
Founded 1905

INTEGRATED FAULT DIAGNOSIS SCHEME

USING FINITE-STATE AUTOMATON

XI YUNXIA

(B.ENG.,M.ENG.,Zhejiang University)

A THESIS SUBMITTED FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

DEPARTMENT OF ELECTRICAL AND COMPUTER

ENGINEERING

NATIONAL UNIVERSITY OF SINGAPORE

2003

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarBank@NUS

https://core.ac.uk/display/48625372?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Acknowledgments

I would like to express my deepest gratitude to my supervisors, Associate Professor

K.W. Lim and Associate Professor W.K. Ho for their guidance, support and en-

couragement through my Ph.D. study. Their unwavering confidence and patience

have aided me tremendously. I am indebted to them for their care and advice not

only in my academic research but also in my daily life.

My special thanks go to Prof. Heinz A. Preisig of the Eindhoven University

of Technology(TUE), the Netherlands, for his valuable advice and concern in this

work. His wealth of knowledge and accurate foresight have greatly impressed and

benefited me.

I would like to thank Ramkumar for his special help and encouragement in this

project. I am very grateful to all my friends at the Electrical Machines and Drives

Lab and at the Advanced Control Technology Lab, whose friendship has made my

stay at National University of Singapore an unforgettable experience and one of

the best periods of my life.

Finally, I wish to express my heartfelt gratitude to my parents, my sister and

my brother for their affection and support. I would like to thank my husband,

Chen Shihong, for his constant support and encouragement. I will never fulfill

myself without my loving family. I dedicate this thesis to them.

Xi, Yunxia

January, 2003

i



Contents

Acknowledgements i

List of Tables vi

List of Figures viii

Summary ix

1 Introduction 1

1.1 Overview of Fault Diagnosis Problem . . . . . . . . . . . . . . . . . 1

1.2 Review of Fault Diagnosis Approaches . . . . . . . . . . . . . . . . 2

1.2.1 Limit Checking Approach . . . . . . . . . . . . . . . . . . . 3

1.2.2 Model-based Approach . . . . . . . . . . . . . . . . . . . . . 4

1.2.3 Artificial Intelligence Approach . . . . . . . . . . . . . . . . 7

1.3 The Proposed Approach to Fault Diagnosis . . . . . . . . . . . . . . 10

1.3.1 Scope of the Approach . . . . . . . . . . . . . . . . . . . . . 10

1.3.2 Overview of the Approach . . . . . . . . . . . . . . . . . . . 12

1.4 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2 Modeling for Fault Diagnosis using FSA 16

2.1 Finite-State Automaton (FSA) Model . . . . . . . . . . . . . . . . . 17

2.2 Representation of Finite-State Automaton . . . . . . . . . . . . . . 21

2.2.1 Finite-State Automaton Table Representation . . . . . . . . 21

2.2.2 Formal Language Representation . . . . . . . . . . . . . . . 22

2.3 Modeling for Fault Diagnosis . . . . . . . . . . . . . . . . . . . . . . 24

ii



2.4 Computational Effort . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.4.1 The Sparsity of the System . . . . . . . . . . . . . . . . . . 28

2.4.2 The Choice of the State Space . . . . . . . . . . . . . . . . . 30

2.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3 Fault Diagnosability of FSA 33

3.1 Analysis of the Diagnosability of Continuous System . . . . . . . . 34

3.2 Notation of the Diagnosability of FSA . . . . . . . . . . . . . . . . 36

3.3 Testing the Diagnosability . . . . . . . . . . . . . . . . . . . . . . . 43

3.4 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4 Choice of Boundaries for Fault Diagnosability 53

4.1 Analysis of Boundaries . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.2 Adapting the Boundaries . . . . . . . . . . . . . . . . . . . . . . . . 57

4.3 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5 On-line Fault Diagnosis 68

5.1 Dynamic Computation of the FATs . . . . . . . . . . . . . . . . . . 69

5.2 Algorithm for Fault Diagnosis . . . . . . . . . . . . . . . . . . . . . 71

5.3 Reliability of the Fault Diagnosis System . . . . . . . . . . . . . . . 74

5.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6 Applications 77

6.1 Applications to the Heat Exchanger (HEX) System . . . . . . . . . 80

6.1.1 The State Variables and the FATs . . . . . . . . . . . . . . . 81

6.1.2 Experimental Results . . . . . . . . . . . . . . . . . . . . . . 82

6.2 Applications to the Heating Cooling (HC) System . . . . . . . . . . 86

6.2.1 The State Variables and the FATs . . . . . . . . . . . . . . . 87

6.2.2 Experimental Results . . . . . . . . . . . . . . . . . . . . . . 88

6.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

iii



7 Conclusions 98

7.1 Contributions of this Thesis . . . . . . . . . . . . . . . . . . . . . . 98

7.2 Comparison with the Related Work . . . . . . . . . . . . . . . . . . 99

7.3 Suggestions for Future Work . . . . . . . . . . . . . . . . . . . . . . 102

Bibliography 104

A Summary of Computing State-transitions 109

B Mathematical Model of the Heat Exchanger System 112

C Mathematical Model of the Heating Cooling System 114

D Part of the FATs Generated for the Heat Exchanger System 116

E Part of the FATs Generated for the Heating Cooling System 120

F Procedure for Running Diagnoser of the Heat Exchanger System127

G Procedure for Running Diagnoser of the Heating Cooling System130

H Pictures of the Process Plant 133

I Publications 134

iv



List of Tables

2.1 Transition function f : U ×X −→ P (X) . . . . . . . . . . . . . . . 18

2.2 An Automaton Table . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3 Transitions representation for adjacent states . . . . . . . . . . . . 27

3.1 Different types of overlapping subspaces . . . . . . . . . . . . . . . 36

3.3 The representation of different cases of diagnosability . . . . . . . . 44

3.4 The working condition of the system . . . . . . . . . . . . . . . . . 46

3.5 Component equilibrium surfaces for all the cases (+ indicates stable,

- indicates unstable and 0 means no dynamics for the respective

component) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.6 Subspaces for each case . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.7 Boundary set of the state variables . . . . . . . . . . . . . . . . . . 48

3.8 The FATs generated for the two tank system . . . . . . . . . . . . . 50

3.9 The diagnosable information of the FATs . . . . . . . . . . . . . . . 50

4.1 New boundary set of the state variables . . . . . . . . . . . . . . . . 64

4.2 The new FATs generated for the two tank system . . . . . . . . . . 65

4.3 The diagnosable information of the new FATs . . . . . . . . . . . . 66

6.1 Coarse state-boundaries for start-up phase . . . . . . . . . . . . . . 82

6.2 Refined state-boundaries for subsystem . . . . . . . . . . . . . . . . 85

6.3 State-boundaries for heating-up phase (hot valve is used) . . . . . . 90

6.4 New state-boundaries for heating-up phase (hot valve is used) . . . 92

6.5 State-boundaries for steady-state phase (hot valve is used) . . . . . 92

6.6 State-boundaries for steady-state phase (cold valve is used) . . . . . 93

v



6.7 New state-boundaries for steady-state phase (cold valve is used) . . 96

D.1 The Automaton Tables for normal condition . . . . . . . . . . . . . 117

D.2 The Automaton Tables for heater coil failure . . . . . . . . . . . . . 118

D.3 The Automaton Tables for Pump N2 failure . . . . . . . . . . . . . 119

E.1 The Automaton Table for normal condition (hot valve for control) . 121

E.2 The Automaton Table for normal condition (cold valve for control) 122

E.3 The Automaton Table for the hot valve failure . . . . . . . . . . . . 123

E.4 The Automaton Table for the heater failure . . . . . . . . . . . . . 124

E.5 The Automaton Table for the cold valve failure . . . . . . . . . . . 125

E.6 The Automaton Table for the cooling system failure . . . . . . . . . 126

vi



List of Figures

1.1 The procedures for building the diagnostic system . . . . . . . . . . 13

2.1 Example of a transition function in a non-deterministic FSA . . . . 18

2.2 The discrete states and boundaries for a 2-D case . . . . . . . . . . 21

2.3 The state transitions for a 2-D case . . . . . . . . . . . . . . . . . . 24

2.4 An example of state transitions . . . . . . . . . . . . . . . . . . . . 27

2.5 The discrete-event model by using the sparsity of the system . . . . 29

2.6 Three tank system . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.7 Considering the tanks separately . . . . . . . . . . . . . . . . . . . 30

2.8 The discrete-event model by choosing the subspace of the system . 31

3.1 Definition of the diagnosability . . . . . . . . . . . . . . . . . . . . 38

3.2 Definition of the diagnosability with additional “diagnosable discrete

state with timing” . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.3 Example for the same terminating path . . . . . . . . . . . . . . . . 41

3.4 Example for the same cycle . . . . . . . . . . . . . . . . . . . . . . 41

3.5 Procedures for testing the fault diagnosability . . . . . . . . . . . . 44

3.6 Two tank system . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.7 Phase diagram of two tank system for case 1-3 . . . . . . . . . . . . 47

3.8 The boundaries of two tank system . . . . . . . . . . . . . . . . . . 49

3.9 The transition diagram of two tank system . . . . . . . . . . . . . . 49

4.1 A fault is nondiagnosable in the shadow subspace . . . . . . . . . . 59

4.2 Algorithm of changing the boundaries for fault diagnosability . . . . 62

4.3 The new boundaries of two tank system . . . . . . . . . . . . . . . 64

vii



4.4 The new transition diagram of two tank system . . . . . . . . . . . 65

5.1 Dynamic computation of FAT . . . . . . . . . . . . . . . . . . . . . 70

5.2 The procedure for fault diagnosis . . . . . . . . . . . . . . . . . . . 72

5.3 On-line computation of the FATs . . . . . . . . . . . . . . . . . . . 73

6.1 The diagnostic system architecture for process plant . . . . . . . . . 78

6.2 Schematic of the heat exchanger pilot plant . . . . . . . . . . . . . 80

6.3 Start-up phase with coarse state-boundaries . . . . . . . . . . . . . 83

6.4 Fault detection with coarse state-boundaries . . . . . . . . . . . . . 84

6.5 Steady-state phase with refined state-boundaries . . . . . . . . . . . 85

6.6 Fault detection with refined state-boundaries . . . . . . . . . . . . . 86

6.7 Schematic of the heating cooling system . . . . . . . . . . . . . . . 87

6.8 Heater failure at the heating-up phase . . . . . . . . . . . . . . . . 95

6.9 Heater failure at the steady-state phase . . . . . . . . . . . . . . . . 95

6.10 Cooling system failure at the steady-state phase . . . . . . . . . . . 96

A.1 Possible cases of the state space equations . . . . . . . . . . . . . . 110

H.1 The heat exchanger system . . . . . . . . . . . . . . . . . . . . . . . 133

H.2 The heating cooling system . . . . . . . . . . . . . . . . . . . . . . 133

viii



Summary

The problem of fault diagnosis for process plant has become increasingly important.

This is due to the growing demands on higher product quality and operational

reliability. This thesis addresses the problem of fault diagnosis in process plants

using Finite-State Automaton (FSA) Model. A FSA model partitions the state-

space into finite regions and contains information on system trajectory across these

regions. An integrated fault diagnosis scheme is developed based on the FSA model.

In this thesis, we give the procedures to build the diagnostic system for a

process plant, which include the fault modelling and the fault detection and iso-

lation algorithm. A FSA model for fault diagnosis is automatically obtained for

a process plant by given continuous differential equations and a set of boundaries

of the state variables. The FSA model of the system is represented by a set of

Finite-State Automaton Tables (FATs), which describe the possible discrete state

transitions under the normal and fault conditions. The FATs serve as the input

to the fault detection and isolation algorithm. We introduce the definition of fault

diagnosability of the system, identify some conditions for nondiagnosability and

provide an algorithm for testing the fault diagnosability. We discuss the strategies

for dynamical choice of the set of boundaries that make a diagnosable system and

reduce the computational complexity. All these issues are well integrated in the

design of the fault diagnosis system.

A real time monitoring system is developed to implement on-line fault diagnosis

for process plants. The application of the fault diagnosis algorithm is illustrated

on a heat exchanger system and a heating cooling system.

ix



Chapter 1

Introduction

1.1 Overview of Fault Diagnosis Problem

The fault detection and isolation in industrial systems is of great importance and

economic significance. Several of the industrial disasters and accidents in the past

have cost millions of dollars. Malfunctions of plant equipment and instrumentation

increase the operating costs of the plants. Safety, higher productivity and oper-

ational reliability call for quick and accurate diagnosis of the faulty components.

The early detection of the occurrence of faults may help avoid the catastrophic

failure that these simple faulty components produced. Thus, the effective methods

of fault diagnosis can not only prevent the undesirable failures, but also enhance

the quality, safety, reliability, and economy of industrial process.

The terms fault and failure are used interchangeably in the literature as well

as in the practical usage. A fault is often defined to be any departure from an

acceptable range of an observed variable or calculated parameter associated with

the system. A fault implies a certain level of degradation of performance. Failure

on the other hand denotes a complete operational breakdown of equipment or the

process. These two terms are used as synonyms in this thesis.

Fault diagnosis systems implement the following tasks: Fault detection, fault

isolation and fault identification. Fault detection is defined to indicate something

is going wrong in the system; Fault isolation is the determination of the exact

1
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location of fault; Fault identification is the determination of the magnitude of

the fault. More practical systems contain only the fault detection and isolation

stages (FDI system) and in many cases “diagnosis” is used simply as a synonym

to “isolation”. Fault diagnosis is used to indicate the whole diagnostic process in

this thesis.

Fault diagnosis may be implemented based on off-line periodic equipment tests

or spot checks. These occasional methods sometimes require the shutdown of the

process which may lost a lot of money during the testing period and also cannot

detect and prevent the faults timely. Therefore, the need for an effective manage-

ment of early detection and localization of malfunctions calls for powerful on-line

fault detection and isolation techniques. Process monitoring is preferred and has

been developed. Process monitoring is a continuous real-time task of recogniz-

ing anomalies in the behavior of a dynamic system and identifying the underlying

faults. Incorporating a fault monitoring system into an industrial process results

in improved reliability, maintainability and survivability. In contrast to the earlier

work on fault detection and isolation, process monitoring poses three special diffi-

culties: 1. Diagnosis must be performed while the system operates. 2. Few system

parameters are observable. Monitoring is typically based on a small subset of the

system parameters, with limited opportunity to probe other parameters. 3. The

system is dynamic. The system exhibits time-varying behavior, parameter values

vary over a continuous range, the system has state and feedback is common. We

note that our emphasis in this work is on-line diagnosis of system faults.

1.2 Review of Fault Diagnosis Approaches

As the problem of fault diagnosis for process plant has become increasingly impor-

tant, it has received considerable attention in many research fields. A wide variety

of schemes have been proposed and used in different application areas. Various

approaches for fault diagnosis can be classified into three groups : limit checking

approach, model-based approach and artificial intelligence approach. A good sur-

vey of various methods used in process supervision and diagnosis can be found in
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[1][2].

1.2.1 Limit Checking Approach

A fault can be understood as a non-permitted deviation of a characteristic property

of the process itself, the actuators, the sensors and controllers. The normal fault

detection and isolation function consists of checking the measurable variables with

regard to a certain tolerance of normal values (limit or trend checking) and trigger

alarms if the tolerances are exceeded.

In many systems, there are two levels of limits, the first level is used for pre-

warning and the second level is used to trigger an emergency reaction. Limit

checking may be extended to the trend analysis of the process characteristics.

While simple and straightforward, the limit checking approach suffers from two

serious drawbacks:

• The threshold need to be set quiet conservatively as the plant variables may

vary widely due to normal input variations.

• The effect of single component fault may propagate to many plant variables,

which lead to a large number of alarms being set off in rapid succession and

make the isolation of faults extremely difficult. This process is normally

referred to as alarm analysis.

In limit checking approach, the most widely used scheme for alarm analysis

is based on fault trees [3, 4, 5]. Fault trees provide a graphical representation of

cause-effect relationships of faults in a system. A fault tree is built by reasoning

backwards from the system failure to basic or primal failures that represent the

root cause of the failure. The primary drawbacks of this approach are:

• Fault trees require a great deal of effort in their construction.

• They pose difficulties in handling feedback systems.

For improved performance, a natural first step consists of adding more sensors

and a second step to transfer the operator’s knowledge into computers. Because
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the number of sensors, transmitters and cables increases, the cost goes up and

overall reliability is not necessarily improved. Furthermore many faults cannot

be detected directly by available sensor technology. Therefore being very simple,

this approach has the above serious drawbacks. Consistency checks for groups of

plant variables can eliminate some of the above problems as described in the next

section.

1.2.2 Model-based Approach

Model-based approach took an important role in the prominent FDI techniques.

Most of the model-based FDI methods rely on the comparison of a system’s avail-

able measurements, with a prior information represented by the system model. A

wide variety of model-based fault diagnosis methods and applications have been

studied and summarized in [6, 7, 8, 9, 10].

Analytical Redundancy

Most model-based fault diagnosis methods rely on the concept of analytical redun-

dancy. One of the earlier work done on this can be found in [11]. In contrast

to physical redundancy, when measurements from different sensors are compared,

now sensory measurements are compared to analytically obtained values of the

respective variable. Such computations use present and/or previous measurements

of other variables and the mathematical model describing their relationship. The

resulting differences are called residues.

The procedure of evaluation of the redundancy given by any of the mathe-

matical models describing the system can be roughly divided into the following

steps:

1. Residual generation. The residual generator performs some kind of validation

of the nominal relationships of the system, using the actual input and the

measured output and generating the residual which normally is zero. The

redundancy relations to be evaluated can simply be interpreted as input-

output relations of the dynamics. If a fault occurs, the redundancy relations
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are no longer satisfied and the residuals deviate from zero.

2. Residual analysis : decision and isolation of the faults. The residuals are

examined for the likelihood of faults using appropriate decision functions or

statistic methods.

The major advantage of this approach is the ability to detect, not only abrupt

faults but also slowly developing faults via trend analysis. The primary drawbacks

of this approach are:

• Computational expenditure for the detailed on-line modeling of the process.

• The sensitivity of the detection process with respect to modeling errors and

measurement noise.

Parameter Estimation

Fault detection and isolation via parameter estimation relies on the principle that

possible faults in the monitored process can be associated with specific parameters

and states of a mathematical model of a process given in general by an input-output

relation.

This method requires an accurate model, which usually derived from the basic

balance equations for mass, energy, and momentum. The models will then appear

in the continuous or discrete time domain, in the form of ordinary or partial dif-

ferential or difference equations. Their parameters are expressed in dependence on

process coefficients, like storage or resistance quantities, whose changes indicate a

process fault.

Decision making whether a fault has occurred can be done with the aid of a

fault catalogue in which the relationship between process faults and changes in the

coefficients has been established. They can be based on simple threshold levels or

by using more sophisticated methods from statistical decision theory.

The main advantage of this method is that the state estimation method is the

existence of a mathematical model which is accurate and reliable enough for fault

diagnosis. The drawback is that the method has problems with the system where
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the operating point drifts or where the linearization is not accurate enough. A

good treatise on FDI using parameter estimation can be found in [12, 13, 14].

Discrete Event System

Recently, there has been a lot of interests in modeling the process plant in the dis-

crete event system (DES) framework for fault diagnosis. Most large-scale dynamic

systems can be viewed as DES at some level of abstraction. Such abstraction can

be done for the purpose of supervisor control or for the purpose of fault diagnosis.

Discrete event systems are dynamic systems whose behavior is governed by the

occurrence of physical events that cause abrupt changes in the state of the system.

These systems are characterized by a discrete state space of logical values and event

driven dynamics. In a discrete event model for fault diagnosis, the fault status of

system components are represented by states and their results are described by

events. The main issue is to determine if the system is in a failed state or if some

failure events have happened based on the available observations of the system

behavior and using model-based inferencing.

Various diagnostic systems in DES differ from each other both in their descrip-

tion and in their implementation. DES model can be represented by automata,

timed automata, rectangular automata and stochastic automata. Other descrip-

tions of discrete-event systems include formal languages, petri nets and max-plus

description. From the implementation point, these diagnostic systems can be clas-

sified as offline or online. In Offline method, the system is assumed to be in a

test-bed and the diagnostic system is to issue some test commands to infer prior

faults in the system. For Online diagnosis, the system is assumed to be operat-

ing continuously and the diagnostic system is to monitor the system behavior and

diagnose the faults in time.

DES approaches to fault diagnosis are most appropriate for diagnosing abrupt

yet non-catastrophic failures, i.e., failures that cause a distinct change in the be-

havior of the system but do not necessarily bring it to a halt. Such sharp failures

occur in a wide variety of technological systems including process control, au-
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tomated manufacturing systems, power systems, etc. As most interests of fault

diagnosis focus on the special state of the system, the major advantage of DES

approach is that it does not require the comparison of each point of value as done

in continuous system. The disadvantages are:

• Its complexity, the discrete nature of state and event spaces results in an

inevitable combinational explosion and most interesting DES are physically

large, contributing to this explosion. Human-imposed operational rules that

may involve arbitrary conditions add to the computational complexity.

• Its uncertainty, which may manifest itself as the inability to predict the next

state entered as a result of event, in which case models involving nondeter-

ministic features need to be used.

Some work using this method can be found in [15, 16, 17, 18, 19]. In [20], the

authors give a good survey of DES to fault detection and diagnosis problem.

1.2.3 Artificial Intelligence Approach

Complex physical systems (e.g. a nuclear power plant) contain several types of

elements and processes with different types of descriptions. The purely mathemat-

ical or any other modeling methods could not offer adequate methodology with the

required accuracy to solve the problems arising in this field. Therefore, artificial

intelligence (AI) methods have been developed, which try to mimic the human way

of reasoning and making decisions.

