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Summary 

This thesis focuses on the automatic annotation of paintings with artistic concepts. To achieve accurate 

annotation we employ domain knowledge that organizes artistic concepts into the three-level ontology. 

This ontology supports two strategies for the concept disambiguation. First, more detailed artistic 

concepts serve as cues for the annotation of high-level semantic concepts. Second, the ontology 

relationships among high-level semantic concepts facilitate their disambiguation and serve to annotate the 

collection images in accordance to existing domain knowledge.  

In this thesis we propose a framework that utilizes the three-level ontology of artistic concepts to perform 

annotation of paintings. We demonstrate that the use of domain knowledge in combination with low-level 

features yields superior results as compared to the use of only low-level features.  The proposed 

framework performs successful annotation of a wide variety of high-level artistic concepts. This 

framework can be easily extended to annotate an even wider range of artistic concepts. 

We propose two methods to facilitate the annotation of visual color, brushwork and application-level 

concepts respectively. For annotation of artistic color concepts, we develop a set of domain-specific 

features and combine them with inductive learning techniques. By testing various expert-provided 

queries, we demonstrate the satisfactory performance of the proposed method. For annotation of 

brushwork concepts, we develop a novel transductive inference approach that utilizes multiple classifiers 

to annotate brushwork concepts. We develop several variants of the proposed method and compare their 

performance with several baseline systems. The transductive inference approach is extended to facilitate 

annotation of application-level concepts such as artist names, periods of art and painting styles. Our 

experiments indicate that we could achieve over 85% of precision and recall for the annotation of artist 

and painting style concepts and over 95% for the annotation of art period concepts.  

Lastly, we outline the major contributions of this thesis and list possible directions for future work. 
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Chapter 1 
 

Introduction 

Digital media progressively invades our everyday life. With the advent of the World Wide 

Web, large volumes of information are digitized. Imagery constitutes an important sub-

domain of the digital media. Currently digital images are widely used in e-commerce, medical 

archives, military etc. Similarly, various art galleries and museum also digitize their 

collections. Primarily, digital scans of paintings introduce more interactivity for the virtual 

gallery visitors as well as they serve in anti-fakery analysis, preservation [Brown et al., 2001], 

educational and art historical uses [Hollink et al, 2003; Smeulders et al., 2002].  

Large collections of digital scans require flexible and effective techniques to retrieve the 

necessary information. Current art retrieval systems mostly target large heterogeneous 

collections. Often these systems facilitate querying by image examples. They mostly employ 

low-level features as a basis for image representation [Chang, 1992; Lew et al., 2006]. A 

number of user studies demonstrated that low-level features have indirect relation to human 

interpretation of visual information, and consequently to user queries. Moreover, query by 

examples is ambiguous and it is difficult to formulate a precise query based on low-level 

features. This mismatch creates the so-called semantic gap and decreases the usability of the 

retrieval systems. In contrast, querying by semantic concepts or keywords is more natural to 

the end user. However, it requires complete annotation of the dataset with semantic concepts. 

At the moment, all paintings collections are annotated manually [Getty Research Institute, 

2000].  

Paintings domain has a number of distinctive characteristics. First, experts categorize 

paintings into a vast number of categories. They include objects and themes depicted 

(similarly to the general domain images) as well as various visual and high-level artistic 

descriptions [Brilliant, 1988; Greenberg et al., 1993; Hastings et al., 1995]. Second, visual 

attributes of paintings based on colors, brushwork and composition represent a vocabulary of 

visual-level concepts for analysis and description of masterpieces [Arnheim, 1954; Canaday, 

1981; Lazzari, 1990]. While this vocabulary provides limited cues to the objects depicted, it 

serves as a major basis to characterize abstract and high-level descriptions such as artist name, 

painting style, period of art, culture etc. Thus, new techniques should be developed to 
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facilitate the analysis and annotation of visual concepts. Due to these characteristics manual 

annotation of paintings is tedious and time consuming. Recently, statistical machine learning 

approaches have been proposed to perform automatic and semi-automatic annotation of 

paintings [Forsyth et al., 1997; Fung et al., 1999; Nigam et al., 2000; Lavrenko, 2003; 

Barnard et al., 2001 and 2003]. However, their performance is usually limited due to the 

semantic gap. Moreover, they often require large amount of labeled data to derive inferences 

of semantic concepts. These problems motivated our research to perform automatic 

annotation of paintings collections. 

1. 1 Motivation 

There are several factors that motivate our research: 

First, there are large collections of paintings that require annotation. Usually they have limited 

or no annotations. In the paintings domain, artistic concepts offer an extensive vocabulary of 

concepts for navigation through paintings collections. For effective searching and browsing, 

annotation of these concepts is desirable. Figure 1.1 demonstrates an example of automatic 

paintings annotation. 

Second, domain knowledge about paintings organizes these concepts into a hierarchical 

structure, where visual concepts reinforce high-level semantic concepts. This hierarchical 

organization serves to narrow the semantic gap between low-level features and high-level 

semantic concepts.  

Third, manually labeled data for paintings is often difficult to gather. For example, manual 

annotation of brushwork classes requires extensive expertise.  Hence, it is desirable to 

minimize the manually labeled data required for the learning of artistic concepts.  

Fourth, effective auto-annotation techniques for the paintings domain are highly desirable. 

The goal is to develop methods for effective auto-annotation of both visual and high-level 

artistic concepts using domain knowledge and limited training sets. 
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Figure 1. 1 Examples of automatic paintings annotation 
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1. 2 Our approach 

In this dissertation, we propose a flexible framework that performs the annotation of paintings 

with artistic concepts using domain knowledge. This framework follows the hierarchical 

learning paradigm that mimics human cognition and reinforces hierarchical organization of 

artistic concepts.  

Visual concepts describe image regions, while high-level semantic concepts usually describe 

the whole image. In accordance to hierarchical learning, we first assign visual-level concepts 

to the image region based on low-level features. Next, we combine low-level features and 

visual-level concepts to generate annotations of regions with respect to high-level concepts. 

Lastly, using the ontological relationships among high-level concepts we integrate region-

based information and disambiguate these concepts to represent the whole image.  

Figure 1.2 demonstrates relationship between the ontology of artistic concepts and the 

proposed framework.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. 2 Annotation of the ontology concepts within the proposed framework 
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This figure demonstrates how various levels of ontology correspondence to the hierarchical 

annotation process of the proposed framework. This framework incorporates domain ontology 

of artistic concepts that facilitates concept disambiguation and has a number of advantages for 

navigation and retrieval. The framework performs inference using different types of learners, 

both supervised and semi-supervised. This facilitates inferencing of the concepts that have 

limited amount of the labeled data. Overall, the proposed framework implements a range of 

methods for the annotation of visual-level color, brushwork as well as abstract and high-level 

semantic concepts.  

Figure 1.3 demonstrates how these methods combine within the overall framework for 

paintings annotation. These methods include: 

1. Fully supervised annotation of visual-level color concepts. To perform annotation, we 

employ the artistic color theory of Itten [1961]. This theory offers a mapping between 

color hues and visual-level color concepts. Our method extends existing works in 

several directions. First, for effective representation of image image, we extract 

domain-specific color features that represent the distribution of artistic concepts 

within a region. In our work we experiments with two types of image regions: a) 

color/texture blobs generated using image segmentation techniques; and 2) fixed-

sized blocks. Second, we demonstrate that using visual-level concepts and their 

ontological relationships the proposed method facilitates the annotation of abstract 

artistic color concepts without additional training. Specifically, we employ the artistic 

color sphere and fully supervised probabilistic SVM classifier.  

2. Semi-supervised annotation of brushwork patterns. To facilitate effective annotation 

of these complex patterns, we adopt the serial multi-expert approach, where 

sequentially arranged experts (learners) perform step-wise disambiguation of the 

target concepts based on a decision hierarchy. The decision hierarchy encodes 

relationships among classes, thus iteratively splitting a dataset into sub-classes until 

the leaf nodes with the target concepts are reached. Due to its modularity, this 

approach facilitates feature selection and model selection for each node of the 

decision tree. We combine this approach with semi-supervised learning methods to 

address the problem of limited labeled datasets. Using this method, we investigate: a) 

one-step annotation of brushwork classes and step-wise disambiguation using 

multiple experts; b) manual and automatic selection of low-level features and 

parameters of the semi-supervised learning methods and the use of distance-based 

and probabilistic semi-supervised learning methods. We aim to demonstrate that the 

resulting transductive inference using multiple experts is effective for the annotation 

of complex brushwork patterns and that the proposed methods for automatic feature 
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and parameter selection technique is comparable to the manually assigned features.  

3. Annotation scheme for labeling high-level semantic concepts. This scheme includes 

two major steps: a) the annotation of image regions with high-level semantic concepts 

and b) the integration of the generated concepts to annotate the whole image. For step 

(a) we employ the semi-supervised techniques developed for brushwork annotation. 

In this step we exploit the fact that visual-level concepts serve as cues for annotation 

of high-level concepts.  

 

 

 

 

 

 

 

 

 

 

 

Figure 1. 3 High-level scheme of the proposed framework 
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using limited training set. Next, using the generated labels, we further exploit the 

ontological relationships among high-level concepts to disambiguate concepts. We aim to 

demonstrate that ontological relationships are efficient as compared to the use of 

automatically generated results for the concept disambiguation.  

1. 3 Contributions 

In this thesis we make the following contributions: 

1. We propose a novel framework for the annotation of paintings with artistic concepts 

using domain ontology. This ontology includes visual concepts and high-level 

concepts and relationships among them. This framework employs visual-level 

concepts as meta-level information and facilitates concept disambiguation based on 

the ontological relationship. 

2. We propose and implement the method for annotation of visual color concepts that 

combines domain knowledge and machine learning techniques. 

3. We propose and implement a transductive inference method for the annotation of 

brushwork visual concepts. This method utilizes multiple expert approaches that 

facilitates disambiguation of patterns and performs automatic selection of features 

and model parameters.   

4. We extend the proposed transductive inference approach to perform the annotation of 

high-level concepts and their disambiguation based on ontological relationships. 

1. 4 Thesis Overview 

The dissertation is organized as follows: 

Chapter 2 discusses the problem of automatic image annotation. It motivates the need for the 

machine learning approach and discusses the measures for performance evaluation. 

Chapter 3 reviews the state-of-the-art approaches to image annotation and retrieval. It 

discusses the existing ontologies for manual annotation, the query by example and query by 

keyword paradigms. We further discuss semi-supervised and supervised learning approaches 

and ontology-based annotation. 

Chapter 4 discusses the domain-specific knowledge used in our study. It presents a three-level 

organization of artistic concepts, where visual-level concepts reinforce abstract-level and 

application-level concepts. These concepts offer an extensive vocabulary for annotation. 

Chapter 5 presents the proposed framework for the annotation of paintings with artistic 
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concepts. This learning framework exploits domain specific knowledge in order to narrow 

down the semantic gap. It implements hierarchical learning, where the system first annotates 

image region, and then uses the region-based annotations to infer image-level labels.  

In Chapter 6, we propose and implement an approach for supervised annotation of paintings 

with visual-level color concepts. This approach employs artistic theory to extract domain-

specific features and annotate paintings.  

In Chapter 7, we propose and implement a semi-supervised transductive approach to 

annotation of paintings with brushwork classes. This approach adopts multiple expert 

paradigm that facilitates step-wise disambiguation of the target concepts. We compare several 

variations of the proposed method based on different semi-supervised techniques and feature 

selection methods. 

In Chapter 8, we employ the semi-supervised transductive method proposed in Chapter 7 to 

annotate image with semantic concepts. Using this method, we demonstrate that the use of 

visual-level artistic concepts is beneficial to the annotation of high-level concepts. We also 

propose a concept disambiguation method that utilizes ontological relationships among 

concepts. 

Finally, Chapter 9 concludes the thesis with a discussion of future research. 
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Chapter 2 
 

Automatic Annotation of Images 

2. 1 Manual and Automated Annotation of Images in Paintings Domain  

Image is a complex medium. As discussed in [Panofsky, 1962], there are at least three aspects 

that influence image interpretation. First, image can be “of” and “about” something. For 

example, an image is “of” a woman and a child and “about” immaculacy. Second, image 

contains, simultaneously, generic and specific information. The user might treat the object 

depicted in the image as the representation of this particular object (image of Titanic) or 

general concept of this object (image of Titanic as an example of a ship). Third, image can be 

broadly classified as being “of” or “about” time, space, activities and objects. Complexity of 

visual information introduces difficulties in the annotation process and naturally leads to the 

subjectivity of annotation.  

In an attempt to embrace and standardize all possible interpretations of an image, researchers 

developed concept ontologies that serve for manual annotation. To describe paintings, human 

experts often use arts-oriented ontologies that include artistic and general concepts, which 

describe and characterize an image at various levels of detail. This includes visual 

characteristics of paintings as well as description of its objects, mood, theme etc. Majority of 

manual annotations serve for cataloguing and preservation purposes. The list of established 

ontologies for the description of visual documents and historical materials includes: 

• ICONCLASS [Waal, 1985],  

• Art and Architecture Thesaurus (AAT) [Getty Research Institute, 2000], 

• United List of Artist Names (ULAN) [Getty Research Institute, 2000], and 

• Thesaurus for Graphic Materials and Metadata (TGM) [Library of Congress, 2000]. 

These external ontologies represent a complex tool for manual annotation. Each of the 

ontologies includes a vast number of terms that require extensive knowledge of the respective 

domain from the annotators. In an attempt to assist in the annotation process, various 

researchers [Hollink et al., 2003, Hyvönen et al., 2003; Smeulders et al., 2002] developed 
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ontology-based tools for annotation. However, even with these ontology-based tools, the 

human effort required for annotation is still substantial. To eliminate these efforts, a fully 

automated annotation system is desired. The purpose of such an annotation system is to 

automatically assign the appropriate concept labels to each image. The automatic annotation 

system analyzes an image using multiple concept learners and assigns multiple concepts that 

represent the content of an image. Semantic annotations of paintings can be used for the 

following purposes: 

• Image retrieval using queries such as ‘paintings by Cezanne’, ‘paintings with warm 

colors on top’. Optionally the system may facilitate relevance feedback to utilize the 

user in the retrieval process. 

• Ontology-based navigation of image collections – using ontology to provide context 

for navigation and querying of collections. 

• Integration of image collections – ontology-based semantic annotations facilitate 

unified access to collections of various museums. 

• Combining automatically annotated concepts with domain-specific knowledge serves 

to automatically compose a summary for each painting.  

However, automatic annotation of paintings with semantic concepts is a challenging task for 

several reasons: 

• The limited representational power of color and texture low-level features. For 

example, images with the same low-level features may have different contents. 

Similarly, an image under different lightning conditions is represented by different 

color feature vectors. 

• Due to such reasons as light intensity, occlusions etc, the image segmentation task is 

difficult and its result is unstable. Thus, the image regions often do not correspond to 

meaningful objects, making the semantic annotations based on such regions 

incomplete or erroneous. 

• High-level concepts may have a variety of visual representations and, thus, various 

values of low-level features. 

• Automatic annotation does not incorporate relationships among concepts such as the 

synonyms. 

2. 2 Machine Learning for Automated Annotation 

In general there exist two approaches to problem solving: knowledge engineering and 

machine learning. In the knowledge engineering approach, a program aims to solve the 
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problem directly using a set of rules. Determining a specific set of rules that applies to all 

kinds of images is a very difficult task.  

The machine learning approach provides an indirect approach, wherein the system learns how 

to solve the problem of interest. As discussed in Mitchell [1997], machine learning denotes 

the acquiring of general concepts based on specific training samples. For concept learning 

task, machine learning aims to find an approximation of an unknown target function 

Φ:{I,C}→{T,F}      (2. 1) 

where I denotes a set of images (documents) that are members or non-members of concept of 

interest C. The target functionΦ in Equation 2.1 represents the classification an image Ii∈I as 

whether is should be assigned  to concept C and value F is the decision not to assign an image 

Ii∈I to concept C. Φ describes how images I ought to be classified and, in short, assigns Ii∈I 

to C. The approximation function  

Φ’:{I,C}→{T,F}      (2. 2) 

is called a classifier and, ideally, should closely match Φ. The classifier stores parameters of 

approximation function or hypothesis in the knowledge base KB. This knowledge base is 

further applied to solve the previously unseen problems. This approach has one important 

assumption that unseen samples come from the same distribution as the samples used for 

training.  

We employ the machine learning approach in our framework due to several reasons. First, it 

avoids the need to collect, organize and resolve large amounts of incomplete and conflicting 

human knowledge. Second, the use of machine learning makes the system very flexible: we 

can easily re-train the system with new training sets or to handle the new set of semantic 

concepts.   

2. 3 Inductive and Transductive Learning 

Machine learning largely relies on Statistical Learning Theory and its major concepts such as 

induction, deduction, and transduction. In classical philosophy, deduction describes the 

movement from general to particular, while induction denotes the movement from particular 

to general. Figure 2.1 depicts relationships between these learning concepts as discussed by 

Vapnik [1995]. Induction derives the unknown target function from given data, while 

deduction derives the values of the given function for points of interest.  

The classical scheme [Vapnik; 1995]  suggests that the derivation of the values of the target 

function for the points of interest proceeds in two steps: first using the inductive step, and 

then using the deductive step. The inductive inference for concept learning can be formalized 
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using Formulae 2.2. The version space Φ’ represents the subset of hypothesis in the 

hypothesis set H that are consistent with the training set I. Intuitive interpretation of the 

inductive inference formulation assumes the training set, where each training sample has pre-

assigned values (or label) T or F that denote whether the current samples belongs to class C. 

An algorithm that learns from only labeled samples is called a supervised learner. 

 

 

 
 

 

Figure 2.1. Types of Inference (by courtesy of Vapnik [1995]) 

As pointed out by Vapnik [1998] in many realistic situations one actually faces an easier 

problem, where one is given a training set of labeled examples, together with an unlabeled set 

of points which needs to be labeled. Such a type of inference is called transductive inference 

and denotes moving from particular to particular. In this transductive setting, one is not 

interested in inferring a general rule, but rather only in labeling this unlabeled set as 

accurately as possible. Using this type of inference, we derive the values of the unknown 

target function for the given data. One solution is of course to infer a rule as in the inductive 

setting, and then use it to label the required points. However, as argued by Vapnik [1982, 

1998], it makes little sense to solve what appears to be an easier problem by `reducing' it to a 

more difficult one. While there are currently no formal results stating that transduction is 

indeed easier than induction, it is plausible that the relevant information carried by the test 

points can be incorporated into an algorithm, potentially leading to superior performance. 

Since a transductive learner facilitates inference based on both labeled and unlabelled 

samples, this type of setting assumes a semi-supervised learner. Similarly, an unsupervised 

learner is trained using solely unlabelled training samples. Various distance-based clustering 

techniques such as K-means serve as examples of unsupervised learners. They cluster the 

unlabelled samples based on their distances to the cluster centers.   

We demonstrate the generic framework for supervised and semi-supervised learning in Figure 

2.2. Both frameworks are very similar except that the semi-supervised learner utilizes 

different learning strategies as compared to the supervised learner. The raw data (includes 

scans of paintings in our case) are preprocessed to extract features for adequate data 

representation. In the training mode, as outlined by spotted-line box, the teacher (human 

expert) assigns the concepts to each training sample. Such assignment gives rise to the term 
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supervision. Under semi-supervised paradigm, the learner composes the training set using 

both labeled and unlabelled samples available. As shown in Figure 2.2, the predictor utilizes 

the resulting knowledge to generate labels for previously unseen samples. In general, labeled 

samples are divided into training and testing sets.  In our work, we utilize 315 and 735 images 

for training and testing respectively. These sets are often used to test the ability of the learner 

to construct an accurate and generalized knowledge base. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. 2. Frameworks for supervised and semi-supervised learning 

2. 4 Drawbacks of Machine Learning for Image Annotation 

While numerous works demonstrated satisfactory performance of machine learning methods, 

it is still a challenging task for several reasons: 

1. Mapping 

There is no clear mapping from a set of visual features to its semantic concepts. First, 

semantically different and visually similar objects/regions may have similar 

representation in terms of visual features. For example, a region of blue color may 
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depict sky, water, blue wall etc. Similarly, in the paintings domain a region of coarse 

directed texture may represent brushwork technique of Cezanne, van Gogh or Seurat. 

Next, lightning conditions, occlusions and other factors change visual appearance of 

objects. Lastly, semantics of a regions indirectly relates to the semantic of the overall 

image. So given that we are able to capture semantic labels of an image we might not 

be able to capture the semantics of the overall image.  

2. The curse of dimensionality 

The fundamental reason for this phenomenon is that high-dimensional functions have 

the potential to be much more complicated as compared to low-dimensional ones, and 

these complications are harder to discern [Duda et al., 2000]. The system requires a 

large number of samples to perform training in high-dimensional feature space, which 

in turn poses the need for substantial human effort for annotation. In general, the 

relationship between required samples and feature dimensionality is exponential, 

which restricts the application of machine-learning methods.  

3. Feature irrelevance 

The majority of learners utilize all features available whether or not these features are 

relevant to the target concept, except for the rule-based and decision-tree approaches. 

Due to this, samples with similar relevant features might be far from each other. 

Thus, the similarity metrics based on the full feature space might be misleading since 

the distance between neighbors is likely to be dominated by the large number of 

irrelevant features. This problem is evident in paintings domain, where brushwork 

patterns exhibit a large variety of properties that requires a large number of low-level 

features.  

4. Label noise 

Label noise refers to the fact that the labels assigned to the samples by the human 

annotator may contain errors. Annotation of image with wrong labels may be due to: 

(a) variations in human expert knowledge, (b) unreliable image segmentation and (c) 

image quality. 

5. Domain knowledge and Concept relationships 

Traditional machine learning approaches are not aware of the relationships among 

concepts and concept granularity. This property of the machine learning approach 

contrasts with the human ability to conceptualize the world. For example, in the 

paintings domain concepts of different artist names should not appear within the same 

painting. Lack of such so-called domain-specific knowledge about relationships 

among concepts leads to the decreased accuracy of the machine learning systems.  
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2. 5 Performance Measurement 

Since automatic annotation system is a natural base for information retrieval systems, there 

are two major approaches for its evaluation. First, we evaluate such a system using 

performance measures for the information retrieval system. Second, we utilize measures for 

performance evaluation of classifiers. The choice of the measures often depends on the 

characteristics of data collection, user needs etc. In this thesis we employ a variety of 

measures for the evaluation of our proposed framework. 

2. 5. 1 Contingency Table  

Contingency table is widely used for the evaluation of both classification and information 

retrieval tasks. In the context of classification task, contingency table demonstrates the 

distribution of classifier predictions into two or more categories.  It is also known as 

confusion matrix. Table 2.1 demonstrates the 2x2 contingency table used for performance 

evaluation of binary classifiers or, in other words, classifiers that predict whether a sample 

belongs to a category or not.  

 

 

 

Table 2. 1 Contingency Table of 2x2 size 

In context of an image annotation system, a sample denotes a unit of analysis (image or 

region, for example) and a category refers to a concept. The term “Positive” denotes that the 

samples belong to the category of interest and “Negative” that they do not belong to this 

category. Since we have information about true data labels and predicted data labels, the 

contingency table classifies samples into: False Positive (FP) if it predicts negative samples to 

be positive, False Negative (FN) if it predicts that samples are negative while they are actually 

positive, True Negative (TN) and True Positive (TP) if the system predicts the label of 

samples correctly. Hence, with this notation the number of correctly predicted samples is 

TP+TN, while prediction over all samples is equal to TP+TN+FP+FN.   

To ease comparison of the tables, several performance measures have been developed based 

on the four values of the contingency table. Transforming four values into a single value 

usually causes some loss of information, due to which some measures are more preferable 

than others [Liere, 1999]. The following evaluation measures are widely used: 

1. Sensitivity  

Sensitivity denotes the ratio of true positive predictions to the number of positive 
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 16

instances in the test set: 

0,0, ==+
+

= ysensitivitthenFNTPif
FNTP

TPysensitivit   (2. 3) 

2. Specificity  

Specificity denotes the ratio of true negative predictions to the number of negative 

instances in the testing set. 

0,0, ==+
+

= yspecificitthenFPTNif
FPTN

TNyspecificit   (2. 4) 

3. Accuracy  

Accuracy measures the ability of the system to correctly predict label of samples. It is 

defined as the ratio between the number of correctly identified samples and the size of 

testing set: 

0,0 ==+++
+++

+
=

accuracythenTNFPFNTPif
FPTNFNTP

TNTPaccuracy
   (2. 5) 

4.  Precision and Recall 

These two measures are commonly used for evaluation of information retrieval tasks. 

They represent the system evaluation in contrast to the user-based evaluation. The system 

evaluation is done in laboratory and, thus, is comparatively cheap. It was first performed 

over four decades ago by Cranfield [Cleverdon et al., 1966] and since then became a 

dominant IR model for such evaluation efforts as Text REtrieval Conference [Voorhees et 

al., 2006]. Precision characterizes the ability of the system to predict positive samples that 

are actually positive. It is defined as the ratio between the number of correctly identified 

samples and the number of totally identified positive samples: 

0,0, ==+
+

= precisionthenFPTPif
FPTP

TPprecision    (2. 6) 

Recall measures the ability of system to identify positive samples in the dataset. It is 

defined as a ratio between the number of true positive samples and the total number of 

positive samples in dataset: 

0,0, ==+
+

= recallthenFNTPif
FNTP

TPrecall        (2. 7) 

During actual testing, the classification and retrieval system usually exhibits tradeoff 

between recall and precision.  
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2. 5. 2 Practical Performance Measures 

In Section 2.5.1 we have discussed several widely used performance measures for evaluation 

of classification and retrieval systems. However, in practical applications, these performance 

measures have some changes. “True” and “false” sample labels are changed to the concepts of 

relevance. Thus, equations become: 

samplesrelevant
samplesrelevantretrievedrecall

samplesretrieved
samplesrelevantretrievedprecision

=

=
    (2. 8) 

Due to the fact that the degree of relevance is based on the user point of view, it introduces 

subjectivity to the evaluation of the system. In our task the order of retrieved samples might 

have importance. To evaluate the performance of the system we employ Mean Average 

Precision (MAP) metrics. Thses metrics favor highly ranked relevant items. To calculate 

average precision, we measure precision after each relevant document in a collection is 

retrieved. To calculate MAP we take the mean of average precision across all categories. 

In actual practice, the classification systems exhibit precision-recall tradeoff. In comparing 

two systems, one always favors the one having higher precision and recall. To incorporate 

both recall and precision into a single value, [Lewis et al., 1994] proposed Fb measure. This 

measure is a function of recall, precision and a positive constant b, which represents the 

importance ratio of recall to precision: 

0,00

,
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===
+

××+
=

b

b

Fthenrecallandprecisionif
recallprecision

recallprecisionbF
   (2. 9) 

In our experiments, we give equal importance of recall and precision (b=1) to evaluate the 

proposed system. 

In order to understand the experimental results better, we calculate precision, recall and F1 

measure using micro- and macro- averaging. Using macro-averaging, we calculate these 

measures for each category and then average. Using micro-averaging, we calculate them over 

all decisions. The two procedures bias the results differently - micro-averaging tends to over-

emphasize the performance on the largest categories, while macro-averaging over-emphasizes 

the performance on the smallest. The analysis of these two measures gives insights to the 

distribution of data across categories. 

In this chapter we discussed why auto-annotation of images is useful for annotation of artistic 

images and, in particular, paintings. We also introduced existing paradigms for machine 

learning and presented widely used evaluation measures. In the next chapter, we present the 
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state-of-the-art works information retrieval and statistical learning systems and provide a 

basis for a framework for automatic annotation of paintings. 
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Chapter 3 

Overview of Existing Work for Paintings Annotation 

In this chapter, we focus on the existing studies on annotation and retrieval task for general 

images and, in particular, paintings. We then discuss existing problems and some strategies to 

overcome them. 

3. 1 Existing Ontologies for Paintings Annotation 

We start our discussion with existing arts-oriented ontologies that are widely used for the 

cataloguing and description of arts objects. The list of established ontologies for the 

description of visual documents and historical materials includes: 

• ICONCLASS [Waal, 1985]  

• Thesaurus for Graphic Materials and Metadata (TGM) [Library of Congress, 2000] 

• Art and Architecture Thesaurus (AAT) [Getty, 2000] 

• United List of Artist Names (ULAN) [Getty, 2000] 

All these tools include a fixed vocabulary of the artistic concepts organized into a hierarchy. 

