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                                            SUMMARY 

In an effort to identify novel antifungal compounds, soil isolates from different 

parts of Singapore were screened. One such soil isolate named 98- 62, identified as a 

Streptomyces sp. based on 16S rDNA sequence analysis, was shown to produce 

antifungal compound that inhibited Aspergillus niger on primary screening. Thin layer 

chromatography separation of the antifungal compound compared to Rf values of 

complex polyketides rapamycin and FK506. Complex polyketides are molecules that 

are synthesized by large multifunctional enzymes called modular polyketide synthases 

(PKS I) via repeated condensation of carboxylic acids. 

Genes encoding the polyketide synthase I (PKS I) enzymes in the genomic 

DNA of the soil isolate 98- 62 were identified with PKS I specific eryKSII probe of 

Saccaropolyspora erythraea. Degenerate primers based on conserved sequences of 

PKS I genes were used to amplify a KS–AT genes from the genomic DNA of the soil 

isolate 98- 62. This 850 bp DNA fragment was subsequently used as a probe to 

identify a 7-8kb BamHI fragment of the genomic DNA of the soil isolate 98- 62 to 

contain the smaller fragment. The larger fragment was then cloned from a subgenomic 

library by PCR screening. By chromosomal walking, three contiguous clones of a total 

length of 11.6kb of DNA were identified. Analysis of the 11.6 kb DNA sequence 

revealed the presence of two partial open reading frames encoding one complete 

module and two partial modules. The enzymatic motifs identified within each module 

occur in the order as has been reported for other known modular PKS modules of 

actinomycete strains. Comparison of the sequence of the cloned fragments with that of 

information from the database revealed that the genes contained therein were highly 

similar to other known PKS I genes. 

 xii



To determine if the cloned PKS I genes were involved in the synthesis of 

antifungal compound, gene disruption of specific genes of the cloned PKS genes was 

carried out. Disruption of the internal modules of the PKS coding region in the soil 

isolate 98-62 eliminated the synthesis of the antifungal compound, demonstrating that 

the cloned genes are essentially involved in the biosynthesis of this compound. 

Disruption study has also established that the 11.6 kb sequence is of two different open 

reading frames (ORF) as the disruption of a contiguous gene fragment of both the 

ORFs in the soil isolate did not affect its ability to produce the antifungal compound.   

Surprisingly, in addition to disrupting the antifungal compound synthesis, gene 

disruption of the internal fragments of the PKS I genes of the soil isolate 98- 62 also 

eliminated its ability to produce aerial mycelium, giving rise to phenotypically bald 

mutants.  As far as we are aware, this is the first report of a case in which the PKS type 

I genes are involved in the morphological differentiation of Streptomyces.   

In conclusion, this work has 

1) confirmed that the soil isolate 98- 62, which produces a novel antifungal 
compound is of Streptomyces species. 
 

2) identified and  partially characterised a PKS I gene cluster from the soil 
isolate 98- 62.     

 
3) provided functional evidence that the cloned PKS I genes from the  soil 

isolate 98- 62 are involved in the synthesis of a novel antifungal compound. 
 
4) demonstrated the involvement of PKS I genes in morphological    

differentiation of the strain.  
 
 
Further work on identifying and sequencing the remaining genes of the 

complete polyketide synthase gene cluster will provide a better understanding of the 

organization of the gene cluster. Combined information from such genetic work and 

chemical analysis of the antifungal compound using NMR and mass spectroscopy 

would allow for elucidation of the chemical structure of the antifungal compound 

 xiii



produced by the soil isolate 98- 62. Structural information on the nature of chemical 

compound would assist in an understanding of the mode of action of the antifungal 

compound.  
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                                                                          INTRODUCTION   
Molecular genetics of antibiotic production is currently one of the most 

exciting and challenging areas of research on antimicrobials. Dramatic developments 

in gene technologies in the last decade have made it possible to clone antibiotic 

biosynthetic genes of an organism, which in turn has led to remarkable insights into 

their structure, organization, regulation and evolution of the biosynthetic genes. These 

studies have paved the way for radically new approaches such as engineering the 

enzymes to produce novel hybrid antibiotics. 

Classical gene technologies such as obtaining defective mutants that do not 

synthesise or that overproduce antibiotics have played an important role in antibiotic 

production. These approaches have been used to define the biosynthetic pathway or to 

increase the antibiotic yields in industrial strains. However, with the invent of new 

methodologies and technologies, molecular tools are so advanced that the entire 

genome of an organism can be sequenced, let alone the antibiotic gene cluster. The 

current trend in understanding antibiotic production is to clone, sequence and express  

antibiotic genes in widening our knowledge on antibiotic production. 

Several strategies are available for cloning antibiotic biosynthetic genes. They 

include, 

1) complementation of blocked mutants, 

2) search for homologous genes, 

3) reverse cloning, 

4) expression of genes in a heterologous host and 

5) genome sequencing.  

Sequencing of the cloned genes and analysis allow the understanding of the 

organization and evolution of the genes. Disruption or replacement of an antibiotic 

specific gene in vivo is the frequently used rigorous way of analysing its function in 

 1



                                                                          INTRODUCTION   
the producing organism. As such, establishment of methodologies to transfer genes to 

allow disruption or replacement is therefore indispensable in the study of antibiotic 

biosynthetic genes. 

The scope of this project is to study the genes responsible for the biosynthesis 

of an antifungal compound, produced by the soil isolate 98- 62. This would require  

1) identification of the soil isolate 98- 62 to allow for a rational approach in 
establishing gene transfer methodologies specific for this organism, 

 
2) identification of the type of antifungal compound it produces through the 

use of  gene specific probes, 
 

3) cloning of the genes based on homology, 

4) chromosomal walking to obtain more genes of the antibiotic gene cluster, 

5) sequencing and analysis of the cloned genes 

6) establishment of  gene disruption method for the soil isolate 98- 62 and 
finally 

 
7) gene disruption to determine the function of the cloned genes in the 

antifungal compound synthesis.  
 
 
  For a more indepth understanding of the idea behind and approach to this 

project, the literature review section of this thesis is included herein.  
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                                                               LITERATURE REVIEW                   
2.1 ANTIBIOTICS 

 
 

Antibiotics are defined as low molecular weight microbial secondary 

metabolites that inhibit the growth of other microorganisms at low concentration. A 

molecule with defined chemical structure having a relative mass of at most a few 

thousand is considered to be of low molecular weight. As such, enzymes such as 

lysozyme and complex proteins such as colchicine are not considered as antibiotics, 

although they are antibacterial. 

Although by the given definition, only substances produced as natural products 

are considered as antibiotics, products obtained by chemical modification of microbial 

metabolites are also accepted as antibiotics and are called as semisynthetic antibiotics. 

Natural products from plants with antimicrobial activity are also sometimes referred 

to as antibiotic products from plants. 

The key word  “ at low concentration” in the definition is to be highlighted as 

even essential and normal cellular components can be detrimental and cause damage 

if present at excessive concentrations.  For example, glycine, one of the constituents 

of every protein has a strong bactericidal effect on some bacteria when present in the 

culture medium in a high concentration. 

Inhibition of growth of other microorganism may be permanent or temporary. 

When inhibition is lost once the antibiotic is removed from its medium, the antibiotic 

is said to have a static action. If however inhibition is permanent, the antibiotic is said 

to have a cidal action. Antibiotics are frequently grouped according to the spectrum of 

activity. That is according to the classes of microorganisms they inhibit. There are, 

therefore, antiviral, antibacterial, antifungal and antiprotozoal antibiotics. 

Another scheme of classification is based on the chemical structure of the 

compound. Currently, natural or semisynthetic antibiotics that share a basic chemical 
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                                                               LITERATURE REVIEW                   
structure are grouped into one “class” and named after the member first discovered or 

after a principal chemical property. Antibiotics can be therefore classified as β- 

lactams, tetracyclines, aminoglycosides, macrolides, ansamycins, peptide antibiotics 

and glycopeptide antibiotics based on their chemical structure. β- lactams, 

tetracyclines, aminoglycosides, macrolides and ansamycins fall under the group of 

compounds called polyketides, based on the chemical nature of these compounds. 

Although various classification schemes of antibiotics have been proposed, there is no 

one universally adopted scheme to date.  

 
2.2 ANTIFUNGAL COMPOUNDS 
2.2.1 NEED FOR ANTIFUNGAL AGENTS 
 
 

Human and animal fungal infections pose serious medical and veterinary 

issues, whereas fungal infections of the plants result in significant losses of agricultural 

products. According to Bodey and Anaissi (1989), there has been a dramatic increase 

in the frequency of fungal infections, especially disseminated systemic mycoses in 

immunodeficient hosts in the last three decades. Antineoplastic chemotherapy, organ 

transplants, congenital defects, leukemia, Hodgkin’s disease, and AIDS may cause 

immune deficiencies. These render an immunocompromised host more susceptible to a 

variety of fungal, bacterial, protozoal and viral diseases. Species of Candida, 

Coccidioides, Histoplasma, and Aspergillus are important causative agents. Of these, 

Candida species, especially albicans are clearly the most important causative agents 

(Holmberg & Mayer, 1986). Candidiasis has a wide range of clinical presentations, 

ranging from cutaneous to disseminated systemic infections, which include thrush, 

bronchitis, meningitis, septicaemia, asthma, gastritis and endocarditis.  
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2.2.2  EXISTING ANTIFUNGAL COMPOUNDS 
 
 

Amphotericin B has been the choice of antifungal drug for 30 years (Medoff et 

al., 1983; Bodey, 1988). However amphotericin is toxic to human cells and has many 

side effects, which include renal dysfunction, fever, chills, hypotension and even 

cardiac failure. The mode of action of amphotericin is to complex with the membrane 

sterols, resulting in membrane distortion and leakage of intracellular contents. 

Other clinically used antifungal drugs are nystatin which also complexes with 

ergosterol in fungal plasma membrane and imidazoles and triazoles which inhibit 

ergosterol biosynthesis in the fungi. 5- Fluorocytosine acts by inhibiting DNA and 

RNA synthesis. Griseofluvin interferes with microtubule formation. Nikkomycin is a 

peptidyl nucleoside, which is a chitin synthase inhibitor 

One of the fundamental requirements for effective antimicrobial therapy is to 

inhibit the pathogen without affecting the infected host. This can be achieved by 

targeting a molecular process of the pathogen that is lacking or sufficiently different 

from the host mammalian cells, so that the host metabolism will be minimally affected. 

In the case of fungal and mammalian cells, both are eukaryotic and therefore share a 

great deal of enzymatic and biochemical machinery. This is one of the reasons for the 

obvious lag in the development of antifungal compounds compared to antibacterial 

compounds.  

Thus, even though there is an extensive list of available antifungal compounds, 

new antifungal compounds that are more effective, less toxic and showing broader 

activity are still required. 
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2.2.3  SEARCH FOR NOVEL ANTIFUNGAL COMPOUNDS 
 
 

 Some of the traditional approaches in finding novel secondary metabolites 

include  

1) screening of microrganisms that produce new, structurally and functionally 
different antibiotics,  

 
2) mutation of microorganisms to produce new activities,  

 
3) directed biosynthesis by biochemical modification of structures synthesised 

chemically,  
 
4) chemical or biochemical modifications of a backbone molecule produced by a 

microorganism,  
 

5) chemical synthesis of new compounds using structures produced in nature as 
templates for enhanced or more desired activities and 

 
6) fusion of protoplasts of two microorganisms, each producing a desired trait, 

followed by selection for recombinants, which have desired traits (Strohl et al., 
1991).  
 

In screening for microrganisms that produce new, structurally and functionally 

different antibiotics, microbial screens are first set up to evaluate a compound, or a 

mixture of compounds (secondary metabolites) on a “ target”. The aim of the screen is 

to act as a filter to narrow down to a small number of potential antimicrobial 

compound producers from a large number. The screen can be for microorganisms that 

produce antifungals, antibacterials or others.  

In searching for novel secondary metabolites that is antifungal, the target used 

in the microbial screen can be an intact fungal pathogen in vitro or in vivo, or an 

indispensable enzyme activity or process. 

Historically the main source of antimicrobial compounds has been from soil 

microorganisms. However, new sources of microorganisms, for example, marine 

invertebrates, plants, halophiles, thermophiles, bacteria are receiving increasing 
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attention. There is a wide spread belief that new sources of materials will bring new 

drugs. Correspondingly, there have been extensive programs to isolate microorganisms 

from exotic environments (de Souza et al., 1982).  

Antimicrobial screens of soil samples from diverse and untapped geographical 

location would also be one approach to identify new antimicrobial compounds. Asia 

represents one of the many regions in the world where the pool of natural diversity is 

untapped. Southeast Asia is well known for its species rich tropical rainforests (Bull et 

al., 1992; Myers, 1988). In Singapore, high actinomycete diversity is found in the 

tropical rainforest at both genus and subgenus levels, which could represent an 

excellent source for the discovery of novel bioactive compounds (Wang et al., 1999). 

A total of 35 genera were isolated from primary and secondary rainforests of 

Singapore, compared to 29 genera in the whole of Yunnan province of China, an area 

known as the “ Kingdom of plants and Animals” (Xu et al., 1996; Jiang & Xu, 1996).     

 
2.3  ANTIBIOTICS PRODUCING ORGANISMS 
2.3.1 ACTINOMYCETES: GROWTH AND NUTRIENT REQUIREMENTS 
 
 

Most antibiotics are products of the secondary metabolism of three main 

groups of microorganisms: eubacteria, actinomycetes and filamentous fungi. The 

actinomycetes produce the largest number and greatest variety of antibiotics 

(Waksman, 1950). The actinomycetes comprise a group of branching unicellular gram-

positive bacterial organisms, with DNA rich in Guanine and Cytosine (70%). They are 

widespread in nature, occurring typically in soil, composts, and aquatic habitats. Most 

species are free-living and saprotrophic, but some may form symbiotic associations, 

whilst others are pathogenic in man, animals and plants. 

The growth of actinomycetes is filamentous. Their growth on a solid or liquid 

medium results in the formation of a mass of growth usually designated as “colony”. 
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This is a mass of branching filaments that originated from a spore or from a bit of 

vegetative mycelium. The vegetative growth of the actinomycetes, or stroma is usually 

shiny, gel like, or lichnoid in appearance and varies in shape, size and thickness. 

Actinomycetes reproduce either by fission or by means of special conidia. 

The actinomycetes are often characterised by the production of a variety of 

pigments, both on organic and on synthetic media. The variation of colour depends 

upon many factors, such as the nature and age of the culture. Acids and alkalis are 

known to have a marked effect upon the nature and integrity of the pigment produced 

(Waksman, 1950). The colour of the pigment produced varies from strain to strain. 

Some may be whitish or cream coloured, others may appear yellow, red, pink, orange, 

green, violet or brown.  

The actinomycetes vary greatly in their nutritional requirements. They are able 

to utilise a great variety of simple and complex organic compounds as sources of 

carbon and energy. These compounds include organic acids, sugars, starches, 

hemicelluloses, celluloses, proteins, polypeptides, amino acids, nitrogen base and 

others. Certain actinomycetes can also utilise, to a more limited extent, fats, 

hydrocarbons, benzene ring compounds, and even more resistant substances, such as 

lignin, tannin and rubber.  

 
2.3.2  ACTINOMYCETES: CLASSIFICATION 
 
 

Many systems of classifying the actinomycetes have been suggested. 

Traditionally, classification of the actinomycetes has been based upon the 

morphological and physiological characteristics of the organism. Useful morphological 

characters for this purpose include the types of mycelium (substrate/aerial), the 

stability of this mycelium, the mode of division of hyphae; types, number and the 
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arrangement of spores; formation of flagellate elements and their mobility etc. 

However, phenotypic characteristics vary with growth conditions and have not been 

precise enough for distinguishing superficially similar organisms or for determining 

phylogenetic relationships among the actinomycetes. Physiological tests too have been 

unreliable as they give variable or unstable data, varying considerably with the growth 

conditions of microorganisms.  

The development and application of new and reliable biochemical, chemical 

and molecular biology techniques are revolutionizing actinomycete systematics 

(Goodfellow, 1986). Chemotaxanomy is the study of chemical variation in living 

organisms and the use of selected chemical characters in classification and 

identification of organisms (Goodfellow & Minnikin, 1985). In chemotaxanomy, 

chemical information such as types of peptidoglycan, phospholipids, cell wall sugar 

and fatty acids are analysed.  

Actinomycete taxonomists are well accustomed to “ wall types”, introduced by 

Lehevalier & Lechevalier, 1970. This particular chemotaxanomic marker has played 

an important role in the establishment of actinomycete taxa (Stackebrandt, 1986). This 

simple analysis of the composition of walls allowed actinomycetes and related 

organisms to be classified into nine groups of chemotypes based on the cell walls 

amino acid and sugar composition. Fatty acid composition of microorganism is also an 

important taxonomic character (Goodfellow & Minnikin, 1985). It has been 

demonstrated that fatty acid profiles can be analysed quantitatively (Drucker, 1974; 

Saddler et al., 1987) to provide useful taxonomic information at species and in some 

cases, subspecies level (O’ Donnell, A.G., 1985). However, it is important that the 

environmental factors influencing the chemical composition of microorganisms grown 

in the laboratory are carefully controlled. It was found that different growth media 
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gave fatty acid profiles that were both qualitatively and quantitatively different 

(Farshtchi & Mc Clung, 1970). 

Rapid accumulation in the knowledge of molecular biology and the recent 

advancement of nucleic acid analyses techniques such as the determination of G + C 

ratio, DNA-DNA hybridisation and 16S rDNA sequencing have provided an important 

alternative in differentiating the strains of a particular species and allowed the 

investigations of the evolution of the actinomycetes. 

In general, the G + C content of the DNA of the actinomycetes is high. The 

Mycobacteria and Nocardia are on the low side of this spectrum (60-70%) while 

streptomycetes are on the high side (70-75%). DNA-DNA hybridisation was only used 

to study the species level relationships within a few actinomycete groups. But these 

studies made little impact on the understanding of higher-level phylogeny among 

actinomycetes. 

The primary structure of rDNA is more conserved than the primary structure of 

the whole genome. The analyses of the 16/23S rDNAs have made the determination of 

moderate to even more remote relationships possible. 16S rRNA gene sequence based 

analyses have been used to resolve phylogenetic relationships between organisms at 

virtually all taxonomic levels (Stackenbrandt, 1985). Currently, 16S rDNA sequencing 

has been used to identify culturable as well as non-culturable bacteria (Amann et al., 

1995; Stackenbrandt, 1997). 
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2.3.3 STREPTOMYCETES 
 
 

One actinomycete genus, Streptomyces has become pre-eminent for genetic 

research. This could be attributed to not only the ability of the organism to produce a 

vast number and wide variety of antibiotics but also to the ease of isolating the 

organism from the soil and the convenience of cultivating them in the laboratory.  

Streptomycetes are aerobic gram-positive soil bacteria that grow vegetatively 

as a branching and generally non-fragmenting mycelium. Individual branches are 

called hyphae. Occasional cross walls are formed in the hypha, with irregular spacing. 

After a certain amount of growth, some unknown stimulus, usually considered to be 

nutrient depletion, causes aerial branches to arise from the ‘vegetative’ substrate 

mycelium of surface grown colonies. The aerial mycelial branches eventually 

differentiate into chains of spores. Aerial hyphae appear to grow partially by utilising 

the degraded substrate mycelium. 

 Streptomyces colonies grown in laboratory conditions are sometimes visible as 

colonies with alternating surface colour associated with that of the spores and the white 

fluffiness typical of aerial mycelium. This is due to multiple rounds of germination and 

sporulation in the laboratory culture. (Dowding, 1973). 

 Germinated spores, vegetative hyphal fragments, aerial hyphal fragments 

produced by mutants blocked at any stage of differentiation are all capable of initiating 

a new colony. 

 
2.3.4 STREPTOMYCETES: SECONDARY METABOLISM & DIFFERENTIATION 
 
 

Most Streptomyces do not produce antibiotics during the period of vegetative 

growth. Instead, they produce antibiotics as their growth rate slows down. Hence 

production of the secondary metabolites is considered as inessential for vegetative 
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growth of the producing organisms. In Streptomyces colonies growing on solid 

surface, this slowdown occurs as the aerial mycelium starts to develop from the 

substrate mycelium. In liquid grown culture, it takes place at a ‘transition stage’ as 

biomass changes from the quasi-exponential toward the stationary phase. 

It has been suggested that such timing of antibiotic production and 

differentiation is adaptive in helping to prevent invasion of microorganisms that could 

otherwise steal the nutrients released by the lysis of the substrate mycelium, which are 

meant to supply nutrients for the development of the aerial mycelium. 

The genetic and physiological determinants of the switch between primary and 

secondary metabolism are still largely obscure. Two kinds of approaches are currently 

used to understand the switch mechanism. Physiological factors such as carbon and 

nitrogen sources or inorganic phosphate are being studied with reference to 

differentiation and antibiotic production to elucidate the role of these factors in the 

switching from primary metabolism to secondary metabolism. Such studies have led to 

the understanding that these physiological factors above a threshold concentration are 

potential switching devices.  

The second approach has been to identify pleiotrophic mutants which are 

defective in the production of more than one antibiotic in the organism, or to isolate 

DNA fragments having a pleiotrophic effect on antibiotic production when they are 

over expressed or when the genomic copy of the gene is knocked out. This approach 

has led to the identification of several genes in Streptomyces, which affect just 

secondary metabolism or both the secondary metabolism and differentiation processes. 

Tables 1, 2 and 3 show some of the identified genes that affect secondary metabolism 

and their predicted functions.  
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Gene Gene product 
afsB Transcriptional regulatory protein 
afsR Phosphoprotein similar to eukaryotic signal 

transduction pathways 
absA1-absA 2 Similar to two component regulatory systems 

(negative regulator) 
cutR-cutS Similar to two component regulatory systems 

(negative regulator) 
farA Butyrolactone autoregulator receptor (negative 

regulator) 
 
Table 1: Genes affecting secondary metabolism in Streptomyces 

 
 Several of the bld (bald) genes from Streptomyces coelicolor A(3) were 

capable of affecting both the secondary metabolism and differentiation processes. 

Mutants of Streptomyces coelicolor A(3),  which lack an obvious aerial mycelium were 

designated as  bald (bld).  Most of the bld mutants turned out to be regulatory proteins. 

Following the identification of Bld mutants, several other genes have been identified in 

Bld mutant hunts, as having a pleiotropic effect on differentiation as well as secondary 

metabolism. 

Tables 2 and 3 show some of the identified genes that affect secondary 

metabolism as well as differentiation; and their predicted functions.   

 
Gene Gene product 
bld A tRNA

Leu 

bld B Small DNA binding protein 
bld  C ? 
bld D Small DNA binding protein 
bld G Likely anti- sigma factor 
bld H ? 
bld I ? 
bld J ? 
bld K Oligopeptide transporter 
bld L ? 
bld M Similar to response-regulator  
bld N ECF sigma factor 

 
Table2: bld genes and their predicted functions, “?” indicates unidentified functional 
role. 
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Gene Function Phenotype of knock out mutant 
citA Citrate synthase Bald; 
acoA Aconitase Bald; 
cya Adenylate cyclase Bald; (suppressed by buffering);  
obg GTP binding protein Mutational lethal  (multiple copies 

inhibit aerial growth) 
relA (p)ppGpp synthetase Retarded aerial growth on low 

nitrogen medium  (overexpression 
accelerates growth) 

catB Catalase Bald 
brgA Unknown Bald; resistant to inhibitor of ADP 

ribosyl transferase 
 
Table 3: Other genes capable of influencing secondary metabolism and differentiation 
in Streptomyces  
 

Thus, regulatory elements governing the development in Streptomyces seem to 

be determined by nutritional, and physiological as well as genetic factors. These 

regulatory factors could either act at the secondary metabolism alone or at a level that 

affects both the differentiation and secondary metabolism processes. However, the 

exact role of differentiation in relation to secondary metabolism remains obscure and is 

yet to be worked out. Most of the work pertaining to this subject has been conducted 

using Streptomyces coelicolor and therefore the relevance to other Streptomyces is also 

to be confirmed. 

 
2.3.5 STREPTOMYCES: GENOME AND ANTIBIOTICS SYNTHESIS 
 
 

All the essential genes of Streptomyces coelicolor lie on a chromosome that is 

about ~8 mb in size. S. ambofaciens  has a similar genome size (Leblond et al., 1990). 

Pulsed field gel electrophoresis (PFGE) of the streptomycete genome revealed a linear 

chromosome in all the species studied (Lin et al., 1993). Terminal structures on the 

chromosome of Streptomyces lividans  (Lin et al., 1993), S. griseus (Lezhava et al., 

1995) and S.ambofaciens (Leblond et al., 1996) were identified as long inverted 
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repeats. The chromosomal ends of adjacent regions of Streptomyces chromosome tend 

to be highly unstable and could undergo frequent deletions of up to 2Mb. The deletion 

mutants of various species may show phenotype changes, especially affecting aerial 

mycelium formation, pigment and antibiotic production, and resistance to antibiotics  

(Hutter et al., 1988). 

All of the antibiotic genes studied so far are chromosomally located with the 

exception of methylenomycin gene cluster, which is on the SCP1 plasmid of S. 

coelicolor (Kirby & Hopwood, 1977). More than one antibiotic cluster may be found 

in a single Streptomyces sp. Gene clusters for actinorhodin, undodecylprodigisin and 

CDA (Calcium dependent antibiotic) are encoded by S.coelicolor genome. In some 

cases, partial clusters are also found as in the case of rapamycin producer S. 

hygroscopicus  (Ruan et al., 1997). The genes for each individual antibiotic 

biosynthesis are clustered together in a series of contiguous operons, which can range 

from 15 to 100kb size. The clusters usually also include pathway specific regulatory 

genes and one or more genes for resistance to the organism’s own antibiotic (Chater et 

al., 1992).  

 
2.4 POLYKETIDES 
2.4.1 WHAT ARE POLYKETIDES? 
 

 
Polyketide compounds are a large group of structurally diverse metabolites that 

are synthesized by repetitive condensations of small carbon precursors; typically 

acetate or propionate acyl groups derived from malonyl or methylmalonyl coenzyme A 

thioesters, respectively. In other words, polyketides are polymers of ketide units linked 

together. Polyketides fall into two structural classes: aromatic and complex depending 

on the building blocks of carbon acyl units and the extent of reduction after each round 

of condensation reaction. 
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2.4.2 AROMATIC AND COMPLEX POLYKETIDES 
 
 

Aromatic polyketides are built mainly from condensation of acetate acyl units 

and the β− carbonyl group after each condensation step is left largely unreduced. The 

polyketide chain is rearranged immediately after synthesis to produce an aromatic 

product. Examples of these aromatic products are polycyclic aromatic compounds such 

as oxytetracycline, actinorhodin and anthracycline compounds such as daunorubicin. 

The enzymes responsible for the biosynthesis of the aromatic polyketides are encoded 

by genes called aromatic polyketide synthases or otherwise known as polyketide 

synthase type II (PKS II).  

Complex polyketides can be built by condensation from acetate, propionate and 

butyrate acyl units. The extent of the β− carbonyl reduction in complex polyketide 

synthesis can vary from one condensation cycle to the next. The polyketide chain 

continues to grow until the desired length is reached, upon which the chain is cyclized 

to form the end product. The enzymes responsible for the biosynthesis of the complex 

polyketides are encoded by genes called modular polyketide synthases or otherwise 

known as polyketide synthase type I (PKS I).  

 
2.4.3 STRUCTURE AND FUNCTION OF POLYKETIDES 
 
 

Polyketides are diverse in structures. Structural diversity of the polyketides is 

reflected in the diversity in their biological activity. Examples of polyketide chemical 

class include macrolides, tetracyclines, anthracylclines, avermectins, and many others. 

Polyketides encompass bacterial metabolites such as antibiotics, fungal aflatoxins, 

plant flavonoids and hundreds of compounds of different structures that exhibit anti 

bacterial, antifungal, antihelminthic and antitumor properties (Fig. 1).   
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Figure 1: Diverse structures of polyketides and their functions. Polyketide 
biosynthesis” (Staunton, J and Weissman, J. K., 2001)  
 
2.4.4 HISTORICAL PERSPECTIVE OF POLYKETIDES 
 
 

The term “polyketide” was introduced into the chemical literature in 1907 by 

John Norman Collie in a paper entitled “Derivatives of the multiple ketene group” 
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(Collie, 1907). Collie proposed that the basic building block for a large number of 

aromatic plant compound was ketene (CH2=C=O) or its hydrolysis product. Hence, the 

designation of the compound as polyketide. He provided experimental evidence in 

support of the hypothesis that the aromatic compounds were formed by condensation  

of acetic acid, acetoacetate and higher homologues of acetate.  

In the 1940s, Rittenberg and Birch proved that acetate was involved in fatty 

acid biosynthesis by using radio labelled acetate (Rittenberg et al., 1944, 1945). 

Following this, Feodor Lynen led to the discovery that acetyl CoA that acted as active 

acetate was in fact the precursor in fatty acid synthesis.  

Birch was stimulated with this new development and went on to systematically 

analyse and confirmed that structures of many aromatic compounds were compatible 

with a biosynthetic origin from the folding of extended β- ketochains from acetate. 

Birch was also the first to study biosynthetic experiments on fungal compounds, which 

placed the role of acetate in polyketide synthesis beyond doubt. These findings 

established the origin of polyketides (Birch et al., 1953a, 1953b, 1958).  

Historically, significant developments in fatty acid synthesis have paved way 

for a better understanding of polyketide synthesis. This continues to be so even today. 

 
2.5 FATTY ACID AND POLYKETIDE SYNTHASES 
2.5.1 FATTY ACID SYNTHASES 
 

 
Polyketide synthesis is similar in many respects to bacterial and mammalian 

fatty acid synthesis. Therefore before introducing the enzymes of the polyketide 

biosynthesis, it is appropriate to digress briefly into the closely related field of fatty 

acid biosynthesis.  

Fatty acids are assembled from C2 units by repeated head to tail linkage. This 

assembly process is catalysed by enzymes known as fatty acid synthase (FAS). A 
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starter acyl unit, usually acetyl is condensed with a malonyl unit to form a carbon - 

carbon double bond by decarboxylation. The starter acetyl unit is attached to keto 

synthase (KS), whilst the malonate is attached to an acyl carrier protein (ACP). The 

condensation reaction is catalysed by the ketosynthase. The resulting β- keto ester, 

which is attached to the acyl carrier protein (ACP), is successively reduced by 

ketoreductase (KR), dehydrated by dehydratase(DH) and reduced once again by enoyl 

reductase(ER) to give a saturated chain longer than the original by two methylene 

groups. This sequence of reaction completes the first round of chain extension. The 

elongated chain is then transacylated to the KS, and a new cycle is initiated. This 

process is repeated until the desired chain length is reached (usually 14, 16 or 18 

carbons). At this stage, the chain is transferred to a thioesterase (TE) which catalyses 

the release of the assembled product as a free acid or an acyl ester.  

The structural organization of the FAS depends on the type of organism. 

Bacterial fatty acid synthases consist of discrete set of proteins that can be isolated 

separately and are designated as type II FAS enzymes. In contrast, mammalian FAS 

are large multifunctional proteins and are designated as type I FAS enzymes. Various 

intermediate stages of organization are found in other organisms.   
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Figure 2: Mechanism of Fatty acid and Polyketide synthesis. The above diagram 
shows the various activities catalysed by the different domains of the fatty acid or 
polyketide synthases. A- D represents the possible reductive cycles that can lead to 
keto, hydroxyl, enoyl or methylene functional groups in the endproduct. Adapted from 
“Genetic contributions to understanding polyketide synthases” (Hopwood, D. A., 
1997). 
 
2.5.2 POLYKETIDE SYNTHASES 
 
 

Like fatty acid synthases, two types of synthases also catalyse the 

polymerisation process of polyketide synthesis, type I polyketide synthase (PKS I) and 

type II polyketide synthase (PKS II).  Polyketide synthesis however differs from long 

chain fatty acid synthesis in several aspects. For example, different starter units (linear 

or branched carboxylic acids, aromatic and aliphatic rings etc) are used for 

polyketides, whereas acetate or occasionally propionate or branched chain carboxylic 

acids are employed for long chain fatty acid synthesis. Secondly, the extent of 

processing in polyketide synthesis may not be constant through out unlike that of the 
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fatty acid synthesis. A new cycle in polyketide synthesis may initiate with an acyl 

group containing a β- keto, β-hydroxy, β-ene or fully reduced β-carbon (Fig. 2).  

Polyketide synthase I genes catalyse the biosynthesis of complex polyketides 

and they typically consist of several modules of 3 to 6 domains, encoding large 

multifunctional polypeptides.  The modules are termed as loading module, extender 

module and releasing module, depending on their role in the biosynthesis of the 

encoded polyketide. Each module catalyses a single step in the biosynthesis of the 

complex compound. Synthesis begins at the first module, loading module, located at 

one end of the PKS, and continues to the end through multiple extender modules, each 

of which extends the growing polyketide chain by two carbon units and modifies. 

Finally, the polyketide chain is transferred to the releasing module which catalyses the 

cyclisation and release of the polyketide.  

Each module contains three essential enzymatic activities (domains) 

responsible for the polymerisation of the ketide units. They are the Keto Synthase 

(KS), Acyl Transferase (AT) and Acyl Carrier Protein (ACP) domains. AT domain 

selects the building block while KS and ACP are involved in the linking of the 

building block to the growing chain. A module may also contain 1-3 additional 

enzymatic activities involved in the modification of the growing polyketide chain. 

Dehydratase(DH), Keto Reductase (KR) and Enoyl Reductase (ER) are  the domains 

which catalyse the modification of the growing polyketide chain. 

Therefore, the structure of the complex polyketide is determined by the number 

of modules, the specificity of the AT domain in the modules and the variation in the 

modifying enzymatic activities of the modules. The number of modules would 

determine the size of the polyketide as each module catalyses a single step in the 

biosynthesis of the complex compound.  The specificity of the AT domain would 
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determine the type of building block used to synthesise the polyketide. The varying 

modifying enzymatic activity would result in different level of reductive processing of 

the growing polyketide chain after each step of extension.  These factors contribute to 

the numerous variety of complex polyketide structures found in nature although the 

biosynthetic machinery (enzymes) and mechanism of biosynthesis of the several 

different complex polyketides are typically similar.  Sequence analysis of the PKS I 

DNA encoding the biosynthesis of different compounds reveals extensive similarity of 

enzymes to KS, AT, DH, KR, ER and ACP with regard to the fatty acid biosynthesis 

and also for the different producing organisms. Organisation of a few PKS I gene 

clusters is shown in Fig. 3. 

 

 
 
 
 
Figure 3: Organisation of various PKS I genes encoding large multifunctional 
polypeptides. Arrows indicate ORFs. Adapted from “Polyketide synthesis” ( Katz, L. 
and Donadio, S. 1993) 
 

Polyketide synthase II genes catalyse the biosynthesis of aromatic polyketides 

and they typically consist of 4 to 6 genes encoding mono or bifunctional enzymes. 

This set of enzymes is used repeatedly to synthesise the entire aromatic compound. 

Sequence analysis of the PKS II DNA encoding the different compounds reveals 

extensive similarity of enzymes to KS, ACP and KR enzymes of the fatty acid 

biosynthesis and also for the different producing organisms. Organisation of various 

PKS II gene clusters is shown in Fig. 4: 
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Figure 4: Organisation of various PKS II genes encoding mono or bifunctional 
proteins. Arrows indicate ORFs. Adapted from “Genetic contributions to 
understanding polyketide synthases” (Hopwood, D. A., 1997).  
 
2.6  DISCOVERY OF TYPE I POLYKETIDE SYNTHASES 
2.6.1  ERYTHROMYCIN POLYKETIDE SYNTHASE GENES 
 
 

Long before the molecular biology revolution, indirect information regarding 

the biosynthetic properties of the modular PKSs was gained through incorporation 

experiments with 14C, 13C, 18O and 2H labelled substrates and intermediate analogs. 

For example isotope-labelling studies demonstrated that the carbon chain backbones of 
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natural products such as erythromycin, tylosin, monesin and avermectin are derived 

through C-C bond formation from acetate, butyrate building blocks. 

More recently, the incorporation of exogenously added analogs of the putative 

biosynthetic intermediates into corresponding polyketides have proven without doubt 

that the modular PKSs act via a processive mechanism in which the oxidation level 

and stereochemistry of the growing polyketide chain is adjusted after each step of 

polyketide chain elongation. However, in depth knowledge of the biochemical basis 

for the processive assembly has only become possible with the advancement of 

molecular genetic tools. 

The first modular PKS (PKS I) genes to be cloned were that of S. erythraea, 

encoding proteins for the biosynthesis of the complex polyketide, 6-

deoxyerythronolide. This polyketide gene cluster is designated as eryA. The 

polyketide, 6-deoxyerythronolide is the aglycone moiety of erythromycin, which has to 

be oxidised and glycosylated to yield erythromycin. 

 Two separate groups identified the eryA gene cluster using different but 

complementary approaches. A gene fragment conferring resistance to erythromycin 

was cloned by Thomson et al in 1980. Peter Leadlay’s group at Cambridge University 

used this resistance gene denoted as ermE as a hybridisation probe to clone genes for 

erythromycin biosynthesis from the genome of S. erythraea, based on the assumption 

that resistance genes and biosynthetic genes are clustered together. DNA fragments 

isolated were sequenced and used in gene disruption and complementation 

experiments to prove their function. Further chromosomal walking led to the 

identification of the eryA genes (Leadlay et al., 1990). 

Meanwhile, Leonard Katz and co-workers at Abbott laboratories had also 

cloned the genes of the eryA cluster. They cloned the eryA by complementation of an 
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erythromycin non-producing mutant with a cosmid library generated from the S. 

erythraea genes. The insert fragment of the complementing clone was then sequenced. 

Partial sequence information was published by both groups in 1990. Detailed analyses 

of the gene cluster followed shortly thereafter (Bevitt et al., 1992, Donadio et al., 

1991, Tuan, 1990).    

The structural genes responsible for the biosynthesis of the first macrolide 

intermediate are three enormous open reading frames (ORFs), eryAI, eryAII and 

eryAIII, encoding the three gigantic multienzyme polypeptides. Each ORF is 

approximately 10 kb and consists of two repeating units designated as modules.  

Sequence analyses revealed that eryAI encoded a loading domain and 2 extender 

modules, eryAII encoded 2 extender modules and eryAIII encoded 2 extender modules 

and a final thioesterase domain (Fig. 5). Further sequence comparisons also showed 

that each of these modules consisted of 4 to 5 domains with considerable similarity to 

enzymes responsible for each of the individual steps of fatty acid synthesis. 

 Gene disruption experiments confirmed the predicted boundaries of eryAI, 

eryAII and eryAIII ORFs and proved the involvement of eryA genes in the synthesis 

of 6-deoxyerythronolide. 

 
 

 
 
 
Figure 5: Open reading frames of erythromycin biosynthetic gene cluster. Adapted 
from “Type I polyketide biosynthesis in bacteria” (Rawlings, J. B., 2001) 
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2.6.2 DOMAIN IDENTIFICATION OF ERYTHROMYCIN POLYKETIDE 

SYNTHASE GENES 
 
 

In 1991, Donadio et al sequenced 35kb of DNA which includes all of eryA. 

Analysis revealed that eryAI and eryAII were separated by an insertion element of 

1.44kb whilst eryAII and eryAIII were contiguous. Each of the eryA ORF consisted of 

2 repeated units (modules), which ranged from 4.3 kb to 6.5 kb in size. The sequences 

had a similarity of 64% or higher. The deduced amino acid sequences of the three 

ORFs were compared to FAS and other PKS systems, and the catalytic activities 

/domains in each module were assigned. A total of seven ACPs, six KSs, eight ATs, 

six KRs, one DH and one ER have been identified from the six repeated units. 

Each domain was presumed to catalyse a single step of the processive 

assembly. The putative active sites of the domains were identified: Predicted active site 

motif GHS*SG motif was located in all the 8 AT domains, keto synthase active site 

motif GPXXXXXTAC*SS was identified in all of the 6 KS domains, signature 

sequence of ACP active site was found in all the 7 ACP domains, and a 

GXXGXXAXXA motif proposed as a common fingerprint region in NADPH 

reductase was identified in the 6 KR domains. One such KR domain in module 3 had a 

gap in the sequence corresponding to the highly conserved VSRRG motif, and 

therefore was proposed to be nonfunctional. 

DH and ER domains were proposed in module 4 by comparison with that 

proposed for rat FAS, but the extent, exact location and limits of the individual 

domains were not described. 