Expert Systems

The method of expert system depends on a knowledge base, which represents the

experience of a human expert and uses inference engine to conclude from this

knowledge. Knowledge engineering is the process of building expert systems. This

process of building consists of two main activities which usually overlap: acquiring

the knowledge and implementing the system. The acquisition activity involves

the collection of knowledge about facts and reasoning strategies from the domain
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experts. In the system construction process, the system builders (i.e. knowledge

engineers), the domain experts and the users work together during all stages of the

process, which involves extensive prototyping. In the FDI world, an expert system

helps in full or partial automation of the diagnostic procedure in order to aid the

human diagnostician in real-time.

Some surveys on using expert systems can be found in [21, 22, 23, 24]. The

advantage of the expert system is that it is suitable for systems that are difficult

to model, which involving subtle and complicated interactions. The disadvantages

are:

• Considerable amount of time may elapse before enough knowledge is accu-

mulated to develop the necessary set of heuristic rules for reliable diagnosis.

• Domain dependent, expert systems are not easily portable from one system

to another.

• It is difficult to validate an expert system.

Model-based Reasoning

The basic paradigm of model-based reasoning for diagnosis can best be understood

as the interaction of observation and prediction [25]. Observation indicates what

the device is actually doing, prediction indicates what it’s supposed to do. The

interesting event is any difference between them, termed “discrepancy”. These

model-based methods employ a general purpose model of the structure and be-

havior of the system, which are constructed using standard AI technology such

as predicate logic, frames, constraints and rules. The algorithm for diagnosis are

also based on standard techniques in AI, like theorem proving, heuristic search,

constraint satisfaction and qualitative simulation.

The virtue of this method is its strong device independence, enabling us to

begin reasoning about a system as soon as its structure and behavior description is

available. It can be less costly to use, because the model needed is often supplied

by the description used to design and build the device in the first place. It is more
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likely to provide methodical coverage because the model building process supplies

a way of systematically enumerating the required knowledge.

This method of diagnosis is highly suitable for troubleshooting analog and dig-

ital circuits. However, applicability of this method for dynamic system is yet to

be fully demonstrated. Most of the model-based reasoners that have been pro-

posed for fault diagnosis of dynamic systems [26, 27, 28] are based on the general

diagnostic formalism proposed for static systems.

Artificial Neural Networks (ANN)

The development of artificial neural networks was inspired by the way the human

brain works. An ANN consists of a large number of so interconnected neurons.

Each neuron can have many inputs and computes its output as a nonlinear function

of the weighted sum of its inputs. ANN’s typically consist of an input, one or several

intermediate, and one output layer with a huge number of neurons on each layer.

There are two main properties of ANN’s which make them interesting for this

task. First, they are able to approximate nonlinear functions very well. The second

important feature of ANN’s is that they are very good for pattern recognition

and classification tasks. As artificial neural networks do not use a mathematical

description of the system, the process called the “training of the network” has to

be taken to implement knowledge about the system. The principle of training is

to feed the network with the input of the system and adjust internal parameters

in a way that the output of the network gets closer to the real system output with

each cycle of learning.

The main advantages of artificial neural networks for fault diagnosis is that

no mathematical model is needed, so ANN’s are applicable to systems which are

difficult to model. The disadvantage of this method are:

• These methods require a set of training data which has to be taken from the

real process or any other process model. The reaction of the network is only

defined for situation for which it was trained. There is no general way to

make sure that it was trained for all possible cases.
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• For complex systems the number of neurons in the network can grow so that

the method gets very computation intensive.

The potential for this approach for chemical processes was initially proposed

in [29, 30]. More detailed analysis regarding the learning and generalization char-

acteristics of the method is given in [31]. A dynamic approach using moving time

window can be found in [32] [33].

Each method discussed in this chapter has its particular advantages and dis-

advantages. Which of these approaches one selects for a given system depends

on:

• The characteristics of the system.

• The kind of faults to be diagnosed.

• Knowledge available about the system.

• What criteria must be set (robustness etc.).

There is no sharp distinction between different techniques of fault diagnosis and

their regions of application. They may often be used to complement each other.

1.3 The Proposed Approach to Fault Diagnosis

1.3.1 Scope of the Approach

We present in this work, another new model-based approach to fault diagnosis

using Finite-State Automaton (FSA) model, which is based on the Discrete Event

System (DES) framework. The DES model for fault diagnosis has been discussed

in Section 1.2.2. In a discrete event model for fault diagnosis, the fault status

of system components are represented by states and their results are described

by events. Based on the available observations of the system behavior and using

model-based inferencing, the diagnostic system determines the failure states or

failure events.
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One of the important factors that distinguishes our work from most prior work

on fault diagnosis in DES is the following : unlike most of the other methods, the

designer has to define the individual component models and the sensor maps from

abstraction to obtain the complete discrete state model. In our work, the Finite-

State Automaton model for fault diagnosis can be automatically obtained by given

a system described by continuous differential equations and a set of boundaries

of the state variables. As the FSA model is directly mapped from the continuous

system, it enhances the accuracy of the representation of the system, which cannot

be guaranteed by the other methods using the abstraction to obtain the DES model.

Our modeling method is applicable not only to continuous dynamic systems, but

also to hybrid systems, which are partially modelled by differential equations.

Furthermore, the proposed approach is applicable for the large-scale dynamic

system. One of the consideration is the complexity of the DES system, that is the

discrete states result in an inevitable combinational state explosion if the system

is physically large. In many cases, only part of the state variables are affected by

a fault input, which can be exploited by the sparsity of the model. Therefore, for

the system represented by many state variables (differential equations), actually

only some of the state variables (differential equations) need to be used to model

the effect of the particular faults. This makes it profitable to consider sub-systems

of the overall system as the complexity of the system is significantly reduced.

Because of the uncertainty property of DES, given the initial state and the discrete

inputs, the model will predict all the possible trajectories of the system. The

nondeterministic feature of the model should be used. We note that in this work

the nondeterministic FSA model is constructed for fault diagnosis.

Another important issue in the proposed approach is to examine the fault di-

agnosability of the system. Given a system and a set of diagnostic requirement, it

is necessary to know if the diagnostic system can diagnose all the faults of interest.

Most prior work on the diagnosability is based on the results of the deterministic

FSA model. They simply define the fault to be diagnosable or nondiagnosable.

The FSA model of the system is nondeterministic in our work, therefore, the diag-
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nosability of the nondeterministic FSA model is especially studied. The definition

of the diagnosability includes the fault to be diagnosable, possibly diagnosable and

nondiagnosable, which is different from the previous definitions of diagnosability.

Furthermore, the diagnosability of the continuous system is discussed before prob-

ing the diagnosability of the DES system.

The ability to enhance the fault diagnosability of the system has important

meaning for the designed system. However, most of the approaches stop after

giving the system model and studying the diagnosability of a system. In our ap-

proach, the state space is partitioned by a set of boundaries of the state variables,

the crossing of which denotes an event noted by the diagnostic system. If the

boundary has not been appropriately chosen, the useful information may be lost

when mapping the continuous domain to the discrete domain and the fault maybe

is not diagnosable. Therefore, the choice of boundary set influences the fault diag-

nosability of the system. In this work, we present how to “adapt the boundaries” of

the state variables to achieve the fault diagnosability of the system. The result has

significance on its guidance for discretizing the continuous value of the variables

for fault diagnosis using DES. Furthermore, the boundaries also have significant

impact on the computational effort required for the event spaces of a large system.

In this work, some strategies are proposed to dynamically “change the boundaries”

for the sake of the computational effort.

To summarize, the proposed approach provides:

• a framework of fault modeling of systems and the algorithm for on-line fault

diagnosis;

• an approach to analyze the fault diagnosability of the system;

• a scheme to enhance the fault diagnosability of the system.

1.3.2 Overview of the Approach

A model of the system should form a framework which allows reliable fault detec-

tion, but the model alone is often used to describe the behavior of the system and
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not sufficient to accurately and timely detect all possible faults. This information

calls for an “integrated fault diagnosis scheme ” to diagnose the fault.

In this work, a finite-state automaton model (FSA) for fault diagnosis is au-

tomatically obtained by given a process plant described by differential equations

and a set of boundaries of the state variables. A set of Finite-State Automaton

Tables (FATs) are used to represent the FSA, which serve as the input to the fault

detection and isolation algorithm. We introduce the definition of fault diagnos-

ability of the system, identify some conditions for nondiagnosability and provide

an algorithm for testing the fault diagnosability. We discuss the strategies for dy-

namical choice of boundary sets that make a diagnosable system and reduce the

computational complexity.
 

Model the system (including faults as inputs) 

Generate the automaton tables 

Analyze the fault diagnosability 

Give the boundary analysis 

Build the diagnoser 

Figure 1.1. The procedures for building the diagnostic system

The main contribution of this work is that it provides an integrated method

to fault diagnosis using FSA, which lead to a more structured and robust on-

line diagnostic system. Fig. 1.1 illustrates the main procedures for building the

diagnostic system for a dynamic system using our proposed method. The procedure

is as follows:

1. Model the system using FSA from a set of differential equations and a set of
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boundaries of the state variables.

2. Generate the Finite-State Automaton Tables (FATs) representation of FSA

for the normal and the faulty conditions.

3. Analyze the fault diagnosability of the system.

4. Adapt the boundaries if some faults are not diagnosable.

5. Build fault diagnoser to implement on-line fault diagnosis, which include the

on-line computation of FATs with appropriate choice of boundaries.

All the functions are built as different modules in the on-line fault diagnosis

system and the diagnoser can call them according to different diagnosis require-

ment, which enhances the flexibility of the overall fault diagnosis system. In this

thesis, we illustrate the approach on a heat exchanger system and a heating cool-

ing system. The on-line diagnoser constructed in the real time process monitoring

system can accurately and timely detect and isolate the faults using the proposed

method.

1.4 Thesis Outline

This thesis is organized as follows: Chapter 2 presents the methodology for build-

ing the FSA model of the process plants for fault diagnosis and gives the FATs

representation of FSA model for different conditions. Chapter 3 gives the notion of

the fault diagnosability of the FSA, identifies some conditions for nondiagnosabil-

ity and discusses an algorithm for testing the fault diagnosability of the system.

Chapter 4 provides a method for adapting the boundary set of state variables to

achieve the fault diagnosability of the system. Chapter 5 discusses several strate-

gies for changing the boundary set of state variables to save the computational

effort and presents the on-line fault diagnosis algorithm. Chapter 6 illustrates the

application of the approach on two real process plants, a heat exchanger system

and a heating cooling system. Chapter 7 summarizes the main contribution of
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this thesis, compares our proposed approach with other related research work and

recommends the directions for the future research work.



Chapter 2

Modeling for Fault Diagnosis

using FSA

We investigate in this work a new approach to fault diagnosis using Finite-State

Automaton (FSA), which has been broadly used in the Discrete Event Systems

(DES) modeling approach. In this approach, we attempt to get a nondeterministic

FSA model of a system from a set of ordinary differential equations (ODE) of

a continuous system and a set of boundaries of the state variables in ODE. For

the nondeterministic FSA model, given an initial state, the model may record

all the possible event traces in the system. The Finite-State Automaton Table

(FAT) is used as a representation of FSA and it tabulates all the possible state

transitions. For the modeling of faults, the faults of interest are combined as

inputs to the ODE describing the continuous system. Then the FSA model of a

system with faults is mapped from the continuous system by given the ODE with

fault inputs. A set of Finite-State Automaton Tables (FATs) generated under the

normal input and under fault inputs are used for the fault detection and isolation

algorithm. If the physical system is very large, the discrete states and event spaces

may result in an inevitable state explosion and the computational effort to obtain

DES from continuous system may also become very large. Taking advantage of

the structural properties, such as the sparsity of the system, this effort can be

significantly reduced.

16
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The organization of this Chapter is as follows: In Section 2.1, we introduce

the FSA model and present a methodology for constructing it. In Section 2.2, we

discuss the representation of FSA. In Section 2.3, we present the modeling method

for fault diagnosis using FSA. In Section 2.4, we discuss the hierarchical decompo-

sition approach which eliminates the state explosion problem. In Section 2.5, we

summarize the work presented in this chapter.

2.1 Finite-State Automaton (FSA) Model

We define a finite-state automaton M as a 5-tuple:

M(U,X, Y, f, g) (2.1)

where:

U :: finite set of discrete-inputs

X :: finite set of discrete-states

Y :: finite set of discrete-outputs

f :: transition function f : U ×X −→ P (X)

g :: output function g : X −→ Y

We denote by P (X) the set of subsets of X. The transition function f gives,

for each discrete input ũ (ũ ∈ U) and the discrete state x̃ ( x̃ ∈ X), the set

of next possible discrete states in X. If the output Y is taken equal to X, the

output function g and the set of discrete outputs Y is not used. With the latter

simplification finite-state automaton becomes 3-tuple:

R(U,X, f) (2.2)

For each x̃ and ũ, if the next discrete state f(x̃, ũ) is uniquely defined, the automa-

ton is called deterministic. Else, if more than one new discrete states is possible,

the automaton is called non-deterministic. Finite-state automata contains no tem-

poral information, they merely state whether a transition is possible or not. The

automaton table may be used to represent the current discrete state, the input and
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the transition functions. In the following example, an automaton table representing

a non-deterministic FSA is illustrated.

Example

Let us take an example as a non-deterministic FSA, where X = {x̃1, x̃2, x̃3, x̃4}
and U = {ũ1, ũ2}. The transition function is described in Table 2.1 and in Fig. 2.1.

We can see that for the current discrete state x̃1 and x̃2, given an input, two new

discrete states are possible and are not deterministic.

Current State(X) Input (U) Next possible state(s)

x̃1 ũ1 x̃2, x̃3

x̃2 ũ1 x̃3, x̃4

x̃2 ũ2 x̃1

x̃3 ũ1 x̃3

x̃3 ũ2 x̃4

x̃4 ũ1 x̃2

Table 2.1. Transition function f : U ×X −→ P (X)

1
~x

2
~x

3
~x

4
~x

1
~u

1
~u

1
~u

1
~u

2
~u

2
~u

2
~u

1
~u

Figure 2.1. Example of a transition function in a non-deterministic FSA
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Now we consider an nth order dynamical system described by a set of ordinary

differential equations:

ẋ = f(x), x ∈ <n (2.3)

For each element of the n state variables, xi(i = 1 . . . n), define a set of bound-

aries,

βi
0 < βi

1 < · · · < βi
k (k ≥ 1) (2.4)

the crossing of which denotes a discrete event. The coordinate of each state variable

separated by the boundaries is represented by m, m = 1 . . . k. It is assumed that f

is continuous and time invariant. The continuous state variable xi is now mapped

into regions. The βi need not be equidistant, the determination of interval size is

problem specific.

A discrete state of the system (2.3) is denoted by a bounded region in Rn:

x̃ = {x ∈ Rn | βi
mi−1 ≤ xi ≤ βi

mi} i = 1 . . . n. (2.5)

Where mi is used as index for the boundaries. For easier notation the following

n-tuple representation of (2.5) will be used:

x̃ = (m1, . . . , mn). (2.6)

Two discrete states are adjacent if they share an (n−1)–dimensional boundary.

This means, that the corresponding n-tuples coincide on all except one position in

which they differ by one unit. Therefore, x̃1 = (m1
1, . . . , m

n
1 ) and x̃2 = (m1

2, . . . ,m
n
2 )

are two adjacent states if there is one, and only one index j, such that mi
1 = mi

2 for

all i 6= j and mj
1 = mj

2±1 holds. A transition (discrete event) is recorded when the

system state moves from its existing discrete state to an adjacent discrete state.

After this discretization, the state space is divided into X = {x̃1, x̃2, . . . , x̃p},
where p =

∏
i (k − 1) is the cardinal number of X.

Given any discrete states in the state space and an input, we may determine

what the next possible discrete states will be. Here we use the method presented

in [34, 35] to obtain the possible discrete events (transitions) from a discrete state

by given the differential equations and the set of boundaries of the state variables.
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Proposition 2.1 : Denote the boundary between any two adjacent states, x̃1

and x̃2 , by Bx̃1,x̃2 , where

Bx̃1,x̃2 = {x ∈ <n | xj = βj

mj
1

, βi
mi

1−1 < xi < βi
mi

1
, (i 6= j)} (2.7)

for i = 1, . . . , n. Denote in Eqn.(2.3) the j-th coordinate of f by fj. If there exists

a point x0 on Bx̃1,x̃2 such that fj(x0) > 0, then the transition from x̃1 to x̃2 is

possible. Moreover, if the transition from x̃1 to x̃2 is possible, then there exists at

least one x0 on Bx̃1,x̃2 such that fj(x0) ≥ 0.

Proof: in [34].

The consequence of this result is that, in order to assess if a transition between

two adjacent states is possible or not, we need to look at the sign of a coordinate

function of f on the separating boundary. We adopt a two step procedure for this.

For example, if we want to decide whether a transition is possible from x̃1 to x̃2,

we first begin by checking the extremal points of Bx̃1,x̃2 . These are the points of

coordinates

xi = βi
mi

1−1 or βi
mi , i 6= j

xj = βj

mj
1

(2.8)

If all these function values have the same sign, it is necessary to search the whole

region to detect if a change of sign occurs. This is done with a numerical opti-

mization method for checking the feasibility of state transitions. A summary of

computing state-transitions is given in Appendix A.

We make the following assumptions on the system : Since only transitions to

the adjacent discrete states are allowed and in order to make the plant model satisfy

the continuity condition, we assume that only one discrete coordinate can increase

or decrease at a time. The circumstance may occur in the system as shown in

Fig. 2.2, in which a trajectory goes through an intersection point. Therefore, there

is a transition from (2,2) to (3,3), which has two discrete coordinate increase at a

time. But this circumstance can be prevented by shifting the boundaries a little

bit as shown by the dotted line in Fig. 2.2 if such an event happened.
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2.2 Representation of Finite-State Automaton

2.2.1 Finite-State Automaton Table Representation

Finite-State Automaton Table is a representation of Finite-State Automaton Model,

which tabulates all possible state transitions. Given a system described by Eqn.(2.3)

and a set of state boundaries by Eqn.(2.4), it is possible to automatically generate

a Finite-State Automaton Table representation of the process. Fig. 2.2 shows an

example for a simple two-dimensional problem. Each of the state variables x1 and

x2 has 4 boundaries and 3 qualitative intervals.

 
 
 
 
 
 
 
 
 
 
 
 
                     
            

                  
2
3β  

                  

                  
2
2β  

 
                 

                 
2

1β  

 

                 
2
0β  

                       
1
0β            

1
1β              

1
2β             

1
3β  

x1 

x2 

1,1 2,1 3,1 

1,2 

1,3 2,3 3,3 

2,2 3,2 

Figure 2.2. The discrete states and boundaries for a 2-D case

Instead of writing out all possible next states, we simply give for each coordinate

of the current state if a transition to a higher or a lower state (or both) for that

coordinate is possible. For a transition from, say, state (2,2) to (3,2) to take place,

we search for a maximum value of ẋ1(t) across the boundary between these states

i.e. x1 = β1
2 and β2

1 ≤ x2 ≤ β2
2 . If this maximum value is positive, we say

that a transition from (2,2) to (3,2) is possible and record “+1” in the automaton

table. Similarly, for a transition from (2,2) to (1,2) to take place we search for

a minimum value of ẋ1(t) across the boundary between (2,2) and (1,2). If this

minimum value is negative, we say that the transition is possible and record “-1”

in the automaton table. We shall denote the current state and the next possible
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transitions by Eqn. (2.9) and Eqn. (2.10).

x̃c = (m1
c , . . . ,m

n
c ). (2.9)

N c = (∆m1
c , . . . , ∆mn

c ). (2.10)

where ∆mi
c = 0,−1, +1 , or ±1 (i = 1, . . . , n, c = 1, . . . , p) means that the next

possible state is“unchanged”, “mi
c − 1”, “mi

c + 1”, or “mi
c ± 1”.

A Finite State Automation Table for a 2-dimensional example is shown in

Table 2.2.

Current Next Possible Explanation

State(m1
c ,m

2
c) Transitions(∆m1

c , ∆m2
c) (Next Possible State)

(1,1) [+1, +1] (1,1), (1,2), (2,1)

(1,2) [+1, +1] (1,2)(2,2)(1,3)

(1,3) [+1, 0] (1,3)(2,3)

(2,1) [-1, 0] (2,1)(1,1)

(2,2) [+1, -1] (2,2)(2,1)(3,2)

(2,3) [+1, -1] (2,3)(2,2)(3,3)

(3,1) [-1, 0] (3,1)(2,1)

(3,2) [0, -1] (3,2)(3,1)

(3,3) [0,-1] (3,3)(3,2)

Table 2.2. An Automaton Table

2.2.2 Formal Language Representation

An alternative description of the DES in the literature is formal language represen-

tation, which has been widely used in the control [36, 37, 38] and fault diagnosis

[15, 17, 18].

• A finite nonempty set of symbols is called an alphabet, denoted by Σ. σ ∈ Σ

denotes that σ is a symbol in Σ. Thus if Σ = (0, 1, 2, 3, 4) then 0 ∈ Σ. A
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finite sequence of symbols from some alphabet is called a word or string over

the alphabet.

• A collection of words is called language. For example, the collection 1, 12,

123, 1234 is a language over the alphabet consisting of digits.

• If w and x are words over any alphabet Σ, then x is called prefix of w if for

some word y(in Σ), w = xy. A suffix is defined similarly. A lauguage is said

to be prefix closed if all the prefixes of that lauguage are also in the language.

