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Abstract

Due to technological advances, computer tomography virtual colonoscopy systems

have been a very active research topic and can now be found commonly in clinical

use. MR imaging techniques could offer greater possibilities for virtual colonic

examinations due to their unrivaled imaging of soft tissues and non radiating na-

ture; however, this has not been possible until today because of the data acquisition

limitations. In this study we will investigate the possibility of using magnetic res-

onance images for virtual colonic systems. To cope with the low signal to noise

ratio of images, diffusion techniques in both the isotropic and anisotropic schemes

are considered, which allows reducing the noise in the images while enhancing the

frontier formed by the inner colon wall. The general ideas and theoretical founda-

tions behind anisotropic diffusion and its relation to scale space transformations

are analyzed, as well as their discrete aspects and concrete implementation in 3D.

The results of diffusion are then used to derive a new adaptive thresholding seg-

mentation technique. This technique is applied to segment the inner colon wall

boundary, which opens the way to virtual colonoscopy based on MR imaging.
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Chapter 1

Introduction

1.1 Motivation

Cancers of the rectum and colon are together the third most common type of

cancer and the second most common cause of cancer death in the US [1] with

more than 55000 deaths and 140000 newly diagnosed cases each year [2]. While

precursor lesions such as adenomas1 and colon polyps2 are commonly silent, they

almost always precede the development of cancer by several years. Screening the

colon at an early stage to detect these lesions could help identify the disease at a

point when cure or control is still potentially possible and could prevent cancers

from occurring.

Since most symptoms develop at an advanced stage of the illness, it is desirable

to act in a preventive manner to detect the lesions when they are still benign.

Screening techniques have been developed for viewing the inside of the colon.A

summary of the numerous possibilities can be found in Table 1.1.

Virtual Colonoscopy (VC) is a new technique that allows doctors to look at

the large bowel (colon) to detect polyps in a non invasive approach. Volumetric

datasets are acquired by either computed tomography (CT) and magnetic reso-

1Adenomas: benign growths of glandular origin that are known to have the potential, over
time, to transform to malignancy. If it becomes cancerous, it is called an adenocarcinoma

2Polyps are fleshy growths on the inside (the lining) of the colon and rectum

1
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Table 1.1: Screening methods
Technique Barium En-

ema
Colonoscopy CT MRI

Dimension 2D Video: 2D+t 3D 3D
Radiation Yes (≈10mSv) No Yes

(≈ 5 to 10 mSv)
No

Resolution Moderate Very good Good Low
Sensitivity3 Low Good Good Not tested

Cost Low High (physician
needed for long
time)

Moderate High

Use Screening, low
cost, low effec-
tiveness, now
nearly aban-
doned for other
techniques

Screening and
treatment,
gold standard
but long and
uncomfortable

Screening, fast
expanding,
more patient
friendly

Screening,
no commer-
cial system
available yet

nance (MR) systems, post processed and used in virtual reality software so that

the radiologist can perform a virtual exploration to examine the interior of the

colon. The rendered endoluminal views of the colon interior simulate the view of

a endoscope camera navigating the reconstructed model of the colon. Automatic

fly-through as well as manual navigation are proposed to help the radiologist in

arriving at a diagnosis. The aim of such a system is to build a virtual environment

that provides the same protocols as for a virtual endoscopy. The non-invasive

nature of VC that results in less procedural pain and discomfort is undoubtedly

already a significant improvement over conventional colonoscopy, but VC has the

possibility for much more. The visualization techniques are not limited to the

simulation of the endoscopic view, and the next step for VC is to add features to

VC that would bring true added value compared to conventional colonoscopy, such

as automatic polyp detection and new visualization techniques that would speed

up the radiologist’s task.

Technological advances over the pat 20 years have enabled many medical imag-

ing systems to be designed and implemented and among those MRI (magnetic

resonance imaging) has seen tremendous improvement in the last few years. Revo-

3Sensitivity: percentage of affected patients recognized by the clinical test
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lutionizing many medical practices, MRI has become one of the most used imaging

systems; however, the capacities of MRI are still far from being fully employed.

VC has been a very active area of research for the past 15 years and commercial

systems are now widely available, but they still rely on CT images and no MR VC

system can be found today in commercial use. Nonetheless, an increasing number

of clinicians are turning to MR for their examinations. In the context where ab-

dominal screening should become a routine examination to undergo every few year

(5 to 10 years) [3], the doses of ionizing radiation induced by CT colonography4

have been considerably reduced [4] but are still a concern even when the benefit

to risk ratio is considered as large [5]. MR imaging would get rid of this concern

due to its non-ionizing radiation nature. Moreover, MRI is preferred to CT for

the imaging of soft tissue since it offers better contrast between tissues and the

possibility to use contrast agents to further enhance some of few features that have

to be analyzed. MR imaging has also some inherent drawbacks most importantly

slow acquisition times compared to CT. The quality of the acquired data is directly

linked to the length of the acquisition time and patient need to hold their breath

during the full time of the acquisition. However, the need for MR-based systems

is important, as some radiologists already prefer working with MR scans but have

to go through 2D visualization of slices and mentally align them. Although this

gives reasonably good results [6, 7, 8], it still has to be further enhanced to emerge

as a consistent screening method. An automated process would not only save time

and reduce costs for both patients and doctors, but it could also lower the risk of

missing polyps, thus providing a higher diagnostic accuracy.

