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SUMMARY

Achieving a target objective, goal or aspiration level are relevant aspects of

decision making under uncertainties. We develop a goal driven stochastic

optimization model that takes into account an aspiration level. Our model

maximizes the shortfall aspiration level criterion, which encompasses the

probability of success in achieving the goal and an expected level of under-

performance or shortfall.

The key advantage of the proposed model is its tractability. We show that

proposed model is reduced to solving a small collection of stochastic linear op-

timization problems with objectives evaluated under the popular conditional-

value-at-risk (CVaR) measure. Using techniques in robust optimization, we

propose a decision rule based deterministic approximation of the goal driven

optimization problem by solving a polynomial number of subproblems, with

each subproblem being a second order cone problem (SOCP).

As an extension, we consider the probabilistic constrained problem where

a system of linear inequalities with stochastic entries is required to remain

feasible with high probability. We review SOCP approximations for the in-

dividual probabilistic constrained problem. Moreover, a new formulation

is proposed for approximating joint probabilistic constrained problem. Im-
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provement of the new method upon the standard approach is shown.

We apply the goal driven model to project management and inventory plan-

ning problems and show experimentally that the proposed algorithms are

computationally efficient.
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1. INTRODUCTION

Data uncertainties are present in many real world applications. In a supply

chain, the demand, capacity, and resource potential are always unknown and

can only be predicted in some precision. In finance, the security return and

exchange rate fluctuate frequently. Even in engineering or science, the ex-

istence of measurement errors leads to uncertainties in the data. To handle

the uncertainties, the real problem can be modeled as a mathematical pro-

gramming problem in which some of the unknown parameters are taken as

random variables. The mathematical programming problem is known as the

stochastic optimization problem.

Obviously, the objective and the constraint functions of a stochastic op-

timization problem might be affected by the random parameters. If the ob-

jective function includes random parameters, it cannot be simply minimized

or maximized, so it is necessary to specify a criterion for making decisions.

The decision criterion takes the statistical features of the objective, so the

random objective can be transformed to a deterministic equivalent. On the

other hand, the random parameters often cause the constraint infeasibility

when the solutions are obtained using nominal data values, so we also want

to protect the constraints from this infeasibility. We classify all constraints



1. Introduction 2

that handle uncertainties as safeguarding constraints. The next sections will

review some decision criteria and safeguarding constraints.

Notations We denote a regular face letter as a scalar or function. E and P

represent the expectation function and the probability function respectively.

Bold face lower case letters such as x represent vectors and the corresponding

upper case letters such as A denote matrices. We denote random variable

with the tilde sign, such as x̃. In addition, x+ = max{x, 0} and x− =

max{−x, 0}. The same operations can be made on vectors, such as y+ and

z− in which corresponding operations are performed componentwise.

1.1 Decision Criterion

In a classical stochastic optimization problem, one seeks to minimize the

aggregated expected cost over a multiperiod planning horizon, which corre-

sponds to decision makers who are risk neutral; see for instance, Birge and

Louveaux [16]. However, optimization of an expectation implicitly assumes

that the decision can be repeated a great number of times under identical

conditions. Such assumptions may not be widely applicable in practice. The

framework of stochastic optimization can also be adopted to address down-

side risk by optimizing over an expected utility or more recently, a mean risk

objective; see chapter 2 of Birge and Louveaux [16], Ahmed [1] and Ogryczak

and Ruszczynski [45]. In such a model, the onus is on the decision maker to

articulate his/her utility function or to determine the right parameter for the

mean-risk functional. This can be rather subjective and difficult to obtain in
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practice.

Recent research in decision theory suggests a way of comprehensively

and rigorously discussing decision theory without using utility functions; see

Castagnoli and LiCalzi [20] and Bordley and LiCalzi [15]. With the introduc-

tion of an aspiration level or the targeted objective, the decision risk analysis

focuses on making decisions so as to maximize the probability of reaching the

aspiration level. As a matter of fact, the aspiration level plays an important

role in daily decision making. Lanzillotti’s study [34], which interviewed the

officials of 20 large companies, verified that the managers are more concerned

about a target return on investment. In another study, Payne et al. [46, 47]

illustrated that managers tend to disregard investment possibilities that are

likely to under perform against their target. Simon [58] also argued that most

firms’ goals are not maximizing profit but attaining a target profit. In an

empirical study by Mao [39], managers were asked to define what they con-

sidered as risk. From their responses, Mao concluded that “risk is primarily

considered to be the prospect of not meeting some target rate of return”.

In this thesis, we study a two stage stochastic optimization model that

takes into account an aspiration level. This work is closely related to Charnes

et al.’s P-model [21, 22] and Bereanu’s [12] optimality criterion of maximizing

the probability of getting a profit above a targeted level. However, maximiz-

ing the probability of achieving a target is generally not a computationally

tractable model. As such, studies along this objective have been confined to

simple problems such as the Newsvendor problem; see Sankarasubramanian

and Kumaraswamy [56], Lau and Lau [36], Li et al. [38] and Parlar and
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Weng [48].

Besides its computational intractability, maximizing the success proba-

bility assumes that the modeler is indifferent to the level of losses. It does not

address how catastrophic these losses can be expected when the “bad” events

of small probability occur. However, studies have suggested that subjects are

not completely insensitive to these losses; see for instance Payne et al [46].

Diecidue and van de Ven [25] argue that a model that solely maximizes the

success probability is “too crude to be normatively or descriptively relevant.”

They suggested an objective that takes into account of a weighted combina-

tion of the success probability as well as an expected utility. However, such

a model remains computationally intractable when applied to the stochastic

optimization framework.

Our goal driven optimization model maximizes the shortfall aspiration

level criterion, which takes into account of the probability of success in

achieving the goal and an expected level of under-performance or shortfall. A

key advantage of the proposed model over maximizing the success probability

is its tractability. We show that the proposed model is reduced to solving a

small collections of stochastic optimization problems with objectives evalu-

ated under the popular Conditional-Value-at-Risk (CVaR) measure proposed

by Rockafellar and Uryasev [54]. This class of stochastic optimization prob-

lems with mean risk objectives have recently been studied by Ahmed [1] and

Riis and Schultz [52]. They proposed decomposition methods that facilitate

sampling approximations.

The quality of sampling approximation of a stochastic optimization
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problem depends on several issues; the confidence of the approximation

around the desired accuracy, the size of the problem, the type of recourse

and the variability of the objective; see Shaprio and Nemirovski [57]. Even

in a two stage model, the number of sampled scenarios required to approx-

imate the solution to reasonable accuracy can be astronomically large, for

instance, in the presence of rare but catastrophic scenarios or in the ab-

sence of relatively complete recourse. Moreover, sampling approximation of

stochastic optimization problems requires complete probability descriptions

of the underlying uncertainties, which are almost never available in real world

environments. Hence, it is conceivable that the models that are heavily tuned

to an assumed distribution may perform poorly in practice.

Recently, a new methodology dealing with uncertainties, called robust

optimization, attracts a lot of attentions. Robust optimization makes mild

distributional assumptions, such as the knowledge of the support or deviation

measure, to approximate the stochastic optimization problems. The simplest

approximation scheme of this type was proposed independently by Ben-Tal

et al. [6, 7, 8] and El-Ghaoui et al. [28]. They showed that under the ellip-

soidal uncertainty set, the robust counterpart of an LP becomes an SOCP.

A more computationally convenient method was proposed by Bertsimas and

Sim [14]. They used a polyhedral uncertainty set, with which the robust

counterpart of an LP remains an LP. Chen, Sim and Sun [23] introduced the

idea of forward and backward deviation measures to construct an asymmetric

uncertainty set, with which the new robust counterpart successfully captures

the asymmetry of random parameters. Motivated from recent development
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in robust optimization involving multiperiod decision process, we propose a

new decision rule based deterministic approximation of the stochastic opti-

mization problems with CVaR objectives. In line with robust optimization,

we require only modest assumptions on distributions, such as known means,

bounded supports, standard deviations and the forward and backward devi-

ations introduced in [23]. We adopt a comprehensive model of uncertainty

that incorporates both models in [23] and [24]. We also introduce new bounds

on the CVaR measures and expected positivity of a weighted sum of random

variables, both of which are integral in achieving a tractable approximation

in the form of second order cone optimization problem (SOCP); see Ben-Tal

and Nemirovski [10]. This allows us to leverage on the state-of-the-art SOCP

solvers, which are increasingly more powerful, efficient and robust.

1.2 Safeguarding Constraint

All the constraints that handle uncertainties can be classified to safeguard-

ing constraints. The simplest one is the worst case models, in which the

constraints should be satisfied for all realizations of the random parameters.

However, this strategy may be overconservative and even leads to an infeasi-

ble problem. Hence some violation allowances can provide more reasonable

solutions and decisions. For example, a firm is willing to provide a relatively

high level of product availability with an additional cost, because offering

high service level not only keeps the current customers, but attracts new

customers as well. However, the cost usually increases rapidly as the service

level increases. It is impractical to require one hundred percent service level.
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The tradeoff between the profit and the service level is also an important

issue when making decisions. In this thesis, we use a goal driven model with

constraints that allow some violations to describe such kind of problems.

Those constraints with violation allowances are called probabilistic con-

straints. Probabilistic constraints were first introduced by Charnes, Cooper,

and Symonds [21]. A general way to express the probabilistic constraint is

P
(
fi(x, d̃) ≤ 0, i = 1, . . . , m

)
≥ 1− ε, (1.1)

where ε ∈ (0, 1) is a given risk requirement, fi(x, d̃) are known functions

of the decision vector x and the random parameters d̃. probabilistic con-

straints can be classified to two different types: individual (m = 1) and joint

probabilistic constraints (m > 1).

Generally, probabilistic constrained problems are computationally in-

tractable. The difficulties are as follows: first, with random parameters, it

is difficult to evaluate the probability of the constraint satisfaction, which

makes the whole problem computationally intractable. A possible way is

to use Monte-Carlo simulation. However, it is too costly if the probabil-

ity requirement ε is very small. It can be seen that the required sample size

increases dramatically as the dimension of the problem increases or the prob-

ability requirement ε decreases. As given in [18], it can be concluded that

the sample size should be at least inversely proportional to the probability

requirement ε.

Second, even in the nice case that each fi is affine with x, probabilistic
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constraints are usually non-convex. If the random parameters and the de-

cision variables can be separated, individual probabilistic constraint can be

easily transformed to an equivalent linear constraint, but this property does

not apply to joint probabilistic constraint. Joint probabilistic constraint is

convex only when the separated random parameters follow logconcave distri-

bution, a wide family of distributions such that the logarithm of cumulative

density function is concave. On the other hand, if the random parameters

and the decision variables cannot be separated, then the convexity holds

only for some special cases, such as individual probabilistic constraint with

normally distributed parameters [40]. Joint probabilistic constraints are gen-

erally non-convex.

For the convex problems, there are some beautiful methods in the lit-

erature of stochastic programming, such as supporting hyperplane, central

cutting plane and reduced gradient method [49] [41]. However, for the general

nonconvex cases, the efficiency of these methods is very low.

A natural way to deal with probabilistic constraints is to seek for convex

conservative approximations, in the sense that if the approximation holds,

the probabilistic constraint is satisfied. Nemirovski and Shapiro [44] proposed

a special class of conservative approximations for the individual probabilistic

constraint. They also proposed a beautiful convex formulation called Bern-

stein approximation. Although this approximation does not depend on any

simulation or scenarios, it requires full knowledge of the moments informa-

tion, which may not be easy to know. Moreover, the formulation involves

some exponential cone, which may not be easy to solve. As for joint proba-
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bilistic constraint, they propose to use Bonferroni’s inequality to approximate

as follows 



P
(
fi(x, d̃) ≤ 0

)
≥ 1− εi

∑m
i=1 εi = ε.

Since the probability requirement for each component εi is no longer

known, the approximation model becomes nonconvex. To simplify the prob-

lem, they choose the probability requirement for each component εi as ε/m.

Robust optimization methodologies can also be applied to consider the

individual probabilistic constrained problems (see [6, 7, 8, 28, 14]). In [23],

Chen et.al applied robust optimization to a project management network, in

which a joint probabilistic constraint was formulated, but they also use Bon-

ferroni’s inequality and simply divided the probability requirement equally

among the constraints to achieve the feasibility.

In this thesis, we show that with different definitions of the uncertainty

set, we can approximate the individual probabilistic constraint to a second

order cone formulation in different ways. For the problems with joint prob-

abilistic constraints, we also show that Bonferroni’s inequality may destroy

the quality of the solutions, especially when the constraints are correlated

with each other. We propose a new formulation to approximate the joint

probabilistic constraint. The new formulation can be proved at least as good

as the approximations using Bonferroni’s inequality.
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1.3 Purpose of the Thesis

This thesis analyzes the stochastic optimization problem in both the objec-

tive and the constraint aspects. To handle the random objective, a new

decision criterion and the corresponding solution methodology are proposed.

In addition, to protect the constraints from infeasibility, efficient methods

are proposed to solve the probabilistic constrained problem. The aims of

this thesis are as follows.

• To propose a new decision criterion, shortfall aspiration level criterion,

which takes into account of the probability of success in achieving the

goal and an expected level of under-performance or shortfall.

• To propose methods for improving solutions of models with probabilis-

tic constraints.

• To apply goal driven models to project management and inventory

planning problems.

It is recognized that among various stochastic optimization problems, the

linear problem is the most widely used. Hence this thesis focuses on this

case rather than general nonlinear problems.



2. SHORTFALL ASPIRATION LEVEL CRITERION AND

GOAL DRIVEN MODEL

2.1 Aspiration Level Criterion

We consider a two stage decision process in which the decision maker first

selects a feasible solution x ∈ <n1 , or so-called here-and-now solution in

the face of uncertain outcomes that may influence the optimization model.

Upon realization of z̃, which denotes the vector of N random variables whose

realizations correspond to the various scenarios, we select an optimal wait-

and-see solution or recourse action. We also refer to z̃ as the vector of

primitive uncertainties, which consolidates all underlying uncertainties in

the stochastic model. Given the solution, x and a realization of scenario, z,

the optimal wait-and-see objective we consider is given by

f(x,z) = c(z)′x+ min
u, y

du
′u + dy

′y

s.t. B(z)x + Uu + Y y = h(z)

y ≥ 0,

(2.1)
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where du ∈ <n2 and dy ∈ <n3 are known vectors, U ∈ <m2×n2 and Y ∈
<m2×n3 are known matrices, c(z̃) ∈ <n1 , B(z̃) ∈ <m2×n1 and h(z̃) ∈ <m2

are random data as function mapping of z̃. In the language of stochastic

optimization, this is a fixed recourse model in which the matrices U and

Y associated with the recourse actions are not influenced by uncertainties;

see Birge and Louveaux [16]. The model (2.1) represents a rather general

fixed recourse framework characterized in classical stochastic optimization

formulations. Using the convention of stochastic optimization, if the model

(2.1) is infeasible, the function f(x,z) will be assigned an infinite value.

We denote by τ(z̃) the target level or aspiration level, which, in the

most general setting, depends on the primitive uncertainties, z̃; see Bordley

and LiCalzi [15]. The wait-and-see objective f(x, z̃) is a random variable

with probability distribution as a function of x. Under the aspiration level

criterion, which we will subsequently define, we examine the following model

max
x

ALC
(
f(x, z̃)− τ(z̃)

)

s.t. Ax = b

x ≥ 0,

(2.2)

where b ∈ <m1 and A ∈ <m1×n1 are known. We use the phrase aspiration

level prospect to represent the random variable, f(x, z̃) − τ(z̃). Hence, an

aspiration level prospect taking a positive value denotes a shortfall of the

wait-and-see objective against the target level. The functional ALC(·) is the

aspiration level criterion, which evaluates the chance of exceeding the target
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level of performance.

Definition 1. Given an aspiration level prospect, ṽ, the aspiration level cri-

terion is defined as

ALC(ṽ)
∆
= P(ṽ ≤ 0). (2.3)

We adopt the same definition as used in Diecidue and van de Ven [25] and

in Canada et al. [19], chapter 5. We can equivalently express the aspiration

level criterion as

ALC(ṽ) = 1− P(ṽ > 0) = 1− E(H(ṽ)) (2.4)

where H(·) is a heavy-side utility function defined as

H(x) =





1 if x > 0

0 otherwise.

2.2 Shortfall Aspiration Level Criterion

The aspiration level criterion has several drawbacks from the computational

and modeling perspectives. The lack of any form of structural convexity leads

to computational intractability. Moreover, it is evident from Equation (2.4)

that the aspiration level criterion does not take into account the shortfall

level and may equally value a catastrophic event with low probability over a
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mild violation with the same probability. In view of the deficiencies of the

aspiration level criterion, we introduce the shortfall aspiration level criterion.

Definition 2. Given an aspiration level prospect, ṽ with the following condi-

tions:

E(ṽ) < 0

P(ṽ > 0) > 0,

(2.5)

the shortfall aspiration level criterion is defined as

SALC(ṽ)
∆
= 1− inf

a>0
(E (S(ṽ/a))) (2.6)

where we define the shortfall utility function as follows:

S(x) = (x + 1)+.

We present the properties of the shortfall aspiration level criterion in the

following theorem.

Theorem 1. Let ṽ be an aspiration level prospect satisfying the inequalities

(2.5). The shortfall aspiration level criterion has the following properties

(a)

SALC(ṽ) ≤ ALC(ṽ).
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(b)

SALC(ṽ) ∈ (0, 1).

Moreover, there exists a finite a∗ > 0, such that

SALC(ṽ) = 1− E (S (ṽ/a∗))

(c)

SALC(ṽ) = sup
γ
{1− γ : CV aR1−γ(ṽ) ≤ 0, γ ∈ (0, 1)}

where

CV aR1−γ(ṽ)
∆
= min

β

(
β +

E ((ṽ − β)+)

γ

)
(2.7)

is the risk measure known as Conditional-Value-at-Risk (CVaR) popularized

by Rockafellar and Uryasev [54].