• ∑∗ denotes the set of all finite traces of symbols of
∑

, including the empty

trace denoted by ε. the * operation is called the Kleene closure [39]. For

example, if Σ = (1), then Σ∗ = (ε, 1, 11, 111, . . .). For any alphabet,
∑∗ is

infinite.

For the sake of convenience, the transition function g is extended from domain

X ×∑
to domain X ×∑∗ in the following recursive manner:

g(x, ε) = x

g(x, sσ) = g(g(x, s), σ) for s ∈ ∑∗ and σ ∈ ∑∗

The language generated is represented by: L = {s ∈ ∑∗ : g(x0, s) is defined },
where x0 is a initial state.

If we use the language representation for the two dimensional case shown in

Fig.2.2, we should define the symbols of event firstly, which is shown in Fig.2.3.
∑

= e1, e2, . . . , e24. For the sake of convenience, the transitions to their own

discrete state are not considered as the discrete events. After choosing a discrete

state as the initial state, the language may be generated according to different

systems. For example, for the system shown in Table 2.2, if let the initial state

to be (1,1), the language generated is: L = (e1e2 + e1e15(e4e14 + e21e6e20e14) +

e1e7e17(e10(e4e14 + e21e6e20e14) + e23e12e6e20e14))∗

The language is used to illustrate the event traces in the system. Using the

language, the initial state and the symbol of events should be defined first. The

language is generated based on the fact that the designer knows the working mech-

anism of the system (possible transitions between any discrete states).
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1,3 2,3 3,3 

1,2 2,2 3,2 

1,1 2,1 3,1 
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Figure 2.3. The state transitions for a 2-D case

As we discussed before, the FAT has the alternative properties as the language

and furthermore:

• It can reflect the discrete states in the state space and the state transitions

(events) between the discrete states.

• The FAT can be automatically generated and records the possible events of

the system by given the differential equations and the boundaries of the state

variables.

• Given any initial state, the events can be traced automatically using the FAT.

The fault diagnosis method we discuss later may start diagnosis at any discrete

state of the system and monitor the discrete state and the state transitions (events)

on-line. Therefore, we use the FAT representation in our fault diagnosis.

2.3 Modeling for Fault Diagnosis

Consider the dynamic controlled system defined by

ẋ = f(x, u), x ∈ Rn (2.11)

where u represents the control inputs to the system. The Eqn.(2.11) describes the

system under normal working conditions.

Faults occurring in a dynamic system can be component failure, actuator fail-

ure, etc. Component Failure occurs when the elements comprising the physical
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system malfunctions. Actuator Failure may take place in the actuators which are

directly under the control of the supervisor. We assume a fault-free working of the

controller (low level and high level). In this case, the failure of the actuator will

make the system follow the behavior of the discrete input different from the one

issued by the controller.

To incorporate these faults we remodel the Eqn.(2.12) as:

ẋ = f(x, u, d), x ∈ Rn (2.12)

where d represents the fault inputs which introduces terms representing faults in

the system equation. Note that this equation reduces to Eqn.(2.11) when there are

no faults i.e. when d = 0.

Therefore if the system has r discrete fault inputs, then we model

d = {d1, · · · , dr} (2.13)

Where di = 0 or 1 , i = 1, · · · , r. “0” indicates that the fault input i does

not occur and “1” indicates the occurrence of the fault i. An example of such a

format is shown in the Appendix C. No matter what kind of failures occurred,

mathematically our fault model the Eqn.(2.12) means that some of the existing

terms vanish and/or new terms are added.

We look at the Eqn.(C.1) in the Appendix C and rewrite in the following:

49.6
dTH

dt
= (1− d1)0.03F (TJ − TH)VH + (1− d2)× PH + 0.015(TH − TE) (2.14)

In the above equation, there are two kinds of fault inputs d1 and d2. d1 rep-

resents the fault input for the hot valve failure and d2 represents the fault input

for the heater failure. We model the hot valve by VH , which is controlled by a PI

controller. We want to detect the valve stuck closed (no flow) status. The fault of

the valve stuck closed may be modelled by adding the factor (1−d1) to VH . Under

the normal condition (d1=0), there is no changes of VH . When the valve get stuck

closed (d1=1), (1−d1)VH is equal to 0. Then the first part (1−d1)0.03F (TJ−TH)VH

of the equation will vanish. We model the heater coil by PH , which stands for the

heat input to the system. The fault of heater coil may be modelled by adding the
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factor (1− d2) to PH . Under the normal condition (d2=0), there is no changes of

PH . When this heater coil fails (d2=1), (1− d2)PH is equal to 0. Then the second

part (1− d2)× PH of the equation will vanish.

Having described the behavior of the continuous system with the differential

equation (2.12), we define a set of boundaries for the state variables. We note

that the control input u may be continuous, but which does not pose a problem

as it can be discretized in the same manner as other state variables by defining

an appropriate set of boundaries. Latter is completely general and applies to any

discrete-event observed continuous plant. If the control variables are the outputs of

the lower level PID controllers, we assume that the system may know the next pos-

sible state of the controller by the given the current state of the system. Therefore,

the fault diagnoser does not need predict the trajectory of the control variables.

Each control variable is also partitioned by a set of boundaries (2.4), but the dis-

crete state value of control variables helps to predict the next possible state of

other state variables describing the system.

The FAT generated under the normal condition is denoted by TN , where di = 0,

i = 1, · · · , r. A set of FATs T Fi ∈ T F (i = 1, · · · , r) are generated for each fault

(di = 1) in turn. TN and T F serve as input to the fault diagnosis algorithm.

The algorithm for fault diagnosis may consist of two steps, fault detection and

fault isolation. In the first step, the algorithm compares the traces of the plant with

the traces predicted under TN . A fault is detected whenever there is a deviation

from these traces. In the second step, the algorithm compares the traces of the

plant with the traces predicted under T F . The fault is isolated whenever there is

a match of the trace of the plant in T Fi ∈ T F (i = 1, · · · , r). We will discuss the

on-line fault diagnosis algorithm in details in Section 5.2.

An event trace from discrete state x̃a to discrete state x̃b under a certain con-

dition C (C = N, Fi(i = 1 · · · r)) is defined as tra
b (C). The superscript represents

the beginning discrete state and the subscript represents the ending discrete state.

For example, in Fig.2.4, we may define tr1
4(F1), tr2

4(N,F1), tr4
2(F2). We note that

the event trace is defined in one direction.
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Figure 2.4. An example of state transitions

Because of the serial nature of computing devices, one can identify a “line” that

communicates the event information in a serial manner to the automaton, which

makes it impossible to detect simultaneous crossing of boundaries IF the detector

is observing individual co-ordinates. Therefore, only one discrete coordinate can

increase or decrease at a time and the events between any two adjacent discrete

states are specific. For the sake of representation of events, we use representation

shown in Table 2.3 to describe the transitions between any two adjacent discrete

states x̃i and x̃j (i, j ∈ 1 · · · p, i 6= j). The symbol of events (condition) need not

be specified.

Representation Explanation

x̃i → x̃j A transition from x̃i to x̃j

x̃i ← x̃j A transition from x̃j to x̃i

x̃i ¿ x̃j Transitions between x̃i and x̃j

Table 2.3. Transitions representation for adjacent states

2.4 Computational Effort

One of the disadvantages of the state discretization of continuous plants is the

computational effort, which is necessary to obtain these models. The underly-

ing combinational growth characteristic is known as the state-explosion problem.

However, this problem is mainly related to the number of the state variables and

the boundaries assigned to each state variable in our system. Two methods will

be discussed that can be used to reduce the computational effort.
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2.4.1 The Sparsity of the System

For both nonlinear and linear systems the number of computations can be reduced

by exploiting the sparsity of the system. Even though the system is physically large

and maybe is represented by hundreds of differential equations, in many cases, only

a part of differential equations are sparse functions of fault inputs. That means

only a part of the differential equations (state variables) must be used for the

fault diagnosis purpose. We make an assumption that the state variables are all

observable before we use the above method to obtain the system model for fault

diagnosis.

Furthermore, we know that only a part of the state x, the control input u and

the fault input d influences the derivative ẋi, which makes sense to consider the

sub-systems of the overall system such that the sum of the computations for the

individual systems is less than for the overall system. In general, the state space is

partitioned in ν subspaces. The new state z is a permutation of the original state

components and is decomposed as z = [z1, · · · , zν ]
T . The differential equations

in (2.12) are now partitioned accordingly such that we have ν sub-systems, żi =

fi(wi, vi, oi), where wi, vi, oi is a vector consisting of those components xj, uj, dj of

x, u, d that influence żi directly.

The computational effort to obtain discrete-event models of all these subsystems

may be significantly less than creating the complete model at once. Since the

computation can be done in parallel for all the sub-models and more computation

time can be gained. A supervisory system may be used to reconstruct the complete

state from the information provided by the sub-models. In this case, a supervisor

is used to extract the necessary information for each sub-model and to reconstruct

the complete state from the information provided by the sub-models. This requires

extracting w̃i,ṽi,õi from x̃,ũ,d̃ for each of the sub-models (as shown in Fig.2.5).

For example, a three tank as in Fig.2.6 consists of three communicating tanks.

The input u = (u1, u2, u3, u4, u5) of the system control the valves, where ui ∈ 0, 1

(closed/open). The first and the last tank can be filled by the flow F1 and F2 re-

spectively. Only the last tank has a drain. The state vector x = [x1, x2, x3]T is given
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Figure 2.5. The discrete-event model by using the sparsity of the system

 

x1 x2 x3 

u1 u2 
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F1 F2 

Figure 2.6. Three tank system

by the water levels in each tank. We associate 5 fault inputs d = (d1, d2, d3, d4, d5)

according to five valves controlling the inputs. Therefore,

ẋ1 = f1(x
1, x2, u1, u3, d1, d3) (ODE1)

ẋ2 = f2(x
1, x2, x3, u3, u4, d3, d4)(ODE2)

ẋ3 = f3(x
2, x3, u2, u4, u5, d2, d4, d5) (ODE3)

If we are only interested in d1, we may just use the ODE1 and state variable x1.

The ODEs will be changed accordingly for different requirements. For this case, d3

will be removed from the ODE1. If we are interested in d1 and d3, the ODE1 and

ODE2 , the state variables x1 and x2 will be chosen. d4 will be removed accordingly

from the ODE2.

If we exploit the structure of the system, we can see that a single tank is not

influenced by all the inputs or the level of the fluid in all the other tanks. In fact,
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Figure 2.7. Considering the tanks separately

instead of considering the three tank system as one system it is also possible to look

at the tanks separately (Fig.2.7). By this the original state space is partitioned in

3 sub-spaces and for the new coordinates z1 = x1,z2 = x2,z3 = x3. We consider

the differential equations in the form

ż1 = f1(x
1, x2, u1, u3, d1, d3) = f1(w1, v1, o1)

ż2 = f2(x
1, x2, x3, u3, u4, d3, d4) = f2(w2, v2, o2)

ż3 = f3(x
2, x3, u2, u4, u5, d2, d4, d5) = f3(w3, v3, o3)

where w1 = [x1, x2]T ,v1 = [u1, u3]T ,o1 = [d1, d3]T , w2 = [x1, x2, x3]T ,v2 = [u3, u4]T ,o2 =

[d3, d4]T , w3 = [x2, x3]T ,v3 = [u2, u4, u5]T ,o3 = [d2, d4, d5]T . The discrete event

model of each separate system will be computed and then the complete discrete-

event model will be obtained for the three tank system. The detailed information

of the sparsity of the system and the computation for the sub-models are in [40].

2.4.2 The Choice of the State Space

Another method is effective for reducing the discrete states and computation effort

where a part of the state space is of particular interest. Instead of using one

discrete-event model for the complete state space region, the state space is divided

into many subspace regions and the sub-models of each subspace are obtained. On

one side, only a small set of boundaries need to be allocated to the subspace region,

so the discrete states of the subspace is much smaller compared with the discrete
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states needed by the complete space region; On the other side, local refinement of

the state space increase the representation accuracy of the system. Furthermore,

as discussed in the last section, the computational effort to obtain discrete-event

models of all sub-systems may gain more computation time than creating the

complete model at once.
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Figure 2.8. The discrete-event model by choosing the subspace of the system

For the practical application, most process plants normally contain different

working stages, which also makes it efficient to use sub-models for different phases

[41]. This is achieved by choosing the different subspace and allocating the different

boundary set to the system for different phases. A supervisory system may be used

to switch between all these sub-models in the whole process. For how to choose

the boundaries for the subspaces, we will discuss this issue in details in Section 5.1.

2.5 Conclusions

In this chapter, we have discussed the modeling method for fault diagnosis using

FSA. To summarize, the modeling procedures is as follows:

1. Obtain the differential equations of a dynamical system and define the com-

mand input and fault input vector.

2. Give a set of boundaries to the state and input variables.

3. Check the feasibility of state transitions and generate the FATs under the

normal and fault conditions.
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From Section 2.1, we may see that unlike the other modeling method in DES,

our modeling need the mathematical model of continuous system. The advantage

of our modeling method is that the resulted DES from the mathematical model is

more accurate and complete, and coincide with the actual continuous system. A

disadvantage of the state discretization of continuous plants is the state-explosion

problem. This problem can be better solved by probing the sparsity of the system

and choosing the different subspace of the system. The computational effort can

be significantly reduced through these methods.



Chapter 3

Fault Diagnosability of FSA

In a FSA model for fault diagnosis, the normal and the fault status of the system

components are represented by states while their results are described by normal

and failure events. The main purpose is to detect and isolate the occurrence of

these failure events. If there are no differences of these events (traces) under the

normal and fault conditions, we can not detect and isolate the fault. In this chapter,

we will discuss some issues on the fault diagnosability of our diagnostic system.

As our FSA model is obtained from the continuous system, we first analyze the

fault diangosability of continuous system. Then according to the connection of the

continuous domain and the discrete event system, we further give the definition of

the fault diagnosability of FSA model. The FATs which serve as input to the fault

diagnosis algorithm will be the main focus of the discussion.

The organization of this chapter is as follows. In Section 3.1, we analyze the

fault diagnosability of the system in continuous domain. In Section 3.2, we give

the definition of the fault diagnosability of the FSA and discuss the typical non-

diagnosable circumstance. In Section 3.3, we give the procedures for testing the

fault diagnosability of the system. In Section 3.4, we illustrate these concepts with

a two tank system example. In Section 3.5, we summarize the ideas presented in

this chapter.

33
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3.1 Analysis of the Diagnosability of Continuous

System

As discussed in Chapter 2, the plant operates in the continuous domain, with

respect to the outside viewer it provides discrete-event measures on the plant states

and acts on commands and disturbances. It displays an event dynamic behavior.

Two types of elements realize the connections between the continuous plant and

the discrete-event dynamics of the plant: on the input side, a zero-order hold

element is usually used to convert the discrete signals into continuous signals; on

the other side, the continuous measurement of the plants is discretized by the limit

(boundary) detectors, which is called (state) event detectors . They operate on

single variables, such as temperature, pressure and so on. It simply detects the

crossing of the limit (boundary), whereby the boundaries are an ordered set of

distinct quantities and the detector will generate the information of the direction

of the crossing.

As an event is defined as a transition across a face of the hypercube, the con-

struction of the automaton is based on analyzing the direction of the gradient on

the surface of each hypercube defining a discrete state. Since the hypercube’s faces

are aligned with the co-ordinates of the state variables, the analysis is identical to

analyzing the sign of the gradient of each component (state variable), with which

changing at its equilibrium surface.

The equilibrium surface for the ith component given values for command inputs

and disturbance is

ẋi = fi(x, u, d) = 0 (3.1)

for which we define the inverse function.

xi
0(k, l) = f−1

i (xi, u, d) = 0 (3.2)

where k ∈ K, K includes all the combinations of the control inputs, l ∈ L, L

includes all the possible working conditions of system and the vector xi is the

original state vector but with the ith state variable deleted. The vector functions
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are very sparse with respect to all quantities, which makes the individual problem

rather small indeed. This function represents a hypersurface of the dimension

n − 1 in the n-dimentional state space, which we call the ith component (state

variable) equilibrium hypersurface. For the discussion here, it is assumed that

all the mentioned elements are properly defined. In the case where the system is

stable for the component, the surface is within the state domain. In the case where

the system is not stable with respect to the viewed state variable, the equilibrium

hypersurface is at either + or - infinity.

For reasonable kind of systems, a component equilibrium hypersurface divides

the continuous state space into two parts, one in which the sign in the respective

direction is positive and the other one in which the direction is the opposite. The

automaton provides, as explained before, information about the direction of the

continuous trajectory. In order to diagnose faults one must thus make use of the

difference in the directionality of the system operating at different fault modes.

For the purpose of the mathematical definition, we define the subspace in which

the ith component of the gradient assumes the sign s:

Xi,s(k, l) = {x ∈ V|s = sign(ẋi) = sign(fi(x, u, d))} (3.3)

Where V represents the part of state space in which the plant operates. l ∈ Li,

Li includes all the possible conditions related to the ith component. It includes

“0”, which means the normal condition; It includes “q” kind of faults (q ∈ 1 · · · r),
which are those faults that have an effect on the ith component.

We look at the intersections of the subspaces in which faults can be detected

or isolated. For this purpose, we define a non-empty subset LA,i ⊂ Li for which

we seek an non-empty overlap space:

Oi,s(k, LA,i) =


 ⋂

∀k,l∈LA,i

Xi,s(l)


 ∩


 ⋂

∀k,l∈Li−LA,i

Xi,−s(l)


 (3.4)

Based on Eqn.(3.4), we can define different types of subspaces by selecting

different index set and the measured direction. Different types of overlapping

subspaces are defined in Table 3.1.
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s detected -s detected

∃Oi,s 6= 0
∧

LA,i = 0 no fault a fault

∃Oi,s 6= 0
∧

LA,i = q fault q no fault q

∃Oi,s 6= 0
∧

LA,i ⊂ Li behavior j ∈ LA,i behavior j ∈ Li − LA,i

Table 3.1. Different types of overlapping subspaces

With the event detectors discretizing the state space and defining at least one

boundary of the state variable in the overlapping domain defined by its component

equilibrium hypersufaces under different conditions, it results in an automaton that

has the capability to detect a fault or exclude a fault in the first case, isolate the

fault q or exclude its occurrence in the second case or states that current behavior

belongs to a set of the conditions or not in the third case. These are the basic

results that can be obtained from the simple measurement of the directions.

3.2 Notation of the Diagnosability of FSA

The system diagnoses the faults by using the difference in the directionality of

the system operating at different conditions. The diagnosability of the continuous

domain is that, if there exists an overlapping subspace of any component where

the direction of the fault mode is different from the other modes, then the system

can diagnose such a fault. When mapping to the discrete domain, if at least one

boundary of the state variable is allocated in such an overlapping domain defined

by this state variable, the resulted automaton can diagnose such a fault from the

event detection.

The FATs representation of FSA generated from the dynamic system are used

to capture all the events of the system. According to the directionality information

provided by the FATs, the diagnoser may tell the fault can be diagnosed from which

discrete state. Based on the diagnosability of the continuous domain, if the discrete

state associated with the required boundary is in the overlapping subspace where

the direction of the fault mode is different from the other modes, the fault can be



Chapter 3. Fault Diagnosability of FSA 37

diagnosed with an event detection. In the discrete domain, we give a definition as

follows:

Definition 3.1

A fault Fi (i = 1 . . . , r) is one event diagnosable from a discrete state, if this

discrete state is represented by x̃c (x̃c ∈ X, c = 1, . . . , p), the next possible transi-

tion in automaton table T Fi and the other automaton tables satisfy the following

condition:

N
cTFi 6= N cTK (3.5)

Where TK = TN , T Fj , j 6= i.

Eqn.(3.5) means that, given the discrete state, if the next possible transition

(event) in the automaton tables T Fi is different from the other automaton tables,

then the fault Fi is one event diagnosable from this discrete state. Simply, we call

such a discrete state a “one event diagnosable discrete state” (x̃onediag) for fault Fi.

This can be called “one event diagnosability”.

One target of our system is to examine whether the fault is diagnosable or

not from all discrete states if the fault possibly happened in any of the discrete

states. Most of the times a fault is not diagnosable only through one event detection

because the overlapping subspace discussed above cannot be the whole state space.

The fault Fi may happen in a discrete state x̃a that is not in such a overlapping

subspace, if there exists a event trace tra
onediag(Fi) to a “one event diagnosable

discrete state” (x̃onediag) under the condition Fi, we still consider the fault Fi is

possibly diagnosable from x̃a. Therefore, we define three different cases for the

fault diagnosability.

Definition 3.2

A fault Fi (i = 1 . . . , r) is diagnosable from a discrete state x̃c, if all the event

traces (M) from this discrete state can reach a “one event diagnosable discrete

state” as defined in Definition 3.1 under the condition Fi, that is M× trc
onediag(Fi).

We call such a discrete state a “diagnosable discrete state” for fault Fi.



Chapter 3. Fault Diagnosability of FSA 38

Definition 3.3

A fault Fi (i = 1 . . . , r) is possibly diagnosable from a discrete state x̃c, if

some of the event traces (N < M) from this discrete state can reach a “one event

diagnosable discrete state” as defined in Definition 3.1 under the condition Fi, that

is N × trc
onediag(Fi). We call such a discrete state a “possibly diagnosable discrete

state” for fault Fi.

Definition 3.4

A fault Fi (i = 1 . . . , r) is nondiagnosable from a discrete state, if no event

traces (0) from this discrete state can reach a “one event diagnosable discrete

state” as defined in Definition 3.1 under the condition Fi, that is 0× trc
onediag(Fi).

We call such a discrete state a “nondiagnosable discrete state” for fault Fi.