Leadlay et al (Bevitt, 1992) proposed the active site of DH to have a 

HXXXGXXXXP motif by sequence analogy with the E. coli FabA, which is 3 

hydroxydeconyl thioester dehydratase and the active site of ER to have a histidine 
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residue at the active site by sequence analogy with rat and chicken FAS. 

 
2.6.3 ENZYMOLOGY OF ERYTHROMYCIN POLYKETIDE SYNTHASE GENES 
 
 

Most of our knowledge about modular PKSs arises from studies of the eryA 

system. DNA sequence analysis of the genes led to the postulation of the widely 

accepted model presented in the Fig. 6 (Donadio et al., 1991). 

Here the acyl transferase (AT) domain of the loading domain in eryAI initiates 

the polyketide chain building process by transferring the propionyl CoA primer unit 

via the pantetheinyl residue of the loading domain acyl carrier protein (ACP) to the 

active site cysteine of the ketosynthase of module 1 (KS1). The acyl transferase in 

module 1 (AT1) loads methylmalonyl CoA onto the thiol terminus of the ACP domain 

of module 1. KS1 then catalyses the first polyketide chain elongation reaction by 

decarboxylative condensation between the methylmalonyl and propionyl residues 

resulting in the formation of a 2 methyl 3 keto pentanoyl- ACP thioester. The latter 

intermediate is reduced by the keto reductase of module 1 (KR1) giving rise to ACP 

bound (2S, 3R)-2 methyl, 3 hydroxy pentanoyl ACP. At this point, module 1 has 

completed its function and the diketide product is transferred to the core cysteine of 

KS 2, whereupon it undergoes another round of reduction, resulting in the formation of 

the corresponding triketide. This process is repeated six times, with each module being 

responsible for a separate round of chain elongation and reduction, as appropriate, of 

the resulting β- ketoacyl thioester. Finally the thioesterase at the C- terminus of ery 

AIII is thought to catalyse the release of the finished polyketide chain by lactonisation 

of the product generated by module 6. In summary, six methylmalonyl CoA acyl units 

are converted to 6- deoxyerythronolide by the catalytic activity of the eryA encoded 

PKS I enzymes. 
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It should be noted that although the domain organization of the eryA was in 

complete agreement with the information available from the earlier isotopic labelling 

studies, unequivocal a priori deduction of the product structure would not have been 

possible from the sequence information alone. This is because, firstly, the 

stereochemical features of the end product cannot be deduced from the primary 

structure alone. Secondly, the regio- specificity of cyclisation is not overtly dictated in 

the organization or sequence of eryA domains. Finally, occurrence of a domain would 

not necessarily indicate its functionality.  For example, module 3 of eryA cluster 

contained a KR domain, albeit a non-functional one, whose amino acid was found to 

deviate significantly from that of the other KR domains. However, this deduction 

would not have been possible without the prior knowledge of the polyketide structure. 
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  Figure 6: The proposed mechanism of erythromycin biosynthesis. Adapted from  
“Genetic contributions to understanding polyketide synthases” (Hopwood, D. A., 
1997). 
 
2.6.4 THE PROGRAMMING MODEL AND PROOF OF FUNCT ION 
 
 

Initial evidence for the assembly line model for the programming of 

erythromycin was provided by the sequence itself. Firstly the number of modules of 

putative catalytic sites corresponded in number to the number of condensation steps 

needed to build the 6-deoxyerythronolide heptaketide. Secondly, the features of 

specific modules could be related to their proposed functions. 

eryAI had extra N- terminal AT and ACP domains before module1 for loading 

of the propionyl CoA starter unit onto the KS domain of module 1. 

eyAIII was unique in carrying a putative thioesterase domain after module 6 for 

hydrolysis of the final thioester bond between the completed polyketide chain and the 

4’,-phospho-pentathiene prosthetic group of the last ACP domain to release the carbon 
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chain. 

Module 3 of eryAII lacked all three reductive functions DH, KR and ER 

agreeing with the presence of an unreduced keto group after the third condensation, 

while module 4 was unique in carrying candidate domains for all three such functions, 

as expected in view of the reduction of the keto group right through to a methylene 

after the fourth condensation. 

Several line of experiments involving domain mutagenesis (by deletion, 

inactivation or swapping), synthetic precursor feeding to blocked mutants and module 

swapping have been performed by different groups, which have provided substantial 

evidence for the deduced programming model of the eryA PKS I cluster. As this 

subject is a specialised field on its own accord and beyond the scope of this review, it 

is not discussed in depth (Khosla, 1997).  

 
2.7 OTHER MODULAR POLYKETIDE SYNTHASES 
 
 

Since the discovery of the eryA genes, the involvement of modular PKSs in the 

biosynthesis of several other complex polyketides has been reported. Although some 

variations have been observed in the content and organization of the different systems, 

the key features of the modular hypothesis remain unchanged in whole or in part. PKS 

clusters encoding for complex polyketides rapamycin, FK506, spiramycin, 

oleandomycin, avermectins, niddamycin, methymycin, picromycin, pimaricin, nystatin 

and tylosin have been cloned. The cloning strategy and features of some of this 

polyketide gene cluster are discussed in the following section.  
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2.7.1  SPIRAMYCIN 
 
 

The genes encoding the biosynthesis of the polyketide precursor of the 16-

membered macrolide spiramycin have been cloned. Spiramycin is a 16-membered 

polyketide produced by Streptomyces ambofaciens. The gene cluster encoding for 

spiramycin biosynthesis was identified by cloning the spiramycin resistance gene. The 

biosynthetic genes linked to the resistance gene were then identified by 

complementation of blocked mutants.   

This modular PKS includes seven modules whose organization is colinear with 

the biosynthetic order as in the eryA gene cluster. However three of the ORFs are 

unimodular in the spiramycin gene cluster. Furthermore, the loading domain of the 

spiramycin gene cluster also includes a ketosynthase domain in addition to the AT and 

ACP domains. However, the amino acid sequence of this ketosynthase domain 

deviates in the active site motif. The cysteine residue of the active site motif is 

replaced with a glutamine residue and therefore the KS domain is presumed to be 

inactive. Some of the AT domains of the spiramycin gene cluster are deduced to have 

specificity for ethyl malonyl CoA and malonyl CoA substrates in addition to the usual 

methylmalonyl CoA substrates (Yue et al., 1987). 

  
2.7.2 RAPAMYCIN 
 
 

The entire gene cluster for rapamycin biosynthesis has been cloned and 

sequenced from Streptomyces hygroscopicus (Schwecke et al., 1995). The 32-

membered rapamycin structure, the PKS encoding for rapamycin is comprised of 14 

modules. The gene cluster encoding for rapamycin biosynthesis was cloned using eryA 

gene probes. The gene cluster was identified to be 107 kb in size. Gene disruption 

studies have been used to prove the involvement of the cloned genes in the 
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biosynthesis of rapamycin (Hutchinson et al., 1997). 

  In contrast to the eryA gene cluster, organization of the genes of rapamycin 

gene cluster is not colinear with the biosynthetic order. The ORFs of rapamycin gene 

cluster are large, consisting of 4 to 6 modules. The loading domain of rapamycin gene 

cluster is unusual and is comprised of a putative acyl CoA ligase and enoyl reductase. 

Typical thioesterase domain is also not found in the rapamycin gene cluster. Instead, a 

pipecolate-incorporating enzyme, which presumably completes the rapamycin 

macrocycle, is present. 

Until the rapamycin PKS was sequenced the database of modular PKS only 

included sequences of AT domain with specificity for methylmalonyl CoA. The 

rapamycin module includes seven AT domains each with specificity toward a malonyl 

CoA or methylmalonyl CoA. Comparative analyses of the AT domains from 

rapamycin, erythromycin and oleandomycin PKSs revealed the substrate specificity of 

AT domain could be unambiguously predicted from two short consensus sequences of 

5- 8 residues.  

 
2.7.3 CANDICIDIN 
 
 

Candicidin is a 38-membered polyene polyketide. The aglycone moiety of 

candicidin is identical to a related compound FR-008. FR-008 is produced by 

Streptomyces sp. FR-008. A gene cluster involved in FR-008 biosynthesis was isolated 

by hybridisation, initially using a gene involved in the biosynthesis of para -amino 

benzoic acid starter unit and later with several eryA gene probes. The hybridisation 

patterns with the eryA probes revealed that the DNA encoding the modular PKS 

extended approximately 105kb.  It was pointed out that on the assumption that each 

PKS module was approximately 5 kb, 21 modules were predicted in the gene cluster to 
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be encoding for the synthesis of the FR-008 aglycone. This prediction was in striking 

agreement with the number of condensation steps required for the synthesis of the 

FR-008 aglycone. This finding was significant in implying a one to one relationship 

between modules and rounds of condensation. Furthermore, consistent with the 

presence of a para-amino benzoic acid primer unit in the polypeptide backbone, one 

end of the gene cluster appeared to encode the para-amino benzoic acid synthase and 

ligase genes. Gene disruption experiments were done to confirm the involvement of 

the cloned genes in the synthesis of the FR-008 aglycone (Deng et al., 1994). 

 
2.7.4  SORAPHEN 
 
 
  Soraphen A is a 18-membered compound produced by the myxobacterium 

Sorangium cellulosum. It is the first example of a functional modular PKS  so far 

known outside the actinomycetes. Interestingly, the DNA encoding part of the 

soraphen gene cluster was cloned by the use of a PKS II specific probe (graI). This is 

the first and only example of PKS I genes cloned by the use of PKS II specific gene 

probe. Gene disruption proved the involvement of the cloned DNA in soraphen 

biosynthesis and sequencing revealed part of a gene encoding one complete module of 

PKS active sites and an incomplete second module (Schupp et al., 1995).  

 
2.8 ELUCIDATION OF BIOSYNTHETIC PROCESS OF 
POLYKETIDES 
 
 

The complete study of biosynthesis of polyketides would consist of  

1) identifying the primary metabolites from which the polyketide is derived, 

2)  isolating the intermediate metabolites of the pathway which would give a 
better understanding of the  sequence of reactions by which primary 
metabolites are converted onto the final molecule, 

 
3) identifying the enzymes that catalyse this  conversion process and   
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determining  the organization and regulation of the  governing genes. 

 
4) identifying the genes of the polyketide biosynthesis,   

5) identifying the regulatory factors of the polyketide biosynthesis and  

6) working out the regulatory mechanism of the polyketide biosynthesis. 

Although various experiments pertaining to the different steps could be 

performed in the above order, it is common to obtain relevant information through 

genetic methods before any biochemical evidence is obtained. The following section 

gives a brief review on the some of the approaches used in studying the biosynthesis of 

polyketides.   

 
2.8.1  IDENTIFICATION OF BUILDING BLOCKS BY TRACER TECHNIQUES 

 
 
Feeding the culture of the polyketide-producing organism at the end of their 

growth phase with radiolabelled presumptive precursor of the polyketide aids in the 

identification of the building blocks of the polyketide. After incubating the culture for 

an appropriate period of time to allow for the synthesis of the polyketide, solvents are 

added to the fermentation broth to extract the end product polyketide. Extracted 

compound is then purified and analysed by NMR to determine the incorporation of 

isotope in the end product polyketide. If the isotopic label is detected in the polyketide 

end product then it is concluded that the radiolabelled presumptive precursor is indeed 

the building block of that polyketide. 

 
2.8.2 ISOLATION OF INTERMEDIATES 
 
 

Identification of intermediates of the polyketide biosynthetic pathway is 

another approach to studying the polyketide biosynthetic pathway. A common 

procedure suitable for identifying intermediates of biosynthetic pathway is based on 
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the isolation of mutants blocked in one of the enzymatic reactions of the biosynthetic 

reaction. Blocked mutants are generally obtained by random mutation by subjecting 

the producing strain to mutagens such as UV treatment and screening the UV treated 

clones to isolate non-producers. 

The “ blocked mutants” often accumulate the substrate of the blocked reaction 

in the medium. Blocked mutants that do not produce the polyketide on their own but 

produce when grown together are mutants blocked in two different but complementing 

steps of the biosynthetic pathway. In this case, the inability of one mutant to produce 

an intermediate is complemented by the ability of the other mutant   to accumulate it. 

The accumulated intermediate product can be isolated and identified to verify 

that it is indeed the intermediate of the biosynthetic pathway. The original strains is 

assessed for conversion of this intermediate into the end product. This is done by 

feeding the intermediate metabolite to the producing strain for a specific time and 

determining the amount of polyketide produced in comparison to producing strain that 

is not fed. 

 
2.8.3 IDENTIFICATION OF ENZYMES 
 
 

Comparing enzymatic activities in producing and non-producing variants of the 

polyketide producing strain can identify enzymes of the polyketide biosynthetic 

pathway. The presence of an active enzyme in a producer and the absence of that 

enzyme in the non-producing variant are taken as an indication of the involvement of 

that enzyme in the biosynthetic pathway of the polyketide. 
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2.8.4 IDENTIFICATION OF GENES 
 
 

Identifying the genes encoding the enzymes that catalyse the various steps of 

the biosynthetic pathway of the polyketide is the most commonly used approach to 

studying the polyketide biosynthesis. Initial studies have shown that particularly in 

actinomycetes, the biosynthetic genes are clustered together, usually on the 

chromosome. Regulatory genes and self-resistance genes are also usually present as 

part of this cluster. These features of the polyketide synthases in addition to the 

developments in molecular biology have made isolation and sequencing of entire 

polyketide synthase clusters more feasible. 

Identification of building blocks by precursor feeding or identification of 

intermediates by complementation of non-producing mutants only allows for the 

elucidation of the biosynthetic pathway one step at a time. Identification of enzymes of 

the polyketide biosynthetic pathway by isolation of proteins is also not very feasible as 

the polyketide synthases are very large and isolation of these large proteins without 

affecting the function is not easy. Isolation of the genes involved in the polyketide 

biosynthesis not only allows for the elucidation of the entire pathway but also allows 

us to harness the potential of these genes in proving the function of these genes by 

gene disruption studies or in producing hybrid polyketides by domain swapping etc. 

Therefore, identifying the genes for polyketide biosynthesis is considered to be more 

beneficial in elucidating the biosynthetic process of polyketides.  

There are several approaches to cloning the polyketide biosynthetic genes, 

which is discussed in the next section. Once a biosynthetic gene has been cloned and 

sequenced, the nucleotide sequence of the gene could be compared to those available 

in the data banks, which would give useful information on the nature and function of 

the gene product. Sequence analysis of the organization of the genes would give 
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suggestive idea of the mechanism of the biosynthetic pathway. 

 
2.9 STRATEGIES FOR CLONING POLYKETIDE SYNTHASE GENES 
2.9.1 COMPLEMENTATION OF MUTATIONS BLOCKED IN PRODUCTION 

 
 
In the earlier part of the review, identification of the intermediates in polyketide 

biosynthesis by complementation of blocked mutants was discussed. Here, we see that 

complementation can be used to clone the polyketide biosynthetic genes. However the 

complementation experiments for this purpose is considered to be in vivo. The aim of 

the in vivo complementation experiment is to restore polyketide production in a non-

producing mutant by introducing DNA from the wild type organism into the non-

producing mutant. A shotgun library of DNA from the wild type producer is 

introduced into the non-producing mutant and screened for restoration of the 

polyketide biosynthesis. Sub-cloning experiments are then used to identify the smallest 

piece of DNA that restores production. Sequencing of the insert fragment followed by 

sequence analysis to characterize the physical limits of the gene and by comparison 

with the well-understood proteins, provide an inkling of the role that its protein 

product plays; if this has not already been revealed by the effect of the mutation. 

This approach was used to clone all the genes for actinorhodin production from 

S. coelicolor thereby demonstrating the clustering of secondary metabolism, structural, 

resistance and regulatory genes (Malpartida et al., 1984). Shortly, thereafter clusters of 

genes for the production of tetracenomycin, streptomycin and bialaphos were cloned in 

the same way. 

 
2.9.2 SEARCH OF HOMOLOGOUS GENES 
 
 

Now that a large number of antibiotic production genes and gene clusters have 

been cloned from actinomycetes and fungi, it is often possible to use a known gene as 
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a probe to clone the genes for newly discovered metabolites. 

As there are only a few different types of secondary metabolic pathways, and 

considerable homology exists among genes encoding functionally related enzymes, a 

known gene can be used to hybridise to homologous genomic DNA, to clone and 

characterize the homologous gene. 

Comparison of the sequences of the various polyketide synthases revealed that 

the sequences of the polyketide synthases are highly conserved, especially around their 

active site regions. However, it was also noted that the sequences of PKS I were 

sufficiently different from that of PKS II and both were divergent enough from fatty 

acid synthases. Based on this knowledge, it seemed possible to use specific probes to 

accurately identify the two different polyketide synthases. 

  The genes most often used are the Saccharopolyspora erythraea eryA genes 

for type I polyketide synthases (PKSs) (Leadlay et al., 1990, Donadio et al., 1991) or 

the S. glaucescens tcmKL homologs for the type II PKS (Malpartida et al., 1987).  

If this method is not successful, degenerate primers designed from the highly 

conserved regions of PKS can be used to amplify the corresponding region of the 

genomic DNA from the newly discovered polyketide-producing organism.  Polyketide 

gene cluster encoding the genes for niddamycin biosynthesis was discovered by this 

approach (Kakavas et al., 1997). 

Once the desired gene is obtained which can be established by the loss of 

metabolite formation as a result of targeted disruption, then, the remaining genes for 

the metabolite biosynthesis can be found in the surrounding DNA by chromosomal 

walking.  Although cloning by DNA homology provides less initial information about 

the biosynthetic pathway than the isolation of blocked mutants, it often is the faster 

way to identify and characterize the production genes. This approach has been most 

 38



                                                               LITERATURE REVIEW                   
successful for the polyketide metabolites, oligopeptide antibiotics. 

With either approach, the involvement of the cloned DNA must be established 

by gene disruption or enzymatic assay of the gene product; because microorganisms 

often contain more than one set of PKS genes. For instance, Streptomyces peuticus 

contains four chromosomal DNA fragments, which hybridise to the act I and tcmKL 

genes, but only one of these fragments is responsible for doxorubin production. 

In view of the structural differences between the type I and type II PKS 

enzymes, eryA should logically be used to clone a new type I PKS gene and an act I 

probe should be used to clone a type II PKS gene cluster as illustrated by cloning of 

rapamycin and donorubicin genes. However, Schupp et al (1995) were able to clone a 

type I PKS gene for soraphenA biosynthesis from Sorangium cellulosum by using the 

graI gene and actI homolouge from the granticin producing Streptomyces 

violaceoruber as probes. 

 
2.9.3 PROTEIN ISOLATION FOLLOWED BY GENE CLONING 
 
 

Sequence information of a purified enzyme from a secondary metabolite 

pathway or the availability of antibodies to that enzyme would provide a secure way of 

identifying the corresponding gene as well as the rest of the gene cluster by reverse 

genetics. This is the least used method compared to the previous two methods. This 

could be explained by the low titres of such enzymes in wild type organisms and the 

difficulty in working with large polypeptides. However the gene probes for 

actinomycete PKS genes synthesized in accord with the biased codon usage have much 

less degeneracy than E. coli or human proteins and therefore often give clear cut 

results in DNA hybridisation experiments. The first genes for the biosynthesis of 

penicillins and cephalosporins, macrolide antibiotics were cloned in this way 
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(Sampsons et al., 1985). 

 
2.9.4 EXPRESSION OF SECONDARY METABOLISM GENES AND GENE 

CLUSTERS 
 

 
Expression of several sets of genes in a suitable host followed by detection of the 

metabolite formed is yet another approach to cloning a particular cluster of secondary 

metabolism genes. For this approach to be successful, several requirements have to be 

first met. 

1) the cloning vector must be able to accept large DNA segments and be able to  
replicate autonomously or integrate into the host genome, stably. 

 
2) the host must be able to express all the genes. 

3) expressed enzymes have to be post translationally  modified or supplied with 
necessary cofactors by the host organism and  

 
4) the product formed must not be toxic to the host, or a resistance gene has to be 

cloned together with the structural genes. 
 

This approach was used to shotgun clone the cephamycin C production genes 

from Streptomyces cattelya into Streptomyces lividans (Chen et al., 1988). 

 
2.9.5 GENOME SEQUENCING 
 
 

With the advancement in molecular biology and sequencing technology, it is 

now possible to sequence entire genomes. The resulting data can be analysed for the 

presence of putative antibiotic producing genes by searching for homologues of  PKS 

genes. The “red genes” for the biosynthesis of undecylprodigiosin and related red 

pigments of S. coelicolor were identified in this way.   

Although there are several approaches to cloning the polyketide synthase 

genes, the choice of method depends not just on the overall purpose of the project but 

also the availability of DNA probes, cloning vectors, host organisms as well as 
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established DNA transfer techniques. Genome sequencing, gene expression and 

reverse genetics are less commonly used approaches. Cloning by complementation or 

using homology-based approaches is a well-established approach. The advantage in 

cloning by complementation is that function of the cloned gene is determined 

simultaneously. Cloning by homology-based approach would however require 

additional experiments to determine the function of the cloned gene. 

 
2.10 PROOF OF FUNCTION OF CLONED POLYKETIDE SYNTHASE 
GENES 
 
 

Mere cloning of polyketide synthase genes is not sufficient to prove the 

involvement of genes in the polyketide synthesis. In several instances, a single 

Streptomyces species produces more than one polyketide antibiotics and therefore 

would carry more than one biosynthetic gene cluster. Thus, it is necessary to determine 

which one of the many polyketide biosynthetic pathways encodes for the biosynthesis 

of a particular polyketide.  

Some of the strategies discussed above to clone the polyketide synthase genes 

not only allow the cloning of the gene but also throws light on the function of the 

genes. Complementation of mutants blocked in production and expression of 

secondary metabolism genes and gene clusters in heterologous hosts allow for both 

cloning and elucidation of the function of polyketide genes. The other strategies 

discussed earlier only allow for the cloning of the polyketide synthase genes and 

therefore require additional experiments to determine the function of the cloned genes. 

Gene expression and gene inactivation are two different but complementary 

ways to elucidate the function of the cloned genes. Gene expression of large polyketide 

synthase genes often pose lots of difficulty, especially when the polyketide synthase 

gene is isolated from a not so well understood producing strain. Therefore gene 
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inactivation is of particular importance to establishing the function of the cloned 

polyketide synthase genes. 

The idea behind gene inactivation is to functionally inactivate the genomic 

copy of the cloned gene by inserting a vector backbone into the genomic copy of the 

cloned gene so that the open reading frame of the gene is disrupted or to replace the 

genomic “ good “ copy of the gene with a corrupted and non- functional “ bad” copy of 

the gene. Gene replacement can also be done with a marker gene. The first approach is 

called gene disruption and the second approach is called gene replacement.  

 If functional inactivation of the genomic copy of the polyketide synthase gene 

results in absence of polyketide production, then the experiment has provided 

functional proof for the involvement of the cloned polyketide synthase gene in the 

production of that particular polyketide.  

 
2.10.1 GENE DISRUPTION 
 
 

To inactivate genes by gene disruption, internal gene fragments without 

translational start or stop sites are cloned into plasmids. This disrupted construct is 

then transferred into the producing strain by a suitable DNA transfer technique. In the 

producing strain, homologous recombination between the disrupted construct and 

intact chromosome takes place and results in the integration of the whole disrupted 

construct into the chromosome such that there is duplication of the gene, albeit non-

functional. This is because one copy of the gene is truncated at the 5’ end, that is, it 

lacks ribosomal binding site, start codon and a region coding the 5’ end amino acids. 

Therefore this copy is unlikely to produce a functional gene product. The second copy 

of the gene is truncated at the 3’ end and therefore lacks the stop codon as well as a 

region coding the 3’ end amino acid. This copy would also most likely produce a non-
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functional gene product, as the gene product is truncated. However in some cases, the 

truncated copy might still possess some residual activity, especially in large 

multifunctional proteins.  

Due to the presence of duplicated copies of the genes, disruption mutants tend 

to be highly unstable and undergo homologous recombination at the duplicated region, 

resulting in excision out of the disrupted construct from the genome. Therefore, the 

disrupted mutants need to be grown in antibiotic selection medium so as to prevent the 

integrated disrupted construct from excising out. Excision of the disrupted construct 

will result in the restoration of the chromosomal gene. Thus, it is important to grow the 

disruptants under antibiotic selection pressure, to maintain gene inactivation. 

  
2.10.2 GENE REPLACEMENT 
 
 

In order to obtain stable gene-inactivated mutants, gene replacement would be 

the preferable method of choice. In gene replacement, the intact chromosomal copy of 

the gene is replaced in part or in whole with a defective gene or an antibiotic resistance 

gene by a double crossing over event. As gene replacement does not result in 

duplication of genes, disrupted mutants obtained by gene replacement are more stable 

than disrupted mutants obtained by gene disruption. However, the efficiency of gene 

replacement is considerably lower that gene disruption as the later only involves one 

crossing over event. 

 
2.10.3 GENE DISRUPTION VECTORS 
 
 

For convenient DNA transfer and subsequent selection of recombination events 

resulting in gene disruption or replacement, several vector systems have been 

established for Streptomyces. They include 1) replicative plasmids, 2) phage 
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derivatives, 3) non-replicative suicide plasmids and 4) temperature sensitive plasmids. 

Non-replicative suicide plasmids and temperature sensitive plasmids are commonly 

used vectors. 

Replicative plasmids are E. coli and Streptomyces shuttle plasmids capable of 

replicating autonomously in Streptomyces. One example of replicative plasmids is 

pWHM3, which is a pIJ101 derivative lacking the minus origin (Vara et al., 1989). 

Very often, such shuttle plasmids are only maintained under selection and are lost at a 

high frequency when the plasmids replicates by rolling circle mode. 

Phage vectors are vectors of phage origin as the name indicates. Such vectors 

are integrative and integrate into the chromosome by homologous recombination if 

they share homologous region with the chromosome. Several derivatives vectors that 

lack att site have been developed from the actinophage фC31 (Bruton et al., 1991). 

 
Non-replicative plasmids 
 
 

For convenient DNA transfer and subsequent selection of recombination events 

resulting in the gene disruption or gene replacement of chromosomal genes, non -

replicative suicide vectors are used. E. coli vectors not capable of replicating 

autonomously in Streptomyces and  carrying a marker gene  that can be selected in 

Streptomyces,  can be used as a non-replicative plasmid. However, success of such 

experiment is often limited by the poor transformation efficiencies caused by the 

potent restriction systems of Streptomyces strains. To overcome this barrier, single 

stranded DNA of the disruption construct is used for transformation. Single stranded 

DNA, used for transformation or subsequent integration into the chromosome is up to 

100 times more effective than double stranded DNA. Another way to overcome this 

barrier is to prepare the DNA in methylation deficient E.coli strain such as E.coli 
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ET12567, and to introduce the disruption vector by intergeneric conjugation  

(MacNeil, 1992). 

 
Temperature sensitive plasmids 
 
 

Temperature sensitive plasmids represent the most successful suicide vector 

systems for Streptomyces. Plasmids are maintained stably at permissive temperature, to 

allow for recombination and integration of plasmid into the chromosome to occur. 

Then the recombinants are conveniently selected by increasing the temperature to the 

non-permissive temperatures. Derivatives of the naturally occurring temperature 

sensitive plasmid pSG5 from Streptomyces ghanaensis DSM2932 (Muth et al., 1988) 

have been widely used. Plasmid pSG5 replicates stably at 35ºC but not at an elevated 

temperature of 37ºC.  

The vector of choice for gene inactivation depends on many factors such as the 

availability of the vectors, the size of DNA fragment to be replaced or disrupted, 

protoplasting efficiency of the Streptomyces strain, temperature sensitivity of the 

Streptomyces strain, restriction system of the Streptomyces strain, to name a few. 

 
2.10.4 DNA MANIPULATION IN GENE DISRUPTION  
 
 

In order to transfer polyketide synthase genes into homologous or heterologous 

Streptomyces host so as to either disrupt the genes or express the genes, DNA transfer 

techniques are necessary. In general conjugation and transformation are the two most 

common techniques used. Transducing phages, electroporation and electroduction are 

other available methods, which are not discussed in this review. 
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Conjugation 
 
 

Conjugation is the only way to transfer very large fragments between 

Streptomyces strains. As in other bacteria, self-transmissible plasmids are responsible 

for conjugation in streptomycetes. Such plasmids encode their own transfer functions 

or they have to be provided with transfer functions in trans. Generally, this method of 

gene transfer is used for expression studies rather than for gene disruption.  

 
Intergeneric Conjugation 
 
 

Intergeneric conjugation has proved to be a convenient method to transfer DNA 

into Streptomyces in gene disruption/ replacement studies. Intergeneric conjugation 

involves conjugation between E. coli and Streptomyces (Mazodier et al., 1989, 

Bierman et al., 1992, Flett et al., 1997). The protocol for intergeneric conjugation from 

E. coli to Streptomyces does not require any strain specific optimisation of 

protoplasting conditions etc.  

Intergeneric conjugation uses the broad host range transfer system of IncP 

plasmid RK2. The mobilizable vector carries the oriT region of RK2, which allows for 

replication in E.coli. The vector does not carry the genes for transfer functions and 

therefore requires the transfer functions to be supplied in trans by the E. coli donor 

strain. The methylation deficient E.coli strain ET12567 is a commonly used donor 

strain (MacNeil, 1988), which carries a plasmid pUB307. The plasmid pUB307 is a 

derivative of RP1 (Richmond, 1976), which encodes the transfer function, tra. Upon 

transfer of the conjugation compatible plasmid construct from E. coli into the 

Streptomyces strain, the plasmid construct can integrate into the homologous region of 

the chromosome by homologous recombination. 
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Polyethlene glycol (PEG) protoplast transformation 
 
 

PEG mediated introduction of DNA into protoplasts is the standard procedure 

for transfer of naked DNA into Streptomyces. Streptomyces mycelium grown in 0.5%- 

1.0% glycine can be treated with lysozyme to protoplast it. PEG is known to mediate 

the efficient transfer of DNA into Streptomyces protoplasts (Bibb et al., 1978). 

Transformation efficiency has been reported to vary with different suppliers and 

therefore requires optimisation. Transformation efficiency also depends on the 

Streptomyces host strain. Following PEG mediated transformation, protoplasts are 

allowed to regenerate in isotonic media and transformants are selected by overlaying 

with the desired antibiotic. Upon transfer of the naked DNA into the Streptomyces 

strain by PEG mediated transformation, the plasmid construct can integrate into the 

homologous region of the chromosome by homologous recombination or replicate 

autonomously depending on the type of plasmid used. Generally, non-replicative 

suicide plasmid constructs are transferred into Streptomyces by PEG mediated 

transformation for gene disruption studies.  
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3.1 PREPARATION OF ORGANISMS 
3.1.1 STREPTOMYCES 
STREPTOMYCES CULTURES ON AGAR 
 
 

S. hygroscopicus ATCC 29253 , S. ascomyceticus ATCC 55098 and the soil 

isolate 98- 62 were grown and maintained on ISP2 or oatmeal agar at 30°C. To obtain 

uniform cultures on agar surface, the organisms have to be inoculated throughout the 

entire surface of the agar. Using a wet loop to collect spores/ mycelium from existing 

cultures, which is then used to streak the entire surface of the agar plate, does this. 

Point inoculation does not yield a good culture as the colonies only spread a limited 

distance within a reasonable time of incubation. 

 
GROWTH OF STREPTOMYCES MYCELIUM FOR ISOLATION OF TOTAL DNA 
 
 

For purposes such as total DNA extraction, Streptomyces organisms are grown 

as mycelium in liquid culture from an inoculum of spores. Streptomyces is highly 

aerobic and therefore requires shaking during incubation in vessels that allows for 

good aeration. For example, a 25 ml culture is grown in a 250 ml or 500 ml conical 

flask. Preinoculum medium is generally 10 ml of ISP2. Preinoculum is grown at 28°C, 

200 rpm for 1 - 2 days, depending on the growth. 

 
GROWTH OF STREPTOMYCES FOR CONJUGATION 
 
 

The soil isolate 98- 62 was used for conjugation experiment. In order to obtain 

a good spore suspension of soil isolate 98- 62, the soil isolate was grown on AS-1 agar 

for 2 days at 28°C, until the surface of the plate looks grey. Spore suspension 

preparation is as described below. 
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MAKING A STREPTOMYCES SPORE SUSPENSION 
 
 

To obtain a good spore suspension, the surface of the sporulating agar culture is 

scraped with a wet loop and the spores are suspended in sterile water in a universal 

bottle. The crude suspension is vortexed for 2 min and filtered through cotton wool to 

remove mycelial fragments and pieces of agar medium. The spores are then pelleted by 

centrifuging at 8000 rpm for 10 min at 4°C, in order to remove compounds dissolved 

from the growth medium. The spores are resuspended in LB medium and counted 

using a hemocytometer and resuspended in LB medium such that the final spore 

density is 3x108spores per 100 µl LB. For each intergeneric conjugation reaction, 

3x108 cells of spores per 100 µl of LB were used. Spore suspension of the soil isolate 

sp 98- 62 was prepared in the described manner for use in intergeneric conjugation.  

 
GROWTH OF STREPTOMYCES FOR COMPOUND EXTRACTION 
 
 

In order to extract antifungal compounds from culture broths, Streptomyces sp. 

or the soil isolate 98- 62 were inoculated into 10 ml ISP2 media, and incubated at 28° 

C, 200 rpm for 24 h. 500µl of  this preinoculum was then used to inoculate into 25 ml 

of  FK media in a 250ml flask and incubated at 28°C ,200 rpm for a further 4 days. 

 
PRESERVATION OF STREPTOMYCES STRAINS 
 
 

Streptomyces strains were maintained by subculturing periodically onto ISP2   

or oatmeal agar plates. Short time storage was at 4°C for 3-4 weeks. For long-term 

storage, liquid cultures of Streptomyces strains or the soil isolate 98- 62 in ISP2 broth 

were stored in a equal amount of 50% glycerol at -80°C. 
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3.1.2  ESCHERICHIA COLI 
GROWTH OF E. COLI FOR PLASMID ISOLATION 
 
 

Transformed E. coli DH5α and Top 10 were maintained on LB agar 

supplemented with appropriate antibiotics. For mini prep isolation of plasmid DNA, 

single isolated colonies of transformed E. coli was inoculated into 5 ml LB with 

appropriate antibiotic selection and allowed to grow at 37°C, 200 rpm, overnight. Cells 

were harvested by centrifugation the following day for plasmid isolation.  

 
PREPARATION OF COMPETENT E. COLI CELLS 
SOLUTIONS FOR THE PREPARATION OF COMPETENT E. COLI CELLS  

i) 0.1 M Calcium chloride  

CaCl2                                                                    11.1g/ l 

ii) 0.1M Magnesium chloride 

MgCl2                                                                   20.3g/ l 

Both the solutions were autoclaved at 15 psi for 15 min and stored at 4°C. 

E. coli  DH5α and Top 10 was used as  a host for transformation and for 

preparation of plasmid DNA used in this study according to the method of Cohen et al 

(1972) with modifications. 

A single colony of E. coli was precultured in 5 ml of LB broth in a universal 

bottle at 37°C at 200 rpm overnight. On the following day, a 0.8 ml of the overnight 

culture was transferred to 40 ml LB broth in 250 ml conical flask and grown at 37°C, 

200 rpm for another 2hours. The flask was then left to stand on ice for 10 min before 

transferring the culture into a 50 ml centrifuge tube. 

Cells were harvested at 8000 rpm, 10 min at 4°C. The supernatant was 

discarded and E. coli cell pellet was resuspended in 4 ml of ice- cold 0.1 M MgCl2. 

This was centrifuged again at 8000 rpm, 10 min at 4°C. The supernatant was discarded 
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and E. coli cell pellet was resuspended in 4 ml of ice- cold 0.1 M CaCl2. After a final 

centrifugation, the pellet was resuspended in 0.8 ml of ice cold 0.1 M CaCl2 solution 

and left on ice for 1 h to obtain transformation competent E. coli cells. 

Aliquots of 40 µl competent cells with 40 µl of 97% glycerol were stored at  

-80°C for later use. Each tube was used for a single transformation reaction after 

thawing out. For immediate use of competent cells for transformation, 40 µl of fresh 

competent cells were used as described in the later section. 

 
PREPARATION OF COMPETENT CELLS OF E. COLI ET12567 FOR ONE STEP 
TRANSFORMATION   
SOLUTIONS FOR THE PREPARATION OF COMPETENT E. COLI CELLS  

i) 2X YT medium 

Tryptone                                                                      16g/ l 

Yeast extract                                                                10g/ l 

Sodium chloride                                                             5g/ l 

This was autoclaved at 15 psi for 15 min. 

ii)  2X TSS medium, pH 6.5 

Tryptone                                                                     16g/ l 

Yeast extract                                                               10g/ l 

Sodium chloride                                                             5g/ l 

PEG 6500/8000                                                          100g/ l 

The pH of this was medium was adjusted to pH 6.5 and medium was autoclaved at 15 

psi for 15 min. After autoclaving the following solutions were added to 10 ml of 2 X 

TSS 

1M MgCl2                                                                   200µl 

DMSO                                                                         500µl 

E. coli ET12567 was grown in 5ml of 2X YT medium supplemented with 
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kanamycin and chloramphenicol overnight at 37°C, 200 rpm. The following day, 500 

µl of the preculture was used to inoculate a fresh 100 ml of 2X YT medium. The 

culture was grown at 37°C, 200 rpm for 3-4 h until the absorbance at 600nm reached 

0.3. The cells were harvested by centrifugation at 5000 rpm for 10 min and 

resuspended in 2ml of ice cold 2 X TSS. Aliquots of 100 µl were frozen in liquid 

nitrogen and stored at -80°C for later use. 

 
GROWTH OF TRANSFORMED E. COLI ET12567 FOR INTERGENERIC 
CONJUGATION  
 
 

 E. coli ET12567 transformant was grown in 5ml of LB medium supplemented 

with kanamycin ,chloramphenicol and apramycin, overnight at 37°C, 200 rpm. The 

following day, 500 µl of the pre-culture was used to inoculate a fresh 5ml of LB 

medium supplemented with kanamycin, chloramphenicol and apramycin, at 37°C, 200 

rpm, for 1-2  h until the absorbance at 600nm reached 0.3.The cells were then counted 

using a hemacytometer and resuspended in LB medium such that the final cell density 

is 1x108 cells per 100 µl LB. For each intergeneric conjugation reaction, 1x108 cells of 

E. coli ET12567 transformant per 100 µl of LB were used. 

 
PRESERVATION OF E. COLI CULTURES 
 
 

The bacterial strains were maintained by subculturing periodically onto LB 

agar, with antibiotic selection when necessary. Short time storage was at 4°C for 3-4 

weeks. For long-term storage, liquid cultures of E. coli strains in LB broth, with 

antibiotic selection when necessary, were stored in an equal amount of 97% glycerol at 

-80°C. 
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3.1.3 ASPERGILLUS NIGER 
GROWTH OF ASPERGILLUS NIGER FOR BIOASSAY ON TLC 
 
 

Aspergillus niger were grown and maintained on Sabouraud agar (oxoid) at 

28°C. 

 
PRESERVATION OF ASPERGILLUS NIGER 
 
 

Spores of Aspergillus niger from a confluent plate of SAB agar were collected 

with a wet loop and resuspended well in 1ml sterile water. Short time storage of spore 

suspension was at 4°C for 3 - 4 weeks. For long-term storage, spore were stored in an 

equal amount of 97% glycerol at -80°C. 

 
3.2 PREPARATION OF CHROMOSOMAL AND PLASMID DNA 
3.2.1 ISOLATION OF STREPTOMYCES TOTAL DNA 
SOLUTIONS FOR ISOLATION OF ACTINOMYCETE TOTAL CHROMOSOMAL 
DNA 
 

i) TS buffer, pH 8.0 

50mM Tris-HCl                                                           7.88g/ l 

0.7M Sucrose                                                              256.73g/ l 

This was adjusted to pH 8.0, before autoclaving at 10 psi for 10 min. 

ii) Lysozyme solution 

This solution was prepared fresh just before use, by addition of 50 mg 

lysozyme  

(Sigma) to 1 ml of TS buffer, pH 8.0. The solution was filter sterilized using a 0.22µM 

disposable filter unit. 

iii) Proteinase K 

Proteinase K (Sigma) was dissolved in sterile water at 10mg/ ml and filter 
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sterilized using a 0.22µM disposable filter unit. 

iv) Phenol: chloroform: isoamylalcohol 

Buffer saturated phenol, pH 6.7 ± 0.2 (Sigma), chloroform (Merck) and 

isoamyl alcohol (Ajax Chemicals) were mixed in a ratio of 25: 24:1 and then allowed 

to separate slowly. Phenol: chloroform: isoamylalcohol were stored in aluminium foil 

covered bottle at 4°C. 

