

AGENT-BASED AUTOMATED NEGOTIATION

SYSTEM FOR E-MARKETPLACES

LIAO XUAN

NATIONAL UNIVERSITY OF SINGAPORE

2003

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarBank@NUS

https://core.ac.uk/display/48625335?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

i

AGENT-BASED AUTOMATED NEGOTIATION

SYSTEM FOR E-MARKETPLACES

LIAO XUAN
(B.Eng, Huazhong University of Sci & Tech)

A THESIS SUBMITTED

FOR THE DEGREE OF MASTER OF ENGINEERING

DEPARTMENT OF ELECTRONIC & COMPUTER ENGINEERING

NATIONAL UNIVERSITY OF SINGAPORE

2003

ii

Acknowledgements

I would like to express my sincere gratitude and appreciation to my supervisor Dr.

Bharadwaj Veeravalli for his invaluable support, encouragement and guidance during

the whole process of my master’s study.

Many thanks to all friends in Open Source Software Laboratory, who are so warm,

kind and give me much help in the past two years. I am also grateful to those people

whose works has been quoted in the thesis because I have obtained a lot of ideas from

them. The National University of Singapore is also acknowledged for providing the

graduate scholarship.

Last, but not least, millions of thanks to my parents, boyfriend, brother, sister-in-law

and many other relatives and friends, for their tremendous love, support and

encouragement.

iii

Table of Contents

Acknowledgements... ii

Table of ContentsSummary ... iii

Summary... v

Abbreviations.. vii

Figures ... ix

Tables.. x

Chapter 1 Introduction ... 1

1.1 Software Agent Technology in E-Commerce... 1

1.2 Agent-Based Negotiation.. 2

1.3 Our Objective and Approach .. 6

Chapter 2 Related Work .. 8

Chapter 3 Proposed Solution ... 11

3.1 Local Service Model (LSM) ... 11

3.2 Network Cluster Model (NCM).. 13

3.3 Design Issues in the Proposed Models ... 17

3.3.1 Negotiation Organization... 17

3.3.2 Agent Communication Model ... 24

3.3.3 System Openness ... 26

3.3.4 Infrastructure Services ... 27

3.3.5 Negotiation Algorithms & Strategies .. 30

3.3.5.1 Proposal Evaluation ... 34

3.3.5.2 Behavior Rules and Strategies ... 36

3.3.6 Other Issues.. 41

iv

3.3.6.1 Prediction of the Negotiation Stages .. 41

3.3.6.2 Reputation Mechanism .. 44

Chapter 4 Implementation ... 47

4.1 Selection of Agent Platform and Programming Approach................................. 47

4.2 Implementations of SHCM... 52

4.2.1 Local Service Model.. 52

4.2.1.1 Requirement Analysis... 52

4.2.1.2 System Design & Modeling.. 61

4.2.2 Network Cluster Model ... 76

4.2.2.1 Requirement Analysis... 76

4.2.2.2 System Design & Modeling.. 76

4.3 Tests and Results .. 93

Chapter 5 Conclusions & Future Works.. 95

References... 100

Author’s Publication ... 106

v

Summary

Commerce is all about the interaction between buyers and sellers at all stages, no

matter whether the interaction is in traditional commerce activities or in modern e-

commerce activities. The most common mechanism of commerce is negotiation.

Software agent technologies could play a critical role in it regarding the potential of

eventually delivering unprecedented levels of autonomy, customization and general

sophistication in the way negotiation is conducted in online trading.

In this thesis, we propose two models, namely a Local Service Model (LSM) and a

Network Cluster Model (NCM), for an Agent-Based Automated Negotiation System

(AANS) in e-marketplace web applications that are suitable for local and distributed

computing environments.

After demonstrating the two models, we discuss the common design issues for our

proposals, including agent communication protocols, system openness, infrastructure

services, negotiation strategies, negotiation algorithms and some other issues. We

extend Flat Organization to Complex Flat Organization for the open Multi-Agent

System (MAS), which makes a tradeoff between the openness and dynamism of Flat

Organization and the low communication cost of Hierarchical Organization; We mix

Symmetry Communication Model and Asymmetry Communication Model to a

Symmetry & Asymmetry Communication Model, using connection-oriented peer-to-

peer and multicast communication approaches; We propose the negotiation MAS as a

Half-Dynamic Openness System, in which Management Agents get ready in advance,

but Shopping Agents are unpredictable and enter or leave the MAS dymatically; We

vi

choose Madkit (Multi-Agent Development Kit), a Java multi-agent platform, to

provide the infrastructure services to the AANS; We discuss the specific mechanisms

to implement automated negotiation, including modularization architecture of

negotiable Shopping Agents, Half-Bilateral Negotiation Model for the negotiation

protocol, negotiation strategies and algorithms, the negotiation estimation algorithm

and the reputation evaluation mechanism.

To demonstrate the real-life potential of AANS, we design, implement and test a

Second-Hand Computer E-Marketplace (SHCM) for the proposed models. We analyze

the business requirements, demonstrate system structure diagrams, use case diagrams,

sequence diagrams and class diagrams in Agent Unified Modeling Language (AUML).

Finally, we summarize the implementation and testing results.

Generally, unlike other existing negotiation systems that either focus on the design of

negotiation algorithms and protocols for agents or focus on an integrated agent-

mediated e-trading solution, our proposed models for AANS are shown to be

completely adaptable in terms of modularized system design, dynamic negotiation

organization and efficient communication mechanisms. Our approach seems to be

more compatible with the emerging Web Services Architecture (WSA) and will make

sense for adoption and acceptance of a wide range of agent-based intelligent services.

vii

Abbreviations

AANS Agent-Based Automated Negotiation System

AANSC Agent-Based Automated Negotiation Service Center

AANWS Agent-Based Automated Negotiation Web Service

ADS Agent Delegation Sheet

AIM Agent Interaction Model

AGR Agent-Group-Role model

ANS Automated Negotiation Service

AOB Agent Office Branch

AP Agent Platform

ASDK Aglets Software Development Kit

CFO Complex Flat Organization

COMAS Co-Ordination in Multi-Agent Systems

CPS Customer Particular Sheet

DB Database

HBNM Half- Bilateral Negotiation Model

HDO Half-Dynamic Openness

HSC Half-Symmetry Communication

IRS Item Requirement Sheet

LSM Local Service Model

Madkit Multi-Agent Development Kit

MAS Multi-Agent System

NCM Network Cluster Model

OOD Object Oriented Design

SHCM Second-Hand Computer E-Marketplace

viii

AUML Agent Unified Modeling Language

WSA Web Services Architecture

XML Extensible Markup Language

ix

Figures

Fig.1 Architecture of Local Service Model ……..………………………………….11
Fig.2 Architecture of Network Cluster Model…………….………………………...14
Fig.3 Organization of Agent-Based Automated Negotiation System ………..……..18
Fig.4 Conceptual Design for Matching Shopping Agent……………………………21
Fig.5 Agent-Group-Role Model……………………………......................................28
Fig.6 Madkit Architecture……………………………...30
Fig.7 Negotiation Agent Architecture……………………….....................................31
Fig.8 Bilateral Negotiation Model………………………..33
Fig.9 Half- Bilateral Negotiation Model……………………….................................33
Fig.10 Theory Offer Price for Urgent Strategy……………………….........................39
Fig.11 Theory Offer Price for Normal Strategy………………………........................39
Fig.12 Theory Offer Price for Patient Strategy……………………….........................40
Fig. 13 G-Box - The Graphical User Interface of MadKit………………………… …50
Fig.14 Item Requirement Sheet (IRS) --- First Step………………………………….53
Fig.15 Item Requirement Sheet (IRS) --- Second Step……………………………….54
Fig.16 Customer Particular Sheet (CPS)……………………………………………...54
Fig.17 Agent Delegation Sheet (ADS)……………………………………………….56
Fig.18 Contract History Record………………………………………………………58
Fig.19 Item Information Changes Interface……………………………………….….59
Fig.20 Use Case Diagram of Traditional E-Marketplace Sub-System in LSM……....61
Fig.21 Use Case Diagram of Agent-Based Automated Negotiation Sub-System…....63
Fig.22

Communication Protocol & Message Format
(Agent Manager, Contract Manager --- Seller Agent)…..…………………….66

Fig.23

Communication Protocol & Message Format
(Agent Manager, Contract Manager --- Buyer Agent).……………………….67

Fig.24

Communication Protocol & Message Format
(DB Broker --- Agent Manager)…………….………………………………...68

Fig.25

Communication Protocol & Message Format
(DB Broker --- Contact Manager --- Buyer Agent)…………………………...69

Fig.26 Sequence Diagram of Negotiation Process: Scenario 1………........................70
Fig.27 Sequence Diagram of Negotiation Process: Scenario 2………........................71
Fig.28 Sequence Diagram of Negotiation Process: Scenario 3………........................72
Fig.29 Class Diagram of E-Marketplace System………..73
Fig.30 Class Diagram of Agent-Based Automated Negotiation System……...……...75
Fig.31 Architecture and Working Flow of Network Cluster Model………..………...78
Fig.32

Class Diagram of the Agent Office Branch Sub-System in
E-Marketplace ………………...……………………………………………....80

Fig.33

Use Case Diagram of Agent-Based Automated Negotiation Service
Center …..………………………………………………………………......... 82

Fig.34 Sequence Diagram of Agent Office Branch of NCM : Scenario 1……………84
Fig.35 Sequence Diagram of Agent Office Branch of NCM : Scenario 2……………85
Fig.36 Sequence Diagram of Agent Office Branch of NCM : Scenario 3……………86
Fig.37 Class Diagram of Agent Office Branch Sub-System in E-Marketplace………88
Fig.38 Class Diagram of Agent-Based Automated Negotiation Service Center...…...92

x

Tables

Table1 Business Requirements of Normal Services…………………………………………53

1

Chapter 1 Introduction

1.1 Software Agent Technology in E-Commerce

As the Internet continues to spawn new markets, electronic commerce is changing

many market rules. Old commercial rules are being adapted to the new conditions of

the global network. Software agent technology could play a critical role regarding the

potential of eventually delivering unprecedented levels of autonomy, customization

and general sophistication in the way electronic commerce is conducted. At the same

time a number of theoretical, technological, economic, sociological and legal issues

will need to be addressed before such opportunities become a reality [1].

A large number of techniques have been used to build the relation between buyers and

sellers. However, most development made up to now focuses on a passive web query

type of interaction. Richer and more flexible ways of interaction are what we will

witness soon with the help of agents mediating in many of the steps of commercial

transactions. Mediation is the corner stone of commerce. Software agents can similarly

be of extreme utility for electronic commerce due to several reasons:

• Autonomy Agents may work proactively, reactively and independently of human

intervention. They can wait for good deals without diverting our attention.

• Personalization Agents can be equipped with a personal profile to reflect their

users’ preferences.

• Social Ability The communication ability of agents permits them to negotiate over

prices, services and transactions.

2

• Intelligence Agents can learn and hence perform better over time. In e-commerce

scenarios this may equate to making more money.

1.2 Agent-Based Negotiation

As known, commerce is all about interaction between buyers and sellers at all stages.

The two basic mechanisms currently used are Auction [2] and Negotiation [3, 4].

Between these two, the most fundamental, powerful and widely used mechanism for

managing inter-agent dependencies at run time is negotiation. This is so because

negotiation can be used to coordinate or share limited resources between two or more

autonomous self-interested entities. Agents have to engage in a negotiation process by

which a joint decision is made by two or more parties. In other words, an acquaintance

needs to be convinced to act in a particular way. Since the agents have no direct

control over one another, they must persuade their acquaintances to act in particular

ways.

Negotiation, understood in its more wide form as a process by which groups of agents

communicate with one another to reach mutually acceptable agreements on some

matter, is still to be witnessed in real applications. The parties first verbalize

contradictory demands and then move towards an agreement by process of concession

making or search for new alternatives. We can envisage that agents will be initially

used to explore the set of possible agreements, referred to as Informal Contracts, but

will not be authorized to sign the contract. Agents will then pass the information of

Informal Contracts to the users who will then make the final decision.

Negotiation problems can be categorized in many ways. One way to classify these

problems is according to the underlying incentive and information structures:

3

• The actual size of the limited resource to be shared is unknown.

• The set of agents is known, but their characteristics are unknown. For instance,

agents are barging with deadlines which are private information, or several agents are

competing for buying an object the worth of which is private information.

• Everything is known but the strategy. For example, two agents with known time

preferences negotiate a contract with different strategies.

We can envisage that agent-based electronic commerce applications with fully

automated negotiation will have some of the following characteristics.

First of all, interactions are very fast. For instance, in bandwidth trades, there is no

time to go back to the user between trading rounds. Secondly, agent learning is

effective. Either the interaction is repeated with a high communication overhead, or the

interaction domain is limited. Thus, learning by the agent about the user behavior is

effective. Thirdly, each trade is of relatively small value. If each transaction is of

relatively small value, it is possible to monitor the process and stop the automatic trade

after some time without significant loss. It is important to stress the importance of

relativity here. A small value for a company is completely different from a small value

for a private end consumer. Also, the process is repeated over long times. The first

reason is there must be a significant value over in order to justify investments in

software, hardware, and training. The second one is automatic agent learning of

customer preferences is highly desirable and is a very time consuming business.

Finally, the product is relatively easy to specify. A number of traditional difficult

computer science problems pose major difficulties to negotiations over complex

objects. Such problems are mainly related to semantics of the communications. This is

4

also related to preference elicitation. It is simply too time consuming to tune huge

numbers of difference parameters.

The challenges in the near future for agent-based negotiation are trust, protocol

engineering, preference models and argumentation. The following is the concrete

description regarding these four challenges.

(1) Trust

Many aspects that will require the attention of researchers for the next generation

systems refer to a reliable communication channel between participants in trade,

mainly including confidentiality, integrity, authentication and non-repudiation. Also,

safe payment and delivery will be focus of attention.