The above three cases are illustrated in Fig.3.1. To simplify the problem, the

“diagnosable discrete states” also include “one event diagnosable discrete state”.

 

Nondiagnosable 
discrete states 

Possibly 
diagnosable 
discrete states 

Diagnosable 
discrete states 

One event 
diagnosable 
discrete states 

tr(Fi) 

  tr(Fi) tr(Fi) 

tr(Fi) 

Figure 3.1. Definition of the diagnosability

The definition of diagnosability we discussed above is based on the assump-

tion that the corresponding events must happen for a certain type of failures. A

special circumstance may happen in the system that, in some discrete states, “no

events” happen for some type of failures, that is the next possible transition is

“0”. Therefore no events can be detected for such kind of failures. For a normal

designed system, the system should change its discrete state value unless it reaches
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the steady state. Therefore, it means that the system cannot be stuck at a tran-

sient discrete state under the normal condition. If such kind of failure happened

in a discrete state, for example, a “stuck closed” pump failure causes the system

to be stuck at a discrete state, it is obvious that the stuck-closed failure of the

pump cannot be diagnosed in this discrete state using the existing event detection

method. In this case, a simple method is to give a timing specification to such a

discrete state, that is an event must happen within the specified time. If the time

for the system staying at a discrete state is beyond what is specified, the diagnostic

engine may infer that the related fault has happened in such a discrete state. The

associate timing specification can be constructed from the information provided by

the FATs.

Definition 3.5

A fault Fi (i = 1 . . . , r) is diagnosable from a discrete state with timing, if this

discrete state is represented by x̃c (x̃c ∈ X, c = 1, . . . , p), the specified timing for

this discrete state is represented by tsc and the real timing the system stays at x̃c

is represented by trc, then it satisfies the following condition:

trc > tsc (3.6)

Eqn.(3.6) means that, given the discrete state, if the real timing of the system

staying at this discrete state trc is longer than the specified timing for this discrete

state tsc, then the fault Fi is diagnosable from this discrete state. Simply, we call

such a discrete state as a “diagnosable discrete state with timing” for fault Fi.

Actually, the above method uses the timing event detection, that is an event is

triggered when the timing boundary is reached. When using this method, Defini-

tion 3.2 to Definition 3.4 may not only base on “one event diagnosable discrete

state”, but also base on “diagnosable discrete state with timing”. Fig.3.2 illus-

trates this circumstance. We note that “one event diagnosable discrete state” and

“diagnosable discrete state with timing” belong to “diagnosable discrete states”.

Definition 3.6
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Figure 3.2. Definition of the diagnosability with additional “diagnosable discrete

state with timing”

A fault Fi (i = 1 . . . , r) is defined diagnosable in the state space if all the

discrete states in this state space are “diagnosable discrete states”.

To summarize, from the fault diagnosability point of view, it requires that

every fault leads to unique identification of the event within a finite number of

transitions. Therefore, for each discrete state in a diagnosable system there should

be a difference in the predicted event traces between the automaton table under

any fault condition T Fi and the automaton tables under the other conditions.

Definition 3.7

A set of discrete states x̃1, x̃2, . . . , x̃s ∈ X are said to form the same terminating

path under different FATs (conditions), if for each FAT there exists:

1. x̃1, x̃2, . . . , x̃s form a event trace with x̃t → x̃t+1 , t = 1 . . . s− 1.

2. x̃a → x̃1 , but x̃a has transitions to other discrete states not belong to

x̃1, x̃2, . . . , x̃s, a 6= 1 · · · s
For example, in Fig.3.3, discrete states 4 and 5 form the same terminating

path under the tables TN and T Fi . Discrete state 3 cannot be included in the

terminating path as it also has transition to discrete state 1.

Definition 3.8

A set of discrete states x̃1, x̃2, . . . , x̃s ∈ X are said to form the same cycle under
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Figure 3.3. Example for the same terminating path

different FATs (conditions), if for each FAT there exists:

1. x̃1, x̃2, . . . , x̃s form a cycle with x̃t → x̃t+1 and x̃s → x̃1, t = 1 . . . s− 1.

2. x̃a → x̃1 , but x̃a has transitions to other discrete states not belong to

x̃1, x̃2, . . . , x̃s, a 6= 1 · · · s
For example, in Fig.3.4, discrete states 4 and 5 form the same cycle under the

tables T Fi and T Fj . 

3 5 4 1 

3 5 4 2 

TFi 

T Fj 

Figure 3.4. Example for the same cycle

Proposition 3.1 : If a set of discrete states form the same terminating path

under any different FATs (conditions), these conditions cannot be separated from

this set of discrete states.

Proof : From Definition 3.7, there exists no difference of the event traces if a set

of discrete states form the same terminating path under different FATs (conditions).

There are no transitions to a discrete state that these conditions can be separated.

Therefore, these conditions cannot be separated from such a set of discrete states.

¥
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For example, Fig.3.3 illustrates discrete state 4 and discrete state 5 form the

same terminating path under two automaton tables TN and T Fi . In each case,

there is a possible transition from discrete state 4 to discrete state 5 and there is

no possible transition (event) from discrete state 5. There is no difference for these

two event traces from discrete state 4 to discrete state 5 and they cannot reach a

discrete state that these two conditions can be separated. Therefore the fault Fi

cannot be diagnosed in this set of discrete states.

Proposition 3.2 : If a set of discrete states form the same cycle under any

different FATs (conditions), these conditions cannot be separated from this set of

discrete states.

Proof : From Definition 3.8, there exists no difference of the event traces if a set

of discrete states form the same cycle under different FATs (conditions). There are

no transitions to a discrete state that these conditions can be separated. Therefore,

these conditions cannot be separated from such a set of discrete states. ¥
For example, Fig.3.4 illustrates discrete state 4 and discrete state 5 form the

same cycle under two automaton tables T Fi and T Fj . In each case, the only possible

transition from discrete state 4 is discrete state 5 and the only possible transition

from discrete state 5 is discrete state 4. It is not possible to distinguish between

event traces for discrete state 4 and discrete state 5 belonging to T Fi and T Fj .

Therefore, Fi and Fj cannot be isolated from such a set of discrete states.

As our system is nondeterministic, three circumstances may happen in the sys-

tem, that is from a discrete state, a fault may be diagnosable, possibly diagnosable

or nondiagnosable by checking all the possible event traces from this discrete state.

From Fig.3.1, we may see that if the nondiagnosable circumstance doesn’t exist,

the fault can be diagnosable from all the discrete states. Therefore, we will mainly

focus our attention on the set of the discrete states from which the fault is not

diagnosable.
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3.3 Testing the Diagnosability

As we discussed in Section 3.2, for each discrete state in a diagnosable system, there

should be a difference between the automaton table under any fault condition T Fi

and the automaton tables under the other conditions. Therefore, when testing the

diagnosability of any fault Fi, the FAT T Fi is compared with the FAT TN and

also is compared with the FAT T Fi under the other fault conditions. The testing

procedure for the fault diagnosability is shown in Fig.3.5.

Step 1: From the comparison, the system searches for the “one event diagnos-

able discrete states”. If the timing event detection method is used, the

“diagnosable discrete states with timing” will also be listed out. In both

two cases, the fault can be diagnosed with one event detection.

Step 2: Examine the discrete states that can reach the “one event diagnosable

discrete state” or the “diagnosable discrete states with timing”. These

discrete states belong to “diagnosable discrete states” or “possibly diag-

nosable discrete states”.

Step 3: The left discrete states are the “nondiagnosable discrete states” that can-

not reach the “one event diagnosable discrete state” or the “diagnosable

discrete states with timing”.

Step 4: Examine the discrete states that are the results from Step 2. The dis-

crete states that can reach the “nondiagnosable discrete states” are the

“possibly diagnosable discrete states” and the other discrete states are

“diagnosable discrete states”.

When checking the diagnosability of the system, the representation for different

cases is shown in Table 3.3. For example, “0” represents a “nondiagnosable discrete

state”, “1” represents a “diagnosable discrete state”. Here “diagnosable discrete

state” includes “one event diagnosable discrete state”. Different representation

is used for different cases to make more clearer to the diagnostic engine. The

“diagnosable discrete state with timing” also belongs to the “diagnosable discrete

state” and it is listed as a separate case because the diagnostic engine will associate
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One Event Diagnosable 
Discrete State 

Diagnosable Discrete 
State With Timing 

Possibly Diagnosable Discrete 
State / Diagnosable Discrete State 

Nondiagnosable Discrete 
State 

Possibly Diagnosable 
Discrete State 

Diagnosable Discrete 
State 

Start 

End 

Figure 3.5. Procedures for testing the fault diagnosability

a timing specification for the “diagnosable discrete state with timing”.

0 “nondiagnosable discrete state”

1 “diagnosable discrete state”

2 “possibly diagnosable discrete state”

3 “diagnosable discrete state with timing”

Table 3.3. The representation of different cases of diagnosability

The above procedure let us know how many discrete states in which a fault
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is diagnosable, possibly diagnosable or nondiagnosable and how many faults are

diagnosable in the state space. Using this method, we will not only know the

diagnosability of the system, but also further know the degree of diagnosability

[42] of the system. We may define the degree of diagnosability in two parts for

our system, one is the proportion of the discrete states in the state space from which

a fault is diagnosable and another is the proportion of faults that are diagnosable

in the state space. This result may provide the designer valuable information and

give the direction for the reconstruction of the diagnoser.

3.4 Example

Now we consider a real process example shown in Fig.3.6. This plant contains two

interacting tanks and a pump.
 

Pump 

Tank A Tank B 
Valve 

x1 x2 

Figure 3.6. Two tank system

The state variables x1 and x2 describe the deviation of the water level in tanks

A and B from a common reference value. The valve between the two tanks is

either “open” or “closed”. The pump can perform two different actions: “open”

or “closed”.

The flow rate between the two tanks is assumed to be a(x2− x1) and the cross

section of each tank is denoted by F . The flow rate is positive when the water

flows from tank B to tank A, and it is negative for the opposite direction of flow.
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The pump may be controlled, which is expressed by the control variable u1. The

control variable has two values: 1 or 0. 1 means “on” and 0 means “off”. The

working condition of the system is shown in Table 3.4:

Symbol Condition Explanation

d1 = 0 and d2 = 0 normal the valve and the pump are both open

d1 = 1 failure of the valve the valve is stuck closed

d2 = 1 failure of the pump the pump is stuck closed

Table 3.4. The working condition of the system

Then we get:

dx1

dt
= (1− d1)

a

F
(x2 − x1) + (1− d2)u1 r

F
(3.7)

dx2

dt
= (1− d1)

a

F
(x1 − x2) (3.8)

The parameters in this example are chosen as F = 1m2, a = 10−2m2sec−1,

r = 10−2m3sec−1.

For the purpose of our discussion, we define several instances of discrete control

input and disturbance input. The index k ∈ K = {1, 2} and the index l ∈ L =

{0, 1, 2} respectively. Six cases are generated from this sets of the inputs. Table

3.5 summaries the component equilibrium hypersurfaces for all the cases, which in

this system are straight lines. Fig.3.7 shows the phase diagram of two tank system

for case 1-3.

The top red line is the equilibrium line for state variable x1 at no fault. Above

this line, the sign of x1 is negative and below it is positive, as one would expect

with a stable system. The lower red line is the equilibrium line for state variable

x1 when the pump failed. The blue line is the equilibrium line for state variable

x2 under no fault and the pump failed.

The different subspaces for this example can be found in Table 3.6.
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case k l u1 d1d2 x1
0(k, l) dyn x2

0(k, l) dyn

1 1 0 1 0 0 x2 + 1 + x1 +

2 1 1 1 1 0 x1 → x1
+ - x2

− ≤ x2 ≤ x2
+ 0

3 1 2 1 0 1 x2 + x1 +

4 2 0 0 0 0 x2 + x1 +

5 2 1 0 1 0 x1
− ≤ x1 ≤ x1

+ - x2
− ≤ x2 ≤ x2

+ 0

6 2 2 0 0 1 x2 + x1 +

Table 3.5. Component equilibrium surfaces for all the cases (+ indicates stable, -

indicates unstable and 0 means no dynamics for the respective component)
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Figure 3.7. Phase diagram of two tank system for case 1-3

Looking at the direction x1, one may find that fault 2, namely the failure of

the pump is diagnosable, because the subdomain is non-empty. In this simple case

the result can be interpreted by Fig. 3.7. It is the stripe in the middle (purple) in

which case 3 move in the negative direction while the other two cases move in the

positive direction.

O1,−1(1, 2) = X1,−1(1, 2) ∩ X1,+1(1, 0) ∩ X1,+1(1, 1) (3.9)

Furthermore, fault 1 is also diagnosable from the directional information of the
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case k l u1 d1d2 X1,−1(k, l) X1,+1(k, l) X2,−1(k, l) X2,+1(k, l)

1 1 0 1 0 0 x1 > x2 + 1 x1 < x2 + 1 x2 > x1 x2 < x1

2 1 1 1 1 0 0 x1 > x1
− 0 0

3 1 2 1 0 1 x1 > x2 x1 < x2 x2 > x1 x2 < x1

4 2 0 1 0 0 x1 > x2 x1 < x2 x2 > x1 x2 < x1

5 2 1 1 1 0 0 0 0 0

6 2 2 1 0 1 x1 > x2 x1 < x2 x2 > x1 x2 < x1

Table 3.6. Subspaces for each case

state variable x1, because the subdomain is also non-empty. It is the upper-left

triangle (yellow) in Fig.3.7, in which case 2 move in the positive direction while

the other two cases move in the negative direction.

O1,+1(1, 1) = X1,+1(1, 1) ∩ X1,−1(1, 0) ∩ X1,−1(1, 2) (3.10)

The component x2 does not provide any information except if the process does

remain in any of the three stripes (Fig.3.7) then one may infer fault1 (case 2). This

case has been discussed with timing event detection in the discrete domain.

When mapping the continuous domain to the discrete domain, it is obvious

that if a boundary of the state variable across the diagnosable overlay subspace of

the component for a fault, the fault is diagnosable. This is corresponding to “one

event diagnosable” of fault defined in the discrete domain.

Now we allocate 4 boundaries for each of the 2 state variables and examine

the diagnosability of FSA. The boundary set is given in Table 3.7 and is shown in

Fig.3.8.

βi
0 βi

1 βi
2 βi

3

i = 1 0m 1m 2m 3m

i = 2 0m 1m 2m 3m

Table 3.7. Boundary set of the state variables
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Figure 3.8. The boundaries of two tank system

Given the system equations Eqn.(3.7) and Eqn.(3.8) and the boundaries in

Table 3.7, three automaton tables are generated: one is generated under the normal

condition (N) and two are generated according to each fault defined (F1 “valve

failure” and F2 “pump failure”). Each automaton table consists of 9 discrete state

combinations. The FATs generated are shown in Table 3.8. A transition diagram

from the FATs is shown in Fig.3.9. 

1,1 

2,1 2,2 2,3 

3,1 3,2 3,3 

1,2 1,3 
N/F2 

N/F1 F2 

N/F2 F1 
N/F2 

N/F2 

F2 N/F1 

N/F2 

N/F1/F2 

N/F1/F2 
N/F2 

F2 

F2 

N/F1/F2 

N/F1/F2 

F1 F1 

N/F2 

Figure 3.9. The transition diagram of two tank system
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NORMAL(N) Valve Fail(F1) Pump Fail(F2)

(m1
c ,m

2
c) (∆m1

c , ∆m2
c) (∆m1

c , ∆m2
c) (∆m1

c , ∆m2
c)

(1,1) [+1, 0] [+1, 0] [0, 0]

(2,1) [0, +1] [+1, 0] [−1, +1]

(3,1) [−1, +1] [0, 0] [−1, +1]

(1,2) [+1,−1] [+1, 0] [+1,−1]

(2,2) [+1, 0] [+1, 0] [0, 0]

(3,2) [0, +1] [0, 0] [−1, +1]

(1,3) [+1,−1] [+1, 0] [+1,−1]

(2,3) [+1,−1] [+1, 0] [+1,−1]

(3,3) [0, 0] [0, 0] [0, 0]

Table 3.8. The FATs generated for the two tank system

Following the procedures in Section 3.3, the diagnosability of F1 and F2 are

checked. The resulted diagnosable information of F1 and F2 is shown in Table 3.9.

The values in the tables are explained in Table 3.3.

Valve Fail(F1) Pump Fail(F2)

(1,1) 1 3

(2,1) 1 1

(3,1) 3 2

(1,2) 1 1

(2,2) 1 3

(3,2) 3 2

(1,3) 0 2

(2,3) 0 2

(3,3) 0 0

Table 3.9. The diagnosable information of the FATs

From Table 3.9, we can see that the valve failure is not diagnosable in the
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discrete states (1,3),(2,3),(3,3), these three states form the same terminating path

under the Normal, Fault 1 and Fault 2 conditions. The pump failure is not diag-

nosable in the discrete state(3,3), it forms the same circle under the Normal, Fault

1 and Fault 2 conditions. The valve failure is diagnosable in the discrete state

(3,1),(3,2) with a timing event detection. The pump failure is diagnosable in the

discrete state (1,1),(2,2) with a timing event detection. These timing specifications

can be built in the diagnostic engine from the information provided by the FATs.

3.5 Conclusions

In this chapter, we discussed the diagnosability of the FSA for fault detection

and isolation problem. We first analyzed the diagnosability of the continuous

system and illustrated how it influences the diagnosability of the discrete domain.

Then we proposed the definition of the diagnosability of the discrete domain based

on the FATs, which mainly consists of three cases: the fault is “diagnosable”,

“possibly diagnosable” or “nondiagnosable” from a discrete state. We analyzed the

nondiagnosable circumstance and gave the procedures for testing the diagnosability

of the system. After checking the fault diagnosability, the diagnostic system will

provide the information on the list of faults that could have possibly happened

in the system. This information can provide the operators in their diagnostic

task. Furthermore, the nondiagnosable information can guide the designer who is

interested in altering the diagnosability of the system to reconstruct a diagnosable

system.

In the continuous domain, a fault can be diagnosed if there is difference be-

tween the trajectory of the variables under the fault condition and the trajectory

of the variables under the other conditions. Mapping to the discrete domain, if

the boundary set of the state variables has not been appropriately chosen, which

may cause diagnosable information of the continuous domain to be lost and the

fault event cannot be detected in the discrete state domain even though there is

difference of the trajectories in the continuous domain. Therefore, the diagnosabil-

ity of the system is influenced by the boundary set of the state variables. In the
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following chapter, we will discuss how to adapt the boundary set to change the

diagnosability of the FSA.



Chapter 4

Choice of Boundaries for Fault

Diagnosability

Using a model of a real world system always means abstraction and simplification;

hence, a model has to focus on one aspect of the system. The quality of a model

can only be appraised on the background of its application. For the fault detection

with finite state automata there are two main objectives:

• First of all, the model based on finite state automata should form a framework

which allows reliable fault detection.

• Second,the method tries to avoid the numerical combinational explosion,

which is one of the disadvantages for DES modeling method.

In this approach, the fault detection and isolation depends on the information

of the discrete event system. However, the discrete event system (a finite state

automaton) is derived from the continuous system. The construction of a finite

state automaton is based on analyzing the direction of the gradient on the surface

of the each hypercube defining a discrete state. The hypercube’s faces are defined

by a set of boundaries in each co-ordinates of the state variables, which are also

implemented in the discrete observer for this derivation. If a trajectory crossing the

surface exists, a transition in or out of the analyzed hypercube exists in the DES,

whereby the sign indicates the direction. Every face of the hypercube combined

53
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with a direction is associated with a particular event.

The diagnosability of the continuous domain indicates that, if there exists an

overlapping subspace of any component where the direction of the fault mode

is different from the other modes, then the system can diagnose such a fault.

Mapping to the discrete domain, if the boundary set of the state variables is not

appropriately placed, which may lose the diagnosable information in continuous

system and cannot detect the fault event in the discrete state domain. Therefore,

the placement of boundaries in the continuous state space affects the diagnosability

of the DES system. Furthermore, the choice of boundary set not only influences

the fault diagnosability of the system; when the number of the boundaries increase,

it also has significant impact on the computational effort required for dynamical

computation of the FATs (FSA). In this chapter, we will mainly discuss the choice

of boundaries for fault diagnosability. Dynamical computation of the FATs with

different boundaries will be discussed in the next chapter for on-line fault diagnosis.

The organization of this chapter is as follows. In Section 4.1, we give analysis

of the boundaries according to the fault diagnosability. In Section 4.2, we discuss

the steps and algorithm to adapt the boundary sets of state variables to make a

diagnosable system. In Section 4.3, we illustrate the algorithm using the two tank

system. In Section 4.4, we summarize the ideas presented in this chapter.

4.1 Analysis of Boundaries

The choice of the boundary sets is not a trivial task because selection of the right

level of abstraction requires the knowledge of the application domain. Placing

the boundaries is a matter of judgement on how much or how long one allows

the process to proceed before one detects the fault. The user may give a set

of boundaries according to the range of his interest. However, the resulted FSA

may affect the fault diagnosability of the system. If some faults are not diagnosable

using the generated FSA, with the available computational algorithm [34], [43], the

boundary set can be dynamically adjusted. This provides us the useful information

that the boundary set can be reallocated dynamically for the fault diagnosability
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purpose. Normally, the boundary is adapted according to the range given, which

will not affect much of the other application considerations when the boundary

was first allocated.

In order to diagnose faults we use difference in the direction of the system op-

erating at different modes. In a subspace in the continuous domain, if direction of

the fault mode is different from the other modes, this fault is diagnosable. The au-

tomaton provides the information about the direction of the continuous trajectory.

