
SPACE-TIME CODING FOR MIMO

RAYLEIGH FADING SYSTEMS

MAO TIANYU

(M. Eng.)

A THESIS SUBMITTED

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

DEPARTMENT OF ELECTRICAL AND COMPUTER

ENGINEERING

NATIONAL UNIVERSITY OF SINGAPORE

2005



Acknowledgements

I would like to thank my advisors, Professor Ko Chi Chung and Assistant Pro-

fessor Mehul Motani, for their vision and encouragement throughout the years, for

their invaluable advice, guidance and tolerance. Thank Dr. Francois Chin, for all

the support, understanding and perspectives throughout my graduate study.

My appreciation also goes to my friends in DSA Lab, Dong Liang, Xiang Xu,

Zhang Jinbin, Liu Wei, Shi Miao, . . . , for their kindness, friendship and humor.

Finally, I would like to thank my husband, Yang Rui. Without his love and sup-

port under circumstances sometimes difficult, the completion of this thesis would

not have been possible.

Mao Tianyu

July 2005

i



Contents ii

Contents

Acknowledgements i

Summary v

List of Acronyms vii

List of Tables ix

List of Figures xii

1 Introduction 1

1.1 A Brief History of Wireless Communications . . . . . . . . . . . . 1

1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Main Contributions of the Thesis . . . . . . . . . . . . . . . . . . 16

1.5 Organization of the Thesis . . . . . . . . . . . . . . . . . . . . . . 19

2 Fundamentals 21

2.1 MIMO Rayleigh Fading Channel Modeling . . . . . . . . . . . . . 21

2.2 Space-time Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2.1 Signal Model . . . . . . . . . . . . . . . . . . . . . . . . . 25



Contents iii

2.2.2 Performance Analysis and Design of STC . . . . . . . . . . 26

2.2.3 Impact of Channel Correlation on the Performance of STC 32

2.2.4 Space-time Trellis Code and Space-time Block Code . . . . 36

2.3 BLAST Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.3.1 Overview of BLAST Architectures . . . . . . . . . . . . . 43

2.3.2 BLAST Receivers . . . . . . . . . . . . . . . . . . . . . . . 45

2.3.3 Tradeoff Between Performance and Transmission Rate . . 51

3 Space-time Code Design for Multiuser Composite Fading Systems 53

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.2 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.3 Pairwise Error Probability . . . . . . . . . . . . . . . . . . . . . . 56

3.3.1 Pairwise Error Probability of Two-user Systems . . . . . . 56

3.3.2 Pairwise Error Probability of K-user Systems . . . . . . . 59

3.3.3 The Special Cases . . . . . . . . . . . . . . . . . . . . . . . 61

3.4 Code Design Criteria for Multiuser Composite Fading Systems . . 62

3.5 The Optimal STTCs for Composite Fading Systems . . . . . . . . 65

3.6 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4 Performance Analysis and STTC Design for MIMO Multiuser

Correlated Fading Systems 71

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.2 Data Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.3 PEP and Code Design Criteria . . . . . . . . . . . . . . . . . . . 76



Contents iv

4.3.1 Channels are Only Temporally Correlated . . . . . . . . . 77

4.3.2 Channels are Only Spatially Correlated . . . . . . . . . . . 84

4.3.3 Channels are spatio-temporally Correlated . . . . . . . . . 88

4.3.4 Further Discussions . . . . . . . . . . . . . . . . . . . . . . 90

4.4 Optimal STTCs and Simulation Results . . . . . . . . . . . . . . 90

4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5 STBC-VBLAST for MIMO Wireless Communication Systems 98

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.2 STBC-VBLAST Transmitter . . . . . . . . . . . . . . . . . . . . . 102

5.3 STBC-VBLAST Receiver . . . . . . . . . . . . . . . . . . . . . . . 104

5.4 Performance Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.5 Some Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.6 Detection and Performance of the STBC-VBLAST in the Presence

of Channel Estimation Error . . . . . . . . . . . . . . . . . . . . . 113

5.7 Tradeoff Between Performance and Spectral efficiency . . . . . . . 116

5.8 Complexity Comparison . . . . . . . . . . . . . . . . . . . . . . . 119

5.9 Ordered STBC-VBLAST . . . . . . . . . . . . . . . . . . . . . . . 121

5.10 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . 124

5.11 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

6 Conclusions 135

Bibliography 139



Summary

In this thesis, space-time coding schemes for multiuser and single user systems are

discussed. Based on the performance analysis, the code design criteria for multiuser

composite fading systems are obtained first. It is shown that the minimum rank

and product of the non-zero eigenvalues of codeword distance matrices for the

quasi-static fading as well as the rapid fading, of each user’s code set, should be

maximized. When all the users have the same number of transmit antennas, the

code design can be simplified. Optimal 4-state and 8-state STTCs are obtained

based on the code design criteria, which outperform the existing space-time codes

(STCs).

The code design for generally correlated multiuser fading systems is discussed where

three fading cases are investigated: temporally correlated fading, spatially corre-

lated fading, and spatio-temporally correlated fading. It is observed that all the

users should use the same code set and the code design for multiuser systems is

equivalent to the code design for single user systems. Without any assumption

on the dimension of the codeword matrix and the rank of the channel correla-

tion matrix, it is proved that the STC achieving full diversity in a quasi-static

fading system can achieve full diversity in a temporally correlated system. The

v



Summary vi

coding gain can be improved by increasing the minimum product of the norms

of codeword difference matrices’ column vectors and the minimum product of the

nonzero eigenvalues of codeword distance matrices. The performance analysis of

the spatially and spatio-temporally correlated fading channels demonstrates that

the code design for these two fading cases is reduced to the code design for rapid

fading channels. Based on these observations, the general code design criteria are

further achieved for an arbitrarily correlated fading.

Aiming at obtaining a good performance as well as a high data rate, a new STBC-

VBLAST scheme has been proposed, which applies G orthogonal STBCs into the

lower layers of vertical Bell Laboratories layered space-time (VBLAST) architec-

ture. At the receiver, low-complexity QR decomposition (QRD) and successive

interference cancellation (SIC) are used. The error propagation is combated effec-

tively by improving the system diversity gain significantly though accompanied by

a spectral efficiency loss. To get a good tradeoff between the diversity gain and

spectral efficiency, G should be chosen to be less than or equal to a threshold Gth.

We derive Gth theoretically, which is determined by the number of antennas and the

dimension of the STBC. With appropriately selected G and a higher-order modu-

lation, the STBC-VBLAST system can have a larger spectral efficiency as well as a

better performance than other VBLAST schemes. Provided with the high diversity

gain, the STBC-VBLAST performs more robustly in the presence of the channel

estimation errors. The ordered STBC-VBLAST is also proposed, which uses the

modified sorted QRD (SQRD). It is expected that the ordered STBC-VBLAST

has a better performance than the STBC-VBLAST as shown in simulations. Gth

derived for the STBC-VBLAST is also valid for the ordered STBC-VBLAST.



List of Acronyms

ATM Asynchronous Transfer Mode (ATM)

BER bit error rate

BLAST Bell Laboratories layered space-time

CDMA code division multiple access

CSI channel state information

DLAST diagonally layered space-time code

GSM Global System for Mobile Communication

HLST horizontally layered space-time

IC interference cancellation

IS interference suppression

LMDS Local Multipoint Distribution System

MIMO multi-input multi-output

ML maximum likelihood

MMSE minimum mean square error

MGF moment generating function

MUD multiuser detection

vii



List of Acronyms viii

OSTBC orthogonal space-time block code

p.d.f. probability density function

PEP pairwise error probability

PSEP pairwise symbol error probability

PSK phase shift keying

QPSK quadrature phase shift keying

QRD QR decomposition

SIC successive interference cancellation

SNR signal-to-noise ratio

SQRD sorted QRD

ST space-time

STC space-time code

STTC space-time trellis code

STBC space-time block code

TCM trellis coded modulation

UMTS Universal Mobile Telecommunication System

VBLAST vertical BLAST

WCDMA wideband CDMA

WiMax Worldwide Interoperability for Microwave Access

WLAN Wireless Local Area Network

ZF zero forcing



List of Tables ix

List of Tables

5.1 Summary of the minimum diversity gain and spectral efficiency for
the STBC-VBLAST and VBLAST. . . . . . . . . . . . . . . . . . 117

5.2 Summary of the computational complexities of the STBC-VBLAST
and VBLAST. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124



List of Figures x

List of Figures

2.1 The transmission model between a mobile and base station. . . . 22

2.2 Space-time system block diagram. . . . . . . . . . . . . . . . . . . 25

2.3 The block diagram of a STTC encoder. . . . . . . . . . . . . . . . 37

2.4 An example of the 4-state QPSK STTC. . . . . . . . . . . . . . . 38

2.5 The block diagram of an uncoded VBLAST. . . . . . . . . . . . . 44

2.6 The block diagram of an example of the coded VBLAST. . . . . . 45

2.7 One example of the iterative BLAST receiver. . . . . . . . . . . . 50

3.1 The block diagram of a two-user composite fading system. . . . . 55

3.2 Trellis diagram for the new optimal 4-state QPSK STTC. . . . . . 65

3.3 Trellis diagram for the new optimal 8-state QPSK STTC. . . . . . 66

3.4 Trellis diagram for the 4-state TSC. . . . . . . . . . . . . . . . . . 67

3.5 Trellis diagram for the 8-state TSC. . . . . . . . . . . . . . . . . . 67

3.6 Bit error probability for various ST codes, two users with two trans-
mit antennas each, one receive antenna, QPSK modulation, and
composite fading. . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.7 Bit error probability for various ST codes, two users with two trans-
mit antennas each, one receive antenna, QPSK modulation, and
composite fading. . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.1 Performance comparison of 4-state STTCs under temporally corre-
lated fading channels. . . . . . . . . . . . . . . . . . . . . . . . . . 92



List of Figures xi

4.2 Performance comparison of 8-state STTCs under temporally corre-
lated fading channels. . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.3 Performance comparison of 4-state STTCs in spatially correlated
fading channels. Low correlation: ξ = β = 1/6π, a = 50λ, dsp = 5λ,
d = 1500λ. High correlation: ξ = 1/6π, β = 2/3π, a = 10λ,
dsp = 1/2λ, d = 1500λ. . . . . . . . . . . . . . . . . . . . . . . . . 94

4.4 Performance comparison of 4-state STTCs in spatio-temporally cor-
related fading channels. Low correlation: fDT = 0.8, ξ = β = 1/6π,
a = 50λ, dsp = 5λ, d = 1500λ. High correlation: fDT = 0.003,
ξ = 1/6π, β = 2/3π, a = 10λ, dsp = 1/2λ, d = 1500λ. . . . . . . . 95

4.5 Performance comparison of 8-state STTCs in spatially correlated
fading channels. Low correlation: ξ = β = 1/6π, a = 50λ, dsp = 5λ,
d = 1500λ. High correlation: ξ = 1/6π, β = 2/3π, a = 10λ,
dsp = 1/2λ, d = 1500λ. . . . . . . . . . . . . . . . . . . . . . . . . 96

4.6 Performance comparison of 8-state STTCs in spatio-temporally cor-
related fading channels. Low correlation: fDT = 0.8, ξ = β = 1/6π,
a = 50λ, dsp = 5λ, d = 1500λ. High correlation: fDT = 0.003,
ξ = 1/6π, β = 2/3π, a = 10λ, dsp = 1/2λ, d = 1500λ. . . . . . . . 97

5.1 Block diagram for the STBC-VBLAST transmitter. . . . . . . . . 103

5.2 Block diagram for the STBC-VBLAST receiver. . . . . . . . . . . 105

5.3 Tradeoff lines of different schemes. . . . . . . . . . . . . . . . . . . 119

5.4 Performance comparison of different STBC-VBLAST and VBLAST
systems, nR = nT = 4. . . . . . . . . . . . . . . . . . . . . . . . . 124

5.5 Bit error probability of each layer of QPSK HLST, nR = nT = 4. . 125

5.6 Bit error probability of each layer of QPSK HLST with perfect in-
terference cancelation, nR = nT = 4. . . . . . . . . . . . . . . . . . 126

5.7 Bit error probability of each layer of the (2,2,1) QPSK STBC-VBLAST,
nR = nT = 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

5.8 Bit error probability of each layer of the (2,2,1) QPSK STBC-VBLAST
with perfect interference cancelation, nR = nT = 4. . . . . . . . . 128



List of Figures xii

5.9 Performance comparison of the (2,2,1) QPSK STBC-VBLAST and
QPSK STTC-VBLAST using 2-STTCs, nR = nT = 4. . . . . . . . 129

5.10 Performance comparison of the (2,2,1) STBC-VBLAST , HLST and
DLST, nR = nT = 4. . . . . . . . . . . . . . . . . . . . . . . . . . 130

5.11 Performance comparison of QPSK (ordered) STBC-VBLAST sys-
tems using different numbers of STBC layers, nR = nT = 6. . . . . 132

5.12 Bit error probabilities of the (2,2,1) QPSK ordered STBC-VBLAST
and ZF-VBLAST in the presence of channel estimation error, nR =
nT = 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133



Chapter 1

Introduction

1.1 A Brief History of Wireless Communications

Since 1895, when the first radio transmission took place, wireless communication

methods and services have been enthusiastically adopted by people. In 1940’s, the

public mobile telephone system was introduced. Combined with the cellular con-

cept, it was later improved to be the first generation of cellular system (1G system),

which employs the analog transmission. Currently, 2G systems have been deployed

widely in the world, of which Global System for Mobile Communication (GSM) and

Interim Standard 95 (IS-95) are two typical commercial systems. They use digital

transmission techniques and support data traffic with lower to medium through-

put. Along with the evolution of the cellular systems, other wireless services are

also gaining great popularity, including wireless data systems (e.g., Wireless Local

Area Network (WLAN) and wireless Asynchronous Transfer Mode (ATM)) and

fixed wireless access(e.g., Local Multipoint Distribution System (LMDS)). They

1
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supply a wide range of services with high data rates for different circumstances.

Concerning the increased requirements of future mobile data applications such as

video conferencing, web browsing and reading emails, 3G system was proposed and

have been in commercial use in recent years. Although there are several standards

for it, all of them aim to providing at least 144 kbps for full mobility applications,

384 kbps for limited mobility applications and 2 Mbps for low mobility applica-

tions. It is expected that in the near future, the 4G systems with data rate at

least 50 Mbps will be in use. In general, the development of the wireless systems

will go for unification of various mobile applications, wireless services and internet

services, with high data rates and good quality, anywhere, anytime, for anyone.

1.2 Motivation

Modern wireless communications request a high data rate and certain quality of

service. However, the wireless medium is highly unreliable, compared to the wired

channel, due to the path loss and fading, which makes the signals be subject to

significant attenuation and distortion in a random way. Moreover, the spectrum for

wireless systems is a scare resource and expensive. The physical limitation of wire-

less channels presents a challenge to the high data rate reliable communications.

However, it is shown recently that the capacity of wireless multi-input multi-output

(MIMO) communication systems , i.e., systems with multiple transmit and multiple

receive antennas, is a linear function of the number of antennas [1], [2]. This high-

lights the potential of a reliable communication with the high spectral efficiency.

Consequently, to use the potential, two main types of schemes were introduced,
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the space-time code (STC) [3–5] and the Bell Laboratories space-time (BLAST)

architecture [6–8]. STC, including the space-time trellis code (STTC) and the

space-time block code (STBC), is targeted at the performance improvement by

increasing the diversity. On the other hand, BLAST systems try to make the high

data rate transmission [9] possible, which are also referred to as the layered STCs.

Diversity techniques have been studied for many years to improve the performance

of the communication in fading environments [10]. Unlike, e.g., the time diver-

sity and frequency diversity, which can be employed in single antenna systems,

space/antenna diversity is particularly used in MIMO systems and more manage-

able. It is implemented by separating receive/transmit antennas far enough to

create independent fading channels. The receive diversity was paid more attention

and a number of signal processing methods for it have been proposed. In fact,

receive diversity schemes are already used in current cellular applications. On the

other hand, the transmit diversity received less attention. However, the employ-

ment of the transmit diversity is also important due to the fact that the mobile

station is of small size such that multiple antennas are not available or separated

far enough. STC is a two-dimensional design. It brings both temporal and spatial

correlations to the transmitted signals to obtain the diversity gain as well as the

coding gain, without sacrificing the bandwidth.

The standard code design criteria were derived in [3] for quasi-static fading and

rapid fading MIMO channels. It was shown that the pairwise diversity gains and

coding gains measure the performance of STCs. Specifically, for quasi-static fad-

ing, pairwise diversity gain is equal to the product of the rank of the codeword

difference matrices and number of receive antennas. The pairwise coding gains
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are determined by the product of the nonzero eigenvalues of codeword difference

matrices. On the other hand, the pairwise diversity gain and coding gain are de-

termined by the nonzero columns of the codeword difference matrices in a rapid

fading environment. Later, other improved code design criteria were proposed for

the different circumstances such as, the trace criteria for a system with a large

number of transmit antennas and the design criteria for the medium and high

signal-to-noise ratios (SNRs) [11], [12]. All these are concerned with the system

for single user communication.

However, the code design for multiuser systems has received less attention. Based

on existing single-user STTCs, Ng et al. proposed an interference-resistant mod-

ulation, by rotating the space-time codes for single user systems before they are

transmitted [13]. Nevertheless, this study only considers a single type of fading,

assuming that all the users have the quasi-static fading channels. This is not true

for many realistic multiuser systems, where different users may operate in different

fading environments, i.e., some users may undergo quasi-static fading while the

others may undergo rapid fading. This motivates us to study the code design in

composite fading channels, in which some users have quasi-static fading channels

and the others have rapid fading channels. Our discussion in Chapter 3 gives

the code design criteria for composite fading channels, according to which optimal

codes are obtained by computer search.

As stated above, with the size limitation of the transmit and/or receive device, the

antennas may not locate as far as needed. This causes the correlation between the

channels of MIMO systems, which is categorized as the spatial correlation. Even

without the spatial correlation, the channel between any transmit-receive antenna
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pair may not be so low to be quasi-static fading or not so fast to be rapid fading.

The channel changes with time but the channel coefficients of different symbol

instances are correlated. This type of channel is referred to as the temporally cor-

related channel. More complicated scenario is that MIMO channels are spatially

correlated as well temporally correlated. The early research demonstrates that

the optimal code design for correlated fading channels is dependent on the chan-

nel correlation matrices [14]. However, in general, the transmitter does not know

the channel unless a feedback of the channel state information (CSI) is performed,

which is bandwidth-consuming and may not be useful. Robust code designs are re-

quired to achieve a good performance in a wide range of correlation situations [15].

Some robust code designs were proposed for different correlation cases [16], [17].

However, assumptions are made on the channel correlation matrices, (e.g., correla-

tion matrix is positive definite) or on the structure of STC (e.g., square codeword

matrix). Therefore, it will be of importance to investigate the robust code design

for more general cases without such assumptions. The code design for multiuser

systems, in which different users undergo different correlated fading situations,

is also of great interest. We thus study the code design for multiuser generally

correlated fading systems in Chapter 4.

As another dominant category of ST schemes, BLAST architectures are targeted

at maximizing the data rate other than the diversity as STTC/STBC does. For ex-

ample, uncoded VBLAST transmits independent data streams, namely layers, on

different transmit antennas, which achieves multiple data rate than that of single

transmit antenna systems. Obviously, the performance will be degraded. That is
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why the appropriate coding/decoding and detection methods are employed to en-

sure this system to have a high data rate as well as a performance good enough [18].

From the fact that the signals transmitted on different antennas interfere with

each other, multiuser detection (MUD) algorithms are naturally applied at the re-

ceiver [19], among which the interference suppression (IS) and successive interfer-

ence cancellation (SIC) are more favorable from aspects of complexity and quality

of performance [20]. On the other hand, the deficiency inherent of the successive

detection is the error propagation, which makes the performance of the lowest layer

dominate the performance of the whole system [21]. It is also shown that the low-

est layer has the smallest diversity gain among all the layers [22]. Thus to embed

a group of STCs into a BLAST system is an effective way to have good tradeoff

between the transmission rate and the performance [23]. Despite the research work

being done, it is still desirable to find a scheme with appropriately chosen and com-

bined STC and BLAST. New low-complexity STBC-VBLAST schemes are then

proposed in this thesis, which obtain much higher diversity gain than VBLAST,

thus the improved performance. A theorem is derived on how to integrate the

STBC with the VBLAST to achieve a good tradeoff between the diversity gain

and the spectral efficiency.

1.3 Literature Review

With rapid growth in mobile computing and other wireless data applications, ser-

vices with higher and higher data rate will be required for future communications.

On the other hand, band-limited and severely conditioned wireless channels are the
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narrow pipes that challenge the transmission of rapid flow of data. Nevertheless,

the recent information-theoretic analysis of the capacity of MIMO systems suggests

us a potential way to widen this pipe. Both Foschini and Telatar demonstrated

that the capacity of MIMO channels grows linearly with the minimum number of

transmit and receive antennas [1], [2]. However, the capacity only provides an up-

per bound realized by coding, modulation, detection and decoding with boundless

complexity or latency [24]. In practice, the development of efficient coding, modu-

lation and signal processing techniques is required to achieve the spectral efficiency

as large as implied by the channel capacity.

Diversity techniques are widely used approaches to effectively use the wireless

channels. They reduce the effects of multipath fading and improve the reliability

of transmission [10], [25], [26]. The diversity method requires that a number of

transmission paths are available, all carrying the same message but not having the

fully correlated fading statistics. An intuitive explanation of the diversity concept

is that if one path undergoes a deep fading, another independent path may have a

strong signal. According to the domain where the diversity is introduced, diversity

techniques are classified into time, frequency and space/antenna diversity.

A time diversity technique exploits the time variation of the fading channel. It is

shown that sequential amplitude samples of a fading signal, if separated more than

the coherence time, will be uncorrelated [27], [28]. Multiple diversity branches can

be provided by transmitting the replicas of a symbol in time slots separated at least

by coherent time. In practice, channel coding and interleaving are combined to

employ the time diversity. However, when fading is slow, this will result in a large

delay. The fact that the signals transmitted over distinct frequencies separated
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by coherence bandwidth induce independent fading is exploited to provide the

frequency diversity [28]. Time diversity and frequency diversity normally introduce

redundancy in time and/or frequency domain, and therefore result in a loss of

bandwidth efficiency.

