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Summary

In this thesis, we focus on the cubic nonlinear Schrödinger equations (NLS) with

variable coefficients. First, we consider the Cauchy problem for the vector-valued

NLS with space- and time-dependent coefficients on RN and TN . By an approx-

imation argument we prove that for suitable initial maps, the Cauchy problem

admits unique local solutions, which preserve the regularity of the initial data.

Particularly, if the initial map is smooth, the solution is smooth. We also discuss

the global existence in the cases N = 1, 2 and prove that the solutions are global

when N = 1 or when N = 2 provided the L2-norms of initial data are small

enough and the coefficients satisfy certain additional conditions. We remark that

the cubic nonlinearity is critical in the latter case.

Second, we study blow-up solutions to the Cauchy problem of the inhomoge-

neous scalar NLS with spatial dimension two. On R2, we make use of so-called

virial identities and the ground state solution to construct a family of blow-up

solutions. We also present non-existence results and investigate qualitative prop-

erties, namely, L2-concentration and L2-minimality, of blow-up solutions when

they exist. These results are related to, and in some cases, extend the work of

Merle [29] and Nawa–Tsutsumi [33]. On T2, we obtain an L2-concentration in

terms of the ground state solution on R2. It is remarkable that there is no re-

striction on the L2-norms of initial data which is required in [2]. In particular,

in each case, a sufficient condition for global existence of solutions is provided

and the singular points of the L2-minimal blow-up solutions can be located if the

coefficients satisfy certain conditions.

iii



Chapter 1

Introduction

1.1 Background and motivation

In the past two decades, tremendous progress has been made in the study of the

nonlinear Schrödinger equation (NLS),

i∂tu + ∆u± |u|σ−2u = 0, (t, x) ∈ [0,∞)×M, (1.1)

where σ > 2 is a constant and M is the base space RN or TN . (Here and after,

the reader is referred to Section 1.2 for the explanation of general notations.) The

Cauchy problem of the above equation has been used as a mathematical model

in a variety of physical contexts. Although there are still many open problems, a

satisfactory analysis of the wave phenomena associated with the equation could be

accomplished by answering questions like existence and uniqueness of solutions,

regularity properties of solutions, continuity with respect to initial data, and blow-

up behavior. For blow-up solutions, some interesting qualitative properties such

as L2-concentration have been discovered; and the characterization of the L2-

minimal blow-up solutions has been exploited when the exponent of the nonlinear

term is critical for blowup, i.e, σ = 4/N + 2. There are two important conserved

quantities associated with solutions of the equation, known as (L2-) mass and

1



1.1 Background and motivation 2

energy, respectively:
∫
|u(t, x)|2dx =

∫
|u0(x)|2dx, (1.2)

E(u(t)) = E(u0), (1.3)

where

E(u) =
1

2

∫
|∇u(x)|2dx∓ 1

σ

∫
|u(x)|σdx. (1.4)

These conservation laws combined with the Strichartz inequalities play a crucial

role in the discussion of existence and blow-up. The reader is referred to the

surveys [5, 17, 30, 37, 7, 8] and the references therein for more details.

Recently, considerable interest on Schrödinger type equations with variable

coefficients has arisen among both mathematicians and physicists, and some re-

markable progress on the well-posedness of the Cauchy problem has been made,

see [14, 15, 16, 19, 20, 24, 40] and references therein. In the linear case, several

authors have studied the equation

∂u

∂t
− i

∑

j,k

∂

∂xj

(
ajk(x)

∂u

∂xk

)
−

∑
j

bj(t, x)
∂u

∂xj

− c(t, x)u = f(t, x), (1.5)

where (t, x) ∈ [0,∞) × RN , and typically, ajk(x) ∈ B∞(RN), ajk(x) = akj(x),

bj(t, x), c(t, x) ∈ C0([0, T ); B∞(RN)), and ajk satisfy the uniform ellipticity con-

dition

λ−1|ξ|2 ≤
∑

j,k

ajk(x)ξjξk ≤ λ|ξ|2, for any x, ξ ∈ RN , (1.6)

for some positive constant λ. In particular, Ichinose [20] and Hara [19] provided

necessary conditions on bj(t, x) for the well-posedness of the Cauchy problem

in L2(RN) and H∞(RN). Doi [15] also studied such equations on Riemannian

manifolds.

Staffilani and Tataru [38] studied the Cauchy problem of the following linear

Schrödinger equation with nonsmooth coefficients:

i
∂u

∂t
+

∑

j,k

∂

∂xj

(
ajk(t, x)

∂u

∂xk

)
= 0, x ∈ RN , t ≥ 0, (1.7)



1.1 Background and motivation 3

where ajk(t, x) ∈ [L∞(C1,1)∩C0,1(L∞)](R×RN). When ajk(t, x) is a C2 compactly

supported perturbation of the identity and the Hamiltonian system associated

with the Hamiltonian function

a(x, ξ) =
N∑

j,k=1

ajk(t, x)ξjξk

has empty trapping set, they used the so-called FBI transformation to construct

a micro-local parametrix for the equation and consequently established Strichartz

estimates.

Tsutsumi [41] considered the initial-boundary value problems for the following

NLS in an external domain Ω ⊂ R3:

i
∂u

∂t
+

3∑

j,k=1

∂

∂xj

(
ajk(x)

∂u

∂xk

)
= λ(t, x)|u|γ−1u + f(t, x), t ≥ 0. (1.8)

When the coefficients satisfy certain conditions and γ ≥ 4, he addressed the global

existence of solutions with small initial values by making use of the asymptotic

vanishing property of solutions to the corresponding homogeneous equation in

L∞(Ω) and a generalized Pohozaev estimate.

Merle [29] considered the Cauchy problem of the following scalar critical NLS

on RN :

∂tu = i
(
∆u + k(x)|u| 4

N u
)

,

where k(x) is a real-valued function on RN . He studied the existence of blow-up

solutions as well as the nonexistence of L2-minimal blow-up solutions.

Lim and Ponce [27] studied the Cauchy problem of the general quasi-linear

Schrödinger equation in one space dimension

∂tu = ia(u, ū, ∂xu, ∂xū)∂2
xu + ib(u, ū, ∂xu, ∂xū)∂2

xū

+c(u, ū, ∂xu, ∂xū)∂xu + d(u, ū, ∂xu, ∂xū)∂xū + f(u, ū), x ∈ R.

Under certain conditions on the coefficients a, b, c, d and f , they established local

existence and uniqueness results in Hs(R) and Hs(R) ∩ L2(|x|rdx) respectively.



1.1 Background and motivation 4

Also of relevance is the inhomogeneous Heisenberg spin system (see, for in-

stance, [10]) and its generalization – the inhomogeneous Schrödinger flow ([34,

35, 42, 43]):

∂u

∂t
= σ(x)J(u)τ(u) +∇σ(x) · J(u)∇u, x ∈M. (1.9)

In the above, M is a Riemannian manifold, u : M× [0,∞) → N where N is

a Kähler manifold with complex structure J , σ is a positive smooth real-valued

function, and τ(u) is the tension field at u. In the case M = R or T, N is

a Riemann surface, for instance, under a generalized Hasimoto transform ([11]),

the flow (1.9) yields the focusing nonlinear Schrödinger equation with variable

coefficients

∂v

∂t
= i

(
σ(x)vxx + 2σxvx +

σ(x)κ(x)

2
|v|2v + r(t, x)v

)
, (1.10)

where κ is the Gaussian curvature of N and r(t, x)v is the residual term.

Presently we would like to consider the Cauchy problem of the following non-

autonomous nonlinear Schrödinger equation (NNLS henceforth):





∂u

∂t
= i

{
f(t, x)∆u + p∇f(t, x) · ∇u + k(t, x)|u|2u}

, t ≥ 0, x ∈ M,

u(0, x) = u0(x),
(1.11)

where p is a fixed real constant, f and k are appropriately smooth real-valued

functions on [0,∞) × M and u ∈ Cm. We note that when f(t, x) ≡ 1 and

k(t, x) ≡ constant, (1.11) is just the ordinary (homogeneous) cubic NLS, which

has been extensively studied, see [2, 5, 7, 8] and references therein.

We will first discuss the local existence of solutions to the Cauchy problem

(1.11). Moreover, we will prove that the solutions are global when N = 1, and

for small initial data when N = 2. Inspired by [12], our strategy is to approxi-

mate (1.11) by parabolic systems. To prove convergence, we will derive uniform

estimates for these approximating systems by an energy method. In the consider-

ation of global existence, to highlight the difference between the non-autonomous
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and the autonomous (even inhomogeneous) case, we stress that in the latter case,

there are conservation laws which have no counterpart in the former case.

Then we will focus on the Cauchy problem of the scalar cubic inhomogeneous

Schrödinger equation with spatial dimension two:





∂tu = i (f(x)∆u +∇f(x) · ∇u + k(x)|u|2u)

u(0, ·) = u0(·),
(1.12)

where f(x) and k(x) are real-valued functions on M (= R2 or T2) and u0 ∈ H1(M).

Clearly this is the special case of (1.11) with m = 1, N = 2 and p = 1. Also, this

equation is the generalization of the NLS of critical nonlinearity on R2 and T2.

We are interested in the singular solutions of (1.12) in the inhomogeneous case,

i.e., f(x) or k(x) are not constant functions.

We first conduct our analysis on R2 and discuss some qualitative properties

of blow-up solutions to the Cauchy problem (1.12) under certain conditions on

f(x) and k(x). We obtain an L2-concentration result and consequently a sharp

condition for global existence. We make use of so-called virial identities and the

ground state solution to construct a family of blow-up solutions. Then we focus

on L2-minimal blow-up solutions, locate their singular points if they exist and

the coefficients satisfy appropriate conditions, and give a sufficient condition of

nonexistence. Finally we investigate the blow-up solutions of (1.12) on T2. We

describe the L2-concentration and L2-minimality in terms of the ground state

solution and locate the singular points of the L2-minimal blow-up solutions as

well. Particularly, a sufficient condition of global existence of solutions is given.

1.2 Notations

We shall use the generic symbols C, Cj and cj (j ∈ Z) to denote positive constants

depending on specified arguments, and ε to denote various small positive quan-

tities. M is either the N -dimensional Euclidean space RN or the N -dimensional
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flat torus TN (N = 1, 2, · · · ). W k,q (0 ≤ k < ∞, 1 ≤ q ≤ ∞) denote usual Sobolev

spaces on specified domains, Hk = W k,2, H0 = L2, H∞ = ∩∞i=0H
k; B∞ denotes

the space of complex-valued smooth functions with all derivatives bounded.

We normally use x = (x1, · · · , xN) to denote the space variable, and t to denote

the time variable. |y − x| denotes the distance between two points x, y ∈ M ,

B(x, r) = {y ∈ M ||y − x| < r} and δx denotes the Dirac δ-function at x. If x

is a variable of integration, we use dx to denote Lebesgue measure. An integral

over all of M is simply denoted by
∫

dx. When referring to the function u defined

on [0, T ) × M , we will use the shorthand u(t) and u(x) for u(t, ·) and u(·, x),

respectively.

Derivatives with respect to xj and t are denoted by ∇j = ∂/∂xj and ∂t = ∂/∂t

respectively. Sometimes, we denote ∂tu by ut. ∇ denotes the spatial gradient, ∆

is the Laplace-Beltrami operator on M . For the multi-index α = (α1, · · · , αN) of

length |α| := ∑N
j=1 αj,

∇α = ∇α1
1 · · · ∇αN

m .

In this notation, the norm of the Sobolev space Hk(M) is given by

‖u‖2
Hk =

k∑

|α|=0

∫
|∇αu(x)|2 dx.

We say that two multi-indices satisfy β ≤ α if and only if βj ≤ αj for all 1 ≤ j ≤
N , and write α− β = (α1 − β1, · · · , αN − βN) when β ≤ α.

Cm is the m-dimensional complex space with the standard real inner product

〈u, v〉 = Re (u · v̄), where v̄ is the conjugate of v. Clearly 〈u, iu〉 = 0. We say two

nonnegative functions g1(x) ∼ g2(x) if there exist positive constants c1, c2 such

that c1g1(x) ≤ g2(x) ≤ c2g1(x) for all x ∈ M . Finally, [s] denotes the integral

part of the positive number s.



Chapter 2

Non-autonomous NLS: Existence

and Uniqueness

In this chapter, we study the the Cauchy problem of the NNLS:




∂u

∂t
= i

{
f(t, x)∆u + p∇f(t, x) · ∇u + k(t, x)|u|2u}

, t ≥ 0, x ∈ M,

u(0, x) = u0(x),
(2.1)

where p is a fixed real constant, f and k are appropriately smooth real-valued

functions on M × [0,∞) and u ∈ Cm.

We will also be referring to the following assumptions:

(A1) There exists a positive continuous function L(t) such that

inf
x∈M

|f(t, x)| ≥ L(t), for all 0 ≤ t < ∞;

(A2) f is C1 with respect to t and there exists a positive continuous function

U(t) such that

‖∂tf(t, ·)‖L∞ ≤ U(t), for all 0 ≤ t < ∞;

(A3) (p− 1)∂tf ≤ 0 and there exists a positive constant c such that

‖f−p(t, ·)‖L∞ ≤ c and sup
x∈M

|f(t, x)| ≤ c inf
x∈M

|f(t, x)|, for all 0 ≤ t < ∞.

Our main results are as follows:

7
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Theorem 2.1 Let M be either RN or TN (N ≥ 1) and let k0 = [N
2
]+1. Suppose

s0 ≥ k0 + 2 is an integer and f ∈ C1,s0+1([0,∞)×M) is a positive function satis-

fying (A1)-(A2), f(t, ·) ∈ W s0+1,∞(M) and k(t, ·) ∈ W s0,∞(M) for all 0 ≤ t < ∞.

Then, given any initial map u0 ∈ Hs0(M), the Cauchy problem of the NNLS (2.1)

admits a unique local solution u ∈ L∞([0, T ), Hs0(M)) where T = T (‖u0‖Hk0 ).

Moreover the solution is global in the sense that u ∈ L∞loc([0,∞), Hs0(M)) when

N = 1, or when N = 2 provided f satisfies (A3) and ‖u0‖L2 is small enough.

Theorem 2.2 Let M be either RN or TN (N ≥ 1). Suppose f ∈ C1,∞([0,∞)×
M) is a positive function satisfying (A1)-(A2) and f(t, ·), k(t, ·) ∈ B∞(M) for

all 0 ≤ t < ∞. Then, given any initial map u0 ∈ H∞(M), the Cauchy prob-

lem of the NNLS (2.1) admits a unique local solution u ∈ L∞([0, T ), H∞(M))

where T = T (‖u0‖Hk0 ). Moreover the solution is global in the sense that u ∈
L∞loc([0,∞), H∞(M)) when N = 1, or when N = 2 provided f satisfies (A3) and

‖u0‖L2 is small enough.

As the proof of Theorem 2.2 is similar to that of Theorem 2.1, we will only

provide the proof of the latter in this chapter. We address uniqueness and local

existence, and global existence, respectively, in the subsequent two sections. To

minimize technicalities, we shall assume k(t, x) ≡ 1 in the sequel. For general

coefficient k(t, x), only a simple modification is needed.