This implies that the boundaries must be suitably placed in the subspace where

the direction of fault mode is different from the others, which corresponds to the

“one event diagnosablility” of the fault in the discrete domain. Then we will have

the following proposition.

Proposition 4.1 : In the defined state space, for a fault q (q ∈ 1 · · · r), if there

exists Oi,s(k, q) 6= 0(i ∈ n) in the continuous domain, then at least one set of the

boundary can divide the state space to make fault q diagnosable in the discrete

domain.

Proof : In the continuous domain, for a fault q, there exists Oi,s(k, q) 6= 0(i ∈ n),

then the fault q is diagnosable in Oi,s(k, q). Mapping to the discrete domain, if

a boundary of the component i is allocated in Oi,s(k, q), the fault q is “one event

diagnosable” because a fault transition can be detected across such a boundary.

The diagnosability of the faults in the state space is based on the “one event

diagnosablity” of each fault. Therefore, if Oi,s(k, q) 6= 0(i ∈ n) exists for fault q,

at least one set of the boundary can divide the state space to make the fault q

diagnosable in the discrete domain.

In the discrete domain, if there are no such a set of boundary to make a fault

q diagnosable, which means “one event diagnosability” of fault q does not exist.

Correspondingly, in the continuous domain, Oi,s(k, q) 6= 0 does not exist.¥

Lemma 4.1 : In the defined state space, for a fault q, if there exists “diagnosable

discrete states/possibly diagnosable discrete states“, then at least one set of the
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boundary can divide the state space to make fault q diagnosable in the discrete

domain.

Proof : For fault q, if there exists “diagnosable discrete states/possibly diagnos-

able discrete states“, then there must have “one event diagnosable discrete state”

for fault q. The diagnosability of the faults in the state space is based on the “one

event diagnosablity” of each fault. Therefore, at least one set of the boundary can

divide the state space to make the fault q diagnosable in the discrete domain. ¥
When using the “timing event detection”, “one event diagnosable discrete state”

also includes the “diagnosable discrete state with timing”.

From Chapter 3, we know that a fault q is diagnosable from a discrete state

or not is not only checked from “one event diagnosability”. If there is a event

trace including fault q can reach a “one event diagnosable discrete state” from

this discrete state, this discrete state is also a “diagnosable discrete state”. The

main reason for nondiagnosable circumstance is that a set of discrete states form

the same “terminating path/cycle” under different conditions and cannot reach a

“diagnosable discrete state”. We assume that fault q is nondiagnosable in a nondi-

agnosable subspace, there are two ways to solve the nondiagnosable circumstance:

the first one is to find Oi,s(k, q) 6= 0(i ∈ n) in this nondiagnosable subspace and

reallocate the boundary of component i; the second one is to find a component

equilibrium surface xi
0(k, q) = 0 in this nondiagnosable subspace and reallocate

the boundary of component i. The first method is used to find a “one event diag-

nosable discrete state” in this nondiagnosable subspace and the second method is

used to find a transition out to a “diagnosable discrete state” for fault q from this

nondiagnosable subspace.

Proposition 4.2 : For a subspace in the state space, if there does not exist a

component equilibrium surface of any component, no boundary set allocating in

this subspace can change the diagnosability of the faults in this subspace.
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Proof : In the continuous domain, if there does not exist a component equilib-

rium surface of any component in a subspace, the direction of each component has

the same sign in this subspace. No matter how to allocate the boundaries in this

subspace, the generated events in this subspace are the same. Therefore, it cannot

change the diagnosability of the faults in this subspace. ¥

Lemma 4.2 : In the nondiagnosable subspace for fault q, if the component equi-

librium surface xi
0(k, q) = 0 does not exist, no boundary set in this nondiagnosable

subspace can change the diagnosability of fault q in this nondiagnosable subspace.

Proof : In the nondiagnosable subspace for fault q, if xi
0(k, q) = 0 does not

exist, the direction of any component i under the fault q has the same sign in

the nondiagnosable subspace. No matter how to allocate the boundary in the

nondiagnosable subspace, the generated events of any component are the same

under the fault q. Therefore, no boundary set in this nondiagnosable subspace can

change the diagnosability of fault q in this nondiagnosable subspace. ¥

In the following section, we will illustrate the strategies step by step on the

choice of the boundary set of the state variables to make the faults diagnosable.

4.2 Adapting the Boundaries

The boundaries of the state variables are often first allocated in the range of in-

terest. Then the FATs for the FSA can be generated and the diagnosability of

the FSA can be tested. If some faults are not diagnosable in some subspaces, the

boundary can be reallocated for fault diagnosability. From Chapter 3, we know

that if there are no “nondiagnosable discrete states”, the faults should be diagnos-

able in the state space. Therefore, when reallocating the boundaries, the attention

will be focused on the nondiagnosable subspaces that consists of a set of nondiag-

nosable discrete states. The boundaries will also be adapted in a small ranges in

the nondiagnosable subspace or near the nondiagnosable subspace. In this way, it
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may not affect the fault diagnosability of the other parts in the state space and

the range (application) of interest when first allocated the boundaries.

There are some principles for adapting the boundaries.

• If more than two faults are not diagnosable in a subspace, the boundaries are

adapted for one fault at one time.

• If more than two state variables satisfy the condition for adapting the bound-

aries, only the boundary of one state variable will be adapted. Furthermore,

only one boundary of the state variable will be changed at one time.

Because of the interaction of some state variables, these principles are used to

better track the tendency of a state variable according to one fault at one time. This

is especially useful for some faults that are nondiagnosable in the same subspace.

Now we assume that some faults are not diagnosable in some subspaces. In

order to reduce the computational effort, except for the case that a fault is nondi-

agnosable in the whole state space, which means all the discrete states are “nondi-

agnosable discrete states” for this fault, some conditions (such as the overlapping

subspace of a state variable for the fault) will be checked in the whole state space.

Otherwise, some conditions are only checked in the nondiagnosable subspace and

the boundary is adapted in the nondiagnosable subspace. If the conditions are not

satisfied in the nondiagnosable subspace, the conditions will be checked in an adja-

cent diagnosable subspace where the index of a state variable increases/decreases

one unit and the index of the other state variables are the same. The boundary

of the state variable between the nondiagnosable subspace and the adjacent di-

agnosable subspace will be adapted accordingly. The checking conditions mainly

include:

• The overlapping subspace of a state variable that the fault is diagnosable in

the nondiagnosable subspace. The purpose is to find the “one event diagnos-

able discrete state” for this fault in the nondiagnosable subspace.

• The component equilibrium line of a state variable under the fault in the
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nondiagnosable subspace. The purpose is to find a transition out to a “diag-

nosable discrete state” for this fault from the nondiagnosable subspace.

In the subspace that the fault is not diagnosable, we define the boundary limit

for each state variable i in this subspace as βi
ai ≤ xi ≤ βi

bi (ai ≥ 0, bi ≤ k, i ∈ n).

βi
ai represents the minimum boundary of state variable i in this subspace and βi

bi

represents the maximum boundary of state variable i in this subspace. For example,

the shadow in Fig.4.1 represents a subspace in which the fault is not diagnosable. In

this subspace, β1
0 ≤ x1 ≤ β1

1 and β2
0 ≤ x2 ≤ β2

4 , where a1 = 0, b1 = 1, a2 = 0, b2 = 4.
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Figure 4.1. A fault is nondiagnosable in the shadow subspace

Now we assume that a fault q is nondiagnosable in the state space or a subspace,

the analysis and the procedures for adapting the boundaries are summarized in the

following 3 steps.

Step 1: If all the discrete states are “nondiagnosable discrete states” for fault

q, Oi,s(k, q) 6= 0(i ∈ n) is searched in the state space. If Oi,s(k, q) 6= 0 does

not exist, the fault q is not diagnosable in the state space. There is no need to

change the boundary set. If Oi,s(k, q) 6= 0 exists, the boundary of component i,

βi
mi (mi 6= 0, k) near the Oi,s(k, q) 6= 0 is allocated in the Oi,s(k, q) 6= 0. The FATs

are regenerated and the diagnosability of the system is rechecked.
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Step 2: If some parts of the discrete states are “nondiagnosable discrete states”

for fault q, the other discrete states are “diagnosable discrete states” or “possibly

diagnosable discrete states” for fault q. From Lemma 4.1, there exists a set of

the boundary to make fault q diagnosable in the state space. Then the boundary

can be adapted for fault q. The subspace where the fault q is nondiagnosable is

checked:

1. Check if Oi,s(k, q) 6= 0(i ∈ n) exists. If Oi,s(k, q) 6= 0(i ∈ n) exists and

βi
ai ≤ xi ≤ βi

bi , the boundary βi
ai ≤ βi

mi ≤ βi
bi (mi 6= 0, k) is allocated in

the Oi,s(k, q) 6= 0. The FATs are regenerated and the diagnosability of the

system is rechecked.

2. If Oi,s(k, q) 6= 0(i ∈ n) does not exist, check if xi
0(k, q) = 0 exists. If xi

0(k, q) =

0 exists and βi
ai ≤ xi ≤ βi

bi , the boundary βi
ai (ai 6= 0) or βi

bi (bi 6= k) is

set across xi
0(k, q) = 0 and make a transition out from the nondiagnosable

discrete state. The FATs are regenerated and the diagnosability of the system

is rechecked.

3. When using the “timing event detection”, if xi
0(k, q) = 0 does not exist,

xi
0(k, q) = 0 (q ∈ l, q 6= q) exist and βi

ai ≤ xi ≤ βi
bi , the boundary βi

ai

(ai 6= 0) or βi
bi (bi 6= k) is set across xi

0(k, q) = 0 and make a transition out

from the nondiagnosable discrete state. The FATs are regenerated and the

diagnosability of the system is rechecked.

4. If the conditions in Step 2.1 to Step 2.3 do not exist, then the algorithm will

go to step 3.

Step 3: Check a subspace that is adjacent to the subspace that the fault is

nondiagnosable. Choose the boundary of a state variable i that βi
ai−1 ≤ xi ≤ βi

bi

(ai 6= 0) or βi
ai ≤ xi ≤ βi

bi+1 (bi 6= k). The boundary of the other state variables

will be the same as before, that βj
aj ≤ xj ≤ βj

bj (j ∈ n, j 6= i)

1. Check if Oi,s(k, q) 6= 0(i ∈ n) exists. If Oi,s(k, q) 6= 0(i ∈ n) exists, the

boundary βi
ai (if βi

ai−1 ≤ xi ≤ βi
bi) or the boundary βi

bi (if βi
ai ≤ xi ≤
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βi
bi+1) is allocated in the Oi,s(k, q) 6= 0. The FATs are regenerated and the

diagnosability of the system is rechecked.

2. If Oi,s(k, q) 6= 0(i ∈ n) does not exist, check if xi
0(k, q) = 0 exists. If

xi
0(k, q) = 0 exists, the boundary βi

ai (if βi
ai−1 ≤ xi ≤ βi

bi) or the bound-

ary βi
bi (if βi

ai ≤ xi ≤ βi
bi+1) is set across xi

0(k, q) = 0 and make a transition

out from the nondiagnosable discrete state. The FATs are regenerated and

the diagnosability of the system is rechecked.

3. When using the “timing event detection”, if xi
0(k, q) = 0 does not exist and

xi
0(k, q) = 0 (q ∈ l, q 6= q) exist, the boundary βi

ai (if βi
ai−1 ≤ xi ≤ βi

bi)

or the boundary βi
bi (if βi

ai ≤ xi ≤ βi
bi+1) is set across xi

0(k, q) = 0 and

make a transition out from the nondiagnosable discrete state. The FATs are

regenerated and the diagnosability of the system is rechecked.

4. If the conditions in Step 3.1 to Step 3.3 do not exist, then the algorithm

choose another adjacent subspace as shown in step 3 and then follow the

same steps from Step 3.1 to Step 3.3.

Fig.4.2 illustrates the algorithm of adapting the boundaries for fault diagnos-

ability.

In this algorithm, after giving the new boundary set of the state variables as

discussed in the above procedures, the new FATs are generated and the fault di-

agnosability of FATs is tested. The number of the nondiagnosable discrete states

is recalculated. If the number of the nondiagnosable discrete states is not equal

to 0, the process will continue. Sometimes the number of the nondiagnosable dis-

crete states is not less than the number last time calculated, this may occur when

the state variable and the boundary of the state variable is not chosen suitably,

the system will return the boundary set last time given and choose another state

variable which satisfies the condition to calculate again following the same proce-

dures. When the number of nondiagnosable discrete states is equal to 0, the new

boundary set and the new FATs will be updated. In this algorithm, the number of
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Figure 4.2. Algorithm of changing the boundaries for fault diagnosability

nondiagnosable discrete states is an important parameter to control the flow of the

algorithm, which may be set to different value according to different requirement.

As we know, the computation time will increase with the iterations. Sometimes

it is not necessary to require the fault is diagnosable in the whole state space and
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the user may define the subspace of interest where the fault is diagnosable and

the degree of the fault diagnosability, that is to define the number of diagnosable

discrete states (subspace) required. The procedure will stop when it reaches the

target, which may make the algorithm more flexible and save the computational

effort. An example of adapting the boundaries for fault diagnosability is illustrated

in the next section.

4.3 Example

We will continue to use the two tank system example in Section 3.4. If the boundary

set of the state variable is given in Table 3.7, the resulted diagnosable information

of the valve failure F1 and the pump failure F2 is shown in Table 3.9. From the

diagnosable information, the valve failure is not diagnosable in the discrete states

(1,3),(2,3),(3,3) and the pump failure is not diagnosable in the discrete state(3,3).

According to the procedure and algorithm shown in last section, the boundary

set will be adapted according to the diagnosable information shown in Table 3.9.

F1 is first examined following the steps in the last section.

1. According to Step 1, not all the discrete states are “nondiagnosable discrete

states” for F1, therefore Step 1 is ignored.

2. According to Step 2, the subspace including the discrete state (1,3),(2,3),(3,3)

is examined. The condition of Step 2.1 will be first checked and Oi,s(k, 1) 6= 0

does not exist in this subspace. Then the condition of Step 2.2 is checked

and xi
0(k, 1) = 0 also does not exist. Because the system uses the “timing

event detection”, the condition of Step 2.3 is checked. For x2, x2
0(k, 1) = 0

does not exist, x2
0(k, 0) = 0 and x2

0(k, 2) = 0 exist, where 2 ≤ x2 ≤ 3. The

condition of Step 2.3 is satisfied. Then a boundary of x2 is reallocated in

the range [2:3]. Because β2
b2 = 3 is maximum boundary of x2, β2

a2 = 2 will

be chosen to reallocate to make a transition out from the nondiagnosable

discrete state (3,3). ((3,3) is the terminating point of the terminating path).

From calculation, under the normal (N) and pump failure (F2) conditions,
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dx2

dt
= 0.01(x1−x2). When x1 = 2, if dx2

dt
< 0, then 2(rmin) < x2 < 3(rmax).

[rmin : rmax] is the range that the new boundary value of state variable

can be chosen. In this case, x2 can choose any value between [2:3] for β2
a2 .

In our algorithm, normally the new boundary value of the state variable is

rmin + 0.2 × (rmax − rmin) if βi
ai is reallocated and the boundary value

of the state variable is rmax − 0.2 × (rmax − rmin) if βi
bi is reallocated.

Therefore the new boundary of x2 is β2
a2 = 2 + 0.2× (3− 2) = 2.2. There is

no change of the boundary set of x1.

The new boundary set is given in Table 4.1 and is shown in Fig.4.3.

βi
0 βi

1 βi
2 βi

3

i = 1 0m 1m 2m 3m

i = 2 0m 1m 2.2m 3m

Table 4.1. New boundary set of the state variables
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Figure 4.3. The new boundaries of two tank system

Given the system equations Eqn.(3.7) and Eqn.(3.8) and the boundaries in

Table 4.1, the new FATs generated for different conditions are shown in Table 4.2.

A transition diagram of the new FATs is shown in Fig.4.4.
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NORMAL(N) Valve Fail(F1) Pump Fail(F2)

(m1
c ,m

2
c) (∆m1

c , ∆m2
c) (∆m1

c , ∆m2
c) (∆m1

c , ∆m2
c)

(1,1) [+1, 0] [+1, 0] [0, 0]

(2,1) [0, +1] [+1, 0] [−1, +1]

(3,1) [−1, +1] [0, 0] [−1, +1]

(1,2) [+1,−1] [+1, 0] [+1,−1]

(2,2) [+1, 0] [+1, 0] [+1, 0]

(3,2) [0, +1] [0, 0] [−1, +1]

(1,3) [+1,−1] [+1, 0] [+1,−1]

(2,3) [+1,−1] [+1, 0] [+1,−1]

(3,3) [0,−1] [0, 0] [0,−1]

Table 4.2. The new FATs generated for the two tank system 
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Figure 4.4. The new transition diagram of two tank system

From the new transition diagram of two tank system shown in Fig.4.4, we

can see that there is a transition out from (3,3) under the N and F2 conditions.

“F1” can be diagnosed in (3,3) using the “timing event detection”. Following the

procedures in Section 3.3, the diagnosability of F1 and F2 are rechecked. The

resulted diagnosable information of F1 and F2 is shown in Table 4.3. The value in
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the table is explained in Table 3.3.

Valve Fail(F1) Pump Fail(F2)

(1,1) 1 3

(2,1) 1 1

(3,1) 3 1

(1,2) 1 1

(2,2) 1 1

(3,2) 3 1

(1,3) 1 1

(2,3) 1 1

(3,3) 3 1

Table 4.3. The diagnosable information of the new FATs

From Table 4.3, we can see that all the discrete states are “diagnosable discrete

states” for the valve failure (F1) and the pump failure (F2). Among them, the

valve failure is diagnosable in the discrete state (3,1),(3,2),(3,3) with a timing

event detection. The pump failure is diagnosable in the discrete state (1,1) with a

timing event detection. These timing specifications will be built in the diagnostic

engine.

When adapting the boundaries for the fault diagnosability, the selected state

variable and the selected boundary value of a state variable are not limited to one.

From the example illustrated above, the new boundary value β2
2 of x2 can be chosen

as 2.3, 2.4, 2.5, etc, which will also make the fault diagnosable. This means that

the boundary sets which can make the faults diagnosable are not limited to one.

There exist many choices of boundary set that can achieve the fault diagnosability

of system. The importance of this work is that we provided a method to adapt the

boundary according to the information of the continuous system, which is more

accurate and fast.
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4.4 Conclusions

In this chapter, we mainly discussed how to adapt the boundary set of state vari-

ables to make the faults diagnosable. The results provide guidance on the choice

of boundaries of the state variables for the construction of the FAT and have the

following advantages:

• Help to construct the qualitative value of the state variable in the DES.

• Help to identify the failure events in the DES.

• Help to set up the sensor information.

In other methods for fault diagnosis using DES, the state space are normally

formed by the discrete states of state variables which are simply described by “high”

“middle” or “low” symbol. The proposed algorithm has significant meaning for the

DES system whose discrete states are defined by a set of boundaries of the state

variable and represented by the coordinate of the state variable. Especially, it uses

the information of the continuous system and provides the guidance on how to

discretize the continuous value of the variables for fault diagnosis using DES. The

resulted DES is more accurate than the DES whose discrete states use the simple

abstract value.

After using this method, the diagnostic system was not simply to observe the

system behavior and draw inferences about potential faults. The diagnostic system

actively adapts the boundaries of the state variables to alter the fault diagnosability

properties of a given system. These actions will provide a more accurate and flexible

fault diagnostic system.



Chapter 5

On-line Fault Diagnosis

A method of fault diagnosis using a Finite-State Automaton model (FSA), which

is represented by the Finite-State Automaton Table, has been proposed. It has

been demonstrated that given a system described by differential equations, it is

possible to construct an algorithm, which can dynamically generate automaton

tables and use these for fault detection and isolation. A preliminary study on the

fault diagnosability of the system and choice of boundaries for fault diagnosability

have also been carried out.

In this chapter, we will discuss the details for the on-line fault diagnosis method.

As discussed in the last chapter, for any models, it has both advantages and disad-

vantages. One important objective is to use other assistant strategies to overcome

the disadvantages for detection of the failure.

For DES modeling method, one of the disadvantages is that the discrete states

and event spaces results in an inevitable combinatorial explosion for a large system.

The computation time for generating the FATs increases drastically with the degree

of discretization. In order to reduce the computation effort, one method is to use

a small set of boundaries for a specific region when the FATs are generated on-

line. In Section 5.1, we present several strategies for dynamical choice of small

boundary sets for generating the FATs on-line. In Section 5.2, we give the on-line

fault diagnosis algorithm. In Section 5.3, we discuss the accuracy, efficiency and

robustness of our fault diagnosis system. In Section 5.4, we give some concluding

68
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marks of this chapter.

5.1 Dynamic Computation of the FATs

The question of computational expense is one of the key problems in the application

of control theory to real world problems. There are a lot of system identification

and state estimation algorithms that yield information about a system. Most of

these methods are only used for off-line identification because they are very complex

and cannot be used in real-time applications. As explained before, one notion for

the development of DES model was the reduction of computational complexity.

There are usually two constraints that limit the complexity of an algorithm.

First, there are requirements concerning the response time of the program. Some

systems and some algorithms require more or less strict real-time processing (i.e. a

guaranteed maximum response time). Hence, the program has to run on a processor

which is fast enough. The more important constraints concern the total costs of

the system. In most cases, there are computers which can perform the operations

in the required time, but in real world applications the price of the control system

is important for its success in the market. The goal is always to do a job with the

least expensive equipment.