(d) Suppose for all x ∈ X, ṽ = ṽ(x) is normally distributed. Then the

feasible solution that maximizes the shortfall aspiration level criterion also

maximizes the aspiration level criterion.

Proof : (a) Observe that for all a > 0, S(x/a) ≥ H(x), hence, we have

P(ṽ > 0) = E (H(ṽ))

≤ inf
a>0

E (S(ṽ/a))

= 1− SALC(ṽ).
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Therefore,

ALC(ṽ) = P(ṽ ≤ 0) = 1− P(ṽ > 0) ≥ SALC(ṽ).

(b) Since P(ṽ > 0) > 0, from (a), we have SALC(ṽ) ≤ 1−P(ṽ > 0) < 1. To

show that SALC(ṽ) > 0, it suffices to find a b > 0 such that E(S(ṽ/b)) < 1.

Observe that

E(S(ṽ/a)) = 1 +
E(ṽ) + E ((ṽ + a)−)

a
.

As E(ṽ) < 0 and E ((ṽ + a)−) is nonnegative, continuous in a and converges

to zero as a approaches infinity, there exists a b > 0, such that E(ṽ) +

E ((ṽ + b)−) < 0. Hence,

SALC(ṽ) = 1− inf
a>0

E ((ṽ + a)+)

a
≥ 1− E ((ṽ + b)+)

b
> 0.

Since P(ṽ > 0) > 0 implies E(ṽ+) > 0, we also observe that

lim
a↓0

E(S(ṽ/a)) = lim
a↓0

E ((ṽ + a)+)

a
≥ lim

a↓0
E (ṽ+)

a
= ∞.

Moreover,

lim
a→∞

E(S(ṽ/a)) = 1.

We have also shown that infa>0 E(S(ṽ/a)) ∈ (0, 1), hence, the infimum can-

not be achieved at the limits of a = 0 and a = ∞. Moreover, due to the

continuity of the function E(S(ṽ/a)) over a > 0, the infimum is achieved at

a finite a > 0.
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(c) Using the observations in (b), we have

1− infa>0 E(S(ṽ/a))

= supv<0

(
1 +

E((ṽ−v)+)
v

)

= supγ,v

{
1− γ : 1− γ ≤ 1 +

E((ṽ−v)+)
v , v < 0, γ ∈ (0, 1)

}

= supγ,v

{
1− γ : v +

E((ṽ−v)+)
γ ≤ 0, v < 0, γ ∈ (0, 1)

}

= supγ,v

{
1− γ : v +

E((ṽ−v)+)
γ ≤ 0, γ ∈ (0, 1)

}
With E(ṽ+) > 0, v < 0 is implied

= supγ{1− γ : CV aR1−γ(ṽ) ≤ 0, γ ∈ (0, 1)}.

(d) Observe that

max
x

{
ALC

(
ṽ(x)

)
: x ∈ X

}
(2.8)

is equivalent to

max
x,γ

{
1− γ : P

(
ṽ(x) ≤ 0

)
≥ 1− γ, x ∈ X

}
.

Let µ(x) and σ(x) be the mean and standard deviation of ṽ(x). The con-

straint P
(
ṽ(x) ≤ 0

)
≥ 1− γ is equivalent to

−µ(x) ≥ Φ−1(1− γ)σ(x),

where Φ(·) is the distribution function of a standard normal. Since E(ṽ(x)) <

0, the optimal objective satisfies 1 − γ > 1/2 and hence, Φ−1(1 − γ) > 0.

Noting that Φ−1(1− γ) is a decreasing function in γ, the optimal solution in
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Model (2.8) corresponds to maximizing the following ratio:

max
−µ(x)

σ(x)

s.t. x ∈ X .

(2.9)

This relation was observed by Dragomirescu [26]. Using the result in (c),

we can express the maximization of the shortfall aspiration level criterion as

follows:

max 1− γ

s.t. CV aR1−γ(ṽ(x)) ≤ 0

x ∈ X , γ ∈ (0, 1)

(2.10)

Under normal distribution, we can also evaluate the CVaR measure in closed

form as follows:

CV aR1−γ(ṽ(x)) = µ(x) +
φ(Φ−1(γ))

γ︸ ︷︷ ︸
ξ(γ)

σ(x)

where φ(·) is the density of a standard normal. Moreover, ξ(γ) is also a

decreasing function in γ. Therefore, the optimum solution of Model (2.10) is

identical to Model (2.9).
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We now propose the following goal driven optimization problem.

max
x

SALC
(
f(x, z̃)− τ(z̃)

)

s.t. Ax = b

x ≥ 0

(2.11)

Theorem 1(a) implies that an optimal solution of Model (2.11), x∗ can

achieve the following success probability,

P(f(x∗, z̃) ≤ τ(z̃)) ≥ SALC
(
f(x∗, z̃)− τ(z̃)

)
.

The optimal parameter, a∗ within the shortfall aspiration level criterion is

chosen to attain the tightest bound in meeting the success probability. The

aspiration level criterion of (2.4) penalizes the shortfall with an heavy-side

utility function that is insensitive to the magnitude of violation. In contract,

the shortfall aspiration level criterion,

SALC(f(x∗, z̃)− τ(z̃)) = 1− 1
a∗

E
(
(f(x∗, z̃)− τ(z̃) + a∗)+

)
for some a∗ > 0

has an expected utility component that penalizes an expected level of “near”

shortfall when the aspiration level prospect raises above −a∗. Speaking in-

tuitively, given two aspiration level prospects, ṽ1 and ṽ2 with the same as-

piration level criteria defined in (2.3), suppose ṽ2 incurs greater expected



2. Shortfall Aspiration Level Criterion and Goal Driven Model 20

shortfall, the shortfall aspiration level criterion will rank ṽ1 higher than ṽ2.

Nevertheless, Theorem 1(d) suggests that if the distribution of the objec-

tive is “fairly normally distributed”, we expect the solution that maximizes

the shortfall aspiration level criterion to also maximize the aspiration level

criterion.

We now discuss the conditions of (2.5) with respect to the goal driven

optimization model. The first condition implies that the aspiration level

should be strictly achievable in expectation. Hence, the goal driven opti-

mization model appeals to decision makers who are risk averse and are not

unrealistic in setting their goals. The second condition implies that there

does not exist a feasible solution, which always achieves the aspiration level.

In other words, the goal driven optimization model is used in problem in-

stances where the risk of under-performance is inevitable. Hence, it appeals

to decision makers who are not too apathetic in setting their goals.

Theorem 1(c) shows the connection between the shortfall aspiration level

criterion with the CVaR measure. The CVaR measure satisfies four desirable

properties of financial risk measures known as coherent risk. A coherent risk

measure or functional, ϕ(·) satisfies the following Axioms of coherent risk

measure:

(i) Translation invariance: For all a ∈ <, ϕ(ṽ + a) = ϕ(ṽ) + a.
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(ii) Subadditivity: For all random variables ṽ1, ṽ2, ϕ(ṽ1 + ṽ2) ≤ ϕ(ṽ1) +

ϕ(ṽ2).

(iii) Positive homogeneity: For all λ ≥ 0, ϕ(λṽ) = λϕ(ṽ).

(iv) Monotonicity: For all ṽ ≤ w̃, ϕ(ṽ) ≤ ϕ(w̃).

The four axioms were presented and justified in Artzner et al. [3]. The first

axiom ensures that ϕ(ṽ−ϕ(ṽ)) = 0, so that the risk of ṽ after compensation

with ϕ(ṽ) is zero. It means that reducing the cost by a fixed amount of a

simply reduces the risk measure by a. The subadditivity axiom states that

the risk associated with the sum of two financial instruments is not more

than the sum of their individual risks. It appears naturally in finance - one

can think equivalently of the fact that “a merger does not create extra risk,”

or of the “risk pooling effects” observed in the sum of random variables. The

positive homogeneity axiom implies that the risk measure scales proportion-

ally with its size. The final axiom is an obvious criterion, but it rules out the

classical mean-standard deviation risk measure.

A byproduct of a risk measure that satisfies these axioms is the preserva-

tion of convexity; see for instance Ruszczynski and Shapiro [55]. Hence, the

function CV aR1−γ(f(x, z̃)−τ(z̃)) is convex in x. Using the connection with

the CVaR measure, we express the goal driven optimization model (2.11),
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equivalently as follows:

max
γ,x

1− γ

s.t. CV aR1−γ(f(x, z̃)− τ(z̃)) ≤ 0

Ax = b

x ≥ 0

γ ∈ (0, 1).

(2.12)

2.3 Example: Single Product Newsvendor Problem

The classical single-product Newsvendor model maximizes the expected profit

to help the decision makers to balance between the holding cost of excess in-

ventory and the penalty for stockouts. In this section, we use the shortfall

aspiration level criterion as objective to model the problem and we show that

the goal driven model can be solved efficiently. We define

p : Unit selling price;

c : Unit purchasing cost;

s : Unit salvage value;

R : Target profit;

d̃ : Demand;

x : Order quantity (Decision variable).
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We formulate the problem as follows.

max SALC(−g(x, d̃) + R), (2.13)

where

g(x, d)
∆
= (p− c)x + (s− p)(x− d)+

=





(s− c)x + (p− s)d if d < x

(p− c)x otherwise.

(2.14)

From the definition of the CVaR measure and the translation invariance

property, we know that Model (2.13) is equivalent to

max 1− γ

s.t. min
β

(E
(
(β − g(x, d̃))+

)

γ
− β

)
+ R ≤ 0.

(2.15)

To obtain the optimal solution analytically, first, we have the following

lemma.

Lemma 2. For any 0 ≤ xa < xb,

E
(
((p− c)xa − g(xa, d̃))+

)
< E

(
((p− c)xa − g(xb, d̃))+

)
.
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Proof : We let

d̂ = xa +
c− s

p− s
(xb − xa).

Note that the nondecreasing piecewise linear function g has the following

property:

(p− c)xa > g(xa, d) > g(xb, d), if d < d̂;

(p− c)xa = g(xa, d) = g(xb, d), if d = d̂;

(p− c)xa < g(xa, d) < g(xb, d), if d > d̂.

This property directly implies the result.

Theorem 3. Assume that and there exists x satisfying

P(g(x, d̃) < R) > 0, (2.16)

E(g(x, d̃)) > R. (2.17)

Then the model (2.15) is feasible. Moreover, the optimal solution x∗, β∗ and

γ∗ satisfy

(i) β∗ = (p− c)x∗ (2.18)

(ii) γ∗ = P(d̃ < x∗) (2.19)

(iii) E
(
g(x∗, d̃) | d̃ < x∗

)
= R. (2.20)
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Proof : With the assumptions (2.16) and (2.17), there exists x, such that the

shortfall aspiration level criterion SALC(−g(x, d̃)+R) ∈ (0, 1) (See Theorem

1). This also guarantees the feasibility of the model (2.15).

From the definition of the CVaR measure, we know that

β∗ = argminβ

E
(
(β − g(x∗, d̃))+

)

γ∗
− β.

From the first order condition, we have

γ∗ = P(g(x∗, d̃) < β∗). (2.21)

Hence,

β∗ ≤ max
d

{
g(x∗, d)

}
= (p− c)x∗,

otherwise, γ∗ = 1 contradicting the solution SALC(−g(x, d̃) + R) ∈ (0, 1).

To show that β∗ = (p − c)x∗, there remains to prove that β∗ ≥ (p − c)x∗.

Suppose β∗ < (p − c)x∗. Then there exists a δ > 0 such that β∗ = (p −

c)(x∗ − δ). From Lemma 2, we also notice that

E
(
(β∗ − g(x∗ − δ, d̃))+

)
< E

(
(β∗ − g(x∗, d̃))+

)
.
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Hence

R = β∗ −
E

(
(β∗ − g(x∗, d̃))+

)

γ∗

< β∗ −
E

(
((β∗ − g(x∗ − δ, d̃))+

)

γ∗
.

If we define

γ′ ∆
=

E
(
((β∗ − g(x∗ − δ, d̃))+

)

β∗ −R
,

which is also feasible in the model (2.15). It is obvious that γ′ < γ∗, contra-

dicting that γ∗ is the optimal solution.

Substitute β∗ = (p− c)x∗ into the equation (2.21). Since function g is non-

decreasing, we have

γ∗ = P
(
g(x∗, d̃) < (p− c)x∗

)
= P(d̃ < x∗).

Also, substituting γ∗ and β∗ into the constraint of the model (2.15), we have

E
(
g(x∗, d) | d < x∗

)
= R.

Theorem 3 implies that we can decide the optimal purchasing quantity

and calculate the shortfall aspiration level criterion efficiently if the distribu-

tion of the demand is known. However, this result does not apply to more
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complicated problems.

In the next section, we show that for the general problems, the goal

driven model can be reduced to solving a small collections of stochastic

linear optimization problems with objectives evaluated under the popular

conditional-value-at-risk (CVaR) measure.

2.4 Reduction to Stochastic Optimization Problems with

CVaR Objectives

For a fixed γ, the first constraint in Model (2.12) is convex in the decision

variable x. However, the Model is not jointly convex in γ and x. Never-

theless, we can still obtain the optimal solution by solving a sequence of

subproblems in the form of stochastic optimization problems with CVaR

objectives as follows:

Z(γ) = min
x

CV aR1−γ

(
f(x, z̃)− τ(z̃)

)

s.t. Ax = b

x ≥ 0,

(2.22)
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or equivalently,

Z(γ) = min
x,u(·),y(·)

CV aR1−γ

(
c(z̃)′x + du

′u(z̃) + dy
′y(z̃)− τ(z̃)

)

s.t. Ax = b

B(z̃)x + Uu(z̃) + Y y(z̃) = h(z̃)

y(z̃) ≥ 0

x ≥ 0

(2.23)

where u(z̃) and y(z̃) correspond to the second stage or recourse variables in

the space of measurable function.

Algorithm 1. (Binary Search)

Input: A routine that solves Model (2.22) optimally and ζ > 0

Output: x

1. Set γ1 := 0 and γ2 := 1.

2. If γ2 − γ1 < ζ, stop. Output: x

3. Let γ := γ1+γ2

2
. Compute Z(γ) from Model (2.22) and obtain the cor-

responding optimal solution x.

4. If Z(γ) ≤ 0, update γ2 := γ. Otherwise, update γ1 := γ

5. Go to Step 2.
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Proposition 1. Suppose Model (2.12) is feasible. Algorithm 1 finds a solu-

tion, x with objective 1− γ† satisfying |γ† − γ∗| < ζ in at most dlog2(1/ζ)e

computations of the subproblem (2.22), where 1− γ∗ being the optimal ob-

jective of Model (2.12).

Proof : Observe that each looping in Algorithm 1 reduces the gap between

γ2 and γ1 by half. We now show the correctness of the binary search. Suppose

Z(γ) ≤ 0, γ is feasible in Model (2.12), hence, γ∗ ≤ γ. Otherwise, γ would

be infeasible in Model (2.12). In this case, we claim that the optimal feasible

solution, γ∗ must be greater than γ. Suppose not, we have γ∗ ≤ γ. We know

the optimal solution x∗ of Model (2.12) satisfies

CV aR1−γ∗

(
f(x∗, z̃)− τ(z̃)

)
≤ 0.

However, since γ∗ ≤ γ, we have

Z(γ) ≤ CV aR1−γ

(
f(x∗, z̃)− τ(z̃)

)
≤ CV aR1−γ∗

(
f(x∗, z̃)− τ(z̃)

)
≤ 0,

contradicting that Z(γ) > 0.
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If z̃ takes values from zk, k = 1, . . . , K with probability pk, we can for-

mulate the subproblem of (2.22) as a linear optimization problem as follows:

min
β,s,x,yk,yk

β +
1

γ

K∑

k=1

skpk

s.t. sk ≥ c(zk)
′
x + du

′uk + dy
′yk − τ(zk)− β k = 1, . . . , K

Ax = b

B(zk)x + Uuk + Y yk = h(zk) k = 1, . . . , K

x ≥ 0, s ≥ 0

yk ≥ 0 k = 1, . . . , K

Unfortunately, the number of possible recourse decisions increases pro-

portionally with the number of possible realization of the random vector z̃,

which could be extremely large or even infinite. Nevertheless, under rel-

atively complete recourse, the two stage stochastic optimization model can

be solved rather effectively using sampling approximation. In such problems,

the second stage problem is always feasible regardless of the choice of feasible

first stage variables. Decomposition techniques has been studied in Ahmed

[1] and Riis and Schultz [52] to enable efficient computations of the stochastic

optimization problem with CVaR objective.

In the absence of relatively complete recourse, the solution obtained from

sampling approximation may not be meaningful. Even though the objective
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of the sampling approximation could be finite, in the actual performance, the

second stage problem can be infeasible, in which case the actual objective is

infinite. Indeed, a two stage stochastic optimization is generally intractable.

For instance, checking whether the first stage decision x gives rise to feasible

recourse for all realization of z̃ is already an NP -hard problem; see Ben-Tal

et al. [5]. Moreover, with the assumption that the stochastic parameters

are independently distributed, Dyer and Stougie [27] show that two-stage

stochastic programming problems are NP-hard. Under the same assump-

tion they show that certain multi-stage stochastic programming problems

are PSPACE-hard. We therefore pursue an alterative method of approx-

imating the stochastic optimization problem, that could at least guarantee

the feasibility of the solution, and determine an upper bound of the objective

function.



3. DETERMINISTIC APPROXIMATIONS FOR GOAL

DRIVEN MODEL

We have shown that solving the goal driven optimization model (2.11) in-

volves solving a sequence of stochastic optimization problems with CVaR

objectives in the form of Model (2.23). Hence, we devote this section to

formulating a tractable deterministic approximation of Model (2.23).

3.1 Assumption on Data Structure

One of the central problems in stochastic models is how to properly account

for data uncertainty. Unfortunately, complete probability descriptions are

almost never available in real world environments. Following the recent de-

velopment of robust optimization such as Ben-Tal et al. [5], Bertsimas and

Sim [14], Chen, Sim and Sun [23] and Chen et al. [24], we relax the assump-

tion of full distributional knowledge and modify the representation of data

uncertainties with the aim of producing a computationally tractable model.
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We adopt the parametric uncertainty model in which the data uncertainties

are affinely dependent on the primitive uncertainties.