The first generation negotiation of agent-based electronic commerce systems covering

the negotiation phase will be most probably a brokered service, where the contact

between buyers and sellers will be supervised, following a very strict protocol and with

a total control by the institution acting as the broker. Later on, as robust trust

mechanisms become available, direct contracts between buyers and sellers, with less

structured transactions, will be possible.

Reputation could also be achieved via external reviewers or generated by peer rating.

However, these systems are very vulnerablep Reviews must be substantiated in some

way to avoid false reviews. In open markets, agents must know as much about trust

issues as about actual buying and selling.

5

(2) Protocol Engineering

Scientists and industries must agree on conventions of communications at the strategic

level. For example, agents will have to signal each other the negotiation problems they

think they are facing and agree on the most appropriate negotiation protocol to follow.

(3) Preference Models

The modeling of preference is essential to give an agent the capability of acting

according to a user model when negotiating. The challenges we are facing correspond

not only to the way of modeling preferences, but also models which indicate the

preferences of the opponent, as this may reveal important aspects of its strategy. Near

future challenges include:

- Dynamics of Preferences Interests and preferences of consumers change over time.

AI approach like learning, introduction algorithms, belief revision techniques, or

model logic will become increasingly poignant in dealing with this challenge.

- Difference Ontology Providers and customers will probably use different ontology

to characterize products and interests. Different reasoning techniques and models to

match providers and customers are necessary to move away from the requirement of a

common ontology.

- Fuzziness Preferences are by no means clear cut but fuzzy (uninteresting, interesting,

very interesting). The use of fuzzy logic and statistics to model users’ preferences is

one of the techniques to explore.

- Learning In order to construct a model of the user preferences without direct query,

it is necessary to develop appropriate techniques to observe the user behavior.

(4) Argumentation

6

Many problems can not be solved by a simple offer and counter offer negotiation

protocol. In order to persuade an acquaintance, it is necessary to use arguments to

support our proposals. Protocols permitting critiques to these arguments are hence

necessary. Reasoning models generate arguments, rebut and undercut them, and

models of preference for arguments adapted to the area of electronic commerce are

also needed.

1.3 Our Objective and Approach

In this thesis, we propose two models, Local Service Model (LSM) and Network

Cluster Model (NCM), for an Agent-Based Automated Negotiation System (AANS).

We then present a complete design and implementation of a Second-Hand Computer

E-Marketplace (SHCM) scenario for these two models by using a formal modeling

approach for agent-based software project development [5]. To simplify the

implementation, we developed the agent-based electronic commerce applications with

fully automated negotiation between Buyer Agents and Seller Agents that are

controlled by AANS.

For both of these two models, various intelligent agents run on the customer side and

the marketplace side. On the customer side, we have Seller Agent and Buyer Agent.

Similarly, on the marketplace side, we have, Agent Manager, Database Broker (DB

Broker), Contract Manager and Data Packager, respectively. Our negotiation system is

implemented on an Open Source multi-agent platform-Madkit [6]. Our primary goal is

to explore and develop applicable e-marketplace systems with agent-based negotiation

service which can effectively implement an m-to-m (multiple Seller Agents to multiple

Buyer Agents) and multi-issue (price, brand, etc.) related automated negotiation.

7

Apart from the innovative models and organizations of the negotiation system we

develop in SHCM, most frequently used components demanded by conventional e-

marketplaces are also developed, including customer account management, messaging

system, item (selling product and buying request) management and reputation

evaluation mechanism.

The organization of the thesis is as follows. Chapter 2 presents the related works and

issues on agent-driven e-marketplace schemes. Chapter 3 presents LSM and NCM for

e-marketplaces supported by AANS, including system architectures, negotiation

organizations, agent communication models and infrastructure services. Chapter 4

shows the implementation of these two models for the proposed SHCM scenario and

summarizes the results. Finally, Chapter 5 concludes the thesis with some open ended

issues.

8

Chapter 2 Related Work

Research on agent-mediated e-marketplace systems have been substantially discussed

in the recent years. The work reported in some of the existing popular e-trading sites

[7-11] essentially address some novel e-trading services, such as brokerage, affiliating,

price-naming and auction. However, few sites carry out an automated negotiation

approach. It indicates that the technological support to automated negotiation still stays

in an experimental stage and is far from wide commercialization.

While there are numerous studies that can be referred to, the following is probably the

closest and most relevant literature to the problem addressed in this thesis. These

include the work by Tsvetovovatyy and Gini [12], Kasbah [13, 14, 15] and Jangter [16].

In these works, some novel experiments, in the sense of matching models, negotiation

algorithms, and reputation mechanisms, are discussed.

Specifically, in [12] the study attempts to represent the real world, modeling banks,

accounts, money, etc. Their approach in providing a complete solution is only

applicable to new e-trading applications, but not to inherited systems. This somewhat

reduces the adaptability and usability of their proposal. Conversely, we only keep our

focus on the automated negotiation process and allow AANS to be easily integrated

with existing e-marketplaces as a value-added service and make it compatible with

Web Services Architecture (WSA).

Shopping Agents designed in [14] only considered a single negotiation factor, price,

but our AANS can handle multiple negotiation issues. The agent-based negotiation

9

service in [14] was closely coupled with other marketplace services such as user

account management [13]. In contrast, our proposal attempts to loosely couple AANS

to the existing e-marketplaces by only connecting them by Database (DB). Agent

communication in [14] was processed in a symmetry peer-to-peer model [13], but in

AANS the multi-casting/broadcasting model is also carried out besides the peer-to-

peer model to facilitate communication efficiency.

The work reported in [16] on e-marketplace proposed a “Floor-and-Room” matching

mechanism and a reputation evaluation algorithm for marketplaces. The weakness of

the approach was that it also considered only a price-relevant negotiation system. In

addition, it conducted an m-to-m direct negotiation in a “Room” which increased the

complexity and computation for agent communication. When compared with the study

in [16], AANS limits the negotiation activity within a single Negotiation Group to 1-

to-m (One Buyer Agent to multiple Seller Agents), meeting the buyer-market in the

real world and significantly reducing agent communication overload.

Other related works on modeling virtual e-marketplace also include [18], which is

close to one of our proposed models, LSM. However, their model focuses on realizing

an e-marketplace completed driven by software agents. Conversely, we deploy the

Multi-Agent System (MAS) as a value-added support system which is loosely coupled

with the existing systems in marketplaces. Our approach is more compatible with the

emerging WSA and will make sense for adoption and acceptance of various agent-

based intelligent services.

10

Generally, our MAS is similar to those marketplaces in the sense that it attempts to

efficiently and optimally match buyers and sellers, conduct automated negotiation by

using software agents, and pursue the optimal contract for users. However, our system

focuses on the applicable models and organizations for the negotiation system which

have commercialization potential, instead of sophisticated negotiation algorithms and

negotiation protocols [19, 20].

11

Chapter 3 Proposed Solution

In this section, we shall propose two different models for AANS that are directly

applicable for e-marketplace applications. The first model, referred to as Local Service

Model (LSM) is applicable on a customized system while the second model, referred

to as Network Cluster Model (NCM) is applicable in a networked environment.

3.1 Local Service Model (LSM)

Fig.1 Architecture of Local Service Model

As mentioned above, this model is suitable for standalone systems in which AANS can

be independently plugged into e-marketplaces as an optional local service component.

In other words, the negotiation engine can be regarded as part of the business logic

12

layer to comprise an integral e-marketplace. Physically, AANS is a sub-system which

is running locally at Application Server with Web Server and DB together, and the

negotiation sub-system is exclusively used by the e-marketplace where it is situated.

Fig.1 shows the architecture of our proposed LSM.

From the architecture, we observe the front-end of this system, a normal e-marketplace

interface. With the business logic support of mid-layer, users can register profiles and

create personal accounts, search interested items (selling products or buying requests)

and submit their own items. The system will administrate user accounts, items, as well

as users’ reputation.

What distinguishes this e-marketplace from the existing conventional e-marketplaces is

that we have now an optional value-added service, Automated Negotiation Service

(ANS), which is supported by AANS. This optional service can create self-interested

Shopping Agents for users’ sale or purchase demands. Shopping Agents are able to

search, match and negotiate with potential trading counterparts and AANS organizes

all matched Shopping Agent peers together to pursue optimal Informal Contracts.

It may be noted that our AANS is intentionally designed to be a loosely coupled entity

with traditional e-marketplace systems, and therefore it is easy to be integrated with

any similar e-marketplaces at a low cost. What links the traditional e-marketplace sub-

systems to AANS is only a common-shared back-end DB in our design. The e-

marketplace saves all data of users, items, and agents in the DB. On the other hand,

AANS scans the DB periodically to fetch the relevant data on users, items, and agents

for negotiation execution. After reaching a successful Informal Contract, AANS saves

13

the contract details into the DB and informs both users to evaluate the Informal

Contract. Though the Informal Contract completely meets users’ requirements, users

still have the right either to accept or to refuse it.

One important feature of LSM is that AANE is plugged into the traditional e-

marketplace in a relatively independent and flexible pattern. For tremendous inherited

e-marketplaces on the Internet, AANE can transparently deliver an advanced service to

help online shoppers efficiently and profitably sell or purchase goods. For this

architecture, because MAS is physically located in the same place with the Web Server

and DB, the system load for communication and collaboration will be very small and

consequently, the whole e-marketplace system is robust as an integrated entity.

While, as it may be noted, a slight disadvantage of this architecture is that AANE

exclusively works for the e-marketplace where it situates and can only process the

service requests from this e-marketplace. Therefore, if the implementation demands a

customized and localized service infrastructure, then this model is directly applicable.

However, for a network-based environment we have the following alternate version.

3.2 Network Cluster Model (NCM)

In this model, the negotiation system is totally established as a separate centralized

Agent-Based Automated Negotiation Service Center (AANSC). AANSC specially

provides ANS to all e-marketplaces in an e-marketplace network cluster, which is an

open community of a cluster of e-marketplaces. By and large, e-marketplaces in this

cluster have some common product categories and they do not exchange data mutually

but only exchange data with AANSC using standard XML documents defined in

advance. If any e-marketplace in the cluster needs ANS, it should add certain web

14

interfaces for its users to input negotiation constraints and create certain tables in the

DB to store agent-related information. The architecture of the proposed NCM is shown

in Fig.2.

XML D
oc

Fig.2 Architecture of Network Cluster Model

In this e-marketplace network cluster, each distributed e-marketplace comprises two

parts, the traditional e-marketplace sub-system and the Agent Office Branch (AOB)

sub-system. The former one is a normal e-marketplace providing platform to trade

goods between sellers and buyers. Usual functions of these traditional e-marketplaces

include user account management, reputation management, item search engine, item

display, customer notification, etc. Besides these, the e-marketplaces of this cluster

15

also can supply other value-added services, such as ANS for our case. To support

ANS, AOB sub-system is additionally plugged in each e-marketplace to process agent-

related information. The primary task of AOB before negotiation is to get agent-related

data from the e-marketplace DB, pack them into standard XML documents and

transmit XML documents to AANSC. AOB is also responsible for receiving,

unpacking and parsing XML documents of Informal Contracts achieved in AANSC,

and storing data of Informal Contracts into the local e-marketplace DB.

The AANS of NCM resembles the AANS of LSM, except for the additional XML

package processing mechanism in NCM, which include packing, unpacking and

parsing XML documents. Negotiation-related data is stored in the centralized AANSC

DB, which provides all necessary data for executing negotiation in AANSC. Once a

successful Informal Contract is achieved in AANSC, the contract details will be stored

in the AANSC DB, packed into a standard XML package, and then sent back to the

original e-marketplaces.

In the following, we summarize some significant advantages of NCM.

Large Customer Base: NCM calls on all potential distributed e-marketplaces together

to chase optimal contracts for their users. The huge data sources linked with AANSC

create tremendous opportunities for any user of any e-marketplace to be in touch with

all potential peers in and out of the e-marketplace the user registers. This means that,

once a user publishes an item in any e-marketplace within the cluster, all matched

items within the cluster consequently become available to this user.

16

Web Service Compatibility For the emerging WSA, AANSC can be easily packed as

a Web service and can be made available in World Wide Web. Therefore, any web

applications need to carry out the particular function of automated negotiation can

search a global directory and recognize this Agent-Based Automated Negotiation Web

Service (AANWS) and use it dynamically without any human intervention.

Data Format Transparency The data formats of every distributed e-marketplace can

be totally different, but by transforming these data into a standardized XML format,

AANSC can transparently make use of the unified data which may originally be

heterogeneous. In this sense, the isolated e-marketplace islands can be connected into a

broad virtual e-marketplace.

Cost-efficiency Because no Seller Agents or Buyer Agents will be running at e-

marketplaces in this model, as no negotiation activities will be carried out locally, the

overall load that each e-marketplace is expected to handle in providing ANS is largely

minimized. Thus, the service infrastructure becomes a cost-effective solution and

hence creates a huge market potential.

On the other hand, the following is some inherent disadvantages of NCM which are

also obvious when compared with LSM.

Firstly, frequent XML documents transmission between distributed e-marketplaces and

the centralized AANSC may increase the communication consumption of individual

servers and enhance posses messaging difficulties among distributed agents.

17

Also, Management Agents in e-marketplaces and AANSC need to collaborate and

communicate remotely within the cluster, which may demand an increased

requirement for agents’ interoperability and synchronization.

Finally, as the performance of a distributed cluster is affected by the network traffic

conditions, network loading conditions and resource availabilities may influence the

performance of AANS.

3.3 Design Issues in the Proposed Models

3.3.1 Negotiation Organization

By and large, MAS are organized in the following ways: hierarchy, flat, subsumption,

and modular organization.

18

Fig.3 Organization of Agent-Based Automated Negotiation System

19

In Hierarchy Organization, agents can only communicate subject to the hierarchical

structure. The advantage of this restriction is that there is no need for a mechanism for

agent location and the communication is significantly reduced in the system. But

hierarchy implies that the lower levels depend on the higher levels, and higher levels

are in control of the lower levels. Also, the strict structure of hierarchy organization

prohibits dynamic re-organization to best fit the specific tasks.