1.2 Aim of the Thesis

In the present work we consider the feasibility of a virtual colonoscopy (VC) system

based on MR images. The goal is, therefore, to obtain a 3D model of the colon

4The term colonography is synonymous with virtual colonoscopy. -graphy is a suffix coming
from the Greek for to write which indicates here the need for an imaging technique rather than
an endoscope.
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from an MR abdominal scan covering the patient’s entire colon, and to use that

model to detect polyps. Once the colon is segmented from the acquired images,

this can be achieved using the same visualization techniques as for CT virtual

colonoscopy, namely either automatic fly-through or manual navigation. According

to medical stipulations, the objective is to obtain perfect sensitivity for polyps of

larger than 10mm and high sensitivity for polyps between 5 to 10mm. To meet such

requirements, the segmentation of the colon’s structure will need to be performed

with high accuracy even for the smallest structures.

Humans are expert in recognizing patterns and structures, and the ease with

which this is achieved does not give any hint on the real complexity of the processes

in the human brain. Even in the cases when there is severe noise, we are highly

efficient in recognizing structures; however, many image processing techniques

require high signal to noise ratios (SNRs) because most segmentation techniques

are very sensitive to noise. Medical images are often characterized by high SNR

and low contrast, or inversely, high contrast and low SNR. The human eye can

perform strongly in both cases while computer-based techniques have difficulties

working on images with low SNR. If MRI has still so many unexplored possibilities,

it is mainly because the processing techniques are not adapted to the MR images

with low SNRs and relatively high contrast, which suit the human eye better.

To take into consideration the high requirements of the segmentation and the

low quality of the datasets, we will investigate the use of noise reduction techniques

before the proper segmentation algorithm for more accurate results. Among the

numerous noise reduction methods that can exist, recent developments have shown

the strength of diffusion techniques, and more specifically, anisotropic diffusion for

medical images. We choose to work on anisotropic diffusion techniques to take

advantage of their noise reduction potential associated with the unrivaled contour

localization they offer. An in-depth analysis of such techniques will show that

their use is highly effective in the present case, and how their implementations can

be done efficiently. Comparison with other techniques will show that this choice
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is justified. An automatic segmentation scheme will then be derived from the

diffusion results, which further consolidates the results of the diffusion process and

enables us to consider MR virtual colonoscopy in its full scope.

1.3 Contributions of the Thesis

The contributions of the thesis are summarized here.

• An important work of unification has been done on diffusion techniques to

come out with a coherent framework that builds a path toward tensor based

techniques.

• The inconsistence of the image processing community on the terminology

anisotropic diffusion has been explained and some ideas are proposed to the

reader to let him make his own judgment.

• The implementation of anisotropic diffusion with the fast AOS scheme has

been done in 3D.

• It has been shown that we can make use of anisotropic diffusion techniques

in a precise framework for accurate enhancement of the inner boundary of

the colon wall.

• A new segmentation algorithm based on the properties of edge enhancing

diffusion has been derived. We make use of the diffusion results to develop

an adaptive thresholding scheme which has been applied to perform the

segmentation of the colon wall in the datasets.

• The alternative of using MR acquisition techniques instead for computer

tomography for virtual colonoscopy has been investigated.

1.4 Organization of the Thesis

The outline of the thesis is as follows:
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Chapter 2 After the survey of the current status of MRI in its use for virtual

colonoscopy, a literature review of the main topics used in this thesis is pre-

sented, namely the usage of anisotropic diffusion techniques for MR images

and the segmentation methods of medical MR images.

Chapter 3 The environment of the project is presented, from the medical consid-

erations of virtual colonoscopy to the scanning protocol used to obtain the

datasets and their characteristics.

Chapter 4 The theoretical aspects of diffusion are described in a way to guide

the reader naturally from the physical background of diffusion to the more

complicated anisotropic schemes that are useful in the current work.

Chapter 5 This chapter will deal with the concrete implementation of the process

used as a pre-segmentation denoising step. The discretization problems as

well as the choice of parameters are studied to build a consistent algorithm.

The results are presented and compared with other techniques.

Chapter 6 We deal with the segmentation of the data resulting from the pre-

segmentation step. An fully automatic process is presented and the results

are analyzed.

Chapter 7 Concluding remarks, overall analysis, and futures perspectives are

presented.



Chapter 2

Literature Review

2.1 Use of MR in Virtual Colonoscopy

MR imaging has had a very late development in its use for virtual colooscopy. The

first conventional colonoscopies were performed in the 1960s in Japan due to the

development of the colonoscope and while CT based systems are now available

commercially, MR based screenings studies are still lacking, and are the subject of

numerous feasibility studies.

The first study which was really aimed at building a true virtual colonoscopy

system based on MR images was done by a research group from the State Univer-

sity of New York, Stony Brook, in the years 1998-1999 [9]. The lack of ionizing

radiation was their major appeal for working with MR protocols, at the time when

everyone was investigating CT techniques for VC.