Affine Parametric Uncertainty: We assume that the uncertain input

data to the model c(z̃), B(z̃), h(z̃) and τ(z̃) are affinely dependent on the

primitive uncertainties z̃ as follows:

c(z̃) = c0 +
N∑

j=1

cj z̃j,

B(z̃) = B0 +
N∑

j=1

Bj z̃j,

h(z̃) = h0 +
N∑

j=1

hj z̃j,

τ(z̃) = τ 0 +
N∑

j=1

τ j z̃j.

Note that this parametric uncertainty representation is useful for relating

multivariate random variables across different data entries through the shared

primitive uncertainties.

Since the assumption of having exact probability distributions of the

primitive uncertainties is unrealistic, as in the spirit of robust optimization,

we adopt a modest distributional assumption on the primitive uncertainties,

such as known means, supports, subset of independently distributed random

variables and some aspects of deviations. Under the affine parametric un-
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certainty, we can translate the primitive uncertainties so that their means

are zeros. For the subset of independently distributed primitive uncertain-

ties, we will use the forward and backward deviations, which were recently

introduced by Chen, Sim and Sun [23].

Definition 3. Given a random variable z̃ with zero mean, the forward devia-

tion is defined as

σf (z̃)
∆
= sup

β>0

{√
2 ln(E(exp(βz̃)))/β2

}
(3.1)

and backward deviation is defined as

σb(z̃)
∆
= sup

β>0

{√
2 ln(E(exp(−βz̃)))/β2

}
. (3.2)

Given a sequence of independent samples, we can essentially estimate the

magnitude of the deviation measures from (3.1) and (3.2). Some of the

properties of the deviation measures include:

Proposition 2. (Chen, Sim and Sun [23])

Let σ, p and q be respectively the standard, forward and backward deviations

of a random variable, z̃ with zero mean.

(a) Then p ≥ σ and q ≥ σ. If z̃ is normally distributed, then p = q = σ.
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(b)

P(z̃ ≥ βp) ≤ exp(−β2/2);

P(z̃ ≤ −βq) ≤ exp(−β2/2).

(c) For all β ≥ 0,

ln E(exp(βz̃)) ≤ β2p2

2
;

ln E(exp(−βz̃)) ≤ β2q2

2
.

Proposition 2(a) shows that the forward and backward deviations are no less

than the standard deviation of the underlying distribution, and under normal

distribution, these two values coincide with the standard deviation. As ex-

emplified in Proposition 2(b), the deviation measures provide an easy bound

on the distributional tails. Chen, Sim and Sun ([23]) show that the new de-

viation measures provide tighter approximation of probabilistic bounds com-

pared to standard deviations. This information, whenever available, enable

us to improve upon the solutions of the approximation.

When only the support of the distributions are available, Chen, Sim

and Sun [23] show how to obtain upper bounds of the forward and backward

deviation measures.

Theorem 4. ( Chen, Sim and Sun [23]) If z̃ has zero mean and distributed in
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[−z, z̄], z, z̄ > 0, then

σf (z̃) ≤ σ̄f (z̃) =
z + z̄

2

√
g

(
z − z̄

z + z̄

)

and

σb(z̃) ≤ σ̄b(z̃) =
z + z̄

2

√
g

(
z̄ − z

z + z̄

)
,

where

g(µ) = 2 max
s>0

{
φµ(s)− µs

s2

}
,

and

φµ(s) = ln

(
es + e−s

2
+

es − e−s

2
µ

)
.

Moreover the bounds are tight.

Note that the forward and backward deviations may be infinite for heav-

ier tailed distributions. Despite the stringent assumption, the advantage of

using the forward and backward deviations is the ability to capture distribu-

tional asymmetry and stochastic independence, while keeping the resultant

optimization model computationally amicable. The interested reader may

refer to Natarajan et al. [43] for the computational experience of using the

forward and backward deviations in minimizing the Value-at-Risk of a port-

folio, which gives surprisingly good out-of-sample performance on real data.
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Assumption 1. We assume that the uncertainties {z̃j}j=1:N are zero mean

random variables, with finite positive definite covariance matrix, Σ and sup-

port W = [−z, z̄], z, z̄ ∈ (0,∞]N . Of the N primitive uncertainties, the

first I random variables, that is, z̃j, j = 1, . . . , I are stochastically inde-

pendent. Moreover, the corresponding forward and backward deviations are

finite and given by pj = σf (z̃j) > 0 and qj = σb(z̃j) > 0 respectively for

j = 1, . . . , I. We may also use the deviation bounds in Theorem 4. We

denote P = diag(p1, . . . , pI) and Q = diag(q1, . . . , qI).

In practice, these parameters are, at best, estimated values. Moreover, the

forward and backward deviations are harder to estimate compared to stan-

dard deviations in the sense that we may require more samples to achieve

the same relative accuracy. It is fair to say that the effect of their estima-

tion errors on the optimization problem has not been fully understood. As

proposed in classical robust optimization, one possibility to address these

estimation errors is to build uncertainty sets around these parameters. See

for instance, Ben-Tal and Nemirovski [6], Bertsimas and Sim [14] and Gold-

farb and Iyengar [32]. For simplicity, we assume in this thesis that the exact

parameters are given.

Similar uncertainty models have been defined in Chen, Sim and Sun

[23] and Chen et al. [24]. While the uncertainty model proposed in the for-
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mer focuses on only independent primitive uncertainties with known support,

forward and backward deviation measures, the uncertainty model proposed

in the latter discards independence and assumes known support and covari-

ance of the primitive uncertainties. Hence, Assumption 1 encompasses both

models discussed in Chen, Sim and Sun [23] and Chen et al. [24].

Under Assumption 1, it is evident that h0, for instance, represents the

mean of h(z̃) and hj represents the magnitude and direction associated with

the primitive uncertainty, z̃j. Assumption 1, provides a flexibility of incor-

porating a subset of mutually independent random variables, which can lead

better evaluation of the objective function. For instance, if h̃ is multivariate

normally distributed with mean h0 and covariance, Σ, then we can decom-

pose h̃ into primitive uncertainties that are stochastically independent as

follows

h̃ = h(z̃) = h0 + Σ1/2z̃.

To fit into the affine parametric uncertainty and Assumption 1, we can assign

the vector hj to the jth column of Σ1/2. Moreover, z̃ has stochastically

independent entries with covariance equal to the identity matrix, infinite

support and unit forward and backward deviations; see Proposition 2(a).
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3.2 Approximation of E((y0 + y′z̃)+) and CV aR1−γ(y
0 + y′z̃)

Although the CVaR measure,

CV aR1−γ(y
0 + y′z̃) = min

β

(
β +

E ((y0 + y′z̃ − β)+)

γ

)

is convex in the variable (y0,y), it does not necessarily lead to a tractable

optimization problem. The key difficulty lies in the evaluation of the expec-

tation, E((·)+), which involves multi-dimension integration. Such evaluation

is typically analytically prohibitive when the dimension of the integration

exceeds four. Hence, providing bounds on E((y0 + y′z̃)+) is pivotal in de-

veloping tractable approximations of the CVaR measure. We next present

various ways of bounding E((y0 + y′z̃)+) and CV aR1−γ(y
0 + y′z̃) as follows:

Theorem 5. Assuming z̃ follows Assumption 1, the following functions πi(y0,y),

i ∈ {1, . . . , 5} are upper bounds of E ((y0 + y′z̃)+). Likewise, the following

functions,

ηi
1−γ(y

0, y)
∆
= min

β

(
β +

1

γ
πi(y0 − β, y)

)
i ∈ {1, . . . , 5}

are the upper bounds of CV aR1−γ(y
0 + y′z̃)).
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(a)

π1(y0,y)
∆
=

(
y0 + max

z∈W
z′y

)+

= min
r,s, t

{
r | r ≥ y0 + s′z + t′z, s− t = y, s, t ≥ 0, r ≥ 0

}
,

η1
1−γ(y

0,y)
∆
= y0 + max

z∈W
y′z

= y0 + min
s, t≥0

{s′z + t′z | s− t = y} .

The bound π1(y0,y) is tight whenever y0 + y′z ≤ 0 for all z ∈ W .

(b)

π2(y0,y)
∆
= y0 +

(
−y0 + max

z∈W
(−y)′z

)+

= min
r,s, t

{
r | r ≥ s′z + t′z, s− t = −y, s, t ≥ 0, r ≥ y0

}
,

η2
1−γ(y

0,y)
∆
= y0 + (1/γ − 1) max

z∈W
(−y)′z

= y0 + (1/γ − 1) min
s, t≥0

{s′z + t′z | s− t = −y} .

The bound π2(y0,y) is tight whenever y0 + y′z ≥ 0 for all z ∈ W .

(c)

π3(y0,y)
∆
= 1

2
y0 + 1

2

√
y02 + y′Σy,

η3
1−γ(y

0,y)
∆
= y0 +

√
1− γ

γ

√
y′Σy
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(d)

π4(y0, y) ∆=





infµ>0

{
µ
e exp

(
y0

µ + ‖u‖22
2µ2

)}
if yj = 0 ∀j = I + 1, . . . , N

+∞ otherwise

η4
1−γ(y0, y) ∆=





y0 +
√−2 ln γ‖u‖2 if yj = 0 ∀j = I + 1, . . . , N

+∞ otherwise
,

where uj = max{pjyj,−qjyj}, j = 1, . . . , I.

(e)

π5(y0,y) ∆=





y0 + infµ>0

{
µ
e exp

(
− y0

µ + ‖v‖22
2µ2

)}
if yj = 0 ∀j = I + 1, . . . , N

+∞ otherwise

η5
1−γ(y0,y) ∆=





y0 + 1−γ
γ

√
−2 ln(1− γ)‖v‖2 if yj = 0 ∀j = I + 1, . . . , N

+∞ otherwise
,

where vj = max{−pjyj, qjyj}, j = 1, . . . , I.

The proof is shown in Appendix .1.

Remark : The first and second bounds in Proposition 5 are derived from

the support of the primitive uncertainties. Observe that the first bound

is independent of the parameter γ. The third bound is derived from the

covariance of the primitive uncertainties. The last two bounds act upon

primitive uncertainties that are stochastically independent.

To understand the conservativeness of the approximation, we compare

the bounds of CV aR1−γ(z̃), where z̃ is standard normally distributed. Figure
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Fig. 3.1: Plot of ρi(γ) against γ for i = 3, 4 and 5, defined in Proposition 5.

3.1 compares the approximation ratios given by

ρi(γ) =
ηi

1−γ(0, 1)− CV aR1−γ(z̃)

CV aR1−γ(z̃)
, i = 3, 4, 5

It is clear that none of the bounds dominate another across γ ∈ (0, 1).

For small values of γ, the bound η4
1−γ(0, 1) is the tightest, while at high

values, η5
1−γ(0, 1) dominates. At mid-range, η3

1−γ(0, 1) gives the best bound.

Hence, this motivate us to integrate the best of all bounds to achieve the

tightest approximation. The unified approximation in Figure 3.1 achieve a

worst case approximation error of 33% at γ = 0.2847 and γ = 0.7153. We

next show how to unify these bounds.
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Theorem 6. (a) Let L ⊂ {1, 2, . . . , 5}. Define

πL(y0,y)
∆
= min

y0
i ,yi

∑
i∈L

πi(y0
i ,yi)

s.t.
∑
i∈L

y0
i = y0

∑
i∈L

yi = y.

Then for all (y0, y)

E
(
(y0 + y′z̃)+

) ≤ πL(y0,y) ≤ min
i∈L

{πi(y0, y))} (3.3)

(b) Let

ηL1−γ(y
0,y)

∆
= min

β

(
β +

1

γ
πL(y0 − β, y)

)

or equivalently

ηL1−γ(y
0,y)

∆
= min

y0
i ,yi

∑
i∈L

ηi
1−γ(y

0
i ,yi)

s.t.
∑
i∈L

y0
i = y0

∑
i∈L

yi = y.

Then for all (y0, y) and γ ∈ (0, 1)

CV aR1−γ(y
0 + y′z̃) ≤ ηL1−γ(y

0,y) ≤ min
i∈L

{ηi
1−γ(y

0,y)} (3.4)
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Proof : (a) To show the upper bound, we note that

∑
i∈L

πi(y0
i ,yi)

≥
∑
i∈L

E
(
(y0

i + y′iz̃)+
)

Theorem 5

≥ E
((∑

i∈L(y
0
i + y′iz̃)

)+
)

Subadditvity

= E ((y0 + y′z̃)+) .

Finally, to show that πL(y0,y) ≤ πi(y0, y), i = 1, . . . , 5, let

(y0
r ,yr) =





(y0,y) if r = i

(0,0) otherwise

for r ∈ L.

Hence,

πr(y0
r ,yr) =





πr(y0,y) if r = i

0 otherwise

for r ∈ L,

and therefore

πL(y0,y) ≤
∑
i∈L

πi(y0
i ,yi) = πi(y0,y).
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(b) Observe that

ηL1−γ(y0,y)

= min
β

(
β +

πL(y0 − β, y)
γ

)

= min
β,β,y0

i ,yi,∀i

(
β +

∑

i∈L

(πi(y0
i − βi, yi)

γ

)
|

∑

i∈L
yi = y,

∑

i∈L
y0

i = y0,
∑

i∈L
βi = β

)

= min
y0

i ,yi,∀i




∑

i∈L
min
βi

(
βi +

πi(y0
i − βi, yi)

γ

)

︸ ︷︷ ︸
=ηi

1−γ(y0
i ,yi)

|
∑

i∈L
yi = y,

∑

i∈L
y0

i = y0




.

Finally, the inequalities (3.4) are trivial consequence of the inequalities (3.3).

Remark : Note that in the presence of stochastically dependent primitive

uncertainties and unbounded support, all the bounds, except for the third,

of Theorem 5 can become infinite. However, such trivial bound is avoided in

the unified bound.
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From Theorem 5(a), the epigraph of the unified bound of E((y0+y′z̃)+),

π{1,2,...,5}(y0, y) ≤ ω can be expressed as follows:

∃ri, y
0
i ∈ <, yi, s, t, d, h ∈ <N , i = 1, . . . , 5,u,v ∈ <I , such that

r1 + r2 + r3 + r4 + r5 ≤ ω

y0
1 + s′z̄ + t′z ≤ r1

0 ≤ r1

s− t = y1

s, t ≥ 0

d′z̄ + h′z ≤ r2

y0
2 ≤ r2

d− h = −y2

d,h ≥ 0

1
2y0

3 + 1
2‖(y0

3 ,Σ1/2y3)‖2 ≤ r3

infµ>0
µ
e exp

(
y0

µ + ‖u‖22
2µ2

)
≤ r4

uj ≥ pjy
j
4, uj ≥ −qjy

j
4 ∀j = 1, . . . , I

yj
4 = 0 ∀j = I + 1, . . . , N

y0 + infµ>0
µ
e exp

(
− y0

µ + ‖v‖22
2µ2

)
≤ r5

vj ≥ qjy
j
5, vj ≥ −pjy

j
5 ∀j = 1, . . . , I

yj
5 = 0 ∀j = I + 1, . . . , N

y0
1 + y0

2 + y0
3 + y0

4 + y0
5 = y0

y1 + y2 + y3 + y4 + y5 = y.

(3.5)

Due to the presence of the constraint, infµ>0 µ exp
(

a
µ

+ b2

µ2

)
≤ c, the set

of constraints in (3.5) is not exactly second order cone representable (see
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Ben-Tal and Nemirovski [10]). Fortunately, using a few number second order

cones, we can accurately approximate such constraint to within the precision

of the solver. We present the second order cone approximation in Appendix

.2.

Similarly, from Theorem 5(b), the epigraph of the unified CVaR approx-

imation, η
{1,2,...,5}
1−γ (y0,y) ≤ ω is second order cone representable as follows:

∃ri, y
0
i ∈ <, yi, s, t, d, h ∈ <N , i = 1, . . . , 5, u, v ∈ <I such that

r1 + r2 + r3 + r4 + r5 ≤ ω

y0
1 + s′z̄ + t′z ≤ r1

s, t ≥ 0

s− t = y1

y0
2 + (1/γ − 1)d′z̄ + (1/γ − 1)h′z ≤ r2

d− h = −y2

d, h ≥ 0

y0
3 +

√
1−γ

γ ‖Σ1/2y3‖2 ≤ r3

y0
4 +

√
−2 ln(γ)‖u‖2 ≤ r4

uj ≥ pjy
j
4, uj ≥ −qjy

j
4 ∀j = 1, . . . , I

yj
4 = 0 ∀j = I + 1, . . . , N

y0
5 + 1−γ

γ

√
−2 ln(1− γ)‖v‖2 ≤ r5

vj ≥ qjy
j
5, vj ≥ −pjy

j
5 ∀j = 1, . . . , I

yj
5 = 0 ∀j = I + 1, . . . , N

y0
1 + y0

2 + y0
3 + y0

4 + y0
5 = y0

y1 + y2 + y3 + y4 + y5 = y.
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It is rather surprising to note that while the epigraph of the function πL(·, ·)

is approximately second-order cone representable, the epigraph of ηL1−γ(·, ·),

is fully second-order cone representable.

