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Summary

The explosive amount of music data available on the Internet in recent years has

increased the demands to develop new methods to search and retrieve such data

effectively. Currently, most music search engines rely on text labels or symbolic

data, rather than the underlying acoustic contents. A content-based music infor-

mation retrieval system has the ability to find similar songs based on the underlying

acoustic features which are derived from the signals, regardless of metadata descrip-

tions or file names. Potential applications include automatic music identification,

copyright protection, and so forth.

In this thesis, we examine the problem of content-based music identification by

efficient and robust audio fingerprinting. Audio fingerprinting is a technology to

identify some piece of unknown audio based on a compact set of features derived

from the audio signal. It provides reliable and fast means for content-based music

information retrieval. Since music signals usually suffer from various distortions

or modifications such as mp3 compression, noise addition and so forth, design-

ing robust audio fingerprinting system which can resist effects of these distortions

becomes crucial. Besides, retrieval efficiency is also an important requirement in

practical applications when the size of music database increases rapidly.

We propose to improve the effectiveness and efficiency of audio fingerprinting

system resistent to distortions. In particular, we focus on three important modules:
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feature extraction, fingerprint modeling and matching, which affect the accuracy

and efficiency of the whole system.

Firstly, we study and compare several spectral features, including Mel-Frequency

Cepstral Coefficients, chroma spectrum, constant Q spectrum, and product spec-

trum. The former three features are derived only from magnitude spectrum, and

have been widely used in music signal processing and modeling. Product spectrum

takes advantage of the phase spectrum by using the product of magnitude spectrum

and group delay function. It shows effectiveness in robust speech recognition. Ex-

perimental results show that product spectrum based feature is more robust than

the former three features in audio fingerprinting.

Secondly, we propose a pattern accumulative similarity measure (PAS) which

better captures the similarity between music data and is discriminative under dis-

tortions that may result in mismatches in both time and amplitude axes. Ex-

perimental results show that PAS has improvement in effectiveness and efficiency

compared with Euclidean distance and DTW distance.

Thirdly, we use Gaussian mixture model (GMM) to boost the robustness of

audio fingerprints. First, a GMM is trained for the music database by using the

Expectation Maximization (EM) algorithm, which better describes the distribution

of acoustic feature space. Then, based on the trained GMM, feature vectors of music

database and test dataset are all converted into symbolic tokens. Experimental

results show the advantages of GMM modeling that it maintains high accuracy

under severe noise distortions.

Finally, we compare our method with an audio fingerprinting approach, Au-

dioDNA. Our method is similar to AudioDNA except that the acoustic features and

the similarity measure are different. Experimental results show that our method is

more resistent to noise distortions than AudioDNA.
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Chapter 1

Introduction

As the amount of music data in multimedia databases increases rapidly, there are

strong needs to investigate and develop content-based music information retrieval

systems in order to support effective and efficient analysis, retrieval and manage-

ment for music data. Compared with content-based image retrieval, content-based

music information retrieval (CBMIR) is a relatively new field, and the existing tech-

niques are far from perfect [53]. Most of current used music information retrieval

(MIR) systems are based on metadata of music, such as title, singer, composer,

lyrics, and album. It requires users to recall and specify metadata of music, which

becomes a major restriction on users’ queries. However, at times users’ request

can be based on the contents of the music. For example, “tell me the name of

the audio clip”, “skip the repeated chorus of the song”, or “who is singing the

melody on this recording?”. These queries are based on acoustic features, such as

melody, harmony, rhythm, and so forth. Therefore, CBMIR systems are essentially

required.

Audio fingerprinting aims to identify some piece of unknown audio in a labeled

audio database. Compared with the conventional MIR systems which are based

1



Chapter 1. Introduction

on metadata of music like title or lyrics, audio fingerprinting systems are based

on robust acoustic features, called audio fingerprints, which are extracted from

the music signal. Robust audio fingerprints mean that they should have close

resemblance to the fingerprints of a similar song with signal processing operations

such as mp3 compression and noise addition, while still distinguish from fingerprints

of different songs. It has vast applications, including music identification, broadcast

monitoring, and surveillance of the transmission of audio over the Internet.

The main objective of our work is to improve the accuracy and efficiency of au-

dio fingerprinting systems. Firstly, we study and compare several spectral features,

and find that the feature derived from product spectrum which combines phase

spectrum with magnitude spectrum is more robust than other spectral features

which are derived only from magnitude spectrum. Secondly, a pattern accumula-

tive similarity is proposed to better measure the similarity between audios under

several types of distortions. Thirdly, Gaussian mixture model (GMM) is used to

model audio fingerprints, boosting the robustness of audio fingerprints under noise

distortions while making fingerprints more concise.

In this chapter, we first introduce the framework, properties and applications of

audio fingerprinting systems. After analyzing the problems of audio fingerprinting

due to distortions, we summarize our main contributions in tackling these problems.

Finally, the structure of the thesis is given.

1.1 Audio Fingerprinting

Audio fingerprinting is a technology to identify some piece of unknown audio in

a labeled audio database based on a compact set of features, called audio finger-

prints, which are derived from the signal. It provides reliable and fast means for

2



Chapter 1. Introduction

content-based music information retrieval as the audio fingerprints are compact

summarizations of music files. The function of audio fingerprint is similar to that

of human fingerprint.

1.1.1 Framework

Figure 1.1 (adapted from [10]) illustrates the general framework of audio finger-

printing systems. It contains two major components: fingerprint extraction and

matching. The former extracts and models digital audio signals into audio finger-

prints which are discriminative enough to identify unlabeled distorted versions of

a song as the same song stored in a song database. The latter efficiently looks up

the audio fingerprints against the database and judges whether there is a matching

song in the database. The whole system specifically consists of five modules: front-

end, fingerprint modeling, fingerprints and metadata database, database look-up,

and hypothesis testing.

Front End

Fingerprint Extraction

Fingerprint
Modeling

Matching

Database
Look-up

Hypothesis
Testing

  Audio
Metadata

Unlabeled
  Audio
  Signal

Fingerprints
+  Metadata
      DB

   Song
Collections

Fingerprint Extraction

Songs' Metadata

Feature
Vectors

    Audio
Fingerprints

Score

    Audio
Fingerprints

Figure 1.1: General framework of audio fingerprinting systems

Front-End converts an audio signal into acoustic features which are fed into the

fingerprint modeling module. It further contains pre-processing, windowing
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Chapter 1. Introduction

and overlapping, feature extraction, and post-processing four steps. Feature

extraction is the core part.

Fingerprint Modeling usually receives a sequence of feature vectors passed from

the front-end. In the most straightforward form, audio fingerprints can be

modeled as a sequence (trace, trajectory) of feature vectors, without per-

forming any further processing. As redundancies exist in successive frames

in time, inside a song and across the whole database, further modeling steps

are usually used to model audio fingerprints into more robust and concise

representations.

Fingerprints and Metadata Database stores the fingerprints of song database,

and links fingerprints of each song to relevant tag or metadata. The size and

the structure of the database affect efficiency and accuracy of the system.

Database Look-up compares the fingerprints of the query song with the fin-

gerprints in the song database. If a credible similarity exists, the query is

considered to be found as the song in the database. It first defines the simi-

larity measure between audio fingerprints and then performs fast search, using

indexing or pruning strategies, to return a set of matching songs.

Hypothesis Testing aims to answer whether the query is in the labeled song

database or not. During the comparison between query’s fingerprints against

audio fingerprints database, similarity scores are obtained. Song with a score

beyond a certain threshold is regarded as a correct identification. The choice

of the threshold depends on the used fingerprint model, the discriminative

information of the query, the similarity of fingerprints in the database, and

the database size.

4



Chapter 1. Introduction

1.1.2 Requirements

A practical audio fingerprinting system should meet accuracy and efficiency re-

quirements.

A. Accuracy

Accuracy is the foremost requirement in most of audio fingerprinting systems. It

depends on robustness of audio fingerprints and similarity measures.

• Robustness

The robustness of audio fingerprints is related to acoustic features and finger-

print modeling methods. In reality, music signals usually suffer from various

distortions or modifications, such as mp3 compression, noise addition, chan-

nel distortion, and so forth. Therefore, robust audio fingerprints which can

resist these effects become essential. The audio fingerprints should not be

easily affected by signal processing operations, but be still distinctive to the

audio signal in order to distinguish between different songs.

• Similarity measure

Audio fingerprints may suffer from various distortions which could result in

misalignment in time or amplitude. Therefore, suitable similarity measures

which can maximize the similarity between distorted version and original

audio while minimize the similarity between different audios are needed to

prevent mismatch.

5



Chapter 1. Introduction

B. Efficiency

Efficiency is a crucial requirement for many applications especially when the size

of music database increases rapidly. However, there is a tradeoff between efficiency

and accuracy in most cases. The efficiency is related to the computational costs of

both fingerprint extraction and search algorithms, the size of fingerprints, and the

query granularity.

• Algorithm complexity

It mainly refers to the computational costs of both fingerprint extraction and

search algorithms.

• Fingerprint size

Compact fingerprint can reduce database storage, and moreover speed up the

search, as most of the data can be stored in the main memory.

• Granularity

Granularity means the length of an audio clip needed in order to identify the

clip. It depends on applications. In some applications a whole song is used

for identification, whereas in others only a short excerpt of audio is used.

1.1.3 Applications

There are several typical applications of audio fingerprinting systems.

• Recording identification

One typical scenario is when a person with a cell phone hears a broadcasting

song which he or she wishes to know more about, for instance, the song title,

singer, or album. The user records a 10-second clip of the song using his cell

6



Chapter 1. Introduction

phone, sends it to some service provider like Shazam [38], and then waits a

few minutes to get the feedback which contains relevant information of the

song. At the server side, the audio fingerprinting system retrieves in the song

database to find the desired song with relevant information using the received

example recorded in a noisy environment with lossy encoding of cell phone.

Therefore, the audio fingerprints must be robust in the face of distortions.

• Copyright detection

Another application is to restrict users from illegally uploading music to the

Internet. To protect copyrights, the uploaded music will be scanned and

checked against a database of copyright protected songs so that any pro-

tected content will be blocked. Similar applications include integrating audio

fingerprinting into p2p application which allows p2p technology to be used in

a copyright respected manner, and radio station monitoring.

1.2 Problems and Motivations

In audio fingerprinting, mismatch between query and database occurs when queries

suffer from various distortions or modifications. In our work, we focus on three

major distortions, resulting from lossy transmission channel, source editing, and

background noise. In the following, we will analyze problems in audio fingerprinting

under these distortions.

Problem 1 When users send their audio data through Internet or wireless net-

work, they will probably face packet losses due to lossy transmission channel.

Figure 1.2 shows the differences between the reconstructed audio and the

original version at the server side. We do not consider packet loss recovery
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Chapter 1. Introduction

here, since our main objective is to define suitable similarity measure. As

misalignment in time axis is often in company with this distortion, mismatch

will occur if Euclidean distance is used as a similarity measure between these

two audios. Dynamic Time Warping (DTW) can find the optimal alignment

between two sequences, but it is computationally expensive. Although using

global constraints can speed up DTW distance calculation, the value of r,

which is the allowed range of warping, affects the matching accuracy.

Lost Lost Lost

Original

Query

Figure 1.2: Mismatch due to lossy transmission channel

Edit

Original

Query

Figure 1.3: Mismatch due to source editing

Problem 2 In some applications, the audio is usually edited. For example, users

can replace parts of a song before uploading. For another example, radio

stations often add broadcaster’s speech into a song while broadcasting. In

the first case, parts of the original music are completely replaced by another

8



Chapter 1. Introduction

audio, as shown in Figure 1.3. In the second case, parts of the original

music become background music when human speech is added in. Both cases

could result in mismatch between query and the original music. Euclidean

distance is not suitable here because the accumulative distance between the

edited parts and the original parts could counteract the similarity between

the unedited parts.

Problem 3 Whenever users record an audio clip in a real environment, back-

ground noise will affect the quality of the recorded clip. Figure 1.4 shows

the effect of background noise on the waveform. Due to noise distortions,

the waveform of the recorded clip is quite different from that of the original

music. Therefore, robust audio fingerprints which can reduce the effect of

background noises become essential.

Background Noise

+
Original
 music

Recorded
   clip

Figure 1.4: Mismatch due to background noise

In our work, we aim at improving accuracy and efficiency of audio fingerprinting

systems. Specifically, in order to solve problem 1 and 2, we propose a new similarity

measure which better captures the similarity between music data under distortions.

It is not only effective under amplitude and time distortions, but also efficient

in computation. To solve problem 3, we study acoustic features and fingerprint
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Chapter 1. Introduction

modeling approaches to improve the robustness of audio fingerprints. First, we

study and compare several typical spectral features, and then we use statistical

modeling to generate robust and concise audio fingerprints.

1.3 Contributions

The main contributions of this thesis are as follows:

• We build a baseline of audio fingerprinting system on a database composed of

1000 songs. Using the standard acoustic feature, the Mel-frequency cepstral

coefficient (MFCC) which is widely used in various audio-related applica-

tions, we obtain recognition accuracy and receiver operating characteristic

(ROC) curve of the system, with regard to several types and levels of noise

distortions.

We also explore the effect of normalization and frame length on this baseline.