The theoretical possibility to differentiate, in MR images, between soft tissues,

and more specifically between the colon wall and the other soft tissues was from

the beginning the ultimate goal for all MR VC segmentation processes. When

looking at a 3D rendered views on a conventional CT VC system, the radiologists

have to base their diagnosis only on the shapes of the structures that are visible.

CT imaging does not offer any possibility of visualization of soft tissues; hence

only the inner colon wall boundary is segmented from the images. Although this

7



Literature Review 8

is close to how conventional colonoscopy is performed, during the latter procedure

the radiologist can also rely on the texture of the interior colon wall and on the

colors is visualises (Fig. 2.1).

Figure 2.1: Conventional (left) and virtual (right) colonoscopy images of the same
pedunculated polyp in the sigmoid colon2

If the entire colon wall in its full thickness can be distinguished on the MR

images, then the radiologist is able to use other features for his examination: the

colon wall thickness that gives information on the possibility of a tumor (especially

in the case of flat polyps) as well as the change in intensity. Adding those features

in a VC software could definitely facilitate the doctor’s task.

These advanced possibilities with MR VC were spotted from the first study

and can be found in subsequent ones. However, a major task stayed in the way of

the achievement of a usable system: the segmentation of those features and most

importantly of the inner boundary of the colon wall. While for the CT images

this can be segmented out with relative ease, it is much more difficult with MR

images. In the Stony Brook preliminary study the dataset used was formed by

T2-weighted coronal images with 6mm inter-slice, for a total acquisition time of 1

minute [9]. While the unrealistic acquisition time is not of much importance for a

feasibility study, the 6mm inter-slice to detect polyps of 10mm or less shows that

a clinical usage is still dependent on major technological improvements, despite

promising results.

2adapted from http://www.med.nyu.edu/virtualcolonoscopy/images/VC1.jpg

http://www.med.nyu.edu/virtualcolonoscopy/images/VC1.jpg
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To cope with this, many studies were then centered on MR acquisition tech-

niques, in order to find a fast scanning protocol offering good contrast between the

colon wall, the surrounding soft tissues (attached to the outer surface of the colon)

and the inside. With the need of acquiring a dataset providing good anatomi-

cal detail in one breath hold, fast T1-weighted imaging gradient echo sequences

have rapidly become a standard in many MR imaging protocols. To cope with

the serious constraints imposed by virtual colonoscopy, a volumetric interpolated

breath-hold examination (VIBE) sequence was proposed by Rofsky et al [10]. This

will be described later in Section 3.2 since this protocol will be used for my exper-

imentations.

A logical question also comes from the filling of the colon for data acquisition.

Once the colon is cleansed, it has to be distended for better visualization and

both air or water can be used. The discomfort by both techniques are of similar

levels [11] and it has been shown that the contrast to noise ratio (CNR) using

air is better [11]. On top of this, contrast agents can be administered to provide

better contrast between the inside and the colonic wall. While bright lumen was

employed first, dark lumen has recently be found to be more advantageous [12]

with the administration of gadolinium for enhancement of soft tissues.

2.2 Anisotropic Diffusion of MR Images

The goal of this section is to present the possible usage of anisotropic diffusion

techniques with MR images. A complete literature review of anisotropic diffusion

techniques could be a study on its own, therefore Chapter 4 will present the logical

path which leads to the chosen implementation of the diffusion process.

The image processing methodology based on non-linear diffusion equations

problems has been used to investigate enhancement and restoration of images.

For both medical [13] as well as for geometrical problems [14], it has shown its

strength in eliminating noise and artifacts while preserving large global features,

such as object contours.
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In the medical context it has shown to be very useful as a preprocessing step for

MR imaging based techniques [15, 16, 17]. While MRI opens many possibilities,

with superior contrast between soft tissues, many image processing techniques

are highly dependent on the quality of the segmentation process. Segmentation

has therefore become an increasingly important step for areas such as diagnosis,

treatment, virtual surgery, image registration and in many cases it is the key

step that will define the strength of a technique. Due to reasons that will be

detailed in the following section, automatic segmentation is however a non-trivial

problem. Anisotropic diffusion techniques have been used in some cases for the

implementation of fully automatic segmentation algorithms, while in other cases

only to increase their performance. Some studies have also tried to incorporate the

diffusion process directly in the segmentation step instead of dissociating the two.

Gradient vector flow (GVF) is, for example, a snake with external forces based

on a diffusion process [18] while anti-geometric diffusion tries to build a adaptive

thresholding segmentation algorithm using the properties of the diffusion process

[19].

2.3 Segmentation Techniques of MR Images

The characteristics of MR images make segmentation a very challenging task. Low

SNR, partial volume effect, and a wide range of parameters are major obstacles

toward the automation of segmentation, which is needed in a medical context

where a fast, accurate and reproducible segmentation is a prerequisite for evalu-

ation, diagnosis and treatment. Fully automated segmentation are obviously the

ultimate goal of all segmentation algorithms. However the trade-off between fully

automatic and semi automatic methods has to be taken into consideration when

prior knowledge of an operator can improve significantly the accuracy of the re-

sults. This is often the case when minimum user interaction while defining the

initialization parameters can act positively upon the rest of the algorithm.