For our modeling method, the computation time for an automaton table in-

creases polynomially with the degree of discretization. However, a feature of our

algorithm is the ability to “zoom in” or “zoom out” on the operating region of

interest, with a user specified resolution for the discrete states. This feature helps

to achieve a balanced tradeoff between resolution (and hence diagnosibility) and

the computational effort required for a large operating region. With this facility,

only small tables with boundaries within an operating region are required when

the automaton table is computed on-line as proposed in [43] and [44]. Several

strategies to compute the automaton table are discussed as follows:

• Compute the automaton table for the operating area of the system. If the

system leaves this area of the state space, define a new area and start comput-
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Figure 5.1. Dynamic computation of FAT

ing the transition table. To continue the supervision, start a second process

which computes only the next possible system state. As soon as the first

process finishes the computation of the whole table, start using this table.

• Compute the automaton table for a large area of the state space, but use only

a small number of boundaries. This will yield a small table which is not very

accurate. After this, refine the table locally by computing the transitions for

the current system state.

• Compute only the transitions of the current state and keep a history, so that

there is no need for a re-computation, if the system operates in an closed

cycle. This is especially useful for batch processes.

For the current implementation of fault detection an intermediate method was

chosen. The automaton table which is used covers most of the possible operating

points of the plant. However, from time to time it is necessary to compute a new

automaton table. For the time where the new table is not available, only the

possible transition from the current state defined by the new table is computed.
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This combines two advantage: During normal operation, the system uses a large

automaton table which makes it easier to refine the table and add information

according to the performance of the plant. If this table gets invalid, the system does

not have to wait until a new table is computed, but can operate with transitions

that are computed on demand.

5.2 Algorithm for Fault Diagnosis

The algorithm for fault diagnosis may be separated into two steps, fault detection

and fault isolation. Fig.5.2 illustrates the procedure for fault diagnosis.

Fault detection: The continuous value of the state variables is mapped into

discrete states by a set of the boundaries described in Eqn.(2.4). Given the current

discrete state of the system, fault-detector engine predicts the next possible discrete

state of the system under the table TN . Due to the non-deterministic nature of

these automaton tables, the discrete state predicted is not unique but consists of

a set of possible discrete states x̃N
p (k). The engine now compares this set to the

actual discrete state of the system as described by x̃(k). If x̃(k) ∈ x̃N
p (k), then

no error is detected. If there is a discrepancy between the predicted discrete state

x̃N
p (k) and the actual discrete state x̃(k) of the system, it announces the presence

a fault.

Fault isolation: Fault-detector engine scans the fault automaton tables T F to

find the transition matching with the wrong transitions recorded:

x̃F
p (k) =⇒ x̃(k), where di = 1 (5.1)

Denote the automaton tables containing such transitions as T Fi , that T Fi ∈ T F .

The search engine now lists out the fault corresponding to these automaton tables

which may lead to this transition.

When the system uses the “timing event detection”, the system will check the

discrete state that related to a “time specification”. If the system stay in the

“discrete state” beyond the time limit, it will identify the corresponding fault.

This process is marked by the dotted line in Fig.5.2.
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Figure 5.2. The procedure for fault diagnosis

Normally a set of boundary and a set of FATs were given before the system

starting the fault diagnosis. The diagnosability of FATs also has been checked. If

the system uses the “timing event detection”, according to the diagnosable infor-

mation from the FATs, the system will accociate the timing specifications for some

discrete states and relate to this timing event to the specific fault. Based on these

settings, the system may begin the fault diagnosis.

One important module in the on-line fault diagnosis algorithm is the on-line

computation of the FATs. The strategies for changing the boundaries proposed in

Section 5.1 have no contradiction to the algorithm for adapting the boundaries in

Section 4.2. First is used to prevent the state-explosion and save computational

effort; second is used to achieve fault diagnosability. We may call the first “change
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boundaries” and the second “adapt boundaries” in our diagnostic system. They can

be well combined in our fault diagnosis algorithm. Firstly, according to different

operating regions, the system will “change boundaries”. Secondly, if the new FATs

generated are not diagnosable, the system will “adapt boundaries” to make it

diagnosable. The number of the boundaries defined in the first step will keep

unchanged in the second step. The boundaries will be adapted in a narrow range

as defined in the first step, which will not affect much to the application. The

procedures for computing the new FATs is shown in Fig.5.3.
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Figure 5.3. On-line computation of the FATs

For the implementation of the algorithm, different function is built as different

module in our fault diagnosis system, such as “change boundaries”, “check the fault

diagnosability”, “adapt boundaries” and ”generate the FATs”. The fault diagnosis

system may call any functions (modules) according to different design target. For

example, the users may not care much about diagnosablity of the system, then

given a set of boundaries, the system will run the fault diagnosis algorithm using

FATs without checking the diagnosability. If the users further want to know about
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the diagnosability of the system and don’t want to change the diagnosability of the

system, then the system can check the diagnosability of system without adapting

the boundaries. Therefore, the implementation of the algorithm enhanced the

flexibility of fault diagnosis system.

5.3 Reliability of the Fault Diagnosis System

Reliability of the fault diagnosis system deals with the ability to complete a task

satisfactorily and within the period of time over which that ability is retained. In

this section, we will discuss the requirements needed by a fault diagnosis system

and how our fault diagnosis system met those requirements.

A fault diagnosis system should meet certain requirement as follows:

1. As many as possible true faults should be detected, while as few

as possible false alarms should be triggered.

In our fault diagnosis system, we not only provide the methodology for detection

and isolation of faults, but also give other analysis to fault diagnosis. We analyzed

fault diagnosability of the system and provided an algorithm to test the fault

diagnosability of the system. We gave the strategies for adapting the boundary set

of state variables to achieve the fault diagnosablity of the system. Those analysis

make the system more reliable to detect the faults defined.

2. The delay time between a fault occurrence and a fault declaration

should be small.

We presented in this work a model-based approach to fault diagnosis, which

based on the Discrete Event System framework. We used the Finite-State Au-

tomaton model to get the qualitative model of the continuous system. Temporal

information is completely absent from the current FSA models, which is governed

by the discrete events that cause changes in the discrete states of the system. In

such a model, the delay time between a fault occurrence and a fault declaration

is mainly decided by the boundary set given for the state space. To minimize the

delay time, the state space should be made finer, but it will result in the state

explosion and increase the computational effort and the searching time between
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the discrete states. Therefore, the fault detection process will be slowed down. An

elegant strategy in our fault diagnosis system is its ability to dynamically change

the boundaries and generate the FATs on the fly. A small set of boundaries is

used for a special region so that the computational effort is reduced and at the

same time the delay time between a fault occurrence and a fault declaration can

be guaranteed small.

3. The employed method must be insensitive(robust) to model inac-

curacies(if a mathematical model is used) such as simplification errors

resulting from linearization or unmodeled, usually non-linear compo-

nents, e.g. friction, and external phenomena such as noise, load varia-

tion etc.

As discussed above, Finite-State Automaton model is obtained from a set of

ordinary differential equations (ODE) of a dynamical system and a set of bound-

aries for each state variable in ODE. Unlike the other model-based approaches, the

residues are not calculated, thus reducing the need for exact equations describing

the system and making the approach more robust. Furthermore, the analysis for

fault diagnosability of system and the strategies for adapting the boundary set of

state variables to enhance the fault diagnosablity also increase the robustness to

model inaccuracies. Even though there exists a little inaccuracies of the model, if

the fault diagnosability of the system is guaranteed and then the fault can also be

detected and isolated.

From the above analysis, it can be easily seen that our design system has met the

requirements needed for a diagnostic engine in some ways. As mentioned before,

a model can only focus on one aspect of the system. To increase the reliability

of overall system, an integrated method was used and its advantages was better

illustrated in the above points.
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5.4 Conclusions

In this chapter, we discussed the on-line fault diagnosis algorithm. We presented

several strategies for dynamical choice of boundary sets for generating the FATs on-

line. The results help reduce the computational effort and help for the construction

of the FAT. We also analyzed the reliability of our diagnostic system.

After putting those functions discussed in the former and current chapters in the

fault diagnosis algorithm, the diagnostic system becomes more integrated, robust

and reliable. Furthermore, all these functions are built as different modules in the

fault diagnosis system, then the fault diagnosis engine can call them according to

different fault diagnosis requirement. Thus it enhances the flexibility of the overall

fault diagnosis system.



Chapter 6

Applications

In this chapter, we illustrate the application of our proposed method to two process

pilot plants, a heat exchanger (HEX) system and a heating cooling (HC) system.

We build the diagnostic system for the process plant following the procedures

proposed in Chapter 1. We first investigate the process plant and determine the

faulty components and faulty status we are interested in. Then we choose the

suitable state variables and build the corresponding model of the system for the

normal and faulty conditions. The on-line diagnoser monitors the process, provides

different boundary set for different working stages and dynamically generates the

new FATs under the normal and faulty conditions. The fault diagnosability of

the system can be checked by the diagnostic system. If some faults are tested

nondiagnosable, the boundaries of state variables can be adapted to make the

faults diagnosable.

The implementation architecture of the fault detector and isolator is shown in

Fig. 6.1. The low-level control platform was developed in a Pentium PC, which

typically implements the equipment controllers, such as PID controller and multi-

variable controller. It is used to control and collect data from the process plant and

pass the data to the upper supervisory system where the data is analyzed. It con-

veys the information between the process plant and the upper supervisory system

(LABVIEW with its graphical programming interface is used for the implementa-

tion). The upper-level control platform was developed in a SUN workstation. The
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software on the workstation consists of 4 main concurrent processes: the real-time

expert system (RTES) software (G2 software from Gensym Corp. is used for its

good real-time processing ability) for detecting and isolating the faults, one routine

for generating and communicating with the FATs, one for testing the fault diag-

nosability of the system and one for adapting the boundaries of the state variables

for fault diagnosability.

 

Process plant 

                                                 PC 
Low level controller  

(PID controllers) 

                                             Sun Sparc Workstation 

Automaton  
tables 

Fault detection  
and isolation 

Check fault 
diagnosability 

Event detector 

Knowledge   
base 

RS232 

AD/DA 

Adjust the boundaries 
of state variables 

Figure 6.1. The diagnostic system architecture for process plant

The system receives real-time plant data from the process plant and updates

the state variables for “Current-State” and “Next-Possible-State” based on the

automaton table under the normal condition. As soon as system state does not

follow the trajectory as defined in the automaton table under normal condition,

the system displays an alarm message. It then triggers a search engine to match

the current system trajectory with the trajectory defined in any of the automaton

tables for faulty condition, finally it displays the possible cause for the anomalous
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behavior.

When the system uses the “timing event detection”, the system will check some

discrete states that relate to a time limit when the system is in such a discrete state.

If the system stay in such a “discrete state” beyond the time limit specified, it will

signal the faulty behavior.

One of the important modules of the above implementation is the on-line com-

putation of the FATs. This is to prevent state-explosion of the FATs, thus paving

the way for effective implementation for complex “real-life” systems. To get a

“birds-eye-view” of the system, we divide the entire state-space with coarse bound-

aries i.e. the state-boundaries with greater degree of separation between them.

This will ensure that the FATs have the essential information on the entire state-

space with a small number of discrete-states. Usually we would like to have more

detailed information about the system near its steady-state. Therefore to “zoom

in” on a particular region, we divide only that region with fine state-boundaries

thus having a reasonable amount of discrete-states but for a smaller region in the

state-space. We thus ensure that the FATs are always of manageable dimensions

ensuring faster computation, lesser memory requirement and easier implementa-

tion.

For different working stages, different boundary sets are provided and then a

new set of FATs is generated. The fault diagnosability of the system can be checked

using the FATs. If the faults are tested nondiagnosable on some discrete states,

then the boundary set of the state variables can be adapted in this specific region

to make the faults diagnosable using the new generated FATs. All the previously

discussed algorithms can run off-line or on-line.

In the following sections, we will illustrate some experimental results and make

an extended discussion on these results. Section 6.1 discusses the application of our

approach to a heat exchanger (HEX) system; Section 6.2 illustrates the application

of our approach on a heating cooling (HC) system; Section 6.3 gives the conclusion

of this chapter.
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6.1 Applications to the Heat Exchanger (HEX)

System

This section outlines an implementation of the algorithm on a heat exchanger

system. The schematic of the bench scale process plant is illustrated in Fig. 6.2. A

process liquid is pumped at a preset flow rate from one of the two storage tanks to

an indirect plate heat exchanger, the purpose of which is to raise the temperature

of the process liquid to a predetermined value. The process requires the liquid

stream to be maintained at this temperature for a given period of time. This is

achieved by the use of a holding tube (effectively a distance/velocity lag or ‘dead

time’) followed by a temperature activated diverter valve, which allows only fluid

of the correct temperature to progress through the process (the remainder being

rejected or returned to the feed tank). The process fluid is then cooled by heat

exchanger with incoming feed and by externally supplied cooling water. The plate

heat exchanger consists therefore of three separate but interconnected sections:

feed preheat/regeneration, heating and cooling. The heating section is supplied

with circulatory hot water from an electrically heated reservoir.

 

Figure 6.2. Schematic of the heat exchanger pilot plant
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6.1.1 The State Variables and the FATs

The automaton tables for the system under normal and each of the faulty condi-

tions can be generated dynamically in real-time on the workstation. For ease of

generating and maintaining these automaton tables, it is simpler to break a com-

plex system into a set of simpler subsystems. This aspect of state, known as state

explosion is discussed and dealt in greater detail in Chapter 2 and Chapter 5. In

the process-plant system, the hot water feed along with a part of heat exchanger is

considered as one subsystem and process liquid feeding unit with its solenoid valves

is treated as another subsystem. We are interested in the subsystem that consists

of hot-water Reservoir, pump N2 and the heating zone of the heat exchanger. This

subsystem is marked by the dotted line in the Fig. 6.2.

The equations describing this subsystem is given in Appendix B. The state

variables describing this subsystem are: the hot tank temperature T2, the heeded

feed exit temperature T4 and the HEX exit temperature of heating water T5. The

control variables are the heater coil input, PWR and the speed of the Pump,

N2. The lower level PID controller manipulates PWR and N2 to control the

temperatures T2 and T4.

Under normal operating condition, this subsystem has no discrete-inputs, only

continuous inputs in the form of PWR and N2 which are manipulated by a PID

controller. The theory of calculating FATs can elegantly incorporate these con-

tinuous inputs if they are also discretized into states and are put along side the

state variables in a FAT. So the definition of Current-State not only includes the

state variables T2, T4 and T5 but also PWR and N2. In the current version of the

software, we assume a fault-free working of the lower-level PID controller which

manipulates PWR and N2. So while calculating the Next Possible States(NPS),

we do not calculate the NPS for the PWR and N2. The current discrete-state

values of the control variables are used to predict the NPS of the state variables

only. The future states of the control variables themselves are not predicted.

We will study the effect of two distinct faults namely the heater-coil failure

(PWR = 0) and the heating pump failure (N2 = 0) in this subsystem. These
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faults are incorporated in the mathematical model by the discrete variables d1 = 1

and d2 = 1 respectively. To summarize, in this case study, we have only one FAT

(TN) describing the normal operating condition and two FATs under T F , each

describing one fault.

6.1.2 Experimental Results

In this section some results of this FDI system is illustrated. An attempt has been

made to cover the various areas of interest during the course of operation of the

system.

The workstation receives real-time plant data from the process plant and up-

dates the table for “Current-State” and “Next-Possible-State” (see Fig 6.3). In that

snapshot, the “Current-State” for T2, T4, T5, PWR,N2 is given by (3,3,2,1,1) and

“Next-Possible-State” by (-1,-1,-1,0,0). An anomaly is detected when the system’s

state does not follow the trajectory as defined in the automaton table under normal

condition. Then a fault is announced and the diagnoser engine searches the tables

T F for such transitions. On completion of search the system displays the possible

cause for the anomalous behavior.

State Boundaries

T2 T4 T5 PWR N2

30 25 25 50 0.2

45 40 40 200 0.50

60 50 50 400 0.70

75 65 65 500 0.90

85 75 75 600 1.00

Table 6.1. Coarse state-boundaries for start-up phase

The key issue for effective implementation is to be able to generate the tables

“on-the-fly”. During the start-up phase, the values of the state variables change

rapidly and therefore the state-boundaries need to be “coarse”. This will ensure
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No faulty transitions 

Figure 6.3. Start-up phase with coarse state-boundaries

that the entire region from the start-up to the final steady-state is covered and yet

the computation is kept minimal. Though the state boundaries are spaced out,

any faults which cause a series of wrong transitions can be detected within a short

time as the state variables evolve faster during start-up. The boundary set for

the start up phase is illustrated in Table 6.1 and the start-up phase under normal

condition is illustrated in Fig 6.3.

At about 4:30:00pm a fault is introduced, which is illustrated in Fig 6.4. The

power to the heater coil is turned to “full blast” simulating the failure of the actu-

ator of the heater coil. At this point the state variables T2, T4 and T5 were in states

3, 2 and 2 respectively. The “Next-Possible-State” indicated in the automaton ta-

ble for normal operation is given by −1,−1 and −1 respectively, indicating that

T2, T4 and T5 can only make transitions to the neighboring lower state. But due

to the fault, the temperatures begin to rise and As shown in Fig 6.4, T4 records
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PWR failure 

Figure 6.4. Fault detection with coarse state-boundaries

first wrong transitions at about 4:45:00pm. T2 records such transitions even later

at about 4:50:00pm.

But once the system reaches its steady-state fault detection with coarse bound-

aries is very ineffective. Fig 6.5 shows the case when the system is monitored with

refined boundaries as in Table 6.2.

In Fig 6.6, the failure of pump N2 was detected at the steady-state phase.

The “Current-State” for T2, T4, T5, PWR,N2 is given by (3,3,1,3,1) and “Next-

Possible-State” by (+1,+1,+1,0,0). Due to the fault introduced by the failure of

the pump N2, the temperatures T4 and T5 start dropping. The faulty transitions

are recorded and are fed to the diagnoser. The engine now searches the tables T F

for a transition from state (3,3,1,3,1) to (3,2,1,3,1) and so on i.e. transitions where

the drop in temperatures T4 and T5 are predicted. It finds that such a transition

is possible only in the automaton table describing the Pump N2 failure. Since
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State Boundaries

T2 T4 T5 PWR N2

60 49 41 50 0.10

63 52 43 110 0.17

65 54 47 170 0.25

68 57 50 200 0.30

71 59 53 250 0.40

Table 6.2. Refined state-boundaries for subsystem

 

No faulty transitions 

Figure 6.5. Steady-state phase with refined state-boundaries

the diagnoser finds a unique solution in this case, it diagnoses the fault as Pump

failure. The result of the search engine is displayed in the ”Message Board” - that

pump N2 has failed.
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Figure 6.6. Fault detection with refined state-boundaries

6.2 Applications to the Heating Cooling (HC)

System

This section illustrates the application of our fault diagnosis algorithm on a heat-

ing cooling system (HC). The schematic of the heating cooling process plant is

illustrated in Fig. 6.7. The prime working mechanism of the plant is to control

reaction temperature to its designed values at different stages by adjusting cooling

jacket temperature outside the reactor. This can be achieved by controlling some

global valves, such as hot, cold and circulation valves. The hot and cold valves are

connected to a hot and cold tank at set temperatures, which are working as heat-

ing and cooling resources respectively. The high flow rate of heat transfer medium

pumped by a powerful gear pump through the cooling jacket ensures rapid tem-

perature control.
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Figure 6.7. Schematic of the heating cooling system

6.2.1 The State Variables and the FATs

A simple working cycle of the HC system has three stages: heating up, keeping

at the steady state value and cooling down. The temperature of the reactor is

controlled using proportional controller on the hot valve and the cold valve.

The working condition is set as follows: The heating and the cooling resources

are kept at designed temperature. At the heating up stage, only the hot valve is

used and at the cooling down stage, only the cold valve is used. For rapid temper-

ature control at steady state, the hot valve is used when the reactor’s temperature

is less than the steady state value and the cold valve is used when the reactor’s

temperature is more than steady state value.

The model of the heating cooling system is shown in Appendix C. There are six

state variables including the hot tank temperature TH , the cold tank temperature

TC , the cooling jacket temperature TJ , the reactor temperature TR and two control

variables: the hot valve position VH and the cold valve position VC .

The faults are incorporated by the fault input d1 , d2, d3 and d4. Each kind of
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fault is defined as follows:

1. d1 = 1, failure of the hot valve

2. d2 = 1, failure of the heater

3. d3 = 1, failure of the cold valve

4. d4 = 1, failure of the cooling system

The failure of valve here means there is no flow. Under normal operating

condition, the system has no discrete-inputs, only continuous inputs in the form of

VH or VC which are manipulated by a P controller. The theory of calculating FATs

can incorporate these continuous inputs if they are also discretized into states and

are put alongside of the state variables in a FAT. In the current version of the

software, we assume a fault-free working of the controller. So while calculating the

Next Possible States(NPS), we do not calculate the NPS for the VH and VC . As

the case of heat exchanger system, the current discrete state values of the control

variables are used to predict the NPS of the other state variables describing the

system. The future states of the control variables themselves are not predicted.

There are two automaton tables generated under the normal condition accord-

ing to two circumstances that the hot valve is used for control (VC = 0) or the cold

valve is used for control (VH = 0). When hot valve is used, the faults of interest

are d1 and d2 ; When the cold valve is used ,the faults of interest are d3 and d4.

Totally four automaton tables are generated according to four kinds of faults.

6.2.2 Experimental Results

In this section, we mainly discuss the influence of the choice of boundaries to the

computational effort and the fault diagnosability problem and illustrate with the

experimental results.

For the application to the heat exchanger system, we allocated 5 boundaries

for each of the 5 state variables. Then each automaton table consists of 1024 (45)

discrete-state combinations. For the application to the heating cooling system, if
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we also allocate 5 boundaries for each of the 6 state variables, then each automaton

table consists of 4096 (46) discrete state combinations. The computation time for

the automaton tables increase polynomially after adding one more state variable.

