may be necessary to perform several training experiments

with different initial weights to obtain acceptable performance.

Improvements had been made to improve on its performance by incorpating

the output error into the MLP (Gomi and Kawato, 1993), as well as the usage of

multiple feedforward controllers to learn different tasks (Jacobs and Jordan, 1993).

Nevertheless, the real difficulties with FELS lie with the usage of the MLP net-

work. The obvious approach is to replace the MLP network with other function

approximators. Kraft and Campagna (1990) replaced the MLP network with a

Cerebellar Model Articulation Controller (CMAC) network that employ local ba-

sis functions. Experimental results showed that superior learning behaviour and
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more accurate tracking performance could be attained. Recently, Velthuis and

de Vrie (2000) used a B-spline network to control a Linear Motor Motion System.

This decision is due to the relative ease in the choice of the distribution of the

basis functions of a B-spline network over a CMAC network. However, the ability

to embed information into the controller structure is not exploited.

1.3 Motivation of work

Inspired by the success of FELS, the notion of using the feedback error to identify

the required desired control action, which is in turn used to update the weights

of a neurofuzzy model online to represent the inverse plant dynamics was pro-

posed (Tan, 1997). One advantage of this neurofuzzy control scheme is that it

enables a prior information about the plant to be incorporated into the controller

structure. The usually difficult task of choosing adequate parameters in adaptive

control schemes is eased by relying on an approximate relationship with a conven-

tional PI / PID controller. The self-learning neurofuzzy control scheme had been

successfully employed to regulate the temperature in a liquid helium cryostat (Tan

and Dexter, 1999).

While the feedback error learning strategy in the control scheme is able to

perform reasonably well in some cases, the learning strategy is unable to cope

when the rate of change of the control error is large (Tan and Lo, 2001a). This

limitation led to modifications that included the derivatives of the feedback error

into the learning strategy (Brandizzi et al., 1999; Santos et al., 2000). The on-line

learning strategy was further refined in order to remove a restrictive assumption,

and superior results were obtained when used to control linear time invariant plants

(Lo, 2001).

Motivated by the success, this thesis aims to further explore the properties

of the control scheme by studying the criteria needed for its stability, as well as

looking at an alternative derivation of the commissioning strategy. The thesis also

seeks to extend the analysis of the performance of the neurofuzzy control scheme

to nonlinear plants, with a liquid level plant and a pH neutralization process being
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used as test beds. Experimental verification to test the feasibility of the neurofuzzy

control scheme on both plants are also carried out.

1.4 Organization of thesis

Chapter 2 presents the details of the neurofuzzy control scheme that is evaluated

in this thesis. First, the notion of inverse learning, which is the main idea behind

the control scheme, is described. A description of the neurofuzzy model and its

modelling capability is presented next. Details of the control structure are then

shown, and the role of each component in the control scheme described. The

original on-line learning mechanism follows next, together with the modifications

that had been suggested to improve the control scheme’s performance. A new

derivation of the commissioning strategy for the proposed feedback error learning

strategy is also presented.

Development of the neurofuzzy control scheme is made in Chapter 3 by deriving

stability conditions. Through considering the stability of each part of the learning

process individually, insights into the operation of the control scheme were made.

Based on the observations, conditions for maintaining the stability of the adaptive

controller were derived. Simulations are then presented to verify the proposed

stability criteria.

Next, the performance of the neurofuzzy control scheme is analyzed through

a liquid level control problem. A comparison of the control performances of the

various feedback error learning strategies is presented, and an alternative com-

missioning guide for the proposed feedback error learning strategy is evaluated.

Experimental verification of the practicality of the proposed learning strategy with

neurofuzzy control scheme on a liquid level plant is then documented.

Thus far, the neurofuzzy control scheme was evaluated using linear or mildly

nonlinear plants. In Chapter 5, control of a highly nonlinear system, the pH neu-

tralization process, is attempted. The pH plant is first introduced, and the process

is shown to approximate a Wiener model. A study of the merits of incorporating a

prior structural information into the neurofuzzy control scheme is then carried out.
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The control scheme is tested on a pilot pH plant, and the experimental results show

that the neurofuzzy control scheme can provide reasonable control performance.

Lastly, conclusions about the work in this thesis is described in Chapter 6,

followed by suggestions about possible future work.



Chapter 2

The Neurofuzzy Control Scheme

2.1 Introduction

This chapter provides a review of the neurofuzzy control scheme that is evaluated

in this thesis. Various properties that are used in the analysis and development of

the control scheme in the later chapters of this thesis are described.

The organization of this chapter is as follows. First, the structure of the control

scheme is presented, with a brief explanation of the role of each component in the

control scheme. Section 2.5 continues with a description of the control scheme’s

on-line learning mechanism.

2.2 Inverse Learning

As mentioned in the previous chapter, the aim of the self-learning control scheme

is to determine the parameters of the neurofuzzy feedforward controller such that

it models the process’s inverse input-output mapping. Suppose the plant can be

expressed as a kth order discrete non-linear series :

y(t) = P{y(t−1), y(t−2), ..., y(t−k), u(t−td), u(t−td−1), u(t−td−k+1)} (2.1)

where td is equal to the plant delay expressed as a multiple of sampling instants plus

one. The additional delay is the result of cascading the systems with a zero-order

hold.

8
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Assuming that a stable inverse plant model exists for the controlled system,

the neurofuzzy controller should be trained to model the following components :

u(t − td) = Q{y(t), y(t − 1), ..., y(t − k), u(t − td − 1), ..., u(t − td − k + 1)} (2.2)

However, this model is not realizable as it is not causal. To resolve this problem,

the inverse model is constructed by replacing the plant’s output signal by the

reference signal, with the expectation that through training, the plant’s output

will approach the reference trajectory. It is possible to know the reference signal td

sampling instants ahead of time as the user of the system decides on the reference

trajectory. Hence, the resulting control action by the neurofuzzy feedforward model

is

u(t) = Q{r(t+td), r(t+td−1), ..., r(t+td−k), u(t−1), u(t−2), u(t−k+1)} (2.3)

Next,the neurofuzzy model that is used to model Equation (2.3) is described.

2.3 The Neurofuzzy Model

The neurofuzzy model that is employed in this thesis is a B-spline network that uses

basis functions for approximation purposes. B-spline networks have been employed

as surface-fitting algorithms within the graphical visualization community for many

years. The difference between classifying B-spline networks as a surface fitting

algorithm and a neural network lies in the way in which the linear coefficients

(weights) are generated. While the neural network adjusts its weights iteratively to

reproduce a particular function, the off-line or batch B-spline algorithm typically

generates the coefficients by matrix inversion or using conjugate gradient. The

reason for the choice of this model structure is that it provides a direct link between

neural networks and fuzzy logic systems, thus making the embedment of a prior

information easier.

Figure 2.1 shows the structure of the neurofuzzy model. There are two parts to

the network : a static, nonlinear, topology conserving map and an adaptive linear

mapping.
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Figure 2.1. The neurofuzzy model

2.3.1 Nonlinear transformation by basis functions

The power of the B-spline network, or neurofuzzy system, in modelling non-linear

functions comes from the non-linear transformation of the input vector x by the

basis functions (or fuzzy sets) of the network. Suppose that for each input xi, the

input space is spanned by mi basis functions. For a B-spline network, the stable

recurrence relationship for evaluating the output of the j th univariate B-spline basis

function of order k is defined as (Cox, 1972):

N j
k(x) =

(

x − χj−k

χj−1 − χj−k

)

N j−1
k−1(x) +

(

χj − x

χj − χj−k+1

)

N j
k−1(x)

N j
1 (x) =

1 if xεIj

0 otherwise
(2.4)

where χj is the jth knot and Ij = [χj−1, χj) is the jth interval. The shapes of

the univariate basis functions with orders 1 to 4 are depicted in Figure 2.2, with

11 basis functions of equal support spanning a normalized input space. From the

recurrence relationship in Equation (2.4), it can be derived that the basis function

is differentiable, up to k − 2 order, and continuous up to k − 1 order. At each

interval, k B-spline weights are used to represent a polynomial of order k, which

in turn determines the modelling capability and smoothness of the basis function
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output.

The univariate B-spline basis functions can also be interpreted as fuzzy sets

with singleton outputs (Brown and Harris, 1994). This property enables linguistic

meaning to be assigned to a basis function as in a fuzzy set, and its output to be

interpreted as the degree of truth in the meaning.
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Figure 2.2. Univariate B-spline basis functions of orders 1-4

In addition, the B-spline basis functions that are generated by the recurrence

relationship in Equation (2.4) have many desirable properties. Some important

properties are : (i) the basis functions have a bounded support, and (ii) the output

of the basis function is positive on its support, i.e.

N j
k(x) = 0, x 6∈ [χj−k, χj], and (2.5)

N j
k(x) > 0, x ∈ (χj−k, χj).

The basis functions also form a partition of unity, meaning that the sum of the
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outputs of the basis functions is always one, or

∑

j

N j
k(xi) ≡ 1, x ∈ [xmin, xmax] (2.6)

Let the membership vector µ(xi) generated from the mi univariate B-spline

functions for the xi input be

µ(xi) =

















N1
k (xi)

N2
k (xi)
...

Nmi

k (xi)

















(2.7)

The extension of the univariate basis functions to form the multivariate basis func-

tions is achieved via the usage of the Kronecker tensor product to combine all the

n membership vectors as follows :

a(x) =
n
∏

i=1

µ(xi) (2.8)

As one and only one univariate basis from each input is used for each multi-

variate basis function, all the desirable properties of the univariate B-spline basis

functions are extended in a natural way to the multivariate basis functions (Brown

and Harris, 1994). For example, the order of the univariate basis functions used

determines the smoothness of the multivariate basis functions. The equivalence to

a fuzzy logic model is the usage of a complete set of rules, and the s and t norms

in the fuzzy composition process to form the fuzzy output distribution. Viewed

in this context, this step allows for the model to produce sensible outputs for pre-

viously unseen inputs, and is equivalent to generalization in neural networks, or

interpolation and local extrapolation in approximation theory (Wang, 1997).

2.3.2 Adaptive Linear Mapping

The last step is to generate the output of the network by multiplying the output

of the multivariate basis functions with their associated weights. It has the same
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form as using the center of gravity defuzzification method in fuzzy logic :

uf =

p
∑

i=1

aiwi

= aTw (2.9)

Having described the operation of the neurofuzzy model, the question about its

modelling capability will be addressed.

2.3.3 Modelling capability of the neurofuzzy model

For illustration purposes, a 2 (x1, x2) input network with 2nd order regularly spaced

(triangular) basis functions is used to demonstrate the modelling capability of

the neurofuzzy model. Suppose the inputs x1 and x2 lie between the intervals

[χj,1, χj+1,1] and [χk,2, χk+1,2]. According to Equation (2.9), the output of the net-

work is

aTw =
1

(χj+1,1 − χj,1) (χk,2 − χk+1,2)
















χj+1,1χk,2 −χk,2x1 −χj+1,1x2 +x1x2

χj+1,1χk+1,2 +χk+1,2x1 +χj+1,1x2 −x1x2

−χj,1χk,2 +χk,2x1 +χj,1x2 −x1x2

−χj,1χk+1,2 −χk+1,2x1 −χj,1x2 +x1x2

















T 















w1

w2

w3

w4

















(2.10)

In order to simplify the above expression, it is assumed that the input space of

the interval considered is normalized, i.e., χj+1,1 = χk+1,2 = 1 and χj,1 = χk,2 = 0.
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Then, Equation (2.10) becomes

aTw =

















1 −x1 −x2 +x1x2

x2 −x1x2

x1 −x1x2

x1x2

















T 















w1

w2

w3

w4

















=

















1

x1

x2

x1x2

















T 















1 0 0 0

−1 0 1 0

−1 1 0 0

1 −1 −1 1

































w1

w2

w3

w4

















= xTHw

= (1 − x1 − x2 + x1x2) w1 + (x2 − x1x2) w2 + (x1 − x1x2) w3 + x1x2w4

= w1 + x1 (w3 − w1) + x2 (w2 − w1) + x1x2 (w1 − w2 − w3 + w4)

= θ1 + θ2x1 + θ3x2 + θ4x1x2 (2.11)

where θ1 = w1, θ2 = w3 − w1, θ3 = w2 − w1, and θ4 = w1 − w2 − w3 + w4.

Since H is not singular, the arbitrary θi values can be constructed from wi, and

thus the neurofuzzy controller has the ability to model the polynomial function

f(1, x1, x2, x1x2) for the interval investigated.

Using the property that the basis functions are local in nature, similar con-

clusions on the type of polynomial fit across the entire input range can be made.

However, the ability to choose arbitrary values for all θ are lost when the order

of the basis functions used are more than 1 (or piecewise constant), as each ba-

sis function will span across more than 1 knot (or apex). This is a tradeoff for

improving the smoothness of the network’s output.