A common difficulty for the segmentation of MR images comes from the non-
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inhomogeneity inherent in the datasets, mainly when using surface coils, which

can lower considerably the performance of usual segmentation techniques. Medical

images are often also subject to the partial volume effect (PVE); the low sampling

which is very frequent in MRI produces a structural definition ambiguity in which

the boundaries of the different tissues or structures are hard to locate. A common

technique to solve such problem is to allow soft segmentation, which contrary to

hard segmentation does not enforce a binary decision whether the pixel is inside

or outside the segmented region.

Thresholding and region growing techniques are the first and simplest meth-

ods that were developed and are now seldom used alone but often as a part of

a complex segmentation process. The core algorithms of both techniques suffer

from major drawbacks: sensitivity to noise and inhomogeneity, need for a seed

point for region growing, tendency of results to be disconnected and have holes

in the segmented regions. Many variations have been proposed to overcome those

weaknesses, resulting in very efficient techniques in some specific cases.

Many segmentation algorithm developed recently were based on unsupervised

clustering techniques such as k-means, fuzzy-c-means [20, 21] or expectation-maximization

[22]. Those methods expand the possibilities of thresholding techniques by trying

to find automatically some optimality for each class. However they do not incor-

porate spatial information and suffer from the same disadvantages as previously.

To increase the robustness of such methods, Markov random fields models were

introduced to model the interaction between neighboring pixels. While computa-

tionally intensive, it can be hard to select the parameters that control the spatial

interaction; however, some studies have shown promising results, brain MR seg-

mentation [23] being one example. An interesting example for virtual colonoscopy

can be found in [24] although it is based on CT images.

Recently, deformable models have been popular in segmentation of medical

images [25, 26]. A deformable model is a contour or surface, which deforms in order

to capture objects to be segmented. The deformation is guided by forces, which can
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be determined by features in the image (edges, texture) to be segmented, but also

by geometric constraints (smoothness of the curve or surface; prior information of

the shape to be segmented). The trade-off between geometric and image-derived

information lies at the basis of the popularity and diversity of deformable model

based methods; if image information alone is insufficient for a proper segmentation,

the combination with geometric constraints may still yield plausible solutions. The

techniques bears some drawbacks such as initialization and convergence toward

concave boundaries which can be problematic issues [27]. Deformable models can

be found under many different types of parametrization and representations, and

very good reviews can be found covering the subject [28, 29]

Once a segmentation method is developed its performance has to be quantified

in order to assess its accuracy. This is a challenging task in medical imaging where

sometimes radiologists can have difficulties in performing manual segmentation.

A common practice is to validate the model against manually obtained segmenta-

tions, although the result cannot be considered of perfect truth since the manual

segmentation can also be flawed.



Chapter 3

Acquisition and Characteristics of

Images

3.1 Medical Considerations

The large intestine is the portion of the digestive system most responsible for

absorption of water from the indigestible residue of food. It begins at the ileocecal

junction where material passes from the ileum to the cecum (large intestine) and

ends with the rectum and the anal canal, being in total about 1.5m long. It is

comprised of 4 main parts (Fig. 3.1): the ascending colon roughly starts after

the appendix and cecum and continues up to the right (hepatic) flexure. After

the right flexure, the colon continues with the transverse colon. It travels across

the abdomen to the left (splenic) flexure. The descending colon begins after the

left flexure and leads to the sigmoid colon, and ultimately to the rectum. The

ascending and descending colons are fixed to the pelvic wall. In contrast, the

transverse colon has more freedom to move; it is only suspended on a peritoneal

fold.

The objective of virtual colonoscopy is to detect cancerous polyps which are

abnormal growth of tissue (tumor) projecting a the mucous membrane. Colon

polyps are a concern because of the potential for colon cancer being present mi-

13
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Figure 3.1: Anatomy of the large intestine1

croscopically and the risk of benign colon polyps transforming with time into colon

cancer. It has been shown [30]that polyps of less than 10mm have a very low prob-

ability of being malignant; however this probability increases rapidly with the size

of the tumor. It is in consequence of highest importance that all structures of

10mm or more can be well visualized and must not be deteriorated by any pro-

cessing. Achieving the same results for polyps between 5 to 10mm would also be

appreciated in the objective of cancer surveillance.

3.2 Scanning Protocol

MR colonography techniques require proper patient preparation prior to scanning.

For good visualization two requirements are of major importance: sufficient dis-

tension of the colonic lumen and sufficient contrast between the colonic wall and

the lumen. To fulfill the first requirement a bowel relaxant is administered to the

patient prior to scanning. It helps in obtaining a improved distension as well as re-

1adapted from http://hopkins-gi.nts.jhu.edu/pages/latin/templates/index.cfm?
pg=disease5&organ=6&disease=32&lang_id=1

http://hopkins-gi.nts.jhu.edu/pages/latin/templates/index.cfm?pg=disease5&organ=6&disease=32&lang_id=1
http://hopkins-gi.nts.jhu.edu/pages/latin/templates/index.cfm?pg=disease5&organ=6&disease=32&lang_id=1
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ducing motion artifact of the colon during the acquisition of the dataset. To ensure

proper distension the colon is also filled with air. MR scanning protocol is chosen

such as to obtain a good contrast as mentioned above, and intravenous administra-

tion of a gadolinium solution is performed prior acquisition to enhance contrast of

soft tissues. It improves the SNR since the colonic wall becomes brighter leading

to images of significantly better quality for processing, but has the drawback to

increase cost significantly.