In fact, space diversity is the earliest diversity technique employed. This historical

technique has found many applications over the years and is in wide use in a

variety of present microwave systems. Space diversity is obtained typically by

using multiple antennas for transmission and/or reception. The distance between

them should be a few wavelengths to ensure independent fading [10]. Polarization

diversity and angle diversity are another two examples of space diversity [29], [30].

They use diversity branches provided by the antenna polarizations and angles of

arrival. Unlike time diversity and frequency diversity, space diversity does not

induce any loss in bandwidth efficiency.

Depending on whether multiple antennas are used for transmission or reception,

two types of space diversity can be used: receive diversity and transmit diversity. In

receive diversity schemes, multiple antennas are deployed at the receiver to acquire

separate copies of the transmitted signals which are then properly combined to

mitigate channel fading [26], [31]. It has been studied for decades and used in

current cellular systems. For example, in GSM and IS-136, multiple antennas

are used at the base station to create uplink receive diversity. However, due to,

e.g., the size and power limitations at the mobile units, receive antenna diversity

appears less practical for the downlink transmissions. Transmit diversity relies on

multiple antennas at the transmitter and is suitable for downlink transmissions

because having multiple antennas at the base station is certainly feasible. This
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has inspired growing research work on transmit antenna diversity. Many transmit

diversity schemes have been proposed, and can be classified as open-loop [32–34]

and closed-loop schemes [35–37]. Compared to the closed-loop schemes, open-loop

schemes do not require channel knowledge at the transmitter. On the other hand,

the closed loop schemes reply on some channel information at the transmitter that

is acquired through feedback channels. Although feedback channels are present

in most wireless systems (for power control purposes), mobility may cause fast

channel variations. As a result, the transmitter may not be capable of capturing

the channel variations in time. Thus, the usage of open-loop transmit diversity

schemes is well motivated for future wireless systems which are characterized by

the high mobility.

In contrast with receive diversity, transmit diversity has a dominant implementa-

tion difficulty: the transmitted signals interfere each other at the receiver. Thus

a special arrangement of the transmitted signals and/or the dedicated signal pro-

cessing at the receiver are needed to separate the signals and exploit diversity.

Typical examples are the delay diversity scheme by Seshadri [38] and the linear

processing techniques in [39], [40]. Recently, a scheme of STC [3] was proposed,

which is essentially a generalization of these transmit diversity schemes. STC is a

joint design of the two-dimensional coding and modulation that introduces tempo-

ral and spatial correlation into signals transmitted on different antennas, in order

to provide the diversity and coding gain without sacrificing the bandwidth [5].

To take into account the temporal and spatial relations of the signals, the transmit-

ted signals are usually expressed in a two-dimensional matrix form, called codeword

matrix, instead of a vector form for traditional channel codings. For an (nT , nR)
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Rayleigh quasi-static flat fading MIMO system where nT and nR are the num-

ber of transmit and receive antennas respectively, the work in [3] reveals that the

maximum available diversity is equal to nRnT . This is because that the codeword

difference matrix or codeword distance matrix can at most provide nRnT virtual

diversity branches. By contrast, when channels are independent from symbol to

symbol, the diversity gain only relies on the temporal arrangement of the codeword

matrix and the number of receive antennas. These results in the code design crite-

ria for flat Rayleigh fading systems, which are famous determinant criterion and

rank criterion for quasi-static fading, and product criterion and distance criterion

for rapid fading.

Some handcrafted STTCs with 4 ∼ 32 states were designed in [3] with different

spectral efficiencies. All of them obey the rules that transitions departing from

the same state have the second symbol in common, and transitions arriving at

the same state have the same first symbol. These are required to ensure the

codeword difference matrix always has a rank equal to the number of transmit

antenna. However, these codes do not have the optimal coding gain. Based on

the code design criteria, Baro and Grimm et al. established the generalized ST

trellis encoder model and carried on the computer searches to get STTC with

improved coding gain [41], [42]. To perform the computer searches effectively,

Blum proposed a design procedure which calculates some typical lower and upper

bounds for coding gain as well as the necessary and sufficient conditions on the

diversity gain [43].

A number of optimal STTCs that provide maximum diversity and coding gain

were presented in [44–47]. In [48], the design of M -ary PSK STTC is transformed
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into the binary domain where general binary design criteria of the unmodulated

codeword matrix were derived for full diversity PSK-modulated STTCs. Later,

Safar proposed a systematic code construction method that jointly considers di-

versity gain and coding gain for an arbitrary number of transmit antennas and any

memoryless modulation [49].

Noticing the code design criteria mentioned above is based on the assumption

that SNR is high, Tao et al. proposed modifications of the design criteria for

different ranges of SNR [12]. It is shown that for a medium SNR, the effect of the

identity matrix can not be neglected. Furthermore, when SNR is low, the trace

instead of the determinant of the codeword distance matrix should be maximized.

The STTCs based on these modified criteria were designed and presented better

performance at low and medium SNRs. Meanwhile, Yuan found that when the

diversity gain is larger than or equal to four, the performance of STTC is dominated

by the minimum squared Euclidean distance, i.e, the trace of codeword distance

matrix [11], [50]. The codes designed under the so called trace criterion outperform

those designed according to determinant criterion when the diversity gain is greater

than 3 [51], [52].

However, when the number of antennas is fixed, the decoding complexity of STTC

increases exponentially as a function of the diversity gain and transmission rate [3].

In 1998, Alamouti proposed a simple STC scheme for systems with two transmit

antennas [53]. This STC is later referred to as Alamouti’s code that enables the

linear maximum likelihood (ML) detection and decoding. In addition, Alamouti’s

code can get full diversity. These attractive characteristics make this scheme used
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in realistic communication systems such as UMTS (Universal Mobile Telecommu-

nication System) and Worldwide Interoperability for Microwave Access (WiMax).

Tarokh later generalized Alamouti’s transmit diversity scheme to STBCs for an ar-

bitrary number of transmit antennas [4], [54]. The orthogonal structure of STBC

enable the linear ML decoding at the receiver. It is also shown in [4] that, for

real signal constellations, that rate one generalized real orthogonal STBC can be

constructed for any number of transmit antennas. However, rate one generalized

complex orthogonal STBC only exists for nT = 2. The extension of the above

STBC was studied in [55–58], where different quasi-orthogonal STBCs were pro-

posed to get different tradeoffs between transmission rate, error performance and

decoding complexity. Another family of STBC, algebraic STBC, also get attention

recently (e.g., [59], [60]), which will not be treated in this thesis.

In addition to the flat fading, other fading situations, such as time-selective and

frequency-selective fading, were also discussed in some researches to address com-

munications with the wide band and high mobility [61–65]. All these are under

the assumption that the fading channels between antennas are independent. How-

ever, it is usually difficult to satisfy such a ideal condition in practice. The degree

of the correlation between channel transmission paths from a transmit antenna

to a receive antenna depends significantly on the scattering environment and on

the antenna separation at the transmitter and receiver [10], [66], [67]. It has been

demonstrated that if majority of the channel scatters are located closely to the mo-

bile station, the paths will be highly spatially correlated unless the antennas are

sufficiently separated in space. Sometimes the quasi-static fading or rapid fading is

hardly the accurate description of the fading environment. The block fading, such
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as the one considered in [63], is also hard to be justified some time. More general

time-varying channel situation is needed to be considered in many circumstances.

In an information-theoretic aspect, Shiu showed that in quasi-static fading, the

capacity and performance degrades as a function of the channel spatial correlation

[68]. The performance analysis of the correlated MIMO Rayleigh fading system

was done in [14], [69–71]. The performances of existing STCs under different

fading correlations were also investigated to see how the correlation affects the

performance [72]. It is shown that the performance depends on a matrix which is

associated with the transmit codeword matrix as well as the channel correlation

matrix. However, in general, the transmitter does not know the CSI nor the

statistics unless they are fed back. This is bandwidth cost and may not be useful.

Under this circumstance, robust STCs are designed to achieve a good performance

in a wide range of correlation situations [15], [16], [73] where the code design criteria

that are independent of the channel correlation matrix are formulated. There,

the robustness of the STCs was investigated either by analysis and experimental

observation. The smart-greedy codes of [3] were shown to yield worse performance

in certain spatio-temporally correlated channels. Particularly, the channel with

only temporal correlation was studied. In [74], a bit-interleaved STBC scheme was

proposed to show better performance than those in [16]. Su et al. derived the code

design criteria and presented square STBCs for arbitrary time-correlated fading

MIMO systems [17], [75].

The code design we have discussed is usually under the assumption that the receiver

knows or estimates the CSI perfectly. In addressing the case that channel is not

known both at the transmitter and receiver, unitary STC was introduced [76], [77].
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The differential schemes that are naturally extended from the concept of DPSK

were also proposed [78–80]. It is expected that the performance of the differential

coding is 3 dB worse than that of the codes with the ideal CSI at the receiver.

When imperfect channel estimation is performed at the receiver, studies in [65], [81]

investigated the impact of estimation errors. It is demonstrated that the channel

estimation error adds a fixed portion to the noise power and leads to an error floor

in the performance curve.

Compared to the code design for single user systems, the code design for multiuser

narrow band systems receives little attention. Most researches focus on the decod-

ing and detection at the receiver [82–84]. The transmitter either simply combines

STCs together with CDMA or uses ST spreading [85–88]. In [13], the STC de-

sign for multiuser systems is addressed comprehensively by Ng et al. The authors

applied linear precoded STTC, i.e., rotating STTC by a unitary matrix similar

to [89]. The rotation angles were optimized for different users to get a good perfor-

mance. However, the study is constrained to the condition that all the users have

the quasi-static fading.

As stated previously, MIMO systems have the potential to achieve a much higher

bandwidth efficiency than single antenna systems in fading environment. STTC

and STBC improve error performance through maximizing diversity and coding

gain, thus improving the spectral efficiency under a certain requirement on the

error probability [9]. A more intuitive way is to perform spatial multiplexing under

a certain error probability or outage capacity [8]. Many BLAST architectures

have been proposed to exploit this potential. The first BLAST structure is the

DLST architecture proposed by Foschini [6], which distributes the code blocks
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along the diagonals, called layers, of the transmit codeword matrix. Consequently,

VBLAST was introduced [7], [90], [20]. In VBLAST, each layer is either uncoded

or coded independently and associated with a certain transmit antenna. Unlike

DLST, the vertical arrangement of the layers enables detection and coding with

lower complexity, but with different performances for different layers. With each

layered coded independently, coded VBLAST is also called HLST [68], [91]. In some

papers, HLST is generalized to be referred to as the horizontally coded BLAST

with dependently coded layers [18].

Treating a BLAST system as a multiuser system makes it easy to understand

that interference suppression (IS) and ordered SIC [19], [6], [92] can be used in

the detection for BLAST systems. In [7], Golden et al. proposed a zero forcing

(ZF) SIC algorithm with the optimum ordering, referred to as the ZF-VBLAST

algorithm. Another algorithm, which uses minimum mean square error (MMSE)

criterion and SIC was referred to as MMSE-VBLAST [90], [20]. However, both

algorithms involve the computation of pseudo-inverses of matrices, which greatly

increases the computational complexity. In [68], Shiu applies QR decomposition

(QRD) to the detection. Although the performance is degraded (when the ordering

is not optimized), the computational effort at the receiver is reduced enormously.

To take advantage of the simplicity of QRD as well as ordering, Wübben proposed

an efficient detection algorithm [93], which employs sorted QRD (SQRD). It has

been shown that the performance of the VBLAST with SQRD is very close to

that of ZF-VBLAST. However, similar to the situation of SIC in MUD, the error

propagation inherent in SIC considerably degrades the performance of BLAST

systems using SIC [21]. This error propagation also affects the performance of the
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channel decoder when the coded transmission is used.

To improve the performance, the turbo processing principle can be applied, so that

the detection block and decoding block share information in an iterative fashion

to do joint detection and decoding [94–96]. Iterative detection and decoding have

their own challenges, such as high complexity, convergence and decoding delay.

Power allocation was also considered to combat the error propagation problem

in VBLAST systems [97]. The limitation is that the CSI is required at both

transmitter and receiver.

Now, the challenge of BLAST systems is to design a coding scheme and low-

complexity detector, which can get a high spectral efficiency as well as a good

performance. In fact, it is natural to combine or concatenate the coding schemes

to take advantage of all. For example, in [98] and [99], STBC was concatenated with

recursive code and turbo trellis coded modulation (TCM) respectively. Likewise,

HLST can be seen as an example of combining VBLAST and channel coding.

Based on the fact that the STC has a high diversity gain and the BLAST has a

high transmission rate but worse performance, combining the STC and BLAST

is a reasonable choice to achieve a good tradeoff between the data rate and error

performance [21], [23].

1.4 Main Contributions of the Thesis

Noticing the lack of research on the code design for narrowband multiuser MIMO

systems, we first investigate the code design for multiuser composite fading chan-

nels, in which some users have quasi-static fading channels while the others have
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rapid fading channels.

• A multiuser composite fading system is considered. It is shown that the

performance is determined by the rank and nonzero eigenvalues of a matrix

A, which is the sum of two special matrices, one is characterizing quasi-static

fading, the other is characterizing rapid fading.

• The code design criteria are achieved, which require the minimum rank of

codeword distance matrices as well as the minimum product of the nonzero

eigenvalues of codeword distance matrices for both quasi-static and rapid

fading from each user’s code set to be maximized.

• The optimal 4-state and 8-state STTCs for composite fading are obtained by

computer search, which outperform the existing STCs by 3 dB and 5 dB at

a bit error rate (BER) of 10−3 respectively.

Our discussion is then extended to the code design for multiuser generally corre-

lated fading systems. Without any assumption on, such as the rank of channel

correlation matrix and the dimension of the codeword matrix, we mainly achieve

the following results:

• All users should use the same code set and the code design for multiuser

systems can be reduced to the code design for single user systems.

• When channels are only temporally correlated, the minimum rank and num-

ber of the nonzero columns of codeword difference matrices should be max-

imized in order to get the maximum diversity gain. The upper bound of
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the coding gain is determined by the product of the norms of codeword dif-

ference matrices’ nonzero column vectors. When the minimum number of

nonzero columns of codeword difference matrices is equal to the minimum

rank of codeword distance matrices, the coding gain is lower bounded by the

minimum product of the nonzero eigenvalues of codeword distance matrices.

• For spatially and spatio-temporally correlated fading systems, the code design

criteria are the same as those for rapid fading systems: the minimum number

and the minimum product of the norms of codeword difference matrices’

nonzero column vectors needed to be maximized.

• Based on above results, a set of code design criteria for arbitrarily correlated

fading systems are obtained.

With the purpose of getting a good performance as well as a high data rate, we

have the following contributions:

• The STBC-VBLAST and ordered STBC-VBLAST are proposed. For an

(nT , nR) system, the (n,m, G) STBC-VBLAST integrates G n × m STBC

into the VBLAST.

• The diversity gain of an (n,m, G) STBC-VBLAST is the minimum of n(nR−
nT ) + n2 and nR − nT + Gn + 1. The ordered STBC-VBLAST has a better

performance than the STBC-VBLAST.

• In order to get a good tradeoff between the diversity gain and spectral effi-

ciency, G should be chosen such that G ≤ Gth, where Gth = n + (nR−nT )−
⌊

nR−nT +1
n

⌋
for both STBC-VBLAST and ordered STBC-VBLAST.
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• When channel estimation errors present, the error probability and error

floor are the decreasing functions of the diversity gain. Thus the (ordered)

STBC-VBLAST performs more robust than VBLAST schemes, such as ZF-

VBLAST, when perfect channel estimation is absent.

• The computational complexity of the (ordered) STBC-VBLAST is of order

O(nRn2
T ), compared to O(n4

T ) for ZF-VBLAST.

1.5 Organization of the Thesis

In Chapter 2, a frequency nonselective MIMO fading channel model is introduced.

The basic concepts of STTC and STBC are presented. Two important factors of

STC systems, diversity gain and coding gain, are explained. The structures of

BLAST systems and typical detection algorithms are presented for further discus-

sions.

In Chapter 3, code design criteria are derived for narrowband multiuser composite

fading systems. Different users may have different number of transmit antennas.

The code design criteria require the minimum rank and product of the nonzero

eigenvalues of codeword distance matrices from each user’s code set to be maxi-

mized. Specifically, if all the users have the same number of antennas, they will

share the common code set and the code design is simplified. Based on the criteria,

we obtain the optimal 4-state and 8-state space-time trellis codes for a two-user

QPSK system through exhaustive search. We also show by simulation that the new

codes have better performance than existing STCs in composite fading channels.

In Chapter 4, we extended our discussion of code design for multiuser composite
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fading systems to the code design for multiuser generally correlated fading chan-

nels. The joint pairwise error probabilities for three different channel correlation

situations are analyzed: temporally correlated fading, spatially correlated fading,

and spatio-temporally correlated fading. It is demonstrated that the diversity gain

and coding gain are determined by the STC and channel correlation of individual

user. This suggests that all users should use the same code set and the code design

for multiuser systems can be reduced to code design for single user systems.

The specific code design criteria are also obtained for these three fading cases

individually. Based on all these results, we further get a set of general code design

criteria suitable for all three fading situations. It is shown that the STTCs obtained

based on the general code design criteria perform more robust than other STTCs.

In chapter 5, the STBC-VBLAST and ordered STBC-VBLAST are proposed. The

improved diversity gain allows the new schemes to suppress error propagation very

efficiently and to outperform other VBLAST systems.

The higher diversity gain also means that STBC-VBLAST systems have better

performance in the presence of channel estimation error. How to choose the num-

ber of STBC layers is discussed in the sense of getting a good tradeoff between the

diversity gain and spectral efficiency. Benefitting from the simplicity of the decod-

ing of STBC and QRD/SQRD, the detection process has much lower complexity

than existing BLAST schemes such as ZF-VBLAST.

Finally, the conclusions are given in Chapter 6.



Chapter 2

Fundamentals

2.1 MIMO Rayleigh Fading Channel Modeling

A MIMO channel is realized with multiple antennas at both transmitter and re-

ceiver. For an (nT , nR) system, there are nT nR channels between given pairs of

transmit and receive antennas. The individual channels can be characterized as

flat, time selective, or frequency selective fading with key modeling parameters,

such as Doppler spread, delay spread, coherent time, and coherent bandwidth [27].

In addition, unlike the single-antenna system, another important factor for MIMO

channel is the correlations between these individual channels.

Originated from the traditional Jakes and Clarke model, some researches have been

done on modeling the MIMO channel, see [67], [100], [101], for example. All these

models characterize the fading environment as the mobile/base station (MS/BS)

surrounded by many local scatters. The received signal is the superposition of the

reflected versions of the transmitted signal that are affected by the movement of

21



2.1 MIMO Rayleigh Fading Channel Modeling 22

nα
ξ

v

2l

1l
0d

2d

1d

1BS 2BS

b

β

ξ

np

MS

spd

Figure 2.1: The transmission model between a mobile and base station.

MS and the locations of the scatters.

Here, we give a brief review of a frequency nonselective MIMO Rayleigh fading

channel model using “circular ring” geometry, which is introduced in [67] and will

be used for the simulations in later chapters. A typical geometrical configuration

for a (2, 1) system is shown in Fig. 2.1. The channel responses between transmit

antennas BS1, BS2 and MS are

h1(t) =

√
σ2

N

N∑
n=1

exp{j2πfDt cos(ξ − αn) + jφn} (2.1)
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and

h2(t) =

√
σ2

N

N∑
n=1

exp{j2πfDt cos(ξ − αn) + jφn + j∆φn} (2.2)

respectively, where N is the number of scatters. σ2 is the variance of the channel;

fD is the Doppler spread caused by the vehicle movement; αn = 2πn/N , is the

angle of the nth scatter on the scatter ring. φn is the initial phase shift introduced

by the nth scatter where {φn}N
n=1 are usually assumed to be i.i.d random variables

with uniform distributions over [0, 2π). ∆φn is the phase difference caused by the

different path lengths from the scatter n to the two transmit antennas. Further-

more, as shown in Fig. 2.1, b is the scatter ring radius; d0 is the mobile distance to

the center of the BS antenna pair; β is the mobile position angle with respect to

the end-fire of the antennas; ξ is the mobile moving direction with respect to the

end-fire of the BS antennas. Thus we have, as shown in [67],

∆φn =
2π(l1 − l2)

λ

≈ dsp cos β + zc cos αn − zs sin αn, (2.3)

where l1 and l2 are defined as in Fig. 2.1, and

zc =
2b

d1 + d2

[dsp − (d1 − d2) cos θ cos β]

≈ b

d
dsp sin2 β, (2.4)
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and

zs =
2b

d1 + d2

(d1 − d2) cos θ sin β

≈ b

d
dsp sin β cos β. (2.5)

The generalized space-time cross-correlation function is therefore

ρ = Rh1,h2(τ, dsp)

= σ2 exp[j
2π

λ
(d1 − d2)]× J0

[
2π

√(
fDτ cos ξ +

zc

λ

)2

+
(
fDτ sin ξ − zc

λ

)2
]

.

(2.6)

From Eq. (2.6), we can see that the temporal correlation is exclusively a function of

fD while the spatial correlation is the function of geometry model and wavelength.

Specifically, when dsp = 0, the space-time cross-correlation reduces to the temporal

correlation as σ2J0(2πfDτ) [10]. Using the same geometry model, the channel

correlation model for a system with more transmit and/or receive antennas can be

obtained in the same way.

The channel responses shown in Eq. (2.1) and Eq. (2.2) will be used to simulate

the CSI for the following chapters.

2.2 Space-time Codes

In this section, we will give an overview of STCs and briefly explain its principle.
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Figure 2.2: Space-time system block diagram.

2.2.1 Signal Model

Consider an (nT , nR) system as shown in Fig. 2.2. At each time slot t, symbols

si
t, i = 1, 2, . . . , nT , are transmitted simultaneously from the nT transmit antennas.

The received signal at each receive antenna is a noisy superposition of the nT

transmitted signals corrupted by the fading channel. Assuming the channel is flat

fading and the noise in the channel is white Gaussian, the signal yj
t received by

antenna j at time t is given by

yj
t =

√
Es

nT∑
i=1

ht
i,js

i
t + nj

t , (2.7)

where the noise nj
t at time t is modeled as independent samples of a zero-mean

complex Gaussian random variable with variance N0/2 per real dimension. The

coefficient ht
ij is the channel gain from transmit antenna i to receive antenna j at

time t. Generally, the transmission and detection are considered in a block with

L symbols. It will be convenient to denote the normalized transmitted signal in
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matrix form as, for further discussion,

S =




s1
1 s1

2 · · · s1
L

...
...