In Flat Organization [21], each agent can directly contact another agent. There is no

fixed structure applied to the system, however agents may dynamically form structures

to perform specific tasks. In addition, no control of one agent by another is assumed.

Such an organization can be a closed one, members of which are fixed in advance, or

an open one, members of which is dynamically changed during the running time. The

advantage of Flat Organization is that it fully supports autonomy and self-interest of

agents as well as distribution and openness of MAS. These openness and dynamism,

however, result in communication overheads, the need for agent location mechanisms

as well as mechanisms for dynamic re-organization. The amount of reasoning and

computation an agent performs with regards to other agents increase significantly in a

Flat Organization.

In Subsumption Organization, some agents are components of other agents. These

agents are subsumed by the container agents, which in turn may be components of

larger container agents. This organization style is the extreme case of the Hierarchy

Organization, requiring that the subsumed agents completely surrender to the control

of the container agent. From a software architectural viewpoint, such architecture

resembles an inclusion of objects within a larger object, except for the important

20

difference in the control methods. While objects are usually controlled and activated

by (possibly remote) procedure call or event invocation, agents are activated by high-

level communication. The strict control relationship in the Subsumption Organization

results in efficient tasks execution and low communication overhead, however restricts

the system to address a well defined set of tasks, with virtually no flexibility and

adaptability. It is also not simple to modify the MAS of Flat Organization in the face of

long-term changes in tasks and of the system environment.

In Modular Organization, the MAS is comprised from several models, where each is

virtually a stand-alone MAS. Typically, the partition of the system into modules is

done along dimensions such as geographical vicinity or a need for intense interaction

among agents and services within the same module. Often, the systems are comprised

of such parts as a result of its development process, during which new modules were

gradually added to an already existing system. Modularity increases efficiency of task

execution and reduces communication overhead. Similar to Flat Organization, high

flexibility is usually enabled within each module in Modular Organization. On the

other hand, re-organization across modules is rather complex, thus flexibility is limited.

In addition, the given modularity implies constrains on inter-module communication.

In our MAS, we design a Complex Flat Organization (CFO), as shown in Fig.3, which

basically extends the Jangter Model, Flat Organization and Hierarchy Organization, by

clearly striking a trade-off among them.

CFO is designed as open MAS, which is supported by an agent location mechanism

provided by the infrastructure. Agents running in it are divided into two categories,

21

Management Agents and Shopping Agents. Shopping Agents are controlled by

Management Agents that include DB Broker, Agent Manager, Contract Manager, and

Data Packager, which only exists in NCM, but not in LSM.

Agent Manager is responsible for building various negotiation departments,

negotiation groups and waiting groups in departments based on product categories and

attributes. Also, it specify the right department, negotiation groups or waiting groups

for new Shopping Agents, as shown in Fig.4. It also search for any matched Shopping

Agent peers and activate them, as shown in Fig.4. Finally, it terminates Shopping

Agents after they achieve successful Informal Contracts, when they are deleted by

users or when the deadlines specified by users expire.

Fig.4 Conceptual Design for Matching Shopping Agent

The primary tasks of DB Broker include, getting new Shopping Agents by periodically

scanning the DB and notifying new Shopping Agents to Agent Manage. Also, it serves

to get feedback from users regarding their decisions about Informal Contracts by

22

periodically scanning the DB and to inform Contract Manager on the feedback. Further,

it keeps track on any changes of item attributes and Shopping Agents delegation

constraints and informs Agent Manager about these changes.

Similarly, the primary tasks of Contract Manager are to save Informal Contracts and

Formal Contracts into the DB and to inform users about the Informal Contract details,

users’ feedback towards Informal Contracts and Formal Contract details.

In the case of NCM, there is an additional Management Agent, referred to as Data

Packager, in the negotiation system. Its responsibilities are to receive the standard

XML documents describing Shopping Agents from distributed e-marketplaces in the

cluster, unpack the XML documents and extract the relevant data into the DB. Further,

it packs Informal Contract information to standard XML documents and transmits

them back to the relevant e-marketplaces.

Although it is an open organization and admits new Shopping Agents at any time after

the negotiation system is launched, the organization is well structured and any specific

agents are restricted to work in certain space. According to product categories, AANS

is divided into several departments. Each department is made of a Waiting Group and

multiple Negotiation Groups. For any new Buyer Agent, a new Negotiation Group will

be created for it. On the other hand, for a new Seller Agent, the system will search

existing Buyer Agents that can match with it and send it to the Negotiation Groups that

the matched Buyer Agents are located, or send it to a Waiting Group if no matching

Buyer Agents are found.

23

Unlike Flat Organization, agents in CFO cannot freely communicate with others, but

only can communicate with part of them. To a Buyer Agent, the Negotiation Group in

which it is located is its working space and it can directly contact any Seller Agents

within this Negotiation Group. However, to a Seller Agent, the whole department is its

working space, and it can directly contact with any matched Buyer Agents within the

department.

Apart from the advantages of Flat Organization, CFO provides some additional

benefits to the system like, providing an elegant solution to the ontology problem.

When creating departments, the ontology describing the departments is defined

according to product categories. It reduces the system overhead by searching the

matched department, groups and counterparts for Shopping Agents in advance.

Also, it minimizes the complexity of negotiation processing by replacing the m-to-m

(multiple Seller Agents to multiple Buyer Agents) negotiation model in Flat

Organization by the 1-to-m (one Buyer Agent to multiple Seller Agents) negotiation

model in CFO. In other words, only 1-to-m negotiation is executed within each

Negotiation Group. On the other hand, every Seller Agent can participate in the

negotiation activities of multiple matched Negotiation Groups in the same department

and negotiate with multiple Buyer Agents in these Negotiation Groups simultaneously.

Therefore, CFO logically realizes an m-to-m negotiation model, although it is a

complex 1-to-m model within a Negotiation Group.

24

Further, the model meets the reality of buyer’s market in the real business world by

conducting Buyer Agent centralized 1-to-m negotiation in every Negotiation Group.

Buyer Agent is in control of the communication in a Negotiation Group and therefore

negotiation implementation is relatively simple and efficient. But the disadvantage is

that Seller Agents can only respond upon the requests of Buyer Agents.

Finally, it simplifies the extension from a centralized computing system to a distributed

computing system by assigning different departments, even different Groups in the

same departments, to a cluster of servers for distributing tremendous business requests.

Thus, this model subsumes inherent scalability.

3.3.2 Agent Communication Model

Most MASs use specially designed communication protocols that best fit the agent

architectures, organizations, and scenarios of these systems. The advantage of using

special protocols for MASs is high efficiency. Such systems, however, cannot

converse with agents which do not support that specialized communication

infrastructures. To void such limitations, several multi-agent systems support generic

communication protocols such as KQML and FIPA-ACL and provide generic

communication modules. For all distributed computing systems, there are three main

attributes that are relevant to MAS communication.

The first one is symmetry. The pure asymmetric communication is well supported by

operating systems and programming languages and such implementations are simple

and efficient. But the drawback is caused by asymmetry between agents: one is in

control of communication, while the other can only respond upon a request. Certainly,

it is not an optimal choice in an open Flat Organization. On the other hand, the pure

25

symmetric communication is more appropriate for Flat Organization, however,

increases protocol complexity and may slow down communication.

Considering the strengths and weaknesses of the two communication models and the

mixture characters of CFO, we judiciously combine pure asymmetric communication

and pure symmetric communication into a Half-Symmetry Communication (HSC)

Model. All Management Agents in AANS can interact with others by symmetric

model, which implies there are fair cooperation relations among Management Agents.

On the other hand, within every Negotiation Group, Buyer Agents are in control of the

interaction, and therefore asymmetric communication model is implemented among

Shopping Agents. The objective of asymmetric communication in Negotiation Groups

is to simulate buyer’s market model and simplify negotiation process. The

communication between Management Agents and Shopping Agents is also executed

symmetrically, which ensures the assistant help and management commands to be

efficiently delivered from Manage Agents to Shopping Agents. Simultaneously, the

negotiation feedback can be timely transmitted from Shopping Agents to Management

Agents.

The second attribute is message recipients. Messages in a network may be sent to a

single address, to multiple addresses (multicast) or to all (broadcast). Open MAS

usually implements peer-to-peer or multicast communication and closed MAS

commonly uses broadcast communication. In our negotiation system, most

communication is conducted by peer-to-peer, but in some special cases, Buyer Agents

also send messages to all Seller Agents within its Negotiation Room. From the whole

negotiation system’s point of view, it is a multicast communication. But if we observe

26

each Negotiation Group as a sub-ecosystem, it can be considered as a broadcast

communication. Therefore, our negotiation system uses both peer-to-peer and

multicast/broadcast communication models.

The third attribute is connection types. Connection-oriented communication and

connectionless communication are both implemented in multi-agent systems.

Connectionless communication is sufficient when task execution is loosely coordinated

and where concurrency is not important. On the other hand, connection-oriented

communication is preferred when dependent tasks are performed concurrently by

multiple agents, and coordination is necessary during execution. Because the task of

individual agent is dependently executed and highly requires the coordination among

the agents, we choose connection-oriented communication for the negotiation system.

3.3.3 System Openness

The openness of MAS refers to an ability of introducing additional agents into the

system in excess to the agents that initially existed. We categorize MAS openness into

the following cases.

In a dynamic open system, agents can leave and enter the system dynamically during

the run time, without explicit global notification to other agents. The advantage of such

openness in the system is able to dynamically adjust itself to changes in the

environment and tasks. But the disadvantage of this extreme openness is that more

system services and computing consumption are needed and implementation of a

robust agent location mechanism becomes mandatory.

27

On the other hand, in a static open system, agents can be added into the system without

re-starting it, but with all of the agents are notified on such an addition, or they all hold

in advance a list of prospective additional agents. This kind of openness decreases the

need for an agent location mechanism and reduces the execution and computation

complexities. However, the flexibility of the system and its ability to adjust itself to

dynamic changes are restricted.

In an off-line open system, the strictest one in the category, new agents can only be

added off-line by halting the system, updating connection information, and re-booting

the agent system. Excess infrastructure services and additional computation is not

needed in this case. Thus, among these three, the off-line open system is least flexible.

For our AANS, we consider a Half-Dynamic Openness (HDO) model, which is a

trade-off between the dynamic and static open models described above. In our MAS,

Management Agents are well defined in advance and therefore every agent in the

system holds a list of the prospective Management Agents. On the other hand,

Shopping Agents are unpredictable and may enter or leave at any time. To resolve this

problem, Agent Manager, one of the Management Agents, is created as a coordinator

to manage Shopping Agents and selectively notify Shopping Agent’s status to the

concerned Management Agents in different negotiation stages, rather than notifying

Management Agents globally. A location mechanism is provided by the agent platform

and makes the selective notification efficient and accurate.

3.3.4 Infrastructure Services

The infrastructure services are fundamentally provided by a multi-agent platform,

Madkit (Multi-Agent Development Kit) [22], which is inseparable from AANS.

28

MadKit is a Java multi-agent platform built upon an organizational model. It provides

general agent facilities, including lifecycle management, naming services, location

mechanism, message passing, distribution, synchronization, etc, and allows various

customizations and high heterogeneity in agent architectures and communication

languages. This versatile agent platform has the following main features:

• Cross-platform

• No pre-requisite on agent model

• Can support many simultaneous communication models

• Transparent distributed mode

• Can host multiple, heterogeneous agent applications

• Componential and flexible graphical agent interfaces

The Madkit platform architecture is rooted in Agent-Group-Role (AGR) model which

is developed in the context of the AALAADIN project [22]. Madkit both implements

and uses this model for its own management. Fig.5 presents a diagram of this AGR

model.

Fig.5 Agent-Group-Role (AGR) Model

Agent is only specified as an active communicating entity which plays roles within

groups. This agent definition is intentionally general to allow agent designers to adopt

29

the most accurate definition of agent-hood relative to their application. The agent

designer is responsible for choosing the most appropriate agent model as internal

architecture.

Group is defined as an atomic set of agent aggregation. Each agent is part of one or

more groups. In its most basic form, the group is only a way to tag a set of agents. In a

more developed form, in conjunction with the role definition, it may represent any

usual MAS. An agent can be a member of multiple groups at the same time. A major

point of AALAADIN groups is that they can freely overlap. A group can be founded

by any agent.

Role is an abstract representation of an agent function, service or identification within

a group. Each agent can handle multiple roles, and each role handled by an agent is

local to a group. Handling a role in a group must be requested by the candidate agent

and is not necessarily awarded. Abstract communication schemes are thus defined

from roles.

The ARG model is not a static description of an agent organization. It also allows

defining rules to specify the part of the dynamics of the agent organization. In addition

to the three core concepts, the platform adds three design principles, micro-kernel

architecture, agentification of services and component model for graphical interface.

MadKit itself is a set of packages of Java classes that implements the agent kernel, the

various libraries of messages, probes and agents. It also includes a graphical

development environment and many system and demonstration agents.

30

The basic philosophy of the MadKit architecture is to use wherever possible the

platform for its own management: any service besides those assured by the micro-

kernel are handled by agents. Thus the platform is not an agent platform according to

the classical sense. The reduced size of the agent kernel, combined with the principle

of modular services managed by agents enable a range of multiple, scalable platforms

with simultaneous specialized agent models libraries. Fig.6 represents the architecture

of Madkit platform.

Fig.6 Madkit Architecture

3.3.5 Negotiation Algorithms & Strategies

A key problem of all the previous agent-based shopping assistant systems is that they

are too focused on one aspect of the transaction, namely price. But it is very often the

case that neither buyers nor sellers have price as their only concern. Especially buyers

often interest in non-aspects of the purchase (such as warranty, delivery time, and

reputation of the seller). Therefore, we believe multi-issues automated negotiation will

become the dominant model of operation for shopping assistant agents

31

.

Fig.7 Negotiation Agent Architecture

Negotiation strategies and their properties depend heavily on the specific

characteristics of the scenarios under consideration. They are the specifications of the

sequence of actions (usually offers and responses) the agent plans to make during the

negotiation. There will usually be many strategies that are compatible with a particular

protocol, each of which strategies may produce a very different outcome. The choice

of strategy to use is thus a function not just of the specifics of the negotiation scenario,

but also the protocol in use.

