
Multi-XPath Query Processing in

Client-Server Environment

Ren Yan

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarBank@NUS

https://core.ac.uk/display/48625281?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract

When a client submits a set of XPath queries to an XML database

across a network, the answers sent back by the server may include

redundancy because of the characteristics of XML and XPath: XML

data has a nested structure and XPath query retrieves substructures

appearing at arbitrary levels. This kind of redundancy arises in two

ways: some elements may appear in more than one answer sets, or

some elements may be subelements of other elements. In this thesis,

we propose an algorithm to eliminate this kind of redundancy in multi-

XPath query processing by replacing redundant data with pointers.

In particular, two different approaches are designed for pointer inser-

tion. It is shown in experiments that this approach can substantially

reduce the communication costs in multi-XPath query processing in

a client-server environment, which is critical in slow networks where

the communication cost could easily become a bottleneck.

Acknowledgement

I would like to thank my supervisor, Dr. Chan Chee Yong for his guidance

and encouragements through the whole project.

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Tajima’s Client-based Approach 3

1.3 Contributions . 5

1.4 Outline . 8

2 Related Work 9

2.1 Single Query Optimization . 9

2.2 Multiple Query Optimization 11

2.3 Minimizing Communication Cost In Client-Server Environment 13

3 Client-based Approach 17

3.1 Problem Formulation . 17

3.2 Non-Recursive Queries . 19

3.3 Single Recursive Query . 22

3.4 General Case . 25

3.5 Limitation . 28

4 Server-based Approach 30

4.1 Overview . 30

4.2 Enhanced Query Processor . 35

II

4.3 Embedded Pointer Approach 38

4.3.1 Server Side . 38

4.3.2 Client Side . 44

4.4 Separate Pointer Approach . 46

4.4.1 Server Side . 47

4.4.2 Client Side . 51

4.5 Discussion . 51

5 Experimental Results 54

5.1 Embedded Pointer vs Separate Pointer 55

5.2 Server-based Approach vs Client-based Approach 58

5.3 Discussion . 67

6 Conclusions 69

III

Summary

When a client submits a set of XPath queries to an XML database across a

network, the answers sent back by the server may include redundancy because

of the characteristics of XML and XPath: XML data has a nested structure

and XPath query retrieves substructures appearing at arbitrary levels. This

kind of redundancy arises in two ways: some elements may appear in more

than one answer sets, or some elements may be subelements of other elements.

In this thesis, we propose an algorithm to eliminate this kind of redundancy

in multi-XPath query processing by replacing redundant data with pointers.

In particular, two different approaches are designed for pointer insertion. It

is shown in experiments that both two approaches can substantially reduce

the communication costs in multi-XPath query processing in a client-server

environment, which is critical in slow networks where the communication

cost could easily become a bottleneck.

1 Introduction

1.1 Motivation

As XML has gradually become the standard for information representation

and interchange on the Internet, there have been many researches of XML

information exchange on networks. In general, those services can be classified

into two categories: those that process queries on the server side, such as on-

line XML databases and continuous query systems, and those that process

queries on the client side, such as XML streaming systems.

Most XML information services use some kind of query language and

among them XPath has become the most popular. XPath is originally de-

signed to be used by XSLT and XPointer, but it is now also used as an

independent query language for many XML information systems. XPath is

a tree pattern language which selects nodes from XML data based on their

structure. Unlike some full-fledged query language like XQuery, it only ex-

tracts a whole subtree rooted by some node without any modification. This

property is the reason why XPath is more efficiently processable and hence

has become probably the most successful XML technology besides XML it-

self. However, it is also this characteristic of XPath that causes the data

redundancy problem which we are going to solve in this thesis.

1

In a client-server system, when a client submits a set of input queries

to server, the answer sets sent back by the server may include redundancy

caused by the nested structure in XML data. In some case, the answer sets

may be even larger than the database itself. This kind of redundancy occurs

in two ways:

1. Some elements may be included in more than one answer sets

For example, when a client submits two queries to a bookstore database

asking for: 1) all books in English 2) all books in English or French,

elements representing English books will appear in answer sets to both

queries.

2. Some elements may be subelement of other elements

For example, when a client submits two queries to a bookstore database

asking for: 1) all shelves 2)all books on shelf No. 21, every element in

the answer set for query 2 is a subelement of some element in the answer

set for query 1.

Moreover, even when a client submits a single query, the answer re-

turned by the server may be self-redundant when it addresses a part

of XML data with recursive structure. For example, suppose the client

submits a query ”//a” to the server, it will retrieve all the subtrees

2

rooted by ”a” nodes. Therefore, if some ”a” occurs as descendants of

other ”a”, the subtree rooted by descendant ”a” is sent more than once

over the network.

As a result, answer sets to this kind of queries could be very large due to

redundancy. In this case the communication cost could become a bottleneck

as the network speed is usually slow in a server-client paradigm.

A lot of research work has been done in recent years to reduce communi-

cation costs in the context of XML databases. In particular, K. Tajima et al.

proposed a minimal view approach in [27] to solve the redundancy problem

caused by nested structure of XML.

1.2 Tajima’s Client-based Approach

K. Tajima et al. [27] proposed an algorithm to eliminate redundancies by

sending minimal views. Figure 1 illustrates how their approach works: given

a set of input XPath queries {Q1, ..., Qn}, the pre-processor at the client

side computes a view set {V1, ..., Vm} which will retrieve all the necessary

information asked by {Q1, ..., Qn}, and a triplet list which indicates how

to derive the real answers out of the answers to the views. After the server

3

Client

Server

{V1,…Vm}

Triplets
Pre-processor Post-processor

XPath
Processor

{Q1,…Qn}

{Ans1,…Ansm}

{Ans1,…Ansn}

Figure 1: System diagram of Tajima’s client-based approach

receives this view set, it simply evaluates them and sends the answer set

{Ans1,...,Ansm} back to the client. The client then compute the real answer

set out of {Ans1,...,Ansm} and the triplet list.

The answer set {Ans1,...,Ansm} to the views is guaranteed to be minimal

as it only contains elements that appear in the final answer {Ans1,...,Ansn}

and each element appears only once.

As the descendant axis ”//” represents a restricted form of recursion,

queries with ”//” is called recursive queries while queries without ”//” is

called non-recursive queries. In the pre-processor phase, different methods

4

are proposed for different types of XPath queries. An automata-based algo-

rithm is designed for non-recursive queries since they can always be translated

into acyclic deterministic finite automata. On the other hand, the determin-

istic finite automata derived from recursive queries are inevitably cyclic and

therefore a method based on set operations was proposed for recursive queries

instead. More details are given in Chapter 3.

1.3 Contributions

In this thesis, we have the following contributions:

• We propose a server-based approach to optimize multi-XPath query

processing in a client-server environment with respect to the commu-

nication cost.

• We propose two different methods to replace the redundant data with

pointers: the Embedded Pointer approach and the Separate Pointer

approach.

• We implement both Embedded Pointer approach and Separate Pointer

approach.

• We implement Tajima’s approach [27] as the main reference work.

5

Pointer
Interpreter

Enhanced
Processor

Pointer
Generator

Client

Server

{Q1,…Qn}

{Ans1,…Ansn}

*: {Ans’1,…Ans’n} (embed pointer) or {Data, P1,…Pn} (separate pointer)

Optimized answer sets *

Figure 2: System diagram of our server-based approach

• We conduct various experiments to test and compare the performance

of both methods and Tajima’s approach.

Tajima’s algorithm can be considered as a client-based approach as their

main effort to eliminate redundancy is made by the pre-processor and post-

processor at the client side, whereas the server side only has a dummy XPath

processor. On the other hand, we propose a server-based approach to solve

the same problem. Our approach removes the redundancy during query pro-

cessing at the server side by making answer sets to different queries share

their intersections with the help of pointers.

6

The main procedures of our approach is shown in Figure 2: when the

server receives a set of input XPath queries {Q1, ... Qn} submitted by the

client, an enhanced XPath processor evaluates them and gets a set of distinct

answer nodes. A pointer generator then outputs a set of optimized answer

sets with redundant data replaced by pointers. Once the client receives the

optimized answer sets, it invokes a pointer interpreter to retrieve the original

data represented by the pointers. Basically a pointer is a tag which indicates

how to retrieve the original data. Two different methods are designed for

the pointer generator. As their names suggest, the embedded pointer method

produces a set of answer files with pointers embedded in; the separate pointer

method produces a text file and a set of pointer files. More details are given

in Chapter 4.

We have implemented both methods of server-based approach and Tajima’s

client-based approach. The experimental results have been compared and

reported. It shows our server-based approach could indeed minimize the

communication costs, which is critical in low/medium speed or high traffic

network.

7

1.4 Outline

The rest of this report is organized as follows. In the next chapter we give

a short review of related work, whereas Tajima’s client-based approach, as

our main reference, is surveyed in more detail in Chapter 3. In Chapter 4

we presented our own server-based approach. The experimental results are

reported and compared in Chapter 5. Finally, our work is summarized in

Chapter 6.

8

2 Related Work

In this chapter we give a review of three research areas that are related to

this thesis. They are single query optimization, multi-query optimization

and minimizing communication cost in client-server model.

2.1 Single Query Optimization

As both XML and XPath becomes more and more popular nowadays, a vari-

ety of techniques have been developed to speed up XPath query evaluation,

such as indexing and query rewriting.

