
ELECTROMAGNETIC PROPERTIES AND MACROSCOPIC

CHARACTERIZATION OF COMPOSITE MATERIALS

QIU CHENGWEI

NATIONAL UNIVERSITY OF SINGAPORE

AND
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Abstract

Composite materials can be engineered to possess peculiar properties such as left-

handed (LH) triad, scattering enhancement, and negative refraction. Since no such

naturally existing materials were known, artificially engineered composites thus play

an exciting role in the modern electromagnetic theory and applications. Recently,

a composite material, also known as metamaterial, consisting of periodic split-rings

and rods has been proposed and fabricated to obtain LH and negative-index proper-

ties. Due to the high impact of such new properties, the functionality of composites

deserves further studies, especially the possibility of realizing negative-index materi-

als (NIMs). In this thesis, the microscopic and macroscopic properties, the control of

the geometry and functionality, and the potential applications of various composite

materials, from simple to complex, are explored. In addition, various numerical and

theoretical tools are presented for the purpose of characterizing structured composite

designs.

Before studying the physical realization of NIMs, basic properties of propaga-

tion, scattering, resonance of LH materials and NIMs are studied. The properties

obtained are found to be in contrast to those encountered in right-handed materials.
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ABSTRACT iv

For instance, using the rigorous line-source analysis of propagation and transmis-

sion into an isotropic negative-index cylinder, it is presented that power refracts

at a negative angle, together with the hybrid effects of cylindrical curvature. The

focusing phenomena of cylindrical lens are studied. In what follows, particular bi-

isotropic cylinders, which also favour the negative refraction, are discussed. When

the composite cylinder is small, the resonance will occur at particular ratio of the

inner over outer layer. The scattering is greatly enhanced even for an electrically

small composite cylinder, since the surface plasmons come into play at the interface

within the composite cylinder. It is seen that the proper cloaking is a key step to

generate the surface plasmon, and the cloaking theory has been studied not only

for a small composite cylinder but also for a large one. The rotating effects are

considered to examine the resonance shift and different mechanisms of resonances

are clarified. In terms of the scattering, modified potentials of anisotropic spheres

are proposed. Since most of the metamaterials are anisotropic, these modified po-

tentials provide a robust method for considering the anisotropy ratio and its effects

on scattering by using fractional-order Bessel or Hankel functions. Furthermore, the

scattering properties of gyrotropic spheres are investigated. Hence, the results have

a wide range of applications due to the robustness and generality. It can be applied

to study the LH spheres, negative-index spheres and anisotropic spheres with partial

negative parameters, only if appropriate algebraic signs of wave numbers are taken.

Next, the possibility of realizing negative refraction from geometrically ordered

composite materials is discussed by proper manipulation of the functionalities and

frequency selection. Theory and application of magnetoelectric composites are ex-
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plored, where different levels of the magnetoelectric couplings are considered to

achieve negative refraction and other exotic properties. For example, dispersive

bulk chiral materials are studied by using Condon model to take into account fre-

quency dispersion. The properties related to negative refraction and the frequency

dependence are studied. Furthermore, the Faraday effects are combined with the

magnetoelectric composites in order to produce gyrotropy in material parameters.

It is seen that the gyrotropic parameters induced by the external fields will greatly

favor the realization of negative-index material. In addition, the wave properties

such as impedance, backward-wave region, and polarization status are presented.

So as to further explore the merits of magnetoelectric composites in the realm of

NIMs, nihility routes are proposed where the isotropic, nonreciprocal and gyrotropic

chiral nihility are discussed. Medium constraints and the control of realizing such

nihility conditions are also presented.

Finally, the multilayer algorithm is further employed in the construction of

dyadic Green’s functions (DGFs) to model systematic response of the structured

composite materials. However, dyadic Green’s functions cannot be applied straight-

forwardly to some periodic structured composites such as periodic lattices. Thus,

an improved homogenization based on limit process is developed for bianisotropic

composites (the most general material) to describe first the systematic response in

terms of effective parameters, followed by using DGFs. It can be seen that the

homogenization and dyadic Green’s functions are two powerful and complementary

tools to macroscopically characterize the engineered composites, which possess wide

applicability in treating various geometries and material constitutions.
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Chapter 1

Introduction

In a broad sense, the term composite means made of two or more different parts.

The different natures of constituents allow us to obtain a material whose set of per-

formance characteristics is greater than that of the components taken separately.

The properties of composite materials result from the properties of the constituent

materials, the geometrical distribution and their interactions. Thus to describe a

composite material, it is necessary to specify the nature and geometry of itscon-

stituents, the distribution of the inclusions and their microscopic response. In the

field of electrical engineering, electromagnetics of composite materials are especially

important, since the electromagnetic behavior of rather complicated structures has

to be understood before the design and fabrication of new devices. Deep understand-

ing of physical phenomena in materials and structures is a necessary prerequisite for

engineering process. In the last few decades, there has been an increasing interest

in the research community in the modeling and characterization of negative-index

1
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materials. Negative-index materials represent a class of composite materials artifi-

cially constructed to exhibit exotic electromagnetic properties not readily found in

naturally existing materials. This type of composite materials refracts light in a way

which is contrary to the normal right handed rules of electromagnetism. Researchers

hope that those peculiar properties will lead to superior lenses, and might provide

a chance to observe some kind of negative analog of other prominent optical phe-

nomena, such as reversal of the Doppler shift and Cerenkov radiation. When the

dielectric constant (ε) and magnetic permeability (µ) are both negative, waves can

still propagate in such a medium. In this case, the refractive index in the Snell’s

law is negative, consequently an incident wave experiences a negative refraction at

the interface, resulting in a backward wave for which the phase of the wave moves

in the direction opposite to the direction of the energy flow.

The first study of general properties of wave propagation in such a negative-

index medium (NIM) has been usually attributed to the work of Russian physicist

Veselago [3]. In fact, related work can be traced up to 1904 when physicist Lamb [4]

suggested the existence of backward waves in mechanical systems. In fact, the

first person who discussed the backward waves in electromagnetics was Schuster [5].

In his book, he briefly noted Lamb’s work and gave a speculative discussion of its

implications for optical refraction. He cited the fact that, within the absorption band

of, for example, sodium vapour, a backward wave will propagate. Because of the high

absorption region in which the dispersion is reversed, he was however pessimistic

about the applications of negative refraction. Around the same time, Pocklington

[6] showed that in a specific backward-wave medium, a suddenly activated source
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produces a wave whose group velocity is directed away from the source, while its

velocity moves toward the source. Several decades later, negative refraction and lens

applications (not perfect yet) was revisited and further discussed [7–9]. However,

it is the translation of Veselago’s paper into english version that the negative-index

materials is revived, which are also referred now to as left-handed materials (LHM)

or metamaterials. Very influential were the papers by Pendry [1,10,11]. The interest

is further renewed after negative refraction was experimentally confirmed by Smith

and Shelby [12–15]. A further boost to the field of NIM came when the applicability

of lensing is proposed to relax the diffraction limit [16] by focusing both periodic

and evanescent electromagnetic waves. The field keeps expanding owing to the fact

that the Maxwell equations are scalable, thus practically the same strategies can be

employed in the microwave and optical regions.

1.1 Background

1.1.1 Fundamentals of NIM

In order to realize the negative refraction [17–19], the composite material must have

effective permittivity and permeability that are negative over the same frequency

band. When the real parts of permittivity and permeability possess the same sign,

the electromagnetic waves can propagate. For lossless media, if those two signs are

opposite, wave cannot propagate unless the incident wave is evanescent itself. His-

torically, the development of artificial dielectrics was one of the first electromagnetic
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NIMs by the design of a composite material [20]. If both ε and µ are negative, the

refractive index of the given composite is defined as

n =
√
|ε||µ|

√
e2jπ = −

√
|ε||µ|. (1.1)

More detailed investigation on the causality of negative-index materials can be found

in [21]. Usually, solution for n < 0 consists of waves propagating toward the source,

rather than plane waves propagating away from the source. Since such a solution

would normally be rejected by the principles of causality, the physical proof of the

solution for n < 0 can be supplied by the concept average work [13]. The work done

by the source on the fields is

P = ΩW = π
µ

cn
j2
0 (1.2)

where Ω and j0 represent the oscillation frequency and magnitude of the source

current, and W is the average work done by the source on the field. It can be

found that the solution of n < 0 leads to the correct interpretation that the current

performs positive work on the fields because µ < 0 for negative-index materials.

Since the work done by the source on the fields is positive, energy propagates outward

from the source, in agreement with Veselago’s work [3].

No known material has naturally negative permittivity and permeability in RF

band, and hence NIM has to be a composite of at least two kinds of materials which

individually possess ε < 0 and µ < 0 in an overlapped frequency band. In order to

creat negative permittivity in microwave region, the approach of an array of metallic

rods with the electric field along with the axis was used [11]. Such structures act as a

plasma medium. If the frequency is below the plasma frequency, the permittivity is
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negative. The Drude-Lorentz model can be utilized to characterize the wire medium

with periodic cuts

ε(ω) = 1 −
ω2

p − ω2
0e

ω(ω + iΓe) − ω2
0e

, (1.3)

where ωp, ω0e and Γe denote respectively plasma frequency, resonant frequency, and

damping constant. If the wires are continuous, the resonant frequency ω0e = 0.

In what follows, Pendry proposed the resonant structures of loops of conductor

with a gap inserted to realize the negative permeability as in Fig. 1.1.

Figure 1.1: Schematic drawing of split ring resonator in [1].

The gap in the structure introduces capacitance and gives rise to a resonant

frequency determined only by the geometry of the element. It is also known as the

split-ring resonator (SRR), which could be described by

µ(ω) = 1 − Fω2

ω(ω + iΓm) − ω2
0m

, (1.4)
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where F , Γm and ω0m are respectively the filling fraction, resonant damping and

resonant frequency [1]. New designs of SRR medium have been explored numeri-

cally and experimentally to overcome the narrow-band property, such as broadside

SRR, complementary SRR, omega SRR, deformed SRR and S-ring SRR [22–28].

Current designs can yield large bandwidth, low loss and small size, which make the

applications of SRRs wider.

The combination of a wire medium and SRR medium would present negative

refraction due to the combined electric and magnetic responses [17,29–31]. However,

such designs are normally anisotropic or bianisotropic, in which case the role of bian-

isotropy and extraction of those bianisotropic parameters were thus discussed [22,32].

Efforts were made to create isotropic composite NIM by ordering SRRs in three di-

mension [33] and the design was further scaled to IR frequencies [34]. However, at

the wavelength approaching optical region, the inertial inductance caused by the

electron mass and the currents through SRRs determines the plasma frequency and

becomes dominant for scaled-down dimensions, which further makes the negative

effects of permittivity and permeability totally disappear [35]. To overcome this dif-

ficulty, it is proposed to add more capacitive gaps to the original SRR [36]. Among

the most recent results on experimental NIM structures with near-infrared response

are those on NIMs in the 1.5 nm range with double periodic array of pairs of parallel

gold nanorods [37], with a negative refractive index of about -0.3.

It is true that conventional SRR resonant structures are lossy and narrow-

banded, and alternative approaches apart from exploring new designs may be of
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particular interest. Thus the transmission line (TL) approaches are proposed by

the group at the University of Toronto to support negative refraction and backward

waves [38–43]. Their basic idea is to use two-dimensional TL network with lump ele-

ments to achieve a high-pass filter, in which the backward wave can propagate. Thus,

effective negative permittivity and permeability can be realized by suitable changes

of configuration. The group at UCLA has further explored the TL approaches to

realize the composite right- and left- handed structures [44–47]. The TL approach

may provide broader band for negative refraction than SRR and wire medium, but

it is obviously more difficult to be implemented in practical applications than the

latter.

Another approach for generating negative refraction was to use photonic or

electromagnetic bandgap structures [48–50]. PBGs or EBGs, first initiated by

Yablonovitch [51] in 1987, are constructed typically from periodic high dielectric

materials, and possess frequency band gaps eliminating electromagnetic wave prop-

agation. Under certain circumstances, the Bloch/Floquet modes will lead to neg-

ative refraction. However the negative refraction behavior is different from the

negative-index materials, in which the group velocity and phase vector are exactly

anti-parallel. Electrically tunable nonreciprocal bandgap materials in the axial prop-

agation along the direction of magnetization were considered in [52] to study cubic

lattices of small ferrimagnetic spheres. Electromagnetic crystals [53, 54] operating

at higher frequencies exhibit dynamic interaction between inclusions. Electromag-

netic crystals (EC) are artificial periodical structures operating at the wavelengths

comparable with their period while artificial dielectrics [20] only operate at long
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wavelengths as compared to the lattice periods. In the optical frequency range they

are called photonic crystals (PC) [55]. In some particularly designed PCs, negative

refraction will be present [56–58] and the application of open resonators with PCs

of negative refraction [59–61] is also proposed in [62].

1.1.2 Focusing and lensing properties

Negative-index material would be a good starting point to achieve a perfect lens

as shown in Fig. 1.2. Existence of a negative refractive index implies an entirely

Figure 1.2: Schematic drawing of wave propagating in a split ring resonator (SRR)

array in [2].

new form of geometrical optics. The example in Fig. 1.2 shows that a slab of NIM

focuses the point source while a rectangular lens made of positive index material

will expectedly diverge the beam.

Making a conventional lens by positive-index materials with the best resolution

requires a wide aperture, and the resolution limit is half a wavelength in free space.
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The material with negative refractive index can make the lens more compact, and

hence NIM is widely applicable in computer chips and storage devices. Pendry

proposed the aniti-vacuum slab to perfectly focus a source [16]. Unfortunately,

the perfect lens may be too difficult to realize as claimed by Gracia et al [63].

However, more practical lenses which consider the dispersion and absorption have

been considered [64, 65] to avoid this debate. Another important aspect is that

not all the information of the source can travel across the lens made of standard

materials to the image. Negative refractive index materials restore not only the

phase of propagating waves, but also the amplitude of evanescent states. By using

the amplification of evanescent waves, higher resolution is anticipated. It is worth

noting that on the interface of negative-index and positive-index media, the surface

plasmon would be generated and makes decaying wave become growing wave. With

the microwave TL lens, subwavelength focusing with the resolution of λ0/5 has been

realized [66]. The optical superlens made from a thin silver layer with a negative

refractive index was fabricated with the resolution of λ0/6 and it can image objects

as small as 40 nm by the superlens [67]. It further confirms the Pendry’s original

conjecture that a NIM can focus near-fields and demonstrates clearly that evanescent

mode enhancement leading to high resolution imaging [68].

1.2 Thesis work

There are two general viewpoints for the description of negative-index composite

materials: macroscale and microscale. The macroscopic characterization of the elec-
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tromagnetic wave property is the focus of this thesis, although the microscopic study

is also touched. The macroscopic characterization is employed to gain a physical

understanding of electromagnetics in special composite materials, particularly the

composites of negative refraction, as well as to gauge the potentials of such NIM

composites. Theoretical modeling and numerical simulation are typically developed

for studying special composites as well as exploring the possibility of negative re-

fraction based on the electromagnetics of those composites. The contributions of

my dissertation are outlined briefly as follows.

Chapter 2 investigates fundamental electromagnetic behaviors of wave propa-

gation, scattering and resonance in cylindrical composites with negative refractive

index. The main contributions can be concluded that it provides a solid understand-

ing of the hybrid effects on scattering properties of a multilayered composite NIM

cylinder due to line sources and plane waves. Closed forms of electric and magnetic

fields in each region are formulated using the eigenfunction expansion method as

well as the proposed multilayer algorithm to systematically determine the scatter-

ing and transmission coefficients at each interface. Focusing properties and energy

distribution associated with special scattering phenomena are presented. Based on

the multilayer algorithm, the cloaking principles for cylindrical scatterers are given,

and enhanced scattering can be observed even for very thin cylinders.

Chapter 3 provides a solid understanding of the scattering properties of anisotropic

metamaterials. Since NIMs are anisotropic in general, it would be of great impor-

tance to investigate the electromagnetic wave interaction with anisotropic spheres.
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In particular, the concept of the anisotropy ratio is proposed to characterize the

anisotropic effects on the backscattered radar-cross section (RCS). The RCS reduc-

tion is discussed. RCS prediction rule and geometrical optics limit are found from

an original potential formulation and numerical results are presented. Furthermore,

the work is extend to gyrotropic spheres.

Chapter 4 is devoted to the isotropic and gyrotropic magentoelectric composites.

Topics from theoretical formulation to potential applications are discussed. Due to

the ability of magnetoelectric coupling of such composite materials, negative refrac-

tion and focusing properties can be realized under certain circumstances as shown

in He’s paper [69] for isotropic magnetoelectric materials. The gyrotropy in permit-

tivity and permeability will further favor the realization of negative refraction. The

contribution of the first two sections in this chapter is to provide an understanding

of the wave propagation in isotropic/gyrotropic magnetoelectric composite materials

and the advantage in achieving negative refraction over conventional chiral materi-

als. For the isotropic case, the single-resonance model is used to study the materials’

properties. For the gyrotropic case, I discuss the suitability of various constitutive

descriptions, the backward waves and the impedance matching in subwavelength

resonators. The last two sections are to discuss a special class of magnetoelectric

composite materials: chiral nihility, as termed by Tretyakov [70]. Due to its poten-

tials in achieving NIM, it deserves more research attention. The main contribution

of this chapter is the in-depth study in the following topics : 1) the applicability of

different medium formalisms is clarified for the first time for isotropic chiral nihility;

2) chirality effects of the wave propagation in chiral nihility are discussed where a
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wide Brewster angle range is found; 3) the mechanisms and conditions of realizing

chiral nihility, nonreciprocal nihility and even gyrotropic nihility are investigated;

and 4) image properties and related applications of chiral nihility are explored.

The last chapter is to present Maxwellian solutions to the periodically struc-

tured gyrotropic and bianisotropic composites. The contribution of the first half of

this chapter is to establish the systematic response of the multilayered gyrotropic

magnetoelectric composites by using Green’s dyadics. Since dyadic Green’s func-

tions relate the source and field as a kernel, work in the first part still focuses on the

gyrotropic magnetoelectric composite, which is the core medium discussed in Chap-

ter 4. The contribution of the second half of this chapter is to provide an accurate

approach to get the effective material parameters for a lattice periodically filled by

bianisotropic inclusions. The bianisotropic material is the most general material and

the artificial metal structures of NIMs may have bianisotropy. Hence the importance

of this work is evident. Those two parts are complementary in Maxwellian solutions

to electromagnetic problems. The first is based on the eigenfunction expansion while

the latter is to discretize Maxwell’s equations. The results obtained by the latter

can be also used by the first to characterize the scattered and radiated fields.

Throughout the thesis, the time dependence of e−iωt is assumed, associated with

the usage of first-kind Hankel functions.



Chapter 2

Electromagnetics of multilayered

composite cylinders

2.1 Introduction

In this chapter, the fundamental electromagnetic properties of scattering, energy

distribution, and multiple resonances of cylindrical scatterers will be considered.

Throughout this chapter, the material in each region of the multi-layered cylinder

is assumed to be homogeneous and isotropic, except for Section 2.4.3. However, in

the macroscopic view, the whole layered structure in Fig. 2.1 is inhomogeneous.

The reflection and refraction of EM waves by a planarly stratified double neg-

ative medium, reflection and refraction of the waves were formulated by Kong [71].

The objective of the first part of this chapter is to extend the existing application

13
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from planar structures to cylindrical structures illuminated by a line source, so as to

gain more insight into the hybrid effects of NIM and cylindrical curvature [72, 73].

Potential applications of the results in this work include the conformal antenna

radome analysis and design, two-dimensional microwave and optical imaging, etc.

First, a general formula of EM fields in all regions of a multilayered cylinder with

negative-index and positive-index materials is derived. The eigenfunction expansion

method is applied to express the EM fields in this structure. To verify proposed

formulations and validate the analysis, the distant scattering cross sections for a

two-layered composite cylinder with NIM are shown. Next, I consider some spe-

cial cases of NIM in cylindrical geometry in the presence of a parallel line source,

e.g., the energy distribution and focusing properties of isotropic and bi-isotropic

subwavelength rods filled by NIMs.

The objective of the second part of this chapter is to study the multiple reso-

nances and resonant scattering of composite cylinders filled by dispersive negative-

index materials. Recently, the scattering of electromagnetic waves from a sphere

fabricated from a negative-index material was studied in terms of the Mie coeffi-

cients that include magnetic effects [74], and it shows how the extinction spectra are

affected by magnetic and plasmon polaritons. In this part, I investigate the multiple

resonances in plasmonic cylinders as well as negative-index cylinders so as to yield a

more complete vision of how plasmons and magnetic polaritons affect the resonant

scattering of the composite cylinder.

In the last part, the cloaking effects and resonance shifts on the backscatter-
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ing of both small and large cylinders are investigated for plane-wave illumination.

The theoretical treatment starts from the formulation of electromagnetic fields in

all three regions, i.e., the rotating core, the rotating cloaking and the background

matrix. The angular velocities of the core and cloaking can be different and even

anti-directional. The present results are thus useful due to the generality escpecially

in studying specific cases such as rotating/stationary and left-handed/right-handed

core-cloaking combinations. In particular, the optical resonances due to the plas-

mons and morphology-dependent resonances (MDRs) are examined. Due to the

rotation, the resonances are found to shift and the effects of velocity on such phe-

nomena are investigated. The results are also straightforward to be applied in

studying metallic cloakings.

2.2 Multilayer algorithm

2.2.1 Eigenfunction expansion

Consider an N -layered infinitely-long cylinder situated in free space, as depicted in

Fig. 2.1. Each layer is filled with arbitrary negative- or positive-refractive medium

of different permittivities and permeabilities.

An incident wave with transverse electric (TE) or transverse magnetic (TM)

polarization is assumed to illuminate the layered cylinder in free space at an arbitrary

oblique angle. In the cylindrical coordinates system, the vector wave functions are
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Figure 2.1: Cross-sectional view of a multilayered cylinder with the line source at

(ρ0, φ0) in the outermost region.

given by Li et al in [75], and rewritten as follows:

M (p)
n (kz) =

[
ρ̂
in

ρ
B(p)

n (kρρ) − φ̂
dB(p)

n (kρρ)

dρ

]
ei(nφ+kzz), (2.1a)

N (p)
n (kz) =

ei(nφ+kzz)

k

[
ρ̂ikz

dB(p)
n (kρρ)

dρ
− φ̂

nkz

ρ
B(p)

n (kρρ) + ẑk2
ρB

(p)
n (kρρ)

]
(2.1b)

where B(p)
n (kρρ) represents the cylindrical Bessel functions of order n, the superscript

p equals 1 or 3 representing the Bessel function of the first kind or the cylindrical

Hankel function of the first kind, and k2 = k2
ρ +k2

z . If the electromagnetic waves are

normally incident on the surface, the vector wave functions expressed in Eq. (2.1)

can be simplified as:

M (p)
n (k) =

[
ρ̂
in

ρ
B(p)

n (kρ) − φ̂
dB(p)

n (kρ)

dρ

]
einφ, (2.2a)

N (p)
n (k) = ẑkB(p)

n (kρ) einφ. (2.2b)
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By using the eigenfunction expansion method, the electric and magnetic fields in

the intermediate regions (e.g., the f th region) are as follows:

Ef =
∞∑

n=0

{
anfN

(3)
n (kzf) + bnfM

(3)
n (kzf)

+a′nfN
(1)
n (kzf) + b′nfM

(1)
n (kzf)

}
, (2.3a)

Hf =
1

iηf

∞∑

n=0

{
anfM

(3)
n (kzf) + bnfN

(3)
n (kzf)

+a′nfM
(1)
n (kzf) + b′nfN

(1)
n (kzf)

}
(2.3b)

where anf , bnf , a
′
nf and b′nf are the unknown expansion coefficients and ηf denotes

the wave impedance in the f th layer.

For the outermost region (i.e., Region 1) and the inner-most region (i.e., Region

N), the electromagnetic fields can be expanded as:

E1 = Ei + Es = Ei +
∞∑

n=0

[
an1N

(3)
n (kz1) + bn1M

(3)
n (kz1)

]
, (2.4a)

H1 = H i + Hs = H i +
1

iηf

∞∑

n=0

[
an1M

(3)
n (kz1) + bn1N

(3)
n (kz1)

]
, (2.4b)

and

EN =
∞∑

n=0

[
a′nNN (1)

n (kzN) + b′nNM (1)
n (kzN)

]
, (2.5a)

HN =
1

iηN

∞∑

n=0

[
a′nNM (1)

n (kzN) + b′nNN (1)
n (kzN)

]
. (2.5b)

For the electromagnetic fields in all the regions, one has the same longitudinal wave

vector kz due to phase matching condition, whereas the radial wave vector kρf is

discontinuous.

In order to make use of the multilayer algorithm for layered structures, the

incident waves are better to be expanded by those eigenfunctions. For TE and TM



ELECTROMAGNETICS OF MULTILAYERED COMPOSITE CYLINDERS 18

waves, the electromagnetic fields can be respectively expressed by

Ei
TE =

ETE
0

ik sin θ0

∞∑

n=0

(2 − δn0) i
nM (1)

n (kz) e
−inφ0 , (2.6a)

H i
TE = − ETE

0

η0k sin θ0

∞∑

n=0

(2 − δn0) i
nN (1)

n (kz) e
−inφ0; (2.6b)

and

Ei
TM =

ETM
0

k sin θ0

∞∑

n=0

(2 − δn0) i
nN (1)

n (kz) e
−inφ0 , (2.7a)

H i
TM =

ETM
0

iη0k sin θ0

∞∑

n=0

(2 − δn0) i
nM (1)

n (kz) e
−inφ0 . (2.7b)

For an infinitely long line source placed at (ρ0, φ0) and parallel to the cylinder,

the incident electromagnetic wave can be expressed by

Ei = − k2I

4ωε0

∞∑

n=0

(2 − δn0)H
(1)
n (kρ0) N (1)

n (k) e−inφ0 , (2.8a)

H i = −kI
4i

∞∑

n=0

(2 − δn0)H
(1)
n (kρ0)M (1)

n (k) e−inφ0 , (2.8b)

where I stands for the amplitude of the electric current, δpq denotes the Kroneker

delta function, and the vector wave functions M and N are defined in Eq. (2.2).

Thus, one can have electromagnetic field expansions in all regions based on the

field coupling together with the incoming/outgoing waves superposition. Those scat-

tering coefficients can be solved in a multilayer algorithm associated with boundary

conditions at each interface, which is to be shown.
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2.2.2 Recursive algorithm of scattering coefficients

The electromagnetic fields satisfy the boundary conditions at each interface ρ = ρf

ρ̂ ×




Ef

Hf


 = ρ̂ ×




E(f+1)

H(f+1)


 . (2.9)

Inserting Eqs. (2.3a) and (2.3b) into Eq. (2.9), one can obtain a linear equation of

[Ff ] [Cf ] =
[
F(f+1)

] [
C(f+1)

]
(2.10)

where [Ff ] is a 4 × 4 matrix, and [Cf ] is a 4 × 1 vector consisting of the unknown

scattering coefficients

[Cf ] =

[

anf bnf a′nf b′nf

]T

. (2.11)

For TE and TM incidences, a′n1 and b′n1 are represented respectively by

a′n1 = (2 − δn0) i
n ETM

1

k1 sin θ0
e−inφ0, (2.12a)

b′n1 = − (2 − δn0) i
n+1 ETE

1

k1 sin θ0
e−inφ0. (2.12b)

The parameter matrix [Ff ], where ρ = rf , can be obtained

[Ff ] =




−nkz

kfρ
H(1)

n (kρfρ)
−dH

(1)
n (kρf ρ)
dρ

−nkz

kf ρ
Jn (kρfρ)

−dJn(kρfρ)
dρ

−k2
ρf

kf
H(1)

n (kρfρ) 0
−k2

ρf

kf
Jn (kρfρ) 0

−1
iηf

dH
(1)
n (kρf ρ)

dρ
−nkz

iωµf ρ
H(1)

n (kρfρ)
−1
iηf

dJn(kρfρ)
dρ

−nkz

iωµf ρ
Jn (kρfρ)

0
−k2

ρf

iωµf
H(1)

n (kρfρ) 0
−k2

ρf

iωµf
Jn (kρfρ)




.(2.13)

For the line-source excitation which is parallel to cylinder’s axis, a′n1 and b′n1 are

represented by

a′n1 = − (2 − δn0)
k2

1I

4ωε1
H(1)

n (k1ρ0) e
−inφ0 , (2.14a)

b′n1 = 0. (2.14b)
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Similarly, [Ff ], where ρ = rf , can be derived:

[Ff ] =




0 −H ′(1)
n (kfρ) 0 −J ′(1)

n (kfρ)

−H(1)
n (kfρ) 0 −Jn(kfρ) 0

−H
′(1)
n (kf ρ)

jηf
0 −J ′

n(kf ρ)

iηf
0

0 −H
(1)
n (kf ρ)

iηf
0 −Jn(kf ρ)

iηf




, (2.15)

where the derivative is with respect to the argument.

By defining a new matrix

[Tf ] = [Ff+1]
−1 [Ff ] , (2.16)

one can rewrite

[CN ] =
[
T

(1)
N

]
[C1] (2.17)

where

[
T

(f)
N

]
= [TN−f ]

[
TN−(f+1)

]
. . . [T2] [T1] . (2.18)

Therefore, the coefficient relationship between inner- and outer- most layer can be

established



0

0

a′nN

b′nN




=
[
T

(1)
N

]




an1

bn1

a′n1

b′n1




. (2.19)

Since a′n1 and b′n1 are already known, an1 and bn1 can be determined via the

first two rows of
[
T

(1)
N

]
in Eq. (2.19) , regardless of values of a′nN and b′nN . Provided

[C1] is obtained, solution to [Cf ] is straightforward by using Eq. (2.17). As a result,

electromagnetic fields in any region can be formulated.
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2.3 Verification

To verify the correctness of the formulations derived above, I firstly calculate the

far-field scattering pattern of a two-layer (three regions) cylinder filled with different

materials, illuminated by the TE- and TM-waves, and radiated by the parallel line

source, respectively. The geometry is shown in Fig. 2.2. The radii of two layers

e mr r2 2,e mr r2 2,

aa

bb

e mr1 r1,e mr1 r1,

e m0 0,e m0 0,

IncidenceIncidence

ff

00

e mr r2 2,e mr r2 2,

aa

bb

e mr1 r1,e mr1 r1,

e m0 0,e m0 0,

Line

Source

Line

Source

ff

r0r0

00

(a) A plane wave incidence. (b) Radiation of a parallel line source.

Figure 2.2: Geometry of a two-layered cylinder with DPS materials.

from inside to outside are a = 0.25λ and b = 0.3λ, respectively. The corresponding

relative permittivities are εr1 = 4.0, and εr2 = 1.0. The relative permeabilities of two

layers are µr1 = µr2 = 1.0. Two different excitations are considered: (a) the plane

waves are assumed to be at normal incidence; and (b) the line source is placed at

a distance of ρ0 = 0.5λ from the center of the layered cylinder, and an observation

angle φ0 = 0◦. The far-field scattering pattern can be obtained by the asymptotic

form of large-argument Hankel functions. The results are shown in Fig. 2.3 and

Fig. 2.4, respectively.

For the reference, the integral-equation solutions based on [76,77], are also given.
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Figure 2.3: Far-field scattering patterns of TE- and TM-waves illuminating a two-

layered cylinder with DPS materials.

Figure 2.4: Radiated field pattern of a nearby parallel line source in the presence of

a two-layered cylinder with DPS materials.
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An excellent agreement is observed between the existing solution presented in [76,77]

and those newly obtained. Those results partially verify the correctness of the

derived theoretical formulas and developed codes in this thesis.

2.4 Numerical studies

In this section, only single-layer and two-layer cylinders are considered because they

possess enough interesting scattering properties. The present work can be extended

to study 3-layer or even 4-layer cylinders straightforwardly since the multilayer al-

gorithm developed above is suitable for an arbitrary number of layers.

2.4.1 Discontinuity

First, the real parts of the field components, Hρ, Hφ and Ez, scattered by a two-

layered (three regions) cylinder filled alternately with negative-index and positive-

index material are shown in Fig. 2.5. In such a case, a line source is placed at

ρ0 = 9.5λ and φ0 = 0◦, the radii of two layers are r1 = 8λ and r2 = 5λ, respectively.

The region 1 is free space, regions 2 and 3 are filled with (−ε0,−µ0) and (ε0, µ0),

respectively. As expected, the tangential components Hφ and Ez are equal on the

layered interfaces. The normal component Hρ is not, and it satisfies by default the

continuity of normal component of magnetic flux density B across the interfaces.

The anti-symmetry in Fig. 2.5(a) is attributed to the sinusoidal function of sin φ in
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the field expression of Hρ, and the tangential components will be perturbed due to

the images induced inside the cylinder.
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Figure 2.5: Electromagnetic wave propagating through a two-layered cylinder with

DNG and DPS materials.
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2.4.2 Single-layer isotropic cylinder

The normalized scattering cross section σ/λ of a single-layer (two regions) cylinder

filled with DNG (−ε0,−µ0) material is calculated under the illumination by a TM

wave with the incident angles of θi = π/2 and φi = 0 in free space. Curves for

different radii a of the cylinder are plotted in Fig. 2.6.

Figure 2.6: Normalized scattering cross section of a single-layer cylinder (−ε0,−µ0)

of different radii.

It is obvious that the reflection by the cylinder is quickly diminished with the

increase of the radius. It can be also observed that the RCS data at and near φ = 0◦

are very large and it is of the impusle shape when the cylindrical radius is large.

This phenomenon can be explained as follows.

• Intensity: First of all, in Fig. 2.6, the incident wave (a TM-polarized plane
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wave) is impinged at an angle of elevation θi = 90◦ and azimuth φ = 180◦. In

this case, some portion of the wave energy is normally incident upon the cylin-

der, so the transmitted wave due to this portion propagates entirely through

the dielectric cylinder when the impedance is matched (εr = µr = −1). This

portion of waves contributes to part of bistatic RCS data of φ = 0◦. For a

cylinder of large radius, the illumination area by normal or nearly normal inci-

dent waves is larger than that of a cylinder of smaller radius. In this case, the

cylinder tends to be a perfectly matched layer and it is almost transparent to

the incident wave. Therefore the percentage of the energy propagated through

the cylinder will be relatively larger.