Experimental results show that normalization can greatly improve recognition

accuracy, and short frame, 46 ms, achieves better performance than long

frame, 372 ms.

• We study and compare several typical spectral features in audio fingerprint-

ing. Specifically, we have studied MFCC, chroma spectrum, constant Q spec-

trum, and product spectrum which incorporates magnitude spectrum as well

as phase spectrum. Although these features have been used in many mu-

sic/speech applications, their performance in audio fingerprinting are com-

pared the first time.

10
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Experimental results show that product spectrum based feature is more ro-

bust than the other three features in that it takes advantage of phase spec-

trum. It has better ROC performance under different noise distortions, and

achieves 92.09% overall identification rate with 0.1% false alarm rate.

• A pattern accumulative similarity measure (PAS) is proposed, which accumu-

lates the similarity of two audios along the matching path, whereas diminishes

the effect of unmatch. It better captures the similarity between music data

and is discriminative under distortions due to lossy transmission channel,

source editing, and background noise.

Experimental results show the effectiveness and efficiency of PAS compared

with Euclidean distance and Dynamic Time Warping (DTW) distance. It

can achieve 99% accuracy when a query audio is distorted with 10% data

loss, and 100% accuracy when 50% of a query audio is edited, while keeping

computationally efficient.

• Gaussian Mixture Model (GMM) modeling is used to generate robust and

concise audio fingerprints, which reduces acoustic feature vectors into sev-

eral types of tokens. First, the music database is trained using M Gaussian

components with diagonal covariance matrices in an incremental procedure.

Then, based on the trained Gaussian mixture model, acoustic feature vectors

of music database and test dataset are all converted into symbolic tokens

(acoustic events). GMM has advantages over other modeling approaches.

Experimental results show the advantages of GMM modeling that it main-

tains high accuracies with respect to white noises of 6 different SNR levels

from 20dB to -5dB, better than the performance when directly using feature

vectors, or modeling with Principal Component Analysis (PCA) or Vector

11
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Quantization (VQ). Besides, it reduces disk space and memory requirements,

and speeds up the matching process as well.

• We compare our method with an existing audio fingerprinting approach, Au-

dioDNA. Both methods model audio fingerprints as a sequence of acoustic

events. Our method is different from AudioDNA in that the product spectrum

based feature and the similarity measure PAS are used. Because AudioDNA

is based on exact match of subsequence, its performance decreases as the

noise distortions become more severe. As our method considers the effect of

noise distortion, it achieves better performance.

Experimental results show that our method is more resistent to noise distor-

tions than AudioDNA. Our method can achieve 100% accuracy when queries

are 5 seconds clips with 20dB babble noise distortion, but AudioDNA can

only achieve 96%. As the noise distortion becomes severe, our method can

maintain good accuracy whereas AudioDNA degenerates. Our method also

shows good performance with queries of different lengths.

1.4 Structure of Dissertation

The remainder of the thesis is organized as follows:

• Chapter 2. Related Work

In this chapter, we first briefly introduce the related work in feature ex-

traction, fingerprint modeling and matching respectively, because these three

modules comprise the core parts of an audio fingerprinting system. Then, we

describe a few representative systems, and analyze their limitations. Finally,

we give a brief overview of our system.

12
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• Chapter 3. Feature Extraction

Feature extraction is the basis for content-based music information retrieval.

In this chapter, we focus on the extractions of spectral features. First, we

briefly introduce the four steps of front-end processing and the importance of

feature extraction. Then we introduce several typical spectral features and

describe their calculations in detail. Finally, we compare these features to

show their similarities and differences.

• Chapter 4. Fingerprint Modeling

In this chapter, we study the methods for fingerprint modeling. We first

briefly introduce the motivations behind GMM modeling. Then we describe

in detail the GMM modeling, including theory for GMM, model training

process, and GMM token sequence generation. Finally, the advantages of

GMM are explained, compared with three modeling approaches.

• Chapter 5. Matching

In this chapter, we first give an overview of the matching module of audio fin-

gerprinting systems. After analyzing limitations of commonly used similarity

measures, we introduce the pattern accumulative similarity measure and the

search strategy. Finally, we describe the method for hypothesis testing.

• Chapter 6. Evaluation

In this chapter, we will describe the experimental results of the proposed

methods in previous chapters. Specifically, we will first present the music

database used for the experiments. Then, we study the robustness of acoustic

features by testing the effect of normalization and frame length, and compar-

ing the ROC performance between different spectral features. Furthermore,

13



Chapter 1. Introduction

we evaluate the effectiveness and efficiency of PAS and GMM modeling. Fi-

nally, we compare our method with an existing audio fingerprinting method

and test the system performance with respect to different query lengths.

• Chapter 7. Conclusion

We conclude the thesis in this chapter. We summarize our work on improving

the query effectiveness and efficiency for audio fingerprinting systems resistent

to distortions, and indicate the areas of future work.

14



Chapter 2

Audio Fingerprinting System

In this chapter, we will first review the background of audio fingerprinting sys-

tems, including feature extraction, fingerprint modeling and matching three as-

pects. Then, we introduce and analyze some state-of-the-art systems. Finally, we

present the system overview of our method.

2.1 Background

A number of audio fingerprinting systems have been developed in recent years. [10]

has provided a comprehensive review. In this section, we will first introduce the

related work in feature extraction, fingerprint modeling and matching respectively,

because these three modules comprise the core parts of an audio fingerprinting

system. Current systems vary from each other in these three modules. Then, we

will describe and analyze some representative systems.

15



Chapter 2. Audio Fingerprinting System

2.1.1 Feature Extraction

One major difference of existing audio fingerprinting systems lies in the used acous-

tic features. As audio signals are usually distorted due to noise addition, compres-

sion and so forth, robust features which can correctly identify a song regardless of

the level of distortion are needed. Previous studies have explored various acoustic

features that are robust to distortions [11, 27, 29, 48, 51, 58], most of which are

based on spectral features that use short-time Fourier transform to convert signals

from time domain into frequency domain.

Cano et al. [11] use Mel-Frequency Cepstrum Coefficient (MFCC) which is

a widely used feature that closely approximates the human auditory system’s re-

sponse. Herre et al. [29] use Spectral Flatness Measure (SFM) which is an estima-

tion of tone-like or noise-like quality for a band in the spectrum. Haitsma et al. [27]

describe a system that uses the energies of 33 bark-scaled bands to obtain 32-bit

sub-fingerprints which are the sign of the energy band differences (in both time

and frequency axes). Wang [58] generates fingerprints in the form of hash values

of pairs of spectrum peaks. First, a constellation map is generated by spectrum

peak detection on spectrogram. Then, each peak point is sequentially paired with

points within its associated target zone. Finally, the two frequency values of point

pair plus the time difference of this pair are hashed into a 32-bit unsigned integer.

Sukittanon et al. [51] propose the geometric mean of modulation frequency using

19 bark-spaced band filters, which characterizes the time-varying behavior of audio

signals. Seo et al. [48] use normalized spectral subband moments.
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2.1.2 Fingerprint Modeling

Existing methods for fingerprint modeling can be classified into time-unpreserving

and time-preserving methods.

Time-unpreserving methods ignore time information in audio. One simple

method is to summarize the multidimensional vector sequences of a whole song

(or fragment of it) into a single vector [22, 40, 55]. eTantrum [22] calculates the

means and variances of the 16 bank-filtered energies of 30 seconds clip into a vec-

tor. Musicbrainz [40] includes the average zero crossing rate, the average spectrum

and some more features into a vector. In [55], the normalized square root across

mean energy of each frequency band is concatenated to the normalized standard

deviation across RMS (Root Mean Square) power of each frequency band, gener-

ating a 30-coefficient vector. This kind of methods can improve the efficiency of

audio fingerprinting, but they degrade the accuracy especially when audio is under

distortions, for much information is lost, such as vectors’ distribution and order.

A more sophisticated method is to train fragment of feature vectors into a single

vector, using dimensionality reduction methods like Oriented Principal Component

Analysis (OPCA) [8, 9]. Burges et al. [8, 9] use OPCA to train both undistorted

and distorted data and project onto a set of non-orthogonal directions which min-

imize the variance of the true and distorted version of audio clips but maximize

the variance of different audio clips. A vector of 64 coefficients is extracted from

every 6 seconds audio clip. This method reduces the local statistical redundancies

of feature vectors with respect to time. The third method is to model a sequence

of feature vectors into a class, in the form of codebook [2] or probability model

[47]. Each song in the database is modeled as a class, and the retrieval is regarded

as a classification problem which assigns the query to the most similar class. Al-

lamanche et al. [2] use Vector Quantization (VQ) to cluster feature vectors and

17



Chapter 2. Audio Fingerprinting System

encode each song into a codebook which consists of a number of representative vec-

tors. The feature vectors of the query are approximated by each song’s codebook

and the song with the smallest approximation error is selected. Ramalingam et al.

[47] use Gaussian mixture model (GMM) to model each song, and the song with

the highest likelihood is regarded as a match. Temporal evolution of audio is lost

with this approximation.

In time-preserving methods, audio fingerprints are usually modeled as sequences

of acoustic feature vectors [27, 48, 51]. For instance, audio fingerprints are modeled

as bit vector sequences in [27], whereas vector sequences of real number in [48, 51].

When vectors are in the form of real numbers, these feature vector sequences can be

regarded as multivariate time series (MTS). Generally, there are three approaches

to deal with MTS. The first one is to treat it as multiple univariate time series,

process separately and aggregate the final result [56]. However, as there are usually

important correlations among the variables in MTS, an MTS should be treated as

a whole. Besides, it costs much more time in calculation. The second approach

is to reduce the dimensionality, transforming multivariate time series data into a

univariate time series [52]. Analyzing and processing univariate time series is easier

than multivariate time series and many researches have taken effort in studying

univariate time series [1, 17]. The third approach is to model vectors into several

classes by methods like clustering or statistical modeling. The whole sequence is

transformed into a string of symbolic tokens. For example, Hidden Markov Models

(HMMs) is used in [6, 11] to generate a string of acoustic events. In [6, 11], the

feature vectors are first clustered into several classes, where each class is regarded

as a type of acoustic event, and then modeled via HMM. Given a query, the feature

vector sequence is converted into a string of acoustic events using the trained HMM

model.
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2.1.3 Matching

Similarity measure is a key component in the matching process. The choice of

similarity measure depends on the representation of audio content. Appropriately

choosing the similarity measure can greatly enhance the discriminating capability

of the system, and increase the speed as well.

When audio fingerprints are modeled without preserving time information, mea-

sures like Euclidean distance, Itakura distance, Kullback-Leibler distance and like-

lihood are often used [9, 35, 47, 55]. In [9], Euclidean distance is used to measure

the distance between two fingerprint vectors. In [55], a fingerprint is modeled as

a vector with N coefficients. The Itakura distance between two fingerprints FPm

and FP n is defined as the log ratio of the arithmetic mean of ei to the geometric

mean of ei, where ei =
FP m

i

FP n
i

and 0 ≤ i ≤ N . In [35], each audio segment is modeled

by a Gaussian mixture model (GMM), and Kullback-Leibler distance is calculated

between two GMMs. GMM is also used in [47]. Each song is modeled as a GMM.

The query is compared with the database of pre-computed GMMs and the GMM

that gives the highest likelihood for the query is identified as a correct match.

When time information is preserved, measures such as Euclidean distance (L2)

or its variations, Dynamic Time Warping (DTW) distance, Hamming distance and

so forth are often used [16, 27, 48, 51, 59]. Euclidean distance is used in [48, 51]

to calculate the distances of two feature vectors, whereas DTW distance is used in

[16]. In [27], fingerprints are modeled into bit vector sequences, and thus Hamming

distance is used. In [59], the feature vector sequences are converted into strings,

and edit distance is applied. Among these similarity measures, some are sensitive to

amplitude distortions, i.e., Euclidean distance; some are computational expensive,

i.e., DTW and edit distance.
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2.1.4 Some State-of-the-art Systems

1. Philips scheme

Philips audio fingerprinting system [29] is one of the most widely used systems, and

has been commercially deployed. For example, the Musiwave music identification

service is available on the Spanish mobile carrier Amena, which uses the Philips

fingerprinting method. Users can identify a song playing on radio via this mobile

service.
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Fingerprints
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Hamming Distance

Hash Table
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Frequency  &
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Figure 2.1: Overview of Philips audio fingerprinting scheme

An overview of Philips scheme is depicted in Figure 2.1. Signal is broken into

a sequence of 370 ms frames with an overlap of 31/32. The large overlap ensures

that sub-fingerprints vary slowly over time. Power spectrum is extracted from each

window, and passed to a 33 bands filter-bank of a range 300-2000Hz. The filter-

bank reflects the perceptual characteristics of an audio signal. A sub-fingerprint

for each frame is calculated based on the sign of the power spectrum, differentiated

simultaneously along the time and frequency axes. This differentiation of spectrum

along the frequency and time axes benefits in two ways. First, it mimics high-

pass filtering and may be possible to remove undesirable perturbations. Second,

the differentiated power spectrum is uncorrelated with its temporal and frequency
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neighbors. In this way, a sub-fingerprint is typically represented as a 32-bit code

for each frame. The 32-bit code is usually indexed by a hash table. The bit is

assigned as

H(n,m) =





1 if E(n,m)− E(n,m + 1)− (E(n− 1,m)− E(n− 1,m + 1)) > 0

0 if E(n,m)− E(n,m + 1)− (E(n− 1,m)− E(n− 1,m + 1)) ≤ 0

where E(n,m) is the energy of the n-th frame and the m-th band.