The typical methodology of XML indexing is to first construct a graph-

based equivalent of the original XML document, and then to create indexes

on this graph representation. Lore system [20] is a cost based query opti-

mizer, which represents early work on storing and querying semi structured

and XML data. Lore uses a combination of techniques for query process-

ing, particularly relying on a DataGuide [13] as a structural summary used

to discover path and tree patterns. DataGuides are a concise and accurate

summary of all paths in the database that start from the root. It describes

every unique label path of a source exactly once, reducing the portion of

the database to be scanned for path queries. Lore contains several indexing

9

structures that are useful for navigating the database. They are value index,

label index, edge index and path index. Lorel queries can be compiled into

query plans that make efficient use of the indexes.

More novel indexing schemes are proposed recently. The Index Fabric [5]

employs a string index to solve containment queries. APEX [4] is an adaptive

path index, using data mining algorithms to summarize paths that appear

frequently in the query workload. XISS [16] adopts a numbering scheme for

elements in the hierarchy of XML data, which can be used to quickly deter-

mine the ancestor descendant relationship and expedite the query expressed

in regular path expressions. ViST [30] transforms both data and queries into

structure-encoded sequences to avoid expensive join operations.

The technique of rewriting queries using views to speed up query evalua-

tion has been well studied in the context of relation database [14]. Recently

this technique is used to optimize regular path queries in semi-structured

database [2, 12]. Most recently [32] proposes an algorithm to find minimal

rewritings, which is reported to be complete and sound for a fragment of

XPath. The technique of query rewriting using materialized views is also

widely studied in client-server model and will be discussed in Chapter 2.3.

10

2.2 Multiple Query Optimization

As database systems often need to execute a set of related queries which may

share common subexpressions, the multi-query optimization (MQO) problem

becomes an important concern in many application domains, such as rela-

tional databases, deductive databases, decision support systems, and data

analysis applications. Basically multi-query optimization is a technique that

allows a set of queries to be computed together by detecting their similari-

ties. Its objective is to exploit the common subexpressions between a set of

queries to be executed concurrently and reduce the execution time by reusing

the cached results that have been previously computed.

After Sellis presented the first systematic analysis of MQO problem in

[23], this problem has been well studied in the context of relational database

over the past seventeen years. The researches before [23] were simply based

on the idea of reusing temporary results from the query execution, while the

processing of each individual query is based on a locally optimal plan. How-

ever, the union of locally optimal plans does not necessarily form a globally

optimal plan, hence [23] proposes a heuristic algorithm to exhaustively find

a global optimal query plan between a small number of queries. An extended

improved algorithm was then proposed in [24] to search for the global opti-

11

mal plan in the state space that models all alternatives for evaluating a batch

of queries. Both [23] and [24] only examines a fraction of all possible global

processing plans and may lose some potentially good plans.

Recent works provide heuristics for reducing the search space. [22] pro-

poses three cost-based heuristic algorithms, among which the greedy heuristic

adopts various optimizing techniques that improves efficiency significantly.

[17] proposes an optimization for multiple view maintenances by using in-

termediate views with common subexpressions. As traditional techniques

rely on materialization of the common subexpressions to avoid recomputing

shared results, [9] pipelines the common subexpressions to avoid unnecessary

data materialization. The authors show that finding an optimal materializa-

tion strategy is NP-hard and present a greedy heuristic for finding good

strategies. [10] proposes a new approach for multi-query optimization that

uses middleware to queue and schedule the input queries to form synchronous

groups and teams.

12

2.3 Minimizing Communication Cost In Client-Server

Environment

Network performance is always an important concern for a client-server sys-

tem where large communication costs can easily become a bottleneck. There-

fore the problem of optimizing communication costs in query processing over

a network has grabbed significant attention. Various techniques have been

proposed to reduce communication costs in the context of different databases,

such as view selection and data caching.

The traditional view selection problem is to find efficient methods of

answering a query using a set of pre-defined materialized views over the

database. There have been many researches in this problem because it is

relevant to a lot of data management problems such as query optimization,

data integration and data warehouse design. Recently a similar idea has

been used to optimizing communication costs in the context of relational

databases. [3] discusses the general problem of finding optimal view sets to

answer a workload of conjunctive queries. In this paper, the authors shows

that disjunctive view sets are considered to be an optimal solution when the

query has self-joins. For the queries without self-joins, they also proposed

a dynamic-programming algorithm for finding optimal disjunctive view sets.

13

In [15] the same authors present more techniques for reducing the size of the

search space of views and for efficiently and accurately estimating the sizes

of views.

Data caching at local client plays an important role in improving the per-

formance of client-server systems. The basic intuition of data caching is to

effectively utilize the storage resource in the local client to cache the results

of the prior queries for possible later reuse. The concept of semantic caching

was proposed in [8] and [21]. In semantic caching, the client caches a seman-

tic description of the data instead of a list of physical tuples or pages which

are used in conventional caching. When a user issues a new query, the client

makes use of the semantic descriptions to determine what data are locally

available in its cache, and submits a remainder query to retrieve data which

are not overlapped with answers of any prior queries.

Technique of caching popular queries and reusing results of these previ-

ously computed queries is firstly studied in the context of relational database.

It is crucial for good performance of distributed environments such as the

Web. [33] developed a customizable cache system that caches data at differ-

ent levels according to the web site’s different content. This system reduces

the costly interaction with databases and therefore improves the response

14

times from data-intensive web sites.

Lately semantic caching has attracted a lot of attentions in the context

of XML database. [7] proposes a semantic cache of XQuery views based

on query containment and rewriting techniques. [19] proposes a novel view-

based caching strategy. It maintains a semantic cache of materialized XPath

views, which are stored in relational tables and are accessed by SQL queries.

Therefore the cache lookup is very efficient. It also adopts the technique of

XPath query containment [18] to decide if a given query can be answered by

a cached view. Both [19] and [7] can only answer queries whose results have

already been cached. On the other hand, [31] proposes a semantic caching

system that can use its cached data to answer new queries that may not

be cached. It caches XML data in tree structure with a semantic scheme,

which consists of a set of patterns. When an XML query is received, the

local client decides whether the cached XML tree is able to totally answer

this query according to current semantic scheme.

Most existing techniques, including [7, 19, 31], focus on how to reuse the

answers received for previously processed queries. They only consider the

redundancy between different transmissions but neglect the possible dupli-

cations within one transmission of query set. Moreover, these techniques do

15

not consider the redundancy caused by nested structure of the XML data,

i.e., some answers appearing as substructure of other answers. However both

this thesis and our main reference [27] concentrate on the duplications oc-

curring within one single transmission between server and client, including

the redundancy caused by nested structure of the XML data.

16

3 Client-based Approach

[27] is the most similar work to ours, therefore we take it as our main refer-

ence and have an entire chapter to survey it in detail. The authors of [27]

make use of the technique of computing minimal views to reduce the com-

munication costs in the context of XML database and XPath query. We call

it client-based approach because their main effort to eliminate redundancy

is made by the pre-processor and post-processor at the client side. In this

chapter, we introduce the three methods proposed in [27] and give a brief

discussion of their limitations.

3.1 Problem Formulation

The minimal view selection problem is formulated as follows: given a set

of XPath queries {Q1, Q2, ..., Qn}, it computes another set of XPath queries

V = {V1, V2, ..., Vm} such that:

1. V can answer all of Q1, Q2, ..., Qn

2. among all possible candidates satisfying 1, the total size of the answers

of V1, V2, ..., Vm is minimal against any XML source.

17

In this paper, the input queries is restricted to a fragment of XPath lan-

guage without ancestor axis, union and difference. The syntax of intermedia

queries during processing is defined as follows:

q ::= /p|//p|q⋃
q|q− q

p ::= a|{a1, ..., an}| ∗ |p/p|p//p|p[p]|p[p]

A query q is either an absolute location path of the form /p or //p, the union

of two queries q
⋃

a or the difference of two queries q − q. a is a label test

that matches nodes with a label a, an {a1, ..., an} is a negative label test that

matches nodes with a label other than a1, ..., an.

The answer to an Xpath query is assumed to be given in the form of

an XML tree rooted by a node labelled Ans. When a query answer is the

following set of three subtrees: {< a > ... < /a >, < b > ... < /b >, < b >

... < /b >}, it is given as an XML tree in a form: < Ans > {< a > ... <

/a >, < b > ... < /b >, < b > ... < /b >} < /Ans >.

Given a set of queries Q1, ..., Qm, the algorithm needs to compute another

set of queries V1, ..., Vm for the minimal view set, and a list of triplets showing

how to extract answers to the original queries. Every triplet is of the form

Q ← (V, q) , it means query q can be evaluated against the answer to query

18

V to retrieve part of answer to query Q.

The problem is solved step by step, the authors firstly gave an algorithm

for non-recursive queries, followed by another algorithm for a single recursive

query, and finally came out with an algorithm for the general case.

3.2 Non-Recursive Queries

For non-recursive queries, redundancy only appears between answer sets to

different queries. An automata-based algorithm is designed for this type

queries since they can always be translated into acyclic deterministic finite

automata.

The algorithm first translates queries into deterministic automata, add

fail states explicitly and construct a product automaton, which is a cross

product of the automata. For each satisfiable path X from (s1, ..., sn) to a

state T of the form (..., ei1, ..., ei2, ..., eia, ...) that does not go through any

other states of the form (..., ej, ...):

1. add X to V1, ..., Vm, and add Qi ← (X, /Ans/∗)to the triplet list for each

i ∈ i1, ..., ia. Here X is the intersection of each query ∈ {Qi1, Qi2, ..., Qia}.