• Beamwidth: Secondly, the cylinder behaves as a dielectric lens. For RCS

computations, I take the observation point at infinity. When the incident

wave propagates through the cylinder filled with DNG, the focus point will

approach to infinity due to the smoother dielectric curvature. For example,

when ka = 100, the observation point (infinity) lies to the right of the focus

point (which is already sufficiently far away from origin). Thus, it can be

imagined that the angle of coverage is small at around φ = 0◦. When the

radius becomes larger and larger, the observation point and the focus point

will move closer and closer to each other. In an extreme case, when the cylinder

tends to approach a flat slab, the angle of coverage is almost zero to form a

delta pulse.

That is why the scattering cross sections around the angle of φ = 0◦ are thus much
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stronger, but confined within a very narrow beamwidth.

Then, the radiation by a line source in the presence of this cylinder is considered.

The normalized amplitudes of the time-averaged Poynting vector, which is denoted

by 〈S〉 = 1
2
Re (E × H∗), are shown in Fig. 2.7-Fig. 2.9.
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Figure 2.7: Normalized magnitude of Poynting vector of a cylinder of a = 4λ filled

with anti-vacuum and the line source at 4.5λ away from the origin.
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Figure 2.8: Normalized magnitude of Poynting vector of the same cylinder as in

Fig. 2.7 except the line source at 6λ away from the origin.

The electrical size of the cylinder is fixed at a = 4λ. The material inside the

cylinder in Fig. 2.7 is anti-vacuum (i.e, ε = −ε0 and µ = −µ0) with the negative
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Figure 2.9: Normalized magnitude of Poynting vector of the same cylinder as in

Fig. 2.7 except for the line source at 12λ away from the origin.

refraction index of −1. The line source is placed at a distance of 4.5λ from the

origin, which is very close to the surface of cylinder. Partial focusing phenomenon

can still be observed in Fig. 2.7. When the line source is located quite close to the

cylinder, the partial focusing should be a sink because such situation is more like

a impedance-matched flat interface. Therefore, most of the incident energy will be

tunnelled and focused inside. If the line source is put further away as in Fig. 2.5(b)

and (c), the focus inside the negative-index cylinder is obviously of source type.

Also, some reflections can be observed at the positions behind the line source in

Fig. 2.7 because of the cylindrical curvature. It can be seen that a ripple occurs

at the cylinder’s surface close to the line source, which is the incoming window of

the incident wave. Certain points of this ripple carry comparably high energy as

the line source. In Fig. 2.8 and Fig. 2.9, the line source is put further away from

the cylinder’s surface, while the radius of the cylinder keep unchanged. When the

source is far away from the surface, the ripple effect in the incoming window on the

cylinder will be reduced as expected. In Fig. 2.8 and Fig. 2.9, foculas are formed
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due to the imperfect focusing condition. By changing the position of line source, the

energy distributions outside the cylinder are greatly modified as can be seen from

Fig. 2.7 to Fig. 2.9. It is due to the fact that when the line source is very close to the

cylinder’s surface, the curvature is quite flat within the incoming window of incident

wave, which is close to a slab configuration. If the line source is moved far away,

the incoming window becomes larger and the cylindrical curvature takes effect.

From Fig. 2.7-Fig. 2.9, it is observed that a facula is formed inside the cylinder.

The formation of the facula is due to the fact that the cylinder with (−ε0,−µ0) is

not a good focusing system. This observation can be verified by using the theory

of arbitrary coordinate transformations [78]. According to the theory, if the wave

scattering properties are kept unchanged after the geometrical dimension (e.g., the

radius) is changed, µ and ε have to be adjusted accordingly. When the physical

problem is changed from a perfect slab lens to a perfect cylindrical lens, the permit-

tivity and permeability in the lens are required to be a function of position. Hence,

the cylinder with (−ε0,−µ0) cannot focus the light perfectly, and it will still reflect

waves. However, a phenomenon of focus shown as in Fig. 2.10 and very small reflec-

tion shown as in Fig. 2.6 can be still be obtained. As a limiting example in Fig. 2.10,

nearly perfect image is formed since the electrical size of the calculated problem is

much larger than the wavelength of the incident wave.

In addition, of particular interest are scattering properties of subwavelength

cylinders due to the line source radiation. The radii in Fig. 2.11 are both equal

to 0.05λ, while the distances of the line source from the surface are 0.2λ and 1λ,
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Figure 2.10: Normalized amplitudes of the time-averaged Poynting vector for a

single-layer cylinder with (−ε0,−µ0) and a = 150λ.

respectively. Note that the energy distribution around the line source is suppressed

and only the distribution near the cylinder is plotted. Two foculas with giant energy

distribution are found in Fig. 2.11(a) when the distance of line source from the

surface is 4 times of the radius. Of particular interest is that the focula is not

located inside the subwavelength cylinder any more. Instead, the foculas are formed

in two particular areas around the cylindrical surface. If the distance of line source

increases to 20 times of radius [see Fig. 2.11(b)], the magnitude of the two foculas

decreases and the positions are more apart from each other. It should be noted

that Rayleigh scattering is not held anymore when cylinder is weakly dissipative or

without dissipation. In such cases, anomalous scattering occurs, and the peculiarities

in re-entrance of field lines result in the localized energy at the interface of the

cylinder. The near and far field patterns are much more complicated.
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Figure 2.11: Normalized magnitude of Poynting vector in the presence of a cylinder

of a = 0.05λ filled with anti-vacuum due to the line source at: (a) 0.2λ away from

the surface; and (b) 1λ away from the surface.

2.4.3 Single-layer bi-isotropic cylinder

Now bi-isotropic cylinders with magnetoelectric couplings are studied, whose phys-

ical properties will be discussed in detail in Chapter 4. The degree of magnetoelec-

tric couplings is represented by the chirality parameter of κ. Different chiralities

are chosen so as to study the effect of magnetoelectric coupling upon the scattering

properties of the cylinder.

As a special case of bi-isotropic media, chiral nihility is considered first since it

yields two special equivalent mediums: one is vacuum and the other is anti-vacuum.

The judicious selection of parameters for chiral nihility is based on the findings

in [79]. It is shown in Fig. 2.12 that there are several foculas inside the cylinder

and both energy distributions inside and outside the cylinder are greatly modified

by the existence of magnetoelectric couplings. Compared with Fig. 2.8, the energy

in Fig. 2.12 behind the cylinder is enhanced and those enhanced distributions form
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some ribbon-shaped areas.

In what follows, normal bi-isotropic mediums with the same εr and µr, but

different κ are considered. The reason for εr = µr is that the wave impedance of

bi-isotropic medium is independent of κ and identical to the impedance of free space.

From the comparison between Fig. 2.12(b) and Fig. 2.12(c), it can be seen that the

focusing is more obvious for bigger values of κ. More interestingly, in Fig. 2.12(c),

the structure not only presents two focusing points, but also enhances the energy

inside the cylinder and high energy distribution is confined along the diameter.
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(a) εr = 1e − 5, µr = 1e − 5, and κ = 1
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(b) εr = 1, µr = 1, and κ = 2
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(c) εr = 1, µr = 1, and κ = 4

Figure 2.12: Normalized magnitude of Poynting vector in the presence of a bi-

isotropic cylinder of a = 2.5λ filled with chiral or chiral nihility medium due to the

line source at 4.8λ away from the origin.
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2.4.4 Coating

Here the coating by a thin cylinder and its parameters are studied. I consider

two combinations of the core and coating layers: double positive against double

negative pair (DPS-DNG) and ε-negative against µ-negative pair (ENG-MNG). Such

combinations may give rise to the interface resonances, provided proper choice of

radii ratios is made. In analogy with what has been noticed for thin planar resonators

[80, 81], the condition of having a no-cut-off propagation mode in a thin coating

cylinder filled with a pair of DPS-DNG or ENG-MNG layers, depends on the ratio

of the radii of the core cylinder (i.e., ρ2) and the coating layer (i.e., ρ1) instead of the

sum of radii or the outer radius. As shown in Fig. 2.13, a coating cylinder consists

Figure 2.13: Scattering cross section versus ratio of core layer over coating layer in

two pairs of combinations: DNG-DPS and DPS-DPS. The outer region is free space.

of 2 layers (i.e., 3 regions). The radius of the coating is ρ1 and the radius of the

core-cylinder is ρ2. The line source is placed at (ρ0 = 0.8λ, φ0 = 0◦). The outer

radius of the coating layer is fixed to be ρ1 = 0.01λ. The scattering cross section

(SCS) is plotted against the radii ratio in order to find resonances. SCS is defined
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as the ratio of the power scattered by the scatterer to the incident power per unit

area

SCS =
1
2
Re[Esca ×Hsca∗]

1
2
Re[Einc ×H inc∗]

. (2.20)

Figure 2.14: Scattering cross section versus ratio of the core layer over the coating

layer in two pairs of combinations: DNG-DPS and DPS-DPS. In the case of DNG-

DPS pairing, the coating layer is filled with DNG medium of (-3ε0, -2µ0), and in the

case of DPS-DPS pairing, the coating layer is filled with DPS medium of (3ε0, 2µ0).

The core layer remains the same DPS medium of (2ε0, µ0) for both pairs.

In Fig. 2.14, the dashed line refers to the case that both the core and coating

layers are DPS mediums. Hence, one can see that the SCS is very small since the

size of this scatter is in subwavelength regime. Note that the SCS of dashed line is

very close to zero, but not exactly zero since the amplitude of dashed line for DNG-

DPS is much higher than that of DPS-DPS. Interestingly, a resonant ratio can be

observed for DNG-DPS pairing at ρ2/ρ1 ≈ 0.331, where the SCS is significantly

enhanced. It is attributed to the polaritons which are supported by this pairing. It
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Figure 2.15: Scattering cross section versus ratio of the core layer over the coating

layer in two pairs of combinations: ENG-MNG and DPS-DPS. In the case of ENG-

MNG pairing, the coating layer is filled with ENG medium of (-3ε0, µ0), while the

core layer is occupied by MNG medium of (4ε0, -2µ0). In the case of DPS-DPS

pairing, the coating and core layers are filled with DPS media of (3ε0, µ0) and (4ε0,

2µ0), respectively.

also shows that a proper coating on a subwavelength conventional cylinder can yield

a comparably large scattering beamwidth similar to that obtained from very thick

cylinder. Therefore, the scattering properties of a geometrically small cylindrical

scatterer can be amplified up to those of a big scatterer, if the coating material and

the ratio of radii are properly chosen.

Analogous scattering properties are obtained for ENG-MNG s. In the solid

line in Fig. 2.15, the core layer is a µ-negative cylinder while the coating is an ε-

negative coating. Resonant ratio can be found at ρ2/ρ1 ≈ 0.152. In contrast to

DNG-DPS pairing, the resonant scattering in Fig. 2.15 is not as sensitive to ratio
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as in Fig. 2.14. By coating a MNG subwavelength cylinder by an ENG coating, the

scattering is still much enhanced compared to DPS-DPS combination even if the

radii ratio is smaller than the resonant ratio at about 0.152. However, when the

inner radius ρ2 of MNG core layer keeps increasing, the scattering cross section will

reduce to that of DPS-DPS combination as the dashed line in Fig. 2.15.

2.5 Resonances of composite thin rods

2.5.1 Resonances of plasmonic cylinders

The scattering by conducting cylinders has been discussed by Kong [82] and surface-

plasmonic scattering is investigate by Luk’yanchuk et al [83]. As is known, the

plasmonic scattering of a cylinder made from noble metals will occur at εr = −1 [83]:

Qsca =
π2

4

∣∣∣
εr − 1

εr + 1

∣∣∣
2
(k0a)

3, (2.21)

where k0 is the wavenumber of the light in free space and a represents the radius of

the cylinder.

To avoid the divergence, finite dissipation (i.e., Im(εr) 6= 0) is necessary to make

Eq. (2.21) finite, when Re(εr) = −1. However, the previous research is confined

within the condition of εr = −1 for first-order resonance of cylindrical plasmonic

nanoparticles which is derived from the Rayleigh scattering approximation. It is also

found possible for the plasmonic nanoparticles to have high-order multiple plasmonic
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resonances. Here, the TE mode incidence (H-polarization) with unit amplitude is

considered. Therefore, one has

Ei
ρ = sinφe−ik0r cos φ (2.22a)

Ei
φ = cosφe−ik0r cos φ (2.22b)

H i
z = −e−ik0r cos φ (2.22c)

where k0 is the wavenumber in free space. Thus the scattered (s) and transmitted

(t) fields can be expressed by

Es = −
+∞∑

n=−∞

[ n
k0r

H(1)
n (k0r)ρ̂ + iH ′(1)

n (k0r)φ̂
]
(−i)nane

inφ (2.23a)

Et =
+∞∑

n=−∞

[ n
kr
Jn(kr)ρ̂ + iJ ′

n(kr)φ̂
]
(−i)nbne

inφ (2.23b)

Hs = ẑ
+∞∑

n=−∞
(−i)nanH

(1)
n (k0r)e

inφ (2.23c)

H t = −ẑneff

+∞∑

n=−∞
(−i)nbnJn(kr)einφ (2.23d)

where k = k0neff = k0
√
εrµr, the prime refers to the derivative with respect to the

argument, and

an =
neffJn(ka)J ′

n(k0a) − J ′
n(ka)Jn(k0a)

neffJn(ka)H
′(1)
n (k0a) − J ′

n(ka)H
(1)
n (k0a)

(2.24a)

bn =
Jn(k0a)H

′(1)
n (ka) − J ′

n(k0a)H
(1)
n (ka)

neffJn(ka)H
′(1)
n (k0a) − J ′

n(ka)H
(1)
n (k0a)

. (2.24b)

The energy intensity termed as I = E · E∗ of light scattering by a plasmonic

rod with the electric size of k0a = 0.1 is shown for different cases in order to yield a

comprehensive understanding.

It shows that the contribution of the dipole term (n = 1 in Eq. (2.24)) is very

huge at the resonance. It is well known that the enhancement of the scattering is
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(a) Contribution of monopole term. (b) Contribution of dipole term.

Figure 2.16: The energy intensity of the plasmonic rod of k0a = 0.1 and εr = −1 in

the cases of first two terms.

only for the near field and the field decays drastically away from the cylinder as

observed in Fig. 2.16(b). Fig. 2.17 shows that when the order n ≥ 1 the plasmonic

resonances will be further enhanced (almost 1.5 times). Further simulation reveals

that among those higher-order terms, the contribution due to the term of n = 2 in

Eq. (2.24) is dominant and the other higher-order contributions are negligibly small

in comparison. Therefore, one only needs to take into account two modes (n = 1, 2)

for the nanowires at resonance.

When εr = −2, the resonance of a rod at k0a = 0.1 is also present but localized

only on the rod’s surface. Further simulation reveals that the dominant term for

rod of εr = −2 is the dipole term (n = 1), which is different from the case of the

plasmonic rod of εr = −1. In comparison with Fig. 2.17, the internal energy is almost
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Figure 2.17: The energy intensity of the plasmonic rod of k0a = 0.1 and εr = −1 in

the case of higher-order terms.

zero in the rod of Fig. 2.18. In addition, the resonance effects in Fig. 2.18 appear

much smaller than in Fig. 2.16 (only at a ratio of 1/4000), which also confirms that

the plasmonic resonance for very thin wires (k0a → 0) is due to εr = −1 for all the

modes.
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Figure 2.18: The energy intensity of the same rod as in Fig. 2.16 except for εr = −2

in the cases of first two terms.

2.5.2 Resonances of negative-index cylinders

In this section, the resonant scattering of electromagnetic waves by an infinitely

long cylinder is investigated, which has the effective parameters εeff = 1 − ω2
p/ω

2

and µeff as shown in Eq. (1.4). The scattering properties of such a negative-index

cylinder are evaluated by the total scattering cross section per unit length. When

the electric field is polarized parallel to the axis, the scattering width for TM mode

(E-polarization) is given as

Ce
s =

4

k0

∞∑

−∞
|bn|2 (2.25)

where

bn =
neffJ

′
n(ka)Jn(k0a) − Jn(ka)J ′

n(k0a)

Jn(ka)H
′(1)
n (k0a) − neffJ ′

n(ka)H
(1)
n (k0a)

. (2.26)
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When the magnetic field is polarized parallel to the axis, the scattering width

for TE mode (H-polarization) is given as

Ch
s =

4

k0

∞∑

−∞
|an|2 (2.27)

where an is identical to Eq. (2.24a).

Under the condition of low dissipation, the effective negative refractive indices

of the combination of fine meshed wire and SRR medium depend on the magnetic

fields [12] (i.e., ⊥/‖ subscripts correspond to H fields perpendicular/parallel to the

plane of SRRs)

n⊥
eff =

√
ω2 − ω2

p

ω

√√√√ω2 − ω2
0/(1 − F )

ω2 − ω2
0

(2.28a)

n
‖
eff =

√
ω2 − ω2

p

ω

√√√√ω2 − ω2
f

ω2 − ω2
0

(2.28b)

where

ω2
f =

ω2
0ω

2
p

ω2
0 + ω2

p

. (2.29)

The scattering properties in Fig. 2.19 and Fig. 2.20 are in the macroscopic

view of the cylinder fabricated by geometrically ordered composites (i.e., SRR-wire

mesh). The plasma frequency ωp is 12 GHz and the resonant frequency ω0 is 6

GHz, which gives the physical size of the radius a = 1.25 cm. There are two

important factors which will affect the scattering properties significantly, namely,

the incidence polarization and SRR plane. Comparing Fig. 2.20 with Fig. 2.19, one

can see that whether the magnetic field penetrates the plane of SRR or not will

change drastically the scattering width. In Fig. 2.19, H is assumed to be parallel to
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(a) E-polarization. (b) H-polarization.

Figure 2.19: Scattering width for the case of H parallel to the plane of SRRs.

the SRR’s plane for both TE and TM mode incidences. Interestingly, it is observed

that TE mode incidence (see Fig. 2.19(b)) has two resonances instead of one as

shown in Fig. 2.19(a). On the other hand, H is assumed to penetrate the SRR’s

plane for both TE and TM incident plane waves. It can be seen in Fig. 2.20(a) that

the resonant peaks of the negative-index cylinder illuminated by TM waves will shift

due to the filling fraction F (defined as the fractional area of the unit cell occupied

by the interior of the split ring [12]). However, for the case of TE illumination as

shown in Fig. 2.20(b), filling fraction plays an important role in scattering behavior

instead of just shifting the resonant peaks. High filling fraction will suppress the

resonance, making the scattering width at resonance very small.
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Figure 2.20: Scattering width for the case of H perpendicular to the plane of SRRs.

2.6 Rotating coatings for large and small cylin-

ders

Most of the existing reports on the scattering of cylindrical scatterers were based

on the stationary case such as in [84–86]. The rotation effects on the scattering are

taken into account, providing some new physical insights to the designs of plariton-

resonant cylindrical devices [87]. Analytical solutions of field components in all

regions have been explicitly derived, where the rotation factors are incorprated.

Numerical results of particular core-shell pairings are presented, and we show how

the resonant scattering for electrically small coated cylinders is modified by the

velocity and size. We also extend the present theory to the rotating cloakings of

electrically medium/large size, where morphology-dependent resonances (MDR) are

presented and discussed. Hence, the theorem is more general and useful both in
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theory and applications.

2.6.1 Preliminaries

The geometry of the investigated coaxial cylinder immersed in a host medium is

shown in Fig. 2.21. The case of E-polarization is considered as the illumination

Ei = ẑeikix (2.30)

and the material in each region of the concentric cylinder is homogeneous and ro-

tating, and is characterized by its electric response (ε), magnetic response (µ), and

angular velocity (Ω).

Figure 2.21: Plane wave scattered by a rotating coaxial cylinder.
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The Maxwell’s euqations for a general rotating materials can be formulated [88]

D − n2β2D⊥ = ε(E − β2E⊥) +
µrεr − 1

c2
v × H (2.31a)

B − n2β2B⊥ = µ(H − β2H⊥) − µrεr − 1

c2
v × E (2.31b)

J = ρv + σ
√

1 − β2E‖ +
σ√

1 − β2
(E⊥ + v × B), (2.31c)

where v = Ωρφ̂ represents the rotating velocity on the cylinder’s surface, µr (εr)

stands for the relative permeability (permittivity), β = Ωρ/c, and the ⊥ and ‖

denote perpendicular and parallel component with respect to the axial direction.

Throughout this paper, time dependence e−iωt and small angular velocity is

assumed for the instantaneous rest-frame theory [89] so that the term of β2 can be

neglected. For the incident wave discussed here, the boundary conditions are

ρ̂ · [Dsca + Di − Dt] = ρs (2.32a)

ρ̂ × [Hsca + H i − H t] = Js. (2.32b)

Note that the surface current Js and surface charge ρs are zero, implied from the E-

polarization, the above boundary conditions, and Eq. (2.31). Hence, the Maxwell’s

equations (especially for the current) can be reformulated when small angular ve-

locity is assumed so as to assure the instantaneous rest-frame theory

D = εE +
µrεr − 1

c2
v × H (2.33a)

B = µH +
µrεr − 1

c2
E × v (2.33b)

J = σE + σµv × H . (2.33c)
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where µr (εr) stands for the relative permeability (permittivity) and v = Ωρφ̂ rep-

resents the rotating velocity on the cylinder’s surface. Note that the surface current

and surface charge are zero, implied from the E-polarization and the boundary

condition.

The incident wave Ei = Ei
1ẑ in Eq. (2.30) can be expressed in the form

Ei
1 =

∞∑

−∞
inJn(k1ρ)e

inφ (2.34)

where

k2
1 = ω2ε1µ1 + iωσ1µ1. (2.35)

The outer region can be filled with any dielectric or conducting material. For the

simplicity of calculation, it is just put as ε1 = ε0, µ1 = µ0 and σ1 = 0, and thus

k2
1 = ω2ε1µ1 = ω2ε0µ0. It follows that the scattered field in the 1st region must carry

the form

Esc
1 =

∞∑

−∞
inAnH

(1)
n (k1ρ)e

inφ. (2.36)

First, let us discuss the eigenwave number in a rotating wire. From Eq. (2.33), the

following equations for transmitted waves can be arranged

1

ρ

∂Et
z

∂φ
= iωµH t

ρ − iωΩρ
µrεr − 1

c2
Et

z (2.37a)

−∂E
t
z

∂ρ
= iωµH t

φ (2.37b)

1

ρ

∂

∂ρ
(ρH t

φ) −
1

ρ

∂H t
ρ

∂φ
= (σ − iωε)Et

z − Ωρ[σµ− iω
µrεr − 1

c2
]H t

ρ. (2.37c)

The transmitted electric field can be expressed by the Fourier expansion

Et
z =

∞∑

−∞
Une

inφ (2.38)
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where Un is found to satisfy

1

∂ρ

∂

∂ρ

(
ρ
∂Un

∂ρ

)
+
(
k2

nq −
n2

ρ2

)
Un = 0. (2.39)

Eq. (2.39) is actually a definition of Bessel functions and thus Eq. (2.38) turns to be

Et
z =

∞∑

−∞
inΛqJn(knqρ)e

inφ (2.40)

where in is inherited from the incidence, Λq represents the unknown scattering co-

efficient, q = 2 or 3 stands for the region number, and

k2
nq = ω2εqµq + iωµqσq +

nΩqω

c2

(
2εrqµrq − 2 + i

σqµrq

ωε0

)
. (2.41)

Now, one can obtain the following fields in regions 2 and 3 in Fig. 2.21

E2 =
∞∑

−∞
in[BnH

(2)
n (kn2ρ) + CnH

(1)
n (kn2ρ)]e

inφ (2.42a)

E3 =
∞∑

−∞
inDnJn(kn3ρ)e

inφ (2.42b)

where the supscripts 1 and 2 denote Hankel functions of the first and second types,

respectively.

Thus, the matching boundary conditions at ρ = a and ρ = b is performed for

Ez and Hφ (see Eq. (2.37b)). One can obtain the following scattering coefficients

after long algebraic calculations

An =

µr2

µr1
∆nJ

′
n(k1b) − kn2

k1
ΠnJn(k1b)

kn2

k1
ΠnH

(1)
n (k1b) − µr2

µr1
∆nH

′(1)
n (k1b)

(2.43a)

Bn = PnCn (2.43b)

Cn =
− 2i

π(k1b)
µr2

µr1

kn2

k1
ΠnH

(1)
n (k1b) − µr2

µr1
∆nH

′(1)
n (k1b)

(2.43c)

Dn =

8
π2(k1b)(kn2a)

µr3

µr1

kn3

kn2
J ′

n(kn3a)H
(2)
n (kn2a) − µr3

µr2
Jn(kn3a)H

′(2)
n (kn2a)

×

1
kn2

k1
ΠnH

(1)
n (k1b) − µr2

µr1
∆nH

′(1)
n (k1b)

(2.43d)
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where the Wronskians have been used and

∆n = H(2)
n (kn2b) · Pn +H(1)

n (kn2b) (2.44a)

Πn = H ′(2)
n (kn2b) · Pn +H ′(1)

n (kn2b) (2.44b)

Pn =

µr3

µr2
Jn(kn3a)H

′(1)
n (kn2a) − kn3

kn2
J ′

n(kn3a)H
(1)
n (kn2a)

kn3

kn2
J ′

n(kn3a)H
(2)
n (kn2a) − µr3

µr2
Jn(kn3a)H

′(2)
n (kn2a)

. (2.44c)

Note that the derivatives are all with respect to the argument.

The backscattering cross section is defined as the ratio of power scattered di-

rectly back toward the source to the incident power per unit area

σB =
4

k1

∣∣∣
∞∑

n=0

(2 − δn0)(−1)nAn

∣∣∣
2
. (2.45)

In all calculations, the identity of backscattering cross section CB = σB/b is

used, which is normalized by the physical size of the outer radius b.

2.6.2 Coating with dielectric materials

In this part, the geometry of a stationary core with a rotating coating is considered

first. Assume that the core layer is made of conventional dielectrics (εr3 = 2; µr3 = 1)

and the coating layer is a left-handed material (LHM) characterized by εr2 = −2 and

µr2 = −1 with a velocity of β2 = Ω2b
c

. In order to satisfy the first-order theory [89],

it implies that β2 << 1 so that β2
2 can be neglected (see Equation (5) in [89]).

Therefore, kn2 and N2 can be rewritten as

kn2 ≈ k1N2 + β2
N2

2 − 1

N2

n

b
(2.46a)

N2 =
√
εr2

√
µr2. (2.46b)
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Note that for the anti-vacuo coating, the rotation of the coating has no effect on

the scattering properties since the second term in Eq. (2.46a) disappears. For the

dielectric case, the calculations will be significantly simplified if the small-argument

asymptotic forms of various Bessel and Hankel functions are employed.

Of particular interest is the pair of µ-negative (MNG) and ε-negative (ENG).

It has been shown that the surface polaritons could be generated at the interface

between the MNG layer and the ENG layer [81]. I studied two cases of such pairs in

the sequence of core-coating, i.e, MNG-ENG and ENG-MNG. As shown in Fig. 2.22,

one can see that only if the core and coating are respectively filled by conjugate

materials, the resonance will arise at particular ratio of radii. I only plot a small

range of ratio in the vicinity of resonance, because the resonance is quite sensitive

to the ratio when the resonance of the coaxial wire is in the optical regime. In

fact, one needs to plot the resonance in An in Eq. (2.43a) first over the whole

range (0,1). Since the resonance in An is less sensitive and easier to observe, one

can get the approximate resonant position, and then plots the backscattering cross

section CB using proper steps within the particular range. Otherwise, such resonant

phenomena are much likely to be missed. In Fig. 2.22(a), two opposite rotating

velocities of coatings (one is along φ̂ and the other is along -φ̂) are considered and

compared with that of the stationary case. It shows that if the coating is stationary,

the resonance happens at the ratio of a/b ≈ 0.7454. Once the coating has a small

rotating velocity ±0.04, the original resonance will disappear and be shifted to

a/b ≈ 0.7448 instead. Apart from this region, the value of CB is negligible. It is

found that the direction of velocities is not important and once the absolute speeds
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are the same, they have equivalent effects on the backscattering cross section. In

what follows, another type of conjugate pairs (i.e., core is filled by ENG and coating

by MNG) is considered in Fig. 2.22(b) as a complementary case. Keep the absolute

values of parameters unchanged as in Fig. 2.22(a) with only the change in plus

and minus signs. The resonant characteristics are greatly modified in Fig. 2.22(b)

compared with Fig. 2.22(a), and a stationary resonance occurs at a/b ≈ 0.447 while

the rotation resonances shift to a/b ≈ 0.4473. One can find that the rotation

resonances always arise below the stationary resonance for conjugate pairs of core

and coating in optical region. In contrast, the situations will be very different for

the left-handed material (LHM) and right-handed material (RHM) pairs of core and

coating.

From Fig. 2.23, one can find that the rotation resonances are always above the

stationary resonances. It also agrees with the results in Fig. 2.22 that the rotation of

coating shifts the resonant position and opposite rotating directions yield identical

results. More interestingly, let us examine Fig. 2.22(a) along with Fig. 2.23(b). It

is evident that those two cases (i.e., conjugate pair and LHM-RHM pair) are quite

similar. The stationary resonances appear at the same ratio, but the rotation of

coating leads to different contributions at the resonance shift. Analogous phenomena

can be found in Fig. 2.22(b) along with Fig. 2.23(a).

Next, the LHM coating for thick cylinders is presented in Fig. 2.24. Two cases

of thick cylinders are presented and materials in each region are positive. When

the physical thickness is comparable to the wavelength (i.e., k1b = 4), oscillations
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Figure 2.22: The normalized backscattering and resonance of conjugate optical coat-

ing for k1b = 0.001 at different velocities with a stationary core. The 1st region is free

space. (a) ENG coating: ε2 = −3ε0, µ2 = 4µ0 and MNG core: ε3 = ε0, µ3 = −2µ0;

and (b) MNG coating: ε2 = 3ε0, µ2 = −4µ0 and ENG core: ε3 = −ε0, µ3 = 2µ0
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happen with several peak values as shown in Fig. 2.24(a). The effects of the rotating

velocities and directions become remarkable, and the resonant peaks of clockwise

rotation is always ahead of the stationary case while the anti-clockwise case comes

after the stationary case. When the physical thickness is further increased (i.e., k1b =

20), multiple resonances can be observed when the ratio is bigger than 0.2. One can

find that the resonant scattering amplitude of a thick cylinder coating reduces along

with the increment of the thickness k1b. In addition, by comparing Fig. 2.24 with

Fig. 2.23, one can find that the electric size plays an important role in the coating,

dominated by different physics. Specifically, for an optical coating, the resonances

occur mainly because of the existence of surface plasmons at the interface between

the core and coating layers. In contrast, the morphology-dependent resonances

(MDRs) occur for a large size as shown in Fig. 2.24. MDRs are not related to bulk

excitations and do not require negative values of the dielectric response, but they

are determined by the electric size of the scatterer.

Subsequently, the conventional coating in Fig. 2.24(b) is replaced by LHM coat-

ing as in Fig. 2.25. It shows that change of coating material from conventional to

LHM will increase the zero-reflection ratio points but have no obvious influence on

the amplitude at resonances. Therefore, it would be of great use in radar detection

and stealth technology since the cross section can be significantly reduced via easy

controls of appropriate LHM coating thickness.
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2.6.3 Cloaking with metallic materials

In this section, the application is extended to the metallic cloakings. Given σq/ωε0 =

xq, Eq. (2.41) can be rewritten as

k2
n2 = k2

1N
2
2 + 2nβ2

k1

b
(N2

2 − 1) + i
[
k2

1 + 2nβ2
k1

b

]
µr2x2 (2.47a)

k2
n3 = k2

1N
2
3 + 2nβ3

k1

a
(N2

3 − 1) + i
[
k2

1 + 2nβ3
k1

a

]
µr3x3. (2.47b)

Hence, the role of conductivity of the cloaking in backscattering can be examined.

No optical resonances can be found versus the ratio of a/b. Thus the application of

metallic cloaking of small size is limited. Instead, only the thick cylinders are con-

sidered to investigate the morphology-dependent resonances. First, it is assumed

that both layers are metals. A contrast between the two conductivities is defined

as σ3/σ2. In Fig. 2.26, the ratio of inner over outer radius is set to be 0.8 and

the conductivity in the cloaking is fixed so as to examine how the variance of the

conductivities between core and cloaking affects the scattering properties. Inter-

estingly, it is found that only when the contrast in conductivities is below 10, the

backscattering will be greatly modified. The rotating velocity has little influence on

scattering property for cloaking of thick conductive cylinders, which is very close to

the stationary case. This is due to the case for thick cylinders is approaching to the

planar case and the slow angular rotation thus has little effects on a flat face.

Regarding the conducting materials, there are two limiting cases: 1) the inner

cylinder is PEC; and 2) the cloaking is PEC. As for the 2nd case, it just reduces to

a conventional problem, since wave cannot enter into the inner layer. Hence, this
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case can actually be treated as one PEC cylinder with the radius of b. The scattered

wave is thus obtained by re-applying the boundary conditions only at ρ = b

Esca
1 = −

∞∑

−∞
inJn(k1b)

H(1)
n (k1ρ)

H
(1)
n (k1b)

einφ. (2.48)

The solution in Eq. (2.48) is well-known. However, the 1st case is of particular

interest. If the material in 0 < ρ < a is a perfectly electric conductor, the coefficient

Dn in Eqs. (2.42b) and (2.43d) is zero, and Eq. (2.43a) turns to be

A′
n =

kn2Jn(k1b)∆
′
n − k1J

′
n(k1b)Π

′
n

k1H
′(1)
n (k1b)Π′

n − kn2H
(1)
n (k1b)∆′

n

, (2.49)

where

∆′
n = H ′(1)

n (kn2b)H
(2)
n (kn2a) −H ′(2)

n (kn2b)H
(1)
n (kn2a) (2.50a)

Π′
n = H(1)

n (kn2b)H
(2)
n (kn2a) −H(2)

n (kn2b)H
(1)
n (kn2a). (2.50b)

In Fig. 2.27, the role of angular velocity has little contribution to the backscat-

tering when a < 0.15b. Only when the radius of inner PEC is very small compared

to the outer radius of cloaking, the impacts of rotation are noticeable. Given the

same cloaking, high backscattering can be achieved by requiring the PEC radius to

be small. It can be also observed that the oscillation appears quite regular especially

after a > 0.4b, though negligible amplification is present. Since CB has been nor-

malized by the outer radius b, the electric size of the backscattering cross section can

change within the range of (50,120) when a/b is sufficiently large. Further results

yield that the difference due to the angular velocity at a < 0.15b and the oscillation

can be suppressed by increasing the dissipation in the cloaking. As a particular
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example, a high dissipative cloaking material with loss tangent of 6 is considered.