. . .
...

snT
1 snT

2 · · · snT
L




. (2.8)

2.2.2 Performance Analysis and Design of STC

It is assumed that the channel is known at the receiver and ML decoding is used,

where the decision metric is [3]

L∑
t=1

nR∑
j=1

∣∣∣∣∣y
j
t −

√
Es

nT∑
i=1

ht
i,js

i
t

∣∣∣∣∣

2

. (2.9)

The receiver will calculate the decision metric and decide in favor of the transmitted

signals {si
t}, i = 1, 2, . . . , nT ; t = 1, 2, . . . , L, with the minimum ∆2. To analyze the

error performance of the STC, we usually consider the pair-wise error probability

(PEP) which decides the union bound of the former. The PEP between S and Ŝ,

P (S, Ŝ), is the error probability that the receiver decides erroneously in favor of a

signal Ŝ when S is transmitted. The PEP conditioned on CSI can be expressed as

P (S, Ŝ|ht
i,j) = P




L∑
t=1

nR∑
j=1

∣∣∣∣∣y
j
t −

√
Es

nT∑
i=1

ht
i,js

i
t

∣∣∣∣∣

2

>

L∑
t=1

nR∑
j=1

∣∣∣∣∣y
j
t −

√
Es

nT∑
i=1

ht
i,j ŝ

i
t

∣∣∣∣∣

2



= Q

(√
Es

2N0

∆2

)
, (2.10)

where

∆2 =
L∑

t=1

nR∑
j=1

∣∣∣∣∣
nT∑
i=1

ht
i,js

i
t −

nT∑
i=1

ht
i,j ŝ

i
t

∣∣∣∣∣

2

. (2.11)
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The PEP between S and Ŝ is thus the expectation of conditional PEP on hi,j’s,

which can be written as

P (S, Ŝ) = E

[
Q

(√
Es

2N0

∆2

)]
. (2.12)

Since the Q function is an integral, it may be more useful to use its Chernoff bound

to analyze the PEP:

P (S, Ŝ) ≤ E

[
exp

(
− Es

4N0

∆2

)]
= φ∆2(s)|s=− Es

4N0

. (2.13)

where φ∆2(s) is the moment generating function (MGF) of ∆2. In the following

sections, the performances of STCs will be discussed based on Eq. (2.13). We will

show that the performance of a specific STC is dependent on the channel fading

situations. This implies that the code design for different channels will base on

different criteria.

Performance and code design of STC under Quasi-static Rayleigh Fading

Recall that the channels do not change within one code block with L symbols

under the assumption of quasi-static fading. The received signal in one block can

be equivalently denoted in the matrix form as, based on Eq. (2.7),

Y =
√

EsHS + N, (2.14)
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where

Y =




y1
1 y1

2 · · · y1
L

...
...

. . .
...

ynR
1 ynR

2 · · · ynR
L




(2.15)

and

H =




h1,1 h1,2 · · · h1,nT

...
...

. . .
...

hnR,1 hnR,2 · · · hnR,nT




. (2.16)

S is defined in Eq. (2.8). It can be seen that

∆2 = tr
(
H(S− Ŝ)(S− Ŝ)HHH

)
, (2.17)

where tr(·) indicates the trace of (·). Since D = (S − Ŝ)(S − Ŝ)H is a Hermitian

matrix, we have

D = UΛUH , (2.18)

where U ∈ CnT×nT is an unitary matrix and Λ ∈ CnT×nT is a diagonal matrix with

eigenvalues of D at the diagonal. With rank(D) = r,

Λ = diag(λ1, λ2, . . . , λr, 0, . . . , 0).

Further define a new vector, vi ∈ CnR×1, as

vi = Hui, i = 1, 2, . . . , r, (2.19)
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where ui is the ith column of U. Then

∆2 =
r∑

i=1

λi‖vi‖2 =
r∑

i=1

λiβi =
r∑

i=1

ξi. (2.20)

Note that all the elements of H are i.i.d. complex Gaussian random variables and

each entry of vi is also i.i.d. complex Gaussian. Therefore, ξi is X 2
2nR

distributed

with mean λinR. In addition, since the columns of U are orthonormal, elements

of vi and vj are uncorrelated, hence independent, for i 6= j. As a result, ξi and ξj

are independent for i 6= j. Thus

φ∆2(s) =
r∏

i=1

φξi
(s) =

r∏
i=1

(
1

1− λis

)nR

. (2.21)

The PEP is upper bounded as, when SNR= Es/N0 is large,

P (S, Ŝ) ≤
r∏

i=1

(
1

1 + Es

4N0
λi

)nR

≈
(

Es

4N0

)−rnR r∏
i=1

λi
−nR . (2.22)

Based on Eq. (2.22), the pairwise diversity gain and gain coding gain are defined

as η′d = rnR and η′c = (
∏r

i=1 λi)
1/r

respectively. The diversity gain indicates the

slope of the PEP versus SNR curve, and the increment of the coding gain will shift

the curve left. Thus the code design should maximize η′d and η′c over all pairs of

distinct code matrices (S, Ŝ). Note that the minimum pairwise diversity gain and

coding gain have the dominant effect on the performance. According to [3], the

diversity gain of a STC is defined as the minimum pairwise diversity gain; and the

coding gain is defined as the minimum pairwise coding gain of the distinct pairs of
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code matrices with pairwise diversity gain ηd, by the following equations:

ηd = arg min
(S,Ŝ)

rnR (2.23)

and

ηc = arg min
(S,Ŝ)

rnR=ηd

(
r∏

i=1

λi

)1/r

. (2.24)

It can be seen that the performance of the STC depends on the properties of

S− Ŝ and (S− Ŝ)(S− Ŝ)H , which are referred to as the codeword difference matrix

and the codeword distance matrix in some papers. However, to be consistent with

the derivation in later chapters, we define the codeword difference matrix and the

codeword distance matrix as S− Ŝ and (S− Ŝ)H(S− Ŝ) respectively in this thesis.

This will not cause misunderstandings in the statements and results, since what

we are concerned about is just the rank and nonzero eigenvalues of the codeword

distance matrix, which are the same for (S− Ŝ)H(S− Ŝ) and (S− Ŝ)(S− Ŝ)H .

Based on Eq. (2.22), two code design criteria have been obtained in [3]:

1. Rank criterion: In order to achieve the maximum diversity gain, the code-

word distance matrix D or equivalently the codeword difference matrix S− Ŝ

has to be full rank taken over all possible pairs of distinct S and Ŝ.

2. Determinant criterion: In order to achieve the maximum coding gain, the

minimum product of nonzero eigenvalues of D taken over all pairs of distinct

S and Ŝ should be maximized.
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Performance and design of STC under Rapid Rayleigh Fading

The same method is used for the performance analysis of STC under rapid fading

channels. For a rapid fading system, the channels at different symbol intervals are

independent. The received signal vector at time t is

yt = Htst + nt, (2.25)

where Ht = [ht
i,j] ∈ CnR×nT is the channel matrix at time t, st is the tth column of

S and nt is the noise vector at time t. Then

∆2 =
L∑

t=1

‖Ht(st − ŝt)‖2

=
L∑

t=1

tr
(
Ht(st − ŝt)(st − ŝt)

HHH
t

)
=

L∑
t=1

ξt. (2.26)

Since Dt = Ht(st − ŝt)(st − ŝt)
HHH

t has the rank of at most one, and the corre-

sponding eigenvalue is ‖st − ŝt‖2, ξt can be expressed as

ξt = ‖st − ŝt‖2βt, (2.27)

where βt is the chi-square variate with freedom 2nR. Consequently,

φ∆2(s) =
L∏

t=1

(
1

1− ‖st − ŝt‖2s

)nR

. (2.28)
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Substituting −Es/4N0 for s, and still with the assumption that SNR is high, we

have

P (S, Ŝ) ≤
(

Es

4N0

)nR|Ω| ∏
t∈Ω

(
1

‖st − ŝt‖2

)nR

, (2.29)

where Ω = {t : st − ŝt 6= 0} and |Ω| is the cardinality of Ω. Similarly, the

pairwise diversity gain and coding gain are, for rapid fading system, η′d = nR|Ω| and

η′c =
(∏

t∈Ω ‖st − ŝt‖2
)1/|Ω|

respectively. Note that the situation here is different

from that of quasi-static fading systems. The diversity gain of a STC under the

rapid fading system is dependent on the nonzero columns of S− Ŝ not the rank of

S−Ŝ. Similarly, two STC design criteria are obtained for rapid fading channels [3]:

1. Distance criterion: In order to achieve the maximum diversity, the minimum

number of nonzero columns of codeword difference matrices taken over all

possible pairs of distinct S and Ŝ should be maximized.

2. Product criterion: In order to achieve the maximum coding gain, the mini-

mum product of the norms of codeword difference matrices’ nonzero column

vectors taken over all pairs of distinct S and Ŝ should be maximized.

2.2.3 Impact of Channel Correlation on the Performance

of STC

In the previous sections, we investigate the performance and STC design in quasi-

static fading and rapid fading systems, where we suppose there is no correlation

between the transmit and receive antennas. Moreover, either very slow fading

where the channel gain is constant over one code block, or very fast fading where the

channel gains are independent from symbol to symbol is assumed. In this section
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a more general case that the channels are arbitrarily spatially and temporally

correlated will be reviewed [14]. In order to simplify the illustration, one receive

antenna is assumed. Letting

Ci = diag(si
1, s

i
2, . . . , s

i
L) (2.30)

and

C =

[
C1 C2 · · · CnR

]T

, (2.31)

we have

x = Cg + w, (2.32)

where

x =

[
y1

1 y1
2 · · · y1

L y2
1 · · · y2

L · · · ynR
1 · · · ynR

L

]T

(2.33)

and

g =

[
gT

1 gT
1 · · · gT

nR

]T

, (2.34)

in which

gi =

[
h1

1,i h2
1,i · · · hL

1,i h1
2,i · · · hL

2,i · · · hL
nT ,i

]T

. (2.35)

The correlation of the channels is specified by the correlation matrix of g as

Rc = E[ggH ]. (2.36)
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The PEP of transmitting S but deciding Ŝ is

P (S, Ŝ) = P (‖x−Cg‖2 > ‖x− Ĉg‖2), (2.37)

where C and Ĉ are constructed from S and Ŝ respectively. We first consider a

loose bound by using standard Chernoff bound. Then

P (S, Ŝ) ≤ E

[
exp

(
Es

4N0

∆2

)]
, (2.38)

where

∆2 = gH(C− Ĉ)H(C− Ĉ)g. (2.39)

Note that ∆2 is the quadrature form of a sequence of Gaussian random variables

with covariance

R = (C− Ĉ)Rc(C− Ĉ)H . (2.40)

Similar to the discussion in previous sections, according to the theory on the MGF

of multivariate Gaussian variables, we have

E

[
Es

4N0

∆2

]
= det

(
InRL +

Es

4N0

R

)−1

. (2.41)

Then

P (S, Ŝ) ≤
r∏

i=1

(
1

1 + Es

4N0
λi(R)

)nR

, (2.42)

where r = rank(R) and λi(R) is the ith nonzero eigenvalue of R.

Another upper bound of PEP is achieved through the MGF of Gaussian random

variables as well, but Chernoff bound is not used. It has been shown that the upper
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bound in [14] is tighter than Chernoff bound and is an asymptotic approximation

of the exact PEP. Here we only show some important results in [14]. Based on

Eq. (2.37), PEP can be expressed as

P (S, Ŝ) = P (z < 0), (2.43)

where z = ‖x− Ĉg‖2 − ‖x−Cg‖2. It is proved that the MGF of z is

φz(jω) =
r∏

i=1

1

N0Esλi(R)

(
ω2 − jω

N0

+
1

N0Esλi(R)

)−1

(2.44)

=
r∏

i=1

( −j

N0Esλi(R)(t− jp+
i )

)(
j

ω − jp−i

)
, (2.45)

where

p±i =
1

2N0

(
1±

√
1 +

4N0

Esλi(R)

)
. (2.46)

The residue theory implies that

P (S, Ŝ) =
r∑

i=1

Res

[
− 1

ω

r∏

k=1

1

(ω − jp+
k )(ω − p−k )

]

ω=jp+
i

(
1∏r

i=1 N0Esλi(R)

)
.

(2.47)

Noticing that if the poles of φz(jω) in the upper half plane is repeated, the calcula-

tion of Eq. (2.47) is very complicated. However, the fact that the movement of p±i

toward the origin will increase the residue, the following upper bound is obtained,

which is tighter than Chernoff bound when SNR is high.

P (S, Ŝ) ≤




2r − 1

r − 1




(
Es

N0

)−r
(

r∏
i=1

λi(R)

)−1

≤
(

Es

4N0

)−r
(

r∏
i=1

λi(R)

)−1

.

(2.48)
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It can be seen that the performance of a STC depends on the rank and eigenvalues

of R, which is associated with not only the STC itself but the correlation matrix

of the channel. In case that the transmitter knows the channel, the code design

should take the channel correlation into account for the optimal performance. In

general, channel is assumed to be known or estimated at the receiver and there

is no feedback to transmitter. The code design needs to be suitable for different

correlation situations. We will discuss this in Chapter 4 in more details.

2.2.4 Space-time Trellis Code and Space-time Block Code

In this section, we will show the principles of the STTC and STBC.

Space-time Trellis Codes

STTC is a two-dimensional extension of the traditional trellis code. For an M -PSK

STTC, the encoder is composed of m = log2 M shift registers, which is shown in

Fig. 2.3. All the input sequences are binary. However, the tap weights and the

output symbols are elements of GF (M). Each shift register may have different

memory order νi. The total memory order of the ST trellis encoder is ν =
∑m

i=1 νi.

The output vector, st ∈ CnT×1, at each time t can be expressed as

st =
m∑

i=1

bi
tGi mod M, (2.49)

where

bi
t =

[
bi
t bi

t−1 · · · bi
t−νi

]T

, (2.50)



2.2 Space-time Codes 37
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Figure 2.3: The block diagram of a STTC encoder.
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Figure 2.4: An example of the 4-state QPSK STTC.

and

Gi =




gi(1, 0) gi(1, 1) · · · gi(1, νi)

gi(2, 0) gi(2, 1) · · · gi(2, νi)

...
. . . . . .

...

gi(nT , 0) gi(nT , 1) · · · gi(nT , νi)




. (2.51)

We use the 4-state QPSK STTC designed in [3] as an example to explain how the

encoder works. The trellis diagram is shown in Fig. 2.4. The two corresponding

generator matrices are

G1 =




0 2

2 0


 and G2 =




0 1

1 0


 . (2.52)

From Eq. (2.49), it can be seen that the code design is a process to find the

generator matrices according to the criteria we discussed above. Many researches

on the code design were done by exhaustively searching of the generator matrices

[41], [42]. And the optimal codes for different fading environment, such as quasi-

static fading and rapid fading, were obtained. The challenge on the searching is

the complexity. For each set of generator matrices, all the possible code matrices
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have to be examined based on the code design criteria. Moreover, the length of the

code block is very long and not specified in general. To solve this problem, some

analytic tools [43] are proposed to assist the code searching. Recently, noticing that

the number of the possible generator matrices increases rapidly with the number of

transmit antennas and the number of states, Abdool-Rassool et.al proposed a faster

searching method by employing the good properties of the generator matrices, such

as symmetry [102].

Space-time Block Codes

The first STBC was introduced by Alamouti [53] for two-transmit-antenna systems,

which was, at that time, referred to as the two-branch transmit diversity scheme.

Tarokh later proposed a so-called STBC for the systems with an arbitrary number

of transmit antennas, which preserves the orthogonality. Sometimes, these STBCs

are denoted as OSTBCs to explicitly indicate that they are orthogonal. Although

there are other types of STBC proposed, we only cover the orthogonal STBC in this

thesis. Unless otherwise mentioned, all the STBCs referred here are the orthogonal

STBCs.

Unlike the STTC, the STBC codeword matrix GnT
∈ CnT×L, is obtained by using

the linear combinations of the input symbols, x1, x2, . . . , xn, and their conjugates

(sometimes 0 is used) as elements in a specific way such that the codeword ma-

trix has the orthogonal structure. nT is the number of transmit antennas and L

is the code block length of a STBC. We call GnT
a nT × L STBC. It should be

pointed out that, to be consistent with the denotation in previous sections, the
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codeword matrix here is the transpose of those in [53]. STBC can be catego-

rized into two groups: one is the generalized real orthogonal design (real STBC),

for which x1, x2, . . . , xn are all real when the modulation with real signal constel-

lations is used; the other is the generalized complex orthogonal design (complex

STBC) for the complex input symbols (e.g., QPSK). Specifically, for a codeword

matrix designed with a real input symbol sequence x1, x2, . . . , xn, the entries can

be 0,±x1,±x2, . . . ,±xn. For the complex input symbols, the entries will be se-

lected from {0,±x1,±x∗1,±x1,±x∗2, . . . ,±xn,±x∗n}, and/or their linear combina-

tions. Generally, we have n ≤ L, and the code rate of a STBC is n/L ≤ 1.

Examples of real STBC’s for nT = 2, 3, 4 are

Gr
2 =




x1 x2

−x2 x1


 , (2.53)

Gr
3 =




x1 −x2 −x3 −x4

x2 x1 x4 −x3

x3 −x4 x1 x2




, (2.54)

and

Gr
4 =




x1 −x2 −x3 −x4

x2 x1 x4 −x3

x3 −x4 x1 x2

x4 x3 −x2 x1




. (2.55)

where the superscript r indicates the real STBC and the subscript denotes the

number of transmit antennas used for STBC. For the complex STBC, Alamouti’s
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code is one example for the system with two transmit antennas:

Gc
2 =




x1 −x∗2

x2 −x∗1


 , (2.56)

where the superscript c is used to denote that the STBC is complex. For nT = 3,

we have

Gc
3 =




x1 −x2 −x3 −x4 x∗1 −x∗2 −x∗3 −x∗4

x2 x1 x4 −x3 x∗2 x∗1 x∗4 −x∗3

x3 −x4 x1 x2 x∗3 −x∗4 x∗1 x∗2




(2.57)

and

Hc
3 =




x1 −x∗2
x∗3√

2

x∗3√
2

x2 x∗1
x∗3√

2
− x∗3√

2

x3√
2

x3√
2

−x1−x∗1+x2−x∗2
2

x1−x∗1+x2+x∗2
2




. (2.58)

Similarly, for nT = 4, two STBCs can be constructed as

Gc
4 =




x1 −x2 −x3 −x4 x∗1 −x∗2 −x∗3 −x∗4

x2 x1 x4 −x3 x∗2 x∗1 x∗4 −x∗3

x3 −x4 x1 x2 x∗3 −x∗4 x∗1 x∗2

x4 x3 −x2 x1 x∗4 x∗3 −x∗2 x∗1




, (2.59)

and

Hc
4 =




x1 −x∗2
x∗3√

2

x∗3√
2

x2 x∗1
x∗3√

2
− x∗3√

2

x3√
2

x3√
2

−x1−x∗1+x2−x∗2
2

x1−x∗1+x2+x∗2
2

x3√
2
− x3√

2

x1−x∗1−x2+x∗2
2

−x1+x∗1+x2−x∗2
2




. (2.60)
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Note that the examples of STBC given above have different code rate. The real

STBC presented are all rate one. However, despite the complex 2× 2 STBC with

rate one, the complex STBC’s for nT = 3, 4 are with the rates of 1/2 or 3/4. It has

been proved theoretically that the rate one real STBC can be constructed for any

number of transmit antennas while the square (nT = L) rate one real STBC only

exists for nT = 2, 4, 8. However, rate one complex STBC only exists for nT = 2.

According to the performance analysis of previous sections, the orthogonal struc-

ture of STBC ensures that it has full diversity when the channel is static during

the code block, for GnT
GT

nT
= D, where D is a diagonal matrix. Another attractive

property of STBC is that the ML decoding of it at the receiver can be done linearly.

For example, assume that Gc
2 is transmitted and there is one receive antenna, the

received signal is

Y =

[
y1 y2

]
=

[
h1 h2

]



x1 −x∗2

x2 x∗1


 +

[
n1 n2

]
. (2.61)

Defining ỹ =




y1

y∗2


, we have

ỹ =




h1 h2

h∗2 −h∗1







x1

x∗2


 +




n1

n∗2




= H̃x + ñ. (2.62)
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It can be seen that H̃HH̃ = (|h1|2 + |h2|2)I, thus the decision statistics is

y′ = H̃H ỹ = (|h1|2 + |h2|2)c + n′. (2.63)

The linear processing in Eq. (2.63) demonstrates that the two symbol x1 and x2

can be decoded separately, i.e.,

x̂1 = arg min
x1

|y′1 − x1|2, (2.64)

x̂2 = arg min
x2

|y′2 − x∗2|2. (2.65)

This will reduce the decoding complexity to be a linear function, instead of an expo-

nential function, of the constellation size as for general ML decoding. Specifically,

for QPSK modulation, the linear processing reduces the number of calculations of

decoding metrics from 42 to 4× 2.

2.3 BLAST Systems

2.3.1 Overview of BLAST Architectures

Unlike STTC and STBC, which aim at improving the diversity, BLAST is targeted

at the high data rate. The simplest BLAST architecture is uncoded VBLAST. For

a system with nT transmit antennas, the information symbol sequence is split into

nT streams that are transmitted simultaneously from all the antennas [7]. Its block

diagram is shown in Fig. 2.5. The VBLAST with independently coded layers is also

called HLST [22]. The name is further used for the more general cases that, e.g.,
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S/P

nT
1

2

nT-1Information symbol sequence
Figure 2.5: The block diagram of an uncoded VBLAST.

the information symbol sequence is encoded before divided into several streams as

shown in Fig. 2.6 [46]. Denoting the tth symbol in the ith symbol stream after

encoding and splitting as si
t, the transmitted signal matrix is

S =




s1
1 s1

2 · · · s1
L

s2
1 s2

2 · · · s2
L

...
...