19

Figure 3: Automata for Q1, Q2, Q3

This step ensures that every element only appear once in the entire an-

swer sets.

2. for each path Y from the state T to any state of the form (..., ej, ...),

if X/Y is satisfiable, add a triplet Qj ← (X, /Ans/ ∗ /Y) to the triplet

list. Here path X/Y matches the subelements of the elements matched

by X. This step ensures that no element is subelement of any other

element in the entire answer sets.

For example, given three queries: Q1 : /a/b,Q2 : /a/{c}[c] and Q3 :

/a/ ∗ /c. They are first translated into three automata as shown in Figure

3. After adding a fail state to each automaton, a product of Q1, Q2 and

Q3 is constructed by computing the intersection and the difference between

symbols. The product automaton is shown in Figure 4.

In this example, the algorithm produce a view set:

V1 : {/a/b[c]}

20

Figure 4: Product Automaton for Q1, Q2, Q3

21

V2 : /a/b[c]

V3 : /a/{b, c}[c]

V4 : /a/c/c

and the following triplets:

Q1 ← (V1, /Ans/∗)

Q1 ← (V2, /Ans/∗)

Q2 ← (V2, /Ans/∗)

Q2 ← (V3, /Ans/∗)

Q3 ← (V4, /Ans/∗)

Q3 ← (V2, /Ans/ ∗ /c)

Q3 ← (V3, /Ans/c)

3.3 Single Recursive Query

The answer set to a recursive query might contains self-redundancy because

of the nested structure of XML. In this case, the redundancy in the answers

occurs even when only a single query is submitted. Unlike non-recursive

queries, recursive queries can not be translated into a simple sequence of

states, therefore the authors proposed a different algorithm for this kind of

queries.

22

Consider a recursive query of the form: Q : /p1//p2//...//pn, the redun-

dancy in the answer occurs in two ways.

1. there are elements that match /p1//...//pn//pn

This kind of redundancy can be solved by simply submitting a view

query: (/p1//...//pn) − (/p1//...//pn//∗) and applying /Ans/∗ and

/Ans//pn to extract the final answer.

For example, given a query //a, query (//a − //a//∗) is sent to the

server to retrieve a nodes which occur as the first a node in each path.

2. there are elements that match /p1//...//pn/p where p is some suffix of

pn such that the remaining prefix of pn matches the suffix of pn.

For example, given a query /a//a/b/a/b, if there exist elements that

match /a//a/b/a/b(1)/a/b(2), the redundancy occurs as both b(1) and

b(2) match /a//a/b/a/b.

To remove this kind of redundancy, a set of relative location paths is

considered: S = {∗/p(1,k−1)
n , ∗/ ∗ /p

(1,k−2)
n , ..., ∗/.../ ∗ /p

(1,2)
n }, where k is

the length of pn, and p
(i,j)
n is the subsequence of pn from position i to

position j.

For every T ⊆ S, the algorithm computes the following views:

23

V (T) : (/p1//...//(pn ∩
⋂

p∈T

p− ⋃
p∈S−T

p))− /p1//...//pn//∗

If the result of pn ∩
⋂

p∈T

p − ⋃
p∈S−T

p is not empty, add V (T) to the view set

and the following triplets to the triplets list:

(Q, V (T), /Ans/∗)

(Q, V (T), /Ans//pn)

(Q, V (T), /Ans/ ∗ /p
(i+1,k)
n) for each ∗/.../ ∗ /p

(1,i)
n ∈ T

Intersection and difference of local paths with same length are computed

with the help of product automaton:

Intersection Qi ∩ Qj is a union of queries corresponding to all satisfiable

paths from (s1, ..., sn) to any states of the form (..., ei, ..., ej, ...). For

example, the intersection of Q1 and Q2 is /a/b[c], path (s0
1, s

0
2, s

0
3) −→

(s1
1, s

1
2, s

1
3) −→ (e1, e2, s

2
3).

Difference Qi−Qj is a union of queries corresponding to all satisfiable paths

from (s1, ..., sn) to any states of the form (..., ei, ..., s
k
j , ...) where sk

j 6= ej.

For example, Q1 − Q2 is /a/b[c], path (s0
1, s

0
2, s

0
3) −→ (s1

1, s
1
2, s

1
3) −→

(e1, f2, s
2
3).

For the example /a//a/b/a/b, the set S includes */a/b/a, */*/a/b, */*/*a,

the algorithm finally produces a non-empty view, resulting from /a//(a/b/a/b
⋂ ∗/∗

/a/b− ∗/a/b/a− ∗/ ∗ / ∗ /a)− /a//a/b/a/b//∗:

24

V1: /a//a/b/a/b/ - /a//a/b/a/b//*

and three triplets:

(V1, /Ans/∗)

(V1, /Ans//a/b/a/b)

(V1, /Ans/ ∗ /a/b)

3.4 General Case

In general case, the input query set may contain both recursive and non-

recursive queries. Given the following set of queries:

Q1 : /1
1p

1
1/

2
1p

2
1.../

l1
1 pl1

1

.

.

.

Qn : /1
np

1
n/

2
np2

n.../l1
n pl1

n

where pj
i is an expression which includes neither / nor //, and each /j

i is

either / or //. Prefix paths ppj
i (1 ≤ i ≤ n, 0 ≤ j ≤ li − 1) are defined as

follows:

25

ppj
i ≡ /1

i p
1
i .../

j
ip

j
i if /j+1

i = /

(/1
i p

1
i .../

j
ip

j
i) ∪ (/1

i p
1
i .../

j
ip

j
i//∗) if /j+1

i = //

Ø if j = 0, /1
i = //

//∗ if j = 0, /1
i = //

For each S,T such that S ⊆ 1, ..., n, S 6= Ø, T ⊆ (i, j)|1 ≤ i ≤ n, 0 ≤ j ≤ li − 1,

a view is computed as below:

V (S, T) : (
⋂
i∈S

Qi −
⋃
i/∈S

Qi) ∩ (
⋂

(i,j)∈T

ppj
i −

⋃
i/∈T

ppj
i)−

⋃
1≤i≤n

Qi//∗

Here (
⋂
i∈S

Qi −
⋃
i/∈S

Qi) ensures that no element is shared by more than one

answer set; − ⋃
1≤i≤n

Qi//∗ ensures that only top-most answers are returned;

(
⋂

(i,j)∈T

ppj
i −

⋃
i/∈T

ppj
i) avoids redundancy of type 2 for recursive query.

For each V (S, T), the following triplets are added to the triplets list:

Qi ← (V (S, T), /Ans/∗) for i ∈ S

Qi ← (V (S, T), /Ans/ ∗ /j+1
i pj+1

i .../li
i pli

i) for (i, j) ∈ T

For example, given two queries Q1 : /a//b and Q2 : /a/b, four prefix

paths are generated by the algorithm: pp0
1 = pp0

2 = ∅, pp1
1 = /a ∪ /a//∗

and pp1
2 = /a. Since ∅ only creates empty set in set intersection and is

26

meaningless in set difference, only pp1
1 and pp1

2 are considered. Therefore 3

sets for S and 4 sets for T are used to produce 12 views:

V1 : (/a//b− /a/b)− ((/a∪ /a//∗)∪ /a)− (/a//b// ∗ ∪/a/b//∗)

(empty)

V2 : (/a//b− /a/b)∩ ((/a∪ /a//∗)− /a)− (/a//b// ∗ ∪/a/b//∗)

V3 : (/a//b−/a/b)∩(/a−(/a∪/a//∗))−(/a//b//∗∪/a/b//∗)(empty)

V4 : (/a//b− /a/b) ∩ ((/a ∪ /a//∗) ∩ /a)− (/a//b// ∗ ∪/a/b//∗)

V5 : (/a/b−/a//b)−((/a∪/a//∗)∪/a)−(/a//b//∗∪/a/b//∗)(empty)

V6 : (/a/b−/a//b)∩((/a∪/a//∗)−/a)−(/a//b//∗∪/a/b//∗)(empty)

V7 : (/a/b−/a//b)∩(/a−(/a∪/a//∗))−(/a//b//∗∪/a/b//∗)(empty)

V8 : (/a/b−/a//b)∩((/a∪/a//∗)∩/a)−(/a//b//∗∪/a/b//∗)(empty)

V9 : (/a//b∩/a/b)−((/a∪/a//∗)∪/a)−(/a//b//∗∪/a/b//∗)(empty)

V10 : (/a//b∩ /a/b)∩ ((/a∪ /a//∗)− /a)− (/a//b// ∗ ∪/a/b//∗)

V11 : (/a//b∩/a/b)∩(/a−(/a∪/a//∗))−(/a//b//∗∪/a/b//∗)(empty)

V12 : (/a//b∩ /a/b)∩ ((/a∪ /a//∗)∩ /a)− (/a//b// ∗ ∪/a/b//∗)

and 28 triplets:

Q1 ← (V1, /Ans/∗)

Q1 ← (V2, /Ans/∗)

Q1 ← (V2, /Ans/ ∗ //b)

27

Q2 ← (V3, /Ans/ ∗ /b)

Q1 ← (V4, /Ans/∗)

.

.

.