From the control condition, we know that the hot valve and the cold valve are not

used at the same time. When the hot valve is used for control, VC = 0. When the

cold valve is used for control, VH = 0. Therefore, only 5 state variables are used

under one control condition. We still can choose 5 boundaries for each of the state

variable.

When the hot valve is used for control, the system equations are as follows and

the state variables TH , TC , TJ , TR, VH are used:

49.6
dTH

dt
= (1− d1)0.03F (TJ − TH)VH + (1− d2)× PH + 0.015(TH − TE) (6.1)

52.5
dTC

dt
= −(1− d4)× PC + 0.016(TC − TE) (6.2)

29.4
dTJ

dt
= (1− d1)0.03F (TH − TJ)VH + 0.0287(TR − TJ) + 0.009(TJ − TE) (6.3)

2.61
dTR

dt
= 0.0287(TJ − TR) (6.4)

When the cold valve is used for control, the system equations are as follows and

the state variables TH , TC , TJ , TR, VC are used:

49.6
dTH

dt
= (1− d2)× PH + 0.015(TH − TE) (6.5)

52.5
dTC

dt
= (1− d3)0.02F (TJ − TC)VC − (1− d4)× PC + 0.016(TC − TE) (6.6)

29.4
dTJ

dt
= (1− d3)0.02F (TC − TJ)VC + 0.0287(TR − TJ) + 0.009(TJ − TE) (6.7)

2.61
dTR

dt
= 0.0287(TJ − TR) (6.8)

If we assume that the cold tank temperature TC is a constant value when the

hot valve is used for control (VC = 0), then the equations (6.1), (6.3), (6.4) and

the state variables TH , TJ , TR and VH are used. If we assume that the hot tank

temperature TH is a constant value when the cold valve is used for control (VH = 0),

then the equations (6.6), (6.7), (6.8) and the state variables TC , TJ , TR and VC

are used. Therefore, for any conditions, four state variables are used to generate
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the automaton table. In this case, if we still choose 5 boundaries for each state

variable, then each automaton table consists of 256(44) discrete-state combinations

and the computational effort will be tremendously reduced compared with using 5

state variables. We will use this model for our implementation.

During the heating-up phase (only the hot valve is used), the system first allo-

cates the boundaries as shown in Table 6.3. One FAT is generated under the normal

State Boundaries

TH TJ TR VH

54 32 25 0.1

58 38 30 0.15

65 45 35 0.25

75 52 40 0.35

82 55 45 0.45

Table 6.3. State-boundaries for heating-up phase (hot valve is used)

condition (hot valve is used) and two FATs are generated under the fault condition

d2 and d2. The discrete state is represented by (mTH , mTJ ,mTR ,mVH ). The fault

diagnosability of the system is checked and the heater failure d2 is tested nondiag-

nosable on the discrete states (1,4,x,1), where “x” represents all the index from 1 to

4. In this subspace, TH = [54 : 58], TJ = [52 : 55], TR = [25 : 45], VH = [0.1 : 0.15].

The equilibrium surface of each state variable under the normal condition (hot

valve is used) and under the the fault condition d1 and d2 is listed below:

Normal (hot valve is used)

dTH

dt
= 0 = 0.03F (TJ − TH)VH + PH + 0.015(TH − TE) (6.9)

dTJ

dt
= 0 = 0.03F (TH − TJ)VH + 0.0287(TR − TJ) + 0.009(TJ − TE) (6.10)

dTR

dt
= 0.0287(TJ − TR) (6.11)

d1 (hot valve failure)

dTH

dt
= 0 = PH + 0.015(TH − TE) (6.12)
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dTJ

dt
= 0 = 0.0287(TR − TJ) + 0.009(TJ − TE) (6.13)

dTR

dt
= 0.0287(TJ − TR) (6.14)

d2 (heater failure)

dTH

dt
= 0 = 0.03F (TJ − TH)VH + 0.015(TH − TE) (6.15)

dTJ

dt
= 0 = 0.03F (TH − TJ)VH + 0.0287(TR − TJ) + 0.009(TJ − TE) (6.16)

dTR

dt
= 0.0287(TJ − TR) (6.17)

From the equilibrium surface of each state variable, we can see that d1 can be

diagnosed using the direction of TH and TJ , d2 can be detected using the direction

of TH and can be isolated using the direction of TH and TJ . The heater failure is

nondiagnosable because dTH

dt
> 0 under both normal and heater failure conditions

in this subspace.

Following the steps in Section 4.2, the boundaries will be adapted.

1. According to Step 1, not all the discrete states are “nondiagnosable discrete

states” for the heater failure, therefore Step 1 is ignored.

2. According to Step 2, the subspace including the nondiagnosable discrete

states is examined. The conditions of Step 2.1 to Step 2.3 do not exist

in this subspace. Then Step 3 is checked.

3. Check a subspace that is adjacent to the subspace that the fault is nondi-

agnosable. Choose the boundary of a state variable TH that 54 ≤ TH ≤ 65.

The boundary of the other state variables in the nondiagnosable subspace

will be the same as before. Then the first condition of Step 3.1 is checked.

OTH ,s(k, 1) 6= 0 exists. Then the boundary βTH
1 = 58 is reallocated. From

the calculation, when dTH

dt
< 0 for heater failure condition, the boundary can

be reallocated in the range [60.6:65]. The new boundary βTH
1 of TH is chosen

as βTH
1 = 60.6 + 0.2× (65− 60.6) = 61.48 ≈ 61.
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For the heating-up phase (only the hot valve is used), the boundaries is real-

located as shown in Table 6.4. Then the FATs are regenerated and the faults are

tested diagnosable.

State Boundaries

TH TJ TR VH

54 32 25 0.1

61 38 30 0.15

65 45 35 0.25

75 52 40 0.35

82 55 45 0.45

Table 6.4. New state-boundaries for heating-up phase (hot valve is used)

During the heating-up phase, the value of the state variables has wide range

and changes rapidly, therefore the state boundaries need to be “coarse”. Once the

system reaches its steady-state, fault detection with coarse boundaries is ineffective

and has to be made “fine”, the boundaries for the steady-state are shown in Table

6.5(hot valve is used) and Table 6.6(cold valve is used).

State Boundaries

TH TJ TR VH

62 38 34 0.1

66 42 36 0.15

70 44 38 0.2

75 46 40 0.25

80 52 42 0.3

Table 6.5. State-boundaries for steady-state phase (hot valve is used)

Two FATs are generated under the normal condition (hot valve is used and

cold valve is used) and four FATs are generated under the fault condition d1,d2,d3
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State Boundaries

TC TJ TR VC

16 38 34 0.1

20 42 36 0.2

24 44 38 0.25

26 46 40 0.3

28 52 42 0.35

Table 6.6. State-boundaries for steady-state phase (cold valve is used)

and d4. The discrete state is represented by (mTH ,mTJ ,mTR ,mVH )(hot valve is

used) and (mTC ,mTJ ,mTR ,mVC )(cold valve is used). The fault diagnosability of

the system is checked and the cold tank failure d4 is tested nondiagnosable on the

discrete states (1,x,x,4), where “x” represents all the index from 1 to 4. In this

subspace, TC = [16 : 20], TJ = [38 : 52], TR = [34 : 42], VH = [0.3 : 0.35]. The

equilibrium surface of each state variable under the normal condition (cold valve

is used) and under the the fault condition d3 and d4 is listed below:

Normal (cold valve is used)

dTC

dt
= 0 = 0.02F (TJ − TC)VC − PC + 0.016(TC − TE) (6.18)

dTJ

dt
= 0.02F (TC − TJ)VC + 0.0287(TR − TJ) + 0.009(TJ − TE) (6.19)

2.61
dTR

dt
= 0.0287(TJ − TR) (6.20)

d3 (cold valve failure)

dTC

dt
= 0 = −PC + 0.016(TC − TE) (6.21)

dTJ

dt
= 0.0287(TR − TJ) + 0.009(TJ − TE) (6.22)

2.61
dTR

dt
= 0.0287(TJ − TR) (6.23)

d4 (cooling system failure)

dTC

dt
= 0 = 0.02F (TJ − TC)VC + 0.016(TC − TE) (6.24)
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dTJ

dt
= 0.02F (TC − TJ)VC + 0.0287(TR − TJ) + 0.009(TJ − TE) (6.25)

2.61
dTR

dt
= 0.0287(TJ − TR) (6.26)

From the equilibrium surface of each state variable, we can see that d3 can be

diagnosed using the direction of TC and TJ , d4 can be detected using the direction

of TC and can be isolated using the direction of TC and TJ . The cooling system

failure is nondiagnosable because dTC

dt
> 0 under both normal and cooling system

failure conditions in this subspace.

Following the steps in Section 4.2, the boundaries will be adapted.

1. According to Step 1, not all the discrete states are “nondiagnosable discrete

states” for cooling system failure, therefore Step 1 is ignored.

2. According to Step 2, the subspace including the nondiagnosable discrete

states is examined. The conditions of Step 2.1 to Step 2.3 do not exist

in this subspace. Then Step 3 is checked.

3. Check a subspace that is adjacent to the subspace that the fault is nondi-

agnosable. Choose the boundary of a state variable TC that 16 ≤ TC ≤ 24.

The boundary of the other state variables in the nondiagnosable subspace

will be the same as before. Then the first condition of Step 3.1 is checked.

OTC ,s(k, 4) 6= 0 exists. Then the boundary βTC
1 = 20 is reallocated. From

the calculation, when dTC

dt
< 0 for normal condition, the boundary can be

reallocated in the range [21.2:24]. The new boundary βTC
1 of TC is chosen as

βTC
1 = 21.2 + 0.2× (24− 21.2) = 21.76 ≈ 22.

Therefore the boundaries is reallocated as shown in Table 6.7. Then the FATs

are regenerated and the faults are tested diagnosable.

During cooling down phase (only cold valve is used), the range of the state

variable has no big changes, so the system uses the same boundary set for steady-

state phase (cold valve is used) shown in Table 6.7.

In Fig 6.8, the failure of heater was detected during the heating-up phase. In

Fig 6.9, the failure of heater was detected at the steady-state stage. In Fig 6.10,

the failure of the cooling system was detected at the steady-state stage.
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Heater failure 

Figure 6.8. Heater failure at the heating-up phase

 

Heater failure 

Figure 6.9. Heater failure at the steady-state phase
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Cooling system  
failure 

Figure 6.10. Cooling system failure at the steady-state phase

State Boundaries

TC TJ TR VC

16 38 34 0.1

22 42 36 0.2

24 44 38 0.25

26 46 40 0.3

28 52 42 0.35

Table 6.7. New state-boundaries for steady-state phase (cold valve is used)

6.3 Conclusions

In this chapter we illustrated our approach to fault diagnosis using two real process

plants, the heat exchanger system and the heating cooling system. We discussed

the various implementation issues and built the diagnostic system using FSA model
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of the plant. We also presented the application of theory and its associated con-

ditions and properties discussed in the last few chapters. The snap-shot of some

results from the experiment was shown, which verified the applicability and flex-

ibility of the proposed method. The nature of the models discussed indicates the

potential applicability of our approach to a wide class of systems.



Chapter 7

Conclusions

The organization of this chapter is as follows: In Section 7.1, we summarize the

main contributions of this thesis. In Section 7.2, we compare our work with some

of the other related work to fault diagnosis, which are modelled in the framework

of DES. In Section 7.3, we give some suggestions for future research work.

7.1 Contributions of this Thesis

In this thesis, an integrated fault diagnosis scheme using FSA model is mainly

discussed. The main contributions of this thesis are:

• a framework of fault modeling of systems using FSA models and the algorithm

for fault detection and isolation;

• a methodology to analyze and test the fault diagnosability of systems;

• a scheme to adapt the boundaries of the state variables to enhance the fault

diagnosability of the system;

• several strategies to reduce the computational complexity of DES;

• implementation of on-line fault diagnosis for process plants.

98
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7.2 Comparison with the Related Work

In this section, we will briefly discuss and compare the diagnostic method of our

model with the other related work to fault diagnosis which are modeled in the

framework of DES in the literature.

1. Lin, in [15], proposed a state-based approach to offline diagnosis and on-

line diagnosis. The state space of the system is partitioned into normal and

failed states, and the objective is to identify which element of the partition

the state is in via measurements of the system output. In off-line diagnosis,

the system to be diagnosed is assumed to be in a ‘test-bed’. The diagnostic

system is to issue a sequence of test commands in order to draw inferences on

the possible state of the system. This is a problem of offline diagnosability

or offline testability. In on-line diagnosis, the system is assumed to be in

normal operation when the test commands are sent. Unlike the case of off-

line diagnosis, uncontrollable events may occur during the diagnostic process.

The goal is to design a sequence of appropriate test commands for diagnosing

failed states. The author gives an algorithm, which is guaranteed to converge

if the system is indeed on-line diagnosable. This is a problem of online

diagnosability or online testability. The applications include mixed digital

and analog circuits and exhaust gas recirculation.

2. In [16], Bavishi and Chong further present some results on the testability of

a system whose fault behavior is modeled by a nondeterministic automaton.

Their study are the extension of off-line diagnosability presented in [15].

Testability is viewed as estimating the current state of the system based on

the output information. Two issues are presented: (1) Determine the optimal

set of sensors which would ensure testability of a given system. (2) Given a

fixed set of sensors, determine the infimal partition of the state space, with

respect to which the system is testable. A manufacturing application ( piston

manufacturing cell) is illustrated.

3. In [17, 18, 19], the authors present a methodology for modeling physical sys-
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tems in a DES framework and use it for the construction of a diagnoser. The

automaton model of the system accounts for the normal behavior and the

fault behavior of the system. The goal is to identify which failure events

have occurred based on on-line observations of the system behavior. They

introduce two related notions of diagnosability of DES in the frame work of

formal language. Diagnosability requires that every failure event leads to ob-

servations distinct enough to enable unique identification of the failure type

within a finite delay. The diagnoser performs diagnostics using on-line obser-

vations of the system behavior. They also present an approach for the design

of diagnosable systems by appropriate design of the system controller. The

method is illustrated on a heating, ventilation and air conditioning (HVAC)

system.

In the following, we give a brief comparison of our approach with the above

methods from the modelling, diagnosability of system, diagnostic process and other

issues in fault diagnosis. Our comparison will be based on each of the main con-

tributions of this thesis mentioned above.

Modeling

• In the above methods, the designers model the system by defining the in-

dividual component models and the sensor maps and using the composition

(e.g. the synchronous composition) to obtain the complete model. It is eas-

ily seen that building the individual component models and the sensor maps

may not be a trivial task and calls for the knowledge of the application do-

main and engineering judgement in selecting the right level of abstraction.

Furthermore, the information has to be collected each time for designing dif-

ferent systems. In our approach, the model can be automatically obtained by

given a system described by differential equations and a set of boundaries of

the state variables. The implementation of our modeling is different from the

methods mentioned above. It is easily seen that the modeling will become

more simple, accurate and coincide with the continuous domain if the DES

is directly obtained from the continuous system.
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• The model we developed is another kind of DES model, which also contain

the state and event information that captures both the normal and the faulty

behavior of the system. The characteristics of our model (event) is nonde-

terministic, that is given the current state of the system, it predicts all the

next possible event could happen and not deterministic. This character is

the same as method 2, but it is different from method 1 and method 3.

• Most of the above methods use the language representation of the DES model,

which records the event traces in the system. In our on-line fault diagnosis,

the diagnoser will trace and update both the discrete states (the coordinate

of the state variables) and the events (change of the coordinate of the state

variables) in the system. Therefore, we use the FATs representation to record

both the discrete states and events in the system.

Diagnosability of system

• In method 1 and 2, the authors check the diagnosability/testability through

active “testing” and the output information. In method 3, the authors study

the diagnosability through “passive” analysis of the formal language (sys-

tem). Similarly, we study the fault diagnosability through “passive” analysis

of the FATs. As our model is nondeterministic, which will increase the diffi-

culty for testing the diagnosability of the system. The good point is that we

model the fault in advance in the system modeling, therefore, the diagnos-

ability is tested by comparing the event traces predicted by the FATs under

the normal and the fault conditions. The fault is diagnosable if the event

traces is distinct enough within finite number of the state transitions after

the fault occurred. We further provide some conditions for nondiagnosability.

The result has significance for testing the diagnosability of a nondeterministic

FSA model in fault diagnosis.

Making a diagnosable system

• In method 3, the authors propose the design of diagnosable system by appro-

priate design of the system controller. This consideration must be taken into
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account in the initial design. In our approach, we have proposed a methodol-

ogy to adapt the boundaries to enhance the diagnosability of the system and

make the system diagnosable, which can be done after the initial modeling of

the system. The advantage of this method is that it uses the information from

the continuous system and make the modeling more accurate. The result has

significance on its guidance for discretizing the continuous value of the vari-

ables for fault diagnosis in DES by using the discrete domain information,

which has not been studied by the other approaches.

Diagnostic process

• Our diagnostic system performs on-line diagnosis. Most of the other ap-

proaches do not attempt to explicitly propose methods to reduce the com-

putational complexity of DES approaches. In our approach, we propose to

decompose the system into subsystems and provide the small set of bound-

aries for computing the small tables of FATs on-line. These reduce the com-

putational complexity of DES.

As mentioned in Chapter 2, different approaches to fault diagnosis are cho-

sen for different applications based on many aspects of consideration, such as the

characteristics of the system, knowledge available about the system, etc. The

proposed method is more applicable to continuous dynamic systems or hybrid sys-

tems, which are often used in the chemical plants. The proposed diagnosability

conception and the methodology for making a diagnosable system and reducing

the computational effort can be used in other approaches which obtain the FSA

model from the continuous system.

7.3 Suggestions for Future Work

Several interesting directions remain to be considered for future work. To examine

a few:

• In our system, we use a constant timing information for the “timing event”

detection in some discrete states. Temporal information is completely absent
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from the current FSA models, which restricts attention to untimed discrete

event models. [45] presents on computing the timed Automata from mono-

tone first-principle process models. The timing information may be used in

fault diagnosis to further enhance the capabilities of the diagnostic process.

• In this work, issue of detecting unmodeled faults is not discussed. It would be

interesting to develop other “assisted diagnostic tools” to diagnose unmodeled

faults. These tools would manipulate the inputs and watch the outputs for

the changes. Information thus obtained can be useful for diagnosis.

• In this work, the generation of FATs itself need non-linear differential equa-

tions for the state variables. It would indeed interesting to generate the

information contained in FATs from various other types of models, such as

using artificial neural-networks (ANN) and data mining method.
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Appendix A

Summary of Computing

State-transitions

Given the system equations and a set of boundaries for each state variable, typi-

cally, four possible cases arise when the program calculates the state transitions.

This is illustrated in Fig A.1. We discuss each of the case here in brief.

1. The function value is positive at all grid-points defining the region. This

means, for the example, that trajectories of the system which start at the

qualitative state (4,3) can cross the boundary and reach the state (5,3) above

the boundary. Checking only the single grid-points does not mean that there

are no trajectories which cross the boundary in the other direction. To check

this, the program searches for the minimum of the state space function in

the region. If a minimum is found and if the state space equations take a

negative value at this minimum, this means that the boundary can be crossed

in the opposite direction too.

2. On the other hand, if the function value at the minimum is still positive, this

means that there is no trajectory which crosses the boundary in the opposite

direction. For the optimization routine, it is very important to find the global

minimum and not get stuck in a local minimum. If the later happens, the

program does not indicate a possible transition although there might be a

global minimum with negative function values.
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[Case 1]

4,4

5,2

5,3

5,4

4,3

4,2

[Case 2]

4,4

5,2

5,3

5,4

4,3

4,2

[Case 3]

4,4

5,2

5,3

5,4

4,3

4,2

[Case 4]

4,4

5,2

5,3

5,4

4,3

4,2

Figure A.1. Possible cases of the state space equations

If the function values are negative at all grid-points defining the region, then

the procedure is similar. Trajectories of the system can start in state (5,3)

and cross the boundary to reach the state (4,3). The program now searches

for a maximum of the state space functions. If one is found, transitions from

state (4,3) to state (5,3) are possible too.

3. One special case is shown in Fig. A.1(Case 3). If there are grid-points with

positive and with negative values of the state space functions, it is clear that

trajectories cross the boundary in both directions. Hence transitions are

possible in both directions, and no further optimization has to be performed.

In this case, the computational affort is reduced to a minimum.

4. A second special case occurs, if the function values at the grid-points are

very small. This often happens, if trajectories run asymptotic to the bound-

aries. In this case, it is difficult to make a prediction on possible transitions,

because with small function values the errors due to modeling inaccuracies
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and parameter alteration can have strong effects on the possible transitions.

In this case, the program supposes that no transitions are possible. To pre-

vent false alarms it also writes a note in the log-file for the expert system.

A detailed analysis on handling trajectories asymptotic to the boundaries is

given in [43] and [35].



Appendix B

Mathematical Model of the Heat

Exchanger System

Heating Unit:

MCp
dT2

dt
= (1− d1)PWR− (1− d2)ṁ2Cp(T2 − T5) (B.1)

where M = 4.67 kg; Cp = 4180 J/kg◦C.