The magnitude of each linearly transformed weight wi shows the importance of

the term in the modelling process. Those terms, whose wi are relatively small after

training, are probably not important, and hence may be pruned off (as in neural

networks) to improve the robustness of the model.

One general criticism of this network is that the number of weight vector in-

creases exponentially with the number of inputs. This is due to the assignment
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of one weight for each permutation of all the inputs to the order of the B-spline

network, which in turn lays the modelling power of the network. The following

section shall present the structure of the neurofuzzy control scheme, and the roles

of the various components.

2.4 Structure of the Neurofuzzy Control Scheme

Figure 2.3 shows the block diagram of the self-learning neurofuzzy controller that

utilizes the feedback error learning strategy to perform on-line training (Tan, 1997).

There are four main components in the control scheme : (i) a feedforward controller,

(ii) an on-line identification mechanism, (iii) a proportional controller, and (iv) a

reference model.

Feedforward Controller

On-line
Identification

Algorithm

Delay

Proportional Controller PlantDelay
Reference

Model

rw
+

-

e ub

uf

Figure 2.3. General structure of the neurofuzzy control scheme

The role of the feedforward controller is to model the inverse plant dynamics

through the on-line identification mechanism, and is the crux of attaining good con-

trol performance. Although “perfect” control is theoretically attainable, an exact

inverse model is difficult, if not impossible, to derive in practice, and therefore, the

feedforward controller will exhibit finite modelling errors. Hence, a proportional

controller is included in the feedback path to compensate for modelling mismatches.

The proportional controller is expected to act as a stabilizer, especially at the start
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of the learning process when the neurofuzzy feedforward controller is unlikely to

exhibit good control.

Another essential component of the scheme is the reference model. It filters

the step changes in the set points in order to provide a reference trajectory that

may be followed by the plant given the physical constraints and plant dynamics.

The output error, e(t), used in both the feedback controller and the FELS for the

tuning of the feedforward controller is generated by :

e(t) = r(t) − y(t) (2.12)

By using the reference model to manipulate the reference signal r(t), the rate

at which the output error changes may be dictated by the designer of the control

scheme, thus presenting an additional degree of freedom in tweaking the error to

control the response.

Having presented the framework of the control scheme and the neurofuzzy

model described, the next section describes the on-line learning mechanism used

to train the neurofuzzy model.

2.5 The On-line Learning Mechanism

The on-line learning mechanism consists of two parts, namely an estimation algo-

rithm for the required control action and an update algorithm to store the estimated

required control action into the neurofuzzy model.

2.5.1 Estimating the required control action

The feedback error learning strategy (Kawato et al., 1987) is based on the obser-

vation that a nonzero feedback error is caused by an incorrect feedforward control

action. When there are no unmeasurable disturbances and the feedforward con-

troller drives the plant with the appropriate control action, the feedback error e(t),

will be zero. For linear systems at steady state, the output feedback error is pro-

portional to the error in the control action supplied. Consequently, the feedback
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error may be viewed as a modelling error and may be used as a corrective term

in the estimation of the required control action. Thus, an estimate of the control

action needed, Û(t), can be generated as (Tan, 1997):

Û(t) = uf (t − td) + γe(t) (2.13)

where γ is the on-line learning rate. The reason for using the output of the feedfor-

ward controller td sampling instants ago, uf (t− td), to estimate the desired control

action is because the inherent plant delay causes the effects of the control action

administered at time t to show up td samples later. This means that the feedback

error, e(t) is due to the control error occurring at the instant t − td. Therefore, it

makes sense for the desired control action, Û(t), to be a linear combination of the

two signals. Thus, the feedback error learning strategy can be viewed as a iterative

method that searches for the desired control action.

2.5.2 Storing the estimated desired control action

The estimated control action that will enable the plant output to track the reference

signal is updated into the memory of the neurofuzzy controller via any recursive

identification algorithm. Since the neurofuzzy model is linear-in-the-parameters,

the Normalized Least Mean Squares (NLMS) algorithm was chosen for its low

computational requirements :

w(t) = w(t − 1) +
δa(t)

aT (t)a(t)
ε(t) (2.14)

where ε = Û(t)− aT (t)w(t− 1) is the error in the control action space. The usage

of NLMS in the identification algorithm is desirable as it is able to minimize the

posterior error and has minimal disturbance effect upon the weights (Brown and

Harris, 1994).
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2.5.3 Approximate Relationship between control scheme

and a PI Controller

When the two optimization algorithms (Equation (2.14) and Equation (2.13)) are

combined together, the feedforward control action generated by the neurofuzzy

model can be expressed as

uf (t) = a(t)w(t)

= a(t)

(

w(t − 1) +
δa(t)

aT (t)a(t)

(

Û(t) − aT (t)w(t − 1)
)

)

(2.15)

= a(t)

(

w(t − 1) +
δa(t)

aT (t)a(t)

(

uf (t − td) + γe(t)) − aT (t)w(t − 1)
)

)

Assuming that the transformed input vector , a, is independent of time, Equa-

tion (2.15) becomes

uf (t) = δuf (t − td) + (1 − δ)uf (t − 1) + δγe(t) (2.16)

The total control action received by the plant is

U(t) = uf (t) + kpe(t) (2.17)

Hence,

U(t) = δuf (t − td) + (1 − δ)uf (t − 1) + δγe(t) + kpe(t) (2.18)

Performing Z-transform on Equation (2.18) and rearranging it, a discrete trans-

fer function relating the control action and the error is obtained as

U(z−1)

E(z−1)
= kp +

δγ

(1 − z−1) + δ(z−1 − z−td)
(2.19)

Since the sum of the geometric progression z−1, z−2, z−3, . . . , z−td+1 is

z−1 + z−2 + . . . + z−td+1 =
z−1(1 − z−td+1)

1 − z−1
(2.20)

the total control action (Equation (2.19)) can be written as

U(z−1)

E(z−1)
= kp + H(z−1)

δγ

(1 − z−1)
(2.21)
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where H(z−1) = 1
1+δ(z−1+z−2+...+z−td+1)

is the transfer function of a low pass filter

with a static gain of 1
1+δ(td−1)

. The low frequency Z-transform of the control scheme

can therefore be approximated by the following transfer function :

U(z−1)

E(z−1)
= kp +

δγ

(1 − z−1)(1 + δ(td − 1))
(2.22)

Comparing Equation (2.22) with the discrete time implementation of a PI con-

troller with gain K and integral time Ti of the form (Clarke, 1984) :

U(z−1)

E(z−1)
= K

(

1 −
h

2Ti

)

+
Kh

Ti(1 − z−1)
(2.23)

an approximate relationship is established between the two controllers (Tan and

Dexter, 1999) :

kp = K

(

1 −
h

2Ti

)

(2.24)

δγ

1 + δ(td − 1)
=

Kh

Ti

(2.25)

with K and Ti being the proportional gain and integral time of the PI controller.

kp, δ, γ, and h are the proportional gain of the feedback controller, learning rate of

the NLMS algorithm, FELS learning rate, and sampling period of the neurofuzzy

control scheme.

The establishment of this approximate relationship enables the controller pa-

rameters to be chosen more easily. Moreover, the initial system performance is

similar to the PI controlled system. The difference is that the self-learning control

scheme will gradually improve upon its performance in an automated manner with

time. Therefore, it is in a better position to cope with gradual changes to the plant

with continuous learning, as with all adaptive systems.

Having described the original formulation of the learning mechanism as pre-

sented in (Tan, 1997), the next section looks at the modifications made to the

mechanism to improve upon its convergence rate.
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2.6 Improvements to the learning mechanism

2.6.1 The modified FELS

Several modifications have been proposed to improve upon the learning rate of the

self-learning control scheme (Brandizzi et al., 1999; Santos et al., 2000; Lo, 2001).

Specifically, improvements to the estimation of the control action may be achieved

by adding the derivatives of the feedback error into Equation (2.13) up to the order

of the plant being controlled (Brandizzi et al., 1999; Santos et al., 2000) :

Û(t) = uf (t − td) + γ

(

e(t) +
n
∑

i=1

λie
i(t)

)

(2.26)

where n is the order of the plant, ei denotes the order of the derivative of the

feedback error, and λi are user defined constants. The motivation for the addi-

tional term can be viewed as increasing the a prior knowledge implanted into the

identification algorithm, and empirical results in (Lo, 2001) demonstrated an im-

provement in the convergence rate of the weights. Using the modified feedback

error learning strategy, an approximate relationship relating the neurofuzzy con-

trol scheme to conventional PI/PID controllers can also be derived. Consider a

first order plant of the form

G(s) =
Kge

−sτd

τs + 1
(2.27)

where Kg, τ and τd are the static gain, time constant and deadtime of the process.

An approximate relationship with a PI controller is established as (Brandizzi et

al., 1999)

kp = K

(

1 −
h + 2λ1

2Ti

)

(2.28a)

γδ

1 + δ(td − 1)
=

Kh

Ti

(2.28b)

where K and Ti are the proportional gain and integral time of the equivalent PI

controller, and td is the dead-time expressed as the number of sampling intervals.

Similarly, Santos et al. (2000) established the conditions under which the self-

learning neurofuzzy controller is equivalent to a PID controller for a second order



Chapter 2. The Neurofuzzy Control Scheme 21

plant of the form

τ1τ2ÿ(t) + (τ1 + τ2)ẏ(t) + y(t) = Kgu(τ − τd) (2.29)

with Kg is the static gain, τ1 and τ2 are the time constants, τd is the dead-time,

and u(t) is the applied control action. For such a second order plant, the self-

learning control scheme can be shown to be equivalent to a discrete-time PID

control algorithm when the output of the reference model is close to steady state

by the following set of equations (Santos and Dexter, 2001) :

kp = K

(

1 −
λ1

Ti

)

(2.30a)

λ2 = TiTd (2.30b)

γδ

1 + δ(td − 1)
=

Kh

Ti

(2.30c)

where K, Ti and Td are the proportional gain, the integral time, and the derivative

action of the PID controller, while h is the sampling interval.

2.6.2 The proposed FELS

One problem with the modified learning strategies is that the plant must have a

relatively long dead-time compared with its time constant for the proportional gain,

kp, to assume positive values when Equations (2.28) or (2.30) and Ziegler-Nichols

tuning rules are used to commission the control scheme (Tan and Lo, 2001a; Lo

and Tan, 2001b). Moreover, it is found through simulations that the λi chosen

using this method may not give rise to a stable closed-loop system if the weights

of the neurofuzzy controller are not initialized close to their desired values, as the

rates of change of error will be large.

To alleviate these problems, Lo (2001) improved upon the estimation of the

desired control action by taking into account the interaction between the conven-

tional proportional controller and the neurofuzzy controller. Suppose the system

to be controlled is the first order plant defined in Equation (2.27). The output of

the plant, when controlled by the control scheme, is

τ ẏ(t) + y(t) = Kgûf (t − td) + Kgkpe(t − td) (2.31)
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When the feedforward controller has learnt the inverse plant dynamics exactly,

the desired control action assumes the form :

τ ṙ(t) + r(t) = Kgûf (t − td) (2.32)

Subtracting Equation (2.32) from Equation (2.31) and rearranging,

ûf (t − td) = uf (t − td) + γ(e(t) + λ1ė(t)) + kpe(t − td) (2.33)

where

γ =
1

Kg

(2.34)

λ1 = τ (2.35)

Equation (2.33) is the proposed FELS for controlling a first order plant. Ex-

tending Equation (2.33), the proposed strategy for a general nth order plant is

Û(t) = uf (t − td) + γ

(

e(t) +
n
∑

i=1

λie
i(t)

)

+ kpe(t − td) (2.36)

The approximate relationship between the control scheme using the proposed

strategy and a conventional linear controller is derived in a way similar to that

described in Section 2.5.3. To simplify the derivation of the relationship, consider

the first order plus dead-time plant (Equation (2.27)). Assuming that the trans-

formed input vector a does not vary with time, the neurofuzzy model’s output can

be obtained by combining Equation (2.14) and Equation (2.33) to become

U(t) = uf (t − td) + kpe(t)

= (1 − δ)uf (t − 1) + kpe(t)

+δ (uf (t − td) + γ(e(t) + λ1ė(t)) + δkpe(t − td)) (2.37)

Performing the Z-transform on Equation (2.37) results in

U(z−1)

E(z−1)
=

kp (1 − (1 − δ)(z−1 − z−td)) + δγ (1 + λ1(1 − z−1))

(1 − z−1) + δ(z−1 − z−td)
(2.38)

Using Equation (2.20), Equation (2.38) can be written as

U(z−1)

E(z−1)
= H(z−1)

kp (1 − (1 − δ)(z−1 − z−td)) + δγ (1 + λ1(1 − z−1))

(1 − z−1)
(2.39)
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where H(z−1) = 1
1+δ(z−1+z−2+...+z−td+1)

is the transfer function of a low pass filter

with a static gain of 1
1+δ(td−1)