The sequence used for MR colonography is a 3D T1-weighted FLASH volu-

metric interpolated breath-hold examination with fat selective pre-pulse sequence,

commonly known as VIBE sequence. First described by Rofsky et al [10], the

VIBE sequence is a 3D gradient recalled echo sequence which is commonly used in

contrast enhanced examinations of the abdomen. To reduce acquisition time of the

3D scan, a partial Fourier acquisition is performed in the z direction of k -space.

The need for a short acquisition time technique arises from the need to get the

acquisition of the full abdomen to be done in one breath hold so as to get max-

imum visualization space and minimum movements. Techniques providing high

resolution datasets can last up to a few minutes, while a breath hold should not

have to last longer than 20 seconds for clinical practice which sets very demanding

constraints.

The current protocol combines both prone and supine scans to resolve ambi-

guities such as for stool rests, as well a pre and post contrast agent administration

scans which gives information on tissue absorption of gadolinium.

3.3 Characteristics of the Images

The images produced by the acquisition process come in DICOM format with a

header in which all scanning parameters are stored. The information is stored

under 12 bits. The dataset is composed of around 80 to 90 images in coronal

view (Fig. 3.2), with a section thickness of 2mm with no gap between slices, with

that direction corresponding to the z direction of the k -space. It is important
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to recall that since the dataset is acquired by a volumetric process, the dataset

reconstructed by stacking all the images together can be considered as true voxels.

The in-plane resolution of the images is of size 512 × 512 pixels, with a field of

view of 500mm.

Figure 3.2: Typical slice of dataset, coronal view

The spatial resolution is a major inconvenience in MR imaging due to long

acquisition times. The polyp detection objective being not to miss any polyp of

10mm or more and to obtain high sensitivity (the percentage of affected patients

recognized by the clinical test) for polyps between 5 to 10 mm, it would seem

adequate to have an isotropic resolution of 1mm. Under current technological

advances, it is not possible to obtain a full abdominal scan with the last mentioned

resolution, hence we will use re-sampling in order to obtain isotropic voxels. This

will not improve the quality of the details in the z direction since it does not

add any information to the data, it will only resample the dataset to isotropic

voxels which is easier to use for processing. We have to keep in mind however

for analysis that the details are acquired with a resolution higher than 1mm in

the z. For the following processing algorithms, the dataset is resampled to 1mm

isotropic voxels using a bi-cubic interpolation. Bicubic interpolation is a high

order interpolation based on a cubic function which ensures the smoothness of the
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function, the derivative and cross derivatives which preserves satisfactorily fine

details [31].

Another possibility would lie in using multiple scans to have a complete cov-

erage of the large intestine. This would enable us to have much better resolution,

most importantly reducing the interslice distance to get true isotropic voxels. How-

ever it will not be considered here because the use of more than one scan would

involve registration and fusion steps which would add important complexity to the

problem.

MR imaging is known to be subject to many artifacts and the tight constraints

of abdominal screening makes the data acquisition particularly prone to them. In

the 3D gradient sequence of the protocol described above (3.2), the acquisition

of the k -space occurs during the entire imaging time. As a result, the 3D MR

sequence is very susceptible to motion artifacts. This is enforced by the nature of

the scan: the patient has to hold his breath during a time which is close to the

physical limits of many people. Moreover, a unavoidable cardiac artifact is known

to occur due to the beats of the heart.

Another artifact which is typical of MR images is the intensity inhomogeneity

artifact which produces a shading effect to appear over some part of the image.

Although improvements in scanner technology have reduced this artifact signifi-

cantly, inhomogeneities remain a problem particularly in images acquired by using

surface coils. The size of the abdominal datasets make it highly likely that this

artifact will corrupt at least some area in the images.

The requirements of high spatial resolution over a large area and high speed

acquisition for abdominal screening lead to images with a relatively poor quality.

The noise is clearly visible and some edges are hard to locate. Traditional meth-

ods to enhance image quality are acquisition based methods, either decreasing

spatial resolution to increase voxel size to obtain a stronger signal, or lengthening

acquisition time to obtain better noise reduction. As seen previously, acquisition

methods are already pushed to their limit for VC, hence we will have to look at
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post processing methods to restore noisy images efficiently and be able to get the

needed features for VC.



Chapter 4

Presentation of Diffusion

Techniques

4.1 Physical Background of Diffusion and Ter-

minology

Diffusion, being the spontaneous spreading of matter (particles), heat, or momen-

tum, is one type of transport phenomenon. It is the movement of particles from

a higher potential to a lower one. This physical observation can be formulated in

mathematical terms using the diffusion equation, which name changes accordingly

with physics involved.

The equilibrium property of concentration is commonly known in steady sate

diffusion as Fick’s First Law :

j = −D.∇u (4.1)

This equation states that a flux j tries to compensate the concentration gradient

∇u according to the local diffusion tensor D.