2.1 Uniqueness and local existence

First of all we address the uniqueness of solution for the Cauchy problem of the

NNLS (2.1).

Proposition 2.1 Suppose that T < ∞ and f ∈ C1,1(M×[0, T )) is a real function

satisfying (A1)-(A2). Let u ∈ L∞([0, T ), Hk0+2(M)) be a solution to the Cauchy

problem of the NNLS (2.1). Then u is unique.
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Proof. The proof for the case M = RN being almost the same, here we give the

proof for M = TN only. Without loss of generality, we may assume that f > 0.

Let u, v : [0, T ) ×M → Cm be two solutions to (2.1) with the same initial map

at t = 0. Then

∂t(u− v) = i
(
f∆(u− v) + p∇f · ∇(u− v) + |u|2u− |v|2v)

.

From this equation we obtain

1

2

d

dt

∫
|u− v|2fp−1 dx

=

∫
〈∂t(u− v), u− v〉fp−1 dx + (p− 1)

∫
|u− v|2f p−2∂tf dx

=

∫
〈u + v, u− v〉〈iu, u− v〉f p−1 dx + (p− 1)

∫
|u− v|2fp−2∂tf dx

≤ C

∫
|u− v|2fp−1 dx, (2.2)

where the constant C only depends on

sup
t∈[0,T )

‖u‖2
L∞(M), sup

t∈[0,T )

‖v‖2
L∞(M), inf

t∈[0,T )
‖f‖2

L∞(M), and sup
t∈[0,T )

‖∂tf‖2
L∞(M).

By the Gronwall’s inequality and the assumption u(·, 0) = v(·, 0), we obtain
∫
|u− v|2fp−1 dx = 0 ∀t ∈ [0, T ),

which implies that u(t, x) = v(t, x) for all (t, x) ∈ [0, T )×M . 2

In the remainder of this section, we establish the local existence result for

the Cauchy problem of the NNLS (2.1). For this, we will study the following

approximating Cauchy problems parameterized by ε:




∂tu = (ε + i)
(
div(f∇u)

)
+ i(p− 1)∇f · ∇u + i|u|2u, t ≥ 0, x ∈ M,

u(x, 0) = u0(x).

(2.3)

If f ∈ C1,s0+1([0,∞) × M) is a positive function satisfying (A1), and f(t, ·) ∈
W s0+1,∞(M) for all 0 ≤ t < ∞, then it is easy to see that (2.3) is a second-

order uniformly parabolic system on [0, T ] × M . Thus, by the standard theory
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of parabolic equations, for each 0 < ε ≤ 1, given any initial map u0 ∈ C∞
0 (M),

the Cauchy problem (2.3) admits a unique local smooth solution ([1] Remark

10.7; [39] p.327). In fact, from the following discussions we will see that uε ∈
C([0, Tε), H

s0(M)) ∩ L∞([0, Tε), H
s0+1(M)). Now, we need to establish some uni-

form a priori estimates and a uniform lower bound for Tε with respect to ε.

Lemma 2.1 Suppose f ∈ C1,s0+1([0,∞) × M) is a positive function satisfying

(A1)-(A2), and f(t, ·) ∈ W s0+1,∞(M) for all 0 ≤ t < ∞. Let u = uε be a

solution of (2.3) in C([0, Tε), H
s0(M)). Then there exists T = T (‖u0‖Hk0 ) > 0,

which is independent of ε, such that for any integer 0 ≤ l ≤ s0 , there exists

Cl = Cl(m,u0, f) such that

sup
t∈[0,T ]

‖u‖Hl ≤ Cl. (2.4)

Proof. For an integer 0 ≤ l ≤ s0 and a multi-index α with |α| = l, we consider

the integral

I(t) =

∫
|∇αu|2f q dx,

where q = l + p− 1. First, we note that

1

2

d

dt

∫
|∇αu|2f q dx

=
q

2

∫
|∇αu|2f q−1∂tf dx +

∫
〈∇α∂tu,∇αu〉f q dx

=
q

2

∫
|∇αu|2f q−1∂tf dx +

∫
〈(ε + i)∇α

(
div(f∇u)

)
,∇αu〉f q dx

+(p− 1)

∫
〈i∇α(∇f · ∇u),∇αu〉f q dx +

∫
〈i∇α(|u|2u),∇αu〉f q dx

=: A0 + A1 + A2 + A3, (2.5)

where A0, A1, A2, A3 denote the integral terms in the sum as given above. We will

compute these terms separately.

First, by the assumptions on f , it is clear that

A0 =
q

2

∫
|∇αu|2f q−1∂tf dx

≤ C(f)

∫
|∇αu|2 dx ≤ C(f)

∑

|α|=l

∫
|∇αu|2 dx. (2.6)
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For the second term A1, integration by parts yields

A1 =

∫
〈(ε + i)∇α

(
div(f∇u)

)
,∇αu〉f q dx

= −
N∑

j=1

∫
〈(ε + i)∇α(f∇ju),∇α∇ju〉f q dx

−q

N∑
j=1

∫
〈(ε + i)∇α(f∇ju),∇αu〉f q−1∇jf dx

= −
N∑

j=1

∫
〈(ε + i)∇α∇ju,∇α∇ju〉f q+1 dx

−
N∑

j=1

∑

|β|=1,β≤α

∫
〈(ε + i)∇βf∇α−β∇ju,∇α∇ju〉f q dx

−
N∑

j=1

∑

|β|≥2,β≤α

∫
〈(ε + i)∇βf∇α−β∇ju,∇α∇ju〉f q dx

−q
N∑

j=1

∫
〈(ε + i)∇α∇ju,∇αu〉f q∇jf dx

−q

N∑
j=1

∑

|β|≥1,β≤α

∫
〈(ε + i)∇βf∇α−β∇ju),∇αu〉f q−1∇jf dx

=: A11 + A12 + A13 + A14 + A15. (2.7)

By direct computation, we have, term by term,

A11 = −
N∑

j=1

∫
〈(ε + i)∇α∇ju,∇α∇ju〉f q+1 dx

= −ε

N∑
j=1

∫
|∇α∇ju|2f q+1 dx ≤ 0; (2.8)
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A12 = −
N∑

j=1

∑

|β|=1,β≤α

∫
〈(ε + i)∇βf∇α−β∇ju,∇α∇ju〉f q dx

=
N∑

j=1

∑

|β|=1,β≤α

{
ε

2

∫
|∇α−β∇ju|2∇β (f q∇βf) dx

+

∫
〈i∇α∇ju,∇α−β∇ju〉f q∇βf dx

}

≤ C(f)‖u‖2
Hl +

N∑
j=1

∑

|β|=1,β≤α

∫
〈i∇α∇ju,∇α−β∇ju〉f q∇βf dx; (2.9)

A13 = −
N∑

j=1

∑

|β|≥2,β≤α

∫
〈(ε + i)∇βf∇α−β∇ju,∇α∇ju〉f q dx

=
N∑

j=1

∑

|β|≥2,β≤α

{∫
〈(ε + i)∇β∇jf∇α−β∇ju,∇αu〉f q dx

+

∫
〈(ε + i)∇βf∇α−β∆u,∇αu〉f q dx

+q

∫
〈(ε + i)∇βf∇α−β∇ju,∇αu〉f q−1∇jf dx

}

≤ C(f)‖u‖2
Hl , (2.10)

where the last inequality follows from the Hölder’s inequality;

A14 = −q

N∑
j=1

∫
〈(ε + i)∇α∇ju,∇αu〉f q∇jf dx

=
N∑

j=1

{
qε

2

∫
|∇αu|2∇j (f q∇jf) dx− q

∫
〈i∇α∇ju,∇αu〉f q∇jf dx

}

≤ C(f)‖u‖2
Hl − q

N∑
j=1

∫
〈i∇α∇ju,∇αu〉f q∇jf dx; (2.11)

and

A15 = −q

N∑
j=1

∑

|β|≥1,β≤α

∫
〈(ε + i)∇βf∇α−β∇ju),∇αu〉f q−1∇jf dx

≤ C(f)‖u‖2
Hl . (2.12)
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Substituting (2.8)–(2.12) into (2.7), we obtain

A1 ≤
N∑

j=1

∑

|β|=1,β≤α

∫
〈i∇α∇ju,∇α−βu〉f q∇βf dx

−q

N∑
j=1

∫
〈i∇α∇ju,∇αu〉f q∇jf dx + C(f)‖u‖2

Hl . (2.13)

For the term A2, a direct computation leads to

A2 = (p− 1)

∫
〈i∇α(∇f · ∇u),∇αu〉f q dx

= (p− 1)
N∑

j=1

∫
〈i∇jf∇α∇ju,∇αu〉f q dx

+(p− 1)
∑

|β|≥2,β≤α

∫
〈i∇β∇jf∇α−β∇ju,∇αu〉f q dx

≤ (p− 1)
N∑

j=1

∫
〈i∇α∇ju,∇αu〉f q∇jf dx + C(f)‖u‖2

Hl . (2.14)

Hence, it follows from (2.13) and (2.14) that

∑

|α|=l

{A1 + A2} ≤ C(f)‖u‖2
Hl . (2.15)

Note that here we have used the facts that q = l + p− 1 and

∑

|α|=l

N∑
j=1

∑

|β|=1,β≤α

∫
〈i∇α∇ju,∇α−β∇ju〉f q∇βf dx

= l
∑

|α|=l

N∑
j=1

∫
〈i∇α∇ju,∇αu〉f q∇jf dx. (2.16)
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To complete the proof of the Lemma, we need an estimate on the term A3.

We will do so by making use of a technique of [13]. First, we note that

A3 =

∫
〈i∇α(|u|2u),∇αu〉fβ dx

≤ C(f)

{∫
|∇αu|2|u|2 dx +

∑

β+γ=α
|β|,|γ|≥1

∫
|∇αu| · |∇βu| · |∇γu| · |u| dx

+
∑

β+γ+θ=α
|β|,|γ|,|θ|≥1

∫
|∇αu| · |∇βu| · |∇γu| · |∇θu| dx

}

=: C(f){A31 + A32 + A33}. (2.17)

The remainder of the proof comprises two cases:

Case I: l ≤ k0. From the Sobolev imbedding theorem we have

‖u‖L∞ ≤ C(N)‖u‖Hk0 , (2.18)

where C(N) is the Sobolev constant which depends only on the dimension N .

Thus,

A31 =

∫
|∇αu|2|u|2 dx

≤ ‖u‖2
L∞

∫
|∇αu|2 dx ≤ C(N)‖u‖4

Hk0 . (2.19)

Now we assume l ≥ 2 and note that the term A32 does not appear unless this

is the case. Given 1 ≤ s1, s2 ≤ l − 1 ≤ k0 − 1, s1 + s2 = l, since

0 ≤ 1

2
+

sj − 1

N
− k0 − 1

N
<

1

2
, j = 1, 2,

and
2∑

j=1

(
1

2
+

sj − 1

N
− k0 − 1

N
) = 1 +

l

N
− 2k0

N
<

1

2
,

we can choose psj
’s such that

1

2
+

sj − 1

N
>

1

psj

>
1

2
+

sj − 1

N
− k0 − 1

N
, j = 1, 2,
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and
1

ps1

+
1

ps2

=
1

2
.

Then, by the Gagliardo-Nirenberg inequality [3], there exist
sj−1

k0−1
≤ rj < 1 such

that for any multi-index µ with |µ| = sj,

(∫
|∇µu|psj dx

)1/psj

≤ C (‖u‖Hk0 )
rj (‖∇u‖L2)1−rj

≤ C‖u‖Hk0 , j = 1, 2, (2.20)

where the constants C = C(N, sj, psj
, k0, rj) are independent of u, f and ε.

Now let s1 = |β| and s2 = |γ|. Then by Hölder’s inequality and the above

argument,

A32 =
∑

β+γ=α
|β|,|γ|≥1

∫
|∇αu| · |∇βu| · |∇γu| · |u| dx

≤
∑

β+γ=α
|β|,|γ|≥1

‖u‖L∞

(∫
|∇αu|2 dx

)1/2

·
(∫

|∇βu|ps1 dx

)1/ps1
(∫

|∇γu|ps2 dx

)1/ps2

≤ C(N)‖u‖4
Hk0 . (2.21)

Similarly, for the term A33, let s1 = |β|, s2 = |γ| and s3 = |θ|. Then given

1 ≤ s1, s2, s3 ≤ l − 1 ≤ k0 − 1, s1 + s2 + s3 = l, we can choose positive psj
’s such

that
1

psj

>
1

2
+

sj − 1

N
− k0 − 1

N
, j = 1, 2, 3,

and
1

ps1

+
1

ps2

+
1

ps3

=
1

2
.
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By the same argument as above, we have

A33 =
∑

β+γ+θ=α
|β|,|γ|,|θ|≥1

∫
|∇αu| · |∇βu| · |∇γu| · |∇θu| dx

≤
∑

β+γ+θ=α
|β|,|γ|,|θ|≥1

(∫
|∇αu|2 dx

)1/2 (∫
|∇βu|ps1 dx

)1/ps1

·
(∫

|∇γu|ps2 dx

)1/ps2
(∫

|∇θu|ps3 dx

)1/ps3

≤ C(N)‖u‖4
Hk0 . (2.22)

Combining the estimates (2.19), (2.21) and (2.22), we conclude that

A3 ≤ C(f){A31 + A32 + A33} ≤ C(N, f)‖u‖4
Hk0 (2.23)

for the case l ≤ k0. Consequently, taking summation over |α| = l and l =

0, 1, · · · , k0 in (2.5) and using the estimates (2.13), (2.15) and (2.23), we obtain

d

dt




k0∑

l=0

∑

|α|=l

∫
|∇lu|2f l+p−1 dx


 ≤ C(N, f)

(‖u‖4
Hk0 + ‖u‖2

Hk0

)
. (2.24)

Finally, by the hypothesis of the Lemma, all the constants depending on f in

this proof are finite when t < ∞. Therefore, the ordinary differential inequality

(2.24) implies that for any constant K > ‖u0‖2
Hk0

, we can find T ∗ = T ∗(K) such

that

‖u‖2
Hk0 ≤ K (2.25)

for all t ∈ [0, T ∗]. This completes the proof of the Lemma in Case I.

Case II: l ≥ k0 + 1. We argue inductively on l. Suppose that there is a

constant Cl−1 = Cl−1(N, K, u0, f) such that

‖u‖2
Hl−1 ≤ Cl−1 for all t ∈ [0, T ∗]. (2.26)

From (2.18) and (2.25) we can see that

A31 =

∫
|∇αu|2|u|2 dx

≤ ‖u‖2
L∞

∫
|∇αu|2 dx ≤ C(N)K‖u‖2

Hl . (2.27)
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To estimate the terms A32 and A33, we proceed similarly as in Case I.