The cells were harvested at 8000 rpm for 10 min at 4°C in a 50 ml centrifuge 

tube. 0.5 g of the cell pellet was first washed in 5 ml TS buffer before being 

resuspended in 6 ml of the same buffer. 0.6 ml of freshly prepared lysozyme solution 

and 1.2 ml of 0.5 M EDTA were added into the cell suspension. The suspension was 

incubated with slight agitation in a 37°C water bath for 1 h. Then 0.6 ml of proteinase 

K (2mg/ml) was added to the mixture which was incubated at 37°C for a further 15 

min. A 3.6 ml of 3.3% SDS was then added to this and the mixture was incubated first 

at 70°C for 15 min and then at 37°C for 1 h. To this, an equal volume of phenol: 

chloroform: isoamylalcohol was added in a 50 ml Teflon tube and the contents were 

mixed gently by inverting the tubes 40 to 50 times. The tube was then centrifuged at 

12,000 rpm for 10 min at 4°C. The top aqueous layer containing the chromosomal 

DNA was removed and transferred into a clean tube. To this, three volume of ice cold 

absolute ethanol was added to precipitate the chromosomal DNA. Precipitated 

chromosomal DNA was spooled with a pasteur pipette, and washed in 70% ethanol 

and air-dried. Semi-dried chromosomal DNA was dissolved in 800µl of sterile water in 

a 2 ml screw cap microfuge tube. RNase A was added to a final concentration of 

50µg/ml to the dissolved DNA and this was incubated at 65°C for 1 h, following which 

an equal volume of phenol: chloroform: isoamylalcohol was added and mixed well. 

This was centrifuged at 12, 000 rpm for 10 min. The top aqueous layer was removed 
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and transferred to a new microfuge tube. The chromosomal DNA was re- precipitated 

with 3 volumes of ice cold absolute ethanol, spooled, washed in 70% ethanol, air dried 

and dissolved again in 200 to 500µl of sterile water. 

 
3.2.2 PLASMID ISOLATION FROM E. COLI  
 
 

Plasmid isolation was performed using Promega Wizard® Plus SV Minipreps 

DNA purification Kit according to the manufacturer’s recommendation.   

 
3.2.3 SPECTROPHOTOMETRIC DETERMINATION OF DNA 
 
 

DNA samples were diluted 100 times in sterile water and placed in quartz 

cuvettes (Hellma). The absorbance at wavelengths of 260 nm and 280 nm were 

determined on a spectrophotometer (LKB Biochrom Ultrospec II). Taking an 

absorbance of 1 unit at 260 nm to be equivalent to 50µg/ml of double stranded DNA, 

the concentration of DNA samples were calculated, taking into account the dilution 

factor as well. The ratio of the absorbance at 260 nm to 280 nm gives an indication of 

the purity of the DNA sample. A ratio of 1.8 indicates pure double stranded DNA. A 

value significantly greater than 1.8 indicates RNA contamination, while a ratio 

significantly lower than 1.8 indicates protein contamination. 

 
3.2.4 AGAROSE GEL ELECTROPHORESIS OF DNA 
BUFFERS AND STOCK SOLUTIONS FOR AGAROSE GEL ELECTROPHORESIS 

i) 10 X Gel loading buffer 

10mM Tis-HCl                                                     0.1ml of 1M Tris-HCl, pH 7.5 

20mM EDTA                                                       0.4ml of 0.5M EDTA, pH 7.5 

40% Glycerol (v/v)                                               4.0ml of glycerol 

The volume was made up to 10 ml with sterile water. Tiny amounts of bromophenol 
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blue (Sigma) and Xylene Cyanol EF (Sigma) dyes were added to the mixture. 

ii) 10X Tris- acetate/ EDTA (TAE) buffer, pH 8.0 

0.4 M Tris base (Promega)                                         48.44g 

Glacial acetic acid                                                       11.42ml 

0.01M EDTA                                                             3.72g or  

                                                                                   20ml of 0.5 EDTA, pH 8.0 

The pH was adjusted to 8.0 using glacial acetic acid before making up to 1 litre with 

distilled water. The buffer was autoclaved at 15 psi for 15 min. The working 

concentration was 1 X 

iii) Ethidium bromide  (EtBr) stock solution 

EtBr (Sigma) was dissolved in sterile water at a concentration of 10mg/ml. 

Agarose gel electrophoresis was carried out in submerged horizontal agarose 

gel tanks (Hoefer Scientific instruments). Agarose (Hispanagar D1 LE) was dissolved 

in 1X TAE buffer, pH 8.0, at a concentration of 1.0% (w/v), by heating in a microwave 

oven. 

For gel electrophoresis of restricted chromosomal DNA in preparation for 

Southern transfer, 0.7% (w/v) gel was prepared. Molten gel was then cooled to 50°C. 

When required, RNase A was added to the gel solution at a final concentration of 1µg/ 

ml to remove RNA contamination from chromosomal DNA samples. 1 µl of 10mg/ml 

ethidium bromide was then added to 40 ml of molten gel and mixed well before 

casting the gel.  

Once the gel had set, the comb was removed gently and the gel was transferred 

to the electrophoresis tank and submerged in 1X TAE buffer, pH 8.0. 2µl of gel 

loading buffer was added to 18 µl of DNA sample and loaded in the wells. The DNA 

fragments were separated by electrophoresis at a constant voltage of 80V. If the 
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separated DNA fragments were to be transferred onto nitrocellulose filter, 

electrophoresis was carried out at 15 V to allow for better resolution in separation. The 

mobility of the DNA fragment is inversely proportional to the logarithm of its 

molecular weight. Electrophoresis was terminated when the bromophenol blue dye 

front reached the edge of the gel. 

The size of the separated fragments was determined by comparing the mobility 

of the fragments with the standard marker fragments. The gel was viewed and 

photographed under ultraviolet light from a UV transilluminator (UVP, Inc. TM- 36) 

using a Polaroid MP4 camera (model 4-32), fitted with a red filter and Polaroid T665 

instant film. 

Preparative agarose gels containing DNA fragments required for cloning were 

observed and photographed only under a long range UV transilluminator (365 nm) to 

minimize damage to the DNA. DNA bands of interest were excised from the gel using 

alcohol- flamed cover slips and eluted out of the gel using Geneclean II®  (Bio 101 

Inc., la Jolla, CA). 

 
3.3 IN VITRO MANIPULATION OF DNA AND CLONING 
3.3.1 RESTRICTION OF DNA 
 
 

Restriction enzymes (5 to 20 Units/ µl) were from New England Biolabs 

(NEB). They were used with recommended buffers supplied by the manufacturer. 

 
3.3.2 ALKALINE PHOSPHATASE TREATMENT 
 
 

Restriction enzyme digested vector DNA fragments with compatible cohesive 

ends were treated with calf intestinal alkaline phosphatase (CIAP) to prevent re 

circularization of the vectors during ligation. 1µl of (1U) CIAP was added to the 

linearized vector in a final concentration of 1X CIAP buffer. The reaction was 
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incubated at 37°C for about 2 h. The CIAP treated vector was gel electrophoresed and 

recovered from the gel. 

 
3.3.3 RECOVERY OF DNA FRAGMENTS FROM GEL USING THE  

GENECLEAN II® KIT 
 
 

This protocol was slightly modified from that of the manufacturer and was used 

for the recovery of DNA from agarose gels for cloning purpose or as hybridisation 

probes. This kit is convenient for the purification of DNA fragments with sizes 

between 200 bp and 20 kb. The Geneclean II® kit was obtained from Bio 101 Inc., La 

Jolla, CA). 

To recover DNA from an agarose gel, the gel slice was weighed.  A volume of 

6M sodium iodide, equivalent to three times the weight of the gel slice, was then added 

to the gel slice in a microfuge tube and incubated at 55ºC to melt the gel slice. 5 to 7µl 

of Glassmilk® was then added, the contents were inverted to mix well and incubated 

on ice for 5 min to allow the binding of Glassmilk to DNA. This was followed by 

centrifugation at 12,000 rpm for 10sec. 

 The Glassmilk- DNA pellet was washed in 400µl of NEW wash buffer three 

times. After the final wash, traces of remaining buffer were removed before 

resuspending in 20µl sterile water. This was then incubated at 55°C for 5 min to elute 

the DNA from the Glassmilk. The eluted DNA was separated from the Glassmilk by 

centrifugation at 12,000 rpm for 30s. The supernatant containing the eluted DNA was 

transferred to a clean microfuge tube. 

 
3.3.4 LIGATION 
 
 

An approximate molar ratio of 3: 1 of insert DNA to vector was used for each 

ligation in a total volume of 20 µl. Ligation was carried out overnight at 16°C in a 
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multi temp (LKB Bromma 2219 MultitempII Thermostatic Circulator). 3µl of the 

ligation mixture was used to transform E. coli cells 

 
3.3.5 pGEMT® - T EASY VECTOR SYSTEM 
 
 

This cloning system was obtained from Promega Corp., Madison, USA. This 

vector was used for the cloning of the PCR products especially those without a tag on  

the restriction site of the PCR products. The reaction was performed according to 

manufacturer’s recommendation. 

 
3.3.6 TRANSFORMATION AND SELECTION OF COMPETENT DH5α OR TOP10  
E. COLI CELLS  
SOLUTIONS FOR THE TRANSFORMATION OF COMPETENT DH5α OR TOP10  
E COLI CELLS  

i) 0.1 M Calcium chloride  

CaCl2                                                                         11.1 g/ l 

This was autoclaved at 15 psi for 15 min and stored at 4°C. 

ii) 100mM isopropyl- β- D- thio- galactopyranoside (IPTG) 

IPTG (Promega)                                                        0.24g/ 10 ml 

This was filter sterilized using a 0.22µM disposable filter unit. 

iii) 5-Bromo-4-chloro-3-indolyl- β-D-galactoside (X-gal) 

X-gal (Bio Rad)                                                         50 mg/ ml 

X-Gal was dissolved in N, N’dimethyl formamide (DMF). 

Transformation reaction was set up as follows: 80µl of ice cold 0.1 M CaCl2 

solution was pipetted into 80 µl of thawed out competent cells. To this 1 µl of plasmid 

or 3 µl of ligation mixture was added. This was kept on ice for 20 min and heat 

shocked at 42°C for 90 sec, followed by incubating in ice for a further 3 min. 

900µl of LB broth was then added to the cells and incubated at 37°C for 1 h 
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with shaking, to allow for recovery. 100 µl of the transformed culture were then plated 

onto LB agar with appropriate antibiotic selection. The plates were incubated at 37°C 

overnight. 

If the cloning procedure involved the insertional inactivation of the lac Z’ gene 

in pUC18 vector, 100µl of 100mM IPTG and 20 µl of 50mg/ml X-gal were spread on 

the LB agar plate with appropriate antibiotic selection and incubated at 37°C for 1 h 

prior to plating out the transformed culture. Recombinant plasmids inserted at the 

multiple cloning site of pUC18 would give white colonies whereas non-recombinant 

plasmids or pUC18 would give blue colonies because of the induction of the lac 

operon by IPTG and the subsequent conversion of the X- gal to a blue product by the 

functional β- galactosidase. 

 
3.3.7 TRANSFORMATION AND SELECTION OF COMPETENT ET12567 E. COLI 
CELLS 
SOLUTIONS FOR THE TRANSFORMATION OF COMPETENT ET12567 E. COLI 
CELLS 

i) 2X TSS medium, pH 6.5 + 20 mM glucose 

Tryptone                                                                   16g/ l 

Yeast extract                                                             10g/ l 

Sodium Chloride                                                        5g/ l 

PEG 6500/ 8000                                                        100g/ l 

The pH of this was medium was adjusted to pH 6.5 and the medium was autoclaved at 

15 psi for 15 min. After autoclaving, the following solutions were added to 10 ml of 2 

X TSS 

1M MgCl2                                                                 200µl 

DMSO                                                                       500µl 

1M Glucose                                                               200µl 
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To 100µl of thawed out or freshly prepared competent cells, 1 µl of plasmid 

DNA was added and the mixture was kept on ice for 30 min. To this mixture, 900µl of 

glucose supplemented 2X TSS medium, pH 6.5 and 20mM glucose were added and 

the culture was incubated at 37˚ for 1 h to recover. At the end of 1 h, 100 µl or 900 µl 

were then plated out onto LB agar plates supplemented with kanamycin, 

chloramphenicol and apramycin. Plates were incubated overnight at 37°C. 

 
3.3.8 ANALYSIS OF RECOMBINANT CLONES 
  

 
Single transformant colonies were streaked out onto antibiotics supplemented 

plates or inoculated into 5ml of LB supplemented with antibiotics and grown at 37°C 

overnight. Plasmid DNA was extracted from the culture and subjected to restriction 

analysis and sequencing if necessary. 

 
3.4 INTERGENERIC CONJUGATION 
3.4.1 CONJUGATION 
SOLUTIONS REQUIRED FOR INTERGENERIC CONJUGATION 

i) S MEDIUM 

Peptone                                                                        0.4g 

Yeast extract                                                                0.4g 

K2HPO4                                                                                                           0.4g  

KH2PO4                                                                                                           0.4g 

Water                                                                           79.5ml 

This was autoclaved at 10 psi for 10 min. To the autoclaved medium, 0.5 ml of 10% 

MgSO4 and 20.0 ml of 5% glucose was added before use. 

1x108 cells of E. coli ET12567 transformants per 100 µl of LB and 3x108  

Streptomyces spores per 100 µl of LB were used for each intergeneric conjugation. 

Streptomyces spores in 100 µl of LB were centrifuged and resuspended in 100 µl of S 
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medium and this was heated at 50°C for 10 min to allow the germ tubes to form. 

At the end of 10 min, the spores were mixed with 100 µl aliquot of E. coli 

ET12567 transformant and mixed well. 100 µl of this mixture was plated out onto AS-

1 agar supplemented with MgCl2 and incubated at 30°C overnight for 5 days. The agar 

was overlaid with nalidixic acid and apramycin on the second day to select for resistant 

conjugants. 

 
3.4.2 SOFT AGAR OVERLAY TO SELECT FOR RESISTANT CONJUGANTS 
 
 

5ml of Simple Nutrient Agar supplemented with nalidixic acid and apramycin 

were carefully poured onto the agar surface of AS-1 agar supplemented with MgCl2  

such that the overlaying agar was equally spread with no bubbles. Nalidixic acid was 

used to kill off the E. coli cells whereas apramycin was to select for Streptomyces 

conjugants.  

 
3.4.3 ANALYSIS OF CONJUGANTS 
 
  

Streptomyces conjugants were streaked out onto AS-1 agar supplemented with 

apramycin and grown at 30°C for 5 days to obtain single colonies. Single colonies 

were then used to inoculate 10 ml of ISP2 medium and grown at 30°C, 200 rpm for 2 

days to be used as pre-inoculum  for genomic DNA extraction and compound 

extraction. 

 
3.5 TECHNIQUES USING DNA 
3.5.1 SOUTHERN HYBRIDISATION 
TRANSFER OF DNA FROM AGAROSE GELS TO NITROCELLULOSE FILTERS 
(SOUTHERN TRANSFER) 
  
i) 0.25M Hydrochloric acid (HCl) 

7.66 ml of concentrated HCl (Merck) (32.64 M) was made up to 1 litre with 
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distilled water. The solution was autoclaved at 15 psi for 15 min. 

ii) 3M Sodium chloride (NaCl) 

NaCl                                                                            175.32g/l   

This was sterilized by autoclaving at 15 psi for 15 min.                                  

iii) Denaturing solution 

1 M NaOH; 1.5 M NaCl was prepared by mixing equal volumes of 2 M NaOH 

and 3 M NaCl. 

iv) Neutralising solution 

0.5 M Tris-HCl , pH 7.5 ;1.5M NaCl was prepared by mixing equal volumes of 

1 M Tris- HCl, pH 7.5 and 3 M NaCl. 

DNA from an agarose gel was transferred to a Hybond™ -N nylon membrane 

(Amersham) by means of the LKB Bromma 2016 Vacugene vacuum blotting pump, 

which used  low pressure to vacuum transfer DNA from the gel onto the nylon 

membrane. 

A sheet of plastic mask with a window just slightly smaller than the gel was 

placed over a porous support in the vacuum chamber. The nylon membrane, with the 

top left corner cut for orientation, was placed under the window, covering it 

completely. After the membrane was pre-wetted with sterile water, the gel was placed 

on the membrane, with the DNA side facing up. After ensuring there was no bubble or 

leakage, the vacuum pump was switched on to a constant suction pressure of 40 cm. 

H2O. The following solutions were added to the gel in the stated order, covering the 

gel completely: 

1) 0.25M HCl for 8 min (depurination) 

2) 1.0M NaOH; 1.5M NaCl for 10 min (denaturation) 

 3) 0.5 M Tris - HCl, pH 7.5; 1.5 M NaCl for 8 min (neutralisation) and 
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4) 20 X SSC, pH 7.0 for 45 min. 

After the transfer process, position of the wells was marked with a pencil. The gel 

was removed and checked under UV for any untransferred DNA. The membrane was 

dried on a blotting paper, wrapped with Saran wrap and UV cross-linked on both sides 

for 3 min each. DNA side was cross-linked first. The membrane was then used for 

DNA- DNA hybridisation or stored in a desiccator in between two blotting papers. 

 
DNA- DNA HYBRIDISATION ON NITROCELLULOSE FLTERS 

i) Prehybridisation buffer 

ECL Gold Hybridisation buffer (Amersham) was prepared according to 

manufacturer’s recommendation.  

ii) Primary wash buffer 

6M Urea                                                                    360 g 

0.4% SDS                                                                 40 ml of 10% SDS 

To this, 20 X SSC ( pH 7. 0), was added to give a desired final concentration of SSC 

and made up to a final volume of 1 litre with distilled water. 

Final concentration of SSC Volume of 20 XSSC to use 

0.5 XSSC 25 ml 

0.3 XSSC 15 ml 

0.1 XSSC 5 ml 

 
iii) Secondary wash buffer 

2X SSC                                                                     100 ml of 20X SSC, pH 7.0 

Sterile water                                                              900ml 

 
PREPARATION OF PROBES 
 
 

Labelling of probes was done by a non - radioactive labelling method, using 

ECL kit. The probes were labelled by conjugating denatured probe DNA to 
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horseradish peroxidase in ECL labelling mixture provided according to manufacturer’s 

recommendation. At least 0.1µg of the DNA probe in 10 to 20 µl of sterile water was 

first denatured by boiling it for 10 min, and immediately cooled on ice for 5 min. the 

tube was pulsed briefly to collect all the contents at the bottom of the tube. An 

equivalent volume of DNA labelling reagent and glutaraldehyde were added to 

denature the DNA . The mixture was then incubated at 37°C for 15 min to label the 

probe. At the end of the 15 min, contents of the tube were pulsed briefly and added to 

the prehybridisation buffer to hybridise as described below.   

 
PREHYBRIDISATION 
 
 

The nylon blot was prehybridized in 10 ml prehybridiztion buffer for 2 h at 

42ºC. The nylon membrane was placed with the DNA side up, allowing for maximal 

contact with the prehybridisation buffer in a hybridisation bottle and rotated in Hybaid 

rotisserie. 

 
HYBRIDISATION 
 
 

The labelled probe was added to the prehybridisation buffer and allowed to 

rotate at 42ºC overnight. 

 
STRINGENCY WASHES 
 
 

On the following day, the hybridisation buffer was decanted away carefully. 

The membrane was placed in a clean Tupperware with preheated 50 ml of 0.5X SSC 

(42ºC). The membrane was washed at 42ºC for 20 min with agitation, after which the 

buffer was replaced with preheated 50 ml of 0.3X SSC (42ºC). The membrane was 

then washed in secondary wash buffer for 5 min each time at room temperature, with 
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gentle agitation.  

SIGNAL GENERATION AND DETECTION 
 
 

Signal generation and detection was performed according to manufacturer’s 

instructions. 

 
3.5.2 POLYMERASE CHAIN REACTION 
 dNTP MIX 
 
 

Appropriate amounts of 1M dATP, dTTP, dCTP, dGTP were mixed with 

sterile water to give a final dNTP concentration of 2.5mM. dNTPs were purchased 

from Promega (USA). 

 

AMPLIFICATION OF 16S rDNA OF THE SOIL ISOLATE 98- 62 
PCR PRIMERS  
 
Forward primer: RNAFORS   AAG TGA CGG TAC CTG CAG 
Reverse primer: RNAREVS    ACA GCC ATG CAC CAC CTG 
 
PCR CYCLING CONDITIONS 
 
95°C               95°C       62°C             72°C                    72°C              4°C 
10MIN        1MIN         45SEC         1MIN                    10MIN          INF 
1x                                         35x                                        1x 

 
AMPLIFICATION OF THE KS/AT REGION OF THE SOIL ISOLATE 98- 62 
PCR PRIMERS  
 
Forward primer: NKSFOR     CGG TSA AGT CSA ACA TCG G (19) 
Reverse primer: NKSREV     GCR ATC TCR CCC TGC GAR TG (20) 
 

PCR CYCLING CONDITIONS 
 
95°C               95°C       60°C                 72°C              72°C                4°C 
10MIN        30SEC      45SEC         1MIN30SEC      10MIN               INF 
1x                                        35x                                    1x 
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SCREENING PRIMERS FOR DOWNSTREAM CLONE TO C170 
 
Forward primer: 1.5FOR        CTG CCC ACG TAT CCC TTC (18) 
Reverse primer: 1.5 REV      CTG GGA GGC GGG CCC GTA ( 18) 
 
PCR CYCLING CONDITIONS 
 
95°C               95°C           56°C              72°C                 72°C          4°C 
10MIN        30SEC            45SEC             1MIN          10MIN        INF 
1x                                        35x                                    1x 
 
SCREENING PRIMERS FOR UPSTREAM CLONE TO C170 
 
Forward primer: R7SFOR         ATT CCT CCA CGA CGC ACC (18) 
Reverse primer:  R7SREV       AAG TCG ATG AAG GTG TCC (18) 
 
PCR CYCLING CONDITIONS 
 
95°C               95°C           50°C           72°C                    72°C        4°C 
10MIN        30SEC          45SEC         1MIN                 10MIN      INF 
1x                                        35x                                    1x 
 
3.5.3 SEQUENCING 
 
 

All the DNA sequencing reactions were performed using the ABI PRISM® 

BIGDYE™ Terminator Cycle Sequencing Ready Reaction Kit (PE Applied 

Biosystems, USA) in a geneAmp PCR system 9600 (PE Applied Biosystems, USA) 

according to manufacturer’s recommendation. 

Sequencing primers M13/ pUC18 forward primer (5’ CCC AGT CAC GAC 

GTT GTA AAA CG 3’) and M13/ pUC reverse primer (5’ AGC GGA TAA CAA 

TTT CAC ACA GG 3’) were used to sequence inserts cloned into the pUC18 vector.  
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SEQUENCING PRIMERS FOR CLONE C170 
3.7kb of C170 
 

Primer name Sequence 

C1706.1KBF1S GGT GTC AAC GTG CAC GGA 

C170FLR1S ACA CCG ACG GCC TCT ACG 

C1706.1KBR2S GTC GAG GAC GCG CCG CTC 

C1706.1KBR3S CGG ATC GTC CTT GTC GGC 

C1706.1KBR4S ACT GCA CCT CGA CCG GCC 

C1706.1KBR3B AAG CCT CGC CGA CGC CGC 

C1706.1KBR5S GCC GAC CAC GAG CAC ACC 

C1706.1KBR6S ATA CGG GCG GAG CAC CTC 

C1706.1KBR7S CAT CTA CGA TCC CGA CCC 

C1706.1KBFC1S CTC CAC CTG GCC GTG CAG 

 
1.5kb  of C170 
 

Primer name Sequence 

C1701.5KBF1S GGC GCG GCA GTC CAG GTC 

C1701.5KBF3S CTC CAG GCC GGT CGA CCC 

C1701.5KBF4S CAG CTG GCC CTG CGC GAG 

C1701.5KBF2BS TCG AAC TCC CCC GGT GAG 
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2.0kb of C170 
 

Primer name Sequence 

C1702.0KBF1S CGA GGA CGC TGC ACG CCG 

C1702.0KBF2S GAA CTG CTC GAC GGC TCA 

C1702.0KBR1S GTC AGC GCG GTG GTG TCC 

C1702.0KBR2S GTC GAG GAC GCG CCG CTC 

C1702.0RC1S GGA GAC CGC CGA CGC CGT 

 
SEQUENCING PRIMERS FOR CLONE C2 
 

Primer name Sequence 

C2F1S TCG ACA TCA CGG ACA CGC 

C2F2S GCG TCG TAG AGG AAT CCG 

C2PR1S GCT TCG ACC TCG CGC AGT 

C2PR2S GCG TAC GCC GTT CTG GAC 

C2P3RS CAC CTG GCC ACC GAG CAC 

 
SEQUENCING PRIMERS FOR 2.3 kb CLONE E27 
 

Primer name Sequence 

5.2F1S CTC CCA CCA GGT CGA CTG 

5.2F2S CCG GGA CTG GTA CGA CA 

5.2R1S CGC TGA CGA AGG GGT GGT C 

5.2R2S GTG CCG TAC CCA GTA GTC 

5.2R1CS GCT CGG ATC GGT GCT GGT 
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SEQUENCING PRIMERS FOR CLONE C2 
 

Primer name Sequence 

C2F1S TCG ACA TCA CGG ACA CGC 

C2F2S GCG TCG TAG AGG AAT CCG 

C2PR1S GCT TCG ACC TCG CGC AGT 

C2PR2S GCG TAC GCC GTT CTG GAC 

C2P3RS CAC CTG GCC ACC GAG CAC 

 
SEQUENCING PRIMERS FOR 16S rDNA 
 

Primer name Sequence 

RNAF1S AAT TAT TGG CGT AAA GAG 

RNAR1S GTC GAA TTA AGC CAC ATG 

 
3.6 BIOCOMPUTING SOFTWARE 
 
 
Purpose Software/Website 

General sequence analysis  

(DNA and Protein) 

DNASTAR 

Checking designed primer Oligotech 

Nucleotide/ aminoacid search 

against a database 

BLAST program at http://www.ncbi.nlm.nih.gov 

Open reading frame ORF Finder at http://www.ncbi.nlm.nih.gov 

Multiple sequence Alignment http://www.ebi.ac.uk 
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3.7 COMPOUND EXTRACTION AND ANALYSIS 
3.7.1 COMPOUND EXTRACTION 

i) Chemical extraction solvent 

Ethyl acetate (Merck) was used to extract rapamycin from Streptomyces 

hygroscopicus ATCC 29253, FK 506 from Streptomyces ascomyceticus ATCC 55098 

and antifungal compound from the soil isolate 98- 62. 

 
ii) TLC plate 

Silica gel 60 F- 254 TLC plate (Merck) 

 
CHEMICAL EXTRACTION OF ANTIFUNGAL COMPOUNDS FROM CULTURE 
BROTHS 
 
 

In order to extract antifungal compounds from culture broths, Streptomyces sp. 

or the soil isolate 98- 62 were inoculated into 10 ml ISP2 media, and incubated at  

28°C, 200 rpm for 24 hr. 500µl of this preinoculum was then used to inoculate 25 ml 

of FK media and incubated at 28°C, 200 rpm for 4 days. 

After 4 days, an equal volume of ethyl acetate (25 ml) was added to the culture 

broth and allowed to mix well on a 37°C shaker for 3 h. This mixture was then 

transferred to a centrifuge tube and centrifuged at 8000rpm for 10 min at 4°C to 

separate the organic and aqueous layer. The top layer containing the chemical 

compounds  was transferred to a round - bottomed flask and concentrated by vacuum 

freeze drying. 1 ml of ethyl acetate was added to dissolve the dried chemical 

compound. Extracted compounds were then transferred to a small glass bottle and used 

for further analysis by TLC. Extracted compounds were stored at 4°C. 
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3.7.2 THIN LAYER CHROMATOGRAPHY 
 

i) TLC separation solvent mixture 

 Chloroform: Methanol (95: 5, v/v ) was used to separate chemical extracts on TLC 

plates. 

 
3.7.3 BIOASSAY 
 
 

Spore suspension of Aspergillus niger in 1ml water was added to 100 ml of 

autoclaved warm MHA agar. For a single TLC plate, spores of Aspergillus niger from 

half an agar plate were used. This spore suspended agar was then overlaid onto taped 

TLC plate. The overlaid TLC plate in an aluminium foil chamber was then incubated 

overnight at 28°C.  
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3.8 BACTERIAL STRAINS AND MEDIA 
3.8.1 AGAR/ LIQUID MEDIA 
LURIA - BERTANI MEDIUM (LB) 

Tryptone(Difco)                                                           10g/ l 

Yeast extract  (BBL)                                                    5 g/l 

Sodium chloride (Merck)                                             10g/l 

This was sterilised by autoclaving at 15 psi for 15 min. 

For solid media, agar (granulated, BBL) was added at a final concentration of 1.5%  

(wt./ vol.) prior to autoclaving. 

 
ISP2 MEDIUM  

0.4% Yeast extract   (BBL)                                           4g/l 

1.0% Malt extract (Oxoid)                                            10 g/l 

0.4% Glucose      (Merck)                                             4g/l  

This was sterilised by autoclaving at 10 psi for 10 min. For solid media, agar 

(granulated, BBL) was added at a final concentration of 1.5% (wt./vol.) prior to 

autoclaving. 

 
R2YE MEDIUM  

10.3% Sucrose (BDH)                                                 103g/l 

0.025% K2SO4 (BDH)                   0.25g/l 

1.012% MgCl2.6H2O (Merck)    10.12g/l 

1.0% Glucose (Merck)                                                 10.0g/ 

0.01% Casamino acid ( Difco)                                      0.1g/l 

0.2% Trace element solution                                        2ml/l 

0.5% Yeast extract ( BBL)                                           5g/l 

0.573% TES buffer ( Sigma)                                        5.73g/l 
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This was sterilised by autoclaving at 10 psi for 10 min. The following solutions , 

which were individually autoclaved at 15 psi for 15 min, except for L- proline, which 

was filter sterilized, were added to autoclaved R2YE medium before use. 

0.5% KH2PO4    (Merck)                                            1.0 ml/l 

5M CaCl2 .2H2O    (Sigma)                                        0.4 ml/l 

20% L- proline (Sigma)                                              1.5 ml/l       

1N NaOH (Merck)                                                      0.7 ml/l 

For solid media, agar (granulated, BBL) was added at a final concentration of 1.5% 

(wt. / vol.) prior to autoclaving. 

TRACE ELEMENT SOLUTION 
ZnCl2 (Merck)                                                             40mg/l 

FeCl3. 6H2O(Merck)                                                   200mg/l 

CuCl3. 2H2O(Merck)                                                  10mg/l 

MnCl3. 4H2O(Merck)                                                 10mg/l 

Na2B4O7.10H2O(Merck)                                            10mg/l 

(NH4)6 Mo7. O24. 4H2O(Merck)                                  10mg/l 

This was sterilised by autoclaving at 15 psi for 15 min. 

 
FK MEDIUM 

Glucose                                                                       45g/l 

Corn steep liquor                                                        10g/l 

Yeast extract                                                               10g/l 

Corn starch                                                                  10g/l 

Cotton seed meal                                                         10g/l 

CaCO3                                                                         1g/l 

This was sterilised by autoclaving at 10 psi for 10 min. 
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OATMEAL AGAR 

Oatmeal agar (Oxoid)                                                 72.5g/l 

This was sterilised by autoclaving at 15 psi for 15 min. 

 
AS- 1 AGAR 

Yeast extract                                                              1g/l 

Soluble starch                                                             5g/l 

Sodium chloride                                                         2. 5g/l 

Sodium sulphate                                                         10 g/l  

Agar                                                                            20g/l 

Arginine (0.1g/ml)                                                      2ml 

Alanine (0.1g/ml)                                                        0.8 ml 

This was sterilised by autoclaving at 10 psi for 10 min. Magnesium chloride or 

antibiotics were added to the agar after autoclaving and cooling down to 50˚C. 

 
SNA AGAR 

Simple nutrient broth                                                  13g/l 

Agar                                                                              3g/l 

This was sterilised by autoclaving at 15 psi for 15 min. 

 
MULLER - HINTON AGAR (MHA) 

MHA (Oxoid)                                                             38g/l 

This was sterilised by autoclaving at 15 psi for 15 min. 

 
SABOURAUD AGAR 

SAB (Oxoid)                                                               38g/l 

This was sterilised by autoclaving at 15 psi for 15 min. 
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3.8.2 ANTIBIOTIC CONCENTRATIONS 
 

Antibiotic Concentration of 
stock solution   

(mg/ ml) 

Final concentration  
(µg/ ml) 

Ampicillin 100 10 

Apramycin 100 10 

Chloramphenicol 15 25 

Kanamycin 50 50 

Nalidixic acid 100 10 
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3.8.3 STRAINS OF STREPTOMYCES, E. COLI AND ASPERGILLUS NIGER USED 
 

Strain Genotype Phenotype Use Source 

 Escherichia coli 

DH5α 

F- φ80d lacZ ∆M15 (lacZyA -

argF)U169 deoR recA1 endA1 hsdR1 

(rk
-  mk

+) supE44λ-  thi-1 gyrA96 

relA1 

Ampicillin 

sensitive 

General 

cloning 

Bethesda  

Research 

Laboratories 

Escherichia coli 

Top10  

F- mcrA ∆(mrr- hsdRMS-mcrBC) 

φ80lacZ∆M15 ∆lacX74 deoR recA1 

araD139 ∆(are-leu) 7697 galU galK 

rpsL ( StrR) end A1 nupG 

Ampicillin 

sensitive 

General 

cloning 

Invitrogen 

Escherichia coli 

ET12567  

 Methylation 

deficient 

strain  

Intergeneric 

conjugation 

Dr Fiona Flett 

and  Dr Colin 

Smith, UMIST 

Streptomyces 

ascomyceticus 

ATCC55098  

 FK 506 

producer 

Positive 

control for 

PKS I genes 

American Type 

Culture 

Collection  

(ATCC) 

Soil Isolate  

 98-62 from 

Singapore 

 Novel  

antifungal 

compound 

producer 

Source of 

PKS I gene 

for this 

study 

Laboratory of  

A/P Nga B. H., 

Dept of 

Microbiology, 

NUS 

Aspergillus niger   Test 

organism 

for  

antifungal 

compound 

Laboratory of  

A/P Nga B. H., 

Dept of 

Microbiology, 

NUS 
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3.8.4 PLASMIDS USED 
 
Plasmid Characteristics Source/Reference 

pUC18 Carries β- lactamase gene 

conferring ampicillin 

resistance (Ampr); 

bacterial origin of 

replication (ori); E. coli 

lac I’ OPZ’; α−peptide of 

the β−galactosidase gene 

(lacZ’) at its multiple 

cloning site (MCS) which 

allows for blue /white 

selection. Recombinant 

clones are white on IPTG 

and X-gal selection . 

Bethesda Research 

Laboratories Yanisch- 

Perron et al  (1985) 

pSOK201 apramycin 

resistance(Apr); bacterial 

origin of replication (ori); 

Sergey Zotchev et al  

 (2000) 
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3.8.5 PROBES USED 

DNA probe Fragment size Source Reference 

PKS – I probe  1.4kb KS2 of ery gene 

cluster 

Dr Soong Tuck 

Wah. IMCB, 

Professor CR 

Hutchinson, 

University of 

Wisconsin 

PKS-I gene probe 

1 from the soil 

isolate 98 -62 

850 bp KS-AT gene This study 

PKS-I gene probe 

2 from  the soil 

isolate 98 -62 

7.2kb DH-KR-ACP-KS-

AT-DH of module 

1 and 2 

This study 

PKS-I gene probe 

3 from the soil 

isolate 98 -62 

3.7kb DH-KR-ACP-KS 

of module 1 and 2 

This study 

PKS-I gene probe 

4 from  the soil 

isolate 98 -62 

1.5 kb DH of module 2 This study 

pSOK201 vector 

probe 

3.0 kb Vector back bone Sergey Zotchev 

et al (2000) 
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3.8.6  DNA MODIFYING ENZYMES USED 
 

DNA modifying 
enzyme 

Concentration Manufacturer 

Calf intestinal alkaline 
phosphatase (CIAP) 

1 unit/ µl Promega 

T4 DNA ligase 1 unit/ µl BRL 

 
DNA modifying enzymes were used with recommended buffers supplied by the 

manufacturer. 

 
3.8.7 DNA SIZE STANDARDS 
 

Marker Concentration Supplier 

λHindIII 0.5µg/ µl Promega 

1kb ladder 1 µg/ µl BRL 

100bp plus 1.0µg/ µl Fermentas 

 
 
3.8.6 COMMON SOLUTIONS AND BUFFERS 
COMMON SOLUTIONS 

i) 2 M Sodium hydroxide (NaOH) 

 NaOH pellets (Merck)                                          80.0 g/l 

ii) 10% Sodium dodecyl sulphate (SDS) 

SDS (Merck)                                                              100.0 g/l 

iii) 0.5 M Ethylenediamine tetraacetate (EDTA), pH 7.5 or  pH 8.0 

Na2EDTA. 2H2O(Sigma)                                           186.1g/l 

iv) 1M Tris (hydroxymethyl) aminomethane hydrochloride ( Tris- Hl), pH 7.5 or 

pH 8.0 

Tris- HCL (Sigma)                                                     157.6g/l 
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v) 20XSSC, pH 7.0 

3.0 M Sodium chloride                                               175.3 g/l 

0.3 M Sodium citrate                                                   88.2 g/l 

vi) 50% Glycerol 

Glycerol                                                                       50 ml 

Distilled water                                                              50 ml 

Where necessary, the pH of each solution was adjusted to the desired one, 

followed by autoclaving at 15 psi for 15 min, except for 10% SDS, which was filter 

sterilized using a 0.22µm disposable filter unit. 

vii) Ribonuclease A (RNaseA) 

RNase A (Sigma) was dissolved in sterile water at a concentration of 10mg/ ml. This 

was then boiled for 15 min, cooled to room temperature and stored at - 20°C. 
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4.1 IDENTIFICATION OF THE STREPTOMYCES SP. 98- 62 
4.1.1 POLYMERASE CHAIN REACTION OF 16S rDNA FROM THE 

STREPTOMYCES SP. 98-62 
 
          
In order to identify novel antibiotics produced by microorganisms, random 

screening of indigenous soil microorganisms has been widely carried out. Selective 

methods for detecting and identifying these microorganisms are needed in order to 

gain an in depth knowledge of the organism. Actinomycetes are well known organisms 

that are responsible for producing a number of bioactive compounds such as 

antibiotics. 

A number of methods such as morphological study, study of cell wall 

peptidoglycan has been instrumental in identifying and classifying the Streptomyces 

sp. A promising method for selective identification of soil bacteria is the amplification 

of 16S ribosomal DNA or ribosomal RNA using PCR. 

Sequence comparisons of small subunit rRNA have been used as a source for 

determining phylogenetic and evolutionary relationships among organisms of the three 

kingdoms Archaea, Eukarya, Bacteria. The 16S rDNA are highly conserved, sharing 

common three-dimensional structural element of similar function. The primary 

structures are well conserved and variable regions have been determined (Woese, 

1987). Primers located in highly conserved regions have been published, allowing the 

amplification of the 16S rDNA. 

A pair of primers p27f (AGA GTT TGA TCM TGG CTC AG) as the forward 

primer and p1492r (TAC GGY TAC CTT GTT ACG ACT T) as the reverse primer 

were used to amplify the 16S rDNA from the genomic DNA of the Streptomyces sp. 

98- 62. This pair of primers were designed based on the consensus sequence of 

bacterial 16S rDNA genes (Medlin et al., 1988) 
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An amplification product of 1500bp upon gel electrophoresis was obtained 

which was cloned into the pGEMT vector. The insert was sequenced using the vector 

primers T7 and SP6. Additional sequencing primers were designed to allow for 

complete sequencing of the insert. Nucleotide sequences were aligned using BLAST2 

program. Searching database using BLAST program elucidated identity of the 

complete nucleotide sequence. The sequence of 16S rDNA from the Streptomyces sp.  

98- 62 was determined to be 1490 bp long (Fig. 7). This nucleotide sequence was 

approximately 99% similar to that of the other Streptomyces 16S rDNA (Fig. 8). 