A fingerprint block which contains 256 sub-fingerprints is the basic unit to

identify a song. For fast database lookup, a two-phase search algorithm is used. In

the first phase, the positions that match any sub-fingerprint in the query fingerprint

block are quickly found by looking up on the hash table. And full fingerprints

comparisons are only performed at candidate positions pre-selected in the first

phase. The best-match result is determined under the Hamming distance between

fingerprint blocks.

This scheme is quite efficient when the assumption that at least one sub-

fingerprint in the query fingerprint block has an exact match at the optimal po-

sition in the database is valid. Experiments show that the assumption almost

always holds for audio signal with slight distortions [29]. However, for signal with

heavy distortions the assumption is not always valid. At this time, sub-fingerprints

with an N -bit difference also need to be checked. Therefore, the matching process

slows down. Besides, the scheme is insufficient in a real-noise condition. When

some bands are corrupted by noise, the Hamming distance between a distorted

sub-fingerprint and the original one could be large.

21



Chapter 2. Audio Fingerprinting System

2. Shazam

Shazam [58] is a deployed commercial system available in the United Kingdom

which uses audio fingerprinting to let a cell phone user identify a broadcasting song.

Figure 2.2 is the system overview. Shazam’s fingerprints are based on spectrogram

peaks. Peaks are defined as time-frequency points with higher energy than their

local neighbors. Pairs of peaks are identified according to some locality and time

restrictions. The frequency components of peak pair plus their time difference form

a triple, (f1, f2, ∆t), to be hashed into a key value of 32 bit. The time offset t1

(which is the time duration from the beginning of the audio to the first element in

peak pair) and the audio ID form another 32 bits which are appended to the hash

key. In this way, a 64-bit value, (key, t1, ID), is generated and sorted according to

the key value.
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Figure 2.2: Overview of Shazam audio fingerprinting scheme

Given a query, a set of (key, t1, ID) records are generated, and compared with

the database. First, the matching key values are found and subsequently filtered

according to the time offset information t1. Then the match are counted for each

track in the audio database until a significant match is found.

There is a drawback in this scheme, because it is based on an assumption that
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even if the query signal is heavily distorted, a large number of local peaks will be at

the same relative positions in both the query and the corresponding database signal.

When the assumption does not hold under severe distortions, the fingerprints of

the query and the database signal, both of which are generated from hashing, will

be quite different.

3. RARE
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Figure 2.3: Overview of Microsoft audio fingerprinting scheme

Microsoft’s Robust Audio Recognition Engine (RARE) [9, 24] uses dimension-

ality reduction techniques based on training. As shown in Figure 2.3, the signal

is first converted to mono, downsampled to 11.025 kHz, and segmented into 372

ms frames overlapping by half. Then, the Modulated Complex Lapped Transform

(MCLT) is applied and log spectrum is extracted. After de-equalization which re-

moves distortions caused by frequency equalization and volume adjustment, and

perceptual thresholding which removes distortions that cannot be perceived by a

human, 2048 coefficients are obtained for each frame. The two layer DDA is based

on Oriented Principal Component Analysis (OPCA) which uses both undistorted

and distorted data for training. DDA projects the data onto directions that mini-

mize the variance of the true and distorted version of audio clips but maximize the

23



Chapter 2. Audio Fingerprinting System

variance of different audio clips. The first layer DDA projects 2048 coefficients into

64 coefficients. These projections are then concatenated into a vector with length

of 2048 and projected into another 64 coefficients by the second layer DDA. In this

way, a fingerprint of 64-coefficient vector is extracted from every 6 seconds audio

clip and mapped into a point in a 64 dimensional space. For each fingerprint, a

radius is computed using a validation set, generating a fingerprint hypersphere.

In the search process, the query fingerprint is mapped into the same 64 dimen-

sional space, and the fingerprint hypersphere which contains the mapped query is

found as a match. To avoid brute-force search, a two pass bit vector index [24]

is used. Each dimension is divided into bins, and each bin has a bit vector index

storing a list of data objects that overlap the bin. When the query is performed,

exactly one bit vector index is selected for each dimension, and “AND” together

to result in a set of candidate objects. In the second pass, linear scan is performed

on these objects to find true matches.

4. AudioID

AudioID [2, 3] follows a general pattern recognition paradigm. As shown in Figure

2.4, the system has two modes: training and classification. Feature vectors are

calculated from audio signals, which are subsequently interpreted as points in a

high dimensional space. The set of psychoacoustic features studied in [2] includes

loudness, spectral flatness measure (SFM) and spectral crest factor (SCF). In the

training process, Vector Quantization (VQ) [31] is used to cluster feature vectors

and encode each song of the database into a codebook which contains a smaller

number of representative vectors. In the classification process, feature vectors of

the query are extracted and approximated by all stored codebooks. For each class

(codebook), the approximation error is accumulated and the query is assigned to
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the class which yields the smallest accumulated approximation error.
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Figure 2.4: Overview of AudioID scheme

This system loses temporal evolution because it does not keep time information

in fingerprint modeling. Besides, as VQ is a hard clustering, the space is divided

into discrete cells. This is unnatural as the continuities of the vector space are

broken. Soft clustering approaches which obtain continuous “smooth” classification

can achieve better performance [31].

5. AudioDNA

AudioDNA [11] is the first prototype system designed for robust song detection

in broadcast audio. Figure 2.5 illustrates its architecture. For the original songs,

MFCCs are extracted from each audio waveform in the front-end module, and

converted into a sequence of acoustic events, called AudioDNA, by modeling via

Hidden Markov Models (HMM) [31]. This results in an AudioDNA database. In

the query process, AudioDNA for each unlabelled query audio is extracted in the

same manner, and compared with the AudioDNA database by approximate string

matching to obtain the best resemblances to the query.
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Figure 2.5: Overview of AudioDNA scheme

The matching method is based on exact matches of short subsequences of the

query, which is subsequently validated via some time gap restrictions. Matches that

do not satisfy the restrictions are rejected. The similarity S between AudioDNA

sequences is defined as the percentage of the sum of time intervals ∆tequal(i) for

exact matching within a period of time ∆tobs:

S(∆tobs) =

n∑
i=1

∆tequal(i)

∆tobs

In the defined time period ∆tobs, sequences with similarity higher than a pre-

defined threshold are returned as matching results.

This method is extremely efficient and effective when query is with little noise

distortion, compared with original audio. However, when severe distortions exist,

it becomes difficult to obtain exact matches to short subsequences of the query,

and thus the similarity between query and the original song becomes small. A false

recognition is more likely to occur.

2.2 Our System

Our work target at improving accuracy and efficiency of audio fingerprinting sys-

tems subjected to distortions due to lossy transmission channel, source editing, and
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Figure 2.6: Overview of our system

background noise. We focus on three important modules of audio fingerprinting

systems: feature extraction, fingerprint modeling, and matching. These three mod-

ules affect accuracy and efficiency of the whole system. Figure 2.6 is the framework

of our system.

• In feature extraction, we study and compare several spectral features, includ-

ing Mel-Frequency Cepstral Coefficient (MFCC), chroma spectrum, constant

Q spectrum and product spectrum. Both chroma spectrum and constant Q

spectrum express energy distribution related to the equal tempered scale in

western music, making them superior in music signal analysis, such as key

detection and chord recognition. MFCC is based on Mel scale filter-bank

which mimics the human auditory’s response. It has been highly frequently

used in speaker/speech recognition and music modeling. Product spectrum

takes advantage of the phase spectrum by using the product of magnitude

spectrum and group delay function, and has shown effectiveness in robust

speech recognition. However, its effect in music signal has not be studied

yet. Therefore, we study its effect in our work. Although these features have

been used in many music/speech applications, their performance in audio
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fingerprinting are compared the first time. We compare the robustness of

these features in the experiments. Since phase spectrum carries half of the

information about the audio signal, product spectrum is more robust than

the other three features which ignore the phase spectrum.

• In fingerprint modeling, we study the effect of GMM modeling in generating

robust and concise audio fingerprints to facilitate both accuracy and efficiency

of the system. Proper modeling methods can enhance the robustness of audio

fingerprints subjected to noise distortions, reduce the storage space and speed

up the matching process. GMM modeling has several advantages over other

modeling methods in music-related applications because of its better preci-

sion and efficiency. It models the feature space globally and converts acoustic

feature vectors into symbolic tokens (acoustic events) in a time-preserving

way. First, the music database is trained using M Gaussian components

with diagonal covariance matrices in an incremental procedure, which better

describes the global distribution of acoustic feature space. Then, based on the

trained Gaussian Mixture Model, acoustic feature vectors of music database

and test dataset are all converted into symbolic tokens (acoustic events). Ex-

perimental results show the advantages of GMM modeling that it maintains

high accuracy under severe noise distortions.

• In matching, we propose a Pattern Accumulative Similarity measure (PAS)

and its search approaches. Based on the observation that similar audios have

more short segments that match each other than that of dissimilar audios,

PAS accumulates the similarity of two audios along the matching path, while

diminishes the effect of unmatch. It better captures the similarity between
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music data and is discriminative under distortions that may result in mis-

matches in both time and amplitude axes. Experimental results show that

PAS has improvement in effectiveness and efficiency compared with Euclidean

distance and DTW distance.

2.3 Summary

In this chapter, we first review related work of feature extraction, fingerprint model-

ing and matching three aspects because they are important modules that affect the

accuracy and efficiency of the whole system. Then, we introduce five state-of-the-

art systems, including Philips scheme, Shazam, RARE, AudioID and AudioDNA,

and analyze their limitations. These systems represent the main techniques in au-

dio fingerprinting systems, and cover all the core modules. Finally, we present the

structure of our system and its advantages in effective and efficient audio finger-

printing when distortions exist in music signal. Specifically, we study and compare

several spectral features, including Mel-Frequency Cepstral Coefficients, chroma

spectrum, constant Q spectrum and product spectrum in feature extraction, study

the effect of GMM modeling in fingerprint modeling to generate robust and concise

audio fingerprints, and propose a pattern accumulative similarity measure which

better captures the similarity between music data and is discriminative under sev-

eral kinds of distortions.
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Feature Extraction

3.1 Introduction

Digital audio is represented as a sequence of discrete audio samples obtained by

sampling and quantization on analog audio signal. However, these discrete samples

in time domain can not be used directly in content-based audio analysis. Firstly,

the amount of samples is usually huge, which incurs high computational cost. Sec-

ondly, the samples are highly correlated, resulting in data redundancy. Thirdly,

the information contained in each sample is too small to be meaningful for human

perception. Finally, these samples are quite sensitive to distortions, such as chan-

nel distortion and background noise. Therefore, it is necessary to extract acoustic

features from digital audio in order to manipulate more meaningful information

and to facilitate further processing.

As shown in Figure 1.1, front-end module converts an audio signal into acoustic

features. It consists of four steps: pre-processing, windowing and overlapping,

feature extraction, and post-processing. Figure 3.1 shows the steps for front-end

processing. The rounded rectangles show the techniques and parameters used in
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Figure 3.1: Steps for front-end processing

our implementations.

• Pre-processing

The audio is converted to a general format, e.g., mono 16-bit PCM (Pulse-

Code Modulation) with a fixed sampling rate of 22.05 kHz. Other types of

processing like pre-emphasis and amplitude normalization can also be applied.

• Windowing and overlapping

The signal is divided into frames of small size, typically 23 ms for speech signal

and 46 ms or longer for music signal, under the assumption that the signal

can be regarded as stationary over an interval of a few milliseconds. These

frames can have overlaps. Window functions such as the Hamming window

can be applied to each frame to attenuate the discontinuities at window edge

[41]. In our implementation, 46 ms and 372 ms Hamming window with 50%

overlap are used and compared in the experiments, for these parameters have

been widely used in music signal processing [9, 21, 48, 51].
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• Feature extraction

Most of the acoustic features are extracted by performing time-frequency

analysis, such as the STFT (Short-Time Fourier Transform). The frequency

content can be represented as a magnitude spectrum that represents the en-

ergy distribution over frequency for the particular frame. Such a magnitude

spectrum is usually viewed as a feature vector. Log magnitude spectrums of

successive frames constitute a spectrogram. Although the magnitude spec-

trum can be used directly to represent audio signals, it contains lots of unim-

portant information, and the dimensionality of the feature vectors is high. It

is better to use feature vectors of small dimensionality which are as informa-

tive as possible. Therefore, based on magnitude spectrum, a set of features

that characterize the gross spectral shape are calculated, for instance, the

Mel-frequency cepstral coefficients (MFCCs). Some features such as chroma

spectrum and constant Q spectrum are specially designed to suit the equal

tempered scale in western music, making them superior in music signal anal-

ysis. All these spectral features have been widely used in Computer Audition

and Speech Recognition algorithms.

• Post-processing

The feature vectors of each song, {ct, t = 1, . . . , T}, are normalized to follow

the standard normal distribution by using the transformation of c̃td = (ctd −
µd)/σd, where µd and σd are respectively mean and standard deviation of the

d-th dimensional feature values of the song. Normalization can reduce the

effects of small noise distortion and channel distortion, which is studied in

the experiments.