However, they differ in their scope of terms, level of details and applicability to arts 

collections.  

The ICONCLASS ontology covers early and medieval art collections, in which theme, 

historical and religious aspects represent important concepts for description.  It divides 

iconography into the following categories:  

• Religion and Magic, Nature,  

• Human Being and Man in General, 

• Society, Civilization, and Culture,  

• Abstract Ideas and Concepts,  

• History,  

• Bible,  

• Literature,  

• Classical Mythology 
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• Ancient History.  

Clearly, this ontology of concepts maintains the traditional coherence of content with biblical, 

classical, historical or literary sources and is mostly useful for annotation of medieval arts 

collections.  

The TGM ontology is meant for wider range of arts objects and collections. It contains the 

following facets at the highest level of the concept hierarchy: 

• Geography 

• Nationality 

• Ethnic Group 

• Racial Group 

• Religion 

• People 

• Form and Genre 

• Physical Characteristics. 

In contrast to the TGM ontology, Art and Architecture Thesaurus (AAT) serve to describe 

visual artistic documents, for example, paintings, frescos, mosaic. Due to this, we extensively 

employ this ontology and its concepts in our framework. AAT includes 125,000 concepts 

organized under the following categories at the highest-level: 

• Associated and Abstract Attributes,  

• Physical Attributes,  

• Styles and Periods,  

• Agents, 

• Activities,  

• Materials and Objects.  

The category of Associated and Abstract Attributes includes a variety of non-visual terms 

reflecting the content of painting. For example, it includes perceptual effects that are induced 

by the use of specific painting techniques. For example, it is widely accepted that the use of 

contrasting colors is regarded as expressive in the western fine arts. The Physical Attributes 

category concerns the characteristics of materials as well as visual characteristics of paintings 

such as artistic color, brushwork and composition techniques. The Styles and Periods 

category includes commonly accepted terms for stylistic groupings and distinct chronological 

periods that are relevant to art, architecture, and the decorative arts. The category of Agents 

includes terms for designations of people, groups of people and organizations involved in 

possession and selling works of art. The Activities category encompasses areas of physical, 

mental actions and processes such as archaeology, analyzing and exhibitions. Lastly, the 
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Materials category includes a variety of materials that could be used in the artwork, while the 

Objects category contains the concepts referring to various human-made objects used to 

describe artwork content and the type of artwork itself. Examples of concepts under the 

Objects category are paintings, amphorae, facades, cathedrals, Brewster chairs, gardens etc. 

Greenberg [1993] compared several arts-oriented ontologies and found that specific 

terminology of AAT allows for greater retrieval precision and elimination of unwanted recall.  

ULAN (United List of Artist Names) contains information about artists that includes name 

variants and important biographical information such as dates, locations and historical period. 

It lists 220,000 artists.  

The ontologies discussed above serve as a structural representation of domain-specific 

knowledge of art domain, where the concepts inter-link and reinforce each other. This 

representation relates visual, historical, cultural and other types of information. Using 

ontologies, we can annotate paintings with a large set of concepts, in addition to  assigning 

several well-known terms such as artist name, date and country. In our work, we aim to 

benefit from the arts ontologies: we utilize artistic concepts and relationships among them to 

enhance the annotation accuracy of machine learning methods and provide the end users with 

flexible and meaningful vocabulary of concepts. In the next section, we review the existing 

user studies of retrieval task in the painting domain. They include discussions of possible 

strategies for arts images querying, categorizing retrieval concepts and establishing their 

usability from the point of view of different user groups.  

3. 2 User Studies in Paintings Domain 

Art is one of the subject fields in which images are used comprehensively, and researchers 

have extensively analyzed image indexing and retrieval in this field. Brilliant [1988] and 

Enser et al. [1992] pointed out that many artists and experts in the field use a rough sketch to 

describe their requirements pictorially. However, Enser et al. [1992] and Garber et al. [1992] 

recognized that the use of a sketch alone is not sufficient due to the variety of possible 

interpretations. Garber et al. [1992] pointed out that an art image retrieval system should 

facilitate explicit descriptions of image contents. Several studies [Panofsky, 1962; Garber et 

al., 1992] concluded that arts system should ideally facilitate retrieval by a combination of 

various visual attributes (color, texture), high-level concepts (art period, location) as well as 

querying by image sketches or layouts.  

Several studies focused on the analysis of query concepts for art images. Enser et al., [1992], 

Jorgensen [1995], Fidel [1997] and Layne [1994] provided a valuable foundation for arts 
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retrieval systems. These classifications include both syntactic (low-level) and semantic (high-

level) attributes and differ mostly in the level of detail. Jorgensen [1995] developed the most 

comprehensive classification of the user queries in the domain of paintings. Table 3.1 shows 

12 image classes developed by Jorgensen. Among others, Jorgensen’s classification includes 

visual elements, abstract concepts and art-historical information as useful query concepts in 

arts domain.  

Table 3. 1. Jorgensen’s classification of image queries 

Several studies have focused on the relationships between query concepts and user 

backgrounds. Hastings [1995], Chen [2001] and Smeulders et al. [2002] grouped users into 

novice and expert user groups. Smeulders et al. [2002] pointed out the relationship between 

the user’s background and the textual descriptions for the painting provided to him/her. For 

instance, expert users do not require an explanation of the artifact itself, while a novice user 

would want to know high-level synopsis about the visual concepts and paintings techniques as 

well as art historical information such as artist name, painting style etc. Chen [2001] focused 

on the novice user group and reported the following useful concepts for querying: artist name, 

historical period and culture, location (indoor/ outdoor), painting style, subject and theme of 

the paintings. Hastings [1995] performed analysis of the query concepts employed by the 

expert users. This study found that artist name, abstract concepts, text within paintings 

(signature) and visual elements (color, brushwork and composition) are useful for the expert 

user group. 

Attribute class Description 
Literal object Named objects that are visually perceived, e.g., body parts, clothing 

People The presence of a human form 

People-related 
attributes 

The nature of the relationship among people, social status, or 
emotions 

Art historical 
information 

Information related to the production context of the image, e.g., 
artists, medium, style 

Color Specific named colors or terms relating to various aspects of color 

Visual elements Elements such as composition, focal point, motion, shape, texture 

Location Both general and specific locations within the image 

Description Descriptive adjectives, e.g., wooden, elderly, or size, or quantity 

Abstract concepts Attributes such as atmosphere, theme, or symbolic aspects 

Content/story A specific instance being depicted 

External relationships Relationships to attributes within or without the image, e.g., 
similarity 

Viewer response Personal reaction to the image 
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The user studies in arts domain demonstrate that useful query concepts include a wide range 

of information, including the concepts referring to visual, abstract properties and high-level 

information. They recognize that the users fall into two broad categories of novice and expert 

users. Based on these findings, we employ artistic concepts to annotate and retrieve of 

paintings. In the proposed framework, we recognize the needs of the expert and novice user 

groups and employ those concepts that have been shown to fulfill the information needs of 

these groups.  

Annotation and retrieval of image contents has largely been addressed in the research 

community by numerous systems proposed to index and retrieve general domain images. In 

contrast, annotation and retrieval of artistic images is a relatively new research area. Since 

artistic images are a subset of general imagery, the existing annotation and retrieval 

techniques offer one straightforward solution to solve the problem of annotation and retrieval 

in arts domain. In the next sections we review existing research for efficient indexing and 

retrieval of general images. 

3. 3 Image Retrieval 

Since 1970’s, image retrieval has been a well-studied topic due to the need of efficient 

browsing and search through vast image collections. It combines the efforts of two large 

research communities: information retrieval and computer vision. These communities study 

the image retrieval task from two different angles. The information retrieval community 

introduces the text-based paradigm, while the computer vision community focuses on the 

visual-based paradigm for image retrieval. In this section, we review these paradigms and 

give some examples of existing image retrieval systems.  

3. 3. 1 Text-based Image Retrieval 

This very popular framework for image retrieval has two major parts: first, to annotate images 

with text concepts and then employ the text-based information retrieval techniques to perform 

image retrieval [Chang et al., 1992]. However, its practical use has two major difficulties that 

have become more apparent with the growth of the size and versatility of image collections. 

First, substantial manual effort is needed to prepare the image collections for retrieval. 

Second, human annotations of images are often inconsistent and imprecise due to the fact that 

objects within an image simultaneously carry different semantics. For example, an image with 

tiger can be given such annotations as “tiger”, “animal”, “wild life” and many others. The 

imprecision in annotation may lead to significant mismatches during the retrieval stage. 
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3. 3. 2 Content-based Image Retrieval 

The two difficulties faced by manual annotation in the text-based approach lead to an 

alternative approach to image retrieval. Instead of using manually annotated keywords as the 

basis for retrieval, it was proposed to index image collections based on its visual contents. 

The typical visual contents include color, texture, structure and shape. This approach 

established a general framework for content-based image retrieval (CBIR). 

Content-based image retrieval systems include three major components: feature extraction, 

high dimensionality reduction and retrieval design. Feature extraction is concerned with the 

representation of images within a retrieval system. Generally, features may include both high-

level text-based features like keywords and low-level visual features like color, texture and  

shape. Within the visual feature scope, the features can be further classified into general and 

domain-specific. The former includes color, texture, while the latter is application-dependent 

and may include, for example, man-made structures or fingerprint. High dimensionality 

problems arise from the fact that the number of visual features used can be very high. Since, 

dimensionality reduction for retrieval systems is not a focus of our research, we refer the 

reader to the following studies [Minka et al., 1996; Chang and Li, 2003].  

The retrieval systems design is concerned with the image querying modes that aim to 

facilitate effective retrieval in image collections. In their user studies Holt et al., [1995] and 

Jorgensen et al. [1998] found that the end users experience difficulties while querying the 

retrieval systems using low-level visual features. These features have limited power for 

content-based retrieval and their performance is usually application-specific. Since, a typical 

user does not have the basic knowledge of feature extraction, she is unable to use the system 

effectively without prior training. The need to express the semantic concepts using adequate 

features becomes more evident if the image collection includes a large variety of images such 

as animals, natural scenes, object close-ups, indoor etc. For example, while querying for 

images with buildings, it is more meaningful to query based on the texture rather than based 

on color. In contrast, if the user searches for images of plants and greenery, it is more 

meaningful to query by green colors and texture. Clearly, the retrieval results largely depend 

on the ability of the user to identify the most expressive subset of features for a query. To 

make interaction between the user and the system more natural, several querying modes have 

been proposed. Chang et al. [1998] gave a taxonomy of the existing querying modes; they 

include: 

• Random browsing 

• Search by example 

• Search by sketch 
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• Search by text (keywords) 

• Navigation using image categories 

Despite the variety of retrieval modes offered, user studies [Graber et al., 1992; Holt et al., 

1995; Jorgensen et al., 1998] found that search by text is probably the most desirable mode of 

image search and a combination of several modes like search by text and search by image has 

the highest usability to the end user. These findings placed importance on the image auto-

annotation systems. They led to a current trend in CBIR systems, where image retrieval 

represents a two-step procedure: first, the user kick-starts the search using semantic concepts 

and then she interactively looks-up for images [Wang et al., 2001].  

In the next section, we focus on the general low-level features used in modern image retrieval 

and auto-annotation systems. We demonstrate the use of these features in the review of the 

state-of-art CBIR systems presented in Section 3.5. 

3. 4 Image Features 

Numerical representation of image content or image features serves as the basis for image 

retrieval, indexing and annotation tasks. Each image is represented as a feature vector that 

describes various visual cues such as color, texture and shape within an image database. 

Given a query image, the system retrieves the most similar images to the query image based 

on appropriate distance metrics in the feature space. Pavlidis et al. [1978] broadly classified 

the feature extraction methods into two large groups: spatial information preserving and non-

preserving. The spatial information preserving methods derive features that preserve spatial 

information within an image. Hence, using the extracted features we are able to reconstruct 

the original image, which makes these methods useful for image compression tasks. Well-

known examples of such methods are Principal Component Analysis (PCA) and Independent 

Component Analysis (ICA). The non-preserving methods aim to represent the image for the 

purpose of further discrimination. They include color histogram and moments, Tamura 

texture, Gabor-based texture features, wavelet-based features etc. 

Nowadays, almost all annotation and retrieval systems utilize color, texture and shape features 

for adequate representation of images. The use of multiple image attributes arises from the 

fact that the use of single image features often leads to a lack of discriminatory power in the 

annotation and retrieval systems. In this section we briefly review existing methods for 

extraction of color, texture and shape information in images. 
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3. 4. 1 Color 

Color features are used in a majority of annotation and retrieval systems. Color space and 

color resolution are important parameters of color extraction methods. Ideally, a color space 

should be uniform, compact, complete and natural. RGB color space, which is widely used for 

image representation, does not meet these criteria. Due to this, a majority of annotation and 

retrieval systems utilize CIE L*u*v color space [Hall, 1988, Chua et al., 1998], which meets 

these criteria. It is composed of three components, where L defines the luminance and u and v 

define the chrominance. HSI is another color space that aims to model human color 

perception, however it is non-linear. Furht [1998] studied the performance of the retrieval 

system using different color spaces and concluded that while no color space performs best in 

all cases, the use of color extraction methods in CIE L*u*v and HSI color spaces yields 

betters retrieval results as compared to that of RGB.  

Probably the most popular method for color representation is color histogram. It is generally 

invariant to translation, rotation and normalized histograms are scale invariant. However, this 

method is spatially non-preserving. Hsu et al. [1995] observed that visually different images 

might have similar color histograms. To address this problem, several new representations 

that account for the spatial distribution of color within an image have been developed [Chua 

et al., 1998; Vailaya et al., 1998]. Examples include color coherence vector (CCV) [Pass et 

al., 1996], color region model [Smith et al., 1996] and color pair model [Chua et al., 1994]. 

3. 4. 2 Texture   

Visual texture is defined as a variation of image intensities in the form of repeated patterns 

[Tuceryan et al., 1993]. These patterns may result from the physical properties of the surface 

(peakness, roughness) or from the color reflectance. Most images exhibit some form of 

textures, which provides useful cues for automatic image annotation. In paintings domain the 

surface of painting provides the cues on the type of brushwork used. Well-known 

categorization of texture extraction models by Tuceryan et al [1993] includes four major 

classes. Statistical methods characterize texture in terms of spatial distribution of grey values. 

This class includes the co-occurrence methods [Jain et al., 1995] and autocorrelation features. 

Model-based methods assume the underlying model for the description and synthesis of 

texture patterns. The well-known methods in this class include fractals [Petland et al., 1984] 

and random field models [Besag 1974]. Geometric methods view texture as being constructed 

of elements or primitives. Voronoi tessellation features [Tuceryan et al., 1993] and the texture 

primitives [Blostein et al., 1989] are examples of geometric methods. Signal processing 

methods utilize the frequency analysis of an image to represent texture. These methods 
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include Fourier domain filtering [Coggins et al., 1985], Gabor filters [Majunath et al., 1996] 

and Wavelet models [Mallat et al., 1989]. A number of studies [Majunath et al., 1997, Wang 

et al., 2002] demonstrated that the use of Gabor filters and Wavelet models outperforms the 

other texture methods in content-based image retrieval and annotation for general image 

domain.  

3. 4. 3 Shape 

Shape is one of the most complex visual cues due to the fact that depth information is difficult 

to acquire from a single viewpoint. Further, object overlapping changes the shape of objects 

that leads to significant difficulty in object recognition tasks. Various schemes have been 

proposed for shape representations. These include the string representations [Cortelazzo et al., 

2004; Huang et al., 1994], polygons [Schettini 1994], edge direction histograms and moments 

[Jain et al., 1998] and relaxation techniques [Davis, 1979]. A major disadvantage of the shape 

representation methods is the fact that a majority of them are not invariant with respect to 

image size, position and orientation. In order to incorporate rotation and translation 

invariance, these methods need to cater for all possible positions and orientation, thus 

increasing the dimensionality of the feature space.  

3. 4. 4 Summary of the Low-Level Features 

In this section, we summarize the low-level features along with their advantages and 

limitations. The main objective behind the choice of low-level features for CBIR systems is to 

ensure appropriate representation of image contents. In terms of color, the most popular 

features are color histograms [Swain et al., 1991], color moments [Jain and Vailaya, 1995] 

and color coherence vectors [Pass et al., 1996]. These features describe the global content of 

image and are easily extracted. Popular shape representations include polygonal 

approximation [Schettini, 1994], invariant moments [Jain et al., 1998] and Fourier descriptors 

[Chellappa et al., 1984]. These features require good segmentation algorithms to extract 

objects from the image. Since objects may be of different scale, orientation and position, the 

image search using shape features becomes more expensive as compared to search using the 

color features. In the current CBIR systems, shape features are not used very often because 

their performance is highly application-dependent. Similarly to shape features, texture 

features have high complexity of matching. 
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3. 5 Existing CBIR Systems 

In recent years, a large variety of CBIR systems has been proposed. However, systematic 

studies involving actual users in practical applications need to be done to compare such 

systems. Here, we discuss the most representative systems and their characteristics.  

3. 5. 1 CBIR Systems in General Image Domain 

QBIC [Flickner et al., 1995] is the first commercial content-based retrieval system. It supports 

querying by image examples, user-provided sketches, and color and texture patterns. This 

system employs mean color and k-element color histogram in RGB, Lab and Munsell color 

spaces [Faloutsos et al., 1993] to represent color and improved Tamura method [Tamura et 

al., 1978] for texture. To represent shape, the authors used simple geometrical features.  

Photobook [Petland et al., 1996] consists of three image sub-sets, from which shape, texture 

and face are extracted respectively. The authors employed a ‘society of models’ approach that 

accounts for the subjectivity of user perception.  

Netra is a prototype image retrieval system developed by Ma and Manjunath [1997a]. The 

main research contributions of Netra include the use of Gabor filters [Ma and Manjunath, 

1996; Manjunath and Ma, 1996], thesaurus construction based on neural networks 

[Manjunath and Ma, 1997] and image segmentation based on the edge flow method [Ma and 

Manjunath, 1997a]. 

MARS (Multimedia Analysis and Retrieval System) was developed at University of Illinois 

[Mehrotra et al., 1997]. The main focus of MARS is to develop techniques that organize low-

level visual features into a meaningful retrieval architecture, which dynamically adapts to 

different situations. The research contributions include integration of DBMS and IR 

techniques (exact match with ranked retrieval) [Ortega et al., 1998] and the relevance 

feedback architecture for query refinements and feature weighting [Rui and Huang, 1998]. 

SIMPLIcity [Wang, 2000] is a region-based image retrieval system developed at Stanford 

University. This system introduces and implements semantic image retrieval. This system 

first classifies the query image into one of the predefined semantic classes such as indoor-

outdoor, graph-photograph etc. Next, the system enhances the retrieval results by searching 

among images under the pre-defined class.  

3. 5. 2 Retrieval Systems for Painting Images 

Inspired by the growing number of general-domain image retrieval systems. Lewis et al. 

[2004] proposed an image retrieval system for arts objects. Similar to QBIC, they proposed 

content-based retrieval using a sample image to query the system. They employed the 
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multiscale color coherence vector to represent color and wavelet-based features using 

Daubechies filters to represent texture. Recently, they introduced retrieval by extending the 

functionality of the system with retrieval by crack patterns [Abas et al., 2002]. However, due 

to the semantic gap between low-level features and human perception, these systems have 

limited usability since they facilitate image-by-example querying. In our work, we aim to 

annotate image with actual keywords and, thus, increase usability of the proposed system. 

Latest paintings retrieval systems employ domain-specific knowledge to index collections. 

The significance of these studies is due to the fact that domain-specific knowledge facilitates 

indexing by a meaningful set of semantic concepts. For example, the retrieval systems 

developed by Corridoni et al. [1998] and Lay [2004] facilitate querying by semantic color 

concepts. To index images, these studies employ artistic color theories that define widely 

known artistic concepts such as warm and cold colors, color harmony and various types of 

contrasts using artistic color sphere. Both systems perform back-propagation of region colors 

onto an artistic color sphere and derive semantic concepts based on it. The proposed systems 

mostly differ in the image representation and feature extraction methods. Corridoni et al. 

[1998] performed image segmentation using K-means clustering in CIEL*u*v* color space. 

To deal with the problem of granularity, the authors represented the image as a multi-level 

pyramid. In this pyramid, each subsequent level contains image segmentation results based on 

the iteratively increasing K. However, to represent the region colors, the authors utilized mean 

color. While this approach is adequate for the representation of the Medieval paintings, it is 

not suitable for the Modern Art, where the authors employed small patches of contrasting 

colors to give an overall impression. In contrast to this system, Lay et al. [2004] performed 

the extraction of semantics for each individual pixel followed by the integration of the pixel-

based information using expert rules.  However, the use of rules imposes scalability concerns. 

In our work, we employ the Itten’s sphere to perform the color analysis and at the same time 

we avoid the drawbacks of the above-mentioned works. 

3. 6 Statistical Learning in Image Domain 

These systems employ various techniques to narrow down the semantic gap between low-

level features and semantic concepts and enhance the retrieved results. First, through the use 

of relevance feedback in the image retrieval systems. This technique aims to capture user 

preferences and provide more accurate results using this information. Second, it is the use of 

semantic indexing and its close relative, automatic annotation methods. These methods 

quickly gained research interest since they facilitate concept (or text)-based retrieval in a 
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straightforward manner in contrast to the relevance feedback techniques. Here we review the 

methods proposed for automatic image annotation.  

The major task of image annotation is how to associate the image content (features) with 

high-level semantic concepts [Chang, 2002]. With the advent of powerful computers, 

automatic and semi-automatic annotation of image collections using high performance 

machine learning methods became possible. These methods increasingly employ statistical 

models to map low-level features onto semantic concepts. Lew et al. [2003] pointed out that 

the paramount challenge for learning methods remains the bridging of semantic gap. The task 

of converting easily computed low-level features to the semantic concepts illustrates the 

semantic gap. This task implies understanding of the semantics behind the concepts and 

relationships among them.  

There exist two major paradigms to tackle the image annotation task. The first paradigm 

concerns with the use of relevance models for joint modeling of textual and visual data. This 

paradigm exemplifies probabilistic (except for LSA models) generative models. The second 

paradigm represents the categorization approach, where individual classifiers focus on 

annotation of specific semantics. 

3. 6. 1 Joint Modeling of Textual and Visual Data 

The idea of joint modeling of words and images has been borrowed from the text domain. 

This paradigm has been extended to the image domain, where the image is described using 

text vocabulary and feature vocabulary, resulting in finite image description language or 

blobs. Both blobs and words are assumed to be generated by hidden variables or aspects, 

which represent a multivariate distribution over blobs and a multinomial distribution over 

words. Once the joint word-blob probabilities are learnt, the annotation problem is reduced to 

a likelihood estimation problem relating blobs and words.  

Mori et al. [1999] performed one of the early attempts to perform annotation using relevance 

models. Duygulu et al [2002] and Barnard et al [2003] proposed the hierarchical aspect model 

to translate a set of image regions into a set of words. Blei et al [2003] employed a 

Correlation Latent Dirichlet Annotation model, which assumes that the mixture of latent 

factors follows Dirichlet distribution. Cross-media relevance models [Jeon et al., 2003] 

represent a closely related approach that borrows from coherent language models. Lavrenko 

et al. [2003] proposed a continuous relevance model to avoid the problem of cluster 

granularity. There are several disadvantages of the joint probability modeling approach. First, 

these models assume that the segmented regions are precise. Second, the number of regions in 

images is usually unstable, which leads to the difficulty of establishing an adequate number of 

aspects in such models. Third, to simplify the joint density characterization, the concepts and 
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blobs for an image are often assumed to be mutually independent [Jeon et al., 2003]. Lastly, 

this approach requires a large dataset of labeled samples to cover broad variations of image 

samples. This approach is not very useful for the annotation of paintings for several reasons. 

First, the segmentation techniques often do not represent brushwork adequately: they often 

combine several brushwork techniques in a single region. Second, the training datasets in the 

paintings domain are usually limited. They are insufficient for the estimation of joint 

probability, which may lead to the significant variance error. Due to these disadvantages, we 

do not utilize the join modeling approach in our work. Instead, we employ categorization 

approach discussed in the next session.  

3. 6. 2 Categorization Approach 

The second paradigm is based on categorization. Both generative and discriminative models 

are used to perform the categorization task in image domain. This approach proposes the 

extraction of specific semantics: a set of training images with and without the concept of 

interest is collected and a binary or multi-category classifier is trained to detect the concept of 

interest. Numerous studies adopted this approach. Examples include detection of people and 

animals [Forsyth et al., 1997], buildings [Li and Shapiro, 2002], indoor and outdoor scenes 

[Szummer et al., 1998], cities and landscapes [Vailaya et al., 1998] and trees [Haering et al, 

1998]. More recently in paintings domain Herik et al. [2000] and Li et al. [2004] performed 

annotation of artist names. The learning algorithms used include naïve Bayesian classifier 

[Keren, 2004], SVM [Feng et al., 2004b] and neural networks [Herik et al. 2000; Breen et al., 

2002]. Recent advances in the categorization approach include representation of each concept 

using mixture models. Thus, multi-category classification model becomes a collection of 

mixtures [Carneiro et al., 2005; Shi et al., 2006]. These approaches aim to detect an explicit 

semantics. They require smaller datasets as compared to the joint probability approach. 

However, the required datasets are still large. Also, these works perform annotation of a flat 

concept set without account for their internal relationships. In our work, we extend this 

approach: capture a set of specific keywords by taking into account the relationships among 

the concepts, while aiming to minimize the number of required training instances using the 

semi-supervised methods.  

 3. 6. 3 Semi-supervised Learning Methods 

Traditionally both relevance models and image categorization methods follow supervised 

machine learning framework, where the hypothesis space is constructed based on labeled 

training samples. However, due to the difficulties of gathering manually labeled data, semi-

supervised methods have been proposed. In this section, we review well-known semi-
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supervised methods used by the state-of-art image annotation systems. 

3. 6. 3. 1 Semi-supervised Classification Methods 

Using easily available unlabelled data, semi-supervised classification methods modify or 

reprioritize hypotheses obtained from labeled data alone. The use of unlabelled data leads to 

higher accuracy of annotation under certain assumptions such as adequate models, features, 

kernels and similarity functions. Detection of bad matches in advance is a hard problem that 

remains open [Elworthy, 1994; Cozman et al., 2003]. Semi-supervised learning methods are 

closely related to the transductive learning paradigm. However, not all semi-supervised 

methods are truly transductive. In theory, transductive learning methods work on observed 

data and are not able to handle unseen data. Instead of constructing a general function that 

handles classification of all instances, these methods extract N observed neighborhood 

instances and construct a decision function based on these instances for each testing data 

sample. For example, semi-supervised agglomerative clustering methods are transductive. 

Notice that under this definition, Transductive SVM and mixture models are in fact inductive, 

since the classifier is defined over the whole space. 

Major semi-supervised learning methods include generative mixture models, self-training and 

co-training, TSVM and graph-based methods [Seeger et al., 2001]. The generative model 

approach assumes a mixture of distributions, for example, Gaussians [McLachlan and Basford 

1988]. Several authors [Castelli et al., 1995; Castelli et al., 1996; Ratsaby et al., 1995; 

Cozman et al., 2003] demonstrated that if the model assumption is correct, unlabelled data is 

guaranteed to improve accuracy of mixture models. This approach has several convenient 

properties.It represents a class as a number of mixture components. This representation is 

suitable to represent brushwork techniques, artist names and painting styles since the visual 

appearance of patterns in each class is non-uniform. For example, in our case we assume that 

each class of brushwork is represented as a mixture of Gaussians. Nigam et al. [2000] applied 

mixture models with the Expectation Maximization algorithm [Dempster et al. 1977; 

Mitchell, 1997] for text classification task. Carson et al. [2002] and Rui et al [2004] employed 

mixture models for clustering. Baluja [1998] used a similar approach to discriminate face 

orientations. Debreko et al. [2004] and El-Yaniv et al. [2004] proposed a transductive 

inference framework based on mixture models for image annotation task. In our work, we 

further extend the work of these authors to perform feature selection during model 

construction and utilize available domain knowledge.  

Self-training is a commonly used technique, where the classifier iteratively increases its 

labeled dataset using unlabelled examples that are predicted with high confidence during 

previous iterations. Several studies applied self-training for text classification [Yarowsky, 
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1995; Riloff et al., 2003; Maeireizo et al., 2004] and object detection in images [Rosenberg et 

al., 2005]. However, the problem of this approach is the propagation of error. Due to this, 

many authors utilize co-training, where a final decision is achieved by combining predictions 

from two independent sources. 