. The low frequency Z-transform of the self-learning

control scheme for first order plants can be approximated to be

U(z−1)

E(z−1)
=

kp (1 − (1 − δ)(z−1 − z−td)) + δγ (1 + λ1(1 − z−1))

(1 − z−1)(1 + δ(td − 1))
(2.40)

If δ is assumed to have unity value, Equation (2.40) will then take the form :

U(z−1)

E(z−1)
=

kp + γ (1 + λ1(1 − z−1))

td(1 − z−1)
(2.41)

The assumption that the update rate is unity for the NLMS algorithm im-

plies that the algorithm updates the weights such that the weight vector is on

the solution hyperplane. Rearranging Equation (2.41), the following expression is

obtained :
U(z−1)

E(z−1)
=

γλ1

td
+

kp + γ

td(1 − z−1)
(2.42)

Comparing Equation (2.42) with a discrete PI controller (Equation (2.23)) re-

sults in the following relationship :

K =
γλ1

td
(2.43a)

Kh

Ti

=
kp + γ

td
(2.43b)

Equation (2.43) can be used as a starting point for commissioning the param-

eters of the self-learning controler used to regulate first order plants. Since there

are 3 variables (λ1, γ, kp) to select and only two equations, there is an additional

freedom of choice left in the commissioning strategy. Drawing inspiration from the

derivation of the proposed FELS, Equation (2.34), re-presented as Equation (2.44),

can be used to suggest parameter values for the control scheme :

γ =
1

Kg

(2.44a)

λ1 = τ1 (2.44b)

As only 1 equation is needed, Equation (2.44a) is selected as the last com-

missioning equation because it is observed that large values of λ1 may lead to
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instability (Lo, 2001). Superior convergence rates were obtained using the pro-

posed learning strategy when compared with both the modified and the original

FELS when linear plants are controlled (Lo, 2001). Moreover, the proposed FELS

does not require that the plant’s dead-time must be long when compared with

its time constant for the commissioning equations to yield a positive proportional

gain, kp. Since the above strategy is based on the intuition that a large λ1 may give

rise to stability problems, the alternative strategy of setting λ1 to the plant time

constant, τ (Equation (2.44b)) is investigated in this thesis. Using this relation,

the neurofuzzy control scheme is related to a PI controller’s parameters using the

following equations :

λ1 = τ (2.45a)

γ =
Ktd
λ1

(2.45b)

kp =
Khtd

Ti

− γ (2.45c)

This commissioning strategy will be compared against the generic form (γ =

1
Kg

) in the next chapter using a liquid level plant.

2.7 Conclusion

A review of the neurofuzzy control scheme that is used in this thesis is given. The

main ideas behind the control scheme, and its operation is given. Improvements

made to the on-line learning mechanism are also described.



Chapter 3

Stability Criterion for the

Neurofuzzy Control Scheme

3.1 Introduction

Although guidelines for choosing the learning parameters in the control scheme

have been proposed, the lack of a stability proof stands in the way of theoretical

completeness. The main difficulty arises from the seemingly “ad hoc” usage of two

optimization strategies in estimating the required control action and updating the

weights of the neurofuzzy controller.

This chapter takes a journey through the motivation and proofs of stability of

the individual update laws used in the control scheme. This allows for an insight

into the limitations inherent in the control scheme before an attempt is made to

derive the stability criterion for the self-learning control scheme.

25
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3.2 Stability of Feedback Error Learning Strat-

egy

3.2.1 Motivation of Inverse Control

The essence of the self-learning control scheme is to exploit the learning capabili-

ties of the neurofuzzy controller so that it emulates the inverse process dynamics.

Consider a discrete linear plant of the form

Apy(t) = BpU(t − td) (3.1)

where Ap = 1 + a1z
−1 + a2z

−2 + . . . + anz
−n

Bp = b0 + b1z
−1 + b2z

−2 + . . . + bmz−m

td is the delay (in number of samples) of the process

If the control objective is for the plant to follow a reference trajectory, r(t− td),

the feedback error can be defined as

e(t) = r(t − td) − y(t) (3.2)

When “perfect” control of the system is obtained, e(t) = 0, or

y(t) = r(t − td) (3.3)

Substituting Equation (3.3) into Equation (3.1), the idea in Inverse Control is

to invert the plant so that the ideal control action U ∗(t − td) is

BpU
∗(t − td) = Apr(t − td) (3.4)

The error dynamics of the closed loop system can then be obtained by substi-

tuting Equation (3.4) into Equation (3.1) to obtain

Ape(t) = 0 (3.5)

Thus, if the magnitude of the roots of Ap is less than 1, the output error will

decay to zero. This equation brings to light an underlying limitation of Inverse
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Control- the plant must be stable, or must be stabilized. Furthermore, the rate

of decay of the output error, even in the knowledge of the ideal control action,

depends entirely upon the original plant’s dynamics if the initial error is nonzero.

Next, the two update laws used in the self-learning control scheme are ana-

lyzed independently of each other in order to establish a feel for the convergence

requirements of each update law.

3.2.2 Convergence criterion for the Feedback Error Learn-

ing Strategy

The essence of the Feedback Error Learning Strategy (FELS) is to estimate the re-

quired control action by updating the control action with a portion of the feedback

error and its history :

U(t) = U(t − td) + γ′e(t) (3.6)

where γ′ = 1 + f0z
−1 + f1z

−2 + . . . + fvz
−v−1.

The aim of the FELS is to learn the desired control action by linearly updating

the control action using the output feedback error. If FELS is used alone, it can

be casted as a linear controller with the following discrete transfer function

U(z−1)

E(z−1)
=

γ′

1 − z−1
(3.7)

assuming that td = 1. Equation (3.7) includes an integrator. This implies that

in the absence of integrators in the plant, the control system is only able to track

constant references without incurring steady state errors. Suppose a reference

model is used to generate the reference trajectory r(t) from the setpoint l(t − td)

in the following manner :

Amr(t) = Bml(t − td) (3.8)

Then, the constraint on the setpoint l is that it must remain constant within a

period of time for the FELS to work. This implies that only steady state tracking

is possible for the control system when there are no additional integrators inherent

in the process.
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Next, the proof of stability for the closed loop system using FELS can be

shown using linear discrete analysis. The discrete transfer function of the closed

loop system is

GCL(z−1) =
Y (z−1)

R(z−1)
=

γ′Bpz
−td

(1 − z−1)Ap + γ′Bp

(3.9)

When GCL(z−1) is stable, and given that lim
t→∞

r(t − td) = l, the application of

the final value theorem on Equation (3.9) reveals that

lim
t→∞

y(t) = lim
z→1

(1 − z−1)GCL(z−1)R(z−1)

= lim
z→1

(1 − z−1)

(

γ′Bpz
−td

(1 − z−1)Ap + γ′Bp

)(

l

1 − z−1

)

= l (3.10)

This implies that lim
t→∞

r(t − td) − y(t) = 0. Subtracting U ∗(t − td) from both

sides of Equation (3.4) results in

BpU
∗(t − td) − Apy(t) = BpŨ(t − td) (3.11)

where Ũ(t − td) = U ∗(t − td) − U(t − td). Substituting Equation (3.4) into

Equation (3.11),

Ape(t) = BpŨ(t − td) (3.12)

Equation (3.12) shows the relationship between the output error and the esti-

mation error in the desired control action. If Ap is stable, then the convergence of

e(t) will imply Ũ(t − td) → 0 . Hence, the convergence of U → U ∗ at steady state

is proved. In summary, the ability of FELS to estimate the desired control action

is based on the following conditions:

1. The setpoint l remains constant for a period of time,

2. GCL(z−1) is stable for the Final Value Theorem to be applicable, and

3. Ap is stable.

With an insight into the convergence requirements for FELS, an analysis on

the other update law used in the self-learning control scheme is presented next.
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3.3 Stability criterion for the NLMS

In the self-learning control scheme, the role of the NLMS learning rule is to update

the weights of the neurofuzzy controller using the desired control action estimated

by the FELS. In this section, an analysis of the convergence properties of the NLMS

algorithm assuming the availability of the required control action. The NLMS rule

updates the weights w(t) of the neurofuzzy controller in the following manner :

w(t) = w(t − 1) +
δa(t)

aT (t)a(t)
Ũ(t − td) (3.13)

where a(t) is the transformed input vector, δ is the update rate, and Ũ(t − td) =

U∗(t− td)−U(t− td) is the control action error at time t− td. Assuming that there

exists an ideal weight vector w∗, the output control action error can be defined as

Ũ(t − td) = aT (t)(w∗ − w(t − td)) (3.14)

Two derivations of the stability of this update law are presented. The first

method makes use of the Lynpunov’s method to show that this simple update law

is able to ensure that w(t) → w∗. Let the Lynpunov function candidate be

V (t) = w̃T (t)w̃(t) (3.15)

where w̃(t) = w∗ − w(t). The rate of change of the quadratic Lynpunov function

candidate can be written as

∆V (t) = V (t) − V (t − 1)

= w̃T (t)w̃(t) − w̃T (t − 1)w̃(t − 1)

= (w̃(t) − w̃(t − 1))T (w̃(t) + w̃(t − 1))

= (w̃(t) − w̃(t − 1))T (w̃(t) − w̃(t − 1) + 2w̃(t − 1))

= ∆w̃(t)T (∆w̃(t) + 2w̃(t − 1)) (3.16)

where ∆w̃(t) = w̃(t) − w̃(t − 1). Expanding ∆w̃(t) and making use of the NLMS
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update law :

∆w̃(t) = w̃(t) − w̃(t − 1)

= w∗ − w(t) − w∗ + w(t − 1)

= −
δa(t)

aT (t)a(t)

{

Ũ(t − td)
}

= −
δa(t)

aT (t)a(t)

{

aT (t)(w∗ − w(t − td))
}

(3.17)

Examining Equation (3.16) term by term using Equation (3.17) produces

∆w̃T (t)∆w̃(t) =
δ2Ũ(t − td)

2

aT (t)a(t)
(3.18)

and

2∆w̃T (t)w̃(t − 1) =
2δŨ(t − td)a

T (t)w̃(t − 1)

aT (t)a(t)
(3.19)

Combining Equations (3.18) and (3.19), Equation (3.16) becomes

∆V (t) − V (t − 1) =
δŨ(t − td)

2

aT (t)a(t)
−

2δŨ(t − td)a
T (t)w̃(t − 1)

aT (t)a(t)
(3.20)

When td = 1, Equation (3.20) is reduced to the following:

V (t) − V (t − 1) = −
δ(2 − δ)Ũ(t − 1)2

aT (t)a(t)

= −
δ(2 − δ)

(

aT (t)w̃(t − 1)
)2

aT (t)a(t)
(3.21)

Equation (3.21) is negative if 0 ≤ δ ≤ 2, which is consistent with stability con-

dition for the NLMS update algorithm. However, the derivation proof is restrictive

in the sense that it is only valid for a delay of 1 sample. Next, an alternative proof

is presented based on linear discrete analysis in a bid to overcome this restriction.

First, multiplying aT (t) to both sides of Equation (3.13) results in

aT (t) (w(t) − w(t − 1)) = δŨ(t − td)

= δaT (t) (w∗ − w(t − td)) (3.22)

When Equation (3.22) is re-arranged, a relationship between w(t) and w∗ is

found as
(

1 − z−1 + δz−td
)

w(t) = δw∗ (3.23)
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From linear discrete analysis, the condition for stable weight updates is

|z| < 1 (3.24)

From this condition, the constraint on δ can be determined by finding the roots

of (1 − z−1 + δz−td). For the simple case when td = 1, the constraint shown in

Equation (3.24) becomes

0 ≤ δ ≤ 2 (3.25)

which is the same as the derivation based on the Lynpunov’s theorem earlier. Next,

the convergence of w(t) → w∗ can be shown using Equation (3.23) and the final

value theorem :

lim
t→∞

w(t) = lim
z→1

(1 − z−1)

(

δ

1 − z−1 + δz−td

)(

w∗

1 − z−1

)

= w∗ (3.26)

assuming that w∗ is constant.

If w(t) eventually converges to w∗ (1 − z−1 + δz−td is stable), substituting

Equations (3.14) into (3.12) reveals

Ape(t) = Bpa
T (t) (w∗ − w(t − td)) (3.27)

Equation (3.27) implies that if Ap is stable, then e(t) → 0 and the control

objective is achieved.

In conclusion, a scheme using the NLMS rule to update the weights of the

neurofuzzy feedforward controller should satisfy the following conditions :

1. 1 − z−1 + δz−td must be stable

2. Ap is stable

The first condition restricts the update rate δ of the weights, while the second

condition places restrictions on the type of process that the control scheme can

control. In classical control, the restriction on Ap stable implies that the plant is

stable or must be stabilized before applying control.