As shown in Fig. 2.28, when the ratio is below 0.9, the backscattering is a constant

value, which is independent from radii ratio and rotating velocity. Small variance

occurs only when the inner PEC radius is getting very close to the outer radius.

2.7 Summary

In this chapter, the properties of scattering, energy, and resonances in composite

cylinders are investigated extensively and intensively. First, the methodology is de-

signed to treat multilayered cylinders, where the materials and the size of each layer

can be arbitrary. Multiple scattering and transmission due to the interfaces are

considered by a multilayer algorithm, and hence the total field in each layer can be

obtained. This idea will be further employed to construct dyadic Green’s functions

for more complex composites as a macroscopic characterization tool in Chapter 5.

Both the radiation of line sources and and the scattering of plane waves are consid-

ered. With the algorithm developed, the scattering properties of arbitrarily coated

cylinders can be examined. Of special interest are thin rods with and without coat-

ings/cloakings in the presence of line-source radiation, because it is straightforward

to observe the focusing phenomena. For those single-layered thin rods, the wave

propagation through those thin rods is examined. Focusing properties are found

and the hybrid effects of cylindrical curvature and the material on the wave prop-

erties are studied. For thin rods with coating whose electric size is only 0.01λ, it is

exciting to have scattering cross section enhanced over hundreds of times by proper
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pairing of the core layer and the coating layer. In fact, this enhancement can be

attributed to the surface polaritons excited at the interface, and those polaritons

compensate the decay of the scattered waves. Hence, the resonances of such thin

composite rods deserve in-depth investigation. Further study reveals different con-

tributions from monopole, dipole and higher-order multipoles, and it is found that

plasmonic resonance of thin rods only occurs at εr = −1. Also, all the modes except

for the modes corresponding to n = 1, 2 can be neglected due to their negligible

contributions at resonance. The roles of polarization of the incident wave and the

geometry of the split rings on the scattering properties are studied. Although the

coating/cloaking in the presence of a line source is briefly investigated, the the-

ory and case studies of cloaking for both large and small cylinders are carried out,

under the E-polarization incidence. The theory supports rotating and conductive

composite coaxial cylinders. Resonant scattering and the shift of the resonances

are discussed for rotating cloaking in optical region, and another type of resonances

is also studied for a cloaking of large size. Conductive cloaking is aslo intensively

investigated, and some interesting phenomena such as scattering enhancement for

low conductivity contrast and constant backscattering are presented.
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Figure 2.23: The normalized backscattering and resonance of LHM (RHM) optical

coating for k1b = 0.001 at different velocities with a stationary RHM (LHM) core.

(a) LHM coating: ε2 = −3ε0, µ2 = −4µ0 and RHM core: ε3 = ε0, µ3 = 2µ0; and

(b) RHM coating: ε2 = 3ε0, µ2 = 4µ0 and LHM core: ε3 = −ε0, µ3 = −2µ0.
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Figure 2.24: The normalized backscattering and resonance of conventional coating

for thick cylinders at different velocities. The materials in core and coating are both

conventional. Materials in each region are the same as in Fig. 2.23(a) except that

the 2nd region is positive: ε2 = 3ε0, µ2 = 4µ0.
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Figure 2.25: The normalized backscattering and resonance of LHM coating for thick

cylinders of k1b = 20. The materials in the core are the same as in Fig. 2.24, while

the coating is changed to left-handed material: ε2 = −3ε0, µ2 = −4µ0.
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Figure 2.26: The normalized backscattering versus the conductivity contrast for

cloaking of thick metallic cylinders of k1b = 20. Cloaking layer: loss tangent=0.06

(i.e., x2 = 0.03), and ε2 = 4. The core layer: ε3 = 2. The ratio of a/b is 0.8.
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Figure 2.27: The normalized backscattering versus the ratio of inner over outer

radius for thick metallic cylinders of k1b = 20. The same cloaking material as in

Fig. 2.26 but the core is made of PEC.
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Figure 2.28: The normalized backscattering versus the ratio of inner over outer

radius for thick metallic cylinders of k1b = 20. Cloaking layer: loss tangent=6 (i.e.,

x2 = 3), and ε2 = 4. Core: PEC.



Chapter 3

Wave interactions with anisotropic

composite materials

3.1 Introduction

In order to better understand the electromagnetic properties and potential appli-

cations of negative-index materials, the propagation and scattering in the presence

of anisotropic composite materials will be studied. The isotropic negative-index

composites can be regarded as just a subset of anisotropic composites. A medium

composed of periodically placed scatterers generates polarization and magnetization

densities. The densities are related to the distribution of the scatterers and their

polarizabilities. As a result, a wave propagating through an array of these scatterers

will see the material as an effective medium, if the wavelength is much greater than

the periodicity. The theory of the effective medium has been studied by Maxwell and

63
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Rayleigh [90, 91]. One notable work is that of Lewin [92], in which spheres are as-

sumed to resonate either in the first or second resonance mode of the Mie theory. In

earlier publications, electric polarizability of spheres in the magnetic resonant mode

was not considered, but was later taken into account in the Maxwell-Garnett mixing

rule [93]. The work in [94] also suggests the possibility of realizing negative-index

materials that could be fabricated much more simply than those proposed up until

now. An array of spherical particles can behave in a way similar to that of an array

of geometrically more complicated conducting scatterers, and their effective electric

and magnetic polarizabilities have the same characteristic of exhibiting a resonance.

Hence, effective negative ε and µ are present in a certain frequency band. However,

the problem is still quasistatic and it is a collective response of an infinite lattice of

arrays of spherical particles, thus the application is limited although it has better

isotropic properties compared to the existing metallic structures for NIMs.

Most of the known realizations of artificial negative-index materials are highly

anisotropic composites or even exhibit bianisotropy. It is of great importance that

the electromagnetic wave properties of anisotropic spherical composites are explic-

itly characterized. In the analysis of scattering problems associated with anisotropic

materials, the 3-D Fourier transform technique was widely used [95] to relate the

space and spectral domains and this is especially true for waves and fields in planar

multilayered structures. The Lorenz-Mie analytical approach is an important theory

and was usually employed [96,97] especially when the problem geometry is of spher-

ical and radially layered configurations. The method of angular spectrum expansion

is also often applied via a coordinate transformation [98]. For most of the published
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works, investigations on scattering behaviors of anisotropic materials are carried out

by considering only the planar geometry [99,100] or cylindrical structures [101,102].

Due to the mathematical complexity of studying the spherical anisotropic objects,

limited progress has been achieved in the analysis of 3-D anisotropic objects recently,

which only focused on field expressions [103] using the method of moments [104], the

second-harmonic generation approach [105] and the coupled-dipole methods [106].

This work is of great importance for both theory and applications, because it

presents the exact field solutions in this particular configuration, characterizes the

effects of anisotropy ratio [107], and provides ways to minimize the radar cross sec-

tion especially when unintentional uniaxial anisotropy is introduced in the surface

of the material due to the shear in manufacturing process. Furthermore, the interest

is extended to a more generalized subject: gyrotropic spheres. Due to the coupling

effects, the determination of the exact solutions to the scattering and propagation

problems seems impossible. However, those coupled second-order differential equa-

tions are still solvable under certain circumstances [108]. This work is also important

for scattering theory since the theoretical exploration often comes before the experi-

mental study. Last but not least, the theory developed can not only treat anisotropic

spheres with positive/negative anisotropy ratios but also be easily extended to study

isotropic negative-index spheres.
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3.2 Wave interaction with anisotropic spheres

Recently, some work on the scattering in the presence of negative-index spheres and

infinite cylinders has been done [74,109–111]. However, those problems have already

been solved and analyzed in the case of normal positive-index materials. It is more

challenging and necessary to examine the wave interaction problems for the case of

anisotropic spheres.

The field due to the interaction of an incident plane wave with anisotropic

spheres is expressed by using the novel potential formulation. The scattered field

and total field can be thus obtained by imposing boundary conditions at the spherical

surface and using superposition technique, respectively. The parametric studies are

of particular interest in this chapter, from which one can find how the RCS will be

affected and what one could do to control its values. To gain physical insight, the

RCS results are studied for a wide range of joint anisotropy ratios (ARe and ARm),

and compared to the results of both the isotropic case and the single anisotropy (only

ARe or ARm) case. It is shown that RCS exhibits some new characteristics in joint

anisotropy cases and a general expression
∣∣∣
√

µt−
√

εt√
µt+

√
εt

∣∣∣
2

is constructed to predict RCS

for anisotropic spheres, which will be of great use in radar detection and military

purposes. It is of major interest to know how significantly anisotropy influences

electromagnetic scattering, so that one can adjust the parameters of the 3-D objects

to control the RCS values, either for enhancement or for reduction.



WAVE INTERACTIONS WITH ANISOTROPIC COMPOSITE MATERIALS 67

3.2.1 Novel potential formulation

Electromagnetic scattering of a plane wave by an anisotropic sphere (as shown in

Fig. 3.1) is treated by a novel potential formulation, where the material parameters

are characterized by constitutive tensors of permittivity and permeability specified

as

ε = ε0




εr 0 0

0 εt 0

0 0 εt




(3.1a)

µ = µ0




µr 0 0

0 µt 0

0 0 µt




(3.1b)

where ε (or µ) is the permittivity (permeability), and εr (µr) and εt (µt) stand for

the relative permittivities (permeabilities) perpendicular and parallel to the sphere

surface, respectively.

For an anisotropic medium, the source-free Maxwell’s equations can be rewritten

as

∇× (ε−1 · D) = iωB (3.2a)

∇× (µ−1 · B) = −iωD. (3.2b)

Consider an anisotropic sphere of radius a located at the origin of a coordinate

system as shown in Fig. 3.1. From Eq. (3.23), one can see that TE and TM waves

are actually decoupled with each other. Thus B and D can be expressed in terms



WAVE INTERACTIONS WITH ANISOTROPIC COMPOSITE MATERIALS 68

Figure 3.1: Scattering of a plane wave by an anisotropic sphere.

of the following two sets of scalar eigenfunctions

BTM = ∇× (r̂ψTM) (3.3a)

DTE = −∇× (r̂ψTE) , (3.3b)

where the ψTE and ψTM denote potentials for TM and TE modes, respectively with

respect to r̂ in the spherical coordinate system.

Substituting Eq. (3.3) into Eq. (3.2), one obtains

BTE =
1

iω

[
∇×

(
ε−1 · ∇ × (r̂ψTE)

)]
(3.4a)

DTM =
1

iω

[
∇×

(
µ−1 · ∇ × (r̂ψTM)

)]
. (3.4b)
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After some manipulations of those equations, one obtains

εr
εt

∂2ψTM

∂r2
+

1

r2 sin θ

∂

∂θ
(sin θ

∂ψTM

∂θ
) +

1

r2 sin2 θ

∂2ψTM

∂φ2
+ ω2µ0ε0µtεrψTM = 0, (3.5a)

µr

µt

∂2ψTE

∂r2
+

1

r2 sin θ

∂

∂θ
(sin θ

∂ψTE

∂θ
) +

1

r2 sin2 θ

∂2ψTE

∂φ2
+ ω2µ0ε0µrεtψTE = 0. (3.5b)

It can be seen that in the case of εr = εt and µr = µt, the above equations are

reduced to the results of an isotropic material [112].

By using the method of the separation of variables, it is found that the solutions

to the above equations are composed of a superposition of Ricatti-Bessel functions,

associated Legendre polynomials, and trigonometric functions, i.e.,

ψTM =
∑

m,n

am,njv1(ktr)P
m
n (cos θ)

cos

sin

mφ (3.6a)

ψTE =
∑

m,n

bm,njv2(ktr)P
m
n (cos θ)

cos

sin

mφ (3.6b)

v1 =
[
n(n + 1)ARe +

1

4

]1/2
− 1

2
(3.6c)

v2 =
[
n(n + 1)ARm +

1

4

]1/2
− 1

2
(3.6d)

kt = ω
√
ε0µ0εtµt, (3.6e)

where ARe = εt/εr and ARm = µt/µr represent the electric and magnetic anisotropy

ratios, respectively, am,n and bm,n denote the expansion coefficients, and v1 and v2

stand for the orders of spherical Ricatti-Bessel functions which can be complex in

value. Thus, the field expansions in spherical coordinates can be obtained using the

TE/TM decompositions

Er =
ω

ik2
t

(
∂2

∂r2
+ k2

t

)
ψTM (3.7a)
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Eθ =
−1

ε0εtr sin θ

∂ψTE

∂φ
+

ω

ik2
t r

∂2ψTM

∂r∂θ
(3.7b)

Eφ =
1

ε0εtr

∂ψTE

∂θ
+

ω

ik2
t r sin θ

∂2ψTM

∂r∂φ
(3.7c)

Hr =
ω

ik2
t

(
∂2

∂r2
+ k2

t

)
ψTE (3.7d)

Hθ =
ω

ik2
t r

∂2ψTE

∂r∂θ
+

1

µ0µtr sin θ

∂ψTM

∂φ
(3.7e)

Hφ =
ω

ik2
t r sin θ

∂2ψTE

∂r∂φ
− 1

µ0µtr

∂ψTM

∂θ
. (3.7f)

As one can see, the wave propagation is dependent on both ARe and ARm. In

addition, it should be noted that the potentials used in Eqs. (3.3) and (3.4) are not

unique. However, when the boundary conditions are applied, the field expressions

become unique. Since only the fields involved in the numerical calculations, the

uniqueness is still held.

3.2.2 Scattered field and RCS

Notice that if the off-diagonal components of the material tensors ε and µ are zero,

then the rotations would be equivalent to letting r̂r̂ unchanged while rotating the

transverse elements (to r̂) with respect to r̂ as axes. The material in the present

study remains invariant under such a rotation, which is called the G-type [113] where

the analysis is in 2-D with respect to ẑ as the axis of rotation. In that case, the

G-type is referred to ẑ. If one extends that to the present G-type with respect to

r̂, one can have the characterization for anisotropic material tensors in spherical

coordinates (r, θ, φ).

For absorbing spheres, the elements in ε and µ, or at least one of these two



WAVE INTERACTIONS WITH ANISOTROPIC COMPOSITE MATERIALS 71

tensors, are complex in value. An incident plane wave, as shown in Fig. 3.1, is

characterized by

Ei = x̂eik0r cos θ (3.8a)

H i = ŷ

√
ε0
µ0
eik0r cos θ (3.8b)

where the unity is assumed for the amplitude. To match the boundary conditions

at the surface of the sphere, the exponential terms in the above equations can be

expanded in terms of spherical harmonics by employing the following identity

eik0r cos θ =
∞∑

n=0

i−n(2n+ 1)

k0r
jn(k0r)Pn(cos θ). (3.9)

By equating the radial components in Eqs. (3.8a)-(3.8b) to those in Eqs. (3.7a)-

(3.7f), the scalar functions, ψi
TE and ψi

TM, for incident fields can be expressed

ψi
TE =

sinφ

ωη0

∞∑

n=1

i−n(2n+ 1)

n(n + 1)
jn(k0r)P

1
n(cos θ), (3.10a)

ψi
TM =

cosφ

ω

∞∑

n=1

i−n(2n+ 1)

n(n+ 1)
jn(k0r)P

1
n(cos θ). (3.10b)

Similarly for scattered fields, ψs
TE and ψs

TM can be thus derived

ψs
TE =

sinφ

ωη0

∞∑

n=1

bnh
(1)
n (k0r)P

1
n(cos θ) (3.11a)

ψs
TM =

cosφ

ω

∞∑

n=1

anh
(1)
n (k0r)P

1
n(cos θ) (3.11b)

where jn(•) and h(1)
n (•) denote the first kind spherical Bessel and the first kind

Hankel functions, respectively. Then, ψt
TE and ψt

TM for the transmitted fields inside

the sphere can be deduced

ψt
TE =

sinφ

ωη0

∞∑

n=1

dnjv2(ktr)P
1
n(cos θ) (3.12a)

ψt
TM =

cosφ

ω

∞∑

n=1

cnjv1(ktr)P
1
n(cos θ) (3.12b)



WAVE INTERACTIONS WITH ANISOTROPIC COMPOSITE MATERIALS 72

where an, bn, cn and dn are the unknown expansion coefficients to be determined

by matching the boundary conditions which require the continuity of the tangential

components of the electromagnetic fields on the surface at r = a. Normally, there

are four sets of boundary equations

Et
θ(a) = Ei

θ(a) + Es
θ(a) (3.13a)

Et
φ(a) = Ei

φ(a) + Es
φ(a) (3.13b)

H t
θ(a) = H i

θ(a) +Hs
θ (a) (3.13c)

H t
φ(a) = H i

φ(a) +Hs
φ(a). (3.13d)

Actually, after careful examination, it is found that only two sets of Eq. (3.13a) and

Eq. (3.13c) or the other two sets of Eq. (3.13b) and Eq. (3.13d) are sufficient to

determine the expansion coefficients. These coefficients are found to be

an =

√
µt/εtjn(k0a)j

′
v1

(kta) − j ′n(k0a)jv1(kta)

h
(1)′
n (k0a)jv1(kta) −

√
µt/εth

(1)
n (k0a)j ′v1

(kta)
Tn (3.14a)

bn =

√
µt/εtj

′
n(k0a)jv2(kta) − jn(k0a)j

′
v2

(kta)

h
(1)
n (k0a)j ′v2

(kta) −
√
µt/εth

(1)′
n (k0a)jv2(kta)

Tn (3.14b)

cn =
i√

µt/εth
(1)
n (k0a)j ′v1

(kta) − h
(1)′
n (k0a)jv1(kta)

Tn (3.14c)

dn =
i
√
µt/εt

h
(1)
n (k0a)j ′v2

(kta) −
√
µt/εth

(1)′
n (k0a)jv2(kta)

Tn (3.14d)

Tn =
i−n(2n+ 1)

n(n + 1)
(3.14e)

where the Wronskians for spherical pairs of solutions are employed herewith. The

derivative in the above equations is taken with respect to the argument (i.e., ∂[jn(x)]/∂x).

With these coefficients solved, the field components of the scattered, transmitted and

total fields can be obtained by corresponding substitutions. Of particular interest
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is the backscattered field, from which one can calculate RCS

Axx = lim
r→∞

(
4πr2 |Es

x|
2

|Ei
x|

2

)
. (3.15a)

3.2.3 Numerical study

This section mainly focuses on the following two aspects, that is, the effects of (1)

nondissipative spheres and (2) absorbing spheres. In each aspect, typical results for

(a) single electric/magnetic anisotropy effects; (b) joint anisotropy effects; and (c)

RCS prediction on the RCS values will be studied for a wide range of anisotropy.

In all the following RCS calculations, the truncation of the summations is chosen to

be 50, for which the convergence has been verified to be acceptable.

Nondissipative Spheres

For nondissipative spheres, all the elements in ε and µ are real values.

• Electric/Magnetic Anisotropy Effects:

For uniaxial Ferrite spheres, it is assumed that εr = εt = 1 applies to all the cases

in Fig. 3.2. In Fig. 3.2(a), the RCS values due to a negative uniaxial sphere (µr < µt)

with ARm = 1.2, ARm = 1.4 and ARm = 1.6 are shown; while in Fig. 3.2(b), the

RCS values due to a positive uniaxial sphere (µr > µt) with ARm = 0.9, ARm = 0.7

and ARm = 0.5 are depicted. It is observed that the RCS values are quite sensitive

to the anisotropy and the scattering characteristics of a nondissipative sphere are
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(a) Negative uniaxial Ferrite spheres

(b) Positive uniaxial Ferrite spheres

Figure 3.2: Normalized RCS values versus k0a for uniaxial Ferrite spheres, under

the condition of εr = εt = 1.
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greatly affected by the presence of anisotropy. In addition, the oscillation of the

RCS values due to negative uniaxial spheres is much sharper and more irregular

than that due to positive uniaxial spheres, and the oscillation range of RCS values

of negative uniaxial spheres are wider.

For electric anisotropic spheres, it is assumed that the condition of µr = µt = 1

applies to all the cases. After careful examination and simulation, it is found that

the dependence of RCS exhibits the same scattering performance with ferrite spheres

in both negative and positive uniaxial cases. Hence the figures of normalized RCS

results for electric anisotropic spheres will not be given in detail due to the length

restriction.

• Hybrid Anisotropy Effect:

In this case where εr 6= εt and µr 6= µt, the hybrid effects due to ARe and ARm

are of particular interest. In Fig. 3.3(a), keep the ε constant and change µr and µt

so as to examine the anisotropy effect on the RCS values. By comparing Fig. 3.3

with Fig. 3.2, it is observed that under the same ARm, the RCS values are affected

significantly by the existence of ARe, leading to hybrid anisotropy effects.

• RCS Prediction:

By comparing the results in Fig. 3.2 for uniaxial ferrite spheres with those in

Fig. 3.3 for generalized anisotropic spheres, it can be concluded that (a) the scatter-

ing performance of a nondissipative sphere are significantly affected by the presence

of anisotropy of the sphere, and (b) by studying many other different cases for a
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(a) Solid curve: ARe = 1.2, ARm = 1.4;

Dash curve: ARe = 1.2, ARm = 0.9.

(b) Solid curve: ARe=0.7, ARm=1.2;

Dash curve: ARe=1.6, ARm=1.2.

Figure 3.3: Normalized RCS values versus k0a for generalized anisotropic spheres.
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wide range of anisotropy, it is obvious that the dependence of RCS on anisotropy is

complex and no general rules to predict the scattering behavior due to the anisotropy

have been found in the present work. Therefore, the control of the RCS values can

be made by adjusting the factors or parameters in many different ways.

Absorbing Spheres

In the case of absorbing spheres, the elements of ε and µ in Eq. (3.1) have complex

values. The imaginary parts represent absorptions. Subsequently, I will first examine

the characteristics of isotropic absorbing spheres. In the cases given in Fig. 3.4, the

Figure 3.4: Normalized RCS values versus k0a for isotropic absorbing spheres.

orders of Bessel functions (i.e., v1 and v2) in Eqs. (3.6a) and (3.6b) are still integers.

Fig. 3.4 shows that for sufficiently large isotropic absorbing spheres (k0a > 17),

normalized RCS values steadily tend to 0.0529 and 0.0357 for solid and dashed

curves, respectively. For small values of k0a, high oscillation would be present, and
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these results are comparable with the diagrams given in [114]. This fact confirms

the validity of our theoretical formulation.

• Electric/Magnetic Anisotropy Effects:

In this part, it is assumed that εr = εt = 1 for all the single anisotropy cases. In

Fig. 3.5(a), the RCS results for negative absorbing spheres (µr < µt) with ARm =

1.3 − 0.1i, ARm = 1.4 − 0.3i and ARm = 1.5 − 0.5i are shown. It can be observed

that when k0a > 15, all these three curves tend to their own limit values, 0.08665,

0.1088 and 0.1325, respectively. It is noted that the periods and limits of damped

oscillations which occur for k0a < 5 exhibit an irregular form, and for bigger values

of k0a, the oscillations start to show a regular decaying form, which agrees with the

results for isotropic cases with perfectly conducting spheres [114]. In Fig. 3.5(b),

RCS values for positive uniaxial absorbing spheres (µr > µt) in three cases are

shown. It exhibits the characteristics of oscillation periods and limit values similar

to those in Fig. 3.5(a). However, it can be seen that the higher the imaginary part of

the complex permeability parallel to the spherical surface, the smaller the oscillation

period for the region when k0a > 5. Higher absorption via the imaginary part in µt

results in higher values of the limits of the damped oscillations. For the practical

purposes of RCS reductions, the positive uniaxial absorbing spheres are preferred,

since the backscattered field due to a positive absorbing sphere is only about one

fifth of the field due to a negative uniaxial absorbing sphere.

• Hybrid Anisotropy Effects:

In this part, the ARe and ARm under consideration can be any complex num-
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(a) Negative absorbing spheres.

(b) Positive absorbing spheres.

Figure 3.5: Normalized RCS values versus k0a for absorbing spheres when εr = εt =

1.
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bers. It is worthwhile noting that some novel characteristics of RCS values will be

presented. By comparing Fig. 3.6 with Fig. 3.3, it can be observed that the loss

tangents or the imaginary parts of ε and µ significantly reduce the RCS values

(almost hundreds of times) and also makes the oscillation more flattened and pre-

dictable. This observation might be very useful in practical applications, especially

in identifying aircraft coating materials which may generate some invisibility effects.

Finally, RCS results are obtained for a special case where εr and µr can be

arbitrary but εt = µt. As is shown in Fig. 3.7(a) and Fig. 3.7(b), for the absorbing

spheres (regardless of single or joint anisotropy), once the parallel permittivity equals

parallel permeability, RCS values will approach to zero in the region of k0a > 3

regardless of what εr and µr are. However, the nondissipative sphere still shows an

irregular fluctuation in Fig. 3.7(c), and the oscillations do not end up with a stable

limit.

• RCS Prediction:

From Fig. 3.4 to Fig. 3.7, it can be concluded that the transverse components of ε

and µ dominate the scattering characteristics of the absorbing spheres, which makes

it possible to control the backscattering effects of anisotropy. I propose a general

RCS prediction scheme here to calculate the limit value of damped oscillations in

all the figures in this section:

Nlimit =

∣∣∣∣∣∣

√
µt

εt
− 1

√
µt

εt
+ 1

∣∣∣∣∣∣

2

, (3.16)

which is applicable to all the sufficiently large absorbing spheres and can be reduced

to the geometrical optics limit given in [115].
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(a) Solid curve: ARe = 1.32 − 0.24i and ARm = 1.52 − 0.24i;

Dash curve: ARe = 1.32 − 0.24i and ARm = 0.84 + 0.12i.

(b) Solid curve: ARe = 1.68 − 0.16i and ARm = 1.32 − 0.24i;

Dash curve: ARe = 0.72 − 0.04i and ARm = 1.32 − 0.24i.

Figure 3.6: Normalized RCS values versus k0a for general absorbing spheres.
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(a) Absorbing sphere with εt = µt = 2.4 − 1.8i.

(b) Absorbing sphere with εt = µt = 1.8 − 3i.

(c) Nondissipative sphere with εt = µt = 2.8.

Figure 3.7: Normalized RCS values versus k0a for absorbing and nondissipative

spheres when εt = µt.
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The physical significance here is that for a sufficiently large sphere, the elec-

tric field vector of the incident plane wave is parallel to the boundary surface of

the sphere. The effect of permittivity εr and permeability µr, which are perpen-

dicular to the electromagnetic perturbations of the incident wave, does not affect

the backscattering behavior. If one uses Eq. (3.16) to compute all the limit of the

figures, it is found the theoretical results agree well with the numerical data.

3.3 Anisotropy ratio and the resonances of anisotropic

spheres

Resonances occur if the denominators of the scattering coefficients in Eqs. (3.14a)-

(3.14b) become sufficiently small. Then the corresponding mode will dominate the

scattered field. These resonances are caused either by surface polaritons requiring

negative values of the dielectric response of the bulk media, or the constructive in-

terference of light waves, traveling inside a narrow domain in the vicinity of the

spherical surface. The first case may be due, for example, to the presence of con-

duction electrons, excitons, or lattice vibrations. When the particle is small, surface

polariton is the only possible source of resonances.

The TM-modes an are resonant if

h(1)′

n (k0a)jv1(kta) −
√
µt/εth

(1)
n (k0a)j

′
v1

(kta) = 0, (3.17)
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and the TE-modes bn are resonant if

h(1)
n (k0a)j

′
v2

(kta) −
√
µt/εth

(1)′

n (k0a)jv2(kta) = 0. (3.18)

It is found that (3.17) and (3.18) can only be satisfied approximately. For sufficiently

small particles (x = k0a << 1), Ricatti-Bessel and Hankel functions can be expanded

by their first term

jl(x) ≈ xl+1

(2l + 1)!!
(3.19a)

h
(1)
l (x) ≈ xl+1

(2l + 1)!!
− i

(2l − 1)!!

xl
(3.19b)

To yield more insight of the role of anisotropy in the resonant lightwave scattering,

Eqs. (3.14a) and (3.14b) are thus rewritten

an =
[(v1 + 1) − (n+ 1)εt]Tn

[(n+ 1)εt − (v1 + 1)] − i[nεt + (v1 + 1)] · [(2n− 1)!!]2 · (2n+ 1)x−2n−1
(3.20a)

bn =
[(n+ 1)µt − (v2 + 1)]Tn

[(v2 + 1) − (n + 1)µt] + i[nµt + (v2 + 1)] · [(2n− 1)!!]2 · (2n+ 1)x−2n−1
(3.20b)

In view of these scattering coefficients, of particular interest are the roles of

anisotropy and the order of partial waves upon the lightwave scattering by spherical

particles. Calculations are performed with x = k0a = 0.2 and scattering coefficients

normalized by their respective maxima. First, let us examine the effect of the

anisotropy ratio. In contrast to the traditional resonant requirement for spherical

particles (i.e., ε = −2 [116, 117]), optical resonances are greatly modified by the

presence of anisotropy ratio. Once we know the value of permittivity εr, which

is perpendicular to the electric perturbations of the incident wave, the resonance

only depends on the anisotropy ratio. In Fig. 3.8, two cases of permittivity εr

are considered with particular interest. When εr is smaller than unity (i.e., the
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Figure 3.8: Normalized magnitude of TM-mode scattering coefficient a1 versus

anisotropy ratio in two cases.

relative permittivity of air), the amplitude of a1 decreases with anisotropy ratio

ARe before arriving at ARe = 3, where the amplitude is reduced to zero. No

resonances are found in such cases. When εr is greater than unit, the resonance

occurs at ARe = −0.125, which is close to its transparency point at ARe = 0.375.

Further simulations reveal that ARe will stay in close vicinity of -0.125 to excite

surface polaritons for anisotropic spherical particles at x = 0.2, whose permittivity

is within the range 1 < εr < 4. Beyond this range, only one resonance can be

found at a particular anisotropy ratio, which is illustrated later in Fig. 3.9. These

peculiarities stems from the denominators of the scattering coefficients. In (3.20a),

for example, the denominator can be separated into two portions: a real part and

an imaginary part, and the real part is of the same value as the numerator but

with an opposite sign. The resonance follows from the imaginary part being zero
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(i.e., nAReεr + (
√
n(n+ 1)ARe + 1/4 + 1/2) = 0). If ARe is positive, one can never

meet the resonant requirement, and certain positive ARe value will thus lead the

numerator to be zero, which turns to be the transparency condition. However, if

ARe becomes negative, nAReεr + (
√
n(n+ 1)ARe + 1/4 + 1/2) will be a complex

value, that in turn affects the separation of real and imaginary quantities and the

resonant requirement. It is also clear that the scattering vanishes when ARe = 1

for the case of εr = 1 and ARe = 0.375 for the case of εr = 2, which means that

the object becomes transparent to the incident wave. Hence, for TM-modes, one

can choose an appropriate anisotropy ratio to minimize the corresponding scattering

width or to enhance it.

Another interesting phenomenon follows from the case of higher values of permit-

tivity εr. One can read from Fig. 3.9 that the optical resonances are quite sensitive

to anisotropy ratio. For each case, the resonance only happens within a quite narrow

band of ARe, apart from which the magnitudes of an are almost zero. It can be seen

that the permittivity only affects the resonant position. The resonant anisotropy

ratio ARres
e is -0.08 for resonances with εr = 10, and ARres

e = −0.045 with εr = 10.

It can be envisaged to have ARres
e always negative and getting closer to zero with

increasing permittivity.

The calculations have been carried out by considering the first partial wave since

the electric size of the anisotropic spherical particle is very small. Compared to |a1|,

the amplitude of an is negligibly small for n > 1. If we take into account the second

or even higher-order terms in the asymptotic expansion of Ricatti-Bessel functions,
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Figure 3.9: Normalized magnitude of TM-mode scattering coefficient a1 versus

anisotropy ratio for large permittivities.

the resonance feature suffers almost no change for the current size parameter 0.2.

However, if the size is not extremely small, the higher-order asymptotic terms will

have remarkable influence on resonances. The study can also be extended to resonant

scattering problem dominated by TE-modes as well as the problem of dissipative

anisotropic spheres whose resonant effects will decrease with the imaginary part of

εr due to the damping.

3.4 Propagation and scattering in gyrotropic spheres

As a more general case, the gyrotropic spheres should be considered. The anisotropic

spheres discussed before are just one subset of gyrotropic cases where the off-diagonal

elements are zero. In this subject, some works developed certain methods such as
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scalar Hertz potentials [118] and scalar superpotentials [119]. Due to the complexity

of the expression of the electromagnetic fields in the spherical coordinate systems,

the formulations of EM fields are tedious, lengthy, and complicated. The relevant

work [120] studied electromagnetic wave interactions with gyrotropic materials in

spherical coordinates, and the materials had only electric gyrotropy though. Other

works dealt with the fields and eigenvalues either in a uniaxial anisotropic material

[121] or in the Cartesian and cylindrical coordinate systems [122], where the models

are much simpler than what follows in the current work. It appears that no other

work is available in literature to represent, in the present way, the EM fields for this

kind of materials containing both electric and magnetic gyrotropies.

The general gyrotropic material are characterized by constitutive tensors of per-

mittivity and permeability in the following forms:

ε =




εr 0 0

0 ετ εσ

0 −εσ ετ




, (3.21a)

µ =




µr 0 0

0 µγ µζ

0 −µζ µγ




(3.21b)

where the identity dyadic is in spherical coordinates.

Much effort is spent on solving the second-order differential equations and then

obtaining all the electric and magnetic field components of TE and TM waves with

respect to r̂. Different cases, both specific and general, are considered. In addition,
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this chapter makes some corrections to the field expressions in [120] when the solution

is reduced to that of the simpler case discussed in [120].