. . .
...

snT
1 snT

2 · · · snT
L




, (2.66)

where L is code block length. Instead of arranging the coded streams horizontally,

DLST puts the streams along parallel diagonals of the signal matrix, which can be

expressed as, for example, when nT = 3,

S =




s1
1 s2

1 s3
1 s1

4 s2
4 s3

4 · · ·
0 s1

2 s2
2 s3

2 s1
5 s2

5 · · ·
0 0 s1

3 s2
3 s3

3 s1
6 · · ·




. (2.67)
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S/P
Information symbol sequence Encoder

interleaver
interleaver

Figure 2.6: The block diagram of an example of the coded VBLAST.

A more recent scheme, threaded layered space-time (TLST) code, maps the streams

in cyclicly shifting way. An example codeword matrix is

S =




s1
1 s3

2 s2
3 s1

4 · · ·
s2
1 s1

2 s3
2 s2

4 · · ·
s3
1 s2

2 s1
3 s3

4 · · ·




, (2.68)

which can also be seen as a modified DLST with the nonzero elements on the left

corner of the signal matrix. Although there are different transmission schemes,

the detection methods at the receiver are suitable for all these schemes but with

different performances and complexities.

2.3.2 BLAST Receivers

Treating a BLAST system as a multiuser system with single transmit antenna for

each user, multiuser detection methods can be used at the BLAST receiver. The

symbols on one transmitted antenna are considered as desired and the symbols

from other antennas are treated as interferer. Two typical linear methods are
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usually used for the BLAST systems: one combines ZF with SIC algorithm with

optimal ordering (ZF-BLAST), the other combines an MMSE approach with SIC

(MMSE-BLAST). In the following part, we will investigate these two methods in

detail. For simplicity, the uncoded VBLAST is used for illustration.

ZF-BLAST Receiver

ZF-BLAST was proposed in [7], which is an optimally ordered ZF IS together with

SIC. Recall that the received signal at time t is

yt = Htst + nt. (2.69)

ZF IS for symbol si
t of layer i is performed by linearly weighting yt to suppress the

interference from layers higher than i, i.e.,

wiH
t Ht(j) =





ai, i = j

0, i < j
, (2.70)

where ai is a constant dependent on the norm of wi.

If no ordering is performed, ZF-BLAST receiver is reduced to the QRD receiver [22],

where QRD of the channel matrix, Ht = QtFt, is used to do the ZF IS. Qt has

orthonormal columns and Ft is an upper triangular matrix. Therefore, the ith

column vector of Qt, Qt(i) = wi
t. ZF IS of all the layers can be done by one step:

multiplying yt by QH
t . Then we have

rt = QHyt = Ftst + n′t, (2.71)
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where n′t = QH
t nt, which is still a vector of i.i.d. Gaussian variables. Specifically,

Ft can be expressed as

Ft =




F t
1,1 F t

1,2 · · · F t
1,nT

F t
2,2 · · · F t

2,nT

0
. . .

...

F t
nT ,nT




. (2.72)

With Ft being upper triangular, the ith element of rt, ri
t is immune from the

interference from the layers higher than i. Therefore, in the first stage, detection

of snT
t is done by using rnT

t as the decision statistics. Then snT
t is fed back to

cancel out its contribution to rt so that snT−1
t can be detected at second stage. This

operation will repeat until all the symbols are detected. The successive multi-stage

detection is expressed as

ŝi
t = arg min

si
t

∣∣∣∣∣
ri
t −

∑i−1
k=1 F t

i,ks
k
t

F t
i,i

∣∣∣∣∣

2

, (2.73)

where ŝi
t indicates the estimation of si

t.

It can be seen that the system performance depends on the diagonal elements of

Ft. That means, the order of successive detection of the layers, i.e., the order of

the columns of the channel matrix Ht, affects the BER performance. Golden et.al

addressed this problem in [7]. Let the ordered set (k1, k2, . . . , knT
) be a permutation

of (1, 2, . . . , nT ). Generally, the weighting vector wki
t is orthogonal to the subspace

spanned by the ki+1 to knT
columns of Ht. It is not difficult to show that when

‖wki
t ‖2 is constrained to 1, wki

t is unique and its hermitian is just the kith row of
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Hki±
t , where Hki−

t denotes the matrix obtained by removing the columns from k1 to

ki and (·)+ denotes generalized inverse of (·). Furthermore, the error performance

of layer ki depends on ρki
= Es/N0‖wki

t ‖2. Therefore, different ordering leads to

different ρki
and ‖wi

t‖2 is desired to be as small as possible. Consequently, the aim

of ordering is focused on maximizing ρki
’s over all possible detection orderings.

It has been proved that simply choosing the maximum ρki
at each stage in the

successive detection process leads to the global optimal ordering.

The resultant detection algorithm, referred to as Golden algorithm or ZF-VBLAST,

is as follows:

Set Ht(1) = Ht, y1 = y

For i = 1, 2, . . . , nT

Gi
t = H+

t(i)

ki = arg min
j
‖Gi

t(j)‖2

(wki
t )H = Gi

t(ki)

rki
= (wki

t )Hyi

ŝki
= quantized rki

yi+1 = yi −Ht(i)(ki)ŝki

Ht(i+1) = Hki−
t(i)

End

where Gi
t(j) and Ht(ki) are the jth and the kith column of Gi

t and Ht respectively.

It is easy to see that when the horizontal coding is applied, the detection of each

layer will be performed in one code block other than in one symbol interval. Then

the detected symbols are decoded and encoded again to cancel out the interference
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they bring into higher layers. Similarly, the detection and decoding of DLST is

done layer by layer, though the layer is diagonal. It is generally assumed that the

code block is lasting for just a single diagonal. Note that the first layer (diagonal)

is free of interference, which can be decoded directly. Likewise, after subtracting

the interference from the first layer, the symbols in layer two are decoded. The

detection and decoding are the same for other layers.

MMSE-BLAST Receiver

MMSE-BLAST differs from ZF-BLAST in that IS method of MMSE instead of

ZF is used. However, they both employ SIC. The flowing table shows the MMSE-

BLAST algorithm with ordering.

Set Ht(1) = Ht, y1 = y

For i = 1, 2, . . . , nT

Gi
t = [HH

t(i)Ht(i) + σ2InT
]−1HH

t(i)

ki = arg min
j
‖Gi

t(j)‖2

(wki
t )H = Gi

t(ki)

rki
= (wki

t )Hyi

ŝki
= quantized rki

yi+1 = yi −Ht(ki)ŝki

Ht(i+1) = Hki−
t(i)

End



2.3 BLAST Systems 50

Detection

P/S Decoder S/P

1−∏

1−∏

∏

∏

Figure 2.7: One example of the iterative BLAST receiver.

Other Receivers

Some other receivers are also proposed. Many of them are motivated from the

fact that the ZF-BLAST and MMSE-BLAST scheme have high computational

complexity since calculation of matrix inverse are involved. They are modified

algorithms with lower complexity, but are still based on the ZF or MMSE criteria

[92], [93].

With the iterative processing principle being extended to the joint detection and

decoding, the iterative BLAST receivers were also introduced [94], [95], [96]. How-

ever, this kind of receiver can only be applied to the coded BLAST schemes. At

each iteration, the decoder soft outputs are used to update the priori probabilities

of the transmitted symbols. These updated probabilities are then used to calcu-

late the symbol estimates in the detector. Since the the iterative detection and

decoding is out of the scope of the thesis, we will not show the details here. One

example of the iterative receiver is shown in Fig. 2.7.
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2.3.3 Tradeoff Between Performance and Transmission Rate

From above discussion, we can see that the BLAST systems provide higher spectral

efficiency than the STTC and STBC. For example, for the uncoded VBLAST, the

spectral efficiency is nT m, where m is constellation size. Since DLST has several

zero elements at the left-lower corner as well as the right-upper corner of the code-

word matrix, a part of the spectral efficiency will be lost. The spectral efficiency

loss depends on the code block length, the number of the transmit antennas, and

the diagonal arrangement. Generally, the loss will be high when the code block

length is small. For the HLST with code rate rcode, the total spectral efficiency will

be rcodenT m. In general, STTC and STBC have the spectral efficiency less than or

equal to m.

It is obvious that with enhanced spectral efficiency, the performance will degrade.

We will use HLST as an example to show the tradeoff between spectral efficiency

and performance. In a HLST system with QRD receiver, the codeword matrix

is decoded row by row, from bottom to top. Let the coding block length is L.

si = [si
1, s

i
2, . . . , s

i
L] is the ith row of the codeword matrix. Assuming that the

interference from lower layers is canceled out perfectly, we have the conditional

PEP for layer i as

P (si, ŝi|Ht, 1 ≤ t ≤ L) ≤ exp

[
− Es

4N0

L∑
t=1

|F t
i,i|2|ci

t − ĉi
t|2

]
. (2.74)

For Ht is a matrix with i.i.d Gaussian random variables, it has been proved that

|F t
i,i|2 is X2(nR−i+1) distributed with mean nR− i+1. When channel is quasi-static,
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F t
i,i = Fi,i for all t. Then the PEP is upper bounded as

P (ci, ĉi) ≤
(

1 +
Es

4N0

|ci − ĉi|2
)−(nR−i+1)

. (2.75)

Similarly, when the channels are fading fast, |F t
i,i|2 will be independent for different

t. We have

P (ci, ĉi) ≤
∏
t∈Ω

(
1 + |ci

t − ĉi
t|2

Es

4N0

)−(nR−i+1)

, (2.76)

where Ω = {t : ci
t 6= ĉi

t}.

It can be seen that the PEP of HLST has the similar form as that of STTC and

STBC. Still using diversity gain and coding gain to measure, we can see that the

diversity gain for the ith layer is nR − i + 1, when channel is fading slowly; and

|Ω|(nR − i + 1), where |Ω| indicates the cardinality of Ω, when channel is fading

fast. This shows that different layers have different diversity gains. Nevertheless,

the performance of the whole BLAST system is dominated by the first detected

and decoded layer, since SIC is applied. Thus the diversity gain of the system is

the diversity gain of the lowest layer, nR − nT + 1 [22], [103]. On the other hand,

the diversity of a STTC can be at most nRnT , which is much higher than that of

a HLST.



Chapter 3

Space-time Code Design for

Multiuser Composite Fading

Systems

3.1 Introduction

STC is one of the approaches that take advantage of diversity [3], [54]. It intro-

duces temporal and spatial correlation into the signals transmitted from different

antennas trying to fully exploit the space and time diversities. Tarokh derived

STC design criteria for quasi-static flat fading channels as well as rapid fading

channels [3]. Both of the criteria are based on two parameters: diversity gain and

coding gain. Handcrafted codes were obtained first, then the code design with

improved performance was further discussed [41], [44].

Although the design of STC for single user systems has been extensively studied,

53
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code design for narrowband multiuser systems received less attention. Based on

the existing single-user STTCs, [13] proposed an interference-resistant modulation,

by rotating the STTCs single-user systems before they are transmitted. However,

this study only considers a single type of fading, assuming that all the users have

quasi-static fading channels. This is not true in many practical multiuser systems,

where different users may operate in different fading environments, i.e., some users

may undergo quasi-static fading while others may undergo rapid fading.

In this chapter, we analyze the error performance and derive code design criteria

of STC for multiuser composite fading systems. Composite fading means that the

users in the system experience two types of fading: quasi-static fading and rapid

fading. It is assumed that different users may have different numbers of transmit

antennas while the frame length of the transmitted signal from each user is the

same. We find that the PEP depends on two parameters, the rank and the product

of nonzero eigenvalues of a matrix A. Code design criteria are then obtained,

according to which optimal STCs for composite fading systems are obtained by

exhaustive search.

3.2 System Model

There are K users of which K1 (K1 < K) users suffer quasi-static fading (the

channel does not change within one frame) and K −K1 users suffer rapid fading

(the fading coefficients are independent over symbols). All the channel coefficients

are assumed to be complex Gaussian with variance 0.5 per real dimension. User i

has nTi transmit antennas and receiver has nR antennas. The system block diagram
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Space-time 
Detector/
Decoder

Space-time 
Encoder 1

Space-time 
Encoder 2

User 1
User 2

1Tn

2Tn

Rn

Quasi-static fading

Rapid fading
1

1

1

Figure 3.1: The block diagram of a two-user composite fading system.

for K1 = 1, K = 2 is shown in Fig. 3.1. All the users transmit the codes with the

same length L . The received signal matrix can be expressed as

Y =

[
y1 y2 · · · yL

]
, (3.1)

where yt is the received signal vector at time t given by

yt =
√

Es

K1∑

k=1

Hks
k
t +

√
Es

K∑

k=K1+1

Hkts
k
t + nt, t = 1, · · · , L. (3.2)

Es is the average signal power and is the same for all the users. The normalized

transmitted codeword matrix of user k can be expressed as

Sk =

[
sk
1 sk

2 · · · sk
L

]
, (3.3)
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where sk
t is the tth column of it. Since user k, when K1 < k ≤ K, has the rapid

fading channel, it has statistically independent channel matrices Hkt at different

time t. CSI is assumed to be known at the receiver. nt is the noise vector at time

t, in which each element is zero mean complex Gaussian random variable with

variance N0/2 per real dimension.

3.3 Pairwise Error Probability

To derive the code design criteria, we first analyze the pairwise error probability

of composite fading systems. The system with two users is considered first. It will

be seen that it is easy to extend the two-user case to the case with more users.

3.3.1 Pairwise Error Probability of Two-user Systems

There are two users in systems. User 1 has a quasi-static fading channel and user

2 has a rapid fading channel. The data model in Eq. (3.2) becomes

yt =
√

Es

(
H1s

1
t + H2ts

2
t

)
+ nt, t = 1, · · ·L (3.4)

where S1 ∈ C1, is the nT1×L codeword matrix transmitted from user 1 and where

C1 is the set of all possible code matrices of user 1. S2 ∈ C2, is the nT2×L codeword

matrix transmitted from user 2, where C2 is the set of all possible code matrices of

user 2.
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Joint ML decoding and detection is performed at the receiver. The PEP of trans-

mitting (S1,S2) but deciding (Ŝ1, Ŝ2) is, conditioned on the channel matrices,

P{(S1,S2) → (Ŝ1, Ŝ2) | H1,H2t, t = 1, · · · , L} ≤ (3.5)

exp

{
− Es

4N0

L∑
t=1

‖H1(s
1
t − ŝ1

t ) + H2t(s
2
t − ŝ2

t )‖2

}
,

where S1, Ŝ1 ∈ C1 and S2, Ŝ2 ∈ C2. For the convenience, we denote

∆2 =
L∑

t=1

‖H1(s
1
t − ŝ1

t ) + H2t(s
2
t − ŝ2

t )‖2. (3.6)

Then the conditional PEP is upper-bounded by

P2(e) = P{(S1,S2) → (Ŝ1, Ŝ2)} ≤ E

[
exp

(
− Es

4N0

∆2

)]
. (3.7)

It can be seen that ∆2 is a quadrature form of a sequence of nRL Gaussian random

variables. However, the unchanged channel of user 1 results in the correlation

between the random variables. Denoting

xt = H∗
1(s

1
t − ŝ1

t )
∗ + H∗

2t(s
2
t − ŝ2

t )
∗, (3.8)

where (·)∗ indicates the conjugate of (·), we have

E[xix
H
j ] =





(s1
j − ŝ1

j)
H(s1

i − ŝ1
i )InR

i 6= j

(‖s1
i − ŝ1

i ‖2 + ‖s2
i − ŝ2

i ‖2)InR
i = j

. (3.9)
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With

X =

[
xT

1 xT
2 · · · xT

L

]T

, (3.10)

∆2 can be rewritten as

∆2 = XHX. (3.11)

Define the covariance matrix

RXX = E(XXH) =




R11 R12 · · · R1L

R21 R22 · · · R2L

...
...

. . .
...

RL1 RL2 · · · RLL




, (3.12)

where the [i, j]th submatrix, Rij = E[xix
H
j ]. RXX can be further expressed as

RXX = [(B + D]⊗ IN , (3.13)

where ⊗ denotes the Kronecker product [104] and

B = (S1 − Ŝ1)
H(S1 − Ŝ1), (3.14)

D = diag(‖s2
1 − ŝ2

1‖2, ‖s2
2 − ŝ2

2‖2, · · · , ‖s2
L − ŝ2

L‖2). (3.15)

It has been approved that [25]

E

[
exp

(
− Es

4N0

∆2

)]
= det−1

(
Es

4N0

RXX + I

)
. (3.16)
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Consequently, P2(e) is upper bounded as

P2(e) ≤ det−1

[
Es

4N0

(B + D)⊗ IN + INL

]
(3.17)

= det−1

[
Es

4N0

(B + D + IL)⊗ IN

]
.

.

Define A as

A = B + D. (3.18)

Letting r and λ1, λ2, · · · , λr be the rank and the nonzero eigenvalues of A respec-

tively, we have

P2(e) ≤ (
Es

4N0

)−rnR

r∏
i=1

(
4N0

Es

+ λi)
−nR (3.19)

It can be seen that the pairwise error probability depends on the rank and nonzero

eigenvalues of A. In the next section, we will extend the above results to K-user

systems.

3.3.2 Pairwise Error Probability of K-user Systems

Without loss of generality, we assume that users from 1 to K1 have quasi-static

fading channels and users from K1 + 1 to K have rapid fading channels. The

channels of different users are statistically independent. Rewriting the data model

in Eq. (3.2) in joint codeword matrix format, we can treat the K-user system,

which has two types of fading, as a two-user system. The K1 users having quasi-

static fading can be seen as a virtual user experiencing quasi-static fading, with
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K1∑

k=1

nTk transmit antennas, joint codeword matrix

C1 =

[
ST

1 · · · ST
K1

]T

, (3.20)

and joint channel matrix

H1 =

[
H1 · · · HK1

]
. (3.21)

Under the assumption that the channels among the different users are independent,

H1 has independent Gaussian random elements. The other K −K1 users having

rapid fading can be seen as a virtual user experiencing rapid fading, with
K∑

k=K1+1

nTk

transmit antennas, joint codeword matrix

C2 =

[
ST

K1+1 · · · ST
K

]T

, (3.22)

and joint channel matrix at time t as

H2t =

[
HK1+1,t · · · HKt

]
, t = 1, . . . , L. (3.23)

Similarly, the elements in H2t are independent, and H2i is independent of H2j,

∀i 6= j. Redefine

B =
(
C1 − Ĉ1

)H (
C1 − Ĉ1

)
=

K1∑

k=1

Bk =

K1∑

k=1

(
Sk − Ŝk

)H (
Sk − Ŝk

)
, (3.24)
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,

D = diag
(
‖C1

2 − Ĉ1
2‖2, ‖C2

2 − Ĉ2
2‖2, . . . , ‖CL

2 − ĈL
2 ‖2

)

=
K∑

k=K1+1

Dk =
K∑

k=K1+1

diag
(∥∥sk

1 − ŝk
1

∥∥2
,
∥∥sk

2 − ŝk
2

∥∥2
, . . . ,

∥∥sk
L − ŝk

L

∥∥2
)

,

(3.25)

and A = B + D, where Ct
2 represents the tth column of C. Eq. (3.19) results in

the following theorem:

Theorem 3.1. For a K-user system with K1 users experiencing quasi-static fad-

ing and K −K1 users experiencing rapid fading, the pairwise error probability of

transmitting (C1,C2) but deciding (Ĉ1, Ĉ2) is upper bounded as, when SNR is high,

P2(e) ≤
(

Es

4N0

)−rnR r∏
i=1

λ−nR
i . (3.26)

where r and λ1, λ2, . . . , λr are rank and nonzero eigenvalues of A respectively.

3.3.3 The Special Cases

Although the average PEP obtained in Eq. (3.26) is for K-user composite fading

systems, it is such a general result that it is applicable for special situations such

as multiuser systems with single type of fading and single user systems. When the

system has only one type of fading, e.g., quasi-static fading, K1 = K and D = 0.

The PEP is only dependent on the rank and eigenvalues of matrix B. If we assume

K = 1 in addition, i.e., a single user system with quasi-static fading, B is reduced

to (S− Ŝ)H(S− Ŝ). Obviously, we have the same PEP as that in [3]. Similarly,
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Eq. (3.26) can be used to calculate the PEP for rapid fading multiuser systems and

rapid fading ST single user system. It is easy to verify that Eq. (3.26) results in

the consistent results as those in [3], when the multiuser composite fading system

is reduced to single user system with either kind of fading.

3.4 Code Design Criteria for Multiuser Compos-

ite Fading Systems

From Theorem 3.1, it can be seen that the large rank and product of nonzero

eigenvalues of A are desired. Recall that in multiuser composite fading systems,

two types of fading exist. However, users are usually not aware of what kind of

fading channel they have. Therefore in the code design, A should be examined for

all possible distinct joint code matrices and K1. This will be too complicated if K

is large. Fortunately, the following analysis simplified the code design dramatically.

Some definitions are given first for further discussion. According to Eq. (3.26), the

diversity gain ηd and the coding gain ηc are defined respectively as

ηd = rminnT (3.27)

where rmin is the minimum of r’s taken over all the distinct pairs of joint code

matrices, and

ηc = arg min
A∈Ω

ηd∏
i=1

λ
1/ηd

i , (3.28)

where Ω is the set of all the A’s with rank rmin. Based on Eq. (3.24) and Eq. (3.25),
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Bk and Dk are given for any 1 ≤ k ≤ K as

Bk =
(
Sk − Ŝk

)H (
Sk − Ŝk

)
k = 1, 2, . . . , K, (3.29)

and

Dk = diag
(∥∥sk

1 − ŝk
1

∥∥2
,
∥∥sk

2 − ŝk
2

∥∥2
, . . . ,

∥∥sk
L − ŝk

L

∥∥2
)

k = 1, 2, . . . , K. (3.30)

Note that Bk is the codeword distance matrix of user k and Dk has the squares of

norms of codeword difference matrix’s nonzero column vectors at its diagonal. Dk

is therefore the counterpart of Bk in the sense that its rank and nonzero eigenvalues

decide the diversity gain and coding gain of rapid fading channels. We then refer to

Dk as the codeword distance matrix for rapid fading of user k for further reference.