Chapter 3. Stability Criterion for the Neurofuzzy Control Scheme 32

However, there is an important factor that determines the rate with which w(t)

converges to w∗. Specifically, the condition number C is a gauge of the rate of

convergence of the algorithm:

C =
max (eig(R))

min (eig(R))
(3.28)

where R is the autocorrelation matrix of a(t) . When the condition number is 1

and δ = 1 , instantaneous convergence of w(t) is obtained. On the other hand,

with large values of C, slow convergence will occur, which in turn may lead to

numerical difficulties that may even cause the adaptive algorithm to be unstable.

This can be illustrated by the most extreme case of an infinite C, which means

that the transformed vector a(t) is always zero for some weights. This fact in turn

means that the weights will never get updated, and thus will never converge to

their desired value. This condition is commonly known as persistent excitation.

Having gained an insight to the two optimization strategies used in the self-

learning control scheme, the next section analyzes the stability criterion for the

self-learning control scheme as a whole.

3.4 Stability Criterion for the Self-learning Con-

trol Scheme

The derivation of the stability criterion for the self-learning control scheme is also

based on linear discrete analysis since it is shown in the previous section that there

is difficulty in applying the conventional Lynpunov’s stability technique. The out-

put of the self-learning controller is a combination of the output from the neuro-

fuzzy controller and the proportional controller :

U(t − td) = uf (t − td) + ub(t − td)

= aT (t)w(t − td) + kpe(e − td) (3.29)

The aim of the on-line training mechanism is to enable the neurofuzzy controller

to learn the inverse plant dynamics. This control law when combined with the plant



Chapter 3. Stability Criterion for the Neurofuzzy Control Scheme 33

dynamics defined in Equation (3.1) becomes

(

Ap − Bpkpz
−td
)

e(t) = Bpa
T (t) (w∗ − w(t − td)) (3.30)

Combining the two optimization strategies, namely the FELS (Equation (3.6))

and the NLMS algorithm (Equation (3.13)), the following update law is obtained :

w(t) = w(t − 1) +
δa(t)

aT (t)a(t)

(

uf (t − td) + γ′e(t) − aT (t)w(t − 1)
)

= w(t − 1) +
δa(t)

aT (t)a(t)
(γ′e(t) − a(t) (w(t − 1) − w(t − td))) (3.31)

Multiplying a(t) to the left hand side of Equation (3.31) results in

αaT (t)w(t) = δγ ′e(t) (3.32)

where α = 1 − (1 − δ)z−1 − δz−td . Now, substituting Equation (3.30) into Equa-

tion (3.32) :

(Ap − Bpkpz
−td)αaT (t)w(t) = Bpδγ

′aT (t) (w∗ − w(t − td)) (3.33)

or equivalently

(

(Ap − Bpkpz
−td)α + Bpδγ

′z−td
)

w(t) = Bpδγ
′w∗ (3.34)

From Equation (3.34), the optimization strategies will be stable provided that

the magnitude of the roots of ((Ap − Bpkpz
−td)α + Bpδγ

′q−td) is less 1. This

stability criterion is derived without using any additional restriction or assumption.

Next, the convergence of the weights towards their ideal values is demonstrated

using the final value theorem. Applying the theorem to Equation (3.34) results in

lim
t→∞

w(t) = lim
z→1

(1 − z−1)

(

Bpδγ
′

(Ap − Bpkpz−td)α + Bpδγ′z−td

)(

w∗

1 − z−1

)

= w∗ (3.35)

which verifies that the w(t) → w∗ when w∗ is constant. Similar to the idealized

case for NLMS, the convergence of the weights is dependent upon the condition

number of a(t) as in Equation (3.28). In the self-learning control scheme, a(t) is

fixed when the inputs to the neurofuzzy model are the reference trajectory and
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its history (see Equation (2.3)). This condition places constraints on the choice

of the reference model and the B-spline network parameters like the position of

the knots and the number of sets for each input, etc. Improper choices of these

parameters can lead to very large condition numbers that may result in extremely

slow convergence.

If the requirements for w(t) to converge is satisfied, Equation (3.30) indicates

that the output error e(t) will eventually decay to zero from if Ap − Bpkpz
−td is

stable. Thus, the control objective will be met. Also, the convergence of FELS is

obvious if w(t) → W ∗ from Equation (3.29).

To summarize, the requirements for the convergence of the self-learning control

scheme are listed below:

|(Ap − Bpkpq−td)α + Bpδγ
′z−td | < 1 (3.36a)

|Ap − Bpkpz
−td | < 1 (3.36b)

Next, the feasibility of these conditions is tested via simulations.

3.4.1 Simulation Verification

In this section, simulation results are presented to verify the proposed stability

requirements. The study makes use of the following first order plus dead-time

plant (Tan and Lo, 2001a) :

G(s) =
Y (s)

U(s)
=

Kge
−τds

τs + 1
(3.37)

where Kg = 20 , τ = 150 and τd = 35. Using a sampling period of 5 seconds, the

delay (with Zero-Order Hold incorporated) of the discretized system is 8 sampling

instants. Listed below are the parameters of the discrete plant :

Ap = 1 − 0.9672z−1 (3.38a)

Bp = 20 (3.38b)

As the plant is a first order model, the inputs of the neurofuzzy controller are

chosen as r(t) and ∆r(t) respectively. They are each spanned by two triangular
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fuzzy sets with apexes at [5,15] and [-0.5,0.5] respectively. The reference model

used is a first order model with a time constant of 100 seconds, and the setpoint

is set to alternate between 5 and 15 every 20 minutes. These choices lead to

a relatively small condition number of 80 for the transformed input vector a(t).

Ziegler Nichols tuning rules suggest a gain (K) and integral time (Ti) of 0.193

and 116.67 seconds for a PI controller respectively. The parameters of the control

scheme are commissioned using Equation (2.43) with the update rate of the NLMS

algorithm as unity (δ = 1) :

γ =
1

Kg

= 0.05

λ1 =
Ktd
γ

= 30.1959

kp =
Khtd

Ti

− γ = 0.161 (3.39)

The investigations into the effectiveness of the conditions are carried out by

increasing each learning parameter in turn until the limit of the stability conditions

is reached. Table 3.1 summarizes the results of the study. From the table, it can

be seen that the stability criteria works reasonably well. The prediction scheme is

slightly conservative for the case when kp = 0.3.

Despite the establishment of the stability and convergence conditions for the

self-learning control scheme, there is difficulty implementing these checks in prac-

tice as the stability criterion in Equation (3.34) requires full plant knowledge. If

extensive modelling is needed to obtain these plant parameters, then it defeats the

purpose of having a self-learning control scheme when all of the plant’s parameters

are known. Although there are no clear extensions of these stability conditions

when nonlinear plants are used, linearized nonlinear plant dynamics may be used

together with the stability criteria to provide some idea about system stability.

3.5 Conclusion

This chapter provides an insight into the stability of a neurofuzzy self-learning

control scheme using linear discrete analysis. Stability criterions are imposed onto
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Change Max |root| of Max |root| Stable

(Ap − Bpkpz
−td)α Ap − Bpkpz

−td

+Bpδγ
′z−td

nominal .91796 .97942 Yes

kp = 0.3 1.0508 1.0811 Yes

kp = 0.4 1.0655 1.1009 No

γ = 0.09 .95580 .97942 Yes

γ = 0.1 1.0037 .97942 No

λ1 = 59 .97675 .97942 Yes

λ1 = 60 1.0009 .979426 No

Table 3.1. Summary of the simulations performed

the learning parameters of the control scheme, and simulation results are presented

to verify the effectiveness of the criteria.



Chapter 4

Neurofuzzy Control of a Liquid

Level Process

4.1 Introduction

The proposed feedback error learning strategy has been demonstrated to have supe-

rior learning rates when compared to the original and modified learning strategies

(Tan, 1997; Santos et al., 2000) for first and second order linear plants (Lo, 2001).

In this chapter, the neurofuzzy control scheme using the various feedback error

learning rules are evaluated on a simulated liquid level plant that has been used as

a test bed for many non-linear control strategies (Postlethwaite et al., 1997; Edgar

and Postlethwaite, 2000; Linkens and Kandiah, 1996). The idea is to extend the

analysis of the feedback error learning rules to a nonlinear plant. Furthermore,

experiments are carried out on a actual liquid level plant to test the feasibility of

using the proposed feedback error learning strategy (FELS) with the neurofuzzy

control scheme.

The organization of this chapter is as follows. First, the liquid level plant is de-

scribed. This is followed by a description of the control scheme design. Simulation

results are then presented to compare between various learning rules. Lastly, exper-

iments are carried out to prove the feasibility of the proposed FELS, as described

in Section 4.5.

37
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4.2 The Liquid Level Process

The task is to control the liquid level in a uniform cross-section tank as shown in

Figure 4.1. Control of the liquid level is achieved by pumping water into the tank

from the top, while water leaves the tank via a hole at the bottom of the tank.

Water in

Water out

Figure 4.1. The simulated liquid level plant

The mathematical model of this process is a single, non-linear differential equa-

tion of the form:

ρA
dhL

dt
+ β

√

hL = Fi (4.1)

where ρ = 1gcm−3 is the density of water,

A = 10cm2 is the horizontal cross-sectional area,

β = 1gs−1cm is a flow coefficient,

hL is the liquid level measured in cm, and

FL is the inlet liquid flow rate measured in gs−1.

The nonlinearity arises from the square root of the height, hL, in the differential

equation. In physical terms, the nonlinearity arises from the relationship between

velocity and pressure drop in the liquid level, and is commonly known as the
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simplified Bernoulli equation for incompressible fluid (Seborg et al., 1989). The

linearized dynamics of the system is

τ
dh∗

L

dt
+ h∗

L = KfF
∗
i (4.2)

where τ = 2ρA
√

hss

β
is the time constant

Kf = 2
√

hss

β
is the static gain of the linearized model

∗ denotes the deviation variable

hss is the liquid level at the point of linearization.

The nonlinearity in the plant’s dynamics is clearly evident in Figure 4.2, which

shows the plots of the linearized gains and time constants at various liquid levels.

Suppose the liquid level is only allowed to vary between 0 and 100cm, and the

control problem that is tackled is to provide good servo control when the set point

is varied near the bottom (between 10 and 15 cm), as well as near the top of the

tank (between 90 and 95 cm). Between the two operating regions, the system

characteristics vary approximately by a factor of three, as seen in Figure 4.2. The

rate change in the system parameters is also higher when the liquid level is low.

Consequently, the control problem at the bottom of the tank may be tougher in

comparison to control at the top.

With this knowledge about the plant, the next step is to formulate the self-

learning control scheme to achieve good control performance.

4.3 Neurofuzzy Controller Design

This section presents the design of the neurofuzzy model and the parameters used

in the evaluation of the feedback error learning strategies. The linearized system

dynamics in Equation (4.2) shows that the liquid level process may be modelled as

a first order system. Therefore, the input vector that is needed by the neurofuzzy

controller to model the inverse plant dynamics (from Equation (2.3)) is

x(t) = [r(t + 1) ∆r(t + 1)]T (4.3)
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Figure 4.2. Linearized gain and time constant of the liquid level plant
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The need for the feedforward controller to predict one sampling interval ahead

in time is to compensate for the delay resulting from the use of a zero-order hold

to convert the sequence of digital control action into a continuous time signal.

Since the liquid level is constrained between 0 and 100cm, five fuzzy sets, cen-

tered at 0, 25, 50, 75 and 100cm respectively, are used to characterize the input

space of the reference signal r(t+1). As the change between the set points is 5cm,

the lower and upper bound of the universe of discourse for the rate of change of

the reference signal ,∆r(t + 1), is set at -5 and 5 respectively. The input space for

∆r(t + 1) is then partitioned by three fuzzy sets with apexes at −5, 0 and 5. All

the weights in the neurofuzzy model are initialized to zero to simulate the situation

in which no prior knowledge is used.

Next on the list in the design of the control scheme is the reference model.

Assuming that the constraints on the minimum and maximum flow rates are 0 and

15gs−1 respectively, and the sampling period used is 10 seconds (Postlethwaite et

al., 1997; Edgar and Postlethwaite, 2000; Linkens and Kandiah, 1996), the liquid

level process can be shown to be only able to follow a first order reference model

that has a time constant of more than 7.7 seconds to prevent the minimum flow

rate constraint of 0 from being violated (Tan, 1997). Thus, the time constant of

the reference model chosen in this evaluation of the learning strategies is 8 seconds.

The commissioning strategies for the various feedback error learning strategies

described in Chapter 2 are used to provide the tuning parameter values, which are

described in the following sections.