3.4.1 Basic formulations

The source-free Maxwell’s equations are written as

∇× E = iωµ · H, (3.22a)

∇× H = − iωε · E. (3.22b)

To solve these equations, it is more convenient to pose the problem in terms of

only the radial functions Er and Hr. After a somewhat lengthy but careful algebra

manipulation, one arrives at a coupled set of differential equations involving only

radial components Er and Hr:

1

r2

∂2(r2Er)

∂r2
+
ετ
εr

1

r2 sin θ

∂(sin θ ∂Er

∂θ
)

∂θ

+
ετ
εr

1

r2 sin2 θ

∂2Er

∂φ2
+ ω2 ετ

µγ

(µ2
γ + µ2

ζ)Er

− iω
µr

µγεr
(εσµγ + ετµζ)

1

r2

∂(r2Hr)

∂r
= 0 (3.23a)

1

r2

∂2(r2Hr)

∂r2
+
µγ

µr

1

r2 sin θ

∂(sin θ ∂Hr

∂θ
)

∂θ

+
µγ

µr

1

r2 sin2 θ

∂2Hr

∂φ2
+ ω2µγ

ετ
(ε2τ + ε2σ)Hr

− iω
εr
ετµr

(εσµγ + ετµζ)
1

r2

∂(r2Er)

∂r
= 0. (3.23b)

From the properties of the associated Legendre polynomials, one will have:

1

r2 sin θ

∂

∂θ
(sin θ

∂

∂θ
•) +

1

r2 sin2 θ

∂2

∂φ2
• = −n(n + 1)• (3.24)
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where the bullet • denotes the separated part of either Er or Hr according to a

specific case, but it should be, however, conformal through Eq. (3.24). And certainly,

this will lead to the Legendre polynomial as its solution.

Using the method of separation of variables, it is found that the solutions are

composed of superpositions of spherical Bessel functions, associated Legendre poly-

nomials, and harmonic functions



Er

Hr


 =

∑

m,n



En

Hn


P

m
n (cos θ)

cos

sin

mφ (3.25)

where the forms of En and Hn depend on the specific cases discussed later.

For the neat and simplicity of the further derivations, let me introduce some

identities first:

z(q)
v (κr) =





jv(κr), q = 1

yv(κr), q = 2

h(1)
v (κr), q = 3

h(2)
v (κr), q = 4

. (3.26)

In Eq. (3.26), jv(κr) and yv(κr) denote spherical Bessel functions of the first kind

and the second kind, respectively. The h(1)
v (κr) and h(2)

v (κr) represent spherical

Hankel functions of the first kind and the second kind, respectively. The order v,

when used to describe the waves and fields in isotropic media, is usually an integer;

but it is not necessarily an integer in the case of gyrotropic media. Instead, it

depends on the medium parameters and has two values:

v1(v1 + 1) = n(n+ 1)
ετ
εr
, (3.27a)
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v2(v2 + 1) = n(n+ 1)
µγ

µr
. (3.27b)

3.4.2 Field representations in different cases

In this section, much effort will be made on Eq. (3.23) dealing with the radial

functions. Subsequently, Eq. (3.23) is solved for different cases.

Case 1: εσµγ + ετµζ = 0 (εσ 6= 0 and µζ 6= 0)

In this case, Eq. (3.23) is decoupled into

1

r2

∂2(r2Er)

∂r2
+
ετ
εr

1

r2 sin θ

∂(sin θ ∂Er

∂θ
)

∂θ

+
ετ
εr

1

r2 sin2 θ

∂2Er

∂φ2
+ ω2 ετ

µγ

(µ2
γ + µ2

ζ)Er = 0 (3.28a)

1

r2

∂2(r2Hr)

∂r2
+
µγ

µr

1

r2 sin θ

∂(sin θ ∂Hr

∂θ
)

∂θ

+
µγ

µr

1

r2 sin2 θ

∂2Hr

∂φ2
+ ω2µγ

ετ
(ε2τ + ε2σ)Hr = 0. (3.28b)

Substituting Eq. (3.25) into Eq. (3.28) and after some lengthy manipulations, we

obtain

En =
αt1

r
z(q)

v1
(kt1r) (3.29a)

Hn = − iη−2
r ηt

αt2

r
z(q)

v2
(kt2r) (3.29b)

where

αt1 = k
− 3

2
r

√
2kt1

π
, (3.30a)

αt2 = k
− 3

2
r

√
2kt2

π
. (3.30b)
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In Eq. (3.29) and Eq. (3.30), we have the following inter-parameters

k2
t1

=ω2 ετ
µγ

(µ2
γ + µ2

ζ), (3.31a)

k2
t2

=ω2µγ

ετ
(ε2τ + ε2σ), (3.31b)

k2
r =ω2µrεr; (3.31c)

ηr =
√
µr/εr, (3.31d)

ηt =
√
µγ/ετ . (3.31e)

In order to obtain the complete field representation, the tangential components of

electromagnetic fields are needed and they are expressed as follows:

1

r sin θ

∂

∂φ
Er −

1

r

∂

∂r
(rEφ) = iωµγHθ + iωµζHφ (3.32a)

1

r

∂

∂φ
(rEθ) −

1

r

∂

∂θ
Er = − iωµζHθ + iωµγHφ (3.32b)

and

1

r sin θ

∂

∂φ
Hr −

1

r

∂

∂r
(rHφ) = − iωετEθ − iωεσEφ, (3.33a)

1

r

∂

∂φ
(rEθ) −

1

r

∂

∂θ
Er = iωεσEθ − iωετEφ. (3.33b)

To make the solution more straightforward, we need to separate the field components

into TE- and TM-field modes subsequently with respect to r̂.
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• TE-field Modes to r̂

For TE-field modes, Eq. (3.32) is reduced to

−1

r

∂

∂r
(rETE

φ ) = iωµγH
TE
θ + iωµζH

TE
φ (3.34a)

1

r

∂

∂r
(rETE

θ ) = − iωµζH
TE
θ + iωµγH

TE
φ . (3.34b)

Substituting Eq. (3.34) into Eq. (3.33), we have

∂2

∂r2
(rETE

θ ) + k2
t2
(rETE

θ ) = iωµγ
1

sin θ

∂

∂φ
Hr − iωµζ

∂

∂θ
Hr, (3.35a)

∂2

∂r2
(rETE

φ ) + k2
t2(rE

TE
φ ) = −iωµζ

1

sin θ

∂

∂φ
Hr − iωµγ

∂

∂θ
Hr. (3.35b)

After careful manipulations, we finally obtain

ETE
θ = ∓ ωη−2

r ηtαt2

∑

m,n

ae
omn

v2(v2 + 1)
z(q)

v2
(kt2r)

[
µγ

m

sin θ

× Pm
n (cos θ)

sin

cos

mφ± µζ
dPm

n (cos θ)

dθ

cos

sin

mφ
]

(3.36a)

ETE
φ = ∓ ωη−2

r ηtαt2

∑

m,n

ae
omn

v2(v2 + 1)
z(q)

v2
(kt2r)

[
− µζ

m

sin θ

× Pm
n (cos θ)

sin

cos

mφ± µγ
dPm

n (cos θ)

dθ

cos

sin

mφ
]

(3.36b)

HTE
θ = − iη−2

r ηtαt2

∑

m,n

ae
omn

v2(v2 + 1)

∂[rz(q)
v2

(kt2r)]

r∂r

dPm
n (cos θ)

dθ

cos

sin

mφ (3.36c)

HTE
φ = ± iη−2

r ηtαt2

∑

m,n

ae
omn

v2(v2 + 1)

m

sin θ

∂[rz(q)
v2

(kt2r)]

r∂r
Pm

n (cos θ)
sin

cos

mφ. (3.36d)
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• TM-field Modes to r̂

For TM-field modes, Eq. (3.33) is similarly rewritten as

−1

r

∂

∂r
(rHTM

φ ) = − iωετE
TM
θ − iωεσE

TM
φ (3.37a)

1

r

∂

∂r
(rHTM

θ ) = iωεσE
TM
θ − iωετE

TM
φ . (3.37b)

Substituting Eq. (3.37) into Eq. (3.32), we have

∂2(rHTM
θ )

∂r2
+ k2

t1
(rHTM

θ ) = − iωετ
1

sin θ

∂Er

∂φ
+ iωεσ

∂Er

∂θ
(3.38a)

∂2(rHTM
φ )

∂r2
+ k2

t1(rH
TM
φ ) = iωεσ

1

sin θ

∂Er

∂φ
+ iωετ

∂Er

∂θ
. (3.38b)

Again after careful manipulations, we finally have:

HTM
θ = ± iωαt1

∑

m,n

be
omn

v1(v1 + 1)
z(q)

v1
(kt1r)

[
ετ

m

sin θ

× Pm
n (cos θ)

sin

cos

mφ∓ εσ
dPm

n (cos θ)

dθ

cos

sin

mφ
]

(3.39a)

HTM
φ = ± iωαt1

∑

m,n

be
omn

v1(v1 + 1)
z(q)

v1
(kt1r)

[
− εσ

m

sin θ

× Pm
n (cos θ)

sin

cos

mφ± ετ
dPm

n (cos θ)

dθ

cos

sin

mφ
]

(3.39b)

ETM
θ = αt1

∑

m,n

be
omn

v1(v1 + 1)

∂[rz(q)
v1

(kt1r)]

r∂r
× dPm

n (cos θ)

dθ

cos

sin

mφ (3.39c)

ETM
φ = ∓ αt1

∑

m,n

be
omn

v1(v1 + 1)

m

sin θ

∂[rz(q)
v1

(kt1r)]

r∂r
× Pm

n (cos θ)
sin

cos

mφ. (3.39d)
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Case 2: εr/µr = ετ/µγ = εσ/µζ

In this case, the coupled terms in Eq. (3.23) are not zero any more, which will

increase the complexity of obtaining the solutions. If the condition of εr/µr =

ετ/µγ = εσ/µζ is satisfied, one has v1 = v2 according to Eq. (3.27). Hence, to be

neat, we let v = v1 = v2 in the following derivation. Similarly, much effort is made

to get the expressions of Er and Hr, which are the bases for obtaining the tangential

components of the fields.

In this case, Eq. (3.25) should be revised into



Er

Hr


 =

∑

m,n



En

Hn


P

m
n (cos θ)

cos

sin

mφ. (3.40)

In the given relationship between the parameters, with Eq. (3.24) obtained, Eq. (3.27)

is reduced to

1

r2

∂2(r2Er)

∂r2
− v(v + 1)r2Er + ω2 ετ

µγ
(µ2

γ + µ2
ζ)Er

− iω
µr

µγεr
(εσµγ + ετµζ)

1

r2

∂(r2Hr)

∂r
= 0, (3.41a)

1

r2

∂2(r2Hr)

∂r2
− v(v + 1)r2Hr + ω2µγ

ετ
(ε2τ + ε2σ)Hr

− iω
εr
ετµr

(εσµγ + ετµζ)
1

r2

∂(r2Er)

∂r
= 0. (3.41b)

I find it feasible to decouple Eq. (3.41) by taking (3.41a) ± (3.41b). After a very

lengthy manipulation, we will arrive at two differential equations based on (3.41a)±

(3.41b) in the form of the Coulomb wave functions, and the solutions of these kinds

of differential equations have been solved for in [123] and expressed in terms of

cylindrical Bessel functions.
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Substituting Eq. (3.40) into Eq. (3.41), we find actually that Eq. (3.41) is asso-

ciated with En and Hn. Finally, with the solutions of the Coulomb wave differential

equations in [123], we obtain:

En ± iη2
rη

−1
t Hn = βz(q)

v (ktr)e
±ksr (3.42)

where the inter-parameters ks, kt and β are defined as follows

ks = ω
√
µζεσ, (3.43a)

kt = ω
√
µγετ , (3.43b)

β = k
− 3

2
r

√
2kt

π
. (3.43c)

Hence, we obtain

En = β
1

r
z(q)

v (ktr) cosh(ksr), (3.44a)

Hn = − iη2
rη

−1
t β

1

r
z(q)

v (ktr) sinh(ksr). (3.44b)

After obtaining the En and Hn, the tangential components of electromagnetic fields

can be expressed by following the procedures similar to those in Section 3.4.2.

Case 3: εσ = µζ = 0

If ε and µ bear the uniaxial anisotropic form, namely εσ = µζ = 0, field representa-

tions were given in [120]. However, the representations of ETM
φ , HTE

φ and HTM
φ are

incorrect due to typos. Herein, we present the corrected forms for those terms with

the notations used by Liu et al [120]

ETM
φ = ∓ α

∑

m,n

be
omn

c
v1(v1 + 1)

m

sin θ

∂[rz(q)
v1

(ktr)]

r∂r
× Pm

n (cos θ)
sin

cos

mφ,(3.45a)
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HTE
φ = ± iη−2

r ηtα
∑

m,n

ae
omn

v2(v2 + 1)

m

sin θ

∂[rz(q)
v2

(ktr)]

r∂r
Pm

n (cos θ)
sin

cos

mφ, (3.45b)

HTM
φ = iωεtα

∑

m,n

be
omn

v1(v1 + 1)
z(q)

v1
(ktr)

dPm
n (cos θ)

dθ

cos

sin

mφ. (3.45c)

3.5 Summary

The scattering by anisotropic and gyrotropic spheres is studied extensively. Much ef-

fort has been spent not only in the formulation of potentials and TE/TM-wave (with

respect to r̂) decomposition, but also in the parametric studies of RCS characteris-

tics. Calculated RCS values for an incident plane wave reveal that the existence of

anisotropy significantly influences the scattering behavior of spherical objects. Fur-

thermore, the hybrid anisotropy greatly affects the characteristics and dependence

of RCS results than a single anisotropy. If the material parameters are manipulated

properly, the objects can be transparent to the detecting devices.

It is found that for the cases of nondissipative spheres, the scattering behav-

ior depends on uniaxial anisotropy in a complex way. For the cases of absorbing

spheres, however, the RCS values are affected primarily by the imaginary parts of

the transverse component of ε and µ. Therefore, the dependence of backscattering

RCS on single/joint anisotropy is found to be predictable. It is also observed that

the RCS values tend to a limit, which is determined by εt and µt, the permittivity

and permeability elements parallel to the boundary surface. The determination of

limit of damped oscillations has been proposed in Eq. (3.16). Hence, if unintentional
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anisotropy is introduced due to natural reasons or due to the shear in the surface

plane during processing, an absorbing material would be a better choice than a

lossless dielectric material as a coating on a scatterer, and if the single anisotropy

exists, it will be much better to utilize the hybrid anisotropy to minimize or control

the scattering behaviors further.

This chapter, therefore, not only derives an analytical series solution to the

theoretical problem for field representations of anisotropic spheres (where both ε and

µ are uniaxial tensors), but also carries out extensive parametric studies of single

and joint anisotropic effects on scattering behaviors. Furthermore, the anisotropy

ratio effects on the resonances are discussed to characterize the resonant scattering

properties of anisotropic spheres. Finally, some special cases of scattering problems

are solved for gyrotropic spheres.



Chapter 4

Theory and application of

magnetoelectric composites

4.1 Introduction

In the previous chapters, the propagation of electromagnetic waves in isotropic and

anisotropic composites are studied. However, those composite materials may suffer

from bulkiness and difficulty in fabrication, which is a limiting factor in electro-

magnetic applications. Composites with magnetoelectric coupling properties may

help alleviate some of those problems. The magnetoelectric composites are charac-

terized by the cross coupling between electricity and magnetism inherent from the

optical activity. These composites can be isotropic or anisotropic, and may depend

on the existence of external biased fields. The phenomenon of optical activity was

first discovered via experimentation by French scientists. In 1811, Arago found that

99
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quartz crystals rotate the plane of polarization of linearly polarized light which is

transmitted in the direction of its optical axis [124]. Later, this property was further

demonstrated by various experiments by Biot [125,126], and it was found that opti-

cal activity is not restricted to solid crystals but may be exhibited by other materials

such as the boiling turpentine. Formal discussion of the concept of polarization was

proposed in 1822 by Fresnel [127] who constructed a prism of quartz to separate two

circularly polarized components of a linearly polarized ray.

Based on the argument that the optical activity was due to molecules, recent

studies have utilized the microwaves and wire spirals to achieve a macroscopic model

for such phenomenon instead of using light and chiral molecules [128]. Bi-isotropic

materials (which include chiral materials) are a subclass of magnetoelectric compos-

ites. Scientists have made extensive research effort on studying bi-isotropic mate-

rials such as the wave properties and interaction [129, 130, 82], light reflection and

propagation through chiral interfaces [131], novel structures exhibiting cross cou-

pling [132], mixing formulas to get effective parameters [133,134], and chiral pattern

for antennas [135]. However, it appears that the application of chiral materials may

be limited to the case of polarization converters, which can be used as polarizator

shields and absorbing coating in RCS reduction such as Salisbury screens. More

recently, a renewed interest was given to bianisotropic media in the community of

electromagnetic materials, especially in the research of negative-index materials.

Pendry [136] proposed a chiral route to achieve negative refraction by wounding a

metal plate into coils stacked by a log pile. As such, the inductance in the coiled

helix and capacitance between inner and outer layers make this chiral structure res-
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onant. Focusing properties of a slab made of chiral materials are reported in [69].

Similar focusing phenomena have been also discussed in Section 2.4.3 for chiral

cylinders briefly. Based on the original work by the scientists in Helsinki, chiral

materials have been proved to be a good alternative to realize negative-index ma-

terials since backward waves could be supported [134,137]. The negative refraction

can be easily obtained by properly mixing chiral particles [138, 139] and arranging

dipoles to minimize electric/magnetic responses [70]. Due to the wide application

potentials of magnetoelectric coupling in negative refractive, lensing, and focusing

devices, magnetoelectric composites, including but not limited to chiral materials,

deserve further investigation, not only in theory but also in application.

4.2 Isotropic magnetoelectric composites

Since artificial composite NIMs in microwave region were experimentally verified by

Shelby [14], more studies have been carried out such as tensor-parameter retrieval

using quasi-static Lorentz theory [140], S-parameter retrieval using the plane wave

incidence [32,141], and constitutive relation retrieval using transmission line method

[44]. However, the artificial metamaterials depend on the creation of metal inclusions

of strong magnetic response. It is a big challenge especially in the optical region if

one wants to realize negative refraction and superlens for optical applications.

Such problems could be alleviated by using isotropic magnetoelectric materials.

The key advantage is that backward-wave regime can be, in principle, realized even
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if the medium has very weak or no magnetic properties. Thus, it appears that one

could realize negative refraction in the optical region without the need to create

artificial magnetic materials operational in optical frequencies.

Chiral composites as shown in Fig. 4.1, in which the magnetoelectric coupling

is present in terms of the chirality and/or Tellegen parameters, are of particular

interest.

Figure 4.1: The typical configuration of a chiral medium composed of the same

handed wire-loop inclusions distributed uniformly and randomly.

There are two definitions widely used to describe chiral media: i) the Post’s

relations given by

D = εP E + iξcB, (4.1a)

H = iξcE + (1/µP )B; (4.1b)
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and the Tellegen’s relations expressed as

D = εT E + iκ
√
µ0ε0H, (4.2a)

B = −iκ√µ0ε0E + µT H, (4.2b)

where ε0/µ0 is the permittivity/permeability in free space, the subscripts P/T denote

permittivity and permeability under the Post/Tellegen constitutive relations, and

κ/ξc is the chirality used in the Post/Tellegen constitutive relations,

These two constitutive relations were found to be applicable to chiral media

composed of short wire helices as well as reciprocal chiral objects of arbitrary shape

[142]. One can note that the chirality (i.e., κ or ξc) is the manifestation of the

handedness of the chiral medium. The following summary can be made:

1. when chirality is positive, the polarization is right-handed and the medium is

right-handed;

2. when chirality is negative, the right-handed system is reversed to the left-

handed system;

3. when no chirality is present, neither magnetoelectric couplings nor optical

activity exists.

Note that the source-free Maxwell equations have the following form:

∇ × E = iωB,

∇ × H = −iωD.

(4.3)
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Hence, from Eqs. (4.1)-(4.3), one can see that D/B at a given point also depends on

the value of derivatives of E/H at that particular point, which can be characterized

by non-locality. In order to force chiral materials to fall into the backward wave

regime, one only needs to make either permittivity or permeability appropriate to

produce resonances, which will form a very small value of the product of εµ. On

the other hand, the effect of the chirality should be another solution, where the big

chirality also favors the realization of backward waves and negative refraction.

A chiral medium can be regarded, in a macroscopic view, as a continuous

medium composed of chiral composites which are uniformly distributed and ran-

domly placed. The optical activity and circular dichroism of chiral media have been

studied, and the chirality of the medium’s molecules can be seen as the cause of

optical activity as deduced by Pasteur in 1848. Born [143] put forward the inter-

pretation of optical activity for a particular molecular model, in which a coupled-

oscillator model was used. In what follows, Condon [144] gave a single-oscillator

model in a dissymmetric field for optically active material, based on the molecular

theories of Drude, Lorentz and Livens. The following constitutive relations were

suggested

D = εE + iωα
c0

H ,

B = − iωα
c0

E + µH

(4.4)

where c0 is the light velocity in free space and α is the rotatory parameter. The

parameter of α for rotatory power is frequency dependent [133]:

α(ω) ∼
∑

b

Rba

ω2
ba − ω2 + iωΓba

(4.5)

where a and b stand for quantum states, ωba is the frequency of the light absorbed
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in the jump a→ b, Rba means the rotational strength of the absorbed line, and the

damping term of Γba has been included for the consideration of the absorption. Fi-

nally, by comparing the Tellegen’s relations and the Condon’s model, the dispersion

of the dimensionless chirality κ can be expressed in such a way that

κ(ω) =
ωωc

ω2
c − ω2 + idcωωc

(4.6)

where ωc represents the characteristic frequency and dc means the damping factor.

Note that Eq. (4.6) is valid for the one-phase transition, in which only one rotatory

term in Eq. (4.5) is considered due to the assumption that each transition between

quantum states lies far off the others. Using the wavefield theory [134], a chiral

medium can be characterized as two sets of equivalent dielectric parameters ε± and

µ±, given by

ε±(ω) = ε(1 ±
κ(ω)

√
µ0ε0√
µε

), (4.7a)

µ±(ω) = µ(1 ±
κ(ω)

√
µ0ε0√
µε

). (4.7b)

The imaginary parts of (ε±, µ±) are also studied but not included, which are almost

zero over the whole region except in the vicinity of ωc. From Fig. 4.2, one can

find that the medium (ε+, µ+) becomes a double negative (DNG) medium in the

frequency band [10, 13.3] GHz. When the frequency drops below ωc or exceeds it, it

turns to a double positive (DPS) medium. In Fig. 4.3, such a DNG-DPS reversion

also happens. In the frequency band of [7.52, 13.3]GHz, the negative refraction

occurs to + and − effective mediums, alternatively.

Hence, the electromagnetic fields within the chiral medium can be obtained by
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Figure 4.2: The frequency dependence of relative (ε+, µ+) in the range of [5, 25]

GHz, the chirality’s characteristic frequency ωc = 2π × 1010 (rad/s), dc = 0.05,

ε = 3ε0, and µ = µ0.

Figure 4.3: The same as Fig. 4.2, for the frequency dependence of relative (ε−, µ−).
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the superposition of components as follows:

E = E+ + E−,

H = H+ + H−,

(4.8)

where ± fields correspond to the results calculated from two separate sets of effec-

tive materials (ε+, µ+) and (ε−, µ−), respectively. Interestingly, if we consider the

case of a plane wave impinged upon an air-chiral interface, two frequencies where

no chirality is actually present are: i) if fl = 7.52 GHz, the chiral medium is char-

acterized only by the + equivalent medium composed of (ε+, µ+), which results in

that only half of the power can be transmitted from the air to the chiral medium;

and ii) if fh = 13.3 GHz, only the pair of (ε−, µ−) remains. It can be observed that

their geometrical mean is the characteristic frequency of chirality (i.e, fc = ωc/2π),

demonstrating the symmetric relation:

flfh = f 2
c . (4.9)

To summarize, the chirality dispersion in the Condon’s model, based on the mole-

cular theory of quantum mechanics, can lead to negative-index media (i.e, n± =

Re[
√
ε±
√
µ±]) at certain frequency bands. One, however, has to mind that n± can-

not be simultaneously negative within the region of (fl, fh). The plus and minus

signs of refractive indices will be exchanged when the working frequency oversteps

the resonant frequency fc.

In view of Eqs. (4.1) and (4.2), both constitutive relations are applicable to recip-

rocal media only. When the nonreciprocity is present in the chiral magnetoelectric
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materials, the constitutive relations are expressed for the Post’s relations

D = εP E + (iξ − ν)B,

H = (iξ + ν)E + (1/µP )B;

(4.10)

and for the Tellegen’s relations

D = εT E + (χ+ iκ)
√
µ0ε0H,

B = (χ− iκ)
√
µ0ε0E + µT H,

(4.11)

where χ and ν denote the nonreciprocity parameters used in these two commonly

used constitutive relations. The conversion between these two relations for time

harmonic fields is given by

εT = εP + µP (ξ2 + ν2),

χ = µPνc0,

κ = µP ξc0,

µT = µP .

(4.12)

In particular, I only consider the Tellegen’s relations for the nonreciprocal example,

since such a condition can be transformed to the Post’s relations in isotropic cases.

The dispersion of nonreciprocity has not been clearly worked out independently so

far. From general considerations, it can be envisioned that the dispersion relations

of χ and κ in Eq. (4.11) would be in a similar alteration of the Condon model:

χ(ω) =
dcω

2ω2
c

ω4 + ω4
c − (2 − d2

c)ω
2ω2

c

, (4.13a)

κ(ω) =
(ω2

c − ω2)ωωc

ω4 + ω4
c − (2 − d2

c)ω
2ω2

c

. (4.13b)

The refractive indices can be expressed by reading from the corresponding eigenwave

n± =
√
εµ/ε0µ0 − χ2 ± κ. (4.14)
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The frequency dependence and the role of damping are shown in Fig. 4.4, noting

that the indices for the ‘-’ effective medium carry a similar fashion by mirroring

the curves of the ‘+’ medium along the vertical line at f = 10 GHz. When the

Figure 4.4: The frequency dependence of refractive indices for ’+’ effective medium

in the range of [5, 20] GHz, with the same parameters as in Fig. 4.2 except for dc.

damping factor dc = 1, the refractive index varies limitedly against the frequency

even at the characteristic frequency of ωc, and it can be proved that high damping

of the chiral material will hold back the rotatory power and the curve appears

more flat (approaching to
√

3 over all frequencies), which means that the chirality

does not resonate for chiral media of high damping. When the damping factor

becomes smaller, more power is rotated and the resonant phenomenon becomes fairly

clear. The resonance will further induce negative refraction of eigenmodes within

certain frequency bands. Those negative-index bands are inversely proportional to

the damping factor. However, such single-oscillator model for nonreciprocal chiral

materials is only for lossless χ and κ. If one wants to study, an improved oscillator
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model should be proposed to characterize the nonreciprocity parameter so that both

χ and κ are complex-valued.

4.3 Gyrotropic magnetoelectric composites

Generally, bianisotropic media can be considered as the most general linear mag-

netoelectric media. However, in a practical case, parameters in those four dyadics

characterizing bianisotropic effects can be retrieved only for particularly structured

composites. In this section, instead of conceptual bianisotropic materials whose pa-

rameters are manually set, those gyrotropic magnetoelectric composites which can

be practically manufactured are of greater interest. Moreover, the gyrotropic mag-

netoelectric composites are found to be a better candidate than normal bi-isotropic

composites for the following merits: 1) negative index of refraction in a gyrotropic

magnetoelectric medium can be realized with less restrictions, while chiral material

requires small permittivity at a working frequency so as to obtain negative refractive

index; 2) two backward eigenwaves are found due to the effects of the gyro-electric

and gyro-magnetic parameters; and 3) all parameters in permittivity and permeabil-

ity tensors as well as chirality admittance can be positive when negative refraction

occurs.
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4.3.1 Backward waves in different medium formalisms

The optical rotation exhibited by chiral composites in Section 4.2 is called natural

optical activity, and there is another similar phenomenon of rotation with a different

mechanism which is called Faraday rotation induced by external biased fields. The

former is independent of the propagation direction and invariant under time reversal,

while the latter is dependent of propagation and invariant under spatial inversion.

A biased magnetic field leads to the gyrotropy in permeability and crossed external

electric and magnetic fields perpendicular to the direction of propagation create

gyrotropy in both permittivity and permeability [145].

Different approaches are developed in studying the eigenmodes in different medium

formalisms, and those two relations are compared. It is found that backward-wave

propagation and negative refractive indices arise in gyrotropic magnetoelectric ma-

terial far from the resonance because the gyrotropic parameters can decrease the

refractive index of the eigenmodes.

In this part, I first discuss the difference between the Post’s formalism given by

D = εP · E + iξcB (4.15a)

H = iξcE + µ−1
P · B; (4.15b)

and the Tellegen’s formalism given by

D = εT · E + (χ− iκ)H (4.16a)

B = (χ+ iκ)E + µT · H. (4.16b)
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In these two formalisms, ε and µ are tensorial permittivity and permeability, re-

spectively; κ and ξc denote chirality in corresponding relations; χ is defined as

nonreciprocity parameter. The permittivity and permeability tensors are

ε =




ε −ig 0

ig ε 0

0 0 εz




(4.17a)

µ =




µ −il 0

il µ 0

0 0 µz




(4.17b)

where g and l are the electric and magnetic gyrotropic parameters, respectively.

This kind of material includes chiroplasma consisting of chiral objects embedded

in a magnetically biased plasma, or chiroferrites made of chiral objects immersed

into a magnetically biased ferrite. Note that the elements in Eq. (4.17) may not be

necessarily identical in the Post’s and Tellegen’s formalisms. In what follows, the

material parameters refer to the value under respective formalisms. The subscripts

of P are T are suppressed for simplicity.

Post formalism

Substituting Eq. (4.15) into Maxwell equations, one finally has

∇ ×
[
αP · ∇ × E

]
− 2ωξc∇ × E − ω2εP · E = iωJ (4.18)



THEORY AND APPLICATION OF MAGNETOELECTRIC COMPOSITES 113

where J is the current excitation,

αP = µ−1
P =




αt iσ 0

−iσ αt 0

0 0 αz




(4.19)

and

αt =
µ

µ2 − l2
(4.20a)

σ =
l

µ2 − l2
(4.20b)

αz =
1

µz
. (4.20c)

Assuming waves of the form E0e
ik·r (where k is the wave vector), plane wave

propagation in gyrotropic magnetoelectric composites can be examined by setting

J zero. Under these conditions, the electric field satisfies

Φ · E = 0 (4.21)

with [Φ] defined as

[Φ] =

[

Φ1 Φ2 Φ3

]
(4.22)

where

[Φ1] =




ω2ε− αzk
2
y − αtk

2
z

iω2g + αzkxky + iσk2
z + 2iξcωkz

αtkxkz − 2iξcωky + iαzkykz




(4.23a)

[Φ2] =




−iω2g + αzkxky − iσk2
z − 2iξcωkz

ω2ε− αzk
2
x − αtk

2
z

αtkykz + 2iξcωkx − iαzkxkz




(4.23b)
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[Φ3] =




αtkxkz + iσkykz + 2iξcωky

αtkykz − iσkxkz − 2iξcωkx

ω2εz − αtk
2
x − αtk

2
y




. (4.23c)

Eq. (4.21) only has nontrivial solutions if the determinant of [Φ] is zero. Note

that the obtained polynomial expression for k is tedious to solve. However, a certain

case can still be considered, which gives much insight into the physical properties of

the magnetoelectric composites. Considering that the waves are propagating along

z-direction, one can solve detΦ = 0 and obtain the wavenumbers supported by the

medium. By reducing Eq. (4.22), one finally obtains:

kp± = ω
±ξc +

√
ξ2
c + (αt ∓ σ)(ε± g)

αt ∓ σ
(4.24a)

ka± = ω
∓ξc −

√
ξ2
c + (αt ± σ)(ε∓ g)

αt ± σ
(4.24b)

where p and a represent the parallel and anti-parallel directions of energy flow (i.e.,

real part of the Poynting’s vector) and the ± signs refer to as the right-circular

polarization (RCP) and left-circular polarization (LCP), respectively. Note that

the kp− and ka− could represent the wavenumbers for backward eigenwaves under

some situations as shown in Table 4.1, which will be discussed later. The helicity

and polarized state of each wavenumber can be obtained by inserting Eq. (4.24)

into Eq. (4.21). It can be found that the helicity of kp+ and ka− is positive while

the helicity of kp− and ka+ is negative, provided that negative helicity is defined as

left-handedness to positive z-direction and right-handedness to negative z-direction.

The refraction indices of kp− and ka− are obtained:

nR1 =
c0

(αt + σ)
[
√
ξ2 + (αt + σ)(ε− g) − ξc] (4.25a)
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nR2 =
c0

(αt − σ)
[
√
ξ2 + (αt − σ)(ε + g) − ξc] (4.25b)

where c0 is the light’s velocity in vacuum; subscript of R denotes RCP; and the

subscripts of 1 and 2 correspond to kp− and ka−, respectively. The chirality under

the Post’s relations will appear twice in the final expressions of refractive indices. By

amplifying the gyrotropic parameter or increasing the chirality, negative refraction

can be achieved.

Tellegen formalism

In this part, Tellegen formalism for gyrotropic magnetoelectric composites will be

discussed so as to realize NIM. The relations can be referred to Eq. (4.16). The

same assumption as in Post’s relations is made, that is, the wave is propagating

along z-direction. Hence Dz and Bz vanish due to the fact that E and H only have

transverse component and the form of the tensorial εT and µT is gyrotropic. Thus

one can have the following relations:


Dx

Dy


 =



εEx − igEy + (χ− iκ)Hx

εEy + igEx + (χ− iκ)Hy


 (4.26a)



Bx

By


 =



µHx − ilHy + (χ + iκ)Ex

µHy + ilHx + (χ+ iκ)Ey


 . (4.26b)

Considering ∇ operator can be replaced by ik for plane waves, the Maxwell equa-

tions can be rewritten

k × E =ωB (4.27a)

k × H = − ωD (4.27b)
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where k = {0, 0, k} is assumed as aforementioned.