Since all the users are independent, there are some pairs of distinct joint code

matrices that differ only at one user’s codeword matrix. This indicates that Bk in

Eq. (3.24) or Dk in Eq. (3.25) is equal to A in certain cases. Assume that {γk
i } and

{ξk
i } are increasingly ordered eigenvalues of Bk and Dk respectively. Since Bk and

Dk are both positive semidefinite, we have (ηc)
rmin ≥ mink∈Ω{

∏rmin

i=1 γk
i ,

∏rmin

i=1 ξk
i }

and ηd ≥ min{rank(Dk), rank(Bk)}. Additionally with the observation that the

minimum of rank(Dk) over all pairs of distinct code matrices is greater or equal

to the minimum of rank(Bk) over these code pairs, we induce that assuring Bk

having maximum available rank over all pairs of distinct Sk and Ŝk is sufficient

and necessary condition for the STC to achieve the maximum diversity gain. With

nTi ≤ L in general, rmin is less than or equal to m = min
i

nTi. The maximum

diversity gain we can get is mnR.
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When all the users do not have the same number of transmit antennas, the code sets

for different users may be different. Although the diversity gain and coding gain

are decided by the code sets for the users with minimum number of antennas, the

pairwise error events with higher diversity gains also affect the error performance.

We then have the following code design criteria:

1. Maximize the minimum rank rk
min of codeword distance matrices for quasi-

static fadingBk taken over all pairs of distinct code matrices of each user’s

code set.

2. The minimum product of nonzero eigenvalues of the codeword distance ma-

trix for quasi-static fading Bk and the codeword distance matrix for rapid

fading Dk of rank rk
min, taken over all pairs of distinct code matrices of each

user’s code set has to be maximized.

These code design criteria also imply that the code sets for the users with the same

number of transmit antennas should be the same. In specific, if nTi = nT , i =

1, 2, . . . , K, only one code set is needed for all the users. Otherwise, the decoding

and detection at the receiver will be unnecessarily complicated. Since Bk for all k

are the same, we drop the subscript k and use B and D instead. Then two code

design criteria for multiuser composite fading systems with the same number of

transmit antennas for each user are obtained :

1. The minimum rank rmin of B taken over all the pairs of distinct code matrices

has to be maximized.

2. The minimum product of nonzero eigenvalues of all possible B and D of rank

rmin has to be maximized.
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3.5 The Optimal STTCs for Composite Fading

Systems

Based on the STTC encoder model introduced in Chapter 2, we give two examples

of STTC codes found by exhaustively searching over all the possible generator

matrices with certain parameters. Specifically, we find optimal 4-state and 8-state

QPSK STTC codes for two-user composite fading systems, where each user has

two transmit antennas.

Optimal QPSK 4-state STTC

G4
1 =




3 2

1 1


 , G4

2 =




2 0

2 2


 . (3.31)

Note that this pair of generator matrix is also for the optimal code presented in [46]

for single user rapid fading systems. The corresponding trellis diagram is shown in

Fig. 3.2.

00, 22, 31, 13

02, 20, 33, 11

21, 03, 12, 30

23, 01, 10, 32

Figure 3.2: Trellis diagram for the new optimal 4-state QPSK STTC.
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00, 22, 11, 33

21, 03, 32, 10

20, 02, 31, 13

10, 23, 12, 30

02, 20, 13, 31

23, 01, 30, 12

22, 00, 33, 11

03, 21, 10, 32

Figure 3.3: Trellis diagram for the new optimal 8-state QPSK STTC.

Optimal QPSK 8-state STTC

G8
1 =




1 2 0

1 0 2


 , G8

2 =




2 2

2 1


 , (3.32)

whose trellis is shown in Fig. 3.3.

3.6 Simulation results

Simulations are done for the scenario that one user has quasi-static fading channels

and the other has rapid fading channels. To evaluate how good the newly designed

STTC are, we compare them to several well known space time codes. The codes we

use for comparison are the Alamouti code from [53], the 4-state and 8-state QPSK

STTC from [3] (referred to as TSC), the optimal 8-state QPSK STTC for quasi-

static fading, and the optimal 8-state QPSK STTC for rapid fading [45]. The

trellis diagrams for the two TSCs are shown in Fig. 3.4 and Fig. 3.5 respectively.

Fig. 3.6 and Fig. 3.7 compare the performances of several different space-time
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00 01 02 03

10 11 12 13

20 21 22 23

30 31 32 33

Figure 3.4: Trellis diagram for the 4-state TSC.

00 01 02 03

10 11 12 13

20 21 22 23

32 33 30 31

22 23 20 21

30 31 32 33

02 03 00 01

12 13 10 11

Figure 3.5: Trellis diagram for the 8-state TSC.

codes. All the simulations are done in a two-user system. There is one antenna at

the receiver. However, both users have two transmit antennas each. The channels

for one user are quasi-static fading and the channels for the other user are rapid

fading. The channel gains are complex Gaussian variables with zero mean and

variance 0.5 per real dimension. Noises in the channel are white Gaussian with

zero mean and variance
N0

2
per real dimension. The QPSK modulation is applied.

The curves give the average bit error rate of two users versus SNR = Ea/N0, in

which Ea is the average power of signals received per receive antenna per user. The

STTC codes used have the terminating state zero. It can be seen from Fig. 3.6 that
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Figure 3.6: Bit error probability for various ST codes, two users with two transmit
antennas each, one receive antenna, QPSK modulation, and composite fading.

the new 4-state STTC is about 1 dB better than the 4-state TSC, and 3 dB better

than the 2× 2 STBC at a BER of 10−3. Note that there is a crossing behavior of

BER curves at about 10 dB SNR in Fig. 3.6. This is because that the PEP and

code design criteria are derived for high SNRs. Thus the codes obtained based on

them might not perform the same supremely in low SNRs. In Fig. 3.7, we compare

the performances of 8-state STCs. The performances of the optimal 8-state STTCs

for quasi-static and rapid fading channels are almost the same, which are better

than, though close to, that of the 8-state TSC code. On the other hand, the new

8-state STTC outperforms them by about 2 dB and outperforms the STBC by

over 5 dB at a BER of 10−3.
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Figure 3.7: Bit error probability for various ST codes, two users with two transmit
antennas each, one receive antenna, QPSK modulation, and composite fading.

3.7 Summary

In this chapter, we derive the code design criteria for a composite multiuser system

in which different users may suffer different types of fading and have different

numbers of transmit antennas. It has been shown that in order to obtain optimal

performance, the rank and product of nonzero eigenvalues of codeword distance

matrix A should be maximized. Based on the fact that pairwise error evens with

smaller coding gain and diversity gain dominate the error probability, the code

design is targeted at maximizing the minimum rank and product of the nonzero

eigenvalues of codeword distance matrices from each user’s code set, when different
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users have different number of transmit antennas. In the case that all the users have

the same number of transmit antennas, the code set will be common for different

users so that code design is simpler. The new code design criteria can also be

applied to multiuser systems with one type of fading and single user systems. The

simulation results demonstrate that the STTC obtained from searching based on

the new code design criteria perform better than other existing codes in composite

fading channels. Noticing that the composite fading is a special case of multiuser

correlated fading, we will discuss the code design for a more generally correlated

fading system in the next chapter.



Chapter 4

Performance Analysis and STTC

Design for MIMO Multiuser

Correlated Fading Systems

4.1 Introduction

In last chapter, we discuss the multiuser fading channels with extreme fading cor-

relations: channels with correlation 0 (rapid fading) and channels with correlation

1 (quasi-static fading). In many circumstances, the fading situations cannot be

described by these two fading models. More general multiuser correlated fading

channels should be considered.

The impacts of the channel correlation have been discussed from view of infor-

mation theory and performance analysis recently [14], [68] . The results in [14]

show that the optimal code design depends on the specific space-time correlation

71
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matrix. Nevertheless, to feedback the CSI or its statistics from the receiver may

not be useful when channel changes fast; or not be feasible because of the real-

time requirement and bandwidth limit. It is desirable to design a class of STCs

that achieve robust performance over a wide range of fading situations. [16] pre-

sented the general code design criteria for correlated MIMO systems, yet the ST

correlation matrix is assumed of full rank. Some examples of designed codes were

given, which concatenated the trellis coded modulation and space-time block code

to show robust performance over different fading situations.

Recently, Su investigated the robust code design for the case that fading is only

time-correlated but not spatially correlated [17], [75]. It is shown that the diver-

sity gain of the square-sized full rank STC is independent of the time correlation

matrix. However, consistent with previous work (e.g. [105]), the diversity gain of a

rectangular STC is still dependent on the correlation matrix. The lower bound of

the coding gain could also be obtained under the assumption that the Hadamard

product of the distance matrix and time correlation matrix is positive definite. Al-

though more recent work in [106] analyzed the performance of STCs for different

kinds of fading channels, it gave no interesting hints on the STC design for the

different correlation situations.

In this chapter, we generalize our investigation to the STTC code performance anal-

ysis and design for multiuser correlated MIMO systems. The channels of different

users are supposed to be independent and the correlation matrices of distinct users

may be different. Three fading circumstances are considered: temporally corre-

lated, spatially correlated and spatio-temporally correlated fading. While the last

case includes the former two, it is still desirable to analyze the two special cases
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individually since more specific and interesting results may be obtained.

Our analysis on the joint pairwise error probability demonstrates that the diversity

gain and coding gain are determined by the codeword matrix and channel correla-

tion of individual users. This implies that all the users use the same code set and

the code design for multiuser systems is reduced to the code design for single user

systems. In discussion on the code design for temporally correlated fading, we relax

all the assumptions on dimension of codeword matrix and property of correlation

matrix unlike [75]. In this more general case, we still prove that the STC achieving

full diversity in quasi-static fading MIMO can achieve full diversity in temporally

correlated multiuser MIMO systems. The upper bound of the coding gain depends

on the product of the norms of the codeword difference matrix’s nonzero column

vectors. It is additionally lower bounded by the product of nonzero eigenvalues

of the codeword distance matrix when the diversity gain is equal to the minimum

rank of the codeword distance matrices as well as the minimum number of the

nonzero columns of codeword difference matrices.

With spatial correlation and no temporal correlation presented, the diversity gain

relies on the number of nonzero columns of the difference matrices and the ranks

of space correlation matrices. More specifically, diversity gain is upper bounded

by the product of these two. This makes sense since the diversity gain depends on

time diversity and receive diversity though the latter may not be full, when channel

is time uncorrelated. The performance analysis for spatio-temporally correlated

fading MIMO systems exhibits that the number of, together with the product of

the norms of, nonzero columns of codeword difference matrices are desired to be

maximized. Based on the code design criteria for all three fading cases, a set of
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general criteria is obtained appropriate for arbitrary fading.

4.2 Data Model

There are K users in the system with nT transmit antennas each. The receiver has

nR antennas. All the channels are Rayleigh fading. The received signal at time t

can be expressed as

xt =
√

Es

K∑

k=1

Hk
t s

k
t + nt, t = 1, 2, . . . , L, (4.1)

where Hk
t is the channel matrix of user k at time t,

Hk
t =




h1
k1(t) h1

k2(t) · · · h1
knT

(t)

...
. . . . . .

...

hnR
k1 (t) hnR

k2 (t) · · · hnR
knT

(t)




.

sk
t is the signal vector transmitted at time t from user k, which is the tth column

of kth user’s codeword matrix Sk:

Sk =

[
sk
1 sk

2 · · · sk
L

]
, k = 1, 2, . . . , K.

nt is a Gaussian noise vector. By defining

y =

[
x1(1) x2(1) · · · xL(1) x1(2) · · · xL(2) · · · xL(nR)

]T

,
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where xt(i) is the ith element of xt, we have

y = Cg + w. (4.2)

In Eq. (4.2), C is a block diagonal matrix:

C =




C1 C2 · · · CK 0 · · · 0 · · · · · · 0 · · · · · · 0

0 · · · 0 · · · C1 C2 · · · CK 0 · · · · · · 0
...

...
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0

0 0 · · · · · · 0 · · · · · · 0 0 C1 C2 · · · CK




(4.3)

where

Ck =

[
Ck

1 Ck
2 · · · Ck

nT

]
, k = 1, 2, . . . , K, (4.4)

and

Ck
m = diag

(
sk
1(m), sk

2(m), · · · , sk
L(m)

)
, k = 1, 2, . . . , K, m = 1, 2, . . . , nT , (4.5)

where sk
t (m) is the mth element of sk

t . g can be expressed as

g =

[
gT

1 gT
2 · · · gT

nR

]T

, (4.6)

where

gj =

[
(g1

j )
T (g2

j )
T · · · (gK

j )T

]T

,

with

gk
j =

[
(hk

1j)
T · · · (hk

nT j)
T

]T
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and

hk
ij =

[
hj

ki(1) hj
ki(2) · · · hj

ki(L)

]T

.

w is constructed in the same way as y.

4.3 PEP and Code Design Criteria

Assume that C and Ĉ are two matrices associated with the two distinct joint code

matrices, S = {S1,S2, . . . ,SK} and Ŝ = {Ŝ1, Ŝ2, . . . , ŜK}. Letting R = E[ggH ]

and Z = (C− Ĉ)R(C− Ĉ)H , we have the PEP of transmitting S but deciding Ŝ

upper bounded as [14]

P2(e) ≤




2rz − 1

rz − 1




(
Es

N0

)−rz rz∏
i=1

λ−1
i (Z), (4.7)

where rz = rank(Z), and λi(·) denotes the ith nonzero eigenvalue of (·). Without

loss of generality, it is assumed that the eigenvalues are ordered such that λ1(·) ≥
λ2(·) ≥ . . . ≥ λr(·). Furthermore, from Eq. (4.7), two important factors, diversity

gain ηd and coding gain ηc, are defined as

ηd = min
(S,Ŝ)

rz, (4.8)

and

ηc = min
(S,Ŝ)∈ν

(
ηd∏
i=1

λi(Z)

)1/ηd

, (4.9)

where

ν = {(S, Ŝ) : rank(Z) = ηd}. (4.10)
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In the following, we will discuss the diversity gain, coding gain and code design

under different channel correlation situations.

4.3.1 Channels are Only Temporally Correlated

Suppose that channels are not spatially correlated and the channel between each

pair of transmit and receive antennas has the same temporal correlation, i.e.,

E[hk
ijh

kH
ij ] = Rk

TP ,∀i, j (4.11)

and

E[hk
ijh

kH
mn] = 0,∀i 6= m or n 6= j. (4.12)

Moreover, we assume that the channels of different users are uncorrelated, that

means,

E[hk
ijh

lH
mn] = 0,∀i, j, m, n; k 6= l. (4.13)

Then we have

R = InR
⊗ diag(InT

⊗R1
TP , InT

⊗R2
TP , . . . , InT

⊗RK
TP ), (4.14)

where ⊗ indicates the Kronecker product. Together with Eq. (4.3), (C−Ĉ)R(C−
Ĉ)H can be rewritten as

Z = InR
⊗

(
K∑

k=1

nT∑
m=1

Ck
mRk

TPCkH
m

)

= InR
⊗

[
K∑

k=1

(Sk − Ŝk)
T (Sk − Ŝk)

∗ ◦Rk
TP

]
, (4.15)
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where ◦ denotes the Hadamard product [104]. We define

Dk = [(Sk − Ŝk)
H(Sk − Ŝk)]

∗, (4.16)

and

Ak = Dk ◦Rk
TP , A =

K∑
i=1

Ak (4.17)

for denotation simplicity. Note that Dk is the codeword distance matrix of user k.

Let d be the rank of A. Eq. (4.7) becomes

P2(e) ≤




2nRd− 1

nRd− 1




(
Es

N0

)−nRd d∏
i=1

λ−nR
i (A). (4.18)

And the diversity gain is,

ηd = min
(S,Ŝ)

dnR. (4.19)

Theorem 4.1. With d = rank(A) and dk = rank(Ak), the diversity gain of the

system is

ηd = min
(S,Ŝ)

dnR = dminnR, (4.20)

where dmin = min
1≤k≤K

min
(Sk,Ŝk)

dk, in which the inner minimum is taken among all the

pairs of distinct code matrices of each user, and the outer minimum is taken on

the K minimums obtained from the inner minimum operator. The coding gain is

ηc = min
1≤k≤K

min
(Sk,Ŝk),k∈µ

(
dmin∏
i=1

λi(Ak)

)1/dmin

, (4.21)

where µ = {k : min
(Sk,Ŝk)

dk = dmin}.
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Proof. Since Dk and Rk
TP are both Hermitian and positive semidefinite, so is Ak

[107]. According to Weyl’s theorem [108], we have

max{λi(Ap), λi(Aq)} ≤ λi(Ap + Aq), 1 ≤ p, q ≤ K; 1 ≤ i ≤ L. (4.22)

Thus

max
1≤k≤K

λi(Ak) ≤ λi(A), i = 1, 2, . . . , L. (4.23)

This implies that the number of nonzero eigenvalues of A will be greater than or

equal to the maximum number of nonzero eigenvalues of all users. In other words,

for a specific pair (S, Ŝ),

d ≥ max
1≤k≤K

dk. (4.24)

Since each user transmits signals independently, the two distinct joint code matrices

S and Ŝ may have all the same elements except one. That means, there is a case

that A = Ak0 , with Ak = 0,∀k 6= k0. Eq. (4.24) implies that A associated with

the pair of distinct code matrices that are different in more elements besides the

k0th element, will have rank not less than dk0 . Therefore, min
(S,Ŝ)

d = min
1≤k≤K

min
(Sk,Ŝk)

dk.

Based on Eq. (4.22), for A with rank dmin, we also have

dmin∏
i=1

λi(Ak) ≤
dmin∏
i=1

λi(A). (4.25)

According to the definition of the coding gain, Eq. (4.21) can be proved in a similar

way to the above discussion.

Theorem 4.1 suggests that the minimum of dk’s taken over all the distinct sig-

nal matrices of each user should be maximized in the code design. However, dk
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still depends on the temporal correlation matrix. In the rest of this section, we

will discuss the code design criteria, which are independent of specific correlation

matrix.

Denote rank(Dk) = rk. Since Dk is positive semi-definite, all the rk-by-rk principal

minors are non-negative. Furthermore, there exists one rk-by-rk positive definite

principal submatrix, which is denoted as P. The corresponding submatrix of Rk
TP ,

which is composed of the rows and columns with the same indices as those used

for constructing P, is denoted as Q. Then P ◦Q is the corresponding submatrix

of Ak.

According to Oppenheim’s inequality [108], we have det(P ◦Q) ≥ det(P), for the

diagonal elements of Q are all 1. It is known that

ζrk
=

∑

{u1,u2,...,urk
}∈Γ

rk∏
i=1

λui
(Ak),

where

Γ = {{u1, u2, . . . , urk
}|1 ≤ ui ≤ L, ui 6= uj,∀i 6= j},

is equal to the sum of all the rk-by-rk principal minors of Ak. With the fact that

Ak is positive semidefinite, ζrk
≥ det(P ◦ Q) ≥ det(P) > 0. So the number of

nonzero eigenvalues of Ak must not be less than rk, otherwise, ζrk
will be zero.

This means that the rank of Ak is equal or greater than the rank of Dk.

Moreover, since Dk and Rk
TP are normal and positive semidefinite, we have [107]

m∏
i=1

λi(Ak) ≤
(
λ1(R

k
TP )

)m
m∏

i=1

aH
i (X)ai(X),m = 1, 2, . . . , L. (4.26)
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where Dk = XHX and a1(·), . . . , am(·) are the first m largest norms of column

vectors of (·). It can been seen that ai(X) is the ith largest among {‖sk
t − sk

t ‖2, t =

1, 2, . . . , L}. Thus the number of nonzero eigenvalues, i.e., the rank of Ak, is less

than or equal to the number of nonzero columns of Sk − Ŝk. Together with the

inequality that rank(Ak) ≤ rank(Dk) · rank(Rk
TP ), we have the following theorem

Theorem 4.2. The diversity gain is bounded by

nR· min
1≤k≤K

min
(Sk,Ŝk)

rank(Dk) ≤ ηd ≤ nR·min{ min
1≤k≤K

min
(Sk,Ŝk)

rank(Dk)·rank(Rk
TP ), min

1≤k≤K
min

(Sk,Ŝk)
δk}

(4.27)

where δk is the number of nonzero columns of Dk and min
(Sk,Ŝk)

δk is denoted as δmin
k ,

which is the length of shortest error event.

Theorem 4.2 demonstrates that the rank of Dk and the number of different columns

between Sk and Ŝk should be maximized. It is also implied that when the minimum

of rk = rank(Dk) is equal to the minimum of δk over all the distinct signal matrix

pairs, the available maximum diversity gain is fixed. Generally, we have L ≥ nT ,

and thus rk can be nT at most. That means, in the STTC design, the number of

states of encoder should be chosen such that δk ≥ nT to fully use transmit antenna

diversity. Specially, when L = nT (e.g., Alamouti’s code) and all of Dk’s are of full

rank, according to Theorem 4.2, the diversity gain will be nT nR. From Eq. (4.27),

it is also observed that for a STC that can achieve full space diversity in quasi-static

fading channels can achieve full space diversity in arbitrarily temporally correlated

fading situations as well.
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Based on Eq. (4.26), it is found that

dk∏
i=1

λi(Ak) ≤
(
λ1(R

k
TP )

)dk

dk∏
t=1

‖sk
t − ŝk

t ‖2, (4.28)

where {‖sk
ti
− ŝk

ti
‖2} are assumed to be ordered decreasingly. Exchanging Dk and

Rk
TP in Eq. (4.26), the following inequality can be obtained,

dk∏
i=1

λi(Ak) ≤ (λ1(Dk))
dk (4.29)

for the diagonal elements of Rk
TP are all 1. Consequently, we have

ηc ≤ min
1≤k≤K

min
(Sk,Ŝk)

k∈µ

λ1(R
k
TP )

dmin∏
t=1

‖sk
t − ŝk

t ‖2/dmin (4.30)

and

ηc ≤ min
1≤k≤K

min
(Sk,Ŝk)

k∈µ

λ1(Dk) (4.31)

Since
∏nk

t=1 ‖sk
t − ŝk

t ‖2 ≤ (λ1(Dk))
rk , we will use Eq. (4.30) in code design. Using

the same way as the proof of Theorem 4.1, we have

rk∏
i=1

λi(Dk) ≤
rk∏
i=1

λi(Ak). (4.32)

The derivation uses the fact that for any matrix Y ∈ Cn×n, λi(Yp) ≤ λi(Y), where

Yp is the p-by-p principal submatrix of Y. When min
(Sk,Ŝk)

rk = δmin
k , the coding gain
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is bounded as

min
1≤k≤K

δmin
k∏
i=1

λi(Dk) ≤ ηc ≤ min
1≤k≤K

min
(Sk,Ŝk)

k∈µ

λ1(R
k
TP )

δmin
k∏
t=1

‖sk
t − ŝk

t ‖2/δmin
k (4.33)

Similarly, we have [17], when L = nT = rk,

max{det(Dk), det(Rk
TP)

L∏
t=1

‖sk
t − ŝk

t ‖2} ≤ det(Ak) ≤ λL
1 (Rk

TP )
L∏

t=1

‖sk
t − ŝk

t ‖2.