 
4.1.2 SEQUENCE OF 16S rDNA FROM THE STREPTOMYCES SP. 98- 62 
 
 
agagtttgatcctggctcaggacgaacgctggcggcgtgcttaacacatgcaagtcgaacgatgaagcccttcggggtgg 
attagtggcgaacgggtgagtaacacgtgggcaatctgcccttcactctgggacaagccctggaaacggggtctaatacc 
ggataacactctgtcccgcatgggacggggttgaaagctccggcggtgaaggatgagcccgcggcctatcagcttgttgg 
tggggtgatggcctaccaaggcgacgacgggtagccggcctgagagggcgaccggccacactgggactgagacacggccc 
agactcctacgggaggcagcagtggggaatattgcacaatgggcgcaagcctgatgcagcgacgccgcgtgagggatgac 
ggccttcgggttgtaaacctctttcagcagggaagaagcgcaagtgacggtacctgcagaagaagcgccggctaactacg 
tgccagcagccgcggtaatacgtagggcgcaagcgttgtccggaattattgggcgtaaagagctcgtaggcggcttgtcg 
cgtcggttgtgaaagcccggggcttaaccccgggtctgcagtcgatacgggcaggctagagtgtggtaggggagatcgga 
attcctggtgtagcggtgaaatgcgcagatatcaggaggaacaccggtggcgaaggcggatctctgggccattactgacg 
ctgaggagcgaaagcgtggggagcgaacaggattagataccctggtagtccacgccgtaaacgttgggaactaggtgttg 
gcgacattccacgtcgtcggtgccgcagctaacgcattaagttccccgcctggggagtacggccgcaaggctaaaactca 
aaggaattgacgggggcccgcacaagcagcggagcatgtggcttaattcgacgcaacgcgaagaaccttaccaaggcttg 
acatacaccggaaagcatcagagatggtgccccccttgtggtcggtgtacaggtggtgcatggctgtcgtcagctcgtgt 
cgtgagatgttgggttaagtcccgcaacgagcgcaacccttgttctgtgttgccagcatgcctttcggggtgatggggac 
tcacaggagactgccggggtcaactcggaggaaggtggggacgacgtcaagtcatcatgccccttatgtcttgggctgca 
cacgtgctacaatggccggtacaatgagctgcgatgtcgtgaggcggagcgaatctcaaaaagccggtctcagttcggat 
tggggtctgcaactcgaccccatgaagtcggagttgctagtaatcgcagatcagcattgctgcggtgaatacgttcccgg 
gccttgtacacaccgcccgtcacgtcacgaaagtcggtaacacccgaagccggtggcccaaccccttgtgggagggagct 
gtcgaaggtgggactggcgattgggacgaagtcgtaacaaggtagccgta 
 

 
Figure 7: 16S rDNA nucleotide sequence of the Streptomyces sp. 98- 62. The 
nucleotides in red represent the characteristic signature sequence of streptomycetes. 
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Sequences producing significant alignments:                      (bits) Value 
 
gi|2832351|emb|Y10842.1|SSPY10842  Streptomyces sp. 16S rRNA...  2863   0.0    
gi|21742834|emb|AJ494864.1|SFL494864  Streptomyces flavogris...  2859   0.0    
gi|16611977|gb|AF429390.1|  Streptomyces sp. VTT E-99-1326 (...  2851   0.0    
gi|16611989|gb|AF429398.1|  Streptomyces sp. VTT E-99-1334 (...  2843   0.0    
gi|16611984|gb|AF429395.1|  Streptomyces sp. VTT E-99-1331 (...  2843   0.0    
gi|14719240|gb|AF389344.1|AF389344  Streptomyces sp. YIM8 16...  2835   0.0    
gi|733430|gb|U22972.1|SSU22972  Streptomyces sp., strain GP ...  2835   0.0    
gi|733432|gb|U22974.1|SSU22974  Streptomyces sp., strain GP ...  2831   0.0    
gi|16611990|gb|AF429399.1|  Streptomyces sp. VTT E-99-1335 (...  2827   0.0    
gi|16611986|gb|AF429396.1|  Streptomyces sp. VTT E-99-1332 (...  2827   0.0    
gi|16611980|gb|AF429392.1|  Streptomyces sp. VTT E-99-1328 (...  2827   0.0    
gi|16611978|gb|AF429391.1|  Streptomyces sp. VTT E-99-1327 (...  2827   0.0    
gi|14530936|gb|AY029698.1|  Streptomyces sp. KN-0479 16S rib...  2827   0.0    
gi|6979922|gb|AF221837.1|AF221837  Streptomyces sp. AA8321 1...  2827   0.0    
gi|733431|gb|U22973.1|SSU22973  Streptomyces sp., strain GP ...  2827   0.0    
gi|5672637|dbj|AB030572.1|  Streptomyces griseus ribosomal R...  2827   0.0    
gi|5672635|dbj|AB030570.1|  Streptomyces griseus ribosomal R...  2827   0.0    
gi|5672633|dbj|AB030569.1|  Streptomyces griseus ribosomal R...  2827   0.0    
gi|5672632|dbj|AB030568.1|  Streptomyces griseus ribosomal R...  2827   0.0    
gi|5672630|dbj|AB030567.1|  Streptomyces griseus ribosomal R...  2827   0.0    
gi|14582970|gb|AF361784.1|AF361784  Streptomyces sp. S63 16S...  2819   0.0    
gi|5672636|dbj|AB030571.1|  Streptomyces griseus ribosomal R...  2819   0.0    
gi|7715013|gb|AF112160.1|AF112160  Streptomyces caviscabies ...  2815   0.0    
gi|971126|dbj|D63872.1|  Streptomyces setonii 16S ribosomal ...  2815   0.0    
gi|153245|gb|M76388.1|STMDRNA  S.griseus 16S, 23S, and 5S rR...  2811   0.0    
gi|14717423|gb|AF112174.2|AF112174  Streptomyces sp. EF-91 1...  2807   0.0    
gi|13276861|emb|AJ308577.1|SSP308577  Streptomyces sp. Nm5 p...  2807   0.0    
gi|2290506|gb|U93336.1|SSU93336  Streptomyces sp. JCM7249 16...  2807   0.0    
gi|10039263|dbj|AB045872.1|  Streptomyces argenteolus gene f...  2807   0.0    
gi|3550671|emb|Y15498.1|SY15498  Streptomyces sp. 16S rRNA g...  2803   0.0    
gi|2290508|gb|U93338.1|SSU93338  Streptomyces sp. JCM 7250 1...  2799   0.0    
gi|14717425|gb|AF112179.2|AF112179  Streptomyces sp. OB-35 1...  2797   0.0    
gi|14717424|gb|AF112175.2|AF112175  Streptomyces sp. EF-93 1...  2797   0.0    
gi|13276859|emb|AJ308575.1|SSP308575  Streptomyces sp. So10 ...  2791   0.0    
gi|3550675|emb|Y15502.1|SY15502  Streptomyces griseus 16S rR...  2787   0.0    
gi|3550674|emb|Y15501.1|SY15501  Streptomyces griseus 16S rR...  2787   0.0    
gi|525283|emb|X79326.1|SO16SRN  S.ornatus (DSM 40307) 16S rR...  2775   0.0    
gi|20513089|gb|AY094364.1|  Streptomyces sanglieri A-CR2 16S...  2752   0.0    
gi|20513088|gb|AY094363.1|  Streptomyces sanglieri A5843 16S...  2750   0.0    
gi|4079698|gb|AF012736.1|AF012736  Streptomyces sp. ASSF13 1...  2750   0.0    
gi|4079700|gb|AF012738.1|AF012738  Streptomyces sp. ASSF22 1...  2738   0.0    
gi|1359994|emb|X92614.1|MMM16RRNA  M.megalomicea 16S rRNA gene   2734   0.0    
gi|7106037|emb|AJ399460.1|SCY399460  Streptomyces cyaneus pa...  2730   0.0    
gi|10038689|dbj|AB045887.1|  Streptomyces peucetius gene for...  2724   0.0    
gi|10038692|dbj|AB045890.1|  Streptomyces venezuelae gene fo...  2720   0.0    
gi|1418300|emb|X87309.1|AS16SR119  Streptomycetaceae 16S rRN...  2714   0.0    
gi|20513096|gb|AY094371.1|  Streptomyces griseus subsp. gris...  2712   0.0    
gi|14719239|gb|AF389343.1|AF389343  Streptomyces sp. YIM26 1...  2710   0.0    
gi|4079702|gb|AF012740.1|AF012740  Streptomyces sp. ASB33 16...  2700   0.0    
gi|7715012|gb|AF112159.1|AF112159  Streptomyces sp. EF-52 16...  2692   0.0    
gi|10038680|dbj|AB045878.1|  Streptomyces galilaeus gene for...  2682   0.0    
gi|587558|emb|X80825.1|SSRDNA16S  S.subrutilus 16S rRNA gene     2678   0.0    
  
 
Alignments 
 
>gi|2832351|emb|Y10842.1|SSPY10842   Streptomyces sp. 16S rRNA gene, strain A46R62 
          Length = 1476 
 
 Score = 2863 bits (1444), Expect = 0.0 
 Identities = 1462/1468 (99%) 
 Strand = Plus / Plus 
 

 
Figure 8: Sequence comparison of the 16S rDNA amplified from the Streptomyces sp. 
98- 62 with the Genbank sequences 
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In the Atlas of actinomycetes (Yokota, 1997), a phylogenetic tree based on the 

16S rRNA sequence of 90 genera had been drawn out to represent the phylogenetic 

relationship of actinomycetes. The 16S rDNA of the Streptomyces sp. 98– 62 was 

compared with that of the 16S rRNA sequences of at least one representative 

organisms from the various sections  (all sections except section 4) of the 

actimomycete phylogenetic tree and represented in a phylogenetic tree using the phylip 

method in the ClustalW package. 

The phylogenetic analysis showed that the Streptomyces sp. 98- 62 belongs to 

the genus Streptomyces (Fig. 9). 
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Figure 9: Phylogenetic analysis of 16S rDNA. Sequences of Streptomyces griseus 
(X61478), the Streptomyces sp. 98– 62, Streptomyces ambofaciens (M27245), 
Streptomyces coelicolor (M35377), Nocardia albus (X53211), Mycobacterium bovis
(X55589), Frankia sp. (L11306), Actinopolyspora halophila (X 54287) and 
Bifidobacterium bifidum (M38018) were used for the phylogenetic analysis. The first five
letters of these names are denoted in the phylogenetic tree.  The tree was constructed
using the CLUSTALW program.  The relatedness between different actinomycetes is 
indicated by the length of the horizontal line. The shorter the horizontal line, the more
closely related the actinomycetes. The length of the vertical lines are not significant.  
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4.2 PRELIMINARY EVIDENCE OF PKS I COMPOUND PRODUCTION     
BY THE STREPTOMYCES SP. 98- 62 
4.2.1 SCREENING FOR THE PRESENCE OF KETOACYL SYNTHASE GENE  

USING eryKSII GENE PROBE OF SACHHAROPOLYSPORA ERYTHRAEA 
 

 
A number of antifungal polyketide compounds are synthesized by bacterial 

strains, by enzymes encoded by PKS I genes. As such it was postulated that the 

antifungal compound produced by the Streptomyces sp. 98- 62 could also be encoded 

by PKS type I genes.  

In order to determine the characteristics of the compounds produced by the 

Streptomyces sp. 98- 62, genomic DNA of the Streptomyces sp. 98- 62 was restricted 

with different restriction enzymes, gel electrophoresed (Fig. 10) and Southern blotted 

with PKS I specific eryKSII probe from the erythromycin producer Saccharopolyspora 

erythraea (Fig. 11). BamHI restricted chromosomal DNA of FK506 producer S. 

ascomyceticus ATCC 55098 was used as positive control for PKS I genes.  

The results showed strong hybridising bands of the genomic DNA of the 

Streptomyces sp. 98- 62 with the PKS I specific probe eryKSII, as when the genomic 

DNA of the positive control S. ascomyceticus ATCC 55098 was used. This evidence is 

suggestive that the antifungal compound produced by the Streptomyces sp. 98- 62 

could be accounted for by the occurrence of PKS I specific genes in the genomic DNA 

of the strain. 

 The result has also shown that although both the Streptomyces sp. 98- 62 and 

S. hygroscopicus var. ascomyceticus ATCC55098 share homology with the eryKSII 

gene probe, they differ in the hybridization pattern obtained with the eryKSII probe.  
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Figure 10: Electrophoretic profile of restriction endo
DNA samples of Streptomyces hygroscopicus var. asc
Streptomyces sp. 98– 62. 
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Figure 11: Southern blot of r
samples of Streptomyces hygr
Streptomyces sp. 98– 62 pro
Streptomyces sp. digested with 
to the eryKSII probe. 
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estriction endonuclease digested chromosomal DNA 
oscopicus var. ascomyceticus ATCC55098 and the 
bed with eryKSII probe. Genomic DNA of the 

BamHI gave a 4-5kb fragment that hybridised strongly 
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4.2.2  ANALYSIS OF SECONDARY METABOLITES PRODUCED BY THE 

STREPTOMYCES SP. 98- 62 
 
 

To determine if the antifungal compound produced by the Streptomyces sp. 98– 

62 was similar to PKS I antifungal compounds rapamycin and FK506, secondary 

metabolites from Streptomyces sp. 98- 62 grown in FK medium were subjected to TLC 

followed by a bioassay against Aspergillus niger. Ethyl acetate extract of the 96 h 

cultures of the Streptomyces sp. 98- 62 was analysed by TLC followed by a bioassay 

against Aspergillus niger. Pure rapamycin and FK506 were used as positive controls 

(Fig. 12). A zone of growth inhibition corresponding to the TLC spot of Rf 0.69 was 

observed in the case of the extract of the Streptomyces sp. 98- 62. Pure rapamycin and 

FK 506 gave a zone of inhibition at an Rf value of 0.80.  From this observation it was 

concluded that the Streptomyces sp. 98- 62 indeed produced an antifungal compound. 

However, the antifungal compound produced by the Streptomyces sp. 98- 62 was 

determined to be different in its chromatographic separation from that of the PKS I 

compounds rapamycin and FK506. 
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          FK506             Streptomyces sp.            Rapamycin 
                                       98– 62    

     
 
        
 

                       

 

    Rf 0. 80

Rf 0.69

 
 
 
 
Figure 12: TLC Chromatogram and overlay assay of the extracts of pure FK506, the 
Streptomyces sp. 98- 62 and pure rapamycin. The cleared area represents the zone of 
inhibition. Test organism used was Aspergillus niger. 
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4.3 CLONING OF THE KETOACYL SYNTHASE-ACYL TRANSFERASE GENE 

FROM THE STREPTOMYCES SP. 98 -62 
4.3.1  AMPLIFICATION, CLONING AND SEQUENCING OF KETOACYL 

SYNTHASE- ACYL TRANSFERASE GENE FROM THE STREPTOMYCES SP. 
98- 62 

 
 

The strategy to isolate the PKS I genes of the Streptomyces sp. 98- 62 was to 

amplify the KS and AT regions using primers targeted at  conserved sequences in 

previously sequenced PKS genes. A pair of degenerate primers spanning conserved 

regions of KS and AT genes has been used successfully to identify niddamycin cluster 

(Kakavas et al, 1997). As the primer sequences were expected to be highly conserved 

in most PKS I genes, the same set of primers were used to amplify the KS/AT region 

from the chromosomal DNA of the Streptomyces sp. 98- 62. The PCR product ran as a 

850 bp fragment on agarose gel and was subsequently cloned into the pGEMT vector 

(Promega®) and sequenced using vector primers T7 and SP6. Additional sequencing 

primers were designed to allow for complete sequencing of the nucleotides of the 

insert fragment. The nucleotide sequences were aligned using BLAST2 program. By 

searching database using the BLAST program, the identity of the complete nucleotide 

sequence was elucidated. The sequence of KS/ AT region from the Streptomyces sp. 

98- 62 was found to be 843 bp (Fig. 13) and was approximately 50% similar to the 

other Streptomyces PKS I KS/ AT region. The 843bp sequence had the highest 

similarity to sequences of the antihelminthic avermectin compound producer 

Streptomyces avermitilis.  The percentage similarity at the protein level is 54% and the 

percentage of positives is 62% (Fig. 14).  The deduced protein product encoded by the 

843 bp is the keto synthase - acyl transferase genes of the PKS type I system (Table 4). 
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4.3.2 SEQUENCE OF THE KS/AT GENES OF THE STREPTOMYCES SP. 98- 62 
 
 
CGGTCAAGTCCAACATCGGGCACACCCAGGCCGCCGCCGGGGTCGCCGGCGTCATCAAGATGGTGATGGCCATGCGCCGCGGCAGGC
TGCCGAGGACGCTGCACGCCGAACACCCCACCACCCGGGTCGACTGGGAGTCCGGCGCCGTCGAACTGCTCGGCGAGGCCCGCGACT
GGCCGGACGCGGGGGAGCCCCGCCGCGCCGCCGTGTCCTCCTTCGGCATCTCCGGCACCAACGCCCACGTCATCGTCGAGGCGGCCC
CCGACCCCGAGCCGCGCACCGGGGAACCCGTCTGGGACCGGCCGCTGCCGCTGGTGCTCTCCGCCCGAGACGAACCGGCCCTGGCCG
CCCAGGCACGCCGCATCCTCGACCACCTGGAGACCGGCGCCGACCTCGTCCCCGACATCGCCTACGCCCTGGCCACCACCCGCGCCG
CCCTGGACCGGCGGGCCGTCGTCATCGGCGCCGACCCGGCCACGATCACCGCGCGGCTCGCCGCCCTGGCCGAGGACGATCCGGCGT
CCGACGTGGTGCGCGGCGCACCGGCGGGGGAGTCCCGCATCGCGTTCGTCTTCCCCGGGCAGGGCTCCCAGTGGGCCGGCATGGCCG
CCGAACTGCTCGACGGCTCACCGGTGTTCGCGGCGGCATGGCCGACTGCGCCGAGGCGCTCGCCCCCTTCACCGACTGGGACCTCGT
CGACACCGTCCGGGAGCGCCGCCCCATGGAGCGGGTGGACGTGGTCCAGCCCGCGCTGTGGGCGATCATGGTCTCGCTGGCCGAGGT
GTGGCGCGCGCACGGGGTGCGGCCCGCCGCCGTCATTGGGCACTCCCAGGGCGAGATCGC 

 
Figure 13: Sequence of the amplification product from the Streptomyces sp. 98- 62 
with the primers specific for KS/AT genes of the PKS I systems. The sequence in red 
represents the deduced primer-binding site. 
 
 
 
 
Score    E 
Sequences producing significant alignments:                      (bits) Value 
 
gi|15823982|dbj|BAB69199.1|  (AB070940) modular polyketide s...   211   6e-74  
gi|15823978|dbj|BAB69195.1|  (AB070940) modular polyketide s...   207   3e-73  
gi|15823977|dbj|BAB69194.1|  (AB070940) modular polyketide s...   217   9e-73  
gi|478634|pir||S23070  erythronolide synthase (EC 2.3.1.94) ...   194   1e-70  
gi|416966|sp|Q03132|ERY2_SACER  Erythronolide synthase, modu...   194   1e-70  
gi|581651|emb|CAA44448.1|  (X62569) 6-deoxyerythronolide B  ...   194   1e-70  
gi|10179853|gb|AAG13918.1|AF263245_14  (AF263245) megalomici...   196   2e-70  
gi|14794893|gb|AAK73501.1|AF357202_4  (AF357202) AmphI [Stre...   197   5e-70  
gi|12055072|emb|CAC20921.1|  (AJ278573) PimS2 protein [Strep...   206   5e-70  
gi|15823981|dbj|BAB69198.1|  (AB070940) modular polyketide s...   199   2e-69  
gi|7522143|pir||T17466  rifamycin polyketide synthase module...   204   2e-69  
gi|9049536|gb|AAF82409.1|AF220951_2  (AF220951) 8,8a-deoxyol...   198   6e-69  
gi|2506137|sp|Q03133|ERY3_SACER  Erythronolide synthase, mod...   187   7e-69  
>gi|15823982|dbj|BAB69199.1|   (AB070940) modular polyketide synthase [Streptomyces 
avermitilis] 
          Length = 3970 
 
 Score =  211 bits (537), Expect(2) = 6e-74 
 Identities = 119/219 (54%), Positives = 138/219 (62%), Gaps = 7/219 (3%) 
 Frame = +3 
 
Query: 3    VKSNIGHTQAAAGVAGVIKMVMAMRRGRLPRTLHAEHPTTRVDWESGAVELLGEARDWPD 182 
            VKSN+GHTQAAAG AG+IKM+MAMR G LPRTLH + P+  VDW  G VELL E R+WPD 
Sbjct: 2178 VKSNLGHTQAAAGAAGIIKMIMAMRYGVLPRTLHVDRPSPEVDWSPGTVELLTEEREWPD 2237 
 
Query: 183  AGEPRRAAVSSFGISGTNAHVIVEAAP-DPEPRTGEPVWDRPLPLVLSARDEPALAAQAR 359 
            AG PRRAAVSSFGISGTNAHVI+E  P D EP T   V    +P VLS  D  AL AQA  
Sbjct: 2238 AGRPRRAAVSSFGISGTNAHVILEQPPADDEPGTSGTVPGGVVPWVLSGHDRAALYAQAE 2297 
 
Query: 360  RILDHLETGADLVPDIXXXXXXXXXXXXXXXVVIGADPATITARLAALA----EDDPA-- 521 
            R++ H+    +L                   VV+G D   + A  A LA    E D A   
Sbjct: 2298 RLVAHVAARPELSVADVGRTLTGRARLSHRAVVLGGDRDELLAAAAGLARRAGEPDEALP 2357 
 
Query: 522  SDVVRGAPAGESRIAFVFPGQGSQWAGMAAELLDGSPVF 638 
              VV G+  G+ R+ FVFPGQG+QWAGMAAELL  +PVF 
Sbjct: 2358 PGVVEGSVLGDDRVVFVFPGQGAQWAGMAAELLVSAPVF 2396 
 
 

Figure 14: Sequence comparison of the KS/AT genes amplified from the Streptomyces 
sp. 
 98- 62 with the Genbank sequences. 
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4.3.3 AMINOACID SEQUENCE COMPARISON OF THE KS/AT GENES OF THE 

STREPTOMYCES SP. 98- 62 
 
 

Deduced protein 
product 

Ketosynthase(KS) 
 

 
Comparison of amino 
acid sequence 

% Identity % Similarity 

Streptomyces 
avermitilis 73 80 

Streptomyces 
hygroscopicus var. 
ascomyceticus 

72 79 

 

Deduced protein 
product 

Acyl transferase 
 

 
Comparison of amino 
acid sequence 

% Identity %Similarity 

Saccharopolyspora 
erythrae 

58 66 

Streptomyces 
avermitilis 

56 65 

 
Table 4: Compilation of the BLASTP result of the deduced KS/ AT genes of the 
Streptomyces sp. 98- 62 with the other PKS I genes in the Genbank. 
 
 
4.4 SOUTHERN HYBRIDISATION OF CHROMOSOMAL DNA OF 

THE STREPTOMYCES SP. 98- 62 USING HOMOLOGOUS 
KETOACYL SYNTHASE-ACYL TRANSFERASE GENE PROBE 

 
 

The DNA fragment representing the KS/AT region from the Streptomyces sp. 

98- 62 was used as a probe for Southern hybridisation experiments using the restriction 

enzyme digested chromosomal DNA fragments from it to determine if there is multiple 

KS/AT genes in the Streptomyces sp. 98- 62 as is expected of the PKS I system. The 

DNA from the Streptomyces sp. 98- 62 was restricted with different restriction 

enzymes and probed with the KS/AT genes probe (Fig. 15a, b).  When genomic DNA 
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of the Streptomyces sp. 98- 62 was restricted with SphI and probed with the KS/AT 

genes, eleven hybridising bands were visible. This result showed that indeed the 

genome of the Streptomyces sp. 98- 62 contained a number of different DNA 

fragments, which contained homologous KS/AT genes to the KS/AT genes probe of 

the Streptomyces sp. 98- 62. This indicated strongly that the Streptomyces sp. 98- 62 

indeed contained multiple KS/AT genes as is characteristic of the PKS I system. 

Cloning and sequencing of the repeated PKS I genes from the Streptomyces sp. 98- 62 

would provide the conclusive evidence that KS/AT genes are part of a PKS I cluster.  

The BamHI restricted genome of the Streptomyces sp. 98- 62 when probed with 

the KS/AT genes shared some common features as well as some differences to those 

obtained when probed with the eryKSII gene probe from the erythromycin producer 

Saccharopolyspora erythraea. These results suggest that some of the PKS I genes from 

Streptomyces sp. have higher homology to the KS II gene from the erythromycin 

producer Saccharopolyspora erythraea whilst some others have a higher homology to 

the KS/AT genes from the Streptomyces sp. 98- 62. 

A 7-8kb BamHI fragment of the Streptomyces sp. 98- 62 was identified to 

hybridise very strongly to the KS/AT genes probe. This 7-8kb BamHI fragment 

therefore was likely to be the genomic fragment of the Streptomyces sp. 98- 62 that 

contained the KS/AT genes used as a probe.  
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     Figure 15b 

 
                   
 
Figure 15a: Electrophoretic profile of restriction endonuclease digested chromosomal 
DNA samples of the Streptomyces sp. 98– 62. Figure 15b: Southern blot of the 
restriction endonuclease digested chromosomal DNA samples of the Streptomyces sp. 
98– 62 probed with KS/AT probe from the Streptomyces sp. 98– 62.  
Genomic DNA of the Streptomyces sp. digested with SphI gave ~11 hybridising bands 
with KS/AT probe from the Streptomyces sp. 98- 62. Genomic DNA of the 
Streptomyces sp. digested with BamHI gave a 7-8kb fragment that hybridised strongly 
to the KS/AT probe from the Streptomyces sp. 98- 62. 
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4.5 SUBGENOMIC LIBRARY CONSTRUCTION OF THE STRAIN  

98-62 AND SCREENING OF THE RECOMBINANT CLONES BY PCR 
4.5.1 SUBGENOMIC LIBRARY CONSTRUCTION 
 
 

In order to clone the PKS I gene cluster of 98- 62 surrounding the KS/AT 

genes, a sub-genomic library of 98- 62 DNA fragments was constructed. This was 

done by isolating the total genomic DNA, digesting it with BamHI, and ligating the 

purified 7 to 8 kb fragments into the BamHI site of pUC18. The ligation mixture was 

then introduced into  E. coli Top 10 competent cells. After overnight incubation at 

37°C, 500 white and ampicillin resistant colonies were patched onto LB + ampicillin 

plates.   

 
4.5.2 PCR SCREENING TO IDENTIFY CLONE CONTAINING KETOACYL 

SYNTHASE-ACYL TRANSFERASE GENE 
 
 

The plasmid DNA from pools of 50 colonies were extracted and used as 

template for PCR amplification of the KS/AT genes, using the same degenerate 

primers used earlier to amplify the KS/AT genes from the genomic DNA of the 

Streptomyces sp. 98- 62. From the identified positive pool of 50 colonies, screening 

was narrowed to subpools of 10 colonies and thereafter to individual colonies. 

Eventually, one clone, C170 was identified to give the PCR product of the expected 

size (Fig. 16a, b). 
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Figure 16a: PCR screening of pool DNA to ide
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4.6 RESTRICTION AND SEQUENCE ANALYSIS OF THE DNA 
INSERT IN THE RECOMBINANT CLONE C170 IDENTIFIED TO 
CONTAIN THE KETOACYL SYNTHASE-ACYL TRANSFERASE GENE  
 
 

Restriction digestion of the C170 plasmid DNA with BamHI   gave a DNA 

insert fragment of approximately 7-8kb. Restriction digestion of the C170 plasmid 

DNA with SphI gave three DNA fragments of the approximate sizes 1.5kb, 2.0kb and 

6.5kb upon gel electrophoresis. Two SphI DNA fragments of sizes 1.5 kb and 2.0 kb 

were subcloned into the vector pUC18 at the SphI site. The subclones were designated 

as p1.6KBC170 and p2.0KBC170 respectively. The larger fragment, which is expected 

to contain the pUC18 vector, was self-ligated. This subclone was designated as 

p6.5KBC170. Subclones were sequenced using M13 forward and reverse primers. 

Complete sequence of the subclones were obtained from primer walking. The 

nucleotide sequences were aligned using the BLAST2 program. By searching the 

database using the BLAST program, the complete nucleotide sequence was elucidated. 

The recombinant clone was restricted with BamHI, EcoRI, SphI, BamHI+ 

EcoRI, BamhI+SphI and EcoRI+ SphI in order to construct a restriction map for the 

clone. The restriction profile and the deduced restriction map are given (Fig. 17a, b). 

The complete sequence of the insert fragment of the recombinant clone C170 was 

determined to be 7177 bp. Analysis of the sequence for the restriction sites confirmed 

the predicted restriction profile. Conserved sequences for the restriction enzyme SphI 

occurred at nucleotide positions 3723 and 5634. Conserved sequences for the 

restriction enzyme BamHI occurred at the beginning and the end of the fragment.  

The DNA sequence data obtained were analysed for open reading frames 

(ORFs). There were two partial open reading frames, in the same orientation (Fig. 27, 

28). The ORFs were labelled ORF 1 and ORF 2 for convenience. ORF1 module was 

designated as module 1 for convenience, and it encodes a partial DH, a complete KR 
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and a complete ACP in the stated order. ORF 2 module was designated as module 2 for 

convenience and it encodes a complete KS, a complete AT which is methyl malonyl 

specific and a complete DH in the given order. The organization of the enzymatic 

domains within each module is consistent with other PKS type I genes.  

ORF 1 is predicted to terminate with a stop codon TGA. A second stop codon 

TAG is predicted 372 bases downstream of the first stop codon. ORF 2 is predicted to 

initiate with a start codon ATG and lies 60 nucleotides downstream of the predicted 

second stop codon of ORF1. The sequence TGGACA which is located 38nt upstream 

of the predicted start codon of ORF2 is deduced to be the transcriptional promoter as 

the sequence is identical to ermE-P1 promoter (Strohl, 1992). The sequence GAGG 

which is located 14nt upstream of the predicted start codon of ORF2 is deduced to be 

the ribosomal binding site of ORF2 (Strohl, W. 1992). From the sequence analysis of 

clone C170 PKS I genes, it is proposed that the encoded ORFs are translationally 

uncoupled .  
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Figure 17a: Restriction profile of clone C170 o
with different restriction enzymes. 
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                                                                                       RESULTS                   
4.7 CHROMOSOMAL WALKING 
 SOUTHERN HYBRIDISATION OF THE CHROMOSOMAL DNA OF THE 

STREPTOMYCES SP. 98- 62 USING EXTERNAL FRAGMENTS OF CLONE 
C170 TO IDENTIFY ADJOINING UPSTREAM AND DOWNSTREAM GENES 
TO THE INSERT IN THE CLONE C170 

 
 

In order to identify the genomic fragments of the Streptomyces sp. 98- 62 that 

is adjacent to the genomic fragment of the clone C170, the genomic DNA of the 

Streptomyces sp. 98- 62 was restricted with different restriction enzymes and probed 

with the external sub-genomic fragments of the recombinant clone C170. A 3.7kb 

SphI/BamHI fragment of the clone C170 fragment was used as a probe to identify the 

adjoining upstream genes to the insert of the clone C170. A 1.5kb SphI/BamHI 

fragment of the clone C170 fragment was used as a probe to identify the adjoining 

downstream genes to the insert of the clone C170. 

When probed with the 3.7 kb SphI/BamHI fragment of the clone C170 

fragment, a 5.5-6.5kb SphI fragment of the Streptomyces sp. 98- 62 showed the 

strongest hybridisation. Hence this 5.5-6.5kb SphI fragment was deduced to contain 

the adjoining upstream genes to the insert of the clone C170 (Fig. 18a). When probed 

with the 1.5kb SphI/BamHI fragment of clone C170 fragment, a 3.5-4.5kb SphI 

fragment of the Streptomyces sp. 98-62 showed the strongest hybridisation (Fig. 18b). 

Hence this  

3.5-4.5kb SphI fragment was deduced to contain the adjoining downstream genes to 

the insert of the clone C170. 
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4.8 SUBGENOMIC LIBRARY CONSTRUCTION AND SCREENING 

OF THE RECOMBINANT CLONES BY PCR TO IDENTIFY THE 
ADJOINING DOWNSTREAM GENES TO THE INSERT OF THE 
CLONE C170; CLONE C2 

4.8.1 SUBGENOMIC LIBRARY CONSTRUCTION 
 
 

A library of the Streptomyces sp. 98- 62 DNA fragments was constructed by 

isolating the total genomic DNA, digesting it with SphI, and ligating the purified 3.5-

4.5 kb fragments into the SphI site of the vector pUC18. The ligation mixture was then 

introduced to E. coli Top 10 competent cells. After overnight incubation at 37°C, 500 

white and ampicillin resistant colonies were patched onto LB+ ampicillin plates. 

 
4.8.2 PCR SCREENING TO IDENTIFY THE CLONE CONTAINING THE 

DOWNSTREAM GENES TO THE INSERT OF THE CLONE C170 
 
 

The plasmid DNA from pools of 50 colonies were extracted and used as 

template for PCR screening to identify a clone containing the DNA fragment that 

overlaps and carries the downstream genes to the insert of the clone C170.  From the 

deduced DNA sequence of the insert of the clone C170, a pair of primers depicting the 

DNA fragment spanning the deduced overlapping region of clone C170 and the 

putative downstream gene fragment, was designed. This pair of primers was expected 

to amplify a 573 bp product. From the identified positive pool of 50 colonies, 

screening was narrowed to subpools of 10 colonies and thereafter to individual 

colonies. One clone, C2 was identified to give a PCR product of the expected size  

(Fig. 19a, b). 
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4.9 RESTRICTION AND SEQUENCE ANALYSIS OF THE 

RECOMBINANT CLONE C2 IDENTIFIED TO CONTAIN THE 
FRAGMENT THAT CARRIED THE ADJOINING DOWNSTREAM 
GENES TO THE INSERT OF THE CLONE C170; CLONE C2 

 
 

Restriction digestion of the C2 plasmid DNA with SphI gave an insert fragment 

of approximately 3.8kb. Restriction digestion of the C2 plasmid DNA with BamHI 

gave three fragments of the approximate sizes 1.5 kb, 2.1 kb and 2.6 kb, upon gel 

electrophoresis. Clone C2 was sequenced using M13 forward and reverse primers. 

Complete sequence of the clone C2 was obtained from primer walking. The nucleotide 

sequences were aligned using the BLAST2 program. By searching database using the 

BLAST program, the identity of the complete nucleotide sequence was elucidated. 

The recombinant clone was restricted with BamHI, SphI, and BamHI+SphI in 

order to restriction map the clone. The restriction profile and deduced restriction map 

are given in the Fig. 20a, b. The complete sequence of the insert fragment of the 

recombinant clone C2 was determined to be 3682 bp. Analysis of the sequence for 

restriction sites confirmed the predicted restriction profile. Conserved sequences for 

the restriction enzyme BamHI occurred at the nucleotide position 1537 and 3139. 

Conserved sequences for the restriction enzyme SphI was only observed at the 

beginning end of the insert fragment. The end part of the clone was resistant to 

sequencing and therefore sequence information for the last 20-30 nucleotides was very 

noisy. 

The nucleotide sequences were analysed for encoded protein products. The 

domains represented are a partial AT, a complete DH, a complete KR, a complete ACP 

and a partial KS in the stated order. The nucleotide sequence and the order of PKS I 

gene domains is in agreement with the deduction that the clone C2 overlaps and lies 

downstream of the clone C170. 
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 The sequence analysis also revealed that the 3.8 kb fragment of the clone C2 

encompasses 2 modules, module 2 and a downstream module designated for 

convenience as module 3. There is no stop/start codons or ribosomal binding sites or 

such regulatory sequences between the two modules. This suggests that module 2 and 

module 3 are translationally coupled and belong to the same ORF, ORF 2.  
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Figure 20a: Restriction profile of clone C2 digested with different restriction enzymes. 
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4.10 SUBGENOMIC LIBRARY CONSTRUCTION AND SCREENING 

OF THE RECOMBINANT CLONES BY PCR TO IDENTIFY THE 
ADJOINING UPSTREAM GENES TO THE INSERT OF THE 
CLONE C170; CLONE E27 

4.10.1 SUBGENOMIC LIBRARY CONSTRUCTION 
 
 

A genomic library of the Streptomyces sp. 98- 62 DNA fragments was 

constructed by isolating total genomic DNA, digesting it with SphI, and ligating the 

purified  

5.5-6.5 kb fragments into the SphI site of the vector pUC18. The ligation mixture was 

then introduced to E. coli Top 10 competent cells. After overnight incubation at 37°C, 

500 white and ampicillin resistant colonies were patched onto LB+ ampicillin plates. 

 
4.10.2 PCR SCREENING TO IDENTIFY THE CLONE CONTAINING UPSTREAM 

GENES TO THE INSERT OF THE CLONE C170 
 

 
The plasmid DNA from pools of 50 colonies were extracted and used as 

template for PCR screening to identify a clone containing DNA that overlaps and 

carries the upstream genes to the insert of the clone C170.  From the deduced sequence 

of the clone C170, a pair of primers depicting the DNA fragment spanning the deduced 

overlapping region of clone C170 and the putative upstream gene fragment, was 

designed. This pair of primers was expected to amplify a 444 bp product. From the 

identified positive pool of 50 colonies, screening was narrowed to subpools of 10 

colonies and thereafter to individual colonies. One clone, E27 was identified to give 

the PCR product of the expected size (Fig. 21a, b). 
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4.11 RESTRICTION AND SEQUENCE ANALYSIS OF THE 

RECOMBINANT CLONE E27 IDENTIFIED TO CONTAIN THE 
DNA INSERT THAT CARRIED THE ADJOINING UPSTREAM 
STREAM GENES TO THE INSERT OF THE CLONE C170; 
CLONE E27 

 
 

Restriction digestion of the E27 plasmid DNA with SphI gave an insert 

fragment of approximately 6.1kb. Restriction digestion of E27 plasmid DNA with 

BamHI gave two fragments of the approximate sizes 3.7kb and 5.4kb upon gel 

electrophoresis.  The 3.7kb BamHI fragment was deduced to be the overlapping region 

between clone E27 and the clone C170.  The larger fragment, which was expected to 

contain the pUC18 vector, was self-ligated and sequenced using M13 forward and 

reverse primers. This subclone was designated as p2.3KBE27. Complete sequence of 

the subclones was obtained from primer walking. The nucleotide sequences were 

aligned using the BLAST2 program. By searching database using the BLAST 

program, the identity of the complete nucleotide sequence was elucidated. 

The recombinant clone was restricted with BamHI, SphI, and BamHI+SphI in 

order to restriction map the clone. The restriction profile and deduced restriction map 

is given in the Fig. 22a,b. The complete sequence of the insert fragment of the 

recombinant clone E27 was determined to be 6069 bp. Analysis of the sequence for 

restriction sites confirmed the predicted restriction profile. Conserved sequences for 

the restriction enzyme BamHI occurred at the nucleotide position 2340. Conserved 

sequences for the restriction enzyme SphI was observed at the beginning and the 

ending of the insert fragment.  

The nucleotide sequence of the DNA insert in clone E27 was analysed for 

encoding protein products. The domains represented in the 6.1 kb sequence are a 

partial KS, a complete AT, a complete DH, a complete KR, a complete ACP and a 
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partial KS. The nucleotide sequence and the order of PKS I gene domains of the clone 

E27 is in agreement with the deduction that the clone E27 overlaps and lies upstream 

of clone C170.  
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4.12 RESTRICTION ANALYSIS AND SEQUENCE ANALYSIS OF 

OVERLAPPING CLONES C2, C170 AND E27 
 
 

In order to further characterize the cloned DNA region of the Streptomyces sp. 

98- 62 and to analyse the potential similarities of these to PKS genes from 

actinomycetes, the nucleotide sequence of the 11656bp fragment was determined and 

the restriction profile elucidated. The nucleotide sequence is shown in Fig. 23. The 

restriction profile of the three contiguous clones are shown in Fig. 24.  