3.3 Decision Rule Approximation of Recourse

Depending on the distribution of z̃, the second stage recourse decisions, u(z̃)

and y(z̃) can be very large or even infinite. Moreover, since we do not specify

the exact distributions of the primitive uncertainties, it would not be possible

to obtain an optimal recourse decision. To enable us to formulate a tractable

problem in which we could derive an upper bound of Model (2.23), we first

adopt the linear decision rule used in Ben-Tal et al. [5] and Chen, Sim, and

Sun [23]. We restrict u(z̃) and y(z̃) to be affinely dependent on the primitive

uncertainties, that is

u(z̃) = u0 +
∑N

j=1 uj z̃j, y(z̃) = y0 +
∑N

j=1 yj z̃j. (3.6)

Under linear decision rule, the following constraint

Bjx + Uuj + Y yj = hj j = 0, . . . , N



3. Deterministic Approximations for Goal Driven Model 49

is a sufficient condition to satisfy the affine constraint involving recourse

variables in Model (2.23). Moreover, since the support of z̃ is W = [−z, z̄],

an inequality constraint yi(z̃) ≥ 0 in Model (2.23) is the same as the robust

counterpart

y0
i +

N∑
j=1

yj
i zj ≥ 0 ∀z ∈ W ,

which is representable by the following linear inequalities

y0
i ≥

N∑
j=1

(zjs
i
j + z̄jt

i
j)

for some si, ti ≥ 0 satisfying si
j− tij = yj

i , j = 1, . . . , N . As for the aspiration

level prospect, we let

w(z̃) = w0 +
N∑

j=1

wj z̃j, (3.7)

where

wj = cj ′x + du
′uj + dy

′yj − τ j j = 0, . . . , N, (3.8)

so that

w(z̃) = c(z̃)′x + du
′u(z̃) + dy

′y(z̃)− τ(z̃).

Hence, applying the bound on the CVaR measure at the objective function,

we have

CV aR1−γ(w(z̃)) ≤ ηL1−γ(w0, w)
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where we use w to denote the vector with elements wj, j = 1, . . . , N . Putting

these together, we solve the following problem, which is an SOCP.

ZLDR(γ) = min
x,uj ,yj ,w0,w

ηL1−γ(w0,w)

s.t. Ax = b

wj = cj ′x + du
′uj + dy

′yj − τ j j = 0, . . . , N.

Bjx + Uuj + Y yj = hj j = 0, . . . , N.

y0
i +

∑N
j=1 yj

i zj ≥ 0 ∀z ∈ W, i = 1, . . . , n3

x ≥ 0.

(3.9)

Theorem 7. Let (x, u0, . . . , uN ,y0, . . . , yN) be an optimal solution of Model

(3.9). The solution x and linear decision rules u(z̃) and y(z̃) defined in the

equations (3.6), are feasible in the subproblem (2.23). Moreover,

Z(γ) ≤ ZLDR(γ).

Deflected linear decision rule

The most common type of stochastic optimization problems is one of com-

plete recourse, which is defined on the matrix (U ,Y ) such that for any t,

there exists (u,y), y ≥ 0 satisfying Uu+Y y = t. It is easy to see in Model

(2.23) that complete recourse problem always admits a feasible recourse,

however, it may not necessarily be one of linear decision rule. Although lin-
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ear decision rule leads to a tractable approximation of the recourse, Chen

et al. [24] show that linear decision rules can be inadequate and can lead

to infeasible instances even in complete recourse problems. To resolve such

infeasibility, we adopt the deflected linear decision rules proposed by Chen

et al. [24] as an improvement over linear decision rules. We first define the

vector d̄ with elements

d̄i = minu,y du
′u + dy

′y

s.t. Uu + Y y = 0

yi = 1

y ≥ 0,

(3.10)

where we denote d̄i = ∞ if the corresponding optimization problem is infea-

sible. For notational convenience, we define the sets

C ∆
= {i : d̄i < ∞, i = 1, . . . , n3}, C̄ ∆

= {i = 1, . . . , n3}\C.

For i ∈ C, we define (ūi, ȳi) as the optimal solution of the corresponding

optimization problem.

Note that if d̄i < 0, then given any feasible solution u and y, the solution

u + κūi, and y + κȳi will also be feasible, and that the objective will be

reduced by |κd̄i|. Hence, whenever a second stage decision is feasible, its
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objective will be unbounded from below. Therefore, it is reasonable to assume

that d̄ ≥ 0.

Next, we present the model that achieves a better bound than Model

(3.9). Let {1} ⊂ L ⊂ {1, 2, . . . , 5}. We define

ZDLDR(γ) = min
x,uj ,yj ,w0,w

ηL1−γ(w0, w) +
1
γ

∑

i∈C
πL(−y0

i ,−yi)d̄i

s.t. Ax = b

wj = cj ′x + du
′uj + dy

′yj − τ j j = 0, . . . , N.

Bjx + Uuj + Y yj = hj j = 0, . . . , N.

y0
i +

∑N
j=1 yj

i zj ≥ 0 ∀z ∈ W, i ∈ C̄

x ≥ 0,

(3.11)

in which yi denotes the vector with elements yj
i , j = 1, . . . , N .

Theorem 8. Let (x, u0, . . . , uN ,y0, . . . , yN) be an optimal solution of Model

(3.11). The solution x and the corresponding deflected linear decision rule

u(z̃) = u0 +
N∑

j=1

uj z̃j +
∑
i∈C

ūi(y0
i + y′iz̃)−

y(z̃) = y0 +
N∑

j=1

yj z̃j +
∑
i∈C

ȳi(y0
i + y′iz̃)−,

(3.12)

are feasible in the subproblem (2.23). Moreover,

Z(γ) ≤ ZDLDR(γ) ≤ ZLDR(γ).
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Proof : Noting that

Uūi + Y ȳi = 0,

it is straightforward to verify that the recourse with deflected linear decision

rule satisfies the affine constraints in Model (2.23). For i ∈ C, we have ȳi
i = 1,

hence, the nonnegativity condition holds at every i element of y(z̃). Besides,

for i ∈ C̄, we have y0
i +

∑N
j=1 yj

i z̃j ≥ 0. Therefore, since ȳj ≥ 0 for all

j ∈ C, the nonnegativity condition of y(z̃) holds at every i element, i ∈ C̄ as

well. To show the bound, Z(γ) ≤ ZDLDR(γ), we note that d̄i = duūi + dyȳi,

i ∈ C. Under the deflected linear decision rule, the aspiration level prospect

becomes

c(z̃)′x + du
′u(z̃) + dy

′y(z̃)− τ(z̃)

= w(z̃) +
∑
i∈C

d̄i(y
0
i + y′iz̃)−,

where w(z̃) is defined in Equations (3.7) and (3.8). We now evaluate the
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objective of Model (2.23) under the deflected linear decision rule as follows:

CV aR1−γ

(
w(z̃) +

∑
i∈C

d̄i(y
0
i + y′iz̃)−

)

= min
β

{
β +

1

γ
E

((
w(z̃) +

∑
i∈C

d̄i(y
0
i + y′iz̃)− − β

)+
)}

= min
β

{
β +

1

γ
E

((
w(z̃) +

∑
i∈C

d̄i

(
(−y0

i − y′iz̃)+
)− β

)+)}

≤ min
β

{
β +

1

γ
E

((
w(z̃)− β

)+
)

+
∑
i∈C

1

γ
E

((−y0
i − y′iz̃

)+
)

d̄i

}

= CV aR1−γ (w(z̃)) +
1

γ

∑
i∈C

E
((−y0

i − y′iz̃
)+

)
d̄i

≤ ηL1−γ(w0,w) +
1

γ

∑
i∈C

πL(−y0
i ,−yi)d̄i

= ZDLDR(γ),

(3.13)

where the first inequality are due to (x + a)+ ≤ (x)+ + a, for all a ≥ 0, and

that d̄ ≥ 0. The last inequality is due to Theorems 6.

To prove the improvement over Model (3.9), we now consider an optimal

solution of Model (3.9), (x,u0, . . . , uN ,y0, . . . , yN). Clearly, the solution is

feasible in the constraints of Model (3.11). From Theorems 5(a) and 6, the

constraint y0
i +

∑N
j=1 yj

i zj ≥ 0, ∀z ∈ W enforced in Model (3.9) ensures that

0 ≤ πL(−y0
i ,−yi) ≤ π1(−y0

i ,−yi) = 0,

for all i ∈ C. Therefore, the solution of Model (3.9) yields the same objective
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as Model (3.11). Hence, ZDLDR(γ) ≤ ZLDR(γ).

Remark : Chen et al. [24] show that for complete recourse problems, d̄i is

finite for all i = 1, . . . , n3. Therefore, in such problems, there always exist a

feasible recourse in the form of deflected linear decision rule. As such, the

magnitude of improvement of deflected linear rule over linear decision rule

can be arbitrarily large.

3.4 Example: Multi-product Newsvendor Problem

In our computation studies, we compare the solutions obtained from sampling

approximation and deterministic approximation using robust optimization.

In particular, we test whether our approach has the ability of finding mean-

ingful solutions even in the absence of complete distribution information.

We consider a multi-product Newsvendor problem evaluated under the

goal driven optimization framework. The classical multi-product Newsvendor

problem was first introduced by Hadley and Whitin [33] and was extended

by Ben-Daya and Raouf [17] and Lau and Lau [37]. These models utilize

the risk-neutral objectives that maximize expected profits. Given a set of

m products, we consider a simple risk-neutral multi-product Newsvendor
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problem,

max
x

m∑
i=1

{
(pi − ci)xi − (pi − si)E

(
(xi − h̃i)

+
)}

s.t. x ≥ 0,

(3.14)

where the terms are defined as follows:

ci : unit purchasing cost

pi : unit selling price

si : unit salvage value

h̃i : stochastic demand

xi : order quantity,

with pi > ci > si for all products. Note that regardless of the dependency of

products’ demands, we can easily decompose Model (3.14) into m indepen-

dent Newsvendor problems. Hence, we can analytically obtain the optimal

solution of Model (3.14). Note that the formulation of Model (3.14) tacitly

contains the following recourse problem

(xi − h̃i)
+ = min

yi

{yi : yi ≥ 0, yi ≥ xi − h̃i)}.
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Hence, putting it in standard stochastic optimization framework, we have

max
x,y(·)

(p− c)′x−
m∑

i=1

E(yi(h̃))

s.t. yi(h̃)− ym+i(h̃) = (pi − si)(xi − h̃i) i = 1, . . . , m

yi(h̃) ≥ 0 i = 1, . . . , 2m

x ≥ 0,

However, not all decision makers are comfortable with implementing the

risk neutral solution. Given a target profit, τ , Sankarasubramanian and Ku-

maraswamy [56] proposed a single-product model that maximizes the prob-

ability of attaining the target. Likewise, Lau and Lau [36] and Li et al.

[38] extended the model to only two products. These approaches rely on

full assumption of demand distribution and are not analytically tractable for

multi-products. Moreover, as we have discussed, maximizing probability does

not take into account of the level of shortfall against the target objective.
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We consider the goal driven optimization model as follows:

max
γ,x,y(·)

1− γ

s.t. CV aR1−γ

(
τ − (p− c)′x +

m∑
i=1

yi(h̃)
)
≤ 0

yi(h̃)− ym+i(h̃) = (pi − si)(xi − h̃i) i = 1, . . . , m

yi(h̃) ≥ 0 i = 1, . . . , 2m

x ≥ 0.

(3.15)

Using Algorithm 1, we reduce the problem (3.15) to solving a sequence of

subproblems in the form of stochastic optimization problems with CVaR

objectives as follows:

Z(γ) = min
x,y(·)

CV aR1−γ

(
τ − (p− c)′x +

m∑
i=1

yi(h̃)
)

s.t. yi(h̃)− ym+i(h̃) = (pi − si)(xi − h̃i) i = 1, . . . , m

yi(h̃) ≥ 0 i = 1, . . . , 2m

x ≥ 0.

(3.16)

In the nominal test problem, we choose ci = 3, pi = 5, si = 2 for all

products. The demands across products are uncorrelated. The distribution

of each demand is unknown except for being a nonnegative random variable
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with mean µi = 100 and standard deviation σi = 10. Hence,

h̃ = h(z̃) = h0 +
m∑

j=1

hj z̃j,

where h0 is a vector of 100s, and hj is a vector with the jth element taking

the value of ten and zero otherwise. Therefore, the primitive uncertainties, z̃

have covariance being the identity matrix and support of z̃i being [−10,∞).

Note that we do not utilize the forward and backward deviations in this

experiment. To apply deflected linear decision rule, need to obtain d̄ ∈ <2m

as follows

d̄i = min
y

m∑
j=1

yj

s.t. yj − ym+j = 0 j = 1, . . . , m

yi = 1

yj ≥ 0 i = 1, . . . , 2m.

Clearly, d̄i = 1 for all i = 1, . . . , 2m. Hence, using deflected linear decision

rule, we can obtain the upper bound of the subproblems (3.16) by solving
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the following problem:

ZDLDR(γ) = min
x,w0,w,yj

η
{1,2,3}
1−γ (w0,w) +

1
γ

2m∑

i=1

π{1,2,3}(−y0
i ,−yi)

s.t. y0
i − y0

m+i = (pi − si)(xi − h0
i ) i = 1, . . . , m

yj
i − y0

m+i = (pi − si)(−hj
i ) i = 1, . . . , m, j = 1, . . . , m

w0 = τ − (p− c)′x +
m∑

i=1

y0
i

wj =
m∑

i=1

yj
i j = 1, . . . , m

x ≥ 0,

(3.17)

where

η
{1,2,3}
1−γ (w0,w) = min

s,r,y0
i ,yi

s

s.t. r1 + r2 + r3 ≤ s

y0
1 − y′1z ≤ r1

−y1 ≥ 0

y0
2 + (1/γ − 1)y′2z ≤ r2

y2 ≥ 0

y0
3 +

√
1−γ

γ
‖y3‖2 ≤ r3

y0
1 + y0

2 + y0
3 = w0

y1 + y2 + y3 = w,
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and

π{1,2,3}(y0,y) = min
s,r,y0

i ,yi

s

s.t. r1 + r2 + r3 ≤ s

y0
1 − y′1z ≤ r1

0 ≤ r1

−y1 ≥ 0

y′2z ≤ r2

y0
2 ≤ r2

y2 ≥ 0

1
2
y0

3 + 1
2
‖(y0

3,y3)‖2 ≤ r3

y0
1 + y0

2 + y0
3 = y0

y1 + y2 + y3 = y,

and zj = 10 for j = 1, . . . , m. Therefore, the deterministic approximation

of the subproblem using robust optimization has 2m second order cones in

dimension m + 2 and one second order cone of dimension m + 1.

After obtaining the robust solution of the goal driven optimization model,

we generate the profit profile on a sample size of M = 500, 000 using various

assumed distributions with the same mean and standard deviations. After

obtaining the profit profiles, u1, . . . , uM , we can estimate the shortfall aspi-
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ration level criterion as follows:

ˆSALC = 1− inf
a>0

1

aM

M∑

k=1

(τ − uk + a)+.

In our experiment, we consider two types of distributions: a normal distri-

bution and a shifted exponential distribution with density function

fh̃i
(x; µi, σi) =





1
σi

exp
(
− 1

σi
(x− (µi − σi))

)
if x ≥ µi − σi

0 otherwise,

in which the mean and standard deviation are given by µi and σi respectively.

While keeping the target profit τ proportional to m, we analyze the profit

profile as we vary the number of products, m. After some experiments, we

choose τ = 183m in order to obtain reasonably interesting profiles for m

ranging from 5 to 30.

Figure 3.2 shows the profit profiles of two solutions: one that maximizes

the expected profit and the other maximizes the shortfall aspiration level

criterion. Indeed, the classical risk neutral model obtains a higher expected

profit than the goal driven model. However, its risk of under performing

against the target profit is substantially higher.

We next investigate the conservativeness of the solution obtained by
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Fig. 3.2: Goal driven optimization versus maximizing expected profit (m = 10)

robust optimization against the solution obtained by sampling approxima-

tion using 1000 samples of the exact distribution. We formulate the problems

using an in-house developed software, PROF (Platform for Robust Optimiza-

tion Formulation). The Matlab based software is essentially an SOCP mod-

eling environment that contains reusable functions for modeling multiperiod

robust optimization using decision rules. We have implemented bounds for

the CVaR measure and expected positivity of a weighted sum of random vari-

ables. The software calls upon CPLEX 10.0 to solve the underlying SOCP.

It takes less than 0.5 seconds to solve Problem (3.17) of the size, m = 30.

In contrast, it takes about 30 seconds to obtain the solution by sampling

approximation using 1000 samples.
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Since the stochastic optimization problem is one of complete recourse,

and that the demand variances are relatively small, we expect sampling ap-

proximation to outperform the robust solution. In Figure 3.3, where the

demands follows the shifted exponential distribution, the solution obtained

by sampling approximation achieves higher shortfall aspiration level crite-

rion. However, the gap against the robust solution tapered off as the number

of products increases. In contrast, Figure 3.4, where the demands are nor-

mally distributed, shows that the shortfall aspiration level criterion obtained

by the robust solution is only marginally lower than that of the solution

obtained by sampling approximation. We observe that in these examples,

the shortfall aspiration level criterion increases as the number of products,

m increases. It is probably due to the increased risk pooling effect, which is

consistent with our intuitions.

We have seen in this example that the solution obtained by sampling

approximations is likely to outperform the robust solution if the demand

distribution is correctly assumed. However, we find another interesting phe-

nomenon. We use the solution obtained by sampling approximation based on

the shifted exponential distribution and evaluate the shortfall aspiration level

criteria based on a different distribution, in this case, a normal distribution

with the same mean and standard deviation. Figure 3.5 suggests that the
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Fig. 3.3: Shortfall aspiration level criteria evaluated on shifted exponential distri-
bution with sampling approximation using the same distribution.

robust solution can grossly outperform the solution obtained by sampled ap-

proximation using a different distribution with identical mean and standard

deviation.
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Fig. 3.4: Shortfall aspiration level criteria evaluated on normal distribution with
sampling approximation using the same distribution.
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Fig. 3.5: Shortfall aspiration level criteria evaluated on normal distribution with
sampling approximation using the shifted exponential distribution.