Co-training [Blum and Mitchell, 1998; Mitchell, 1999] assumes that features can be split into 

two independent sets that are sufficient to train good classifiers that teach each other. Nigam 

and Ghani [2000] compared co-training with generative models. Goldman et al. [2000], Zhou 

et al. [2005a; 2005b] and Balcan et al. [2005] proposed different variations of the co-training 

method. Feng et al. [2004a] proposed a co-training framework with active learning for 

annotation of large-scale image collections. The disadvantage of this approach is that not 

every task has two independent sets of features. If the feature sets are not independent then 

this approach is similar to the self-training approaches. For example, in our work we have 

only one modality and due to this the application of co-training is problematic.  

Several researches focused on transductive SVM methods [Bennett et al., 1999; Fung et al., 

1999; Joachims, 1999] that aim to maximize a linear boundary margin on both labeled and 

unlabeled data. Transductive SVM has been widely used for text classification tasks 

[Joachims, 1999], however they are not widely used in the image classification.   

Graph-based semi-supervised methods define a graph, where the nodes are data points and 

graph edges reflect similarity among them. These methods are non-parametric and 

transductive. Well-known examples of graph-based methods include min-cuts method [Blum 

and Chawla, 2001], harmonic functions for image segmentation [Grady et al., 2004] and 

Spectral Graph Transducer [Joachims, 2003]. In our future work, we would like to explore 

these methods. 

3. 6. 3. 2 Semi-supervised Clustering Methods 

Semi-supervised clustering methods are closely related to the semi-supervised classification. 

In these methods, labeled data samples serve as must-links (two points must be in the same 

cluster) and cannot-links (two points cannot be in the same cluster). There is a tension 

between satisfying these constraints and optimizing the original clustering criterion, for 

example, minimizing the squared distances within clusters. Among many methods for 

clustering, probably the most widely used are distance-based techniques. One common 

characteristic of distance-based clustering techniques is that they assign membership of data 

points based on the inter- and intra- cluster distance in the feature space. The distance-based 

clustering approach includes partitioning relocation and hierarchical clustering techniques 

[Berkhin, 2002]. Partitioning relocation techniques, for example K-means, aim to iteratively 

relocate data into several subsets. Hierarchical clustering methods iteratively merge (or split) 
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the most appropriate cluster(s) based on the proximity measure called a linkage metric. Major 

inter-cluster linkage metrics [Olson, 1995] include Single-Link, Average-Link, and Complete-

Link. Recent works that employ semi-supervised clustering include Demiriz et al. [1998], 

Dara et al., [2002], Bilenko et al. [2005], Shi et al. [2005] and Wagstaff et al. [2001]. For a 

detailed review of existing works please refer to Grira et al [2004].  In our work we 

experiment with both distance-based and hierarchical clustering methods. The main 

disadvantage of these approaches is that various datasets require the use of different distance 

measures. In our work we successfully solve this problem by introducing the model selection 

step in our classifier. 

3. 7 Ontology-based Image Annotation 

One of the disadvantages of traditional supervised and semi-supervised inference methods is 

the lack of account for hierarchical relationships among semantic concepts [Aslandogan et al., 

1997, Hyvönen et al., 2003; Yang et al., 2001]. In an attempt to closely mimic human 

problem solving strategies, various researches introduced hierarchical machine learning 

algorithms [Barnard et al., Fan et al., 2005 and 2006]. In the context of hierarchical learning, 

we recognize atomic and composite concepts. The details of image, visual properties and 

objects tend to correspond to atomic concepts, which can be recognized using low-level 

features. Composite concepts tend to be recognized through juxtaposition of atomic concepts 

in accordance to the domain-specific knowledge. Hierarchical machine learning algorithms 

first perform annotation of atomic concepts and then utilize this information to annotate 

composite concepts. 

In general, hierarchical machine learning algorithms fall into two categories: algorithms that 

learn hierarchy from the training set [Barnard et al., 2001] and algorithms that utilize external 

hierarchy [Fan et al., 2005 and 2006; Petridis et al., 2006].  The algorithms that learn 

hierarchy from a training set are useful when we do not have any external knowledge or are 

not aware about the relationships among concepts. This approach has two drawbacks. First, 

the intermediate concepts might not be meaningful or a set of images that represents an 

intermediate concept might be incomplete. Second, these methods usually require a large 

number of training samples. In contrast, the hierarchical learning methods that utilize external 

ontology employ independent learners to label images in accord to the concept ontology [Fan 

et al, 2005 and 2006; Breen et al., 2002]. For example, training a model with respect to 10 

unrelated concepts in general requires 10*X samples, where X is the number of samples. 

Suppose we know that these concepts form an ontology with 6 concepts at the lower level and 
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4 concepts at the higher level. Then, we need only 6*X number of training samples to train a 

model for the annotation of the lower-level labels, and annotate the remaining 4 labels by 

using ontological relationships. Gruber [1993] defined ontology as the shared understanding 

of some domains of interest, which is often conceived as a set of classes (concepts), relations, 

functions, axioms, and instances. Often ontology (or concept hierarchy) is defined as directed 

acyclic graph G = (N,E) that consists of a set of nodes N and set of ordered pairs or edges 

(Np,Nc)∈E⊆{NxN}. The direction of an edge is defined from the Np parent node to the child 

node Nc; this relationship is specified through relational operator Np→ Nc. Using concept 

hierarchy, the complete task of concept learning from images is split into several hierarchical 

subtasks or layers {L1, L2…Ln}, where each layer is defined as: 

{Fl, Kl, Tl, MLl, hl}, 

where l denotes individual layer; Fl denotes the input vector of the relevant feature for layer 

Ll, Kl denotes the set of concepts relevant to layer Ll., Tl denotes the set of training samples 

used for the learning subtask, where each element of Tl represents the correspondence 

between input feature vector and output concept. MLl denotes a machine learning algorithm 

that generates a hypothesis hl, which maps Fl onto Kl based on Tl. The use of pre-defined 

concept ontology within the annotation system is attractive due to several characteristics. The 

first is the modularity of concepts. It facilitates the use of several classifiers and features 

subsets depending on the analyzed concepts. The second is the support of navigation task 

since the ontological relationships among concepts offer a context for navigation. 

3. 7. 1 Existing work  

In this section, we review existing studies that focus on the ontology-based annotation for 

imagery and video. There are several ways to categorize these works. Several studies employ 

domain ontologies for the concept propagation task. Traditionally these studies assume an 

initial set of concepts and develop techniques for the annotation using ontological 

relationships based on the concept propagation [Schreiber et al., 2001 and 2002; Hollink et 

al., 2003].  However, these works merely use the relationships among the concepts to extend 

the annotated set of labels. Others focus on the development of ontology for multimedia 

[Petridis et al., 2006; Saathoff et al., 2006] and information sharing via integration of several 

ontologies [Soo et al. 2002 and 2003; Dong et al., 2006]. Works of Petridis et al. [2006] and 

Saathoff et al. [2006] proposed the use of multimedia ontology that serves the needs of 

learning and retrieval of multimedia information. This approach aims to consolidate visual 

attributes with the general and domain-specific ontologies. Current implementations combine 

the existing metadata standards [DCMI, 2001; McBride et al., 2004; Manjunath et al., 2002] 

with domain-specific ontologies.  Studies of Soo et al. [2002 and 2003] integrate domain-
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specific ontologies with the RDF standard [McBride et al., 2004] to make collections easily 

accessible. These works are more useful for the annotation of general images since paintings 

domain includes several well defined domain ontologies such as AAT, ULAN and 

ICONCLASS. These ontologies can be further extended and combined with the general 

purpose ontologies such as the WordNet. Numerous works focused on concept 

disambiguation using ontologies [Fan et al., 2005a and 2005b; Bilenko et al., 2005; Srikanth 

et al., 2005; Shi et al., 2006]. Often these studies employ domain-specific ontologies to 

introduce meta-level information [Fan et al., 2005a and 2005b]. Similar to this work, we 

utilize meta-level information to annotate high-level semantics. To perform annotation and 

disambiguation, the proposed methods often employ distance-based clustering techniques 

[Bilenko et al., 2005; Srikanth et al., 2005; Petridis et al., 2006] and probabilistic methods 

[Shi et al., 2006; Fan et al., 2005 and 2006]. In our work, we experimented with both above-

mentioned methods to perform annotation and further extended them to facilitate 

disambiguation based on the ontological relationships among concepts. Existing works 

include both automatic and semi-automatic efforts in ontology-based annotation. These are 

semi-automatic annotation using ontology-based annotation tools [Schreiber et al., 2001 and 

2002; Hollink et al., 2003], automatic approaches for concept propagation [Breen et al., 2002] 

and concept disambiguation [Fan et al, 2005; Srikanth et al., 2005]. In our work, we aim to 

develop an automated framework for concepts annotation and disambiguation. 

Traditionally, the concepts of ontology are represented using text. However, in multimedia 

context it makes sense to include visual examples to “teach” a system regarding the 

membership of unlabelled samples. The majority of studies that perform concept 

disambiguation employ multi-modal ontologies, since they associate a subset of training data 

with the concepts of ontology. Similar to this works, our ontology is multi-modal: annotated 

concept is associated with some visual examples. 

3. 7. 2 Advantages of Hierarchical Concept Representation 

When looking at an image, we can understand it and easily identify atomic and composite 

concepts that can be used for its description. The studies discussed above demonstrate that 

this task can be easier for machine learning if we introduce hierarchical concept organization 

within the inference process. In our work, we perform automatic annotation of paintings 

based on domain ontology, where the visual-level information serves as meta-level for the 

annotation of high-level semantics and ontological relationships serve to disambiguate 

automatically generated labels. Our work has the following advantages that arise from the use 

of domain ontology:  

• Guide for manual annotation 
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Annotation template based on the hierarchical structure ensures consistent manual 

annotation of the collection, thus reducing potential ambiguities due to the annotators 

prior knowledge. 

• Good extensibility 

Since atomic concepts serve as the basis for the annotation of large number of high-level 

artistic concepts, the hierarchical structure incorporates the newly added high-level 

concepts without the need to rearrange already existing ontology concepts.  

• Bridging the gap between atomic and composite concepts 

Since hierarchical concept structure includes relationships among concepts, it is possible 

to induce high-level composite concepts through atomic concepts. Figure 3.1 

demonstrates the example. Here, assuming that the system correctly identifies that the 

painting exhibits mezzapasta and shading brushwork classes, primary color palette and 

chiaroscuro contrast, it can then deduce Medieval period of art using hierarchical concept 

relationships.  

 
Figure 3. 1. Girl with a Pearl Earring, by Johannes Vermeer 

• Account for the concept relationships  

There exist several strategies depending on the type of the relationships. The concept 

relationships can be used to minimize the number of the required classifiers for such cases 

as synonymous concepts. Next, the concept relationships facilitate concept 

disambiguation. Further, concept relationships offer rich context for navigation in contrast 

to the traditional keyword-based approach, which suffers from the so called “too many or 

nothing” problem [Chang et al., 1998]  

• Easily extended to audiovisual media 

Many ontology-based annotation methods implicitly introduce visual information into 

domain ontology since they relate a concept with a set of training samples. In general, we 

can derive concepts more accurately with the help of multi-source information as 

compared to single-source information. 
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3. 8 Existing Problems and Research Directions 

Despite the progress made in various aspects of image annotation and retrieval, there are still 

numerous research issues that need to be solved to successfully implement retrieval systems 

for arts images. In our work we aim to propose a framework that would minimize these 

concerns: 

1. Minimizing the need for labeled dataset. 

2. The use of domain knowledge for annotation. 

3. The handling of user heterogeneity. 

4. The use of additional information sources. 

3. 8. 1 Minimizing the Need for Labeled Dataset 

 The majority of machine learning techniques require consistent manually annotated set of 

training samples. In paintings annotation task, there exists a large number of images, making 

manual annotation task erroneous, time consuming and costly. In many cases, each painting is 

assigned multiple labels representing its visual, factual and abstract content. Further, each 

painting requires two independent sets of labels: for its blocks as well as for the whole image. 

This makes annotation process very tedious and requires extensive expertise of the human 

annotator.  

There are several research paradigms that address this problem. The first arises from the 

fundamental property of the statistical inference methods: by minimizing the number of 

numerical features used for the inference, we minimize the required labeled dataset. Due to 

this property, feature selection methods become important for the machine learning task. The 

second paradigm is concerned with the use of unlabeled samples during the inference process. 

Semi-supervised learning addresses the following questions: 1) Can we combine a relatively 

small labeled set and a large unlabeled set and achieve the same accuracy as the fully labeled 

set? 2) Can we increase the accuracy of annotation by using a combination of labeled and 

unlabelled instances as compared to using only labeled instances? In this dissertation, we are 

primarily interested in these two questions that facilitate reduction of the required training 

dataset while retaining reasonable accuracy of learning. We propose the novel transductive 

inference framework that performs feature and model selection and demonstrate that the use 

of this framework ensures higher annotation accuracy. 
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3. 8. 2 The Use of Domain Knowledge for Annotation 

As we have discussed in Section 3.7.3, the use of concept ontologies in image annotation 

systems offers several benefits. Recent trends include the use of general domain ontologies or 

domain-specific ontologies for the annotation task. The use of domain ontology is beneficial, 

since it facilitates concept disambiguation and propagation as well as more natural navigation 

and retrieval. Our work is different from the existing painting annotation works [Herik et al., 

1998; Li et al., 2004] since it utilizes domain knowledge of paintings domain to support the 

auto-annotation task. The major question is how to incorporate the structural domain 

knowledge within the inference framework. In this thesis we propose an annotation 

framework to: 1) perform both region-based and image-based annotation of paintings; 2) 

incorporate the ontology concepts and their relationships to induce high-level semantic 

concepts; 3) perform robust classification of concepts at various levels of granularity; and 4) 

incorporate domain knowledge to disambiguate artistic concepts. There are other important 

research issues related to the use of domain ontologies. The first is the development of the 

retrieval systems that facilitate ontology-based query construction and navigation. The second 

is the use of RDF and other standards to relate the domain ontology to the existing arts-

oriented ontologies and publish the annotated collections online. We plan to focus on these 

directions in our future work. 

3. 8. 3 Handling User Heterogeneity 

A relatively small body of annotation systems research recognizes that the information needs 

of the users are not similar due to variations of user’s background. The ability to account for 

user backgrounds is especially desirable in specific imagery domains such as artistic, 

geographical and medical imagery. In our work we utilize domain ontology that caters to the 

informational needs of a wide range of users. We recognize the expert and novice user groups 

in paintings domain, since these groups possess different knowledge about artistic concepts. 

Ideally, the annotation framework should account for the needs of various user groups. 

 

3. 8. 4 The Use of Additional Information Sources 

In the experimental setting, we often assume a fully automated system without human input. 

However the real life is quite different, since the system can obtain cues about high-level 

semantic concepts from user actions [Jain, 1993]. One popular method is relevance feedback 

(RF) [Smith and Chang, 1997; Rui et al., 1998]. Alternatively, it is possible to utilize the 

World Wide Web to extract necessary information. In terms of human interaction, it is very 
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prolific and, thus a more promising source for extraction of semantic content. There exist at 

least two strategies to utilize WWW. First, we can extract textual annotations that accompany 

millions of images posted online. The analysis of the free text posted by the users has the 

potential to solve the problem of manual labeling. Second, it is possible to engage the users to 

perform online annotations. Recent trend in this area is the use of social networks, where the 

users are invited to feel themselves as experts and perform annotation of images within game-

like scenarios [von Ahn et al., 2004]. In this thesis, we perform preliminary experiments with 

partial annotations. We plan to focus on the use of partial annotations in more detail in our 

future work.  
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Chapter 4 
 

Ontology of Artistic Concepts in the Paintings 

Domain 

4. 1 Introduction 

Traditionally, artistic concepts serve as one of the major tools for the description, 

categorization and navigation in the domain of western painting collections [Arnheim, 1954; 

Canaday, 1981; Itten, 1961; Lazzari, 1990; Pumphrey, 1994].  Artistic concepts vary vastly in 

their scope. They include concepts referring to the detailed pictorial information such as 

impasto brushwork class, various abstract characteristics such as expressive, gestural and 

concepts used for retrieval applications such as painting style, artist name etc. Artistic 

concepts represent a wide range of high-level concepts for paintings retrieval that describe 

paintings in various levels of detail. Table 4.1 demonstrates examples of queries with artistic 

concepts. 

The artistic concepts, which characterize pictorial information, represent the visual language 

of paintings. The artists employ the visual language to describe style of artists and paintings 

styles, periods in fine art and various abstract characteristics. For example, complimentary 

palette, impasto, divisionism or scumbling brushwork classes with complimentary contrasts 

represent the post-impressionism paintings style.  

Accounting for a wide range of artistic concepts is beneficial to painting retrieval for several 

reasons. First, it facilitates flexible retrieval of arts images at various levels of granularity. 

The end user is able to query the retrieval system with high-level and specific artistic 

concepts. For example, queries such as “Medieval paintings with shading brushwork class in 

cold temperature” become possible. Second, annotation of specific artistic concepts facilitates 

spatial retrieval of paintings. The system facilitates retrieval based on the queries like 

“Paintings with scumbling brushwork class on top and chiaroscuro contrast”. Third, it offers a 
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novel application of query by example paradigm. This is important for queries that are easily 

expressed by visual means. The user is able to submit an image and query “Paintings with 

similar distribution of color temperature”. Lastly, it offers a basis for automatic comparison of 

paintings. For example, the system is able to decide that painting A has stronger 

complimentary contrast than painting B. Thus, the user is able to submit a query image and 

retrieve images using queries like “Paintings with stronger chiaroscuro contrast”. 

Table 4. 1. Examples of queries based on artistic concepts 

In our framework, we organize artistic concepts of various levels of detail within a three-level 

ontology. This ontology is meant to support and facilitate flexible annotation and retrieval of 

paintings. In the next section, we discuss this hierarchical concept structure and its levels in 

detail.  

4. 2 Three-level Ontology of Artistic Concepts 

To perform annotation, we organize artistic concepts into an ontology that combines concepts 

into three inter-linked levels: visual level, abstract level and application-specific level. Figure 

4.1 depicts the three-level ontology of artistic concepts.  

Visual level of the taxonomy includes concepts that refer to the visual properties of paintings 

such as color and brushwork, composition, materials, type of medium and other classes. In 

our current work, we focus on the color and brushwork classes, while we aim to incorporate 

the other visual attributes within the annotation framework in our future work. The visual-

level concepts are beneficial for two reasons. First, these concepts serve as common basis for 

the retrieval of paintings. As discussed in Section 4.2, retrieval by visual-level concepts is 

useful for the expert user group. Second, visual-level concepts facilitate disambiguation of 

high-level concepts due to the fact that they are related to various high-level artistic concepts.  

We employ visual-level concepts as meta-level information for mapping from low-level 

1. Paintings with impasto brushwork class in red color; 
2. Paintings with complimentary palette and temperature contrast; 
3. Paintings with scumbling brushwork class on top and chiaroscuro contrast;  
4. Expressive painting with mezzapasta brushwork class and complimentary color 

contrast; 
5. All paintings with optical mixing; 
6. Paintings with wet on dry and warm temperature colors; 
7. Paintings in impressionist painting style;  
8. Medieval paintings with shading brushwork class in cold temperature; 
9. Paintings by van Gogh; 
10. van Gogh’s paintings in warm colors; 
11.  Paintings by Cezanne with impasto brushwork class and temperature contrast; 
12. Modern art expressive paintings 
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features to high-level concepts. In Sections 4.3.1 and 4.3.2 we will discuss these concepts in 

detail. 

The next level of taxonomy includes abstract concepts. These concepts refer to non-visual 

information available in paintings. They include perceptual properties and general terms 

referring to brushwork and colors. These serve primarily the expert users for navigation and 

retrieval purposes. In Section 4.4 we will focus on the abstract-level concepts. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. 1. Three-level ontology of the artistic concepts 

The third level of taxonomy contains application-level concepts. This level includes high-

level concepts such as artist names, painting styles and art periods. These concepts are used 

for navigation and retrieval by the novice users and widely offered in virtual galleries and 

museum websites. Similarly to the abstract-level concepts, the visual-level concepts are 

related to the application-level concepts and serve as cues for their definition based on the 

domain knowledge. We will discuss the application-level concepts and demonstrate examples 

of their definitions based on visual-level concepts in Section 4.5. 

The three-level ontology of artistic concepts includes relationships between the concepts ar 

various levels as well as relationships within each level. This ontology combines the concepts 

from AAT, ICONCLASS and ULAN ontologies since each of them offers a different view of 

the visual information. These ontologies borrow definition of artistic concepts from various 

art historical studies such as works of Arnheim [1954], Itten [1961], Canaday [1981],  Lazzari 

[1990],  Pumphrey [1994] and many others. Since AAT, ULAN and ICONCLASS ontologies 
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are meant for manual annotation, they do not explicitly define relationships between concepts 

of visual level and concepts of abstract and application level. These relationships are 

implicitly defined in the free-text definitions of high-level concepts. Due to this, these 

ontologies readily facilitate mapping of low-level features onto visual-level concepts and 

mapping of low-level features onto high-level concepts without accounting for visual-level 

concepts. However, direct mapping of low-level features onto high-level semantic concepts 

does not always result in satisfactory performance and raises scalability concerns for large 

paintings collections as demonstrated in the experiments of Li et al. [2004]. In contrast to 

these ontologies, the three-level ontology of artistic concepts facilitates a bottom up approach, 

where visual concepts serve as intermediate steps for learning application-level concepts. 

Such organization of artistic concepts mimics domain knowledge for auto-annotation of 

images to a higher extent as compared for AAT, ICONCLASS and ULAN ontologies.  

Overall, explicit representation of concepts in visual, abstract and application-level concepts 

offers more flexible retrieval, rich context for navigation, facilitates comparison of paintings 

and links to the widely-known art ontologies AAT, ULAN and ICONCLASS. In the rest of 

this section, we focus on individual levels of the three-level concept ontology.  

4. 3 Visual-level Artistic Concepts  

Artists utilize visual language for paintings description and categorization [Arnheim, 1954; 

Canaday, 1981; Itten, 1961; Lazzari, 1990; Pumphrey, 1994]. Table 4.2 demonstrates the list 

of visual-level concepts we employ in our work.  

In the Western paintings domain, the major visual language concepts characterize color, 

brushwork and composition. This list is by no means exhaustive, but it represents widely used 

concepts that provide cues for the annotation of high-level concepts used by novice and expert 

user groups. 
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Table 4. 2. Artistic concepts of the visual level 

4. 3. 1 Color Concepts  

Analysis of artistic color concepts constitutes a large body of expert analysis in the paintings 

domain. These concepts represent intermediate information that facilitates the annotation of 

painting styles, art periods, and to some extent, artists. For example, light-dark contrast is 

used in the Renaissance period, while the artists working in the Post-impressionism and 

Fauvism painting styles used complimentary contrast in their works [Canaday, 1981]. 

Similarly, certain color expressions characterize artists. For instance, Berezhnoy et al. [2004] 

analyzed the usage of complimentary contrasts by Vincent van Gogh. This type of contrast 

uniquely characterizes this painter. Due to this, the authors employed color contrast analysis 

to automatically establish authenticity of van Gogh’s paintings.   

We investigate artistic color concepts based on the theory formulated by Itten in 1961 [Itten, 

1961]. This theory proposes the mapping between colors and artistic color concepts, and is 

primarily used by artists. Itten defines twelve fundamental hues and arranges them in color 

circle. Color circle is an artistry color model. Unlike RGB, CMY, and HSI, which are used 

primarily to facilitate color specification, a color circle transcends the constructive objective 

of color specification to also represent artistry color relationships. It is a specifically tuned 

color space whose geometrical arrangement exhibits relationships articulated in the theory of 

VISUAL-LEVEL 
CONCEPTS 

DESCRIPTION 

Color  
Color Palette Specific set of colors used by artists. Three major concepts include 

primary, complimentary and tertiary palette. 
Color Temperature Perceptual property of colors. Green-blue-purple hues define cold

color temperature, orange-yellow-red define warm; violet and 
yellow-green hues define neutral temperature.  

Contrast Three types of color contrasts widely used by artists.  
Complimentary contrast measures the contrast between color hues. 
Various artistic theories arrange color hues in circular order such that 
the directly opposite hues represent the strongest contrast. 
Temperature Contrast denotes the contrast between colors of 
different temperature. “Warm-cold” pair represents the strongest 
temperature contrast.  
Chiaroscuro Contrast is the contrast between two colors in terms of 
their intensity (shading). 

Brush  
Brushwork classes Brushwork classes denote various techniques of brush application. In 

the three-level ontology we include brushwork classes widely used in 
western paintings. In terms of the surface, the artists distinguish from 
washed flat techniques to thick opaque techniques. In terms of color, 
a brushwork patch exhibits single to multiple color hues. 
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color contrast and harmony. 

Figure 4.2 demonstrates the arrangement of colors on the artistic sphere. A color circle 

consists of three primary colors, three complimentary colors and six tertiary fundamental 

hues. Fundamental hues of color circle vary through five levels of intensity and three levels of 

saturation, i.e. 15 levels for each color. Each fundamental hue serves as the basis for such 

variations, thus creating a subset of colors.  

 
Figure 4. 2. Itten’s chromatic sphere 

The total set of colors derived from the color circle contains 180 colors that are organized as a 

chromatic sphere. Fundamental colors are arranged along the equatorial circle of sphere, 

luminance varies along medians and saturation increases as the radius grows.  Itten located 

the shades of gray colors in the center of the sphere and white and black colors at the poles of 

the sphere.  

Colors of the artistic sphere with yellow-red-purple fundamental hues have warm color 

temperature, while colors based on green-blue-violet hues have cold color temperature. 

Neutral color temperature characterizes colors based on green-yellow and red-violet hues. 

These colors may change their neutral temperature to cold or warm depending on the 

surrounding colors. Figure 4.3 demonstrates paintings in warm and cold colors. 

 

 

 

 

 

 

 

 
Figure 4. 3. Examples of color temperature concepts.  

Paintings in warm and cold colors are in upper row and lower row respectively 

P - Primary 
palette 

C - Complimentary 
palette 

T - Tertiary palette Light-dark color 
contrast

Complimentary
color contrast
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The artists categorize color palette into primary, complimentary and tertiary. Primary palette 

represents the set of yellow, red and blue fundamental hues; complimentary palette represents 

the set of colors with green, orange and violet fundamental hues; and tertiary palette 

represents the other six fundamental hues of the color circle. As all colors of the chromatic 

sphere except black, white and grays, are derived from the fundamental hues, each color 

exhibits the same color palette category as its respective fundamental hue. Properties of colors 

such as intensity and saturation influence the perceptual appearance of color temperature and 

color palette. Color temperature and color palette are most apparent in the fundamental hues 

of the color circle, and its appearance gradually decreases with the changes in intensity and 

saturation towards the poles of the sphere. 

Color contrast is a relative measure defined for at least two colors. Following Itten, we 

perform analysis of the four well-known color contrast types: complimentary, light-dark, 

temperature and value contrasts. Complimentary contrast represents relationships between 

fundamental hues. Figure 4.4 demonstrates examples of complimentary contrast in paintings. 

 

 

 

 

Figure 4. 4. Examples of complimentary contrast  

Paintings with high and low degree of complimentary contrast in the upper and lower rows 

respectively 

Directly opposite hues of color circle have the strongest complimentary contrast. Light-dark 

color contrast accounts for the difference in color intensity of two colors, while value contrast 

reflects the difference in color saturation.  Temperature contrast reflects the interaction of 

different color temperature patches. Itten defined interaction of warm and cold color 

temperatures to be stronger color temperature contrast as compared to the interaction of 

neutral and warm or neutral and cold color temperatures. Value contrast reflects the difference 

of saturation between two colors.  
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4. 3. 2 Brushwork Concepts  

Brushwork refers to the pattern depiction with the help of brush [Pumphrey, 1996]. 

Brushwork has various properties such as length, width, jitter, opacity etc. In the field of art, 

the combination of such brushwork properties defines the brushwork technique or brushwork 

class. Together with the color concepts, experts employ brushwork classes to analyze and 

describe the paintings [Canaday et al., 1981]. Various studies exploited the fact that 

brushwork provides strong cues to the painting style and artist name. For example, in the area 

of image synthesis, Hertzmann [1998] manipulated length, jitter and opacity of brushwork to 

synthesize images in various painting styles such as Impressionism, Expressionism and Post-

impressionism painting styles. Various researches [Li et al, 2004; Herik et al., 2000] 

employed brushwork to perform classification of paintings with respect to artist names. 