 
4.12.1 SEQUENCE OF OVERLAPPING CLONES C2, C170 AND E27 
 
 
GCATGCTCTTTGNNTAACGGTTCTCCGACGCCCGTCGCAACGGNCACCGGGTCCTGGCCGCGGTCCGTTNTTCCGCCGTCAACTCCG
ACGGCGCGTCCAACGGGCTGACCGCCCCCAACGGGCCCTCCCAGCAACGCGTCATCCGCGCCGCGCTCGCCGCCGCCCGCCTCGCCC
CGGCCGATGTCGACGCGGTCGAGGCGCACGGCACCGGCACCACGCTCGGCGACCCGATCGAGGCGCAGGCGCTGCTGGCCACGTACG
GCCAGGACCGGCCGGGCGACGAACCCCTCTGGCTCGGCTCCGTCAAGTCCAACATGGGCCACACCCAGGCCGCCGCCGGGGTGGCCG
GAATCATCAAGATGGTCATGGCGATGCGGCACGGCACCCTGCCCCGCACCCTGCACGTCGACACGCCCTCCCACCAGGTCGACTGGA
CGACGGGCGCGGTCCGCCTGCTCACGGAGGAGCGGCCCTGGCCGGGAGCGGCGGACCGTCCGCGCCGGGCGGGGGTGTCCTCGTTCG
GGATCAGCGGCACCAACGCCCATGTGATTCTTGAGGAGTTCGAGGAGTTCGAGGAGTTCGCGGGGGAGCCGGTCGGGACGGGGCCGC
GGACCGCCGGTCCGGACGCCGACGGGCACGACGGTGCGGCAGCGCACCCTCCCGCCACGCCGCCCGTACTCGCCCTTCCGGTCTCCG
CCCGCTCACCCGAGGCCCTGCGCGGCCAGGCGGCCCGCCTGCGGGAACTGACCGGCACCTCGGCCGCCGAACTCGGCCTCGCCCTGT
CCACCACCCGCACCACCCACCCGTACCGCGCCGTCGTCCTCGCCCCCGGTGAGGAGCGGGCCGACGAGGCCCTGGACGCCCTCGCCC
ACGGGCACGAGGCACCCGGCCTGCTCGTCAGCGGTTCCATCACCGACGGCACCCTGGCCTGTCTGTTCTCCGGGCAGGGCGCCCAGC
GGCCCGGCATGGGCCGGGACTGGTACGACACCTTCCCGGTCTACGCGGAGCACTTCGACCGCACGGGCGAACTCTTCGCCAAGCACC
TGGAACGGGCGCTCGCCGAAGTGGTCCTGGGCGACCACCCCGACGTACTGGAACGGACCGCCTACACCCAGGCCGCCCTCTTCACCA
CCCAGGTCGCCCTCTACCGACTGCTGGAGTCCTTCGGGCTGCGGCCCGACTGGCTGGCCGGCCACTCCGTCGGCGAGTTCGCCGCCG
CGCACGTCGCCGGTGTGTGGTCGCTCCAGGACGCCGTCACCGCCGTCGCGGCGCGCGGCAGGCTCATGCAGGCGCTTCCCGAGGGCG
GTGCGATGACCGCCGTACAGGCCGCCGAGGAGGAGGTGCGGCCGCTGCTGGACGAACGGTGCGACATCGCCGCGGTCAACGGCCCGC
GCGCCGTGGTCGTCTCCGGGGACGAGGACGCCGTCGCCGCCGTCGCCGCGCACTTCGCCACCACCCGGCGACTGCGCGTCTCGCACG
CCTTCCACTCGCCGCGCATGGAACCCGTGCTGGACGAGTTCCGCCGGGTCTTGGCCGCCCTGCCGGCCGGGGAACCGGCCCTGCCGA
TCGTCTCCACCCTCACCGGCGCCCGGGCCACCGCCGCCGAACTCGGCTCCGCCGACTACTGGGTACGGCACGTACGGGAGACCGTCC
GCTTCGCCGACGCCGTGGGGACGCTGGCCGCGCAGGGCGCCGACACCTTCCTCGAACTCGGCGCCGCTCCCGTCCTGACGGCCCTCG
GCCCGGACTGCCTCCCGGACGCGGACGCCGAGGAGGCCGCGTTCGTCCCCACCGCCCGCAAGGGCACCGCCGAGGTGCCCGGTCTGC
TGGCCGCCCTGGCCGCCGTGCACACCCGCGGTTCGGACGTCGACTGGGCGGTCCTCTACGACGGCCTCCCCGGGCACCGCGACCGAC
CCGGGCGCCGCGACGAACCCGGGCACCGCGACCAACCGGGGCGCCGTGACCAACCGGGGCGCCGCGTCGAACCGGGGCGTTGTGTCG
AGCTGCCTACCTACGCCTTCCAGCACCGCCGCTACTGGCTTCCCACGTCCACCGCCACCGCCAGGGGCGACGCTGCCGGTCACGGTC
TCGCGGCCGTCGACCACCCCTTCGTCAGCGCCCGCCTCGACCTGCCGGGCGACGGCGGAACCCTGCTCACCGGCCGGATCTCCACCG
CCACCCACCCGGTGCTCGCCCAGCACGCCGTGCTCGGATCGGTGCTGGTGCCCGGCGCCGCCCTCGTCGATCTCGCCCTGTACGCAA
GTGGGTTGACGGGACGCCCGGTGCTGGAGGAACTCACCCTCCAGGCCCCGTTGGCCCTGCCCGGGAACGGTGCCGTACGGATCCAGG
TCGCGCTCCGGCCCGACGGCGGTGTGGAGATCCACTCCCGGCCCGCCGATGCGCCCGAGGACGGGAGCTGGACCCGGCACGCCACCG
GCACCCTCACCGTCACCGACCCCGCCTCCGGACTTCCCGCGTCGTCCGTTCCGTCCGCCGCCTGGCCGCCGCCGGGTGCCGTGCCGC
TCGACACCGACGGCCTCTACGAGCGGCTGCGCGGCGAGGGTTACGACTACGGCCCCGTCTTCCAGGGCGTACGGGCCGCCTGGCGGC
ACGGCGACACGGTCCTCGCCGAACTCGAACTGCCCGCCGAGGCCCGGCAGGACGCCGCCCGGCACGTCCTGCACCCCGCGCTGCTGG
ACTCCGCCCTGCACACCACCGCCCTCGCCGACGCGGACGCCCGCGACGCGGTACCGGACGGCACGATCGCCCTGCCCTTCGCCTGGA
CCGGTGTCACCGTGCACGGACGGCCGTCGTCACGTACCACCCCGTCCCGCACGGGCGTCCCCTCCCGCGCAGCCGCCCCGGACCACA
CCGCAGCCCGGGTCCGCGTCACCCGGGGCGAGGAGGGCATCCGGCTCGATCTGACGGACACCGAGGGCGGGCCGCTGGCCACTGTCG
CGTCCTACGTCACCCGCCCCGTCACCGCCGACCGGCTCACCGGGCGGCAGCGTTCCCTGTACGTCGTCGAGGACGCGCCGCTCCCCG
AGTCCGCCGGGCGCCCCGAGCGCCGCACCTGGGCCGTGCTGGGCCCGGACGACCTCGGACTCGGCGTCCCGCACCACCCCGAACCGG
CCGCGATCGACGGCCCCGCACCCGACGTCGTCGTCCTTCCGGTGCACATCCCGGACGTCGCCGACGCGGACGCCGACGGCGAACGGG
TGCCGGGGGCCGTGCGTACCGCGCTGAACACGACGCTCACGACCCTCCGGGCCTGGCTGGACGACGAACGCCGGGCCGGTTCCACGC
TGCTGGTGCTCACCGAGGGAAGCCTCGCCGACGCCGCCGTGCACGGACTGGTGCGGGCCGCGCAGGCCGAACACCCGGGCCGGATCG
TCCTTGTCGGCCGGGCCGGGCCCGGCAGCCCCGTCCCGGACCGCGCAGCGCTGGCCGCCGTCCTCGACTCCGGTGAACCGGAGGTGC
GGTGGCGGGACGGCCGGGCCCACGCCCCGCGCCTGGTGCGCGCCGGGGAGCCGGACGCGCCGCGCACCGGGCGCCCCTGGGGCACCG
TCCTGATCACCGGCGGCACCGGCGGGCTCGGCGCCCTGGTGGCCCGGCACCTGGTGACCCGGCACGGCGTCACCCGCCTGATCCTGG
CGGGCCGTCGCGGACCCGCCGCCCCGGGCGCCGACGAACTGCGCGCGGACCTGGCCGGCCTGGGCGCCCAGGCCGATGTCGTCGCCT
GCGACGTCGCCGACCGCACGGCGCTCGCCGCGCTGCTGGCCGCCCACCCCGTCGACAGCGTCGTGCACACCGCGGGCGTCCTGGACG
ACGGACTGGTCACCTCGCTCGGCCCCGAACGCCTGGACACGGTCCTGCGCCCCAAGGCGGACGCCGCCTGGCACCTGCACGAACTGA
CCCTCGACCGGCCGCTGTCCCACTTCGTGCTGTTCTCCTCGGCAGCGGGCACCATCGACGCCTCCGGCCAGGGCAACTACGCCGCCG
CCAACGTCTTCCTCGACGCCCTGGCAGTCCACCGTGCCGCCCGGTACCTGCCGGCGCTCTCCCTCGCCTGGGGCCTGTGGTCCGGTG
GCGGCATGGGAGCCGGCCTCGACGAGAGCGGCGCCCGGCGCATCGAACGGTCCGGCATCGGCGCCCTCGACCCGGAGGAGGGCCTCG
AACTCTTCGACGCCGCCGTGGCGTCCGGCCGCCCCGCCCTGGTGCCGGTCCGGCTGGACACCACCGTGCTGCGCCGCCGGGGCGACG
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ACGTACCGCCGGTGCTGCGCACCCTGGCCGGTGTCACCGCCCCCGCCGCACGGGAGGACCGGACCCGCGGCCTCGGCGAGCGCCTGG
CCGCCCTGCCCGCCGCCGACCACGAGCACACCGTGCTGGAGGCCGTCCGTACCGAGGTCGCCGCCGTCCTCGGCCACGACGGACCCG
CCGCGGTCGGGCCTCGGCGCGCTTTCACCGAGCTGGGATTCGACTCGCTCGCCGCGGTCGAACTGCGCAACCGGCTCAACGCGATCA
GCGGACTGCGCCTGCCGTCGACGCTCGTCTTCGACTACGCCACTCCCGTGGCGCTGGCGGGCCATCTGCTCGAACGGCTAGCCCCGG
ACGACGACACCGGCACCGGTGCGGCGCCCACCGACCCGAGGGGCGACGACGAGGTGCGGGCCCTCATCGACCGCATCCCGATCGCGC
GCATCCGCGACGCCGGACTGCTCGACGGGCTGCTGAGACTGTCCGAAGCGGCCCCGCCCGCACCGCCCGCCGCCGACCGGGTCATGG
ACATCAGGTCCATGGGGGTGGCCGATCTGGTGCGAGCCGCGCTGAACCGCACCAGCCCCGAGTGAGACCGCCCCGGTGCCGGACCGC
GCGGACCACGCGCCGCGTCCGGAACCGGCCGCACATCCGGCCCGCACATCCGGCCGGTACGACCGGCCGCACATGGTCGGCCCGTAC
GACCGCCCATACGGCCGGAGCACCTCAGCCGTACCTCCGCAGCACCTCCAGCGCGTCCCCCGCACATCCGCACCGCGTCACCAGCGC
CGCCGAGTCAGCCAGTGCTGCGACGGGAAAGGTTCACCGGCTCGCGACGCCCGGCACGGCACCTCGCCGCGTTGTCGCATCACCCGA
GTACGTCCCGTACGAGGGCGATCCTCCGCCTTACGACGCACCGCACCGGACGCCGCGAGCTTCCCGGCAAACCCTTCCGGCCACAGC
ACTAGGGAGCGATACCGACCGTGGACACATCCGTCGAGCAGATCGTCGAGGCGCTGCGCGAGGCCATGCTCGAGAACGAGCGGCTGC
GCCGGCAGAACGACCGGATCGCCGAAGCGGCGCACGAGCCCGTCGCCGTCGTCGCCATGAGCTGCCGCTACCCCGGCGGCGTCGGCA
CGCCCGAACAGCTGTGGCAACTGGTCGACGCCGGAGTGGACGCCGTGGGCGACTTCCCGGACGACCGGGACTGGGACGTCGACGCCA
TCTACGATCCCGACCCCGACGCCCCCGGCAGGACCCATGTGCGCGAGGGCGGATTCCTCCACGACGCACCGCGGTTCGACCCGGGCT
TCTTCGGTATCAGCCCGCGTGAGGCCCTCGCCATGGACCCGCAGCAGCGGCTGCTGCTGGAGACCGCCTGGGAGGCGTTCGAACGCG
GCGGCATCGACCCGCACACCCTGCGCGGCAGCCGCACCGGCATCTACGCCGGGGTCATGTACCACGACTACGGCAGCTGGCTCACCG
ACGTACCGGAGGGCGTCGAGGGCTACCTCGGCAACGGCAACCTCGGCAGCGTCGCCTCCGGCCGCGTCTCCTACACGCTCGGCCTGG
AGGGCCCCGCCGTCACCGTCGACACCGCCTGCTCCTCCTCGCTGGTCGCCCTCCACCTGGCCGTGCAGGCCCTGCGCACCGGCGAGT
GCGCCCTCGCCCTGGCCGGGGGCGTGACCGTGATGTCCACCCCGGACACCTTCATCGACTTCTCCCGCCAGCGCGGGCTCGCCCTGG
ACGGGCGCTGCAAGTCCTTCGCGGAGGGCGCCGACGGCACCGGCTGGGGCGAGGGCGTCGGCATGCTCCTGCTGGAACGGCTCTCCG
ACGCCCGCCGCAACGGCCACCGCGTCCTCGCCGTCGTCCGCGGCACCGCCGTCAACCAGGACGGCGCCTCGAACGGGCTGACCGCGC
CCAACGGCCCCTCCCAGCAACGCGTCATCCGCGCCGCGCTCGCCGACGCCCGCCTGGAACCCCACCAGGTGCACGCCGTGGAGGCGC
ACGGCACCGGCACCCCGCTCGGCGACCCCATCGAGGCCCAGGCCCTGCTCGCCACCTACGGGCAGGACCGGCAGGCCGGCGAACCGC
TGTGGCTGGGCTCGGTCAAGTCCAACATCGGGCACACCCAGGCCGCCGCCGGGGTCGCCGGCGTCATCAAGATGGTGATGGCCATGC
GCCGCGGCAGGCTGCCGAGGACGCTGCACGCCGAACACCCCACCACCCGGGTCGACTGGGAGTCCGGCGCCGTCGAACTGCTCGGCG
AGGCCCGCGACTGGCCGGACGCGGGGGAGCCCCGCCGCGCCGCCGTGTCCTCCTTCGGCATCTCCGGCACCAACGCCCACGTCATCG
TCGAGGCGGCCCCCGACCCCGAGCCGCGCACCGGGGAACCCGTCTGGGACCGGCCGCTGCCGCTGGTGCTCTCCGCCCGAGACGAAC
CGGCCCTGGCCGCCCAGGCACGCCGCATCCTCGACCACCTGGAGACCGGCGCCGACCTCGTCCCCGACATCGCCTACGCCCTGGCCA
CCACCCGCGCCGCCCTGGACCGGCGGGCCGTCGTCATCGGCGCCGACCCGGCCACGATCACCGCGCGGCTCGCCGCCCTGGCCGAGG
ACGATCCGGCGTCCGACGTGGTGCGCGGCGCACCGGCGGGGGAGTCCCGCATCGCGTTCGTCTTCCCCGGGCAGGGCTCCCAGTGGG
CCGGCATGGCCGCCGAACTGCTCGACGGCTCACCGGTGTTCGCGGCGGCCATGGCCGACTGCGCCGAGGCGCTCGCCCCCTTCACCG
ACTGGGACCTCGTCGACACCGTCCGGGAGCGCCGCCCCATGGAGCGGGTGGACGTGGTCCAGCCCGCGCTGTGGGCGATCATGGTCT
CGCTGGCCGAGGTGTGGCGCGCGCACGGGGTGCGGCCCGCCGCCGTCATTGGGCACTCCCAGGGCGAGATCGCCGCCGCGTGCGTGG
CGGGCGCGCTGAGCCTGTCCGACGGGGCCCGCGTGGTGGCCCTGCGCAGCCGGGCCATCGCGGAAGTGCTCTCCGGACCCGCCGATT
CCGGGACCGTTCCCGGGAAAGGTGCCTCCGGGCCCACCAATTCGGCGCGTGGCGCCTGTGGCCGCGGCGGGATGATGTCGGTGGCGC
TGCCCGAGTCCCGGGCGCGCGAACTCGTCGCCGCCCACGACGGGCGGGTCGCCGTGGCCGCGGTCAACGGCGCCTCGTCGGTGGTGC
TCTCCGGGGACGCCGAGGTGCTCGACGCGCTGCGCGAGAGGATCGTCGCGGACGGCGGCCGGGCCAAGCGGCTGCCGGTGGACTACG
CCTCGCACTGCGCCCATGTCGAGTCGATCCGCGAACGGCTGCTCACCGACCTCGCGGGCGTACGGGCCCGGGGGGCCGACGTACCGT
TCTACTCCACCGTCACCGGTGCAGTGCTGGACACCACCGCGCTGACCGCCGACTACTGGTACACGAACCTGCGCCGGAGCGTGTTGT
TCGAGCCGACCACCCGGGCCCTGCTCGATTCCGGATACGGGATCTTCGTCGAGTGCAGCCCGCACCCGGTGCTGCTGAACAGCATCG
AGGAGACCGCCGACGCCGTGGGCGCGACCGTCACCGGGCTGGGCTCGCTGCGCCGCGACGACGGCGGGGCCGAGCGCCTGCTCACCT
CGCTCGGCGAGGCGTTCGTGGCGGGTGTCCCGGTCGACTGGTCGGCGGTGTTCACGGGCATGCCGGTGCGCGCCGCCGATCTGCCCA
CGTATCCCTTCCAGCGCGAGCGCTACTGGCTGGGCCGGTCCGCGGCCTCCGGCGACGTCACCGCCGCCGGGCTGCGGGCCACCACCC
ATCCGCTGCTGGGCGCGGCAGTCCAGGTCGCCGGGGGCGGCACCCTGTTCACCGGCCGGCTCTCCGTGTCCACCACGCCCTGGCTGG
CCGACCACGCGGTCTCGGGCACCCCCCTGCTGCCCGGCACCGCGCTGGTGGAGCTGGCGCTGAGCGCGGGCCACGAACTCGGGTACG
GGCACGTCGCCGAACTCACCCTCCAGGCGCCGCTGGTGCTGCCCGGCCGGGCGGCGGTCCAGTTCCAGGTACACGTGGCCGCCGCCG
ACGAGGACGGCCACCGCGCGCTGACCGTCCACTCCCGCCCCGAGGGCGCCGACGACACCGAGTGGACCGCGCACGCCACCGGGCTGC
TCGCCCCGCGGACCGCCCCGCCCGGCTTCGACCTCGCGCAGTGGCCGCCCCGGGGCGCGGAACCGGTGCTGGTGGACGACGCCTACG
ACACGCTGGCCGCGCTCGGCTACGACTACGGGCCCGCCTTCCAGGGCCTGCGCGCGGTCTGGCGGCGTGGCGACGAGACCTTCGCCG
AGGTCGAACTCCCCGGTGAGGCAGGTGCGTTCGGCCTGCACCCGGCCCTGTTCGACGCGGCCCTGCACGCCGACGGCCTGCGCACGG
CCCCGCCCGGCACCGACGGCCCCGGGGCGCGGGGGCAGGGGGCGGCGCGGCTGCCCTTCGTCTGGACCGGCGTGTCGTTGTATGCGT
CCGGGGCCACCGCCCTGCGGGTCCGCATCCGGGGCGGCGACACGCTCTCCCTGGACCTGGCCGACCCGACCGGCGCACCGGTCGCCG
CCGTGGAGGCCCTGGTCTCCAGGCCGGTCGACCCGGCGGCGCTGACCTCCCCGGTCCGGGACGACGACCTGTACCGGCTGGACTGGC
AGGCGCTGCCCGTACCCGTGGCGGACGCGCCCGCGTACGCCGTTCTGGACGAGCGGGGCACGGCCGCGGCGGACGCCGTGCCGGACT
GGGTGGTCCTGCCGGTGAGCGGTGACGGCGGCGACCCGGTGGGCGGGGTGCGCGCGGCGACCGGGCGGGTCCTCGCCGCCGTGCGCG
ACTGGCTGGCGGACGAGCGTACGGCCGGGGCCCGGGGGGCCCGGCTGGTGGTCCTGACCGGCGGCGCGGTCGCCACCGGCACGGAGG
ACGTCACCGACCTGGCGGGTGCCGCCGTATGGGGCCTGGTCCGGGCGGCCCAGGGCGAACACCCCGACCGCTTCGTCCTGGTGGACT
CCGTCGCCCACGACGGCGGCGGCGAAAGTGCCTCCGGCCCGGGTGTCTTTGCCACCGACCGGGTCACCGAGGCCGTGCGCGCCGCCG
CGGCGAGCGGCGAACCGCAGCTGGCCCTGCGCGAGGGCACCGTACGGGTACCCCGGCTGGCCCGTGCCGCCGTAACGGGAACGGCCG
CCGTACCCGCTTTTGACGGCCCCGCGCCGGATCCTCACGGCACCGTGCTCATCACCGGCGGCACGGGAGTGCTCGGTGCCGTGGTCG
CCCGGCACCTGGCCACCGAGCACGGGGTGCGCCGTCTCGTCCTGGCCGGCCGCAGCGGCACCGCCTTCGACGACTTCGGCGATCTCG
CCGAACGCGGCACCGAGGTCGTCGTCGCCCGCTGCGACGCCGCCGAACGCGACCAACTGGCCGCGCTGCTGGCCGACATGCCCGCGG
AGCGCCCGCTGACCGCGGTGATCCACCTCGCCGGGGTCCTGGACGACGGACTGGTGACCGATCAGACACCCGGGCGACTGGACGCCG
TCCTGCGGCCCAAGGCGGACGCCGCCTGGAACCTGCACGAGCTGACCCGTGACCTGGACCTGTCGGCGTTCGTCCTCTTCTCCTCGG
CCGCGGGCACGATCGACGGCGCGGGCCAGTCCGGGTACGCCGCCGCCAACGCCTTCCTCGACGGCCTGGCCGCCCACCGCGCCGCCC
AGGGCCTGCCCGCGCTCTCCCTCGCCTGGGGCTTCTGGGAGCAGCGCACCGGGATGACCGCCCACCTCACCGACGCCGACGTGGAGC
GCATGGCACGTGCCGGGGTCCGGCCCCTGCCCACCGAGGAGGGGCTGAGGCTGCTGGACGCCGCGCTCGCCGCCGACGTACCGCTGC
TGCTGCCCGTCGGCCTGGACCCGCGCGCCCTGCGCGGTGCCGACGACGTCCCGCCCGTGCTTGCGCGCTCTGGCGCCCGCGCCCGTC
CGTCGTACGGCGGCCTCCCGCGCCACCGCCGTTCCGCCGCCGAACGGCTGGCCGCCCTCGGCGCCGCCGAACGCGAGGCGGCGCTCA
CGGAGCTGGTCCGCACCCATGTCGCGGCCGTTCTCGGGCACGGCGCGGACATGGTGCTCGACCCGCGCCGCTCCTTCCGCGAGGCCG
GTTTCGACTCGCTGACCGCGGTCGAGCTGCGCAACCGCCTCGGAAACGCCGTCGGCCTCCGGTTGCCCGCCACCCTCGTCTTCGACC
ACCCCGACGCCGAGGCCCTGGTCAGGTACCTGAAGACGGAACTCTTCGGCGCGGACCCCGAGGACGCCGAGGCCTCCACCGGGATCG
GGGCCGTCGTCCCCGGAGCGGGGTACGAACCGGACGAGCCGGTGGCGATCGTCGGGATGGCGTGCCGCTACCCCGGCGGCGTCACCA
CGCCCGAGGAGCTGTGGCGGCTCGTCGCGGACGGCGTGGACGGCATCGGCGCGTTCCCCGACGACCGGGGCTGGAACCTCGACACCC
TGTACGACCCGGAGCCCGGCAAGCCCGGCCACTGCTCCACCCGCGCGGGCGGATTCCTCTACGACGCCGCCGACTTCGACCACGACT
TCTTCGGCATCGGCCCCCGCGAGGCCCTCGCCATGGACCCGCAGCAGCGGTTGCTGCTGGAGACCTCCTGGGAGGCGCTGGAACGGG
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CCGGCATCGATCCGCACTCCGTGCGCGGCAGCCGCACCGGCGTGTTCGCCGGGGTCATGTACCACGACTACGGCAGCAGGCTGCGCG
ACGTCCCCGAGGCCGTGCGCGACTACCTCGGCAACGGAAGCCTCGGCAGTATCGCCTCCGGCCGTATCGCCTACACCCTGGGTCTGG
AGGGCCCGGCGCTCACCGTGGACACGGCCTGCTCCTCGTCGCTGGTGGCGCTGCACCTGGCGGCGCAGGCACTGCGGCGGGGGGAGT
GCGGCCTGGCCCTGGCCGGTGGCGTGTCCGTGATGTCGACCGTCGACACGTTCGTGGACTTCAGCAGGCAGCGCAACCTCGCCGCCG
ACGGCCGCGCCAAGTCCTTCGCCGAGGCGGCGGACGGCACGGCGCTGTCCGAGGGCGTCGGTGTGTTGGTGTTGGAGCGGTTGTCGG
ATGCGCGGCGGTCGGGGCGTCGGGTGTGGGGGGTGGTGCGGGGTTCGGCGGTGAATCAGGATGGTGCGTCGAATGGGTTGACGGCGC
CGAATGGTCCGGCGCAGCAGCGGGTGATTCGTGAGGCGTGGGTGGCTGCGGGTGTGTCGGGTGGTGGGGTGGATGTGGTGGAGGCGC
ATGGGACGGGGACGGTGTTGGGTGATCCGATCGAGGCGCAGGCGTTGTTGTCTACGTACGGGCAGGGGCGTGGGGGTGGGGATCC 
 

Figure 23: Nucleotide sequence of clones E27, C170 and C2. Clone E27 is represented 
in brown. Clone C170 is represented in blue and clone C2 is represented in green. The 
overlapping sequence of clones E27 and C170 is represented in maroon. The 
overlapping sequence of the clones C170 and C2 is represented in turquoise. 
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4.12.2 SEQUENCE ANALYSIS OF OVERLAPPING CLONES C2, C170 AND E27 
 
 

The cloned nucleotide sequence of 11656 nucleotides from the Streptomyces 

sp. 98- 62 has a high G+ C content of 75.3%, which is typical of strains of 

actinomycetes (Wright, 1992). The sequence was compared with the available 

nucleotide sequences from the Genbank/ EMBL databank by using BLAST search, 

which revealed significant similarities with other PKS genes from several 

Streptomyces sp. and other actinomycetes. The highest score of similarity was obtained 

with Streptomyces genes encoding the synthesis of the polyketides (Fig. 25). 

 
Sequences producing significant alignments:                      (bits) Value 
 
gi|8050835|gb|AF263912.1|AF263912  Streptomyces noursei ATCC...   432   e-117  
gi|14794889|gb|AF357202.1|AF357202  Streptomyces nodosus amp...   365   8e-97  
gi|12055067|emb|AJ278573.1|SNA278573  Streptomyces natalensi...   331   1e-86  
gi|21449342|gb|AF453501.1|  Actinosynnema pretiosum subsp. a...   305   6e-79  
gi|3808326|gb|AF079138.1|AF079138  Streptomyces venezuelae m...   283   2e-72  
gi|2558836|gb|AF016585.1|AF016585  Streptomyces caelestis cy...   278   1e-70  
gi|15824136|dbj|AB070949.1|  Streptomyces avermitilis polyen...   276   6e-70  
gi|20520686|emb|AL591083.2|SC1G7  Streptomyces coelicolor co...   274   2e-69  
gi|12231153|emb|AJ300302.1|SGR300302  Streptomyces griseus p...   264   2e-66  
gi|2317859|gb|U78289.1|SFU78289  Streptomyces fradiae tylact...   260   3e-65  
gi|4678702|emb|AJ132222.1|SNA132222  Streptomyces natalensis...   260   3e-65  
gi|20520683|emb|AL512902.2|SC2C4  Streptomyces coelicolor co...   258   1e-64  
gi|15823967|dbj|AB070940.1|  Streptomyces avermitilis oligom...   248   1e-61  
gi|21999182|gb|AY118081.1|  Streptomyces sp. GERI155 putativ...   230   3e-56  
gi|9049534|gb|AF220951.1|AF220951  Streptomyces antibioticus...   208   1e-49  
gi|153407|gb|L09654.1|STMPKS3ORF  Streptomyces antibioticus ...   208   1e-49  
gi|9280381|gb|AF235504.1|AF235504  Streptomyces hygroscopicu...   200   3e-47  

 
Figure 25: Sequence comparison of the 11.6 kb of cloned genes from the Streptomyces 
sp. 98- 62 with the Genbank sequences 

 

The nucleotide sequence of the 11656kb fragment was analysed for open 

reading frames (ORFs), using the open reading frame finder at 

http://www.ncbi.nlm.nih.gov/. Two open reading frames spanning the 11.7 kb were 

elucidated. The two ORFs read in the same direction as the genes encoding the PKS 

domains. The ORFs are named ORF1 and 2 for convenience (Fig. 29). It is deduced 

that the ORF1 terminates with a stop codon TGA. A second stop codon TAG is 

predicted 372 nucleotides downstream of the first stop codon. The ORF2 is predicted 

to use ATG as the start codon, which occurs 60 nucleotides downstream of the 
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predicted second stop codon of ORF1. The sequence TGGACA, which is located 38 

nucleotides upstream of the predicted start codon of ORF2 is deduced to be the 

transcriptional promoter as the sequence is identical to ermE-P1 promoter (Strohl, 

1992). The sequence GAGG, which is located 14 nucleotides upstream of the predicted 

start codon of ORF2 is deduced to be the ribosomal binding site of ORF2 (Strohl, 

1992). As such, it is predicted that ORF1 and ORF2 are probably translationally 

uncoupled. 

The genes of the ORFs occur in a repeated modular fashion, as is characteristic 

of the PKS I genes of other actinomycetes. Three modules were identified in the 

11656bp in the PKS genes of the Streptomyces sp. 98- 62. The modules are labelled 

module 1 to 3 for convenience in the order of their positions. (Fig.27, 28). The 

sequence data from the available clones only reveal a part of modules 1 and 3. ORF1 

appeared to encompass at least one module, designated as module1 for convenience 

and ORF2 appeared to encompass at least two modules, designated as modules 2 and 3 

for convenience. There was no stop codon or start codon observed in the intermodular 

region of module 2 and module 3. Therefore it is predicted that modules 2 and 3 are 

translationally coupled.  

The limits of each domain within the modules were readily assigned by 

comparison with the modules of B-deoxyerythronolide synthase and rapamycin 

synthase (Fig. 27, 28) (Bevitt, 1992, Molnar, 1996).  Module1 was found to encode 

enzymatic domains KS, AT, DH, KR and ACP. The KS domain of module 1 within 

the 11.7kb of PKS genes is only partial. Module 1 has the highest homology to 

pimaricin producer S.natalensis. The percentage positives at the amino acid level was 

57%. The domains within module 2 also occur in the order characteristic of PKS I 

genes. Module 2 was found to encode the complete enzymatic domains KS, AT, DH, 
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KR and ACP, in the stated order. Module 2 has highest homology to avermectin 

producer S.avermitilis. The homology at the amino acid level was 72%. Module 3 

within the 11.6 kb of PKS genes encodes the N terminal portion of the KS domain. 

This short region of the KS domain has the highest homology to the KS gene of the 

avermectin producer S.avermitilis. The percentage positives at the amino acid level 

was 80%. 

The nucleotide sequence of the cloned putative PKS I genes, repeated 

occurrence of the genes as modules and domains within the modules and the 

organization of the PKS I genes was similar to other PKS I systems of streptomycetes. 

These results give strong evidence that PKS type I genes have been cloned from the 

novel anti fungal compound producer, the Streptomyces sp. 98- 62. 
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DNA: GCATGCTCTTTGNNTAACGGTTCTCCGACGCCCGTCGCAACGGNCACCGGG 
 +3:   M  L  F  X  *  R  F  S  D  A  R  R  N  G  H  R  V 
DNA: TCCTGGCCGCGGTCCGTTNTTCCGCCGTCAACTCCGACGGCGCGTCCAACG 
 +3:   L  A  A  V  R  X  S  A  V  N  S  D  G  A  S  N  G 
DNA: GGCTGACCGCCCCCAACGGGCCCTCCCAGCAACGCGTCATCCGCGCCGCGC 
 +3:   L  T  A  P  N  G  P  S  Q  Q  R  V  I  R  A  A  L 
DNA: TCGCCGCCGCCCGCCTCGCCCCGGCCGATGTCGACGCGGTCGAGGCGCACG 
 +3:   A  A  A  R  L  A  P  A  D  V  D  A  V  E  A  H  G 
DNA: GCACCGGCACCACGCTCGGCGACCCGATCGAGGCGCAGGCGCTGCTGGCCA 
 +3:   T  G  T  T  L  G  D  P  I  E  A  Q  A  L  L  A  T 
DNA: CGTACGGCCAGGACCGGCCGGGCGACGAACCCCTCTGGCTCGGCTCCGTCA 
 +3:   Y  G  Q  D  R  P  G  D  E  P  L  W  L  G  S  V  K 
DNA: AGTCCAACATGGGCCACACCCAGGCCGCCGCCGGGGTGGCCGGAATCATCA 
 +3:   S  N  M  G  H  T  Q  A  A  A  G  V  A  G  I  I  K 
DNA: AGATGGTCATGGCGATGCGGCACGGCACCCTGCCCCGCACCCTGCACGTCG 
 +3:   M  V  M  A  M  R  H  G  T  L  P  R  T  L  H  V  D 
DNA: ACACGCCCTCCCACCAGGTCGACTGGACGACGGGCGCGGTCCGCCTGCTCA 
 +3:   T  P  S  H  Q  V  D  W  T  T  G  A  V  R  L  L  T 
DNA: CGGAGGAGCGGCCCTGGCCGGGAGCGGCGGACCGTCCGCGCCGGGCGGGGG 
 +3:   E  E  R  P  W  P  G  A  A  D  R  P  R  R  A  G  V 
DNA: TGTCCTCGTTCGGGATCAGCGGCACCAACGCCCATGTGATTCTTGAGGAGT 
 +3:   S  S  F  G  I  S  G  T  N  A  H  V  I  L  E  E  F 
DNA: TCGAGGAGTTCGAGGAGTTCGCGGGGGAGCCGGTCGGGACGGGGCCGCGGA 
 +3:   E  E  F  E  E  F  A  G  E  P  V  G  T  G  P  R  T 
DNA: CCGCCGGTCCGGACGCCGACGGGCACGACGGTGCGGCAGCGCACCCTCCCG 
 +3:   A  G  P  D  A  D  G  H  D  G  A  A  A  H  P  P  A 
DNA: CCACGCCGCCCGTACTCGCCCTTCCGGTCTCCGCCCGCTCACCCGAGGCCC 
 +3:   T  P  P  V  L  A  L  P  V  S  A  R  S  P  E  A  L 
DNA: TGCGCGGCCAGGCGGCCCGCCTGCGGGAACTGACCGGCACCTCGGCCGCCG 
 +3:   R  G  Q  A  A  R  L  R  E  L  T  G  T  S  A  A  E 
DNA: AACTCGGCCTCGCCCTGTCCACCACCCGCACCACCCACCCGTACCGCGCCG 
 +3:   L  G  L  A  L  S  T  T  R  T  T  H  P  Y  R  A  V 
DNA: TCGTCCTCGCCCCCGGTGAGGAGCGGGCCGACGAGGCCCTGGACGCCCTCG 
 +3:   V  L  A  P  G  E  E  R  A  D  E  A  L  D  A  L  A 
DNA: CCCACGGGCACGAGGCACCCGGCCTGCTCGTCAGCGGTTCCATCACCGACG 
 +3:   H  G  H  E  A  P  G  L  L  V  S  G  S  I  T  D  G 
DNA: GCACCCTGGCCTGTCTGTTCTCCGGGCAGGGCGCCCAGCGGCCCGGCATGG 
 +3:   T  L  A  C  L  F  S  G  Q  G  A  Q  R  P  G  M  G 
DNA: GCCGGGACTGGTACGACACCTTCCCGGTCTACGCGGAGCACTTCGACCGCA 
 +3:   R  D  W  Y  D  T  F  P  V  Y  A  E  H  F  D  R  T 
DNA: CGGGCGAACTCTTCGCCAAGCACCTGGAACGGGCGCTCGCCGAAGTGGTCC 
 +3:   G  E  L  F  A  K  H  L  E  R  A  L  A  E  V  V  L 
DNA: TGGGCGACCACCCCGACGTACTGGAACGGACCGCCTACACCCAGGCCGCCC 
 +3:   G  D  H  P  D  V  L  E  R  T  A  Y  T  Q  A  A  L 
DNA: TCTTCACCACCCAGGTCGCCCTCTACCGACTGCTGGAGTCCTTCGGGCTGC 
 +3:   F  T  T  Q  V  A  L  Y  R  L  L  E  S  F  G  L  R 
DNA: GGCCCGACTGGCTGGCCGGCCACTCCGTCGGCGAGTTCGCCGCCGCGCACG 
 +3:   P  D  W  L  A  G  H  S  V  G  E  F  A  A  A  H  V 
DNA: TCGCCGGTGTGTGGTCGCTCCAGGACGCCGTCACCGCCGTCGCGGCGCGCG 
 +3:   A  G  V  W  S  L  Q  D  A  V  T  A  V  A  A  R  G 
DNA: GCAGGCTCATGCAGGCGCTTCCCGAGGGCGGTGCGATGACCGCCGTACAGG 
 +3:   R  L  M  Q  A  L  P  E  G  G  A  M  T  A  V  Q  A 
DNA: CCGCCGAGGAGGAGGTGCGGCCGCTGCTGGACGAACGGTGCGACATCGCCG 
 +3:   A  E  E  E  V  R  P  L  L  D  E  R  C  D  I  A  A 
DNA: CGGTCAACGGCCCGCGCGCCGTGGTCGTCTCCGGGGACGAGGACGCCGTCG 
 +3:   V  N  G  P  R  A  V  V  V  S  G  D  E  D  A  V  A 
DNA: CCGCCGTCGCCGCGCACTTCGCCACCACCCGGCGACTGCGCGTCTCGCACG 
 +3:   A  V  A  A  H  F  A  T  T  R  R  L  R  V  S  H  A 
DNA: CCTTCCACTCGCCGCGCATGGAACCCGTGCTGGACGAGTTCCGCCGGGTCT 
 +3:   F  H  S  P  R  M  E  P  V  L  D  E  F  R  R  V  L 
DNA: TGGCCGCCCTGCCGGCCGGGGAACCGGCCCTGCCGATCGTCTCCACCCTCA 
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 +3:   A  A  L  P  A  G  E  P  A  L  P  I  V  S  T  L  T 
DNA: CCGGCGCCCGGGCCACCGCCGCCGAACTCGGCTCCGCCGACTACTGGGTAC 
 +3:   G  A  R  A  T  A  A  E  L  G  S  A  D  Y  W  V  R 
DNA: GGCACGTACGGGAGACCGTCCGCTTCGCCGACGCCGTGGGGACGCTGGCCG 
 +3:   H  V  R  E  T  V  R  F  A  D  A  V  G  T  L  A  A 
DNA: CGCAGGGCGCCGACACCTTCCTCGAACTCGGCGCCGCTCCCGTCCTGACGG 
 +3:   Q  G  A  D  T  F  L  E  L  G  A  A  P  V  L  T  A 
DNA: CCCTCGGCCCGGACTGCCTCCCGGACGCGGACGCCGAGGAGGCCGCGTTCG 
 +3:   L  G  P  D  C  L  P  D  A  D  A  E  E  A  A  F  V 
DNA: TCCCCACCGCCCGCAAGGGCACCGCCGAGGTGCCCGGTCTGCTGGCCGCCC 
 +3:   P  T  A  R  K  G  T  A  E  V  P  G  L  L  A  A  L 
DNA: TGGCCGCCGTGCACACCCGCGGTTCGGACGTCGACTGGGCGGTCCTCTACG 
 +3:   A  A  V  H  T  R  G  S  D  V  D  W  A  V  L  Y  D 
DNA: ACGGCCTCCCCGGGCACCGCGACCGACCCGGGCGCCGCGACGAACCCGGGC 
 +3:   G  L  P  G  H  R  D  R  P  G  R  R  D  E  P  G  H 
DNA: ACCGCGACCAACCGGGGCGCCGTGACCAACCGGGGCGCCGCGTCGAACCGG 
 +3:   R  D  Q  P  G  R  R  D  Q  P  G  R  R  V  E  P  G 
DNA: GGCGTTGTGTCGAGCTGCCTACCTACGCCTTCCAGCACCGCCGCTACTGGC 
 +3:   R  
DNA: TTCCCACGTCCACCGCCACCGCCAGGGGCGACGCTGCCGGTCACGGTCTCG 