4.3.1 Parameters using the original FELS

Postlethwaite (1993) showed that a gain and integral time of 0.93 and 76 seconds

respectively minimize the Integrated Absolute Error (IAE) when the process is

operating around a level of 15 cm while providing stable control near the bottom

and near the top of the tank. Setting the update rate of the NLMS algorithm to

be unity, i.e, δ = 1, and substituting the PI values into the commissioning strategy

for the original feedback error learning rule (Equation (2.24)), the parameters of
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the self-learning controller is found to be :

kp = K

(

1 −
h

2Ti

)

= 0.8688

γ =
Kh [1 + δ(td − 1)]

δTi

= 0.1224 (4.4)

4.3.2 Parameters using the modified FELS

When the liquid level is at 15 cm, the linearized plant dynamics in Equation (4.2)

suggests that the gain kf and time constant τ of the plant are 7.746 and 77.4597

seconds. The approximate relationship between a PI controller and the modified

learning strategy proposed by Santos et al. (2000) (Equation (2.28)) gives

λ1 = τ = 77.4597

kp = K

(

1 −
h + 2λ1

2Ti

)

= −0.079 ≈ 0

γ =
Kh [1 + δ(td − 1)]

δTi

= 0.1224 (4.5)

The proportional gain kp as suggested by the modified learning strategy’s com-

missioning strategy is negative, which is contradictory to the known fact that the

gain used cannot be opposite to that of the process gain. Otherwise, the resulting

system may be unstable. The negative kp value is due to the second term in Equa-

tion (2.28), h+2λ1

2Ti
, being larger than unity (Lo, 2001). Since the gain is negative,

kp is set to zero, which effectively removes the feedback controller from the control

scheme. One potential problem that will be faced when the control scheme does

not have a feedback controller is that the initial control performance will be poor,

as the feedforward controller is untrained. As stability may also be an issue, the

stability criteria derived in Chapter 3 is used to predict if the closed loop system

will remain stable. Substituting the linearized plant dynamics at the liquid height

of 15 cm into Equation (3.36) :

max root of (Ap − Bpkpq−td)α + Bpδγ
′z−td = 8.1180 > 1

max root of Ap − Bpkpz
−td = 0.8789 < 1 (4.6)
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where Ap = 1 − 0.8789z−1, Bp = 0.9381, and α = 1 − z−1. Equation (4.6) shows

that the parameters suggested by the commissioning strategy will lead to insta-

bility, and simulations performed on the liquid level plant confirmed this fact (see

Figure 4.3). The failure of the commissioning strategy prevents further evaluation

on the performance of the modified FELS, and thus will not be discussed further.
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Figure 4.3. Control performance of the modified FELS

4.3.3 Parameters using the proposed FELS

For the proposed feedback error learning strategy, the commissioning strategy

(Equation (2.43)) suggests the controller’s parameters should be chosen as

γ =
1

Kf

= 0.1291

λ1 =
Ktd
γ

= 7.2037

kp =
Khtd

Ti

− γ = −0.0067 ≈ 0 (4.7)
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Though the proposed feedback error learning strategy alleviates the restriction

on the modified learning rule, it is obviously not sufficient as the suggested gain of

the feedback controller is still negative. Like the modified learning rule, kp is set

to zero in the analysis. Evaluating the stability criteria (Equation (3.36)) with the

same linearized plant dynamics as in Equation (4.6) shows

max root of (Ap − Bpkpq−td)α + Bpδγ
′z−td = 0.8780 < 1

max root of Ap − Bpkpz
−td = 0.8789 < 1 (4.8)

Unlike the modified FELS, the parameters suggested are stable, and thus allows

for the evaluation of its performance (see Figure 4.4).

The learning parameters obtained using the commissioning equations that equated

λ1 to τ , as derived in Chapter 2, are

λ1 = τ = 77.4597

γ =
Ktd
λ1

= 0.0120

kp =
Khtd

Ti

− γ = 0.1104 (4.9)

Unlike the case where λ1 = 1
Kg

= 7.2037, kp is positive. Next, the simulation

results are described.

4.4 Simulation Results

Figure 4.4 shows a comparison of the initial control response performance between

the proposed FELS and the original learning strategy. It can be seen that both

commissioning methods of the proposed strategy have similar initial responses.

Unlike the original learning strategy, the responses obtained using the proposed

strategy does not suffer from sharp decreases in the liquid level at the bottom of

the tank, except during the first epoch where the weights are untrained. Since

the update rate, δ, for the weight vector is set to unity, the weight vector will

be updated in such a way the control error for that instant is eliminated. Thus,

the quality of the estimated control action plays a crucial role in how the weights
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are updated, and the results demonstrate that the proposed learning strategy’s

estimation is far superior to that of the original strategy. The proposed learning

rule results in a smaller overshoot and undershoot compared with the original

strategy. Thus, the proposed learning strategy is more desirable in systems where

overshoot and undershoot may be less tolerable.

Despite supposedly having a better learning capability, the proposed strategy

has a poorer performance in the first epoch. This is due to the presence of unlearned

weights in the neurofuzzy model, which will cause the proportional controller in

the self-learning control scheme to dictate the performance of the overall system.

Thus, due to the fact that the proportional gains kp set by both proposed methods

are smaller in magnitude compared with the original strategy, the slightly poorer

performance of the control schemes using the proposed feedback error learning

strategy is then expected.

From Figure 4.5, it can be seen in the plot of the final responses that all the

three cases are able to follow the reference trajectory well. This implies that

the control scheme using the proposed feedback error learning strategy is able to

estimate the desired control action, which is similar to the case for the original

learning strategy. However, the advantage of the proposed learning strategy over

the original can be seen in the comparison of the Integral Absolute Error (IAE)

computed over successive periods of 800 seconds, which is plotted in Figure 4.6.

From the figure, it can be seen that even though the control schemes using the

proposed learning strategy has a much poorer IAE value in the first cycle, their

IAE values converge at a faster rate so as to overtake the original relationship by

the second epoch. This is due to the ability of the proposed learning strategy to

estimate the required control action at the faster rate than the original.

Thus, a conclusion of this study is that although the initial performance of the

proposed learning strategy may be poorer due to the smaller proportional gain used

in the control scheme, the faster learning rate provided by the proposed feedback

error learning strategy enables the neurofuzzy controller to converge to the ‘learned’

response significantly faster compared with the original strategy. However, the
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close similarity in the performances between the two methods of commissioning

the control scheme using the proposed learning strategy makes it difficult to draw

any conclusion about the differences between them. This may be expected since

both commissioning methods are derived using similar methodology and the same

PI parameters are used for initialization. To explore the proposed learning rules

further, the performance of a self-learning controller which employs a reference

model that cannot be tracked by the neurofuzzy model is presented in the next

section.

Effects of using a non-trackable reference model

In practice, it may be difficult to know the exact structure of the neurofuzzy model

that should be used to model the inverse process dynamics. The usage of a reference

model that is impossible for the system to track due to physical constraints will

introduce modelling mismatches into the system. In this section, the purpose is to

determine the effects of using the proposed learning strategy under this situation.

As previously mentioned, the liquid level process is unable to follow a reference

model with a time constant that is less than 7.7 seconds. Thus, the reference model

is now arbitrarily set to 4.5 seconds, and the simulations described in the previous

section are repeated.

The major difference in the performance with a reference trajectory which can-

not be followed by the plant is seen when the neurofuzzy model has supposedly

“learned” the inverse dynamics of the plant. As shown in Figure 4.7, the “learned”

system performance deteriorated when the liquid level is low. This is due to the

constraint in the control action output. As shown in Figure 4.8 for the proposed

strategy, the feedforward controller’s control action output cannot be realized. To

verify that the rate of flow constraint is indeed the cause for the poor performance,

the constraint is removed, and Figure 4.9 shows that the set point can be tracked

perfectly by the proposed learning strategy.

When modelling errors are present, the proportional controller in the control

scheme plays an important role in minimizing the amount of error. For the pro-
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Figure 4.7. Final system response when reference trajectory is not trackable
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posed feedback error learning strategy, the amount of feedback gain suggested is

smaller in magnitude compared with the original strategy. This accounts for the

poorer steady state performance using the proposed strategy compared with the

original strategy. To demonstrate the influence of the proportional controller on

the control performance, the proportional controller is removed from the control

scheme by setting its gain to zero and re-simulated for the case using the original

feedback error learning strategy at the bottom of the tank. The “learned” output

response of the control scheme is shown in Figure 4.10. It is observed by comparing

Figure 4.7 and Figure 4.10 that the performance has deteriorated as overshoot is

present in step decreases for control at the bottom of the tank. The steady state

IAE value here is similar to the proposed feedback error learning strategy’s at 219.

Compared with the IAE value of 144 when the proportional controller is present,

this clearly shows the need for the proportional controller when there are modelling

mismatches to minimize the output error is clear.

The results indicate that the control scheme using the proposed feedback error

learning strategy performs poorly compared to the original feedback error learning

strategy because the proportional gain suggested by the commissioning rule for

the proposed strategy is far smaller than that suggested by the approximate rela-

tionship between a PI controller and the original FELS. In conclusion, the amount

of proportional gain used affects the overall performance significantly if modelling

errors are present, as the neurofuzzy model cannot emulate the inverse plant dy-

namics. In the next section, the self-learning control scheme using the proposed

FELS is experimentally demonstrated.

4.5 Experimental control of a liquid level plant

This section aims at verifying the proposed FELS experimentally. First, the exper-

imental setup is described. This is followed by a description of how the controller

parameters were chosen, and the simulated results using these choices. Finally,

experiments are conducted and the results are presented.
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4.5.1 Experimental Setup and Plant characterization

The experimental setup consists of a Kent Ridge Instruments Coupled Tank PP-100

as the liquid level plant, a National Instruments data acquisition card (LAB-PC-

1200) to acquire the data, and a computer acting as the controller. As shown in

the schematic diagram of the setup in Figure 4.11, the coupled tank consists of two

uniform cross-sectional area tanks separated by a baffle, and there are individual

level sensors and water pumps for each tank. By closing the baffle between the two

tanks and utilizing only one tank, a liquid level plant similar to the one used in the

simulations is obtained. This allows for the verification of the simulation results

using a real world problem where disturbances and unmodelled plant dynamics

cannot be avoided.

H1

H2

D/A

A/D

Computer

M2M1

T2T1

L2

L1

Figure 4.11. Schematic diagram of the Plant

Before actual control can take place, the plant must first be characterized. To

start off, a noise analysis of the plant is performed by obtaining some samples

and examining their frequency characteristics when the pump voltage is held con-

stant at 2.3V. From Figure 4.12, the Fast Fourier Transform (FFT) of the voltage

obtained from the level sensor reveals certain information about the plant. It is

seen that the input voltage from the level sensor is subjected to the interference
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of the AC power interference at 50Hz. Furthermore, there is a huge spike around

120Hz, probably due to the rotation frequency of the blades in the water pump.

To effectively filter out both disturbances, over-sampling at 100Hz is chosen. Since

the sampling rate is a multiple of the AC supply, the interference from the AC

supply can be eliminated by taking block averages. It is also sufficiently small to

reject noise from the water pump. Another visual observation through this open

loop noise test is that the pump does not provide a constant flow rate when the

command voltage is held constant. This causes the liquid level to drift around ran-

domly. Due to the difficulty in filtering out this low frequency noise, the adaptive

control scheme is given the job of overcoming this effect.
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Figure 4.12. Noise analysis of the Liquid Level Plant

Next, the level sensor used is calibrated by noting the actual height of the liquid

level and the voltage output of the level sensor. From the input voltage (Vin) verses

the measured height (hL) plot as shown in Figure 4.13, a simple linear relationship
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between the two can be estimated to be

hL = MVin + C (4.10)

where M and C are found to be 5.0938 and -1.9933 respectively.

0 1 2 3 4 5 6 7
−5

0

5

10

15

20

25

30

35

H
ei

gh
t i

n 
cm

Voltage in V

characterization of Tank 2 Level Sensor

Figure 4.13. Level Sensor Characterization

Since the water flow rate, Fi, into the tank is controlled by manipulating the

signal voltage sent to the pump, the relationship between the flow rate and the

pump voltage is obtained by measuring the time it takes to fill up 1 liter of water.

Figure 4.19 shows the relationship between the output control voltage and the flow

rate can be estimated to be

Fi = MqVout + Cq (4.11)

where Mq and Cq are 0.0627 and 1.1443 respectively.

Lastly, an idea of the liquid level process parameters is needed in order to

commission the controller. To reduce the number of parameters to be estimated,
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the differential equation describing the liquid level process (Equation (4.1)) is re-

expressed as

A
dhL

dt
= −α

√

hL + Fi (4.12)

where A is the cross sectional area of the tank and α is the discharge coefficient.