There are two major approaches to automatic brushwork analysis. The first approach focuses 

on the explicit detection of brush-strokes and assessment of their properties. The works of 

Kropatsch et al. [1995], Meltzer et al. [1998] and Sablatnig et al. [1998] serve as examples of 

this approach. In these works, the authors developed methods for the detection of single and 

overlapping brush-strokes for further identification of artists. This approach has several 

drawbacks. First, it makes a number of assumptions regarding the brush-stroke intensity, size 

and shape. Second, is requires a controlled high-resolution collection.  

The second approach performs indirect assessment of brushwork properties via texture-based 

representation and analysis of brushwork patches. Works of Herik et al. [2000] and Li et al. 

[2004] exemplify this approach. It has significantly lower computational complexity as 

compared to the explicit detection of brush-strokes. Further, explicit detection of brush-

strokes is problematic due to brush-stroke overlapping; especially in painting styles of 

Modern art period. Lastly, texture-based analysis of brushwork is expected to perform better 

for non-controlled collection. For example, for the collections downloaded from the Web like 

in our case. Thus we focus on the texture-based analysis of brushwork in this thesis. 

We perform analysis of brushwork using eight widely known brushwork classes that 

dominated in western paintings from the 10th up to 19th century [Lazzari, 1990; Canaday, 

1981]: divisionism, glazing, grattage, impasto, mezzapasta, scumbling, shading and 

pointillism. Table 4.3 demonstrates examples of these widely known brushwork classes with 

their short description and prominent characteristics. Divisionism denotes the application of 

regular small touches of unmixed contrasting colors so that they combine optically. This 

brushwork class represents the color mixing principle widely used in the Modern period of 

art.  

 



 49

Class Background Characteristics Examples 

 
Shading 

Depiction of foldings in 
Medieval Period 

Edges and gradients, often 
directional, intensity contrast, 
weakly or non-homogeneous 

 

 
Glazing 

 
Depiction of nudity/face in the 
Medieval Period 

Subset of hues (yellow, red, 
orange), intensity contrast, 
gradients, non-homogeneous, 
may contain edges 

 

 
Mezzapasta 

Widely used technique in 
paintings. The color palette used 
varies with respect to the art 
period.  

Homogeneous, low intensity 
contrast and small gradients 

 

 
Grattage 

 

Depiction of objects and patterns 
in Fauvism and Expressionism 
painting styles of the Modern Art 

Edges, high gradients, intensity 
contrast, inhomogeneous  

 

 
 

Scumbling 

Depiction of sky, clouds, 
greenery in Fauvism, 
Impressionism, Post-
impressionism and Pointillism 
painting styles of the Modern Art

 
Soft gradients, low intensity and 
hue contrast, low directionality, 
weakly homogeneous 

 

 
Impasto 

Widely used in Impressionism, 
Post-impressionism, Pointillism 

Edges, high gradients, often 
directional, low hue contrast, 
high intensity contrast 

 

 
Pointillism 

Often used for depiction of 
atmosphere/air in Pointillism 
painting style 

Medium intensity contrast, 
medium roughness, no 
directionality, homogeneous  

 

 
 

Divisionism 

Widely used in Pointillism, 
demonstrates the Color Mixing 
Principle 

High gradients, high roughness, 
high intensity and hue contrast, 
no directionality, weakly 
homogeneous 

 

 Table 4. 3. Examples of brushwork classes 

Glazing has been used mostly in the Medieval and less in Modern periods. This technique 

represents a thin layer of transparent paint to highlight soft gradients and inner glow. It is 

primarily used for portraits and nudity depiction.  

Grattage brushwork class was invented in the Modern art period and found mostly in 

paintings of Fauvism and Expressionism painting style. The brushwork class denotes the use 

of sharp lines to depict an object.  

Impasto has been widely used in a variety of painting styles and periods, but mostly in Post-

Impressionism painting style of the Modern period of art. Paintings by Vincent van Gogh 

exemplify this technique to the highest extent. This brushwork class represents the use of 

opaque and thick layers of paint with characteristic ridges due to the sliding of a brush.  

Mezzapasta class is widely used in the Medieval and Modern periods. It represents brushwork 

patches with plain smooth color. This brushwork class is often used to color large areas or 

backgrounds in painting.  

Scumbling is used in various styles of the Modern art, but mostly in the paintings of 

Impressionism painting style. It represents a series of unorganized overlapping strokes in 
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different directions to create objects like clouds, hair, water and grass.   

Shading is mostly used in the Medieval period of art for the depiction of folds on clothing.  It 

represents directed series of flat long strokes of uniform color.  

To perform the annotation task, we represent brushwork as a set of mutually exclusive 

classes. Thus, each pattern in our dataset belongs to only one class of brushwork. However, 

several properties of brushwork significantly complicate the annotation process. First, 

brushwork patches might bear some resemblance to each other. For example, divisionism in 

some paintings is similar to impasto brushwork class. Second, brushwork varies significantly 

in the areas along object borders and areas of minor details. Further, our collection includes 

paintings captured under varying lighting conditions and this introduces additional difficulty. 

Third, each brushwork class includes a variety of patterns since it includes patterns of this 

brushwork class by various artists, from various painting styles and art periods. Figure 4.5 

explains this phenomenon using the diagram of impasto brushwork class as an example.  

 

 

 

 

 

 

 

 

Figure 4. 5. An example of pattern distribution in the impasto brushwork class 

The diagram includes three levels. First level contains clusters of patterns in the feature space 

(partitions). Second level represents clusters of brushwork class patterns with respect to 

artists. For example, impasto by van Gogh has more bold ridges and opaque colors, while 

impasto by Cezanne has more fine frequent ridges and relatively more transparent colors etc.  

Lastly, the third level combines all these specific representations into a more general 

brushwork class impasto. Further the diagram underlines the importance of accurate 

brushwork class detection. Figure 4.5 demonstrates that brushwork provides cues to 

accurately predict artist name via impasto by van Gogh, impasto by Seurat clusters. Overall, 

brushwork meta-level concepts compliment the meta-level color concepts, which provide 

limited cues for the prediction of artist names, and together they serve as intermediate 

information for the auto-annotation of high-level concepts such as artist name, painting style 

and period of art.  
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4. 4 Abstract-level Artistic Concepts  

This level includes high-level concepts that are widely used by experts for painting 

description and retrieval. Often these concepts represent perceptual characteristics of 

paintings due to the specific use of colors and brush [Itten, 1961; Lazarri, 1990; Canaday, 

1981]. Table 4.4 represents the list of abstract concepts used in the three-level ontology. The 

artist names in parenthesis next to concepts denote which artists are known to use the 

respective concept often. 

Table 4. 4. Heuristics definitions for the abstract-level concepts 

The definitions of warm and cold abstract concepts are borrowed from Itten’s color theory 

[Itten, 1961]. They refer to the use of warm and cold color temperature throughout whole 

canvas.  

 

• Warm (All artists) 
• Cold (All artists) 
• Expressive 

o Complimentary Color Contrast (Seurat, Matisse) 
o Temperature Color Contrast (Van Gogh,Cezanne) 

• Chiaroscuro 
o Light-dark Color Contrast (Rubens, Vermeer) 

• Rational 
o Divisionism (Seurat, Cezanne) 
o Pointillism (Matisse, Pisarro) 
o Shading (Vermeer, Caravaggio) 
o Glazing (Rembrandt, Rubens) 
o Mezzapasta (Matisse) 

• Gestural 
o Impasto (Van Gogh, Cezanne) 
o Grattage (Matisse) 
o Scumbling (Cezanne, Monet, Pisarro) 

• Aerial Effects 
o Scumbling (Cezanne, Monet, Pisarro) 
o Pointillism (Matisse, Pisarro) 

• Optical mixing 
o Scumbling (Cezanne, Monet, Pisarro) 
o Divisionism (Seurat, Cezanne) 

• Wet On Dry 
o Scumbling (Cezanne, Monet, Pisarro) 
o Divisionism (Seurat, Cezanne)  
o Pointillism (Matisse, Pisarro) 
o Glazing (Rembrandt, Rubens) 
o Shading (Vermeer, Caravaggio) 
o Grattage(Matisse)  

• Wet On Wet 
o Mezzapasta (Matisse, Delacroix) 
o Impasto (Van Gogh, Cezanne) 
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Chiaroscuro [Itten, 1961] represents light-dark contrast in the canvas with the use of 

predominantly skin-like and brown hues. This concept is widely used by Leonardo Da Vinci, 

Rembrandt and Rubens.  

Arnheim [1954] defined rational and gestural concepts. Rational concept includes brushwork 

classes that require the careful application of brush-strokes such as divisionism, pointillism 

etc., while gestural groups brushwork classes where brush-strokes are applied in uncontrolled 

gestures.  

The concept expressive has several definitions in terms of the use of color, brush and content 

itself. We employ the definition by Itten [1961], who defined expressive as the use of 

complimentary or temperature color concepts in the canvas.  

Aerial effects and optical mixing are central to the Modern period of art [Lazarri, 1990]. 

Aerial effects include brushwork classes that aim to achieve sensation of air in paintings. Such 

brushwork classes are scumbling and pointillism. Optical mixing refers to the placing of 

contrasting colors next to each other such that from the distance it creates new color.  

The artists classify all brushwork techniques in the domain of western paintings by the 

method of application: Wet on Dry or Wet on Wet [Canaday, 1981]. Wet on wet denotes the 

blending of colors together while the first application of paint is still wet.  The artists mostly 

use these techniques to create the areas of homogeneous color. Wet on Dry concept refers to 

the application of color over the dry coat of color underneath.  

From Table 4.4 we observe, that visual-level color and brushwork concepts are related to a 

large number of abstract-level concepts. Such relationships represent one of the benefits of the 

ontology-based annotation discussed in Section 3.7. They offer convenient basis to perform 

annotation of the abstract-level concepts without training additional classifiers. Having the 

visual-level concepts assigned, it is possible to exploit the concept relationships and perform 

concept propagation to annotate abstract-level concepts.  

Next, application-level concepts (in this table, artist name) are indirectly related to the 

abstract-level concepts via visual-level artistic concepts. Due to this, we do not employ these 

relationships for the annotation task. Overall, the application-level concepts are useful for 

flexible querying and navigation in the ontology-based system.  

4. 5 Application-level Artistic Concepts  

In this section we discuss the last level of the three-level ontology. It includes high-level 

concepts used by novice users such as artist name, period of art, painting style, movement and 

country. In our study we focus on painting styles, historical periods and artist names. Such 
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concepts as movement and culture can be extracted from the ontology using their 

relationships with painting style, historical period and artist name concepts. For the 

annotation task, two types of relationship between artistic concepts are of intersect. First, 

ontological relationships between visual-level and application-level concepts. Second, 

relationships among application-level concepts. 

Similar to the abstract-level concepts, domain-specific knowledge [Canaday, 1981; 

Pumphrey, 1996] defines the application-level concepts using rule-based heuristics based on 

the visual-level concepts. Table 4.5 demonstrates examples of such heuristics for  

Impressionism, Fauvism and Pointillism painting styles.  

Table 4. 5. Examples of heuristics for definitions of application-level concepts 

Artist name and art period concepts are defined similarly. In this Table, we place visual-level 

concepts in the leftmost column and employ High-Medium-Low-Nan scale to describe it. Nan 

value denotes that the visual-level concept is not related to the definition of application-level 

concept. Following domain-specific knowledge, we employ color and brushwork classes to 

represent heuristics that defines painting style concepts. From Table 4.5 we make several 

conclusions. First, it demonstrates that visual-level concepts serve as visual cues to 

distinguish application-level concepts. Second, only a subset of visual-level concepts 

contributes to the heuristics definition of a particular application-level concept. Lastly, 

application-level concepts usually exhibit a mixture of the visual-level concepts. For example, 

APPLICATION-LEVEL CONCEPTS VISUAL-LEVEL 
CONCEPTS  

IMPRESSIONISM 
POST-

IMPRESSIONISM 
 

POINTILLISM
Color    

Cold temperature Nan Nan Nan 
Warm temperature Nan Nan Nan 
Neutral temperature Nan Nan Nan 

Primary palette High Nan Nan 
Complimentary palette Nan High High 

Color Contrast    
- complimentary Low High Low 

- temperature Low Medium Low 
-light-dark Medium Low Low 

Brush    
Impasto Low High Low 
Shading Low Low Nan 
Grattage Nan Nan Nan 

Pointillism Nan Nan High 
Mezzapasta Medium Low Nan 

Glazing Medium Nan Nan 
Scumbling High Medium Low 

Divisionism Nan Low High 
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the painting styles from Table 4.5 are defined as a mixture of brushwork classes. 

We demonstrate relationships between visual-level and application-level concepts using 

examples in Figures 4.6 and 4.7. Figure 4.6 shows paintings from several art periods and 

painting styles.  

 
Figure 4. 6. Examples of Painting Styles and Art Periods 

In columns from left to right: Medieval Art (Baroque (image A) and High Renaissance (image 

E) and painting styles of Modern Art (Fauvism (images B and F), Impressionism (images C 

and H) and Pointillism (images D and G)) 

 

It is clear that artistic color and brushwork concepts serve as cues for the recognition of such 

styles and periods as Pointillism (images D and G), Fauvism (images B and F), 

Impressionism (images C and H), Modern Art (images B-D and F-G) and Medieval Art 

(images A and E). However, to recognize Baroque and High Renaissance (paintings A an E 

in Figure 4.6) we require additional cues such as composition, theme and subject information. 

Figure 4.7 demonstrates paintings of artists van Gogh, Cezanne and Martina. Similar to the 

example above, it shows that visual-level concepts contribute to the recognition of various 

artists. However, the degree to which this meta-level information facilitates successful 

recognition varies. For example, it is relatively easy to recognize painting by Martina from 

paintings by van Gogh and Cezanne, while it is more difficult to recognize paintings of van 

Gogh from paintings of Cezanne. 

Capture using brushwork, color concepts 
Difficult with color, brushwork concepts only: requires understanding of 

composition, theme, subject etc. 

 

(A) (B) (C) (D) 

(E) (F) (H) (G) 
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Figure 4. 7. Examples of Artists 
In columns from left to right images by van Gogh (image A-B), Cezanne (image C-D) and 

Martina (image E-F) 

Next, we discuss relationships among the application-level concepts. Table 4.6 provides 

examples of relationships among application-level concepts based on the fine arts timeline 

from 1250 to 1900 [Canaday, 1981]. It includes the concepts of artist names, painting styles, 

art periods and era. From Table 4.6 we can see relationships exist between artist and painting 

style, artist and period, and painting style and art period concepts. As we discussed in Section 

3.7.3, these relationships facilitate concepts expansion and disambiguation. In our study, we 

exploit these relationships for concept disambiguation to ensure that the final labels of artist, 

painting style and art period are consistent with domain-specific knowledge.  

 

Difficult to capture with brushwork, color 

Capture with brushwork, color concepts 

(A) 

(D)

(C)

(B) (F) 

(E) 
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Table 4. 6. Timeline of the western fine art from 1250 to 1900 

4. 6 Summary 

In this chapter, we introduced artistic concepts that are widely used for the manual annotation 

of paintings. These concepts represent both visual and high-level semantic information. We 

organize artistic concepts into a three-level ontology, where visual-level concepts describe 

pictorial properties of paintings and application and abstract levels include semantic concepts. 

In accordance to domain-specific knowledge, visual-level concepts serve as cues for the 

description and annotation of high-level semantic concepts. To employ these cues for 

automatic annotation, we represent visual-level concepts as meta-level information that 

facilitates the inference of high-level concepts. In the three-level ontology, we represent two 

levels of semantic concepts.  These are abstract and application levels that support the 

retrieval by expert and novice user groups respectively.  

Overall, the three-level ontology of artistic concepts serves various purposes. First, it 

describes paintings at various levels of details, thus offering a basis for painting annotation 

with both high-level and detailed visual concepts. Second, it facilitates concept 

disambiguation, flexible retrieval and navigation based on the concept relationships. In our 

work, we employ the three-level ontology of artistic concepts to narrow down the semantic 

gap for automatic annotation of paintings. In the next chapter, we discuss the proposed 

framework for ontology-based annotation of paintings with artistic concepts.  

Era Period Artist Painting Style 
1250 Giotto, Lorenzetti Gothic 

1400 Botticelli, da Vinci, Piero, Lippi Early Renaissance 

1500 Raphael, Titian, El Greco, Bruegel High Renaissance 
Northern Renaissance 

1600 Rubens, Rembrandt, Poussin, Leyster Baroque 
1700 Boucher, Watteau, Hogarth Rococo 
1750 Fragonard, David Neoclassicism 
1800 Goya, Ingres, Constable Romanticism, Realism 
1850 

Medieval 

Bierstadt Pre-Raphaelites 

1875 Cassatt, Gauguin, van Gogh, Monet, 
Morisot, Seurat 

Impressionism, 
Post-impressionism, 

Pointillism, 
Expressionism 

1900 

Modern 

Matisse, Picasso, Dalí, Lange 
Abstraction, Fauvism, 

Cubism, Futurism, Dada 
and Surrealism 
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Chapter 5 

 

Framework for Ontology-based Annotation of 

Paintings with Artistic Concepts 

5. 1 Introduction and Motivation 

Due to the digitization of museum collections, automatic annotation and retrieval of paintings 

became of practical and research interest [Lewis et al., 2004]. Early works [Flickner et al., 

1995] proposed the use of low-level features (visual similarity) to perform retrieval of arts 

images using query-by-example (QBE) strategy that does not facilitate retrieval based on 

semantic concepts. Various studies [Holt et al., 1995; Wang et al., 2001] found that the query-

by-keyword strategy (QBK) is more useful to the end users. This strategy allows the users to 

search for images by specifying their own query using a limited vocabulary of semantic 

terms. Numerous research works [Jeon et al., 2003; Barnard et al., 2003; Lie et al., 2004] 

proposed semantic indexing of images collections using statistical machine learning 

techniques. These studies address various aspects of automatic image annotation such as the 

learning of specific semantics, the use of hierarchical learning methods, adaptive selection of 

models and many others. However, image annotation task remains challenging due to the 

fundamental problem of semantic gap and concept ambiguity.    

In Chapter 4 we discussed the concept ontologies for paintings domain that are widely used 

for categorization and navigation of paintings collection. In accordance to the domain-specific 

knowledge, these concepts are organized into hierarchical structure, where more specific 

visual-level concepts serve as cues for annotation of high-level abstract and application-

specific concepts. For example, the use of scumbling brushwork class with complimentary 

palette points out that a painting is likely to be of impressionism painting style. 
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In our framework, we aim to utilize such domain-specific knowledge and demonstrate that its 

use within the annotation framework enhances the quality of annotation.  There are several 

important questions that we need to address in order to tackle the problem of automatic 

paintings annotation using artistic concepts. First, how to adequately represent color and 

brushwork information in paintings? Second, what concepts can we learn from images 

directly and how to organize semantic concepts? Lastly, how to incorporate domain-specific 

knowledge into the annotation process for the purpose of concept disambiguation and 

expansion?  

An adequate representation of color and brushwork requires to account for several criteria. 

First, the size and resolution of images influences the representation of color and brushwork 

concepts. This is especially crucial for brushwork analysis, since ultimately it relies on the 

intensity distribution within image blocks. A second criterion is the choice of features. The 

low-level features used should have high discriminative power and facilitate translation of 

pixel distribution into color and brushwork concepts. These features should account for 

several important properties of color and texture such as coarseness, directionality, major hues 

and brightness as well as capture spatial distribution of pixels within a block.  

For the second question, the choice of concepts and their taxonomy relies on the domain-

specific knowledge discussed in Chapter 4. But not all concepts can be learnt and acquired 

from an image based on its visual contents using image processing and machine learning 

techniques. For example, this task will be difficult for such abstract-level concepts as 

expressive, harmony etc. In analogy to the general image domain, we recognize atomic and 

composite artistic concepts. The meta-level visual concepts that encode brushwork and color 

concepts are atomic. These concepts have relatively consistent visual representation and can 

be acquired using machine learning techniques. The concepts of abstract and application 

levels of the three-level concept ontology are composite concepts. They are often represented 

and perceived as combinations of atomic concepts. Usually these concepts have a wide 

variety of visual representations. This is the major reason why learning and acquiring these 

concepts based on low-level features have limited success. To remedy this situation, we aim 

to utilize atomic concepts and their relationships to composite concepts to perform the 

annotation task. To mimic human reasoning within the annotation framework, we exploit the 

three-level ontology of artistic concepts that encodes relationships between atomic and 

composite concepts. Such organization is natural due to its consistency with cognition rules of 

human learning, thus resulting in a useful ontology structure. In Section 3.7.3 we discussed 

other benefits of the hierarchical concept organization.  

 For the third question, domain-specific knowledge is naturally depicted in the three-level 

ontology of artistic concepts in Chapter 4.  We utilize this ontology in several ways. First, we 
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view the visual-level color and brushwork concepts as meta-level information within the 

proposed framework. Combined with the low-level features, they facilitate more accurate 

annotation of various composite artistic concepts. Second, during the annotation process, we 

employ domain-specific information about similarity of artistic concepts. For example, 

similarity information about brushwork classes facilitates iterative disambiguation and 

recognition of classes. Lastly, we utilize ontological relationships to perform disambiguation 

of high-level composite concepts. Accounting for these relationships helps to reprioritize the 

system’s judgments about candidate concepts and enhance the quality of annotation.  

5. 2 Overview of Framework for Ontology-based Paintings Annotation 

Annotation of images with high-level concepts is a complex task. To perform annotation, our 

annotation framework includes three major stages: a) segmenting images into meaningful 

units of analysis; b) extracting appropriate features for the units and c) mapping these units 

onto atomic and composite concepts. The problem of annotation can be expressed as: 

C(Ii)≈ C ( S (Ii) )≈ C(Fc(Rij) ∪ Fb(Rij)) ≈ C(∪K(Fa(Rij))→ L   (5. 1) 

Sr(Ii)≈Rij    

where i = {1…N} and N denotes the number of samples in a training set. j denotes region 

within image Ii. L denote the set of concepts. Function S(Ii) refers to a transformation of the 

content of an image. In our framework, we perform segmentation of image contents into 

regions/blocks Rij, thus, S(Ii)≈∪Rij. The function Fx(Rij) performs annotation of image blocks 

Rij, where Fc(Rij), Fb(Rij) and Fa(Rij)  perform annotation of visual-level color and brushwork 

concepts, and application-level concepts respectively. Function K then performs 

disambiguation of block-level labels, finally, function C(Ii) generates annotation of an image 

I. As expressed in Equation 5.1, we divide the image contents into units Rij, thus, assuming 

that the function C(Ii) can be approximated by the union of block-based annotations generated 

by the functions F.  

To facilitate annotation, we aim to utilize the three-level ontology of artistic concepts. This 

ontology offers atomic and composite concepts for annotation, thus, L= Lc∪La, where La 

refers to the set of atomic concepts and Lc refers to the composite concepts. During the 

annotation process, we exploit relationships between atomic and composite concepts, which 

are encoded in the three-level concept ontology. First, we perform mapping of low-level 

features onto concept set La using functions Fc(Rij) and Fb(Rij). Each of the functions returns 

posterior probability generated by a learner. Then, we combine relevant low-level features 

and atomic concepts to generate annotations of high-level concepts Lc using function  Fa(Rij). 
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Lastly, function K performs disambiguation of the generated annotations for image units to 

achieve annotations for the whole image. While statistical learning is one of the often-used 

techniques to integrate block-based information and disambiguate concepts [Feng et al., 

2004], we utilize ontological relationships to complete this task.  

Probably the closest work to ours is the work of Fan et al. [2005, 2006]. In this work, the 

authors introduce manually constructed domain ontology that includes both atomic and 

composite concepts.They perform probabilistic inference of atomic concepts, followed by the 

inference of composite concepts using the conditional probability distribution of atomic 

concepts. Other similar approaches include the works of Srikanth et al. [2005] and Petridis et 

al. [2006].Our work is different from their contribution in several ways. First, we propose 

statistic inference that utilizes domain knowledge at several levels in addition to the domain-

specific ontology. Second, in our framework we focus on adaptive selection of features and 

model parameters as well as minimization of the training datasets required. Overall, our 

framework includes three major stages: image segmentation and low-level feature extraction, 

annotation of image blocks/segments with visual meta-level artistic concepts, and annotation 

of high-level concepts. Figure 5.1 illustrates the proposed framework.  

First, we perform image segmentation and represent image regions/blocks using low-level 

features. Several studies employed block-based or region-based approach to the paintings 

analysis [Herik et al., 2000; Li et al., 2004]. We experiment with two types of image regions: 

a) color/texture blobs generated using image segmentation techniques; and 2) fixed-sized 

blocks (32x32 pixels). In our framework, we represent visual content by image regions/blocks 

using color, texture and geometrical low-level features. To perform annotation of visual-level 

color concepts, we employ the artistic color theory of Itten [1961], which offers a mapping 

between color hues and visual-level color concepts. We demonstrate that by using visual-level 

concepts and their ontological relationships the proposed method facilitates the annotation of 

abstract artistic color concepts without additional training. Specifically, we employ the artistic 

color sphere and fully supervised probabilistic SVM classifier. For effective annotation of 

brushwork patterns, we adopt the serial multi-expert approach, where sequentially arranged 

experts (learners) perform step-wise disambiguation of the target concepts based on a decision 

hierarchy. The decision hierarchy encodes relationships among classes, thus iteratively 

splitting a dataset into sub-classes until the leaf nodes that model the target concepts are 

reached. Due to its modularity, this approach facilitates feature selection and model selection 

for each node of the decision tree. We combine this approach with semi-supervised learning 

methods to address the problem of limited labeled datasets. Using this method, we 

investigate: a) one-step annotation of brushwork classes and step-wise disambiguation using 

multiple experts; and b) manual and automatic selection of low-level features and parameters 
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of the semi-supervised learning methods and the use of distance-based and probabilistic semi-

supervised learning methods. We aim to demonstrate that the resulting transductive inference 

using multiple experts is effective for the annotation of complex brushwork patterns and that 

the proposed methods for automatic feature and parameter selection technique is comparable 

to the manually assigned features. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5. 1. Framework for ontology-based annotation of paintings  

Second, we perform annotation of high-level concepts. We distinguish two groups of high-

level concepts: abstract-level and application-level concepts. Abstract-level concepts include 

various semantic terms used by the art experts such as “gestural”, “rational”, “expressive”, 

“warm” and others. Application-level concepts are meant for the novice users. In our 

framework, we include artist name, painting style and art period concepts in this level. The 

distinction between abstract and application levels is due to several reasons: a) these levels 

facilitate paintings retrieval for different user groups; and b) we employ different approaches 

to perform annotation of these concepts. To annotate abstract-level concepts, we perform 
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concept propagation based on visual-level concepts due to the fact that heuristic rules  for 

these concepts are clearly defined. The application-level concepts are not defined in such a 

straightforward manner. To annotate application-level concepts we employ a two-step 

procedure: a) the annotation of image regions with high-level semantic concepts; and b) the 

integration of the generated concepts to annotate the whole image. For step (a) we employ the 

semi-supervised techniques developed for brushwork annotation. In this step we exploit the 

fact that visual-level concepts serve as cues for annotation of high-level concepts. We thus 

utilize the visual-level concepts as meta-level information and employ the transductive 

inference and multiple experts to label the whole image with high-level artistic concepts such 

as the artist name, painting style and art period. We aim to demonstrate: a) the importance of 

meta-level information in the annotation process; b) the effectiveness of multiple experts 

approach as compared to one-step inference approach; and c) the effectiveness of the 

proposed method to generate satisfactory performance using limited training set. Third, using 

the generated labels, we further exploit the ontological relationships among high-level 

concepts to disambiguate concepts. 

In this thesis, we mostly focus on the annotation of application-level concepts, since it is easy 

to test as the ground truth is easily available from the World Wide Web. To explore of 

abstract-level concepts, we perform several experiments using expert-provided ground truth 

and aim to focus on these concepts in more detail in our future work.  

5. 3 Dataset for the Evaluation of the Proposed Framework 

In this section we discuss the dataset we employ for the evaluation of the proposed 

framework. Table 5.1 shows the details of the dataset collection. It is composed of western 

fine art paintings in two periods of art, seven painting styles and eleven artists.   