The most distinct differences between existing audio fingerprinting systems are
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due to the used time-frequency features. Therefore, feature extraction forms the

major contents of this chapter. Related work about feature extraction is summa-

rized in Section 2.1.1. Most of these acoustic features are extracted from spectral

features.

Spectral features are based on short-time Fourier transform that generates

two components: magnitude spectrum and phase spectrum. Existing features are

mostly extracted from the magnitude spectrum, while the phase spectrum is dis-

carded. The phase spectrum has been recently studied in human speech perception

and automatic speech recognition [20, 42]. Product spectrum takes advantage of

the phase spectrum by using the product of magnitude spectrum and group delay

function (GDF), and has shown effectiveness in robust speech recognition [61]. In

our work, we investigate the effectiveness of using the product spectrum in audio

fingerprinting.

In the following sections, we will first introduce several spectral features, includ-

ing magnitude spectrum, Mel-Frequency Cepstral Coefficients (MFCC), chroma

spectrum, constant Q spectrum, and product spectrum. Their calculations are de-

scribed in detail. Then, we compare these spectral features to show their similarities

and differences.

3.2 Spectral Features

3.2.1 Magnitude Spectrum

Most of the acoustic features are based on the DFT (Discrete Fourier Transform)

or more specifically the STFT (Short Time Fourier Transform). For efficient com-

putation, the FFT (Fast Fourier Transform) is often used instead of the DFT. The

STFT X(n, k) of a signal x(n) is a function of both time n and frequency k, which
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can be calculated by [41]:

X(t, k) =
∞∑

m=−∞
x(n)w(n− t)e−j(2π/N)kn (3.1)

where k = 0, ..., N−1, w(n) is the window function, commonly a hamming window

or gaussian window, x(n) is the input signal, and N is the size of the transform.

The output X(t, k) for any particular value of k is a frequency shifted, band-pass

filtered version of the input.

X(t, k) can be decomposed into

X(t, k) = |X(t, k)|ejψ(t,k) (3.2)

where |X(t, k)| is the short-time magnitude spectrum and ψ(t, k) = ∠X(t, k) is

the short-time phase spectrum. The STFT for a particular frequency k at particular

time t is a complex number. For feature calculation, only magnitude of these

complex numbers is retained.

Based on the STFT, spectral shape features which describe the shapes of mag-

nitude spectrum |X(t, k)| or power spectrum |X(t, k)|2 of a signal frame are cal-

culated. These features include centroid, spread, kurtosis, slope, roll-off frequency,

flux (local spectral change), Mel-frequency cepstral coefficients (MFCCs), and so

forth [54].

3.2.2 Mel-Frequency Cepstral Coefficients

Mel-frequency cepstral coefficients (MFCCs) [18] are perceptually motivated fea-

tures that are based on the magnitude spectrum. After performing the STFT, the

magnitude spectrum is mapped onto the Mel scale, using triangular overlapping
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windows called Mel-frequency filter-bank. This results in FBEs (FilterBank En-

ergies) which accumulate total energy within each band. Whereafter, in order to

decorrelate the FBEs, a discrete cosine transform is performed on log FBEs. It

transforms features from the log-spectral domain to the cepstral domain, where

the size of the cepstral features is often less than that in the log-spectral domain.

Mel scale reflects the human auditory perception, making MFCC robust to noise

distortions [50]. MFCC has been widely used in various areas, such as speaker

recognition, speech recognition, music/speech classification, and music modeling

[11, 23, 37].

The MFCCs are computed in the following steps:

1. Compute the FFT spectrum of x(n), denoted by X(k).

2. Compute the power spectrum |X(k)|2.

3. Apply a Mel-frequency filter-bank to |X(k)|2 to get the filter bank energies.

4. Calculate DCT of log FBEs to get the MFCCs.

Figure 3.2 shows the calculation steps. More details about the calculation of

MFCCs can be found in [46].

3.2.3 Chroma Spectrum

In the 1960’s, Shepard [49] reported two distinct attributes of pitch perception,

the tone height (octave number) and the chroma (pitch class). Based on these

attributes, the chorma spectrum [57], also called the pitch class profile (PCP), is

proposed in order to map the values of the magnitude spectrum to the 12-semitone

pitch class. Usually, the chroma spectrum is a 12-dimension representation, cor-

responding to chroma scale. All notes are mapped to a single octave. The main
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Figure 3.2: Steps for Mel-Frequency Cepstral Coefficients (MFCC)

concept of chroma spectrum is shown in Figure 3.3. A sequence of chroma spec-

trums constitute the chromagram. Chroma spectrum has been used in musical key

extraction [44], chord recognition [34] and chorus detection [5, 25].

For chromagram C = [x1, x2, ..., xn], xi is a chroma spectrum, 0 ≤ i ≤ N .

xi = [xi1, xi2, ..., xiD]T , where D = 12 in most of the cases. D could also be 24, 36

in generalized versions.

Specifically, chroma spectrum can be computed from magnitude spectrum fol-

lowing the formula [13]:

Xchroma(k̄) =
∑

k:P (k)=k̄

X(k) (3.3)

where X(k) denotes the magnitude spectrum of signal x(n). k is the frequency

index, 1 ≤ k ≤ d(NFFT + 1)/2e, where NFFT is FFT length. The spectral

warping between frequency index k in magnitude spectrum X(k, n) and frequency
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Oct-1  C1  C#1  D1  D#1  E1  F1  F#1  G1  G#1  A1  A#1  B1 

Oct-2  C2  C#2  D2  D#2  E2  F2  F#2  G2  G#2  A2  A#2  B2 

Oct-3  C3  C#3  D3  D#3  E3  F3  F#3  G3  G#3  A3  A#3  B3 

Oct-4  C4  C#4  D4  D#4  E4  F4  F#4  G4  G#4  A4  A#4  B4 

Oct-5  C5  C#5  D5  D#5  E5  F5  F#5  G5  G#5  A5  A#5  B5 

Oct-6  C6  C#6  D6  D#6  E6  F6  F#6  G6  G#6  A6  A#6  B6 

Oct-7  C7  C#7  D7  D#7  E7  F7  F#7  G7  G#7  A7  A#7  B7 

 

C  C#  D  D#  E  F  F#  G  G#  A  A#  B 

 

12-Chroma
Spectrum

C=SUM(Ci) F=SUM(Fi) B=SUM(Bi)

Figure 3.3: Overview of calculating a 12-dimensional chroma spectrum

index k̄ in chroma spectrum Xchroma(k̄) is

k̄ = P (k) = [D · log2(k/NFFT · fs/f0)] mod D (3.4)

where fs is the sampling rate and f0 is the frequency of a reference note in the

standard tuning system.

3.2.4 Constant Q Spectrum

Constant Q spectrum (CQS) is derived by constant Q transform (CQT) [7] which

uses a bank of filters whose center frequencies are geometrically spaced [39], as

opposed to the linear spacing that occurs in the DFT. In modern western music,

the frequencies of musical notes in the equal tempered scale are geometrically spaced

[60]. As the frequency resolution can be set to match that of the equal tempered

scale, CQT has considerable advantages for music signal analysis, such as pattern

discovery [39] and key detection [62].

Given an minimum frequency f0 that we are interested in computing the CQT,
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the center frequencies of each subband can be obtained from

fk = f0 ∗ 2k/b (3.5)

where b is the number of filters per octave (1 octave = 12 semitones), and

k = 0, 1, 2, ..., N ∗ b (for N octaves). b is usually with a value of 12, 24 or 36.

The bandwidth of the k-th filter is

∆cq
k = fk+1 − fk = fk(2

1/b − 1) (3.6)

In CQT, the bandwidth ∆cq
k varies proportionally to its center frequency fk.

Therefore, the constant ratio of frequency to resolution is

Q = fk/∆
cq
k = fk/(fk+1 − fk) = (21/b − 1)−1 (3.7)

The desired bandwidth ∆cq
k = fk/Q can be obtained by choosing a window of

length

Nk = bfs/∆
cq
k c = bQfs/fkc (3.8)

where fs denotes the sampling rate.

The CQT is defined as

X(k) =
1

Nk

Nk−1∑
n−0

WNk
(n)x(n)e

−j2πQn
Nk (3.9)

where X(k) represents the spectral energy of the k-th filter with the center

frequency fk, x(n) is the time domain signal, and WNk
(n) is a window function,

such as the hanning window, of length Nk.
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CQT has two advantages. The first one is that by choosing f0 and b appropri-

ately, the center frequencies directly correspond to musical notes. For instance, if

b = 12 and f0 is the frequency of MIDI note m, fk equals the frequency of MIDI

note m + k.

Another advantage is that CQT has increasing time resolution at lower fre-

quencies and higher frequency resolution at higher frequencies, which resembles

the situation in our auditory system.

The chroma spectrum also has a similar idea as CQT and gives the spectral

energy of 12 pitch classes. However, it is derived from DFT directly and ignores

the differences between octaves. Therefore, it does not have finer resolution and is

not as accurate as the features obtained by CQT.

3.2.5 Product Spectrum

Most of the acoustic features are mainly calculated from the magnitude spectrum

whereas the phase spectrum is discarded. The product spectrum integrates the

phase spectrum into feature extraction by multiplying the magnitude spectrum by

group delay function (GDF) [61].

Given a frame of audio signal {x(n), n = 0, . . . , N − 1}, the Fourier transform

is given by

X(ω) = |X(ω)|ejθ(ω) , (3.10)

where |X(ω)| is the magnitude spectrum and θ(ω) is the phase spectrum.

Based on the phase spectrum, the GDF is defined as

τp(ω) = −dθ(ω)

dω
. (3.11)
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Equation (3.11) can be simplified as follows [41]:

τp(ω) = −Im
d(log θ(ω))

dω
(3.12)

=
XR(ω)YR(ω) + XI(ω)YI(ω)

|X(ω)|2 , (3.13)

where Y (ω) is the Fourier transforms of nx(n), and the subscripts R and I denote

the real and imaginary parts.

The product spectrum is defined as the product of the power spectrum and the

GDF as follows [61]:

Q(ω) = |X(ω)|2τp(ω) (3.14)

= XR(ω)YR(ω) + XI(ω)YI(ω) . (3.15)

Therefore, the product spectrum is influenced by both the magnitude spectrum

and the phase spectrum. Because the product spectrum may have negative values,

it needs to be clipped by a nonnegative floor before calculating the dB values.

Usually, a dynamic range threshold [45] is used, i.e., discarding the values below

a certain threshold from the peak in the spectrum. Then Equation (3.19) can be

rewritten as:

Q(ω) = max(XR(ω)YR(ω) + XI(ω)YI(ω), ρ) , (3.16)

where

ρ = 10σ/10 max(XR(ω)YR(ω) + XI(ω)YI(ω)) , (3.17)

σ is the threshold in dB and is set to be −60dB in our work.
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Figure 3.4 shows a frame of audio signal, its power spectrum, group delay

function, and product spectrum. The frame is a 46ms clip from a digital song

recorded at the sampling rate of 22.05kHz. Before the Fourier transform, the audio

frame is pre-emphasized by a filter of H(z) = 1− 0.97z−1 and multiplied with the

Hamming window. The power spectrum can illustrate clearly the pitch harmonics

and the spectral contour. However, there are only meaningless peaks and valleys

in the GDF. It occurs due to the power spectrum in the denominator in Equation

(3.12). The product spectrum enhances the region at the peaks of the power

spectrum and has an envelope comparable to that of the power spectrum.

Based on product spectrum, Mel-frequency product-spectrum cepstral coeffi-

cients (MFPSCCs) [61] can be derived. The MFPSCCs are computed in the fol-

lowing steps:

1. Calculate the FFT spectrum of x(n) and nx(n). Denote them by X(k) and

Y (k).

2. Calculate the product spectrum

Q(k) = max(XR(k)YR(k) + XI(k)YI(k), ρ) , (3.18)

where

ρ = 10σ/10 max(XR(k)YR(k) + XI(k)YI(k)) , (3.19)

σ is the threshold in dB.

3. Apply a Mel-frequency filter-bank to Q(k) to get the filter bank energies.

4. Calculate DCT of log FBEs to get the MFPSCCs.
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Figure 3.4: A frame of audio signal and its power spectrum (dB), group delay
function, and product spectrum (dB)
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3.3 Comparison

In the previous section, four acoustic features are introduced: MFCC, chroma

spectrum, constant Q spectrum and product spectrum. Figure 3.5 shows an audio

waveform and the corresponding acoustic features, drawn in Matlab (7.0). For

waveform, the X axis is the time in second, and the Y axis is the amplitude. For

all acoustic features, the X axis is the frame number. The Y axis for spectrogram

is from 1 to 512 corresponding to frequencies up to 11.025 kHz, as a result of 1024-

point FFT exclusive DC (Direct Current) component. The Y axis for CQS is from

1 to 60 with fmin = 55 Hz (A1) and fmax = 1760 Hz (A6). For both MFCC and

MFPSCC, the Y axis is from 1 to 13, corresponding to 12 coefficients in addition

to the value of normalized energy. For chromagram, the Y axis is from 1 to 12,

corresponding to the 12-semitone pitch class.