Suppose l > 2, 1 ≤ s2 ≤ s1 ≤ l − 1 and s1 + s2 = l. Then s1 ≥ l
2

> 1 and

s2 ≤ l
2

< l − 1. As

1

2
+

s1 − 1

N
− l − 1

N
=

1

2
− s2

N
<

1

2
,

1

2
+

s2 − 1

N
− l − 2

N
=

1

2
− s1 − 1

N
<

1

2

and
2∑

j=1

(
1

2
+

sj − 1

N
− l − j

N
) = 1− l − 1

N
<

1

2
,

we can choose positive psj
’s such that

1

2
+

sj − 1

N
>

1

psj

>
1

2
+

s1 − 1

N
− l − j

N
, j = 1, 2,

and
1

ps1

+
1

ps2

=
1

2
.

Then, by the Gagliardo-Nirenberg inequality, for any multi-index µ with |µ| = sj

we have

(∫
|∇µu|psj dx

)1/psj

≤ C (‖u‖Hl+1−j)rj (‖∇u‖L2)(1−rj) , j = 1, 2, (2.28)

where rj satisfies
sj − 1

l − j
≤ rj < 1,

and
1

psj

− s1 − 1

N
= rj

(
1

2
− l − j

N

)
+

1

2
(1− rj).

We emphasize that the constants C in (2.28) are independent of u, f and ε.

Without loss of generality, assume |β| ≥ |γ|. Denote s1 = |β|, s2 = |γ|. Using the

Hölder inequality and the above inequalities, by virtue of the assumption (2.26)
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we have

A32 =
∑

β+γ=α
|β|,|γ|≥1

∫
|∇αu| · |∇βu| · |∇γu| · |u| dx

≤
∑

β+γ=α
|β|,|γ|≥1

‖u‖L∞

(∫
|∇αu|2 dx

)1/2

·
(∫

|∇βu|ps1 dx

)1/ps1
(∫

|∇γu|ps2 dx

)1/ps2

≤ C(N,K, u0, f, Cl−1)‖u‖2
Hl . (2.29)

For the case k0 + 1 ≤ l ≤ 2, which necessarily arises from l = 2, N = 1 and

s2 = s1 = 1, which is not covered above, we note that, as in (2.21), we have

A32 ≤
∫
|∇αu| · |∇u|2 · |u| dx

≤ ‖u‖L∞‖∇u‖L∞

(∫
|∇αu|2 dx

)1/2 (∫
|∇u|2 dx

)1/2

≤ C(N)‖u‖2
H1‖∇u‖H1

(∫
|∇2u|2 dx

) 1
2

≤ C(N, K, u0, f)‖u‖2
H2 . (2.30)

Combining (2.29) and (2.30), we conclude that for l ≥ k0 + 1,

A32 ≤ C(N,K, u0, f, Cl−1)‖u‖2
Hl . (2.31)

Now we turn to the term A33. For positive integers s1, s2 and s3 with s1 ≥
s2 ≥ s3, 1 ≤ s1, s2, s3 ≤ l − 2 and s1 + s2 + s3 = l, it is easy to see

(
1

2
+

s1 − 1

N
− l − 1

N
) + (

1

2
+

s2 − 1

N
− l − 2

N
) + (

1

2
+

s3 − 1

N
− l − 2

N
) <

1

2
.

Therefore, by choosing psj
’s suitably and using the same argument as in (2.31),

we may employ the interpolation inequality to get

A33 ≤ C(N,K, u0, f, Cl−1)‖u‖2
Hl . (2.32)

Hence by (2.27), (2.31) and (2.32),

A3 ≤ C(f){A31 + A32 + A33} ≤ C(N, K, u0, f, Cl−1)‖u‖2
Hl (2.33)
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for l ≥ k0 + 1. Consequently, substituting (2.15) and (2.33) into (2.5), summing

over |α| = l, and using the assumption (2.26), we have, for any integer l ≥ k0 + 1,

d

dt


∑

|α|=l

∫
|∇αu|2f l+p−1 dx




≤ C(N, K, u0, f, Cl−1)


∑

|α|=l

∫
|∇αu|2 dx + 1


 (2.34)

for all t ∈ [0, T ∗]. In view of the hypothesis (A1), the Gronwall’s inequality tells

us that
∑

|α|=l

∫
|∇αu|2 dx ≤ C(N, K, u0, f, Cl−1) (2.35)

for all t ∈ [0, T ∗]. Combining this estimate with the assumption (2.26), one obtain

constants Cl = Cl(m,K, u0, f) such that for l ≥ k0 + 1

‖u‖2
Hl ≤ Cl, ∀t ∈ [0, T ∗]. (2.36)

By fixing K > ‖u0‖2
Hk0

and letting T = T ∗(K), the proof of the Lemma is now

complete. 2

Remark 2.1 We emphasize that, in the above estimates, the dependence on u0

is only on the Sobolev norm of u0. In particular T depends only on ‖u0‖Hk0 .

Now we are in the position to establish the local existence result. We first

consider smooth initial maps u0 ∈ C∞
0 (M). From Lemma 2.1 we know that

there exist T > 0 and a positive constant Cs0(N, u0, f) such that uε is defined on

[0, T ]×M and

sup
t∈[0,T ]

‖uε‖2
Hs0 ≤ Cs0(N, u0, f) (2.37)

uniformly for the parameter ε. Therefore we can select a sequence {εj}, εj → 0,

such that uεj → u [weakly∗] in L∞([0, T ], Hs0(M)). Obviously u is a solution of

the Cauchy problem (2.1).
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For general initial maps u0 ∈ Hs0(M), one can use a sequence of smooth maps

{u0,j ∈ C∞
0 (M)} to approximate u0 in Hs0 . From the argument above and Remark

2.1, the Cauchy problem (2.3) admits local smooth solutions uε
j on [0, T ]×M with

initial maps u0,j respectively and

sup
t∈[0,T ]

‖uε
j‖2

Hs0 ≤ Cs0(N, u0, f) ∀j, ∀0 < ε ≤ 1. (2.38)

Therefore, after relabelling if necessary, there exists a subsequence {uε
j} such that

uε
j −→ uε [weakly*] in L∞([0, T ]; Hs0(M)). (2.39)

It is easy to see that the limit uε is a classical solution to (2.3) with the initial map

u0 and the estimate (2.37) holds true for any ε ∈ (0, 1]. Then the same limitting

procedure as in previous paragraph gives a local solution u of the Cauchy problem

(2.1).

2.2 Global existence

In the previous section, we have established that, given an initial map u0 ∈
Hs0(M), the Cauchy problem of the NNLS (2.1) admits a unique, local solution.

In this section, we will show that this solution can be extended to all times when

N = 1 and also when N = 2 for suitable initial maps u0. As we have explained

earlier, the main difference between the non-autonomous and the autonomous

(even inhomogeneous) case is the absence of conservation laws in the former case.

Thus, to establish global existence in the non-autonomous case, we will need to

establish some a priori estimates on the Sobolev norms of the solutions. These

estimates will play the role of the conservation laws in arguments used in [42] (see

also [12, 35]).

Lemma 2.2 Let M be either RN or TN , N = 1, 2. Suppose that f(t, x) > 0 is a

C1,1 function satisfying (A1)-(A2), and f(t, ·) ∈ L∞(M) for all t ∈ [0, T ). If u is
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a solution to (2.1) such that u(t, ·) ∈ Hk0+2(M) for all t ∈ [0, T ), then

sup
t∈[0,T )

∫
|u|2fp−1 dx ≤ C(N, u0, f, T ). (2.40)

Moreover, when N = 1,

sup
t∈[0,T )

∫
|∇u|2fp dx ≤ C(N, u0, f, T ). (2.41)

If f satisfies (A3) and ‖u0‖L2 is small enough, (2.41) also holds when N = 2.

Proof. It is easy to see that

d

dt

∫
|u|2fp−1 dx = (p− 1)

∫
|u|2fp−2∂tf dx

≤ C(f)

∫
|u|2f p−1 dx,

from which (2.40) follows from the Gronwall’s inequality. In particular, if f sat-

isfies (p− 1)∂tf ≤ 0 (part of the condition (A3)), then for any t > 0
∫
|u(t, x)|2f p−1(t, x) dx ≤

∫
|u0(x)|2f p−1(x, 0) dx. (2.42)

We also note (cf the second conservation law in the inhomogeneous case [42])

that

d

dt

{∫
|∇u|2fp dx− 1

2

∫
|u|4fp−1 dx

}

= p

∫
|∇u|2fp−1∂tf dx− p− 1

2

∫
|u|4f p−2∂tf dx.

By the Gagliardo-Nirenberg inequality and the estimate (2.40),
∫
|u|4f p−2∂tf dx

≤ C(f)

∫
|u|4 dx

≤ C(N, f)

(∫
|∇u|2 dx +

∫
|u|2 dx

)N/2 (∫
|u|2 dx

)(4−N)/2

≤ C(N, f)

(∫
|∇u|2fp dx +

∫
|u|2fp−1 dx

)N/2 (∫
|u|2f p−1 dx

)(4−N)/2

≤ C(N, u0, f, T )

(∫
|∇u|2f p dx

)N/2

+ C(N, u0, f, T ). (2.43)
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Thus, as N ≤ 2,
∫
|∇u(t, ·)|2f(t, ·)p dx− 1

2

∫
|u(t, ·)|4f(t, ·)p−1 dx

≤
∫
|∇u0|2f(·, 0)p dx− 1

2

∫
|u0|4f(·, 0)p−1 dx

+ C(N, u0, f, T )

∫ t

0

∫
|∇u(·, s)|2f p dxds + C(N, u0, f, T )t. (2.44)

When N = 1, (2.41) follows immediately from (2.44) and the Gagliardo-Nirenberg

inequality (see also (2.43)). For the case N = 2, by the assumption (p− 1)∂tf ≤
0 (A3), we have the uniform estimate (2.42). Therefore, applying again the

Gagliardo-Nirenberg inequality, we have
∫
|u(t, ·)|4f(t, ·)p−1 dx

≤ ‖f(t, ·)p−1‖L∞

∫
|u(t, ·)|4 dx

≤ ‖f(t, ·)p−1‖L∞‖f(t, ·)1−p‖L∞‖f(t, ·)−p‖L∞

(∫
|∇u(t, ·)|2f(t, ·)p dx

)

·
(∫

|u(t, ·)|2f(t, ·)p−1 dx

)
+ C(u0, f, T )

≤ C

(∫
|∇u(t, ·)|2f(t, ·)p dx

)(∫
|u(·, 0)|2f(·, 0)p−1 dx

)

+C(u0, f, T ), (2.45)

where the positive constant C, by the assumption (A3), is independent of t. We

can see easily that on the left hand side of (2.44), the second term can be absorbed

by the first term as long as ‖u0‖L2 is small enough. In this case,
∫
|∇u(t, ·)|2f p dx ≤ C(N, u0, f, T )

∫ t

0

∫
|∇u(·, s)|2f p dxds

+C(N, u0, f, T )t + C(N, u0, f, T ), (2.46)

and the desired estimate (2.41) follows from the Gronwall’s inequality. 2

In order to establish global existence in the case N = 2, we will need to derive

some a priori estimates for the H2-norm of the solution u (see Remark 2.1). To

do so, we refer to the following result due to Brezis and Gallouet ([6], Lemma 2

with slight modification):
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Lemma 2.3 Let M be either R2 or T2. Then

‖v‖L∞(M) ≤ C(M)
(
1 +

√
log(1 + ‖v‖H2(M))

)

for every v ∈ H2(M) with ‖v‖H1(M) ≤ 1.

Now we are ready to complete the proof of Theorem 2.1:

Proof of Theorem 2.1. Let u be the solution of the Cauchy problem (2.1) existing

on the maximal time interval [0, T ) such that u(t, ·) ∈ Hs0(M) for all t ∈ [0, T ).

Suppose T < ∞. We will derive contradictions in the one- and two-spatial-

dimensional cases separately.

Case A: N = 1. From Lemma 2.2, we know that there exists a positive

constant C(u0, f, T ) such that

sup
t∈[0,T )

‖u‖H1 ≤ C(u0, f, T ). (2.47)

Then, for 0 < δ < T , by the local existence result of Section 3, the NNLS (2.1)

for uδ satisfying the initial data

uδ(x, T − δ) = u(x, T − δ)

has a solution uδ on the time interval [T − δ, T − δ + η) for some η > 0. Since we

have uniform bounds (independent of δ) on ‖u‖H1 if T < ∞ as given in (2.47), by

Remark 2.1, it follows that η is independent of δ. Thus, if we choose δ sufficiently

small, we have

T − δ + η > T.

However, by Proposition 2.1, uδ and u coincide on M× [T−δ, T ), and therefore uδ

extends u beyond the maximal time interval of existence. This is a contradiction.

Case B: N = 2. Lemma 2.2 shows that if ‖u‖L2 is small enough, then there

exists a positive constant C(u0, f, T ), such that

sup
t∈[0,T )

‖u‖H1 ≤ C(u0, f, T ). (2.48)
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Similar to the proof of Lemma 2.1 (let ε = 0 in that argument), we have

d

dt




2∑

l=0

∑

|α|=l

∫
|∇αu|2f l+p−1 dx




≤ C(f)
(‖u‖2

H2 + ‖|u|2u‖H2 · ‖u‖H2

)
. (2.49)

In view of the Gagliardo-Nirenberg inequality, it is easy to verify that

‖|u|2u‖H2 ≤ C‖u‖2
L∞‖u‖H2 . (2.50)

From Lemma 2.3 and the estimate (2.48) we deduce that

‖u‖L∞ ≤ C
(
1 +

√
log(1 + ‖u‖H2)

)
.

Hence with the assumptions (A1)-(A3), the inequality (2.49) leads to

‖u(t)‖2
H2 ≤ C + C

∫ t

0

‖u(s)‖2
H2 (1 + log(1 + ‖u(s)‖H2)) ds, ∀t ∈ [0, T ), (2.51)

where C = C(u0, f, T ). Denoting the RHS of (2.51) by G(t), we have

G′(t) = C‖u(t)‖2
H2 (1 + log(1 + ‖u(t)‖H2)) ≤ CG(t) (1 + log(1 + G(t))) .

Consequently

d

dt
log(1 + log(1 + G(t))) ≤ C, ∀t ∈ [0, T ),

and we find an estimate for ‖u‖H2 of the form

‖u(t)‖H2 ≤ exp(c1 exp(c2t)), ∀t ∈ [0, T ),

where c1 and c2 are constants. Thus ‖u‖H2 remains bounded on every finite

time interval. A contradiction can now be derived as in Case A and the proof of

Theorem 1 is complete. 2

Finally, we remark that there has been a lot of interest in the Ginzburg-Landau

equation (see [9, 21, 22] and references therein)

div(a(x)∇u) + (1− |u|2)u = 0 in R2
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for a complex order parameter with a variable coefficient arising in a macroscopic

description of superconductivity associated with the inhomogeneous Ginzburg-

Landau functional

E(u) =
1

2

∫

R2

|∇u|2a(x)dx +
1

4

∫

R2

(1− |u|2)2dx.

We point out that, for suitable a(x), our method can be used to address the global

existence of the following Schrödinger flow corresponding to this functional:





∂u

∂t
= i

(
div(a(x)∇u) + (1− |u|2)u)

, (t, x) ∈ [0,∞)× R2 or [0,∞)× T2,

u(x, 0) = u0(x).