4. GOAL DRIVEN MODEL WITH PROBABILISTIC

CONSTRAINT

4.1 Individual probabilistic Constraint

In this section, we review some of the tractable approximations of individual

probabilistic constraint problems found in the literature, which are in the

form of second order cone. For simplicity, we consider a linear individual

probabilistic constraint

P
(
y(z̃) ≤ 0)

)
≥ 1− ε, (4.1)

where y(z̃) are affinely dependent of z̃,

y(z̃) = y0 +
N∑

j=1

yj z̃j,

where (y0, y1, . . . , yN) are decision variables and ε ∈ (0, 1) being the given

risk requirement. To illustrate the generality, we can represent the following
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probabilistic constraint problem

P
(
a(z̃)′x ≥ b(z̃))

)
≥ 1− ε,

where

a(z̃) = a0 +
N∑

j=1

aj z̃j

b(z̃) = b0 +
N∑

j=1

bj z̃j,

by enforcing the following affine relations

yj = −aj ′x + bj ∀j = 0, . . . , N.

Clearly, the constraint (4.1) is not necessarily convex in its decision variables,

(y0, y1, . . . , yN). For notational convenience, we denote y = (y1, . . . , yN), so

y(z̃) = y0 + y′z̃. A step towards tractability is convexifying the probabilis-

tic constraint (4.1) using the CVaR measure. The CVaR measure has been

established by Shapiro and Nemirovski [44] as the tightest convex approx-

imation of an individual probabilistic constraint problem. It has been well

established that that suppose (y0, y) satisfies

CV aR1−ε(y
0 + y′z̃) ≤ 0 (4.2)
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it also satisfies the probabilistic constraint (4.1). Moreover, the safeguard-

ing constraint of (4.2) is convex in its decision variables, (y0,y). However,

evaluation of the CVaR measure requires full knowledge of the underlying

distribution, z̃. Moreover, despite its convexity, even if the distributions of

z̃ is completely specified, it remains unclear how we can evaluate the CVaR

measure precisely. To simplify the problem, we made the same assumptions

of the uncertainties as the previous chapter.

Assumption 1: We assume that the primitive uncertainties {z̃j}j=1:N are

zero mean random variables, with covariance Σ and support W = [−z, z̄].

Of the N primitive uncertainties, the first I random variables, that is, z̃j, j =

1, . . . , I are stochastically independent. Moreover, the corresponding forward

and backward deviations given by pj = σf (z̃j) and qj = σb(z̃j) respectively for

j = 1, . . . , I, and we denote P = diag(p1, . . . , pI) and Q = diag(q1, . . . , qI).

There are several attractive proposals of robust optimization that ap-

proximates individual probabilistic constraint (see [6, 7, 8, 14, 23])). In such

a proposal, (y0,y) satisfying the following robust counterpart

y0 + max
z∈U

y′z ≤ 0
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guarantees that

P(y0 + y′z̃ ≤ 0) ≥ 1− ε. (4.3)

Clearly, the choice of uncertainty set depends on the underlying assumption

of primitive uncertainty.

Another approach of approximating the probabilistic constraint problem

is to provide an upper bound of CV aR1−ε(y
0 + y′z̃), so that if the bound

is nonnegative, the probabilistic constraint (4.3) will be satisfied. The key

difficulty lies in the evaluation of the expectation of a positive component

of a random variable, E((·)+), which can be viewed as a multi-dimension

integration. From Theorem 5 and 6, we know that for a given L ⊆ {1, . . . , 5},

πL(y0,y) upper bounds E((y0 + y′z̃)+). We define

ηL1−ε(y
0,y)

∆
= min

β

{
β +

1

ε
πL(y0 − β, y)

}
.

Clearly,

CV aR1−ε(y
0 + y′z̃) ≤ ηL1−ε(y

0,y)

and a sufficient condition for satisfying (4.3) is

ηL1−ε(y
0, y) ≤ 0. (4.4)



4. Goal Driven Model with Probabilistic Constraint 71

Since the epigraph of πL(y0 − β, y) is second order cone representable, the

constraint (4.4) is also second order cone representable.

Before we show the connection between the robust optimization and

approximation of CVaR, we need the following result.

Proposition 3. Let Ui, i ∈ L, be compact uncertainty sets such that their

intersections

UL =
⋂
i∈L
Ui,

has a non-empty interior. Then

max
z∈UL

y′z = min
yi,i∈L

(∑
i∈L

max
zi∈Ui

y′izi |
∑
i∈L

yi = y

)
.

Proof : We observe that the problem

max y′z

s.t. z ∈ UL

is equivalently

max y′z

s.t. zi = z

zi ∈ Ui ∀i ∈ L.

(4.5)
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By strong duality, we have

max
z
{y′z : z = zi, i ∈ L}

= min
yi,i∈L

{∑
i∈L

y′izi :
∑
i∈L

yi = y

}
.

Hence, the problem (4.5) is equivalent to

max
z∈UL

y′z = max
zi∈Ui,i∈L

{
min

yi,i∈L

{∑
i∈L

y′izi |
∑
i∈L

yi = y

}}
.

Observe the set UL is a compact set with nonempty interior. Hence, maxz∈U y′z

is therefore finite. Furthermore, there exists finite optimal primal and dual

solutions zi and yi, i ∈ L that satisfy strong duality. Hence, we can exchange

“max” with “min”, so that

max
z∈U

y′z = min
yi,i∈L

{
max

zi∈Ui,i∈L

∑
i∈L

y′izi |
∑
i∈L

yi = y

}

= min
yi,i∈L

{∑
i∈L

max
zi∈Ui

y′izi |
∑
i∈L

yi = y

}
.

Theorem 9. Suppose z̃ follows the Model of Uncertainty, U. Let L ⊆ {1, . . . , 5}

and define

UL(ε) ∆
=

⋂

l∈L
Ul(ε)
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where

U1(ε)
∆= W

U2(ε)
∆= {z | z = (1− 1/ε)ζ, for some ζ ∈ W}

U3(ε)
∆=

{
z | ‖z‖2 ≤

√
1− ε

ε

}

U4(ε)
∆=

{
z | ∃s, t ∈ <I , (z1, . . . , zI) = s− t, ‖P−1s + Q−1t‖ ≤

√
−2 ln ε

}

U5(ε)
∆=

{
z | ∃s, t ∈ <I , (z1, . . . , zI) = s− t, ‖Q−1s + P−1t‖ ≤ 1− ε

ε

√
−2 ln(1− ε)

}
.

Then

ηL1−ε(y
0,y) = y0 + max

z∈UL(ε)
y′z.

Proof :

For notational convenience, we ignore the representation of uncertainty sets

as functions of ε. Observe that for any ε ∈ (0, 1), the sets, U1, . . . ,U1 are

compact and contain 0 in their interiors.

Uncertainty Set U1:

η1
1−ε(y

0,y) = min
β

(
β +

π1(y0 − β, y)

ε

)

= min
β

(
β +

1

ε
(y0 − β + max

z∈W
y′z)+

)

= y0 + max
z∈W

y′z + min
β

(
β +

1

ε
(−β)+

)

= y0 + max
z∈U1

y′z.
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Uncertainty Set U2:

η2
1−ε(y

0, y) = min
β

(
β +

π2(y0 − β, y)
ε

)

= y0 + min
β

(
β +

π2(−β, y)
ε

)

= y0 + min
β

{
β +

1
ε

((
max
z∈W

(−y)′z + β

)+

− β

)}

= y0 + min
β

{
β(1− 1/ε) +

1
ε

(
(max
z∈W

(−y)′z + β)+
)}

= y0 + (1/ε− 1)min
β

{
−β +

1
1− ε

(
(max
z∈W

(−y)′z + β)+
)}

= y0 + (1/ε− 1) max
z∈W

y′(−z) + (1/ε− 1) min
β

(
−β +

1
1− ε

(β)+
)

= y0 + max
z∈U2

y′z.

Uncertainty Set U3:

η3
1−ε(y

0,y) = min
β

(
β +

π3(y0 − β, y)

ε

)

= min
β

(
β +

y0 − β +
√

(y0 − β)2 + y′Σy

2ε

)

= y0 +

√
1− ε

ε

√
y′Σy

= y0 + max
z∈U3

y′z,

where the second equality follows from choosing the optimum β,

β∗ = y0 +

√
y′Σy(1− 2ε)

2
√

ε(1− ε)
.

Uncertainty Set U4:
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For notational convenience, we denote

yI = (y1, . . . , yI)

yĪ = (yI+1, . . . , yN).

η4
1−ε(y

0,y) = min
β

(
β +

π4(y0 − β, y)
ε

)

= min
β,µ,u

(
β +

µ
e exp(y0−β

µ + ‖u‖22
2µ2 )

2ε
| u ≥ PyI , u ≥ −QyI , yĪ = 0

)

= min
µ,u

(
y0 +

‖u‖22
2µ2

− µ ln ε | u ≥ PyI ,u ≥ −QyI , yĪ = 0
)

= min
u

(
y0 +

√
−2 ln εu0 | P−1u ≥ yI , Q

−1u ≥ −yI ,yĪ = 0, ‖u‖2 ≤ u0

)

= y0 + max
z∈U4

y′z,

where the second and third equalities follow from choosing the tightest β∗

and µ∗, that is

β∗ = y0 +
‖u‖2

2

2µ2
− µ ln ε− µ,

µ∗ =
‖u‖2√−2 ln ε

.

The last equality is the result of strong conic duality and has been derived

in Chen, Sim and Sun [23].

Uncertainty Set U5:
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Following from the above exposition,

η5
1−ε(y

0, y)

= min
β

(
β +

π5(y0 − β, y)
ε

)

= min
β,µ,v

(
β +

y0 − β + µ
e exp(−y0−β

µ + ‖v‖22
2µ2 )

2ε
| v ≥ −PyI , v ≥ QyI , yĪ = 0

)

= min
µ,v

(
y0 + (

1
ε
− 1)(

‖v‖22
2µ2

− µ ln(1− ε)) | v ≥ −PyI , v ≥ QyI , yĪ = 0
)

= min
v

(
y0 +

1− ε

ε

√
−2 ln(1− ε)‖v‖ | | P−1v ≥ −yI , Q

−1v ≥ yI , yĪ = 0
)

= y0 + max
z∈U5

y′z.

Uncertainty Set UL:

ηL(y0, y)

= min
β

(
β +

πL(y0 − β, y)
ε

)

= min
β,yl0,yl,l∈L

(
β +

∑

l∈L

(πl(yl0 − βl, yl)
ε

)
|

∑

l∈L
yl = y,

∑

l∈L
yl0 = y0,

∑

l∈L
βl = β

)

= min
yl0,yl,l∈L

(∑

l∈L
min
βl

(
βl +

πl(yl0 − βl, yl)
ε

)
|

∑

l∈L
yl = y,

∑

l∈L
yl0 = y0

)

= min
yl0,yl,l∈L

(∑

l∈L

(
yl0 + max

z∈Ul

y′lz
)
|

∑

l∈L
yl = y,

∑

l∈L
yl0 = y0

)

= y0 + min
yl,l∈L

(∑

l∈L

(
max
z∈Ul

y′lz
)
|

∑

l∈L
yl = y

)

= y0 + max
z∈UL

y′z,

where the last inequality is due to Proposition 3.

Hence, the different approximations of individual chance constrained

problems using robust optimization are the consequences of applying differ-

ent bounds on E((·)+). Notably, when the primitive uncertainties are char-
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acterized only by their means and covariance, the corresponding uncertainty

set is an ellipsoid of the form U3. See, for instance, Bertsimas et al. [14]

and El-Ghaoui et al. [28]. When I = N , that is all the primitive uncer-

tainties are independently distributed, Chen, Sim and Sun [23] proposed the

asymmetrical uncertainty set

UA(ε) = W︸︷︷︸
=U1(ε)

⋂
U4(ε),

which generalizes the uncertainty set proposed by Ben-Tal and Nemirovski

[8]. Noting that UA(ε) ⊆ U{1,2,4,5}(ε), we can therefore improve upon the

approximation using the uncertainty set U{1,2,4,5}(ε). However, in most ap-

plication of chance constrained problems, the safety factor, ε is relatively

small. In which case, the uncertainty sets of U2(ε) and U5(ε) are usually

exploded to engulf the uncertainty sets of W and U4(ε), respectively . For

instance, under symmetric distributions, that is P = Q and z̄ = z, it is easy

to establish that for ε < 0.5, we have

U{1,2,4,5}(ε) = U1(ε)︸ ︷︷ ︸
=W

⋂
U2(ε)︸ ︷︷ ︸
⊇W

⋂
U4

⋂
U5︸︷︷︸
⊇U4

= UA(ε).

For L = {1, . . . , 5}, the constraint ηL1−ε(y
0,y) ≤ 0 can be expressed as
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follows:

∃δi, y0i ∈ <,yi, s, t,d,h ∈ <N , i = 1, 2, . . . , 5, u, v ∈ <I such that

δ1 + δ2 + δ3 + δ4 + δ5 ≤ 0

y10 + s′z̄ + t′z ≤ δ1

s, t ≥ 0

s− t = y1

y20 + (1/ε− 1)d′z̄ + (1/ε− 1)h′z ≤ δ2

d− h = −y2

d, h ≥ 0

y30 +
√

1−γ
γ ‖Σ1/2y3‖2 ≤ δ3

y40 +
√
−2 ln(γ)‖u‖2 ≤ δ4

uj ≥ pjy4j , uj ≥ −qjy4j ∀j = 1, . . . , I

y4j = 0 ∀j = I + 1, . . . , N

y50 + 1−γ
γ

√
−2 ln(1− γ)‖v‖2 ≤ δ5

vj ≥ qjy5j , vj ≥ −pjy5j ∀j = 1, . . . , I

y5j = 0 ∀j = I + 1, . . . , N

y10 + y20 + y30 + y40 + y40 = y0

y1 + y2 + y3 + y4 + y5 = y.

It is interesting to note that while the epigraph of the function πL(·, ·) is

approximately second-order cone representable, the epigraph of ηL(·, ·), is

fully second-order cone representable.
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4.2 Joint probabilistic Constraint

We now extend the result in the previous section to the joint linear probabilis-

tic constraint. Similarly, we consider a linear joint probabilistic constraint

P
(
yi(z̃) ≤ 0, i ∈M)

)
≥ 1− ε, (4.6)

where M = {1, . . . ,m}. yi(z̃) are affinely dependent of z̃,

yi(z̃) = y0
i +

N∑
j=1

yj
i z̃j i ∈M,

where (y0
1, . . . , y

N
1 , . . . , y0

m, . . . , yN
m) are the decision variables. For notational

convenience, we use

yi = (y1
i , . . . , y

N
i ),

so yi(z̃) = y0
i + y′iz̃. Moreover, we use

Y = (y0
1, . . . , y

N
1 , . . . , y0

m, . . . , yN
m),

to represent all the decision variables in the joint probabilistic constraint.

It is straight forward to see that by suitable affine constraints imposing the
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decision variables Y and x, we can express the probabilistic constraint

P
(
ai(z̃)′x ≤ bi(z̃), i ∈M

)
≥ 1− ε, (4.7)

as the form of constraint (4.6).

It is not surprising that a joint probabilistic constraint is more difficult

to solve than an individual one. The standard approach proposed in the

literatures [44, 23] approximates the problem using Bonferroni’s inequality,

so the joint constraint can be decomposed into m individual constraints in

the form of

P
(
yi(z̃) ≤ 0

)
≥ 1− εi, i ∈M, (4.8)

in which
m∑

i=1

εi ≤ ε. (4.9)

Consequently, using the techniques discussed in the previous section, we can

approximate the constraints (4.8) as follows

ηL1−εi
(y0

i ,yi) ≤ 0, i ∈M. (4.10)

The main issue with using Bonferroni’s inequality is the choice of εi.

Unfortunately, the problem becomes non-convex and possibly intractable if
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εi are made variables and enforcing the constraint (4.9) as part of the opti-

mization model. As such, it is natural to choose, εi = ε/m.

In some instances, Bonferroni’s inequality may be rather conservative

even for an optimal choice of εi. For instance, suppose yi(z̃) are completely

correlated, such as with a0 ∈ <, a ∈ <N ,

yi(z̃) = δi(a
0 + a′z̃), i = 1, . . . ,m (4.11)

for some δi > 0. Clearly, the least conservative choice of εi is εi = ε for

all i ∈ M, which would violate the condition (4.9) imposed by Bonferroni’s

inequality. As a matter of fact, it is easy to see that the least conserva-

tive choice of εi while satisfying Bonferroni’s inequality is εi = ε/m for all

i = 1, . . . , m. Hence, if yi(z̃) are correlated, the efficiency of Bonferroni’s

inequality would possibly diminish.

We propose a new tractable way for approximating the joint probabilistic

constraint. Given a set of positive constants, αi ∈ (0,∞], i ∈ M, we define

J as the index set of finite constants, that is

J ∆
= {i : αi < ∞}
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and its compliment index set,

Ĵ ∆
= M\J .

Define

ψL1−ε(Y ,α,J ) ∆= min
β,w0,w

(
β +

1
ε

{
πL(w0 − β, w) +

∑

i∈J
πL(αiy

0
i − w0, αiyi −w)

})
.

The next result shows how we can use the function ψL1−ε(Y ,α,J ) to approx-

imate a joint probabilistic constraint.

Theorem 10. Under Assumption 1, the joint probabilistic constraint (4.6) is

satisfied if

ψL1−ε(Y ,α,J ) ≤ 0 (4.12)

and

y0
i + max

z∈W
y′iz ≤ 0 ∀i ∈ Ĵ . (4.13)

Proof : Under Assumption 1, the set W is the support of the primitive

uncertainty, z̃, hence, the robust counterpart (4.13) implies

P(y0
i + y′iz̃ > 0) = 0, ∀i ∈ Ĵ .
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Hence, since α > 0, we have

P
(
y0

i + y′iz̃ ≤ 0, i ∈M
)

= P
(
y0

i + y′iz̃ ≤ 0, i ∈ J
)

= P
(

maxi∈J {αiy
0
i + αiy

′
iz̃} ≤ 0

)
.

Therefore, it suffices to show that if Y is feasible in the constraint (4.12),

then the CVaR measure,

CV aR1−ε

(
max
i∈J

{αiyi(z̃)}
)
≤ 0.