The transport property without creation or destruction of mass can be ex-

19
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pressed by the continuity equation:

∂tu = −div(j) (4.2)

with t representing time. Combining 4.1 into 4.2 yields the diffusion equation:

∂tu = div(D.∇u) (4.3)

In image processing, the concentration u can be assimilated to the gray level

of an image. In the present case we will be dealing with 3D images, hence: u =

u(x, t) : R3× [0;∞[→ R with u(x, 0) being the initial image. The Diffusion tensor

D can be a positive definite symmetric matrix or a scalar.

The computer vision literature is not unified on the terminology which derives

from this equation. If D is function of the local structure of the image, Eq. (4.3)

becomes a non-linear filter. From the work of Weickert [32], diffusion can only be

anisotropic if D is not a identity matrix; in the scalar case, the diffusion is, from

his framework, inhomogeneous and isotropic.

This terminology is inconsistent with Perona and Malik’s fundamental work

on anisotropic diffusion [33] and it has been shown later [34] that the Perona and

Malik scalar’s diffusion can be considered as anisotropic. Further analysis will be

derived in the following sections to give the opportunity to the reader to make his

own judgment. In this work, the classical terminology will be adopted instead of

Weickert’s.

• A diffusion will be called homogeneous when D is constant over the entire

image, otherwise it will be called inhomogeneous.

• A diffusion will be considered non-linear when the function D is a non-linear

function of the local structure of the image, otherwise it will be called linear.

• Both scalar and tensor diffusion will be called anisotropic
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4.2 Scale Space in the Linear Framework

4.2.1 Definition

The objectives of noise filtering and approximation techniques are very similar in

that they both tend toward simplifying an original image by making it smoother

and with less local extrema. From this simplification ensues the scale notion; an

image is formed of information at different levels of detail, for objects of different

sizes and shown at different scales. The scale space transformation is the repre-

sentation of the gradually simplified images derived from the original one. This

representation makes possible the analysis at different scales to extract information

that might not be as striking in the original image.

This idea is a vast area of research in its own and many papers have been

published showing its depth and complexity such as [35, 36, 37, 38, 39]. Any work

on image processing cannot ignore the strength of analysis it provides, and a brief

taxonomy will be presented to highlight the positioning of our work.

• Discrete scale representation: This type of representation is useful for reduc-

ing stored information at higher scales. Various forms exist such as Burt’s

famous pyramidal representation [40] which has yielded important steps to-

ward the scale space theory or Finkel and Bentley’s Quad-trees [41].

• Linear continuous scale space: Many early works have contributed to the

complete development of scale space theory as it is known today. Among

those, Witkin [35, 42] has introduced Gaussian scale space filtering with

Koenderink [36] deriving early scale space requirements; although the start-

ing point of scale space research could be traced back to 1962 with the work

of Iijima [43]. More than 10 set of axioms can be found in the literature,

converging to the fact that Gaussian scale space is unique within a linear

framework. A detailed analysis has been derived by Weickert [44], with Lin-

deberg coming out with a very approachable review on scale space theory

[45].
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• Non-linear continuous scale space: It comprises all image processing tech-

niques that can be written as a non linear partial differential equation.

Among those we can distinguish anisotropic diffusion which will be devel-

oped in following sections, linear morphological processes as developed by

Alvarez, Guichard, Lions and Morel [46] and level set methods [47].

We define the scale space transformation as follows: let u : R3 → R be the

original image, from which the corresponding scale space can be formed by the

group of gradually simplified version of it:

{Ttu, ∀t ≥ 0}

provided it complies with the following requirements:

• Structural properties:

- Localization property, which expresses that for a small t, Ttu at the point

x must be determined by the behaviour of u around x.

- Continuity of Tt

- Semigroup property, which states that:

T0u = u , for t = 0

Tt+su = Tt(Tsu) , ∀ t, s ≥ 0 (4.4)

• Extremum principle (also known as minimum-maximum principle):

inf
R3

u ≤ Ttu ≤ sup
R3

u (4.5)

It states that Tt must only reduce the image information; the transformation

must not create new details that did not exist in the original image.

• Invariance property: two regions of u that can be linked by a rigid transfor-

mation must have the same scale space representation [48]
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4.2.2 Gaussian example

If we come back to the general diffusion equation (Eq. (4.3)) and consider the

simplest case where D is scalar and constant, we obtain the simple equation:

∂tu = ∆u (4.6)

This equation can be solved analytically and its solutions are well known: u(x, t) =

G√
2t ? u0 where Gσ is a Gaussian of standard deviation σ, and ? denotes convolu-

tion. This produces a Gaussian smoothing of the image which reduces noise but

smoothens out edges and details in the image, as well as making more difficult the

localization of details, which goes against the general idea of medical diagnosis.

An example of a Gaussian scale space is presented in Fig. 4.1 where the curves

correspond to increasing levels of simplification.

Figure 4.1: Gaussian scale space

4.3 Anisotropic Diffusion

As seen in the last example, we can appreciate that with a constant diffusivity

over the all image, the diffusion process does not preserves edges. The precise

localization of those edges cannot be done anymore at the larger scales since they
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are blurred and dislocated by the diffusion. Due to the uniqueness of the Gaussian

scale space in the linear framework, either the homogeneity, the linearity or some

scale space assumptions will have to be dropped to overcome the problem.