When there is no inflow of water into the tank, or Fi = 0, integrating Equa-

tion (4.12) from 0 to T seconds reveals

αT

A
= 2

[

√

hL(0) −
√

hL(T )
]

(4.13)

The discharge coefficient, α, can be measured experimentally by noting the

amount of time it takes for a change in height of the water level and substituting

them into Equation (4.13). With the cross-sectional area of the tank, A, measured

to be 36.52cm2, α is estimated to be 5.6186scm1.5. This completes the description

of the liquid level process to be controlled. Using these information, the next

section will concentrate of the design of the self-learning control scheme.
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4.5.2 Design of Controller

The control objective for the liquid level plant is to alternate the water level be-

tween 15, 20 and 25 cm at 5 minutes interval. The reference trajectory is generated

by a first order model with time constant of 45 seconds to prevent excessive stress

on the water pumps. Using the rule of thumb that the sampling time should be

around 0.1-0.5 of the fastest dynamics present in the system (Astrom and Witten-

mark, 1995), the sampling time is chosen to be 5 seconds.

Like the simulations presented earlier, the inputs to the neurofuzzy controller

are the reference signal and its derivative. Three triangular fuzzy sets, centered

at 15, 20, and 25cm respectively, are used to characterize the input space of the

reference signal, r(t+1), while the input space for ∆r(t+1) is partitioned by three

triangular fuzzy sets with apexes at −0.6, 0 and 0.6.

To determine the PI parameters that could be used together with the com-

missioning strategy to select the controller parameters, relay auto-tuning for the

experimental plant is done, and results are displayed in Figure 4.15. With the

output relay amplitude set at 15cm3s−1, and a deadzone of 0.1cm to counter the

effects of noise, the plant oscillates with an amplitude of 2.57 cm with a period of

25 seconds. This translates to a proportional gain of 7.42 and an integral time of

20 seconds for a PI controller with the Zigeler-Nichols tuning rules. Using Equa-

tion (2.43), the parameters for the self-learning control scheme are 0.6364, 0.1054,

28.1507, and 1 for kp, γ, λ1, and δ respectively. With the weights set to zero

initially, Figure 4.16 demonstrates that the neurofuzzy control scheme is able to

learn to provide good control. In the actual experiment, the weights used are

preinitialized to the values generated by the simulation to speed up the learning

process.

The experimental results using the control scheme are shown in Figures 4.17.

The neurofuzzy control scheme adapts well to cope with the unmodelled plant

dynamics and the disturbances, with good control performance being exhibited by

the second training cycle. From the output control action plot in Figure 4.19, it

is evident that the strong regulatory action is needed to cope with the drift in of
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Figure 4.15. Relay auto-tuning results for the experimental liquid level plant
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the voltage needed by the water pump, with lower voltages required by the water

pump to achieve the same liquid level. This also demonstrates the strong need

for the proportional feedback controller in a practical system to reject such noise,

and adaption of the weights of the neurofuzzy controller to achieve good control

performance.

Overall, the neurofuzzy control scheme using the proposed FELS and NLMS

algorithm has been successfully applied to a practical plant.
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Figure 4.17. Initial control response of the liquid level plant

4.6 Conclusion

This chapter successfully analyzed the performance of the proposed feedback er-

ror learning strategy using a liquid level process. The rate at which the proposed

feedback error learning strategy learns is shown to be superior to that of the orig-

inal expression. An alternative commissioning strategy for the proposed FELS is

found to offer tuning parameters with similar control performance as the generic
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Figure 4.18. Experimental control performance after training

commissioning strategy. This suggests that there is a duality in the choice of

the commissioning strategy for the proposed FELS. Experiments carried out on a

actual plant confirms the feasibility of the proposed strategy in practice.
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Chapter 5

Neurofuzzy pH Control

5.1 Introduction

The control of pH is a critical factor in many biological and industrial processes,

as poor pH control can lead to inferior products and/ or detrimental consequences.

Despite extensive research, pH control remains a challenging problem for practicing

control engineers and researchers. The difficulty with pH control lies in its inherent

severely nonlinear titration relationship, which exhibits extreme sensitivity around

the equivalence point and relative indifference to control efforts at the ends of the

pH curve. Furthermore, changes to the chemical composition in the process stream

will result in a time varying process that further complicates the control problem.

Numerous control schemes have been employed on this sensitive nonlinear prob-

lem. In recent years, various neural networks and fuzzy logic techniques have also

been used on this control problem (Abonyi et al., 2001). While some of these

schemes have treated the nonlinear process as a black box, others have incor-

porated a prior structural information about the pH process into their control

strategies in order to ease and speed up the learning process.

One problem faced in the incorporation of a prior information to achieve ”more”

intelligent control is that the knowledge embedded may be rendered inaccurate in

the face of changing dynamics in pH control. This is especially relevant in some

pH control applications like the treatment of waste water as the exact composition

64
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of the ions in the process is unknown. When unknown buffers are introduced into

the process stream, the resultant plant dynamics can differ significantly from its

nominal one.

Even without the addition of buffers, changing flow rates and/ or concentration

will cause the pH plant dynamics to be time varying. This makes on-line adaption

of the pH controller to enable it to cope with the variations almost a prerequisite for

good control performance. Yet, in many adaptive controllers, information about

the process structure needs to be known. The uncertainty in the pH dynamics thus

poses a severe test on capability of any adaptive controller to cope when there are

mismatches between the plant and the model.

In this chapter, a study on the feasibility of using the neurofuzzy control scheme

to control a pH neutralization process in a Continuously Stirred Tank Reactor

(CSTR) is attempted. Instead of evaluating the optimization algorithms used

in the neurofuzzy control scheme, the focus is changed to studying the effects of

incorporating a prior structural information on control performance. Comparisons

are made to discover whether there is merit in using a prior knowledge that may

be inaccurate due to the rapidly changing buffering conditions.

The organization of this chapter is as follows : First, the mechanics of the pH

process in a CSTR is described to provide background information. It is shown that

certain types of pH process may be approximated as a Wiener model, which consist

of a linear dynamic part and static nonlinear part. A method for incorporating

this structural knowledge into the control scheme is described. Due to problems

in coping with buffering changes, adaptation of the structural knowledge is carried

out in the next section to see if it leads to improved performance when there

are changes to buffering. The generic neurofuzzy control scheme, which does not

utilize any structural information, is presented next, and comparisons between the

structures’ performance are made. Section 5.4.2 then presents the experimental

results obtained using a pilot pH plant to verify the feasibility of the neurofuzzy

control scheme. Finally, conclusions are made.
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5.2 The pH plant

In this section, a review of the pH process that is to be controlled is given. First,

the static pH neutralization process is derived from first principles involving the

ion balances and chemical equilibrium relations. The difficulty involved in the

control of pH is also explained. From this understanding of the static pH process,

the dynamic pH process in a Continuously Stirred Tank Reactor (CSTR) is then

described.

5.2.1 The static pH process

The reagents in a pH neutralization reaction act either as acids or bases. Acids

and bases are substances that are capable of either donating or accepting hydrogen

ions, such that acids are proton donors while bases are proton acceptors. Protons

can also be denoted as hydrogen ions, and its concentration is a measurement of

the level of acidity of a substance. The pH variable is thus defined as

pH = − log10[H
+] (5.1)

where p(·) is the operator denoting taking the negative logarithm to the base 10

and [·] is the concentration of the respective ion.

The strength of an reagent is classified according to the fraction of molecules

that dissociate, or the degree of dissociation α. An strong reagent is one which

dissociates completely in water, while a weak one only partially dissociates. Con-

sider a weak monoprotic acid, HA, where A− is the anion. An equilibrium is set

up between undissociated molecules HA and the ions H+ and A− in water :

HA 
 H+ + A− (5.2)

At equilibrium, the acid dissociation constant, Ka, for Equation (5.2) is given

by

Ka =
[H+][A−]

[HA]
(5.3a)

pKa = − log10 Ka (5.3b)
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where the square brackets represent concentration in moldm−3. The case is anal-

ogous for bases when they dissociate to form hydroxide (OH−) ions. A reagent’s

strength increases when their pK value decreases. Reagents with negative pK are

called strong while those with pK greater than one are considered weak. When

the reagent is polyprotic, or that the reagent is capable of dissociating more than

one hydrogen or hydroxyl ion per molecule, the reagent will have a dissociation

constant for each hydrogen or hydroxyl ion.

In the special case for water at 25oC, the product of the hydrogen ions and

the hydroxide ions is equal to 10−14mol2dm−6. This product is known as the ionic

product of water Kw, i.e.

Kw = [H+][OH−] = 10−14 (5.4a)

pKw = 14 (5.4b)

The pH titration relation is a mapping of the input titrants to the output pH

measurement. It is a static relationship and is derived from the need for ionic

equilibrium in the reaction. As an example, consider the neutralization reaction of

a strong acid like hydrochloric acid (HCl) and a strong base like sodium hydroxide

(NaOH) :

HCl + NaOH → NaCl + H2O (5.5)

Using the electro-neutrality condition, the nett sum of the ionic charges must

be zero, i.e.

[Na+] + [H+] = [Cl−] + [OH−] (5.6)

Denoting xa = [Cl−] as the acid ionic concentration and xb = [Na+] as the

base ionic concentration, the neutralization equation for the titration process can

be rewritten as

xb = xa − 10−pH + 10pH−14 (5.7)

Equation (5.7) is the titration relation for the reaction between HCl and

NaOH, and is graphically illustrated in Figure 5.1. As seen from the figure,

the titration curve is a ‘S’ shaped curve, with most of the pH curve relatively flat

except for the portion around the equivalence point. The extremely steep gradient
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around the equivalence point causes the pH process to be extremely sensitive to

variations. This characteristic is the reason why pH control is very difficult. The

rangeability of the control valves need to be immensely great to effectively bring

about the required change in pH value. On the other hand, the regions at the

two ends of the pH titration curve is relatively insensitive to changes in the ionic

concentration. The extreme variation in the gain of the static pH process raises

difficult stability and performance issues.
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Figure 5.1. Titration curve for a strong acid, strong base reaction

The severe process nonlinearity is further complicated by the effects of buffer-

ing when weak reagents are used. A weak reagent acts as a buffer when it resists

changes in pH. To elaborate, consider a weak acid acetic acid (CH3COOH) react-

ing with a strong base NaOH to produce the following equilibrium :

CH3COOH + NaOH 
 NaCH3COOH + H2O (5.8)

As the ionic charges must balance, the following equation should hold :

[Na+] + [H+] = [CH3COO−] + [OH−] (5.9)
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Since the acid dissociation constant, Ka, of acetic acid is

Ka =
[CH3COO−][H+]

[CH3COOH]

= 10−4.75 (5.10a)

and expressing xb = [Na+] as the ionic base concentration, xa = [CH3COO−] +

[CH3COOH] as the ionic acid concentration, the following titration relation can

be derived :

xb =
xa

1 + 104.75−pH
− 10−pH + 10pH−14 (5.11)

Comparing Equation (5.11) with Equation (5.7), it may be seen that the dif-

ference in the titration relationship involving weak acid and strong acid is the

extra 1
1+10pKa−pH term. The impact of this additional factor is graphically shown

in Figure 5.2. It is seen that multiplying the additional multiplication term to xa

causes a inflection point on the process titration curve at the reagent’s pK value,

or that there is resistance to changes in the pH value when compared to its strong

acid counterpart. This resistance to pH changes is known as the buffering effect,

and can be explained as follows. In the buffering region, the concentration of the

CH3COO− ion and the CH3COOH acid molecule is very large compared to the

H+ ion. When additional H+ ions enter the buffered solution, they will react with

CH3COO− to form CH3COOH, while the entry of OH− ions on the other hand

will cause CH3COOH to ionize to replenish the H+ ions in the solution. Thus,

changes in pH are reduced.

The equation for a general pH titration relationship with M reagents is as

follows (Wright, 1998) :

M
∑

i

si(pH) = 10−pH − 10pH−14 (5.12)

where si(pH) is a function of pH and the dissociation constants for the ith

species. Table 5.2.1 illustrates the contribution to the titration relationship for

some types of acids and bases.

Having gained an understanding on the static pH titration, the next step is to

see how the static pH titration is related to the actual dynamical process described

in the next section.
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Figure 5.2. Titration curve for a weak acid, strong base reaction

ith ionic species ionic concentration si(pH)

anion,HA [HA] + [A−] − 1
1+10pKa−pH

anion,H2A [H2A] + [H−
A ] + [A2−] − 2+10pKa2−pH

1++10pKa2−pH+10pKa1+pKa2−2pH

cation,BOH [BOH] + [B+] 10−pH

10−pH+10pKb−pKw

cation,B(OH)2 [B(OH)2] + [BOH+] + [B2+] 2x10−2pH+10pKb2−pKw−pH

10−2pH+10pKb2−pKw−pH+10pKb1+pKw−2pKw

Table 5.1. Definitions of si(pH)
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5.2.2 pH process in a CSTR

The pH neutralization process considered in this thesis is assumed to take place in

a Continuously Stirred Tank Reactor (CSTR), as shown in Figure 5.3. It consists

of an influent acid as the process stream, an influent base as the titrating stream,

and an effluent stream to maintain the solution volume in the tank as a constant.