We first claim that for any y1, ..., ym and w,

w +
∑

i

(yi − w)+ ≥ max
i
{yi}. (4.14)

Indeed, for any index j,

w +
∑

i

(yi −w)+ = w + (yj −w)+ +
∑

i6=j

(yi −w)+ ≥ yj +
∑

i6=j

(yi −w)+ ≥ yj.
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Therefore,

CV aR1−ε

(
max
i∈J

{αi(y0
i + y′iz̃)}

)

= min
β

{
β +

1
ε
E

((
max
i∈J

{αi(y0
i + y′iz̃)} − β

)+
)}

≤ min
β,w0,w

{
β +

1
ε
E

((
w0 + w′z̃ +

∑

i∈J
(αiy

0
i + αiy

′
iz̃ − (w0 + w′z̃))+ − β

)+
)}

≤ min
β,w0,w

{
β +

1
ε

(
E

(
(w0 − β + w′z̃)+

)
+

∑

i∈J
E

(
(αy0

i − w0 + (αiyi −w)′z̃)+
)
)}

≤ min
β,w0,w

{
β +

1
ε

(
πL(w0 − β, w) +

∑

i∈J
πL(αy0

i − w0, αiyi −w)

)}

= ψL1−ε(Y ,α,J ) ≤ 0,

where the first inequality is due to Inequality (4.14), the second inequality

follows from

(a + b+)+ ≤ a+ + (b+)+ = a+ + b+

and the last inequality is the application of Theorem 6.

For a given α, the function ψL1−ε(Y ,α,J ) is convex in Y . Moreover,

the corresponding epigraph is also second order cone representable. However,

the function is not jointly convex in ψL1−ε(Y ,α,J ). Nevertheless, for a given

Y , we note that the function, ψL1−ε(Y ,α,J ) is convex with respect to α and

the corresponding epigraph is also second order cone representable. We will

later exploit this property for improving the choice of α.

In the example (4.11) in which yi(z̃) is completely correlated, suppose



4. Goal Driven Model with Probabilistic Constraint 85

we have

ηL1−εi
(a0,a) ≤ 0

it is sufficient to guarantee feasibility in the joint probabilistic constraint

problem. Choosing αi = 1/δi > 0, we see that

ψL1−ε(Y ,α,J )

= min
β,w0,w

(
β +

1

ε

{
πL(w0 − β, w) +

∑
i∈J

πL(αiy
0
i − w0, αiyi −w)

})

= min
β,w0,w

(
β +

1

ε

{
πL(w0 − β, w) +

∑
i∈J

πL(αiδia
0 − w0, αiδia−w)

})

≤ min
β

(
β +

1

ε

{
πL(a0 − β, a) +

∑
i∈J

πL(a0 − a0, a− a)

})

= min
β

(
β +

1

ε

{
πL(a0 − β, a)

})

= ηL1−ε(a
0,a) ≤ 0.

Therefore, we see that the new bound is potentially better than the appli-

cation of Bonferroni’s inequality on individual probabilistic constraints. We

prove a stronger result as follows.

Theorem 11. Let εi ∈ (0, 1), i ∈M and
∑m

i=1 εi ≤ ε. Suppose Y satisfies

ηL1−εi
(y0

i , yi) ≤ 0 ∀i ∈M,

then there exists αi ∈ (0,∞], i = 1, . . . , m such that (Y ,α) are feasible in
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the constraints (4.12) and (4.13).

Proof : Let βi be the optimal solution to the model with constraints

min
β

(
β +

1

εi

(
πL(y0

i − β, yi)
))

︸ ︷︷ ︸
=ηL1−εi

(y0
i ,yi)

≤ 0.

Since

πL(y0
i − βi,yi) ≥ E

(
(y0

i − βi + y′iz̃)+
) ≥ 0,

we must have βi ≤ 0. Let J = {i|βi < 0},

αj = − 1

βj

∀j ∈ J ,

and correspondingly,

αj = ∞ ∀j ∈ {1, . . . , m}\J︸ ︷︷ ︸
=Ĵ

.

Since βj = 0 for all j ∈ Ĵ , the following condition

0 ≤ E
(
(y0

i + y′iz̃)+
) ≤ πL(y0

i ,yi) ≤ 0 ∀i ∈ Ĵ

implies that E ((y0
i + y′iz̃)+) = 0 for all i ∈ Ĵ . Since W is the support of z̃,
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this could only occur when

y0
i + y′iz ≤ 0 ∀z ∈ W , ∀i ∈ Ĵ

which satisfies the set of inequalities in (4.13).

For i ∈ J , the constraint ηL1−εi
(y0

i , yi) ≤ 0 is equivalent to

1

−βi

πL(y0
i − βi, yi) ≤ εi

Since the function πL(·, ·) is positive homogenous, we have

1

−βi

πL(y0
i − βi, yi)

= πL
(

1
−βi

y0
i + 1, 1

−βi
yi

)

= πL (αiy
0
i + 1, αiyi) ≤ εi ∀i ∈ J .
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Finally,

ψL1−ε(Y , α,J )

= min
β,w0,w

(
β +

1

ε

{
πL(w0 − β, w) +

∑
i∈J

πL(αiy
0
i − w0, αiyi −w)

})

≤ −1 +
1

ε

{
πL(−1 + 1,0) +

∑
i∈J

πL(αiy
0 + 1, αiy − 0)

}

= −1 +
1

ε

∑
i∈J

πL(αiy
0 + 1, αiy)

≤ −1 +
1

ε

∑
i∈J

εi ≤ 0,

where the first inequality is due to the choice of β = −1, w0 = −1, w = 0

and the last inequality follows from
∑m

i=1 εi ≤ ε.

4.3 Optimizing over α

In this section, we propose a method to choose coefficients α such that the

solutions of models with Constraint (4.12) and (4.13) can be improved. Con-

sider an optimization model with a joint probabilistic constraint as follows

Zε = min c′x

s.t. P(yi(z̃) ≤ 0, i ∈M) ≥ 1− ε

(x,Y ) ∈ X,

(4.15)
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in which X is efficiently computable convex set, such as a polyhedron or a

second order cone representable set. Given a set of constant, α > 0 and a

set J , we consider the following optimization model.

Z1
ε (α,J ) = min c′x

s.t. ψL1−ε(Y ,α,J ) ≤ 0

y0
i + maxz∈W y′iz ≤ 0 ∀i ∈M\J

(x, Y ) ∈ X.

(4.16)

Under Assumption 1, suppose Model (4.16) is feasible, the solution x,Y is

also feasible in Model (4.15), albeit more conservatively.

The main concern here is how to choose α and J . A likely choice, is say

αi = 1, for all i ∈ M and J = M. Alternatively, we may use the classical

approach by decomposing into m individual probabilisticconstraint problem

with εi = ε/m. Base on Theorem 11, we can find a feasible α > 0 and set J

such that Model (4.16) is also feasible.

Our aim is to improve upon the objective by minimizing ψL1−ε(Y , α,J )

over αi, i ∈ J , resulting in greater slack in the model (4.16). Hence, this ap-

proach will lead to improvement in the objective, or at least will not increase
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the value. We consider the following optimization problem over αi, i ∈ J ,

Z1
α(Y ,J ) = min ψL1−ε(Y ,α,J )

s.t.
∑

i∈J αi = 1

αi ≥ 0 ∀i ∈ J .

(4.17)

Since the feasible region of Model (4.17) is compact, the optimal solution

for αi, i ∈ J is therefore achievable. Suppose we obtain an initial feasible

(Y , α,J ) satisfying ψL1−ε(Y ,α,J ) ≤ 0, due to the positive homogenous

property, we can scale α with any positive constraint without affecting its

feasibility. Therefore, we can infer that Z1
α(Y ,J ) ≤ 0.

However, it is possible that the optimum solution of Model (4.17) con-

tains some element α∗k = 0 for some index k ∈ J . This will require an update

of the set J and reevaluation of Model (4.17). The following suggests how

we should perform the updates.

Proposition 4. Assume there exists (Y ,α,J ), α > 0, such that ψL1−ε(Y ,α,J ) ≤

0.

(a) Let α∗ be the optimum solution to Model (4.17) and suppose there exists

a nonempty set K ⊂ J such that αi = 0, ∀i ∈ K. Then

y0
i + max

z∈W
y′iz ≤ 0 ∀i ∈ J \K.
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(b) Moreover,

Z1
α(Y ,K) ≤ 0.

Proof : (a) We have argued that Z1
α(Y ,J ) ≤ 0. Let k ∈ K, that is, α∗k = 0.

Observe that

0 ≥ ψL1−ε(Y , α∗,J )

= β +
1
ε

{
πL(w0 − β, w) +

∑

i∈J
πL(α∗i y

0
i − w0, α

∗
i yi −w)

}

= β +
1
ε

{
πL(w0 − β, w) + πL(−w0,−w)

}
+

1
ε

∑

i∈J\{k}
πL(α∗i y

0
i − w0, α

∗
i yi −w)

≥ β +
1
ε

{
πL(w0 − β, w) + πL(−w0,−w)

}

≥ β +
1
ε
πL(−β,0)

≥ β +
1
ε
E

(
(−β)+

)

= β + 1
ε (−β)+,

where the second equality is due to α∗k = 0 and the second inequality is

due to convexity of the function, πL(·, ·). Since, ε ∈ (0, 1), the equality

β+ 1
ε
(−β)+ = 0 is satisfied if and only if β = 0 and the inequality πL(w0,w)+

πL(−w0,−w) = 0 is satisfied if and only if w0 = 0, w = 0. Hence, we now

conclude that

πL(y0
i ,yi) = 0 ∀i ∈ J \K (4.18)

which implies

0 ≤ E((y0
i + y′iz̃)+) ≤ πL(y0

i ,yi) = 0, ∀i ∈ J \K.
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Since W is the support of z̃, this could only occur when

y0
i + max

z∈W
y′iz ≤ 0 ∀i ∈ J \K.

(b) Under the assumption that there exists (Y , α,J ), α > 0, such that

ψL1−ε(Y ,α,J ) ≤ 0. Since K ⊂ J and using the same α, we observe that

ψL1−ε(Y , α,K) ≤ ψL1−ε(Y ,α,J ) ≤ 0.

Again, due to the positive homogenous property of Theorem 10(b), we scale

α by a positive constant so that it is feasible in Problem (4.17). Hence, the

result follows.

We propose an algorithm for improving the choice of α and the set J .

Again, we assume we can find an initial feasible solution of Model (4.16).

Algorithm 2.

Input: (Y ,J )

1. Solve Problem (4.17) with Input (Y ,J ). Obtain optimal solution α∗

2. Set K := {i|α∗i = 0, i ∈ J } and α := α∗.

3. If K 6= ∅ Then Set J := K. Goto Step 1.
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4. Else Solve Model (4.16) with Input (α,J ). Obtain optimal solution

(x∗,Y ∗). Set Y = Y ∗.

5. Repeat Step 1 until termination criteria is met.

6. Output solution (x∗,Y ∗).

Theorem 12. In Algorithm 2, the sequence of objectives obtained by solving

Model (4.16) is non-increasing.

Proof : Starting with a feasible solution of Model (4.16), we are assured that

there exists (Y ,α,J ), α > 0, such that ψL1−ε(Y ,α,J ) ≤ 0. The condition

in Step 3 ensures that α∗i > 0 for all i ∈ J . Moreover, Proposition 4(a,b)

ensure that the updates on α and J do not affect the feasibility of the Model

(4.16).

4.4 Example: Emergency Resource Allocation

We use an emergency resource allocation problem to test our algorithm solv-

ing joint probabilistic constrained problem. It is a two stage problem. The

resources are allocated to multi facilities with different locations before the

emergent event occurs. In the second stage, that is, after the emergent event

occurs, the resources are reallocated through transshipment. The difference
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from the classical transshipment problem is that the resources can only be

transshipped between two locations whose distance is less than a tolerance.

Moreover, the transshipment cost can be ignored, so the objective of an emer-

gency resource allocation problem is only the first stage cost. The constraint

is to achieve a high confidence level that there is no deficiency when emergent

events occurs. We use a directed network with m nodes and n arcs to denote

the transshipment network. E represents the arc set. If arc (i, j) ∈ E , then

the resources can be transshipped from node i to j. Moreover, we define

ci : Unit purchasing cost;

d̃i : Demand;

xi : Storage quantity (First stage decision variable);

wij : Transshipment quantity (Recourse Decision variable).

The problem can be formulated as a joint probabilistic constrained problem

as follows.

min c′x

s.t. P




xi +
∑

j:(j,i)∈E wji(z̃)−∑
j:(i,j)∈E wij(z̃) ≥ di(z̃) i = 1, . . . , m

xi ≥
∑

j wij(z̃) i = 1, . . . , m

w(z̃) ≥ 0



≥ 1− ε

x ≥ 0.

(4.19)
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We assume that the demand d are affinely dependent on the uncertain-

ties as follows.

d(z̃) = d0 +
N∑

j=1

dj z̃j.

In addition, we restrict recourse variables w(z̃) to follow linear decision rule,

that is

w(z̃) = w0 +
N∑

j=1

wj z̃j.

With introduced recourse variables r(z̃), s(z̃), t(z̃),y(z̃), we can transform

the model (4.19) to the standard form.

min c′x

s.t. xi +
∑

j:(j,i)∈E wji(z̃)−∑
j:(i,j)∈E wij(z̃) + r(z̃) = di(z̃) i = 1, . . . ,m

xi + s(z̃) =
∑

j wij(z̃) i = 1, . . . ,m

w(z̃) + t(z̃) = 0

y(z̃) =




r(z̃)

s(z̃)

t(z̃)




P(y(z̃) ≤ 0) ≥ 1− ε

x ≥ 0.

(4.20)

It is easy to see that the recourse variables r(z̃), s(z̃), t(z̃), y(z̃) also
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Nodes Arcs ZW ZB ZN (ZW − ZN )/ZW (ZB − ZN )/ZB

15 50 1500 1158.1 1043.3 30.45% 9.91%
15 60 1500 1059.7 968.1 35.46% 8.64%
15 70 1500 1027.3 929.5 38.03% 9.52%
15 80 1500 1009.3 890.1 40.66% 11.81%
15 90 1500 989.1 865.7 42.29% 12.48%

Tab. 4.1: Comparisons among Worst case solution ZW , Solution using Bonferroni’s
inequality ZB and Solution using new approximation ZN .

follow linear decision rule.

r(z̃) = r0 +
∑N

j=1 rj z̃j

s(z̃) = s0 +
∑N

j=1 sj z̃j

t(z̃) = t0 +
∑N

j=1 tj z̃j

y(z̃) = y0 +
∑N

j=1 yj z̃j.

Therefore, we can apply Algorithm 2 to solve the model (4.20). We randomly

generate m facilities and assume that the purchasing cost ci = 1, the demand

for each facility follows two point distribution





P(d̃i = 0) = 0.9

P(d̃i = 100) = 0.1

∀i.

Figure 4.1 shows the solutions for 15 facilities. The area of the hexagon

on each location denotes the optimal storage quantity. We compare the so-

lution of the new method ZN with the solution using Bonferroni’s inequality
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Fig. 4.1: Inventory allocation: 15 nodes, 50 arcs
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Fig. 4.2: Convergence of the heuristic: 15 nodes, 50 arcs

ZB and the worst case solution ZW . Table 4.1 shows the comparison results.

The new method has 8− 12% improvement compared with Bonferroni’s in-

equality and 30− 42% improvement compared with the worst case method.

This experiment shows that the new method solves the joint probabilistic

constrained problem efficiently. Moreover, we tested the convergence rate of

Algrithm 2. Figure 4.2 shows that the improvement is mostly in the first

several steps.
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4.5 Goal Driven Model with Probabilistic Constraint

The aim of this section is to provide a tractable approximation for goal driven

model with probabilistic constraint. We consider the following program.

max SALC
(
c(z̃)′x + d′uu(z̃) + d′yy(z̃) + d′rr(z̃)− τ(z̃)

)

s.t. Ax = b

B(z̃)x + Uu(z̃) + Y y(z̃) + Rr(z̃) = h(z̃)

P
(
r(z̃) ≤ 0

)
≥ 1− ε

x ≥ 0,y(z̃) ≥ 0,

(4.21)

where c ∈ <n1 , b ∈ <m1 ,du ∈ <n2 ,dy ∈ <n3 , dr ∈ <n4 ,A ∈ <m1×n1 ,U ∈

<m2×n2 ,Y ∈ <m2×n3 ,R ∈ <m2×n4 are known parameters, h(z̃) ∈ <m2 ,B(z̃) ∈

<m2×n1 are random parameters as function mapping of the primitive uncer-

tainties z̃, τ(z̃) is the target level also depending on the primitive uncertain-

ties z̃, x ∈ <n1 is the first stage decision variables, and u(·) ∈ <n2 ,y(·) ∈

<n3 , r(·) ∈ <n4 are the second stage decision variables, also as function map-

ping of the realization of the primitive uncertainties z̃. Note that the optimal

solution of the goal driven model (4.21) can be obtained by solving a sequence
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of subproblems as follows.

min CV aR1−γ

(
c(z̃)′x + d′uu(z̃) + d′yy(z̃) + d′rr(z̃)− τ(z̃)

)

s.t. Ax = b

B(z̃)x + Uu(z̃) + Y y(z̃) + Rr(z̃) = h(z̃)

P
(
r(z̃) ≤ 0

)
≥ 1− ε

x ≥ 0,y(z̃) ≥ 0,

(4.22)

We assume Affine Parametric Perturbation and Model of Primitive Uncer-

tainty, U, as follows:

h(z̃) = h0 +
N∑

j=1

hj z̃j,

B(z̃) = B0 +
N∑

j=1

Bj z̃j,

τ(z̃) = τ 0 +
N∑

j=1

τ j z̃j.

Note that the number of the second stage vector u(z̃), y(z̃), r(z̃) can be very

large or even infinite depending on the distribution of z̃ Then the model

(4.22) is generally intractable. As an approximation, we use the linear deci-

sion rule used in Ben-Tal et al. [11] and Chen, Sim, Sun [23], which limits
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the space of recourse solutions as follows,

u(z̃) = u0 +
N∑

j=1

uj z̃j,

y(z̃) = y0 +
N∑

j=1

yj z̃j,

r(z̃) = r0 +
N∑

j=1

rj z̃j.