Chapter 3

Inhomogeneous NLS: Blow-up

Analysis

In this chapter, we study the Cauchy problem of the inhomogeneous Schrödinger

equation with spatial dimension two:



∂tu = i (f(x)∆u +∇f(x) · ∇u + k(x)|u|2u) ,

u(0, ·) = u0(·),
(3.1)

where u takes values in C, f(x) and k(x) are positive real-valued functions on M

(= R2 or T2) and u0 ∈ H1(M). As observed in Chapter 1, this equation is the

special case of the NNLS when m = 1, N = 2 and p = 1; and the nonlinearity is

critical for blowup. First of all, we recall the following existence and uniqueness

result for the above problem established in Chapter 2.

Theorem 3.1 Let s0 ≥ 4 be an integer. Suppose f ∈ Cs0+1(M) ∩W s0+1,∞(M)

and k ∈ Cs0(M)∩W s0,∞(M) are real functions and infx∈M f(x) > 0. Then, given

u0 ∈ Hs0(M), the Cauchy problem (3.1) admits a unique local smooth solution

u ∈ L∞([0, T ), Hs0(M)). Moreover the solution is global in the sense that u ∈
L∞loc([0,∞), Hs0(M)) provided ‖u0‖L2 is small enough.

From this result, a natural question arises: How small does the L2-norm of the

initial data have to be to guarantee global existence? The answer will be provided

26
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in this chapter in Corollaries 3.1 and 3.3. Furthermore, we will show that under

appropriate conditions on f and k, we will have

lim
t↑T

‖u(t)‖H1 = ∞

for some 0 < T < ∞. Such a solution is called a blow-up solution and T is

called the blow-up time. In the rest of this chapter, we suppose the existence and

uniqueness of the solution and only focus on the behavior of blow-up properties.

We also note that, as in the homogeneous case, one can easily check that

solutions of (3.1) obey conservation of mass and energy as follows:

∫
|u(t, x)|2 dx =

∫
|u0(x)|2 dx, (3.2)

Ef,k(u(t)) = Ef,k(u0), (3.3)

where

Ef,k(u) =
1

2

∫
f(x)|∇u(x)|2 dx− 1

4

∫
k(x)|u(x)|4 dx.

3.1 Blow-up analysis on R2

In this section, we investigate the blow-up phenomenon of the Cauchy problem

(3.1) on the plane R2. We will study some qualitative properties, namely, L2-

concentration and L2-minimality, of blow-up solutions. For this, we will be refer-

ring to the following conditions:

(H1) 0 < L ≡ infx∈R2 f(x) ≤ f(x) ≤ supx∈R2 f(x) < ∞, ∀x ∈ R2;

(H2) |x · ∇f(x)|+ |∇f(x)| ≤ C, ∀x ∈ R2, for some C > 0;

(H3) there is x0 such that f(x0) = L.

(H1)′ 0 < infx∈R2 k(x) ≤ k(x) ≤ supx∈R2 k(x) ≡ K < ∞, ∀x ∈ R2;

(H2)′ |x · ∇k(x)|+ |∇k(x)| ≤ C, ∀x ∈ R2, for some C > 0;
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(H3)′ there is x0 satisfying (H3) such that k(x0) = K.

As in the homogeneous case, the blow-up solutions of the inhomogeneous equa-

tion can be described in terms of the unique radially symmetric positive solution

QL,K of

L∆Q + K|Q|2Q = Q, in R2,

called the ground state solution (see [36] for existence and [25] for uniqueness).

Our main results are as follows:

Theorem 3.2 (L2-concentration) Assume that f(x) and k(x) satisfy (H1)-(H2)

and (H1)′-(H2)′ respectively. Let u(t) be a blow-up solution of the Cauchy problem

(3.1) and T its blow-up time. Then

(i) there is x(t) ∈ R2 such that ∀R > 0

lim inf
t↑T

∫

|x−x(t)|<R

|u(t, x)|2dx ≥ ‖QL,K‖2
L2 ; (3.4)

(ii) there is no sequence {tn} such that tn ↑ T and u(tn) converges in L2(R2) as

n →∞.

Theorem 3.2 implies that blow-up solutions have a lower L2-bound, namely,

‖u(t)‖L2 ≥ ‖QL,K‖L2 . Therefore, as a consequence of the conservation of mass,

we have a sufficient condition for the global existence of solutions. This result is

sharp in the sense described in Theorems 3.4 and 3.5.

Corollary 3.1 Assume that f(x) and k(x) satisfy (H1)-(H2) and (H1)′-(H2)′ re-

spectively, then the solution u(t) is globally defined in time provided ‖u0‖L2 <

‖QL,K‖L2.

Theorem 3.3 (L2-concentration: Radial case) Let f(x) and k(x) be radial with

respect to x0 i.e., f(x) = f(|x−x0|) and k(x) = k(|x−x0|), and satisfy (H1)-H(2)

and (H1)′-(H2)′ respectively. Let u(t) be a blow-up solution with radial (w.r.t.
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x0) initial data u0, and T its blow-up time. Assume in addition that there exists

ρ0 > 0 such that for |x− x0| < ρ0,

(x− x0) · ∇k(x) ≤ 0 ≤ (x− x0) · ∇f(x). (3.5)

Then the following are equivalent:

(A) |u(t, x)|2 → ‖u0‖2
L2δx0 in the distribution sense as t ↑ T ;

(B) |x− x0|u0 ∈ L2(R2) and lim
t↑T

‖|x− x0|u(t)‖L2 = 0.

Theorem 3.4 (Existence) Suppose f(x) and k(x) satisfy (H1)-H(3) and (H1)′-

(H3)′ respectively. Assume in addition that

curl(
x− x0

f(x)
) = 0 (integrability condition), (3.6)

(x− x0) · ∇f(x) ≥ 0 for all x ∈ R2 or (3.7)

(x− x0) · ∇f(x) > 0 for 0 < |x− x0| < ρ0 for some ρ0 > 0, (3.8)

and

(x− x0) · ∇k(x) ≤ 0 for all x ∈ R2 or (3.9)

(x− x0) · ∇k(x) < 0 for 0 < |x− x0| < ρ0 for some ρ0 > 0. (3.10)

Then there exists ε0 > 0 such that ∀ε ∈ (0, ε0), there is φε ∈ H1 such that

(a) ‖φε‖L2 = ‖QL,K‖L2 + ε,

(b) uε blows up in finite time where uε is the solution of (3.1) with initial data

φε.

Moreover, ε0 = ∞ if f(x) and k(x) satisfy (3.7) and (3.9) respectively.

Remark 3.1 Let b(x) = (b1(x), b2(x)) be a smooth map from R2 into R2. If

curl(b(x)) = 0, i.e.,
∂b1

∂x2

=
∂b2

∂x1

,
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then there exist a function a(x) with∇a(x) = b(x). In particular, the integrability

condition (3.6) implies that there exists ψ such that ∇ψ(x−x0) = (x−x0)/f(x).

It is also easy to check that if f is radial with respect to x0, then (3.6) is fulfilled

automatically. Also, the assumption (3.8) can be weakened to




(x− x0) · ∇f(x) ≥ 0 for |x− x0| < ρ0

(x− x0) · ∇f(x) > 0 on S,

where S is a closed curve (hypersurface for higher dimension) contained in {|x−
x0| < ρ0} with x0 in its interior, and (3.10) can be weakened similarly.

Theorem 3.5 (L2-minimal blow-up solutions) Assume ‖u0‖L2 = ‖QL,K‖L2 and

u(t) is the solution of (3.1). Let f(x), k(x) satisfy (H1)-H(2) and (H1)′-(H2)′

respectively. Suppose there are γ0 > 0, R0 > 0 such that

f(x) ≥ L + γ0 for |x| > R0, and M = {x; f(x) = L} is finite (3.11)

or k(x) ≤ K − γ0 for |x| > R0, and M′ = {x; k(x) = K} is finite. (3.12)

(i) If u(t) blows up in finite time T , then there exists y0 ∈M∩M′ such that

|u(t, x)|2 → ‖QL,K‖2
L2δy0 , in the distribution sense as t ↑ T,

|x− y0|u0 ∈ L2(R2) and lim
t↑T

‖|x− y0|u(t, x)‖L2 = 0.

(ii) Assume in addition that for each y0 ∈M∩M′, there are ρ0 > 0, α0 ∈ (0, 1),

c0 > 0 such that for |x− y0| < ρ0

(x− y0) · ∇f(x) ≥ c0|x− y0|1+α0 or (x− y0) · ∇k(x) ≤ −c0|x− y0|1+α0 ,

(3.13)

then u(t) does not blow up in finite time.

As a direct consequence of the above theorem, we have:

Corollary 3.2 Under the same assumption as in Theorem 3.5. If M∩M′ = ∅,
then there is no blow-up solution to (3.1) with ‖u0‖L2 = ‖QL,K‖L2.
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Remark 3.2 Note that, in contrast with Theorem 3.3, in Theorem 3.5, the initial

data u0, the functions f(x) and k(x) are not assumed to be radial with respect

to y0. For the general initial data u0 with ‖u0‖L2 > ‖QL,K‖L2 , it is not known

whether the concentration point of the blow-up solution is a critical point of either

f(x) or k(x).

Remark 3.3 Our arguments are also essentially valid for the general setting on

RN for the inhomogeneous NLS

∂tu = i
(
f(x)∆u +∇f(x) · ∇u + k(x)|u| 4

N u
)

.

Note that the above equation is in general not conformally equivalent to the

equation

∂tu = i
(
∆u + k̃(x)|u| 4

N u
)

,

which was studied by Merle [29].

To minimize technicalities, we shall assume k(x) ≡ 1 in the sequel. The proofs

for the non-constant function k(x) follow essentially the same arguments with

some modifications. Notationally, we write QL = QL,1 and Ef = Ef,1; when no

confusion arises, we sometimes denote Ef simply as E. We note that solutions of

(3.1) satisfy EL(u) ≤ E(u).

3.1.1 Preliminaries

In this section, we collect a few basic results which will be used in the subsequent

sections.

Lemma 3.1 Let u(t) be a solution of (2.1), and let φ, ψ̃ ∈ C4(R2) be functions

with compact support (up to constants) that satisfy

∇ψ̃(x− x0) =
∇φ(x− x0)

f(x)
.
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Then,

d

dt

∫
ψ̃(x− x0)|u(t, x)|2 dx = 2 Im

∫
∇φ(x− x0) · ∇u(t, x)ū(t, x) dx,

and

d2

dt2

∫
ψ̃(x− x0)|u(t, x)|2 dx

= −
∫

∆φ(x− x0)|u(t, x)|4 dx

+4 Re

∫
(∇2φ(x− x0) · ∇u(t, x)) · ∇ū(t, x)f(x) dx

− 2

∫
∇φ(x− x0) · ∇f(x)|∇u(t, x)|2 dx

−
∫

(∆2φ(x− x0) +∇∆φ(x− x0) · ∇f(x))|u(t, x)|2 dx.

(3.14)

Proof. By a straightforward computation,

d

dt

∫
ψ̃(x− x0)|u(t, x)|2 dx = 2 Re

∫
ψ̃(x− x0)ut(t, x)ū(t, x) dx

= − 2 Im

∫
ψ̃(x− x0)div (f(x)∇u(t, x)) ū(t, x) dx

= 2 Im

∫
∇φ(x− x0) · ∇u(t, x)ū(t, x) dx.

Differentiating again,

2
d

dt
Im

∫
∇φ(x− x0) · ∇u(x)ū(x) dx

= 2 Im

∫
∇φ(x− x0) · ∇ut(x)ū(x) dx + 2 Im

∫
∇φ(x− x0) · ∇u(x)ūt(x) dx

= 4 Im

∫
∇φ(x− x0) · ∇u(x)ūt(x) dx− 2 Im

∫
∆φ(x− x0)ut(x)ū(x) dx

= − 4 Re

∫
∇φ(x− x0) · ∇u(x)|u(x)|2ū(x) dx

−4 Re

∫
∇φ(x− x0) · ∇u(x)∇ (f(x)∇ū(x)) dx

− 2 Re

∫
∆φ(x− x0)∇(f(x)∇u(x))ū(x) dx− 2 Re

∫
∆φ(x− x0)|u(x)|4 dx

= −
∫

∆φ(x− x0)|u(x)|4 dx + 4 Re

∫
(∇2φ(x− x0) · ∇u(x)) · ∇ū(x)f(x) dx

+ 2

∫
∇φ(x− x0) · ∇(|∇u(x)|2)f(x) dx + 2

∫
∆φ(x− x0)f(x)|∇u(x)|2 dx

+

∫
∇∆φ(x− x0) · ∇(|u(x)|2)f(x) dx,



3.1 Blow-up analysis on R2 33

from which (3.14) follows upon integration by parts. 2

Lemma 3.2 Let u(t, x) be the solution of (3.1) for t ∈ [0, T ). Suppose |x−x0|u0 ∈
L2, ψ(x) ≥ 0 and ∇ψ(x− x0) =

x− x0

f(x)
. Then, for t ∈ [0, T ),

d2

dt2

∫
ψ(x− x0)|u(t, x)|2 dx

= 8E(u0)− 2

∫
(x− x0) · ∇f(x)|∇u(t, x)|2 dx.

(3.15)

Proof. As for the previous Lemma, the proof is a straightforward computation.

We remark that ψ(x − x0) ∼ |x − x0|2 and the regularity (at least H2) of u

guarantees that the left hand side of (3.15) makes sense. 2

Lemma 3.3 Let η(x) ∈ C1(RN) ∩W 1,∞(RN) and Ω = supp(η). Then there is a

constant c(N) > 0 such that, for all v ∈ H1(RN),
∫
|v(x)| 4

N
+2η2(x) dx ≤ c(N)

(∫

Ω

v2(x) dx

)2/N

·
{∫

Ω

η2(x)|∇v(x)|2 dx + ‖∇η‖2
L∞

∫

Ω

v2(x) dx

}
.

Proof. See [32] (Appendix A) or [28]. 2

Lemma 3.4 ([44]) For any v ∈ H1,

L

2

[
1−

( ‖v‖L2

‖QL‖L2

)2
]
‖∇v‖2

L2 ≤ EL(v).

Lemma 3.5 There are positive constants c1 and c2 such that

|∇QL,K(x)| ≤ c1 exp(−c2|x|), ∀x ∈ R2.

Proof. It suffices to prove the result for Q = Q1. We follow the idea of [4]. From

[36], we know that Q decreases exponentially. Thus, for r = |x| large enough, say

r ≥ r0 > 0, |Q|2Q−Q < 0. Hence

−d2Q

dr2
≤ −d2Q

dr2
Q− 1

r

dQ

dr
= |Q|2Q−Q < 0.

It follows that, for r > r0 + 1, one has

0 ≥ dQ

dr
≥

∫ r

r−1

dQ

dr
(s) ds = Q(r)−Q(r − 1) ≥ −C exp(−C(r − 1)),

which implies the result. 2



3.1 Blow-up analysis on R2 34

3.1.2 L2-concentration

For the homogeneous NLS, blow-up phenomena have been observed in L2 as well

as in H1. Particularly, concentration occurs in L2 for blow-up solutions. This

phenomenon persists in the inhomogeneous case and the corresponding results

are stated in Theorems 3.2 and 3.3. We investigate this in detail and give the

proofs of these results in this section.