Q1 ← (V12, /Ans/ ∗ //b)

Q2 ← (V12, /Ans/ ∗ /b)

As we can see, V1, V3, V5, V6, V7, V8, V9 and V3 are empty views. When given n

recursive queries whose total length is l, this algorithm produces (2n−1)∗2l−n

views, among which many are empty views. Some technique was adopt

to eliminate empty views before sending them to the server, however, our

implementation does not include this step as it will not affect the correctness.

3.5 Limitation

If we only measure the size of the answer sets sent from the server to the

client, Tajima’s algorithm is optimal as the view set generated is guaranteed

to be disjoint and hence minimal. However, the views being submitted to

the server are often more complicated than the original input queries, espe-

cially for the recursive queries. When a set of recursive queries are processed,

28

potentially the number of views grow exponentially in the total number of lo-

cation steps of the input queries, which results in a high computation cost of

the XPath processor at the server side. Moreover, the evaluation of −Qi//∗

at the end of a view will cause a very high computation cost itself. Once

an input query set includes one query with //, the whole query set would

be treated as recursive queries. In this case a large number of views are

submitted and −Qi//∗s are evaluated for every single view, even if all the

other queries are non-recursive and the query with // itself actually address

a part of XML data without recursion. Obviously this ”blindness” causes

a big waste and makes the algorithm inefficient for recursive queries with

respect to the computation cost.

To solve this problem, we propose a new approach that is independent of

the input query type. The details are given in the next chapter.

29

4 Server-based Approach

In this chapter, we present a new approach to solve the redundancy problem

for multi-XPath query processing. Since the redundancy elimination is done

at the server side, we call it server-based approach. Unlike the client-based

approach proposed by [27], the server-based approach is independent to the

structure of the input XPath query, and therefore we do not have different

methods for non-recursive and recursive queries. The basic idea of our work

is to replace the redundant data with pointers before sending the query result

back to the client. Two different methods are presented for pointer insertion:

the Embedded Pointer approach and the Separate Pointer approach. The

tradeoff between theses two methods and the client-based approach is also

discussed.

4.1 Overview

As described in Chapter 3, the client-based approach works like a proxy

server which resides at the client side. It firstly breaks the input queries into

a set of minimal views for the server and then compute the real answer out

of the answers to the views for the client. On the other hand, our server-side

approach pushes the main work to the server side. The server receives the

30

original input queries and output an optimized answer sets with redundant

data being replaced by smaller pointers, whereas the client only needs to

do some simple I/O operations to retrieve the real data represented by the

pointers.

At the server side, we have a enhanced query processor to evaluate the

input queries and find out the redundancy between answer sets in the mean-

time. Afterwards a pointer generator is executed to replace redundant data

blocks with pointers while writing answer sets into files. When the client

receives a set of optimized answer files from the server, a pointer interpreter

is executed to find out all pointers in each answer file and retrieve the origi-

nal data block represented by those pointers. The pointer interpreter can be

considered as a reversion of the pointer generator. It replaces pointers with

original data block.

The core of our work is about pointer insertion. Let us see with a simple

example how the pointers work to eliminate redundancies. Given an XML

database T as shown in Figure 3 that resides at the server side, suppose two

simple recursive queries are submitted to the server:

31

a

b2

a

ca b3 b4

b1

b5a a c

Figure 5: Tree structure of XML database at the server side

b2

a b3

b1 b5

a

b4

a c

b3

a

b2

Figure 6: Answer set to Q1 in tree structure

Example 1

Q1, /a//b;

Q2, //a/b.

Obviously every sub-tree rooted by node b in T can be a possible answer

to the given queries. For the convenience of discussion, we label each node

b inT with a unique id number. In case of a dummy XPath processor, the

server would send two answer sets back to the client, as shown in Figure 6

and Figure 7. We can see there exists self-redundancy in both answer sets

to Q1 and Q2 as the subtrees rooted by b2 and b3 appear more than once in

32

b3

b2

a

b1

a

b4

a c

b2

Figure 7: Answer set to Q2 in tree structure

one answer set, whereas the subtrees rooted by b1, b1 and b4 are contained in

both answer sets to Q1 and Q2. To eliminate these kinds of redundancies, our

enhanced query processor produces an answer set with redundant subtrees

being replaced by pointers. We can safely say that pointers is most likely

much smaller than real data, by this assertion the size of the refined answer

sets is dramatically reduced after some large XML fragments are replaced by

smaller pointers.

In this thesis we proposed two different methods for pointer insertion

as shown in Figure 8 and Figure 9 respectively, where circles labelled by

Pijs represent pointers. The Embedded Pointer method mixes real data and

pointers in answer sets. In the answer set to Q1, the subtrees rooted by

b2 and b3 were replaced with pointers referring to b2 and b3 respectively, in

the subtree rooted at b1, whereas the answer set to Q2 only contains three

pointers referring to the subtrees rooted by b1, b2 and b4 in the answer set

33

b2

a b3

b1 b5

a

b4

a c

P11 P12

P21

(Qa)

(Qb)

P22 P23

Figure 8: Optimized answer set produced by Embedded Pointer

to Qa. The Separate Pointer method, on the other hand, stores XML data

and pointers separately. It produces a text file containing all answers to both

queries and a pointer set for each query containing all pointers referring to the

appropriate part of the text file. The answer sets produced by both method

contains no redundancy as every node appears only once. The first method

produces fewer pointers whilst the second method is more straight forward

and less expensive in computation. However, the details will be presented in

the following subsections.

In this thesis, we make a assumptions about input XPath query language.

We assume the input XPath queries are all structural queries, as the atomic

answers to a aggregate queries will not cause any redundancy. However,

the aggregate functions can still be used as predicates in filter expressions,

34

b2

a b3

b1 b5

a

b4

a c

(text)

(Qa)

(Qb)
P22P21 P33

P11 P12
P13 P14

P15

Figure 9: Optimized answer set produced by Separate Pointer

though this kind of predicates will not alter the nested structure of final an-

swers and therefore is not going to be discussed in this thesis.

4.2 Enhanced Query Processor

Our enhanced query processor at the server side is based on an ordinary

XPath query processor, which outputs a list of XML nodes for an input

XPath query. To avoid redundancy in query answers, a Node Table is cre-

ated to keep track of every distinct answer node and the queries it matches.

A list of query-id for each distinctive node is stored in Node Table.

35

Given a set of input XPath queries, the enhanced processor works as

follows. For each answer node, it first checks its existence in the Node Ta-

ble. If the Node Table does not contain an entry for this node, create a new

one for it, otherwise find the existing respective entry and update its query-id

list. The pseudocode representation of this procedure is given in Algorithm 1.

Algorithm 1 Enhanced Processor

1: create an empty Node Table
2: for each input query $q do
3: evaluate $q
4: for each node $n in the answer list of $q do
5: look $n up in the Node Table
6: if there is an entry corresponding to $n then
7: fetch this entry and add $q id to its query-id list
8: else
9: create a new entry with $n mapping to an empty list l

10: add $q id to $l
11: end if
12: end for
13: end for

After the whole set of input queries have been processed, an Answer Table

is derived from the Node Table. It keeps a list of all answer nodes to each in-

put query. Figure 10 shows the Node Table and Answer Table for Example 1.

With Node Table and Answer Table, we have already got all the answer

sets which share some nodes between each other. The server then writes

36

b1
{Q1, Q2}

b3
{Q1}

b4
{Q1, Q2}

b5
{Q1}

Node Table

Q1
{ b1, b2, b3, b4, b5 }

Q2
{ b1, b2, b4 }

Answer Table

b2
{Q1, Q2}

Figure 10: Node Table and Answer Table for Example 1

these answer sets into files before transmitting them to the client. During

the process of data writing, numerous pointers are brought to replace the

data blocks that have been written before. After the client receives the opti-

mized answers, it interprets the pointers to get the real answer sets. Basically

a pointer contains necessary information for the client to retrieve the original

data block. We use the position of the first character and the total number

of characters to address a data block in a specific text file. Moreover, a file-

id is also needed for Embedded Pointer as the referred data block might be

included in any answer file. For example, a pointer ”3/1/48” refers to a data

block of forty-eight characters starting from the first character in the answer

file corresponding to Q3.

37

4.3 Embedded Pointer Approach

As illustrated in Figure 8, the Embedded Pointer approach embeds pointers

into the original answer sets. The basic idea is rather intuitive: replace the

subtrees that are contained in other answers with pointers. When the client

submits N input XPath queries, the server sends back exactly N answer files

with each file corresponding to one input query.

An answer file produced by this method is a mixture of XML data and

pointers, therefore every pointer is enclosed by special tags <AnsPtr><

/AnsPtr>, which then become reserved words. We assume the source XML

database does not contain this kind of tags. Since a pointer can refer to an

XML data block in any specific answer file, a file-id is included besides the

starting offset and the number of character in this data block as follows:

<AnsPtr>file-id / starting offset / size </AnsPtr>

Let us see with our simple example how the server generates optimized

answer files and how the client retrieves the real answer sets out of them.

4.3.1 Server Side

At the server side, we have a pointer generator to generate answer files based

on Answer Table and Node Table produced by the enhanced query processor.

38

For every entry in Answer Table, the pointer generator creates a file rep-

resenting the answer to the corresponding query. Before writing out the

file, it first sorts the node list by document order of the XML source. By

performing this step, the document order of the final answer sets are pre-

served. Then it writes the node list into the answer file. For each node, it

first checks whether it is included in a list which has been processed previ-

ously and writes it if it is not found. In the meantime, the starting position

and the size of this text block as well as the current query-id are recorded

to make a pointer that could be used to address the subtree rooted by this

node. Otherwise, it simply writes the pointer recorded in previous operation.