C  V  E  L  P  T  Y  A  F  Q  H  R  R  Y  W  L 

 +3:   P  T  S  T  A  T  A  R  G  D  A  A  G  H  G  L  A 
DNA: CGGCCGTCGACCACCCCTTCGTCAGCGCCCGCCTCGACCTGCCGGGCGACG 
 +3:   A  V  D  H  P  F  V  S  A  R  L  D  L  P  G  D  G 
DNA: GCGGAACCCTGCTCACCGGCCGGATCTCCACCGCCACCCACCCGGTGCTCG 
 +3:   G  T  L  L  T  G  R  I  S  T  A  T  H  P  V  L  A 
DNA: CCCAGCACGCCGTGCTCGGATCGGTGCTGGTGCCCGGCGCCGCCCTCGTCG 
 +3:   Q  H  A  V  L  G  S  V  L  V  P  G  A  A  L  V  D 
DNA: ATCTCGCCCTGTACGCAAGTGGGTTGACGGGACGCCCGGTGCTGGAGGAAC 
 +3:   L  A  L  Y  A  S  G  L  T  G  R  P  V  L  E  E  L 
DNA: TCACCCTCCAGGCCCCGTTGGCCCTGCCCGGGAACGGTGCCGTACGGATCC 
 +3:   T  L  Q  A  P  L  A  L  P  G  N  G  A  V  R  I  Q 
DNA: AGGTCGCGCTCCGGCCCGACGGCGGTGTGGAGATCCACTCCCGGCCCGCCG 
 +3:   V  A  L  R  P  D  G  G  V  E  I  H  S  R  P  A  D 
DNA: ATGCGCCCGAGGACGGGAGCTGGACCCGGCACGCCACCGGCACCCTCACCG 
 +3:   A  P  E  D  G  S  W  T  R  H  A  T  G  T  L  T  V 
DNA: TCACCGACCCCGCCTCCGGACTTCCCGCGTCGTCCGTTCCGTCCGCCGCCT 
 +3:   T  D  P  A  S  G  L  P  A  S  S  V  P  S  A  A  W 
DNA: GGCCGCCGCCGGGTGCCGTGCCGCTCGACACCGACGGCCTCTACGAGCGGC 
 +3:   P  P  P  G  A  V  P  L  D  T  D  G  L  Y  E  R  L 
DNA: TGCGCGGCGAGGGTTACGACTACGGCCCCGTCTTCCAGGGCGTACGGGCCG 
 +3:   R  G  E  G  Y  D  Y  G  P  V  F  Q  G  V  R  A  A 
DNA: CCTGGCGGCACGGCGACACGGTCCTCGCCGAACTCGAACTGCCCGCCGAGG 
 +3:   W  R  H  G  D  T  V  L  A  E  L  E  L  P  A  E  A 
DNA: CCCGGCAGGACGCCGCCCGGCACGTCCTGCACCCCGCGCTGCTGGACTCCG 
 +3:   R  Q  D  A  A  R  H  V  L  H  P  A  L  L  D  S  A 
DNA: CCCTGCACACCACCGCCCTCGCCGACGCGGACGCCCGCGACGCGGTACCGG 
 +3:   L  H  T  T  A  L  A  D  A  D  A  R  D  A  V  P  D 
DNA: ACGGCACGATCGCCCTGCCCTTCGCCTGGACCGGTGTCACCGTGCACGGAC 
 +3:   G  T  I  A  L  P  F  A  W  T  G  V  T  V  H  G  R 
DNA: GGCCGTCGTCACGTACCACCCCGTCCCGCACGGGCGTCCCCTCCCGCGCAG 
 +3:   P  S  S  R  T  T  P  S  R  T  G  V  P  S  R  A  A 
DNA: CCGCCCCGGACCACACCGCAGCCCGGGTCCGCGTCACCCGGGGCGAGGAGG 
 +3:   A  P  D  H  T  A  A  R  V  R  V  T  R  G  E  E  G 
DNA: GCATCCGGCTCGATCTGACGGACACCGAGGGCGGGCCGCTGGCCACTGTCG 
 +3:   I  R  L  D  L  T  D  T  E  G  G  P  L  A  T  V  A 
DNA: CGTCCTACGTCACCCGCCCCGTCACCGCCGACCGGCTCACCGGGCGGCAGC 
 +3:   S  Y  V  T  R  P  V  T  A  D  R  L  T  G  R  Q  R 
DNA: GTTCCCTGTACGTCGTCGAGGACGCGCCGCTCCCCGAGTCCGCCGGGCGCC 
 +3:   S  L  Y  V  V  E  D  A  P  L  P  E  S  A  G  R  P 
DNA: CCGAGCGCCGCACCTGGGCCGTGCTGGGCCCGGACGACCTCGGACTCGGCG 
 +3:   E  R  R  T  W  A  V  L  G  P  D  D  L  G  L  G  V 

 122



                                                                                       RESULTS                   
DNA: TCCCGCACCACCCCGAACCGGCCGCGATCGACGGCCCCGCACCCGACGTCG 
 +3:   P  H  H  P  E  P  A  A  I  D  G  P  A  P  D  V  V 
DNA: TCGTCCTTCCGGTGCACATCCCGGACGTCGCCGACGCGGACGCCGACGGCG 
 +3:   V  L  P  V  H  I  P  D  V  A  D  A  D  A  D  G  E 
DNA: AACGGGTGCCGGGGGCCGTGCGTACCGCGCTGAACACGACGCTCACGACCC 
 +3:   R  V  P  G  A  V  R  T  A  L  N  T  T  L  T  T  L 
DNA: TCCGGGCCTGGCTGGACGACGAACGCCGGGCCGGTTCCACGCTGCTGGTGC 
 +3:   R  A  W  L  D  D  E  R  R  A  G  S  T  L  L  V  L 
DNA: TCACCGAGGGAAGCCTCGCCGACGCCGCCGTGCACGGACTGGTGCGGGCCG 
 +3:   T  E  G  S  L  A  D  A  A  V  H  G  L  V  R  A  A 
DNA: CGCAGGCCGAACACCCGGGCCGGATCGTCCTTGTCGGCCGGGCCGGGCCCG 
 +3:   Q  A  E  H  P  G  R  I  V  L  V  G  R  A  G  P  G 
DNA: GCAGCCCCGTCCCGGACCGCGCAGCGCTGGCCGCCGTCCTCGACTCCGGTG 
 +3:   S  P  V  P  D  R  A  A  L  A  A  V  L  D  S  G  E 
DNA: AACCGGAGGTGCGGTGGCGGGACGGCCGGGCCCACGCCCCGCGCCTGGTGC 
 +3:   P  E  V  R  W  R  D  G  R  A  H  A  P  R  L  V  R 
DNA: GCGCCGGGGAGCCGGACGCGCCGCGCACCGGGCGCCCCTGGGGCACCGTCC 
 +3:   A  G  E  P  D  A  P  R  T  G  R  P  W  G  T  V  L 
DNA: TGATCACCGGCGGCACCGGCGGGCTCGGCGCCCTGGTGGCCCGGCACCTGG 
 +3:   I  T  G  G  T  G  G  L  G  A  L  V  A  R  H  L  V 
DNA: TGACCCGGCACGGCGTCACCCGCCTGATCCTGGCGGGCCGTCGCGGACCCG 
 +3:   T  R  H  G  V  T  R  L  I  L  A  G  R  R  G  P  A 
DNA: CCGCCCCGGGCGCCGACGAACTGCGCGCGGACCTGGCCGGCCTGGGCGCCC 
 +3:   A  P  G  A  D  E  L  R  A  D  L  A  G  L  G  A  Q 
DNA: AGGCCGATGTCGTCGCCTGCGACGTCGCCGACCGCACGGCGCTCGCCGCGC 
 +3:   A  D  V  V  A  C  D  V  A  D  R  T  A  L  A  A  L 
DNA: TGCTGGCCGCCCACCCCGTCGACAGCGTCGTGCACACCGCGGGCGTCCTGG 
 +3:   L  A  A  H  P  V  D  S  V  V  H  T  A  G  V  L  D 
DNA: ACGACGGACTGGTCACCTCGCTCGGCCCCGAACGCCTGGACACGGTCCTGC 
 +3:   D  G  L  V  T  S  L  G  P  E  R  L  D  T  V  L  R 
DNA: GCCCCAAGGCGGACGCCGCCTGGCACCTGCACGAACTGACCCTCGACCGGC 
 +3:   P  K  A  D  A  A  W  H  L  H  E  L  T  L  D  R  P 
DNA: CGCTGTCCCACTTCGTGCTGTTCTCCTCGGCAGCGGGCACCATCGACGCCT 
 +3:   L  S  H  F  V  L  F  S  S  A  A  G  T  I  D  A  S 
DNA: CCGGCCAGGGCAACTACGCCGCCGCCAACGTCTTCCTCGACGCCCTGGCAG 
 +3:   G  Q  G  N  Y  A  A  A  N  V  F  L  D  A  L  A  V 
DNA: TCCACCGTGCCGCCCGGTACCTGCCGGCGCTCTCCCTCGCCTGGGGCCTGT 
 +3:   H  R  A  A  R  Y  L  P  A  L  S  L  A  W  G  L  W 
DNA: GGTCCGGTGGCGGCATGGGAGCCGGCCTCGACGAGAGCGGCGCCCGGCGCA 
 +3:   S  G  G  G  M  G  A  G  L  D  E  S  G  A  R  R  I 
DNA: TCGAACGGTCCGGCATCGGCGCCCTCGACCCGGAGGAGGGCCTCGAACTCT 
 +3:   E  R  S  G  I  G  A  L  D  P  E  E  G  L  E  L  F 
DNA: TCGACGCCGCCGTGGCGTCCGGCCGCCCCGCCCTGGTGCCGGTCCGGCTGG 
 +3:   D  A  A  V  A  S  G  R  P  A  L  V  P  V  R  L  D 
DNA: ACACCACCGTGCTGCGCCGCCGGGGCGACGACGTACCGCCGGTGCTGCGCA 
 +3:   T  T  V  L  R  R  R  G  D  D  V  P  P  V  L  R  T 
DNA: CCCTGGCCGGTGTCACCGCCCCCGCCGCACGGGAGGACCGGACCCGCGGCC 
 +3:   L  A  G  V  T  A  P  A  A  R  E  D  R  T  R  G  L 
DNA: TCGGCGAGCGCCTGGCCGCCCTGCCCGCCGCCGACCACGAGCACACCGTGC 
 +3:   G  E  R  L  A  A  L  P  A  A  D  H  E  H  T  V  L 
DNA: TGGAGGCCGTCCGTACCGAGGTCGCCGCCGTCCTCGGCCACGACGGACCCG 
 +3:   E  A  V  R  T  E  V  A  A  V  L  G  H  D  G  P  A 
DNA: CCGCGGTCGGGCCTCGGCGCGCTTTCACCGAGCTGGGATTCGACTCGCTCG 
 +3:   A  V  G  P  R  R  A  F  T  E  L  G  F  D  S  L  A 
DNA: CCGCGGTCGAACTGCGCAACCGGCTCAACGCGATCAGCGGACTGCGCCTGC 
 +3:   A  V  E  L  R  N  R  L  N  A  I  S  G  L  R  L  P 
DNA: CGTCGACGCTCGTCTTCGACTACGCCACTCCCGTGGCGCTGGCGGGCCATC 
 +3:   S  T  L  V  F  D  Y  A  T  P  V  A  L  A  G  H  L 
DNA: TGCTCGAACGGCTAGCCCCGGACGACGACACCGGCACCGGTGCGGCGCCCA 
 +3:   L  E  R  L  A  P  D  D  D  T  G  T  G  A  A  P  T 
DNA: CCGACCCGAGGGGCGACGACGAGGTGCGGGCCCTCATCGACCGCATCCCGA 
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 +3:   D  P  R  G  D  D  E  V  R  A  L  I  D  R  I  P  I 
DNA: TCGCGCGCATCCGCGACGCCGGACTGCTCGACGGGCTGCTGAGACTGTCCG 
 +3:   A  R  I  R  D  A  G  L  L  D  G  L  L  R  L  S  E 
DNA: AAGCGGCCCCGCCCGCACCGCCCGCCGCCGACCGGGTCATGGACATCAGGT 
 +3:   A  A  P  P  A  P  P  A  A  D  R  V  M  D  I  R  S 
DNA: CCATGGGGGTGGCCGATCTGGTGCGAGCCGCGCTGAACCGCACCAGCCCCG 
 +3:   M  G  V  A  D  L  V  R  A  A  L  N  R  T  S  P  E 
DNA: AGTGAGACCGCCCCGGTGCCGGACCGCGCGGACCACGCGCCGCGTCCGGAA 
 +3:   *  D  R  P  G  A  G  P  R  G  P  R  A  A  S  G  T 
DNA: CCGGCCGCACATCCGGCCCGCACATCCGGCCGGTACGACCGGCCGCACATG 
 +3:   G  R  T  S  G  P  H  I  R  P  V  R  P  A  A  H  G 
DNA: GTCGGCCCGTACGACCGCCCATACGGCCGGAGCACCTCAGCCGTACCTCCG 
 +3:   R  P  V  R  P  P  I  R  P  E  H  L  S  R  T  S  A 
DNA: CAGCACCTCCAGCGCGTCCCCCGCACATCCGCACCGCGTCACCAGCGCCGC 
 +3:   A  P  P  A  R  P  P  H  I  R  T  A  S  P  A  P  P 
DNA: CGAGTCAGCCAGTGCTGCGACGGGAAAGGTTCACCGGCTCGCGACGCCCGG 
 +3:   S  Q  P  V  L  R  R  E  R  F  T  G  S  R  R  P  A 
DNA: CACGGCACCTCGCCGCGTTGTCGCATCACCCGAGTACGTCCCGTACGAGGG 
 +3:   R  H  L  A  A  L  S  H  H  P  S  T  S  R  T  R  A 
DNA: CGATCCTCCGCCTTACGACGCACCGCACCGGACGCCGCGAGCTTCCCGGCA 
 +3:   I  L  R  L  T  T  H  R  T  G  R  R  E  L  P  G  K 
DNA: AACCCTTCCGGCCACAGCACTAGGGAGCGATACCGACCGTGGACACATCCG 
 +3:   P  F  R  P  Q  H  *  G  A  I  P  T  V  D  T  S  V 
DNA: TCGAGCAGATCGTCGAGGCGCTGCGCGAGGCCATGCTCGAGAACGAGCGGC 
 +3:   E  Q  I  V  E  A  L  R  E  A  
DNA: TGCGCCGGCAGAACGACCGGATCGCCGAAGCGGCGCACGAGCCCGTCGCCG 

M  L  E  N  E  R  L 

 +3:   R  R  Q  N  D  R  I  A  E  A  A  H  E  P  V  A  V 
DNA: TCGTCGCCATGAGCTGCCGCTACCCCGGCGGCGTCGGCACGCCCGAACAGC 
 +3:   V  A  M  S  C  R  Y  P  G  G  V  G  T  P  E  Q  L 
DNA: TGTGGCAACTGGTCGACGCCGGAGTGGACGCCGTGGGCGACTTCCCGGACG 
 +3:   W  Q  L  V  D  A  G  V  D  A  V  G  D  F  P  D  D 
DNA: ACCGGGACTGGGACGTCGACGCCATCTACGATCCCGACCCCGACGCCCCCG 
 +3:   R  D  W  D  V  D  A  I  Y  D  P  D  P  D  A  P  G 
DNA: GCAGGACCCATGTGCGCGAGGGCGGATTCCTCCACGACGCACCGCGGTTCG 
 +3:   R  T  H  V  R  E  G  G  F  L  H  D  A  P  R  F  D 
DNA: ACCCGGGCTTCTTCGGTATCAGCCCGCGTGAGGCCCTCGCCATGGACCCGC 
 +3:   P  G  F  F  G  I  S  P  R  E  A  L  A  M  D  P  Q 
DNA: AGCAGCGGCTGCTGCTGGAGACCGCCTGGGAGGCGTTCGAACGCGGCGGCA 
 +3:   Q  R  L  L  L  E  T  A  W  E  A  F  E  R  G  G  I 
DNA: TCGACCCGCACACCCTGCGCGGCAGCCGCACCGGCATCTACGCCGGGGTCA 
 +3:   D  P  H  T  L  R  G  S  R  T  G  I  Y  A  G  V  M 
DNA: TGTACCACGACTACGGCAGCTGGCTCACCGACGTACCGGAGGGCGTCGAGG 
 +3:   Y  H  D  Y  G  S  W  L  T  D  V  P  E  G  V  E  G 
DNA: GCTACCTCGGCAACGGCAACCTCGGCAGCGTCGCCTCCGGCCGCGTCTCCT 
 +3:   Y  L  G  N  G  N  L  G  S  V  A  S  G  R  V  S  Y 
DNA: ACACGCTCGGCCTGGAGGGCCCCGCCGTCACCGTCGACACCGCCTGCTCCT 
 +3:   T  L  G  L  E  G  P  A  V  T  V  D  T  A  C  S  S 
DNA: CCTCGCTGGTCGCCCTCCACCTGGCCGTGCAGGCCCTGCGCACCGGCGAGT 
 +3:   S  L  V  A  L  H  L  A  V  Q  A  L  R  T  G  E  C 
DNA: GCGCCCTCGCCCTGGCCGGGGGCGTGACCGTGATGTCCACCCCGGACACCT 
 +3:   A  L  A  L  A  G  G  V  T  V  M  S  T  P  D  T  F 
DNA: TCATCGACTTCTCCCGCCAGCGCGGGCTCGCCCTGGACGGGCGCTGCAAGT 
 +3:   I  D  F  S  R  Q  R  G  L  A  L  D  G  R  C  K  S 
DNA: CCTTCGCGGAGGGCGCCGACGGCACCGGCTGGGGCGAGGGCGTCGGCATGC 
 +3:   F  A  E  G  A  D  G  T  G  W  G  E  G  V  G  M  L 
DNA: TCCTGCTGGAACGGCTCTCCGACGCCCGCCGCAACGGCCACCGCGTCCTCG 
 +3:   L  L  E  R  L  S  D  A  R  R  N  G  H  R  V  L  A 
DNA: CCGTCGTCCGCGGCACCGCCGTCAACCAGGACGGCGCCTCGAACGGGCTGA 
 +3:   V  V  R  G  T  A  V  N  Q  D  G  A  S  N  G  L  T 
DNA: CCGCGCCCAACGGCCCCTCCCAGCAACGCGTCATCCGCGCCGCGCTCGCCG 
 +3:   A  P  N  G  P  S  Q  Q  R  V  I  R  A  A  L  A  D 
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DNA: ACGCCCGCCTGGAACCCCACCAGGTGCACGCCGTGGAGGCGCACGGCACCG 
 +3:   A  R  L  E  P  H  Q  V  H  A  V  E  A  H  G  T  G 
DNA: GCACCCCGCTCGGCGACCCCATCGAGGCCCAGGCCCTGCTCGCCACCTACG 
 +3:   T  P  L  G  D  P  I  E  A  Q  A  L  L  A  T  Y  G 
DNA: GGCAGGACCGGCAGGCCGGCGAACCGCTGTGGCTGGGCTCGGTCAAGTCCA 
 +3:   Q  D  R  Q  A  G  E  P  L  W  L  G  S  V  K  S  N 
DNA: ACATCGGGCACACCCAGGCCGCCGCCGGGGTCGCCGGCGTCATCAAGATGG 
 +3:   I  G  H  T  Q  A  A  A  G  V  A  G  V  I  K  M  V 
DNA: TGATGGCCATGCGCCGCGGCAGGCTGCCGAGGACGCTGCACGCCGAACACC 
 +3:   M  A  M  R  R  G  R  L  P  R  T  L  H  A  E  H  P 
DNA: CCACCACCCGGGTCGACTGGGAGTCCGGCGCCGTCGAACTGCTCGGCGAGG 
 +3:   T  T  R  V  D  W  E  S  G  A  V  E  L  L  G  E  A 
DNA: CCCGCGACTGGCCGGACGCGGGGGAGCCCCGCCGCGCCGCCGTGTCCTCCT 
 +3:   R  D  W  P  D  A  G  E  P  R  R  A  A  V  S  S  F 
DNA: TCGGCATCTCCGGCACCAACGCCCACGTCATCGTCGAGGCGGCCCCCGACC 
 +3:   G  I  S  G  T  N  A  H  V  I  V  E  A  A  P  D  P 
DNA: CCGAGCCGCGCACCGGGGAACCCGTCTGGGACCGGCCGCTGCCGCTGGTGC 
 +3:   E  P  R  T  G  E  P  V  W  D  R  P  L  P  L  V  L 
DNA: TCTCCGCCCGAGACGAACCGGCCCTGGCCGCCCAGGCACGCCGCATCCTCG 
 +3:   S  A  R  D  E  P  A  L  A  A  Q  A  R  R  I  L  D 
DNA: ACCACCTGGAGACCGGCGCCGACCTCGTCCCCGACATCGCCTACGCCCTGG 
 +3:   H  L  E  T  G  A  D  L  V  P  D  I  A  Y  A  L  A 
DNA: CCACCACCCGCGCCGCCCTGGACCGGCGGGCCGTCGTCATCGGCGCCGACC 
 +3:   T  T  R  A  A  L  D  R  R  A  V  V  I  G  A  D  P 
DNA: CGGCCACGATCACCGCGCGGCTCGCCGCCCTGGCCGAGGACGATCCGGCGT 
 +3:   A  T  I  T  A  R  L  A  A  L  A  E  D  D  P  A  S 
DNA: CCGACGTGGTGCGCGGCGCACCGGCGGGGGAGTCCCGCATCGCGTTCGTCT 
 +3:   D  V  V  R  G  A  P  A  
DNA: TCCCCGGGCAGGGCTCCCAGTGGGCCGGCATGGCCGCCGAACTGCTCGACG 

G  E  S  R  I  A  F  V  F 

 +3:   P  G  Q  G  S  Q  W  A  G  M  A  A  E  L  L  D  G 
DNA: GCTCACCGGTGTTCGCGGCGGCCATGGCCGACTGCGCCGAGGCGCTCGCCC 
 +3:   S  P  V  F  A  A  A  M  A  D  C  A  E  A  L  A  P 
DNA: CCTTCACCGACTGGGACCTCGTCGACACCGTCCGGGAGCGCCGCCCCATGG 
 +3:   F  T  D  W  D  L  V  D  T  V  R  E  R  R  P  M  E 
DNA: AGCGGGTGGACGTGGTCCAGCCCGCGCTGTGGGCGATCATGGTCTCGCTGG 
 +3:   R  V  D  V  V  Q  P  A  L  W  A  I  M  V  S  L  A 
DNA: CCGAGGTGTGGCGCGCGCACGGGGTGCGGCCCGCCGCCGTCATTGGGCACT 
 +3:   E  V  W  R  A  H  G  V  R  P  A  A  V  I  G  H  S 
DNA: CCCAGGGCGAGATCGCCGCCGCGTGCGTGGCGGGCGCGCTGAGCCTGTCCG 
 +3:   Q  G  E  I  A  A  A  C  V  A  G  A  L  S  L  S  D 
DNA: ACGGGGCCCGCGTGGTGGCCCTGCGCAGCCGGGCCATCGCGGAAGTGCTCT 
 +3:   G  A  R  V  V  A  L  R  S  R  A  I  A  E  V  L  S 
DNA: CCGGACCCGCCGATTCCGGGACCGTTCCCGGGAAAGGTGCCTCCGGGCCCA 
 +3:   G  P  A  D  S  G  T  V  P  G  K  G  A  S  G  P  T 
DNA: CCAATTCGGCGCGTGGCGCCTGTGGCCGCGGCGGGATGATGTCGGTGGCGC 
 +3:   N  S  A  R  G  A  C  G  R  G  G  M  M  S  V  A  L 
DNA: TGCCCGAGTCCCGGGCGCGCGAACTCGTCGCCGCCCACGACGGGCGGGTCG 
 +3:   P  E  S  R  A  R  E  L  V  A  A  H  D  G  R  V  A 
DNA: CCGTGGCCGCGGTCAACGGCGCCTCGTCGGTGGTGCTCTCCGGGGACGCCG 
 +3:   V  A  A  V  N  G  A  S  S  V  V  L  S  G  D  A  E 
DNA: AGGTGCTCGACGCGCTGCGCGAGAGGATCGTCGCGGACGGCGGCCGGGCCA 
 +3:   V  L  D  A  L  R  E  R  I  V  A  D  G  G  R  A  K 
DNA: AGCGGCTGCCGGTGGACTACGCCTCGCACTGCGCCCATGTCGAGTCGATCC 
 +3:   R  L  P  V  D  Y  A  S  H  C  A  H  V  E  S  I  R 
DNA: GCGAACGGCTGCTCACCGACCTCGCGGGCGTACGGGCCCGGGGGGCCGACG 
 +3:   E  R  L  L  T  D  L  A  G  V  R  A  R  G  A  D  V 
DNA: TACCGTTCTACTCCACCGTCACCGGTGCAGTGCTGGACACCACCGCGCTGA 
 +3:   P  F  Y  S  T  V  T  G  A  V  L  D  T  T  A  L  T 
DNA: CCGCCGACTACTGGTACACGAACCTGCGCCGGAGCGTGTTGTTCGAGCCGA 
 +3:   A  D  Y  W  Y  T  N  L  R  R  S  V  L  F  E  P  T 
DNA: CCACCCGGGCCCTGCTCGATTCCGGATACGGGATCTTCGTCGAGTGCAGCC 
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 +3:   T  R  A  L  L  D  S  G  Y  G  I  F  V  E  C  S  P 
DNA: CGCACCCGGTGCTGCTGAACAGCATCGAGGAGACCGCCGACGCCGTGGGCG 
 +3:   H  P  V  L  L  N  S  I  E  E  T  A  D  A  V  G  A 
DNA: CGACCGTCACCGGGCTGGGCTCGCTGCGCCGCGACGACGGCGGGGCCGAGC 
 +3:   T  V  T  G  L  G  S  L  R  R  D  D  G  G  A  E  R 
DNA: GCCTGCTCACCTCGCTCGGCGAGGCGTTCGTGGCGGGTGTCCCGGTCGACT 
 +3:   L  L  T  S  L  G  E  A  F  V  A  G  V  P  V  D  W 
DNA: GGTCGGCGGTGTTCACGGGCATGCCGGTGCGCGCCGCCGATCTGCCCACGT 
 +3:   S  A  V  F  T  G  M  P  V  R  A  A  D  L  P  T  Y 
DNA: ATCCCTTCCAGCGCGAGCGCTACTGGCTGGGCCGGTCCGCGGCCTCCGGCG 
 +3:   P  F  Q  R  E  R  Y  W  L  G  R  S  A  A  S  G  D 
DNA: ACGTCACCGCCGCCGGGCTGCGGGCCACCACCCATCCGCTGCTGGGCGCGG 
 +3:   V  T  A  A  G  L  R  A  T  T  H  P  L  L  G  A  A 
DNA: CAGTCCAGGTCGCCGGGGGCGGCACCCTGTTCACCGGCCGGCTCTCCGTGT 
 +3:   V  Q  V  A  G  G  G  T  L  F  T  G  R  L  S  V  S 
DNA: CCACCACGCCCTGGCTGGCCGACCACGCGGTCTCGGGCACCCCCCTGCTGC 
 +3:   T  T  P  W  L  A  D  H  A  V  S  G  T  P  L  L  P 
DNA: CCGGCACCGCGCTGGTGGAGCTGGCGCTGAGCGCGGGCCACGAACTCGGGT 
 +3:   G  T  A  L  V  E  L  A  L  S  A  G  H  E  L  G  Y 
DNA: ACGGGCACGTCGCCGAACTCACCCTCCAGGCGCCGCTGGTGCTGCCCGGCC 
 +3:   G  H  V  A  E  L  T  L  Q  A  P  L  V  L  P  G  R 
DNA: GGGCGGCGGTCCAGTTCCAGGTACACGTGGCCGCCGCCGACGAGGACGGCC 
 +3:   A  A  V  Q  F  Q  V  H  V  A  A  A  D  E  D  G  H 
DNA: ACCGCGCGCTGACCGTCCACTCCCGCCCCGAGGGCGCCGACGACACCGAGT 
 +3:   R  A  L  T  V  H  S  R  P  E  G  A  D  D  T  E  W 
DNA: GGACCGCGCACGCCACCGGGCTGCTCGCCCCGCGGACCGCCCCGCCCGGCT 
 +3:   T  A  H  A  T  G  L  L  A  P  R  T  A  P  P  G  F 
DNA: TCGACCTCGCGCAGTGGCCGCCCCGGGGCGCGGAACCGGTGCTGGTGGACG 
 +3:   D  L  A  Q  W  P  P  R  G  A  E  P  V  L  V  D  D 
DNA: ACGCCTACGACACGCTGGCCGCGCTCGGCTACGACTACGGGCCCGCCTTCC 
 +3:   A  Y  D  T  L  A  A  L  G  Y  D  Y  G  P  A  F  Q 
DNA: AGGGCCTGCGCGCGGTCTGGCGGCGTGGCGACGAGACCTTCGCCGAGGTCG 
 +3:   G  L  R  A  V  W  R  R  G  D  E  T  F  A  E  V  E 
DNA: AACTCCCCGGTGAGGCAGGTGCGTTCGGCCTGCACCCGGCCCTGTTCGACG 
 +3:   L  P  G  E  A  G  A  F  G  L  H  P  A  L  F  D  A 
DNA: CGGCCCTGCACGCCGACGGCCTGCGCACGGCCCCGCCCGGCACCGACGGCC 
 +3:   A  L  H  A  D  G  L  R  T  A  P  P  G  T  D  G  P 
DNA: CCGGGGCGCGGGGGCAGGGGGCGGCGCGGCTGCCCTTCGTCTGGACCGGCG 
 +3:   G  A  R  G  Q  G  A  A  R  L  P  F  V  W  T  G  V 
DNA: TGTCGTTGTATGCGTCCGGGGCCACCGCCCTGCGGGTCCGCATCCGGGGCG 
 +3:   S  L  Y  A  S  G  A  T  A  L  R  V  R  I  R  G  G 
DNA: GCGACACGCTCTCCCTGGACCTGGCCGACCCGACCGGCGCACCGGTCGCCG 
 +3:   D  T  L  S  L  D  L  A  D  P  T  G  A  P  V  A  A 
DNA: CCGTGGAGGCCCTGGTCTCCAGGCCGGTCGACCCGGCGGCGCTGACCTCCC 
 +3:   V  E  A  L  V  S  R  P  V  D  P  A  A  L  T  S  P 
DNA: CGGTCCGGGACGACGACCTGTACCGGCTGGACTGGCAGGCGCTGCCCGTAC 
 +3:   V  R  D  D  D  L  Y  R  L  D  W  Q  A  L  P  V  P 
DNA: CCGTGGCGGACGCGCCCGCGTACGCCGTTCTGGACGAGCGGGGCACGGCCG 
 +3:   V  A  D  A  P  A  Y  A  V  L  D  E  R  G  T  A  A 
DNA: CGGCGGACGCCGTGCCGGACTGGGTGGTCCTGCCGGTGAGCGGTGACGGCG 
 +3:   A  D  A  V  P  D  W  V  V  L  P  V  S  G  D  G  G 
DNA: GCGACCCGGTGGGCGGGGTGCGCGCGGCGACCGGGCGGGTCCTCGCCGCCG 
 +3:   D  P  V  G  G  V  R  A  A  T  G  R  V  L  A  A  V 
DNA: TGCGCGACTGGCTGGCGGACGAGCGTACGGCCGGGGCCCGGGGGGCCCGGC 
 +3:   R  D  W  L  A  D  E  R  T  A  G  A  R  G  A  R  L 
DNA: TGGTGGTCCTGACCGGCGGCGCGGTCGCCACCGGCACGGAGGACGTCACCG 
 +3:   V  V  L  T  G  G  A  V  A  T  G  T  E  D  V  T  D 
DNA: ACCTGGCGGGTGCCGCCGTATGGGGCCTGGTCCGGGCGGCCCAGGGCGAAC 
 +3:   L  A  G  A  A  V  W  G  L  V  R  A  A  Q  G  E  H 
DNA: ACCCCGACCGCTTCGTCCTGGTGGACTCCGTCGCCCACGACGGCGGCGGCG 
 +3:   P  D  R  F  V  L  V  D  S  V  A  H  D  G  G  G  E 
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DNA: AAAGTGCCTCCGGCCCGGGTGTCTTTGCCACCGACCGGGTCACCGAGGCCG 
 +3:   S  A  S  G  P  G  V  F  A  T  D  R  V  T  E  A  V 
DNA: TGCGCGCCGCCGCGGCGAGCGGCGAACCGCAGCTGGCCCTGCGCGAGGGCA 
 +3:   R  A  A  A  A  S  G  E  P  Q  L  A  L  R  E  G  T 
DNA: CCGTACGGGTACCCCGGCTGGCCCGTGCCGCCGTAACGGGAACGGCCGCCG 
 +3:   V  R  V  P  R  L  A  R  A  A  V  T  G  T  A  A  V 
DNA: TACCCGCTTTTGACGGCCCCGCGCCGGATCCTCACGGCACCGTGCTCATCA 
 +3:   P  A  F  D  G  P  A  P  D  P  H  G  T  V  L  I  T 
DNA: CCGGCGGCACGGGAGTGCTCGGTGCCGTGGTCGCCCGGCACCTGGCCACCG 
 +3:   G  G  T  G  V  L  G  A  V  V  A  R  H  L  A  T  E 
DNA: AGCACGGGGTGCGCCGTCTCGTCCTGGCCGGCCGCAGCGGCACCGCCTTCG 
 +3:   H  G  V  R  R  L  V  L  A  G  R  S  G  T  A  F  D 
DNA: ACGACTTCGGCGATCTCGCCGAACGCGGCACCGAGGTCGTCGTCGCCCGCT 
 +3:   D  F  G  D  L  A  E  R  G  T  E  V  V  V  A  R  C 
DNA: GCGACGCCGCCGAACGCGACCAACTGGCCGCGCTGCTGGCCGACATGCCCG 
 +3:   D  A  A  E  R  D  Q  L  A  A  L  L  A  D  M  P  A 
DNA: CGGAGCGCCCGCTGACCGCGGTGATCCACCTCGCCGGGGTCCTGGACGACG 
 +3:   E  R  P  L  T  A  V  I  H  L  A  G  V  L  D  D  G 
DNA: GACTGGTGACCGATCAGACACCCGGGCGACTGGACGCCGTCCTGCGGCCCA 
 +3:   L  V  T  D  Q  T  P  G  R  L  D  A  V  L  R  P  K 
DNA: AGGCGGACGCCGCCTGGAACCTGCACGAGCTGACCCGTGACCTGGACCTGT 
 +3:   A  D  A  A  W  N  L  H  E  L  T  R  D  L  D  L  S 
DNA: CGGCGTTCGTCCTCTTCTCCTCGGCCGCGGGCACGATCGACGGCGCGGGCC 
 +3:   A  F  V  L  F  S  S  A  A  G  T  I  D  G  A  G  Q 
DNA: AGTCCGGGTACGCCGCCGCCAACGCCTTCCTCGACGGCCTGGCCGCCCACC 
 +3:   S  G  Y  A  A  A  N  A  F  L  D  G  L  A  A  H  R 
DNA: GCGCCGCCCAGGGCCTGCCCGCGCTCTCCCTCGCCTGGGGCTTCTGGGAGC 
 +3:   A  A  Q  G  L  P  A  L  S  L  A  W  G  F  W  E  Q 
DNA: AGCGCACCGGGATGACCGCCCACCTCACCGACGCCGACGTGGAGCGCATGG 
 +3:   R  T  G  M  T  A  H  L  T  D  A  D  V  E  R  M  A 
DNA: CACGTGCCGGGGTCCGGCCCCTGCCCACCGAGGAGGGGCTGAGGCTGCTGG 
 +3:   R  A  G  V  R  P  L  P  T  E  E  G  L  R  L  L  D 
DNA: ACGCCGCGCTCGCCGCCGACGTACCGCTGCTGCTGCCCGTCGGCCTGGACC 
 +3:   A  A  L  A  A  D  V  P  L  L  L  P  V  G  L  D  P 
DNA: CGCGCGCCCTGCGCGGTGCCGACGACGTCCCGCCCGTGCTTGCGCGCTCTG 
 +3:   R  A  L  R  G  A  D  D  V  P  P  V  L  A  R  S  G 
DNA: GCGCCCGCGCCCGTCCGTCGTACGGCGGCCTCCCGCGCCACCGCCGTTCCG 
 +3:   A  R  A  R  P  S  Y  G  G  L  P  R  H  R  R  S  A 
DNA: CCGCCGAACGGCTGGCCGCCCTCGGCGCCGCCGAACGCGAGGCGGCGCTCA 
 +3:   A  E  R  L  A  A  L  G  A  A  E  R  E  A  A  L  T 
DNA: CGGAGCTGGTCCGCACCCATGTCGCGGCCGTTCTCGGGCACGGCGCGGACA 
 +3:   E  L  V  R  T  H  V  A  A  V  L  G  H  G  A  D  M 
DNA: TGGTGCTCGACCCGCGCCGCTCCTTCCGCGAGGCCGGTTTCGACTCGCTGA 
 +3:   V  L  D  P  R  R  S  F  R  E  A  G  F  D  S  L  T 
DNA: CCGCGGTCGAGCTGCGCAACCGCCTCGGAAACGCCGTCGGCCTCCGGTTGC 
 +3:   A  V  E  L  R  N  R  L  G  N  A  V  G  L  R  L  P 
DNA: CCGCCACCCTCGTCTTCGACCACCCCGACGCCGAGGCCCTGGTCAGGTACC 
 +3:   A  T  L  V  F  D  H  P  D  A  E  A  L  V  R  Y  L 
DNA: TGAAGACGGAACTCTTCGGCGCGGACCCCGAGGACGCCGAGGCCTCCACCG 
 +3:   K  T  E  L  F  G  A  D  P  E  D  A  E  A  S  T  G 
DNA: GGATCGGGGCCGTCGTCCCCGGAGCGGGGTACGAACCGGACGAGCCGGTGG 
 +3:   I  G  A  V  V  P  G  A  G  Y  E  P  D  E  P  V  A 
DNA: CGATCGTCGGGATGGCGTGCCGCTACCCCGGCGGCGTCACCACGCCCGAGG 
 +3:   I  V  G  M  A  C  R  Y  P  G  G  V  T  T  P  E  E 
DNA: AGCTGTGGCGGCTCGTCGCGGACGGCGTGGACGGCATCGGCGCGTTCCCCG 
 +3:   L  W  R  L  V  A  D  G  V  D  G  I  G  A  F  P  D 
DNA: ACGACCGGGGCTGGAACCTCGACACCCTGTACGACCCGGAGCCCGGCAAGC 
 +3:   D  R  G  W  N  L  D  T  L  Y  D  P  E  P  G  K  P 
DNA: CCGGCCACTGCTCCACCCGCGCGGGCGGATTCCTCTACGACGCCGCCGACT 
 +3:   G  H  C  S  T  R  A  G  G  F  L  Y  D  A  A  D  F 
DNA: TCGACCACGACTTCTTCGGCATCGGCCCCCGCGAGGCCCTCGCCATGGACC 
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 +3:   D  H  D  F  F  G  I  G  P  R  E  A  L  A  M  D  P 
DNA: CGCAGCAGCGGTTGCTGCTGGAGACCTCCTGGGAGGCGCTGGAACGGGCCG 
 +3:   Q  Q  R  L  L  L  E  T  S  W  E  A  L  E  R  A  G 
DNA: GCATCGATCCGCACTCCGTGCGCGGCAGCCGCACCGGCGTGTTCGCCGGGG 
 +3:   I  D  P  H  S  V  R  G  S  R  T  G  V  F  A  G  V 
DNA: TCATGTACCACGACTACGGCAGCAGGCTGCGCGACGTCCCCGAGGCCGTGC 
 +3:   M  Y  H  D  Y  G  S  R  L  R  D  V  P  E  A  V  R 
DNA: GCGACTACCTCGGCAACGGAAGCCTCGGCAGTATCGCCTCCGGCCGTATCG 
 +3:   D  Y  L  G  N  G  S  L  G  S  I  A  S  G  R  I  A 
DNA: CCTACACCCTGGGTCTGGAGGGCCCGGCGCTCACCGTGGACACGGCCTGCT 
 +3:   Y  T  L  G  L  E  G  P  A  L  T  V  D  T  A  C  S 
DNA: CCTCGTCGCTGGTGGCGCTGCACCTGGCGGCGCAGGCACTGCGGCGGGGGG 
 +3:   S  S  L  V  A  L  H  L  A  A  Q  A  L  R  R  G  E 
DNA: AGTGCGGCCTGGCCCTGGCCGGTGGCGTGTCCGTGATGTCGACCGTCGACA 
 +3:   C  G  L  A  L  A  G  G  V  S  V  M  S  T  V  D  T 
DNA: CGTTCGTGGACTTCAGCAGGCAGCGCAACCTCGCCGCCGACGGCCGCGCCA 
 +3:   F  V  D  F  S  R  Q  R  N  L  A  A  D  G  R  A  K 
DNA: AGTCCTTCGCCGAGGCGGCGGACGGCACGGCGCTGTCCGAGGGCGTCGGTG 
 +3:   S  F  A  E  A  A  D  G  T  A  L  S  E  G  V  G  V 
DNA: TGTTGGTGTTGGAGCGGTTGTCGGATGCGCGGCGGTCGGGGCGTCGGGTGT 
 +3:   L  V  L  E  R  L  S  D  A  R  R  S  G  R  R  V  W 
DNA: GGGGGGTGGTGCGGGGTTCGGCGGTGAATCAGGATGGTGCGTCGAATGGGT 
 +3:   G  V  V  R  G  S  A  V  N  Q  D  G  A  S  N  G  L 
DNA: TGACGGCGCCGAATGGTCCGGCGCAGCAGCGGGTGATTCGTGAGGCGTGGG 
 +3:   T  A  P  N  G  P  A  Q  Q  R  V  I  R  E  A  W  V 
DNA: TGGCTGCGGGTGTGTCGGGTGGTGGGGTGGATGTGGTGGAGGCGCATGGGA 
 +3:   A  A  G  V  S  G  G  G  V  D  V  V  E  A  H  G  T 
DNA: CGGGGACGGTGTTGGGTGATCCGATCGAGGCGCAGGCGTTGTTGTCTACGT 
 +3:   G  T  V  L  G  D  P  I  E  A  Q  A  L  L  S  T  Y 
DNA: ACGGGCAGGGGCGTGGGGGTGGGGATCC 
 +3:   G  Q  G  R  G  G  G  D   
 
 
 
Figure 27: Nucleotide sequence of the 11.6 kb PKS I genes isolated from the 
Streptomyces sp. 98– 62 and the deduced amino acid sequence. The different modules 
are represented in different colours. Module 1 of ORF1 in blue, modules 2 and 3 of 
ORF 2 in black and maroon respectively. The various deduced domains of each 
module are indicated in bold. The deduced stop codons are in red. The deduced start 
codon is in green. The deduced promoter like sequence and ribosomal binding site are 
in pink.  
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4.13 SETTING UP OF A GENE DISRUPTION EXPERIMENT 
4.13.1 GENE DISRUPTION: CHOICE OF VECTOR AND DONOR E.COLI STRAIN 
 
 

In order to prove the functions of the cloned PKS I genes of the Streptomyces 

sp. 98- 62 in the biosynthesis of the novel antifungal compound produced by the 

Streptomyces sp. 98- 62, the chosen strategy was to specifically inactivate the PKS I 

genes within the identified cluster and observe if the production of the antifungal 

compound by the Streptomyces sp. 98- 62 was negated. To perform gene inactivation 

in the Streptomyces sp. 98- 62, a gene transfer system for the Streptomyces sp. 98- 62 

needed to be established first.  