32

To make negotiation protocols and strategies scalable for update or extension, we

modularize the architecture of negotiable Shopping Agents, separating the negotiation

implementation from negotiation protocol definition and strategy definition. Fig.7.

represents it.

The most frequently used model of negotiation is Bilateral Negotiation Model [23].

The bilateral model, a seller agent and a buyer agent, having contradictory demands,

must exchange proposals in order to reach a deal. Each agent has a public initial

proposal, as well as a private border proposal, which is a maximum limit for Buyer

Agents and minimum limit for Seller Agents that must be respected in reaching a deal,

indicating in Fig.8. Each agent’s border proposal values are normally kept hidden from

its opponents.

But in our agent-based negotiation system, we reinvent the usual Bilateral Negotiation

Model and defined a Half- Bilateral Negotiation Model (HBNM) as shown in Fig. 9. In

HBNM, only Seller Agents are required to offer initial (desired selling price) and

consequent proposals to all matched Buyer Agents till reaching the border proposals

(minimum selling price). For Buyer Agents, though they also bear the initial-point

(desired purchase price) and border-point (maximum purchase price) in mind, but do

not exchange them publicly as proposals. The initial and border points of Buyer

Agents are used to evaluate the proposals from Seller Agents. In other words, Buyer

Agents are in control of the negotiation, waiting for all matched Seller Agents’

proposals, evaluating and comparing received proposals and accepting the best one or

continuously asking for better ones. While, though Seller Agents are in a passive

situation, we still reserve Seller Agents the right to offer proposals according to their

33

interests and strategies. When a peer Buyer Agent asks for better proposals, the Seller

Agent definitely can refuse it and wait for other Buyer Agents’ responses. The

extension of HBNM is to meet the reality of buyer’s market in the real business world

by conducting the Buyer Agent centralized 1-to-m negotiation within Negotiation

Groups. Also, because Buyer Agent is in control of the conversation in a Negotiation

Group, the negotiation protocol is relatively simple and efficient, significantly

reducing the system complexity and communication overhead. But the disadvantage,

compared with Bilateral Negotiation Model, is that Seller Agents can only respond

upon the requests of Buyer Agents.

Fig.8 Bilateral Negotiation Model

Fig.9 Half- Bilateral Negotiation Model

34

3.3.5.1 Proposal Evaluation

In our SHCM negotiation system, Buyer Agents take four factors of sellers’ proposals

into consideration, including price, brand, used time and seller’s reputation. The

evaluation value of a received proposal i (iP) can be represented as:

() (, , ,)pi bi t i riEp Pi v v v v= , , , [0,1]pi bi ti riv v v v ∈ (1)

Where piv , biv , tiv , riv are respectively the evaluation values of the price factor iP ,

the brand factor iV , the using time factor iT and the reputation factor iR .

The four factors considered in the negotiation processing are defined below.

Price Factor

max

max

()
B S

p
pi B

p p
v

p

−
= (2)

Where max
Bp is the maximum price that the Buyer Agent can accept and S

pp is the

present price that the Seller Agent is offering.

Brand Factor

1
bi

n m
v

n

+ −= (3)

Where n is the number of the acceptable brands of the Buyer Agent and m is the

ranking order of the selling product’s brand according to the Buyer Agent’s favor (1

indicates the most favorable brand and n indicates the least favorable brand.). The

precondition of this formula is that the selling product’s brand must fall into the Buyer

Agent’s acceptable brand list.

Using Time Factor

35

max

max

B S

ti B

t t
v

t

−= iff maxtS Bt ≤ (4)

Where max
Bt is the maximum using time of the selling product that the Buyer Agent can

accept and St is the using time of the selling product.

To get the evaluation value ()p iE P of the proposal iP , besides the values of the four

negotiation factors, we also need to know the weight values of these four factors

ranked by the user. We define the weight value of the price factor as pw , the weight

value of the branch factor as bw , the weight value of the using time factor as tw and the

weight value of the reputation factor as rw . , , , [0,1]p b t rw w w w ∈ ,

and 1p b t rw w w w+ + + = .

Assume the Buyer Agent considers i (1 4)i≤ ≤ factors and gives them priorities p

(1 4)p≤ ≤ respectively. 1 indicates the highest priority, and 4 is the lowest one. Then,

pw can be determined simply like:

If 1i = , 1 1w = ; (5)

If 2i = ,

⎪
⎪
⎭

⎪⎪
⎬

⎫

⎪
⎪
⎩

⎪⎪
⎨

⎧

=

=

3

1
3

2

2

1

w

w
; (6)

If 3i = ,

⎪
⎪
⎪

⎭

⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

=

=

=

7

1
7

2
7

4

3

2

1

w

w

w

; (7)

36

If 4i = ,

⎪
⎪
⎪
⎪

⎭

⎪
⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪

⎨

⎧

=

=

=

=

15

1
15

2
15

4
15

8

4

3

2

1

w

w

w

w

 (8)

Therefore, ()Ep Pi , the evaluation value of iP , can be represented by:

()
()

4
pi p bi b ti t ri rv w v w v w v w

Ep Pi
× + × + × + ×

= Where 1p b t rw w w w+ + + = (9)

After a Buyer Agent receives a proposal, it will calculate ()Ep Pi of the received

proposal as evaluation benchmark. If there are more than one matched Seller Agent in

the Buyer Agent’s Negotiation Group, the Buyer Agent will receive more than one

proposal in a round of negotiation. Then the Buyer Agent needs to evaluate every

proposal and choose the one with the highest ()Ep Pi .

3.3.5.2 Behavior Rules and Strategies

Now we turn to the actual implemented behavior of Shopping Agents. It should be

obvious that the actual behavior of Shopping Agents needs to correspond closely to the

users’ perception of how they will behave; if not, then the users are sure to be

disappointed. This is a general challenging facing agent research, namely to make sure

that agents lives up to the user’s expectation. Given this, then we explain the actual

implemented behavior in our system.

Every Buyer Agent in the Negotiation Group calls for proposal as the Negotiation

Group is initialized. Then all the matched Seller Agents will reside in this group and

37

send their proposals to the Buyer Agent by means of peer-to-peer. The proposals

include the values of the four negotiation factors discussed in the former section. After

evaluating all the proposals and comparing the evaluation results, the Buyer Agent

sorts out the optimal one in this round. If the optimal proposal’s evaluation value is

acceptable according the Buyer Agent’s negotiation strategy which is specified by the

user, the Buyer Agent will accept this offer and make an Informal Contract with the

Seller Agent who gives this offer. Otherwise, the Buyer Agent will broadcast the offer

price of this optimal proposal within the Negotiation Group and call for better

proposals.

Every Seller Agent sends the same proposal to all the matched Buyer Agents which

reside within the same Department. If all Buyer Agents matched with the Seller Agent

have called for new proposals and the theory offer price ()S
tp t of the Seller Agent

providing to all matched Buyer Agents at time t, is equal to or less than all prices of the

optimal proposals received by these Buyer Agents, then the Seller Agent will offer a

new proposal to all matched Buyer Agents. The Seller Agent’s present offer price in

the new proposal will be set equal to the current theory offer price and is obviously

lower than its previous offer price, but will never be set lower than the minimum

acceptable price the user has specified. Conversely, if ()S
tp t is higher than any offer

prices of the optimal proposals received by the Buyer Agents, the Seller Agent will

refuse to provide new offers and insist on the current one.

In this thesis, we propose three strategies for Seller Agents and Buyer Agents

respectively which allow users to specify the negotiation ‘behavior’ and the judgment

making ‘behavior’ of their agents. Further, because agents’ negotiation implementation

38

is separated from the negotiation protocol definition and the strategy definition, we can

upgrade the existing strategies or create new strategies without changing other parts of

the system.

Next, we describe the three strategies for Seller Agents and Buyer Agents.

Seller Agent

For a Seller Agent, the offer price can be adjusted over time according to its theory

offer price ()S
tp t at time t and other real-time factors. The theory offer price ()S

tp t of

our proposed strategies is extended from Kasbah [14] that follows some functions of

time and map to the following curves.

Assume:

min
Sp : The minimum selling price that the Seller Agent can offer, i.e. the worst price

max
Sp : The maximum selling price that the Seller Agent can offer, i.e. the initial price

1
S
rt : The time the Seller Agent receives the first proposal request from Buyer Agents

Sd : The deadline of the Seller Agent

t : The current time

 ()S
tp t of the Urgent Strategy

1
max max min

1

() () ()
S

S S S S r
t S S

r

t t
p t p p p

d t

−= − − ×
−

 (10)

39

S
r1t

S
minp

S
maxp

Sd

(t)pS
t

Fig.10 Theory Offer Price for Urgent Strategy

• ()S
tp t of the Normal Strategy

 21
max max min

1

() () ()
S

S S S S r
t S S

r

t t
p t p p p

d t

−= − − ×
−

 (11)

S
r1t

S
minp

S
maxp

Sd

(t)pS
t

Fig.11 Theory Offer Price for Normal Strategy

• ()S
tp t of Patient Strategy

31
max max min

1

() () ()
S

S S S S r
t S S

r

t t
p t p p p

d t

−= − − ×
−

 (12)

40

 t

(t)pS
t

S
r1t

S
minp

S
maxp

Sd

Fig.12 Theory Offer Price for Patient Strategy

Buyer Agent

For a Buyer Agent, if it receives an eligible proposal from a Seller Agent, an Informal

Contract will be reached between these two agents; If the Buyer Agent receives

multiple eligible proposals from multiple Seller Agents in the same round of

negotiation, the Buyer Agent will choose the optimal one by comparing these

proposals’ evaluation values.

Assume:

tf : The time factor

Bd : The deadline of the Buyer Agent

1
B
pt

 : The time the Buyer Agent receives the first proposal from Seller Agents

B
dt : The time the buyer delegates the negotiation task to the Buyer Agent

BA : The Buyer Agent’s attitude towards the optimal proposal received in the current

round of negotiation

We define tf as, 1()

()

B B
p

t B B
d

d t
f

d t

−
=

−
 (13)

41

• Urgent Strategy

Accept () , if () 0.4

Refuse and await new proposals, otherwise
opt opt tB

Pi Ep Pi f
A

∀ ≥ ×⎧ ⎫
= ⎨ ⎬
⎩ ⎭

 (14)

• Normal Strategy

Accept () , if () 0.6

Refuse and await new proposals, otherwise
opt opt tB

Pi Ep Pi f
A

∀ ≥ ×⎧ ⎫
= ⎨ ⎬
⎩ ⎭

 (15)

• Patient Strategy

Accept () , if () 0.8

Refuse and await new proposals, otherwise
opt opt tB

Pi Ep Pi f
A

∀ ≥ ×⎧ ⎫
= ⎨ ⎬
⎩ ⎭

 (16)

For both Seller Agents and Buyer Agents, if the running time has exceeded their

deadlines set by the agent users, i.e. St d≥ , or Bt d≥ , the system will automatically

cancel the overdue Seller Agents or Buyer Agents, notify their users and call for

further requests, which may be terminating the agent delegation or modifying the

agent’s attributes.

3.3.6 Other Issues

Besides the negotiation organizations, strategies and algorithms, the key problems of

AANS, the automated negotiation e-marketplace also makes efforts to solve other

issues in e-trading. Here, we primarily discuss two of them, predicting negotiation

stages and evaluating users’ reputation.

3.3.6.1 Prediction of the Negotiation Stages

Even though the negotiation process conducted among intelligent agents can be

performed without human-labor, agent users may still expect to know how the

negotiation is going during the course and then decide whether it is necessary to

change the delegation bonds or even cancel the delegation. To indicate how far a

42

negotiation activity goes, we define three stages for an active negotiation,

Almost_Done, Middle_Way and Just_Begin. The evaluation of negotiation stages will

be made according to agent roles (Buyer Agent or Seller Agent) and negotiation

strategies (Urgent, Normal and Patient) as follows.

(1) For Buyer Agents

Assume
()optEp Pi

 is the evaluation value of the optimal proposal that the Buyer Agent

receives in the current round of negotiation.

If the Buyer Agent is taking the Urgent Negotiation Strategy, then

_ , () 0.133

_ _ , 0.133 () 0.267

_ , 0.267 () 0.4

i opt

u i opt

i opt

Just Begin Ep P

Negotiation Stage Middle Way Ep P

Almost done Ep P

⎧ ⎫ 0 ≤ <
⎪ ⎪

= ≤ <⎨ ⎬
⎪ ⎪ ≤ <⎩ ⎭

 ; (17)

If the Buyer Agent is taking the Normal Negotiation Strategy, then

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

<≤

<≤

<≤

=

6.0)(4.0,_

4.0)(2.0,_

2.0)(0,_

_

opti

opti

opti

n

PEpDoneAlmost

PEpWayMiddle

PEpBeginJust

StagenNegotiatio ; (18)

If the Buyer Agent is taking the Patient Negotiation Strategy, then

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

<≤

<≤

<≤

=

8.0)(533.0,_

533.0)(267.0,_

267.0)(0,_

_

opti

opti

opti

p

PEpDoneAlmost

PEpWayMiddle

PEpBeginJust

StagenNegotiatio ; (19)

(2) For Seller Agents

43

Unlike Buyer Agents who may care about more than price, we assume Seller Agents

only seek the possible highest selling price for its product. Because Buyer Agents do

not disclose the negotiation factors to others, Seller Agents only can evaluate the

negotiation stage according to the price feedback, which is the price of the optimal

proposal received by Buyer Agents in the latest round of negotiation. Firstly, we define

some criteria:

sc : The Senior Point, standing for the boundary between Middle_Way Stage and

Almost_Done Stage

jc : The Junior Point, standing for the boundary between Just_Begin Stage and

Middle_Way Stage

pc : The Primary Point, standing for the boundary between Initial Point and

Just_Begin Stage

min
Sp : The minimum selling price that the Seller Agent can offer

max
Sp : The maximum selling price that the Seller Agent can offer, i.e. the initial price

S
pp : The present price that the Seller Agent is offering

B
optp : The offering price of the optimal proposal received by the Buyer Agent in the

latest round of negotiation

Therefore,

max

min

min

2 ()

3

3

S
p

B S
optB

j opt

B S
optB

s opt

c p

p p
c p

p p
c p

⎧ ⎫
=⎪ ⎪

⎪ ⎪
× −⎪ ⎪= +⎨ ⎬

⎪ ⎪
⎪ ⎪−

= +⎪ ⎪⎩ ⎭

 (20)

Then, the Seller Agent evaluates the negotiation stage for its user by using the

following expressions,

44

_

_ _ ,

_ , (*)

S
j p p

S
s p j

S B B S
p opt opt p s

Just Begin c p c

Negotiation Stage Middle Way c p c

Almost Done p p or p p c

⎧ ⎫ , ≤ ≤
⎪ ⎪⎪ ⎪ ≤ ≤⎨ ⎬
⎪ ⎪ ≤ ≤ ≤⎪ ⎪⎩ ⎭

= (21)

* happens in the case that the Seller Agent’s offer price is the lowest one among all proposals

received by the Buyer Agent, but ()Ep Pi of this proposal is not the highest one, because the

Buyer agent does not only consider the price factor. Hence, () ()optEp Pi Ep Pi< , but

S B
p optp p< .