This collection includes the most representative painting styles in each period of art and the 

widely known painters in each painting style. The painters under the same painting style are 

difficult to distinguish, since they share the similar set of painting techniques. Overall, the 

dataset includes 1050 paintings. For our further experiments, we split the dataset into two 

independent subsets: 315 paintings for training purposes and 735 paintings for the testing 

purposes. In the Table 5.2 we demonstrate the examples of paintings in the dataset.  
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Period Painting Style Artist Number of Images 
Fauvism Matisse 84 

Monet 146 Impressionism Renoir 138 
Van Gogh 76 Post-

Impressionism Cezanne 116 
Expressionism Schiele 150 

Cross 81 

Modern 

Pointillism 
Seurat 78 

Renaissance Titian 60 
Rembrandt 59 Medieval Baroque Frans Hals 62 

TOTAL 1050 
Table 5. 1. The dataset used for the framework evaluation  

    

 

   

Table 5. 2. Examples of the paintings in the dataset 

We compared our dataset with the collections used in the existing works for the annotation of 

art images. Table 5.3 summarizes these datasets in terms of: reference to the work, the size of 

the dataset, analyzed categories and the results achieved. In this Table we combine studies 

that focus on both Western and Chinese paintings domain. This is due to the fact that in all the 

discussed work the set of features, the nature of the task itself and classification approaches 

are comparable. Based on this Table, we observe that our collection is larger as compared to 

the datasets used in the existing studies. It has a large number of categories and comprises 

different art periods. The right-most column of the Table 5.3 demonstrates the performance 

levels achieved by existing works. It is clear that the number of the analyzed categories is 

crucial for both painting style and artist name annotation. The small number of categories and 

small focused dataset usually result in relatively high annotation accuracy. Also, the 

performance depends on the categories themselves. Wang et al. [2006] and Li et al. [2003] 

observed this phenomenon in their works. These authors demonstrated that the experiment 

results can vary up to 2 times depending on the number of the categories used and their visual 

similarity. For example, due to highly dissimilar categories, Icoglu et al. [2004] achieved high 

performance in their recognition. In our work, we observe the same phenomenon: images of 



 64

artists from the same period and painting style are confused more often when compared to the 

images from different periods and painting styles.  

Work Dataset 
Size 

Number of 
categories 

Categories Accuracy 

[Jiang et al., 2004] 800 2 Painting Style (landscape vs. 
flowers) 

94% 

[Wang et al., 2006] 600 11 Painting Style + Medium 35% to 65%
[Wang et al., 2006] 360 5 Painting Style + Medium 42 to 74% 
[Icoglu et al., 2004] 154 3 Painting Style (Impressionism, 

Cubism, Abstractionism) 
90% 

[Li et al., 2003] 276 5 Artist (Chinese Art) 62-87% 
[Herik et al., 2000] 60 6 Artist (Western Modern Art) 85% 

Table 5. 3. Comparison of the dataset with that used in the existing works 

5. 4 Summary 

In this chapter, we presented our motivation and proposed a framework for automatic painting 

annotation using artistic concepts.  This framework attempts to index paintings with a large 

variety of artistic concepts for the purpose of flexible querying, retrieval and navigation by 

end users of different backgrounds. To perform the annotation, the proposed framework relies 

on domain knowledge: it utilizes the domain-specific ontology during annotation of both 

visual and high-level artistic concepts. By using domain-specific concept ontology we aim to 

narrow down the semantic gap between low-level features and artistic concepts. This concept 

structure is opened and can be augmented with new concepts without sacrificing the system’s 

robustness.  

Next, we discussed the dataset for the evaluation of the effectiveness of the proposed 

framework. While this dataset is small when compared to the general image benchmarks, it is 

more challenging as compared to the datasets used for the existing works that annotate arts 

images. 

In our work, we aim to develop a fully automatic framework that employs machine learning 

techniques to annotate images with artistic concepts. We aim to demonstrate that the use of 

domain-specific ontology has several advantages: 1) the use of meta-level information 

facilitates higher accuracy of semantic concept annotation as compared to the direct mapping 

of low-level features onto these concepts; and 2) ontological relationships facilitate 

disambiguation of the automatically generated annotation and further increase in the system 

performance. 

In the next three chapters, we will discuss different parts of our framework. For annotation of 

visual-level color concepts, we employ the traditional supervised learning scheme (in Chapter 
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6). To annotate brushwork patterns, we employ the combination of semi-supervised learning 

and multi-expert approaches (in Chapter 7). Finally, to demonstrate annotation of high-level 

concepts and concept disambiguation, we employ the combination of the proposed serial 

multi-expert scheme and linear programming techniques (in Chapter 8).  
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Chapter 6 

 

Inductive Inference of Artistic Color Concepts for 

Annotation and Retrieval in the Paintings Domain 

6. 1. Introduction and Motivation 

In this chapter we focus on the annotation of image with artistic color concepts that capture a 

large body of expert knowledge in paintings domain. Annotation and analysis of artistic color 

concepts has two benefits. First, these concepts serve as meta-level information for annotation 

and retrieval of paintings with high-level concepts of artists, painting styles and art periods. In 

the domain of western paintings, combinations of color concepts are known to characterize 

the artists and painting styles [Berezhnoy et al., 2004].  

Second, automatic annotation of color concepts such as color temperature, color palette and 

color contrast facilitates automated annotation and retrieval of paintings by these concepts in 

large-scale artwork databases. Recently several systems have been proposed for retrieval in 

arts databases by such cues as color and texture based on the QBE paradigm [Flickner et al., 

1995; Lewis et al., 2004]. Such querying paradigm introduces ambiguity at the query stage. In 

our work, we propose to index images by the semantic color concepts and facilitate QBK 

querying paradigm for paintings retrieval.  

6. 2 Related Work 

The majority of methods for the analysis of color concepts in arts domain utilize artistic color 

theory such as Itten’s color theory [1961] and Munsell color space [Munsell, 1915]. 

Morphological and geometrical relationships among colors on the artistic color sphere define 

various artistic color concepts, including color temperature, color palette and color contrasts. 
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The general pipeline of such methods [Corridoni et al., 1998; Lay et al., 2004; Stanchev et al., 

2003] is as follows: split the image into color regions, back-project the mean region color 

onto the artistic color sphere and utilize relationships among artistic colors to index an image 

with associated color concepts. Corridoni et al. [1998] and Stanchev et al. [2003] employ the 

K-means clustering method to split an image into regions. Further, they back-project the mean 

region color onto the quantized space of artistic colors.  However, color averaging leads to a 

loss of information about the distribution of colors within a region. Such information is 

desirable for the analysis of Modern art paintings styles (Post-impressionism, Impressionism 

and Pointillism) and various artists (Van Gogh, Cezanne, Monet). In the paintings of these 

artists, contrasting colors and colors of different color temperature are placed close to each 

other at the very fine level. Thus, the distribution of artistic color concepts, which pertain to 

each pixel within the color region, is non-uniform. Consequently, the use of averaged color to 

assign artistic color concepts does not model the artistic color concepts of a region accurately. 

Further, the works of Corridoni et al. [1998] and Stanchev et al. [2003] do not account for 

mutual interaction of various color temperatures. The approach of Lay et al [2004] is 

somewhat different. The authors performed back-projection based on individual image pixels. 

To integrate the color temperature, color palette and contrast information, the authors 

employed a rule-based approach that encodes domain knowledge. The major drawback of this 

system is the fact that rule-based inference lacks robustness and the knowledge base grows 

large due to the need to account for various color distributions.  

To alleviate some of the above problems, we propose: 1) a representation of image regions 

with multiple colors; 2) a combination of generic and domain-specific features for annotation 

and 3) the use of machine learning techniques to mimic human perception of color 

temperature and color palettes. To facilitate adequate and efficient image retrieval, we 

perform annotation of image color/texture region. However, several authors [Wang et al., 

2006; Li et al., 2003] observed that the color/texture segmentation of images often tends to 

merge areas of different brushwork within a single region. This results in non-adequate 

representation of brushwork within a region. Due to this, the authors utilized small fixed-size 

blocks to perform annotation with respect to high-level semantics. In our work, we employ 

both the segmented color/texture regions and image blocks. To facilitate efficient 

representation and retrieval of images by the color information, we employ the segmented 

image regions. To perform annotation of images with high-level semantics, we need to 

perform annotation of color and brushwork meta-level information. To perform this task we 

rely on the fixed-size blocks. In the rest of this chapter, we discuss the proposed method, 

perform evaluations and summarize our findings.  
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6. 3 Framework for Annotation with Artistic Color Concepts 

We perform automated analysis of artistic color concepts in three steps: image segmentation, 

analysis of the color concepts at the visual level that characterize image regions, and the 

analysis of the abstract-level color concepts that characterize the whole image. During this 

three-step annotation process, we extensively employ domain-specific knowledge, namely 

Itten’s color theory and its major element, the artistic color sphere. We utilize the artistic 

color sphere for the annotation of image regions. To annotate image regions with artistic 

concepts, we employ two types of inference: machine learning to annotate color temperature 

and color palette concepts; and geometrical relationships among artistic colors on the sphere 

to infer color contrast. We employ supervised learning, since it facilitates account for various 

properties of a region, including color distribution, which are not discussed in Itten’s color 

theory. However, the use of supervised learning for annotation of color contrast is a difficult 

task, since it requires data samples for each combination of color hues, brightness and 

saturation. To perform annotation of color contrast concepts, we exploit the arrangement of 

colors on the artistic color sphere. Geometrical relationships among colors define the degree 

of complimentary, temperature, light-dark and value contrast among them. Later in this 

section, we focus on our method in detail. 

6. 3. 1 Image Segmentation 

The analysis of color temperature and contrast concepts requires taking into account the 

spatial distribution of colors within a painting. Due to this requirement, global representations 

of color such as color histograms are inadequate for this type of analysis. To facilitate 

adequate retrieval by color information, we need to account for its size, position and length of 

the border. To generate such regions we employed a color/texture image segmentation 

technique. We tested several segmentation techniques such as Blobworld [Carson et al., 

2002], Mean-shift [Comaniciu et al., 1999] and the method of Rui et al. [2004]. The 

Blobworld segmentation method produces the most acceptable results for the analysis of 

artistic color concepts. This method extracts color/texture features and groups them together 

using a combination of the Expectation Maximization and Minimum Description Length 

methods. Similar to the other two segmentation methods, Blobworld does not produce ideal 

regions but it is relatively more tolerant to the brushwork variance.  

6. 3. 2 Color Region Representation 

Next, we extract low-level color and geometrical features for each region. Currently each 

region maintains multiple dominant colors in our system unlike the methods proposed by 
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Corridoni et al. [1998] and Lay et al. [2004]. We calculate the vector of dominant colors using 

both CIE L*u*v and HSI color spaces. For each color space, the system calculates a color 

histogram and normalizes it by its maximum value. Using the top k values in the color 

histogram, we select the k dominant colors. To perform projection of dominant colors onto the 

artistic color sphere, we operate in the CIE L*u*v color space due to its linearity. We convert 

dominant colors in the CIE L*u*v color space to the corresponding reference colors in the 

artistic color sphere as follows: 

      ref = arg i min 1≤i≤N dist(Rc, Mc(i))             (6. 1) 

where dist denotes the normalized Euclidean distance, Rc denotes the CIE L*u*v* values of a 

dominant color, Mc(i) denotes the CIE L*u*v color values of color i of the artistic color 

sphere, and N denotes the number of such reference colors (N = 187, including 5 shades of 

gray and black and white colors). 

We calculate the geometrical features to facilitate spatial retrieval by color concepts. For this 

task we account for the region area and its position. In addition, we perform simple 

morphological operations by extracting contacting border between neighboring regions to 

store their location and normalized length. 

6. 3. 3 Color Temperature and Color Palette Annotation 

In this task we are concerned with the distribution of warm, cold and neutral temperatures 

within a region, since color temperatures influence each other and their spatial distribution 

produces a variety of perceptual effects [Itten, 1961]. Figure 6.1 demonstrates the distribution 

of the color temperature within a block. 

    
Figure 6. 1. Distribution of the color temperature within a block  

From left to right here: original block, pixels of cold color temperature; pixels of neutral color 

temperature and pixels of warm color temperature 

Properties of colors such as intensity and saturation influence the perceptual appearance of 

color temperature. To take this phenomenon into account, we introduce a temperature strength 

parameter for fundamental hues that varies from 0 for black to 1 for white.  

Figure 6.2 demonstrates the schematic view of the annotation process. It includes several 

stages. First, segmentation of the image into image blocks/regions. Second, projecting block 

colors the artistic sphere to extract domain-specific features. Third, annotate image blocks 

using statistical inference. 
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Figure 6. 2 Annotation of color temperature concepts 

Next we extract domain-specific features. To minimize the computational complexity, we 

average the pixel values in a 4x4 neighborhood within each region, calculate the average 

Cold

Warm

Neutral

Cold
Cold

Extract Low-level features: 
1. K major color of the 

Coherence Vector 
Vector; 

2. Distribution of 
block/region colors with 
respect to cold, warm 
and neutral color 
concepts;

Probabilistic 
SVM 

Cold 0.7 
Warm 0.1 
Neutral 0.2
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color in the CIE L*u*v space, and find their corresponding reference color in the artistic color 

sphere using Equation 6.1. Next, we calculate the spatial coherence of each color temperature 

within color regions using a modification of the color coherence vector [Pass et al., 1996]. 

Overall, the feature vector includes the size and average temperature strength of coherent and 

non-coherent bins, color values of k dominant colors in HSI and CIE L*u*v color spaces and 

their color temperature extracted from the artistic color sphere. We employ these two color 

spheres as the color representations in these two color spheres compliment each other and 

provide more complete information [Herik et al., 2000]. 

Next, we utilize the calculated feature vector to annotate warm, cold and neutral color 

concepts. For this, we employ a supervised machine learning method, the Support Vector 

Machines (SVM). We use the multi-class probabilistic variant of it developed by 

Chakrabartty et al. [2002]  to generate the posterior probabilities and using the majority vote 

strategy to assign the color temperature concept for each region. The generated posterior 

probabilities weighted by the normalized region area, solidity and eccentricity serve as a basis 

for image ranking during the retrieval stage. The computational time for this method is 

presented in Table 8.15.   

Similarly to color temperature concepts, spatial distribution of colors within a region 

influences the overall perception of color palette. To analyze the primary, complimentary and 

tertiary color palette, we employ a procedure similar to the annotation of color temperature 

concepts. The only difference is that we now account for the distribution of primary, 

complimentary and tertiary concepts within a region. These concepts are discussed in Section 

4.3.1.  

6. 3. 4 Color Contrast 

Based on Itten’s theory, we employ analysis of complimentary, temperature, light-dark and 

value color contrasts. We analyze color contrast with respect to each pair of neighboring 

regions. As discussed in Section 6.3.2, our system represents each region as a set of k 

dominant colors. To effectively represent complimentary, temperature, light-dark and value 

color contrasts between the two sets of dominant colors, we adopt the color-pair technique 

proposed by Chua et al. [1994]. This technique models two neighboring regions as a set of 

distinct color pairs based on the dominant colors from each region. Figure 6.3 demonstrates 

the annotation method for color contrast concepts.  

We perform the color contrast analysis between two regions in two steps. First, we measure 

the strength of contrast between two regions and next we account for geometrical properties 

of these regions to arrive at the final representation. Since we represent two regions as a set of 
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color pairs, we measure the color contrast strength for each distinct color pair and then 

average the calculated strength across all pairs. In our task, we treat a color pair as distinctive 

if it exhibits the strength of respective color contrast higher than a predefined threshold. To 

measure the strength of color contrast between two colors, we find their corresponding 

reference colors and study their relative location on the artistic color sphere using four 

measures of color contrast strength. In accordance to Itten’s color theory, we operationalize 

these measures as follows.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. 3 Annotation of color contrast concepts 

Value color contrast is defined as the normalized Euclidean distance between the absolute 

values of the reference color coordinates on the X plane of the chromatic color sphere. Light-

dark and complimentary contrasts are defined similarly on the Z and Y planes of the sphere 

respectively.  

The definition of temperature contrast relies on the color temperature concept and the average 

temperature strength of two neighboring regions. Itten describes warm-cold pair as the 

stronger temperature contrast as compared to neutral-cold pair. We introduce this heuristics 

Combine all color pairs
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Temperature 0 
Light-dark 0.8 
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relationships 
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The system calculates color temperature contrast as follows: 

2/))()((*),(),( jtsitsjiwjiCtemp +=   (5. 3) 

where ts denotes the temperature strength of colors i and j respectively. The temperature 

strength of each individual color is predefined by Itten’s color sphere. To calculate the 

temperature strength of the overall region/block, we average the temperature strength of 

block/region colors projected to Itten’s sphere. This temperature strength is calculated during 

previous step discussed in Section 6.3.3.  

Next, we annotate each region with color contrast concepts. To facilitate adequate retrieval, 

we take into account several geometrical region properties, since such parameters as area of 

the neighboring regions and the length of their border influence human perception of color 

contrast. For each color contrast concept, we combine the area of two neighboring regions and 

the length of border between them, weighted by the respective color contrast strength into a 

normalized sum. This value serves to rank the dataset by image contrast concepts. For 

example, if the calculated value of a contrast is 0.5 for image regions in the images A and B, 

but the normalized areas of the regions is 0.5 and 0.1  in the  image A and B respectively, then 

the region in image A will have higher rank when compared to the region in image B. 

6. 3. 5 Annotation of Abstract Concepts 

In this section, we perform the annotation of abstract concepts warm, cold, expressive and 

chiaroscuro as discussed in Section 4.4. The rest of the concepts are not discussed in this 

thesis since we did not have sufficient datasets for their evaluation. We plan to focus on these 

concepts in our future work. They are inferred using meta-level artistic concepts of color 

temperature, color palette and color contrasts. We perform the annotation of abstract concepts 

using rule-based heuristics described in Table 4.4. To annotate abstract concepts, we perform 

a three-step procedure. First, we propagate the concept relationships to calculate what visual-

level concepts are associated with each abstract-level concept. Next, we extract the values of 

the respective visual-level color concepts annotated to image regions. Lastly, we average the 

numerical values associated with each concept to calculate the overall image score with 

respect to the abstract-level concepts. The annotation of the other abstract-level concepts from 

Table 4.4 follows the same scheme. 
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6. 4 Experiment Results 

In this set of experiments we evaluate the proposed method for paintings annotation and 

retrieval based on the artistic color concepts. As we did not require large painting size for 

color analysis, we rescale the collection to the fixed size of 384x256 or 256x384 similarly to 

the works of Barnard et al. [2003], Feng et al. [2004] and others. To evaluate the proposed 

system, we employ the full dataset discussed in Section 5. 3. We employ 315 images to 

evaluate the color temperature annotation, and utilize the remaining 735 images for testing 

within the image retrieval framework. As a baseline, we employ simple segmentation method 

that represents image as nine equal blocks. We refer to the variations of the proposed method 

based on the Baseline and Blobworld segmentation techniques as Test 1 and Test 2 

respectively. We implement Blobworld technique to perform segmentation. 

First, we extract 5000 regions from 315 training images. We train the SVM classifier using 

25% of the extracted regions and employ 75% to test it. We evaluate the performance of the 

color temperature annotation using the expert-provided ground truth.  The proposed method 

generates the accuracy of 90% and 85% for Test 1 and Test 2 respectively. 

Next, we evaluate the proposed methods within the image retrieval scenario. Using the 

proposed annotation methods, we label the 735 images with the concepts of color 

temperature, color palette and color contrast. The retrieval system combines artistic color 

concepts and geometrical features of the regions to index images. Similar to the first 

experiment, we utilize the expert-provided ground truth to evaluate the retrieval results. The 

experts pre-compile ground truth for a variety of queries in four query groups. Each group 

contains 3 to 5 queries. Table 6.1 demonstrates examples of such queries.  

 

 

 

 

Table 6. 1. Examples of queries 

In this Table, [temp] = {warm, cold, neutral}, [palette] = {primary, complimentary, tertiary}, 

[contrast] = {complimentary, light-dark, temperature} and [location] = {top, bottom, left, 

right, centre}. Group 1 covers queries with abstract concepts of color temperature and color 

palette. Group 2 represents queries with abstract color contrast concepts, while Group 3 

incorporates spatial queries of the color temperature and color palette concepts. Lastly, Group 

4 represents spatial queries of the color contrast concepts. 

No Query Group 
1 
2 
3 
5 
6 
7 

Painting in [temp] colors. 
Painting in [temp] colors of [palette] palette 
Painting with [contrast] 
Painting with [temp] region at the [location] 
Painting with[contrast]  at the [location] 
Color of [palette] at the[location] 

1 
1 
2 
3 
4 
3 
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Further, we compared the two segmentation methods to highlight the importance of the 

geometrical information for the retrieval task based on the artistic concepts. For color 

temperature and color palette queries, the system takes into account the region area, location, 

solidity and eccentricity. For queries with artistic color contrast concepts, the system 

considers the area and solidity of regions, location and length of the contacting border.  

Table 6. 2 shows the system performance based on Mean Average Precision (MAP) metrics 

that facilitates the comparison of queries with variable ground truth size.  

 

 

Table 6. 2. Evaluation of the system performance 

Overall, the system achieves satisfactory performance for all query groups based on Test 2 

segmentation. Test 1 and Test 2 do not differ significantly for Group1 and Group 3 queries, 

since they do not require elaborate spatial information about the image regions. The 

difference in the relative performance of Test 1 and Test 2 is most apparent in Group2 and 

Group4, since these query groups require appropriate information about spatial color 

distribution. The MAP of Test 2 across all queries is 0.73. Figure 6.4 shows examples of the 

top images retrieved by the developed system. 

 

 

 
Figure 6. 4. Examples of retrieved images 

 

It demonstrates (in rows from top to bottom): images retrieved by “Paintings in warm colors”, 

“Paintings in cold colors” and “Paintings with chiaroscuro contrast”.  

 Group1 Group2 Group3 Group4 
Test 1 0.752 0.402 0.605 0.317 
Test 2 0.764 0.720 0.680 0.674 
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The existing works [Corridoni et al., 1999; Lay et al., 2004] similarly utilized their proposed 

indexing methods based on the image retrieval setting. However, they do not evaluate the 

retrieval performance based on the expert-provided ground truth. Both works reported 100% 

of syntactic accuracy. 

6. 5 Summary 

In this chapter, we proposed an automated approach that utilizes domain knowledge of arts 

domain to analyze and retrieve paintings with color concepts. We performed annotation of 

major artistic color concepts such as color temperature, color contrast and color palette. These 

concepts serve as semantic vocabulary for paintings retrieval and provide important cues for 

auto-annotation of paintings with high-level concepts of artist name, painting style, period of 

art and culture. The proposed methods utilize spatial information of region colors, which 

facilitates accounting for a variety of painting styles and extends existing works to handle 

annotation of paintings in Modern and Contemporary art periods.  

Further, we demonstrated the annotation of abstract-level concepts that are widely used 

among art experts. To index images with the abstract-level concepts, we employed 

propagation of the concept relationships in the three-level concept ontology. Using this fairly 

simple annotation method, we demonstrated that accounting of domain-specific knowledge 

facilitates satisfactory annotation accuracy of abstract-level concepts. However, there are 

several challenges in the annotation of abstract-level concepts. First, there is a need to 

experiment with more sophisticated methods for annotation of abstract concepts. Second, as 

we demonstrated in Section 4.4, abstract-concepts represent a large vocabulary of annotation 

concepts. To our knowledge, the annotation of these concepts has not been studied yet. 

Annotation of paintings with these concepts has two benefits. First, it extends the concept 

vocabulary to handle the expert user needs. Second, it uncovers the semiotic content in 

paintings due to the fact that artistic theories associate meta-level visual concepts with a 

variety of symbolic information. For example, color temperatures and contrasts are related to 

mood in Itten’s theory [1961]. Using this information, it is possible to access additional layers 

of information available in paintings. Such analysis, however, is beyond the scope of this 

thesis.    

Our experiments in painting retrieval demonstrated that the methods for annotation of meta-

level color concepts are effective. In the next chapter, we will discuss methods for annotation 

of meta-level brushwork concepts.  
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Chapter 7 

 

Transductive Inference of Serial Multiple Experts for 

Brushwork Annotation 

 

7. 1 Introduction and Motivation 

In the previous chapter, we discussed annotation of visual-level color concepts. To perform 

annotation of these concepts, we used inductive inference paradigm based on the probabilistic 

multi-category SVM method to model concepts. This approach assumes that labeled data 

within each category is consistent as well as the number of labeled samples is sufficient. 

These assumptions do not always hold for other artistic concepts. In the case of brushwork 

concepts, each class exhibits a variety of patterns and gathering sufficient labeled data is 

difficult. Several methods attempted to model the brushwork indirectly to achieve annotation 

of artist name concepts [Herik et al., 2000; Li et al., 2004]. In our work we implement similar 

approach and utilize it as a baseline. These methods directly model the artist profile based on 

low-level texture features. Such an approach has several drawbacks. First, it does not 

incorporate domain-specific knowledge for the disambiguation of results. Second, since 

brushwork is not represented explicitly in such a framework, the introduction of other high-

level concepts in arts domain will require additional training. In Chapter 5 we proposed the 

framework for ontology-based annotation, which utilizes the meta-level artistic brushwork 

concepts within the annotation process. This framework alleviates the problems of traditional 

statistical learning by the use of domain-specific ontology. In this chapter, we focus on the 

annotation of brushwork patches with artistic brushwork concepts. To our knowledge, this is 

the first attempt to explicitly model artistic brushwork concepts for the purpose of advancing 

the ontology-based annotation in the paintings domain. To address the problem of effective 

annotation with brushwork concepts, we need to tackle three challenges. 

First, we utilize a number of statistical and signal processing features for the representation of 
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brushwork contents for adequate representation of a large variety of brushwork patterns. This 

yields high-dimensionality of the feature space, leading to the 'curse of dimensionality'. It 

essentially means that the sparseness of data increases exponentially with the dimensionality 

of the input space given a constant amount of data, with points tending to become equidistant 

from one another at a certain high dimension [Friedman, 1994]. This phenomenon largely 

degrades the quality of the traditional inference methods  and poses the need for feature 

selection methods. 

Second, we need to explore techniques for image annotation based on a small set of labeled 

patterns. Since manual annotation of art images is very tedious and costly, usually only 

limited datasets are available to perform the classifier training. Similar to the existing studies 

in the paintings domain [Herik, et al., 2000; Breen et al., 2002; Li et al., 2004], we perform 

block-level analysis for the brushwork annotation that results in a large amount of unlabeled 

data. We aim to construct more accurate classifiers based on the combination of labeled and 

unlabelled data. We reviewed these methods in Section 3.6.3.  

Third, a vast variety of brushwork patterns poses the need for robust classifiers. The data 

mining community and related communities have devoted much effort to develop techniques 

for creating better classifiers [Barnard et al., 2003; Murphy et al., 2003; Skounakis et al., 

2003; Gyftodimos et al., 2004] and, more recently, combining individual classifiers to 

produce a more accurate combined classifier [Kuncheva,  2004].  

 

 

7. 2 Related Work 

Early work on expert combination mostly focused around ‘multiple experts vs multiple 

levels’ comparisons, where the authors were concerned with the structure of decision 

hierarchies [Gluskman, 1971; Schueermann, 1983].  Recent studies have shown that the use 

of multiple expert approaches could lead to higher accuracy when compared to the single 

classifier approach [Kittler et al, 1996; Pudil et al., 1992].  

There are several benefits of the multiple classifiers (or experts) approach. First, it partitions 

the problems and decreases the complexity of probability estimation. Second, since several 

independent classifiers contribute to the overall decision, this approach requires smaller 

training sets as compared to hierarchical learning approaches [Barnard et al., 2003; 

Gyftodimos et al., 2004; Murphy et al., 2003]. Third, multiple expert frameworks facilitate 

dimensionality reduction of the feature sets, since the overall classification task is composed 
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of several focused sub-tasks. Lastly, the modular organization of sub-tasks facilitates the 

incorporation of domain knowledge especially into their inter-dependence and interaction 

with the target function. 