The reason we study these features is that they have been widely used in mu-

sic/speech area. Both chroma spectrum and constant Q spectrum are designed

for music signal because they express energy distribution related to the equal tem-

pered scale in western music, making them superior in music signal analysis, such as

key detection and chord recognition. MFCC is based on Mel-frequency filter-bank

which mimics the human auditory’s response. It has been highly frequently used

in speaker/speech recognition and music modeling. Product spectrum combines

magnitude spectrum and phase spectrum and has shown effectiveness in robust

speech recognition. However, its effect in music signal has not been studied yet.

Therefore, we study its effect in our work.

These features are compared in the following four aspects:

• DFT vs. CQT

One major difference between these features lies in the filter-bank. Constant
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Figure 3.5: An audio waveform and its different acoustic feature representations
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Q spectrum is extracted via constant Q transform (CQT). Constant Q filter-

bank is a kind of auditory filter-bank which imitates the frequency resolution

of human hearing. The filter-bank is geometrically spaced. MFCC, chroma

spectrum and product spectrum are all derived from magnitude spectrum

which are extracted via DFT or FFT. DFT filter-bank is linearly spaced.

CQT has two advantages: 1) it combines a trade-off between time and fre-

quency. As the bandwidth varies proportionally to its center frequency, it

results in more frequency resolution at higher frequencies. The frequency

resolution can be adjusted to match that of the equal tempered scale in west-

ern music. 2) Fewer filters are needed than conventional Fourier transform

(FT). However, CQT is not as fast as FFT. Besides, it is not necessarily

invertible, as is FT.

Based on the magnitude spectrum from FFT, MFCC uses Mel-frequency

filter-bank to accumulate energies of each band which mimics the human

auditory’s response. MFPSCC is derived from the product spectrum via

Mel-frequency filter-bank as well. Chroma spectrum uses a kind of filter-

bank that are equally and symmetrically spaced in the geometric semi-tone

pitch scale, and subsequently maps the energies to the 12-semitone chroma

scale.

• Speech vs. Music

Both MFCC and MFPSCC are designed for speech analysis. MFCC is a

dominant feature used for speech recognition. It is used in music analysis

because of its success in speech recognition. MFPSCC has shown effectiveness

in speech recognition, but the effect in music analysis has not been studied.
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Both chroma spectrum and constant Q spectrum are designed for music anal-

ysis. The filter-banks of both chroma spectrum and constant Q spectrum are

highly related to the equal tempered scale in western music.

• Spectral domain vs. Cepstral domain

Both MFCC and MFPSCC are features in the cepstral domain, but chroma

spectrum and constant Q spectrum are in the spectral domain. In the calcula-

tions of MFCC and MFPSCC, DCT is performed in the last step to transform

features from the log-spectral domain to the cepstral domain, which reduces

the dimensionality of features and de-correlates the coefficients.

• Magnitude spectrum vs. Phase spectrum

Product spectrum is different from the other three features in that it takes

advantage of phase spectrum as well as magnitude spectrum, whereas the

other features ignore phase spectrum.

3.4 Summary

Feature extraction is the basis for all content-based music information retrieval and

is the core step of front-end processing. In this chapter, we focus on the extraction

of spectral features. First, we briefly introduce the four steps of front-end processing

and the importance of feature extraction. Then several spectral features and their

calculations are described in detail. Specifically, we have studied MFCC, chroma

spectrum, constant Q spectrum and product spectrum. Finally, we compare these

features in four aspects to show their similarities and differences. Although these

features have been used in many music/speech applications, their performance in

audio fingerprinting are compared the first time. We evaluate their performance in
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the experiments.
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Fingerprint Modeling

4.1 Introduction

The fingerprint modeling module usually receives a sequence of feature vectors

passed from the front-end. After exploring redundancies in successive frames in

time, inside a song and across the whole database, it further reduces the finger-

prints into more concise representations. This may result in three advantages: first,

the signal will become more robust to noise distortions because proper modeling

methods can reduce the effect of noise addition. Second, the storage space is saved

as only compact representations are stored in the database. Third, the speed of

matching could be improved.

As summarized in Section 2.1.2, existing approaches for fingerprint modeling

can be classified into time-unpreserving and time-preserving approaches. Generally

speaking, time-preserving modeling is better because time information is an impor-

tant factor in music. Research shows that temporal information of audio signals

plays a crucial role in music perception [26]. The same set of notes will result in

absolutely different music if their arrangements in time are different. And these
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model training   GMM
  Model

token generation ...ABADKADB...

  Audio
Database

Feature Vector Sequence

Figure 4.1: Steps for fingerprint modeling

differences can be easily perceived by human. Therefore, we choose time-preserving

modeling in our work.

In time-preserving modeling, acoustic feature vectors can be regarded as multi-

variate time series (MTS). We adopt two methods to avoid direct computation of

the similarity between MTSs. One is to model feature vectors into several acoustic

events and encoded as symbolic tokens by using modeling methods such as Gaussian

Mixture Models (GMM) and Vector Quantization (VQ). In this way, fingerprints of

an audio are represented as a string. Figure 4.1 illustrates the steps of fingerprint

modeling using GMM. First, a GMM is trained for the music database by using the

Expectation Maximization (EM) algorithm, which better describes the distribution

of acoustic feature space. Then, based on the trained GMM, each feature vector

sequence is converted into a string of tokens. The other is to model fingerprints of

an audio into a time series, by using the dimensionality reduction methods, such

as Principal Component Analysis (PCA). We will show in the experiments that

GMM has advantages over other modeling approaches.

In the following, we first introduce in detail GMM modeling, including theory

of GMM, training process, and token sequence generation. Then, the advantages

of GMM will be explained and compared with three modeling approaches.
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4.2 GMM Modeling

In this section we present the GMM modeling approach, which aims to convert

a feature vector sequence to a token sequence. The symbolic tokens denote the

Gaussian components in the GMM. For example, assuming a GMM is composed of

M Gaussian components, we may construct a set of symbolic tokens as {1, 2, ..., M}.
The GMM modeling of feature vectors mainly has two advantages: 1) the obtained

symbol sequences can be compared using string matching approaches, which have

lower computational costs than calculation of distance between feature vectors, and

2) clustering feature vectors to discrete symbols enhances robustness of the system

against acoustic distortions.

4.2.1 Gaussian Mixture Model

GMM(Gaussian Mixture Model) is a standard technique used for clustering with

soft assignment of the data sample x to clusters [31].

A multivariate Gaussian probability density function is defined as:

N(x|ν, Σ) = (
1

2π
)D/2|Σ|−1/2 exp(−1

2
(x− ν)T Σ−1(x− ν)) (4.1)

where x is an observational feature vector, ν is a mean vector, Σ is a covariance

matrix and D is the dimensionality of the feature vector. In consideration of

computational complexity, Σ is usually defined as a diagonal covariance matrix

Σ = {σ2
1, ...σ

2
D}.

A GMM is a mixture of M Gaussians. The probability density for the observable
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data x is the weighted sum of each Gaussian component:

p(x|Φ) =
M∑

m=1

cmp(x|m, Φ) =
M∑

m=1

cmN(x|νm, Σm) (4.2)

where 1 ≤ m ≤ M , 0 < cm ≤ 1, and
M∑

m=1

cm = 1. Φ are the parameters that need

to be estimated per GMM: Φ = {νm, Σm, cm; m = 1...M}.
The optimal estimate for Φ maximizes the likelihood that the observations X =

{x1, ..., xN} are generated by the GMM, where N is the number of observations.

The standard measure used is the log-likelihood which is computed as:

L(X|Φ) = log p(X|Φ) = log
∏
n

p(xn|Φ) =
∑

n

log p(xn|Φ) (4.3)

To find good estimates for Φ, a standard approach is to use the Expectation

Maximization (EM) algorithm. The EM algorithm is iterative and converges rel-

atively fast after a few iterations [19]. The initial estimates can be completely

random, or can be computed by using other clustering algorithms such as k-means.

The EM algorithm consists of two steps. First, the expectation is computed,

which is the probability (expectation) that an observation xn is generated by the

m-th component. Second, the parameters in Φ are recomputed to maximize the

expectations.

The expectation step is:

γn(m) = p(m|xn, Φ) =
p(xn|m, Φ)cm

p(xn|Φ)
=

N(xn|νm, Σm)cm

M∑
m=1

N(xn|νm, Σm)cm

(4.4)
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The maximization step is:

ĉm =

∑N
n=1 γn(m)

N
(4.5)

ν̂m =

∑N
n=1 γn(m)xn∑N

n=1 γn(m)
(4.6)

Σ̂m =

∑N
n=1 γn(m)(xn − ν̂m)(xn − ν̂m)T

∑N
n=1 γn(m)

(4.7)

GMM uses a family of Gaussian probability density functions to partition the

feature space into clusters. As the probability density functions can overlap, GMM

performs a soft assignment of data sample to clusters.

4.2.2 Training Process

We train a GMM using a database consisting of 1000 songs [54]. The GMM is

designed to be composed of M Gaussian components with diagonal covariance ma-

trices. An incremental training procedure is adopted, which includes the following

steps:

Step 1. Initialization In the beginning the GMM is designed only consisting

of one Gaussian, where values of the mean vector and the variance vector

are respectively set to that of the global mean and variance over the whole

database.

Step 2. Increasing the number of Gaussian components The Gaussian com-

ponent that has the maximum weight value ĉm is selected and split to two

Gaussian components. The weight values of these two generated Gaussian

components are half of the original weight value. The two new mean vectors

are disturbances from the original mean vector: ν+/− = ν±0.2 ·σm. The new
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variances are copied from the original one.

Step 3. Re-estimate parameters GMM parameters are re-estimated via Equa-

tions (4.5) - (4.7). Several EM iterations can be performed.

Step 4. Repeat Gaussian-increase and re-estimation Repeat Step 2 and Step

3 until desired number of Gaussian components is achieved.

4.2.3 Token Sequence Generation

After the GMM is trained, we may use it to convert a feature vector sequence X =

{x1, ..., xT} to a token sequence composed of Gaussian labels M = {m1, ..., mT}.
Each frame t is labeled with the top-1 Gaussian component as follows

mt = arg max
m

p(m|xt, Φ) . (4.8)

Figure 4.2 shows the waveform, MFCC , and its corresponding GMM token se-

quence of a song clip, drawn in Matlab (7.0). The number of Gaussian components

in the GMM is set to 64. MFCCs are extracted using a 46 ms window with 50%

overlap.

4.3 Advantages

In this section, we will compare GMM with three modeling approaches to show its

advantages.

• Principal Component Analysis

Principal Component Analysis (PCA) [14] is a widely used method to re-

duce the dimensionality of the dataset. It examines the variance structure in
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Figure 4.2: An example of token sequence generation
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the dataset and determines the directions along which the data exhibit high

variance. The first principal component corresponds to the eigenvector with

the largest eigenvalue of the dataset’s covariance matrix and has the largest

variance. The second component corresponds to the eigenvector with the sec-

ond largest eigenvalue and has the second largest variance, and so forth. All

principal components are orthogonal to each other. In the following, we will

briefly introduce how to transform a multivariate time series into a univariate

time series by using PCA.

Let the dataset contains N d-dimensional feature vectors. First, we calculate

a covariance matrix A by using the following equation:

A =




∑
t x1tx1t

∑
t x1tx2t ...

∑
t x1txdt

∑
t x2tx1t

∑
t x2tx2t ...

∑
t x2txdt

... ... ... ...
∑

t xdtx1t

∑
t xdtx2t ...

∑
t xdtxdt




Each eigenvalue λi of matrix A is ordered as λ1 ≥ λ2 ≥ ... ≥ λd. The

eigenvector is represented as [e1λi
, e2λi

, ..., edλi
]. Then, the i-th principal

component pct,λi
is calculated as:

pct,λi
= e1λi

(x1t − x̄1) + e2λi
(x2t − x̄2) + ... + edλi

(xdt − x̄d)

where x̄i is the mean of xi.

Finally, we use the first principal component to effectively transform MTSs

into univariate time series data. For each MTS Tm, we obtain univariate time

55



Chapter 4. Fingerprint Modeling

series data T as follows:

T = x1, ..., xt, ..., xN

xt = e1λ1(x1t − x̄1) + e2λ1(x2t − x̄2) + ... + edλ1(xdt − x̄d)

Comparison: The density modeled by PCA is relatively simple in that it is

unimodal and has fairly restricted parametric forms (Gaussian). However, it

is not suitable to model data with more complex structure such as clusters.

GMM considers mixture models, and therefore it is more suitable to model

feature vector space.

• Vector Quantization

Vector Quantization (VQ) [31] is an efficient source-coding technique which

is widely used in data compression. Given a d-dimensional vector x whose

coefficients xk are real-valued, continuous-amplitude random variables (1 ≤
k ≤ d), VQ maps (quantizes) x to another d-dimensional discrete-amplitude

vector z. Typically, z is a vector from a finite set Z = {zj|1 ≤ j ≤ M}, where

the set Z is referred to as the codebook, M is the size of the codebook, and

zj is the j-th codeword.