It is obvious that the negotiation stage prediction makes less sense to Seller Agents’

users than to Buyer Agents’ users.

3.3.6.2 Reputation Mechanism

Without doubt, business activities can be significantly benefited by e-commerce

approach, but the downturn of .COM also tells us that many non-technical problems

are still restricting the development of it. One of the most critical problems is trust

issue which means how people can trust other parties participating in the trade. In the

AANS, another trust problem is raised between shopping assistants (software agents)

and human traders. Because of time limits, no measures are taken in the current SHCM

version regarding it, but further observation will be discussed in the Chapter 5.

Users’ reputation becomes a common concern in today’s online trading. Much

dissatisfaction after trading occurs when one cannot get proper products or services in

time. Although many online commercial auction systems provide rating mechanism for

users to rate their counterparts, such as “e-Bay” and “EachNet”, there can be problems

in them all the same, including fake transactions between two friends to rate high

45

reputation mark for each other. To solve this problem, we take some measures in our

online marketplace:

• Users can not modify their identity information once their accounts begin to work,

but other less critical particulars can be freely changed, such as phone number, address,

etc.

• More value of the goods in trading, more important the related rating is considered.

• For more than one times of rating between two participants, only the latest one is

useful when computing the current reputation rate.

• Ratings from reputed users will be considered more importantly than those from

others with lower reputation.

To achieve the above objectives, we propose a reputation evaluation mechanism in

SHCM system. First, we suppose the user who is evaluated has made n transactions in

SHCM totally, and the nth is the latest one.

Assume:

R : The current reputation value of the evaluated user

()cr i : The reputation value of the counterpart in past trades (not including the latest

one) which the evaluated user has participated

()cv i : The rating value that the counterpart evaluates the past trade (not including the

latest one) which the evaluated user have participated. () { 1, 0.5,0,0.5,1}cv i ∈ − −

d : The decrease factor, used to reduce the influence of the previous rating so that

system can count more on the recent rating values. 0 1d< ≤

()tradep i : The trading price of the product related to this transaction rating

()vp i : The product value

46

We define the product value according to its trading price as follows:

0.1 if 100;

0.2 if 100< 500;

0.4 if 500< 1000;

0.8 if 1000< 2000;

1.0 if > 2000;

trade

trade

v trade

trade

trade

p

p

p p

p

p

≤⎧ ⎫
⎪ ⎪≤⎪ ⎪⎪ ⎪= ≤⎨ ⎬
⎪ ⎪≤⎪ ⎪
⎪ ⎪⎩ ⎭

 (22)

The current reputation value of the evaluated user is defined as follows.

n-1

i=1

[() () ()] + () () ()
R = (1 1, i = 1, 2,n-1)

n

c c v c c vd r i v i p i r n v n p n
R

× × × × ×
≤ ≤ −

∑

 (23)

Therefore, the reputation rank of users can be given as the following expression.

1 if -1 R< -0.66

2 if -0.66 R< -0.33

3 if -0.33 R< 0.33

4 if 0.33 R< 0.66

5 if 0.66 R 1

rG

≤⎧ ⎫
⎪ ⎪≤⎪ ⎪⎪ ⎪= ≤⎨ ⎬
⎪ ⎪≤
⎪ ⎪

≤ ≤⎪ ⎪⎩ ⎭

 (24)

47

Chapter 4 Implementation

There is no commonly accepted methodology and practice for evaluating negotiation

performance of agent-based e-commerce systems because of the intrinsic complexity

of the task. We attempt to build an automated negotiation system that simulates the

real world negotiation conditions, consume reasonable amount of system resources and

is understandable to human users. Further, this negotiation system is exclusively

designed and built for the SHCM. Though this negotiation scenario is designed

specifically for the SHCM, its modularized design and implementation make the

negotiation system loosely coupled with the front-end e-marketplace and provide

adaptability, scalability and easy-to-use for constructing dynamic e-marketplaces.

4.1 Selection of Agent Platform and Programming Approach

The key element to the system architecture is the Agent Platform. An Agent Platform

(AP) [24] provides an infrastructure in which agents can be deployed. An agent must

be registered on a platform in order to interact with other agents on that platform or on

other platforms. Minimally, an AP consists of three capability sets: an Agent

Communication Channel, an Agent Management System and a Directory Facilitator.

We have explored some programming platforms dedicated to creating MAS; some of

them are oriented towards communication between distributed systems, as some others

are more oriented towards the building of simulation models. For platform selection,

we primarily compared three open source multi-agent platforms:

(1) COMAS(Co-Ordination in Multi-Agent Systems) [25]

48

COMAS belongs to the second category - simulation platform, which implements

resource coordination as well as goal coordination. Each agent can make a resource

request to another agent for resource coordination. Additionally, each agent passes the

state change information to the other agent after it has performed an action to achieve

goal interaction coordination. Therefore, this platform is established with specificity in

the domain of natural resources management.

(2) ASDK (Aglets Software Development Kit) [26]

Aglets is a framework and environment developed by IBM for researching and

developing mobile Internet agents in Java, belonging to part of IBM worldwide

research. The focus here is mobile capability of software agents. Aglets are Java

objects that can move from one host on the Internet to another, introducing program

code that can be transported along with state information. That is, an aglet that

executes on one host can suddenly halt execution, dispatch itself to a remote host, and

resume execution there. When the aglet moves, it takes along its program code as well

as its data. This is also open source software freely downloaded from IBM.

(3) MadKit(Multi-Agent Development Kit) [27]

MadKit is a versatile Java agent platform, designed to support heterogeneous agent and

communication models, and host multiple distributed applications. The platform

architecture is based on a minimalist agent kernel decoupled from specific agent or

communication models. Services like distributed message passing, migration or

monitoring are provided by individual agents for maximal flexibility. A componential

graphical interface model enables variations in platform looks and classes of usage.

49

MadKit is built upon an organizational model. It provides general agent facilities

(lifecycle management, message passing, distribution, etc.), and allows high

heterogeneity in agent architectures, communication languages, and various

customizations. The AGR (agent-group-role) organization model is rooted in this

platform for building large, scale, heterogeneous systems. To avoid agent-based

viewpoint, AGR organization can be only regarded as a structural relationship among a

group of agents. In addition to the three core concepts, the platform adds three design

principles, the micro-kernel architecture, agentification of services and the graphic

component model.

MadKit itself is a set of packages of Java classes that implements the agent kernel, the

various libraries of messages, probes and agents. It also includes a graphical

development environment and standard agent models. Fig.13 shows the Graphical

User Interface of MadKit, G-Box.

50

Fig.13 G-Box - The Graphical User Interface of MadKit

Because COMAS platform is dedicated for resource coordination, it is not a very

scalable architecture for e-commerce applications. In addition, there are not many

development guidelines and application demos available on the Internet, it is hard to

evaluate COMAS’ usability and get technical for our implementation. Thus, COMAS

is not taken into consideration for SHCM.

For ASDK, though it is a Java-based open source software from IBM, with a relatively

high reputation, it is also not proper for SHCM due to its specificity with mobile

agents. There are a few reasons why we do not consider building this negotiation

system with an agent mobility approach.

51

Firstly, there is no need for Shopping Agents to move on the Internet [28] either for the

LSM or NCM of AANS. Often, the typical Client/Server application communicates via

requests and responses, which require a round trip trek across the network, therefore

moving code to implement locally is more cost-efficient. However, in our SHCM

system, cross-network communication between client-end and server-end is not

frequent and most complicated negotiation processing work is executed automatically

in the server. Only when some Informal Contracts are achieved or the Shopping

Agents are expired, the system will contact client-end users again for further demands.

Secondly, negotiation is not a time-sensitive task. Users usually will not and need not

wait for the negotiation result in front of their computers all the time. In fact, to save

the time for online searching, automatic searching and matching is one of the

important reasons why people use shopping assistants. In other words, the client-end

users need not always be available after the agent delegation is activated, therefore

email, pagers, SMS… are more suitable approaches than real-time network connection

for the latter communication with users. Thus, Shopping Agents absolutely can work

locally on the server and need not roam over the Internet.

Finally, the distinguishing characteristic of the mobile agent architecture is the

mobility of the code. This mobility of the software code will raise the problems of

communication efficiency, reliability and security, as well we as programming

complexity. A centralized negotiation processor which need not frequent

communication with clients is more applicable and suitable for the SHCM scenario.

52

Therefore, instead of choosing a mobile agent platform, we make Madkit 2.0.1 (the

latest version of Madkit is 3.1b5 released in March, 2003) the infrastructure of the

AANS.

4.2 Implementations of SHCM

In this section, we consider both the LSM and NCM models and discuss on

implementation issues such as requirement analysis, system design and modeling.

4.2.1 Local Service Model

4.2.1.1 Requirement Analysis

For LSM of SHCM, the major functions provided to the e-marketplace users are

divided into two parts, normal services and special services. The normal services are

those ordinary ones most e-marketplaces provide and the special service is the ANS

that our proposed system exclusively provides. We will describe the system

requirements of these two parts as below.

(1) Requirements of normal services

The business requirements of traditional services are presented in the following table.

Requirements Normal
Users

Members
(customers)

Remark

Browse Item
Search Item
Register Users will be requested to fill a Customer

Particular Sheet (CPS) to create a unique
account. The CPS should include username, first
name, last name, gender, password, IC, date of
birth, phone number, and postal address, etc.

View/Modify
Customer
Information

N/A Some identified information should not be
modified after creating for the sake of reputation
concerns, such as ID, first name, last name), but
most changeful items, such as phone number,
email, postal address can be modified.

Selling/Buying N/A Customers will be requested to fill an Item

53

Items Requirement Sheet (IRS) to specify the attributes
of a selling product or a buying request, not
including the constraints of negotiation
delegation. The major attributes in IRS are item
category, item models, optimal selling/purchase
price, brands, used time (measure of an extent to
which the item is new), selling/buying deadline,
brief description, etc.

Modify/Cancel
Items

N/A

Table1 Business Requirements of Normal Services

The following Fig.14, Fig.15 and Fig.16 have demonstrated the web interface for filling Item

Requirement Sheet (IRS) and Customer Particular Sheet (CPS).

Fig.14 Item Requirement Sheet (IRS) --- First Step

54

Fig.15 Item Requirement Sheet (IRS) --- Second Step

Fig.16 Customer Particular Sheet (CPS)

55

(2) Requirements of ANS

When customers add a new item to the e-marketplace, they can just let this item list

online or continue to delegate this item to a Shopping Agent. That means ANS is an

optional service for any customer. Usually, seven actions may happen if customers

choose this advanced service.

Action 1: Create Agents

To create a Shopping Agent and delegate negotiation constraints to the agent, SHCM

requests the customer who wants to make use of ANS to fill an Agent Delegation

Sheet (ADS) shown in Fig.17. All important data for negotiation are included in this

sheet. For the customer who sells goods, his/her Shopping Agent is called as a Seller

Agent and for the one who purchases goods, his/her Shopping Agent is called as a

Buyer Agent. ADS should include attributes, buyer/seller agent name, working

deadline, worst purchase/selling price, negotiation strategy and reputation of the

counterpart.

56

Fig.17 Agent Delegation Sheet (ADS)

Besides the above constraints, the attributes about items are all necessary information

for agent negotiation. Among all these attributes, only price, brands, using time and

counterpart’s reputation are optional negotiation factors whereas, others are static

constraints for group matching ahead of negotiation.

 “Create Agent” action happens in two cases. The first case is that customers delegate

the negotiation task to Shopping Agents for new items. It permits a customer to create

multiple Seller Agents for one selling product, or multiple Buyer Agents for one

buying request. The second one is that customers want to change the delegation

constraints, such as negotiation strategy and agent working deadline, the previous

agent running under the old constraints will be “killed” (terminated) and a new agent

will be created for the new constraints.

57

SHCM permits one user to create more than one Seller Agent for one selling product,

or more than one Buyer Agent for one buying request; it also permits users to own

more than one agent, either Seller Agents or Buyer Agents, running for different

selling products or buying requests.

Action 2: Monitor Agents

To increase the visibility of agents’ work, SHCM gives agent users the right to monitor

their Shopping Agents and to check the related static and dynamic information. The

static information includes agent type, agent name, agent id, delegation constraints,

and related item attributes. The dynamic information includes agent status, present

offering price and negotiation stage prediction.

Action 3: Cancel Agents

“Cancel Agents” only means to cancel Shopping Agent delegation, but does not mean

to cancel the related items in e-marketplaces. Only if the customer chooses “Delete

Product/Request”, the corresponding items will be eliminated from the e-marketplace.

It may be noted that “Modify Agents” action will not happen in SHCM forever, since

any changes of agent attributes or related item attributes will need a new agent to be

created. The new agent will be identified by a new ID and negotiation process will be

re-started.