General case First of all, we introduce a crucial lemma which is essentially

due to Merle [29] (Propositions 2.4, 2.5 and Corollary 2.7) (see also [45] for the

second part). For the reader’s convenience, we shall give a sketch of the proof

here.

Lemma 3.6 ([29]) Suppose f(x) satisfies (H1)-(H2) and let {un} be such that

‖un‖L2 ≤ c1 and EL(un) ≤ c2;

λn = ‖∇un‖L2/‖∇QL‖L2 →∞ as n →∞.

Then there exist xn ∈ R2 such that for all R > 0,

lim inf
n→∞

‖un‖L2(B(xn,R))

‖Qf(xn)‖L2

≥ 1.

Moreover if ‖un‖L2 → ‖QL‖L2 as n → ∞, then there exist x̃n ∈ R2, θn ∈ R such

that
1

λn

eiθnun

( ·+ x̃n

λn

)
→ QL(·) in H1 as n →∞.

Sketch of the proof. We follow the idea of [29] and [18]. First of all, we introduce

the following non-vanishing result.

Lemma 3.7 Assume that vn ∈ H1 such that

∫
|vn(x)|2dx ≤ c1,

∫
|∇vn(x)|2dx ≤ c2,

∫
|vn(x)|4 ≥ c3.
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Then there exist a constant c4 = c4(c1, c2, c3) > 0 and a sequence {xn ∈ R2} such

that

∫

|x−xn|<1

|vn(x)|2dx > c4. (3.16)

Proof. Clearly there exists {xn ∈ R2} such that for all n,

∫

Sn

|vn(x)|4dx ≥ c5

∫

Sn

(|∇vn(x)|2 + |vn(x)|2)dx,

where Sn is the unit square of center xn and c5 = c3/(2c1 + 2c2), for if not, we

would obtain c3 ≤ c5(c1 + c2) ≤ c3/2 which is a contradiction. Therefore it follows

from the Sobolev inequality that

(∫

Sn

|vn(x)|4dx

)1/2

≤ c

∫

Sn

(|∇vn(x)|2 + |vn(x)|2)dx,

which implies

∫

Sn

|vn(x)|4dx ≥ c6 > 0, (3.17)

where c, c6 are independent of n.

To see (3.16), assume by contradiction that there is a subsequence {vn} (rela-

belled) such that

∫

Sn

|vn(x)|2dx → 0 as n →∞,

which implies

vn(xn + ·) → 0 weakly in L2(S0) as n →∞, (3.18)

where S0 is the unit square centered at the origin. Moreover we can assume that

vn(xn + ·) → v weakly in H1(S0) as n →∞,

for some v ∈ H1(S0). Then

vn(xn + ·) → v strongly in L4(S0) as n →∞. (3.19)
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Thus it follows from (3.18) and (3.19)
∫

Sn

|vn(x)|4dx → 0 as n →∞,

which is a contradiction to (3.17). The lemma is proved. 2

The proof of the second part of Lemma 3.6 can be found in [45], hence is

omitted here. In the following, we verify the first part of Lemma 3.6 by making

use of the concentration compactness principle. For simplicity, we will only prove

a weak version of the result. The proof of the strong version is essentially the

same and makes use of the observations that

‖Qf(x)‖2
L2 =

f(x)

L
‖QL‖2

L2 ,

lim
n→∞

sup
|x−y|<R

|f(
x

λn

)− f(
y

λn

)| = 0, ∀R > 0,

where λn = ‖∇un‖L2 →∞ as n →∞.

Lemma 3.8 Suppose f(x) satisfies (H1)-(H2). Let {un} be such that ‖un‖2
L2 ≤

C1, EL(un) ≤ C2, and ‖∇un‖L2 → ∞ as n → ∞. Then there exists {xn} such

that for all R > 0,

lim inf
n→∞

‖un‖L2(B(xn,R))

‖QL‖L2

≥ 1.

Proof. We argue by contradiction. Suppose there are R0 > 0, γ0 > 0 and a

subsequence {un} (relabelled) such that

sup
x∈R2

(∫

|x−y|<R0

|un(y)|2dy

)
≤ ‖QL‖2

L2 − γ0.

Consider the scaling

Un(x) = λ−1
n un(λ−1

n x),

where λn = ‖∇un‖L2 . It is easy to verify that

‖Un‖2
L2 = ‖un‖2

L2 ≤ C1, ‖∇Un‖L2 = 1,

lim inf
n→∞

EL(Un) = lim inf
n→+∞

EL(un)

λ2
n

≤ 0,

sup
x∈R2

(∫

|x−y|<R

|Un(y)|2dy

)
≤ ‖QL‖2

L2 − γ0, ∀0 < R ≤ λnR0.
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Therefore, extracting a subsequence (still labelled by Un), we have

∫
|Un(x)|4dx ≥ 2L

∫
|∇Un(x)|2dx− L = L, for large n, (3.20)

lim inf
n→∞

(
sup
x∈R2

∫

|x−y|<R

|Un(y)|2dy

)
≤ ‖QL‖2

L2 − γ0, ∀R > 0. (3.21)

Applying the concentration compactness principle, by Lemma 3.7 (and its proof),

we have the dichotomy

Un = U1
n + Ũ1

n

such that, for a sequence {x1
n ∈ R2} and some ψ1 ∈ H1,

U1
n(x1

n + ·) → ψ1 weakly in H1, locally (strongly) in L4 and L2 as n →∞,
∫

|x−x1
n|<1

|U1
n(x)|4dx ≥ C, and

∫

|x−x1
n|<1

|U1
n(x)|2dx ≥ γ1,

where C and γ1 are positive constants depending only on C1 and L.

On one hand, from (3.21) we have

lim inf
n→∞

∫

|x−x1
n|<R

|U1
n(x)|2dx ≤ ‖QL‖2

L2 − γ0, ∀R > 0.

By usual techniques of concentration compactness method, we have a suitable

choice of U1
n such that

‖U1
n‖2

L2 + ‖Ũ1
n‖2

L2 − ‖Un‖2
L2 → 0 as n →∞, (3.22)

γ1 ≤ ‖ψ1‖2
L2 = lim

n→∞
‖U1

n‖2
L2 ≤ ‖QL‖2

L2 − γ0. (3.23)

On the other hand,

EL(ψ1) + lim inf
n→∞

EL(Ũ1
n) ≤ lim inf

n→∞
(EL(U1

n) + EL(Ũ1
n))

≤ lim inf
n→∞

EL(Un) ≤ 0

Therefore, by Lemma 3.4 and (3.23),

lim inf
n→∞

EL(Ũ1
n) ≤ −EL(ψ1) < 0.
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Thus, extracting a subsequence (still labelled by Ũ1
n), we have

‖Ũ1
n‖2

L2 → C1
1 ≤ C1 − γ1 and lim inf

n→∞
EL(Ũ1

n) < 0.

Redefine the sequences

λn = ‖∇Ũ1
n‖L2 and Un(x) = λ−1

n Ũ1
n(λ−1

n x).

Then, extracting a subsequence if necessary, we have

‖Un‖2
L2 → C1

1 ≤ C1 − γ1, lim inf
n→∞

EL(Un) < 0,

lim inf
n→∞

(
sup
x∈R2

∫

|x−y|<R

|Un(y)|2dy

)
≤ ‖QL‖2

L2 − γ0, ∀R > 0.

Iterating the same procedure we can get

Un = U2
n + Ũ2

n

where, for some {x2
n ∈ R2},

∫

|x−x2
n|<1

|U2
n(x)|2dx ≥ γ1.

Define p as the number such that −pγ1+C1 < ‖QL‖2
L2 . Applying the same pro-

cedure at most p times, we can find j ≤ p and a function U j
n such that (extracting

a subsequence if necessary) for large n

EL(Ũ j
n) < 0 and ‖Ũ j

n‖2
L2 < ‖QL‖2

L2 .

This contradicts Lemma 3.4 and completes the proof. 2

With Lemma 3.6 and the conservation of mass and energy in hand, we can

prove Theorem 3.2 easily.

Proof of Theorem 3.2. The proof makes use of the observation that EL(u) ≤ E(u).

Part (i) follows directly from Lemma 3.6 and the conservation of mass and energy.

Part (ii) is essentially the same with that of Proposition 1 in [31]. 2
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Radial case Throughout the remainder of this subsection, we assume that

f(x) and the initial data u0 are radial (w.r.t. x0), f(x) satisfies (H1)-(H2) and

(3.5) holds.

Let u(t) be a blow-up solution with blow-up time T . By the uniqueness of the

solution, it is easy to see that u(t) is also radial. We first establish some useful

estimates by making use of Lemma 3.1.

Lemma 3.9 Suppose that property (A) in Theorem 3.3 holds. Then for any R >

0, there exists a constant c(R) > 0 such that
∫ T

0

(T − t)

∫

|x−x0|≥2R

|∇u(t, x)|2dxdt ≤ c(R), (3.24)

∫ T

0

(T − t)

∫

|x−x0|≥2R

|u(t, x)|4dxdt ≤ c(R). (3.25)

Moreover, c(R) can be chosen to be decreasing in R.

Proof. As in [33], we choose an auxiliary function ϕ with certain smoothness on

R such that

ϕ(r) =





r, 0 ≤ r < 1,

r − (r − 1)3, 1 ≤ r < 1 + 1/
√

3,

smooth with ϕ′ ≤ 0, 1 + 1/
√

3 ≤ r < 2,

0, r ≥ 2.

Define, for R > 0,

ϕR(r) = Rϕ(r/R)

and

φR(x) =

∫ |x|

0

ϕR(s)ds.

It is easy to see that

∆φR(x) ≡ 2 for |x| ≤ R

|∇∆φR(x− x0) · ∇f(x)|+ |∇(2−∆φR(x− x0))
1/2| ≤ C

R
for all x ∈ R2

|∆2φR(x)| ≤ C

R2
for all x ∈ R2.
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Since f(x) is radial, we can find nonnegative radial functions ψR such that for all

x ∈ R2,

ψR(x− x0) ∼ φR(x− x0) and ∇ψR(x− x0) =
∇φR(x− x0)

f(x)
.

Taking ψ̃(x) = ψR(x− x0) in Lemma 3.1, and using the identity

(∇2φR(r) · ∇u) · ∇ū = ϕ′R(r)|ur|2 = ϕ′R(r)|∇u|2,

we obtain for any t ∈ [0, T ),

∫
ψR(x− x0)|u(t, x)|2dx

=

{∫
ψR(x− x0)|u0(x)|2dx

+ 2t Im

∫
∇φR(x− x0) · ∇u0(x)ū0(x)dx + 4E(u0)t

2

}

+

∫ t

0

(t− s)

{∫
(2−∆φR(x− x0))|u(s, x)|4dx

+

∫
4(ϕ′R(|x− x0|)− 1)f(x)|∇u(s, x)|2dx

}
ds

− 2

∫ t

0

(t− s)

∫
∇φR(x− x0) · ∇f(x)|∇u(s, x)|2dxds

−
∫ t

0

(t− s)

∫
(∆2φR(x− x0) +∇∆φR(x− x0) · ∇f(x))|u(s, x)|2dxds

=: I + II + III + IV. (3.26)

First, we note that

|IV | ≤ Ct2
(

1

R
+

1

R2

)
, ∀t ∈ [0, T ). (3.27)

Next, we observe that it suffices to prove this lemma for small R, say, R < ρ0/2.

In view of the fact that

ϕ′R(|x− x0|)− 1 ≤ 0 ≤ 2−∆φR(x− x0)
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and that these functions are supported in ΩR = {|x − x0| ≥ R}, it follows from

Lemma 3.3 that

∫
(2−∆φR(x− x0))|u(t, x)|4dx

≤ C‖u(t)‖2
L2(ΩR)

∫
(2−∆φR(x− x0))|∇u(t, x)|2dx

+C‖u(t)‖4
L2(ΩR)‖∇(2−∆φR(x− x0))

1/2‖2
L∞ . (3.28)

By (3.28) and (3.26), for any 0 ≤ t0 < t < T ,

∫ t

t0

(t− s)

∫

ΩR

{
4(1− ϕ′R(|x− x0|))f(x)

−C‖u(s)‖2
L2(ΩR)(2−∆φR(x− x0))

}|∇u(s, x)|2dxds

≤
∫

ψR(x− x0)|u(t0, x)|2dx + 4E(u0)(t− t0)
2

+ 2(t− t0) Im

∫
∇φR(x− x0) · ∇u(t0, x)ū(t0, x)dx

− 2

∫ t

t0

(t− s)

∫
∇φR(x− x0) · ∇f(x)|∇u(s, x)|2dxds

−
∫ t

t0

(t− s)

∫
(∆2φR(x− x0) +∇∆φR(x− x0) · ∇f(x))|u(s, x)|2dxds

+C‖u(t)‖4
L2(ΩR)‖∇(2−∆φR(x− x0))

1/2‖2
L∞(t− t0)

2. (3.29)

As supp(φR) = {|x− x0| ≤ 2R} and 2R < ρ0 and, by (3.5),

∇φR(x− x0) · ∇f(x) ≥ 0, ∀x ∈ R2,

we have, for all t ∈ [0, T ),

∫ t

t0

(t− s)

∫
∇φR(x− x0) · ∇f(x)|∇u(s, x)|2dxds ≥ 0.

Moreover, analogous to (3.27) we have

∣∣∣∣
∫ t

t0

(t− s)

∫
(∆2φR(x− x0) +∇∆φR(x− x0) · ∇f(x))|u(s, x)|2dxds

∣∣∣∣

≤ C(t− t0)
2

(
1

R
+

1

R2

)
.



3.1 Blow-up analysis on R2 42

By the property (A), for any ε > 0, there exists 0 ≤ t∗ = t∗(R, ε) < T such that

∫

|x−x0|>R

|u(t, x)|2dx < ε, ∀t∗ ≤ t < T.

It is obvious that

∫
|∇u(t, x)|2dx ≤ C(t∗) for 0 ≤ t ≤ t∗;

also, it is easy to check that

inf
|x−x0|≥R

(1− ϕ′(|x− x0|))f(x)

2−∆φR(x− x0)
≥ C,

2−∆φR(x− x0) ≡ 2, for |x− x0| ≥ 2R.

Therefore choosing ε > 0 small enough and t0 = t∗ in (3.29), we obtain (3.24)

for R < ρ0/2 as t → T . As the left hand side of (3.24) is decreasing in R, the

inequality holds for all R > 0. The proof of (3.25) is similar. 2

Lemma 3.10 Suppose in addition that property (A) holds. Then

∫ T

0

(T − t)

∫

|x−x0|<ρ0

(x− x0) · ∇f(x)|∇u(t, x)|2dxdt ≤ C (3.30)

for some positive constant C which may depend on ρ0.