4.3.1 The Perona and Malik model

Perona and Malik suggested the steering of the diffusion based on the local struc-

ture of the image by introducing a diffusivity function g dependent of both time

(the scale parameter) and space [33]. The diffusion is controlled so that contours

remain sharp and the smoothing occurs inside regions and not between regions.

However to achieve these results, contours have first to be detected since they are

not directly available in the image. This is done by using the local intensity gradi-

ent in the process as described by Perona and Malik. The new diffusivity equation

can be written as:

∂tu = div(g(|∇u|).∇u) (4.7)

where g is the diffusivity function. Since the objective is to stop diffusion when

contours are detected (high gradients) and let it flow inside homogeneous regions

(low gradients) we would like to have the following properties for g:

g(0) = 1

lim
x→∞

g(x) = 0

Two function are proposed by Perona and Malik to fulfill those requirements:

g(x) = e( x
λ
)2 (4.8)

g(x) =
1

1 + (x
λ
)2

(4.9)

λ plays the role of scale factor on the gradient: for gradient values higher than

λ, the diffusion will be restrained, while for values lower than λ the diffusion

will be important, and gradient values less than λ will hence be treated as noise.
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This variation is quite smooth however; the pixels with gradient values close to λ

have a very similar diffusion, and only after more iterations can the difference be

appreciated.

Fig. 4.2 shows an example of nonlinear scale-space using the second diffusivity

function (4.9) of Perona and Malik. The initial curve (top) is the same as the one

used in the Gaussian example (Fig. 4.1), and curves represent increasing levels

of simplification. The results with the Perona and Malik diffusion process are

Figure 4.2: Non-linear scale space

impressive compared to the previous linear example. This time, the contours of

important magnitude |∇u| > λ remain sharp when the small ones are smoothened

out, the inhomogeneity of the diffusion is apparent in the results. The authors have

shown that edge detection based on their process outperforms the linear Canny

edge detectors [33]. The diffusion seems to tend toward a step like approximation

of the original image, which shows the importance of the choice of λ: too high a

value would cause contours to be smoothened out, whereas too low a value would

not eliminate properly all the noise. However, the theoretical foundations of the

Perona and Malik diffusion reveal that the problem is not well posed and could

lead to some instabilities [17]. This will be treated in Section 5.1 after looking at

different interpretations of the diffusion processes.
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4.3.2 Energy minimisation

A variational approach employed in image restoration can be used to unify the

process and to show that anisotropic diffusion corresponds to the minimization of

an energy functional. Nordstrom [49] proposed a unification of variational methods

for energy minimization with the anisotropic diffusion equation as introduced by

Perona and Malik [49]. Its major contribution comes from adding a reaction term

which aims to keep the solution close to the original image. This reaction term

leads to an optimal solution to the minimization problem, as well as getting rid of

the stopping time specification.

The restoration process of an image can be explained as finding an image u

which minimizes the following energy E(u):

E(u) =

∫
Ω

Φ(|∇u|)2dΩ︸ ︷︷ ︸
(a)

+ β

∫
Ω

(u− u0)
2dΩ︸ ︷︷ ︸

(b)

(4.10)

The first part (a) of the equation corresponds to the diffusion process which will

tend to a simplification of the image, whereas the second term (b) relates to the

original image to control how close the result should be to the original image. β

therefore plays the same role in the model as the stopping time, and choosing one

or the other corresponds in the end to the same heuristic.

The minimization of an energy functional can be done by gradient descent.

Using Eq. (4.10) we wish to find the minimum of ∂u
∂t

= −∇E(u). The main

difficulty resides in finding the expression of ∇E(u) which can be solved by using

the Euler-Lagrange Equations.

Let f be a function of R3 in R and u a function of R in R. Any partial deriva-

tive ∂u
∂x

of u, will be noted ux. The Lagrange problem tries to find an extremum

of the expression:

E(u) =

∫ x2

x1

f(x, u, u′)dx with: u′ =
∂u

∂x
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The theorem states that E(u) has a stationary value if the Euler-Lagrange differ-

ential equation:

∂f

∂u
− d

dx

∂f

∂ux

= 0

is satisfied.

For three independent variables the Euler Lagrange differential equation gen-

eralizes to [50]:

∂f

∂u
− d

dx

∂f

∂ux

− d

dy

∂f

∂uy

− d

dz

∂f

∂uz

= 0

which can be simplified as:

∂f

∂u
− div


∂f
∂ux

∂f
∂uy

∂f
∂uz

 = 0 (4.11)

Using the function defined previously (4.10), we now have, for a 3D function,

f(x, y, z, u, ux, uy, uz) = Φ(
√

(u2
x + u2

y + u2
z)) + β(u− u0)

2 (4.12)

We can derive the partial derivatives used in (4.11) from (4.12):

fu = 2β(u− u0)

∂f

∂ux

=
ux√

(u2
x + u2

y + u2
z)

Φ′(
√

(u2
x + u2

y + u2
z))

=
ux

|∇u|
Φ′(|∇u|)