The VQ is realized in two steps: 1) Design a codebook by training dataset

with the LBG (Linde-Buzo-Gray) algorithm. The d-dimensional space is

partitioned into M regions or cells Ci, and each cell Ci is associated with a

codeword vector zi, 1 ≤ i ≤ M . 2) Map (quantize) the vector x to codeword

zi which minimizes the quantization error:

q(x) = zi, iff i = arg min
k

d(x, zk)
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Euclidean distance is usually used as the distortion measure d(x, zk) between

x and zk.

Comparison: VQ partitions the vector space into separate regions, which

performs hard assignment of data samples to clusters. Since the partitions

are based on some distance measure regardless of the probability distributions

of original data, the errors in partitions could potentially destroy the origi-

nal structure of data. Compared with VQ, GMM uses a family of Gaussian

probability density functions to partition the vector space. The probability

density functions can have overlap, meaning that GMM performs a soft as-

signment of data samples to clusters. Since the distribution properties of the

data are taken into account, GMM better models the vector space.

• Hidden Markov Model

Hidden Markov Model (HMM) [31] is a very powerful statistical method of

characterizing the observed data samples of a multivariate time series, which

has been successfully used in areas such as speech recognition, statistical

language modeling and machine translation. Given a sequence of observable

feature vectors, HMM finds a sequence of hidden states from the observable

data. First, the HMM parameters are trained using Baum-Welch algorithm.

Then, each hidden state sequence of test dataset is generated using Viterbi

algorithm.

Comparison: Compared with HMM, GMM is less complex and more effi-

cient. A GMM can be viewed as a single-state HMM with a Gaussian mixture

density. It is used to globally model acoustic feature vector space. GMM has

a number of advantages.

1. GMMs are conceptually less complex than HMMs, consisting of only

57



Chapter 4. Fingerprint Modeling

one state and one output distribution function.

2. The training dataset is represented by exactly one Gaussian mixture

model, and only the parameters of the output distribution function need

to be estimated. This leads to significantly shorter training time.

3. HMM training is based on labeled data. For example, in HMM-based

speech recognition system, the training speech is labeled with a pho-

netic based transcription and the phoneme specific frames are uniquely

assigned to one of the HMM phoneme models. However, in music, no ex-

plicit ‘phonemes’ exist, and they need to be inferred from the dataset via

unsupervised training or labeled manually. On the contrary, GMM does

not use any phonetic knowledge, and can be trained in an unsupervised

way.

4.4 Summary

Proper modeling methods can enhance the robustness of audio fingerprints sub-

jected to noise distortions, reduce the storage space and speed up the matching

process. In this chapter, we introduce fingerprint modeling by GMM in detail.

GMM has been used to model music in some work without preserving the time

information, where a GMM is trained for each song and the song with the high-

est likelihood is regarded as a match. However, time is a key factor in music,

and therefore it should not be ignored. In our work, GMM is used to model the

feature space globally and convert acoustic feature vectors into symbolic tokens

(acoustic events) in a time-preserving way. First, the motivations of using GMM

to model robust and concise audio fingerprints are explained. Then, the theory of

GMM is presented, followed by steps for mixture model training and token sequence
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generation. Moreover, we compare GMM with PCA, VQ and HMM to show its

advantages. Fingerprint modeling results in robust and concise fingerprints which

are ready to the matching process.
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Matching

5.1 Introduction

Fingerprint matching is fulfilled by comparing fingerprints of the query song with

fingerprints of the songs in the database. If a credible similarity between a pair

of fingerprint sequences exists, the query is considered to be found as the song in

the database. As shown in Figure 5.1, the matching component consists of two

modules: database look-up and hypothesis testing. The database look-up module

defines the similarity measure between audio fingerprints and performs fast search

in the fingerprints database to return a set of matching songs. Usually, indexing or

pruning strategies are used to speed up the search. The hypothesis testing module

is used to judge whether the identification is correct by comparing the similarity

score with a threshold.

Similarity measure is very important in the matching process as it affects effec-

tiveness as well as efficiency of the system. Section 2.1.3 summarizes the related

work about similarity measure.

When audio is represented as a feature vector sequence, Euclidean and DTW
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Hypothesis Testing

  Audio Metadata

Database
Look-up

Matching

Similarity Measure

Searching

Score

Audio Fingerprints

Fingerprints
+  Metadata
      DB

Figure 5.1: Steps for fingerprint matching

distances become candidate distance measures. Euclidean distance is very sensitive

to distortions in time axis and amplitude axis. DTW can handle local time shifting

and scaling, but is sensitive to amplitude distortions as well. In audio fingerprinting,

queries are often affected by channel distortion incurred in transmission, source

distortions due to audio editing, or noise addition. Some frames may be corrupted

or even lost, which results in distortions in both time and amplitude axes. To

solve this problem, we define a new similarity measure which is based on matches

of local patterns. From observations, we notice that two similar sequences have

more short patterns that can match each other than those of dissimilar sequences.

Inspired from time series and string searching approaches [15, 33] which are based

on matches of local patterns, we define a pattern accumulative similarity measure

that better captures the similarity between distorted music and original music. The

new similarity measure is based on accumulative similarity of matching patterns,

rather than the gap distances of matching patterns [15].
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The new similarity measure can be generalized to string representation as well.

When GMM modeling is used to generate robust and concise audio fingerprints,

the audio search is transformed into an approximate string matching problem.

String matching has been intensively studied for genomic and proteomic sequence

[4, 33, 36]. A general search strategy for homologous sequence is based on finding

perfect or near perfect seed (x-mer, subsequence of length x) matches, i.e., the

Blast [4]. Although the proposed similarity measure shares a similar concept by

finding matching patterns, the search methods for genomic data cannot be applied

directly here, due to three reasons. Firstly, the similarity between genomic se-

quences is based on certain hypotheses in genetics. For example, genes that share

a high sequence identity or similarity support the hypothesis that they share a

common ancestor and are therefore homologous [43]. But the similarity between

music is more based on human perception. For instance, a different version of a

song which is recorded in background noise environment is regarded the same as

the original song, although they may have acoustic features of great differences.

Secondly, homologous sequences share a large number of perfect match x-mers [4].

In our work, although we also assumes similar music share a large number of pat-

terns, it does not always hold under distortions. For example, most of background

noises have continuous frequency spectrum and are additive in nature, making the

spectrum of clean song distorted. The distortions in frequency also continue in

the time domain, making few exact match x-mers if x is relatively large, or many

false matches if x is small. Thirdly, both the alphabet size and the value of x are

different. The alphabet size is 20 for amino acids and 4 for nucleotides, and x is

typically 8-16 for nucleotide comparisons and 3-7 for amino acid comparisons [33].

The alphabet size of audio fingerprints modeled by GMM is adaptive, i.e., 32 or 64,

and x, the length of pattern, can be adjusted freely. Due to the above differences,
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we will adopt a k-Radius Nearest Neighbor (k-RNN) search in the search process

for the new similarity measure. Given a pattern, the k-RNN search returns a set

of neighbors to the pattern, regarded as matches.

In this chapter, we first introduce the new similarity measure. Then, the search

strategy and parameters are discussed. Finally, we introduce how to perform hy-

pothesis testing.

5.2 Pattern Accumulative Similarity

Pattern Accumulative Similarity (PAS) is based on the observation that similar

songs have more short segments that match each other than that of dissimilar

songs. By using a fixed size window sliding on sequences, short segments, called

patterns here, can be extracted.

A short pattern p from a time sequence S is defined as p = (λpos, λamp), with

λpos and λamp representing the position of p in S and the amplitude values of p,

respectively. The distance of two short patterns p1 and p2 can be measured as

Dp(p1, p2) = F (p1.λamp, p2.λamp) (5.1)

where F is a distance function. When Dp(p1, p2) < ε, we say a matching pattern

m is formed from pattern p1 and p2. A matching pattern m between pattern q of

Q and pattern s of S is shown in Figure 5.2. The matching pattern m is described

as

m = (m.x,m.y, Dp, λtscl, λascl) (5.2)

where m.x and m.y are projections of m on x axis and y axis. Dp is the

distance between q and s. λtscl and λascl are respectively relative scaling in time
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y

x

Q

S

mm.x

m.y

Figure 5.2: An example of matching pattern in a matching matrix

and amplitude of q with respect to s. If Q is similar to S, the number of matching

patterns could be large.

y

x

Q

S
region

m1 m2

m3
m4

m5

Figure 5.3: An example of pattern accumulative similarity between two sequences

The matching patterns are stored in a list with key value equals to m.y −m.x.

All matching patterns in the same list share the same key and are sorted according

to m.x. All the lists are sorted according to the key values. As shown in Figure

5.3, m1 and m5 have a same key and lie on the same diagonal.
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Based on the diagonal with key k, we define the similarity between Q and S as

sim(k) =
⋃

key(mi)∈[k−δ,k+δ]

Projection(mi) (5.3)

which means the union of projections of all matching patterns within a certain

region with δ deviation from k.

Projection(mi) = m.x ∗ ω1 ∗ ω2 ∗ ω3 ∗ ω4 (5.4)

where ω1, ω2, ω3, ω4 are weights corresponding to Dp, λtscl, λascl and δ, wi ∈
[0, 1]. For example, we can set

ω1 = µ1(1− Dp

ε
)

ω2 = µ2(1− |λtscl|)

ω3 = µ3(1− |λascl|)

ω4 = µ4(1− |∆|/(δ + 1))

∆ ∈ [−δ, δ] is the deviation from diagonal k, and µi ∈ [0, 1]. µi can be set to

emphasize certain distortions. In the simplest form, all µi = 1.

Finally, the PAS between sequence Q and S is:

PAS sim(Q,S) = max
t

sim(t) (5.5)

where t ∈ [0, S]. For example, in Figure 5.3, there are only four matching

patterns m1, m2, m4 and m5 in the region. So sim(0) =
⋃

Projection(mi),

i ∈ 1, 2, 4, 5. Projections of m1 and m2 have overlap. If Projection(m1) ≥
Projection(m2), sim(0) = Projection(m1) + Projection(m4) + Projection(m5).
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Therefore, PAS sim(Q,S) = sim(0).

5.3 Search Process

Before searching the query in database, we need to extract short patterns from

database sequences. Sliding window with width w and sliding step step is used.

There is a trade-off between accuracy and efficiency regarding step. Larger step re-

sults in fewer patterns, and thus better efficiency. However, accuracy may decrease

due to time-shifting between patterns.

In the search process, patterns are extracted from each query sequence, using

disjoint windows with width w. For each pattern, range query is performed to get

patterns that are within distance ε from the query pattern. Since the parameter ε is

affected by dataset, we can use kNN query instead, which finds k nearest neighbors

that “match” the query pattern. δ is set according to applications. In applications

with severe distortions, δ can be set large value in order to obtain high accuracy,

while incurring extra computational cost. In applications without distortions, we

can set δ = 0.

When the audio is modeled as a feature vector sequence, it can be viewed as

a multivariate time series. One possible method is to reduce it into a univari-

ate time series using the dimensionality reduction approaches, such as PCA [28].

PCA is used in [52] to discover motif in multivariate time series. When large

parts of the query remain the same as the original music, for example, in the case

of distortion due to partial source editing, PCA transformations on both query

and original music will not affect the match between the same part, which means

patterns which match each other before transformation can still match after trans-

formation. Therefore, it will not affect the accuracy of PAS. Indexing methods for
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1-dimensional time series can be applied on these transformed patterns to speed

up the search process. In some applications when the whole query is distorted

by background noise, PCA will decrease recognition accuracy. In the transformed

space, a distorted pattern may become more similar to another mismatched pattern

than to the original pattern. In such case, noise resistent modeling, like GMM, can

be used instead.

GMM modeling transforms the audio search into approximate string matching

problem. We adopt a k-Radius Nearest Neighbor (k-RNN) search in our work,

which returns a set of neighbors to the pattern, regarded as matching patterns.

Definition: Given a dataset D, a distance function d(a, b), and an integer k,

the k-RNN query returns a set of data which are within the k-th distance to the

query (inclusive), if all distances to the query are sorted in ascending order.

Compared with kNN and range query, k-RNN is more suitable here, since true

matching patterns may not be close in distance due to noise distortions. kNN has

the difficulty for a suitable choice of k. When pattern length is small, many data

may share a same short distance to the query pattern. kNN randomly returns k

data as matches, which may miss the true match. When pattern length is large, the

distant true match may be missed. Figure 5.4 illustrates this problem. The dark

point q′ is a true match to the query q. When pattern length is small, as shown

in (a), a, b, c and q′ all share the nearest distance to q. However, if k = 3, kNN

search may return a, b and c but miss q′. When pattern length is large, as shown

in (b), q′ may be distant to q due to distortions. Then, if k = 3, kNN search may

return a, b and c but miss q′ again. For range query, the choice of radius may incur

problem as well. Small radius may return empty result set, while large radius

may return all patterns, which is computationally expensive. k-RNN can avoid the

problem by choosing suitable k, depending on pattern length and the estimated
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degree of distortions. In Figure 5.4 (a), as pattern length is small, we can set r = 1

which returns all the patterns closest to q. In Figure 5.4 (b), as pattern length

is large and possible distortions exist, we can set r = 2 to return all patterns a,

b, c, and q′. Since the true matches are not missed, the similarity between true

matching sequences will not decrease. Although the returned set contains false

matches, these matching patterns may contribute to different sequences, reducing

the possibility of false hit.

q

a

b

q'

c

(a)

q

a

b q'

c

(b)

Figure 5.4: An example of different search methods

5.4 Hypothesis Testing

The problem of fingerprint matching can be formulated as a hypothesis testing

problem that tests two complementary hypotheses, namely the null hypothesis H0

and the alternative hypothesis H1 as follows:

H0: F q is similar to F i.