We define the vector d̄ with elements

d̄i = min du
′u + dy

′y + dr
′r

s.t. Uu + Y y + Rr = 0

wi = 1

y ≥ 0,u, r free,

where we denote d̄i = ∞ if the corresponding optimization problem is infea-

sible. For notational convenience, we define the sets

C ∆
= {i : d̄i < ∞, i = 1, . . . , n3}, C̄ ∆

= {i = 1, . . . , n3}\C.

For i ∈ C, we define (ūi, ȳi, r̄i) as the optimal solution of the corresponding

optimization problem.
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Note that if d̄i < 0, then given any feasible solution u, y and r, the solu-

tion u+κūi, , y+κȳi and r+κr̄i will also be feasible, and that the objective

will be reduced by |κd̄i|. Hence, whenever a second stage decision is feasible,

its objective will be unbounded from below. Therefore, it is reasonable to

assume that d̄ ≥ 0. Therefore, let {1} ⊂ L ⊂ {1, 2, . . . , 5}. Then under the

deflected linear decision rule, we can approximate the problem (4.22) as

min β +
1

γ
πL(ξ0 − β, ξ) +

1

γ

∑
i∈C

πL(−y0
i ,−yi)d̄i

s.t. ξj = cj ′x + du
′uj + dy

′yj + dr
′rj − τ j j = 0, . . . , N.

Bjx + Uuj + Y yj + Rrj = hj j = 0, . . . , N

y0
i +

∑N
j=1 yj

izj ≥ 0 ∀z ∈ W , i ∈ C̄

ψL1−ε(r
0, . . . , rN ,α,J ) ≤ 0

r0
i + maxz∈W r′iz ≤ 0 ∀ i ∈ Ĵ .

(4.23)

Remark : Algorithm 2 can be applied to solve the model (4.23).



5. APPLICATIONS

5.1 Project Management

We apply the goal driven optimization model to a project management prob-

lem with uncertain activity completion time. Project management is a well

known problem which can be described with a directed graph having m arcs

and n nodes. The arc set is denoted as E , |E| = m. Each arc (i, j) represents

an activity which has uncertain completion time t̃ij. It is affinely dependent

on the additional amount of resource xij ∈ [0, x̄ij] and a primitive uncertainty

z̃ij, as follows:

t̃ij = (1 + z̃ij)bij − aijxij

where z̃ij ∈ [−zij, zij], zij ≤ 1, (i, j) ∈ E is an independent random variable

with zero mean, standard deviation σij, forward and backward deviations, pij

and qij respectively. The completion time adheres to precedent constraints.

For instance, activity e1 precedes activity e2 if activity e1 must be completed

before activity e2. Each node on the graph represents an event marking the
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completion of a particular subset of activities. For simplicity, we use node 1

as the start event and node n as the end event. The cost of using each unit

of resource on activity (i, j) is cij and the total cost is limited to a budget

B. Our goal is to find a resource allocation to each activity (i, j) ∈ E that

maximize the shortfall aspiration level criterion in achieving a fixed targeted

completion time, τ . We formulate the goal driven optimization model as

follows.

max SALC(un(z̃)− τ)

uj(z̃)− ui(z̃)− wij(z̃) = (1 + z̃ij)bij − aijxij ∀(i, j) ∈ E

u1(z̃) = 0

c′x ≤ B

0 ≤ x ≤ x, w(z̃) ≥ 0

x ∈ <m, u(·), w(·) ∈ Y ,

(5.1)

where ui(z̃) is the second stage decision vector, representing the completion

time at node i when the uncertain parameters z̃ are realized. The recourse

wij(z̃) represents the slack at the arc (i, j). Using Algorithm 1, we reduce the

problem (5.1) to solving a sequence of subproblems in the form of stochastic

optimization problems with CVaR objectives. Since the project management

problem has complete recourse, accordingly, we use sampling approximation
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to obtain solutions to the subproblem as follows.

Z̃s
K(γ) = min ω + 1

γK

∑K
k=1 tk

s.t. tk ≥ uk
n − τ − ω ∀k = 1, . . . , K

uk
j − uk

i ≥ (1 + z̃k
ij)bij − aijxij ∀(i, j) ∈ E , k = 1, . . . , K

uk
1 = 0 ∀k = 1, . . . , K

c′x ≤ B

t ≥ 0,0 ≤ x ≤ x

x ∈ <m, u ∈ <n×K , t ∈ <K

(5.2)

where z̃1, . . . , z̃K are K independent samples of z̃. We use the same samples

throughout the iterations of Algorithm 1.

To derive a deterministic approximation of Model (3.11), we note that

the following linear program

d̄ij = min un

s.t. uj − ui − wij = 0 ∀(i, j)

u1 = 0, wij = 1

w ≥ 0,u ∈ <n,w ∈ <m.

achieves the optimum value at d̄ij = 1. Accordingly, given a set L =

{1, 2, 3, 4}, we formulate the deterministic approximation of the subproblem
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as follows.

Zd(γ) = min β +
πL(u0

n − τ − β, un)
γ

+
∑

(i,j)∈E

( 1
γ

πL(−w0
ij ,−wij)

)

s.t. u0
j − u0

i − bij + aijxij − w0
ij = 0 ∀(i, j) ∈ E

ukl
j − ukl

i − bij + aijxij − wkl
ij = 0 ∀(i, j), (k, l) ∈ E

u0
1 = 0, ukl

1 = 0 ∀(k, l) ∈ E

c′x ≤ B

0 ≤ x ≤ x.

(5.3)

We formulate Model (5.3) using an in-house developed software, PROF

(Platform for Robust Optimization Formulation). The Matlab based soft-

ware is essentially an SOCP modeling environment that contains reusable

functions for modeling multiperiod robust optimization using decision rules.

We have implemented bounds for the CVaR measure and expected positivity

of a weighted sum of random variables. The software calls upon CPLEX 9.1

to solve the underlying SOCP.

We use the fictitious project introduced in [23] as an experiment. We

create a 6 by 4 grid (See Figure 5.1) as the activity network. There are in

total 24 nodes and 38 arcs in the activity network. The first node lies at the

bottom left corner and the last node lies at the right upper corner. Each

arc proceeds either towards the right node or the upper node. Every activity

(i, j) ∈ E has independent and identically distributed completion time with
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Fig. 5.1: Activity grid 6 by 4

distribution at

P(z̃ij = z) =





0.9 if z = −25/900

0.1 if z = 25/100.

From the distribution of each arc, we can easily calculate the support and de-

viation information, that is, zij = 25/900, zij = 25/100, σij = 0.0833, pij =

0.1185, qij = 0.0833. For all activities, we let aij = cij = 1, xij = 24

and bij = 100. We choose an aspiration level of τ = 800. The total cost

of resource is kept under the budget B. We compare the performance of

the sampling approximation model (5.2) against the deterministic approx-

imation model (5.3). After deciding the allocation of the resource, we use

M = 500, 000 samples to obtain a sampled distribution of the actual com-

pletion time u1
n, . . . , u

M
n . Using these samples we determine the sampled
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Fig. 5.2: Comparison of the deterministic and sampling models on (1− ˆSALC)

shortfall aspiration level criterion as follows.

ˆSALC = 1− inf
s>0

1

sM

M∑

k=1

(uM
n − τ + s)+.

We denote ˆSALC
s

K as the sampled shortfall aspiration level criterion

when Model (5.2) is used to approximate the subproblem. Likewise, we

denote ˆSALC
d

as the sampled shortfall aspiration level criterion when Model

(5.3) is used in the approximation. By adjusting the budget level, B from

240 to 640, we show the results in Table 5.1 and Figure 5.2, 5.3. In both the
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B 1− ˆSALC
d

K 1− ˆSALC
s

100 1− ˆSALC
s

1000 1− ˆSALC
s

5000

240 0.1094 0.1602 0.1055 0.0977
280 0.0547 0.0625 0.0469 0.0469
320 0.0195 0.0322 0.0215 0.0176
360 0.0107 0.0156 0.0127 0.0107
400 0.0063 0.0068 0.0078 0.0032
440 0.0034 0.0049 0.0022 0.0039
480 0.0011 0.0039 0.0015 0.0015
520 7.02× 10−4 0.0020 8.54× 10−4 8.24× 10−4

560 4.31× 10−4 0.0012 4.58× 10−4 6.10× 10−4

600 2.14× 10−4 9.16× 10−4 2.26× 10−4 2.44× 10−4

640 1.02× 10−4 6.10× 10−4 1.02× 10−4 1.86× 10−4

Tab. 5.1: Comparison of the deterministic and sampling models on (1− ˆSALC).

deterministic and the sampling approximations, we observe that γ decreases

with increasing budget levels. We also see that the probability of violation

does not exactly represent the risk. For instance, we compare the results for

the deterministic method and the sampling method with 100 sample size.

The former one has higher probability of violation than the latter one for

budget= 240, 360, 400, 440 and 480. However the former one has a shorter

worst case completion time than the latter one for all budgets.

It is evident that when the number of samples are limited, sampling

approximation can perform poorly. Moreover, due to the variability of sam-

pling approximation, the performance does not necessarily improve with more

samples; see Table 5.1 with B = 440, 560, 600, 640. We note that despite the

modest distributional assumption and the non-optimal recourse, the perfor-
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mance of the deterministic approximation is rather comparable with the per-

formance of the sampling approximation where sufficient number of samples

are used.

5.2 Case Study: NFL Replica Jerseys

We adopt the case addressing the inventory planning for the National Foot-

ball League (NFL) replica jerseys from John C. W. Parsons’ thesis. We relax

the contract requirement between the retailers and the distributor and focus

on an optimal postponement strategy.

NFL is the premier professional league for American football. It consists

of 32 teams. The football season is between September and January, with

16 regular games per team. During this period, the football fans have high

demand for the replica jerseys of their favorite players. In December 2000,

Reebok signed a 10 year contract with NFL to provide the replica jerseys.

Since the demand of the jerseys is driven by the fans feel for the game, it is

influenced by many uncontrollable factors. The long lead time (See Figure

5.4) makes it impossible for Reebok to determine the purchasing quantity

after the demand is exactly predicted.

Each team’s jersey has a distinct combination of style, colors, cuts and

team logo, but different players’ jerseys of a same team are the same except
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for the name and number. However, one player’s jersey is not substituted by

another player’s jerseys due to the customer preference. It may happen that

for one player’s jerseys, there’s overstock, but for another player’s jerseys,

there’s under stock. To avoid this kind of waste, Reebok has two options to

purchase the jerseys from international contract manufacturers: blank jerseys

and dressed jerseys. A blank jersey is a jersey with only team markings and

without player’s name and number. A dressed jersey is a completed jersey

with specific player’s name and number. Reebok can transform the blank

jerseys to the dressed jerseys in its distribution center (Indianapolis) with a

higher cost than the international contract manufacturers. This provides a
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valuable postponement opportunity. The problem is what kind of strategy

Reebok should use to decide the purchasing quantity of the blank and dressed

jerseys.

The demand of the replica jerseys is very sensitive to the game perfor-

mance, so it fluctuates every year and even the demand distribution changes

every year. Here, we consider the risk that the profit is less than a given

target profit R and apply the goal driven model to decide the optimal post-

ponement strategy. We use the planning problem for New England Patriots

of the 2003 season as an example. The notations and data are as follows.

n = 7 : Number of products;

p = $24 : Unit selling price for dressed jerseys;

c = $10.9 : Unit purchasing cost for dressed jerseys;

c0 = $9.5 : Unit purchasing cost for blank jerseys;

s = $7 : Unit salvage value for dressed jerseys;

h = $8.46 : Unit salvage value for blank jerseys;

d̃i : Demand for the ith player’s jerseys;

d̃ : Total demand of the replica jerseys.
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Player Mean µ Stdev σ
New Eng Patriot Total 87680 19211

1 Brady, Tom #12 30763 13843
2 Law, TY #24 10569 4756
3 Brown, Troy #80 8159 3671
4 Vinatieri, Adam #04 7270 4362
5 Bruschi, Tedy #54 5526 3316
6 Smith, Antowain #32 2118 1271
7 Other players 23275 10474

Tab. 5.2: Demand prediction for New England Patriots of the 2003 season

5.2.1 Full postponement strategy

There are various postponement strategies to help Reebok to decide the

purchasing quantity of the blank and dressed jerseys. One intuitive strategy

is full postponement, in other words, purchasing only blank jerseys. Then

the problem reduces to a single period newsvendor problem. We show that

the goal driven model can be solved exactly in this case. We denote Q0 ∈ <+

as the purchasing quantity of blank jerseys and formulate the problem as

follows.

max SALC(−f(Q0, d̃) + R), (5.4)

where

f(Q0, d)
∆
= (p− c0 − e)Q0 + (h− p)(Q0 − d)+

=





(h− c0 − e)Q0 + (p− h)d if d < Q0

(p− c0 − e)Q0 otherwise.

(5.5)
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From the definition of the CVaR measure and the translation invariance

property, we know that Model (5.4) is equivalent to

max 1− γ

s.t. min
v

(E
(
(v − f(Q0, d̃))+

)

γ
− v

)
+ R ≤ 0.

(5.6)

Theorem 3 implies that we can decide the optimal purchasing quantity

and calculate the shortfall aspiration level criterion efficiently if the distribu-

tion of the demand is known. We use New England Patriots (2003 season)

as an illustrative example and assume that the total demand follows normal
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Fig. 5.6: Full postponement: SALC vs Target profit

distribution. We plot

E
(
f(Q0, d̃) | d̃ < Q0

)

for different value of Q0 (See Figure 5.5). Then for a given target profit

value R, we can calculate the optimal Q∗
0 using binary search. With Q∗

0, the

equation

γ∗ = P(d̃ < Q∗
0)

provides a close form to calculate the shortfall aspiration level criterion. Fig-

ure 5.6 shows the shortfall aspiration level criterion SALC for different target

profit values. We see that SALC decreases as the target profit increases. This
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coincides with our intuition.

5.2.2 Partial postponement strategy

Although full postponement strategy is easy to perform, it may not be the

optimal strategy to maximize the shortfall aspiration level criterion. In this

section, we consider the partial postponement strategy. We denote Qi as

the purchasing quantity of ith player’s jerseys and formulate the problem as

follows.

max SALC
(
− w(Q0, Q, d̃) + R

)
(5.7)

where

w(Q0,Q, d) ∆=

max
∑

i

(
(p− c)Qi + (p− c0 − e)qi + (s− p)(Qi + qi − di)+

)
+ (h− c0)(Q0 −

∑

i

qi)+

s.t.
∑

i

qi ≤ Q0

qi ≥ 0,

(5.8)

where qi(d) is the recourse variable representing the quantity of blank jerseys

transformed into ith player’s jerseys when the demand d is realized. Using

Algorithm 1, we reduce the problem (5.1) to solving a sequence of subprob-

lems in the form of stochastic optimization problems with CVaR objectives.

Since we do not have the full knowledge of the demand distribution, first
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we use the deterministic model to solve the problem. To derive a determin-

istic approximation of the subproblem, we assume that the demand d are

affinely dependent on some primitive uncertainties z̃, which has zero mean

and standard deviation σi, that is

d(z̃) = d0 +
N∑

j=1

dj z̃j,

where

d0
i = µi, di

i = 1, ∀i = 1, . . . , n

dj
i = 0, ∀i 6= j.

We note that the constraints of the model (5.8) are just the limit on the

postponement quantity and transshipment. We notice that one extra unit

of postponement quantity may bring (p − c0 − e) extra profit, one unit of

transshipment from one dressed jersey to another dressed jersey may bring

(p − s) extra profit and one unit of transshipment from dressed jersey to

blank jersey may bring (h + e − s) extra profit. Therefore, we deduct the

extra profit from the objective and have the following equivalent formulation.

w(Q0, Q,d)

= max
∑

i

(
(p− c)Qi + (p− c0 − e)qi + (s− p)(Qi + qi − di)+ − (p− s)q−i

)

+(h− c0)(Q0 −
∑

i qi)+ − (p− c0 − e)(
∑

i qi −Q0)+

= max
∑

i

(
(p− c)Qi + (p− h− e)qi + (s− p)(Qi + qi − di)+ − (p− s)q−i

)

+(h− c0)Q0 + (h + e− p)(
∑

i qi −Q0)+.
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We assume that q follows linear decision rule, that is

q(z̃) = q0 +
N∑

j=1

qj z̃j.

Let L = {1, 3, 4}. Then the subproblem can be approximated as

Zd(γ) ∆=

min β +
1
γ

πL
(

(c0 − h)Q0 +
∑

i

(
(c− p)Qi + (h + e− p)q0

i

)
− β, (h + e− p)

∑

i

qi

)

+
1
γ

(p− s)
∑

i

πL(Qi + q0
i − d0

i , qi − di) +
1
γ

(p− s)
∑

i

πL(−q0
i ,−qi)

+
1
γ

(p− h− e)πL(
∑

i

q0
i −Q0,

∑

i

qi).

(5.9)

Since the demand for ”other players” jerseys is hard to predict, we use

blank jerseys to satisfy this part of demand, by adding one more constraint

to the model.

Q7 = 0.

After deciding the purchasing quantity of the blank and dressed jerseys,

we use M = 500, 000 samples following a test distribution to obtain the

frequency of the profit in each interval. If the interval is small enough,

the frequency almost represents the distribution of the profit. We test the

solutions on normal distribution. Figure 5.7 shows the comparison between

the goal driven model and the model maximizing the expected profit. It can
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be seen that the goal driven model results in lower risk attaining the target

level. Figure 5.8 shows the solutions for target level 650,000 and 900,000.

We see that the risk attaining the target profit increases as the target level

increases.

Based on the simulated profit, we can also estimate the shortfall aspi-

ration level criterion. We compare the full postponement strategy and the

partial postponement strategy for different target levels (See Figure 5.9).

Although we do not assume the demand distribution when applying the par-

tial postponement strategy, it outperforms the full postponement strategy,

especially for higher target levels.