(4.34)

From above discussions, it is found that although we do not specify that all the

users use the same code set, it should be the case since the diversity gain and coding

gain of the system depend on the diversity gain and coding gain of individual user.

Otherwise, the decoding at the receiver will be unnecessarily complicated.

Then the evaluation of the codeword difference and distance matrices is within one

code set as the code design of single user system does. With respect to the diversity

gain and coding gain, the following two code design criteria for the temporally

correlated fading channels are obtained, which are independent of specific fading

correlation.

1. Maximize the minimum rank dmin of codeword distance matrices and the

minimum number of different columns taken over all pairs of distinct code

matrices.

2. The minimum products of norms of nonzero column vectors of S− Ŝ, taken

over all pairs of distinct code matrices should be maximized. When the

number of the states of ST trellis encoder or the dimension of STBC is

chosen such that min
(S,Ŝ)

δ is equal to the maximum available min
(S,Ŝ)

n, i.e. nT ,
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the minimum of the products of nonzero eigenvalues of codeword distance

matrices taken over all pairs of distinct code matrices should be maximized

additionally.

Note that S, Ŝ, δ and n are the corresponding symbols used in above discussion

with k dropped.

4.3.2 Channels are Only Spatially Correlated

When channels are only spatially correlated, it is assumed that, i) there is no tem-

poral correlation between channels of each user, ii) channels of different transmit

antennas of one user are correlated, and the correlation at each time is the same

and iii) channels of different users are uncorrelated. That means

E[hk
ijh

kH
ij ] = IL,∀i, j (4.35)

E[hk
ijh

kH
i′j′ ] = αk(i, i

′, j, j′)IL, 1 ≤ i, i′ ≤ M.

E[hk
i′j′h

k′H
i′j′ ] = 0, 1 ≤ i, i′ ≤ nT , 1 ≤ j, j′ ≤ nR; 1 ≤ k 6= k′ ≤ K

where αk(i, i
′, j, j′) is the spatial correlation between the two channels from trans-

mit antenna i to receive antenna j and transmit antenna i′ to receive antenna j′
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of user k. We define the following matrices for further discussion:

Φk
ij =




αk(1, 1, i, j) αk(1, 2, i, j) · · · αk(1, nT , i, j)

αk(2, 1, i, j) αk(2, 2, i, j) · · · αk(2, nT , i, j)

...
. . . . . .

...

αk(nT , 1, i, j) αk(nT , 2, i, j) · · · αk(nT , nT , i, j)




, (4.36)

Λt
ij =

K∑

k=1

skH
t Φk

ijs
k
t , (4.37)

and

Λij = diag(Λ1
ij, Λ

2
ij, . . . , Λ

L
ij). (4.38)

Then we have

Z =




Λ11 Λ12 · · · Λ1nR

Λ21 Λ22 · · · Λ2nR

...
. . . . . .

...

ΛnR1 ΛnR2 · · · ΛnRnR




. (4.39)

Exchanging the rows and columns of Z in a way such that the ith row (column)

exchanges with the nL + ith row (column), where 1 ≤ i ≤ L, 1 ≤ n ≤ nR,

Z̃ = diag(B1,B2, . . . ,BL), (4.40)
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where

Bt =




Λt
11 Λt

12 · · · Λt
1nR

Λt
21 Λt

22 · · · Λt
2nR

...
. . . . . .

...

Λt
nR1 Λt

nR2 · · · Λt
nRnR




. (4.41)

Note that Z and Z̃ has the same rank and eigenvalues. It can be seen that the

rank and nonzero eigenvalues of Bt decide the performance of spatially correlated

system. Bt can be rewritten as

Bt =
K∑

k=1

Bk
t =

K∑

k=1

D̃k
t R

k
SP D̃kH

t , (4.42)

where Rk
SP = [Φk

ij] ∈ CnT nR×nT nR and

D̃k
t = InR

⊗ (sk
t − ŝk

t )
T . (4.43)

Following the discussion in above sections, to get high diversity, the rank and

product of nonzero eigenvalues of Bk
t have to be maximized. We have the following

theorem.

Theorem 4.3. Defining Rk = rank(Bk
t ) with Bk

t 6= 0 , Nk = min{rank(Rk
SP ), nR}

and δmin
k = min

(sk,ŝk)
δk, we have

ηd = min
1≤k≤K

Rkδ
min
k ≤ min

1≤k≤K
Nkδ

min
k , (4.44)

and

ηc ≤ min
k∈Ω

λ1(R
k
SP )

δmin
k∏
t=1

‖sk
t − ŝk

t ‖2/Rk , (4.45)
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where Ω = {k : Rkδ
min
k = ηd}.

Proof. Based on Eq. (4.24) and the argument that S and Ŝ may differs on one

user’s codeword matrix since all users independently transmit signals, we have

ηd = min
k

min
(sk,ŝk)

rank(B̃k),

where

B̃k = diag
(
Bk

1,B
k
2, . . . ,B

k
L

)
.

It is easy to see that rank(B̃k) =
∑L

t=1 rank(Bk
t ). For t where sk

t − ŝk
t 6= 0,

rank(Bk
t ) ≤ Nk; for t where sk

t − ŝk
t = 0, rank(Bk

t ) = 0. Therefore, ηd ≤
min

(sk
t ,ŝk

t )
δkNk = min

k
δmin
k Nk. Eq. (4.44) is proved. It is known that λi(B

k
t ) ≤

λi(D̃
k
t D̃

kH
t )λ1(R

k
SP ). Thus the inequality in Eq. (4.45) holds.

Similarly, we have the conclusion that all the users use the same code set. The

following code design criteria are for spatially correlated fading channels:

1. Maximize the number of nonzero columns of codeword difference matrices

taken over all possible distinct code matrices.

2. The minimum products of norms of nonzero column vectors of difference

matrices, taken over all pairs of distinct code matrices, should be maximized.

It can be seen that the code design for spatially correlated fading channels is

reduced to the code design for rapid fading channels [3].
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4.3.3 Channels are spatio-temporally Correlated

In this case, we only assume that

E[hk
i′j′h

k′H
i′j′ ] = 0, 1 ≤ i, i′ ≤ nT , 1 ≤ j, j′ ≤ nR; 1 ≤ k 6= k′ ≤ K, (4.46)

by denoting

E[gk
i g

k
j ] = Rk

ij (4.47)

and

Rk =




Rk
11 Rk

12 · · · Rk
1nR

Rk
21 Rk

22 · · · Rk
2nR

...
...

. . .
...

Rk
nR1 Rk

nR2 · · · Rk
nRnR




, (4.48)

we have

Z =
K∑

k=1

∆kRk∆
H
k , (4.49)

where

∆k = InR
⊗Ck.

So that the diversity gain and coding gain depend on the minimum rank and

product of nonzero eigenvalues of each ∆kRk∆
H
k .

It is easy to verify that

λi(∆kRk∆
H
k ) ≤ λi(∆

H
k ∆k)λ1(Rk) = ‖sk

t − ŝk
t ‖2nRλ1(Rk), 1 ≤ i ≤ nRL; t = b i

nR

c
(4.50)
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and

λi(∆kRk∆
H
k ) ≤ λ1(∆

H
k ∆k)λi(Rk) = ‖sk

1 − ŝk
1‖2nRλi(Rk), 1 ≤ i ≤ nRL, (4.51)

where {‖sk
t − ŝk

t ‖, t = 1, . . . , L} are assumed to be ordered decreasingly. Eq. (4.50)

and Eq. (4.51) imply that

rank(∆kRk∆
H
k ) ≤ min{rank(Rk), δknR}. (4.52)

We have the following theorem:

Theorem 4.4. For spatio-temporally correlated fading systems, the coding gain

and diversity gain will be bounded as

ηd ≤ min
1≤k≤K

min{rank(Rk), δknR}, (4.53)

and

ηc ≤ min
1≤k≤K

λ1(R
k)

(
m∏

t=1

‖sk
t − ŝk

t ‖2nR‖sk
m+1 − ŝk

m+1‖2(ηd−mnR)

)1/ηd

. (4.54)

where m = b ηd

nR
c.

Theorem 4.4 also verifies the results in [105]. The above discussion suggests that

without any information on the correlation matrix, we will maximize the mini-

mum number of nonzero columns of codeword difference matrices, and the mini-

mum product of the norms of these columns in the code design. That means, the

code design criteria for spatio-temporally correlated and spatially correlated fading



4.4 Optimal STTCs and Simulation Results 90

channels are the same as those for single user rapid fading channels.

4.3.4 Further Discussions

It has been shown that for all three fading cases, only one code set is employed for

all the users. The code design is affected by the following factors: the minimum

number of the nonzero columns of codeword difference matrices, the minimum

product of nonzero column vectors of codeword difference matrices, the minimum

rank of nonzero eigenvalues of codeword distance matrices, and the minimum prod-

uct of nonzero eigenvalues of the codeword distance matrices. For illustration sim-

plicity, we use cd, pd, RD and PD to indicate these four factors respectively. In

general, there are many STTCs such that cd, pd and RD can be maximized at the

same time. Since it is not sure if pd and PD can be maximized at the same time, it

is reasonable to choose the code with the largest PD from the ones that have the

maximized cd, pd and RD. Then more general code design criteria are obtained:

1. Maximize the cd and RD taken over all possible distinct code matrices.

2. pd taken over all pairs of distinct code matrices should be maximized.

3. Choose the code with the largest PD from the ones that have the maximized

cd, pd and RD.

4.4 Optimal STTCs and Simulation Results

Based on the criteria obtained above, we use the STTC encoder model introduced

in Chapter 2 to get the optimal code generator matrices for the system with users
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equipped with two antennas each.

Simulations are done for two-user systems. The number of transmit antennas for

each user is two while the number of antennas at the receiver is one. Channels for

each user are correlated Rayleigh fading, which are simulated with model intro-

duced in Chapter 2 with variance 1. Recall that channel correlation depends on

the parameters that are shown below:

b scatter ring radius

d0 mobile distance to the center of the antenna pair

β mobile position angle with respect to the end-fire of the antennas

ξ mobile moving direction with respect to the end-fire of the base station antennas

dsp space separation between transmit antennas

fD Doppler spread

and different users have independent channels. Noise is Gaussian with variance

N0/2 per real dimension. QPSK is used for all the simulations. We compare our

newly designed codes with the optimal STTC codes for quasi-static Rayleigh fading

channels obtained in [109], which are referred to as YBCs. The simulation results

give the average bit error probability of two users versus SNR = Ea/N0, where Ea

is the average power of the signals received per receive antenna per user.

After exhaustive search, we obtain the following optimal code generator matrices

for 4-state and 8-state STTCs. It should be emphasized that the optimal generator

matrix set with respect to the criteria is not unique.
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Figure 4.1: Performance comparison of 4-state STTCs under temporally correlated
fading channels.

Optimal 4-state STTC for temporally correlated fading

G4
1 =




1 2

2 2


 and G4

2 =




2 2

3 0




Optimal 8-state STTC for temporally correlated fading

G8
1 =


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2 2 0

0 0 1


 and G8

2 =




2 3

2 2




In Fig. 4.1 and Fig. 4.2 , we compare the BER performance of the 4-state and

8-state newly designed codes with the YBCs under different temporally correlated
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Figure 4.2: Performance comparison of 8-state STTCs under temporally correlated
fading channels.

situations. It can be seen that the newly designed STTC outperforms the YBCs

in channels with low to high correlations. It is expected that the performance

for the case where channel has the highest time correlation, i.e., quasi-static fad-

ing, is the worst. Fig. 4.3 and Fig. 4.4. compare the performances of 4-state

STTCs in differently spatially correlated fading and spatio-temporally correlated

fading channels respectively. The performances of 8-state STTCs under variant

spatially and spatio-temporally correlated fading systems are presented in Fig. 4.5

and Fig. 4.6. It can be seen that the newly design codes have better performances

than the YBCs. Moreover, the channel correlations have large impact on the per-

formance of STCs. Since the diversity gains are different when different spatial



4.5 Summary 94

0 2 4 6 8 10 12 14 16 18 20
10

−4

10
−3

10
−2

10
−1

10
0

SNR (dB)

A
ve

ra
ge

 B
it 

E
rr

or
 P

ro
ba

bi
lit

y

4−state YBC, high spatial correlation  
New 4−state STTC, high spatial correlation   
4−state YBC, low spatial correlation 
New 4−state STTC, low spatial correlation 

Figure 4.3: Performance comparison of 4-state STTCs in spatially correlated fading
channels. Low correlation: ξ = β = 1/6π, a = 50λ, dsp = 5λ, d = 1500λ. High
correlation: ξ = 1/6π, β = 2/3π, a = 10λ, dsp = 1/2λ, d = 1500λ.

correlations present, we can observe that the performance curves drop faster in

spatial or spatio-temporally correlated fading channels with lower correlations.

4.5 Summary

In this chapter, we generalize our discussion to the STTC code design for multiuser

correlated MIMO systems. Three fading circumstances are considered: temporally

correlated, spatially correlated, and spatio-temporally correlated fading.

It has been reasoned that all users use the same code set. Without any assumption

on the dimension of codeword matrix and property of correlation matrix, we prove
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Figure 4.4: Performance comparison of 4-state STTCs in spatio-temporally cor-
related fading channels. Low correlation: fDT = 0.8, ξ = β = 1/6π, a = 50λ,
dsp = 5λ, d = 1500λ. High correlation: fDT = 0.003, ξ = 1/6π, β = 2/3π,
a = 10λ, dsp = 1/2λ, d = 1500λ.

that the STC achieving full diversity in quasi-static fading systems can achieve full

diversity in temporally correlated fading systems. It is shown that the product of

the norms of codeword difference matrices’ columns vectors and the product of the

nonzero eigenvalues of codeword distance matrices should be maximized to have

the high coding gain. On the other hand, the performance analysis for spatially

correlated and arbitrarily correlated fading systems exhibits that the code design

for these two cases is equivalent to the code design for single user rapid fading

channels. Based on these facts, we further obtained a set of general code design

criteria applicable for all three fading situations. Note that the composite fading
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Figure 4.5: Performance comparison of 8-state STTCs in spatially correlated fading
channels. Low correlation: ξ = β = 1/6π, a = 50λ, dsp = 5λ, d = 1500λ. High
correlation: ξ = 1/6π, β = 2/3π, a = 10λ, dsp = 1/2λ, d = 1500λ.

discussed in Chapter 3 is a special case of multiuser correlated fading situations.

It is easy to be verified that the results of Chapter 3 are in consistence with those

of this chapter.
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Figure 4.6: Performance comparison of 8-state STTCs in spatio-temporally cor-
related fading channels. Low correlation: fDT = 0.8, ξ = β = 1/6π, a = 50λ,
dsp = 5λ, d = 1500λ. High correlation: fDT = 0.003, ξ = 1/6π, β = 2/3π,
a = 10λ, dsp = 1/2λ, d = 1500λ.



Chapter 5

STBC-VBLAST for MIMO

Wireless Communication Systems

5.1 Introduction

It has been shown that multiple antenna systems have the potential to achieve a

much higher bandwidth efficiency than single antenna systems in fading environ-

ment [1]. In addition to STC, many BLAST schemes were proposed to exploit this

potential. The first BLAST structure is DLST proposed by Foschini [6], which

distributes the code blocks along the diagonals, called layers, of the transmit code-

word matrix. Consequently, VBLAST architecture was introduced [7], [20], [90].

In VBLAST, each layer is either uncoded or coded independently and associated

with a certain transmit antenna. Unlike DLST, the vertical arrangement of the

layers enables detection and coding with lower complexity, but having different

performance for different layers. Coded VBLAST is also called HLST [68], [91],

98
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which is later generalized to refer to as horizontally coded BLAST schemes with

dependently coded layers [103].

Treating a BLAST system as a multiuser system enables IS and ordered SIC [6], [19]

to be used in detection. Examples include [7], which proposed ZF-VBLAST,

and [20], [90], which proposed MMSE-VBLAST. However, both algorithms involve

the computation of pseudo-inverses of matrices, which has high order complexity.

The work in [68] traded the performance for the less complexity by using a QRD

approach. Although the performance is degraded (when the decomposition order

is not optimal), the computational effort at the receiver is reduced enormously.

Since all the algorithms discussed above use SIC in the detection, we refer to them

as SIC BLAST. As in multiuser detection (MUD), the error propagation inherent

in SIC considerably degrades the performance of SIC BLAST systems [41]. To

improve the performance, the turbo processing principle can be applied, so that

the detection block and decoding block share information in an iterative fashion

to do joint detection and decoding [94], [95], [96]. Iterative detection and decoding

has its own challenges, such as complexity, convergence and decoding delay.

The challenge of BLAST systems is to design a low-complexity detector, which

can suppress and cancel inter-layer interference efficiently. SIC BLAST, such as

VBLAST using QRD, has lower computational complexity than BLAST using iter-

ative detection but worse performance resulting from error propagation. Power al-

location has been considered to combat the error propagation problem in VBLAST

systems [97]. The limitation is that CSI is required at both transmitter and re-

ceiver. Note that because of error propagation, the performance of the SIC BLAST

system is mainly dependent on the worst performance of the layers. The lowest
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layer, which is detected first, has the minimum diversity gain amongst all the lay-

ers. It is more susceptible to noise, and this will affect the performance of the

whole system.

We therefore propose a new STBC-VBLAST scheme, which increases the minimum

diversity gain by integrating STBC [4] into the VBLAST architecture. CSI is only

required to be known or estimated at the receiver and low-complexity computa-

tion is performed. In a STBC-VBLAST system having nT transmit and nR receive

antennas, nG antennas transmit G STBCs. The data transmitted on the rest of an-

tennas are independent and uncoded. Although we assume uncoded transmission,

the STBC-VBLAST can easily incorporate channel coded transmission, yielding

better performance due to the coding gain of the code.

At the receiver, low-complexity QRD and SIC detection are applied. In addition,

the decoding of STBC is linear and separate for every information symbol [5], [54].

All these make it the fact that the detection process of the STBC-VBLAST has low

complexity. With nT transmit antennas and nR receive antennas, the minimum

diversity gain of the STBC-VBLAST is increased to be the minimum of nR−nT +

nG + 1 and n(nR− nT ) + n2, larger than nR− nT + 1 for other VBLAST schemes.

Our simulations show that the new STBC-VBLAST scheme significantly outper-

forms other VBLAST schemes. The performance improvement is accompanied by

the loss of spectral efficiency because STBC is used. Trying to be fair, we use the

higher-order modulation for the STBC-VBLAST and do the performance com-

parison. It is demonstrated that even with higher spectral efficiency, the STBC-

VBLAST outperforms other VBLAST systems at the medium to high SNRs due

to its high diversity gain. Although the better performance of the new scheme is
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achieved by integrating the STBC, it is not always true that the performance is

improved with the increasing number of STBC used. We found a threshold of G,

in terms of nR, nT and n, above which there are only diminishing performance

improvement at the price of spectral efficiency loss. The tradeoffs between the

performances and spectral efficiencies of STBC-VBLAST systems with different

combinations of (n,G) are also discussed.

The case when the channel is not perfectly estimated is considered. The effect of

the estimation errors is to cause an error floor in performance curve. We show that

the STBC-VBLAST has lower error floors than other BLAST systems because of

the higher diversity gain.

We also compare STBC-VLBAST to VBLAST employing STTC. The simulations

show VBLAST using the best STTC for quasi-static Rayleigh fading performs

worse than the STBC-VBLAST. The reason is that the STTC design criteria for

Rayleigh fading channel are not suitable for VBLAST systems, since the effective

channel after interference suppression and cancellation is not Rayleigh. Moreover,

the decoding complexity of STTC is higher than that of STBC. Noting that DLST

is famous for its high diversity, we compare it with the STBC-VBLAST from

views of performance, complexity and applicability. Performance comparison is

done through simulations that involve DLST using RS code and trellis code.

Noticing that SQRD [93] uses ordering without increasing complexity very much,

we study the ordered STBC-VBLAST as well. It is no doubt that the performance

is improved at the price of computational complexity. In effect, the diversity gain

of the STBC-VBLAST is the lower bound for that of the ordered STBC-VBLAST

as presented in simulations. In spite that Gth is derived for the STBC-VBLAST
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in the first place, the simulations demonstrate that it is also valid for the ordered

STBC-VBLAST as well.

5.2 STBC-VBLAST Transmitter

We consider a system with nT transmit antennas and nR receive antennas. Fig. 5.1

depicts the block diagram for the STBC-VBLAST transmitter. The information

symbol sequence is divided into nT − (n− 1)G streams. Streams 1 to nT − nG are

transmitted on the first nT − nG antennas. The remaining G streams go through

corresponding G STBC encoders before being transmitted on nG antennas. To be

specific, each group of n antennas is used to transmit an n×m STBC, denoted by

Gn, where n and m indicate the number of transmit antennas and symbol intervals

occupied by the STBC respectively. We call each of the G STBC encoded streams

a STBC layer and the system an (n,m, G) STBC-VBLAST system. Note that the

codeword matrix Gn here is the transpose of that in [4]. Although it is possible

to allow for different STBC at the layers, we assume that all the STBC layers use

codes of the same size, i.e., n×m.

The transmitted signal can be expressed in matrix form as

S =




C1 C2 · · · CL

G1
n1 G1

n2 · · · G1
nL

...
...

. . .
...

GG
n1 GG

n2 · · · GG
nL




, (5.1)

where the signal frame is of length mL. Cl, the uncoded signal in block l, can be
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…
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Figure 5.1: Block diagram for the STBC-VBLAST transmitter.

written as

Cl =




s1
ml−m+1 s1

ml−m+2 · · · s1
ml

s2
ml−m+1 s2

ml−m+2 · · · s2
ml

...
...

. . .
...

snT−nG
ml−m+1 snT−nG

ml−m+2 · · · snT−nG
ml




,

where element si
j indicates the jth symbol in the ith information symbol stream.