H1: F q is NOT similar to F i.
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According to Neyman-Pearson Lemma [30], under some conditions, the optimal

solution to the above testing is based on a likelihood ratio testing as follows:

` = log p(F q|H0)− log p(F q|H1)
H0

≷
H1

τ , (5.6)

where τ is the critical decision threshold. The logarithmic likelihood log p(F q|Hh)

can be generalized to other similarity measures which are consistent with the hy-

pothesis testing. In our case, Equation (5.6) is rewritten as

` = S(F q, F i)− S(F q, F̄ i)
H0

≷
H1

τ , (5.7)

where F̄ i denotes the fingerprints of songs excluding the i-th song. An open issue

is how to calculate S(F q, F̄ i). We adopt an N-best approach that has been widely

used in automatic speech recognition [32]. For a query F q, we collect its top-N

recognition scores {Si, i = 1, . . . , N}. The similarity of the alternative hypothesis

is computed using the N − 1 scores as follows:

S(F q, F̄ i) =
1

η
log

[
1

N − 1

N∑
m=2

eSmη

]
, (5.8)

where η is a positive number. When η approaches ∞, the term in the bracket be-

comes maxN
m=2 Sm. By varying the value of η and N , one can take all the competing

songs into consideration, according to the individual significance.

By adjusting τ , a receiver operating characteristic (ROC) can be found, which

reflects the relationship between false alarm rate PFA and identification rate PIR.

The false alarm rate PFA is the probability to declare different songs as similar.

The identification rate PIR is the probability to declare right songs to be similar.

The system is expected to achieve high PIR with low PFA.
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5.5 Summary

In this chapter, we propose a pattern accumulative similarity measure, PAS, which

better captures the similarity between music data under signal distortions. First,

we introduce the modules and steps of the matching process. The matching process

defines the similarity measure between audio fingerprints and performs fast search

which returns a result set. Hypothesis testing is subsequently used to judge the

credibility of the result set. Then, after analyzing the motivations behind PAS,

we introduce its definition and the search approaches in detail. Based on short

matching patterns, PAS accumulates the similarity of two audios along the match-

ing path, while diminishes the effect of unmatch. It is more suitable to measure

similarities between audios with distortions. To increase accuracy, we adopt a k-

radius nearest neighbor (k-RNN) search in the search process. Finally, the theory

of hypothesis testing is introduced.
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Experiments

In this chapter, we will describe the experimental results of the proposed meth-

ods in previous chapters. Specifically, we will first present the music database

used in the experiments. Then, we study the robustness of acoustic features by

testing the effects of normalization and frame length and comparing the receiver

operating characteristic (ROC) performance between different spectral features.

Furthermore, we evaluate the effectiveness and efficiency of PAS and GMM model-

ing. Finally, we compare our method with an existing audio fingerprinting method

and test the system performances with respect to different query lengths.

6.1 Music Database

The database we used in experiments includes 1000 songs grouped by 10 genres

[54]: blues, classical, country, disco, hiphop, jazz, metal, pop, reggae, and rock.

These songs, recorded at 22.05 kHz sampling rate, are framed using a 46 ms or 372

ms analysis window with 50% overlap. Acoustic features described in Chapter 3

are used as music representations in the experiments.
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6.2 Evaluation on Acoustic Feature

In this group of experiments, we study and compare the robustness of spectral

features in music identification, under different kinds of noise conditions. The

details of spectral features are introduced in Chapter 3. Each frame of the songs is

converted to a feature vector, consisting of 12 coefficients in addition to the value

of normalized energy for both MFPSCC and MFCC, 12 coefficients for chroma

spectrum, and 72 coefficients for constant Q spectrum. For both chroma spectrum

and constant Q spectrum, we set fmin = 55 Hz (A1) and fmax = 3520 Hz (A7). Since

72-coefficient vectors are not practical in computation, we collapse the constant Q

spectrum to a 12-coefficient representation, the same as in [12].

The query set consists of 7200 songs generated from 400 clean songs, in order to

test the robustness of acoustic features under different types and different degrees

of noise distortions. In the clean set, 300 songs are randomly selected from the

database which form the in-set test dataset, and 100 songs are from outside of

the database which form the out-of-set test dataset. The out-of-set test dataset

contains songs of various genre. There are 18 different distortions applied to each

song of the clean dataset. The distortions are generated by adding three types of

noises, white noise, babble noise and airport noise, respectively, with 6 different

signal-to-noise ratios (SNR), -5dB, 0dB, 5dB, 10dB, 15dB and 20dB.

We compare the recognition accuracy and the receiver operating characteristic

(ROC) of the features.

Recognition accuracy is the percentage of times the correct song is found as the

top match, measured over the in-set test dataset. The calculation is based on

one nearest neighbor classification (1NN). For each query in the test set, we

derive its title from its nearest neighbor in the music database. If the derived
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title is the same as the original title of the query, we get a hit; Otherwise, we

get a miss.

ROC is mentioned in Section 5.4. Fingerprint matching can be formulated as a

hypothesis testing in which two types of errors are concerned: the false-alarm

rate PFA and the identification rate PIR. The ROC curve which plots PIR

against PFA is used in order to compare acoustic features fairly. Both in-set

and out-of-set test datasets are used to calculate ROC curve.

6.2.1 Effect of Normalization

First, we test the effect of feature normalization. In the post-processing step of the

front-end module, feature vectors of each song are normalized to follow the stan-

dard normal distribution. We use cosine distance as a similarity measure between

two feature vectors. The recognition accuracies of unnormalized and normalized

MFCC features are shown in Table 6.1. The results show that normalized test data

achieve significant improvement in accuracy, especially for severe noise distortions.

It proves the importance of normalization. Normalization converts features to the

same baseline and scale, which reduces the effects of small noise distortion and

channel distortion. The experiments in later sections are all based on normalized

features.

Table 6.1: Comparison of recognition accuracy (in %) between unnormalized and
normalized data

Noise Normalized SNR(dB)
20 15 10 5 0 -5

White No 86.00 64.33 44.33 25.33 16.67 8.67
Yes 99.00 99.00 98.67 98.67 98.67 98.67

Babble No 100 99.67 98.67 96.33 88.00 58.00
Yes 100 100 100 100 100 100

Airport No 100 99.67 98.67 96.33 92.33 71.00
Yes 100 100 100 100 100 100
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In the table, normalization can achieve 100% recognition accuracy under bab-

ble and airport noise distortions at all SNR levels. Three factors contribute to

such performance: 1) the size of song database, 2) the similarities between songs

in the database, and 3) the query length. If larger database is used, or the simi-

larities between songs in the database are higher, or shorter queries are used, all

the recognition accuracy values may decrease. White noise is a more severe dis-

tortion compared with babble and airport noise distortions, because white noise

has a power spectrum of equal power in any band, corrupting the whole spectrum

of clean signal. Therefore, the corresponding recognition accuracies are lower, and

the effect of normalization is obvious.

6.2.2 Effect of Frame Length

Based on the assumption that signals can be regarded as stationary over an interval

of a few milliseconds, audio signals are usually divided into frames of small size

before analyzing and processing. Therefore, in most of the content-based music

retrieval, frame length affects the performance. In this experiment, we compare

the performance of short frame, 46 ms, and long frame, 372 ms, because these

frame lengths are typical in music signal processing [9, 21, 48, 51]. Table 6.2 shows

the recognition accuracy of MFCC, with 46 ms and 372 ms analysis window. 46 ms

frame achieves better performance than 372 ms frame. The differences are obvious

for white noise distortions. For babble and airport noise distortions, 372 ms has

already achieved 100% accuracy when SNR is above 0 dB, due to the three factors

analyzed in Section 6.2.1. Therefore, no improvement can be obtained when 46 ms

frame is used. However, we can still see the differences when SNR is -5dB.
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Table 6.2: Comparison of recognition accuracy (in %) between different frame
lengths

Noise frame(ms) SNR(dB)
20 15 10 5 0 -5

White 46 99.00 99.00 98.67 98.67 98.67 98.67
372 98.33 98.33 98.33 98.33 98.33 98.33

Babble 46 100 100 100 100 100 100
372 100 100 100 100 100 99.33

Airport 46 100 100 100 100 100 100
372 100 100 100 100 100 99.00

6.2.3 Robustness of Acoustic Features

In this section, we compare the robustness of four acoustic features: Mel-Frequency

Cepstral Coefficients (MFCC), chroma spectrum (CHROMA), constant Q spec-

trum (CQS), and product spectrum (MFPSCC). 46 ms frame length is used here

as it shows better performance.

Figure 6.1, 6.2 and 6.3 show the ROC curve of the four features under white,

babble and airport distortions, respectively. The false alarm rate PFA is the prob-

ability to declare different songs as similar. The identification rate PIR is the

probability to declare right songs to be similar. Acoustic features which are more

robust have higher PIR with a same fixed PFA. It is shown that MFPSCC achieves

better performance in all cases. MFCC and CHROMA have similar performance

when noise distortions are slight. But when noise distortions become more severe,

MFCC is better than CHROMA. CQS is better than MFCC when noise distortions

are slight. However, it is quite sensitive to noise distortions. When noise distor-

tions become more severe, CQS degenerates greatly. Table 6.3 shows the overall

identification rate with a fixed false alarm rate 0.1%.

Table 6.3: Identification rate (in %) with a fixed false alarm rate 0.1%
Feature MFPSCC MFCC CHROMA CQS

PIR 92.09 82.47 81.75 84.72
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Figure 6.1: Receiver operating characteristic (ROC) comparison between spectral
features under white noise
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Figure 6.2: Receiver operating characteristic (ROC) comparison between spectral
features under babble noise
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Figure 6.3: Receiver operating characteristic (ROC) comparison between spectral
features under airport noise
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The results prove that MFPSCC is more robust than the other three features

because it combines magnitude spectrum and phase spectrum. Phase spectrum

carries half of the information about the audio signal, as seen from Formula (3.2),

making it useful in improving the robustness of acoustic features. Besides, MFCC

is more robust to noise distortions than CHROMA and CQS. One possible reason

lies in the filter-bank. MFCC uses Mel-frequency filter-bank which mimics the

human auditory’s response. However, filter-banks of both CHROMA and CQS are

highly related to equal tempered scale in western music.

6.3 Evaluation on Similarity Measure

In the following two experiments, we evaluate the effectiveness and efficiency of the

proposed similarity measure, PAS. The details of similarity measure are introduced

in Section 5.2. The query set is 100 songs randomly selected from the database.

The recognition accuracy is evaluated based on the average accuracy over 100

queries. In order to avoid direct computation between feature vectors and improve

the efficiency, PCA is performed on the database and the query set to reduce the

dimensionality of feature vectors into one dimension. For PAS, 10 nearest neighbors

of each query pattern are retrieved by sequential scan or indexing.

Firstly, we compare the effectiveness and efficiency of PAS with Euclidean and

DTW distance when channel distortion occurs. For each query, we randomly delete

some frames. The overall deletion is from 1% to 10% of the query length, since

we assume that the maximum data loss through the lossy transmission channel

is 10% of the query. For DTW distance, there is a tradeoff between accuracy

and efficiency with respect to the warping width r. When r increases, accuracy

increases as well, but efficiency decreases. As the maximum data loss is 10% in the
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Figure 6.4: Recognition accuracy comparison of similarity measures under distor-
tions due to lossy transmission channel
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experiment, we set r = 1% ∗ |query| and r = 5% ∗ |query|. For PAS, the pattern

length is set to 1% ∗ |query|. Figure 6.4 shows that PAS can maintain accuracy

above 99% whereas Euclidean decreases in accuracy sharply as the amount of data

loss increases. DTW-1 and DTW-5 represent DTW with r equals to 1% and 5% of

the query length, respectively. Larger warping width achieves better accuracy but

worse efficiency. However, both methods cannot beat PAS. Figure 6.5 compares

the efficiency of these similarity measures. PAS obviously beats DTW in execution

time. PAS-Ind builds VA-file indexing on query patterns, and the execution time

approaches to that of the Euclidean distance. These experiments confirm that PAS

is a suitable similarity measure when distortions exist in both time and amplitude

axes, because it takes into account time gaps and amplitude differences in the short

pattern matching.

Secondly, we compare the accuracy of PAS, Euclidean distance and DTW dis-

tance when parts of the audio are edited. Short pieces of human speech with lengths

of 10% to 50% of the query length are added to each query audio. As shown in

Figure 6.6, PAS can maintain high accuracy because it accumulates the similarity

of short patterns of two audios along the matching path, while diminish the effect

of unmatch. Based on the assumption that large portion of patterns remain the

same after partly editing the audio, PAS well captures the similarities between

the matching parts. However, as Euclidean distance accumulates amplitude differ-

ences, it is sensitive to amplitude distortions. Therefore, its accuracy decreases as

the edited portion becomes larger. DTW shows the worst performance. DTW may

mismatch the time axis to achieve minimum accumulative amplitude differences,

although no distortion in time axis exists.
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Figure 6.6: Recognition accuracy comparison of similarity measures under distor-
tions due to source editing

6.4 Evaluation on Fingerprint Modeling

In this section, we evaluate the effect of GMM modeling, compared with VQ and

PCA. The technical details are introduced in Section 4.2. The purpose of modeling

is to gain robustness against distortions, reduce the disk space and the memory

requirements, and be benefit for the subsequent matching process regarding con-

venience and efficiency. The query set is 100 songs the same as last section, with

white noises of 6 different SNR levels added to each song. 64-component GMM is

trained. The codebook size for VQ is also 64.