Proof. Choosing R = ρ0 in (3.26), we have

2

∫ t

0

(t− s)

∫

|x−x0|<ρ0

(x− x0) · ∇f(x)|∇u(t, x)|2dxds

≤ I + II + IV

−2

∫ t

0

(t− s)

∫

|x−x0|≥ρ0

∇φρ0(x− x0) · ∇f(x)|∇u(t, x)|2dxds,

which implies (3.30) in view of Lemma 3.9. 2

Proof of Theorem 3.3. First of all, (B) implies (A) by the conservation of mass

and the inequality

∫

|x−x0|>R

|u(t, x)|2dx ≤ 1

R2

∫
|x− x0|2|u(t, x)|2dx, ∀R > 0.
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Now we prove that (A) implies (B). By our construction of the auxiliary functions,

it is easy to see that

|∇φR(x− x0)|2 = ϕ2
R(|x− x0|) ≤ 2φR(x− x0) ≤ CψR(x− x0).

Thus by (3.26), (3.27), Lemmas 3.9 and 3.10, Hölder’s inequality, and the fact

that |∇φR(x−x0) ·∇f(x)| ≤ C (which follows from (H2)), we obtain, for R ≥ ρ0,∫
ψR(x− x0)|u(t, x)|2dx

≥
∫

ψR(x− x0)|u0(x)|2dx− 2T

(
C

∫
ψR(x− x0)|u0(x)|2dx

)1/2

‖∇u0‖L2

− 4 |E(u0)|T 2 + II + IV

− 2

∫ T

0

(T − s)

∫

|x−x0|<ρ0

∇φR(x− x0) · ∇f(x)|∇u(s, x)|2dxds

− 2

∫ T

0

(T − s)

∫

|x−x0|≥ρ0

∇φR(x− x0) · ∇f(x)|∇u(s, x)|2dxds

≥ C1

∫
ψR(x− x0)|u0(x)|2dx− C2, (3.31)

where the constants C1, C2 are independent of R.

If |x− x0|u0 /∈ L2, then (3.31) leads to

lim
R→∞

lim inf
t↑T

∫
ψR(x− x0)|u(t, x)|2dx = ∞.

but this contradicts

lim
t↑T

∫
ψR(x− x0)|u(t, x)|2dx = 0

which is a consequence of property (A). Hence |x− x0|u0 ∈ L2.

Let ψ(x) ≥ 0 be such that

∇ψ(x− x0) =
x− x0

f(x)
.

Then, by Lemma 3.2, we have∫
ψ(x− x0)|u(t, x)|2dx

=

∫
ψ(x− x0)|u0(x)|2dx + 2t Im

∫
(x− x0) · ∇u0(x)ū0(x)dx

+ 4E(u0)t
2 − 2

∫ t

0

(t− s)

∫
(x− x0) · ∇f(x)|∇u(s, x)|2dxds.

(3.32)
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Furthermore, we note that ψ is radial and ψ, ψR may be chosen such that

ψ(0) = ψR(0) = 0,

which implies

lim
R→∞

ψR(x− x0) = ψ(x− x0), ∀x ∈ R2.

Subtracting (3.26) from (3.32), we have

∫
(ψ(x− x0)− ψR(x− x0))|u(t, x)|2dx

=

∫
(ψ(x− x0)− ψR(x− x0))|u0(x)|2dx

+2t Im

∫
((x− x0)−∇φR(x− x0)) · ∇u0(x)ū0(x)dx

−2

∫ t

0

(t− s)

∫
((x− x0)−∇φR(x− x0)) · ∇f(x)|∇u(s, x)|2dxds

−II − IV. (3.33)

It is clear that

lim
R→∞

|(x− x0)−∇φR(x− x0)| = 0. (3.34)

By Lemma 3.9 and the Lebesgue dominated convergence theorem, for all t ∈ [0, T ),

lim
R→∞

II = 0

lim
R→∞

∫ t

0

(t− s)

∫
((x− x0)−∇φR(x− x0)) · ∇f(x)|∇u(s, x)|2dxds = 0.

Hence, by (3.33), (3.34) and (3.27),

lim
R→∞

{
sup

0≤t<T

∫
(ψ(x− x0)− ψR(x− x0))|u(t, x)|2dx

}
= 0.

Therefore for any ε > 0, there exists R > 0 such that

∫
ψ(x− x0)|u(t, x)|2dx <

∫
ψR(x− x0)|u(t, x)|2dx + ε, t ∈ [0, T ),

and the desired limiting behavior follows. 2
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3.1.3 Existence

In this subsection, we construct blow-up solutions under appropriate assumptions

on the function f(x) and the initial data and prove Theorem 3.4. Throughout

this subsection, we assume f(x) satisfies (H1)-(H3) and that (3.6) holds. Hence

we can find a nonnegative real function ψ(x) such that

ψ(x− x0) ∼ |x− x0|2 and ∇ψ(x− x0) =
x− x0

f(x)
.

The proof of Theorem 3.4 is now presented in the following two cases:

Case of global minimum We first consider the case where x0 is a global

minimum of f , i.e., (3.7) holds. The proof of Theorem 3.4 in this case is direct

and elementary but useful.

First, we assume that u0 satisfies that |x−x0|u0 ∈ L2 and E(u0) < 0. Suppose

u(t, x), the solution of the Cauchy problem (3.1), is defined for all time. Consider

y(t) :=

∫
ψ(x− x0)|u(t, x)|2dx ≥ 0.

By Lemma 3.2 and (3.7), we have, for all t > 0,

y(t) = y(0) + ty′(0) + 4t2E(u0)

− 2

∫ t

0

(t− s)

∫
(x− x0) · ∇f(x)|∇u(s, x)|2dxds,

≤ y(0) + ty′(0) + 4t2E(u0).

Since E(u0) < 0, the right hand side of the above inequality is negative provided

t is large enough, which is a contradiction. Hence u(t, x) blows up in finite time.

Now, for all ε > 0 and λ > 0, define

ωε,λ(x) = (1 + ε)λ−1QL(λ−1(x− x0)). (3.35)

Then we have

‖ωε,λ‖L2 = (1 + ε)‖QL‖L2
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and

E(ωε,λ) = EL(ωε,λ) +
1

2

∫
(f(x)− f(x0)) |∇ωε,λ(x)|2dx.

By a scaling argument,

EL(ωε,λ) = (1 + ε)2 1

λ2
EL(QL)

+((1 + ε)2 − (1 + ε)4)
1

λ2

∫
|QL(x)|4dx.

Since EL(QL) = 0, there exists c(ε) > 0 such that

EL(ωε,λ) ≤ −c(ε)

λ2
∀λ > 0. (3.36)

By Lemma 3.5 and the assumption (H2), we have
∣∣∣∣
1

2

∫
(f(x)− f(x0)) |∇ωε,λ(x)|2dx

∣∣∣∣ ≤ C

∫
|x− x0||∇ωε,λ(x)|2dx

≤ C(1 + ε)2

∫ |x|
λ4

e−c2
|x|
λ dx

≤ C

λ
(1 + ε)2. (3.37)

Thus, it follows from (3.36) and (3.37) that for ε > 0, E(ωε,λ) < 0 for λ small

enough, say 0 < λ ≤ λ(ε). Consequently φε = ωε,λ(ε) satisfies the conclusions of

Theorem 3.4. In particular ε0 = ∞.

Case of local minimum Now, we consider the case where x0 is a local

minimum, i.e., (3.8) holds.

By the argument for the global minimum case, we have the following:

Lemma 3.11 ∀ε ∈ (0, 1), for all A(ε) > 0, there is a φε ∈ H2 such that

(a) ‖φε‖L2 = ‖QL‖L2 + ε,

(b) E(φε) = −A(ε),

(c)

∫
|x− x0|2|φε(x)|2dx ≤ c,where c is independent of ε and A(ε),

(d)

∣∣∣∣
∫

(x− x0) · ∇φε(x)φ̄ε(x)dx

∣∣∣∣ ≤ c,where c is independent of ε and A(ε),

(e) φε(x)is real for all x,

(f) as ε → 0, ‖∇φε‖L2 →∞, and |φε(x)|2 → ‖QL‖2
L2δx0 in the distribution sense.
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The rest of this subsection will be devoted to proving the following claim from

which Theorem 3.4, in the local minimum case, follows.

Claim For A(ε) sufficiently large and ε sufficiently small, the solution uε(t) with

Cauchy data φε blows up in finite time.

We argue by contradiction. Suppose that, as ε → 0, A(ε) → ∞ and uε(t) is

globally defined in time. First, we make the following observation:

Lemma 3.12 Let tε →∞ as ε → 0. Then

‖∇uε(tε)‖L2 →∞ as ε → 0.

Proof. Suppose there exists a sequence {εn} such that

‖∇uεn(tεn)‖L2 ≤ C as εn → 0.

Then by the Gagliardo-Nirenberg inequality and the conservation of energy,

|E(φεn)| = |E(uεn(tεn))| ≤ L

2
‖∇uεn(tεn)‖2

L2 +
1

4
‖uεn(tεn)‖4

L4 ≤ C,

which contradicts the fact that

|E(φεn)| = A(εn) →∞ as n →∞.

2

The proof of the Claim follows in three steps:

Proposition 3.1 (Concentration properties of uε(t)) For all ε′ > 0, there exists

ε0 > 0 such that ∀ε ∈ (0, ε0) and ∀t ≥ 0,

∣∣∣∣
∫

|x−x0|≤ε′
|uε(t, x)|2dx−

∫
Q2

L(x)dx

∣∣∣∣ < ε′, (3.38)

and

∣∣∣∣
∫

|x−x0|≥ε′
|uε(t, x)|2dx

∣∣∣∣ < ε′. (3.39)
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Proof. The proof is based on the fact that x0 is a local minimum, and Lemmas

3.6 and 3.12. First, by the assumption (H1) we can find γ > 0 such that

‖Qf(x)‖2
L2 = ‖QL‖2

L2

f(x)

L
≥ 2γ, ∀x ∈ R2. (3.40)

For each ε > 0 and 0 < r ≤ ρ0/4, let

Tε,r = sup{t ∈ R; ‖uε(t)‖2
L2(B(x0,r)) ≥ ‖QL‖2

L2 − γ}. (3.41)

By Lemma 3.11, it is easy to see that Tε,r > 0 for 0 < ε ≤ ε0 where ε0 > 0 is some

constant possibly dependent on r and γ. In fact, Tε,r = ∞ provided ε is small

enough.

Indeed, suppose, on the contrary, that for a sequence εn → 0, Tεn,r < ∞. Let

un(x) = uεn(Tεn,r, x). Then, by Lemmas 3.11 and 3.12, un satisfies the assumptions

of Lemma 3.6. Therefore there exists {xn} such that

∀R > 0, lim inf
n→∞

(‖un‖L2(B(xn,R))‖Qf(xn)‖−1
L2

) ≥ 1. (3.42)

Now, for sufficiently large n, we have

|xn − x0| ≤ 2r < ρ0; (3.43)

for, if not, by (3.40)–(3.42), we have

lim inf
n→∞

‖un‖2
L2 ≥ lim inf

n→∞
‖un‖2

L2(B(x0,r)) + lim inf
n→∞

‖un‖2
L2(R2−B(x0,r))

≥ ‖QL‖2
L2 − γ + lim inf

n→∞
‖un‖2

L2(B(xn,r))

≥ ‖QL‖2
L2 + γ

which is a contradiction to Lemma 3.11. Furthermore

xn → x0 as n →∞. (3.44)

To see this, from (3.42) we have ∀ε̃ > 0 and for n sufficiently large

‖φεn‖2
L2 = ‖un‖2

L2 ≥ (1− ε̃)‖Qf(xn)‖2
L2

= (1− ε̃)‖QL‖2
L2

f(xn)

L
.
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Since ‖φεn‖2
L2 → ‖QL‖2

L2 as n →∞, and ε̃ is arbitrary, we have

lim sup
n→∞

f(xn) ≤ L = inf
x∈R2

f(x),

from which (3.44) follows in view of (3.43) and (3.8). As a result of (3.44), (3.42)

implies that

lim inf
n→∞

‖uεn(Tεn,r)‖2
L2(B(x0,r)) ≥ lim inf

n→∞
‖uεn(Tεn,r)‖2

L2(B(xn, r
2
))

= lim inf
n→∞

‖un‖2
L2(B(xn, r

2
))

≥ ‖QL‖2
L2 ,

which is a contradiction to the finiteness of Tε,r. Therefore there exists ε0 > 0

such that for 0 < ε ≤ ε0, Tε,r = ∞.

Now we are in the position to conclude the proof of the proposition. Suppose

there exist ε′ > 0, εn → 0 and tεn such that
∣∣∣∣
∫

|x−x0|<ε′
|un(x)|2dx−

∫
|QL(x)|2dx

∣∣∣∣ ≥ ε′,

where un(x) = uεn(tεn , x). By the conservation of mass and Lemma 3.11, this is

equivalent to
∫

|x−x0|<ε′
|un(x)|2dx ≤

∫
|QL(x)|2dx− ε′. (3.45)

Choosing r = min{ε′, ρ0/4} and γ = min{ε′/2, ‖QL‖2
L2/2} in (3.41), since Tε,r = ∞

for 0 < ε ≤ ε0(r, γ) we get
∫

|x−x0|<ε′
|un(x)|2dx ≥ ‖un‖2

L2(B(x0,r)) ≥ ‖QL‖2
L2 − ε′

2
,

which is a contradiction to (3.45). 2

Proposition 3.2 (Energy estimates away from the concentration point) For

0 < β < R ≤ ρ0, there exists ε0 > 0 such that ∀ε ∈ (0, ε0) and ∀t ≥ 0,
∫ t

0

(t− s)

∫

|x−x0|≥R

|∇uε(s, x)|2dxds

≤ c1 + (c2 + c3E(uε))t
2 + c(ε)

∫ t

0

(t− s)

∫

β≤|x−x0|≤R

|∇uε(s, x)|2dxds,

(3.46)

where cj are independent of ε, c(ε) > 0 and c(ε) → 0 as ε → 0.
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Proof. The proof follows from Lemma 3.1 by choosing suitable functions ψ̃ and

φ. Indeed, consider a radial function φ ∈ C4(R2) ∩W 4,∞(R2) satisfying

2φ(x) = |x|2 for |x| ≤ β,

2φ(x) < |x|2 for |x| > β,

φ(x) ≡ c for |x| ≥ R,

∇φ(x) · x ≥ 0 for all x,

∆φ(x) ≤ 2 for all x,

and, for β ≤ |x| ≤ R and ∀v ∈ C2,

(|v|2 − (∇2φ · v) · v̄) ≥ 0. (3.47)

The existence of such a φ can be proved easily (see Section 3.1.2), hence the proof

is omitted. In view of (3.6) and the fact that φ(x− x0) is radial, it is easy to see

that the integrability condition curl(
∇φ(x− x0)

f(x)
) = 0 holds. Thus we can find a

nonnegative function ψ̃(x) such that

ψ̃(x− x0) ∼ |x− x0|2 locally, and ∇ψ̃(x− x0) =
∇φ(x− x0)

f(x)
.

We note, in particular, that ψ̃(x) is a positive constant for |x| ≥ R.