Because of the nested structure of XML document, a recursive method is

created to print every node into answer file. It performs a depth-first traver-

sal of the XML subtree rooted by the current node. For every node visited,

it first checks whether it has a corresponding entry in Node Table. If not, it

simply outputs this node; otherwise, it is an answer node that matches some

input query and may result in redundancy. The method then records the

necessary pointer information in Node Table while writing it into its answer

file. In case the pointer record has already existed, it writes the pointer in-

stead, since the subtree rooted by this node is included in the answer set of

39

some query that has already been processed.

Algorithm 2 is the pseudo-code representation of how the pointer gener-

ator works.

Algorithm 2 Pointer Generator 1

1: for each entry in Answer Table do
2: create an answer file $f
3: sort node list $l in document order
4: for each node n in $l do
5: fetch the corresponding entry of $n in the Node Table
6: if there is a pointer $p recorded for $n then
7: write $p into $f
8: else
9: start := current position in file stream

10: Print-Subtree($n, $f , current query-id)
11: size := number of characters being written
12: add pointer ”query-id/start/size” into Node Table
13: end if
14: end for
15: end for

It is easy to prove that the answer files generated by this algorithm con-

tains no redundancy. There is not a single element appearing in more than

two answer sets, as every answer node is replaced by a pointer in case it is

already included in some answer file. Moreover, the Print-Subtree procedure

checks the whole subtree to decide whether a subelement is an answer node

itself. This procedure guarantees that no data block could be part of other

data blocks in the answer files, in other words, there is no redundancy caused

40

Procedure 3 Print-Subtree(root, answer file, query-id)

1: if root is already a leaf node then
2: write root into answer file
3: else
4: for each child node $n of root do
5: loop $n up in the Node Table
6: if there is no corresponding entry for $n then
7: Print-Subtree($n, answer file, query-id)
8: else
9: fetch the corresponding entry of $n in Node Table

10: if there is a pointer $p recorded for $n then
11: write $p into answer file
12: else
13: start := current position in file stream
14: Print-Subtree($n, answer file, query-id)
15: size := number of characters being written
16: add pointer ”query-id/start/size” into Node Table
17: end if
18: end if
19: end for
20: end if

41

<a>

<a>

<AnsPtr>1/7/7</AnsPtr>
<AnsPtr>1/18/14</AnsPtr >

<a>
<c></c>

b4

b2

b3

b1

b5

<AnsPtr>1/1/35 </AnsPtr>
<AnsPtr>1/7/7</AnsPtr>
<AnsPtr>1/83/21</AnsPtr> b4

b2

b1

Q1 Q2

Figure 11: Answer file generated for Q1 and Q2 by Embedded Pointer

by answers appearing as substructure of the other answers. In conclusion,

the answer sets are disjoint and hence optimal.

For the simple example queries Q1 and Q2, the enhanced processor pro-

duced a Node Table and an Answer Table as shown in Figure 10. The pointer

generator then processes the entries in Answer Table one by one. It first

fetches the sorted answer list of Q1 which is {b1, b2, b3, b4, b5} and starts with

b1:

b1: As b1 is also an answer node of Q2 according to Node Table, a pointer

”1/1/35” is recorded for future reference after it is printed by the Print-

42

Subtree procedure.

In this pointer, the first token ”1” stands for Q1, which means the

data block represented by this pointer resides in the answer file of Q1;

whereas the second token ”1” is the starting offset of this data block

and the third token ”35” is the number of characters in this data block,

which means the subtree referred by this pointer contains 35 characters

starting from first character in the answer file corresponding to Q1.

For the convenience of discussion, only visible characters are counted

in this paper. However, some overhead like newline character is also

considered in real implementation.

When the Print-Subtree procedure is invoked to print the subtree rooted

by b1, two pointers ”1/7/7” and ”1/18/14” are taken for b2 and b3 re-

spectively, as they are both contained in Node Table.

b2: According to Node Table, the pointer ”1/7/7” is available for b2, so it is

printed instead of the real data.

b3: Pointer ”1/18/14” is written into the answer file, same as b2.

b4: According to Node Table, b4 has not been processed but it answers both

Q1 and Q2, therefore it is written into the answer file and a pointer

”1/83/21” is taken as well.

43

b5: According to Node Table, b5 only answers one input query, therefore the

generater simply prints it without recording a pointer.

As for answer node list of Q2, three pointers ”1/1/35”, ”1/7/7” and ”1/63/21”

are printed since subtrees rooted by b1, b2 and b4 have all been included in

Q1’s answer file. The two answer files generated are shown in Figure 11.

4.3.2 Client Side

At the client side, we have a pointer interpreter to retrieve the real answers

out of the the optimized answer files received from the server. The pointer

interpreter is like a reversion of the pointer generator: it replaces pointers

with original data block they refer to. The basic idea of the pointer inter-

preter is rather intuitive. It reads every answer file line by line, every line

enclosed by reserved tags < AnsPtr > and < /AnsPtr > is interpreted

as a pointer. It then retrieves the data blocks represented by this pointer.

For example, when line ”7/7” is processed, it reads seven characters starting

from the seventh character in the data file, which is ”< b >< /b >”.

However, in some cases this step becomes non-trivial as the data block

represented by a pointer may contain pointers when subelements are pro-

cessed before their ancestors. This only occurs in cross-file reference, because

44

ancestors are guaranteed to be processed before their descendants as the node

list is sorted by document order. For example, consider three queries Qa, Qb

and Qc to be processed in this order. Suppose Qa’s answer file contains an

element a, Qb’s contains an element b and Qc’s contains an element c, where

a is a subelement of b and b is a subelement of c. The pointer generator

therefore inserts pointers referring to a and b when it processes element b

and c respectively. When the pointer interpreter interprets the pointer re-

ferring to b in Qc’s answer file, it retrieves a data block containing a pointer

referring to element a in Qa’s answer file. A recursive method Retrieve-Data

is then created to solve this problem. It interprets pointers recursively until

the source data retrieved does not contain any pointer.

The pseudo-code representation is given in Algorithm 4.

Algorithm 4 Pointer Interpreter 1

1: for each answer file $afile do
2: for each line $l in $afile do
3: if $l is enclosed by < AnsPtr >< /AnsPtr > then
4: Retrieve-Data($l, $afile)
5: else
6: write $l into $afile
7: end if
8: end for
9: end for

45

Procedure 5 Retrieve-Data(pointer, answer file)

1: interpret the pointer and get $file− id, $starting − offset and $size
2: retrieve $size characters starting from $starting−offset the answer file

identified by file− id
3: for each line $l in this data block do
4: if $l is enclosed by < P >< /P > then
5: Retrieve-Data($l, answer file)
6: else
7: write $l into answer file
8: end if
9: end for

4.4 Separate Pointer Approach

As illustrated in Figure 9, the Separate Pointer approach stores XML data

and pointers separately. In particular the pointer generator writes all possi-

ble answer nodes of the whole input query set into one single text file and

generates pointers referring to various part of this file. When the client sub-

mits N input Xpath queries, the server sends back N + 1 answer files,among

which there are 1 data file and N pointer files with each file corresponding

to one input query.

As a pointer file produced by this method contains nothing but pointers,

no tags are needed to separate pointers from data. Furthermore, it’s not

necessary to specify a file-id since the data block a pointer refers to always

resides in one single file. Therefore a pointer file becomes a collection of lines

which consists of the starting offsets and the size of the source data blocks.

46

starting − offset/size

Let us still use our simple example to show how the server generates data

and pointer files as well as how the pointer interpreter at client side retrieves

the real answer out of them.

4.4.1 Server Side

Although the basic idea about replacing redundant data with pointers is more

or less the same, the pointer generator of Separate Pointer method works a

bit differently from Embedded Pointer method. It generates the data file

based on Node Table and pointer files based on Answer Table.

Firstly it sorts the Node Table by document order of the XML source.

By performing this step, the document order of the final answer sets are pre-

served. Furthermore, ancestors are guaranteed to be written prior to their

descendants. Therefore, for an element to be processed, the generator either

writes the whole subtree or does nothing when it is already contained in an

element which is processed before.

Then it creates a text file F and writes answer nodes into it. For each

node in the sorted Node Table, it first checks if there is a corresponding

47

pointer available for this node. If not, it writes the subtree rooted by this

node into F and records a pointer consists of the starting position and the

number of characters of this data block. Otherwise this node is skipped be-

cause it is already included in F when an ancestor of this node is processed.

Similar to the Embedded Pointer method, a recursive method is created

for subtree writing because of the nested structure of XML document. It also

performs a depth-first traversal of the subtree. For every node visited it first

checks Node Table. A node include in Node Table itself is an answer node

to some input query, therefore a pointer is recoded when it is being written

into the F.

Algorithm 6 is the pseudo-code representation of how this pointer gener-

ator works.