 Rahman et al. [1999; 2000] discussed a generic approach to combinations of multiple 

experts. Configurations that combine experts in several sequential levels are called serial 

combinations [Pudil et al., 1992]. The main attraction of the serial approaches is that these 

configurations: 1) implement a step-wise disambiguation of patterns and 2) facilitate 

reduction of rejection rate. In statistical pattern recognition, the reject option has been 

introduced to guide the classifier against excessive errors [Devijner et al, 1982]. If the 

rejection option is allowed, the quality of recognition increases, but on the whole fewer 

patterns are recognized. In the serial combinations framework, the number of rejected patterns 

is minimized due to the re-evaluation of ambiguous patterns in subsequent levels of individual 

experts. 

Individual experts facilitate the use of both inductive and transductive inference to generate 

their decisions. We discussed the relationship between inductive and transductive inference in 

Section 2.4. Recently, many studies focused on transductive inference for annotation of large 

data collections due to its applicability to many real-world situations. A non-exhaustive list of 

recent contributions includes [Vapnik, 1982, 1998; Joachims, 1999; Demiriz et al., 2000; Wu 

et al. 1999; Blum  et al., 2003; Debreko et al, 2004, El-Yaniv et al., 2004]. The works of 

Joachims [1999], Demiriz et al.[2000], Wu et al. [1999] and El-Yaniv et al.[2004] dealt with 

algorithmic issues, while Vapnik [1982, 1998], Blum  et al. [2003] and Debreko et al. [2004] 

focused on the theoretical discussion and performance bounds. Vapnik's [1982, 1998] and 

Blum et al. [2003] offered the formulation for implicit bounds. Explicit PAC-Bayesian bound 

was presented in work of Debreko et al. [2004]. El-Yaniv et al.[2004] proposed a transductive 

learning scheme based on this bound. This method yields comparable results with TSVM 

proposed by Joachim [1999] for image classification task.  

In accordance to [Rahman et al., 2000], the use of relevant features minimizes the error 

propagation through the framework. A large body of studies [Blum et al, 1997; Kohavi et al., 

1997] has proposed techniques for dimensionality reduction. The well-known approaches to 

dimensionality reduction are feature selection and feature transformation techniques [Parsons 

et al., 1994]. Feature selection attempts to discover the most relevant attributes. It includes 

wrapper approaches and filter approaches. In wrapper approaches [Kohavi et al., 1997], the 

relevant feature subset is induced from error rates of the classifier. In filter approaches, the 

measure of feature subset quality is independent of classifiers; it is based on its correlation 

with the target function.  

Feature transformation techniques such as Principle Component Analysis (PCA) transform 
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the original space into a lower dimensional space. PCA is not always applicable since the 

variance is not necessarily correlated to the discriminative power. Another drawback of 

methods like PCA is the lack of interpretability of the newly formed feature set. 

In the proposed framework, we employ a hybrid of the feature filtering and the feature 

wrapper approaches, since it first estimates the feature relevance based on the feature value 

distributions and then iteratively select the most discriminative features based on the 

classification accuracy of the model. The features are scored based on the Chi-square 

statistics. This so-called symmetric method measures the association between the two 

distributions [Lehmann, 1999]. Chi-square statistics is used to select features for various tasks 

such as the rule induction task [Imam et al., 1999] and text categorization [Yang et al., 1997].  

7. 3 Brushwork Representation 

In Section 4.3.2, we introduced domain-specific knowledge about brushwork classes. We 

examined various properties of brushwork and justified the use of the texture-based approach 

for brushwork analysis. In this section, we focus on the low-level features used to represent 

brushwork classes. Table 7.1 provides the summary of brushwork classes. It contains 

examples of brushwork patterns in each of the analyzed classes and the relevant features for 

each class.  

Various comparative studies showed that no single texture features representation approach 

performs best for all kinds of textures. Hence, to capture the variety of patterns in our dataset, 

we utilize various signal-based and statistical texture feature representations. As Table 7.1 

demonstrates, our collection includes a vast number of patterns, which are mostly stochastic. 

They exhibit a variety of properties such as directional (for example, impasto), non-

directional (pointillism), contrasting (divisionism) and smooth (mezzapasta). In terms of the 

spatial homogeneity we can roughly group brushwork patterns as homogeneous (mezzapasta 

and pointillism), weakly homogeneous (divisionism) and non-homogeneous (scumbling, 

shading and glazing). We utilize color and texture features for pattern representation. To 

calculate color features, we utilize the CIE L*u*v color space. From color histograms, we 

extract major colors with account for their perceptual similarity [Chua et al., 1994]. We 

calculate complimentary and chiaroscuro color contrasts based on our previously developed 

method [Marchenko et al., 2005]. 

In order to model the variety of brushwork patterns, we use several texture features. First, we 

make use of the edge-based features to capture linear components of a pattern. We apply 

Canny edge detector [Canny, 1986] with a fixed threshold to the whole collection and 
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calculate the directional histogram: 
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EdgeHist      (7. 1) 

where Pi denotes the number of edge pixels in the i-th direction. Next we extract gradient-

based features. These are statistics of image gradients (mean and deviation) and their 

directional histogram. We calculate the directional gradient histogram using the formula 

above. For both histograms, we employ eight directions. 

Table 7. 1. Low-level features for the representation of brushwork classes 

For representing the directional characteristics, we utilize multi-scale Gabor Transform 

proposed for image retrieval by Majunath et al. [1996]. A Gabor filter bank is a pseudo-

wavelet filter bank where each filter generates a near-independent estimate of the local 

Class Properties Low level features  

Shading 
Edges and gradients, often 

directional, intensity 
contrast, weakly or non-

homogeneous 

Multiscale Gabor texture features, Zernike 
moments, Chiaroscuro (intensity) color contrast, 

Multiscale Fractal Dimension, Lacunarity 

 

Glazing 
Subset of hues (yellow, red, 
orange), intensity contrast, 

gradients, non-homogeneous

Top major colors with account for the 
perceptual similarity, Chiaroscuro (intensity) 

color contrast, Daubichies Wavelet Transform,  
Zernike moments, Multiscale Fractal 

Dimension, Lacunarity 

 

Mezzapasta Homogeneous, low intensity 
contrast and small gradients

Mean and Deviation of image magnitudes, 
Directional Histogram of Gradient Magnitudes, 

Major colors with account for perceptual 
similarity 

 

Grattage 
 

Edges, high gradients, 
intensity contrast, 
inhomogeneous 

Number of Edge Pixels, Mean and Deviation of 
Directional Edge Histogram, Chiaroscuro 

(intensity) color contrast, Daubichies Wavelet 
Transform, Multiscale Fractal Dimension, 

Lacunarity 

 

Scumbling 
Soft gradients, low intensity 

and hue contrast, low 
directionality, weakly 

homogeneous 

Daubichies Wavelet Transform, Zernike 
moments, Chiaroscuro (intensity)  and 

Complimentary (hue) color contrast, Multiscale 
Fractal Dimension, Lacunarity 

 

Impasto 
Edges, high gradients, often 
directional, low hue contrast, 

high intensity contrast 

Number of Edge Pixels, Directional Histogram 
of Gradient Magnitudes, Chiaroscuro 

(intensity), Complimentary (hue) color contrast, 
Daubichies  Wavelet Transform, Multiscale 

Gabor texture features 

 

Pointillism 
Medium intensity contrast, 

medium roughness, no 
directionality, homogeneous

Mean and Deviation of Magnitude, Chiaroscuro 
(intensity) color contrast,  Daubichies Wavelet 

Transform, Zernike Moments 
 

Divisionism 

High gradients, high 
roughness, high intensity and 

hue contrast, no 
directionality, weakly 

homogeneous 

Mean and Deviation of Magnitude, Daubechies 
Wavelet Transform , Chiaroscuro (intensity) and 
Complimentary (hue) color contrast, Multiscale 

Fractal Dimension, Lacunarity 
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frequency content. Gabor filter acts as a local band-pass filter with certain optimal joint 

localization properties in the spatial domain and spatial frequency domain. To extract Gabor 

features, the input image I(x, y) is convolved with a set of Gabor filters of different 

orientations and spatial frequencies that cover appropriately the spatial frequency domain. In 

our experiments, we utilize 8 orientations and 4 scales. The general functional g(x,y) of the 

two-dimensional Gabor filter family can be represented as a Gaussian function modulated by 

an oriented complex sinusoidal signal:   
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where σ denotes the parameters of the filter with respect to x and y, W is the center frequency, 

and θ determines the orientation of the filter, a-m is the scale factor to ensure that the energy is 

independent of scale m. 

Another important texture feature is the Dyadic Wavelet Transform (DWT). DWT is most 

useful for multi-resolution image analysis and captures a variety of texture properties [Mallat, 

1989]. Dyadic wavelet decomposition is carried out using 2 channel filter banks composed of 

a low-pass and a high-pass filter and each filter bank is sampled at a half rate (1/2 down 

sampling) of the previous frequency. We employ Daubechies filter banks for our study. This 

filter bank has the important qualities of orthogonality and compact support.  

To extract texture features from Gabor and Daubechies filter response, we calculate the mean 

and deviation of energy distribution of the transform coefficients for each sub-band at each 

decomposition level. Let the image sub-band of size NxN  be Ii(x, y) with i denoting the 

specific sub-band, then the resulting feature vector obtained from the filter response is {µi,σi} 

with,  
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The major drawback of energy-based features above is the implicit assumption of texture 

homogeneity. Such assumption does not hold for several classes of brushwork in our dataset 

that exhibit non-regular textures (for example, scumbling and shading).  

To represent non-regular textures, Mandelbrot [1982] popularized the self-similar fractional 

Brownian motion (fBm) model, which is characterized by a single parameter known as the 

Hurst parameter. The Hurst parameter controls the visual roughness of the process at all 

scales. In our study, we utilize the extended self-similar (ESS) model [Kaplan et al., 1995] 
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that measures the Hurst Parameter at various scales and, thus, encodes more detailed textural 

information. First, the ESS model calculates the directed increments (in x and y orientation) of 

dyadic scales for an image I(x,y):  
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The structure function is defined as the average of the incremental power over all available 

pixels: 
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for θ = {Xaxis, Yaxis}. The multi-scale Hurst parameters are computed for scale s to obtain the 

isotropic and directed features as follows: 
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Finally, we utilize statistical moment descriptors to extract the surface information from the 

brushwork patches. We employ these features to represent glazing, shading and scumbling 

classes. Teague [1979] first introduced the use of Zernike moments to overcome the 

shortcomings of information redundancy present in the popular geometric moments. Zernike 

moments have the property of orthogonality and have been shown to be effective in terms of 

the image representation. Zhang et al. [2001] demonstrated that Zernike moments out-perform 

geometrical moments in shape retrieval task. Another important property of Zernike moments 

is that they are rotation invariant and can be easily constructed to an arbitrary order. The 

Zernike polynomials are a set of complex, orthogonal polynomials defined over the interior of 

a unit circle x2+y2=1 as: 
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where n is non-negative integer, m is the number such that n-|m| is even and m≤n, 

r=sqrt(x2+y2) and θ=tan-1(x/y). The magnitude of Zernike moments has the property of 

rotational invariance and is defined as: 
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where x2+y2≤1 and * denotes the complex conjugate. For our task, we calculate 32 Zernike 

moments. 

We employ all of the above features for adequate representation of brushwork patterns. This 

yields high-dimensionality of the feature space. However, only a subset of features is relevant 

to individual brushwork classes. To tackle this problem, we adopt an approach that combines 

several experts, each of which assigns candidate classes to the unlabelled patterns based on a 

subset of features. In the next session, we briefly discuss a generic framework for serial 

combination of multiple experts. 

7. 4 Generic Multiple Serial Expert Framework for Annotation 

The decision process of the multiple serial expert framework is pre-defined by the decision 

hierarchy, which encodes the sub-tasks and relationships among them. Each level of the 

decision hierarchy includes several individual experts that operate simultaneously and 

independently of each other. We represent the decision hierarchy as the decision tree that 

consists of a root-node, a number of non-terminal nodes and a number of terminal nodes. 

Associated with the root node is the entire set of classes into which a pattern may be 

classified. A non-terminal node represents an intermediate decision and its immediate 

descendant nodes represent the decisions originating from that particular node. After the first 

intermediate decisions are taken at the preliminary level in the decision hierarchy, the final 

decision is reached through a step-wise refinement procedure. As the decision hierarchy is 

traversed in the forward direction, the decisions of individual experts become more and more 

refined, and the confidence associated with the decision increases. The decision making 

process terminates at a terminal node, where the unlabelled patterns receive their respective 

labels. Figure 7.1 demonstrates the decision hierarchy that incorporates these ideas.  

The aim for the decision hierarchy is to reduce the target set or the subset of classes to which 

a pattern might belong. Individual experts, which are associated with the decision tree nodes, 

perform such reduction. We formalize the reduction of target size as follows. The expert at 

the i-th level receives the input vector (X,Si-1), where X represents a pattern and Si-1 denotes the 

decision of the ancestor node. This expert generates its own decision Si, which essentially 

represents a set of classes to which the pattern X belongs with the maximum confidence. The 

set Si is a subset of its respective set Si-1 (Sn⊂ Sn-1 ⊂ Si …⊂ S0). When pattern X reaches the 

terminal node, it is labeled with a single element of Si. 

There are several important issues regarding the multi-expert frameworks. First, since the 

serial expert approach sequentially refines its decisions, then the multi-expert configuration 
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cannot exceed the performance of its terminal nodes, provided that all experts operate on the 

same feature space and dataset. Therefore, the final performance can be either lower or 

identical to the performance of terminal nodes if all the experts utilize the same feature. 

However, if the experts operate on their respective relevant feature subsets, then the 

sparseness and noise of the feature space from the point of view of the expert are reduced and 

the overall accuracy of the combined system is expected to be satisfactory [Rahman et al., 

1999].  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. 1. Serial Combination of Multiple Experts 

Second important issue in the design of the decision tree. The order of the sub-tasks 

influences the overall performance, since the performance of the subsequent levels of experts 

depends on the performance of the pervious levels. The number of levels should be optimal 

such that the increase of performance achieved by incremental enhancement does not 

diminish as more experts are combined. As argued by Rahman et al. [1999], the design of 

decision tree relies on the knowledge about the classification task. In Section 7.5.1, we define 

the decision hierarchy used in annotation of brushwork patterns. 

Third, Rahman et al [1999] outlined two major strategies for annotation using the serial multi-

expert approaches: Class Set Reduction and Class Reevaluation. We will discuss these 

strategies in the next two sections and evaluate the proposed multi-expert framework with 

respect to both strategies in Section 7.8. 
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7. 4. 1 Class Set Reduction strategy 

The Class Set Reduction strategy requires that the experts evaluate all samples from the 

ancestor node and pass them to the subsequent experts. There are three sources of information 

for any expert. First, the current unlabelled patterns. Second, the list of candidate classes 

passed on by the ancestor expert. Third, the desirable subsets of candidate labels to be 

generated from this list. The candidate class labels reflect the choice of the previous expert in 

identifying the current set of unlabelled patterns. Thus, the expert at i-th level of the decision 

hierarchy needs to produce a candidate class subset Si of its own preferences as a function of 

each unlabelled pattern X. The subset Si should have a high probability of containing a true 

label among the candidate class labels corresponding to the pattern.  Here we present the 

formulation of this annotation strategy proposed by Rahman et al. [1999]. Assuming that:  

• w(X) is the true class of pattern X, 

• d(X,Si) is the candidate class generated by the current expert, 

• Pei is the probability that Si does not contain true class, Pei=P[w(X)∉ Si], 

• Pci is the probability that Si contains true class, Pci=P[w(X)∈Si], 

• Pe(i+1) is the probability that the expert at (i+1) level assigns X to the wrong 

class, although Si contains the true class label Pe(i+1)= P[d(X,Si) ≠ w(X) | 

w(X)∈ Si)], 

• Pc(i+1)the probability that the expert at (i + 1) level assigns X  to the correct 

class, given that Si contains true class index, Pc(i+1)= P[d(X,Si) = w(X) | 

w(X)∈Si)]. 

Then the overall correct classification of n-level serial network is 

cncccT PPPP ×××= ...21     (7. 9) 

and the overall error of n-level serial network is 
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Here, since each unlabelled pattern is evaluated until it reaches the leaf nodes, the probability 

of the correct and erroneous labeling depends on the outcome of the preceding levels. In the 

Class Set Reduction strategy, the ability to pass samples to the next level is important, since it 

increases the chance of an unlabelled pattern being assigned the true label. Thus, it assumes 

zero rejection rate at the intermediate nodes.  
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7. 4. 2 Class Reevaluation strategy 

In contrast to the Class Set Reduction strategy, the Class Reevaluation does not require the 

experts to pass all instances to the subsequent levels. It extends the intermediate nodes to 

facilitate additional analysis: if the unlabelled patterns are assigned labels with high 

confidence, then these assignments become final and the decision process does not evaluate 

these patterns further. In essence, this strategy reevaluates patterns that are assigned with the 

confidence lower than some predefined threshold (taccept). Such strategy requires the individual 

experts to perform recognition with respect to individual classes, and pass the patterns with 

ambiguous assignments to the next level.  

We now formalize the decision process for unlabelled pattern X. Assuming: 

• w(X) is the original class associated with the current pattern, 

• d(X, taccept) denotes the candidate class of pattern X generated by the current expert 

based on the confidence threshold  

• α denotes the confidence of expert in assigning a candidate class to pattern X, 

• Pci is the probability that the expert generates the true class,  

Pci = P[d(X,taccept) = w(X)], 

• Pei is the probability that expert doesn’t generate true class.  

We define Pei = Perror + Prejection, where  

• Perror = P[d(X,taccept) ≠ w(X) | (α > taccept)] denotes the probability of erroneous class 

label assigned to the unlabelled pattern X with confidence α higher then threshold 

taccept, and 

• Prejection = P[d(X,taccept) = w(X) | (α < taccept)] denotes the probability of the correct 

class label assigned and being rejected due to the confidence lower then the threshold, 

Similarly to the Class Reduction strategy, the probability of correct decision is defined as: 

cncccT PPPP ×××= ...21    (7. 11) 

with the errors given by PeT=1-PcT.  

7. 5 Transductive Inference of Brushwork Concepts Using Multiple Serial 

Experts Framework 

In this section we discuss a proposed multi-expert framework that employs transductive 

inference of brushwork concept annotation. Figure 7.2 demonstrates the framework for 

transductive inference of brushwork patterns.  
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Figure 7. 2. Serial Combination of Multiple Experts 

At the pre-processing stage, the system performs scoring of features that measures their 

discriminative power with respect to the brushwork classes. As the decision process traverses 

the decision hierarchy, it selects the most discriminative features for individual experts based 

on their respective sub-tasks. The proposed framework implements concept inference at the 

local and global levels. 

At the local level, individual experts implement transductive inference scheme proposed by 

El-Yaniv et al. [2004]. We will discuss this inference in Section 7.6. As a result, an individual 

expert generates a cluster space C with k clusters {Ci} for i = 1…k. Clusters include both 

labeled and unlabelled patterns Ci =Nl∪Nu, where Nl and Nu denote labeled and unlabeled 

patterns respectively. The expert performs annotation of the unlabelled patterns using the 

cluster purity measure. We define pure cluster of class X as the cluster in which more than 

75% of the labeled patterns belong to the target sets. The decision tree pre-defines the target 

sets for each individual expert. In essence, the target sets represent pair-wise constraints “can” 

and “can not”, specifying which labels can be grouped together within a cluster. The cluster 

purity represents the degree to which the calculated cluster c contains labels of the target set X 

and is defined as: 

p(c,X)=NX/Nall     (7.12) 

where NX and Nall denote the number of labeled patterns of class X and the overall number of 

patterns in cluster c respectively. Thus we view the resulting cluster space as follows: 

C =Cp∪Cnp∪Cnl    (7.13) 
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where Cnl denotes clusters that include unlabelled samples only and, thus, carry no class 

information (labels), Cnp and Cp denote clusters represent a mixture of labeled and unlabeled 

samples. The Cp clusters are pure; the unlabelled patterns in these clusters receive their 

candidate labels. The unlabelled samples in clusters Cnl and Cnp are rejected.  

At the global level, the framework performs inference that estimates the candidate classes for 

the rejected samples based on the decision hierarchy. The global inference mechanism passes 

the unlabelled samples, which are rejected at the current level, to all experts at the next level. 

These experts re-evaluate rejected samples and, based on their decisions, either accept them 

or reject them again. This process of re-evaluation continues at the next level of the decision 

hierarchy and so on, until the samples are either accepted or reach the leaf nodes. If the 

samples are rejected at the level proceeding the leaf nodes of the decision hierarchy, the 

global inference mechanism forces their evaluation in every expert of this level and assigns 

the candidate a label based on the highest confidence value generated by these individual 

experts. If the patterns are rejected everywhere, we assign them to the most probable label in 

the subset of candidate labels that preceded its rejection. 

The local and global inference mechanisms facilitate both Class Reduction and Class 

Reevaluation strategies discussed in Sections 7.4.1 and 7.4.2. The implementation of the 

Class Reduction strategy is straightforward due to the global inference mechanism. The Class 

Reevaluation strategy relies on the local inference mechanism. In Formula 7.13 we defined 

the cluster space in terms of pure and impure clusters. The pure clusters Cp further include the 

clusters that contain a majority of samples labeled with a single class Xi. If the purity measure 

of these clusters exceeds the pre-defined threshold taccept, the decision process assigns the final 

labels to the unlabelled samples in these clusters in accordance to the Class Reevaluation 

strategy.  

7. 5. 1 Decision hierarchy 

In our task we know apriori the characteristics of the brushwork classes. We rely on such 

characteristics to formulate the sub-goals at the intermediate and terminal nodes.  

Rahman et al. [1999] demonstrated experimentally that two-level configurations produce very 

good results. In our study, we employ the three-level decision hierarchy with the single 

brushwork class corresponding to the terminal node. Figure 7.3 represents the decision 

hierarchy for the brushwork annotation.  

The decision process starts with all classes and the original dataset. At the first level, we 

arrange the brushwork classes in the subsets based on the degree to which they exhibit similar 

linear components. We define the three sub-goals as {impasto, grattage and divisionism}, 

followed by {scumbling, glazing and shading} and, finally, {pointillism and mezzapasta}. 
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The brushwork classes impasto, grattage and divisionism exhibit strong linear components, 

while are non-homogeneous textures with soft gradients and linear components and classes 

pointillism and mezzapasta are homogeneous patterns without linear components. 

 

 
 

 

 

 

 

 

 

Figure 7. 3. The decision hierarchy for brushwork annotation 

At the next level, there are three experts working simultaneously on their respective datasets. 

The first second-level expert aims to split grattage class from impasto and divisionism 

classes, since patterns in grattage class exhibit long edges and high chiaroscuro contrasts 

compared to the other two classes. The second expert assesses its input patterns by roughness. 

This leads to the terminal node shading, since this class exhibits more roughness as compared 

to scumbling and glazing. The third expert analyzes the patterns belonging to only two 

classes, and hence produces the terminal nodes for mezzapasta and pointillism since these 

classes vary with respect to the roughness and the number of colors they exhibit. 

7. 5. 2 Feature Selection 

The major aim of feature selection task is to provide individual experts with the feature set 

relevant to their respective sub-task. The multi-expert framework supports both manual and 

automatic selection of features.  

7. 5. 2(a) Manual Feature Selection 

Using apriori knowledge about the brushwork classes from Table 7.1, we assign relevant 

features to individual experts. The details of the image features we use are discussed in 

Section 7.3. Figure 7.4 demonstrates the decision hierarchy of individual experts with their 

respective relevant features. 
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7. 5. 2(b) Automatic Feature Selection 

To avoid manual assignment of features, we developed a method for automatic feature 

selection based on the statistical properties of the feature distribution. This method calculates 

the feature discriminative scores with respect to the brushwork classes using a three-step 

procedure.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 7. 4. The decision hierarchy for brushwork annotation 

First, it calculates tight clusters in the feature space using iterative K-means method. Since the 

K-means clustering method minimizes the intra-cluster distance, the data points within a 

cluster are somewhat close to each other in the feature space and exhibit relatively small 

variances along some of the feature dimensions. Thus, feature dimension is more likely to be 

relevant to the cluster if the projection of the cluster onto this dimension has a smaller 

variance.  

Second, the proposed method assesses the “importance” of feature for the calculated clusters. 

For this, it employs Pearson’s Chi-square statistics that facilitates measurement of “goodness-

of-fit” between observed and expected distributions. Low “goodness-of-fit” value signifies 
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that distributions are different, while high value indicates their similarity. To score the 

features, we treat distribution within a cluster as observed and distribution of the whole 

dataset as expected distribution. Intuitively, if the distributions of feature in a cluster and in 

the whole dataset are similar, then the analyzed feature is not representative of the cluster and 

its Chi-square statistics is comparatively low. To represent feature distribution, we employ 

normalized histograms O={O1, O2, …,O100} and E={E1, E2,…., E100} for the observed and 

expected distributions respectively. We measure “goodness-of-fit” using the following 

formulae: 

i
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−=χ      (7. 14) 

where the counts Oi and Ei denote i-th histogram bin count of the observed and expected 

feature distributions respectively, χ2 denotes the discriminative score of j-th feature with 

respect to a currently analyzed cluster. Lastly, the method combines the feature scores of 

clusters to achieve the score of j-th feature of the brushwork classes using the following 

formula: 
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where p(c,X) denotes cluster purity of cluster c with respect to class X. Equation 7.12 

demonstrates how we calculate the cluster purity. K is the total number of clusters, A(c) 

denotes the size of cluster c normalized by the total number of labeled patterns in class X and 

χ2 (c) denotes Chi-square statistics of j-th feature in cluster c. 

To select relevant features to their sub-tasks, the expert utilizes information from matrix of 

feature scores and the decision tree hierarchy, since, the decision hierarchy pre-defines subset 

of brushwork classes for the decision tree hierarchy. As Figure 7.4 demonstrates, the decision 

tree hierarchy predefines the subset of analyzed brushwork classes for each sub-task. 

Individual experts utilize this information and extract the feature discriminative scores for 

their respective subsets of classes and further utilize these scores during model selection step 

as discussed in Section 7.6.3. 

7. 6 Individual Experts 

To implement individual experts, we employ transductive inference method since they 

account for distribution of unlabelled samples and possibly lead to more accurate results 

[Vapnik, 1982]. For simplicity, we rely on the transduction formulation for binary 

classification proposed by Vapnik [1998]. In this formulation the expert is given a full sample 
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Xl+u of l labeled and u unlabelled patterns. Based on the labeled and unlabeled patterns, the 

expert's goal is to predict, as accurately as possible, the labels of the remaining unlabeled 

points, which constitute the test set, Xu=Xl+u-Xl.  

We denote by H a set of binary hypotheses consisting of functions from the input space X to Y 

= {+/-1}. The experts's goal is to choose a good hypothesis from H. For each hypothesis h∈H 

and a set of samples Z = x1… xN  we denote the full sample risk of hypothesis h as follows : 
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where φ(xi) ∈ Y denotes the true label of pattern xi and L(⋅,⋅) denotes loss. Rh(Xu) is referred to 

as the transduction risk or test error (of h), and Rh(Xl) is the training error (of h). The goal of 

the expert is to choose h∈H with minimal transduction risk Rh(Xu). 

Similar to other studies [Miller et al., 2003; El-Yaniv et al., 2004], we employ transductive 

learning via clustering for brushwork annotation. This approach is appropriate to our task for 

several reasons. First, the clustering techniques model a class as a set of clusters 

(distributions) in the feature space. Second, they incorporate unlabelled patterns and facilitate 

annotation with relatively small labeled dataset (so called semi-supervised annotation). 

Lastly, in many circumstances the data density can provide good clues regarding what data 

points belong to what classes. In our work, we employ hierarchical [Murtagh, 1983], k-means 

[Hartigan 1975; Hartigan et al., 1979] and probabilistic clustering using Gaussian Mixture 

Models [McLachlan et al., 1988].  

7. 6. 1 Transductive Risk Estimation 

Several bounds were proposed for transductive risk estimation. In this study we employ 

explicit PAC-Bayesian bound proposed by [Debreko et al., 2004]. The idea is to bound the 

deviation between the two random variables Rh(Xu) and Rh(Xl), which are both concentrated 

around their mean Rh(Xl+u).  