By substituting Eq. (4.26) into (4.27), one can express the electric fields in terms

of magnetic fields:



Ex

Ey


 =



A −B

B A






Hx

Hy


 (4.28)

where

A=
1

k2 + ω2(χ+ iκ)2
[iωlk − ω2µ(χ+ iκ)] (4.29a)

B =
−1

k2 + ω2(χ+ iκ)2
[ωµk + iω2l(χ+ iκ)]. (4.29b)

After careful algebraic formulations in Eqs. (4.26)-(4.28), one finally obtains

(k
ω

+ εB + igA
)2

+
[
(εA− igB) + (χ− iκ)

]2
= 0. (4.30)

Thus two sets of expressions can be obtained as follows

k

ω
+ (ε± g)(B ± iA) = ∓i(χ− iκ). (4.31)

From Eq. (4.29), the following relations used in Eq. (4.31) can be yielded as

B ± iA = − ω(µ± l)

k ∓ iω(χ+ iκ)
. (4.32)

Substituting Eq. (4.32) in turn into Eq. (4.31), four roots of k are obtained:

kp± =ω[∓
√

(ε + g)(µ+ l) − χ2 − κ] (4.33a)

ka± =ω[±
√

(ε− g)(µ− l) − χ2 + κ]. (4.33b)

By taking Eq. (4.33) and their polarization states into account, the refractive indices

of the backward waves (i.e., RCP kp− and RCP ka−) inside the gyrotropic chiral
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medium can be determined

nR1 = c0
[√

(ε+ g)(µ+ l) − χ2 − κ
]

(4.34a)

nR2 = c0
[√

(ε− g)(µ− l) − χ2 − κ
]

(4.34b)

where subscripts are similarly defined as in Eq. (4.25). Since the chirality is generally

small in natural and composite chiral media, one can reduce the product of εµ in

order to achieve NIM. But the difficulty of doing so also increases. Thus the theorem

proposed here will be a good alternative way to achieve NIM by increasing the

gyrotropic parameters. By the optical parameter amplification technique [146] and

the arrangement of angular momentum of the light beams and electronic spins, the

gyrotropic parameters can be lifted to the same order as those diagonal elements in

tensors. Hence the conditions of ε−g ≈ 0 and ε−g < 0 are believed to be realizable.

Comparison

• Gyrotropic versus isotropic cases:

In gyrotropic magnetoelectric materials, negative refraction and backward-wave

propagation can arise without forcing the permittivity and permeability to be ex-

tremely small at working frequencies, which means that NIM properties can be

achieved off the resonances. Second, those gyrotropic parameters play an important

role in making refraction index negative and achieving backward waves. Instead

of controlling chirality in normal chiral media, gyrotropic parameters show more

flexibilities to be controlled by amplification techniques [146]. Third, I have found
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that, if εT = µT = 0 in the Tellegen’s relation, two parameters (εB and µB) in

the Born’s relations [79] must be zero by transformation, which will further lead

to the chirality κT = 0 in Tellegen’s relation. Hence, in the Tellegen’s relation,

εT = µT = 0 actually indicates εT = µT = κT = 0 unless β → ∞, which has no

nontrivial solutions to the Maxwell’s equations. This problem can be removed by

introducing gyrotropic effects since the gyrotropy parameters can make refractive

index negative without requiring chiral nihility. Hence gyrotropic magnetoelectric

materials provide an exciting opportunity to realize NIM.

• Post versus Tellgen formalisms:

Two different constitutive relations of the gyrotropic cases have been considered

(i.e., the Post’s and Tellegen’s relations). As one can see in Eq. (4.25), under the

Post’s relations, αt ± σ < 0 will not make the wave propagate backwardly. The

only possible way of obtaining NIM is to amplify gyrotropic parameters g and l

simultaneously to achieve (αt ∓ σ)(ε ± g) > 0 while αt ∓ σ < 0. However, for the

Tellegen’s relations, the representations of the refractive indices are explicit. By

amplifying any of the parameters g, l, χ and κ, refractive indices can be negative.

Mathematically, it can be seen that in the description of the Tellegen’s relations for

gyrotropic cases, it is not necessary to require gyrotropic parameters to be big in

order to get negative refractive indices. Even if ε − g and µ − l are positive, the

amplification of g and l can still lead to negative refraction indices. However, most

of the known ferrite or plasma devices adopts Post’s formalism [147, 148], hence

the Post formalism will be more suitable to describe the gyrotropic magnetoelectric
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composites in practical applications, though the physical properties do not depend

on the description formalism.

4.3.2 Waves in gyrotropic chiral materials

To make it easier to compare with normal chiral materials, the gyrotropic magneto-

electric composites are termed as gyrotropic chiral materials. In this part, the Post

formalism is adopted.

Chiroplasma

The constitutive relations of chiroplasma are shown:

D = ε0εr




ε −ig 0

ig ε 0

0 0 εz




· E + iξcB,

H = iξcE +
1

µ0µr
B

(4.35)

where

ε =
(
1 −

ω2
p(ω + iωeff )

ω[(ω + iωeff)2 − ω2
g]

)
(4.36a)

g =
ω2

pωg

ω[(ω + iωeff)2 − ω2
g ]
, (4.36b)

εz = 1 −
ω2

p

ω2
, (4.36c)

where ωeff , ωg, and ωp represent collision frequency, electron gyrofrequency and

plasma frequency [148], respectively. Such gyroelectric chiral media can be managed
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by distributing chiral objects into a controllable biasing magnetic field, which is

applied externally. If the plane wave Ee−i(ωt−k·r) is propagating inside gyroelectric

chiral media, the wave equations can be expressed as:

k × (k × E) + 2iωµrµ0ξck × E + k2
0µrεr




ε −ig 0

ig ε 0

0 0 εz




· E = 0, (4.37)

where k0 represents the wavenumber in free space. Algebraically, wave numbers cor-

responding to parallel and antiparallel eigenmodes for two mutually perpendicular

polarizations can be obtained from nontrivial solutions in terms of a quartic poly-

nomial, which would be cumbersome to solve. Thereafter, to yield some physical

insight, longitudinal waves with respect to the external biasing field are considered

with the interest in backward waves and negative phase velocity. For the longitudi-

nally propagating eigenwaves along the biasing plasma, one can yield the following

four wave numbers corresponding to the eigenmodes

k1
2

= ω[∓µ0µrξc ±
√
µ2

0µ
2
rξ

2
c + µ0µrε0εr(ε∓ g)], (4.38)

k3
4

= ω[±µ0µrξc ±
√
µ2

0µ
2
rξ

2
c + µ0µrε0εr(ε± g)]. (4.39)

With the reference to the energy transportation direction, eigenwaves corresponding

to eigen wavenumbers k1 and k2 may become backward waves because the handed-

ness of these two eigenwaves will change within certain frequency bands. Note that

the propagation direction of k1 eigenwave is parallel to the energy transportation

direction while k2 eigenwave is opposite, and in backward-wave frequency bands

both eigenwaves are right-handed circularly polarized [149]. In particular, the phase

velocity against frequency is studied in order to observe characteristics of LHM. In
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(a)

(b)

(c)

Figure 4.5: Phase velocities for backward-wave eigenmodes as a function of frequency

near the plasma frequency, with parameters ωp = 8 × 109 rad/s, ωeff = 0.1 × 109

rad/s, and ωg = 2 × 109 rad/s under different degrees of magnetoelectric couplings:

(a) decoupling plasma ξc = 0; (b) ξc=0.001; and (c) ξc = 0.01.
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Fig. 4.5(a), it can be observed that when no magnetoelectric coupling is present, the

phase velocity of k2 eigenmode is always negative and that of k1 eigenmode is posi-

tive. Substituting these two eigenmodes into Eq. (4.37), one can note that negative

phase velocity in Fig. 4.5(a) does not mean a backward-wave phenomenon. Instead,

when ξc = 0, negative phase velocity means that k2 eigenmode is left-handed with

reference to the opposite direction of external magnetic field, and positive veloc-

ity shows that k1 eigenmode is left-handed along with the direction of the external

field. When slight magnetoelectric coupling exists (e.g., ξc = 10−3 in Fig. 4.5(b)),

backward-wave phenomena arise for both k1 and k2 eigenmodes, in which resonances

can be observed. In what follows, a gyroelectric chiral medium is considered with

bigger magnetoelectric coupling effect, as shown in Fig. 4.5(c). Compared with the

case shown in Fig. 4.5(b), one can note that the shift of resonant frequencies is

neglectable, while resonant amplitudes in Fig. 4.5(c) are drastically enhanced. In

both weak-coupling and strong-coupling cases, it can be found that backward-wave

regions arise before respective resonances. After passing the resonant frequency, the

handedness and polarization status of those eigenmodes become an analogy to the

non-magnetoelectric case.

Generalized Gyrotropy

It can be either regarded as a generalization of the gyrotropic (chiral) media without

the assumption of H : H = B [150], or an advanced mixture of chiroplasma and

chiroferrite due to the crossed biased fields. In the textbook [151], the assumption

of H : H = B is addressed as “the effects due to the difference of µ from unity are
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in general indistinguishable from those of the spatial dispersion of the permittivity”.

However, it is not necessary to impose such assumption and the spatial dispersion in

permeability is also meaningful especially in realization of negative-index materials.

• Wave impedance:

One parallel LCP (i.e., kp−) and one anti-parallel LCP (i.e., ka−) can be back-

ward propagating with opposite directions of phase and energy velocities. The

directions of the energy velocities are identical with those of the Poynting’s vectors

which can be verified from the Maxwell equations:

Sp+ = ẑ
|E0|2

2η1
(4.40a)

Sa− = −ẑ
|E0|2

2η1
(4.40b)

Sp− = ẑ
|E0|2

2η2

(4.40c)

Sa+ = −ẑ
|E0|2

2η2
(4.40d)

where η1 and η2 denote the wave impedances of the positive and negative helicities,

respectively.

In view of the above equations, the z-axis component of the Poynting vector can

be shown as

Sz =
1

2

[
ExH

∗
y − EyH

∗
x

]
(4.41)

where the transverse magnetic fields can be obtained from Eq. (4.28)



Hx

Hy


 =



i
(
ξc + kz

ω
σ
)
Ex − kz

ω
αtEy

i
(
ξc + kz

ω
σ
)
Ey + kz

ω
αtEx


 . (4.42)
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Before solving η1 and η2, one condition should be noted

(
2ξc +

ω

kz

g +
kz

ω
σ

)2

=

(
ω

kz

ε− kz

ω
αt

)2

. (4.43)

Substituting Eq. (4.42) into Eq. (4.41) with the aid of solution in Eq. (4.43), it is

finally obtained

η1 =
1√

ξ2
c + (αt − σ)(ε + g)

=
1√

ξ2
c +

ε + g

µ+ l

(4.44a)

η2 =
1√

ξ2
c + (αt + σ)(ε− g)

=
1√

ξ2
c +

ε− g

µ− l

. (4.44b)

Alternatively, by applying the Beltrami fields [152], ε± and µ± of the eigenmodes

can be also obtained as belows

ε± =

√
ξ2
c +

ε± g

µ± l

[
±ξc(µ± l) +

√
[ξc(µ± l)]2 + (ε± g)(µ± l)

]
(4.45a)

µ± =

√
µ± l

ξ2
c (µ± l) + ε± g

[
±ξc(µ± l) +

√
[ξc(µ± l)]2 + (ε± g)(µ± l)

]
. (4.45b)

Thus, the wave impedances of those eigenmodes can be verified by using η± =

√
µ±/ε±, which agree with η1 and η2 respectively.

These findings are of importance for phase compensation and compact res-

onators [80], since a good impedance matching can be achieved at the interface

between a gyrotropic chiral slab and the adjacent spaces. Note that the elements

in permittivity and permeability tensors involve frequency, plasma frequency, elec-

tron gyrofrequency, gyromagnetic response frequency and saturation magnetization

frequency [147,148] and the realization of backward wave depends on the frequency

selection. Within certain frequency ranges, kp− and ka− could be wavenumbers of
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backward wave simultaneously or only one of them could. Configurations of con-

ventional and subwavelength cavity resonators are proposed using gyrotropic chiral

slabs, when the working frequency is properly chosen to arrive at negative refractive

index.

Figure 4.6: Compact resonator formed by a 2-layer structure consisting of air and

gyrotropic chiral media backed by two ideally conducting planes.

In Fig. 4.6, it can be seen that, if a plane wave propagates in the direction pen-

pendicular to the interfaces at a certain frequency range, its phase, which is increased

in a conventional medium can be decreased in the gyrotropic chiral medium, which

falls into the backward-wave region. It is noted that, the backward eigenmodes

possess two impedances. Hence, by properly controlling the parameters and the

external biased fields, η+ = η0 or η− = η0 could be chosen to match the wave im-

pedance η0 of free space, which means that two kinds of cavity resonators can be

created as shown in Fig. 4.7.
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(a) Conventional (b) Subwavelength

Figure 4.7: Equivalent configuration of 1-D cavity resonator made of gyrotropic

chiral materials.

The resonance condition for a cavity takes the following form [80]

n2

µ2

tan(n1k0d1) +
n1

µ1

tan(n2k0d2) = 0, (4.46)

where the subscripts, 1 and 2, correspond to the layers on the left-hand and right-

hand sides, respectively. In the case shown in Fig. 4.7(a) when η+ is matched, it

turns to be the conventional cavity resonator, and thus Eq. (4.46) becomes

n+d2 + d1 =
m

2
λ0, m=0, 1, 2... (4.47)

where λ0 is the wavelength in free space.

Of particular and practical interest is the case of subwavelength cavity res-

onators, in which the arguments in the tangential functions can be assumed small.

If η− is matched as shown in Fig. 4.7(b), the resonant condition in Eq. (4.46) is
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Table 4.1: Helicity and polarization states of kp− and ka− in three cases, under the

conditions of |l| < µ and ξc > 0.

g < −ε −ε < g < ε g > ε

HEL POL HEL POL HEL POL

kp− 	 LCP 	 LCP ∗	 ∗RCP

ka−
∗⊕ ∗RCP ⊕ LCP ⊕ LCP

ω (0, ωc1) — (ωg, ωc2)

∗Backward wave regions.

reduced to

d1

d2

∼=
| µ− |
| µ0 |

. (4.48)

It can be observed that to have simultaneously negative permittivity and perme-

ability is not necessary to satisfy above condition, since only the first term in the

Taylor expansion of a tangent function is kept for the thin layer on metal surfaces.

The definition of n± will be given in the following part.

• Negative refraction:

The kp− and ka− are also of particular interest since they will represent the

properties of the backward waves under specific cases as shown in Table 4.1. The

quantities ε and g are given in [148] as follows

ε = ε0
(
1 −

ω2
p(ω + iωeff )

ω[(ω + iωeff)2 − ω2
g ]

)
(4.49a)

g = ε0
ω2

pωg

ω[(ω + iωeff)2 − ω2
g ]
, (4.49b)
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where ωp, ωg and ωeff are plasma frequency, electron’s gyrofrequency and the colli-

sion frequency of the electrons, respectively.

It should be also noted that the positive/negative helicity is defined as right-

/left- handedness to positive/negative z-axis. The helicity and polarized states can

be found by inserting Eq. (4.24) into Eq. (4.18). When kp− or ka− becomes backward

waves, the handedness changes.

A collisionless case is considered here (i.e., ωeff = 0). Two quantities are intro-

duced first

ωc1 =
1

2

[
− ωg +

√
ω2

g + 4ω2
p

]
(4.50a)

ωc2 =
1

2

[
ωg +

√
ω2

g + 4ω2
p

]
. (4.50b)

As shown in Table 4.1, in order to realize the backward eigenmode ka−, one can see

that ε + g < 0 should be satisfied (i.e., 0 < ω < ωc1 should be held). To form the

backward eigenmode kp−, it shows g > ε, which means ωg < ω < ωc2. Note that if

ωp <
√

2ωg

is satisfied, there is no overlapping of the two intervals regarding the frequency

condition in Table 4.1. If one chooses

ωp >
√

2ωg,

then both kp− and ka− are backward wavenumbers, and two impedances will be

present in each of the layers of the slab in Fig. 4.6. In that case, it would be impos-

sible to match those two impedances simultaneously at the material-air interface.
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However, we can choose one impedance equal to that of air, and correspondingly the

backward wave associated with that impedance can propagate through the slabs as

shown in Fig. 4.7.

One can further split the external dc magnetic field into two parts as

Bdc = µ0(Hdc +Mdc) (4.51)

where M denotes the magnetic moment in the whole volume occupied by gyrotropic

chiral material and the H field has included account the demagnetizing field. Then

the permeability tensor in Eq. (4.17b) can be characterized

µ = µ0

(
1 − ω0ωM

ω2 − ω2
0

)
(4.52a)

l = µ0
ωωM

ω2 − ω2
0

, (4.52b)

where

ω0 =
e

me

µ0Hdc (4.53a)

ωM =
e

me
µ0Mdc. (4.53b)

Therefore, it can be shown that the restriction |l| < µ (as stated in Table 4.1) can

be maintained by choosing proper external dc magnetic field and the number of

electrons. Further study reveals that l + µ is always positive. Thus the restriction

l < µ becomes

ωM

ω − ω0
< 1. (4.54)

With these conditions clearly stated, the negative refractive indices of the gener-

alized gyrotropic chiral medium can be obtained. Taking into account of Eq. (4.24),
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for respective polarization states and helicities, one can finally obtain two refraction

indices for these backward eigenwaves:

n± =
c0

(αt ∓ σ)
[
√
ξ2
c + (αt ∓ σ)(ε± g) − ξc] (4.55)

where plus and minus signs are referred to as ka− and kp−, respectively.

It can be seen that n+ will be negative when g < −ε and n− will possess a

minus sign when g > ε (which means that a backward wave propagates in such

a medium). It also shows that a negative refraction index may be easily achieved

even if the chirality admittance ξc is very small. Note that one can use all positive

parameters (i.e., ε, g, µ, w and ξc) to achieve a negative index of refraction (i.e.,

n−). In addition, g > ε can be realized with some advanced technology in the future

based on the theory of off-diagonal parameter amplification in artificially gyrotropic

media.

In what follows, Eq. (4.55) is analyzed in detail to discuss the possibility of

backward waves:

We can further rewrite Eq. (4.55) as

n± = c0
[√

(µ± w)2ξ2
c + (µ± w)(ε± g) − (µ± w)ξc

]
. (4.56)

It is found that the negative refractive indices may be easily achieved if ε ± g < 0,

and it has been pointed out how the frequency shall be selected so as to give rise to

negative refraction indices in Fig. 4.6.

Then what is of particular interest turns out to be the case of n± = 0 (i.e.,

ε ± g = 0). It follows that this case can be realized at two specific frequencies as
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given below

ω1 = −ωg

2
+

√(
ωg

2

)2

+ ω2
p (4.57a)

ω2 =
ωg

2
+

√(
ωg

2

)2

+ ω2
p (4.57b)

where ω = ω1 and ω = ω2 lead to ε + g = 0 and ε− g = 0, respectively.

Therefore one can come up with an equivalent cover for patch antennas (see

Fig. 4.8(a)) with zero refractive index and a positive wave impedance 1/ξc which

is comprised of a gyrotropic chiral medium. Only normal incident waves are trans-

mitted into the slab and the phases in any planes between z = 0 and z = d will

keep unchanged. Hence, potential application includes a radome of antennas, which

will greatly enhance the directivity of the antennas. No reflected waves interfere

with antennas if impedance matching at material-air interface has been achieved.

In addition, the existence of a slab has no influence on the phase of the propagating

waves.

Alternatively, in Fig. 4.8(b), if some sources are placed in such a substrate

made from gyrotropic chiral slab which has n = 0 and finite impedance, all the

transmitted waves will be perpendicular with the upper surface no matter what the

form of the source would be. This property is attributed to the Snell’s law when one

of the material has zero refractive index. Due to the property of zero or nearly zero

refractive index, gyrotropic chiral materials at two particular frequencies provide

potentials in quantum devices because the discrete quantized field will be greatly

enhanced. For instance, the critical field is assumed to be Ec. If the field strength

has the same order of magnitude of Ec or less than Ec, the field can be viewed as
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a quantized one or a fluctuation of quantum vacuum. It is obvious that the critical

field strength becomes very large when the refractive index is almost zero. Hence,

the quantum vacuum fluctuation field becomes strong.

(a) Phase compensating cover. (b) A special substrate.

Figure 4.8: Application of a gyrotropic chiral slab with zero index but finite im-

pedance.

4.4 Nihility routes for magnetoelectric compos-

ites to NIM

As is known, the NIMs in the microwave region have been measured and confirmed.

However, realizing negative permeability from metallic structures as well as achiev-

ing low loss negative-index media at much higher frequencies is a very difficult task.

Negative values can be even obtained simultaneously for the real parts of the per-

meability and the permittivity without achieving a negative index of refraction due
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to high values of the imaginary part of the permeability in the visible region [153].

Hence, the impact of NIM would be more far-reaching if negative refraction is real-

ized at optical frequencies. In this connection, chiral composites have been proposed

as a potential candidate to acheive negative refraction [136] in optical region since it

is not necessary to create artificial magnetic materials anymore. In chiral materials

with long helices, a backward wave can be excited along the helix which acts as a

delay line. An electric or magnetic excitation will produce simultaneously both the

electric and magnetic polarizations.

However, the chirality can not be very large in nature so as to satisfy the

backward-wave condition
√
εrµr − κ < 0. Thus, a speical type of chiral materi-

als with extremely small permittivity and permeability (termed as chiral nihility

firstly by Tretyakov et al) helps a lot to enlarge the impact of chiral materials in the

realm of negative-index materials. As a complementary counterpart of gyrotropic

chiral materials which make use of gyrotropic parameters to reduce refractive in-

dices, chiral nihility is based on the suppression of permittivity and permeability by

appropriate wire-loop models [70].

Initially, the concept of nihility was conjectured by Lakhtakia [154] for the mix-

tures of DPS and DNG dielectric materials, which gives null parameters to the

permittivity and permeability of the mixture. It can be found that this nihility is

not physical since the Maxwell equations have no nontrivial solutions. However, this

concept is still of use, based on which chiral nihility is generalized. Chiral nihility

refers to the definition of the real parts of permittivity and permeability almost
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zero, nonzero chirality, and the imaginary parts of all the parameters much smaller

than the chirality. In such exotic materials, electromagnetic wave propagates while

negative refraction occurs. By the model in Fig. 4.1 ordered in arrays, it has been

validated that chiral nihility is realizable if the radius of the loop and the length of

the dipole are advisably chosen. More recently, it is reported that negative reflection

will occur and any entry of electromagnetic wave will disappear in chiral nihility,

when the chiral nihility slab is backed by a PEC [155].

In contrast to previous studies on chiral nihility, the original work in this section

focuses on the macroscopic characterization of electromagnetic wave interaction with

chiral nihility. First, the chirality effects in the slab of chiral nihility is examined

when the slab is illuminated by an incident plane wave. The wave, scattered by and

transmission through this slab, are characterized, which yields a lot of exciting phe-

nomena such as a wide range of Brewster angle and power transport control. Next,

I will explore different mechanisms of chiral nihility and how to realize it. Initially,

the chiral nihility was for isotropic reciprocal chiral materials. In the following parts,

different medium formalisms for such a chiral nihility are discussed. Furthermore,

nonreciprocal chiral nihility and gyrotropic chiral nihility are proposed based on the

related findings in Section 4.2, and chirality control is studied in order to meet the

conditions of respective nihilities.
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4.4.1 Energy transport in chiral nihility

This part studies eigenwaves propagating in a chiral nihility medium. The problem

of reflection from a dielectric-chiral interface and wave propagation in an infinite

chiral slab placed in free space is discussed. The E-field is analyzed and the re-

sults established from numerical calculations at different angles of incidence and for

different sets of values of the constitutive parameters are presented.

Brewster angles and chirality effects in a semi-infinite chiral nihility

medium

A plane wave incidence upon the interface between a dielectric and a chiral medium

is considered as shown in Fig. 4.9.

The reflection and refraction in the configuration of Fig. 4.9 can be formulated

as



Er⊥

Er‖


 =



R11 R12

R21 R22






Ei⊥

Ei‖


 (4.58a)



E1

E2


 =



T11 T12

T21 T22






Ei⊥

Ei‖


 (4.58b)

where

R11 =
cos θinc(1 − g2)(cos θ1 + cos θ2) + 2g(cos2 θinc − cos θ1 cos θ2)

cos θinc(1 + g2)(cos θ1 + cos θ2) + 2g(cos2 θinc + cos θ1 cos θ2)
(4.59a)

R12 =
−2ig cos θinc(cos θ1 − cos θ2)

cos θinc(1 + g2)(cos θ1 + cos θ2) + 2g(cos2 θinc + cos θ1 cos θ2)
(4.59b)
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Figure 4.9: Orientation of the wave vectors at an oblique incidence on a dielectric-

chiral interface. The subscripts ‖ and ⊥ respectively stand for parallel and perpen-

dicular polarizations with respect to the plane of incidence.

R21 =
−2ig cos θinc(cos θ1 − cos θ2)

cos θinc(1 + g2)(cos θ1 + cos θ2) + 2g(cos2 θinc + cos θ1 cos θ2)
(4.59c)

R22 =
cos θinc(1 − g2)(cos θ1 + cos θ2) − 2g(cos2 θinc − cos θ1 cos θ2)

cos θinc(1 + g2)(cos θ1 + cos θ2) + 2g(cos2 θinc + cos θ1 cos θ2)
, (4.59d)

T11 =
−2i cos θinc(g cos θinc + cos θ2)

cos θinc(1 + g2)(cos θ1 + cos θ2) + 2g(cos2 θinc + cos θ1 cos θ2)
(4.60a)

T12 =
2 cos θinc(cos θinc + g cos θ2)

cos θinc(1 + g2)(cos θ1 + cos θ2) + 2g(cos2 θinc + cos θ1 cos θ2)
(4.60b)

T21 =
2i cos θinc(g cos θinc + cos θ1)

cos θinc(1 + g2)(cos θ1 + cos θ2) + 2g(cos2 θinc + cos θ1 cos θ2)
(4.60c)

T22 =
2 cos θinc(cos θinc + g cos θ1)

cos θinc(1 + g2)(cos θ1 + cos θ2) + 2g(cos2 θinc + cos θ1 cos θ2)
, (4.60d)

and g = [(µ1/ε1)(ε/µ)]1/2.

The homogeneous reciprocal chiral material has been defined in Eq. (4.2), with

only slight changes in notations here (i.e., εT → εrε0 and µT → µrµ0). The wavenum-
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bers of the two eigenwaves in the chiral medium then read

k1,2 = k0(
√
µrεr ± κ) (4.61)

which corresponds to two eigenmodes respectively

E1 = E01(ex + iey)e
ik1z (4.62a)

E2 = E02(ex − iey)e
ik2z. (4.62b)

The refractive indices are thus given by

n1,2 =
√
µrεr ± κ. (4.63)

Potential applications in phase compensator and quantum devices can also be en-

visaged similarly as the gyrotropic cases in Section 4.3.2, which is not the focus of

the current part.

In order to study the reflected power at the interface between the dielectric and

the chiral medium, the boundary condition has to be satisfied

ẑ × [Einc + Er] = ẑ × [E1 + E2] (4.64a)

ẑ × [H inc + Hr] = ẑ × [H1 + H2] (4.64b)

from which the method for retrieving Fresnel reflection and transmission coeffi-

cients [156] is adopted and further transformed into the Tellegen formalism. In

Fig. 4.10, the reflected power is drawn versus the angle of incidence for two different

configurations. The first case deals with a chiral medium where the permittivity is

greater than that of the dielectric. It then exists a Brewster angle for an incidence

at about 65◦ for the parallel polarization as shown in Fig. 4.10(a). For the second
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(a) ε1 = 1, ε = 4, µ1 = µ = 1, κ = 0.25 (b) ε1 = 4, ε = 1, µ1 = µ = 1, κ = 0.25

Figure 4.10: Reflected power as a function of the incidence with unit permeability,

the same chirality but different permittivity.

case (Fig. 4.10(b)), the chiral medium has a lower permittivity compared to the sur-

rounding dielectric. For the value of κ = 0.25, no Brewster angle can be observed for

either polarization of the incident field. However, when θ = 22◦, the reflected power

of Ppa has a minimum, which is close to zero. Total reflection starts from the inci-

dence at 40◦ for both Ppa (‖) and Ppe (⊥) polarizations. Further investigation yields

that the permittivity ratio (i.e., permittivity of dielectics over permittivity of chiral

medium) plays an important role in the zero and total reflection characteristics. As

for the zero reflection, it only occurs to parallel polarization, which is consistent

with the results of the conventional dielectric-dielectric interface. It is interesting to

observe that the total reflection happens over a wide range of incidence angles and

a secondary total-reflection angle at θ = 22◦ appears for perpendicular polarization.
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Next, the energy transport from the dielectric to the chiral nihility is investi-

gated, where some interesting phenomena arise. Two cases of chiral nihilities are

considered (i.e., impedance matching and mismatching to the air).

(a) ε1 = µ1 = 1, ε = 4× 10−5, µ = 10−5, κ = 0.5; (b) ε1 = µ1 = 1, ε = µ = 10−5, κ = 0.5

Figure 4.11: Reflected power as a function of the incidence with different cases of

chiral nihility.
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(a) (b)

Figure 4.12: Reflected power as a function of the incidence with the same permit-

tivity and permeability as in Fig. 4.11 but with a higher chirality: (a) ε1 = µ1 = 1,

ε = 4 × 10−5, µ = 10−5, and κ = 1; and (b) ε1 = µ1 = 1, ε = µ = 10−5, and κ = 1.

Comparing Fig. 4.11(a) with Fig. 4.10(a), it is seen that zero-reflection angle

occurs to perpendicular polarization rather than parallel parallel polarization, which

is in contrast to the situation for normal chiral or achiral materials. It is shown that

the reflected power dependence on incident angle varies drastically within certain

range. The zero-reflection angle at 27◦ is quite close to the lowest total reflection

angle at 30◦, which means that this range is quite angle sensitive. More surprisingly,

the dependence of the reflected power on the incidence becomes identical for both

polarizations when the impedance of chiral nihilty is matched to free space. In

this special case shown in Fig. 4.11(b), the Breswter angle has a range rather than

a single angle, and total reflection happens when incidence angle is greater than

30◦ though the impedance matching is achieved. It is due to the mismatch of the
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refractive indices.

As one can see, the chirality of each case in Fig. 4.11 is doubled in Fig. 4.12, if

other parameters are unchanged. As such, the chirality effects in chiral nihility can

be presented. In Fig. 4.12, the reflected powers of both polarizations carry a similar

dependence on incidence, while the magnitude of the reflected power significantly

differs with that in Fig. 4.11. In Fig. 4.12, the value is quite stable over the whole

region except at 90◦. If the impedance of chiral nihility is matched, the value will

be further reduced to zero (see Fig. 4.12(b)), which means that the Brewster angle

almost covers the whole range of incidence angles. Therefore, under such circum-

stances, all the energy will be transmitted to the chiral nihility if the incident angle

is smaller than 90◦. It may be of great importance to realize imaging characteristics

without much loss of information of a point source or a line source, since one of the

refractive indices of chiral nihility is very close to -1.

Fig. 4.13 shows the reflected power versus the chirality for the same two con-

figurations as above at an oblique incidence of 45◦. When the chiral medium is

denser than the dielectric (Fig. 4.13(a)) and at a perpendicular polarization of the

incident field, the reflected power shows a maximum of 0.8 for κ = 2 and tends to

a stable value of 0.22 for κ > 4. Concerning the parallel polarization, two maxima

are obtained (Pr = 0.8) at κ = 1.29 and κ = 2.71, respectively. In order to have

a good transmission through the interface, the chirality must be either lower than

1.29 or greater than 2.71. On the contrary, when the dielectric is denser than the

chiral medium (Fig. 4.13(b)), total reflection is observed for both polarizations for
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(a) ε1 = µ1 = 1, ε = 4, µ = 1 (b) ε1 = 4, µ1 = 1, ε = µ = 1

Figure 4.13: Reflected power as a function of the chirality at an oblique incidence

of θinc = 45◦.

(a) ε1 = µ1 = 1, ε = 4 × 10−5, µ = 10−5 (b) ε1 = µ1 = 1, ε = µ = 10−5

Figure 4.14: Reflected power as a function of the chirality at an oblique incidence

of θinc = 45◦ in different cases of chiral nihility.
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chirality smaller than 0.42. Concerning the case of parallel polarization, the reflected

power decreases to a stable value of 0.22 as chirality increases. For the perpendic-

ular polarization of the incident field, a minimum is first observed for κ = 1 and

then a maximum for κ = 2.41. For κ > 3, the reflected power tends to 0.04. If one

further increases the mismatch of the permittivity between the dielectric and the

chiral medium, the plots observed in Fig. 4.13 shift to the right (higher values of

chirality) and the amplitude of the reflected power increases.

In addition to the normal chiral slabs, chiral nihility slabs at an oblique incidence

are also studied in Fig. 4.14. Similarly, particular values of chirality will lead to zero

reflection, which is so-called critical chirality κc. In Fig. 4.14(a), κc ≈ 0.75 which

only exists for perpendicular polarization. If the chirality is lower than κc, total

reflection happens and no power can be transmitted to the chiral nihility slab. When

the chirality is sufficiently large, the reflected powers are approaching their respective

stable values, and it is found that the stable reflected power of Ppa is about 7 times

larger than that of Ppe. If the chirality nihility slab has its impedance matched to

the free space, both Ppa and Ppe have identical perfomance versus chirality, and κc

can be observed for both cases. It suggests that a bigger chirality would be a better

choice if energy transport is desired.

Power transmission in infinite chiral nihility slab

In this section, the propagation of a plane wave through an infinite chiral nihility slab

of thickness d is considered (Fig. 4.15(a)). If one selects a frequency region where
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<[κ] > <[µrεr], then one of the two waves is backward according to Eq. (4.61).

Hence for one of the two polarizations, the chiral medium will support a negative

index of refraction and in such a case, subwavelength focusing will take place for

waves of this polarization as shown in Fig. 4.15(b).

(a) (b)

Figure 4.15: (a) A chiral slab of thickness d placed in free space. The two interfaces

of the chiral slab are situated at z = 0 and z = d. Regions 1 and 3 are considered

to be vacuum and region 2 is the chiral medium; and (b) Illustration of negative

refraction and subwavelength focusing by a chiral slab (k1 > 0 and k2 < 0).