For the queries Q1 and Q2 in Example 1, the enhanced processor produced

a Node Table and an Answer Table as shown in Figure 10. The pointer

generator then process the Node Table in document order:

b1: A pointer ”1/35” is recorded for future reference after it is printed by the

Print-Subtree procedure. When the Print-Subtree procedure is invoked

48

Algorithm 6 Pointer Generator 2

1: sort Node Table in document order
2: create a file $data
3: for each node $n in Node Table do
4: if there is a pointer recorded for $n then
5: do nothing
6: else
7: start := current position in file stream
8: Print-Subtree($n, $data)
9: size := number of characters being written

10: add pointer ”start/size” into Node Table
11: end if
12: end for
13: for each entry in Answer Table do
14: create a file $F
15: for each node in the node list do
16: fetch the corresponding entry from the Node Table
17: write the recorded pointer into $F
18: end for
19: end for

Procedure 7 Print-Subtree(root, data file)

1: if root is already a leaf node then
2: write root into data file
3: else
4: for each child node $n of root do
5: look $n up in the Node Table
6: if there is no corresponding entry for $n then
7: Print-Subtree($n, data file)
8: else
9: start := current position in file stream

10: Print-Subtree($n, data file)
11: size := number of characters being written
12: add pointer ”start/size” into Node Table
13: end if
14: end for
15: end if

49

<a>

<a>

<a>
<c></c>

1/35
7/7
18/14
32/21
53/7

1/35
7/7
32/21

b1
b2

b4

b3

b5

b2

b1

b4

Data Q1

Q2

Figure 12: Data and pointer files generated for Q1 and Q2 by Separate
Pointer

to print the subtree rooted by b1, two pointers ”7/7” and ”18/14” are

taken for b2 and b3 respectively, as they are both contained in Node

Table.

b2: It is skipped, as there is a pointer available in Node Table.

b3: It is skipped like b2.

b4: A pointer ”32/21” is recorded for future reference after it is printed.

b5: Similar to b4, a pointer ”53/7” is recorded for future reference.

After the whole Node Table has been processed, the pointer generator

creates a pointer file for each entry in Answer Table. For every node in the

50

node list, it writes its pointer into the corresponding pointer file. The text

file and two pointer files generated are shown in Figure 12.

4.4.2 Client Side

The pointer generator of Separate Pointer is rather simple. It reads a pointer

file line by line, interprets the pointer and retrieves the text block it refers

to from the text file. The details of this procedure is presented in Algorithm 8.

Algorithm 8 Pointer Interpreter 2

1: for each pointer file $Pfile do
2: create an answer file $Afile
3: for each line ”start/size” in $Pfile do
4: read $size characters starting from $start from data file, write them

into $Afile
5: end for
6: end for

4.5 Discussion

The Embedded Pointer approach only generates pointers for redundant ele-

ments which has already been processed, whereas the Separate Pointer ap-

proach generates pointers for every element in the whole answer set. Obvi-

ously, Separate Pointer produces more pointers than Embedded Pointer does.

In particular, if there are N distinct answer nodes for an input query set,

Separate Pointer would produce N more pointers than Embedded Pointer

51

does. Therefore Separate Pointer is only applicable when there is a reason-

able amount of overlapping between input queries, otherwise the percentage

of unnecessary pointers would be too high comparing to Embedded Pointer.

In case of a disjoint input query set, Embedded Pointer would produce the

same answer set as a dummy XPath processor does, whereas Separate Pointer

would still create a set of pointer files and the pointer interpreter at the client

side is still needed. Generally Embedded Pointer has better performance

with respect to communication cost, although Separate Pointer could pos-

sibly generates files of smaller size when there is enough overlapping among

the input queries, since its pointers are shorter than Embedded Pointer ’s.

However, Separate Pointer is overall less expensive than Embedded Pointer

when it comes to the computational cost. It is because its pointer generator

has less table lookup at the server side and its pointer interpreter needs less

I/O operation at the client side.

In comparison to the client-based approach, our server-based approch has

its pros and cons. Basically the files transferred from our server include more

overhead, as their files only contain the real data, without any pointer. But

the views submitted by their client are more complicated than the original

input queries and the number of views can be exponential to the total length

52

of original input queries. Therefore this client-based approach would become

inefficient or even impracticable when there are a large number of input

queries to be processed simultaneously. As for the computation cost, their

evaluation of recursive queries could be very expensive because of the expres-

sion −Qi//∗, especially when there are a large number of input queries. In

this case, the post-processing of optimized answers also becomes expensive

because of the large number of query evaluations at the client side.

53

5 Experimental Results

To validate the effectiveness of the proposed server-based approach, we have

implemented both the Embedded Pointer approach and the Separate Pointer

approach as well as Tajima’s algorithm in Java based on a DOM-based XPath

processor Saxon [25], which outputs a list of XML nodes for an input XPath

query. Our data is generated by xmlgen [26], which is a benchmark data

generator based on XMark. Our test queries are generated manually based

on various experimental purpose.

In order to study the tradeoff between the space and time efficiency, we

use both communication cost and computation cost as performance metric.

The communication cost is measured in bytes, including the size of input

queries or views submitted by the client and the size of answers returned by

the server. The computation cost is measured in milliseconds, including the

execution time at both the server side and the client side. We also choose

five typical network speeds to compute the total processing time.

Firstly, we ran experiments on query sets with various degree of overlap-

ping to see whether the performance of the Embedded Pointer approach and

the Separate Pointer approach varies as discussed in Section 4.5. Then we

54

tested sets of typical queries to compare the performance of our server-based

approaches and Tajima’s client-based approach. Moreover, we also vary the

size of XML document to see how these approaches behave. Finally we com-

pare the effectiveness of all three approaches in networks of different speeds.

5.1 Embedded Pointer vs Separate Pointer

In order to compare the performance of Embedded Pointer approach and

Separate Pointer approach, we tested three sets of typical XPath queries

with different degree of overlapping as shown in Table 1. Here we use range

predicates to control the degree of overlapping. These queries ask for the

profile of some people whose ages are within a certain range. As we can

see, the queries in Set A are disjoint, while the queries in Set B have a little

overlapping and the queries in Set C immensely overlapped with one another.

Table 2 shows the communication cost measured in bytes, including the

size of input queries submitted by the client and the size of answers returned

by the server. In order to give a clearer picture, the percentage of result

size reduction is shown in Figure 13. As we can see, the communication cost

reduction is more when there is more overlapping between input queries.

55

Queries Characteristic
Set A /site/people/person/profile [age<21]

/site/people/person/profile [age>21 and age<25] Disjoint queries.
/site/people/person/profile [age>25 and agea <40]
/site/people/person/profile [age>40]

Set B /site/people/person/profile[age<21]
/site/people/person/profile[age>18 and age<25] Queries with little
/site/people/person/profile[age>22 and age<40] overlapping.
/site/people/person/profile[age>35]

Set C /site/people/person/profile[age>1]
/site/people/person/profile[age>18] Queries which are
/site/people/person/profile[age>21] immensely overlapped
/site/people/person/profile[age<60]

Table 1: Query Sets with Different Degree of Overlapping

Set A Set B Set C
Direct Approach 71,270 92,804 264,389
Embedded Pointer 71,270 79,313 108,543
Separate Pointer 78,096 85,583 102,053

Table 2: Comparison of Communication Cost (byte)

For a disjoint query set like Set A, Embedded Pointer generates the real an-

swer directly, whereas Separate Pointer creates 9.57% overhead because of

unnecessary pointers. For a query set with reasonable sharing like Set B,

Embedded Pointer has greater reduction than Separate Pointer as it creates

less pointers. However, when there is enough overlapping among queries in a

query set like Set C, Separate Pointer has better performance with respect to

the communication cost. This is because Separate Pointer generates smaller

pointers, while the size of a single pointer becomes critical when there are a

huge number of pointers.

56

-20%

-10%

0%

10%

20%

30%

40%

50%

60%

70%

Set A Set B Set C

Input Query Set

P
e
rc
e
n
ta
g
e
 o
f
D
a
ta
 R
e
d
u
c
ti
o
n

Embedded pointer Separate Pointer

Figure 13: Percentage of Data Reduction

Embedded Pointer Separate Pointer
sever side client side server side client side

Set A 7,782 9 7,694 299
Set B 7,778 1,445 7,613 347
Set C 7,739 1,198 7,607 371

Table 3: Computational Cost (ms) of Two Methods

Table 3 shows the computation cost in milliseconds, which consists of the

execution time of the query evaluation and pointer generation at the server

side and the pointer interpretation at the client side. Obviously, Separate

Pointer is less expensive than Embedded Pointer both at the server side and

at the client side, except for the disjoint query set where unnecessary pointers

are processed.

In summary, as discussed in Section 4.5., the Embedded Pointer approach

has a better performance with respect to the communication cost but is more

57

expensive when it comes to the computational cost. The Separate Pointer

approach performs best when there is a certain amount of overlapping among

input queries. The different behavior of these two approaches will be exper-

imented further in next section.

5.2 Server-based Approach vs Client-based Approach

To compare our server-based approaches with Tajima’s client-based approach,

we tested three input query sets of different types, as shown in Table 4.

Set 1 contains redundancy caused by common elements among different an-

swer sets. Since Tajima’s algorithm does not support range queries, we use

optional branch to create the overlapping. Set 2, on the other hand, con-

tains redundancy caused by some elements appearing as the subelements of

other elements. Both Set 1 and Set 2 only contain non-recursive queries and

Tajima’s algorithm for non-recursive queries is applied, while Set 3 consists

of queries with // and Tajima’s algorithm for the general case is applied.

Moreover, we tested each query set on three XML documents at sizes 58MB,

116MB and 175MB.