By Lemmas 3.1 and 3.11, integrating w.r.t. x and t, we have ∀ε > 0 and

∀t > 0,

0 ≤
∫

ψ̃(x− x0)|uε(t, x)|2dx

=

∫
ψ̃(x− x0)|φε(x)|2dx + 2t Im

∫
∇φ(x− x0) · ∇φε(x)φ̄ε(x)dx

+

∫ t

0

(t− s)

{
−

∫
∆φ(x− x0)|uε(s, x)|4dx

+ 4 Re

∫ (∇2φ(x− x0) · ∇uε(s, x)
) · ∇ūε(s, x)f(x)dx

− 2

∫
∇φ(x− x0) · ∇f(x)|∇uε(s, x)|2dx

−
∫

(∆2φ(x− x0) +∇∆φ(x− x0) · ∇f(x))|uε(s, x)|2dx

}
ds.

(3.48)
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By the conservation of mass, Lemma 3.11 and the properties of ψ̃ and φ, there

exist positive constants c1, c2 independent of ε such that

− c1 − c2t
2

≤
∫ t

0

(t− s)

{
−

∫
∆φ(x− x0)|uε(s, x)|4dx

+ 4 Re

∫
(∇2φ(x− x0) · ∇uε(s, x)) · ∇ūε(s, x)f(x)dx

− 2

∫
∇φ(x− x0) · ∇f(x)|∇uε(s, x)|2dx

}
ds

=

∫ t

0

(t− s)

{
8E(uε) +

∫

|x−x0|≥β

(2−∆φ(x− x0))|uε(s, x)|4dx

+ 4 Re

∫

|x−x0|≥β

(∇2φ(x− x0) · ∇uε(s, x)) · ∇ūε(s, x)f(x)dx

− 4

∫

|x−x0|≥β

|∇uε(s, x)|2f(x)dx

− 2

∫
∇φ(x− x0) · ∇f(x)|∇uε(s, x)|2dx

}
ds.

(3.49)

By (3.47) and the fact ∇φ(x− x0) · ∇f(x) ≥ 0, this implies that

4

∫ t

0

(t− s)

∫

|x−x0|≥R

|∇uε(s, x)|2f(x)dxds

≤ c1 + (c2 + 4E(uε))t
2

+

∫ t

0

(t− s)

∫

|x−x0|≥β

(2−∆φ(x− x0))|uε(s, x)|4dxds. (3.50)

Since Ω = supp(2−∆φ(x− x0)) = R2 \B(x0, β), it follows from Lemma 3.3 that

∫
(2−∆φ(x− x0))|u(t, x)|4dx

≤ C‖u(t)‖2
L2(Ω)

∫
(2−∆φ(x− x0))|∇u(t, x)|2dx

+ C‖u(t)‖4
L2(Ω)‖∇(2−∆φ(x− x0))

1/2‖2
L∞ . (3.51)

The following observation, which follows from Proposition 3.1, then completes the

proof:

sup
s≥0

∫

|x−x0|≥R

|uε(s, x)|2dx → 0 as ε → 0.

2
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Conclusion of proof of claim and proof of Theorem 3.4. By (3.8), the fact

(x− x0) · ∇f(x) ≥ C > 0 for 0 < β ≤ |x− x0| ≤ R0 < ρ0,

and the hypothesis (H2), we note that

|(x− x0) · ∇f(x)| ≤ C.

Consequently, Proposition 3.2 implies that for small ε > 0
∫ t

0

(t− s)

∫

|x−x0|≥R0

(x− x0) · ∇f(x)|∇uε(s, x)|2dxds

≤ c1 + (c2 + c3E(uε))t
2

+ c(ε)

∫ t

0

(t− s)

∫

β≤|x−x0|≤R0

(x− x0) · ∇f(x)|∇uε(s, x)|2dxds,

where cj are positive constants independent of ε, and c(ε) > 0 with c(ε) → 0 as

ε → 0. Hence, by Lemma 3.2, for all t > 0 and 0 < ε ≤ ε0 (small enough), we

arrive at

0 ≤
∫

ψ(x− x0)|uε(t, x)|2dx

=

∫
ψ(x− x0)|φε(x)|2dx + 4E(uε)t

2

+ 2t Im

∫
(x− x0) · ∇φε(x)φ̄ε(x)dx

− 2

∫ t

0

(t− s)

∫

|x−x0|<R0

(x− x0) · ∇f(x)|∇uε(s, x)|2dxds

− 2

∫ t

0

(t− s)

∫

|x−x0|≥R0

(x− x0) · ∇f(x)|∇uε(s, x)|2dxds

≤ c1 + c2t− c3A(ε)t2,

where cj are positive constants independent of ε. It is obvious that this inequality

is a contradiction to the assumption that A(ε) →∞ as ε → 0. The claim is thus

established, and the proof of Theorem 3.4 is complete. 2

3.1.4 L2-minimality

We have seen in Corollary 3.1 that if ‖u0‖L2 < ‖QL‖L2 , then the solution u(t)

of the Cauchy problem (3.1) is globally defined. On the other hand, in previ-

ous section, with suitable assumptions on f(x) and sufficiently small ε, we have
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constructed a family of initial data such that ‖φε‖L2 = ‖QL‖L2 + ε and the cor-

responding solutions blow up in finite time. If the solution u(t) of (3.1) blows up

in finite time with ‖u0‖L2 = ‖QL‖L2 , it is called an L2-minimal blow-up solution.

In this subsection, we focus on such solutions and prove Theorem 3.5. First, we

give some preliminary results.

Lemma 3.13 ([28]) Let un ∈ H1(R2), c0 > 0 and R0 > 0 be such that EL(un) ≤
c0, ‖un‖2

L2 ≤ ‖QL‖2, ‖∇un‖L2 →∞ as n →∞, and

∫

|x|>R0

|un(x)|2 dx ≤ C,

where C is independent of n. Then, there exists a positive constant C̃ depending

only on R0 and c0 such that, for all n,

∫

|x|>4R0

|∇un(x)|2 dx ≤ C̃.

Lemma 3.14 For all t ∈ [0, T ),

∫
(f(x)− L)|∇u(t, x)|2dx ≤ 2E(u0).

Proof. The result follows from Lemma 3.4 together with the observation

E(u0) = E(u(t)) = EL(u(t)) +

∫
(f(x)− L)|∇u(t, x)|2dx.

2

Lemma 3.15 Let u(t) be the solution of the Cauchy problem (3.1) with ‖u0‖L2 =

‖QL‖L2 and |u(t, x)|2 → ‖QL‖2
L2δx0 in the distribution sense as t ↑ T . Then there

exist x(t) ∈ R2 and θ(t) ∈ R such that x(t) → x0 and

1

λ(t)
eiθ(t)u

(
t, x(t) +

· − x(t)

λ(t)

)
→ QL(·) in H1 as t → T, (3.52)

where λ(t) = ‖∇u(t)‖L2/‖∇QL‖L2 →∞ as t → T .
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Proof. This follows from Lemma 3.6. 2

Proof of Theorem 3.5 (i). The proof comprises the next three propositions.

Proposition 3.3 (Concentration) There exists x(t) ∈ R2 such that

|u(t, x + x(t))|2 → ‖QL‖2
L2δ0, in the distribution sense as t ↑ T. (3.53)

Furthermore, for each r > 0, there exists a c(r) such that for all t ∈ [0, T ),

∫

|x−x(t)|>r

|∇u(t, x)|2dx ≤ c(r). (3.54)

Proof. By Lemma 3.6, there exists x(t) such that for all R > 0

lim inf
t↑T

‖u(t)‖L2(B(x(t),R)) ≥ ‖QL‖L2 .

In view of the assumption that ‖u(t)‖L2 = ‖u0‖L2 = ‖QL‖L2 , we get the concen-

tration result (3.53).

For r > 0, by (3.53), there exists tr < T such that for all t ∈ [tr, T ),

∫

|x|>r/4

|u(t, x + x(t))|2dx ≤ C,

where C is given in Lemma 3.13. Furthermore, we have a constant C̃(r) > 0 such

that for all t ∈ [tr, T ),

∫

|x|>r

|∇u(t, x + x(t))|2dx ≤ C̃(r).

The estimate (3.54) now follows from the observation that ∀t ∈ [0, tr],

∫

|x|>r

|∇u(t, x + x(t))|2dx ≤
∫
|∇u(t, x)|2dx ≤ C.

2

Proposition 3.4 (Location of concentration point) There is a y0 ∈M such that

x(t) → y0 as t → T.
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Proof. Suppose M = {xj}p
j=1. We first note that

d(t) = min
j=1,··· ,p

{|x(t)− xj|} → 0 as t → T. (3.55)

Indeed, suppose, by contradiction, that there are tn → T as n → ∞ and γ > 0

such that

d(tn) ≥ γ and min
j 6=k

|xj − xk| ≥ 2γ.

Denote

D = R2 \ Σp
i=1B(xi, γ/2).

By the assumption f(x) ≥ L + γ0 for |x| > R0 in Theorem 3.5, there is γ1 > 0

such that

f(x)− L ≥ γ1, ∀x ∈ D.

Clearly B(x(tn), γ/2) ∈ D for all n. Thus by Lemma 3.14,

∫

|x−x(tn)|≤γ/2

|∇u(tn, x)|2dx ≤
∫

D

|∇u(tn, x)|2dx ≤ c(γ),

for all n. Choosing r = γ/2 in (3.54), we get a contradiction to the fact

‖∇u(tn, x)‖L2 →∞ as n →∞.

Therefore d(t) → 0 as t → T .

By the concentration (3.53) and the conservation of mass ‖u(t)‖L2 = ‖u0‖L2 =

‖QL‖L2 , we can see that there is one point y0 ∈M such x(t) → y0 as t → T .

Indeed, following the idea in [29], let ρ = 1
4
minj 6=l{|xj − xl|; xj, xl ∈ M} and

φ ∈ C∞(R2) be a cut-off function such that

φ(x) ≡ 1 for |x| < ρ,

φ(x) ≡ 0 for |x| ≥ 2ρ.
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By (3.54), (3.55) and the computations in Lemma 3.1, we have
∣∣∣∣
d

dt

∫
φ(x− xj)|u(t, x)|2dx

∣∣∣∣

≤ 2

∣∣∣∣Im
∫

f(x)∇φ(x− xj) · ∇u(t, x)ū(t, x)dx

∣∣∣∣

≤ c

(∫

ρ<|x−xj |≤2ρ

|∇u(t, x)|2dx

)1/2

≤ c.

Therefore there exists ej ≥ 0 such that
∫

|x−xj |<ρ

≤
∫

φ(x− xj)|u(t, x)|2dx → ej as t → T,

which obviously implies the desired result in view of the initial mass. This con-

cludes the proof. 2

We remark that by the k(x)-version of Lemma 3.6, it can be shown that

lim inf
t↑T

k(x(t)) ≥ K,

hence y0 ∈M′ (the assumption (3.12) is not needed).

The proof of Theorem 3.5 (i) concludes with the following proposition whose

proof is similar to those of Lemmas 4.6 and 4.7 in [29] and is hence omitted here.

Proposition 3.5 Assume y0 ∈M such that x(t) → y0 as t → T . Then we have

|x− y0||u0(x)| ∈ L2,

and ∫
|x− y0|2|u(t, x)|2dx → 0 as t → T.

Now, we turn to the nonexistence of L2-minimal solutions. Let x0 be such that

f(x0) = L, and suppose that there exits c0 > 0 such that

(x− x0) · ∇f(x) ≥ c0|x− x|1+α0 for x near x0,

where α0 ∈ (0, 1). This implies in particular that

f(x)− L ≥ c0|x− x0|1+α0 for |x− x0| ≤ ρ0, (3.56)

for some constant ρ0 > 0. More generally, we can claim the following result:
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Proposition 3.6 Assume that f(x) satisfies (3.56) and ‖u0‖L2 = ‖QL‖L2. Then

there is no blow-up solution u(t) of (3.1) such that |u(t, x)|2 → ‖QL‖2
L2δx0 in the

distribution sense as t ↑ T , for any T < ∞.

Proof. We argue by contradiction. Suppose u(t) is such a blow-up solution. We

claim that
∫

(f(x)− L)|∇u(t, x)|2dx →∞ as t → T,

which will be a contradiction to Lemma 3.14. The proof of the claim is based on

the profile of the L2-minimal blow-up solutions described in Lemma 3.15.

For λ > 0 and 0 < t < T , denote

Dλ(t) = {x ∈ R2| |x− x(t)| ≤ ρ0

2
λ, (x− x(t)) · (x0 − x(t)) ≤ 0}

It is easy to see that

|x− x0| ≥ |x− x(t)| for all x ∈ Dλ(t).

For t close to T , |x(t)− x0| < ρ0/2, D1(t) ⊂ B(x0, ρ0), and from Lemma 3.15 we

have ∫

|x−x0|≤ρ0

(f(x)− L)|∇u(t, x)|2dx

≥
∫

|x−x0|≤ρ0

c0|x− x0|1+α0|∇u(t, x)|2dx

≥
∫

D1(t)

c0|x− x(t)|1+α0|∇u(t, x− x(t) + x(t))|2dx

≥
∫

Dλ(t)(t)

c0|x− x(t)

λ(t)
|1+α0|∇u(t,

x− x(t)

λ(t)
+ x(t))|2dx

≥ cλ(t)1−α0

∫

D2(t)\D1(t)

1

λ(t)2
|∇u(t,

x− x(t)

λ(t)
+ x(t))|2dx

≥ cλ(t)1−α0

∫

D2(t)\D1(t)

|∇QL(x)|2dx

≥ cλ(t)1−α0 ,

where λ(t) = ‖∇u(t)‖L2 →∞ as t → T . This establishes the claim, and the proof

of the proposition is complete. 2

Proof of Theorem 3.5 (ii). The desired result is a corollary of Proposition 3.6

and Theorem 3.5 (i). 2
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3.2 Blow-up analysis on T2

In this section, we focus on the space-periodic blow-up solutions of the Cauchy

problem (3.1) with spatial dimension two, i.e., on T2. We will be referring to the

following condition:

(H) f(x), k(x) ∈ C1(T2) are positive functions with L = minx∈T2 f(x) and

K = maxx∈T2 k(x).

It is interesting that the L2-concentration and L2-minimality still can be de-

scribed in terms of the ground state solution QL,K of

L∆Q + K|Q|2Q = Q, in R2.

In the sequel, all the omitted underlying domains are supposed to be T2, except

that the L2-norm of QL,K is taken over R2. Our main results are as follows:

Theorem 3.6 (L2-concentration) Assume that f(x), k(x) satisfy (H). Let u(t)

be a blow-up solution of the Cauchy problem (3.1) and T its blow-up time. Then

(i) there is x(t) ∈ T2 such that for all (small) R > 0

lim inf
t↑T

∫

B(x(t),R)

|u(t, x)|2dx ≥ ‖QL,K‖2
L2 ; (3.57)

(ii) there is no sequence {tn} such that tn ↑ T and u(tn) converges in L2(T2) as

n →∞.