The configuration for the chiral slab in a dielectric host medium is given in

Fig. 4.13(a). Suppose that a plane wave propagating in a homogeneous isotropic

dielectric medium is incident on the surface of a chiral slab. In this case, air is taken

for the dielectric medium and the two interfaces with the chiral slab are situated at

z = 0 and z = d. The angles θ1 and θ2 corresponding to the transmitted waves in
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the chiral slab are given by:

θ1,2 = sin−1

{
kinc sin θinc

k1,2

}
(4.65)

where kinc = k0, kr and kt denote the incident, reflected and transmitted wavenum-

ber, respectively. The boundary conditions of the tangential electric and magnetic

fields are applied at the two interfaces situated at z = 0 and z = d and a matrix

form is then used to solve the system in order to obtain the different E and H-field

components.

First, let us consider a chiral slab with both the relative permittivity and per-

meability having values of 10−5 (very close to 0) and the chirality parameter taking

values which vary from 0 to 2. Assume that the thickness of the slab along the

z axis is d = 5 mm (0 < z < 5 mm) and a plane wave parallel to the plane of

incidence (plane yoz in Fig. 4.15(a)) coming from vacuum is incident on the chiral

slab. The electric and magnetic field vectors are taken to be oriented along the x

and y directions, respectively. The working frequency here is set to 10 GHz. The

wave vector k and index of refraction n of each circularly polarized plane wave in

a chiral nihility slab are plotted versus the chirality parameter in Fig. 4.16. It can

be noted that when <[κ] > <[µrεr], one of the two waves has a negative index of

refraction which corresponds to a backward wave in the chiral slab. For the whole

set of values of κ, a matching of Z is achieved. But a matching of n with that of

free space is achieved only for κ = 1 in this particular case.

Next, in Fig. 4.16, it presents a chiral slab with both the relative permittivity

and permeability having values of 10−5 (very close to 0) and the chirality parameter
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Figure 4.16: Indices of refraction and wave vectors in the chiral nihility slab versus

the chirality.

taking values which vary from 0 to 2. A value close to zero but not exactly zero

will be illustrated in the next section regarding the nihility conditions. The negative

refraction and backward-wave properties are shown.

The transmitted power in vacuum on the right-hand side of a chiral nihility slab

(i.e., region 3 of Fig. 4.15(a)) is plotted versus the angle of incidence θinc for the

different values of permittivity/permeablity, and the results are shown in Fig. 4.17.

Two types of transmission are considered for the incident parallel plane wave: the

nominal transmission which is calculated from the ratio of the parallel transmit-

ted E-field over the parallel incident E-field and the cross transmission which is

calculated from the ratio of the perpendicular transmitted E-field over the parallel

incident E-field.

It can be noted from Fig. 4.17 that the total transmitted power depends strongly

on the value of κ. For κ = 0 (an achiral dielectric medium), the transmitted power
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(a) (b)

(c) (d)

Figure 4.17: Total transmitted power in vacuum on the right side of the chiral

nihility slab (region 3) for different values of εr and µr versus the angle of incidence

θi.
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drops from 1 to 0 when the incident angle of the plane wave is slightly bigger than

zero in the case where εr = µr = 10−5 (Fig. 4.17(a)). For any oblique incidence, the

power transmitted is null. When the values of εr and µr increase simultaneously, a

low pass characteristic is observed; and when εr = µr = 1 is reached, total trans-

mission is obtained for the whole range of incidence varying from 0◦ to 90◦ where a

drop to zero is noted. If chirality is introduced (κ = 0.25), a low pass characteristic

is observed for each set of values for εr and µr (Fig. 4.15(b)). Increasing the values

of εr and µr leads to a widening of the range of incidence where total transmission

occurs. If κ = 0.8 (Fig. 4.17(c)), one can still observe the low pass characteristics,

and the transmissions for εr = µr = 10−5 and εr = µr = 10−2 are the same. In

the case of κ = 1 and εr = µr = 10−5 (Fig. 4.17(d)), the total transmitted power is

unity for any angle of incidence varying from 0◦ to 90◦ where it drops to zero then.

It should be noted that in this case, one of the two eigenwaves in the chiral slab has

a refractive index equal to -1. For εr = µr = 10−2, the drop to zero transmission is

smoother and occurs at a slightly lower incidence. A surprising phenomenon occurs

when εr = µr = 1 together with κ = 1. In fact, the total transmitted power drops

sharply from 1 to 0.5 when the angle of incidence of the plane wave is zero. This is

because only one eigenwave with n = 2 propagates through the chiral medium. At

an oblique incidence from 0◦ to approximately 30◦, only half of the total power is

transmitted. Above 30◦, there is a smooth drop till 90◦ where the power transmitted

is null. One possible and interesting application which needs to be mentioned in this

particular case is a half-power divider for a selective range of incident angles.

Here, let us consider and compare the nihility slab with chiral nihility slab. For
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nihility slab, κ is assumed to be equal to zero when εr = µr = 10−5 by considering

γ = 0 in the Born formalism, since in the exact nihility there is no transportation of

energy. To gain some insights into the behavior of the fields in different regions, the

plots of the real and imaginary parts of the E-field (Ex and Ez components) in these

three regions are presented for the selected value of parameters. In Fig. 4.18, only

Ex component inside and outside the slab is shown when a plane wave is normally

incident (the Ez component is null at 0◦ incidence). Here, one can notice that the

imaginary and real parts of Ex are respectively null and unity inside the slab and we

have also conservation of energy inside the slab. It can be observed that there exists

no phase delay between the front face and the back face of the slab. This slab can

then act as a phase compensator/conjugator. The slab is completely transparent to

the electric field.

Figure 4.18: Electric field and transmitted power as a function of z coordinate when

a normally incident wave illuminates a nihility slab with εr = µr = 10−5 and κ = 0.

For the chiral nihility slab whose chirality is assumbed to be 0.25, Ey component
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(a) (b)

Figure 4.19: Electric field and transmitted power as a function of z coordinate

when a normally incident wave illuminates a chiral nihility slab of medium with

εr = µr = 10−5 and κ = 0.25: (a) Magnitude of real parts and transmitted power;

and (b) Magnitude of imaginary parts.
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is present as shown in Fig. 4.19. Note that here, the two eigenwaves propagating

inside the slab have indices of refraction equal to -0.25 and 0.25, respectively. When

κ = 0.25, the real part of Ex decreases very slightly in the slab (region 2) with a

normally incident plane wave. The Ey component which is null in region 1 increases

linearly to 0.22 in the chiral slab. Concerning the imaginary parts presented in

Fig. 4.19(b), they are both equal to zero inside the slab and there is no phase delay

between the front and back faces of the slab. The cases studied in Fig. 4.18 and

Fig. 4.19 are examples where there is a matching of the wave impedance Z since

εr = µr, but not for the refractive index n. In this section, a matched refractive

index case is presented. Let us consider the case where there also exists a matching of

the index of refraction by considering κ = 1. One of the two eigenwaves propagating

in the slab will have n = 1 and the other backward wave will have n = −1. The

electric field distribution for a normally incident plane wave is presented in Fig. 4.20.

Fig. 4.20(a) shows that the real part of the Ey component takes quite high values

in the slab due to the cross transmission and the power transmitted in region 3 is

equal to 1. In Fig. 4.20(b), it is shown that the imaginary part of Ey arises after

the wave propagates through the slab, while it does not exist in regions 1 and 2.

4.4.2 Constraints and conditions of isotropic/gyrotropic chi-

ral nihility

The physical definition of chiral nihility is that the two eigenwaves have the opposite

propagation constants and that the wave impedance is a finite number. Since the
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(a) (b)

Figure 4.20: Electric field as a function of z coordinate when a normally incident

wave illuminates a slab of medium with εr = µr = 10−5 and κ = 1: (a) Magnitude

of real parts and transmitted power; and (b) Magnitude of imaginary parts.

chiral nihility is so promising in realizing negative refraction, it is of particular

interest to explore the physics of chiral nihility and the conditions to satisfy not only

isotropic chiral nihility, but also the nonreciprocal and gyrotropic chiral nihility.

Isotropic chiral nihility

As discussed in Section 4.2 and Section 4.3, different formalisms of isotropic mag-

netoelectric composites are equivalent, while each formalism of gyrotropic magne-

toelectric composites has its own advantage, either in negative-index description or

in practical application. However, for chiral nihility, the formalism dependence will

be very critical and as we will see, some formalisms are not suitable at all.
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• Constraints of medium formalisms:

1. Tellegen:

The Tellegen’s formalism has been given in Eq. (4.2). When εTµT → 0, the

nihility condition of isotropic chiral media can be represented by

k± = ω(
√
εTµT ± κ

√
ε0µ0) → ±k0κ (4.66)

where k0 is the wave number in free space. Hence, one of the waves becomes back-

ward wave and has a negative refractive index of n = −κ.

In the meantime, the wave impedance of the chiral medium η =
√
µT/εT should

remain finite which means

lim{µT/εT} → const 6= 0,∞. (4.67)

The combination of this relation with the nihility condition implies that εT → 0

and µT → 0.

2. Post:

In the Post’s notation, the constitutive relations are shown in Eq. (4.1). The

mapping relations between the Tellegen and Post formalisms are given below

µP = µT (4.68a)

εP = εT − ε0µ0

µT

κ2 (4.68b)

ξc =

√
ε0µ0

µT
κ. (4.68c)
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The eigenwave numbers in the Post’s formalism are found to be

k± = ω
(√

µP εP + µ2
P ξ

2
c ± µP ξc

)
. (4.69)

Thus, the nihility condition is

µP εP + µ2
P ξ

2
c → 0. (4.70)

The condition in Eq. (4.70) is satisfied if εTµT → 0 because the terms containing

the chirality parameter κ cancel out.

The impedance

η =

√
µP εP + µ2

P ξ
2
c

εP + µP ξ2
c

(4.71)

remains finite if

εP + µP ξ
2
c → 0. (4.72)

Substituting the Post parameters expressed via the Tellegen parameters, one sees

that if the nihility condition in the Post formalism in Eq. (4.70) is satisfied, then

the Tellegen permittivity

εT = εP + µP ξ
2
c → 0, (4.73)

which is consistent with the chiral nihility requirements in terms of the Tellegen

parameters.

3. Drude-Born-Fedorov:
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The Drude-Born-Fedorov (DBF) constitutive relations are

D = εDBF (E + β∇ × E) (4.74a)

B = µDBF (H + β∇ × H), (4.74b)

where β denotes the chirality in DBF formalism. The wave numbers obtained for

the two eigenmodes are given by

k± =
ω
√
εDBFµDBF ± ω2εDBFµDBFβ

1 − ω2εDBFµDBFβ2
(4.75)

and the wave impedance is

η =
√
µDBF/εDBF . (4.76)

In this case, the conditions of chiral nihility look the same as in the Tellegen notation:

εDBF → 0, µDBF → 0. (4.77)

But, if conditions in Eq. (4.77) are satisfied, then k± = 0 unless the DBF chirality

parameter β → ∞. This is, however, consistent with the known relations between

the chirality parameters in the Tellegen notation and the DBF formalism:

εT =
εDBF

1 − k2
DBFβ

2
(4.78a)

µT =
µDBF

1 − k2
DBFβ

2
(4.78b)

κ =
ωµDBF εDBFβ√
ε0µ0(1 − k2

DBFβ
2)
, (4.78c)

where k2
DBF = k2

0εDBFµDBF . Apparently, if µDBF εDBF → 0, κ can remain finite

only if β → ∞. Inversely, if Tellegen’s nihility is fulfilled (εT → 0, µT → 0), we will

have zero values of µDBF and εDBF . Thus, the Tellegen chirality κ will be forced to
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zero in Eq. (4.78c), which is also why such values of ε = µ = 10−5 are set instead of

zero in the numerical part in Section 4.4.1.

Therefore, Tellegen and Post notations are equivalent and equally convenient

to describe isotropic chiral nihility, while the Drude-Born-Fedorov formalism is less

suitable due to the requirement of β → ∞, which lacks physical meanings.

• Nonreciprocal condition:

The constitutive relations for general biisotropic nonreciprocal chiral media in

the Tellegen’s notation can be written in the following form [134]

D = εT E + (χ+ iκ)
√
ε0µ0H (4.79a)

B = µTH + (χ− iκ)
√
ε0µ0E, (4.79b)

where χ is the nonreciprocity parameter. Let us see how the inclusion of the non-

reciprocity parameter would modify the nihility condition. The expression of the

propagation constants of the two eigenwaves is found to be [134]

k± = ω
(√

εTµT − χ2ε0µ0 ± κ
√
ε0µ0

)
. (4.80)

Thus, the nihility condition is

√
εTµT − χ2ε0µ0 → 0. (4.81)

When this condition is satisfied, one has

k± = ω
(√

εTµT − χ2ε0µ0 ± κ
√
ε0µ0

)
→ ±k0κ. (4.82)
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Apparently, the nonreciprocal nihility is easier to achieve than the chiral nihility

εTµT → 0 due to the role of the nonreciprocity parameter, which further reduces

the value of the product of permittivity and permeability.

The wave impedances for a bi-isotropic nonreciprocal medium are found to be

η± =
µT√

εTµT − χ2ε0µ0 ∓ iχ
√
ε0µ0

(4.83)

which are independent on the the chirality parameter κ. If the chiral nihility condi-

tion in Eq. (4.81) is satisfied, the expressions of the impedances then reduce to

η± = ±i µT

χ
√
ε0µ0

= ±iµT

εT
(4.84)

which is a purely imaginary number for lossless media.

It is also found that if Eq. (4.81) is exactly zero, the effective permittivity

and permeability seen by the LCP and RCP waves become also purely imaginary

numbers (for lossless media)

µ±
T = iµT

κ

χ
(4.85a)

ε±T = − µ0

µT

iκχε0. (4.85b)

Let us now consider the case of dispersive biisotropic media with single-resonance

dispersion. The expressions of the permittivity and permeability in Eq. (4.79) read

εT (ω) = ε0
[
1 −

ω2
pe

ω(ω + iΓeωpe)

]
(4.86a)

µT (ω) = µ0

[
1 −

ω2
pm

ω(ω + iΓmωpm)

]
(4.86b)
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where plasma frequency and damping term are assumed to be equal for both polar-

ization and magnetization: ωpe = ωpm = ωp and Γe = Γm = Γ. The nonreciprocity

parameter and the chirality can be described in terms of a quantum mechanical

model analogue to the classical lossy Drude model

χ(ω) =
Γcω

2ω2
c

ω4 − (2 − Γ2
c)ω

2ω2
c + ω4

c

(4.87a)

κ(ω) =
(ω2

c − ω2)ωωc

ω4 − (2 − Γ2
c)ω

2ω2
c + ω4

c

(4.87b)

where ωc is the characteristic frequency for the single-resonance model and the

damping term Γc is consistent with the one for polarization/magnetization (i.e.,

Γc = Γ). Let us call the real part of
√
εT (ω)µT (ω)/ε0µ0 − χ2(ω) the nonreciprocal

nihility parameter (NNP).

Figure 4.21: Nonreciprocal nihility parameter versus frequency for nonreciprocal

chiral material: ωp = 10 × 109 rad/s, ωc = 1 × 109 rad/s, and Γ = 0.1.

In Fig. 4.21, it appears that for ω = 9.95×109 rad/s, NNP is of the order of 10−6

only, the nonreciprocal chiral nihility would then be realized. On the other hand, the
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imaginariy part for NNP is of the order of 0.1 at this frequency. As a consequence,

the forward and backward waves propagating in the medium would be decaying

waves. Thus, the nonreciprocity parameter χ might be used as an additional pa-

rameter to achieve chiral nihility. It is also worth noting that if the bi-isotropic

medium has no dispersion and lossless, the limiting case of χ =
√
εTµT/

√
ε0µ0 im-

plies that this medium carries zero power [134]. However, due to the dispersion, the

lossy chiral medium can still convey some power even if the NNP is very close to

zero. Thus, it can be concluded that dispersive nonreciprocal chiral nihility material

has properties which are quite different from those of the reciprocal chiral nihility

media. These properties are quite unique and interesting, but a detailed study is

currently outside the scope of this thesis.

Correction to a problem in magnetoelectric composites

According to the wavefield theory in [134], the electric and magnetic fields in bi-

isotropic materials (as shown in Eq. (4.2)) can be split into two portions corre-

sponding to their respective polarizations

E = E+ + E− (4.88a)

H = H+ + H−. (4.88b)

Hence, the concept of effective medium can be introduced so that

D± = ε±T E± (4.89a)

B± = µ±
T H±, (4.89b)



THEORY AND APPLICATION OF MAGNETOELECTRIC COMPOSITES 160

where the ε±T and µ±
T are the effective isotropic mediums in equivalence. It can be

found that the following relation between Eq. (4.2) and Eq. (4.89) reads

(εT − ε±T )(µT − µ±
T ) = (χ2 + κ2)ε0µ0. (4.90)

From Eqs. (4.80) and (4.83), the equivalent mediums can be represented by

ε±T =
1

µT

(√
εTµT − χ2ε0µ0 ± κ

√
ε0µ0

)(√
εTµT − χ2ε0µ0 ∓ iχ

√
ε0µ0

)
(4.91a)

µ±
T = µT

√
εTµT − χ2ε0µ0 ± κ

√
ε0µ0√

εTµT − χ2ε0µ0 ∓ iχ
√
ε0µ0

. (4.91b)

A recent paper [157] also discussed the magnetoelectric composites in gyrotropic

form. However, J. Q. Shen ended up with incorrect results due to the misuse of

wavefield theory [134]. Similar notations as used in [157] (the Tellegen formalism)

are employed for the convenience of comparison. The constitutive relations of the

general nonreciprocal bi-isotropic media introduced by Sihvola et al [158] were used

in [157]

D = εε0E + (χ+ iκ)H (4.92a)

B = µµ0H + (χ− iκ)E. (4.92b)

It is certainly a special case of the gyrotropic chiral media, in which the permittivity

and permeability are characterized by gyrotropic tensors

ε =




ε1 −iε2 0

iε2 ε1 0

0 0 ε3




(4.93a)



THEORY AND APPLICATION OF MAGNETOELECTRIC COMPOSITES 161

µ =




µ1 −iµ2 0

iµ2 µ1 0

0 0 µ3




. (4.93b)

Apparently, if the gyroelectric and gyromagnetic parameters are zero (i.e., ε2 =

µ2 = 0), the material becomes bi-isotropic. According to the results obtained by the

equivalent medium theory [134], the equivalent parameters for bi-isotropic materials

can be deduced from [Eq. (6) in [157]] by assuming ε2 = µ2 = 0

ε± =

√
ε1
µ1

[√
ε1µ1 −

χ2

ε0µ0
± κ

√
ε0µ0

]
(4.94a)

µ± =

√
µ1

ε1

[√
ε1µ1 −

χ2

ε0µ0
± κ

√
ε0µ0

]
, (4.94b)

and the wave impedance is then

η± =
√
µ±/ε± =

√
µ1/ε1. (4.95)

Thus, only one impedance is obtained for the two eigenwaves and it is independent

of the nonreciprocity parameter χ and chirality κ. This is quite problematic for a

nonreciprocal medium. Also, Eq. (4.94) is contradictory with my result in Eq. (4.91).

My further derivation shows that the results in [157] are incorrect.

Let us consider the simplest situation (i.e., ε2 = µ2 = 0, ε3 = ε1, and µ3 = µ1)

as a proof. Hence, the bi-isotropic medium can be expressed using J. Q. Shen’s

notation (e.g., i→ j)

D = ε1ε0E + (χ+ jκ)H (4.96a)

B = µ1µ0H + (χ− jκ)E. (4.96b)
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Substituting the above equations into Maxwell equations, we have

∇ × ∇ × E − 2ωκ∇ × E − ω2[ε1µ1ε0µ0 − (χ2 + κ2)] = 0. (4.97)

By using the Bohren’s method on decomposition [159], electromagnetic waves can be

expressed linearly in terms of two right- and left-handed circularly polarized waves

(RCP and LCP). In accordance with Shen’s notation, the subscripts + and − denote

RCP and LCP, respectively. Therefore, the fields E and H are defined as




E

H


 = A




Q−

Q+


 (4.98)

where Q± satisfy the following Helmholtz equations

∇2Q− + k2
−Q− = 0 (4.99a)

∇2Q+ + k2
+Q+ = 0. (4.99b)

By modifying the results of diagonalization, one can end up with

A =




1 −jη+

−j/η− 1


 (4.100)

from which the electromagnetic fields can be presented finally

E = Q− − jη+Q+ (4.101a)

H =
−j
η−

Q− + Q+. (4.101b)

During the process, the wave numbers and wave impedances are found

k± = ω
(√

ε1µ1ε0µ0 − χ2 ± κ
)

(4.102a)

η± =
µ1µ0√

ε1µ1ε0µ0 − χ2 ∓ iχ
, (4.102b)
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which agree with the previous result in Eq. (4.83).

Comparing my results in Eq. (4.102) with Shen’s results in Eq. (4.94), it is

obvious that if the medium is lossless, the equivalent parameters will still possess

imaginary parts, contrary to Shen’s results. On the other hand, I have obtained two

independent wave impedances which are dependent on the nonreciprocity parameter

χ (see Eq. (4.102b)) though the wave number is identical to the results obtained

in [157].

Furthermore, Shen [157] discussed the negative refraction in a magnetoelectri-

cally anisotropic material. Actually, it is just a case of uniaxial Ω-material, which has

been well developed by Tretyakov et al [137]. If it is assumed as χ12 = −χ21 = −iK

(which is certainly one of the kinds of Shen’s “magnetoelectrically anisotropic mater-

ial”), the wave numbers of two mutually perpendicular polarized eigenmodes in [157]

would be

k±a,b = ω(±√
εµ− iK) (4.103)

where K represents the magnetoelectric coupling effect of Ω-shaped particles.

Following all the assumptions made in [157] (i.e., propagation parallel to z-

direction, ε = εI, and µ = µI), one can finally find that the wave numbers of

eigenmodes can be expressed by taking Fourier transform of Maxwell equations

k = ω
√
εµ−K2 (4.104)

which agrees with the results in [137, 160].
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Therefore, it is proved that Shen’s results in [157] are incorrect because the

assumption forced by Shen at the Section IV will simplify the analysis of uniaxial

Ω materials inappropriately, which will lose much information. Instead, if one still

wants to study this case, one has to start from the wave splitting first by imposing

E = Ezẑ + Et (4.105a)

H = Hzẑ + H t (4.105b)

and use Fourier transform in Maxwell equations in the transverse plane and eliminate

the normal fields. After obtaining the transverse components, the normal fields can

thus be expressed by these transverse fields. Finally, the propagation constants for

polarized eigenmodes will be found. Only after this stage, one can assume that the

wave is traveling along z-direction (i.e., transverse wave number kt = 0), and the

proper solutions for the normal propagation can be yielded as in Eq. (4.104).

In summary, when the Beltrami [152] or wavefield theory [134] is involved, one

has to be cautious. For instance, if we consider the most generalized form of mate-

rials

D = εE + ξH (4.106a)

B = ζE + µH. (4.106b)

If all of the parameters in above equations are scalars, the Beltrami/wavefield the-

ory can be employed without restriction. However, if any of the parameters is a

gyrotropy tensor, the wavefield theory cannot be implemented directly. All the for-

mulation has to be started from solving Maxwell’s equations at the very beginning.
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Gyrotropic chiral nihility

Since purely isotropic chiral material are hard to fabricate [161], I also studied the

nihility effects in more general and practical chiral materials, the wave properties of

which have been discussed in Section 4.3.

Although the nonreciprocity parameter in general bi-isotropic media offers an

additional degree of freedom to achieve chiral nihility, the nihility condition is still a

challenge to satisfy in practice due to the difficulty of realizing artificial nonrecipro-

cal bi-isotropic media. In this section, another possibility of creating chiral nihility

is investigated, it concerns gyrotropic chiral media with gyrotropy [149, 150, 162],

either in permittivity/permeability or in magnetoelectric parameters. Introduction

of certain anisotropy or gyrotropy may provide methods to control chirality. This

category of chiral media has three subsets: 1) Ω–medium; 2) chiroplasma medium;

and 3) chiroferrite medium. Although Ω–medium can exhibit negative refraction

and most probably nihility, the investigation is mainly restricted to chiroplasma

and chiroferrite [163]. Chiroplasma can be realized by embedding chiral inclusions

in a magnetically biased plasma, which result in the gyrotropic tensor in permit-

tivity, while chiroferrites can be made from chiral inclusions immersed into ferrites

with biased magnetic fields, which leads to a gyrotropic tensor in permeability. An

example of such media is the generalized form of Faraday chiral media.

Based on the viewpoint of practical application, Post notations are employed to

describe such media as in Eq. (4.15) and the parameters are defined as in Eqs. (4.36)

and (4.52). Looking back into the result of refractive indices shown in Eq. (4.55),



THEORY AND APPLICATION OF MAGNETOELECTRIC COMPOSITES 166

one can further rewrite

n± = c0
[√
ξ2
c (µ± l)2 + (ε± g)(µ± l) − ξc(µ± l)

]
. (4.107)

Therefore, the condition for achieving gyrotropic nihility is:

ξ2
c = −(ε± g)/(µ± l). (4.108)

The off-diagonal elements (i.e., g and l) can be both modified to achieve the nihility

condition. By a proper choice of the off-diagonal elements (i.e., g and l), the gy-

rotropic chiral nihility condition of Eq. (4.108) can be achieved even for media with

low degree of chirality ξc. The frequency under the solid lines in Fig. 4.22 indicates

the valid range to have the gyrotropic chiral nihility.

It can be shown from Fig. 4.22 that the electron collision frequency ωeff plays

an important role in achieving gyrotropic nihility. Only the values on the solid

line where ξ2
c is positive is valid to realize the gyrotropic nihility, provided that

the chirality is real. For high values of ωeff , for instance for ωeff = 0.02 × 109

rad/s, a much higher chirality is needed to match the requirement of gyrotropic

nihility compared to the case when ωeff = 0.5×109 rad/s. The smaller the collision

frequency, the higher the chirality needed to satisfy the nihility condition. Therefore,

the electron collision in the plasma is found to facilitate the chirality control of

gyrotropic nihility. It is due to the fact that self-spin and the collision of electrons

may strengthen the degree of magnetoelectric coupling in gyrotropic chiral media,

which compensates the nihility requirement for chirality.

Therefore, in order to satisfy the condition of gyrotropic nihility, the frequency
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Figure 4.22: Chirality control at the scale of ξ2
c (10−6Siemens2) to satisfy the n−

condition of a gyrotropic nihility for gyrotropic chiral material at different electron

collision frequencies: ωp = 8 × 109 rad/s, ωg = 2 × 109 rad/s, ω0 = 1.5 × 109 rad/s,

and ωM = 6 × 109 rad/s.



THEORY AND APPLICATION OF MAGNETOELECTRIC COMPOSITES 168

should be chosen within a specific range, apart from which gyrotropic chiral ni-

hility can never be realized no matter what the value of the chirality is. Once the

gyrotropic nihility is satisfied, the refractive indices become

nnih
+ = −c0(µ+ l)ξc (4.109)

nnih
− = c0(l − µ)ξc. (4.110)

It can be found that nnih
+ will be negative because of µ + l > 0 (see Eq. (4.52)).

Of particular interest is the negative refraction for nnih
− , which has resonance in the

vicinity of ferromagnetic frequency ω0. At the frequency range 0 < ω < ω−
0 ∪ ω0 +

ωM < ω, negative refraction will occur to nnih
− .

Image of the chiral nihility

Another interesting case is that of a chiral nihility slab backed by a PEC plate.

Negative reflection associated with partial focusing in strong chiral materials backed

by PEC has been reported in [155]. In this part of the thesis, the image of the

chiral nihility is particularly studied so as to replace the PEC with a “mirror”

counterpart. In this way, the material-PEC interface will be changed into material-

material interface, and thus multilayer algorithm as discussed in Section 2.2 can be

employed to describe the multiple wave interaction in the layered structures.

Assuming that the half space z > d is occupied by a perfectly conducting mate-

rials in Fig. 4.15, a linearly polarized wave is normally impinged upon the interface

at z = 0

Einc = ŷEy
ince

ikincz (4.111a)
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H inc = −x̂
Ey

inc

ηinc

eikincz. (4.111b)

Taking into account the boundary conditions at material-material interface (z = 0)

and material-PEC interface (z = d) for x and y components of the electromagnetic

fields, one can rewrite the incident and reflected waves in the region z < 0 and

transmitted waves in the slab (0 < z < d) by setting θi to zero in [129]




Ey
r

0

E+
01

E+
02

E−
01

E−
02

0

0




= Q
−1




0

Ey
inc

Ey
inc

0

0

0

0

0




(4.112)

where E+
01/E

+
02 is the forward RCP/LCP waves inside the slab (0 < z < d) and

E−
01/E

−
02 is the backward RCP/LCP waves inside the slab. Therefore the reflected

wave is found to be copolarized with the incident wave, and the S-parameter for

normal incidence on such a PEC-backed chiral nihility slab can be described in the

Tellegen’s formalism as

S11 =

√
µ
ε
−
√

µ0
ε0√

µ
ε
+

√
µ0
ε0

− e2iω
√

µεd

1 −
√

µ
ε
−
√

µ0
ε0√

µ
ε
+
√

µ0
ε0

e2iω
√

µεd

, (4.113)

where the condition of chiral nihility (
√
µ/ε → finite and

√
µε → 0) further leads
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to

Snih
11 = −1. (4.114)

Hence it is interesting to find that a chiral nihility slab (0 < z < d) backed by a

PEC will behave like a perfect conductor to the normal incident waves. The wave

will be totally reflected at z = 0 with a 180◦ phase change.

Apparently, the above finding is only applicable for chiral nihility slab backed

by PEC. To consider similar problems for gyrotropic chiral nihility, it is better to

introduce a mirror material for the space occupied by PEC. In such problems, the

image properties of gyrotropic chiral nihility have to be first formulated, which can

be certainly reduced to the isotropic chiral nihility. Consider a gyrotropic chiral

nihility filling the half space z > 0 and a perfectly conducting plane is put at z = 0.

Keep in mind that the gyrotropic chiral nihility is a special type of gyrotropic chiral

material defined in Eq. (4.15), which takes the form of Eq. (4.108). In the space of

z > 0 and z < 0, the source-incorporated Maxwell’s equations can be established,

respectively

∇ × E = −∂B
∂t

(4.115a)

∇ × H =
∂D

∂t
+ J (4.115b)

and

∇̌ × Ě = −∂B̌
∂t

(4.116a)

∇̌ × Ȟ =
∂Ď

∂t
+ J̌ (4.116b)

where the ˇ denote the image materials in z < 0 with the removal of PEC. The

conventional boundary conditions still hold so that the tangential electric fields are
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continuous and normal Bz vanishes at z = 0. Thus, the relation of EM fields and

source between the original and mirror materials reads

J = ǏJ̌ (4.117a)

E = ǏĚ (4.117b)

B = −ǏB̌ (4.117c)

where

Ǐ = −I t + ẑẑ. (4.118)

I t is the 2-D unit dyad.

Using the algebraic relationship in [164], i.e.,

∇̌ × A = (Ǐ∇) × A = −Ǐ [∇ × (ǏA)], (4.119)

one can obtain the following relations of the material parameters between original

and mirror gyrotropic chiral materials in Eq. (4.15) by manipulating Eqs. (4.115)-

(4.117)

εP = ε̌P (4.120a)

µP = µ̌P (4.120b)

ξc = −ξ̌c. (4.120c)

Thus, it is straightforward that, if the gyrotropic chiral nihility is present at the

original material in the space z > 0, the mirror counterpart also possesses gyrotropic

chiral nihility but with reversed handedness. In doing so, a PEC bounded problem
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is transformed into a layered problem. The multilayered gyrotropic chiral materials

will be further investigated in Chapter 5 in detail.

If the current problem is reduced to an isotropic case (a chiral nihility slab

backed by a PEC), it can be seen that the image of isotropic chiral nihility can

be depicted by −ξc. According to the definition of handedness, if the condition

of chiral nihility [70] is realized by the wire-loop configuration in Fig. 4.1, one can

use the same structure simply by replacing the clockwise spirals with anti-clockwise

spirals to achieve negative chiral nihility. Paring those two structures together will

lead to an interesting bilayer device. Due to the insulation of this bilayer, the wave

can never be transmitted to the other side of such device, because each layer in

such bilayer can, in turn, behave as a effective PEC depending on the propagation

direction.

4.5 Summary

In this chapter, the electromagnetic theory of magnetoelectric composites are in-

tensively investigated, with the particular interest in realization of backward-wave

and negative-index regimes. Wide applications in resonator, phase compensator,

directive antennas and quantum devices are also reported. Different medium for-

malisms of isotropic and gyrotropic magnetoelectric composites are discussed, and

it is found that for isotropic magnetoelectric cases the formalisms are all equivalent,

while for gyrotropic magnetoelectric cases each formalisms have pros and cons in
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the viewpoints of NIM realization and practical application. The Post’s formalism

is therefore found to be more suitable to describe the gyrotropic magnetoelectric

composites. The gyrotropy parameters also favor the realization of negative re-

fraction because they will make the wave propagate backward. The eigenmodes at

backward-wave regime and their frequency ranges are discussed for dispersive gy-

rotropic magnetoelectric composites. Based on that, the negative refraction can be

achieved by a selection of working frequency. As more interesting cases, the chiral

nihility, isotropic and gyrotropic, are examined. The energy transport in chiral ni-

hility is extensively examined. The effects of magnetoelectric coupling in the energy

transport are characterized through numerical studies. A wide range of Brewster

angles is discovered and electromagnetic wave through a chiral nihility slab is stud-

ied. In the following, general nihility routes for magnetoelectric composites to NIMs

are proposed for isotropic, nonreciprocal and gyrotropic chiral composites, where

the requirements to meet respective nihility condition such as frequency control and

chirality control are also presented. For the isotropic chiral nihility, the Drude-

Born-Fedorov formalism is proven to be inappropriate due to the lack of physics.

A nonreciprocal chiral nihility is thus shown, which makes the nihility condition

easier to fulfill. Furthermore, the gyrotropic chiral nihility, based on the previous

study on gyrotropic chiral composites Section 4.3, is investigated and one can find

that it provides more degrees of freedom to meet the nihility condition due to the

contributions of gyrotropic parameters. Chirality control is presented and it reveals

that more of electron collision in plasma could alleviate the chirality requirement

for gyrotropic chiral nihility. Finally, the total reflection by a slab of chiral nihility
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backed by PEC is founded by studying the S-parameters, and the image of chiral

nihility is formulated in the presence of PEC. Based on the theoretical findings,

some interesting applications are discussed.