Table 5 shows the communication cost measured in bytes, which includes

the size of input queries or views submitted by the client and the size of

answers returned by the server. To make a clearer comparison, three column

58

Queries Characteristic
Set 1 /site/people/person[phone] Some elements are shared by

/site/people/person[address] different answer sets.
/site/people/person[homepage]
/site/people/person[watches]

Set 2 /site/regions/*/item Some elements appear as
/site/regions/namerica subelements of other elements.
/site/regions/asia/item/description
/site/regions/europe/item/shipping

Set 3 /site/regions//item Recursive queries.
/site//description
/site//categories
//name

Table 4: Query Sets with different Characteristic

charts are shown in Figures 14, 15 and 16 for each of the query sets.

It is obvious to see that the communication cost is substantially reduced

for different types of queries, and the redundancy caused by elements shar-

ing and subelements are both eliminated. For the non-recursive queries, our

server-based approach generates larger query results because of the existence

of pointers. However, when Set 3 is processed on source data of 58MB, the

communication cost under Tajima’s algorithm is even greater than the one

under the Embedded Pointer approach because of the large number of views

submitted by the client side. When a set of recursive queries are processed,

the number of views generated by Tajima’s set-operation based algorithm

grows exponentially in the total length of queries. In particular, 480 views

are generated for query set 3, which is 156,912 bytes. This overhead is more

59

significant when the size of database is relatively small.

The comparison of computation cost in milliseconds is shown in Table

6, where the execution time of Tajima’s approach at the client side includes

both the pre-processing step and post-processing step. From the computa-

tion cost comparison in Table 6, we can see that the performance of both

Embedded Pointer and Separate Pointer are rather consistent for both non-

recursive and recursive queries, since our design is independent of the type

of input queries. On the other hand, Tajima’s algorithm works well for non-

recursive queries but is very inefficient for recursive queries. For Set 1 and

Set 2 of non-recursive queries, Tajima’s algorithm is less expensive at the

server side because they do not have a pointer processing step after query

evaluation. It is also interesting to see that Tajima’s algorithm is even less

expensive than the direct approach at the server side when processing Set

2. This is because only two views (/site/regions/{namerica}/item and

/site/regions/namerica) are sent to the server instead of the original four

queries. However, this advantage is overshadowed by the relatively expensive

query evaluation in the post-processing phase at the client side. As for Set 3

of recursive queries, the computation cost of Tajima’s algorithm is amazingly

high because of the large number of views and the −Qi//∗ to be evaluated.

It is even more obvious when a larger document is tested, because of the

60

0

5000

10000

15000

20000

25000

30000

58MB 116MB 175MB

Document Size(MB)

Co
m

m
un

ic
at

io
n

Co
st

(K
B)

Direct Approach Tajima's Algorithm Embedded Pointer Separate Pointer

Figure 14: Comparison of Communication Cost (byte) for Processing Set 1

expensive evaluation of −Qi//∗ on large document.

In short, our server-based approach is consistent for both non-recursive

and recursive queries. Tajima’s client-based approach works well for non-

recursive queries but inefficient in recursive query processing.

In order to test the effectiveness of both the server-based client-based

approach comparing to the direct approach, we compute the processing time

of Set 1 over different networks. We have examined five networks as follows,

low speed networks like slow modem (28.8Kbps) and fast modem (56.6Kbps);

medium speed network like dual ISDN (128Kbps); relatively fast network like

DSL cable (384Kbps); and fast network like T1 (1.5Mbps). The total pro-

61

0

20000

40000

60000

80000

100000

120000

140000

58MB 116MB 175MB
Document Size(MB)

Co
m

m
un

ic
at

io
n

Co
st

(K
B)

Direct Approach Tajima's Algorithm Embedded Pointer Separate Pointer

Figure 15: Comparison of Communication Cost (byte) for Processing Set 2

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

58MB 116MB 175MB
Document Size(MB)

Co
m

m
un

ic
at

io
n

Co
st

(K
B)

Direct Approach Tajima's Algorithm Embedded Pointer Separate Pointer

Figure 16: Comparison of Communication Cost (byte) for Processing Set 3

62

Set 1
58MB 116MB 175MB

Direct Approach 9,060,217 18,077,194 27,137,490
Tajima’s Algorithm 4,082,250 8,149,928 12,232,241
Embedded Pointer 4,262,930 8,525,598 12,808,835
Separate Pointer 4,335,425 8,669,371 13,045,061

Set 2
58MB 116MB 175MB

Direct Approach 41,731,967 83,920,409 125,529,645
Tajima’s Algorithm 27,592,555 55,366,052 82,906,245
Embedded Pointer 27,764,514 55,717,735 83,434,303
Separate Pointer 27,780,551 55,758,554 83,499,980

Set 3
58MB 116MB 175MB

Direct Approach 60,442,963 121,430,774 182,522,574
Tajima’s Algorithm 44,697,589 89,623,823 134,615,299
Embedded Pointer 44,658,172 89,721,050 134,849,809
Separate Pointer 45,070,992 90,553822 135,148,057

Table 5: Comparison of Communication Cost (byte)

cessing time in seconds, including the computation cost at both sides and the

transfer time between client and server, is used as performance metric. The

bar charts shown in Figures 17 and 19 give an overview of the whole situation

and Table 7 shows the detailed measurements, where the best performances

are underlined.

It is obvious to see that both client-based and server-based approaches

work well in low and medium speed networks where the transfer cost is the

bottleneck, whereas the effect is less notable in faster networks as the ex-

ecution time becomes the major concern in this situation. In particular,

63

Set 1
58MB 116MB 175MB

Server Client Server Client Server Client
Direct Approach 24,113 0 45,083 0 61,606 0
Tajima’s Algorithm 26,904 16,733 45,534 33,500 61,595 39,183
Embedded Pointer 26,538 3,744 46,338 6,937 64,595 8,009
Separate Pointer 25,612 1,312 41,701 2,002 63,988 2,758

Set 2
58MB 116MB 175MB

Server Client Server Client Server Client
Direct Approach 29,369 0 53,064 0 70,572 0
Tajima’s Algorithm 25,720 14,549 48,250 35,165 62,772 42,262
Embedded Pointer 30,367 8,271 56,134 15,756 76,865 22,240
Separate Pointer 29,326 3,660 35,741 8,668 75,806 13,292

Set 3
58MB 116MB 175MB

Server Client Server Client Server Client
Direct Approach 30.277 0 56,674 0 79,011 0
Tajima’s Algorithm 660,450 2,232 1,316,649 40749 2,065,662 54,403
Embedded Pointer 37.887 12,920 81,769 25,944 118,714 26,407
Separate Pointer 37,314 6,113 81,287 15,668 117,679 19,367

Table 6: Comparison of Computation Cost (ms)

0 50 100 150 200 250 300 350

Modem(28.8)

Modem(56.6)

ISDN

DSL

T1

V
a
ri
o
u
s
 N
e
tw
o
rk

Processing Time(Second)

Direct Approach Tajima's Algorithm Embedded Pointer Separate Pointer

Figure 17: Processing Query Set 1 on Database of 58MB over Various Net-
works

64

Set 1/58MB
Direct Tajima’s Embedded Separate

Approach Algorithm Pointer Pointer
Transfer Total Transfer Total Transfer Total Transfer Total

Modem(28.8) 314.57 338.69 141.71 185.35 148.02 178.3 150.54 177.76
Modem(56.6) 160.07 184.18 72.11 115.75 75.32 105.60 76.60 103.83
ISDN 70.78 94.89 31.88 75.52 33.30 63.58 33.87 61.10
DSL 23.59 47.70 10.63 54.27 11.10 41.38 11.29 38.52
T1 6.04 30.15 2.72 46.36 2.84 33.12 2.89 30.32

Set 1/116MB
Direct Tajima’s Embedded Separate

Approach Algorithm Pointer Pointer
Transfer Total Transfer Total Transfer Total Transfer Total

Modem(28.8) 627.68 672.76 276.3 355.39 289.09 342.36 293.96 337.66
Modem(56.6) 319.39 364.47 140.61 219.65 147.10 200.37 149.58 193.283
ISDN 137.92 183.00 62.18 141.21 65.05 118.32 66.14 109.843
DSL 45.97 91.06 20.73 99.76 21.68 74.96 22.05 65.753
T1 11.49 56.58 5.18 84.22 5.42 58.69 5.51 49.212

Set 1/175MB
Direct Tajima’s Embedded Separate

Approach Algorithm Pointer Pointer
Transfer Total Transfer Total Transfer Total Transfer Total

Modem(28.8) 942.27 1003.88 424.70 525.47 444.75 517.12 452.95 519.70
Modem(56.6) 479.46 541.07 216.10 316.88 226.30 298.67 230.48 297.224
ISDN 212.01 273.63 95.56 196.33 100.67 172.43 101.91 168.66
DSL 70.67 132.28 31.85 132.63 33.36 105.72 33.97 100.72
T1 18.09 79.70 8.15 108.93 8.54 80.90 8.70 75.44

Table 7: Performance Comparison on Various Network (second)

65

0 100 200 300 400 500 600 700 800

Modem(28.8)

Modem(56.6)

ISDN

DSL

T1

V
ar

io
us

 N
et

w
or

ks

Processing Time(Second)

Direct Approach Tajima's Algorithm Embedded Pointer Separate Pointer

Figure 18: Processing Query Set 1 on Database of 116MB over Various
Networks

0 100 200 300 400 500 600 700 800 900 1000 1100

Modem(28.8)

Modem(56.6)

ISDN

DSL

T1

V
a
ri
o
u
s
 N
e
tw
o
rk
s

Processing Time(Second)

Direct Approach Tajima's Algorithm Embedded Pointer Separate Pointer

Figure 19: Processing Query Set 1 on Database of 175MB over Various
Networks

66

although Tajima’s algorithm always has the minimum transfer cost, the to-

tal costs are not very impressive because of the high computation cost of

the post-processing step at the client side. On the other hand, the Separate

Pointer approach most often has the best performance because of its rela-

tively low computation cost. However, when the queries are processed on a

document of 175MB over a very slow network of 28.8K modem, the Embed-

ded Pointer approach has slightly better performance when the transfer cost

becomes more significant. Similarly, the direct approach has the best perfor-

mance when a document of 58MB is tested in a fast network like T1 where

the computation cost is the main concern, but this slim advantage fades out

when a large document of 175MB is tested as the transfer cost becomes more

significant when the answer size grows.