Heat Exchanger:

Heating Zone (N1 is kept constant)

dT5

dt
= (1− d2)(2× 0.1197T2 − 13.119)×

(
1.63

N2

0.35

)0.078

(
dT2

dt
)

+ d2(−0.0107T5 + 0.5034) (B.2)

dT4

dt
= (1− d2)(0.98)×

(
0.87

N2

0.5

)0.085

(
dT2

dt
) + d2(−0.0152T4 + 0.72) (B.3)

Heating Pump:

F2 = 1173N2 − 169.9 (B.4a)

ṁ2 = ρw (K1F2) (B.4b)
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Notation:

M Mass of water in the heating

tank in kg

Ni Speed of pump Ni

F1 Flow rate of product in ml/min

F2 Flow rate of heating water in ml/min

K1 Convert ml/min to m3/sec : 10−6/60

ρw Density of water = 1000Kg/m3

ṁ2 Mass flow rate of heating water in Kg/sec

Ac Area of cross section of product tank in m3

Cp Heat Capacity of water = 4180 J/Kg◦C

PWR Heat input by the heater coil in Watts

T5 Heating water exit temp.

from the HX in ◦C

T2 Heating water inlet temp.

to the HX in ◦C

T4 Product temp. at the exit of heating

zone of HX in ◦C



Appendix C

Mathematical Model of the

Heating Cooling System

49.6
dTH

dt
= (1− d1)0.03F (TJ − TH)VH + (1− d2)× PH + 0.015(TH − TE) (C.1)

52.5
dTC

dt
= (1− d3)0.02F (TJ − TC)VC − (1− d4)× PC + 0.016(TC − TE) (C.2)

29.4
dTJ

dt
= (1− d1)0.03F (TH − TJ)VH + (1− d3)0.02F (TC − TJ)VC+

0.0287(TR − TJ) + 0.009(TJ − TE) (C.3)

2.61
dTR

dt
= 0.0287(TJ − TR) (C.4)

Notation:

TH Temperature of hot tank

TC Temperature of cold tank

TJ Temperature of cooling jacket
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TR Temperature of reactor

TE Temperature of enviroment (◦C)

F Flow rate of product (26l/min)

VH Position of hot valve

VC Position of cold valve

PH Heating input by the heater coil = 3 Watts

PC Cooling input by the cooling system = 2.5 Watts



Appendix D

Part of the FATs Generated for

the Heat Exchanger System

For the application to the heat exchanger system, we have 5 state variables namely,

T2, T5, T4, PWR, N2 and PWR, N2 are control variables. We use 5 state-boundaries

(4 cells) for each of the 5 state-variables, resulting in 1024 (45) discrete-states in

each automaton table. We study the effect of two distinct faults namely the heater-

coil failure and the heating pump failure. Totally, one FAT under the normal con-

dition and two FATs under the fault conditions are generated. Part of the FATs

(start up phase) under different conditions are shown in the following tables.
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Automaton Table - Normal Condition

Current State Next Possible State

T2 T5 T4 PWR N2 T2 T5 T4 PWR N2

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
1 4 1 1 2 0 -1 0 0 0

2 4 1 1 2 -1 -1 0 0 0

3 4 1 1 2 -1 -1 0 0 0

4 4 1 1 2 -1 -1 0 0 0

1 1 2 1 2 0 +1 -1 0 0

2 1 2 1 2 -1 +1 -1 0 0

3 1 2 1 2 -1 +1 -1 0 0

4 1 2 1 2 -1 +1 -1 0 0

1 2 2 1 2 0 +1 -1 0 0

2 2 2 1 2 -1 +1 -1 0 0

3 2 2 1 2 -1 +1 -1 0 0

4 2 2 1 2 -1 +1 -1 0 0

1 3 2 1 2 0 +1 -1 0 0

2 3 2 1 2 -1 +1 -1 0 0

3 3 2 1 2 -1 +1 -1 0 0

4 3 2 1 2 -1 +1 -1 0 0

1 4 2 1 2 0 -1 -1 0 0

2 4 2 1 2 -1 -1 -1 0 0

3 4 2 1 2 -1 -1 -1 0 0

4 4 2 1 2 -1 -1 -1 0 0

1 1 3 1 2 0 +1 -1 0 0

2 1 3 1 2 -1 +1 -1 0 0

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

Table D.1. The Automaton Tables for normal condition
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Automaton Table - Heater Coil Failure

Current State Next Possible State

T2 T5 T4 PWR N2 T2 T5 T4 PWR N2

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
1 4 1 1 2 0 -1 0 0 0

2 4 1 1 2 -1 -1 0 0 0

3 4 1 1 2 -1 -1 0 0 0

4 4 1 1 2 -1 -1 0 0 0

1 1 2 1 2 0 0 -1 0 0

2 1 2 1 2 -1 0 -1 0 0

3 1 2 1 2 -1 0 -1 0 0

4 1 2 1 2 -1 0 -1 0 0

1 2 2 1 2 0 -1 -1 0 0

2 2 2 1 2 -1 -1 -1 0 0

3 2 2 1 2 -1 -1 -1 0 0

4 2 2 1 2 -1 -1 -1 0 0

1 3 2 1 2 0 -1 -1 0 0

2 3 2 1 2 -1 -1 -1 0 0

3 3 2 1 2 -1 -1 -1 0 0

4 3 2 1 2 -1 -1 -1 0 0

1 4 2 1 2 0 -1 -1 0 0

2 4 2 1 2 -1 -1 -1 0 0

3 4 2 1 2 -1 -1 -1 0 0

4 4 2 1 2 -1 -1 -1 0 0

1 1 3 1 2 0 0 -1 0 0

2 1 3 1 2 -1 0 -1 0 0

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

Table D.2. The Automaton Tables for heater coil failure
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Automaton Table - Pump N2 Failure

Current State Next Possible State

T2 T5 T4 PWR N2 T2 T5 T4 PWR N2

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
1 4 1 1 2 +1 -1 0 0 0

2 4 1 1 2 +1 -1 0 0 0

3 4 1 1 2 +1 -1 0 0 0

4 4 1 1 2 0 -1 0 0 0

1 1 2 1 2 +1 +1 -1 0 0

2 1 2 1 2 +1 +1 -1 0 0

3 1 2 1 2 +1 +1 -1 0 0

4 1 2 1 2 0 +1 -1 0 0

1 2 2 1 2 +1 +1 -1 0 0

2 2 2 1 2 +1 +1 -1 0 0

3 2 2 1 2 +1 +1 -1 0 0

4 2 2 1 2 0 +1 -1 0 0

1 3 2 1 2 +1 0 -1 0 0

2 3 2 1 2 +1 0 -1 0 0

3 3 2 1 2 +1 0 -1 0 0

4 3 2 1 2 0 0 -1 0 0

1 4 2 1 2 +1 -1 -1 0 0

2 4 2 1 2 +1 -1 -1 0 0

3 4 2 1 2 +1 -1 -1 0 0

4 4 2 1 2 0 -1 -1 0 0

1 1 3 1 2 +1 +1 -1 0 0

2 1 3 1 2 +1 +1 -1 0 0

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

Table D.3. The Automaton Tables for Pump N2 failure



Appendix E

Part of the FATs Generated for

the Heating Cooling System

For the application to the heating cooling system, we have 6 state variables namely,

TH , TC , TJ , TR, VH , VC and VH , VC are control variables. Under each control

condition, only 4 state variables are used. We use 5 state-boundaries (4 cells) for

each of the 4 state-variables, resulting in 256 (44) discrete-states in each automaton

table. We study the effect of four distinct faults: failure of the hot valve, failure

of the heater, failure of the cold valve and failure of the cooling system. There are

two FATs under the normal condition, one FAT is generated when the hot valve

is used for control (VC = 0) and another FAT is generated when the cold valve is

used for control (VH = 0). Four FATs are generated under the fault conditions.

Part of the FATs (steady-state phase) under different conditions are shown in the

following tables.
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Automaton Table - Normal Condition (hot valve for control)

Current State Next Possible State

TH TJ TR VH TH TJ TR VH

· · · · · · · · · · · · · · · · · · · · · · · ·
1 3 1 2 +1 +1 +1 0

2 3 1 2 +1 +1 +1 0

3 3 1 2 -1 +1 +1 0

4 3 1 2 -1 +1 +1 0

1 4 1 2 +1 0 +1 0

2 4 1 2 +1 0 +1 0

3 4 1 2 -1 0 +1 0

4 4 1 2 -1 0 +1 0

1 1 2 2 +1 +1 +1 0

2 1 2 2 +1 +1 +1 0

3 1 2 2 -1 +1 +1 0

4 1 2 2 -1 +1 +1 0

1 2 2 2 +1 +1 +1 0

2 2 2 2 +1 +1 +1 0

3 2 2 2 -1 +1 +1 0

4 2 2 2 -1 +1 +1 0

1 3 2 2 +1 +1 +1 0

2 3 2 2 +1 +1 +1 0

3 3 2 2 -1 +1 +1 0

4 3 2 2 -1 +1 +1 0

1 4 2 2 +1 0 +1 0

2 4 2 2 +1 0 +1 0

· · · · · · · · · · · · · · · · · · · · · · · ·

Table E.1. The Automaton Table for normal condition (hot valve for control)
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Automaton Table - Normal Condition (cold valve for control)

Current State Next Possible State

TC TJ TR VC TC TJ TR VC

· · · · · · · · · · · · · · · · · · · · · · · ·
1 3 1 2 +1 -1 +1 0

2 3 1 2 -1 -1 +1 0

3 3 1 2 -1 -1 +1 0

4 3 1 2 -1 -1 +1 0

1 4 1 2 +1 -1 +1 0

2 4 1 2 -1 -1 +1 0

3 4 1 2 -1 -1 +1 0

4 4 1 2 -1 -1 +1 0

1 1 2 2 +1 0 +1 0

2 1 2 2 -1 0 +1 0

3 1 2 2 -1 0 +1 0

4 1 2 2 -1 0 +1 0

1 2 2 2 +1 -1 +1 0

2 2 2 2 -1 -1 +1 0

3 2 2 2 -1 -1 +1 0

4 2 2 2 -1 -1 +1 0

1 3 2 2 +1 -1 +1 0

2 3 2 2 -1 -1 +1 0

3 3 2 2 -1 -1 +1 0

4 3 2 2 -1 -1 +1 0

1 4 2 2 +1 -1 +1 0

2 4 2 2 -1 -1 +1 0

· · · · · · · · · · · · · · · · · · · · · · · ·

Table E.2. The Automaton Table for normal condition (cold valve for control)
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Automaton Table - Hot Valve Failure

Current State Next Possible State

TH TJ TR VH TH TJ TR VH

· · · · · · · · · · · · · · · · · · · · · · · ·
1 3 1 2 +1 -1 +1 0

2 3 1 2 +1 -1 +1 0

3 3 1 2 +1 -1 +1 0

4 3 1 2 0 -1 +1 0

1 4 1 2 +1 -1 +1 0

2 4 1 2 +1 -1 +1 0

3 4 1 2 +1 -1 +1 0

4 4 1 2 0 -1 +1 0

1 1 2 2 +1 0 -1 0

2 1 2 2 +1 0 -1 0

3 1 2 2 +1 0 -1 0

4 1 2 2 0 0 -1 0

1 2 2 2 +1 -1 -1 0

2 2 2 2 +1 -1 -1 0

3 2 2 2 +1 -1 -1 0

4 2 2 2 0 -1 -1 0

1 3 2 2 +1 -1 -1 0

2 3 2 2 +1 -1 -1 0

3 3 2 2 +1 -1 -1 0

4 3 2 2 0 -1 -1 0

1 4 2 2 +1 -1 -1 0

2 4 2 2 +1 -1 -1 0

· · · · · · · · · · · · · · · · · · · · · · · ·

Table E.3. The Automaton Table for the hot valve failure
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Automaton Table - Heater Failure

Current State Next Possible State

TH TJ TR VH TH TJ TR VH

· · · · · · · · · · · · · · · · · · · · · · · ·
1 3 1 2 0 -1 +1 0

2 3 1 2 -1 -1 +1 0

3 3 1 2 -1 -1 +1 0

4 3 1 2 -1 -1 +1 0

1 4 1 2 0 -1 +1 0

2 4 1 2 -1 -1 +1 0

3 4 1 2 -1 -1 +1 0

4 4 1 2 -1 -1 +1 0

1 1 2 2 0 0 -1 0

2 1 2 2 -1 0 -1 0

3 1 2 2 -1 0 -1 0

4 1 2 2 -1 0 -1 0

1 2 2 2 0 -1 -1 0

2 2 2 2 -1 -1 -1 0

3 2 2 2 -1 -1 -1 0

4 2 2 2 -1 -1 -1 0

1 3 2 2 0 -1 -1 0

2 3 2 2 -1 -1 -1 0

3 3 2 2 -1 -1 -1 0

4 3 2 2 -1 -1 -1 0

1 4 2 2 0 -1 -1 0

2 4 2 2 -1 -1 -1 0

· · · · · · · · · · · · · · · · · · · · · · · ·

Table E.4. The Automaton Table for the heater failure
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Automaton Table - Cold Valve Failure

Current State Next Possible State

TC TJ TR VC TC TJ TR VC

· · · · · · · · · · · · · · · · · · · · · · · ·
1 3 1 2 0 +1 +1 0

2 3 1 2 -1 +1 +1 0

3 3 1 2 -1 +1 +1 0

4 3 1 2 -1 +1 +1 0

1 4 1 2 0 0 +1 0

2 4 1 2 -1 0 +1 0

3 4 1 2 -1 0 +1 0

4 4 1 2 -1 0 +1 0

1 1 2 2 0 +1 +1 0

2 1 2 2 -1 +1 +1 0

3 1 2 2 -1 +1 +1 0

4 1 2 2 -1 +1 +1 0

1 2 2 2 0 +1 +1 0

2 2 2 2 -1 +1 +1 0

3 2 2 2 -1 +1 +1 0

4 2 2 2 -1 +1 +1 0

1 3 2 2 0 +1 +1 0

2 3 2 2 -1 +1 +1 0

3 3 2 2 -1 +1 +1 0

4 3 2 2 -1 +1 +1 0

1 4 2 2 0 0 +1 0

2 4 2 2 -1 0 +1 0

· · · · · · · · · · · · · · · · · · · · · · · ·

Table E.5. The Automaton Table for the cold valve failure
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Automaton Table - Cooling System Failure

Current State Next Possible State

TC TJ TR VC TC TJ TR VC

· · · · · · · · · · · · · · · · · · · · · · · ·
1 3 1 2 +1 +1 +1 0

2 3 1 2 +1 +1 +1 0

3 3 1 2 +1 +1 +1 0

4 3 1 2 0 +1 +1 0

1 4 1 2 +1 0 +1 0

2 4 1 2 +1 0 +1 0

3 4 1 2 +1 0 +1 0

4 4 1 2 0 0 +1 0

1 1 2 2 +1 +1 +1 0

2 1 2 2 +1 +1 +1 0

3 1 2 2 +1 +1 +1 0

4 1 2 2 0 +1 +1 0

1 2 2 2 +1 +1 +1 0

2 2 2 2 +1 +1 +1 0

3 2 2 2 +1 +1 +1 0

4 2 2 2 0 +1 +1 0

1 3 2 2 +1 +1 +1 0

2 3 2 2 +1 +1 +1 0

3 3 2 2 +1 +1 +1 0

4 3 2 2 0 +1 +1 0

1 4 2 2 +1 0 +1 0

2 4 2 2 +1 0 +1 0

· · · · · · · · · · · · · · · · · · · · · · · ·

Table E.6. The Automaton Table for the cooling system failure



Appendix F

Procedure for Running Diagnoser

of the Heat Exchanger System

Preparation of the plant

1. Switch on the process plant control unit and change all the settings to Manual

mode. Make sure that there is adequate water in both the feed tanks. As a

precaution, never allow the water level in the tanks to be below the 120mm

mark. (Running the peristaltic pumps in dry conditions may damage the

silicone rubber tubes.)

2. Switch on the Feed pump(N1) and Water pump(N2) and place them under

MANUAL control. Keep them at about 4.5 in dial of the control panel.

3. Switch on the Water Heater(PWR) and keep it at about 0.6KW in the MAN-

UAL control. Observe the gradual rise in temperature T2.

4. Switch on the VALVE control and put it in MANUAL mode.

Performing the fault diagnosis experiments.

1. Switch on the PC and go to D:\USER\FAULT_D directory. Type diagnose to

run the program in PC. This program collects data from the process plant

and also runs a lower level PI controller.
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1. Enter the interval to sample the plant on CH0 (1 ... 20000) (ms)

Type - 10000 and press ENTER.

2. Enter the interval for control loop update (5 ... 20000) (ms)

Type - 10000 and press ENTER.

The program starts but the screen will be blank as it awaits a signal from

the Workstation (G2).

2. Switch the VALVE CONTROL to I/O port. This ensures that FEED TANKS

always maintain a minimum water-level.

3. Login to Workstation with username- Labtech and appropriate password.

4. Open a command window by typing- xterm & in window titled -

cmdtool - /bin/sh

5. Change the working directory to fault d by typing - cd fault_d. Verify

that you are in correct working directory by typing pwd. It should show

/data/user/Labtech/fault_d .

6. In this xterm, type- runbridges & and press ENTER. All the GSI bridges

will start automatically.

7. In the File Manager, go to directory /appl/gensym/g2 .

8. Double-click on the g2 executable file. G2 software will load.

9. In G2, load the following KB - /data/user/Labtech/fault_d/diagnoser.kb

A KB can be loaded by clicking anywhere in the G2 workspace and selecting

the Load KB option from the Main Menu.

10. Start the KB but do not run any actions. A KB can be started by selecting

the Start option in the Main Menu.
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11. Wait till the temperature T2 reaches 53 ◦C. When this temperature is at-

tained, click on the Get Plant-Data button in the “Operator-Panel” workspace

of G2. This will get real-time data into the workstation.

12. Go to the process plant controller and switch the Water pump(N2) to IO-

PORT mode and Water Heater(PWR) to INPUT SOCKET mode. This will

complete the switch over from manual mode to PI controller mode.

13. Wait for 5 minutes for controller to stabilize. Then click on the Run Auto-Table

button in the “Operator-Panel” workspace of G2.

14. Finally to the fault diagnoser, click on the Start Diagnosis button in the

“Operator-Panel” workspace of G2.

Shut down sequence

1. In the “Operator-Panel” workspace of G2, click on the Stop Diagnosis,

Stop Auto-Table, Stop Plant-Data button in that order. Data transmis-

sion from PC to Workstation(G2) terminates.

2. Pause the KB using the Pause option from the Main Menu.

3. Reset the KB using the Reset option from the Main Menu.

4. In the control-panel of the plant, switch the Water pump(N2) and the Water

Heater(PWR) to the MANUAL mode. Switch the VALVE CONTROL also

to MANUAL mode.

5. Press ‘Q’ in the PC to stop the program. This will bring the complete set-up

to halt.

6. Discharge the water in the plant and shut down the plant.



Appendix G

Procedure for Running Diagnoser

of the Heating Cooling System

Preparation of the plant

1. Inspect the system to ensure that there are no visible damages or leaks from

the system.

2. Fill up the sump and the water tank.

3. Plug the system and turn on both mains lever switches.

4. Twist the red emergency stop switch in a clockwise direction to reset the

circuit.

5. Press down the green illuminated push button to power up the plant.

6. Turn on the chiller.

7. Ensure that BV1 and BV2 are open.

8. Switch on the PC and go to C:\mydocument\vi directory. Start the PC and

load the LabView program platform.vi. Once the file is loaded, run it by

clicking on the run button.

9. Open valves A, B, C and D fully through platform.vi.
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10. Ensure that BV6 is open and BV5, BV3 and BV4 are closed.

11. Start P4 to fill the plant with oil, and stop P4 when the plant is filled.

12. Run P1 at 10 Hz for around 2 minutes to expel air bubbles out of the pipeline

of the plant, and then stop P1.

13. Close valves A, B and D.

14. Ensure that BV7, BV8 and BV9 are open.

15. Turn on P3, the pump and cooling switches of the chiller in sequence.

16. Turn on P2 and run it at 20Hz to start oil circulation.

17. Turn on heater 1 by pulling down its toggle switch.

Wait for the temperatures of the cold tank and hot tank to reach 20 ◦C and 80 ◦C

respectively.

Performing the fault diagnosis experiments.

1. On the PC, stop platform.vi and run control.vi, which is found in the

same directory.

2. On the Workstation, ensure that the current directory is /home/pielelkw

and run G2 by typing g2 in the console window.

3. In G2, load the following KB - /home/pielelkw/HCsystem/HCrun/diagnoser.kb

A KB can be loaded by clicking anywhere in the G2 workspace and selecting

the Load KB option from the Main Menu.

4. In the directory /home/pielelkw/HCsystem/HCrun, run the program run_bridges

to start the GSI bridges.

5. In the G2 window, start the KB by using the Start option from the main

menu.

6. On the operator panel, click on the Get Plant-Data button. This will get

real-time data into the workstation.
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7. To start monitoring the plant, click on the Run Auto-Table button in the

“Operator-Panel” workspace of G2.

8. Finally to the fault diagnoser, click on the Start Diagnosis button in the

“Operator-Panel” workspace of G2.

Shut down sequence

1. In the “Operator-Panel” workspace of G2, click on the Stop Diagnosis,

Stop Auto-Table, Stop Plant-Data button in that order. Data transmis-

sion from PC to Workstation(G2) terminates.

2. Pause the KB using the Pause option from the Main Menu.

3. Reset the KB using the Reset option from the Main Menu.

4. In LabView, stop ”control.vi” and run ”platform.vi”.

5. Turn off P1.

6. Turn off P2.

7. Turn off cooling, pump and power switches of the chiller in sequence.

8. Turn off P3.

9. Discharging the Plant.

10. Turn off mains lever switches for the system.

11. Push the red stop button to shut off the plant.



Appendix H

Pictures of the Process Plant

 

Figure H.1. The heat exchanger system

 

Figure H.2. The heating cooling system
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