Action 4: Check Contract History

58

SHCM will list all the successful contracts that are made in AANS and all the Informal

Contracts that participating customers have not presented attitudes. The primary

information includes contract id, contract time, contract price, attributes of the trading

product, basic information of participated customers, the rating values and comments

for the Formal Contracts, and the attitudes and comments for the Informal Contracts.

Fig.18 is the history record for a Formal Contract.

Fig.18 Contract History Record

Action 5: Modify Items (Selling Products/Buying Requests)

Even if items are delegated to Shopping Agents or not, customers can change item

attributes at any time. The system will display the IRS filled previously by the

customer as in Fig.19 and allow the customer to modify. Here too, it may be noted that

if an item has been delegated to some Shopping Agent, once the item’s attributes are

changed, all correlated Shopping Agents will be terminated in the negotiation system

59

and the customer will be queried whether or not they want to create new agents for the

modified item.

Fig.19 Item Information Changes Interface

Action 6: Response to Informal Contracts

Once SHCM makes any successful Informal Contract, the system will automatically

notify the participating customers to judge it and make the decision. Though the

Informal Contract absolutely meets the customers’ requirements, customers may still

feel unsatisfied with the result and therefore have the right to refuse it.

The system notifies both the participating customers of an Informal Contract to make

further decisions by e-mails. If any party refuses, the Informal Contract will be deemed

“Fail” and that party that has chosen “Refuse” will be asked to brief the reason. Then

the system will send both parties a “failure message” with reasons stated by customer(s)

60

and query customers whether they want to negotiate again under the same or different

delegation constraints, or definitely want to cancel the delegation. If both parties agree

on the Informal Contract, the system will send them a “success message” and convert

the Informal Contract to a Formal Contract.

Action 7: Comments on Contracts

SHCM does not supply any services for payment and delivery issues and we assume

that the participants will make the transaction privately. After making transaction in

private, SHCM will request users to give feedback towards this contract. The required

feedback includes comments and rating for the service quality of Shopping Agents and

counterpart’s credit in this transaction.

61

4.2.1.2 System Design & Modeling

<< use >>

<< include >>

<< include >>

<< include >>

<< include >>

<< include >>

Fig.20 Use Case Diagram of Traditional E-Marketplace Sub-System in LSM

(1) Agent UML

In the past, research on agent-based software engineering had been widely lacking

touch with the world of industrial software development. For the acceptance of agent

62

technology in industry, FIPA (the Foundation of Intelligent Physical Agents) and

OMG (Object Management Group) relate the object-oriented software development to

the agent-based software development and proposed AGENT UML [29], an extension

of the standard UML (Unified Modeling Language). For the same sake, we make use

of AGENT UML as the tools to analyze and design the whole SHCM system,

including the AANS.

(2) System Architecture

Fig.1 demonstrates the system architecture for LSM. The normal services analyzed in

Section 4.2.1.1 are modularized into the traditional e-marketplace sub-system. The

ANS is independently plugged into an AANS as a plug-in module of the major e-

marketplace.

63

Fig.21 Use Case Diagram of Agent-Based Automated Negotiation Sub-System

(3) Use Case Diagram

To identify and partition system functionality, we draw two use case diagrams [22] for

the two sub-systems, the traditional e-marketplace sub-system and the agent-based

automated negotiation sub-system.

64

For the traditional e-marketplace sub-system, only one actor, Customer, is defined to

represent customers of the e-marketplace and correspondingly fourteen use cases are

defined to express Customer’s behaviors, as shown in Fig.20.

For AANS, six actors and twenty-four use cases are defined, as shown in Fig.21.

Except for Customer stands for human customers, all the rest actors stand for the

corresponding software agents. Actors of Seller Agent and Buyer Agent present the

negotiation players in this sub-system. Actors of Agent Manager, DB Broker and

Contract Manager are the management staff who organize and administrate the actors

of Seller Agent and Buyer Agent for conducting automatic negotiation. Once AANS is

started, all Management Agents will be automatically created by the system and in

their places all the time. If any Management Agents break down, the whole negotiation

system will collapse. On the other hand, Shopping Agents are created and terminated

dynamically by Agent Manager on demand of customers. It may be noted that the

collapse of any Shopping Agents will not affect the whole system except themselves.

(4) Sequence Diagrams

The definition of communication protocols is part of the specification of the dynamical

model of an agent system. To focus on agent working system, we only demonstrate the

agent interaction protocols but omit the interaction between users and the e-

marketplace. In Agent UML, Agent Interaction Model (AIM) is captured by

interaction diagrams, sequence diagrams and activity diagrams. Because in AANS,

messaging communication is the major activity during the negotiation, we only focus

on the sequence diagrams in this thesis to describe the detailed interaction processes

among agents. Fig.22, 23, 24, 25 demonstrate the pre-negotiation and post-negotiation

65

processes among Management Agents and Shopping Agents, and Fig.26, 27, 28

represent the negotiation processes among Management Agents and Shopping Agents.

66

Fig.22 represents the process that the Agent Manager helps a new Seller Agent get into

a proper Department and matched Negotiation Groups. It also represents the process a

Seller Agent informs the Contract Manager as it achieves a successful Informal

Contract with a Buyer Agent, and the Contract Manager saves the Informal Contract

data into DB.

Fig.22 Communication Protocol & Message Format
(Agent Manager, Contract Manager --- Seller Agent)

67

Fig.23 represents the process that the Agent Manager helps a new Buyer Agent get into

a proper Department and creates a new Negotiation Group for it. Additionally, it

represents the process that the Buyer Agent informs Contract Manager as it achieves a

successful Informal Contract and then Contract Manager saves the Informal Contract

information into DB.

Fig.23 Communication Protocol & Message Format
(Agent Manager, Contract Manager --- Buyer Agent)

68

Fig.24 is the cooperation sequence diagram between DB Broker and Agent Manager.

DB Broker scans DB periodically to check new Shopping Agents. Once DB Broker

has any new finding, it will notify Agent Manager the type and ID of the new agent.

Then Agent Manager will activate the shopping agent and lead it into AANS. Apart

from scanning new agents, DB Broker also take charge of identifying overdue

Shopping Agents. Once DB Broker finds out that any running agents have exceeded

the deadline set by their users, DB Broker will inform Agent Manager to “kill”

(terminate) them.

Fig.24 Communication Protocol & Message Format
(DB Broker --- Agent Manager)

69

Fig.25 is the cooperation sequence diagram among DB Broker, Contract Manager and

a Buyer Agent. If the Buyer Agent successfully achieves an Informal Contract with a

Seller Agent, the Buyer Agent will send messages to notify Contract Manager about it.

Then Contract Manager saves the Informal Contract information into DB, informs the

related customers of this contract via emails and asks for the customers’ attitudes. The

customers’ feedback will be automatically recorded in DB, which can be found out by

DB Broker’s periodic scan. Once DB Broker knows any Informal Contract that has

been replied by both participants, it will message Contract Manager. Then Contract

Manager processes the Informal Contract according to the customers’

responses.

Fig.25 Communication Protocol & Message Format
(DB Broker --- Contact Manager – Buyer Agent)

 1. Get a new Informal Contract 2. Notify customers’ feedback for the Informal Contract

70

Fig.26 represents the complete scenario of achieving a Formal

Contract.

Fig.26 Sequence Diagram of Negotiation Process
(Scenario 1: Get a successful Formal Contract)

71

Fig.27 represents the complete scenario of achieving a successful Informal Contract by

Shopping Agents, but refused by one or both agent users.

Fig.27 Sequence Diagram of Negotiation Process
(Scenario 2: Get successful Informal Contract, but refused by customers)

72

The scenario in Fig.28 describes the scenario that the customer cancels or modifies the

selling/buying request or agent delegation constraints. In any of the above cases, the

related active Shopping Agents will be noted as “dying” in DB. After DB Broker finds

out the new “dying” agents by periodic scanning, it will notify Agent Manager to

terminate the “dying” agents in AANS.

Fig.28 Sequence Diagram of Negotiation Process
(Scenario 3: Customer cancels or modifies agents in the midway of negotiation)

(5) Class Diagram

The Class Diagram shows classes and their relationships. Classes define the types of

objects that exist within the system. Classes can have attributes which are primitive

73

data members of objects and operations which define functions that can be performed

on the object. The visibility of attributes and operations to other objects can be defined

as their signatures including types, default values, parameters, parameter types and

return types.

Associations between classes show what links can exist between objects and define

constraints on those links including the relative quantity of instances linked by an

association. Class Diagrams can also show packages which group classes,

dependencies between classes and dependencies between the packages which contain

them.

After design and analysis of the system structure and typical scenarios, we develop the

class diagrams for the traditional e-marketplace sub-system and AANS respectively,

shown in Fig.29 and Fig.30.

Fig.29. Class Diagram of E-Marketplace System

74

Please note that in Fig.29 Class Diagram of E-Marketplace System, Class Item

represents Selling Products and Buying Requests, attribute sItemType can identify

them. nOptimalPrice is the maximum selling price for Selling Products, or the

minimum purchase price for Buying Request. For Selling Products, sItemUsedTime is

the time the selling product has been used when on sale, and for Buying Requests, it is

the maximum used time of the products that the buyer can accept. Trademark attribute

indicates the specific brand of Selling Products and the optional brands (may be more

than one) specified by Buying Requests.

75

Fig.30 Class Diagram of Agent-Based Automated Negotiation System

Class Diagram Fig.30 represents that most classes in AANS are designed based on

actors’ responsibilities, i.e. responsibility-oriented. The actor classes include Class

Seller Agent, Class Buyer Agent, Class Agent Manager, Class DB Broker and Class

Contract Manger. Only two accessorial classes - Class DB Handler and Class Mail

76

Handler are created as system assistant classes. Although these two classes do not

generate from the actors of the AANS, but also implement specific tasks and take

specific responsibilities. Therefore, the class diagrams in AANS is typically

responsibility-oriented rather than response-oriented, which fully applies the

OOD(Object Oriented Design) methodology.

4.2.2 Network Cluster Model

4.2.2.1 Requirement Analysis

In SHCM, the differences between LSM and NCM are not in terms of their

functionalities, but in terms of the system structures and working models. It implies

that the differences are almost invisible to normal customers. Customers still logon to

the e-marketplace they register to sell or buy stuff and then create assistant Shopping

Agents. They will not be aware (rather, need not be aware) of the model for AANS and

where their Shopping Agents locate. The only difference customers can feel is the

range of available trading peers. In a LSM system, available trading peers of a

customer are only from the same e-marketplace. But in a NCM system, available

trading peers may be the members of any e-marketplace within the e-marketplace

cluster. Therefore, the business requirements of LSM and NCM are almost identical

and will not be particularly analyzed again in this thesis.

4.2.2.2 System Design & Modeling

(1) System Architecture

As shown in Fig.31, compared with LSM, we abstract out the plug-in modular, AANS,

from every individual e-marketplace and build it as a centralized AANSC in NCM.

This model provides a light-weight ANS solution for e-marketplaces. Any e-

marketplace that has computer product categories can easily add this new advanced

77

service to its system by joining this cluster. Furthermore, no Shopping Agents will run

in e-marketplaces, which reduces system consumption for negotiation computing. Only

a simple AOB sub-system needs to be plugged into the heritage e-marketplace to

communicate with AANSC. In a nut-shell, the whole cluster consists of several

traditional e-marketplace sub-systems with several AOB sub-systems and one AANSC

system.

78

A
gent-based A

utom
atic N

egotiation Service C
enter (A

A
N

SC
)

1. scan new agent
2. notify new agent
3. pack agent data into XML doc
4. transmit agent XML doc
5. receive and unpack agent XML doc
6. save agent data into AANSC DB
7. scan new agent
8. notify new agent

9. launch new agent
10. notify new Informal Contract
11. save new contract
12. pack contract data into XML Doc
13. transmit back contract XML doc
14. receive, unpack and save contract doc
15. inform new Informal Contract
16. handle contract with customers

Fig.31 Architecture and Working Flow of Network Cluster Model

79

The working flow among agents of NCM also is demonstrated in Fig.31. Similar with

LSM, DB Broker of every ABO, one of the Management Agents, will periodically

scan branch DBs for searching new Shopping Agent records. Once found, DB Broker

messages Data Packager who will then consolidate all information of the Shopping

Agent into a standard XML document. Then the agent-related XML document is

transmitted to ANNSC through socket communication. After arriving to AANSC, the

agent-related XML document will be unpacked and parsed by the Data Packager of

AANSC and the useful information will be saved into the DB of AANSC. Then, the

DB Broker of AANSC will discover the new Shopping Agent record a while later

when it scans the DB of AANSC and will inform Agent Manager there to launch the

new Shopping Agent. The rest processes of agent matching, negotiating, and contract

making are all identical with those in LSM. Once any new Informal Contracts are

achieved, the contract relevant information will be saved into the DB of AANSC.

Unlike LSM, Contract Manager of NCM in AANSC will not take the responsibility of

notifying participating customers about Informal Contracts. Instead, Data Packager

packs Informal Contracts into standard XML documents and transmits them back to

the corresponding AOBs through socket communication. Data Packager in the AOBs

will receive Informal Contract XML documents, parse them and finally saves Informal

Contract related information into the branch e-marketplace DB. The contract-related

notification work will be conducted by Contract Manager in every AOB and the rest

communication procedure with customers is identical with that in LSM.

(2) Use Case Diagram

80

Because the traditional e-marketplace system in NCM is the same with that in LSM,

we do not demonstrate the use case diagram of this sub-system again. We will only be

presenting the use case diagrams of AOB and AANSC.