Let p = p(Xl+u) be a (prior) distribution over the class of binary hypotheses H that may depend 

on the full sample. Let δ∈(0;1) be given. Then, with probability at least 1-δ, the following 

PAC-Bayesian transductive bound holds for any h∈H, 
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In this formula, Debreko et al. [2004] demonstrated that this bound is located between the 

training error and the error over the full dataset. Also, we observe that the in the best possible 

scenario the transduction risk is equal to the training error.   Further, Debreko et al. [2004] 

derive the following corollary: 

Corollary 7. 1. Let A be any clustering algorithm and let hτ , τ = 2,….,c be classifications of 

test set Xu as determined by clustering of the full sample Xl+u (intoτ clusters). Let δ∈(0; 1) be 

given. Then with probability at least 1-δ, for all τ, (7.17) holds with log(1/p(h)) replaced by τ 

and ln(m/δ) replaced by ln(mc/δ). 

This extension is useful in situations, where the prior knowledge about ideal τ in unavailable. 

Further, Debreko et al. [2004] extended Corollary 7.1 to evaluate an ensemble of clustering 

algorithms. Specifically, we can concurrently apply k clustering algorithm (using each 

algorithm to cluster the data into τ=2,….,c clusters). We thus obtain kc hypotheses (partitions 

of Xl+u) and replace ln(cm/δ) by ln(kcm/δ) in Corollary 7.1 to guarantee that these bounds hold 

simultaneously for all kc hypotheses (with probability at least 1-δ). We thus choose the 

hypothesis, which minimizes the resulting bound. This extension is particularly attractive 

since typically without prior knowledge we do not know which clustering algorithm will be 

effective for the dataset at hand.  

7. 6. 2 Model Selection 

Clearly, the overall performance of the serial multi-expert framework relies on the 

performance of transductive inference implemented within the individual experts, which in 

turn depends on the quality of the generated clusters. There are two sets of parameters 

required to generate cluster model. First, these are the parameters required by clustering 

techniques. Second, it is cut-off thresholds for the feature discriminative scores. Parameters 

required by clustering techniques include distance metrics for the distance-based clustering 

techniques, number of mixture components for probabilistic clustering techniques etc. The 

cut-off theshold is required to select only highly scored features of the brushwork classes 

relevant to the expert sub-task based on the preprocessed matrix of feature scores. We discuss 

construction of this matrix in Section 7.5.2(b). To calculate a pool of clustering models we 

perform semi-supervised clustering using varying clustering parameters and cut-off 

thresholds. However, it is unclear which cut-off threshold and clustering parameters would be 

the most appropriate model for the particular sub-task. To choose such model, individual 

expert performs the model selection step as demonstrated in Figure 7.5. 
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Figure 7. 5. Model selection step performed by individual experts 

Figure 7. 4. The decision hierarchy for brushwork annotation 

Figure 7. 5. The model selection step 

7. 7 Experiment Results 

In this section we demonstrate the performance of the multi-expert framework for the 

brushwork annotation task. For our experiments, we randomly select 30 paintings from the 

subset of 315 paintings as discussed in Section 5.3. The selected paintings span such painting 

styles as: Renaissance, Fauvism, Impressionism, Post-Impressionism, Expressionism and 

Pointillism. From these paintings we extract 4880 fixed-size blocks of size 32x32. We further 

randomly split this dataset of image blocks; we employ 25% of the dataset for testing and 

75% for training. Figure 7.6 demonstrates the distribution of brushwork classes in the training 

and testing sets. 
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Figure 7. 6. Distribution of the brushwork class labels in the dataset 

Input: 
1. A full sample set Xl+u and training sample set Xl,   
2. Feature weighted scores FS(Lj) for the candidate class labels Lj,  
3. A maximum number of mixture components or clusters K,  
4. A set of cut-off thresholds for the feature weighted scores Tf 

Output:  
Candidate class labels of the test set Xu 
Algorithm: 
For each cut-off threshold tf∈Tf  

For each number of mixture components or clusters k, 2 ≤ k ≤ K 
 train cluster model {Mk,tf} on Xl+u ; 

For each model {Mk,tf} 
Generate corresponding hypothesis {hk,tf} by estimation data clusters 
(for each data point we perform maximization of the posterior probabilities 
with respect to the calculated distributions  ) 
Measure cluster purity of each cluster 
Calculate PAC-Bayesian bound of {hk,tf} 
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7. 7. 1 Automatic Feature Selection 

To perform annotation of brushwork classes we combine low-level color and brushwork 

features discussed in Section 7.3 and meta-level artistic color features discussed in Chapter 6. 

We calculate feature scores using Chi-Square characteristics with respect to each individual 

feature. However, for demonstration purposes we organize the total feature set of 426 features 

in the feature groups as follows: Directional edge histogram (ED), edge pixels (EP), 

directional tilt histogram (TH), Gabor-based features (G), wavelet-based features (W), multi-

scale fractal dimension (MFD), fractal dimension and lacunarity in HSI color space (FDL), 

major colors with account for perceptual similarity (MCP), color contrasts (CST), color 

histogram statistics (CHS), statistics of image magnitude (M) and Zernike moments (Z). For 

each group we calculate its average feature discriminative score using its respective features. 

Figure 7.7 demonstrates the plot of the averaged feature scores for each group with respect to 

the brushwork classes.  

From Figure 7.7 we can observe that features in Edge Histogram and Edge Pixel group have 

the highest importance for such classes as impasto, grattage and shading. This is not a 

surprising result since patterns of impasto, grattage and shading exhibit a large number of 

linear components. Tilt Histogram features capture the properties of image gradients in terms 

of their strength and orientation. These features score highly with respect to the classes of 

mezzapasta, divisionism and impasto. Such scores are in line with relationships among classes 

and features as presented in Table 7.1, since mezzapasta and divisionism exhibit nearly no 

direction at all in contrast to impressionism. 
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Figure 7. 7. Averaged feature scores of feature groups 

At the same time, mezzapsata has gradients of low strength in contrast to divisionism. Gabor 

features have high importance for mezzapasta class. Figure 7.7 shows that the wavelet-based 
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features do not exhibit very high importance for any of the classes. This is due to the 

averaging of scores within this group, where only a small fraction of features has high 

importance as compared to the rest of features. Wavelet-based features have relatively high 

importance for divisionism, scumbling, shading and mezzapasta classes. Multi-scale fractal 

dimension features score highly with respect to shading, glazing, pointillism and impasto due 

to the fact that these features represent well non-homogeneous patterns such as shading and 

glazing and patterns with high degree of roughness such as pointillism and impasto. Major 

colors with account for perceptual information (MCP group) are relatively more important for 

impasto and shading classes, since artists often used these brushwork techniques to depict 

sky, grass as well as dark-colored folds in medieval paintings. Color contrast and color 

information is important for divisionism since it exhibits a mixture of contrasting colors (or 

color mixing principle). Statistics of image gradient magnitude is naturally important to 

brushwork classes exhibiting distinctively high or low gradient magnitudes such as impasto, 

divisionism and mezzapasta.  

7. 7. 2 Annotation Experiments 

In our experiments, we test the proposed approach using several configurations of multi-level 

serial framework and compare it with several baseline methods. This includes: 

• Baseline system (BS) is a one-step semi-supervised clustering method that utilizes 

full feature space. In our experiments we found that the use of 50 clusters and 30 

mixture components yields the best results for distance-based and probabilistic 

clustering methods respectively. Therefore, we initialize the clustering techniques for 

baseline system with these values. 

• Baseline system with automatic feature selection (BAFS) is similar to BS but it 

utilizes a reduced set of relevant features selected based on the feature scores as 

discussed in Section 7.5.2(b);  

• Multi-expert framework with model selection (MMS) denotes the proposed 

transductive inference framework with model selection step as discussed in Section 

7.6.3; 

• Multi-expert framework with manual feature selection (MMFS) denotes the proposed 

transductive inference framework that utilizes model selection step and instead of 

automatic feature selection utilizes manual feature selection as discussed in Section 

7.5.2(a); 

We perform the testing of each configuration of the multi-expert framework with respect to 

Class Reduction and Class Reevaluation Strategies. For each of the developed configurations, 

we test performance based on the several clustering techniques implemented within individual 
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experts. These techniques include: K-means clustering, ‘Complete-link’, ‘Average-link’, 

‘Single-link’ agglomerative clustering and probabilistic clustering using a combination of 

Gaussian Mixture Model and Expectation Maximization.  

Table 7. 2. Annotation performance of brushwork concepts  

Table 7.2 demonstrates performance of the baseline and multi-expert framework in terms of 

the overall annotation accuracy. It shows that both the baseline and multiple expert 

framework obtain significantly higher performance with Complete-Link, Average-Link and  

K-means distance-based clustering techniques as compared to the Single-Link technique. 

Since the Single-Link method merges two clusters with the smallest minimum pair-wise 

distance, it tends to group together patterns of the different classes, leading to a large number 

of impure clusters. In many cases, Average-Link yields slightly better results as compared to 

Complete-Link and iterative K-means clustering. Probablistic clustering technique results in 

better accuracy as compared to the distance-based clustering techniques. Such improvement 

of accuracy is due to the use of more sophisticated distance metrics in probablistic clustering.  

Table 7.2 shows that the multi-expert system achieves significantly better performance as 

compared to the baseline system due to several reasons. First, the multi-expert system 

facilitates step-wise disambiguation of the patterns using domain knowledge and, thus, 

minimizes the probability of misclassifications at the terminal nodes.  

Second, the model selection step facilitates adaptive selection of the best performing model 

and contributes to improvement in the overall accuracy.  

To discuss the first point in more detail, we plot Figure 7.8. This figure demonstrates how 

terminal nodes benefit from the disambiguation process. Here, the task of the expert 

associated with the current terminal node is to assign the input patterns to one of the two 

classes (divisionism or impasto). The Input Set in Figure 7.8 is the set of the unlabelled 

patterns given as the input to the current terminal node. It represents the more coarse decision 

System Configuration K-means Complete Average Single GMM+EM

BS 74.61% 74.73% 75.08% 57.64% 80%  

Baseline BAFS 78.39% 79.03% 79.10% 58.11% 83.6% 

MMFS, 
Class 

Reevaluation 

87.2% 87.5% 88.15% 62.17% 89.3% 

MMFS, 
Class Reduction 

91.4% 92.06% 94.89% 68.32% 95.38% 

MMS, 
Class 

Reevaluation 

85.67% 85.45% 86.72% 60.87% 87.45% 

 
 

Multi-Expert 
Framework 

MMS, 
Class Reduction

90.23% 89.57% 92.71% 65.13% 93.71% 
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of the ancestor node as compared to the current terminal node. From the point of view of the 

current expert associated with the terminal node, these unlabelled patterns are likely to be 

divisionism or impasto. 

 
Figure 7. 8. Example of the terminal node 

Figure 7.8 demonstrates the distribution of the unlabelled patterns in the Input Set with 

respect to their true labels (Y axis). It can be seen that the candidate class labels (divisionism 

or impasto) include the true class label for the majority of unlabelled patterns. Based on the 

input patterns, current expert generates its own decision and outputs the Output Distribution 1 

(impasto) and Output Distribution 2 (divisionism). Figure 7.8 demonstrates that for the 

majority of unlabelled patterns their assigned labels Output Distribution 1 and Output 

Distribution 2 are in agreeament with their respective true labels Ground Truth.  

 From the distribution of unlabelled patterns in the Input Set, it is clear that the sequential 

refinement disambiguates patterns before they reach the current expert (terminal node) and 

receive their final label. This refinement naturally leads to higher accuracy achieved by the 

individual experts since the probability of the true class being assigned to the disambiguated 

patterns is high, resulting in better performance of the multi-expert framework. 

Next, we discuss our second point in more detail. Model selection step performs selection of 

the least erroneous model and most appropriate cut-off threshold for individual sub-tasks, thus 

maximizing overall accuracy. In our experiment, we use several configurations to 

demonstrate that the use of relevant features and model selection enhances the annotation 

results. Initially, we combine baseline with automatic feature selection (BFS) discussed in 

Section 7.5.2(b). We used fixed cut-off thresholds for the feature scores at 0.7 level and found 

that the use of relevant  features indeed improved the annotation result. This improvement is 

due to the dimensionality and noise reduction in the feature space. Next, we test multi-expert 

framework using model selection step with manual (MMFS) and automatic feature selection 

(MMS). Both configurations outperform baseline with automatic feature selection, while the 

Impasto, 
Divisionism 

DivisionismImpasto 
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performance of the multi-expert framework with model selection based on manual feature 

selection outperforms the same setup with automatic feature  selection. However, their 

performance is comparable with around 1-3% loss of accuracy  in MMS configuration. 

Table 7.2 demonstrates that in all cases the use of Class Reevaluation strategy yields worse 

performance than that of the same setup with Class Reduction strategy. This is because under 

the Class Reduction strategy, some patterns receive their final labels at the intermediate 

nodes. Such conditional assignments result from high confidence of the experts at these 

nodes. However, the decision process annotates such patterns at the level of coarse 

intermediate decisions and disambiguation of these patterns is only partial, which results in 

additional 5% to 6% erroneous labels under Class Reevaluation strategy as compared to the 

Class Reduction strategy. 

To conclude our experiments with brushwork annotation, we examine the distribution of 

annotation error of the multi-level framework with respect to the brushwork classes. Figure 

7.9 plots the error rates of annotation based on the Class Reduction and Class Reevaluation 

strategies using Complete-Link, Average-Link and probabilistic clustering techniques with 

model selection. Figure 7.9 demonstrates that for all clustering techniques, Class Reduction 

strategy yields fewer errors in annotation for the majority of classes as compared to Class 

Reevaluation strategy. Also, we can observe that the distribution of error is non-uniform for 

all graphs. The majority of erroneous assignments are in shading and scumbling classes due to 

the fact that patterns in these classes exhibit a large variety of patterns and, thus, resemble 

other classes to a higher extent.  
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Figure 7. 9. Error distribution with respect to the brushwork classes 

Both Class Reduction and Class Reevaluation strategy produce relatively smaller error for 

such classes as divisionism, mezzapasta and pointillism. This is due to the fact that patterns of 

these classes exhibit less variety and are adequately represented by a number of texture 

features, resulting in low intra-cluster pair-wise distances in the feature space. 
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7. 8 Summary 

In this section we proposed the semi-supervised multi-expert approach for the annotation of 

brushwork in paintings. Explicit annotation of brushwork is desirable since it helps in the 

annotation of paintings with higher-level semantic concepts such as the artist names, periods 

of art and paintings styles. To perform annotation, we employed serial combination of multi-

experts. This framework benefits from sequential refinement of the assigned labels and it 

facilitates dimensionality reduction. It generates decisions in accordance to the decision 

hierarchy that predefines similarity among classes based on the domain knowledge. To 

facilitate annotation at the level of individual experts, we employed semi-supervised distance-

based and probabilistic clustering techniques. These techniques model the brushwork classes 

as tight clusters in the feature space as well as benefit from the distribution of unlabelled 

patterns. We presented several versions of the proposed of framework, where the relevant 

features and model parameters are selected manually or automatically using the iterative 

model selection step. Experiment results demonstrate satisfactory performance of the several 

versions of the proposed framework. The framework version with automated selection of 

features and clustering parameters yields comparable results to the version with manually pre-

defined relevant features. 
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Chapter 8 

 

Annotation of Application-Level Concepts 

8. 1 Introduction 

In this chapter, we focus on the annotation of paintings with high-level semantic concepts. 

Annotation of general domain images with high-level concepts is an active research area in 

recent years with several studies. Most studies focused on the annotation of art images, 

including existing models for general domain image annotation [Barnard et al. 2003, Li et al., 

2004]. These models perform mapping from low-level features directly onto high-level 

concepts. Similarly to these works, our approach employs the visual content to perform 

annotation of paintings. However, unlike many traditional annotation frameworks, it does not 

limit itself to the analysis of visual content. We perform the annotation of high-level concepts 

in two steps. First, we combine visual-level concepts and low-level features to annotate image 

blocks with high-level concepts. Second, we disambiguate the annotated concepts at the 

image level with an account of the ontological relationships among concepts.  

To perform annotation of image blocks with high-level concepts we employ multi-expert 

transductive inference framework as discussed in Chapter 7. This framework employs serial 

multi-experts approach to perform the annotation of patterns. One of the key features of this 

approach is its ability to introduce domain-specific knowledge, which reflects the similarity 

among the concepts, into the annotation process. Within the serial multi-experts approach, 

such knowledge is depicted in the decision hierarchy, which guides the pattern 

disambiguation process.  

In the previous Chapter, we proposed two variations of the multi-expert transductive 

inference framework that employ similarity-based and probabilistic clustering methods. We 

have discussed Gaussian Mixture Model along with its advantages in Section 7.6.3. To 

perform annotation of high-level concepts we employ this probabilistic clustering method 

because the “soft” clustering result achieved via this model facilitates the detection of outliers.  
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To perform concept disambiguation, we utilize ontological relationships among concepts as 

discussed in Chapter 4. This ontology includes two types of concept relationships. First type 

is “parent-child” relationships between the meta-level and application-level concepts, which 

we exploit for the generation of the semantic labels. The second type is the relationships 

between high-level concepts as discussed in Section 4.5. We view this type of relationships 

among high-level concepts as constraints. To satisfy these constraints, we employ the integer 

linear programming (ILP) apporach. This method is somewhat similar to the one used for the 

semantic role labeling [Punyakanok et al., 2004; Tsai et al., 2005] task from the text-

processing domain.  

8. 2 Related Work 

In this chapter, we perform automatic annotation of high-level concepts using domain 

ontology. In this respect, this approach is similar to the works of [Fan et al., 2005a and 2005b; 

Mylonas et al., 2006; Petridis et al., 2006; Dong et al., 2006]. These studies employ machine 

learning techniques to perform annotation of images with ontology concepts. Mylonas et al. 

[2006], Grira et al. [2005] employed agglomerative clustering to perform semi-supervised 

inference of image labels, while Li and Sun [2006] utilized 2D Conditional Random Fields 

for this purpose. A number of authors, including Zhao et al. [2005], Miller et al. [1997], 

Nigam and Mccallum [2000], Fang et al. [2005] and Miller et al. [2003], employed mixture 

models for the concept annotation task using both labeled and unlabeled data.  

In our work, we aim to develop robust classifiers since the account of outliers is crucial. From 

this point of view, our work is related to the studies of Dave et al. [1991] and Miller et al. 

[2003]. In their study, Dave et al. [1991] introduced a “noise” cluster to capture outliers that 

aims to reduce contamination of true clusters. Our approach is somewhat more similar to the 

work of Miller et al. [2003], where multiple noise clusters are allowed in the semi-supervised 

setting. Nigam et al [2000] proposed another solution to handle outliers in unlabeled datasets. 

They gave a different (constant) weight to unlabelled instances in an attempt to reduce the 

influence of outliers on the annotation accuracy. However, this method treats all unlabeled 

instances in the same way and, thus, diminishes their impact on the estimation. Tajudin et al 

[2000] proposed an improvement by adopting a mixture modeling approach, where variable 

weights are given to each unlabeled sample. In contrast to the above discussed methods, we 

do not model the outliers explicitly, but rather implicitly re-evaluate them within our multi-

expert framework. Rahman et al. [1999] and [2000] discussed a topology of multi-expert 

approaches. Closely related to the multi-expert approach are the decision combinations 
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methods discussed in Ho et al. [1994].  

In our work we employ domain knowledge in the form of ontology-provided constraints to 

improve the automatically generated labels. This is a relatively new area of research in image 

auto-annotation task. The majority of image studies employ constraints embedded in the 

training set [Zhou et al., 2005] or utilize user-provided pair-wise constraints [Grira et al., 

2005] to improve the annotation accuracy. In our work we pose this problem as an 

optimization task that aims to generate the annotations, which are both consistent with 

ontology-provided constraints and the confidence values generated by the auto-annotation 

framework. To our knowledge, this approach has not been used for ontology-based annotation 

of images.  

8. 3 Annotation of Application-Level Concepts 

This section discusses the last stage of the framework proposed in Chapter 5. To perform the 

annotation we: (a) auto-annotate images based on the calculated features, and (b) utilize 

domain-specific knowledge to disambiguate automatically the generated results. We discuss 

these two stages in section 8.3.1 and 8.3.2 respectively. 

8. 3. 1 Transductive Inference of Application-level Concepts 

To auto-annotate images with high-level concepts, we perform a three-step procedure. First, 

we sub-divide paintings into fixed size blocks and perform iterative K-means clustering of 

painting blocks using low-level color and texture features. This procedure merges the dataset 

into clusters and represents similar image blocks as a single discrete data point, thus reducing 

the computational time. This is especially important for transductive inference methods: it 

might require long time to build a model using thousands of unlabelled samples. We represent 

the calculated feature clusters using mean feature vectors found within each cluster and utilize 

the feature clusters as units of analysis in the annotation task.  

Second, we perform annotation of visual-level concepts. For the annotation of a cluster with 

brushwork concepts, we utilize low-level color and texture features of a cluster and employ a 

fully automated variant of the multi-expert transductive inference framework proposed in 

Chapter 7. To annotate the visual-level color concepts, we employ the methods discussed in 

Chapter 6. We first perform annotations of color temperature, color palette and contrasts for 

fixed size image blocks. To capture details of the color distribution, we measure color contrast 

within each block. For this, we form color pairs based on the major colors of a block and 

employ geometrical relationships among these colors to measure color contrasts. Next, we 
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utilize the majority vote strategy to assign color concepts to clusters.  

Third, we combine low-level color and texture features, and annotated visual-level concepts 

to map the feature clusters onto the art period, painting style and artist name concepts. We 

perform the mapping using a variation of the multi-expert framework based on the Gaussian 

Mixture Models proposed in Chapter 7. While the aim of our method is the correct 

classification of feature clusters into a set of “known” classes, we also aim to detect outliers 

and filter out the samples that belong to several “known” classes simultaneously. This need 

arises from the data itself. First, the altered appearance of brushwork and color concepts along 

the painting canvas, the object edges etc. Forcing such data samples to be annotated with 

semantic concepts might lead to classification error. Second, a painting exhibits a 

combination of several meta-level concepts and, naturally, some data samples from various 

paintings are likely to be ambiguous. For example, the data samples extracted from the 

background of paintings usually represent flat brushwork with almost homogeneous color. 

Such data samples are, therefore, not representative of particular artist, painting style and art 

period. We assume that only a subset of blocks is informative about artist, painting style and 

art period of an image. The probabilistic soft clustering generated by GMM facilitates the 

detection of ambiguous and rejected samples based on the posterior probability and the cluster 

purity measure. The transductive inference framework re-evaluates such patterns within the 

decision hierarchy as discussed in Section 7.5. However, this approach does not guarantee to 

eliminate all errors. To study the performance of the transductive inference framework 

closely, we evaluate this framework based on varying subset of image blocks, where the 

subsets arise from thresholding of the posterior probability of blocks. 

To adopt the transductive inference framework, we preprocess the class weighted feature 

scores and we pre-define the decision hierarchy for the concepts of art period, artist name and 

painting styles respectively. Further in this section, we discuss the decision hierarchies 

predefined for the annotation of application-level concepts based on the time-line of art as 

discussed in Section 4.5. Figure 8.1 demonstrates the decision hierarchy for artist name 

concepts and Figure 8.2 shows the decision hierarchy for the painting style concepts. 

Since our collection includes paintings from only two periods of art, the decision hierarchy 

has only three nodes: a root node and two leaf nodes. Due to this, the multi-expert framework 

becomes a single expert that annotates the image clusters with one of the two mutually 

exclusive concepts 
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Figure 8. 1. The decision hierarchy for annotation with artist names 
 

 

 

 

 

 
Figure 8. 2. The decision hierarchy for annotation with painting styles 

8. 3. 2 Concept Disambiguation using Ontological Relationships 

In this Section, we propose a method that integrates the generated high-level concepts and 

disambiguates them at the image level. While it is difficult to incorporate concept 

relationships during the learning phase, it is possible to account for these relationships after 

base classifiers generate their candidate concept labels. Ideally, if the learned base classifiers 

are perfect, blocks will be labeled correctly according to the classifiers’ predictions. In reality, 

labels assigned to blocks in an image often contradict each other, and violate the constraints 

arising from domain knowledge. In order to resolve these conflicts, we design a 

disambiguation method that takes the confidence scores of each individual concept given by 

the base classifiers as input, and outputs the best global assignment that also satisfies the 

domain knowledge constraints. In domain knowledge, ontological relationships among the 

application-level concepts serve as such constraints as demonstrated in Table 4.6. For 
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example, van Gogh’s paintings appeared in Modern art period, but not in Medieval art period. 

To perform global optimization of labels, we propose an ontology-based concept 

disambiguation method (OCD) that is similar to the more general problem of the metric 

labeling proposed by Kleinberg et al. [2002]. To solve this problem we encode the concept 

relationships as linear constraints and employ the Integer Linear Programming approach 

[Chekuri et al., 2001]. Integer Linear Programming is a class of constraint satisfaction 

problems, where variables are restricted to the integer representation form. The goal of such a 

problem is to minimize (maximize) the n-ary function f, which is defined as the sum of 

variables ciXi. Figure 8.3 demonstrates the high-level scheme of the proposed OCD method. 

 

 

 

 

 

 

 

 
Figure 8. 3. Ontology concept-based disambiguation method 

Overall, the proposed OCD method includes two stages. First, we calculate high-level 

concepts for the whole image and form label combinations. Second, using these combinations 

we solve a constraint satisfaction problem to generate the final labels for images.  

To achieve the image-level representation of labels, we back-project the labels of blocks onto 

their respective images and calculate their distribution within an image. We represent such 

distributions using a histogram, where the histogram bins refer to the application-level 

concepts and the histogram values denote the number of image blocks annotated with these 

concepts. Using this method, we represent the distributions of artist name concepts, painting 

style concepts and art period concepts within each image. Based on these distributions we 

form all possible concept combinations <artist name – painting style – art period>. 

Next, we aim to disambiguate these concepts and generate the final image-level annotations. 

Our disambiguation approach relies on the formulation of [Roth et al., 2004] and [Marciniak 

et al., 2005], who applied integer linear programming for the semantic role labeling problem 

in the Natural Language Processing domain.  

In accord to the formulation of [Marciniak et al., 2005], the final decisions are modeled as a 

set of n classification tasks CT = {CT1, ….CTn}, which form inter-related pairs. We have three 
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classification tasks: artist name, painting style and art period respectively. Each task CTi 

assigns a label from the set },....{ 1 iimii llL = to an image. We model the assignments as the 

variables of linear cost function. We have simple variables that model assignments of each 

individual label and combined variables that model assignment of labels for each pair of 

related tasks. Thus, simple variable x(lij) models the individual assignments of every label in 

Li for task CTi. This label x(lij) is set to 1 if selected or zero otherwise. Each individual 

assignment x(lij)  is associated with the assignment cost, which is defined as follows: 

cost(lij) = -log2(p(lij*w(lij))     (8.1) 

where p(lij) denotes the mean posterior probability generated by the multi-expert framework 

system for image blocks that are labeled with concept lij; w(lij)) is the normalized number of 

such blocks within an image.  

Combined variable x(lij,lkt) models the assignment of labels between two inter-related tasks 

CTi and CTk. This variable is equal to 1 if our method attempts to annotate an image with 

concepts lij and lkt and 0 otherwise.  Each of these assignments is associated with a coefficient 

that reflects the domain constraint on the respective pair of labels. The value for this variable 

arises from the acyclic graph H that we employ to represent the ontological relationships 

between artist name, painting style and art period. If two concepts lij and lkt in H are related, 

then H(lij,lkt) = 1 and otherwise it is set to 0.0001. We calculate the coefficient in the 

following way: 

coef(lij,lkt) = -log2(H(lij,lkt))    (8.2) 

The OCD method includes the target function and a set of constraints that prohibit illegal 

assignments. In our case, the target function is the cost function f, which we want to 

minimize:  
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We formulate several constraints. First, the algorithm should select exactly one label lij for 

each task CTi. Thus only one variable x can be set to 1: 

}...1{,1)( nilx
iij Ll

ij ∈∀=∑
∈

    (8.4) 

We also require that if the two variables x(lij) and x(lkt) are selected, then exactly one 

combined variable x(lij,lkt) that models the co-occurrence of these labels must be set to 1: 
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Lastly, we pre-define that variables x and y are binary: 
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8. 4 Experiment Results 

For our experiments, we employ the full dataset of 1050 paintings as discussed in Section 5.3. 

We employ 315 and 735 images for training and testing respectively. For annotation of the 

application-level concepts we utilize 32x32 fixed-size blocks of size. To achieve the image 

clusters, we allow up to 60 clusters in each painting.  