Chapter 5

Macroscopic solutions to

Maxwell’s equations for

inhomogeneous composites

In view of the inhomogeneity of various types and arrangments in composites, it

invloves many intricacies in their rigorous modeling and characterization, theoreti-

cally as well as experimentally. Their eligibility as benchmarks or certified reference

materials justifies their investigation for the purpose of material and instrumenta-

tion calibration, beyond the existing wide interest in them for other purposes and

applications. Such composite specimens can be devised to yield a set of tailored and

calculable material systems.

In analytical electromagnetic modeling, the macroscopic solutions to Maxwell’s

equations become meaningful. Such solutions provide the electromagnetic proper-

175
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ties of periodically structured composites in a macroscopic view. In this respect, two

issues are of great importance in the macroscopic studies of inhomogeneous compos-

ites: the Green’s functions [165] and the homogenization process [166]. However, the

conventional senses of these issues have respective drawbacks. For instance, conven-

tional Green’s functions can not provide an analytical series of results in a compact

form, and homogenization process cannot consider the strong internal interaction or

shape effects. Hence, the macroscopic modeling techniques presented in this chapter

are developed at advanced levels, providing more direct and accurate descriptions

of systematic responses of inhomogeneous composites.

In the first half of this chapter, I will discuss the dyadic Green’s functions char-

acterization for a particular type of magnetoelectric composites: gyrotropic chiral

composites. This type of composites has been intensively investigated in Chapter 4,

especially on addressing its possibility of realizing negative refraction, electromag-

netic wave properties, and advantages over normal chiral materials. Due to its gener-

ality in constitution and potentials in application, dyadic Green’s functions (DGFs)

are constructed for unbounded and layered structured gyrotropic chiral composites.

DGFs can be regarded as a dielectric response or a mathematical kernel, relating

electromagnetic scattering/radiation with the structure’s geometry/parameter and

the illumination.

In contrast to the DGF interpretation, the effective medium theory based on

improved homogenization will be proposed as a complementary interest in the sec-

ond half of this chapter. The improved homogenization is based on the rigorous
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limit process instead of conventional averaging operations (e.g. Maxwell-Garnett

and Bruggeman mixing rules). Also, the theorem will be extended to the most

general case: bianisotropic composites. This mathematical tool, which employs the

partial differential equations to describe the physical problem, is used to define the

problems on the elementary period that identifies the fine periodic structure. From

the solution, the macroscopic properties of the mixtures can be easily deduced,

so that complex composites can be studied, avoiding unacceptable computational

burden required by the solution to the electromagnetic field problem in the origi-

nal inhomogenous domain. Therefore, it can be straightforwardly applied to study

any composites of complex shape, either natural or artificial. Although the dyadic

Green’s functions have not been formulated for layered bianisotropic composites, the

two theorems (i.e., DGFs and improved homogenization) can be still incorprated in

many sub-cases in engineering. Once the effective medium paramters are deter-

mined, the electromagnetic waves in the composite and in near-/far- region outside

the composite can be analytically determined.

5.1 Dyadic Green’s functions for gyrotropic chiral

composites

5.1.1 Introduction

Since gyrotropic chiral composites play an important role in the realm of the negative-

index materials, further interests are extended to the macroscopic characterization
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of the structured gyrotropic chiral composites where Green’s dyadics are constructed

for various layered structures. The interaction between materials and electromag-

netic waves is an important aspect in material characterization, Green dyadics are

of particular interest for gyrotropic chiral media, which can describe the wave in-

teraction in a macroscopic view. Dyadic Green’s functions [165], which relate di-

rectly the radiated electromagnetic fields and the source distribution, provide a good

way to characterize the macroscopic performance of artificial complex media includ-

ing metamaterials. DGFs are powerful and can solve both source-free and source-

incorporated boundary value problems for electromagnetic scattering, radiation, and

propagation [167]. However DGFs in complex media like gyrotropic or metamate-

rials have not been well studied especially in multilayered structures, though the

DGFs for some isotropic [168], chiral [169], anisotropic [170], chiroplasma [171] and

bianisotropic [172] media have been formulated over the last three decades. The

technique of eigenfunctional expansion provides a systematic approach in electro-

magnetic theory for interpreting various electromagnetic representations [95]. Most

importantly, it is applicable in almost all the fundamental coordinates. Even in the

cylindrical structure considered in detail in this section, the eigenfunctional expan-

sion technique can provide an explicit form of the dyadic Green’s functions, so that

it becomes easy and convenient when the source distribution is independent from

the azimuth directions or when the far-zone fields are computed. In the formula-

tion of the dyadic Green’s functions and their scattering coefficients, three cases

are considered, i.e., the current source is immersed in (1) the intermediate, (2) the

first, and (3) the last regions, respectively. As compared to the existing results,
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the present work mainly contributes to: (1) the exact representation of the dyadic

Green’s functions, with irrotational part extracted out, for the gyrotropic chiral

medium in multi-layered geometry, (2) scattering Green’s dyadics in each layer are

determined by a compact form of recurrence matrices, (3) due to the generality of

the obtained DGFs, the present results can be reduced to either layered chiroferrite,

chiroplasma or other simpler cases. After DGFs are obtained, the electromagnetic

fields can be formulated analytically, provided that the source is known.

5.1.2 Preliminaries for DGFs in unbounded space

The gyrotropic chiral medium’s constitution relations are described by the Post’s

relations:

D = ε · E + iξcB (5.1a)

H = iξcE + µ−1 · B, (5.1b)

where the gyrotropy in ε and µ has been given in Eqs. (4.17), (4.19) and (4.20).

Substituting Eq. (5.1) into the source incorporated Maxwell’s equations, it is

shown

∇ ×
[
α · ∇ × E

]
− 2ωξc∇ × E − ω2ε · E = iωJ . (5.2)

The electric field can thus be expressed in terms of the DGF and an electric source

distribution as follows:

E(r) = iω
∫

V ′
Ge(r, r

′) · J(r′) dV ′, (5.3)
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where V ′ denotes the volume occupied by the source. Substituting Eq. (5.3) into

Eq. (5.2) leads to

∇ ×
[
α · ∇ × Ge

]
− 2ωξc∇ × Ge − ω2ε · Ge = Iδ(r − r′), (5.4)

where I and δ(r − r′) denote the identity dyadic and Dirac delta function, respec-

tively.

According to the well-known Ohm-Rayleigh method, the source term in Eq. (5.4)

can be expanded in terms of the solenoidal and irrotational cylindrical vector wave

functions in cylindrical coordinates. Thus, it is obtained

Iδ(r − r′) =
∫ ∞

0
dλ
∫ ∞

−∞
dh

∞∑

n=−∞

[
Mn(h, λ)An(h, λ)

+Nn(h, λ)Bn(h, λ) + Ln(h, λ)Cn(h, λ)
]

(5.5)

where the vector wave functions M , N and L in cylindrical coordinate system are

defined as

Mn(h, λ) = ∇ × [Ψn(h, λ)ẑ] , (5.6a)

Nn(h, λ) =
1

kλ

∇ × Mn(h, λ), (5.6b)

Ln(h, λ) = ∇ [Ψn(h, λ)] , (5.6c)

with kλ =
√
λ2 + h2, and the generating function given by Ψn(h, λ) = Jn(λρ)e

i(nφ+hz).

The coefficients An(h, λ), Bn(h, λ), and Cn(h, λ) in Eq. (5.5) are to be deter-

mined from the orthogonality relations among the cylindrical vector wave func-

tions. Therefore, scalar-dot multiplying both sides of Eq. (5.5) with M−n′(−h′,−λ′),

N−n′(−h′,−λ′) and L−n′(−h′,−λ′) each at a time and integrating them over the
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entire source volume, one can obtain from the orthogonality that

An(h, λ) =
1

4π2λ
M ′

−n(−h,−λ) (5.7a)

Bn(h, λ) =
1

4π2λ
N ′

−n(−h,−λ) (5.7b)

Cn(h, λ) =
λ

4π2(λ2 + h2)
L′

−n(−h,−λ). (5.7c)

The unbounded dyadic Green’s function can thus be expanded as follows:

G0(r, r
′) =

∫ ∞

0
dλ
∫ ∞

−∞
dh

∞∑

n=−∞

[
Mn(h, λ) an(h, λ)

+Nn(h, λ) bn(h, λ) + Ln(h, λ) cn(h, λ)
]
, (5.8)

where the vector expansion coefficients an(h, λ), bn(h, λ) and cn(h, λ) are unknown

vector coefficients to be determined from the orthogonality and permittivity and

permeability tensors’ properties. To obtain these unknown vectors, Eq. (5.8) and

Eq. (5.5) are substituted into Eq. (5.4), noting the instinct properties of the vector

wave functions of

∇ × Nn(h, λ) = kλMn(h, λ) (5.9a)

∇ × Mn(h, λ) = kλNn(h, λ) (5.9b)

∇ × Ln(h, λ) = 0. (5.9c)

One can thus obtain

∫ ∞

0
dλ
∫ ∞

−∞
dh

∞∑

n=−∞

[
Mn(h, λ)An(h, λ) + Nn(h, λ)Bn(h, λ) + Ln(h, λ)Cn(h, λ)

]

=
∫ ∞

0
dλ
∫ ∞

−∞
dh

∞∑

n=−∞

{
∇ ×

[
α · kλ

(
Nn(h, λ)an(h, λ) + Mn(h, λ)bn(h, λ)

)]
−

2kλωξc
[
Nn(h, λ)an(h, λ) + Mn(h, λ)bn(h, λ)

]
−

ω2ε ·
[
Mn(h, λ)an(h, λ) + Nn(h, λ)bn(h, λ) + Ln(h, λ)cn(h, λ)

]}
. (5.10)
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By substituting Eq. (5.8) into Eq. (5.4), taking respectively the anterior scalar prod-

uct of Eq. (5.10) with the vector wave equations, and performing the integration over

the entire source volume, one can formulate the equations satisfied by the unknown

vectors and the known scalar and vector parameters in a matrix form given by

[Φ][X] = [Θ] (5.11)

where

[Φ] =




h2αt + λ2αz − ω2ε −
(

ω2hg
kλ

+ kλhσ + 2ωξckλ

)
iω2g

−
(

ω2hg
kλ

+ kλhσ + 2ωξckλ

)
k2

λαt − ω2 h2ε+λ2εz

k2
λ

−ω2 ih
kλ

(εz − ε)

−iω2 λ2

k2
λ
g ω2 ihλ2

k3
λ

(εz − ε) −ω2 h2εz+λ2ε
k2

λ




and [X] and [Θ] are known and parameter column vectors given by

[X] =
[
an(h, λ), bn(h, λ), cn(h, λ)

]T
, and [Θ] =

[
An(h, λ),Bn(h, λ),Cn(h, λ)

]T
.

After solving Eq. (5.11), the solutions to an(h, λ), bn(h, λ) and cn(h, λ) are

shown as follows

an(h, λ) =
1

Γ
[α1An(h, λ) + β1Bn(h, λ) + γ1Cn(h, λ)]

bn(h, λ) =
1

Γ
[α2An(h, λ) + β2Bn(h, λ) + γ2Cn(h, λ)]

cn(h, λ) =
1

Γ
[α3An(h, λ) + β3Bn(h, λ) + γ3Cn(h, λ)]

where

Γ = εzαt(k
2
λ − k2

1)(k
2
λ − k2

2)/αz (5.13)

and

k2
1,2 =

1

2εzαt/αz

[
− pλ ±

√
p2

λ + 4εzαt/αzqλ

]
(5.14)
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with pλ and qλ given respectively below:

pλ = [(αt/αz)
2 − (σ/αz)

2]h2ε− 4hεξcωσ/α
2
z −

[4ε(ξc/αz)
2 + εεz/αz]ω

2 + (g2 − ε2)ω2αt/α
2
z − h2εzαt/αz (5.15a)

qλ = −[(αt/αz)
2 − (σ/αz)

2]h4εz + 4h2(2hξc + gω)εzωσ/α
2
z +

εz
α2

z

[4h2ξ2
c + 4ghξcω + (g2 − ε2)ω2 + 2αth

2εεz]ω
2. (5.15b)

It should be noted that the coupling coefficients β1, γ1, α2, γ2, α3 and β3 were

assumed to be zero in [171]. Here it is proved that those coupling coefficients must

be considered in the formulation since they are not always zero, and the coupling

coefficients α1,2,3, β1,2,3 and γ1,2,3 are given in detail below

α1 =
αt

α2
z

(h2εz + λ2ε) − 1

α2
z

ω2εεz, (5.16a)

α2 = β1 =
1

kλα2
z

[
ihαa(h

2εz + λ2ε) + 2ξc(h
2εz + ελ2)ω + hgεzω

2
]
, (5.16b)

γ1 = −k
2
λ

λ2
α3 =

i

α2
z

[
gk2

λαt + ih2αa(ε− εz) + 2hξc(ε− εz)ω − gεzω
2
]
,(5.16c)

γ2 = −k
2
λ

λ2
β3

=
i

kλ

[
h(h2 αt

αz
+ λ2)(ε− εz)/αz + ighk2

λαa/α
2
z

+2gξck
2
λω/α

2
z − h(ε2 − εεz − g2)ω2/α2

z

]
, (5.16d)

β2 =
1

k2
λ

[
(h2 αt

αz

− λ2)(h2εz + λ2ε)/αz − (h2εεz + λ2(ε2 − g2))ω2/α2
z

]
,(5.16e)

γ3 =
1

ω2

{
− k2

λ

(
h2α

2
t + α2

a

α2
z

+ λ2 αt

αz

)
+ 4ihk2

λαaξcω/α
2
z

+
[
k2

λεαt +
h2αt + λ2αz

k2
λ

(h2ε+ λ2εz) + 2ih2gαa + 4k2
λξ

2
c

]
ω2/α2

z

+4ghξcω
3/α2

z +
1

k2
λ

[
h2(g2 − ε2) − λ2εεz

]
ω4/α2

z

}
. (5.16f)

Note that there are some special relations between vectors L and N as shown
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below:

Ln(h, λ) = Lnt(h, λ) + Lnz(h, λ) (5.17a)

L′
−n(−h,−λ) = L′

−nt(−h,−λ) + L′
−nz(−h,−λ) (5.17b)

Nn(h, λ) = Nnt(h, λ) + Nnz(h, λ) (5.17c)

N ′
−n(−h,−λ) = N ′

−nt(−h,−λ) + N ′
−nz(−h,−λ) (5.17d)

Lnt(h, λ) =
−ikλ

h
Nnt(h, λ) (5.17e)

L′
−nt(−h,−λ) =

ikλ

h
N ′

−nt(−h,−λ) (5.17f)

Lnz(h, λ) =
ihkλ

λ2
Nnz(h, λ) (5.17g)

L′
−nz(−h,−λ) =

−ihkλ

λ2
N ′

−nz(−h,−λ) (5.17h)

where the subscripts t and z denote respectively the transverse component and

the longitude component and they apply similarly for the primed functions. Thus

Eq. (5.8) is rewritten as follows:

G0(r, r
′) =

∫ ∞

−∞
dh
∫ ∞

0
dλ

∞∑

n=−∞

1

4π2λΓ

{
τ1Mn(h, λ)M ′

−n(−h,−λ)

+τ2
[
Mn(h, λ)N ′

−nt(−h,−λ) + Nnt(h, λ)M ′
−n(−h,−λ)

]

+τ3
[
Mn(h, λ)N ′

−nz(−h,−λ) + Nnz(h, λ)M ′
−n(−h,−λ)

]

+τ4
[
Nnt(h, λ)N ′

−nz(−h,−λ) + Nnz(h, λ)N ′
−nt(−h,−λ)

]

+τ5Nnt(h, λ)N ′
−nt(−h,−λ) + τ6Nnz(h, λ)N ′

−nz(−h,−λ)
}
, (5.18)

where the intermediates τ1 to τ6 are defined as

τ1 = α1 (5.19a)

τ2 = β1 +
iλ2

kλh
γ1 (5.19b)
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τ3 = β1 −
ih

kλ
γ1 (5.19c)

τ4 = β2 −
ih

kλ
γ2 −

ikλ

h
β3 − γ3 (5.19d)

τ5 = β2 +
iλ2

kλh
γ2 −

ikλ

h
β3 +

λ2

h2
γ3 (5.19e)

τ6 = β2 −
ih

kλ
γ2 +

ihkλ

λ2
β3 +

h2

λ2
γ3. (5.19f)

By applying the idea of Tai [165] to obtain an exact expression of the irrotational

term, it can be formlated from Eq. (5.5):

ẑẑδ(r − r′) =
∫ ∞

0
dλ
∫ ∞

−∞
dh

∞∑

n=−∞

1

4π2λ

k2
λ

λ2
Nnz(h, λ)N ′

−nz(−h,−λ). (5.20)

Apparently, the irrotational term of the unbounded DGF is contained in the dyadic

hybrid mode of Nnz(h, λ)N ′
−nz(−h,−λ).

After careful algebraic manipulations, Eq. (5.18) can be rewritten in the follow-

ing form

G0(r, r
′) = − αz

ω2εzαt
ẑẑδ(r − r′) +

∫ ∞

−∞
dh
∫ ∞

0
dλ×

∞∑

n=−∞

1

4π2λΓ

{
τ1Mn(h, λ)M ′

−n(−h,−λ)

+τ2
[
Mn(h, λ)N ′

−nt(−h,−λ) + Nnt(h, λ)M ′
−n(−h,−λ)

]

+τ3
[
Mn(h, λ)N ′

−nz(−h,−λ) + Nnz(h, λ)M ′
−n(−h,−λ)

]

+τ4
[
Nnt(h, λ)N ′

−nz(−h,−λ) + Nnz(h, λ)N ′
−nt(−h,−λ)

]

+τ5Nnt(h, λ)N ′
−nt(−h,−λ) + τ7Nnz(h, λ)N ′

−nz(−h,−λ)
}
, (5.21)

where

τ7 = β2 +
1

ω2λ2
k2

λ)(k
2
λ − k2

1)(k
2
λ − k2

2 +
h

λ2
(ikλβ3 + hγ3) −

ih

kλ

γ2. (5.22)
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The first term of Eq. (5.21) is due to the contribution from the non-solenoidal vector

wave functions. The second integration term can be evaluated by making use of the

residue theorem either in the λ-domain or h-domain. This irrotational part of DGFs

in a gyrotropic chiral medium (the material discussed in Chapter 4) is obtained for

the first time when the eigenfunction expansion technique is applied. This irro-

tational part in specific cases agrees with the previous solutions of a chiroplasma

medium by letting αz = αt = 1/µ or an isotropic medium by letting εz = ε further

if we first set g = w = 0.

Evaluation in λ-domain

If the residue theorem is applied in the radial plane, the final expression of the

unbounded DGFs can be obtained after mathematical manipulations for ρ >
< ρ′

G0(r, r
′) = − αz

ω2εzαt
ẑẑδ(r − r′) +

i

4π

∫ ∞

−∞
dh

∞∑

n=−∞

αz

εzαt(k2
1 − k2

2)

2∑

j=1

(−1)j+1

λ2
j

×




M
(1)
n,h(λj)P

′
−n,−h(−λj) + Q

(1)
n,h(λj)M

′
−n,−h(−λj)

+ U
(1)
n,h(λj)N

′
−nt,−h(−λj) + V

(1)
n,h(λj)N

′
−nz,−h(−λj), ρ > ρ′;

Mn,h(−λj)P
′(1)
−n,−h(λj) + Qn,h(−λj)M

′(1)
−n,−h(λj)

+ Un,h(−λj)N
′(1)
−nt,−h(λj) + V n,h(−λj)N

′(1)
−nz,−h(λj), ρ < ρ′.
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The vector functions, P ′
−n,−h(−λj), Qn,h(λj), Un,h(λj) and V n,h(λj) in Eq. (5.23),

are given respectively by

P ′
−n,−h(−λj) = τ1M

′
−n,−h(−λj) + τ2N

′
−nt,−h(−λj) + τ3N

′
−nz,−h(−λj)

Qn,h(λj) = τ2Nnt,h(λj) + τ3Nnz,h(λj)

Un,h(λj) = τ5Nnt,h(λj) + τ4Nnz,h(λj)

V n,h(λj) = τ4Nnt,h(λj) + τ7Nnz,h(λj).

(5.23)

Evaluation in h-domain

The contour integration for z >
< z′ in planar geometry yields four sets of solutions

corresponding to four different waves of wave numbers hi (i=1, 2, 3, and 4), which

can be found by rewriting Γ = 0 in Eq. (5.13) in the h-domain and solving the

fourth-order polynomial equation in Mathematica 5.2 package.

For z > z′, the DGF is given by

G0(r, r
′) = − αz

ω2εzαt

ẑẑδ(r − r′) +
i

2π

∫ ∞

0
dλ

∞∑

n=−∞

αz

εzαtλ(h1 − h2)
×

2∑

j=1

(−1)j+1

(hj − h3)(hj − h4)

{
Mn,λ(hj)P

′
−n,−λ(−hj) + Qn,λ(hj)M

′
−n,−λ(−hj)

+Un,λ(hj)N
′
−nt,−λ(−hj) + V n,λ(hj)N

′
−nz,−λ(−hj)

}
. (5.24)

For z < z′, the DGF is the same as that for z > z′, except for the following

replacement to be made

1

λ(h1 − h2)

2∑

j=1

(−1)j+1

(hj − h3)(hj − h4)
=⇒ 1

λ(h3 − h4)

4∑

j=3

(−1)j+1

(h1 − hj)(h2 − hj)
.



MACROSCOPIC SOLUTIONS TO MAXWELL’S EQUATIONS... 188

The vector wave functions, P n,λ(hj), Qn,λ(hj), Un,λ(hj) and V n,λ(hj) in Eq. (5.24),

are given respectively by

P ′
−n,−λ(−hj) = τ1M

′
−n,−λ(−hj) + τ2N

′
−nt,−λ(−hj) + τ3N

′
−nz,−λ(−hj),

Qn,λ(hj) = τ2Nnt,λ(hj) + τ3Nnz,λ(hj),

Un,λ(hj) = τ5Nnt,λ(hj) + τ4Nnz,λ(hj),

V n,λ(hj) = τ4Nnt,λ(hj) + τ7Nnz,λ(hj).

(5.25)

Now, a complete representation of the DGFs for an unbounded gyrotropic chiral

medium has been constructed. It can be seen that an irrotational term has been

extracted and these general DGFs are reducible to those of anisotropic, gyroelectric,

chiroferrite, and isotropic media. In the presence of interfaces in layered strucutres,

the multiple scatterings and transmissions must be taken into account. Hence, scat-

tering DGFs are modeled to consider thess aspects. The cylindrically multilayered

and planarly multilayered cases will be discussed subsequently.

5.1.3 Scattering DGFs in cylindrical layered structures

In this part, theoretical analysis is extended to derive scattering DGFs for the f -

th region assuming that the current source is located in the s-th layer. As such,

the scattering DGFs have a form similar with the unbounded DGF as given in

Eq. (5.23). The expression for the scattering DGFs for each region of the layered

gyrotropic chiral media can be constructed as

G
(fs)
s = G1 + G2 (5.26)
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where the dyadics Gj (j = 1, 2) are given below by Eq. (5.27)

Gj =
i

4π

∫ ∞

0
dh

∞∑

n=0

αzs(2 − δ0
n)(−1)j+1

εzsαts(k
2
1s − k2

2s)λ
2
js

×
{
(1 − δN

f )M
(1)
n,h(λ

f
j )
[
(1 − δ1

s)A
fs
MjP

′
−n,−h(−λs

j) + (1 − δN
s )Bfs

MjP
′(1)
−n,−h(λ

s
j)
]

+(1 − δN
f )Q

(1)
n,h(λ

f
j )
[
(1 − δ1

s)A
fs
QjM

′
−n,−h(−λs

j) + (1 − δN
s )Bfs

QjM
′(1)
−n,−h(λ

s
j)
]

+(1 − δN
f )U

(1)
n,h(λ

f
j )
[
(1 − δ1

s)A
fs
UjN

′
−nt,−h(−λs

j) + (1 − δN
s )Bfs

UjN
′(1)
−nt,−h(λ

s
j)
]

+(1 − δN
f )V

(1)
n,h(λ

f
j )
[
(1 − δ1

s)A
fs
V jN

′
−nz,−h(−λs

j) + (1 − δN
s )Bfs

V jN
′(1)
−nz,−h(λ

s
j)
]

+(1 − δ1
f)Mn,h(−λf

j )
[
(1 − δ1

s)C
fs
MjP

′
−n,−h(−λs

j) + (1 − δN
s )Dfs

MjP
′(1)
−n,−h(λ

s
j)
]

+(1 − δ1
f)Qn,h(−λ

f
j )
[
(1 − δ1

s)C
fs
QjM

′
−n,−h(−λs

j) + (1 − δN
s )Dfs

QjM
′(1)
−n,−h(λ

s
j)
]

+(1 − δ1
f)Un,h(−λf

j )
[
(1 − δ1

s)C
fs
UjN

′
−nt,−h(−λs

j) + (1 − δN
s )Dfs

UjN
′(1)
−nt,−h(λ

s
j)
]

+(1 − δ1
f)V n,h(−λf

j )
[
(1 − δ1

s)C
fs
V jN

′
−nz,−h(−λs

j) + (1 − δN
s )Dfs

V jN
′(1)
−nz,−h(λ

s
j)
]}

(5.27)

where multiple transmissions and reflections have been taken into account, λjf =

√
k2

jf − h2 and the subscript f implies the f -th region. The ABCD coefficients

are scattering DGF coefficients to be determined from the boundary conditions.

By considering the multiple transmissions and reflections, the scattering DGFs are

thus constructed physically by inspecting Eq. (5.27) and taking into account all the

possible physical modes in the presence of the multiple interfaces as shown in the

Fig. 5.1.

For instance, if the source is located in the first/last region (i.e., 1 − δ1
s =

0/1 − δN
s = 0), the wavelets in the scattering DGFs are only excited by inward-

coming/outward-going wavelets with excitation functions [P
′(1)
−n,−h(λjs), M

′(1)
−n,−h(λjs),
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Figure 5.1: Geometry of cylindrical layered gyrotropic chiral media.

N
′(1)
−nt,−h(λjs), N

′(1)
−nz,−h(λjs)] / [P ′

−n,−h(−λjs), M ′
−n,−h(−λjs), N ′

−nt,−h(−λjs),

N ′
−nz,−h(−λjs)]. When the source point is located in any other layer, the excita-

tion functions consist of both outward-going and inward-coming wavemodes. If the

observation point is in the first/last region (i.e., 1 − δ1
f = 0/1 − δN

f = 0), the field

expansions consist of only outward-going/inward-coming wavemodes.

Based on the principle of scattering superposition, we have

G
(fs)
e (r, r′) = G0(r, r

′)δs
f + G

(fs)
s (r, r′), (5.28)

where Ge and G0 denote the total and unbounded electric DGFs respectively and

superscripts f and s respectively denote the field point located in the f -th region

and the source located in the s-th region. G0 has been derived in Section 5.1.2.

The boundary conditions that must be satisfied by the dyadic Greens’ functions

at the interface of regions f and f + 1 at ρ = ρf (f = 1, 2, . . . , N − 1) are shown as
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follows:

ρ̂ × G
(fs)
e (r, r′) = ρ̂ × G

[(f+1)s]
e (r, r′), (5.29a)

ρ̂ ×
[
αf · ∇ × G

(fs)
e (r, r′) − ωξcfG

(fs)
e (r, r′)

]

= ρ̂ ×
[
αf+1 · ∇ × G

[(f+1)s]

e (r, r′) − ωξc(f+1)G
[(f+1)s]

e (r, r′)
]
. (5.29b)

Recursive matrix for scattering coefficients

Based on the multilayer algorithm developed in Section 2.2, a recursive matrix is

formulated so as to determine those unknown scattering coefficients. By using the

boundary conditions, a set of linear equations satisfied by scattering coefficients can

be obtained and then represented by a series of compact matrices as follows:

[
Flj(f+1)

]
·
{[

Υlj(f+1)s

]
+ δs

f+1

[
U(f+1)

]}
=
[
Fljf

]
·
{[

Υljfs

]
+ δs

f

[
Df

]}
. (5.30)

The intermediate matrices in Eq. (5.30) are defined as

[FMjf ] =




∂h̄j WM1

∂j WM2




T

(5.31a)

[FLjf ] =




(
τpjf nh

ρf
+ τqjfλ

2
jf)

h̄j

kλjf
WL1

(
τpjf nh

ρf
+ τqjfλ

2
jf)

j

kλjf
WL2




T

(5.31b)

where

WM1 =

(
αtfnh

ρf
+ αzfλ

2
jf

)
h̄j − (ωξcf + hσf ) ∂h̄j (5.31c)

WM2 =

(
αtfnh

ρf
+ αzfλ

2
jf

)
j − (ωξcf + hσf ) ∂j (5.31d)
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WL1 = ∆p
qjfαtf∂h̄j +

(
hλ2

jf

k2
λjf

− n

ρf

)
∆p

qjfσf h̄j −

ωξcf

(
hnτpjf

kλjfρf
+
λ2

jfτqjf

kλjf

)
h̄j (5.31e)

WL2 = ∆p
qjfαtf∂j +

(
hλ2

jf

k2
λjf

− n

ρf

)
∆p

qjfσfj −

ωξcf

(
hnτpjf

kλjfρf

+
λ2

jfτqjf

kλjf

)
j. (5.31f)

As in the matrices [FLjf ], the subscript L denotes Q, U , or V , which comes in

pair with ∆2
3jf

, ∆4
5jf

or ∆4
7jf

, respectively, with the definition of

∆p
qjf =

h2(τpjf − τqjf) + k2
λjfτqjf

kλjf
. (5.31g)

For simplicity, the followings are defined

h̄j = H(1)
n (λjfρf ), (5.32a)

∂h̄j =
d
[
H(1)

n (λjfρ)
]

dρ

∣∣∣
ρ=ρf

, (5.32b)

j = Jn(λjfρf ), (5.32c)

∂j =
d
[
Jn(λjfρ)

]

dρ

∣∣∣
ρ=ρf

. (5.32d)

The terms τ2jf , τ3jf , τ4jf , τ5jf , and τ7jf are the weighting factors associated with

the scattering coefficients Afs
lj and Bfs

lj where l = M, Q, U , or V . They have the

same forms as those in Eqs. (5.19) and (5.22) with the only change that each term

relating to wave numbers (e.g., λ) will have a subscript of jf (e.g., λjf) and each

term relating to material parameters (e.g., εz) will have a subscript of f (e.g., εzf )

where j = 1, 2 and f represents the f -th region. The following matrices are also

used in the formulation:

[Υlj,fs] =




Afs
lj Bfs

lj

Cfs
lj Dfs

lj



, (5.33a)
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[Uf ] =




1 0

0 0


 , (5.33b)

[Df ] =




0 0

0 1


 . (5.33c)

By defining the following transmission T-matrix

[Tljf ] =
[
Flj,(f+1)f

]−1
· [Flj,ff ] (5.34)

where
[
Flj,(f+1)f

]−1
is the inverse matrix of

[
Flj,(f+1)f

]
, the linear equation can be

expressed by

[
Υlj,(f+1)s

]
= [Tljf ] ·

{
[Υlj,fs] + δs

f [Df ]
}
− δs

f+1

[
U(f+1)

]
. (5.35)

To shorten the expression, a matrix is defined

[
TK

lj

]
2×2

= [Tlj,N−1] [Tlj,N−2] · · · [Tlj,K+1] [Tlj,K]

=



TK

lj,11 TK
lj,12

TK
lj,21 TK

lj,22


 . (5.36)

It should be noted that the coefficient matrices of the first and the last regions have

the following specific forms

[Υlj,1s] =



A1s

lj B1s
lj

0 0


 (5.37a)

[Υlj,Ns] =




0 0

CNs
lj DNs

lj


 . (5.37b)

Then one may utilize the previously obtained recursive formula to derive all the

coefficients of Afs
lj , Bfs

lj , Cfs
lj and Dfs

lj .
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To gain insight into the specific mathematical expressions of the physical quanti-

ties such as the transmission and reflections coefficient matrices, the following three

cases are considered subsequently to demonstrate how these coefficients are deter-

mined by using the recursive algorithm when the source point is located in the first,

the intermediate, and the last regions.

Source in an intermediate layer

[Υlj,1s] =



A1s

lj B1s
lj

0 0


 (5.38a)

[Υlj,ms] =



Ams

lj Bms
lj

Cms
lj Dms

lj


 (5.38b)

[Υlj,Ns] =




0 0

CNs
lj DNs

lj


 . (5.38c)

From Eq. (5.36), the recurrence equation becomes

[Υlj,fs] = [Tlj,f−1] · · · [Tlj,s]
{

[Tlj,s−1] · · · [Tlj,1] [Υlj,1s]

+u(f − s− 1) [Ds] − u(f − s) [Us]
}
, (5.39)

where u(x − x0) denotes the unit step function. When f = N , the coefficients for

the first region are given by:

A1s
lj =

T
(s)
lj,11

T
(1)
lj,11

, B1s
lj = −

T
(s)
lj,12

T
(1)
lj,11

. (5.40)

For the last region, the coefficients are given by

CNs
lj = T

(1)
lj,21A

1s
lj − T

(s)
lj,21, DNs

lj = T
(1)
lj,21B

1s
lj + T

(s)
lj,22. (5.41)
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Substituting Eqs. (5.40) and (5.41) into Eq. (5.39), the remaining coefficients can

be obtained for the dyadic Green’s functions. If the source is located in the first or

last region (i.e., s = 1 or N), the formulation of coefficients can be tremendously

simplified.