5.3 Discussion

As all the experimental results show, both our server-based approaches and

Tajima’s client-based approach could substantially reduce the answer size as

long as there exists redundancy among the input queries. Tajima’s algorithm

produces the smallest answer to be transferred, but this advantage is over-

shadowed by the high computation cost during the post-processing step at

67

Small Data Large Data
slightly overlapped highly overlapped slightly overlapped highly overlapped

slow network Direct Approach Embedded Pointer Embedded Pointer Separate Pointer
fast network Direct Approach Direct Approach Direct Approach Separate Pointer

Table 8: Best Choice in Different Situations

the client side. It is particularly inefficient for recursive queries because of

the exponentially growing number of views and the expensive evaluation of

−Qi//∗.

Embedded Pointer approach

In short, there is no overall best approach. Table 8 roughly summaries

how to choose a best approach base on different situation.

68

6 Conclusions

In this thesis, we have proposed and implemented an algorithm to optimize

multi-XPath query processing in a client-server system with respect to the

communication cost. When a client submits multiple XPath queries to the

server, redundancy occurs between the answers because of the characteris-

tics of XML and XPath: XML data has a nested structure and XPath query

retrieves substructures appearing at arbitrary levels. K. Tajima et al. [27]

studies this problem and proposes a client-based approach for it. However,

although the proposed approach in [27] is optimal with respect to answer size

transferred from server to client, it is very inefficient for recursive queries with

respect to the computation cost. Therefore we propose a server-based ap-

proach which is independent of the input query type and therefore works well

for both recursive and non-recursive queries.

The basic idea of the proposed server-based approach is to replace the

redundant data with pointers before sending them to the client. For the

pointer insertion, we designed two different methods: Embedded Pointer and

Separate Pointer. As their names suggest, the embedded pointer approach

produces a set of answer files with pointers embedded in, whereas the sepa-

rate pointer approach produces a text file and a set of pointer files.

69

To validate the effectiveness of the proposed approach, we implemented

the two methods and Tajima’s client-based approach. Various experiments

are conducted for all the three methods over different input query sets and

XML data. The experimental result shows that our server-based approach

can substantially reduce the size of multiple XPath query results being sent

over network, which is critical in low/medium speed or high traffic network

where the communication cost could easily become a bottleneck.

As the experimental results suggest, when the execution time becomes

the major concern in a fast network like T1, the performance of the pro-

posed approach could be even worse than the direct approach with respect

to the total processing time. It is because the additional computation cost

in pointer generating and interpreting overshadows the reduction in com-

munication cost. In a client-server environment, the computation cost and

communication cost are always a tradeoff while both [27] and our work focus

on the communication and sacrifice some time efficiency. However, it would

be interesting to adopt the traditional technique of multi-query optimization

to reduce the execution time at the server side by exploiting the common

subexpressions. It becomes an important future work.

70

References

[1] J. R. Alsabbagh, V. V. Raghavan: A framework for Multiple-Query

Optimization. RIDE-TQP 1992: 157-162

[2] D. Calvanese, G. Giacomo, M. Lenzerini and M. Y. Vardi. Answering

Regular Path Queries Using Views, In ICDE 2000: 389-398.

[3] R. Chirkova and C. Li. Materializing views with minimal size to answer

queies. In PODS, pp. 38-48, 2003.

[4] C. Chung, J. Min, and K. Shim. APEX: An adaptive path index for

XML data. In ACM SIGMOD, June 2002.

[5] F. Cooper, Neal Sample, Michael J. Franklin, Gisli Hjaltason, and Moshe

Shadmon. Fast index for semistructured data. In Proc. VLDB 2001,

pages 341-350, 2001.

[6] L. Chen and E. A. Rundensteiner. ACE-XQ: A CachE-aware XQuery

Answering System, In ACM SIGMOD Associated Workshop on the Web

71

and Databases, Madison, Wisconsin, June 2002, pp 31–36

[7] L. Chen, E. A. Rundensteiner and S. Wang. XCache - A Semantic

Caching System for XML Queries. In ACM SIGMOD ’2002 June 4-6,

Madison, Wisconsin, USA

[8] S. Dar, M. J. Franklin, B. T. Jonsson, D. Srivastava, and M. Tan.

Semantic data caching and replacement. In VLDB Conference, pages

330–341, 1996.

[9] N. N. Dalvi, S. K. Sanghai, P. Roy and S. Sudarshan. Pipelining in

multi-query optimization. In PODS. 2001.

[10] K. O’Gorman, A. El Abbadi, D. Agrawal: Multiple Query Optimization

by Cache-Aware Middleware Using Query Teamwork. In Proceedings of

the 18th International Conference on Data Engineering. 2002

[11] T. J. Green, G. Miklau, M. Onizuka, and D. Suciu. Processing XML

Streams with Deterministic Automata. In Proceedings of the 9th Inter-

72

national Conference on Database Theory (ICDT), pages 173–189, Siena,

Italy, January 2003.

[12] G. Grahne and A. Thomo. Query Containment and Rewriting Using

Views for Regular Path Queries under Constraints, In PODS 2003:

111-122.

[13] R. Goldman and J. Widom. DataGuides: Enabling Query Formulation

and Optimization in Semistructured Databases. In Proc. of 23rd Intl.

Conf. on Very Large Data Bases, August 1997.

[14] A. Y. Halevy. Answering queries using views: a survey. Technical

Report, Comp. Sci. Dept., Washington Univ., 2000.

[15] J. Li, R. Chirkova and C. Li. Minimizing Data-Communication Costs

by Decomposing Query Results in Client-Server Environments. Technical

report, Information and Computer Science, UC Irvine, 2003.

73

[16] Q. Li and B. Moon, Indexing and Querying XML data for Regular

Path Expressions, Proc. of VLDB, 2001.

[17] H. Mistry, P. Roy, S. Sudarshan and K. Ramamritham. Materialized

view selection and maintenance using multiquery optimization, in: Proc.

SIGMOD, 2001, pp. 307–318.

[18] G. Miklau and D. Suciu. Containment and equivalence for an xpath

fragment. In Proceedings of PODS, pages 65–76, 2002.

[19] B. Mandhani and D. Suciu. Query caching and view selection for

XML databases. In proceedings of the 31st international conference,

Trondheim, Norway, 2005

[20] J. McHugh, J. Widom. Query optimization for XML. Technical report,

Stanford University, 1999.

[21] Q. Ren and M. H. Dunham. Semantic Caching and Query Processing.

Southern Methodist University, TR-98-CSE-04 , 1998.

74

[22] P. Roy, S. Seshadri, S. Sudarshan, S. Bhobe. Efficient and Extensible

Algorithms for Multi Query Optimization. SIGMOD 2000.

[23] T. K. Sellis. Multiple-query optimization. In ACM Transactions on

Database Systems (TODS). Volume 13 , Issue 1 (March 1988) Pages:

23 - 52 1988

[24] K. Shim, T. K. Sellis, and D. Nau, Improvements on a heuristic

algorithm for multiple-query optimization, Data Knowl. Eng., vol. 12,

pp. 197C222, 1994

[25] SAXON: XSLT and XQUERY processing http://www.saxonica.com

[26] A. Schmidt, et al. XMark: A benchmark for XML data management.

In VLDB, pp. 974-985, 2002. http://monetdb.cwi.nl/xml/

[27] K. Tajima and Y. Fukui. Answering XPath Queries over Networks by

Sending Minimal Views. In Proceedings of VLDB, Toronto, Canada,

75

Aug./Sept. 2004, pp. 48-59

[28] World Wide Web Consortium. XML Path Language (XPath) Version

1.0 http://www.w3c.org/TR/xpath.

[29] World Wide Web Consortium. Extensible Markup Language (XML)

1.1 http://www.w3.org/TR/2004/REC-xml11-20040204/

[30] H. Wang, S. Park, W. Fan, and P. S Yu. ViST: A dynamic index

method for querying XML data by tree structures. In SIGMOD, 2003.

[31] W. Xu. The Framework of an XML Semantic Caching System. In

English International Workshop on the Web and Databases. June 16-17,

2005, Baltimore, Maryland.

[32] W. Xu and Z. M. Ozsoyoglu. Rewriting XPath Queries Using Materi-

alized Views. In Proceedings of the 31st VLDB Conference, Trondheim,

Norway, 2005

76

[33] K. Yagoub, D. Florescu, V. Issarny, and P. Valduriez, Caching strate-

gies for data-intensive Web sites, in Proceedings of the International

Conference on Very Large Data Bases 2000.

77