Gi
nl denotes the n×m STBC in the ith STBC layer at block l, which is associated

with (nT−nG+i)th information symbol stream and constructed by N information

symbols, their negatives and conjugates, as stated in Chapter 2. The average

energy of each information symbol, hence each transmitted symbol, is Es = E[|sj
i |2],

where i = 1, 2, . . . , nT − (n− 1)G; j = 1, 2, . . . , mL. For convenience, we call each

block with m symbol intervals as a STBC interval.
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5.3 STBC-VBLAST Receiver

The signals transmitted from the nT antennas undergo Rayleigh fading channels

and interfere with each other at the receiver. It is assumed that channels do not

change within one STBC interval. At the receiver, decoding and detection are

performed in one STBC interval. The signal received in STBC interval l is

Xl = HlSl + Wl, (5.2)

where Wl ∈ CnR×m is the complex AWGN noise matrix, in which all the ele-

ments are i.i.d CN (0, N0). Every element in channel matrix, Hl ∈ CnR×nT , is i.i.d.

CN (0, 1). Sl is the signal transmitted at STBC interval l, written as

Sl =

[
CT

l , (G1
nl)

T , · · · , (GG
nl)

T

]T

. (5.3)

The STBC layers are processed first, with decoding and detection done within

each layer. Interference cancellation is performed at every STBC and uncoded

layer except for the Gth STBC layer (since it is decoded first). The block diagram

for the receiver is shown in Fig. 5.2. With assumption that nR ≥ nT , we have QR

decomposition of Hl as Hl = QR, where Q is an nR×nT matrix with orthonormal
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QRD STBC Decoder Successive interference cancellation & detection …12

…nR
12nT -nGnT P/Sinterference cancellation nT -nG+1

……

Decoding &Detectionfor G STBC layers Decoding &Detectionfor uncoded layers
Figure 5.2: Block diagram for the STBC-VBLAST receiver.

columns and R = [Ri,j] is an nT × nT upper triangular matrix expressed as

R =




R1,1 R1,2 R1,3 · · · R1,nT

0 R2,2 R2,3 · · · R2,nT

...
...

. . . . . .
...

0 0 · · · RnT−1,nT−1 RnT−1,nT

0 0 · · · 0 RnT ,nT




. (5.4)

The process of obtaining R and Q is as follows [104]:

R = 0, Q = H, index = [1, 2, . . . , nT ]

For i = 1 . . . nT − 2

ki = arg min
j=i,...,nT

‖qj‖

Exchange column i and ki of Q, R and index respectively

Ri,i = ‖qj‖, qi = qi/Ri,i

Ri,j = qH
i qi, qj = qj −Ri,jqi, for j = i + 1, . . . , nT

End
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Multiplying Xl in Eq. (5.2) by QH , we have

Yl = QHXl = RSl + Nl, (5.5)

where Nl = QHWl. It can be verified that every entry of Nl is i.i.d. CN (0, N0)

distributed. After substracting the interference from the lower G−k STBC layers,

the decision statistic for the kth STBC layer is

Yk
l = Yl −

G∑

i=k+1

Hi
lĜi

nl, (5.6)

where Ĝi
nl is the estimation of Gi

nl. Yk
l and Hi

l are defined as:

Yk
l =




Yl(β1, 1) Yl(β1, 2) · · · Yl(β1,m)

...
...

. . .
...

Yl(βn, 1) · · · · · · Yl(βn,m)




(5.7)

and

Hi
l =




Rk′+1,i′+1 Rk′+1,i′+2 · · · Rk′+1,i′+n

...
...

. . .
...

Rk′+n,i′+1 · · · · · · Rk′+n,i′+n




, (5.8)

where βi = k′ + i, k′ = nT − (G − k + 1)n and i′ = nT − (G − i + 1)n. (·)(j, k)

denotes the (j, k)th elements of (·), which will be used for the rest of this chapter.

Ỹk
l can be further expressed as

Ỹk
l = H̃k

l Gk
nl + Ñk

l + E, (5.9)
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where E comes from the detection errors at the lower layers. H̃k
l is a square matrix

composed of k′ + 1 to k′ + n rows and k′ + 1 to k′ + n columns of R, written as

H̃k
l =




Rk′+1,k′+1 Rk′+1,k′+2 · · · Rk′+1,k′+n

...
...

. . .
...

Rk′+n,k′+1 · · · · · · Rk′+n,k′+n




. (5.10)

Ñk
l is composed of k′ + 1 to k′ + n rows of Nl, written as

Ñk
l =




Nk
l (k

′ + 1, 1) Nk
l (k

′ + 1, 2) · · · Nk
l (k

′ + 1,m)

...
...

. . .
...

Nk
l (k

′ + n, 1) · · · · · · Nk
l (k

′ + n, m)




. (5.11)

Base on Eq. (5.9), each STBC layer can be considered as a virtual (n, n) STBC

system, in which H̃k
l is the channel matrix. It is well known that the decoding

of STBC can be done linearly. Assuming that the residual interference from the

previously detected layers is independent Gaussian, we have the separate decision

rules for the symbols in the kth STBC layer as

ŝnT−nG+k
N(l−1)+i = arg

s
nT−nG+k

N(l−1)+i

min
∣∣∣(hk

li)
Hyk

l − aρks
nT−nG+k
N(l−1)+i

∣∣∣
2

, (5.12)

or

ŝnT−nG+k
N(l−1)+i = arg

s
nT−nG+k

N(l−1)+i

min
∣∣∣(yk

l )
Hhk

li − aρks
nT−nG+k
N(l−1)+i

∣∣∣
2

, (5.13)

where 1 ≤ i ≤ N and 1 ≤ k ≤ G. ŝp
q is the estimation of qth information

symbol in stream p. a is a constant dependent on the type of STBC used for the
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STBC-VBLAST [4], [5]. For example, for G2, a = 1, and for G4 with complex

symbols, a = 2. yl and hli are constructed by the elements and their negatives and

conjugates of Ỹk
l and H̃k

l respectively. ρk is defined as the Frobenius norm of H̃k
l :

ρk = ‖H̃k
l ‖2

F . (5.14)

The symbols of uncoded layer can be detected in a successive way by

ŝk
m(l−1)+j = arg

sk
m(l−1)+j

min

∣∣∣∣
1

Rk,k

{
Yk

l (k, j)

−
G∑

i=1

Hi
lĜi

nl(j) −
nT−nG∑

i=k+1

Rk,iŝ
i
m(l−1)+j

}
−sk

m(l−1)+j

∣∣2 ,

k = 1, 2, . . . , nT − nG, j = 1, 2, . . . , m, (5.15)

where Ĝi
nl(j) denotes the jth column of Ĝi

nl.

5.4 Performance Analysis

In this section, we analyze the performance of the new proposed STBC-VBLAST

systems under Rayleigh fading. CSI is known or perfectly estimated at the re-

ceiver. Based on the fact that the performance of whole system is dependent on

the performance of the lowest layer that has the smallest diversity gain, we de-

fine the diversity gain d of the system as the minimum diversity gain among all

the layers. The following theorem gives an exact result for the diversity gain of

the STBC-VBLAST system, which shows that the new system has much higher

diversity gain than other VBLAST systems.
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Theorem 5.1. For an (n,m, G) STBC-VBLAST system having nT transmit and

nR receive antennas, the diversity gain of the system is the minimum of n(nR −
nT ) + n2 and nR − nT + Gn + 1.

Proof. For each STBC layer k, Ỹk
l defined in Eq. (5.9) is the decision statistics.

Based on the fact that the STBC has unitary structure and the way hk
li constructed,

S̃k
i = (hk

li)
Hyk

l , has the same information as Ỹk
l for decoding of snT−nG+k

N(l−1)+i in kth

STBC layer. Moreover, with assumption that the residual interference from the

lower STBC layers is independent Gaussian with variance Nk
e , the decision statistics

S̃k
i , can be expressed as

S̃k
i = aρks

nT−nG+k
N(l−1)+i + ñk

i , i = 1, 2, . . . , N, (5.16)

where ñk
i is complex Gaussian noise with variance aρk(N0 + Nk

e ) = aρkN
k
0 . ρk are

defined in Eq. (5.14) and a is the constant dependent on the STBC used.

Provided that the channel is known or perfectly estimated at the receiver, the

conditional pairwise symbol error probability (PSEP) of transmitting snT−nG+k
N(l−1)+i

but deciding ŝnT−nG+k
N(l−1)+i is

P k
2 (e|Hl) = Q

(√
aρkEs∆

2Nk
0

)
, (5.17)

where
√

∆ is the normalized Euclidean distance between the two constellation

points and Es is the average energy of symbols of the STBC.

For elements of channel matrix are independent complex Gaussian, Q and R ob-

tained from QRD of Hl, are statistically independent [110]. It has been shown that
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all the nonzero elements Rij’s of R, where i = 1, 2, . . . , nT , i < j, are independent

and Ri,j ∼ CN (0, 1). In addition, the square of diagonal element, R2
i,i, is χ2

2(nR−i+1)

distributed with variance nR−i+1. Its probability density function (p.d.f.) is [111]

fR2
ii
(r) =

rnR−ie−r

Γ(nR − i + 1)
, r ≥ 0, i = 1, 2, . . . , nT . (5.18)

Therefore ρk is a chi-squared variate with freedom

n∑
i=1

2[nR − nT + n(G− k) + i] +
n−1∑
i=1

2i

= 2n[nR − nT + n(G− k + 1)], k = 1, 2, . . . , G, (5.19)

for STBC layer k. Typically, interference coming from lower layers is assumed to

be perfectly canceled out, i.e., Nk
0 = N0. Then, averaging Eq. (5.17) with respect

to Hl, we get the approximate PSEP of kth STBC layer, when SNR = Es/N0 is

high [27], as

P k
2 (e) ≈

(
aEs∆

N0

)−dk




2dk − 1

dk


 , k = 1, 2, . . . , G, (5.20)

where dk = n[(nR − nT + n(G − k + 1)], is the diversity gain of the kth STBC

layer. The layers transmitting uncoded stream {si
j} can be seen as a special case

of STBC layers with a = 1 and ρi = R2
i,i ∼ χ2

2(nR−i+1). Thus the ith uncoded

layer has the diversity gain nR − i + 1, where i = 1, 2, . . . , nT − nG [68]. As a

sequence, the minimum diversity gain d, among all the layers, is the minimum of

nR − nT + nG + 1 and n(nR − nT + n).
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Since the diversity gain of the STBC-VBLAST system, i.e., the minimum diver-

sity gain of all the layers is enhanced, the error propagation is suppressed very

efficiently. For example, the STBC-VBLAST system with one layer of 2× 2 STBC

and nR = nT , the diversity gain is increased to 3 other than one for other VBLAST

systems. Simulations show that even with one STBC layer, the STBC-VBLAST

outperforms other VBLAST greatly.

5.5 Some Discussions

An analog of the STBC-VBLAST is the VBLAST integrating STTC, which is, for

notation simplicity, indicated as STTC-VBLAST. It has been shown that well de-

signed STTC outperforms the STBC in Rayleigh fading system because of higher

coding gain [3]. However, the previous analysis demonstrates the virtual channel

matrix for each coded layer is upper triangular, and not all the elements are Gaus-

sian. That implies, the STTC, which is designed based on the criteria in [3], may

not have a good performance when used for STTC-VBLAST. It can be seen that

Theorem 5.1 still holds for STTC-VBLAST, if the STTC used is unitary [76]. We

also show in simulation that STTC-VBLAST with the optimal STTC designed for

the quasi-static Rayleigh fading does not perform better than the STBC-VBLAST,

but with higher detection complexity.

In the sense of having high diversity gain, DLST is one of the competitors of the

STBC-VBLAST. As the first proposed layered space-time code, DLST may have a

very large diversity gain [68]. However, a necessary condition to own this virtue is

that the first layer must be free of the interference. This is why the the layers of a
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DLST are along the ”diagonals”. Nevertheless, this is accompanied by a spectral

loss since no symbols will be employed in the left-lower and right-upper parts of

transmit signal matrix. The second necessary condition is that the codeword length

should be equal to the layer length, or at least that the symbols in each layer can

be decoded at a time. This implies that the layer length and the codeword length

should be matched. Otherwise, the diversity gain will degrade to be the same as

that of HLST.

With all these conditions satisfied, the number of distinct symbols between each

pair of layers determines the diversity gain of the DLST. That means, to achieve a

large diversity gain, the channel coding with the large free distance should be used

for the DLST. With a specific number of transmit antennas, a range of layer lengths

can be implemented. Although the longer layer can more likely accommodate the

codes with larger free distance, it also results in the larger loss of the spectral

efficiency. In fact, the larger number of transmit antennas also means the larger

loss of the spectral efficiency [112].

A reasonable choice of the channel coding is the Reed-Solomon code (RS code),

which has a great error correction capability. Nevertheless, it can only use mod-

ulation with order higher than that of 8PSK and the codeword length is usually

greater than or equal to 4. Although using the binary block codes can relax the

constraint on the modulation, the free distance of the modulated code may decrease

as the exponential function of the order of modulation. An alternative choice is

the trellis code whose decision depth is as the same as the layer length. However,

the unpleasant fact is that the decision depth is usually the 5 times of the trellis

code constraint length.
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All these facts reveal that the DLST has a nominal spectral efficiency loss when

it is used for systems with the short signal block or large number of transmit an-

tennas. This is also the main reason why the DLST is not applied into realistic

communication systems. However, in the sense of performance, DLST is an at-

tractive scheme. It is, in general, a more flexible scheme than the STBC-VBLAST

since the STBC has the particular requirement on the dimension and format of the

codeword matrix. On the other hand, the computational complexity of the DLST

with either trellis codes or RS codes is higher than that of the STBC-VBLAST.

We show in the simulations that the DLST with a shortened (4,2) RS code has the

similar performance with the (2,2,1) STBC-VBLAST in the (4,4) system. The sim-

ulation result of the DLST with the trellis code, which has a decision depth greater

than the layer length, verify our statement of the second necessary condition.

5.6 Detection and Performance of the STBC-VBLAST

in the Presence of Channel Estimation Error

In this section we will analyze the performance of STBC-VBLAST systems in the

absence of ideal CSI. The estimated channel matrix can be expressed as [65], [113]

Ĥl = Hl + Z, (5.21)

where Z is the estimation error matrix. Every element of Z is i.i.d N (0, 2σ2
z)

distributed and Z is statistically independent of Hl. Thus the elements of Ĥl are

i.i.d N (0, 2σ2
ĥ
) distributed, where σ2

ĥ
= σ2

z + 0.5. Similarly, QRD is performed to
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get Ĥl = Q̂R̂. Multiplying the received signal X in Eq. (5.2) with Q̂H , we have

Ŷl = Q̂H(HlSl + Wl). (5.22)

Since the elements of Ĥl and Hl are jointly Gaussian, Hl can be expressed as,

conditioned on Ĥl,

Hl = βĤl + Ξ, (5.23)

where β = 1/(2σ2
z + 1). Ĥl and Ξ are independent and the elements of Ξ are i.i.d

N (0, 2σ2
Ξ) distributed, where σ2

Ξ = σ2
z/(2σ

2
z + 1). Substituting Eq. (5.23) into Eq.

(5.22), we have

Ŷl = βR̂Sl + Q̂HΞSl + Q̂HWl. (5.24)

Based on Eq. (5.24), following the same detection process in Section 5.4, we can

obtain the decision statistic, Ŷk
l , for the kth STBC layer, which is composed of

k′ + 1 to k′ + n rows of Ŷl, where k′ = nT − (G− k + 1)n. Then we have

Ŷk
l = βR̂kGk

nl + Φk, (5.25)

where Φk and βR̂k are the corresponding virtual channel matrix and noise matrix.

Thus Φk consists of k′ + 1 to k′ + n rows of Q̂HΞSl + Q̂HWl. Note that the

columns of Q̂ are orthonormal, Q̂HΞ and Q̂HWl are still complex Gaussian with

the same distribution as Ξ and Wl respectively. However, the fact that Q̂HΞ is

right multiplied by Sl may result in time correlation between elements of Φk, unless

the STBC is square.

To separately detect the symbols in STBC, we apply the decision rules similar to
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Eq. (5.12) and Eq. (5.13) though they are suboptimal when STBC is not square.

Note that the distribution of (i, j)th element of R̂ is CN (0, 2σ2
ĥ
), when i < j. The

square of diagonal element R̂ii has the distribution

fR̂2
ii
(r) =

(2σ2
ĥ
)−(nR−i+1)

Γ(nR − i + 1)
rnR−ie

− 1

2σ2
ĥ

r

, r ≥ 0, i = 1, 2, . . . , nT . (5.26)

With E[Φk(i, j)Φ
∗
k(i, j)] = 2σ2

ΞnT Es + N0, we have the exact PSEP of the kth

STBC layer in the M -ary PSK STBC-VBLAST with channel estimation error as

P k
s (e) =

(
1− µ

2

)dk dk−1∑
i=0




dk − 1 + i

i




(
1 + µ

2

)i

, k = 1, 2, . . . , G, (5.27)

where dk = n[nR − nT + n(G− k + 1)]. µ =
√

α/(1 + α), in which

α =
1
4
aEs∆

2(nT Es + N0)σ2
z + N0

. (5.28)

Similarly, PSEP of the kth uncoded layer has the same form as Eq. (5.27) with a

different dk = nR − k + 1, where k = 1, 2, . . . , nT − nG.

Note that when Es/N0 → ∞, α → a∆/8nT σ2
z . This means the performance

curve of the STBC-VBLAST has an error floor dependent on σz, nT and dk, when

imperfect channel estimation presents. Eq. (5.27) also shows that the error floor

is a decreasing function of dk. Recalling that d = arg min
k

dk, it is deduced that

error floor is a decreasing function of system diversity gain d. It is expected that

Eq. (5.27) is identical to Eq. (5.20), when there is no channel estimation error and

SNR is high.
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5.7 Tradeoff Between Performance and Spectral

efficiency

For a BLAST system, the spectral efficiency can be expressed as η = rcodeKnT

bits/s/Hz, where K is the number of bits in a modulated symbol and rcode is the

code rate, e.g., rcode = 1 for for uncoded VBLAST systems. For an (n,m, G)

STBC-VBLAST system, η = K(nT −nG + GrSTBC) bits/s/Hz, where rSTBC is the

code rate for STBC. For an n ×m STBC, rSTBC = N/m ≤ 1. Thus the price to

pay for the increment of the minimum diversity gain of the STBC-VBLAST is a

reduction in the spectral efficiency by a factor of G(n − rSTBC)/nT with respect

to uncoded VBLAST. This value is small when nT is large. To show the tradeoff

between diversity gain and spectral efficiency, we give in Table 5.1 the diversity

gain and spectral efficiency of a STBC-VBLAST system, which has nT transmit

and nR receive antennas and uses G n×m STBCs.

However, increasing the number of the STBC layers used cannot always trade the

spectral efficiency for diversity gain. Note that the diversity gain of the STBC-

VBLAST is upper bounded by n(nR − nT ) + n2, when nR and nT are fixed and a

particular STBC has been chosen. This implies that a larger G does not necessarily

lead to higher diversity gain. On the other hand, a larger G does result in a lower

spectral efficiency. The following theorem demonstrates how to choose G to use

bandwidth efficiently.

Theorem 5.2. For an (n,m, G) STBC-VBLAST system having nT transmit and

nR receive antennas, in order to use the bandwidth efficiently, G should be chosen
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Table 5.1: Summary of the minimum diversity gain and spectral efficiency for the
STBC-VBLAST and VBLAST.

Schemes (n,m, G) STBC-VBLAST uncoded BLAST

Diversity gain (d) min

{
n(nR − nT ) + n2,

nR − nT + Gn + 1

}
nR − nT + 1

Spectral

Efficiency (η) K(nT − nG + GrSTBC) KnT

such that

G ≤ Gth = n + (nR − nT )−
⌊

nR − nT + 1

n

⌋
, (5.29)

where b(·)c indicates the largest integer equal to or smaller than (·).

Proof. Since the diversity gain d of the system is the smaller of n(nR − nT ) + n2

and nR − nT + nG + 1, the maximum diversity gain possible by varying G, when

nR, nT and a particular STBC (i.e., n) have been chosen, is n(nR−nT )+n2. Thus

the number of STBC layers that maximizes the diversity gain is given by

G′ = n + (nR − nT )− nR − nT + 1

n
, (5.30)

This is because that the diversity gain is n(nR−nT )+n2 for any G > G′. Imposing

the integer constraint on G gives Eq. ((5.29)).

Remark: Recall from Theorem 5.1 that for an (n,m, G) STBC-VBLAST system

having nT transmit and nR receive antennas, the diversity gain of the system

is min{n(nR − nT ) + n2, nR − nT + Gn + 1)}. For G < Gth the diversity gain is

nR−nT +Gn+1, while for G ≥ Gth, the diversity gain is n(nR−nT )+n2. We note

that although the (n,m, G) STBC-VBLAST, with G ≥ Gth has the same diversity
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gain as the (n,m, Gth) STBC-VBLAST, the former has better performance than

the latter. However, the difference is very small and can be ignored especially

when nGth is large. This conclusion is based on the fact that (G − Gth) STBCs

are used to improved the performance of layers higher than nGth. Even without

STBC, these layers already have large diversity gain d > nGth, which enables their

error probabilities to be much smaller than those of lower layers. Therefore the

performance improvement of these layers due to STBC contributes little to the

performance of the whole system. It is not worth sacrificing the spectral efficiency

for the ignorable performance improvement.

Table 5.1 and Eq. (5.29) indicate that when G < Gth, the (n1,m1, G1) STBC-

VBLAST has the same diversity gain as the (n2,m2, G2) STBC-VBLAST provided

n1G1 = n2G2. However, their spectral efficiencies are different.

We plot the tradeoff lines of schemes with different (n,G) for systems with nT =

9, nR = 13 in Fig 5.3. n is chosen to be 2, 3 and 4. For each specific n, G is set

to the integers such that 1 ≤ G < Gth. QPSK is assumed; rSTBC = 1 for n = 2

and rSTBC = 1/2 for n = 3, 4. Each line is connecting points of (d, η) pairs for a

specific n with different G (It is straight line since every line between two adjacent

points has the same slope). It can be seen that to get the same diversity gain, the

schemes with steep slope, i.e., smaller n are preferred. For example, the (2, 2, 2)

QPSK STBC-VBLAST is a better choice than the (4, 4, 1) QPSK STBC-VBLAST,

since the former has 3 bits/s/Hz more spectral efficiency. It can be seen that the

choice of the scheme depends on what diversity gain (data rate) you desire.