We also notice that this problem has relatively complete recourse, that

is, for any given Q0 and Q, there always exists a feasible q. Therefore, we did

another test to see whether we can use an assumed distribution and apply

the sampling method to decide the purchasing quantity. We assume the

demand follows independent exponential distribution and the subproblem
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Fig. 5.9: Partial postponement vs Full postponement

can be approximated as follows.

Z̃s
K(γ) =

min 1
γK

∑K
k=1 tk − v

s.t. tk ≥ R + v − ωk ∀k = 1, . . . , K

ωk =
∑

i

(
(p− c)Qi + (p− c0 − e)qk

i +(s− p)yk
i

)
+ (h− c0)(Q0 −

∑
i qk

i )

∀k = 1, . . . , K

yk
i ≥ Qi + qk

i − dk
i ∀i, ∀k = 1, . . . , K

∑

i

qk
i ≤ Q0 ∀k = 1, . . . , K

q ≥ 0, t ≥ 0, y ≥ 0,

(5.10)

where d1, . . . , dK are K independent samples of d̃.
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Fig. 5.10: Test on exponential distribution
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Fig. 5.11: Test on normal distribution
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Fig. 5.12: Test on uniform distribution
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Fig. 5.13: Test on two point discrete distribution
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We compare the performances of the sampling approximation model

(5.10) against the deterministic approximation model (5.9). First, we test

the two models on exponential distribution (See Figure 5.10). It can be

seen that the sampling method outperforms the deterministic method in

both shortfall aspiration level criterion and the aspiration level criterion.

Second, we test two models on other distributions: normal, uniform and

two point discrete distribution (See Figure 5.11, 5.12, 5.13). It can be seen

that with a wrong assumed distribution, the sampling methods performs

poorly compared with the deterministic method. Besides, the objective of

the deterministic model provides a lower bound of the shortfall aspiration

level criterion for all demand distributions with the same mean and deviation

value.

5.2.3 Tradeoff between profit and service level

The previous models only consider the profit when deciding the postpone-

ment strategy and the purchasing quantity. In practice, achieving a high

profit is not the only objective when making decisions. Another considera-

tion is the service level, which influences the customer demand in the future.

However, to achieve a higher service level, it is usual that the risk attaining

a target profit also increases. We propose a model to tradeoff between these
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two considerations.

max SALC
(
− w(Q0, Q, d̃) + R

)

s.t. P
( ∑

i

(d̃i −Qi)
+ ≤ Q0

)
≥ 1− ε,

(5.11)

where ε is a given risk requirement and the probabilistic constraint guarantees

the service level 1 − ε. We introduce a recourse variable v(z̃), which is also

a function of the primitive uncertainties z̃ and reformulate the probabilistic

constraint as a joint probabilistic constraint.

P




d(z̃)−Q ≥ v(z̃)

v(z̃) ≥ 0

∑
i

vi(z̃) ≤ Q0



≥ 1− ε (5.12)

To simplify the problem, we let v follows linear decision rule, that is

v(z̃) = v0 +
N∑

j=1

vjzj.
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With introduced recourse variables r(z̃), t(z̃), u(z̃),y(z̃), which also follow

linear decision rule, that is

r(z̃) = r0 +
∑N

j=1 rjzj

t(z̃) = t0 +
∑N

j=1 tjzj

u(z̃) = u0 +
∑N

j=1 ujzj

y(z̃) = y0 +
∑N

j=1 yjzj,

we can transform the problem to the standard form as follows.

max SALC
(
− w(Q0, Q, d̃) + R

)

s.t. d(z̃)−Q− r(z̃) = v(z̃)

v(z̃)− t(z̃) = 0

∑
i

vi(z̃) + u(z̃) = Q0

y(z̃) =




r(z̃)

t(z̃)

u(z̃)




P(y(z̃) ≤ 0) ≥ 1− ε.

(5.13)

Therefore we can apply the methodologies proposed in Chapter 4 to

solve the problem. After deciding the purchasing quantity, we simulate

M = 500, 000 scenarios following normal distribution to estimate the short-
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Fig. 5.14: Tradeoff between risk and service level

fall aspiration level criterion and service level. Figure 5.14 shows the tradeoff

between the shortfall aspiration level criterion and the service level for target

level 800, 000. It can be seen that as the service level increases, the shortfall

aspiration level decreases, which implies that the risk attaining the target

level increases. This coincides with our intuition and the relation between

the service level and the risk provides a useful tool for aiding in making

decisions.



6. CONCLUSION

6.1 Summary of Results

This thesis proposed a mathematical model, goal driven stochastic optimiza-

tion model, which helps the decision maker to achieve a target level, or an

aspiration level, with low risk. Specifically, the main results are as follows.

• Shortfall aspiration level criterion: The new criterion incorporates

both the probability of success in achieving the target level and an

expected level of under-performance or shortfall. The goal driven model

applies the shortfall aspiration level criterion as its objective. The key

advantage is its tractability. We showed that the goal driven model

can be exactly solved for single product newsvendor problem. For more

complicated problems, we showed that the proposed model is reduced

to solving a small collections of stochastic linear optimization problems

with objectives evaluated under the CVaR measure.
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• Deterministic approximation for goal driven model: Using tech-

niques in robust optimization, we proposed a decision rule based de-

terministic approximation of the goal driven optimization problem by

solving a polynomial number of second order cone optimization prob-

lems (SOCP) with respect to the desired accuracy. The advantages of

this approximation over the sampling approximation are: (1) it requires

mild distributional assumptions, such as mean, support and deviation

measures; (2) the size of the problem does not increase exponentially

as the dimension of the problem.

• Methodology to solve probabilistic constrained problem: We

reviewed the SOCP approximations of the individual probabilistic con-

straint and show that the the approximation of the CVaR measure is

related to robust optimization. For the joint probabilistic constraint,

we showed that Bonferroni’s inequality may be rather poor in approx-

imating constraints with uncertainties that are correlated with each

other. We proposed a new formulation to approximate the joint prob-

abilistic constraint and investigated its properties. In particular, we

showed that it outperforms any solution obtained by Bonferroni’s in-

equality.
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The methodologies proposed in this thesis were applied to project manage-

ment and inventory planning problems to test the tractability. The compar-

ison between the goal driven model and the classical model shows that the

new decision criterion can help the decision maker to minimize the risk at-

taining a target level. The comparison between the sampling approximation

and the deterministic approximation shows that the latter is more robust

and stable when the decision maker has no full knowledge of the distribution

of the random data.

Moreover, we applied the goal driven model with joint probabilistic con-

straint to tradeoff between the risk achieving a target profit and the service

level when deciding the inventory level. This idea helps to make decision

more practically.

6.2 Future Studies.

This thesis only considers the linear structure of the stochastic optimization

model. In the future, it is worthwhile to consider other cases and derive more

efficient methodologies. Some possible theoretical researches are as follows:

• Use other risk measure to consider the risk attaining the target level.

• Extend the model to the multi-period problem.
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Apart from the above possibilities, it is worthwhile to apply the methodolo-

gies to other areas, such as portfolio management, control in engineering,

and so on. This may contribute to a better understanding of the merit and

weakness of the methodologies.



BIBLIOGRAPHY

[1] S. Ahmed (2006): Convexity and decomposition of mean-risk stochastic

programs, Mathematical Progamming, 106, 433-446.

[2] F. Alizadeh, D. Goldfarb, (2003): Second-order cone programming, Math-

ematical Programming, 95, 3-51.

[3] Ph. Artzner,F. Delbaen, J.M. Eber, D. Heath (1999): Coherent Risk

Measures, Mathematical Finance, 9(3), 203-228.

[4] M. Ben-Daya, A. Raouf (1993): On the constrained multi-item single-

period inventory problem, International Journal of Operations and Pro-

duction Management, 13, 104-112.

[5] A. Ben-Tal, A. Goryashko, E. Guslitzer and A. Nemirovski (2002): Ad-

justing Robust Solutions of Uncertain Linear Programs, Working Paper,

Technion.

[6] Ben-Tal, A. Nemirovski (1998): Robust convex optimization, Math. op-

erations research, 23, 769-805.



Bibliography 136

[7] Ben-Tal, A. Nemirovski (1999): Robust solutions to uncertain programs,

Operations research letters, 25, 1-13.

[8] A. Ben-Tal, A. Nemirovski (2000): Robust solutions of linear program-

ming problems contaminated with uncertain data, Mathmatical program-

ming, 88, 411-424.

[9] A. Ben-Tal, A. Nemirovski, (2000): Robust solutions of linear program-

ming problems contaminated with uncertain data, Mathmatical program-

ming, 88, 411-424.

[10] A. Ben-Tal, A. Nemirovski (2001): Lectures on Modern Convex Op-

timization: Analysis, Algorithms, and Engineering Applications, MPR-

SIAM Series on Optimization, SIAM, Philadelphia.

[11] A. Ben-Tal, A. Goryashko, E. Guslitzer, A. Nemirovski, (2002): Adjust-

ing robust solutions of uncetain linear programs, working paper.

[12] B. Bereanu (1964): Programme de risque minimal en programmation
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.1 Proof of Theorem 5

(a) Since W is the support set of z̃, we have

E
(
(y0 + y′z̃)+

) ≤ (y0 + max
z∈W

y′z)+

︸ ︷︷ ︸
=π1(y0,y)

.

Note that whenever, y0+maxz∈W y′z ≤ 0, it is trivial to see that E ((y0 + y′z̃)+) =

0 = π1(y0,y).

Hence,

ψ1−γ(y0 + y′z̃) ≤ min
θ

(
θ +

π1(y0 − θ, y)

γ

)

= min
θ

(
θ +

1

γ
(y0 − θ + max

z∈W
y′z)+

)

= y0 + max
z∈W

y′z + min
θ

(
θ +

1

γ
(−θ)+

)

= y0 + max
z∈W

y′z

= η1
1−γ(y0,y),

where the last equality is due to minθ

(
θ + 1

γ
(−θ)+

)
= 0 for all γ ∈ (0, 1).

(b) Since w+ = w + (−w)+, we have

E
(
(y0 + y′z̃)+

)
= y0 + E

(
(−y0 − y′z̃)+

) ≤ y0 +

(
−y0 + max

z∈W
(−y)′z

)+

︸ ︷︷ ︸
=π2(y0,y)

.
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Note that whenever y0+y′z ≥ 0,∀z ∈ W , or equivalently, −y0+maxz∈W(−y)′z ≤

0, it is trivial to see that E ((y0 + y′z̃)+) = y0 = π2(y0,y). Therefore,

ψ1−γ(y0 + y′z̃) ≤ min
θ

(
θ +

π2(y0 − θ, y)

γ

)

= y0 + min
θ

(
θ +

π2(−θ, y)

γ

)

= y0 + min
θ

{
θ +

1

γ

((
max
z∈W

(−y)′z + θ

)+

− θ

)}

= y0 + min
θ

{
θ(1− 1/γ) +

1

γ

(
(max

z∈W
(−y)′z + θ)+

)}

= y0 + (1/γ − 1) min
θ

{
−θ +

1

1− γ

(
(max

z∈W
(−y)′z + θ)+

)}

= y0 + (1/γ − 1) max
z∈W

y′(−z) + (1/γ − 1) min
θ

(
−θ +

1

1− γ
(θ)+

)

= y0 + (1/γ − 1) max
z∈W

y′(−z)

= η2
1−γ(y0,y),

(c) Using Jensen’s inequality and the relation, w+ = (w + |w|)/2, we have

E
(
(y0 + y′z̃)+

)
=

1

2
(y0 + +E(|y0 + y′z̃|)) ≤ 1

2

(
y0 +

√
y2

0 + ‖Σy‖2
2

)

︸ ︷︷ ︸
=π2(y0,y)

.
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Hence,

ψ1−γ(y0 + y′z̃) ≤ min
θ

(
θ +

π3(y0 − θ, y)

γ

)

= min
θ

(
θ +

y0 − θ +
√

(y0 − θ)2 + y′Σy

2γ

)

= y0 +

√
1− γ

γ

√
y′Σy

= η3
1−γ(y0,y)

where the second equality follows from choosing the optimum θ,

θ∗ = y0 +

√
y′Σy(1− 2γ)

2
√

γ(1− γ)
.

(d) The bound is trivially true if there exists yj 6= 0 for any j > I. Hence-

forth, we assume yj = 0,∀j = I + 1, . . . , N . The key idea of the inequality

comes from the observation that

w+ ≤ µ exp(w/µ− 1) ∀µ > 0.

Since z̃j, j = 1, . . . , I are stochastically independent, we have

E
(
(y0 + y′z̃)+

) ≤ µE(exp((y0+y′z̃)/µ−1)) = µ exp(y0/µ−1)
I∏

j=1

E(exp(yj z̃j/µ)) ∀µ > 0.

(.1)
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This relation was first shown in Nemirovski and Shapiro [44]. Using the

deviation measures of Chen, Sim and Sun [23], and Proposition 2(c), we

have

ln(E(exp(yj z̃j/µ))) ≤





yj
2pj

2/(2µ2) if yj ≥ 0

yj
2qj

2/(2µ2) otherwise.

(.2)

Since pj and qj are nonnegative, we have

ln(E(exp(yj z̃j/µ))) ≤ (max{yjpj,−yjqj})2

2µ2
=

u2
j

2µ2
. (.3)

Substituting this in the inequality (.1), we have

E
(
(y0 + y′z̃)+

) ≤ inf
µ>0

{
µ exp(y0/µ− 1)

I∏
j=1

E(exp(yj z̃j/µ))

}
≤ inf

µ>0

{µ

e
exp

(y0

µ
+
‖u‖2

2

2µ2

)}

︸ ︷︷ ︸
=π4(y0,y)

.

Hence,

ψ1−γ(y0 + y′z̃) ≤ min
θ

(
θ +

π4(y0 − θ, y)

γ

)

= min
θ,µ

(
θ +

µ
e
exp(y0−θ

µ
+

‖u‖22
2µ2 )

2γ

)

= min
µ

(
y0 +

‖u‖2
2

2µ2
− µ ln γ

)

= y0 +
√
−2 ln γ‖u‖2

= η4
1−γ(y0,y)
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where the second and third equalities follow from choosing the minimizers θ∗

and µ∗ as follows

θ∗ = y0 +
‖u‖2

2

2µ2
− µ ln γ − µ,

µ∗ =
‖u‖2√−2 ln γ

.

(e) Again, we assume yj = 0,∀j = I + 1, . . . , N . Note that

E
(
(y0 + y′z̃)+

)
= y0+E

(
(−y0 − y′z̃)+

) ≤ y0 + inf
µ>0

{µ

e
exp

(
− y0

µ
+
‖v‖2

2

2µ2

)}

︸ ︷︷ ︸
=π5(y0,y)

.

where vj = max{−pjyj, qjyj}, j = 1, . . . , I. Hence, following from the above

exposition, we have

ψ1−γ(y0 + y′z̃) ≤ min
θ

(
θ +

π5(y0 − θ, y)

γ

)

= min
θ,µ

(
θ +

y0 − θ + µ
e
exp(−y0−θ

µ
+

‖v‖22
2µ2 )

2γ

)

= min
µ

(
y0 + (

1

γ
− 1)(

‖v‖2
2

2µ2
− µ ln(1− γ))

)

= y0 +
1− γ

γ

√
−2 ln(1− γ)‖v‖2

= η5
1−γ(y0,y).
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.2 Approximation of a conic exponential quadratic constraint

Our aim to is show that the following conic exponential quadratic constraint,

µ exp
(a

µ
+

b2

µ2

)
≤ c

for some µ > 0, a, b and c, can be approximately represented in the form of

second order cones. Note with µ > 0, the constraint

µ exp
(a

µ
+

b2

µ2

)
≤ c

is equivalent to

µ exp
(x

µ

)
≤ c

for some variables x and d satisfying

b2 ≤ µd

a + d ≤ x.

To approximate the conic exponential constraint, we use the method de-

scribed in Ben-Tal and Nemirovski [10]. Using Taylor’s series expansion, we
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have

exp(x) = exp
( x

2L

)2L

≈
(

1 +
x

2L
+

1

2

( x

2L

)2

+
1

6

( x

2L

)3

+
1

24

( x

2L

)4
)2L

,

where L is a positive integer. Observe that the approximation improves with

larger values of L. Using the approximation, the following constraint

µ

(
1 +

x/µ

2L
+

1

2

(
x/µ

2L

)2

+
1

6

(
x/µ

2L

)3

+
1

24

(
x/µ

2L

)4
)2L

≤ c

is equivalent to

µ

(
1

24

(
23 + 20

x/µ

2L
+ 6

(
x/µ

2L

)2

+

(
1 +

x/µ

2L

)4
))2L

≤ c,

which is equivalent to the following set of constraints

y = x
2L

z = µ + x
2L

y2 ≤ µf, z2 ≤ µg, g2 ≤ µh

1
24

(23µ + 20y + 6f + h) ≤ v1

v2
i ≤ µvi+1 ∀i = 1, . . . , L− 1

v2
L ≤ µc
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for some variables y, z ∈ <, f, g, h ∈ <+,v ∈ <L
+. Finally, using the well

known result that

w2 ≤ st, s, t ≥ 0

is second order cone representable as

∥∥∥∥∥∥∥∥




w

(s− t)/2




∥∥∥∥∥∥∥∥
2

≤ s + t

2
,

we obtain an approximation of the conic exponential quadratic constraint

that is second order cone representable.

To test the approximation, we plot in Figure .1, the exact and approxi-

mated values of the function f(a) defined as follows:

f(a) = inf
µ>0

µ exp
(a

µ
+

1

µ2

)
.

We obtain the exact solution by substituting µ∗ = a+
√

a2+8
2

and the approx-

imated solution by solving the SOCP approximation with L = 4. We solve

the SOCP using CPLEX 9.1, with precision level of 10−7. The relative errors

for a ≥ −3 is less than 10−7. The approximation is poor when the actual

value of f(a) falls below the precision level, which is probably not a major

concern in practice.
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Fig. .1: Evaluation of approximation of infµ>0 µ exp
(

a
µ + 1

µ2

)
.