Figure 5.3. The CSTR configuration

This environment has several assumptions : (i) the volume of the solution in the

tank is a constant, (ii) the solution is mixed perfectly, (iii) the chemical reactions

remain isothermal, and (iv) the chemical reactions are assumed to attain chemical

equilibria instantaneously.

The dynamics for the mixing process as described in McAvoy et al. (1972) are

dxa

dt
= FaCa − FT xa (5.13a)

dxb

dt
= FbCb − FT xb (5.13b)

with subscripts a and b representing the acid and base species. Fi (liter/min), Ci

(mol/liter), and xi (mol/liter) are the flow rate, concentration, and ionic concen-

tration of the ith species respectively. FT = Fa+Fb is the sum of the flow rates, and

V is the mixture volume in liters. The mixing dynamics defined in Equation (5.13)

are derived based on the principle of mass conservation of the individual ionic
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components (Stephanopoulos, 1984), with the assumptions of having a constant

volume and perfect mixing. By assuming that the effluent flow rate FT is linearly

related to the hydrostatic pressure of the tank liquid level thorough the effluent

outlet resistance (Stephanopoulos, 1984), the time constant of the tank can be

expressed as

τ =
V

FT

(5.14)

The mathematical model for the pH process in a CSTR is a combination of

the CSTR dynamics and the static titration equation. First, the mixing dynamics

of the CSTR in Equation (5.13) gives the ionic concentrations from the influent

flow rates and concentrations of the solutions involved in the process. Substituting

these ionic concentrations into the static titration relation in Equation (5.12) and

solving it, the pH value can then be obtained.

From Equation (5.13), it can be seen that the CSTR dynamics is only mildly

nonlinear. In practice, the concentration of the reagent in the titrating stream can

be chosen such that Fa >> Fb hold. This implies that the bilinear dynamics can

be approximated as linear dynamics :

dxa

dt
≈ Fa(Ca − xa) (5.15a)

dxb

dt
≈ FbCb − Faxb (5.15b)

To sum up, the equations indicate that the process of neutralizing a weak acid

with a strong base in a CSTR may be approximated by the Wiener type non-linear

model shown in Figure (5.4). The linear block is the approximate CSTR dynamics

defined by Equation (5.15), while the static nonlinear function is the titration curve

(Equation (5.12)).

Linear

Dynamics

Static
Nonlinear

Function

xa, xb
Fb pH

Figure 5.4. The Wiener nonlinear model
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A common method for controlling Wiener models is to employ a static inverse

model to cancel the titration nonlinearity before dealing with the CSTR dynamics.

However, the performance of the Wiener-model control strategy often hinges on

how well the nonlinearity is cancelled. When the neutralization curve changes

drastically due to buffering variations or flow rate changes, the inverse model may

be inaccurate and the performance of the control scheme may suffer. In the next

section, the usefulness of using this a prior information for pH control will be

analyzed.

5.3 Simulation and Analysis

5.3.1 Simulation setup

The simulations that are performed to investigate the effects of structural differ-

ences on pH control performance are detailed here. The pH neutralization process

that is considered mixes a weak ethanoic acid (CH3COOH) of 0.05N with a strong

base (NaOH) of 0.1N. The acid flow rate is kept constant at 400 ml/min, and the

base is used as the titrating reagent to manipulate the pH level.

The study is conducted by using the control schemes to track transitions be-

tween different pH levels. The set point changes are smoothen by a first order

reference model with a time constant of 20 seconds. Two tests were performed.

The first test examines their performance under nominal conditions. In the second

test, carbonic acid (H2CO3), a diprotic reagent with pKa of 6.35 and 10.25 at

0.2N for the first and second hydrogen ion, is added to the pH plant according

to the schedule shown in Table 5.2. In order to understand the changes that are

brought about by the introduction of the buffer, the titration curves are shown in

Figure 5.5. The plots clearly show that the buffer has a significant impact on the

shape of the titration curve at high pH levels. This is because the normality of the

buffer used is quadruple that of the acetic acid. The nett result is that the quality

of any a prior information used that is incorporated in the controller will degrade

severely. To prevent the control performance from deteriorating, the controller has
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to learn to adapt to the prevailing neutralization characteristics on-line.

Buffer flowrate, Fc (ml/min) Time (min)

0 0-600 and 2400-3000

100 600-1200 and 1800-2400

200 1200-1800

Table 5.2. Buffer flowrate variation schedule
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Figure 5.5. Titration relationship between xb and pH

under different buffer flow rates, Fc

(1) Fc=0, (2) Fc=100, (3) Fc=200 ml/min

5.3.2 Wiener-model controller

To begin the analysis, the structural information presented in Section 5.2.2 is

used to derive the controller architecture shown in Figure 5.6. The static inverse

titration model, h−1, transforms the output pH value into an estimate of the base

ionic concentration (x∗
b). pH control is then performed in this space using the
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adaptive neurofuzzy controller, which then provides the required titrating flow

rate, Fb. It is expected that learning the inverse of the transformed xb − Fb space

should be easier, as the relationship is approximately linear (Equation 5.15).

  -1
h

 
 

  -1
h

 
 

Adaptive
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pH plant
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Figure 5.6. Structure of the Wiener-model controller

A B-spline network, with 13 evenly spaced second order B-splines spanning the

input pH domain from 5 to 12, was used to model the inverse neutralization rela-

tionship. Input output data obtained from the nominal acid-base titration curve

was used to identify the network parameters off-line. Figure 5.7 shows the per-

centage error in modelling the titration relationship. It is seen that the modelling

error around the more sensitive regions (pH 7 to 10) are small, and moderate for

the other regions. This is important, as errors made in the sensitive region will be

amplified significantly. The resulting average modelling error (difference between

the inverse model and the actual titration curve) is 0.0018%.

As the inverse titration relationship h−1 is only an approximate relationship,

zero error in the xb space does not necessarily mean that the actual pH valve is

equal to its reference. To ensure that the feedback error learning rule actively

tries to minimize (pHref − pH), the difference between the reference pH value

and the actual pH is used to estimate the required feedforward control action i.e.

Equation (2.13) becomes

ûf (t) = uf (t − td) + γ(pHref − pH) (5.16)

The usage of the original FELS here, and also for the rest of the controllers

in this discussion, is to simplify the learning, since the focus here is on the struc-

tural differences. The reference base ionic concentration, x∗
b,set, its rate of change
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Figure 5.7. Percentage Error in modelling the inverse titration relationship, h−1

(∆x∗
b,set), and the base ionic concentration, x∗

b , derived from the static inverse

model, are used as the inputs of the neurofuzzy controller. The input domains

were spanned by 5, 2, 2 triangular fuzzy sets respectively. All the elements in the

weight vector of the neurofuzzy controller are arbitrarily initialized to 0.1. In the

selection of the parameters for the neurofuzzy control scheme, a problem faced is

the difficulty in finding good PI/PID parameters that can be used in the com-

missioning strategy due to the sensitivity of the pH control problem. Therefore,

manual tuning is used, and the parameters are as follows : γ is 0.03, kp is 0.18, the

NLMS algorithm’s update rate (δ) is 1 and sampling time is 5 seconds.

Figure 5.8 shows the performance of the Wiener-model controller under nom-

inal conditions. It shows that rapid convergence to the reference pH trajectory is

obtained. While good tracking performance occurs in the mid pH range (7 to 11),

the step responses at the bottom (6 to 7) and top (11 to 11.5) of the pH test range

exhibit a mild overshoot and slightly sluggish behaviour respectively. Figure 5.9

displays the performance of the control scheme when the pH process is influenced
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by carbonic acid according to the schedule shown in Table 5.2. The performance

of the control scheme degenerates upon the introduction of the buffer. This effect

is more prominent in the higher pH levels, probably because of the larger changes

to the titration curve in this region (See Figure 5.5). The results indicate that

the adaptive neurofuzzy controller is unable to compensate for the deviations in

the inverse neutralization curve brought about by the addition of carbonic acid. It

may be intuitively be argued that the use of erroneous a prior information caused

the quality of the control to worsen. A natural extension is to try to modify the

inverse titration model on-line.
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Figure 5.8. Performance of the Wiener-model controller under nominal conditions

5.3.3 Adaptive Wiener-model Controller

To adapt the inverse neutralization model on-line, the actual ionic concentrations

of all the reagents must be known. This is almost impossible to achieve in practice

for many pH control applications, due to the uncertainty of the reagents present
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Figure 5.9. Performance of the Wiener-model controller under varying buffer flow

rates
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like in waste water treatment. One way to circumvent this problem is to used the

theoretical relationship, as defined in Equation (5.15), to estimate the actual ionic

concentration corresponding to a pH value.

At each sampling instant, the basic ionic concentration estimated using Equa-

tion (5.15), together with the measured pH value, are fed to a NLMS algorithm

(learning rate, δ, is 0.75) to update the inverse titration relationship (h−1). In

order to provide a common basis for comparison, the structure of the neurofuzzy

feedforward controller was not changed. The proportional gain of the conventional

controller (kp), the learning rate for the feedback error learning scheme (γ) and the

sampling time were chosen as 0.1, 0.05 and 1 seconds respectively.
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Figure 5.10. Performance of the adaptive Wiener-model controller under nominal

conditions

The step responses obtained using the adaptive Wiener-model controller is

shown in Figure 5.10. Compared with the results obtained using an inverse model

that is not adapted on-line (Figure 5.8), better tracking performance was obtained.

In particular, the step responses no longer overshoot the set point in the 6-7 pH
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Figure 5.11. Performance of the adaptive Wiener-model controller when an un-

known buffer is introduced
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range while the speed of response is faster at high pH values. Figure 5.11 shows

the control responses when the pH plant is subjected to variations in the amount of

buffering. Although the adaptive Wiener-model controller is able to better reject

the undesirable effects of the unknown buffer, the control performance is still not

very satisfactory. Following a change in the flow rate of carbonic acid from 100

ml/min to 0 ml/min, the pH value oscillates wildly when the set point is in the sen-

sitive pH region. As several training cycles are needed to eliminate the oscillations,

the adaptive Wiener-model controller will be of limited use in practice.

5.3.4 Adaptive neurofuzzy control : a “Black Box” ap-

proach

Simulation results in the previous sections indicates that including the Wiener

model representation in the control scheme may not be practical. Therefore, at-

tention is turned to examining the feasibility of using the neurofuzzy control scheme

without this structural information. The inputs to the neurofuzzy feedforward con-

troller are selected as the reference pH level, pHset(k), its rate of change ∆pHset(k),

and the control action U(k). Eight uniformly distributed triangular fuzzy sets par-

tition the universe of discourse for the first input, pHset(k), while the input space

for ∆pHset(k) and U(k) are partitioned by two fuzzy sets each. Due to the wide

range of the pH set points, it is difficult for the adaptive neurofuzzy controller to

learn at a appropriate rate using a common set of controller parameters. Hence,

the controller parameters are scheduled according to the region in which the pro-

cess is operating. When the reference pH levels are between 7 and 10, kp and γ are

0.3628 and 0.0021 respectively. kp and γ assume the values 2.5 and 0.1 respectively

whenever the reference pH levels are between 6−7 and 10−11.5. The learning rate

for the NLMS algorithm and the sampling time are set to be unity and 1 seconds

respectively.

Figure 5.12 shows the performance of the adaptive neurofuzzy control scheme

when the reference pH is varied periodically between 6 and 11.5. By comparing the

plots in Figures 5.8, 5.10 and 5.12, it may be concluded that the initial performance
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of the adaptive neurofuzzy controller pales in comparison with the Wiener-model

control schemes. A plausible explanation is that a longer time is needed to learn

the non-linear pH dynamics, which is more complex. With time, reasonably good

tracking control is obtained for pH values between 7 and 9. The ability of the

adaptive neurofuzzy controller to reject disturbances in the form of an unknown

buffer is shown in Figures 5.13. Unlike the Wiener-model controllers, the adaptive

neurofuzzy controller is able to prevent the carbonic acid from adversely affecting

the control performance. This characteristics may be the result of the fact that the

adaptive neurofuzzy controller is not constrained by erroneous a prior information.
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Figure 5.12. Performance of the adaptive neurofuzzy controller under nominal

conditions

5.3.5 Discussions

In order to compare the performances of the three controllers objectively, the Inte-

gral Absolute Error (IAE) for successive training cycles that comprises of unit step
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Figure 5.13. Performance of the adaptive neurofuzzy controller when an unknown

buffer is introduced
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changes from pH = 6 to 12 and back are shown in Figures 5.14 and 5.15. The IAE

plots indicates that the “black box” approach is better during the first training

cycle even though the step responses in Figures 5.8 and 5.10 appears to be better

than the one in Figure 5.12. One reason behind the poorer performance of the

adaptive Wiener model controller may be that the neurofuzzy controller is used to

regulate base ionic concentration when it is trained using a feedback error learning

rule that is based on the difference between the desired and actual pH level. When

the three controllers have “learnt” the plant dynamics, the “black box” approach

still provided the best performance. The same conclusions can also be drawn from

the simulations obtained when the characteristics of the pH process were altered

by an unknown buffer. Thus, the study seems to suggest that the addition of

inaccurate a priori information into control structures may hinder the ability of

the controller to adapt to process variations. However, generic information, such

as the regions where process is sensitive/insensitive to the input, may be used to

fine-tune the controller parameters.
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Figure 5.14. Comparison of IAE between the three controllers

under nominal conditions
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Figure 5.15. Comparison of IAE between the three controllers

in the presence of unknown buffers

5.4 Experiments on the pilot pH plant

The simulation results show that the ‘black box’ neurofuzzy control scheme has the

capability to successfully control the theoretical pH plant model. In this section,

results of experiments carried out to verify the feasibility of this control scheme

are detailed.