Theorem 3.6 implies that blow-up solutions have a lower L2-bound, namely,

‖u(t)‖L2 ≥ ‖QL,K‖L2 . Therefore, as a consequence of the conservation of mass,

we have a sufficient condition for the global existence of solutions.

Corollary 3.3 Assume that f(x), k(x) satisfy (H), then the solution u(t) is glob-

ally defined in time provided ‖u0‖L2 < ‖QL,K‖L2.
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Theorem 3.7 (L2-minimal blow-up solutions) Assume ‖u0‖L2 = ‖QL,K‖L2 and

u(t) is the solution of (3.1). Let f(x), k(x) satisfy (H). Then

(i) there exist θ(x, t) ∈ R, x(t) ∈ T2 such that

1

λ(t)
eiθ(t, ·

λ(t)
)ϕ(

·
λ(t)

)u(t,
·

λ(t)
+ x(t)) → QL,K(·) strongly in H1(R2) as t ↑ T,

where λ(t) = ‖∇u(t)‖L2/‖∇QL,K‖L2 and ϕ(x) is a cut-off function on R2 which

is identically equal to 1 for x close to 0;

(ii) suppose moreover

M = {x; f(x) = L} is finite (3.58)

or M′ = {x; k(x) = K} is finite, (3.59)

then there exists y0 ∈M∩M′ such that

|u(t, x)|2 → ‖QL,K‖2
L2δy0 , in the distribution sense as t ↑ T,

As a direct consequence of the above theorem, we have:

Corollary 3.4 Under the same assumption as in Theorem 3.7. If M∩M′ = ∅,
then there is no blow-up solution to (3.1) with ‖u0‖L2 = ‖QL,K‖L2.

Remark 3.4 Our arguments are also essentially valid for the general setting on

TN for the inhomogeneous NLS

∂tu = i
(
f(x)∆u +∇f(x) · ∇u + k(x)|u| 4

N u
)

. (3.60)

Also, the following lemma will be used in our argument.

Lemma 3.16 ([26]) Let {fn} be a bounded family in Lq(RN) (0 < q < ∞) such

that fn → fa.e. in RN . Then

lim
n→∞

∫

RN

||fn(x)|q − |f(x)|q − |fn(x)− f(x)|q|dx = 0.
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To minimize technicalities, we shall assume k(x) ≡ 1 in the sequel. The

proofs for the non-constant function k(x) follow essentially the same arguments

with some modifications. T2 is represented by the unit square [−1/2, 1/2]2 with

the proper identifications. Thus the functions on T2 can be viewed as space-

periodic functions on R2. Also, we shall use the same convention as in the last

section (see the paragraph before Subsection 3.1.1). Particularly, we still have

that EL(u) ≤ E(u).

We first establish some useful results.

Lemma 3.17 (Non-vanishing) Let Ωn = [−λn/2, λn/2]2 be the square of size

λn ∈ Z+. Assume that vn ∈ H1(Ωn) such that

∫

Ωn

|vn(x)|2dx ≤ c1,

∫

Ωn

|∇vn(x)|2dx ≤ c2,

∫

Ωn

|vn(x)|4 ≥ c3.

Then there exist a constant c4 = c4(c1, c2, c3) > 0 and a sequence {xn ∈ λn} such

that

∫

|x−xn|<1

|vn(x)|2dx > c4. (3.61)

Proof. Clearly there exists {xn ∈ Ωn} such that for all n,

∫

Sn

|vn(x)|4dx ≥ c5

∫

Sn

(|∇vn(x)|2 + |vn(x)|2)dx,

where Sn is the unit square of center xn and c5 = c3/(2c1 + 2c2), for if not, we

would obtain c3 ≤ c5(c1 + c2) ≤ c3/2 which is a contradiction. Therefore it follows

from the Sobolev inequality that

(∫

Sn

|vn(x)|4dx

)1/2

≤ c

∫

Sn

(|∇vn(x)|2 + |vn(x)|2)dx,

which implies

∫

Sn

|vn(x)|4dx ≥ c6 > 0, (3.62)

where c, c6 are independent of n.
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To see (3.61), assume by contradiction that there is a subsequence {vn} (rela-

belled) such that

∫

Sn

|vn(x)|2dx → 0 as n →∞,

which implies

vn(xn + ·) → 0 weakly in L2(S0) as n →∞, (3.63)

where S0 is the unit square centered at the origin. Moreover we can assume that

vn(xn + ·) → v weakly in H1(S0) as n →∞,

for some v ∈ H1(S0). Then

vn(xn + ·) → v strongly in L4(S0) as n →∞. (3.64)

Thus it follows from (3.63) and (3.64) that

∫

Sn

|vn(x)|4dx → 0 as n →∞,

which is a contradiction to (3.62). The lemma is proved. 2

Lemma 3.18 Suppose f ∈ C1(T2) with L = minx∈T2 f(x). Let {un} be such that

‖un‖2
L2 ≤ C1, EL(un) ≤ C2, and ‖∇un‖L2 → ∞ as n → ∞. Then there exists

{xn ∈ T2} such that for all (small) R > 0,

lim inf
n→∞

‖un‖L2(B(xn,R))

‖QL‖L2

≥ 1.

Proof. We argue by contradiction. Suppose there are R0 > 0, γ0 > 0 and a

subsequence {un} (relabelled) such that

sup
x∈T2

(∫

B(x,R0)

|un(y)|2dy

)
≤ ‖QL‖2

L2 − γ0.

Consider the scaling

Un(x) = λ−1
n un(λ−1

n x),
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where λn = [‖∇un‖L2 ] ∼ ‖∇un‖L2 . It is easy to verify that Un ∈ H1(R2/(λnZ2))

and

‖Un‖2
L2(Ωn) = ‖un‖2

L2 ≤ C1, lim
n→∞

‖∇Un‖L2(Ωn) = 1,

ẼL(Un) :=
L

2

∫

Ωn

|∇Un(x)|2dx− 1

4

∫

Ωn

|Un(x)|4dx =
EL(un)

λ2
n

,

sup
x∈Ωn

(∫

|x−y|<R

|Un(y)|2dy

)
≤ ‖QL‖2

L2 − γ0, ∀0 < R ≤ λnR0,

where Ωn is the square of size λn. Therefore, extracting a subsequence (still

labelled by Un), we have

∫

Ωn

|Un(x)|4dx ≥ 2L

∫

Ωn

|∇Un(x)|2dx− L

2
≥ L, for large n, (3.65)

lim inf
n→∞

(
sup
x∈Ωn

∫

|x−y|<R

|Un(y)|2dy

)
≤ ‖QL‖2

L2 − γ0, ∀R > 0. (3.66)

By Lemma 3.17, there exists a sequence {x1
n ∈ Ωn} such that

∫

|x−x1
n|<1

|Un(x)|2dx > γ1,

where γ1 is a positive constant depending only on C1 and L. Moreover, we can

decompose Un as follows:

Un(x1
n + ·) = U1

n(·) + Ũ1
n(·)

where

(i) U1
n(x) = 0 if |x| ≥ 2Rn, Ũ1

n(x) = 0 if |x| ≤ Rn, with Rn → ∞ and

Rn/λn → 0 as n →∞;

(ii)

∫

Rn≤|x|≤2Rn

|Un(x1
n + x)|2 + |∇Un(x1

n + x)|2 + |Un(x1
n + x)|4 → 0 as n →∞;

(iii)

∫

R2

|U1
n(x)|2dx +

∫

Ωn

|Ũ1
n(x)|2dx−

∫

Ωn

|Un(x)|2dx → 0 as n →∞;

(iv)

∫

R2

|∇U1
n(x)|2dx +

∫

Ωn

|∇Ũ1
n(x)|2dx−

∫

Ωn

|∇Un(x)|2dx → 0 as n →∞;

(v)

∫

R2

|U1
n(x)|4dx +

∫

Ωn

|Ũ1
n(x)|4dx−

∫

Ωn

|Un(x)|4dx → 0 as n →∞.
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Therefore, there exists ψ1 ∈ H1(R2), such that, after extraction of a subse-

quence, as n →∞,

U1
n(x1

n + ·) → ψ1 weakly in H1(R2), locally (strongly) in L4 and L2.

Consequently, we have

lim
n→∞

{
‖∇U1

n‖2
L2(R2) − ‖∇ψ1‖2

L2(R2) − ‖∇U1
n −∇ψ1‖2

L2(R2)

}
= 0, (3.67)

and by Lemma 3.16,

lim
n→∞

∫

R2

||U1
n|q − |ψ1|q − |U1

n − ψ1|q|dx = 0, (q = 2, 4). (3.68)

Thus we have

lim
n→∞

{
EL(U1

n)− EL(ψ1)− EL(U1
n − ψ1)

}
= 0. (3.69)

Since Rn/λn → 0 as n →∞, by (3.66) we have, for large n,

‖U1
n(x)‖2

L2(R2) ≤ ‖QL‖2
L2 − 3γ0

4
,

which, by virtue of (3.68), implies

‖U1
n − ψ1‖2

L2(R2) ≤ ‖QL‖2
L2 − γ0

2
and γ1 ≤ ‖ψ1‖2

L2 ≤ ‖QL‖2
L2 − γ0

2
. (3.70)

Therefore, by Lemma 3.4 and (3.70),

EL(ψ1) + lim inf
n→∞

ẼL(Ũ1
n) ≤ lim inf

n→∞
(EL(U1

n) + ẼL(Ũ1
n))

≤ lim inf
n→∞

ẼL(Un) ≤ 0 (3.71)

Hence, by Lemma 3.4 and (3.70) again,

lim inf
n→∞

ẼL(Ũ1
n) ≤ −EL(ψ1) < 0.

Thus, extracting a subsequence (still labelled by Ũ1
n), we have

‖Ũ1
n‖2

L2 → C1
1 ≤ C1 − γ1 and lim inf

n→∞
EL(Ũ1

n) < 0.
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Define

ũn(x) = λnŨ1
n(λnx), x ∈ R2/Z2.

Redefine the sequences

λn = [‖∇ũn‖L2 ] and Un(x) = λ−1
n ũn(λ−1

n x).

If λn < ∞ for all n, then it is easy to see that lim infn→∞ ẼL(Ũ1
n) = 0, hence

by (3.71) we have EL(ψ1) ≤ 0 which contradicts Lemma 3.4. Thus the Lemma is

proved. If λn → ∞ as n → ∞, then, extracting a subsequence if necessary, we

have

lim
n→∞

‖Un‖2
L2(Ωn) = C1

1 ≤ C1 − γ1, lim inf
n→∞

ẼL(Un) < 0,

lim inf
n→∞

(
sup
x∈Ωn

∫

|x−y|<R

|Un(y)|2dy

)
≤ ‖QL‖2

L2 − γ0, ∀R > 0.

Therefore, we can iterate the same procedure. Since −pγ1 + C1 < 0 for some

finite integer p, applying the same procedure at most p times, we can reach a

contradiction. The proof is complete. 2

As in the case in R2, the above Lemma can be strengthened by making use of

the observation that

‖Qf(x)‖2
L2 =

f(x)

L
‖QL‖2

L2 ,

lim
n→∞

sup
|x−y|<R

|f(
x

λn

)− f(
y

λn

)| = 0, ∀R > 0,

where λn = ‖∇un‖L2 →∞ as n →∞. Namely, we have

Lemma 3.19 Suppose f ∈ C1(T2) with L = minx∈T2 f(x). Let {un} be such that

‖un‖2
L2 ≤ C1, EL(un) ≤ C2, and ‖∇un‖L2 → ∞ as n → ∞. Then there exists

{xn ∈ T2} such that for all (small) R > 0,

lim inf
n→∞

‖un‖L2(B(xn,R))

‖Qf(xn)‖L2

≥ 1.
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Now we are in the position to prove Theorems 3.6 and 3.7.

Proof of Theorem 3.6. The proof makes use of the observation that EL(u) ≤ E(u).

Part (i) follows directly from Lemma 3.18 and the conservation of mass and energy.

Part (ii) is essentially the same with that of Proposition 1 in [31]. 2

Proof of Theorem 3.7. (i) We view u as a space-periodic function on R2. Let

ϕ(x) be a cut-off function as defined in Theorem 3.7. Define

ũ(x, t) = ϕ(x)u(t, x + x(t)) = |ũ(t, x)|e−iθ(t,x),

where {x(t)} is from Theorem 3.6. It is easy to see that ũ ∈ H1(R2) and

‖ũ(t)‖L2 ≤ ‖u(t)‖L2(R2) = ‖QL‖L2 . Furthermore, by Theorem 3.6, Lemma 3.13

and Lemma 3.4, we have

‖∇ũ(t)‖L2(R2)/‖∇u(t)‖ → 1 as t ↑ T

and

0 ≤ EL(|ũ|) ≤ EL(ũ) ≤ C

which implies that ‖ũ∇θ‖L2(R2) ≤ C and

‖∇|ũ(t)|‖L2(R2)/‖∇u(t)‖ → 1 as t ↑ T.

Now, define

φk(x) =
1

λk

ũ(tk,
x

λk

) =
1

λk

∣∣∣∣ũ(tk,
x

λk

)

∣∣∣∣ e
−iθ(tk, x

λk
)
,

where tk ↑ T as k →∞ and λk = ‖∇u(tk)‖L2(R2)/‖∇QL‖L2 . Clearly

‖φk‖L2(R2) ↑ ‖QL‖L2 , ‖∇|φk|‖L2(R2) → ‖∇QL‖L2

and

0 ≤ EL(|φk|) =
EL(|ũ(tk)|)

λ2
k

≤ EL(ũ(tk))

λ2
k

→ 0 as k →∞.

Therefore there exist ψ ∈ H1(R2) such that |φk| → ψ weakly in H1(R2). By a

similar argument as in the proof of Lemma 3.18 (see (3.67)-(3.69)), we have

EL(|φk|)− EL(ψ)− EL(|φk| − ψ) → 0 as k →∞,
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which implies EL(ψ) ≤ 0, hence EL(ψ) = 0 since ‖ψ‖L2(R2) ≤ ‖QL‖L2 . Thus,

‖ψ‖L2(R2) = ‖QL‖L2 and |φk| → ψ strongly in L2(R2). By Gagliardo-Nirenberg

inequality, |φk| → ψ strongly in L4(R2), hence strongly in H1(R2) since EL(ψ) =

0. In view of the variational characterization of QL, we then can claim that

ψ(x) = QL(x + x0) for some x0 ∈ R2. After redefining x(t), we can set x0 = 0.

Finally, the desired result follows from |φk(x)| = φk(x)e
iθ(tk, x

λk
)
.

(ii) By Lemma 3.19, there exists x(t) ∈ T2 such that for all small R > 0,

lim inf
t↑T

‖u(t)‖2
L2B(x(t),R)

‖Qf(x(t))‖2
L2

≥ 1.

Since ‖Qf(x(t))‖2
L2 = f(x(t))

L
‖QL‖2

L2 , by the conservation of mass and the assumption

that ‖u0‖L2 = ‖QL‖L2 , we obtain lim supt↑T f(x(t)) ≤ L. The desired result is

then easy to be verified by a similar argument as in the proof of Proposition 3.4

and the remark followed. 2
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