The effect of fingerprint modeling methods are compared under different dis-

tance measures. In Figure 6.7 (a), Euclidean distance is used for feature vector

sequence and PCA sequence, and Hamming distance is used for token sequence.

In Figure 6.7 (b), DTW distance and Euclidean distance are used. In Figure 6.7

(c), PAS is used. The results show that GMM modeling gains robustness against
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background noise distortions. It achieves accuracy improvement at every SNR

level, compared with directly using feature vectors. It is because GMM globally

models the feature vector space into clusters and performs a soft assignment of

vectors to clusters. The effect of noise distortion is reduced in the processes of

statistical modeling and soft assignment. VQ can achieve good accuracies when

noise distortions are slight. However, its accuracies are lower than that of directly

using feature vectors when noise distortions get severe. It is because VQ partitions

the vector space into separate regions and performs a hard assignment of vectors

to clusters. Vector with severe noise distortions is not likely to be classified into

the same cell as the original vector. PCA makes the query even more sensitive to

noise distortions since it models the vector space based on simple unimodal den-

sity. Therefore, the accuracies drop when SNR is below 5dB. The effect of GMM

modeling is more obvious at -5dB, compared with VQ and PCA, confirming that

GMM is more suitable to model audio fingerprints under severe noise distortions.

Besides, compared with directly using feature vector, GMM modeling reduces the

disk space of fingerprints database to 6% and the query process time to 14%, which

will facilitate the matching process.

6.5 System Performance

In this section, we present the performance of our system for queries of short audio

clips under noise distortions. The queries are 100 5-second audio clips recorded with

babble noise distortions of different SNR levels. The performance of our system

is compared with that of AudioDNA. AudioDNA is introduced is Section 2.1.4.

The differences between our method and AudioDNA are as follows: 1) product

spectrum is used in our method while MFCC is used in AudioDNA, and 2) short
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Figure 6.7: Accuracy comparison of fingerprint modeling methods
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pattern matching of our method is based on k-RNN while AudioDNA is based on

exact search of subsequence. Although AudioDNA also depends on short pattern

matching, it finds exact matches to the query patterns, which can be very effective

and efficient when queries are of little distortions. However, in real environment,

background noise distortions are unavoidable. In this case, short patterns in query

can hardly find exact matches.

Table 6.4 compares exact search, kNN search and k-RNN search in finding

matching patterns (k = 1). 2000 patterns are extracted from the query set for each

SNR level. The numbers shown in the table are pattern accuracy which stands

for the percentage of patterns which can return true matching patterns. Under

20dB distortion, 80.10% of the patterns can find true match via 1-RNN, 71.15%

via 1NN, but only 6.85% via exact search. It is because noise distortions make

query patterns dissimilar to the clean patterns. When distortions get severe, fewer

patterns can return true match via all methods.

Pattern accuracy will affect the recognition accuracy, which is confirmed in

Table 6.5. Under 20dB distortion, 1-RNN can achieve 100% recognition accuracy

because the corresponding pattern accuracy is high. All the matching patterns con-

tribute to the similarity between the distorted version and the original song. 1NN

obtains 99% recognition accuracy since some true matching patterns are missed.

However, exact search can only obtain 63% recognition accuracy due to its low pat-

tern accuracy. When distortions get more severe, recognition accuracies decrease

for all methods.

Table 6.4: Pattern accuracy (in %) of different pattern search methods
Method SNR(dB)

20 15 10 5 0
Exact 6.85 1.75 0.35 0.05 0.05
1NN 71.15 48.30 23.75 6.15 1.15

1-RNN 80.10 60.40 34.35 12.80 2.90
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Table 6.5: Recognition accuracy (in %) of different pattern search methods
Method SNR(dB)

20 15 10 5 0
Exact 63 28 6 1 1
1NN 99 96 88 55 19

1-RNN 100 98 94 66 26

In Table 6.4, although pattern accuracy of 1-RNN at 0dB SNR (2.9%) is higher

than that of exact search at 15dB SNR (1.75%), the corresponding recognition

accuracy of the former (26%) is smaller than that of the latter (28%), as shown in

Table 6.5. It is because 1-RNN generates a large number of false matches to the

patterns, making the distorted version more similar to different songs rather than

to the original song. Besides, the similarity between the distorted version and the

original song is already very low. In this case, a false positive is more likely to occur.

Enlarging k in k-RNN can reduce the possibility of false positive, for it increases

the similarity between the distorted version and the original song. Table 6.6 shows

the effect of different k in k-RNN. When k gets larger, the accuracy increases as

well. When SNR decreases, the effect of larger k in increasing accuracy becomes

more obvious. One drawback of larger k is that it incurs more computational cost.

Table 6.6: Recognition accuracy (in %) of different k in k-RNN search
k SNR(dB)

20 15 10 5 0
1 100 98 94 66 26
2 100 100 97 84 45
3 100 100 97 91 61

Figure 6.8 compares the recognition accuracy of AudioDNA with our method.

The length of short pattern is set to 4 for both methods, because smaller pattern

can achieve better performance for AudioDNA. The result shows that our method

is better than AudioDNA under different levels of noise distortions. Our method

86



Chapter 6. Experiments

achieves 100% accuracy when SNR is 20dB, but AudioDNA only achieves 96% accu-

racy. As the noise distortion becomes more severe, our method can maintain good

performance while AudioDNA degenerates. Two factors lead to such differences:

1) MFPSCC is more robust than MFCC, which is confirmed in Section 6.2.3, and

2) PAS with 1-RNN search strategy is better, as shown in previous experiments.
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Figure 6.8: Accuracy comparison between our method and AudioDNA

Figure 6.9 shows the accuracy comparison for different query lengths. The

queries are 100 audio clips of 5, 10, 15 and 20 seconds, respectively, recorded in a

babble noise environment. Generally speaking, the system has good performance

with respect to different query lengths when noise distortions are slight. As SNR

decreases, longer clips get better performance.
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6.6 Summary

This chapter presents our experimental results for evaluating the proposed methods

for audio fingerprinting system.

The first set of experiments compare the robustness of spectral features un-

der different kinds of noise conditions. Four spectral features are compared: Mel-

frequency cepstral coefficients, chroma spectrum, constant Q spectrum and product

spectrum. The results show that the product spectrum is more robust than the

other three features in that it takes advantage of the phase spectrum. Product

spectrum based feature has better ROC performance under different noise distor-

tions, and achieves 92.09% overall identification rate with 0.1% false alarm rate.

The results also demonstrate that feature normalization and short frame length

have great effect in improving recognition accuracies.

The second experiment shows the advantages of PAS when queries are under
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distortions due to lossy transmission channel and source editing. The results show

the effectiveness and efficiency of PAS compared with Euclidean distance and DTW

distance. It can achieve 99% accuracy when a query audio is distorted with 10%

data loss, and 100% accuracy when 50% of a query audio is edited, while keeping

computationally efficient.

The third experiment shows the advantages of GMM modeling that it gains

robustness against noise distortions, reduces the disk space and the memory re-

quirements and is benefit for the subsequent matching process regarding conve-

nience and efficiency. Experimental results show the advantages of GMM modeling

that it maintains high accuracy with respect to white noises of 6 different SNR

levels from 20dB to -5dB, better than the performance when directly using feature

vectors, or modeling with VQ and PCA. Besides, it reduces the disk space and

memory requirements, and speeds up the matching process as well.

Finally, our system is compared with an existing work, AudioDNA. Our method

is similar to AudioDNA except that the product spectrum based feature and the

similarity measure PAS are used. Because AudioDNA is based on exact match

of subsequence, its performance decreases as the noise distortions become more

severe. As our method considers the effect of noise distortions, it achieves better

performance. Experimental results show that our method is more resistent to

noise distortions than AudioDNA. Our method can achieve 100% accuracy when

queries are 5 seconds clips with 20dB babble noise distortions, but AudioDNA can

only achieve 96%. When noise distortions become more severe, our method can

maintain good accuracy whereas AudioDNA degenerates. Our method also shows

good performance with queries of different lengths.
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Conclusion

As the amount of music data in multimedia databases increases rapidly, there are

strong needs to investigate and develop content-based music information retrieval

(CBMIR) systems in order to support effective and efficient analysis, retrieval and

management for music data. Most of the current used music retrieval systems are

based on metadata of music. It requires users to recall and specify metadata of

music, which becomes a major restriction on users’ queries. Therefore, CBMIR

systems are essentially required.

Audio fingerprinting is a technology to identify some piece of unknown audio

in a labeled audio database based on a compact set of features, called audio fin-

gerprint, derived from the signal. It provides reliable and fast means for CBMIR

because audio fingerprints which have similar function to that of human fingerprints

are compact summarizations of the music wave files. A typical audio fingerprint-

ing system contains two major components: fingerprint extraction and matching.

The former extracts and models digital audio signals into concise audio fingerprints

which are robust enough to identify unlabeled distorted versions of a song as the
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same song stored in song database. The latter efficiently looks up the audio fin-

gerprints against the database and judges whether there is a matching song in the

database. Although current audio fingerprinting systems are different from each

other in various aspect, the fundamental difference of these systems is the used

acoustic features. In reality, music signals usually suffer from various distortions

and modifications, such as mp3 compression, noise addition and so forth, therefore

designing robust and efficient audio fingerprinting system which can resist effects

of these distortions becomes crucial.

This thesis focuses on content-based music identification by efficient and robust

audio fingerprinting. In particular, we focus on three important modules: fea-

ture extraction, fingerprint modeling and matching, which affect the accuracy and

efficiency of the whole system. The contributions of this thesis are as follows:

Firstly, several typical spectral features are studied and compared in audio fin-

gerprinting, including MFCC, chroma spectrum, constant Q spectrum, and product

spectrum. Although these features have been used in many music/speech applica-

tions, their performance in audio fingerprinting are compared the first time. The

former three features are derived only from magnitude spectrum. Both chroma

spectrum and constant Q spectrum are designed for music signal because they ex-

press energy distribution related to music octave, making them superior in music

signal analysis, such as key detection and chord recognition. MFCC uses Mel-

frequency filter-bank which mimics the human auditory’s response, making it ro-

bust to noise distortions. It has been widely used in speaker/speech recognition and

music modeling. Product spectrum takes advantage of the phase spectrum by using

the product of magnitude spectrum and group delay function. It shows effective-

ness in robust speech recognition. Its effect in music signal is studied in our work.

Experimental results show that product spectrum is more robust than the other
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three features in that it utilizes the information of phase spectrum. Product spec-

trum based feature has better ROC performance under different noise distortions,

and achieves 92.09% overall identification rate with 0.1% false alarm rate.

Secondly, a pattern accumulative similarity measure, PAS, is proposed, which

better captures the similarity between music data under distortions due to lossy

transmission channel, source editing, and background noise. These distortions may

result in mismatches both in time and amplitude axes. Euclidean distance and

DTW distance, both of which are often used for audio fingerprints sequences, have

disadvantages in handling these mismatches. Euclidean distance is very sensitive

to distortions in time axis and amplitude axis. DTW is sensitive to amplitude

distortions as well, and computationally expensive. Based on short matching pat-

terns, PAS accumulates the similarity of two audios along the matching path, while

diminishes the effect of unmatch. As similar audios have more short segments that

match each other than that of dissimilar audios, PAS is more suitable to measure

similarities between audios with distortions. Experimental results show that PAS

has improvement in effectiveness and efficiency compared with Euclidean distance

and DTW distance.

Thirdly, GMM modeling is used to boost the robustness of audio fingerprints.

GMM modeling generates robust and concise audio fingerprints, which reduces

acoustic feature vectors into several types of tokens. First, a GMM is trained for the

music database by using the EM algorithm, which better describes the distribution

of acoustic feature space. Then, based on the trained GMM, the feature vectors

of music database and test dataset are all converted into symbolic tokens (acoustic

events). GMM has advantages over other modeling approaches. Experimental

results show the advantages of GMM modeling that it maintains high accuracy

with respect to white noises of 6 different SNR levels from 20dB to -5dB, better
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than the performance when directly using feature vectors, or modeling with VQ

and PCA.

Finally, our method is compared with an audio fingerprinting approach, Au-

dioDNA. AudioDNA is designed for robust song detection in broadcast audio. It

generates a sequence of acoustic events, called AudioDNA, by statistical modeling.

Our method is similar to AudioDNA except that product spectrum based features

and similarity measure PAS are used. Experimental results show that our method

is more resistent to noise distortions than AudioDNA.

Our future work include integrating audio fingerprinting systems into p2p ap-

plications which ensures copyright protection on p2p network, and developing ap-

plications for audio streams monitoring.
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