5.4.1 The pilot pH plant

Plant schematic

The pilot pH plant that is used to perform the experiments is a custom built plant

(Looi, 1995). The schematic is shown in Figure 5.16.

Storage Tanks T1 and T2 store the process reagents CH3COOH (acid) and

NaOH (base) respectively. The reagents are pumped into the mixing tank T3,

where the pH process takes place. A stirrer is used to achieve fast mixing in order
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Figure 5.16. The pilot pH plant CSTR configuration

to satisfy one of the assumptions used to derive the CSTR model. A hole near the

bottom of the mixing tank leads the effluent to the storage tank T4 to keep the

volume of the mixing tank constant.

Control of the rate at which the reagents flow into the mixing tank is achieved

by manipulating the control valves CV 1 and CV 2 installed along the reagents’

flow paths from the storage tank to the mixing tank. Low flow sensors (FS1 and

FS2) are also installed along each flow path to measure the reagent flow rate. The

outputs of the flow sensors are linked to a AD/DA card connected to a computer

that acts as the digital controller to control the flow rates of the reagents via the

control valves. Next, a short description on the components used to implement

this schematic is detailed.

Plant components

Pump

The pump used for both the acid and base flow stream is the Nikkiso Eiko

MAGPON CP 10 magnetic drive centrifugal pump. With a rating of 6.5liters/min
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at a head measurement of 1.5m, the pump is oversized for the experimental setup,

as the required flow rate for both the acid and the base is at about 340 and 200

ml/min.

Control Valve

The control valve used to regulate the acid flow is the Keystone F382 ball

valve (Cv = 8) and the F777 electrical actuator. It is oversized for dispensing the

required amount of acid, and is not suitable for accurate dosing of the reagent.

However, this is not a major problem, as the acid flow rate is kept constant during

the experiments.

The base stream, which is the titrating reagent used to control the pH, requires

a much more accurate positioning of the control valve to achieve minimal hysteresis

error. Here, the JordanMV 1005 linear control valve that has a Cv rating of 0.1

is used. The actuator accepts an input current between 4-20mA as the command

signal.

Flow Sensor

The Omega FLR1010 low flow sensor is used to measure both the acid and

base flow rates. It has a linearity and repeatability of ±3% and ±0.2% full scale

respectively, and has a temperature sensitivity of ±0.2oC for flow rates between

60 to 1000ml/min. It provides an output signal of 0-5V, and is powered by a 12V

DC source.

pH sensor

The pH sensor used is Orion model 290A pH meter. It is a hand-held meter

with a resolution of 0.001 pH unit and a relative accuracy of ±0.005 pH unit. It

sends the pH readings to the computer, which acts as the digital controller, directly

via serial communication through its built-in RS232 port. A null modem cable is

used to connect the two devices.

Stirrer

Process agitation is provided by the Cole Parmer STIR-pAK laboratory stirrer.

It consists of a adjustable speed motor and a 2 inch three blade propeller. The

motor is rated at 5000 rpm.
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Digital Controller

The outputs of the flow sensors are linked to a National Instruments PCI-MIO-

16E AD/DA card connected to a Intel Pentium 4 computer that acts as the digital

controller to control the flow rates of the reagents through command signals to the

control valves. As the AD/DA card can only can output voltage signals, a Asahi

Keiki TZ-56 magnetic transducer is used to map the 0-5V output from the AD/DA

card to the required 4-20mA current.

Characterization of Plant

Having described in detail the plant and its various components, the actual working

performance of the plant is now described. This is an important step to take before

actual control takes place, as it provides information about the plant’s character-

istics. Furthermore, the noise and disturbances experienced by the physical plant

can be identified, and compensated for to minimize their effects on the performance

of the overall system.

First, an attempt is made to determine the amount of hysteresis in the valves

used by gradually increasing the voltage applied to the control valve in steps of 0.1V

and observing the changes to the output from the flow sensor, which has a linearity

of 0.25% full scale. Figure 5.17 gives an idea of the relationship between the flow

rate and the control voltage applied to the acid control valve. The deadband for

the acid valve is very large, with about 3.1V needed before any flow can occur.

Also, changes to the flow rates occur only when a minimum of 0.2V difference in the

control output voltage is applied. Coupled with the fact that the maximum voltage

that can be applied to the pump is 4.5V due to the limitation on the flow sensor’s

measurement range, the working range for the control valve is extremely limited. It

is seen that the hysteresis for the acid flow control valve, which is derived by taking

the maximum difference between the measured flow rates between the opening and

closing paths, over the input range is about 82%. Another observation is that the

operation of the valve is not repeatable even when the initial conditions are the

same, so the same change in output control voltage can lead to vastly different
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flow rates. Fortunately, the acid flow rate is not the control signal. As Fa is fixed

at 340 ml/min for the duration of the experiment, open loop manual trial and

error tuning of the control valve was performed at the start of each experiment to

obtain the required flow rate. The main reasons for the poor performance of this

valve arises from its poor construction, the fact that it is grossly oversized for the

required operation, as well as poor maintenance of the valve through the years.
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Figure 5.17. Hysteresis plot for the acid control valve

Compared to the acid control valve, the base control valve has better charac-

teristics (see Figure 5.18). With the deadband estimated to be 1.8V, the working

range is significantly larger than the acid control valve. Most importantly, the hys-

teresis is about 4.8%. Though it still exceeds the recommendation of less than 1%

hysteresis to achieve good control (Buckbee, 2001), reasonable performance can be

obtained by placing the valve under a PI controller. The gain and integral time of

the PI controller is 0.007 and 3 seconds respectively.

Next, a noise analysis is performed on the base control flow sensor’s readings

using FFT, and the magnitude plot is displayed in Figure 5.19. It can be seen that
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Figure 5.18. Hysteresis plot for the base control valve

the noise frequencies occur at about 100Hz, 150Hz, and 300Hz. To minimize the

effects of noise on the control system, over-sampling is first performed at 50Hz.

The over-sampled data are then sorted, and the middle 60% of the samples are

then averaged to obtain the measured flow rate after conversion. This choice of

taking the average is to reduce the variance of the measured flow rate, while taking

the median removes the erroneous low frequency ’spikes’ from the measured data.

A exponentially moving average filter with a window length of 2 and filter constant

of 0.7 is then applied to the measured data to further reduce the noise in the flow

rate reading.

The last component of the test rig is the pH sensor. Since the pH meter used is

able communicate digitally with the computer through the serial communication,

there is no concern over the possibility of interference with conversions between

analogue and digital formats. Although the sensor is accurate (from manufacturer’s

specifications), the dynamics of the sensor is too slow for control purposes as it is

more suited to measure stationary pH valves than rapidly changing ones. Typically,
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Figure 5.19. FFT Magnitude plot on the base flow sensor input

more than 3 minutes passes before the pH sensor reading stabilizes. Maybe due to

this reason, the device data sheet states that the fastest rate at which the sensor can

transmit its readings to the computer is 5 seconds. This is too slow for neurofuzzy

control scheme. By tweaking the communication protocol, a sampling rate of 2.5

seconds is achieved. Another problem is that the pH sensor fails intermittently,

and a pH value of 0 is returned. A crude way that is used to alleviate this is to use

the previous measured pH value to do control. To reduce the measurement noise,

a moving average filter of length 10 is used to filter the pH measurements.

5.4.2 Experiment

Due to the limitations of the hardware, a number of specifications that are used

in the simulations are not achievable. Of particular importance is the inability

to sample at the required frequency. Simulations reveal that a sampling time of

1 second is needed to prevent oscillatory output pH responses, yet in the actual
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experiments, only a sampling period of 2.5 seconds is possible. In a bid to accom-

modate the slower sampling rate, the reference model’s time constant is slowed to

60 seconds to allow for smaller changes in the reference pH. The acid flow rate is

also changed from 400 ml/min to approximately 340 ml/min due to the difficulty

in obtaining the flow rate used in the simulation study. The proportional gain kp,

is changed to 0.1 and γ to 0.004 to reflect the changes.

Figure 5.20 shows the simulated response with the experimental setup. A very

small measurement noise with a power spectral density of 0.01 was added to the

simulation pH output. Basically, an overshoot is seen at pH 7 and 10, and slight

oscillatory response seen at pH levels 8 and 9 due to the sensitivity in these regions.

Overall, reasonable control is obtained.
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Figure 5.20. Simulation results using the experiment controller’s parameters

In order to speed up the learning process, the weights obtained using the simu-

lated pH plant are used to initialize the neurofuzzy controller’s weights. Figure 5.21

displays the experimental control response that is obtained. It resembles the sim-

ulated response. As expected from the simulation results (Figure 5.20), a slight
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overshoot is obtained at pH 7, and mild oscillations observed at pH 8. The rise

from pH 10 to pH 11 is slow due to a marginally slower response in the actual base

reagent’s flow rate compared to the desired output flow rate. Despite applying

many noise reduction techniques on the flow rate measurements and much work

in trying to obtain good control over the base control valve, the measured flow

rate still exhibits “spiky” behaviour due to the inability to get the control valve

to achieve the required preciseness needed to control the pH level in the sensitive

regions (see Figure 5.22). This problem is also the reason why the output response

around pH 8 is oscillatory. Overall, the neurofuzzy control scheme is shown to be

able to provide reasonable control of the actual pH plant.
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Figure 5.21. Control performance in the pH experiment

5.5 Conclusion

Control of a pH process using a neurofuzzy controller has been simulated. Com-

parisons made show that using a prior structural knowledge in the form of an
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Figure 5.22. Flow rates in the pH experiment

inverse model leads to poorer control performance under varying buffering condi-

tions. Experiments are also carried out to test the feasibility of the neurofuzzy

control scheme on a pilot pH plant.



Chapter 6

Conclusions and Future Work

6.1 Conclusions

Much work has been performed on developing the self-learning neurofuzzy control

scheme in this thesis. First, a stability guide for the neurofuzzy control scheme

is established from insights gained by examining the stability of the learning al-

gorithms individually. Simulations results verified the feasibility of the stability

criteria.

A comparison of the various feedback error learning strategies is performed

using a liquid level plant as a test bed. An attempt is made to compare the per-

formance of an alternative commissioning strategy’s performance for the proposed

strategy with the original one. The study show that the alternative method offers

performance comparable with the original one. Simulation results also show that

the proposed FELS’s performance is superior to the other learning strategies, while

experimental results demonstrate its feasibility in real world conditions.

As much as the incorporation of a prior information about the process may

bring about more “intelligent” controllers, there is the associated difficulty in ascer-

taining the information’s accuracy when the process dynamics changes drastically.

The pH neutralization process, with its severe nonlinearity and sensitivity, is used

to test whether there is merit in including structural information into the control

scheme. While the control task is simplified by the inclusion, difficulties with cop-

95
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ing with changes to the buffering conditions makes the inclusion undesirable. Even

with adaption of the structural information on-line, simulation results show that

the neurofuzzy control scheme is able to cope best without using the structural in-

formation. The feasibility of the neurofuzzy control scheme in handling an actual

pH process is also verified experimentally.

6.2 Suggestions for Future Work

Much is still needed to improve on the work that has been reported here. First, a

study to improve of the effects of the two intertwined optimization algorithms in

the learning mechanism on each other may bring about a better and more intuitive

understanding of the neurofuzzy control scheme to improve the rate at which the

weights converges.

Presently, the reference model in the control scheme presents an extra degree

of freedom to tune the control scheme for performance. However, at the same

time, it is used to prevent the unrealizable set point changes from corrupting the

neurofuzzy controller’s weights, resulting in the loss of that freedom. Work may

be expanded to see if there are other ways to incorporate the constraints into

the control scheme to regain that degree of freedom, which may then be used to

improve control performance.

There is also a need to extend the commissioning guide to deal with plants

that may not be well controlled by PI/ PID controllers. When dealing with highly

nonlinear plants, the choice of tuning parameters for many control schemes is left

to trial and error. Though the effects of each tuning parameter for the neurofuzzy

control scheme has been understood and documented for linear plants, the effect of

nonlinearities on each tuning parameter, and the stabilization of the control scheme

is still open for discovery. The extension of the stability analysis to nonlinear

systems can also be investigated.
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