Data packager

4.Cancel Agent

2.Creat Agent

3.Monitor Agent

Contract Manager

DB Broker

Customer

9.Receive informal
contract packet

7.Pack Item&Agent
infor

10.Unpack informal
contract packet

1.Check
Transaction History

12.Notify Informal
Contract

16.Notify Formal
Contract

6.Evaluate
Counterpart&Agent

14.Save Formal
Contract

18.Scan Feedback of
Informal Contract

15.Delete Informal
Contract

20.Scan Changes of
Products/Requirements or Agent

Delegation

13.Notify
InformalContract Failure

5.Reply(refuse&explain/
accept) Informal

Contract

17.Scan New
Agent&inform Data Packager

11.Save Informal
Contract

19.Update Product
Status(online or offline)

8.Transmit
Item&Agent info packet

Fig.32 Use Case Diagram of the Agent Office Branch Sub-System in E-Marketplace

81

For AOB sub-system in every distributed e-marketplace, four Actors and twenty Use

Cases are defined as shown in Fig.32. Except for Actor Customer stands for e-

marketplace customers, all other Actors stand for software agents, including Actor DB

Broker, Actor Contract Manager and Actor Data Packager. We can see in AOB, all

agent Actors are Management Agents, but not any Shopping Agent Actors. It is

consistent with the previous claim that no Shopping Agents run at local e-marketplaces.

The Management Agents take the responsibility of observing and packing new agent

data into standardized XML documents, sending the XML documents to AANSC,

receiving Informal Contract XML documents and seeking relevant customers’ attitudes.

82

Fig.33 Use Case Diagram of Agent-Based Automated Negotiation Service Center

AANSC is shown as Fig.33. All six Actors designed in it are software agent Actors,

including Actor Seller Agent, Actor Buyer Agent, Actor Agent Manager, Actor DB

Broker, Actor Contract Manager and Actor Data Packager. The automated negotiation

will be organized and conducted by these Actors in AANSC. The Use Cases of each

actor are similar with the parallel ones in LSM and only Actor Data Packager is a new

83

member of NCM, which is corresponding to Data Packager Agent. Further, ANS will

not take charge of interacting with end-customers but focuses on the core business of

negotiation processing.

(3) Sequence Diagrams

In this part, we only demonstrate the interaction and message exchange among

intelligent agents within AOB, within AANSC, and between AOB and AANSC.

Because messaging communication is the major activities in the AANS during the

trading, we only focus on the sequence diagrams that describe the specific interaction

processes among these agents. Fig.34, 35, 36 present three typical scenarios happened

in this course.

84

Fig.34 presents Scenario 1, which happens after a new shopping agent is created in the

e-marketplace branch. DB Broker of AOB finds it when scanning DB and then DB

Broker informs Data Packager within the same branch about the new agent. Then, Data

Packager will pack the shopping agent data into a standardized XML document and

transmits it to the remote AANSC, indicated as headquarter (HQ) in diagrams. The

remote Data Packager of AANSC will receive the coming XML document, unpack and

parse the useful information for next-step processing.

Fig.34 Sequence Diagram of Agent Office Branch of the Network Cluster Model
(Scenario 1: Branch--HQ management collaboration for scanning and delivering new agents)

85

Fig.35 presents the second scenario that takes place within AANSC when a new

Shopping Agent comes. DB Broker of AANSC will find the new Shopping Agent

records and message Agent Manager. Then, Agent Manager leads the Shopping Agent

into a proper department based on its category attribute. For a Buyer Agent, a new

Negotiation Group will be created specially for it. For a Seller Agent, Agent Manager

will match the suitable Negotiation Groups or Waiting Group for it. After registration,

the new Shopping Agents will commence to conduct negotiation activities within the

matched Negotiation Groups.

Fig.35 Sequence Diagram of Agent Office Branch of Network Cluster Model
(Scenario 2: HQ management collaboration upon a new agent’s coming)

Fig.36 presents scenario 3 that an Informal Contract is achieved in AANSC and is sent

back to the related e-marketplace branches. Once a successful Informal Contract is

86

completed by AANSC, Contract Manager in AANSC will save all the relevant data

into AANSC DB and pack the data into a standardized XML document. The Informal

Contract XML document is then sent back to the branch e-marketplaces involved in

this contract. Data Packager in branches will unpack the received Informal Contract

XML document and save it into the branch DB. As found by DB Broker of the branch,

the information about the successful Informal Contract will be soon sent to the

participating customers by emails and the branch e-marketplace will consequently

process the feedbacks from end-customers. Whether a Formal Contract can be

achieved or not depends on the attitudes of the both trading customers.

Fig.36 Sequence Diagram of Agent Office Branch of Network Cluster Model
(Scenario 3: Branch--HQ management collaboration for new Informal Contract transport)

87

(4) Class Diagrams

The Class Diagram for the traditional e-Marketplace sub-system in NCM resembles

that in LSM, because similar functions are provided in the e-Marketplace sub-system

for both two models. Thus, we do not describe it again, only focusing on the Class

Diagrams of negotiation related sub-systems.

As shown in Fig.37, Class Diagram of Agent Branch Sub-System in E-Marketplace,

there are three major classes, Class DataPackager, Class DBBroker, and Class

ContractManager, which are particularly designed for Actor Data Packager, Actor DB

Broker and Actor Contract Manager in this sub-system (please see Use Case

Diagrams). These three major classes all inherited from Class Agent that exists in the

Madkit platform kernel and take the responsibilities of the three actors respectively.

To facilitate the agent classes, we also design some assistant classes, including Class

SellerAgentPacker, Class BuyerAgentPacker, Class BranchTransmitter, Class

BranchReceiver, Class B_ContractUnpacker, Class SAXParser, Class DBHandler and

Class MailHandler. We can see that five out of eight assistant classes in this diagram

are used by Class DataPackager, which indicates the critical role of Actor Data

Packager in AOB. In fact, the primary task of this sub-system is to pack and unpack

standardized XML documents, and to transmit and receive them between the local

system and the central negotiation center.

88

Fig.37 Class Diagram of Agent Office Branch Sub-System in E-Marketplace

In Class SellerAgentPacker and Class BuyerAgentPacker, the XML document

schemes and formats for Shopping Agent data and contract data are carefully designed

and strictly constrained. Required information on negotiation processes and contract

making will be packed into the XML documents in the unified format that all members

89

in this network cluster agree on. Class BranchTransmitter and Class BranchReceiver

are the communicators in this sub-system, helping Class DataPackager send and

receive XML documents.

To coordinate transmitting XML documents, we do not use socket, but use the internal

messaging system and Agent/Role/Group Model of the Madkit platform.

The messaging systems in the Madkit platform are defined by inheritance from a

generic Message class. Thus specific messages can be defined for intra-group

communication, and allows a group to have its specific communication attributes.

Messages receivers and senders are identified by their AgentAddress. MadKit do not

define interaction mechanism, which can be defined on an ad-hoc basis, or built in a

specific agent model library. Therefore, the coordination between AOB and AANSC

can be supported by the intra-group communication mechanism provided by Madkit.

We just simply register the Management Agents in AOB and AANSC in the same

Group, Office_Staff, and assign distinct Roles to these Management Agents. Once the

distributed Madkit kernels are synchronized before starting the whole system, the

Management Agents in Group ‘Office-Staff’ will automatically be visible to any peers

within this Group. Therefore, they can send and receive message to their peers by

identifying the individual AgentAddress, no need of the socket connection process.

For XML documents transmission, the messaging mechanism of Madkit is not

powerful and robust enough to transmit a mass of XML documents carrying all

important information for AANS. But the Socket communication supported by Java

90

networking computing provides us a standard and widely used approach. The

following part will give some brief introduction about socket communication.

Though URLs and URLConnections provide a relatively high-level mechanism for

accessing resources on the Internet, sometimes our programs require lower-level

network communication, for example, when we want to write a client-server

application. In client-server applications, the server provides some service, such as

processing database queries or sending out current offer prices. The client uses the

service provided by the server, either displaying database query results to the user or

making purchase recommendations to an investor. The communication that occurs

between the client and the server must be reliable. That is, no data can be dropped and

it must arrive on the client side in the same order in which the server sent it.

TCP provides a reliable, point-to-point communication channel to those Client/Server

applications on the Internet to communicate with each other. To communicate over

TCP, a client program and a server program establish a connection to one another.

Each program binds a socket to its end of the connection. To communicate, the client

and the server each reads from and writes to the socket bound to the connection.

A socket is one end-point of a two-way communication link between two programs

running on the network. Socket classes are used to represent the connection between a

client program and a server program. The java.net package provides two classes, Class

Socket and Class ServerSocket, which implement the client side of the connection and

the server side of the connection, respectively.

91

Thus, we design two classes running at AOB and AANSC to implement the

connection between them. When sending files from AOB to AANSC, AOB is the

client side and NAASC is the server side. Conversely, when sending files from

NAASC to AOB, NAASC is the client side and AOB is the server side. Once

Management Agents at both ends have been ready for delivering XML documents, the

socket communication programs will get to connect and implement the transmission

work.

92

Fig.38 Class Diagram of the Agent-Based Automated Negotiation Service Center

As shown in Fig.38, the Class Diagram of AANSC presents some agent classes we can

see in the Agent-Based Negotiation Sub-System of LSM, including Class SellerAgent,

Class BuyerAgent, Class AgentManager, Class DBBroker and Class ContractManager.

There are also some agents specially designed for NCM, primarily for processing

XML documents. The key class is the Class H_DataProcessor and Class

93

H_AgentUnpackager. The Class H_DataProcessor together with its assistant classes,

Class SAXParser, Class HQTansmitter and Class HQReceiver, take the responsibility

of transmitting and receiving XML documents by socket. Class H_AgentUnpackager

together with assistant classes, BuyerAgentUnpacker and Class SellerAgentUnpacker,

unpack all the coming XML documents of Shopping Agent data and save them into the

Central DB. Further, an assistant class also is created for Class H_ContractManager

and Class H_ContractPacker, which specially packs the Informal Contract data into the

standardized XML documents. And then, Class HQTansmitter will send them back to

the corresponding AOBs.

4.3 Tests and Results

The software systems for these two models, LSM and NCM, are both implemented and

we have run the systems in all of the scenarios defined in 4.2.1.2 and 4.2.2.2. All the

test cases, including boundary and stress test cases, unit test cases, integration test

cases and final acceptance test cases are created in the design phase and fully executed

after completing unit implementation, unit integration and system integration,

respectively. Unit test cases are defined based on the system architecture design, use

case diagrams and class diagrams. Boundary and stress test cases, integration test cases

and final acceptance test cases are defined based on the software requirement analysis

and the scenarios specified in sequence diagrams.

The testing results from LSM are largely as expected and the whole system works very

stable. ‘Stable’ means the system, including the traditional e-marketplace and the plug-

in AANS, can be independently launched correctly and works well along with each

other by sharing DB. ‘Stable’ also means tens of Shopping Agents can be

94

simultaneously activated in the MAS, conduct negotiation for their users’ interests

following the communication protocol predefined and reach qualified Informal

Contracts for their users. Other normal functions, such as user account management,

search engine, etc., all can work properly in tests.

 On the other hand, the results from NCM are also encouraging although they are not

as good as those from LSM. In most cases, agents can work well together and achieve

right contracts if the total number of agents is not more than twenty around and the

number of the branch e-marketplaces within the cluster is not more than three. Once

more e-marketplaces join the cluster or more agents get activated in AANSC, some

unexpected errors may happen. The most frequently happened error is that the

Management Agents in the e-marketplaces that newly join the cluster can not smoothly

interact with the Management Agents in AANSC, such as losing messages on the way.

These unexpected errors can be interpreted by the previous analysis on NCM in 3.2.

The primary reason for these unstable problems is that agents in e-marketplaces and

AANSC need to collaborate and communicate remotely within the cluster, which

increases the requirement for agents’ interoperability and synchronization. Thus, our

agent programs need further optimization. On the other hand, better support for agents’

interoperability and synchronization is also expected from the agent infrastructure

platform, Madkit, whose new version is on the way already.

95

Chapter 5 Conclusions & Future Works

This thesis has described two models for building an Agent-Based Automated

Negotiation System (AANS) for e-marketplaces, Local Service Model (LSM) and

Network Cluster Model (NCM), where agents buy and sell goods and negotiate with

interested parties in behalf of their users. In LSM, AANS belongs to the e-marketplace.

Though the negotiation system can not be shared with other similar e-trading systems,

it is independently plugged into the e-marketplace as an optional service component.

Therefore, the modularized design makes this advanced service system easy to be

assembled and dismantled to any similar e-marketplace as an additional module with

little integration effort.

After demonstrating the two models for supporting the agent-based negotiation service,

we described the design of the multi-agent organization for the negotiation system,

agent communication protocols, system openness, infrastructure services, negotiation

strategies, negotiation algorithms and some other issues.

Firstly, we extend Flat Organization to Complex Flat Organization for the open MAS,

which are supported by an agent location mechanism. Agents running in it are divided

into two categories, Management Agents and Shopping Agents. Management Agents

are ‘full-time staff’, which should be active if only the MAS is running, of our MAS

and dedicate to maintain the system and administrate Shopping Agents within it. On

the other hand, Shopping Agents, who are only active for specific sales or purchase

delegations, have limited working life, and are assigned to various departments and

groups to conduct negotiation. Shopping Agents are under the control of Management

96

Agents and can not freely communicate with other Shopping Agents in the negotiation

system. To any Shopping Agent, only the counterparty Shopping Agents matched by

the Agent Manager are accessible. That means a Seller Agent only can negotiate with

matched Buyer Agents in the same Negotiation Group and a Buyer Agent only can

negotiate with matched Seller Agents in the same Department. This organization

design makes a tradeoff between the openness and dynamism of Flat Organization and

the low communication cost of Hierarchical Organization.

Secondly, considering the mixed characters of Complex Flat Organization, we

designed a mixed Symmetry & Asymmetry Communication Model, using connection-

oriented peer-to-peer and broadcast/multicast communication approaches. When the

negotiation system is started and connected to the network, all Management Agents

can symmetrically communicate with each other by means of peer-to-peer; On the

other hand, Buyer Agents asymmetrically communicate with Seller Agents in the same

Negotiation Groups, by means of peer-to-peer and multicasting.