Since PEG -mediated protoplast transformation was generally not very efficient 

in addition to being time and labour intensive, intergeneric method of plasmid DNA 

transfer from E.coli to Streptomyces was attempted in order to transfer DNA into the 

Streptomyces sp. 98- 62. Since E.coli/ Streptomyces intergeneric conjugation was first 

reported by Mazodier et al (1989), this method has been successfully used with a 

number of streptomycete strains. As the Streptomyces sp. 98- 62 was identified to 

belong to Streptomyces sp., intergeneric conjugation was expected to be a feasible 

method of gene transfer into the Streptomyces sp. 98- 62. 

The plasmid pSOK201 was the vector of choice to be used in intergeneric 

conjugation. The vector contains the oriT sequence from the Inc-P group plasmid RK2, 

which allows for replication in E. coli. However this vector is a nonreplicative vector 

in Streptomyces, and needs to be integrated into the streptomycete chromosome by 

homologous recombination between a cloned DNA fragment and the homologous 

sequence in the genome, to yield stable recombinant strains. The vector pSOK201 does 

not carry the genes for transfer functions and therefore requires the transfer functions 

to be supplied in trans by the E. coli donor strain (Zotchev, 2000). 
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 The E.coli donor strain used is the methylation deficient strain ET12567 

(MacNeil, 1992), which carries a plasmid pUB307. The plasmid pUB307 is a 

derivative of RP1 (Richmond, 1976), which encodes the transfer function, tra. The use 

of E. coli (pUB307) or equivalent strains may be more widely applicable since several 

Streptomyces species have been shown to possess a methyl specific restriction system 

(Macneil, 1988). Intergeneric conjugation has also been used in streptomycetes which 

do not possess methyl DNA restriction systems (Wohllben, 1993, Mazodier, 1993). 

Thus in the case of the Streptomyces sp. 98- 62 which has been identified to be a 

streptomycete, gene transfer by intergeneric conjugation seemed to the method of 

choice of gene transfer.  

 
4.13.2 DISRUPTION CONSTRUCTS 
 
 

The plasmid pSOK201 derivatives containing DNA fragments of the 

Streptomyces sp. 98- 62 DNA ranging in size from 1. 5 kb to 7. 0 kb were tested for 

their ability to integrate into the chromosome of the Streptomyces sp. 98- 62. 

Homologous recombination between the cloned DNA and the corresponding 

homologous chromosomal region would lead to the integration of the plasmid. Four of 

the gene disruption plasmid constructs contained different DNA fragments from the 

clones E27, C170 and C2.  

The PKS I gene fragments of the Streptomyces sp. used in the gene disruption 

experiment are shown in Fig.29. Construction of the different disruption vectors and 

restriction map of the disruption constructs are also given in Fig. 30-33.  

These PKS I gene fragments of the Streptomyces sp. 98- 62 were cloned into 

the EcoRI/HindIII site of pSOK201. As C170 had no restriction site for EcoRI or 

HindIII, the restriction sites of pUC18 were used to extract out the 7.2kb insert 
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fragment of C170 from pUC18 and cloned into pSOK201.  It has to be noted that the 

7.2k b insert fragment of this disruption construct, labelled pDC170FL, contained 2 

stop codons and a start codon in the intermodular region. The insert fragment encoded 

the enzymes DH, KR, ACP, KS, AT and DH (Fig. 30). 

From the subclone of E27, p2.3KBE27, which carried the 2.3 kb BamHI/SphI 

fragment of E27, the disruption construct pDE27 was constructed. The insert fragment 

had no unique restriction site for EcoRI and  HindIII. Therefore EcoRI and HindIII 

restriction site of pUC18 were used to release the 2.3 kb insert fragment from pUC18 

and cloned into pSOK201. The insert fragment encoded the enzymes KS, AT and DH 

(Fig. 31). 

From the subclone of C170, which carried the 2.0 kb SphI fragment of C170, 

the disruption construct pD2KBC170 was constructed. The insert fragment contained 

no restriction site for EcoRI or HindIII. Therefore, restriction sites of pUC18 were 

used to release the 2.0 kb insert fragment from pUC18 and cloned into pSOK201.  The 

insert fragment encoded the enzymes KS and AT (Fig. 32). 

From the clone C2, which carried the 3.7 kb SphI fragment, the disruption 

construct pDC2 was constructed. As the insert fragment contained no restriction site 

for EcoRI or HindIII, restriction sites of pUC18 were used to release the 3.8 kb insert 

fragment of C2 from pUC18 and cloned into pSOK201.  The insert fragment encoded 

the enzymes DH, KR, ACP and KS. As a consequence of this, the insert fragment of 

this construct spanned the inter modular region of two modules. However, there is no 

predicted stop/ start codon in the intermodular region (Fig. 33). 
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The integration of the pSOK201 disruption vector constructs would bring about 

the disruption of a gene or operon only if the cloned fragment lacked the start codon 

and/or stop codon of that gene or operon. Homologous recombination between the 

insert fragment of the disruption construct and the homologous region in the intact 

chromosome would result in the integration of the whole disruption vector backbone 

into the chromosome such that there is duplication of the homologous gene fragment 

on either side of the inserted vector backbone. 

The duplicated genes would be non-functional only if the reading frame of the 

gene is disrupted such that a functional protein product cannot be produced. Such a 

situation would only arise if the homologous fragment in the gene disruption construct 

lacked the start codon and/or stop codon of that gene or operon. This is because 

insertion of such a disruption construct into the chromosome would result in one copy 

of the duplicated gene being truncated at the 3’ end and therefore would lack the stop 

codon as well as a region coding the 3’ end amino acid. This copy would also most 

likely produce a non-functional gene product, as the gene product would be truncated. 

However in some cases, the truncated copy might still possess some residual activity, 

especially in large multifunctional proteins. The second copy of the duplicated gene 

would be truncated at the 5’ end lacking the ribosomal binding site, start codon and a 

region coding the 5’ end amino acids. Therefore this copy would be unlikely to 

produce a functional gene product (Fig. 34).  
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GENE DISRUPTION USING DISRUPTION CONSTRUCT WITHOUT A STOP/ 
START CODON 
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GENE DISRUPTION USING DISRUPTION CONSTRUCT WITH A START/ STOP 
CODON 
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4.14 GENE DISRUPTION USING pDC170, A DISRUPTION 

CONSTRUCT WITH STOP/START CODONS  
 
 

Initial optimisation experiments were done using the C170 gene disruption 

construct. Optimisation experiments included incubating agar plates of conjugation 

mixes at two different temperatures for 5 days to determine the effect of temperature 

on conjugation. The conjugation mixes were incubated at either 30°C or 37°C for 5 

days. Higher temperatures have been shown to increase conjugation frequency in 

Streptomyces fradiae (Schoner, 1992).   

 Intergeneric conjugation experiments with integrative pSOK201 gene 

disruption constructs from donor strain E.coli (pUB307) to the Streptomyces sp. 98- 62 

were successful. No exconjugants were obtained in control experiment without the 

addition of E. coli cells. 

 Matings at 37°C gave a high number of small apramycin resistant colonies. 

However, the exconjugants did not grow well after 3 to 4 days. Matings at 30°C gave 

fewer number of apramycin resistant colonies compared to 37°C.  The exconjugants 

from 30°C grew well even up to 12 days. Hence matings at 30°C appeared to be 

optimal for our purpose of study (Fig. 36, 37). 
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The exconjugants were streaked out onto a fresh AS- 1 plate and allowed to 

grow at 30°C for 5 days. The phenotype of the exconjugants was noted to be the same 

as the wild type Streptomyces sp. 98- 62.  This was then used to inoculate ISP2 liquid 

broth, which served as the preculture for the secondary metabolite extraction as well as 

the genomic DNA extraction procedure. Two exconjugants, named 170D1 and 170D2 

from pDC170 disruption experiment were analysed by Southern blot and TLC- 

bioassay to determine the physical and functional disruption. 

 
4.14.1 SOUTHERN BLOT HYBRIDISATION TO PROVE PHYSICAL DISRUPTION 

OF THE GENES ENCODING THE PRODUCTION OF ANTIFUNGAL 
COMPOUND 

 
 

The genomic DNA of disruptants 170D1 and 170D2 were restricted with 

BamHI and SphI, and Southern blotted and probed with the 3 kb vector sequence 

pSOK201 (Fig. 38a, b). The restriction profile of the disrupted chromosome is shown 

in the Fig. 30. A 3 kb BamHI and 6.8 kb SphhI of 170D1 and 170D2 genomic DNA 

hybridised to the 3 kb vector sequence pSOK201 as predicted of successful physical 

gene disruption. The wild type Streptomyces sp. 98- 62 genomic DNA did not 

hybridise to the vector probe at all. This Southern hybridisation result confirmed that 

170D1 and 170D2 had undergone insertion of the gene disruption construct. 

The same blot was stripped and probed with the 7.2 kb C170 PKS I fragment as 

well to confirm that the insertion of the gene disruption construct had occurred in the 

expected region in the genome (Fig. 38c). The 6.8 kb SphI fragment hybridised 

strongly to the 7.2 kb C170 PKS I probe. This 6.8 kb SphI fragment was expected to 

hybridise to both the vector sequence and 7.2 kb PKS I genes and it indeed hybridised 

to both the probes. Multiple hybridising bands were observed for the DNA of the wild 

type as well as the disruptant with the 7.2 kb C170 PKS I probe. The detection of 
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multiple hybridising bands are due to the repeated nature of the PKS I genes in the 

Streptomyces sp. 98- 62.These results clearly showed that the disruption construct 

pDC170 had inserted into the homologous 7.2 kb BamHI  region in the genomic DNA 

of the Streptomyces sp. 98- 62. 
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value of 0.69 retained its bioactivity. This result indicates that the disruptants 170D1 

and 170D2 are not functionally disrupted. 

 

 

   

                     FK506                 C170D1                  C170D2              Rapamycin 

 
Rf 0.80 
 
 
 
 
Rf 0.69 

 
 
Figure 39: TLC Chromatogram and overlay assay of the extracts of pure FK506,  
disruptants C170D1 , C170D2 and rapamycin. The cleared area represents the zone of 
inhibition. The test organism used was Aspergillus niger. 
 
 

This could be because the insert fragment carries 2 stop codons and a start 

codon between the modules. Fig. 35 explains why in such a case, physical disruption 

will not result in a functional disruption.  

The observation of nonfunctional disruption does not however rule out the 

possibility for sure that the 7.2 kb PKS I gene used in gene disruption may not encode 

the enzymes involved in the biosynthesis of the antifungal compound. In order to 

clarify that the lack of functional disruption in disruptants 170D1 and 170D2 is due to 

the presence of stop/ start codon and to determine if the PKS genes of the 7.2 kb PKS I 
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fragment cloned from Streptomyces sp. is indeed involved in the biosynthesis of the 

antifungal compound, internal fragments of clone C170 as well as E27 and C2 were 

decided to be used for further gene disruption analysis. 

 
4.15 GENE DISRUPTION USING INTERNAL FRAGMENTS OF PKS I 

GENES. 
4.15.1 PHENOTYPE OF DISRUPTANTS  
 
 

One representative disruptant each of the three different PKS I internal 

fragments, named 27D1, 2KBC170D1 and C2D1, were analysed by Southern blot and 

TLC and bioassay tests to determine the physical and functional disruption of the 

genes encoding the production of the antifungal compound. 

In these experiments, the phenotype of the disruptants obtained upon disruption 

of the internal fragments of the PKS I gene was surprisingly very different from that of 

the wild type strain (Fig. 40a, b and c). The disruptants did not sporulate, were bald 

and were creamish white in colour. Single colonies were also much smaller when 

compared to the wild type colonies when grown for a similar period of time. This is the 

first report that the disruption of the PKS I cluster of genes in a strain results in the 

change in the phenotype of the producing streptomycete. 
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27D1

 

Figure 40a:  Phenotype of disruptants with the disruption construct pD27. The 
disruptants are “bald” in appearance. 

Figure 40b:  Phenotype of disruptants with the disruption construct pDC2. The 
disruptants are “bald” in appearance. 

 

C2D1 
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2KBC170D1

 
Figure 40C:  Phenotype of disruptants with the disruption construct pD2KBC170. The 
disruptants are “bald” in appearance. 
 
4.15.2 SOUTHERN BLOT HYBRIDISATION TO PROVE PHYSICAL DISRUPTION 

OF THE GENES ENCODING THE PRODUCTION OF ANTIFUNGAL 
COMPOUND 

 
 

The genomic DNA of disruptants 27D1, 2KBC170D1 and C2D1 were 

restricted with SphI, and Southern blotted and probed with the 3 kb vector sequence 

pSOK201 (Fig. 41a,b). The expected restriction profiles of the disrupted chromosome 

are shown in the Fig. 31-33. A 3 kb SphI fragment of 2KBC170D1 and C2D1 genomic 

DNA hybridised to the 3 kb vector sequence pSOK201 and a 5.3 kb SphI fragment of 

27D1 genomic DNA hybridised to the 3 kb vector sequence pSOK201, as expected of 

successful physical disruption in each case. The wild type Streptomyces sp. 98- 62 

genomic DNA did not hybridise to the vector probe. This Southern hybridisation result 

confirmed that the disruption constructs pDE27D1, pD2KBC170 and pDC2 had 

undergone insertion into the expected region of the genomic DNA of the Streptomyces 

sp. 98 -62. 
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4.15.3 COMPOUND EXTRACTION AND OVERLAY TO PROVE FUNCTIONAL 

DISRUPTION OF THE GENES ENCODING THE PRODUCTION OF 
ANTIFUNGAL COMPOUND 

 
 

Secondary metabolites of disruptants 27D1, 2KBC170D1 and C2D1 grown in 

FK medium were extracted analysed by TLC and then bioassayed against Aspergillus 

niger to determine if the antifungal compound biosynthesis by the Streptomyces sp. 98- 

62 was affected by the gene disruption of the PKS I genes in these cases (Fig. 42).  

The extracts of the disruptants 27D1, 2KBC170D1 and C2D1 failed to produce 

a spot on the TLC plate at the Rf value of 0.69, as compared with that of the wild type. 

Bioassay on the TLC plate revealed that the disruptants 27D1, 2KBC170D1 and C2D1 

failed to show spots with any bioactivity. This result indicates that the genes of the 

PKS I system of the disruptants 27D1, 2KBC170D1 and C2D1 are functionally 

disrupted. 

These results suggest that the cloned PKS I genes of Streptomyces sp. 98- 62 

are responsible for the biosynthesis of the antifungal compound and that the lack of 

functional disruption in disruptants 170D1 and 170 D2 is indeed due to the presence of 

stop/start codons.  
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                                      FK506        WILD TYPE            27D1        C2D1         2KBC170D1       170D1                
                                                              98- 62 
 

 
Rf  0.8 
 
 
 
Rf  0.69 
 

 
Figure 42: TLC chromatogram and overlay assay of the extracts of pure FK506, wild 
type Streptomyces sp. 98– 62,disruptants 27D1, 2KBC170D1, C2D1, C170D1  The 
cleared area represents the zone of inhibition. The test organism used was Aspergillus 
niger. 
 

 
This is the first report ever showing that disruption of PKS I genes affects the 

phenotype of the producing organism. The exact reason is yet to be elucidated. 

However, it is enticing to postulate that the polyketide compound, encoded by the 

cloned PKS I genes, has dual functions. One function of the polyketide is to act as an 

antifungal compound and the other is to play a role in the differentiation of the 

producing organism. 
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                                                      WITHOUT SELECTION                                                                              WITH SELECTION 

Figure 36: Conjugation and selection for exconjugants at 30˚C, 12 days 
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Figure 37: Conjugation and selection for exconjugants at 37˚C, 5 days 
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                                                                                 DISCUSSION                  
In an effort to identify a novel antifungal compound, soil from Singapore were 

screened for isolates that show antifungal activity. From such a screen, a Streptomyces 

sp. designated 98- 62 was identified to have antifungal activity. The aim of current 

project is to identify, isolate and characterise the genes encoding the antifungal 

compound. The present study describes identification of the Streptomyces sp., cloning 

of a number of the PKS I genes from the Streptomyces sp. 98- 62, establishment of 

DNA transfer method for the Streptomyces sp. 98- 62 and gene disruption studies to 

determine the involvement of the cloned PKS I genes in the antifungal compound 

biosynthesis.  

In working with a novel Streptomyces sp., it is critical to identify the organism, 

to allow for informed decision to be made regarding handling of the organism. For 

example, in studying the genes of the organism it is first necessary to know how to 

grow the organism for different purposes. It is also necessary to know how to 

manipulate the organism genetically as in introducing DNA into the organism and so 

on.  

Sequence comparisons of 16S rDNA have been used as a source for 

determining phylogenetic and evolutionary relationships among organisms of the three 

kingdoms Archaea, Eukarya, Bacteria. Currently, 16S rDNA sequencing has been used 

to identify culturable as well as non-culturable bacteria (Amann et al., 1995; 

Stackenbrandt, 1997). A pair of primers designed based on the consensus sequence of 

bacterial 16S rRNA gene was used to amplify the 16S rDNA from the genomic DNA 

of the Streptomyces sp. 98- 62. Amplification product was cloned and sequenced.  

The complete sequence of the cloned amplified product was 1490 bases in 

length and contained approximately 58.7% G+C nucleotide bases, which is in 

agreement with the estimated G+C content of the 16S rDNA sequences of 
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Streptomyces sp. (Wright, 1992). The sequences of the 16S rDNA from several other 

Streptomyces sp. contained approximately 55 to 59% G +C nucleotide bases (Mehling, 

1995) although the G+ C content of the total genomic DNA was estimated to be 75%.  

The sequence of the 16S rDNA from the Streptomyces sp. 98- 62 was highly 

related (over 95%) to previously published 16S rDNA sequences of other 

Streptomyces (Fig. 9). Sequence analysis of the 16S rDNA of the Streptomyces sp. 98- 

62 showed that there is a deletion of approximately 20nt around nucleotide position 

450 when compared to Escherichia coli and Bacillus subtilis. This deletion can also be 

found in other actinomycete and related genera such as Frankia sp, Mycobacterium 

bovis, Arthrobacter simplex, Dermatophilus congolensis and Kibdellosporangium 

radium. A further deletion of varying length is found within the region of nucleotide 

70-90 in most gram-positive bacteria. These deletions were observed in the sequence 

of Streptomyces sp. 16S rDNA. Another region with prominent feature is located 

around nucleotide position 800 containing the sequence 5’ACATTCCACGTCGTCG-

3’ which is conserved only in the Streptomyces strains but not in the representatives of 

closely related taxa of actinomycetes or other bacteria. As can be seen in the Fig. 7, 

this sequence was conserved in the sequence of Streptomyces sp. 16S rDNA at 

nucleotide position 804  (Mehling, 1995). Furthermore, the phylogenetic analysis of 

the 16S rDNA of the Streptomyces sp. 98- 62 with the other actinomycetes showed 

that the Streptomyces sp. 98- 62 grouped together with the genus Streptomyces (Fig. 

9).    

These data provides strong evidence that the Streptomyces sp. 98- 62 belongs 

to the Streptomyces sp., making the Streptomyces sp. 98- 62 as yet another addition to 

the existing thousands of known Streptomyces sp. capable of producing antimicrobial 

compounds 
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Streptomyces studied so far possess varying numbers of rDNA gene clusters. 

Therefore it is most likely that the Streptomyces sp. 98- 62 also carries more than one 

16S rDNA. However only one clone of amplified product was sequenced and 

analysed. This clone would represent one of the many 16S rDNA of the Streptomyces 

sp. 98- 62. Southern hybridisation of the genomic DNA of the Streptomyces sp. 98- 62 

with this 16S rDNA probe will allow one to determine all the rDNA genes in 

Streptomyces sp. 98- 62. For the purpose of current study, data from a single 16S 

rDNA was deemed sufficient to identify the Streptomyces sp. 98- 62. 

As the Streptomyces sp. 98- 62 was identified as Streptomyces sp., all of the 

protocols for the manipulation of the Streptomyces sp. sp 98- 62 was based on 

protocols dedicated to Streptomyces. 

To determine if the antifungal compound produced by the Streptomyces sp. 98- 

62 is encoded by PKS type I genes, genomic DNA from the Streptomyces sp. 98- 62 

was subjected to probing with PKS type I specific probe, eryKS II. The gene KS II of 

eryA from Saccharopolyspora erythraea is usually used to identify type I polyketide 

synthases. The result from Southern hybridisation revealed that there is homology 

between the genomic DNA of the Streptomyces sp. 98- 62 which produces a novel 

antifungal compound and Saccharopolyspora eryhthraea gene coding for components 

of erythromycin PKS. The eryKS II gene from Saccharopolyspora erythraea has also 

been used to identify the PKS I gene clusters of rapamycin  (Molnar, 1996). This 

experiment therefore has demonstrated that there are DNA regions in the novel 

antifungal compound producing Streptomyces sp. 98- 62, which show a degree of 

homology to eryKS II gene. 

The result is also suggestive that the putative PKS I genes of the Streptomyces 

sp. 98- 62 is different from that of   S. hygrocopicus var. ascomyceticus ATCC 55098 
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at the nucleotide level as the Southern hybridization band pattern obtained upon 

probing the BamHI restricted genomic DNA of the Streptomyces sp. 98- 62 and S. 

hygrocopicus var ascomyceticus ATCC55098 with eryKS II probe are different from 

each other. It is to be noted that genes encoding the synthesis of even structurally 

related PKS I compounds rapamycin and FK506 vary in their sequence at the 

nucleotide level (Molnar, 1996, Motamedi, 1997).  

 To determine if the antifungal compound produced by Streptomyces sp. 98- 62 

was similar to PKS I antifungal compounds rapamycin and FK506, secondary 

metabolites from Streptomyces sp. 98- 62 grown in FK medium were subjected to TLC 

followed by a bioassay against Aspergillus niger to test for antifungal activity. A zone 

of growth inhibition corresponding to the TLC spot of Rf 0.69 was observed in the 

case of the Streptomyces sp. 98- 62. Positive controls rapamycin and FK506 gave 

growth inhibition corresponding to the TLC spot with Rf  0.80. Zone of inhibition 

corresponds to antifungal activity. The zone of inhibition Rf value of the compound 

produced by the Streptomyces sp. 98- 62 grown in FK medium differs from that of 

pure rapamycin and 63FK 506 compounds, indicating that the chemical nature of the 

compound produced by the Streptomyces sp. 98- 62 is likely to be different form that 

of the PKS I antifungal compounds rapamycin and FK506.  

Rapamycin and FK506 are both macrocyclic polyketides with antifungal and 

immunosuppressive activity and have share certain degree of similarity in their 

structure (Fig. 43). 
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Figure 43: Structures of rapamycin and FK506 (Motamedi, H., 1996) 

 
 Both FK506 and rapamycin act via a regulatory domain known as 

immunophilin binding domain. This domain is the structurally similar region of  

FK506 and rapamycin.  The effector domain of the compounds FK506 and rapamycin 

is specific for each drug and accounts for their different activities. The similarity in the 

structure of FK506 and rapamycin is consistent with the enzymology of the 

biosynthesis of the compounds. The mode of polyketide chain initiation and 

termination are similar in FK506 and rapamycin biosynthesis. In addition the two 

pathways are identical in the final three condensation steps (Motamedi, 1997).  The 

homologous enzymes in FK506 and rapamycin biosynthesis are involved in the 

biosynthesis of the regulatory regions  (Molnar, 1996, Motamedi, 1998) 

The similarity in enzymology of the biosynthesis of rapamycin and FK506 can 

also be seen in the organization of the biosynthetic genes of the two compounds. A 

comparison of the gene clusters for rapamycin from Streptomyces hygroscopicus and 

FK506 from Streptomyces sp. MA6548 reveals that the gene order and direction of 

transcript of the PKS and peptide synthetase genes, fkb C, B, P, and A and their 
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equivalents rap B, A, P and C are conserved between the two clusters (Molnar, 1996, 

Motamedi, 1998) (Fig. 44). 

 

 

 

 

 

  

 

 
Figure 44: Organisation of the biosynthetic gene clusters of rapamycin and FK506. 
(Motamedi, H., 1998) 

If the deduction from the TLC- bioassay experiment results that   the chemical 

nature of the compound produced by the Streptomyces sp. 98- 62 is different from 

rapamycin and FK506 is correct, it is to be expected that the tertiary structure of the 

compound which determines the chemical nature is also to be different from that of 

FK506 and rapamycin.  In that case, the enzymology of the biosynthesis of the 

compound produced by the Streptomyces sp. 98- 62 and the organization of the 

encoding genes of the compound produced by the Streptomyces sp. 98- 62 is also 

expected to differ significantly from those of the genes for rapamycin and FK506.  

This is to be confirmed upon identification, cloning and characterisation of the PKS I 

genes form the Streptomyces sp.  

98- 62. 

Based on the evidence that there is homology between the genomic DNA of the 

Streptomyces sp. 98- 62 and the PKS genes of S. erythraea which produces 

erythromycin, a pair of degenerate primers spanning conserved regions of type I PKS 
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genes, KS and AT gene was used to successfully amplify KS/AT region from the 

chromosomal DNA of the Streptomyces sp. 98- 62. The PCR product ran as a 850 bp 

fragment on agarose gel. The PCR primers used to amplify the KS/AT genes are 

designed to amplify the methylmalonyl specific AT gene downstream of the KS gene. 

AT genes can be malonyl specific or methylmalonyl specific, based on the amino acids 

in the conserved regions which determines the substrate specificity of the encoding AT 

enzyme (Haydock, 1995). In our attempt to amplify the KS/AT gene from the 

Streptomyces sp. 98- 62, only one such region was amplified. This could be because 

the degenerate primers are most suitable for amplifying this region only and no others 

even if  these are present as a result of the degree of homology between the primer and 

template DNA. The other reason could be that there is only one methylmalonyl Co A 

specific AT domain in the organism. Different PKS I systems have varying number of 

methylmalonyl specific AT domains (Fig. 45). Erythromycin PKS I cluster has six  

methylmalonyl CoA specific AT domains and no malonyl Co A specific AT domains 

at all. Whereas rapamycin PKS I cluster has seven malonyl Co A specific AT domain 

and seven methylmalonyl Co A specific AT domains. As we do not know the chemical 

structure of the antifungal compound produced by the Streptomyces sp. 98- 62, it is not 

possible to estimate the minimum number of methylmalonyl CoA specific AT domain 

present in the antifungal compound producing Streptomyces sp. 98- 62. 
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Figure 45: Structures of various complex polyketides built from different acyl units. A 
stands for acetyl acyl (malonyl CoA) units and P stands for Propionyl acyl 
(methylmalony Co A) units (Hopwood , D.A., 1997)  
 
 
 

The PCR product was subsequently cloned and sequenced using vector primers 

T7 and SP6. Additional sequencing primers were designed to allow for complete 

sequencing of the 850 bp insert fragment. The sequence of the 850bp insert fragment 

from the Streptomyces sp. 98- 62 was found to be similar at the amino acid level to 

KS/AT genes of the other Streptomyces PKS I systems. The highest degree of 

similarity at the amino acid level was with Streptomyces avermitilis, which encodes 

PKS I gene cluster for the biosyhnthesis of the polyketide  avermectin (Fig. 14). 

Successful cloning of the PKS I KS/AT genes form the Streptomyces sp. 98- 62 has 
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proved conclusively that the Streptomyces sp. 98- 62 indeed carried the PKS I genes 

and that the genes are sufficiently conserved enough to the other known PKS I systems 

that the KS/AT genes from the Streptomyces sp. 98-62 can be amplified based on 

conserved sequences. 

To determine if the genome of the Streptomyces sp. 98- 62 carried repeated 

KS/AT genes as is characteristic of PKS I systems, the KS/AT genes of the 

Streptomyces sp. 98- 62 was then used to probe the restriction digested genomic DNA 

of the Streptomyces sp. 98- 62. Eleven SphI fragments hybridised to the probe, proving 

that indeed the genome of the Streptomyces sp. 98- 62 carried repeated KS/AT genes 

as is characteristic of PKS I systems. 

A 7-8 kb BamHI genomic fragment of the Streptomyces sp. 98- 62 hybridised 

very strongly to the KS/AT genes probe of the Streptomyces sp. 98- 62. By comparison 

of this blot  (Fig. 15b) with the earlier blot of BamHI restricted genomic fragment of 

the Streptomyces sp. 98- 62, probed with the eryKS II probe (Fig. 11), some common 

features as well as differences could be noticed. For example, A 4-5 kb BamHI 

genomic fragment of the Streptomyces sp. 98- 62 hybridised strongest to the eryKS II 

gene probe of  

S. erythraea, whereas a 7- 8 kb BamHI genomic fragment of the Streptomyces sp. 98- 

62 hybridised strongest to the KS/AT genes probe of the Streptomyces sp. 98- 62. 

However the eryKS II gene probe also hybridised to the 7-8 kb BamHI genomic 

fragments of the Streptomyces sp. 98- 62. 

The eryKS II probe would be able to hybridise only to KS genes of the 

Streptomyces sp. 98- 62 PKS I gene cluster, while the KS/AT genes probe of the 

Streptomyces sp.  
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98- 62 would be able to hybridise to both KS and (methylmalonyl specific) AT genes 

of the Streptomyces sp. 98- 62 PKS I gene cluster.  This could explain partially for the 

observation that there are some shared as well as different features in the Southern 

hybridisation experiments with the two probes. The other reason could be that PKS 

type I genes of the Streptomyces sp. 98- 62 may be of two kinds, one that is of higher 

similarity to that erythromycin genes and another which may be more unique to this 

specific Streptomyces sp.. The PKS genes of the Streptomyces sp. 98- 62 are to be 

cloned and sequenced completely to obtain more conclusive evidence for this 

deduction.   

 The variation as well as the numerous hybridisation bands revealed by the two 

different probes suggest that the Streptomyces sp. 98- 62 may carry more than one 

PKS I cluster. It is known that some strains of Streptomyces sp. such as Streptomyces 

hygroscopicus ATCC29253 which produces rapamycin, have multiple clusters of PKS 

I genes (Ruan, 1997, Lomovskaya, 1997). Evidence from this experiment and 

observations in other polyketide producers suggest that the occurrence of more than 

one kind of PKS type I genes in the Streptomyces sp. 98- 62 could be possible. Gene 

disruption would therefore be indispensable to identify the cluster responsible for the 

antifungal compound production. 

In order to study the PKS I genes of the Streptomyces sp. 98- 62, it was deemed 

necessary to clone out a larger fragment/portion of the PKS I cluster form the 

Streptomyces sp. 98- 62. Therefore, attempts were made to obtain a cosmid library of 

the genomic DNA of the Streptomyces sp. using a shuttle cosmid vector pKC505.  

Intriguingly, the recombinant clones had undergone recombination and seemed 

unstable. Although there was no strong evidence as to the reason why the instability 
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was observed, the repeated nature of PKS I genes were thought to be one of the 

possible reasons resulting in homologous recombination.  

In order to overcome this cloning problem, subgenomic library approach was 

undertaken. The reason being that insert fragments of subgenomic library would be 

typically less than 10kb. The average size of a PKS I module is approximately 5-6 kb. 

Therefore insert fragments of sizes below 10kb is likely to constitute 1 to 2 modules of 

PKS I genes and therefore would have a lesser chance of undergoing recombination 

within the 10kb (if at all), compared to a 30 kb insert as in the case of cosmid library. 

Moreover much time had been taken up in constructing the cosmid library and a less 

time consuming and more cost effective method was needed. Hence the subgenomic 

library was considered the best available choice of cloning the PKS I genes although it 

was understood that chromosomal walking in the later stages would be more tedious 

with this approach due to the repeated nature of the PKS I genes. 

From the earlier Southern hybridisation blot of Streptomyces sp. 98- 62 

genomic DNA probed with the homologous KS/AT genes, a single 7 to 8kb BamHI 

was identified to hybridise very strongly to the KS/AT probe.   This 7-8kb BamHI 

fragment therefore was expected to be the genomic fragment of Streptomyces sp. 98- 

62 that contained the KS/AT gene used as a probe.  

To clone the PKS I gene surrounding the KS/AT gene, a subgenomic library of 

Streptomyces sp. 98- 62 DNA fragments was constructed. This was done by isolating 

total genomic DNA, digesting it with BamHI, and ligating purified 7 to 8 kb fragments 

into the BamHI site of pUC18. A total of 500 recombinant clones were screened by 

PCR. One clone designated as C170, gave an amplification product of expected size  

~850bp. 
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 Restriction digestion of C170 plasmid DNA with BamHI gave an insert 

fragment of approximately 7-8 kb. This is the expected fragment size and suggests that 

recombinant clone is likely to contain the PKS I gene surrounding the KS/AT genes 

used as the probe. Restriction digestion of C170 plasmid DNA with SphI gave three 

fragments of approximate sizes 1.6 kb, 2.0 kb and 6.5 kb. The larger fragment of  

6.5 kb was expected to contain the pUC18 vector and was confirmed to be so, by self 

ligation and sequencing.  

Complete sequence of C170 was then determined. The entire sequence length 

of the recombinant clone C170 insert was 7177bp. The DNA sequence data obtained 

were analysed for open reading frames (ORFs). There were two partial open reading 

frames, in the same orientation (Fig. 27, 28). The ORFs were labelled ORF 1 and ORF 

2 for convenience. ORF1 module was designated as module 1 for convenience, and it 

encodes a partial DH, a complete KR and a complete ACP in the stated order. ORF 2 

module was designated as module 2 for convenience and it encodes a complete KS, a 

complete AT which is methyl malonyl specific and a complete DH in the given order. 

The organization of the enzymatic domains within each module is consistent with 

other PKS type I genes.  

ORF 1 is predicted to terminate with a stop codon TGA. A second stop codon 

TAG is predicted 372 bases downstream of the first stop codon. ORF 2 is predicted to 

initiate with a start codon ATG and lies 60 nucloetides downstream of the predicted 

second stop codon of ORF1. The sequence TGGACA which is located 38nt upstream 

of the predicted start codon of ORF2 is deduced to be the transcriptional promoter as 

the sequence is identical to ermE-P1 promoter (Strohl, 1992). The sequence GAGG 

which is located 14nt upstream of the predicted start codon of ORF2 is deduced to be 

the ribosomal binding site of ORF2 (Strohl, 1992). From the sequence analysis of 
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clone C170 PKS I genes, it is proposed that the encoded ORFs are translationally 

uncoupled.  

Most of the PKS I gene clusters are bi or tri modular.  The maximal number of 

modules observed so far in a single PKS type I ORF is six. Hexamodularity is 

observed in the amphotericin B producer S. nodosus (Caffrey, P. 2001). The result so 

far suggests that module 1 of ORF1 is the last module of ORF1 and that module 2 is 

the starting module of ORF2. The available sequence information is insufficient to 

determine the modularity of the PKS I genes of the Streptomyces sp. 98- 62. 

The adjacent genes upstream and downstream genes to the genomic DNA in 

recombinant clone C170 was identified by probing the genomic DNA of the 

Streptomyces sp. 98- 62 with the external subgenomic fragments of C170. From the 

result obtained it was deduced that a 5.5–6.5kb SphI fragment overlaps with and lies 

upstream to the 7.2kb BamHI fragment of C170, and that a 3.5–4. 5kb SphI fragment 

overlaps with and lies downstream to the 7.2kb BamHI fragment of C170. 

Hybridisation of the restriction digested genomic DNA of the Streptomyces sp.  

98- 62 with the 3.7 kb SphI/BamHI fragment of the clone C170 or the 1.5 kb 

SphI/BamHI of the clone C170 fragment as probes only showed single hybridising 

band each although multiple hybridising bands are expected as the genes are expected 

to belong to the repetitive PKS I genes. This could be due to the high stringency 

primary washes (0.1 X SSC instead of the usual 0.3 X SSC) and repetitive use of the 

blot after stripping and low concentration of probes used.  Whatever the exact reason 

may be, the band that contains the complete gene sequence as the probe is expected to 

hybridise the strongest to the probe. Taking this into consideration, the result was 

taken to indicate that the 5.5-6.5kb SphI fragment contains the 3.7 kb probe sequence 
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(Fig. 18a) and that the 3.5-4. 5kb SphI fragment contains the 1.5kb probe sequence 

(Fig. 18b).   

To clone the PKS I gene downstream of the 7.2kb BamHI fragment of clone 

C170, subgenomic library of Streptomyces sp. 98- 62 DNA fragments was constructed. 

This was done by isolating total genomic DNA, digesting it with SphI, and ligating 

purified 3.5 to 4.5 kb fragments into the SphI site of pUC18. A total of 500 

recombinant clones were screened by PCR. One clone designated as C2, gave an 

amplification product of expected size  of approximately 550bp .  

Restriction digestion of C2 plasmid DNA with SphI gave an insert fragment of 

approximately 3.7kb. This is within the expected fragment size range and suggests that 

recombinant clone is likely to contain the PKS I gene upstream of the 7.2kb BamHI 

fragment of clone C170 gene. Restriction digestion of C2 plasmid DNA with SphI 

gave three fragments of approximate sizes 1.5 kb, 2.1 kb and 2.6 kb, upon gel 

electrophoresis. The restriction profile matched with the expected profile of a clone 

that has to overlap with the clone C170 in that the expected 1.5 kb SphI/BamHI 

fragment was also observed in the clone C2  

The entire sequence length of the recombinant clone C2 insert was 3682bp. 

Sequence analysis revealed that the 1.5 kb SphI/BamHI fragment of C2 was identical 

to the external 1.5 kb SphI/BamHI fragment of C170. This confirms that clone C2 is 

indeed overlapping and upstream to clone C170. 