Source in the first region

When the current source is located in the first region (i.e., s = 1), the terms con-

taining (1 − δ1
s) in Eq. (5.27) vanish. The coefficient matrices in Eqs. (5.33) and

(5.37) will be further reduced to:

[Υlj,11] =




0 B11
lj

0 0


 , (5.42a)

[Υlj,m1] =




0 Bm1
lj

0 Dm1
lj



, (5.42b)

[Υlj,N1] =




0 0

0 DN1
lj


 , (5.42c)

where m = 2, 3, · · · , N − 1. It can be seen that only four coefficients for the first

region and the last region, but 8 coefficients for each of the remaining regions or

layers, need to be solved for. By following Eq. (5.35), the recurrence relation for

coefficients in the f -th layer becomes

[Υlj,f1] = [Tlj,f−1] · · · [Tlj,1] {[Υlj,11] + [D1]} . (5.43)

When f = N in Eq. (5.43), a matrix equation satisfied by the coefficient matrices

in Eq. (5.42) can be obtained. The coefficients for the first region where the source
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is located (i.e., s = 1) is given by:

B11
lj = −

T
(1)
lj,12

T
(1)
lj,11

. (5.44)

The coefficients for the last region can be derived in terms of the coefficients for the

first region given by:

DN1
lj = T

(1)
lj,21B

11
lj + T

(1)
lj,22. (5.45)

The coefficients for the intermediate layers can be then obtained by substituting the

coefficients in Eqs. (5.44) and (5.45) to Eq. (5.43). Thus, all the coefficients can be

obtained by these procedures.

Source in the last region

When the current source is located in the first region (i.e., s = N), the coefficients

are:

[Υlj,1N ] =



A1N

lj 0

0 0


 , (5.46a)

[Υlj,mN ] =



AmN

lj 0

CmN
lj 0


 , (5.46b)

[Υlj,NN ] =




0 0

CNN
lj 0


 . (5.46c)

Similarly, from the recurrence equation in Eq. (5.35), we have

[Υlj,fN ] = [Tlj,f−1] · · · [Tlj,1] [Υlj,1N ] − u(f −N) [UN ] . (5.47)
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By letting s = N , the coefficient for the first region is

A1N
lj =

1

T
(1)
lj,11

. (5.48)

And for the last region, it is found that

CNN
lj = T

(1)
lj,21A

1N
lj . (5.49)

Similarly, the remaining coefficients can be obtained by substituting Eq. (5.48) and

Eq. (5.49) into Eq. (5.47).

So far, for gyrotropic chiral media in cylindrical layered structures, I have ob-

tained a complete set of solutions to the DGFs in terms of the cylindrical vector

wave functions and their scattering coefficients in terms of compact matrices. Re-

duction can be made to the dyadic Green’s functions in less complex media, e.g.,

anisotropic medium where ξc = 0, bi-isotropic media where g = w = 0, gyroelectric

media where w = 0 and µ = µz, chiroferrite media where p = 0 and ε = εz, or

isotropic media where ξc = g = w = 0, εz = ε and µ = µz.

5.1.4 Scattering DGFs in planar layered structures

The same principle in Eq. (5.28) is used here to get the total DGFs, which consist

of the unbounded DGF G0 as shown in Section 5.1.2 and the scattering DGFs as

given by

G
(fs)
s (r, r′) =

4∑

j=1

Gj. (5.50)



MACROSCOPIC SOLUTIONS TO MAXWELL’S EQUATIONS... 198

Two terms are grouped as follows:

G1 + G2 =
i

2π

∫ ∞

0
dλ

∞∑

n=−∞

αzs

εzsαtsλ(h1s − h2s)
×

2∑

j=1

(−1)j+1

(hjs − h3s)(hjs − h4s)
×

{
(1 − δN

f )Mn,λ(h
f
j )
[
(1 − δ1

s)A
fs
MjP

′
−n,−λ(−hs

j) + (1 − δN
s )Bfs

MjP
′
−n,−λ(−hs

j+2)
]

+(1 − δN
f )Qn,λ(h

f
j )
[
(1 − δ1

s)A
fs
QjM

′
−n,−λ(−hs

j) + (1 − δN
s )Bfs

QjM
′
−n,−λ(−hs

j+2)
]

+(1 − δN
f )Un,λ(h

f
j )
[
(1 − δ1

s)A
fs
UjN

′
−nt,−λ(−hs

j) + (1 − δN
s )Bfs

UjN
′
−nt,−λ(−hs

j+2)
]

+(1 − δN
f )V n,λ(h

f
j )
[
(1 − δ1

s)A
fs
V jN

′
−nz,−λ(−hs

j) + (1 − δN
s )Bfs

V jN
′
−nz,−λ(−hs

j+2)
]}
,

(5.51)

and

G3 + G4 =
i

2π

∫ ∞

0
dλ

∞∑

n=−∞

αzs

εzsαtsλ(h3s − h4s)
×

4∑

j=3

(−1)j+1

(h1s − hjs)(h2s − hjs)
×

{
(1 − δN

f )Mn,λ(h
f
j )
[
(1 − δ1

s)A
fs
MjP

′
−n,−λ(−hs

j−2) + (1 − δN
s )Bfs

MjP
′
−n,−λ(−hs

j)
]

+(1 − δN
f )Qn,λ(h

f
j )
[
(1 − δ1

s)A
fs
QjM

′
−n,−λ(−hs

j−2) + (1 − δN
s )Bfs

QjM
′
−n,−λ(−hs

j)
]

+(1 − δN
f )Un,λ(h

f
j )
[
(1 − δ1

s)A
fs
UjN

′
−nt,−λ(−hs

j−2) + (1 − δN
s )Bfs

UjN
′
−nt,−λ(−hs

j)
]

+(1 − δN
f )V n,λ(h

f
j )
[
(1 − δ1

s)A
fs
V jN

′
−nz,−λ(−hs

j−2) + (1 − δN
s )Bfs

V jN
′
−nz,−λ(−hs

j)
]}
.

(5.52)

The combination of the two terms for the above two equations is due to the fact that

each term has a static contribution to the dyadic Green’s function because of the

integration associated with the pole point λ = 0. What should be noted is that the

multiple reflection and transmission effects have been included in the formulation of

the scattering DGFs in the stratified structure shown in Fig. 5.2. The Sommerfeld

radiation condition has been taken into account in the construction of DGFs. The

contributions from various wave modes to the DGFs have been considered as well.
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Figure 5.2: Geometry of planarly layered gyrotropic chiral media.

Recursive matrix for scattering coefficients

The boundary conditions that must be satisfied by the dyadic Greens’ functions at

the interface between regions f and f + 1 where z = zj =
∑N−2

l=f Hl are shown as

follows:

ẑ × G
(fs)

e (r, r′) = ẑ × G
[(f+1)s]

e (r, r′),

ẑ ×
[
αf · ∇ × G

(fs)
e (r, r′) − ωξcfG

(fs)
e (r, r′)

]

= ẑ ×
[
αf+1 · ∇ × G

[(f+1)s]
e (r, r′) − ωξc(f+1)G

[(f+1)s]
e (r, r′)

]
.

(5.53)
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Note that

α · Nn,λ(h) = − h

kλ
σMn,λ(h) + αtNnt,λ(h) + αzNnz,λ(h), (5.54a)

α · Mn,λ(h) = αtMn,λ(h) −
kλ

h
σNnt,λ(h) +

h

kλ
σNnz,λ(h) (5.54b)

which will be used in the implementation of Eq. (5.53).

To simplify the derivation of the general solution of the coefficients, the boundary

conditions in Eq. (5.53) can be expressed by a series of compact matrices

[
Flj′(f+1)

]
·
{[

Υlj′(f+1)s

]
+ δs

f+1

[
U(f+1)

]}
=
[
Flj′f

]
·
{[

Υlj′fs

]
+ δs

f

[
Df

]}
(5.55)

where j ′ = 1, 2 and l denotes M,Q,U and V , respectively. These matrices are given

by

[FM1f ] =




e
ih1f zf

(h1s−h2s)(h1s−h4s)
e
ih3f zf

(h3s−h4s)(h2s−h3s)

[h1fαtf−(ωξcf +ih1fαaf )]e
ih1f zf

(h1s−h2s)(h1s−h4s)

[h3fαtf−(ωξcf +ih3fαaf )]e
ih3f zf

(h3s−h4s)(h2s−h3s)



, (5.56)

[FQ1f ] =




h1f τ21f e
ih1f zf

kλ1f (h1s−h2s)(h1s−h4s)

h3f τ23f e
ih3f zf

kλ3f (h3s−h4s)(h2s−h3s)

[(τ21f−τ31f )(αtf−αaf )h2
1f

+τ31f (αtf−αaf )k2
λ1f

−τ21f ωξcf h1f ]eih1f zf

kλ1f (h1s−h2s)(h1s−h4s)

[(τ23f−τ33f )(αtf−αaf )h2
3f

+τ33f (αtf−αaf )k2
λ3f

−τ23f ωξcf h3f ]eih3f zf

kλ3f (h3s−h4s)(h2s−h3s)




T

(5.57)

[FU1f ] =




h1f τ51f e
ih1f zf

kλ1f (h1s−h2s)(h1s−h4s)

h3f τ53f e
ih3f zf

kλ3f (h3s−h4s)(h2s−h3s)

[(τ51f−τ41f )(αtf−αaf )h2
1f+τ41f (αtf−αaf )k2

λ1f−τ51f ωξcf h1f ]eih1f zf

kλ1f (h1s−h2s)(h1s−h4s)

[(τ53f−τ43f )(αtf−αaf )h2
3f

+τ43f (αtf−αaf )k2
λ3f

−τ53f ωξcf h3f ]eih3f zf

kλ3f (h3s−h4s)(h2s−h3s)




T

(5.58)
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[FV 1f ] =




h1f τ41f e
ih1f zf

kλ1f (h1s−h2s)(h1s−h4s)

h3f τ43f e
ih3f zf

kλ3f (h3s−h4s)(h2s−h3s)

[(τ41f−τ71f )(αtf−αaf )h2
1f+τ71f (αtf−αaf )k2

λ1f−τ41f ωξcf h1f ]eih1f zf

kλ1f (h1s−h2s)(h1s−h4s)

[(τ43f−τ73f )(αtf−αaf )h2
3f

+τ73f (αtf−αaf )k2
λ3f

−τ43f ωξcf h3f ]eih3f zf

kλ3f (h3s−h4s)(h2s−h3s)




T

, (5.59)

where the superscript T denotes the transpose of the matrices.

The matrices [Flj′f ] remain the same form for j ′ = 2 except that the subscript 1

is changed to 2 and the subscript 3 is changed to 4. Furthermore, the denominator

which contains the term (h1s−h4s) is changed to (h2s−h3s) and vice versa. The terms

τ2jf , τ3jf , τ4jf , τ5jf , and τ7jf are the weighting factors associated with the scattering

coefficients Afs
lj and Bfs

lj . They have the same forms as those in Eq. (5.19) and

Eq. (5.22). The only change is that each term relating to wavenumbers (e.g., h)

will have a subscript of jf (e.g., hjf) and each term relating to material parameters

(e.g., ξc) will have a subscript of f (e.g., ξcf) where j ′=1, 2 and f represents the fth

layer.

The following matrices are also used in the formulation:

[Υlj′fs] =




Afs
lj′ Bfs

lj′

Afs
l,j′+2 Bfs

l,j′+2



, (5.60a)

[Uf ] =




1 0

0 0


 , (5.60b)

[Df ] =




0 0

0 1


 . (5.60c)
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By defining the following transmission T-matrix:

[Tlj′f ] =
[
Flj′(f+1)f

]−1
· [Flj′ff ] , (5.61)

where
[
Flj′(f+1)f

]−1
is the inverse matrix of

[
Flj′(f+1)f

]
, the linear equations become

the following form:

[
Υlj′(f+1)s

]
= [Tlj′f ] ·

{
[Υlj′fs] + δs

f [Df ]
}
− δs

f+1

[
U(f+1)

]
. (5.62)

Similarly, the matrix is formulated to simplify the derivation:

[
TK

lj′

]
2×2

= [Tlj′,N−1] [Tlj′,N−2] · · · [Tlj′,K+1] [Tlj′,K]

=



TK

lj′,11 TK
lj′,12

TK
lj′,21 TK

lj′,22


 . (5.63)

Note that the coefficients matrices of the first and the last layers have the following

relations:

[Υlj′1s] =



A1s

lj′ B1s
lj′

0 0


 ; [Υlj′Ns] =




0 0

ANs
l,j′+2 BNs

l,j′+2


 . (5.64)

In analogy to the cylindrical layered case, three kinds of source locations are studied

for the planarly layered case.

Source in an intermediate layer

When the current source is located in an intermediate layer, (i.e. s 6= 1, N), only the

terms containing (1− δ1
f ) for the first layer and (1− δN

f ) for the last layer vanish in

(5.51) and (5.52). The coefficient matrices in Eqs. (5.60) and (5.64) will be further
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simplified:

[Υlj′,1s] =



A1s

lj′ B1s
lj′

0 0


 ,

[Υlj′,ms] =




Ams
lj′ Bms

lj′

Ams
l,j′+2 Bms

l,j′+2


 ,

[Υlj′,Ns] =




0 0

ANs
l,j′+2 BNs

l,j′+2


 .

(5.65)

From Eq. (5.62), the recurrence equation becomes:

[Υlj′,fs] = [Tlj′,f−1] · · · [Tlj′,s] · {[Tlj′,s−1] · · · [Tlj′,1] [Υlj′,1s] +

u(f − s− 1) [Ds] − u(f − s) [Us]} , (5.66)

where u(x − x0) is the unit step function. For f = N , the coefficients for the first

layer are given by:

A1s
lj′ =

T
(s)

lj′,11

T
(1)

lj′,11
,

B1s
lj′ = −

T
(s)

lj′ ,12

T
(1)

lj′,11

.

(5.67)

For the last layer,

ANs
l,j′+2 = T

(1)
lj′,21A

1s
lj′ − T

(s)
lj′,21,

BNs
l,j′+2 = T

(1)
lj′,21B

1s
lj′ + T

(s)
lj′,22.

(5.68)

Substituting Eq. (5.67) into (5.66), the remaining coefficients can be obtained for

the dyadic Green’s functions.

Source in the first layer

When the current source is located in the first layer (i.e., s = 1), the terms containing

(1 − δ1
s) in Eqs. (5.51) and (5.52) vanishes. The coefficient matrices in Eqs. (5.60)
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and (5.64) will be further reduced to:

[Υlj′,11] =




0 B11
lj′

0 0


 ,

[Υlj′,m1] =




0 Bm1
lj′

0 Bm1
l,j′+2



,

[Υlj′,N1] =




0 0

0 BN1
l,j′+2


 ,

(5.69)

where m = 2, 3, · · · , N − 1. It can be seen that only four coefficients for the first

layer and the last layer, but 8 coefficients for each of the remaining layers, need to

be solved for. By following (5.62), the recurrence relation in the f th layer becomes:

[Υlj′,f1] = [Tlj′,f−1] · · · [Tlj′,1] {[Υlj′,11] + [D1]} . (5.70)

With f = N in (5.43), a matrix equation satisfied by the coefficient matrices in

(5.42) can be obtained. The coefficient for the first layer where the source is located

(i.e. s = 1) is given by:

B11
lj′ = −

T
(1)
lj′,12

T
(1)
lj′,11

. (5.71)

The coefficient for the last layer can be derived in terms of the coefficients for the

first layer given by:

BN1
l,j′+2 = T

(1)
lj′,21B

11
lj′ + T

(1)
lj′,22. (5.72)

The coefficients for the intermediate layers can be then obtained by substituting the

coefficients for the first layer in Eq. (5.71) into (5.70). Thus, all the coefficients can

be obtained by these procedures.
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Source in the last layer

When the current source is located in the first layer (i.e., s = N), the coefficients

are:

[Υlj′,1N ] =



A1N

lj′ 0

0 0


 , (5.73a)

[Υlj′,mN ] =




AmN
lj′ 0

AmN
l,j′+2 0


 , (5.73b)

[Υlj′,NN ] =




0 0

ANN
l,j′+2 0


 . (5.73c)

Similarly, from Eq. (5.62), one has

[Υlj′,fN ] = [Tlj′,f−1] · · · [Tlj′,1] [Υlj′,1N ] − u(f −N) [UN ] . (5.74)

By letting f = N , the coefficient for the first region is

A1N
lj′ =

1

T
(1)
lj′,11

. (5.75)

And for the last layer, it is found that

ANN
l,j′+2 = T

(1)
lj′,21A

1N
lj′ . (5.76)

Similarly, the remaining coefficients can be obtained by inserting Eq. (5.76) into

(5.74).

When the source distribution is given, the electric field, either in cylindrical or

planar layered structure, can be computed by Eq. (5.3), in which the local parameters

of the source, the stratified layers and the gyrotropic chiral materials in each layer

have been taken into account systematically.
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5.2 Effective medium theory for general compos-

ites

Complementary to the dyadic Green’s function method, effective medium theory

is another way to describe the functional material especially in periodic lattices in

a macroscopic view. DGF method is based on rewriting Maxwell equation by or-

thogonal eigenfunctional basis in a summation or integral form. Effective medium

theory, discussed in my dissertation, depends on discretization of Maxwell equation

in terms of multi-scale. This improved homogenization process is based on decom-

position of the fields into an averaged non-oscillating part and a corrected term with

micro-oscillation, which is based on the asymptotic multi-scale unfolding method.

It approximates the fields and effective parameters in finite lattices of periodic chi-

ral or even bianisotropic inclusions with higher accuracy and less requirements of

computation time and memory.

A central problem in the theory of composites is to study how physical proper-

ties of composites such as permittivity and permeability depend on the properties of

their constituents. In general, these properties depend strongly on the microstruc-

ture. To predict the effective EM properties of structured artificial materials espe-

cially when the wavelength is larger than the periodicity, basic mixing rules have

been derived for cylindrical or spherical inclusions [91,173] based on the evaluation

of the field perturbation in the presence of a single inclusion. Further extensions to

the case of more complex mixtures (e.g., chiral material, elliptical inclusions, multi-
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phase mixtures) have been successively proposed [138,139,174], and some numerical

techniques have been used such as boundary integral equation method, method of

moments and finite element method [175–177]. Note that, most of the methods

aforementioned, which describe the dielectric responses of each particle and mutual

interaction among inclusions, are applicable only for simple shapes with very weak

interaction or simple isotropic or anisotropic material constitutions.

To overcome this problem, an improved homogenization based on multiscale

expansion [178] is developed to compute the effective constitutive parameters for

the most general bianisotropic composites [179], which take into account the mutual

interaction of complex-shaped inclusions and the volume fraction effects in a macro-

scopic view. More importantly, this novel method can be also used to approximate

the fields in finite lattices of periodic bianisotropic materials. The fields are com-

puted only in the unit cell and then generalized over the whole volume. Therefore,

given a large finite lattice of bianisotropic composites, the time of computation and

the memory requirement can be greatly reduced without the loss of accuracy. The

proposed advanced homogenization method can study not only the bianisotropic

inclusions but also the shape effects of the inclusions, while [180] can only treat

lossy isotropic inclusions with regular shapes and it is incapable to analyze complex

media or complex shaped inclusions. Hence, this result is a remarkable step further

in the development of homogenization method for composite metamaterials.



MACROSCOPIC SOLUTIONS TO MAXWELL’S EQUATIONS... 208

5.2.1 Formulation

Let us consider a periodic structure of identical bianisotropic inclusions immersed

in a matrix. The constitutive relations of the bianisotropic media are given

D = ε · E +
√
ε0µ0ξ · H (5.77a)

B =
√
ε0µ0ζ · E + µ · H (5.77b)

where ξ and ζ represent two cross-polarization dyadics. The reference unit cell is

characterized by Y α with the periodicity α and scaled unit cell αY , which is the

unit volume of the cubes in three-dimensional (3-D) spaces. The configuration is

shown in Fig. 5.3. The Maxwell’s equations are established in each unit cell

Figure 5.3: Periodic composite materials when periodicity is decreasing

∇ × Eα(x) = −∂B
α(x)

∂t
(5.78a)

∇ × Hα(x) =
∂Dα(x)

∂t
+ Jα(x). (5.78b)

The variable x denotes the smooth variation of the field from cell to cell. Spatial

functions of ε, µ, ξ and ζ oscillate drastically in the considered structure due to

the heterogeneities. These oscillations are difficult to treat numerically. Therefore,

homogenization theory can be used to give the macroscopic global properties of the
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current composite by taking into account the properties of the microscopic structure.

Hence, another variable y = x/α is introduced to describe the fast variation within

the cell.

Eq. (5.78) can be further rewritten in a matrix form

iωAα(y)uα(ω, x) = Muα(ω, x) − Jα(ω, x) (5.79)

where Aα is a 6× 6 matrix constituted by the four material dyadics in the unit cell

and M represents the rotational operator. When the period of the lattice is quite

small compared to the wavelength, the total EM fields can thus be expanded by a

function of an average part with a series of corrector terms

uα(ω, x) = u(ω, x) + ∇yΦ(ω, x, y) + αΨ(ω, x, y) + ... (5.80)

where only the first two terms (i.e., macroscopic EM field u(ω, x) of the cell and

the first microscopic corrector ∇yΦ(ω, x, y) are required for computation. Strong

convergence can be obtained without subsequent high-order corrector potentials

[181, 182]. Thus, taking the limit of α tending to zero in Eq. (5.79) (see Fig. 5.3)

leads to:

iωA(y)[u(ω, x) + ∇yΦ(ω, x, y)] = Mxu(ω, x) +MyΦ(ω, x, y) − J(ω, x). (5.81)

Scalar-dotting a testing periodic function φ in its gradient form, one can arrive at

the following equation after the integration over the whole volume is performed:

∫

Y
iωA(y)[u(ω, x) + ∇yΦ(ω, x, y)] · ∇yφ(y)dy

=
∫

Y
[Mxu(ω, x) +MyΦ(ω, x, y) − J(ω, x)] · ∇yφ(y)dy. (5.82)
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Due to the convergence theorem of the periodic function, it can be obtained for the

right-hand-side term of Eq. (5.82) as follows:

∫

Y
[Mxu(ω, x) +MyΦ(ω, x, y) − J(ω, x)] · ∇yφ(y)dy

= −
∫

Y
φ(y)∇[Mxu(ω, x) +MyΦ(ω, x, y) − J(ω, x)]dy. (5.83)

Note that Mxu(ω, x) − J(ω, x) is independent on the microscopic variable y and

∇y · My = 0 since M is rotational operator. Therefore, the right-hand side of

Eq. (5.83) is zero, and the integral of the limit in Eq. (5.83) becomes

∫

Y
iωA(y)[u(ω, x) + ∇yΦ(ω, x, y)] · ∇yφ(y)dy = 0 (5.84)

where the terms of Φ and ∇yΦ are represented as

Φ(ω, x, y) = u(ω, x)ψ(ω, y) =
6∑

j=1

uj(ω, x)ψj(ω, y) (5.85a)

∇yΦ(ω, x, y) =
6∑

j=1

uj(ω, x)∇yψj(ω, y). (5.85b)

Thus u+ ∇yΦ is given by

u(ω, x) + ∇yΦ(ω, x, y) =
6∑

j=1

uj(ω, x)[ej + ∇yψj(ω, y)], (5.86)

where ej ∈ <6 is the unit basis vector. Inserting Eq. (5.86) into (5.84), one will

obtain that ψj (j=1,...,6) is the solution of the following equation

∫

Y
A(y)[ej + ∇yψj(ω, y)] · ∇yφ(y)dy = 0. (5.87)

Replacing u + ∇yΦ in Eq. (5.79) by (5.85a) and integrating over the unit cell, one

has

iω
∫

Y
A(y)[u(ω, x) + u(ω, x)∇yψ(ω, y)]dy = |Y |(Mu(ω, x) − J(ω, x)), (5.88)
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where |Y | is the normalized volume of the unit cell (|Y | = 1). Thus, Eq. (5.88) can

be expressed as

iωAeffu(ω, x) = Mu(ω, x) − J(ω, x) (5.89)

where the macroscopic effective parameters in the dyadic form can be expressed as

Aj,eff =
∫

Y
A(y)[ej + ∇yψj(ω, y)]dy. (5.90)

Aj,eff denotes the jth column of the 6×6 effective constitutive matrix A(y), which is

comprised of effective permittivity, permeability, and two cross-polarization dyadics.

It can be used in all frequency bands only if the periodicity is much smaller than

the incidence wavelength.

5.2.2 Numerical validation and results

The major advantage of this approach is that it gives the possibility to accurately

evaluate the EM field inside finite lattices when the period of the lattice is small

compared with that of the wavelength. This field is the sum of the average field and

corrector field as shown in Eq. (5.86). To validate this approach, the electric field

in a finite periodic composite material with chiral properties is compared to that

obtained by the method proposed in [134] combined with the FEM. In that method,

a decomposition scheme is used to transform the chiral medium to their isotropic

equivalences characterized by four equivalent permittivity/permeability parameters

of ε± and µ±. This method is significantly important to calculate the electric field

because it can remove the term of ∇ × E from the Helmholtz equations for chiral

media, which greatly simplified the numerical computation.
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Effective constitutive parameters

Let us first consider infinite lattices of identical chiral cylinder inclusions of various

cross sections (see Fig. 5.4) with relative permittivity and permeability εr = µr = 10

and relative chirality κ = 1. The host medium is free space. The effects of the edges

and discontinuities of the chiral inclusions are studied, which cannot be taken into

account in the classical theory of homogenization (e.g. Maxwell-Garnett formulas).

Homogenized effective parameters are plotted against the volume fraction. It is

found that, for a lattice of square chiral cylinders, the present method produces

almost the same effective parameters as Maxwell-Garnett formulas which is normally

best suitable for smooth canonical shapes (i.e. ellipsoids). This phenomenon can

be explained that for this shape, the interaction of the corners between adjacent

inclusions becomes strong and thus enhances the depolarization of the material,

which results in the decrease of the effective parameters compared to other shapes

[177].

Fig. 5.5 presents the comparison of inclusions with different rounded corners and

contours. One can see that at the same fraction index, the inclusion with rounded

concave contours gives the biggest effective permittivity. For volume fraction bigger

than 0.15, the difference between the curve of inclusion 4 and the other three curves

of inclusions 1-3 becomes visibly larger and larger, which indicates the depolarization

produced by the corners of inclusion 4 is much more decreased and higher mutual

coupling causes a bigger increase in the polarizability density than the other three

inclusions. For each inclusion type, the effective parameters reach the upper limits
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Figure 5.4: Geometry of complex-shaped 2D inclusions

with the maximum available volume fraction. A tradeoff can be observed between

the effective parameters and volume fraction. For instance, when it is required

to achieve a higher effective parameter, we need to embed more chiral inclusions

per unit volume, but we may need to change the shape of the inclusions. If the

parameter requirement is not very high, inclusion 4 will be a good choice to save

material consumptions.
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(a)

(b)

Figure 5.5: Effective parameters of square lattices of inclusions 1, 2, 3 and 4 (εr =

µr = 10 and κ = 1) suspended in free space: (a) effective relative permittivity; and

(b) effective relative chirality.
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Fig. 5.6 presents the responses of chiral inclusions with different concavities. At

a fixed fraction, the effective parameters of the inclusion with the biggest concavity

are the largest. By comparing with Fig. 5.5, one can observe that the limit values

for concave chiral inclusions with corners are higher than the rounded concave ones.

For instance, at volume fraction f = 0.778, one reads εeff = 5.717 and κeff = 0.416

for inclusion 3 from Fig. 5.5, while εeff = 6.84 and κeff = 0.625 for inclusion 5 from

Fig. 5.6. It can also be found in Fig. 5.6 that effective parameters will increase with

the etching ratio b/a (for Inclusion Types 1, 5 & 6, the etching ratio is 0, 0.5, and

0.667, respectively).

The proposed method is utilized to compute effective parameters of 3D spheri-

cal/cubic chiral inclusions, which are compared with the results from the Maxwell-

Garnett (M-G) formulas. Fig. 5.7 is plotted over the volume fraction from 0 to 0.52,

where fmax is reached for the lattice of chiral spheres in our model. It can be seen

that at low volume fraction, the results of our method are similar to those calculated

by M-G formulas. For f > 0.4, the differences become more and more significant.

The effect of the material depolarization due to the corners is again visible.
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Last but not least, the general bianisotropic inclusions embedded in a bian-

isotropic environment is considered. As a simplified example, the spherical inclu-

sions are considered and it is assumed that ξ = ζ = K. (ε, µ, Kh) and (ε, µ,

Ki) are respectively the relative parameters for the host (h) media and the cubical

inclusions (i)

ε = µ =




10 0 0

0 10 0

0 0 5




(5.91a)

Kh =




−1 0.4 0

0.4 −0.6 0

0 0 −1.5




(5.91b)

Ki =




1 0.4 0

0.4 0.6 0

0 0 1.5




. (5.91c)

The macroscopic effective parameters (εeff , µeff , Keff) at volume fraction fmax =

0.525 are found to be

εeff = µeff =




9.96 0 0

0 9.98 0

0 0 4.86




(5.92a)

Keff =




0.0223 0.399 0

0.399 0.0139 0

0 0 0.0092




. (5.92b)
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(a) effective relative permittivity

(b) effective relative chirality

Figure 5.6: Effective parameters of square lattices of inclusions 1, 5 and 6 (εr =

µr = 10 and κ = 1) suspended in free space.
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(a) effective relative permittivity

(b) effective relative chirality

Figure 5.7: Effective parameters of square lattices of spherical and cubical inclusions

(εr = µr = 10 and κ = 1) suspended in free space.
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Local fields

As the second round of validations of the approach and the numerical codes proposed

in this paper, we compare the total electric fields obtained by our method with the

results of the classical FEM. Let us consider a finite lattice of 27 cells made of chiral

material with the parameters (εr = µr = 10 and κ = 2) with a vacuum cube located

at the center of each cell (Fig. 5.8). The lattice is truncated by metallic walls, except

on the front x − y surface where a plane wave with |Ey|/|Ex| = 2 is imposed. The

electric field is calculated in the central y − z plane inside the lattice at 10 MHz.

The sizes of each vacuum cube and basic cell are 0.125 and 1 cm3, respectively.

Figure 5.8: Finite periodic lattice containing 27 cubical inclusions.

The total electric field can be expressed as

ET = Eav + Ecor (5.93)

where Eav can be obtained by assuming the whole structure is occupied by a ho-
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mogenized medium with the previously computed effective constitutive parameters,

and Ecor = ∇yΦ can be solved in the unit cell of the lattice.

Fig. 5.9 represents the amplitude of the x-component of the electric field along

the z-axis. In this figure, we plot the averaged Eav and corrected Ecor and then by

adding up those two portions in vector form, we obtain the total field.

Figure 5.9: Magnitude of the x-component of the electric field as a function of

position along z-axis at x = y = L/2.

For comparative purposes, the electric field is also calculated by the classical

FEM applied to the whole structure, and it is found that the good agreement of

the results between the present method and the classical FEM is achieved. The

stability and validity of this improved homogenization method have been confirmed.

From Fig. 5.9, it can be seen that the averaged field decreases smoothly along

the z-direction, while the corrected field varies drastically due to the microscopic

heterogeneities, which illustrates the efficiency of the current method compared with
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the standard homogenization technique (where the field within the microstructure

is simply assimilated to averaged field). Therefore, the proposed method provides

an effective way to describe the microscopic and macroscopic performances of the

composite metamaterials separately and explicitly. It is also shown that only the

first-order corrector is required to be taken into account so as to achieve enough

good accuracy.

5.3 Summary

In summary, this chapter is devoted to the macroscopic characterization of the inho-

mogeneous composites from layered structures to periodic constitutions. Since the

negative-index materials and metamaterials are normally constituted with heteroge-

neous elements, the results obtained in this chapter thus cater to the increasing need

in the macroscopic study of structured composites. The proposed DGF and homog-

enization methods are well generalized and can be applied in a variety of sub-cases.

Although the DGFs are only developed for gyrotropic chiral materials, the current

results are still very useful, because gyrotropic chiral media are already very general

and the geometries in two layered structures are both arbitrary. Once the source

distribution or illumination is given, the electromagnetic fields are determined based

on the proposed eigenfunction expansion and recursive algorithm. Furthermore, pe-

riodic lattices, which are commonly used structures in photonics and NIMs, are

considered. However, DGFs can not be applied directly due to the 2-dimensional

heterogeneity in periodic lattice structures. Therefore, an improved homogenization
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is developed first to obtain the desired effective parameters. The advantages of the

improvements made in the proposed homogenization approach can be concluded:

(1) one micro-scale to approximate strong oscillations and the other macro-scale

to depict averaged fields; (2) strong interaction of complex-shaped inclusions and

edge effects on depolarization are taken into account; and (3) good connection with

DGF method. For those periodic structures, the effective parameters computed

by the improved homogenization process can thus be utilized by DGFs. Due to

the complementarity of DGFs and improved homogenization, combining these two

methods will provide more applicabilities and efficiency to the study of macroscopic

characterization of inhomogeneous composites.



Chapter 6

Conclusion

In this thesis, electromagnetics in engineered composites have been investigated with

special interest in macroscopic properties. There are two interwinded lines: material

complexity and NIM realization. The composite materials under investigation in this

thesis are quite general, from isotropic to bianisotropic and from single-layered to

multilayered. Effective parameters such as permittivity, permeability and chirality

were used to study phenomena such as propagation, scattering, and resonance from

what was termed NIM. While many valuable insights into the fundamental phe-

nomena and potential applications were yielded along this line, it did not show how

to physically realize negative-index materials with such properties. This is where

the second line came to join. Along this line, various composite materials from

simple to complex, were discussed to find out how to physically realize NIMs by

manipulating material’s geometry and inherent functionality as well as by using ex-

act electromagnetic solutions. Considering the heterogeneity in practical engineered

223
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NIM composites, two complementary tools have been proposed to characterize the

macroscopic responses of structured gyrotropic chiral and bianisotropic composites.

Both the heterogeneity and the geometry are considered at very generalized lev-

els. Not only theoretical derivations but also numerical solutions for a wide range

of new applications have been studied along the two lines, aiming at developing a

more conceptual understanding of electromagnetics in composites.

Future work includes further studies of advanced electromagnetics in infrared re-

gion as well as in nanoscale. Future experimental work includes solid-state negative-

index materials and its application in small-sized wireless communication compo-

nents, which could provide a variety of exciting applications. The compactness

of such solid-state devices made of composites is a key factor since most of the

present metamaterials are bulky. Other work includes further investigation of pe-

riodic nature of structured composites in super-lattices and the role of inductive

electromagnetic phenomena on the effective parameters. Is the periodicity an essen-

tial issue? Can isotropic NIMs be designed by randomly distributed unit elements

in a similar way that chiral materials were realized? How can the material study

be connected to the size reduction for RF components? In author’s opinion, the

study on electromagnetics in composites must be conceptually deep in theory with

significant impacts in applications.
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