Thirdly, the negotiation MAS is Half-Dynamic Openness. Management Agents are

well determined in advance, but Shopping Agents are unpredictable and may enter or

leave the MAS at any time. The infrastructure services are supported by the multi-

agent platform Madkit (Multi-Agent Development Kit), a Java multi-agent platform. It

provides general agent facilities, including lifecycle management, naming services,

location mechanism, message passing, distribution, synchronization, etc, and allows

high heterogeneity in agent architectures and communication languages, and various

customizations.

97

Fourthly, to make the negotiation protocol and strategies scalable, we modularized the

architecture of negotiable Shopping Agents by separating the negotiation

implementation from negotiation protocol definition and strategy definition. We

extended a Half-Bilateral Negotiation Model for the negotiation protocol, three

optional negotiation strategies and respective algorithms.

Finally, we designed a prediction algorithm for negotiation, evaluating how far the

negotiation is going towards the objective. Furthermore, we discussed a critical

problem in e-commerce application, users’ reputation, and designed a simple but

effective reputation evaluation mechanism.

To implement the two models, NCM and LSM, we developed two different versions

for SHCM. Especially for the collaboration mechanisms of the distributed servers in

NCM, implementation using XML plays a key role in terms of collaboration and

integration of the distributed servers in this model.

In fact, the two versions of SHCM are two separate systems, experienced two different

system analysis, design, modeling, coding and testing processes, and can be used

separately. For LSM of SHCM, we specifically described the system requirements of

the traditional E-Marketplace Sub-Systems and the Agent-Based Automated

Negotiation Sub-System, and demonstrated the system design of these two sub-

systems by presenting Use Case Diagrams, Sequence Diagrams and Class Diagrams.

For NCM of SHCM, we only focused on the Agent Office Branch Sub-System in e-

marketplaces and the centralized Agent-Based Automated Negotiation Service Center

(AANSC) , neglecting the system analysis and design of the traditional E-Marketplace

98

Sub-Systems which is similar with that in LSM. Also, we made use of Use Case

Diagrams, Sequence Diagrams, and Class Diagrams to demonstrate the

implementation details, especially explaining the collaboration mechanisms for the

distributed servers in the network cluster. XML is the core technology in terms of

communication and cooperation, since all important data are packed into the

standardized XML documents and transmitted within the cluster.

Finally, we described and analyzed the testing results for these two software systems.

The results from LSM are very satisfying in terms of the stable work performance.

Also, the system in NCM model is workable but interoperability errors may happen as

the population of agents and e-marketplaces increases.

However, our proposed architectures, organizations, protocols, algorithms, as well as

the scenarios dedicated to the two models still have some disadvantages.

First of all, the agent communication protocol we used is not a standard and general

protocol. The communication protocol we proposed in this thesis is tailored for the

specific scenario of this project to reduce computing overhead and enhancing

interaction efficiency. It is hardly to extend it to support multi-agent systems for other

goods category without modification.

Then, because of the limited time, the negotiation strategies and algorithms designed in

this thesis are still simple and raw, which is for easing implementation. The negotiation

algorithm curves which are executed by the Shopping Agents are all the

transformations of basic mathematic curves, including line, square and cube.

99

Also, SHCM only focuses on the key component of the whole system, AANS, and

neglects many other issues which will help increase the trust of the trading platform,

such as issues on security, legal, privacy and so on.

Next, our MAS is implemented on an excellent open source multi-agent platform-

Madkit, making use of its given mechanisms, such as lifecycle management, naming

services, location mechanism, message passing, distribution, synchronization,

heterogeneity, etc. however, Madkit is not robust enough to support a large number of

agents (typically in the order of hundreds or thousands) launched simultaneously,

otherwise the kernel of Madkit will have a greater risk of collapsing under such an

overloaded situations.

Finally, the wide application of our proposed negotiation system needs the industry

support for a uniform agent platform and specification. There are several existing

multi-agent platforms, but most are only used for research and simulation. It seems the

uniform agent platform will not emerge in the very near future.

The solutions for the above-mentioned issues would be challenging for the deployment

of software agent-mediated e-marketplace applications.

100

References

[1] C. Sierra and F. Dignum, “Agent-Mediated Electronic Commerce: Scientific and

Technological Roadmap”, Lecture Notes in Artificial Intelligence, Vol. 1991,

Springer-Verlag, pp. 1-18 (2001)

[2] Chris Preist, “Algorithm Design for Agents Which Participate in Multiple

Simultaneous Auctions”, Trusted E-Services Laboratory, Hewlett-Packard Company,

(2000)

[3] Alessio R. Lomuscio, Michael Wooldridge and Nicholas R. Jennings, “A

Classification Scheme for Negotiation in Electronic Commerce”, International Journal

of Group Decision and Negotiation 12 (1) pp. 31-56 (2003)

[4] Alessio R. Lomuscio, Michael Wooldridge and Nicholas R. Jennings, “Automated

Negotiation in Agent-Mediated Electronic Commerce”, UK (Dec. 1999)

[5] Charles Petrie, “Agent-Based Software Engineering”, Agent-Oriented Software

Engineering: First International Workshop, AOSE 2000, pp. 59-76, Limerick, Ireland

(Jun. 2000)

[6] http://www.madkit.org/

[7] http://www.chemconnect.com/

[8] http://www.orbitz.com/

[9] http://www.priceline.com/

[10] http://www.ebay.com/

[11] http://www.bn.com/

[12] M. Tsvetovovatyy and M. Gini, “Toward a Virtual Marketplace: Architectures

and Strategies”, Proceedings of the First International Conference on the Practical

101

Application of Intelligent Agents and Multi-Agent Technology, pp. 597-613, London,

UK (1996)

[13] A. Chacez, D. Dreilinger, R. Guttman and P. Maes, “A Real-life Experiment in

Creating an Agent Marketplace”, Software Agents and Soft Computing: Towards

Enhancing Machine Intelligence: Concepts and Applications, pp. 160-182, Berlin,

New York (1997)

[14] A. Chavez and P. Maes, “Kasbah: An Agent Marketplace for Buying and Selling

Goods”, Proceedings of the First International Conference on the Practical Application

of Intelligent Agents and Multi-Agent Technology, pp. 75090, London, UK (1996)

[15] Gioogos Zacharia, Alevandros Moukas, Robert Guttmen and Pattie Maes, “An

Agent System for Comparative Shopping at the Point of Sale”, Technologies for the

Information Society: Developments and Opportunities, Amsterdam: IOS Press (1998)

[16] Shim Yoon, Ju Young Yun, SooWoong Kim, “Jangter: A Novel Agent-Based

Electronic Marketplace”, Agent Mediated Electronic Commerce II: Towards Next-

Generation Agent-Based Electronic Commerce Systems, pp. 102-112, New York

(2000)

[17] Simon Parsons, Carles Sierra, and Nick Jennings, “Agents that Reason and

Negotiate by Arguing”, Journal of Logic and Computation, Vol. 8 Nos1-3, pp. 261-292

(1998)

[18] Maria Joao Viamonte and Carlos Ramos, “A Model for an Electronic

Marketplace” Agent Mediated Electronic Commerce: the European agentlink

perspective, Berlin, New York (2001)

 [19] Noyda Matos and Carles Sierra, “Evolutionary Computing and Negotiating

Agents”, Agent Mediated Electronic Commerce: First International Workshop on

Agent Mediated Electronic Trading, AMET-98 Minneapolis, MN, USA (1998)

102

 [20] Carles Sierra, Peyman Faratin and Nick R. Jennings, “A Service-Oriented

Negotiation Model between Autonomous Agents”, Multi-Agent Rationality: 8th

European Workshop on Modeling Autonomous Agents in a Multi-Agent World,

MAAMAW'97, Ronneby, Sweden (1997)

[21] Onn Shehory, “Software Architecture Attributes of Multi-Agent Systems”, IBM

Research Lab, Israel (2000)

[22] Jacques Ferber, Olivier Gutknecht and Fabien Michel, “MadKit Development

Guide v3.1”, Madkit Project Team, France (2002)

[22] Olivier Gutknecht and Jacques Ferber, “The MADKIT Agent Platform

Architecture”, Madkit Project Team, France (May 2000)

[23] Gustavo E. de Paula, Francisco S. Ramos and Geber L. Ramalho, “Bilateral

Negotiation Model for Agent-Mediated Electronic Commerce”, Agent-Mediated

Electronic Commerce III, pp. 1-14, New York (Jun. 2000)

[24] Agent Platform Special Interest Group of the Object Management Group (OMG),

“Agent Technology Green Paper”, Available at http://www.objs.com/agent/index.html

(Sep. 2000)

[25] http://www.cs.wright.edu/~mcox/COMAS/

[26] http://www.trl.ibm.com/aglets/index_e.htm/

[27] http://www.madkit.org/

[28] Todd Sundsted, “Agents on the move, Bolster Your Client Applications by

Adding Agent Mobility”, Available at http://www.javaworld.com

[29] Bernhard Bauer, Jorg P. Muller and James Odell, “Agent UML: A Formalism for

Specifying Multi-agent Software Systems”, AOSE (Agent-Based Software

Engineering) 2000, pp. 45-58, Limerick, Ireland (Jun. 2000)

103

[30] James J.Odell, H.Van Dyke Parunak and Bernhard Bauer, “Represeting Agent

Interaction Protocols in UML“, AOSE (Agent-based Software Engineering) 2000, pp.

45-58, Limerick, Ireland (Jun. 2000)

[31] Ralph Depke, Reiko Heckel, Jochen Malte Kuster, “Agent-Oriented Modeling

with Graph Transformation”, AOSE (Agent-based Software Engineering) 2000, pp.

45-58, Limerick, Ireland (Jun. 2000)

[32] Jurgen Lind, “Issues in Agent-Oriented Software Engineering”, Agent-based

Software Engineering (AOSE) 2000, pp. 45-58, Limerick, Ireland (Jun. 2000)

[33] Joakim Eriksson, Niclas Finne and Sverker Janson, “SICS Marektspace – An

Agent-Based Market Infrastructure“, Agent Mediated Electronic Commerce: First

International Workshop on Agent Mediated Electronic Trading, AMET-98

Minneapolis, pp. 41-53, MN, USA (1998)

[34] Amy R. Greenwald and Jeffrey O. Kephart, “Shopbots and Pricebots”, Agent

Mediated Electronic Commerce II: Towards Next-Generation Agent-Based Electronic

Commerce Systems, pp. 1-23, New York (2000)

[35] N. R. Jennings, P. Faratin, A. R. Lomuscio, S. Parsons, C. Sierra and M.

Wooldridge, “Automated Negotiation: Prospects, Methods and Challenges”,

International Journal of Group Decision and Negotiation 10 (2) pp. 199-215 (2001)

 [36] H. Jurgen Muller, “Negotiation Principles”, Foundation of Distribution Artificial

Intelligence, pp. 211-229, New York (1996)

[37] Martin Fowler and Kendall Scott, “UML Distilled, Applying the Standard Object

Modeling Language”, Reading, MA, Addison-Wesley (1997)

 [38] Robert H. Guttman and Pattie Maes, “Cooperatived vs. Competitive Multi-Agent

Negotiations in Retails Electronic Commerce”, Cooperative Information Agents (CIA)

104

II: Learning, Mobility and Electronic Commerce for Information Discovery on the

Internet: Second International Workshop, CIA '98, pp. 135-147, France (1998)

[39] M. Tsvetovat, K. Sycara, Y. Chen and J. Ying, “Customer Coalitions in the

Electronic Marketplace”, Proceedings of the Fourth International Conference on

Autonomous Agents, pp. 263 – 264, Barcelona, Spain (Jun. 2000)

[40] Simon Parson and Nick R. Jennings, “Argumentation and Multi-Agent Decision

Making”, Proceedings of the American Association for Artificial Intelligence (AAAI)

Spring Symposium on Interactive and Mixed-Initiative Decision Making, pp.89-91,

Stanford, USA (1998)

[41] Martin Beer, Mark d’Inverno, Michael Luck, Nick Jennings, Chis Preist and

Michael Schroeder, “Negotiaiton in Multi-Agent Systems“, Knowledge Engineering

Review 14(3) pp. 285-289, UK (1999)

 [42] N. R. Jennings, S. Parsons, P. Noriega and C. Sierra, “On Argumentation-Based

Negotiation“, Proceedings of the International Workshop on Multi-Agent Systems,

Boston, USA (1998)

[43] Shamimabi Paurobally and Jim Cunningham, “Specifying the Process and States

of Negotiation”, Agent Mediated Electronic Commerce: the European Agentlink

Perspective, pp. 61-77, Berlin (2001)

[44] C. Sierra, N. R. Jennings, P. Noriega and S.Parsons, “A Framework for

Argumentation-Based Negotiation“, Intelligent Agents IV: Agent Theories,

Architectures, and Languages (ATAL): 4th International Workshop, ATAL'97, pp.

177-192, Providence, Rhode Island, USA (July 1997)

[45] N. R. Jennings, T. J. Norman, P. Faratin, P. O’Brien and B. Odgers, “Autonomous

Agents for Business Process Management”, International Journal of Applied Artificial

Intelligence, 14 (2) pp. 145-189, UK (2000)

105

[46] Yannis Labrou and Tim Finin, “A Semantics Approach for KQML – A General

Purpose Communication Language for Software Agents”, Third International

Conference on Knowledge and Information Management (CIKM-94), Gaithersburg,

MD (Nov. 1994)

[47] Peter Fingar, “A CEO’s Guide to eCommerce Using Object-Oriented Intelligent

Agent Technology”, Available at: http://home1.gte.net/pfingar/eba.htm (Jun. 1998)

[48] Stan Franklin and Art Graesser, “Is it an Agent, or just a Program?: A Taxonomy

for Autonomous Agents”, Proceedings of the Third Internation Workshop on Agent

Theories Architectures, and Languages, published as Intelligent Agents III, pp. 21-35,

Springer-Verlag (1997)

106

Author’s Publication

[1] Liao Xuan and Bharadwaj Veeravalli, “Agent-Based Automated Negotiation

System for e-Marketplaces: Local Service Model and Network Cluster Model”,

submitted to Electronic Commerce Research and Applications, Elsevier Publishers,

Aug. 2003

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