We discuss above how to choose G and n to improve performance while using the

channel more efficiently. Although the STBC-VBLAST outperforms the VBLAST
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Figure 5.3: Tradeoff lines of different schemes.

considerably, it does suffer a partial spectral efficiency loss compared with uncoded

VBLAST. To do a fair performance comparison, we can use a higher modulation

for the STBC-VBLAST to ensure that it has a spectral efficiency not less than

that of uncoded BLAST systems. It will be shown in Section 5.10 that the STBC-

VBLAST still outperforms the existing VBLAST schemes, even with a higher

spectral efficiency.

5.8 Complexity Comparison

Profiting from the orthogonal structure of STBC and simplicity of QRD, the STBC-

VBLAST has lower computational complexity than ZF-VBLAST and MMSE-

VBLAST algorithms which involves complicated calculation of matrix inverse.
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We next compare the computational complexities of ZF-VBLAST and the (2,2,1)

STBC-VBLAST in the number of multiplications and additions in one STBC in-

terval. One addition and multiplication is counted for one real valued addition and

multiplication respectively. The transmitted symbols are assumed to be complex.

For ZF-VBLAST, the computations occur in the detection of each symbol and

QR decomposition, which is following the procedure in [104]. The number of

multiplications and additions for ZF-VBLAST in one STBC interval are

n4
T +

(
2

3
nR +

4

3

)
n3

T +

(
2n2

R + nR − 1

2

)
n2

T +

[
2n2

R + (8m− 1

3
)nR − 1

6

]
nT (5.31)

and

1

4
n4

T +
1

6
(8nR +1)n3

T +

(
2n2

R −
1

2

)
n2

T +

[(
8m− 1

3

)
nR −

(
2m− 1

3

)]
nT (5.32)

respectively. Note that the computational complexity of MMSE-VBLAST is even

higher.

In addition to the computations in QR decomposition, the computational com-

plexity of the STBC-VBLAST counts the computations in STBC decoding and

the detection of symbols in uncoded layers. The number of multiplications for the

(2,2,1) STBC-VBLAST is

4nRn2
T + nT + 4n2mG2 + (nm− 4n2m)G−m + (4nm + 1)N + n2 − n, (5.33)
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and the number of additions for the STBC-VBLAST is

(4nR − 1)n2
T − 2nRnT + 2(n2m + n2)G2 − 2n2mG + (4mn− 2)N + n2 − 1. (5.34)

From Eq. (5.31)∼ Eq. (5.34), we can see that the number of calculations in ZF-

VBLAST is of order O(n4
T + nRn3

T ) However, the computational complexity of the

STBC-VBLAST is only of order O(nRn2
T ). It is obvious that the complexity of the

STBC-VBLAST is lower than that of ZF-VBLAST and MMSE-VBLAST. Com-

pared with STTC-VBLAST, the linear decoding of STBC in a STBC-VBLAST

system is much simpler than ST Viterbi decoding algorithm whose complexity, in

the sense of the trellis states, is the exponential function in the product of the

transmission rate and the number of antennas used for the STTC. Similarly, the

decoding of HLST, which uses trellis code generally, have higher computational

complexity than the STBC-VBLAST, even though without iterative decoding.

5.9 Ordered STBC-VBLAST

Our new STBC-VBLAST system uses the standard QRD to keep the detection

complexity low. To take advantage of ordering, we have the ordered STBC-

VBLAST, which applies modified SQRD at the receiver. For the ordered STBC-

VBLAST, the SQRD [93] is first employed to get the ordering for the upper nT−nG

layers, denoted by index1, which is a permutation of {1, 2, . . . , nT − nG}. The or-

dering of the lowest G STBC layers, denoted by index2, is done differently. Based

on Eq. (5.12) and Eq. (5.13), the SNR for decoding in each STBC layer is pro-

portional to ρ. Thus the STBC layers are ordered such that the STBC layer with
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smaller ρ is decoded later. Note that changing the order of n sublayers within each

STBC layer does not change the value of ρ. The ordering algorithm is as follows.

Set R = 0,Q = Hl, index1 = [1, 2, . . . , nT − nG]

Run SQRD [93] to get index1,Q,R

Set index2 = [nT − nG + 1, nT − nG + 2, . . . , nT ]

For p = 1, 2, . . . , G

kp = arg min
g=p,...,G

∑n
u=1 ‖qv‖2,

where v = nT − n(G− g + 1) + u.

Exchange columns from nT − n(G− p + 1) + 1

to nT − n(G− p) with corresponding columns

from nT − n(G− kp + 1) + 1 to nT − n(G− kp)

of Q, R and index2 respectively.

For i = nT − n(G− p + 1) + 1, . . . , nT − n(G− p)

Ri,i = ‖qi‖, qi = qi/Ri,i, Ri,j = qH
i qj,

qj = qj −Ri,jqi, j = i + 1, . . . , nT .

End

End

With the updated Q and R, detection is done using Eq. (5.12), Eq. (5.13) and

Eq. (5.15). The estimated information symbols are then obtained by reordering

the detected symbol sequence according to index1 and index2.

It is no doubt that the computational complexity of the ordered STBC-VBLAST

becomes higher, but it is still much lower than that of ZF-VBLAST. To be specific,
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the number of multiplications and additions for the ordered STBC-VBLAST are

4nRn2
T − (2nR − 1)nT + (nRn + 4n2m)G2 + (nRn− 2n2m + 3nm)G

+(4mn + 1)N + n(n− 1) (5.35)

and

(4nR − 1)n2
T − (4nR − 1)nT + [4n2 − (m + nR − 1

2
)]G2

−[2n2m + (nR − 3m− 1

2
)n]G + (4mn− 2)N + n2 − 2 (5.36)

respectively, which are of the same order as those of the STBC-VBLAST. We

summarize the computational complexity of different schemes in Table 5.2.

With the increased complexity, the ordered STBC-VBLAST performs better than

the STBC-VBLAST. In fact, the exact diversity gain of the STBC-VBLAST stated

in Theorem 5.1 only serves as the lower bound of the diversity gain of the ordered

STBC-VBLAST as shown in simulation. This assures that the ordered STBC-

VBLAST has more robust performance in the presence of channel estimation er-

rors. The simulations also demonstrate that the threshold in Theorem 5.2 is still

applicable for the ordered STBC-VBLAST to get a good tradeoff between perfor-

mance and spectral efficiency.



5.10 Simulation Results 124

Table 5.2: Summary of the computational complexities of the STBC-VBLAST and
VBLAST.

Schemes Order of number of addition/multiplications

ZF-VBLAST O(n4
T + nRn3

T )

(2, 2, 1) STBC-VBLAST O(nRn2
T )

(2, 2, 1) ordered STBC-VBLAST O(nRn2
T )
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Figure 5.4: Performance comparison of different STBC-VBLAST and VBLAST
systems, nR = nT = 4.

5.10 Simulation Results

In this section, we compare the performance of the new STBC-VBLAST systems

with other BLAST systems. The channel is Rayleigh quasi-static fading chan-

nel, known or estimated at the receiver. The elements of the channel matrix are
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modeled as samples of independent complex Gaussian random variables with vari-

ance 0.5 per real dimension. The noise is complex white Gaussian with variance

N0 = EsnT /SNR, where SNR is signal to noise ratio, Es is the average symbol

energy at each transmit antenna. PSK modulations are used to compare the per-

formance of the different systems with different spectral efficiencies. A rate 1/2

convolutional code, with generator polynomial of (5,7) in octal form, is employed

for HLST.
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Figure 5.5: Bit error probability of each layer of QPSK HLST, nR = nT = 4.

Fig. 5.4 shows the bit error probabilities of different BLAST schemes in systems

with nR = nT = 4. The (2, 2, 1) QPSK, 8-PSK STBC-VBLAST and ordered

STBC-VBLAST are used for comparison. The Viterbi algorithm and SIC are

performed in the decoding and detection of HLST. It can be seen that, as SNR
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Figure 5.6: Bit error probability of each layer of QPSK HLST with perfect inter-
ference cancelation, nR = nT = 4.

increases, the performance curves for the (ordered) STBC-VBLAST drop much

faster than those of others because of the larger diversity gain. There is a very

wide gap between performance of the other QPSK VBLAST schemes and the

new QPSK STBC-VBLAST, which has little loss of special efficiency. The 8-PSK

STBC-VBLAST system with higher bit rate, 9 bits/s/Hz, still outperforms the 8

bits/s/Hz ZF-VBLAST system. The former also has better performance than 8

bits/s/Hz MMSE-VBLAST systems with optimal ordering, at high SNR. The 4

bits/s/Hz QPSK HLST is outperformed by 6 bits/s/Hz QPSK STBC-VBLAST

considerably, since it only uses time-dimensional coding without enhancing the

diversity gain. It is expected that the ordering results in a better performance for

the ordered STBC-VBLAST.



5.10 Simulation Results 127

0 5 10 15
10

−4

10
−3

10
−2

10
−1

10
0

SNR(dB)

B
it 

E
rr

or
 P

ro
ba

bi
lit

y
STBC layer
Uncoded layer 1
Uncoded layer 2

Figure 5.7: Bit error probability of each layer of the (2,2,1) QPSK STBC-VBLAST,
nR = nT = 4.

In Fig. 5.5 ∼ Fig. 5.8 we show the new STBC-VBLAST combats the error propaga-

tion efficiently by comparing layer performances of the (2,2,1) STBC-VBLAST and

HLST. The bit error probability of each layer of the HLST and STBC-VBLAST is

presented respectively in Fig. 5.5 and Fig. 5.7. By comparing layer performances of

the (2,2,1) STBC-VBLAST and HLST, we show the new STBC-VBLAST combats

the error propagation efficiently. Note that there is a crossing behavior of BER

curves at about 7dB SNR in Fig. 5.5. The reason for this is that the first layer

is free of the interference and the diversity gain does not help much on improving

the performance when SNR is not high.

Fig. 5.6 and Fig. 5.8 present the performance for the “genie” case, which means

that we perform real interference suppression for each layer, but perfect cancelation



5.10 Simulation Results 128

0 5 10 15
10

−5

10
−4

10
−3

10
−2

10
−1

SNR(dB)

B
it 

E
rr

or
 P

ro
ba

bi
lit

y
STBC layer
Uncoded layer 2
Uncoded layer 1

Figure 5.8: Bit error probability of each layer of the (2,2,1) QPSK STBC-VBLAST
with perfect interference cancelation, nR = nT = 4.

is assumed for subsequent layers. It can be seen that layers from 4 to 1 of HLST

have diversity gain 1 to 4 respectively in genie case. Similarly, uncoded layer 2

of the STBC-VBLAST has the minimum diversity 3 among all the layers. The

curves of STBC layer and uncoded layer 1 coincide exactly if perfect cancelation

is assumed, because the two layers have the same SNR when detected.

Comparing Fig. 5.7 and Fig. 5.4, we find that the performance of a STBC-VBLAST

system depends on the layer with the minimum diversity gain amongest all layers.

This justifies our definition of the system diversity gain as the minimum diversity

gain of all the layers. On the other hand, Fig. 5.5 and Fig. 5.4 show that the

diversity gain of HLST systems is one, which is the same as that of the lowest

layer.
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Figure 5.9: Performance comparison of the (2,2,1) QPSK STBC-VBLAST and
QPSK STTC-VBLAST using 2-STTCs, nR = nT = 4.

In Fig. 5.9, we compares (2, 2, 1) STBC-VBLAST with the STTC-VBLAST using

one STTC layer. QPSK is used and nR = nT = 4. Two of STTC are used:

one is the optimal 2-STTC (STTC using two transmit antennas, following the

notation in [3]) for quasi-static Rayleigh fading, the other is 2-STTC designed by

Tarokh et.al., indicated as 2-TSC. The performance curves of the STBC and STTC

layers are plotted. It is observed that although STTCs have higher coding gain for

Rayleigh fading channel, they show lower coding gain in STTC-VBLAST systems.

This also makes the STBC-VBLAST outperform the STTC-VBLAST.

In Fig. 5.10, we compare the performance of the DLST to those of the HLST and

STBC-VBLAST. Two DLST schemes are taken into consideration, including the
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DLST with a (5,7) trellis code and the DLST with a shortened (4,2) RS code.

The HLST also uses the (5,7) trellis code. Since the DLST layer length and the

decision depth of the (5,7) trellis code is not matched, it can be seen that the

DLST has the same diversity gain as that of the HLST. Nevertheless, the latter

has a better performance. This is because that the HLST performs decoding before

interference cancellation yet the former does interference cancellation first since the

layers are along the diagonals. On the other hand, the DLST with (4,2) RS has the

similar performance with the (2,2,1) STBC-VBLAST but slightly higher diversity.

However, the spectral efficiency of the DLST is much less than that of the STBC-

VBLAST especially when the signal block length is small.
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Figure 5.10: Performance comparison of the (2,2,1) STBC-VBLAST , HLST and
DLST, nR = nT = 4.
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To verify the result in Section 5.7, we show in Fig. 5.11 the performances of (2, 2, 1),

(2, 2, 2) and (2, 2, 3) QPSK (ordered) STBC-VBLAST systems with nR = nT = 6.

Note that Gth = 2 in this case. It is observed that a (2, 2, 2) STBC-VBLAST

system has better performance than that of a (2, 2, 1) STBC-VBLAST system since

the former has higher diversity gain. However, performance difference between

the (2, 2, 2) and (2, 2, 3) STBC-VBLAST systems is very small, while the (2, 2, 3)

STBC-VBLAST has less 2bits/s/Hz spectral efficiency than the (2, 2, 2) STBC-

VBLAST. The same happens to the ordered STBC-VBLAST systems. It can

be seen that the performance curves of the (2, 2, 2) and (2, 2, 3) STBC-VBLAST

converge with the increasing SNR because they share the same diversity gain of

4. Furthermore, the convergence of performance curves of the (2, 2, 2) and (2, 2, 3)

ordered STBC-VBLAST demonstrates that Gth is also suitable for the ordered

STBC-VBLAST.

Finally, the performances of the (2, 2, 1) ordered STBC-VBLAST and ZF-VBLAST,

in the presence of channel estimation error, are shown in Fig. 5.12. The number of

transmit and receive antennas are both four. Channel to channel estimation error

ratio (CER) is defined as 1/2σ2
z , which is the ratio of variances of channel coeffi-

cients and channel estimation error. Performances under four different CERs are

presented. It is shown that the channel estimation error results in the error floor

in the performance curves. The performance curves of ordered STBC-VBLAST

systems have lower error floors than ZF-VBLAST for the higher diversity gain.
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Figure 5.11: Performance comparison of QPSK (ordered) STBC-VBLAST systems
using different numbers of STBC layers, nR = nT = 6.

5.11 Summary

In this chapter, we introduce a new STBC-VBLAST scheme. Due to the the

integration of STBC into VBLAST, the (n,m,G) STBC-VBLAST system increase

the diversity gain d, to be the minimum of n(nR−nT )+n2 and nR−nT +Gn+1,

which is much higher than nR − nT + 1 for VBLAST system.

Although a part of the spectral efficiency is lost because of the use of STBC, the loss

can be minimized by properly choosing the number of group G. A threshold Gth

is obtained such that a good tradeoff between diversity gain and spectral efficiency

will be achieved if G ≤ Gth. With appropriately selected G and higher-order

modulation, the STBC-VBLAST systems still perform better, even with higher
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Figure 5.12: Bit error probabilities of the (2,2,1) QPSK ordered STBC-VBLAST
and ZF-VBLAST in the presence of channel estimation error, nR = nT = 4.

spectral efficiency, at moderate to high SNRs due to the high diversity gain.

Also benefiting from the large d, the STBC-VBLAST shows more robust per-

formance when unperfect channel estimation presents, since the error floor is a

decreasingly function of diversity gain d. In addition, because of the linear decod-

ing of the STBC and simplicity of QRD, the computational complexity of the new

system is of order O(nRn2
T ), compared to O(n4

T ) for ZF-VBLAST.

In order to obtain more gain from ordering, we also consider the ordered STBC-

VBLAST with modified SQRD. The simulations demonstrate that it outperforms

the STBC-VBLAST due to higher diversity gain. However, the method to get
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threshold of G for the STBC-VBLAST is still appropriate for the ordered STBC-

VBLAST.



Chapter 6

Conclusions

In this thesis, the STTC design for multiuser systems under different fading situa-

tions is studied. Optimal codes are obtained based on the specific code design crite-

ria, which show better performance than the existing STCs. Combining VBLAST

and STBC, a new STBC-VBLAST scheme is proposed with a good performance

as well as a high data rate. It is demonstrated that the STBC-VBLAST not only

achieves a very good tradeoff between the spectral efficiency and performance but

has low computational complexity.

The STC design for multiuser composite fading systems is discussed, in which some

users undergo quasi-static fading, while the others experience rapid fading. The

analysis of the pairwise error probability demonstrates that the rank and non-zero

eigenvalues of a codeword distance matrix A determine the performance of the

system, which is the sum of two matrices: one characterizing quasi-static fading

and the other characterizing rapid fading. Based on further matrix analysis, two

code design criteria are obtained first, for the case that all the users do not have

135



Conclusions 136

the same number of transmit antennas. It is shown that the minimum rank and

non-zero eigenvalues of codeword distance matrices for both quasi-static and rapid

fading from each user’s code set should be maximized. When all the users are

equipped with the same number of transmit antennas, the code design criteria will

be simplified since there exits only one code set. According to the criteria, we

obtain the optimal QPSK STTCs for a two-user composite fading system through

exhaustive searching. It is shown that the new codes have better performance than

the existing STBCs and STTCs in composite fading channels.

In order to get more general STC design criteria that are suitable for a wide

range of fading situations, we analyze the error performances of different correlated

fading channels. It is demonstrated that the diversity gain and coding gain are

determined by the channel correlation matrix, the coding gain, and the diversity

gain of individual user. The fact that users are independent of each other implies

that all users should use the same code set and code design for multiuser systems

is equivalent to the code design for single user systems. Without any assumption

on the dimension of the codeword matrix and the rank of correlation matrix, we

proved that the STC achieving full diversity in quasi-static fading systems can also

achieve full diversity in temporally correlated fading systems. The upper bound

of the coding gain depends on the product of the norms of codeword difference

matrix’s nonzero column vectors. It is additionally lower bounded by the product

of the nonzero eigenvalues of the codeword distance matrix when the diversity

gain is equal to the minimum rank of codeword distance matrices as well as the

minimum number of the nonzero columns of codeword difference matrices.

For the fading channel with spatial correlation but no temporal correlation, it is
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shown that the diversity gain is upper bounded by the product of the minimum

number of the nonzero columns of the code difference matrices and the minimum

rank of space correlation matrices. The performance analysis for MIMO tempo-

spatially correlated fading systems exhibits that the number of, together with the

product of the norms of, nonzero column vectors of code difference matrices are

desired to be maximized. These results indicate that the code design for the last

two cases is reduced to the code design for rapid fading channels. Based on these

code design criteria, we obtain a set of general code design criteria suitable for

all three fading situations. Accordingly, the optimal STTCs are obtained through

computer searching showing more robust performance than other STTCs.

The VBLAST scheme can be used to exploit the capacity potential provided by

the multiple transmit antenna systems. However, SIC used in VBLAST detec-

tion degrades performance because of the small minimum diversity gain and error

propagation. Although the ordered ZF or MMSE is applied to improve the perfor-

mance, such as in ZF-VBLAST or MMSE-VBLAST, the computational complexity

is high, since the calculation of matrix inverse is involved. In this thesis, we intro-

duce a new STBC-VBLAST scheme. Due to the the linear decoding of STBC and

simplicity of QRD, the computational complexity of the new system is of order

O(nRn2
T ), compared to O(n4

T ) for ZF-VBLAST.

Both theoretical analysis and simulations show that the (n,m, G) STBC-VBLAST

system has much better performance than other VBLAST systems since it increases

the exact system diversity gain d to be the minimum of n(nR − nT ) + n2 and

nR−nT +Gn+1. From the fact that d is upper bounded by n(nR−nT )+n2 when

nR and nT are fixed and a particular STBC has been chosen, it is proved that the
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number of the STBC layers should not be greater than a threshold Gth to use the

bandwidth efficiently.

Although a part of the spectral efficiency is lost compared to the uncoded VBLAST

because STBC is used, it can be compensated by using the higher-order modula-

tion. With appropriately selected G and high diversity gain, the STBC-VBLAST

system still performs better than existing VBLAST systems at moderate to high

SNRs, even with higher spectral efficiency.

The analysis of the performance under imperfect channel CSI indicates that the

error floor exits since there is a fixed noise increment coming from the channel

estimation errors. The error floor of the STBC-VBLAST is much lower than those

of other VBLAST systems due to the higher d.

To further improve the performance, we also consider the ordered STBC-VBLAST

with modified SQRD instead of standard QRD. The ordered STBC-VBLAST has

higher diversity gain with a little increment of the computational complexity, which

is however, in the same order as that of the STBC-VBLAST. It is also demonstrated

by simulations that the theorem for calculating Gth for the STBC-VBLAST still

holds for the ordered STBC-VBLAST.

Based on the work of this thesis, the following topics are worthwhile for further

research.

As we mentioned in Chapter 5, the STTC-VBLAST is the counterpart of the

STBC-VBLAST, which integrated STTC to the lower layers of VBLAST. It is

attractive because a STTC can supply the same diversity gain as but higher coding

gain than a STBC generally. However, since the virtual channel after the QRD is

not Rayleigh, the STTC code design for STTC-VBLAST cannot be based on the
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criteria obtained in previous research. It is worthy to investigate the STTC design

for STTC-VBLAST system to obtain the optimal performance.

When the STBC-VBLAST is used for a multiuser uplink channel, QRD can hardly

be applied directly since the total number of transmit antennas is usually greater

than the number of antennas at receiver. It is reasonable to partially suppress

the interference before QRD is used for the desired users or layers. The problem

that how to apply the group interference suppression together with QRD to have

the best performance is an interesting topic for consideration. This may also give

hints on how to choose the number of STBCs for each user to use the bandwidth

efficiently in this circumstance.

Note that the ML joint decoding and detection are used when code design for

multiuser systems is studied in this thesis. When suboptimal multiuser detection

is employed at the receiver. The design criteria may be different since the inter-

ference suppression or cancellation is used, similar to the case of STTC-VBLAST.

It is desirable to investigate the code performance and code design under this

circumstance.
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