The domains represented in the remaining 2.1 kb sequence are a complete KR, 

a complete ACP and a partial KS in the stated order. This order of PKS I gene domains 

is in agreement with the deduction that the 2.1 kb fragment lies downstream of the  

7.2kb BamHI  PKS I gene fragment. The sequence analysis reveals that the 3.8 kb 

fragment encompasses 2 modules, module2 and a downstream module designated for 
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convenience as module 3. There is no stop/start codon or ribosomal binding sites or 

such regulatory sequences between the two modules. This suggests that module 2 and 

module 3 are translationally coupled and belong to the same ORF, ORF 2.  

To clone the PKS I gene upstream of the 7.2kb BamHI fragment of clone C170, 

subgenomic library of Streptomyces sp. 98- 62 DNA fragments was constructed. This 

was done by isolating total genomic DNA, digesting it with SphI, and ligating purified 

5.5 to 6.5 kb fragments into the SphI site of pUC18. A total of 500 recombinant clones 

were screened by PCR. One clone designated as E27, gave an amplification product of 

expected size of approximately 450bp. 

Restriction digestion of E27 plasmid DNA with SphI gave an insert fragment 

of approximately 6.1 kb. This is within the expected fragment size range and suggests 

that recombinant clone is likely to contain the PKS I gene upstream of the 7.2kb 

BamHI fragment of clone C170 gene. Restriction digestion of E27 plasmid DNA with 

SphI gave two fragments of approximate sizes 3.7kb and 5.4kb upon gel 

electrophoresis.  The restriction profile matched with the expected profile of a clone 

that has to overlap with the clone C170 in that the expected 3.7.kb SphI/BamHI 

fragment was also observed in the clone E27  

The entire sequence length of the recombinant clone E27 insert was 

6069bp.Sequence analysis revealed that the 3.7kb SphI/BamHI fragment of E27 was 

identical to the external 3.7 kb SphI/BamHI fragment of C170. This confirms that 

clone E27 is indeed overlapping and up stream to clone C170. 
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The domains represented in the remaining 2.3kb sequence are a partial KS, a 

complete AT and a partial DH. This order of PKS I gene domains is in agreement with 

the deduction that the 2.3kb fragment lies upstream of the 7.2kb BamHI PKS I gene 

fragment, as part of the predicted module 1 of ORF1.  

The DNA sequences from the three contiguous clones were aligned and 

analysed. The aligned nucleotide sequence is 11656 bp in length, and has a high G+C 

content of 75.3% as expected of Streptomyces sp. (Wright, 1992). Three modules of 

two separate ORFS oriented in the same direction were identified (Fig. 27, 28). 

The distance between ORF1 and 2 of the PKS I genes from the Streptomyces 

sp. 98- 62 was 489 bases. Comparison with the erythromycin gene cluster reveals that 

the ORF1 and 2 of the erythromycin gene cluster was separated by 1.44kb whilst 

ORF2 and 3 were contiguous (Leadlay et al., 1992).   

 A complete module (KS-AT-DH-KR-ACP) of the Streptomyces sp. 98-62, 

module 2 is of the size 1743 aa.  This is in agreement with other PKS I gene clusters 

(Table 5). The limits of each domain within the modules were readily assigned by 

comparison with the modules of B-deoxyerythronolide synthase and rapamycin 

synthase (Fig. 42) (Bevitt, 1992, Molnar, 1996). Individual domains of the modules are 

also relatively similar to those of erythromycin and other PKS I clusters (Table 5). KS 

domain is approximately 421aa. AT domain is approximately 315 or 343 aa.  DH 

domain is approximately 164 or 167aa. KR domain is approximately 233 or 234aa. 

ACP domain is approximately 77aa. Although module 1 is incomplete, the domain size 

is comparable to that of module 2 (Fig. 46). 
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MULTIPLE SEQUENCE ALIGNMENTS OF THE 3 MODULES OF THE SOIL 
ISOLATE 98- 62 
 
MOD1            .......... .......... .......... .......... ..........  
MOD2            LREAMLENER LRRQNDRIAE AAHEPVAVVA MSCRYPGGVG TPEQLWQLVD  
MOD3            .......... .......... ...EPVAIVG MACRYPGGVT TPEELWRLVA  
 
 
MOD1            .......... .......... .......... .......... ..........  
MOD2            AGVDAVGDFP DDRDWDVDAI YDPDPDAPGR THVREGGFLH DAPRFDPGFF  
MOD3            DGVDGIGAFP DDRGWNLDTL YDPEPGKPGH CSTRAGGFLY DAADFDHDFF  
 
 
MOD1            .......... .......... .......... .......... ..........  
MOD2            GISPREALAM DPQQRLLLET AWEAFERGGI DPHTLRGSRT GIYAGVMYHD  
MOD3            GIGPREALAM DPQQRLLLET SWEALERAGI DPHSVRGSRT GVFAGVMYHD  
 
 
MOD1            .......... .......... .......... .......... ..........  
MOD2            YGSWLTDVPE GVEGYLGNGN LGSVASGRVS YTLGLEGPAV TVDTACSSSL  
MOD3            YGSRLRDVPE AVRDYLGNGS LGSIASGRIA YTLGLEGPAL TVDTACSSSL  
 
 
MOD1            .......... .......... .......... .......... ..........  
MOD2            VALHLAVQAL RTGECALALA GGVTVMSTPD TFIDFSRQRG LALDGRCKSF  
MOD3            VALHLAAQAL RRGECGLALA GGVSVMSTVD TFVDFSRQRN LAADGRAKSF  

                                       KS       
 
MOD1            .......... .......... .......... .......... ..........  
MOD2            AEGADGTGWG EGVGMLLLER LSDARRNGHR VLAVVRGTAV NQDGASNGLT  
MOD3            AEAADGTALS EGVGVLVLER LSDARRSGRR VWGVVRGSAV NQDGASNGLT  
 
 
MOD1            .......... .......... .......... .......... ..........  
MOD2            APNGPSQQRV IRAALADARL EPHQVHAVEA HGTGTPLGDP IEAQALLATY  
MOD3            APNGPAQQRV IREAWVAAGV SGGGVDVVEA HGTGTVLGDP IEAQALLSTY  
 
 
MOD1            .......... ........MG HTQAAAGVAG IIKMVMAMRH GTLPRTLHVD  
MOD2            GQDRQAGEPL WLGSVKSNIG HTQAAAGVAG VIKMVMAMRR GRLPRTLHAE  
MOD3            GQGRGGGD.. .......... .......... .......... ..........  
 
 
MOD1            TPSHQVDWTT GAVRLLTEER PWPGAADRPR RAGVSSFGIS GTNAHVILEE  
MOD2            HPTTRVDWES GAVELLGEAR DWPDAGE.PR RAAVSSFGIS GTNAHVIVEA  
MOD3            .......... .......... .......... .......... ..........  
 
 
MOD1            FEEFEEFAGE PVGTGPRTAG PDADGHDGAA AHPPATPPVL ALPVSARSPE  
MOD2            APDPEPRTGE PVWDRP.... .......... .........L PLVLSARDEP  
MOD3            .......... .......... .......... .......... ..........  
 
 
MOD1            ALRGQAARLR ELTGTSA... AELGLALSTT RTTHPYRAVV LAPGEERADE  
MOD2            ALAAQARRIL DHLETGADLV PDIAYALATT RAALDRRAVV IGADPATITA  
MOD3            .......... .......... .......... .......... ..........  
 
 
MOD1            ALDALAHGHE APGLLVSGSI TDGTLACLFS GQGAQRPGMG RDWYDTFPVY  
MOD2            RLAALAEDDP ASDVVRGAPA GESRIAFVFP GQGSQWAGMA AELLDGSPVF  
MOD3            .......... .......... .......... .......... ..........  
 
 
MOD1            AEHFDRTGEL FAKHLERALA EVVLGDHPDV LERTAYTQAA LFTTQVALYR  
MOD2            AAAMADCAEA LAPFTDWDLV DTVRERRP.. MERVDVVQPA LWAIMVSLAE  
MOD3            .......... .......... .......... .......... ..........  
 
 
MOD1            LLESFGLRPD WLAGHSVGEF AAAHVAGVWS LQDAVTAVAA RGRLMQALPE  
MOD2            VWRAHGVRPA AVIGHSQGEI AAACVAGALS LSDGARVVAL RSRAIAEVLS  
MOD3            .......... .......... .......... .......... ..........  
 
 
MOD1            G......... .......... ......GAMT AVQAAEEEVR PLL...DERC  
MOD2            GPADSGTVPG KGASGPTNSA RGACGRGGMM SVALPESRAR ELVAAHDGRV  
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MOD3            .......... .......... .......... .......... ..........  

                                          AT         
 
MOD1            DIAAVNGPRA VVVSGDEDAV AAVAAHFAT. ...TRRLRVS HAFHSPRMEP  
MOD2            AVAAVNGASS VVLSGDAEVL DALRERIVAD GGRAKRLPVD YASHCAHVES  
MOD3            .......... .......... .......... .......... ..........  
 
 
MOD1            VLDEFRRVLA ALPAGEPALP IVSTLTGARA TAAELGSADY WVRHVRETVR  
MOD2            IRERLLTDLA GVRARGADVP FYSTVTGAVL DTTAL.TADY WYTNLRRSVL  
MOD3            .......... .......... .......... .......... ..........  
 
 
MOD1            FADAVGTLAA QGADTFLELG AAPVLTALGP DCLPDADAEE AAFVPTARKG  
MOD2            FEPTTRALLD SGYGIFVECS PHPVLLNS.I EETADAVGAT VTGLGSLRRD  
MOD3            .......... .......... .......... .......... ..........  
 
 
MOD1            TAEVPGLLAA LAAVHTRGSD VDWAVLYDGL PGHRDRPGRR DEPGHRDQPG  
MOD2            DGGAERLLTS LGEAFVAGVP VDWSAVFTGM P......... ..........  
MOD3            .......... .......... .......... .......... ..........  
 
 
MOD1            RRDQPGRRVE PGRCVELPTY AFQHRRYWLP TSTATARGDA AGHGLAAVDH  
MOD2            .......... .VRAADLPTY PFQRERYWLG RSAASG..DV TAAGLRATTH  
MOD3            .......... .......... .......... .......... ..........  
 
 
 
 
MOD1            PFVSARLDLP GDGGTLLTGR ISTATHPVLA QHAVLGSVLV PGAALVDLAL  
MOD2            PLLGAAVQVA G.GGTLFTGR LSVSTTPWLA DHAVSGTPLL PGTALVELAL  
MOD3            .......... .......... .......... .......... ..........  

                                        DH 
 
 
 
 
MOD1            YASGLTGRPV LEELTLQAPL ALPGNGAVRI QVALRPDG.. ...GVEIHSR  
MOD2            SAGHELGYGH VAELTLQAPL VLPGRAAVQF QVHVAAADED GHRALTVHSR  
MOD3            .......... .......... .......... .......... ..........  
 
 
MOD1            PADAPEDGSW TRHATGTLTV TDPASGLPAS SVPSAAWPPP GAVPLDTDGL  
MOD2            PEGA.DDTEW TAHATGLLAP RTAPPGFDL. ....AQWPPR GAEPVLVDDA  
MOD3            .......... .......... .......... .......... ..........  
 
 
MOD1            YERLRGEGYD YGPVFQGVRA AWRHGDTVLA ELELPAEARQ DAARHVLHPA  
MOD2            YDTLAALGYD YGPAFQGLRA VWRRGDETFA EVELPGEAGA FGLHPALFDA  
MOD3            .......... .......... .......... .......... ..........  
 
 
MOD1            LLDSALHTTA LADADARDAV PDGTIALPFA WTGVTVHGRP SSRTTPSRTG  
MOD2            ALHADGLRTA PPGTDGPGAR GQGAARLPFV WTGVSLY... ..........  
MOD3            .......... .......... .......... .......... ..........  
 
 
MOD1            VPSRAAAPDH TAARVRVTRG EEGIRLDLTD TEGGPLATVA SYVTRPVTAD  
MOD2            ......ASGA TALRVRIRGG D.TLSLDLAD PTGAPVAAVE ALVSRPVDPA  
MOD3            .......... .......... .......... .......... ..........  
 
 
MOD1            RLTGRQRSLY VVEDAPLPES AGRPERRTWA VLGPDDLGLG VPHHPEPAAI  
MOD2            ALTSPVR... .......DDD LYRLDWQALP VPVADAPAYA VLDERGTAAA  
MOD3            .......... .......... .......... .......... ..........  
 
 
MOD1            DGPAPDVVVL PVHIPDVADA DADGERVPGA VRTALNTTLT TLRAWLDDER  
MOD2            D.AVPDWVVL PVSG...... ..DGGDPVGG VRAATGRVLA AVRDWLADER  
MOD3            .......... .......... .......... .......... ..........  
 
 
MOD1            RAGS...TLL VLTEG..... .....SLADA AVHGLVRAAQ AEHPGRIVLV  
MOD2            TAGARGARLV VLTGGAVATG TEDVTDLAGA AVWGLVRAAQ GEHPDRFVLV  
MOD3            .......... .......... .......... .......... ..........  
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MOD1            G......... .RAGPGSPVP DRA..ALAAV LDSGEPEVRW RDGRAHAPRL  
MOD2            DSVAHDGGGE SASGPGVFAT DRVTEAVRAA AASGEPQLAL REGTVRVPRL  
MOD3            .......... .......... .......... .......... ..........  
 
 
MOD1            VRAGEP.... ....DAPRTG RPWGTVLITG GTGGLGALVA RHLVTRHGVT  
MOD2            ARAAVTGTAA VPAFDGPAP. DPHGTVLITG GTGVLGAVVA RHLATEHGVR  
MOD3            .......... .......... .......... .......... ..........  
 
 
MOD1            RLILAGRRGP AAPGADELRA DLAGLGAQAD VVACDVADRT ALAALLAAHP  
MOD2            RLVLAGRSG. ...TAFDDFG DLAERGTEVV VARCDAAERD QLAALLADMP  
MOD3            .......... .......... .......... .......... ..........  
 
 
MOD1            VD....SVVH TAGVLDDGLV TSLGPERLDT VLRPKADAAW HLHELTLDRP  
MOD2            AERPLTAVIH LAGVLDDGLV TDQTPGRLDA VLRPKADAAW NLHELTRDLD  
MOD3            .......... .......... .......... ........

                            KR        
.. ..........                       

 
MOD1            LSHFVLFSSA AGTIDASGQG NYAAANVFLD ALAVHRAARY LPALSLAWGL  
MOD2            LSAFVLFSSA AGTIDGAGQS GYAAANAFLD GLAAHRAAQG LPALSLAWGF  
MOD3            .......... .......... .......... .......... ..........  
 
 
MOD1            WSG.GGMGAG LDESGARRIE RSGIGALDPE EGLELFDAAV ASGRPALVPV  
MOD2            WEQRTGMTAH LTDADVERMA RAGVRPLPTE EGLRLLDAAL AADVPLLLPV  
MOD3            .......... .......... .......... .......... ..........  
 
 
MOD1            RLDTTVLRRR GDDVPPVLRT LAGVTAPAAR ..EDRTRGLG ERLAALPAAD  
MOD2            GLDPRALRG. ADDVPPVLAR SGARARPSYG GLPRHRRSAA ERLAALGAAE  
MOD3            .......... .......... .......... .......... ..........  
 
 
 
MOD1            HEHTVLEAVR TEVAAVLGHD GPAAVGPRRA FTELGFDSLA AVELRNRLNA  
MOD2            REAALTELVR THVAAVLGHG ADMVLDPRRS FREAGFDSLT AVELRNRLGN  
MOD3            .......... .......... .......... .......... ..........  
 

                                         ACP 
 
MOD1            ISGLRLPSTL VFDYATPVAL AGHLLERLAP DDDTGTGAAP TDPRGDDEVR  
MOD2            AVGLRLPATL VFDHPDAEAL VRYLKTELF. ......GADP EDAEASTGIG  
MOD3            .......... .......... .......... .......... ..........  
 
 
MOD1            ALIDRIPIAR IRDAGLLDGL LRLSEAAPPA PPAADRVMDI RSMGVADLVR  
MOD2            AVVP...... ..GAGYEPD. .......... .......... ..........  
MOD3            .......... .......... .......... .......... ..........  
 
OD1            AALNRTSPE 
MOD2            ......... 
MOD3            ..........  
 

  
Figure 46: Alignments of the 3 modules of the Streptomyces sp. 98- 62. Domains are 
represented in blue colour. The identity of each the domain is indicated along the black bar 
underlining the sequences. The active sites of each domain are in bold. 
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 Streptomyces sp. 

98- 62 

module1 and 

module 2. Module 

2 aa in brackets if 

different from 

module 1. 

Niddamycin 

module 3 (Kakavas 

et al, 1997) 

Rapamycin module 

11 (Molnar et al, 

1996) 

Complete module 1743 aa 1839 aa 1629 aa 

KS domain 421aa 424 aa 452 aa 

AT domain 315 (343 aa) 334 aa 292 aa 

DH doman 164 (167 aa) 190 aa 150 aa 

KR domain 233 (234 aa) 185 aa 243 aa 

ACP domain 77 aa 86 aa 76 aa 

 
Table 5: Comparison of the number of aminoacids constituting the domains and 
modules of PKS I genes cloned from the Streptomyces sp. 98- 62 with that of the 
nidddamycin and rapamycin PKS I genes  

 

The nucleotide sequence of the cloned genes and the repeated occurrence of the 

genes isolated from the Streptomyces sp. 98- 62 as modules and the organization of the 

domains within the modules provide strong evidence that they belong to the PKS type 

I genes.  

From the domain organization of the cloned PKS I genes from the 

Streptomyces sp. 98- 62, it is predicted that the cloned modular genes are both extender 

modules. Loading modules of other streptomycete PKS I gene clusters generally have 

the essential catalytic domains  (KS, AT and ACP). The cysteine residue of these PKS 

I loading module KS domain active sites are also typically replaced with serine or 

glutamine. Extender modules of the other streptomycete PKS I gene clusters typically 
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consist of the essential domains (KS, AT and ACP) and 1 to 3 of the modifying 

domains (DH, KR and ER). Releasing modules of other known streptomycete PKS I 

gene clusters typically contain an additional thioesterase domain to the essential and 

modifying domains. The two PKS I modules isolated from the Streptomyces sp. 98- 62 

have both the essential domains as well as modifying domains (KS, AT, DH, KR and 

ACP) but no thioesterase domain. Moreover the active site cysteine residue of both the 

KS domains cloned from the Streptomyces sp. 98- 62 are conserved. This sequence 

information suggests that the two PKS I modules of the Streptomyces sp. 98- 62 are 

likely to be involved in the extension of the polyketide biosynthesis rather than 

initiation or termination of the polyketide biosynthesise.    

Sequences of the individual domains of the modules were compared within the 

cluster and with other PKS I clusters for sequence homology (Table 6) to predict the 

activity of the deduced domain based on the conserved amino acid (Fig. 46). These 

conserved amino acid sequences are known to be required for the catalytic function of 

the encoded gene product. 
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MODULE KS AT DH KR ACP 

1 S.hygroscopicus

var. 

ascomyceticus 

89% +ves 

S.nodosus

67% +ves 

S.avermitilis

62% +ves 

Polyangium 

cellulosum 

69% +ves 

S.antibioticus

72% +ves 

2 S.avermitilis 

84% +ves 

S.spinosa 

67% +ves 

S.avermitilis

70 % +ves 

S.nodosus 

78% +ves 

S.avermitilis 

73% +ves 

3 S.avermitilis 

83% +ves 

    

 

Table 6: Comparison of domains of PKS I genes cloned from the Streptomyces sp. 98- 
62 with other PKS I genes of Streptomyces sp. 
  

KS DOMAIN 

 
  Table 6 shows the percentage of homology with each individual domains of 

other PKS I clusters of Streptomyces sp. KS domain was the most conserved domain in 

the cluster. Homology of the KS domains within the cluster was determined to vary 

from 65-74% similarity by Multiple Sequence Alignment. Comparison of the KS 

domains with other type I PKS revealed that the conserved actives site motif TACSS is 

invariant in modules 2 and 3 of the Streptomyces sp. 98- 62. Sequence information is 

insufficient to determine that of module 1.The cysteine residue in the conserved 

sequenced is required for the KS to be active, and is required for the formation of a 

thio ester linkage to the growing acyl chain. As such modules 2 and 3 could be 
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predicted to be active. Two other His residues are also reported in other active KS 

genes. Module 2 contained both the His residues. Module 1 and 3 had one of the two 

His  residues each. It is indeterminable from the available sequence as to the presence 

of the second His residue. Fig. 46 shows the conserved residues in bold.  

 
AT DOMAIN 

 
 
The AT domains of PKS genes from Streptomyces sp. 98- 62 show more 

sequence variability than the KS domains. It has been demonstrated the AT domains 

fall into two distinctive classes and this can be distinguished from the conserved motifs 

in the AT domain (Haydock, 1995).  As a result, substrate specificity of the AT 

domain can be determined from the primary amino acid sequence. This analysis shows 

that the AT domain of module 1 PKS I genes from Streptomyces sp. 98- 62 has 

substrate specificity for malonyl CoA and the AT domain of module 2 PKS I genes 

from Streptomyces sp. 98- 62 has substrate specificity for methylmalonyl CoA (Fig. 

47).  
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Figure 47: Phylogenetic analysis of acyltransferase domains. Phylogenetic tree of
aminoacid sequences of acyl transferase domains from Streptomyces sp. type I PKS
showing clustering of malonyl and methylmalonyl loading domain sequences. The
PKS I genes used for comparison are that of rapamycin, denoted as RAP,
niddamycin denoted as NID and that of the Streptomyces sp. 98- 62, denoted as
MOD. The tree was constructed using the CLUSTALW program. The relatedness
between different domains is indicated by the length of the horizontal line. The
shorter the horizontal line, the more closely related the domains. The length of the
vertical lines are not significant. 
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The AT domains of module 1 and module 2 were only 27.6% similar The AT 

domains of module 1 and module 2 were only 27.6% similar by Multiple Sequence 

Alignment. The sequence difference in malonyl CoA specific AT domain and 

methylmalonyl CoA specific AT domain would explain the low homology between the 

AT domains of the Streptomyces sp. 98- 62 modules. Similar observations have been 

noted between niddamycin AT2 and AT6 domains, where the similarity between the 

malonyl CoA specific AT domain AT2 and methymalonyl CoA specific AT domain 

AT 6 is about 30% (Kakavas et al., 1997). It is predicted that if the same substrate 

specific AT domains of the Streptomyces sp. 98-62 are to be compared with each 

other, a higher homology between the domain sequences would be obtained. 

Niddamycin AT2 and AT3 domains are malonyl CoA specific and share an aminoacid 

identity of 95% (Kakavas et al., 1997). 

Both the identified AT domains of the Streptomyces sp. 98- 62 retain the active 

site sequence GHSXG. The Ser residue of this consensus sequence is involved in the 

formation of the acyl enzyme intermediate. In addition there is also a conserved His 

residue about 100aa downstream of the active site XAXHX, which is invariant in other 

AT domains. This His residue is believed to be involved in the catalysis of 

acyltransferases. Two other Gln and Arg are invariant among all AT domains. These 

residues were also maintained in both the identified AT domains. Fig. 46 shows the 

conserved residues in bold. From the result, it can be predicted that the AT domains of 

the Streptomyces sp. 98- 62 are both active; module 1 AT domain being specific for 

malonyl CoA and module 2 AT domain being specific for methylmalonyl CoA.   

The homology between the degenerate primer sequence used to amplify the 

KS/AT region from the Streptomyces sp. and the sequence of KS/AT region of the 

modules 1 and 2 sequnce of the Streptomyces sp. 98- 62 cloned were compared. The 
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comparison revealed that the degenerate forward and reverse primers were 100% 

identical to the sequences in module 2 KS/AT region. The degenerate primers however 

only had 16.67% identity with the forward primer and no identity with the reverse 

primer. This could be expected because the degenerate reverse primer is designed from 

the methyl malonyl CoA substrate specifying enzyme. AT domain of module 1 is 

however malonyl CoA substrate specific. Hence it could be concluded that sequence 

homology of the degenerate primers plays a significant role in amplifying a gene 

product. 

From the data obtained that the malonyl CoA specific AT or methylmalonyl 

CoA specific AT domains are different, it will be useful to employ malonyl CoA 

specific AT or methylmalonyl CoA specific AT domains as probes to probe the 

genomic DNA of the Streptomyces sp. 98- 62, to determine the number of specific 

domains. These probes will be more specific than KS probes and will give strong 

hybridising bands to the respective homologous gene sequences in the genomic DNA. 

 
ACP DOMAIN 
 
 

The ACP domains of PKS genes from the Streptomyces sp. 98- 62 also show 

more sequence variability than the KS domains.   ACP domains of module 1 and 

module 2 were 57% similar by Multiple Sequence Alignment. The pantothiene binding 

Ser residue in the GFDSL motif was present in the ACP domains of both modules 1 

and 2, indicating that these domains of the Streptomyces sp. 98- 62 are likely to be 

functional 

 Fig. 46 shows the conserved residues in bold. 
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DH DOMAIN 
 
 

Domains with predicted reductive functions are DH and KR domains. DH 

domains of module 1 and module 2 were 39.6% similar by Multiple Sequence 

Alignment. Highly conserved His, Gly and Pro residues of the HXXXGXXXXP 

conserved sequence were retained in both the modules 1 and 3, predicting that these 

domains of the Streptomyces sp. 98- 62 are likely to be functional. Fig. 46 shows the 

conserved residues in bold. 

 
KR DOMAIN 
 
 

KR domains of module 1 and module 2 were 57.9% similar by Multiple 

Sequence Alignment. Designating the limits of KR domain was difficult as the C 

terminal sequence of the KR domains varied slightly from that of the rapamycin 

domains. Active KR domains are expected to have a NADP (H) binding site 

GXGXXAXXXA. The first invariant Ala residue in the motif has been found to be 

replaced by Gly residue sometimes. The KR domains of module 1 and module 2 retain 

the predicted sequence of GXGXXGXXXA, where the first Ala residue is substituted 

with Gly residue. Therefore both module 1 and module 2 KR of the Streptomyces sp. 

98- 62 are predicted to retain the activity. Fig. 46 shows the conserved residues in 

bold. 

DH and KR functions and as the DH and KR domains of modules 1 and 2 are 

predicted to be active, the enzyme encoded are expected to be involved in the 

formation of a double bond in the PKS I compound that the enzymes biosynthesize. 

However, it has to be determined if the reduction functions are reflected in the 

structures of the PKS I product formed. Modules 3 and 6 of Rapamycin with the 
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predicted active sites for reduction are not reflected in the ultimate structure of 

Rapamycin. 

It is noted that amino acids in the domain level are more conserved than in the 

modular level (Results). This could be because, modular level comparison includes the 

sequences of the domains as well as interdomains. Interdomain linker regions are 

required for the folding of the multifunctional polypeptide encoded by the modules and 

are typically less conserved. The variability of the interdomain region would therefore 

result in a lower modular homology than domain homology when compared to other 

PKS I genes.  

Variability of domains within the PKS I cluster are also observed in all other 

PKS I clusters. Each module of the PKS I cluster catalyses a single step of the 

polyketide biosynthesis. As substrates for each step of the polyketide biosynthesis 

would be different in a PKS I system, enzymatic PKS I domains are likely to vary 

slightly in different PKS I systems. This could be one of the reasons for the variability 

of domains and the modules within the clusters.  

The PKS I genes of the Streptomyces sp. 98- 62 studied in this work seem to 

have a higher similarity to the corresponding PKS I genes of the avermectin producer 

Streptomyces avermitilis. However, it should be noted that the available information of 

the PKS I cluster from the Streptomyces sp. 98- 62 is of insufficient detail to conclude 

on the gene organization in comparison to that of the avermectin PKS I gene cluster. 

Further sequencing work to determine the adjacent genes to span a region of at least 

one complete ORF would be required to put up a more comprehensive study for 

evolutionary origin of the PKS I genes.  

It would also be premature at this juncture to draw firm conclusions on the 

exact nature of the chemical structure of the PKS I compound of the Streptomyces sp. 
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98- 62. In the case of rapamycin and FK506, the ORFs of the PKS I genes do not 

encode proteins that follow the order of KS, AT(A), DH, KR, ACP, KS, AT(P), DH, 

KR, ACP. This is also so for the ORF of the avermectin PKS I genes (Fig. 7). This 

suggests that there are some minor differences in the catalysis for the production of the 

PKS I compound of the Streptomyces sp. 98- 62 PKS I system from those of 

rapamycin, FK506 or avermectin. In view of this, it is expected that there are some 

minor difference in the structure of   the PKS I compound of the Streptomyces sp. 98- 

62 PKS I as compared to those of rapamycin, FK506 or avermectin. This evidence is 

in line evidence with the results of the TLC bioassay of the extracts of the 

Streptomyces sp. 98- 62 which predicted that the structure of the Streptomyces sp. 98- 

62 PKS I antifungal compound was likely to be different from that of rapamycin and 

FK506. 

In order to determine if the cloned PKS I genes of the Streptomyces sp. 98- 62 

functioned in the antifungal compound synthesis, gene disruption of the genes were 

considered indispensable. To do this, a gene transfer system for the Streptomyces sp. 

98- 62 to inactivate the genomic DNA had to be established. Intergeneric conjugation 

experiments with integrative pSOK201 gene disruption constructs from donor strain 

E.coli (pUB307) to the Streptomyces sp. 98- 62 were performed and demonstrated to 

be successful.  

The integration of the disruption constructs into the homologous regions of the 

genome of the Streptomyces sp. 98- 62 by a single reciprocal recombination would be 

reflected by the presence of the vector backbone in the chromosome of the disruptant 

but not the wild type. Such a physical disruption by gene disruption would show 

functional disruption only if the homologous gene fragment of the disruption construct 

lacks the stop codon and/or start codon of that gene or operon.    
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Gene disruption with the disruption construct pDC170FL was used to establish 

the intergeneric conjugation experiment. This construct was also utilized to prove that 

the predicted stop codons and start codon in the 7.2 kb fragment of recombinant clone 

C170 was indeed functional and that the disrupting sequence of 7.2 kb constituted two 

different open reading frames as deduced.  Southern analysis of the BamHI and SphI 

restricted DNA from the wildtype and disruptant using two probes, the 3.0 kb vector 

probe and the 7.2kb insert probe confirmed physical disruption. Secondary metabolites 

of disruptants grown analysed to determine if the antifungal compound biosynthesis by 

Streptomyces sp. 98- 62 was affected by the gene disruption of the PKS I genes. The 

result indicated that the disruptants 170D1 and 170 D2 were not functionally disrupted. 

Although the results observed could be explained by the presence of the 

stop/start codons in the disruption construct, there was no direct evidence for the 

involvement of the cloned PKS I genes in the antifungal compound biosynthesis.  

Therefore, to determine if the PKS genes of the 7.2 kb PKS I fragment cloned from the 

Streptomyces sp. is indeed involved in the biosynthesis of the antifungal compound, 

internal fragments of DNA sequence of an individual ORF of the PKS I genes from 

clone C170 as well as E27 and C2 were decided to be used for further gene disruption 

analysis. 

Upon gene disruption experiment with internal fragments of DNA sequences of 

an individual ORF, one representative disruptant each of the three different PKS I 

internal fragments, named 27D1, 2KBC170D1 and C2D1, were analysed by Southern 

blot and TLC- bioassay to determine physical and functional disruption. Southern 

hybridisation with vector probe result confirmed that the disruption constructs 

pDE27D1, pD2KBC170 and pDC2 had undergone insertion into the expected region 
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of the genomic DNA of the Streptomyces sp. 98- 62 to produce the disruptant 

transformants. 

Secondary metabolites of disruptants 27D1, 2KBC170D1 and C2D1 failed to 

show any bioactivity. This result indicated that the disruptants 27D1, 2KBC170D1 and 

C2D1 were functionally disrupted. 

Disruptant construct pDC2 contained the genes of module 2 and module 3. 

Disruption construct pDC2 is similar to disruption construct pD170FL in that both 

carry genes that span the parts of 2 modules. The construct pDC170FL contains the 

genes of modules 1 and 2. The key difference in the two constructs is that pDC170FL 

construct has 2 stop codons and a start codon in the intermodular region, but pDC2 

construct does not contain any stop or start codons. 

Comparison of the result from gene disruption experiment using constructs 

pDC170FL and pDC2 confirms the prediction that there are stop/start codons between 

module 1 and 2 but not between module 2 and 3. Thus module 1 is in a separate ORF 

from that of module 2 and 3. The result also shows that physical disruption of genes is 

not sufficient for functional disruption, and that it is important to use internal 

fragments of genes to observe functional disruption.   

These results gave strong evidence that the cloned partial PKS I gene cluster of 

the Streptomyces sp. 98- 62 are responsible for the biosynthesis of the antifungal 

compound, and that the deduced partial ORF1 and ORF 2 of the cloned PKS I genes of 

Streptomyces sp. 98- 62 are indeed transcriptionally uncoupled. 

It is intriguing to observe that functional disruption of the antifungal compound 

biosynthesis by disruption of the PKS I genes from the Streptomyces sp. 98- 62 had a 

pleiotropic effect on aerial mycelium formation. The exact cause as to this observation 
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is yet to be determined. It should be noted that this is the first ever report of PKS I 

genes having pleiotropic effect on differentiation of Streptomyces. 

 So far, only PKS II genes of the polyketide synthases have been implicated in 

differentiation of Streptomyces, albeit in spore colour formation. A PKS II gene 

designated whi E has been shown to be involved in the spore pigment formation of  

S. coelicolor (Keleman et al, 1998). Mutants of these PKS II gene Whi E were 

described as white (Whi) mutants. The white mutants of Streptomyces coelicolor A(3)  

produce an obvious aerial mycelim but not the normal spores. It is interesting to note 

that the PKS I gene disruptants of the Streptomyces sp. 98- 62 showed a “ bald “ 

phenotype rather than “ white” phenotype. Mutants of Streptomyces coelicolor A(3),  

which lack an obvious aerial mycelium are called bald (bld). Most of the known bld 

mutants are regulatory proteins (Table 1 and 2). Such regulatory proteins are rather 

small and would be able to diffuse out of the cells to act as signals for differentiation 

process (Miyake et al, 1990). However in the case of the Streptomyces sp. 98- 62, the 

gene products of PKS I genes would be a large multifunctional polypeptide, that 

functions in the biocatalysis of a polyketide. Assuming that the polyketide rather than 

the polyketide synthase has a role in the differentiation process, the size of the 

polyketide would be large in comparison to the other known regulatory proteins of 

differentiation. Hence, it would be very interesting to determine how and why the PKS 

I genes are associated with differentiation of the Streptomyces sp. 98- 62. 

 
CONCLUSION 
 
 

In conclusion, the current work has identified PKS I genes in the novel 

antifungal compound producing Streptomyces sp. 98- 62, using PKS I specific probe  

eryKS II from Saccharopolyspora erythraea. The PKS I genes of the Streptomyces sp.  
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98- 62 were then cloned by homologous based approach whereby PCR primers from 

conserved sequence of PKS I genes were used to amplify the keto synthase-acyl 

transferase genes from the genomic DNA of the Streptomyces sp. 98- 62. Eventually 

the genomic copy of the keto synthase-acyl transferase genes of the Streptomyces sp. 

98- 62 was isolated from a subgenomic library. Chromosomal walking aided in the 

isolation of clones that carried the adjacent fragments to that of the first clone isolated. 

The cloned DNA fragments of 11656 base pairs correspond to PKS I genes of 

streptomycetes, encompassing 3 modules. Module 1 was predicted to be a part of one 

open reading frame whilst module 2 and 3 of the cloned genes were predicted to be 

part of another open reading frame adjacent to the ORF encompassing module 1. The 

genes consist of repeated modules of ~5 kb and are characteristic of PKS I genes of 

other streptomycetes. The domains of the modules were also organised like those of 

the PKS I genes of other streptomycetes. All of the identified domains are predicted to 

be active based on sequence comparison with other known PKS I genes. The acyl 

transferase domain of module 1 was predicted to be specific for malonyl CoA specific 

substrates whilst the acyl transferase domain of module 2 was predicted to be specific 

for methylmalonyl CoA specific substrates. These results provided strong evidences 

that PKS I genes have been isolated from the novel antifungal producing Streptomyces 

sp. 98- 62. A gene transfer system for the Streptomyces sp. 98- 62 was then established 

and used to prove the function of the cloned genes in the biosynthesis of the antifungal 

compound. The gene disruption experiments established that indeed the cloned PKS I 

genes of the Streptomyces sp. 98- 62 were involved in the biosynthesis of the novel 

antifungal compound produced by the Streptomyces sp. 98- 62. The gene disruption 

experiments also confirmed the prediction that this work made a study of parts of two 

open reading frames in the total length of the cloned genes. In addition, the gene 
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disruption experiment highlighted the possible involvement of the cloned PKS I genes 

of the Streptomyces sp. 98- 62 in the morphological differentiation of the novel 

antifungal compound producing Streptomyces sp. 98- 62.   

 
SIGNIFICANCE OF THIS PROJECT 

 
 
According to Milind et al., 2001, “it is becoming increasingly difficult to 

obtain novel compounds, and screening more often yields the same compounds again 

and again”. However they suggest in their paper that the rate of decline in the rate of 

discovering new compounds is due to the decline in screening efforts rather than 

exhaustion of compounds. This opinion is resonated in an earlier paper by Hans 

Zahner and Hans- Peter Fiedler (1995). Several different approaches were described to 

identify new antibiotics in this paper. One of the many suggestions was to search for 

new antibiotics using new test methods, different microorganisms and varying culture 

conditions.  

Given the difficulty of finding a new antibiotics, the finding of a novel 

antifungal compound from the Streptomyces sp. 98- 62 that is sufficiently different 

from the known polyketide antifungal compounds such as rapamycin and FK506 is of 

significance. Experimental data from the nucleotide sequences and TLC separation 

profile provide evidence that the antifungal complex polyketide compound produced 

by the Streptomyces sp. 98- 62 is different from the known antifungal polyketides such 

as rapamycin and FK506. 

The isolation of the novel antifungal compound producing Streptomyces sp. 98- 

62 goes to reiterate the point that with improved screening methods and using different 

microorganisms, new antibiotics could be identified. A rational screening approach to 

screen for antifungal compound producers form the pool of Streptomyces sp.s isolated 
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from various parts of the untapped Singapore soil has resulted in the successful 

identification of a Streptomyces sp. 98- 62 capable of producing a novel antifungal 

compound. 

Cloning and characterisation of the polyketide synthase type I gene from the 

novel antifungal compound producing Streptomyces sp. 98- 62 as well as functional 

proof by gene disruption studies with the cloned genes have proved without doubt that 

the cloned PKS I genes are the biosynthetic genes that brought about the production of 

the novel antifungal compound by the Streptomyces sp. 98- 62.   

Although it is too preliminary to suggest that the novelty of the antifungal 

compound would account for its usefulness as a potential pharmaceutical product, 

further study of this novel antifungal compound would be highly beneficial in 

understanding the natural evolution of polyketide synthase genes, use of the PKS I 

genes of the Streptomyces sp. in 98- 62 in combinatorial biosynthesis of novel hybrid 

polyketides. 

This study has also for the first time led to the discovery of possible association 

of PKS I genes to the morphological differentiation of Streptomyces sp. Further work 

on this subject would be very useful in understanding the possible role of secondary 

metabolites in regulation of differentiation of the producing streptomycete. 

 
FUTURE DIRECTIONS 

 
 
 Several directions can be taken for the further study of the novel antifungal 

compound produced by the Streptomyces sp. 98- 62. Cloning and sequencing the 

remaining PKS I genes of the Streptomyces sp. 98-62 are needed to characterise the 

complete gene cluster. Gene disruption studies of specific domains of the PKS I genes 

could be done to determine the function of the individual domain in the biosynthesis of 
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the antifungal compound. Determination of the chemical structure of the antifungal 

compound would be required to understand the correlation between the catalysis of the 

predicted PKS I genes and the compound structure.  Structural analysis of the 

compound is then required to understand the role of chemical structure of the PKS I 

compound in relation to its mode of action as an antifungal compound and pleiotropic 

regulator of differentiation. Cloning the novel PKS I genes as that of the Streptomyces 

sp. 98- 62 would also increase the repertoire of available catalytic domains / modules 

that could be used to rationally engineer novel hybrid polyketide compounds.  

 
FINAL REMARK 

 
 
Search for a new antibiotic is a long road to success. Regardless of whether the 

destination of the search is as desired, the lessons to be learnt along the journey is as 

important as the destination itself, if not more. At this juncture, the results of this 

project is supportive of the potential of the novel antifungal compound produced by 

the Streptomyces sp. 98- 62 as promising in terms of the lessons to be learnt along the 

way as well as at the destination.  
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