To present our experiment results, we plot all precision, recall and F1 values discussed in 

Section2.5 with respect to the increasing number of the rejected blocks. At each level of the 

rejection rate, we reduce the number of the analyzed image blocks in accordance to their 

confidence value, which is the generated posterior probability. For example, 10% rejection 

rate means that we discard 10% of the least confident samples and evaluate the performance 

based on the remaining 90% of the whole sample set. By varying the percentage of rejected 

blocks, we could demonstrate that the generated posterior probabilities are reliable, and 

evaluate the impact of using only a subset of most reliable blocks to induce high-level 

semantics at the image level. 

8. 4. 1 Annotation of Artist Concepts 

In this section, we evaluate the proposed framework with respect to the artist name concepts. 

First, we evaluate the annotations generated for the image blocks. Next, we evaluate the 

image-level annotations. Lastly, we evaluate the performance of the proposed framework with 

respect to each artist and investigate the dependencies between the size of the training dataset 

and the annotation accuracy. 

Figure 8.4 demonstrates the precision of the block-level annotations generated by the 

proposed multi-experts framework and several baseline methods. To calculate precision, we 

compare the ground truth of image blocks and their candidate labels, which are generated in 
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the leaf nodes of the decision hierarchy of the transductive inference framework. At each 

level of rejected rate, we calculate the number of correctly annotated blocks and normalize 

this number by the number of currently analyzed blocks. The baseline methods include: 1) 

Baseline 1 – inductive inference based on low-level features; 2) Baseline 2 – transductive 

inference based on low-level features; 3) Baseline 3 - inductive inference based on low-level 

features and visual-level concepts; 4) Baseline 4 - transductive inference based on low-level 

features and visual-level concepts. For inductive inference, we employ the multi-category 

probabilistic SVM method proposed by Chakrabartty et al. [2002]. For transductive inference, 

we employ the combination of GMM and EM using 150 distributions. For all baselines, we 

employ the 100 top-scoring features based on the Chi-square statistics.  

Several observations can be readily obtained from Figure 8.4. First, it shows that the precision 

of all methods improves with the increasing rejection rate, since we increasingly remove 

ambiguous samples from the dataset and decrease the number of analyzed blocks. Second, it 

shows that visual-level concepts (Baseline 3, 4 and the proposed method) facilitate higher 

annotation accuracy as compared to the use of low-level features only. Third, it shows that for 

all Baselines the transductive inference method slightly outperforms inductive inference.  
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Figure 8. 4. Region-based annotation performance for artist name concepts  

Fourth, the precision graph of the proposed method demonstrates superior results due to 

several factors. They include: (a) the use of visual-level concepts leads to the increased 

performance; (b) the decision hierarchy facilitates step-wise disambiguation of patterns, 

which purifies the classifier decision and improves the predicted accuracy of classification; 

and (c) the model selection step adaptively selects features and model parameters and finds 

the most adequate model to capture the data distribution. 

Figure 8.4 demonstrates that the proposed method achieves accuracy of more than 90% for 

the rejection rate of 0.6 and higher. However, this graph accounts for the overall performance 
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and does not emphasize the performance of individual categories. In Figure 8.5, we compare 

micro- and macro- precision. Micro precision reflects the performance over whole dataset, 

while macro precision demonstrates the performance accounts for the data distribution in 

individual classes. 

From this Figure, we observe that the performance of individual categories is not uniform. We 

hypothesize that macro and micro precision graphs differ for several reasons. First, the 

training set for the artist name classes varies in size. Second, some classes are likely to have 

higher prediction accuracy due to the fact that they exhibit distinctive brushwork. 

0.30

0.40
0.50

0.60
0.70

0.80
0.90

1.00

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Percentage of rejected samples

Precision micro

Precision macro

 
Figure 8. 5. Micro and macro precision of block-level annotation  

For example, paintings by Matisse and Schiele exhibit a lot of mezzapasta brushwork 

technique. From Table 7.9 we observe that this technique has a relatively high recognition 

rate as compared to the other techniques. Since the brushwork technique is representative of 

the artist and painting style, the relatively high recognition rate of mezzapasta technique is 

likely to contribute to the recognition in Matisse and Schiele classes.  Lastly, highly confident 

blocks are not distributed evenly across all classes. This difference becomes more apparent at 

high levels of the rejection rate, where several classes have most of their blocks rejected, thus 

resulting in zero level of precision and recall for those classes.  

In Figure 8.6 we assess the image-level annotations using the majority vote strategy. In this 

graph we calculate micro recall, precision, F1 measure and macro F1 measure. Similarly to 

the previous figure, the axis X denotes the percentage of rejected blocks. To calculate recall 

and precision, we assume the correctly annotated images as relevant, annotated images are 

retrieved.  
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Figure 8. 6. Image-level annotation with artist name concepts 

The curves for micro and macro F1 measures are close to each other, which means that the 

performance of both small and large artist classes is comparable. To better understand the 

performance of different classes, we tabulate in Table 8.1 the performance with respect to the 

individual categories using the F1 measure.  

Class Rejection, 
% 1 2 3 4 5 6 7 8 9 10 11 
0.3 0.80 0.81 0.81 0.75 0.55 0.67 0.62 0.48 0.59 0.57 0.82 
0.4 0.79 0.81 0.80 0.75 0.53 0.63 0.60 0.48 0.57 0.55 0.83 
0.5 0.76 0.80 0.81 0.74 0.50 0.62 0.59 0.49 0.55 0.54 0.82 
0.6 0.72 0.80 0.80 0.73 0.50 0.61 0.55 0.49 0.48 0.52 0.78 
Table 8. 1. Performance in individual categories for artist name concepts 

We demonstrate the performance at increasing levels of the rejection rate. It can be seen that 

classes 5, 8, 9 and 10 perform worse than other classes. These classes correspond to Titian, 

Rembrandt, Frans Hals and Cezanne. There are at least two reasons for this. First, some artists 

might have significantly higher variance of paintings like Cezanne. Second, some classes 

have small number of training samples like Titian, Rembrandt and Frans Hals. To investigate 

the relationship between the training size and performance, we generate Figure 8.7, which 

shows the distribution of the training sizes across all categories and the F1 measures achieved 

based on the full sample set, without any rejection.  
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Figure 8. 7. Relationship between the training set size and F1 measure 
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We normalize the number of the training samples by the largest number of training samples 

across all categories. This Figure demonstrates that the size of training dataset and 

performance are quite well correlated. Lastly, we compare the majority vote (MV) strategy 

and the proposed method for ontology-based concept disambiguation (OCD) with respect to 

artist name concepts. With this experiment we aim to demonstrate that information about 

painting styles and period of art serves to increase the annotation accuracy of the artist name 

concepts. Figure 8.8 demonstrates recall and precision values of both methods with respect to 

the number of rejected patterns.  
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Figure 8. 8. Comparison of MV and OCD disambiguation for artist name concepts 

From the Figure, we can observe that OCD method is most effective on the full dataset. This 

is due to the fact that each image has a large number of concept combinations based on the 

full dataset. With increasing rejection rate, the number of concepts combinations reduces, the 

majority vote strategy becomes less erroneous and both strategies deliver similar results for 

large number of rejected patterns. 

While both strategies generate over 90% of precision for top 20% of image blocks, the use of 

OCD method is more beneficial for several reasons. First, it outperforms the majority vote 

strategy by around 10% for the full dataset and generates an accuracy of 85%. This result is 

comparable with the precision rate achieved by both systems for top 20% blocks. Second and 

most importantly, using OCD method for disambiguation based on full dataset, we are able to 

preserve the high recall rate. Third, since OCD method performs disambiguation within an 

image, it is not sensitive to the fact that the scale of confidence value across the semantic 

categories may vary. Lastly, this method combines the automated analysis of images and 

ontological relationships among concepts, which ensures that the system assigns the final 

labels in accordance to domain knowledge. 
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8. 4. 2 Annotation of Painting Style Concepts 

In this section we evaluate the performance of the method with respect to the painting style 

concepts such as Impressionism, Baroque, Renaissance, Fauvism and others. In this 

experiment, we observed the same tendencies as in the annotation of artist name concepts, 

where macro-level statistics demonstrates that the performance of individual classes is 

slightly worse than the performance of the whole dataset. Figure 8.9 demonstrates the image-

level performance of painting style annotation using the majority vote strategy. 
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Figure 8. 9. Image-level annotation with painting style concepts 

This graph shows the micro-precision, recall and F1 measures and macro-F1 measure. We 

construct this Figure similarly to Figure 8.4 with the axis X reflecting the percentage of the 

rejected samples. Evaluation of micro and macro F1 measures suggests that the categories 

with both large and small number of training samples perform comparably. 

Table 8.2 again demonstrates the performance in individual categories using F1 measure. We 

show the performance in the individual categories based on the varying levels of the rejection 

rate. It can be seen that classes of Baroque and Renaissance shown in columns 6 and 7 of 

Table 8.2 perform worse then other classes. There are at least two reasons for this. First, these 

classes represent two styles of Medieval art and the use of brushwork and color information 

may not be sufficient to recognize these painting styles. Second, both classes have relatively 

small number of training samples in our dataset.  

Class Rejection, 
% 1 2 3 4 5 6 7 
0.3 0.737 0.801 0.715 0.820 0.748 0.555 0.576 
0.4 0.735 0.800 0.713 0.818 0.740 0.553 0.574 
0.5 0.724 0.801 0.714 0.816 0.743 0.551 0.564 
0.6 0.716 0.798 0.709 0.780 0.754 0.548 0.561 

Table 8. 2. Performance in individual categories for painting style concepts 
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Figure 8.10 demonstrates the relationship between the number of training samples and the 

annotation performance. In this Figure, we normalize the number of training samples in the 

individual categories by the maximum number of training samples.  
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Figure 8. 10. Relationship between the training set size and F1 measure 

We represent the annotation performance using F1 measure in each individual category 

achieved at the level of 0% of the rejected samples. Comparative performance of classes 2, 3, 

4 and 5 with classes 6 and 7 demonstrates that relationship between the size of training dataset 

and annotation performance. However, somewhat surprising are the levels of F1 measure with 

respect to classes 1, 4 and 7. Close inspection of the dataset reveals that each of these classes 

includes a single artist. We hypothesize that these classes achieve relatively high F1 measure 

value due to the low variance of their respective images.  

In Figure 8.11, we evaluate the performance of the majority vote (MV) and OCD 

disambiguation strategies for the annotation of painting style concepts to images. We 

calculate precision and recall values based on these strategies and plot these values with 

respect to the increasing number of rejected samples. We observe similar tendency as in 

Figure 8.6: OCD method has the highest relative performance with no rejection rate. This is 

due to the fact that full dataset has the largest number of concept combinations that makes 

disambiguation most effective.  
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Figure 8. 11. Comparison of MV and OCD strategies for painting style annotation 

Similar to the disambiguation of artist name concepts in Figure 8.7, this graph demonstrates 
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that OCD strategy outperforms MV strategy on the full dataset. The use of OCD method is 

beneficial, since it generates around 87% of both precision and recall based on the full 

dataset.  

8. 4. 3 Annotation of Art Period Concepts 

We evaluate the annotation of art period concepts using several baseline systems. The first 

baseline system (Baseline 1) for our experiments is a multi-category SVM classification 

method based on low-level color and texture features. To test the contribution of the visual-

level concepts to the overall accuracy, we employ the variation of the baseline system 

(Baseline 2) that combines meta-level artistic concepts and low-level features with class 

weighted feature scores above 0.7. Lastly, we evaluate the multi-expert transductive inference 

framework based on both low-level features and visual-level concepts. Table 8.3 

demonstrates the performance of the systems. From these results, we draw the following 

observations. Baseline 2 results in higher accuracy as compared to Baseline 1 system due to 

several reasons. First, the use of visual-level concepts facilitates more accurate annotation as 

compared to the use of low-level features only. Second, the use of the weighted feature scores 

facilitates the reduction of the noise in the feature space. 

 
 
 
 
 
 

Table 8. 3. Annotation performance of art period concepts 

Next, our proposed method achieves even higher accuracy of 98% at the image-level as 

compared to Baseline 2. The improvements arise from the use visual-level concepts, semi-

supervised inference and model selection. Figure 8.12 illustrates the misclassified paintings. 

All of them belong to Modern art period. However, they all exhibit dark and red colors with 

large areas of mezzapasta brushwork class similarly to the paintings of Medieval art period. 

The OCD disambiguation strategy reaches about 99.7% for the art period concepts. 

Figure 8. 12. Examples of misclassifications for art period concepts 

System Precision, % 
Block-level annotation 

Precision, % 
Image-level annotation 

Baseline 1 68.72 81.48 
Baseline 2 79.02 93.56 

Proposed framework 86.84 98.71 
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8. 4. 4 Ontology-based Concept Disambiguation 

In this section we evaluate the proposed method for the concept disambiguation based on the 

ontological relationships. In this task, we are concerned with the correct annotations of artist 

name, painting style and art period concepts for each image. We consider an image as 

retrieved, if this image has automatically assigned labels of artist name, painting style and art 

period annotations for this image. If it predicts these labels correctly, we consider this 

annotation as correct or relevant and retrieved. In Figure 8.13 we plot the recall and precision 

values for images at increasing levels of the rejected rate. To plot the values, we perform 

rejection with respect to each individual category. Thus, at each step we reject X least 

confident patterns in each category rather than over the whole dataset. This will ensure that 

each category will retain patterns and the precision/recall metrics will have non-zero values in 

each individual category at high levels of rejection. 

We compare two strategies: 1) majority vote (MV) and 2) the proposed method for the 

ontology-based concept disambiguation (OCD) as described in Section 8.3.2. This figure 

demonstrates that both recall and precision are higher for the proposed OCD method as 

compared to the majority vote.  
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Figure 8. 13. Comparison of MV and OCD disambiguation methods  

It further can be observed that with the increase of the rejection rate, the recall decreases for 

both strategies sharply. This is due to the fact that the rejection of image blocks leads to the 

increase of images that do not have all three concepts annotated. In turn, this results in the 

decrease of correctly annotated images. 

The OCD method can be further improved in several ways. Consider the set of retrieved 

images. It can be formalized as Retrieved = AdC+AdNC+NAd. Here, AdC denotes the images 

that include at least one admissible concept combination and one of these combinations is 

correct in accordance to the ground truth. We define a combination as admissible if its 
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concepts are related in accordance to the graph H. For example, the combination of “Da 

Vinci, Renaissance, Medieval” is admissible, while the combination of “Da Vinci, 

Abstractionism, Medieval” is not. The system should ideally annotate correctly all images that 

include the correct concept combination. AdNC denotes the images with admissible 

combinations but without the correct one. Lastly, NAd denotes the images with non-

admissible concept combinations. Clearly, subsets AdNC and NAd are guaranteed to result in 

erroneous annotations for both MV and OCD methods, since our framework does not have 

additional information to disambiguate the concepts.   

Using ontology-based concept relationships, the system can easily detect the subset NAd and 

attempt to re-evaluate annotations in this set. Alternatively, we can employ incomplete 

annotations that often accompany online painting collections. Incomplete annotations might 

contribute to the system performance in at least two ways. First, the use of incomplete 

annotations helps to reduce the set of admissible combinations derived from graph H. Second, 

incomplete annotations may serve to label NAd set of images. In our future work, we aim to 

focus on applying such incomplete annotations to improve the proposed OCD method. 

In the rest of this section, we perform a preliminary experiment to evaluate a combination of 

OCD method with incomplete annotations. We assume that our collection has artist name 

annotations, for example, from the World Wide Web. The incorporation of Web annotations 

does not require modifications of the OCD method. To combine OCD method with Web data, 

we perform a two-step procedure. First, we generate the list of concept combinations based on 

the automatically generated block-level concepts. Second, we substitute artist name labels 

with the labels extracted from the Web data.  

In Figure 8.14, we demonstrate the recall and precision of MV and OCD methods, and OCD 

method with Web data. It demonstrates that the use of incomplete annotations with OCD 

method results in the higher recall and precision rates as compared to both OCD and MV 

methods. This improvement is due to the fact that incomplete annotations offer additional 

disambiguation of the high-level concepts via the reduction of the admissible combinations. 
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Figure 8. 14. Comparison of disambiguation strategies 

Table 8.4 demonstrates the requirements of computational time for the proposed 

framework based on the datasets as discussed in the experimental setup. 

Task Time required 
Extraction of features for the color analysis 6 hours 

Annotation of Color Semantics  1.5 hours 
Extraction of features for the annotation of 

brushwork and high-level semantics 
 

48 hours 
Annotation of Brushwork Classes 2.5 hours 

Annotation of Artist Name 4 hours 
Annotation of Painting Styles 3.5-4 hours 

Annotation of Art Periods 0.5 hours 
Table 8. 4. Computational time requirements 

8. 5 Summary 

In this chapter, we focused on the last stage of the proposed painting annotation framework. 

We proposed a method for annotation of paintings with high-level concepts that includes two 

major steps. First is the automatic generation of the candidate concepts. Second is the 

ontology-based concept disambiguation of the image-level labels. For the automatic 

generation of high-level concepts we employed the transductive multi-expert framework, 

which utilizes the domain knowledge in two ways. First, it combines the meta-level visual 

concepts and low-level features to annotate high-level concepts. Second, it generates the 

expert decision based on the decision hierarchy that encodes the concept similarity.  

In our experiments, we showed that the multi-expert framework facilitates superior 

performance for the high-level concept annotation task due to the several reasons. First, the 

use of visual-level artistic concepts contributes to the annotation accuracy. Second, step-wise 
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disambiguation and adaptive selection of features and model parameters facilitates higher 

recognition rates as we have demonstrated in Chapter 7.  

Further, we proposed the concept disambiguation method that relies on the ontological 

relationships among concepts. We demonstrated that this method results in higher accuracy as 

compared to the widely used majority vote strategy. The proposed method easily extends to 

large number of related high-level concepts and facilitates the incorporation of incomplete 

annotations available from additional sources. 
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Chapter 9 

 

Conclusions and Future Work 

9. 1 Main Contributions 

In this dissertation, we tackled the problem of automatic paintings annotation and retrieval 

using domain ontology. This dissertation spans several major theoretical areas of research and 

their application to multimedia: expert systems and semi-supervised learning. Expert systems 

represent a general approach in which a fully automated system performs concept inference 

based on the domain knowledge provided by human experts. Semi-supervised statistical 

learning performs automatic inference using both labeled and unlabeled data. The focus of 

this approach is to infer concepts based on the limited labeled set and compensate for the 

scarcity of the labeled set using a large number of unlabeled patterns. In this thesis we made 

four major contributions: 

1. We introduced the framework for paintings annotation that combines the expert 

systems approach with supervised and semi-supervised statistical learning.  This 

framework employs domain ontology and exploits various disambiguation strategies 

based on this ontology.  

2. We proposed and implemented a method for annotation of paintings with artistic 

color concepts, which combines artistic color theory and inductive statistical learning 

techniques to annotate various color concepts. 

3. We proposed and implemented the transductive multi-expert framework that 

performs step-wise disambiguation of concepts. The use of semi-supervised inference 

methods within this framework reduces the required number of labeled samples for 

effective learning. 

4. We proposed and implemented the concept disambiguation method, which utilizes 

ontological relationships among concepts. We pose the problem of ontology-based 
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disambiguation as an optimization task, which is easily extendable to collections with 

incomplete annotations, for example, from WWW.  

Further in this section we focus on the main contributions. 

9. 1. 1 Framework for Ontology-based Annotation and Retrieval of Paintings 

We proposed and implemented the paintings annotation and retrieval framework that relies on 

the domain knowledge. This framework exploits the three-level ontology of artistic concepts. 

Concepts of visual-level serve as the meta-level information that provides cues to the 

annotation of high-level concepts. High-level concepts aim to fulfill the user needs of both 

expert and novice users. We organized these concepts into abstract level and application level 

depending on the user needs. Our framework includes several stages of concepts annotation. 

First, it utilizes statistical learning to annotate visual-level concepts. Next, to annotate 

abstract-level concepts it performs ontology-based concept propagation based on the visual-

level concepts. Lastly, it annotates the application-level concepts as a two-step process. First, 

it combines both low-level features and visual-level concepts to label image blocks with 

application-level concepts. Next, it integrates the block-level candidate labels to represent the 

whole image and utilizes the ontological concept relationships to disambiguate these labels.  

In our experiments we demonstrated that the use of domain knowledge improves the 

annotation accuracy at various stages of the proposed framework. We demonstrated that the 

use of meta-level concepts within the proposed framework yields accuracy improvement of 

10%-18% as compared to the same setup with low-level features only. Next, we demonstrated 

that the use of ontological relationships contributes to the more accurate concept 

disambiguation. The ontology-based disambiguation leads to the growth of both recall and 

precision by around 15% as compared to the majority vote method. 

9. 1. 2 Method for Annotation of Artistic Color Concepts 

We proposed a method for the annotation of paintings with artistic color concepts. This 

method relies on the artistic color theory that defines semantics of colors based on their 

geometrical and morphological relationships within color sphere. Our method performs 

region-based analysis of paintings, where each region is represented as multiple colors. The 

accounting for multiple colors facilitates the analysis of paintings from various paintings 

styles and periods of art and represents improvement over existing painting annotation 

studies. Another improvement is the set of domain-dependent features, which model 

distribution of various color temperatures and color palettes within a region. Our method then 

learns to relate various distributions of artistic color concepts within a region to the judgments 

about the whole image. The method further propagates visual color concepts via ontological 
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relationships to achieve abstract-level annotations for the whole image. To evaluate 

performance of the proposed method, we implemented a paintings retrieval system using mid-

sized collection of images downloaded from the World Wide Web. This system facilitates 

retrieval by both visual-level and abstract-level concepts. Our results demonstrate that the 

system yields satisfactory performance to a wide variety of expert-provided queries.   

9. 1. 3 Semi-supervised Multi-Expert Framework 

We proposed and implemented a framework that facilitates annotation of patterns using a 

multiple expert approach. The proposed framework organizes the whole task as several sub-

tasks and encodes relationships among them within a decision hierarchy. Each node of the 

hierarchy is associated with individual experts that generate decisions using semi-supervised 

learning techniques. The advantage of this framework is that it performs step-wise 

disambiguation of patterns that might lead to improved accuracy. Further, this framework 

facilitates adaptive selection of features and parameters for each sub-task, which contributes 

to the increase of overall accuracy. Lastly, the framework performs annotation based on the 

limited set of labeled samples.  

In our experiments we demonstrated that the proposed framework outperforms one-step 

classification by about 10% to 15%. We developed several variants of the proposed 

framework: 1) we implemented various semi-supervised methods to facilitate decision 

generation; 2) we compared both manual and automatic feature selection strategies; and 3) we 

implemented two annotation strategies to annotate concepts. The semi-supervised methods 

include semi-supervised similarity-based clustering based on K-means and agglomerative 

clustering, and probabilistic clustering using combination of Gaussian Mixture Model and 

Expectation maximization. We demonstrated that the probabilistic clustering 

methodoutperforms similarity-based clustering by up to 5%. Next, we implemented both 

manual and automatic feature selection at the level of individual experts and demonstrated 

that while manual feature selection leads to slightly more accurate results, the two variants of 

the proposed framework generate comparable results. Further, we demonstrated that the full 

disambiguation of patterns leads to tanhe increase in accuracy by about 7% as compared to 

the partial disambiguation of patterns. 

9. 1. 4 Ontology-based Concepts Disambiguation 

We proposed a novel method to perform disambiguation of concepts based on the domain 

ontology. We pose this problem as Metric Labeling Problem and solve it using Integer Linear 

Programming. In this method, we exploit ontological relationships and represent them as 

constraints, while the automatically generated confidence values contribute to the cost 
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function. The goal is to minimize the cost function and, thus, to find the most optimal solution 

in accordance to both the domain knowledge and the automatically generated judgments. 

There are several advantages of the proposed method. First, unlike statistical learning 

techniques, the proposed method does not require a large dataset to perform concept 

disambiguation. This is especially important for arts collections, where datasets are limited. 

Second, it is able to handle a large number of concepts. Third, the proposed method relies on 

the consistent domain knowledge and is robust to the large variety of arts images. Lastly, this 

method naturally incorporates incomplete annotations, which are often available online, into 

concept disambiguation process.  

In our experiments with medium-size collection of paintings we demonstrated that the 

proposed method outperforms the widely used majority vote technique by up to 15%. We 

showed that the proposed method consistently improves precision rates by a minimum of 55% 

for both ambiguous and non-ambiguous data samples used for concept disambiguation. We 

also demonstrated the use of this method for concept disambiguation of collections with 

incomplete online annotations. This method successfully employs incomplete annotations 

within the disambiguation process. Similar to the setting without online annotations, it 

generates superior results as compared to the majority vote strategy. 

9. 2 Future Work 

In our future work, we would like to enhance and extend the existing framework in several 

directions. First, we would like to utilize the proposed framework for the annotation of 

abstract-level concepts such as warm, cold, expressive, rational, gestural and others. In this 

thesis, we briefly touched on this topic and demonstrated that the proposed framework 

performs successful annotation of a small subset of abstract-level concepts. We further aim to 

extend the set of abstract-level concepts and apply the proposed framework for their 

annotation. Further, we would like to extend the proposed framework with other visual-level 

concepts such as composition and aspect information. 

Second, the proposed framework utilizes the transductive multi-expert learning approach as 

discussed in Chapters 7 and 8. In this approach we perform the model selection step, which 

searchers for the best-performing model by varying the model parameters and the feature 

subset. We aim to further extend the model selection step and preprocess the pool of models 

by varying the feature subsets, classification methods used and their parameters for the 

selection of the best-performing model. This will facilitate better approximation of the data 

distribution in the semi-supervised model and lead to improved accuracy of annotation.  
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Lastly, we aim to focus on the application of the proposed framework to the World Wide 

Web. First, we aim to demonstrate how the proposed ontology-based disambiguation method 

facilitates full annotation of the partially annotated image collections that are widely available 

online. Second, we aim to exploit methodologies that relate the three-level ontology of the 

artistic concepts to the existing arts-oriented ontologies. This will facilitates the publishing of 

the annotated collection online and their integration with the existing online museum 

collections and navigational tools. Third, we consider an online social network scenario, 

where the users are offered to discuss not only visual content of paintings but also their 

symbolic meaning. We aim to extract and represent the user knowledge as concept ontology 

and exploit this ontology within the proposed framework for the annotation of artistic 

concepts. 

We also believe that the proposed framework is general and can be extended to other domains 

such as personal media and news media annotation tasks, where the concept ontology is 

available. We plan to extend our framework to these tasks, especially with respect to utilizing 

Web knowledge and social tagging information. 
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Appendix 1. Software Tools 

Table A.1. The list of software tools used in this thesis 

Implemented Implemented By Platform Available at 
CIE L*u*v 
histogram 

Marchenko 
Yelizaveta 

Matlab 7.0.1, 
Windows XP 

N/A 

Major colors 
with account for 

perceptual 
similarity 

Chua Tat-Seng 
(C++), adopted by 

Marchenko 
Yelizaveta (Matlab) 

Matlab 7.0.1, 
Windows XP 

N/A 

Color coherence 
vector 

Marchenko 
Yelizaveta  

Matlab 7.0.1, 
Windows XP 

N/A 

Support Vector 
Machine 

Chakrabartty, S. C++, 
Unix 

http://bach.ece.jhu.edu 
/svm/ginisvm/ 

Wavelet-based, 
statistical and 
model-based 

texture features 

Marchenko 
Yelizaveta 

Matlab 7.0.1, 
Windows XP 

N/A 

Gabor texture 
features 

Wei Ying Ma Matlab 7.0.1, 
Windows XP 

http://vision.ece.ucsb.edu
/texture/software/ 

Multi-expert 
annotation 
framework 

Marchenko 
Yelizaveta 

Matlab 7.0.1, 
Windows XP 

N/A 

Feature and 
model selection 

Marchenko 
Yelizaveta 

Matlab 7.0.1, 
Windows XP 

N/A 

Distance-based 
clustering 

Marchenko 
Yelizaveta 

Matlab 7.0.1, 
Windows XP 

N/A 

Hierarchical 
clustering 

Marchenko 
Yelizaveta 

Matlab 7.0.1, 
Windows XP 

N/A 

GMM and 
Expectation 

Maximization 

R. Collobert C++, 
Windows/Unix

http://www.torch.ch/ 

Ontology-based 
Concept 

Disambiguation 

Marchenko 
Yelizaveta 

Matlab 7.0.1, 
Windows XP 

N/A 
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