∂f

∂uy

=
uy

|∇u|
Φ′(|∇u|)

∂f

∂uz

=
uz

|∇u|
Φ′(|∇u|)

Using the derivatives in (4.11) the gradient descent of the energy functional can
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be expressed as:

∇E(u) = 2β(u− u0)− div(
∇u

|∇u|
Φ′(|∇u|))

Hence,
∂u

∂t
= div(

∇u

|∇u|
Φ′(|∇u|))− 2β(u− u0) (4.13)

Comparing (4.7) with (4.13) we can see that by choosing g(|∇u|) = Φ′(|∇u|)
|∇u| ,

the Perona and Malik diffusion tries to minimize an energy functional with the

term relating to the original image (b) controlling the degree of smoothness that

can be considered as acceptable.

4.3.3 Tensor diffusion

The anisotropic diffusion proposed by Perona and Malik relies on a scalar dif-

fusivity function which is adapted to the local structure of the image. When

considering the flux j Eq. (4.1), we note that it is always parallel to the gradient,

i.e., j = −g(|∇u|) ∇u. Since one might want to control completely the direction

of diffusion in relation with the local structure, a tensor diffusion should be intro-

duced to be able to rotate the flux. The need to control the direction arises from

the local behavior of the Perona and Malik equation; at contours, the diffusion

is inhibited, which has the consequence of not smoothing the edge and also not

denoising it.

A solution to this could be to find the local direction of the gradient and

smooth in the normal hyperplane, while reducing the diffusion along the gradient

to preserve the edge. To this end, we construct the diffusion tensor by obtaining

its eigenvectors vi, 1 ≤ i ≤ 3 according to the local structure. However, a spatial

regularization is introduced when computing the eigenvectors to make the diffusion

follow the edge at a higher scale. The aim of such a regularization is to make the

diffusion insensitive to noise at scales lower than those specified, which might be

enhanced otherwise by the diffusion. This would be particularly inconvenient at

the edge where, contrary to the scalar case, the diffusion is not inhibited anymore
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and noise enhancement would cause a change in the contour. The regularization

is commonly the convolution with a Gaussian: ∇uσ = ∇(Gσ ? u). As the

consequence, the eigenvectors can be derived as:

v1 ‖ ∇uσ

vi ⊥ ∇uσ ∀ i > 1

In order to smoothen along the edge and restrict diffusion in the perpendicular

direction, we can set the corresponding eigenvalues λ1 and λ2 to,

λ1 = g(|∇uσ|)

λi = 1 ∀ i > 1

It is interesting to observe that in the general case D is a non singular matrix

and the flux will not be parallel to the local gradient while σ > 0 . However, when

σ tends toward 0, the model tends toward the conventional Perona and Malik

diffusion process. Weickert has made an extensive study of tensor diffusion [32],

and terms tensor diffusion as defined above an anisotropic generalization of the

Perona and Malik isotropic diffusion, which is not in harmony with the majority

of the work in the image processing community.

4.4 Directional Analysis of Anisotropic Diffusion

We now present different interpretations of anisotropic diffusion in order to have

a deeper understanding of the underlying process behind the diffusion equation.

The idea is to present the equation driving the diffusion in a coordinate system

that reflects the local structure of the image.

We first start with the 1D case to illustrate the main behavior and for the

simplicity of notation. From Section 4.3.2, we have see that the diffusivity function

g from (4.7) can be changed to a flux function by doing the change: Φ′(x) = x g(x).
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Eq. (4.7) can then be rewritten in the 1D case:

∂tu = Φ′′(ux)uxx (4.14)

where uxx is the second directional derivative of the image u in the x direction.

If we look at the behavior of the diffusivity function proposed in (4.9), we have

Φ′(x) ≥ 0 for x ≤ λ and Φ′(x) < 0 for x > λ. λ plays therefore the role of the

contrast parameter between the low contrast areas where the flow will diffuse from

higher to lower gray levels, and the high contrast areas where, inversely, the flow

will diffuse from lower to higher gray levels. This property will have the worthy

result of blurring small variations and enhancing strong edges.

The 1D result (4.14) can be generalized to any dimension n and was first

demonstrated by Krissian in 1996 [16], though the 2D can be found in numerous

works [46].

Let u be an image from Rn to R, Let (ξ, e1, ..., en−1) be an orthonormal basis

of Rn, where

xi = ∇u
|∇u| , the following property is verified with Φ as defined in Section 4.3.2:

div(Φ′(|∇u|) ∇u

|∇u|
) = Φ′′(|∇u|)uξξ +

Φ′(|∇u|)
|∇u|

n−1∑
i=1

ueiei
(4.15)

which can be simplified in 2D:

div(Φ′(|∇u|) ∇u

|∇u|
) = Φ′′(|∇u|)uξξ +

Φ′(|∇u|)
|∇u|

uηη

The second directional derivative in the direction of the gradient uξξ relates to the

line of maximum variation while ueiei
are the lines of constant gray values.

This result shows that the scalar diffusion as proposed in (4.7) is isotropic in

the hyperplane tangent to the local isosurface, which corresponds to the hyper-

plane orthogonal to the local intensity gradient. By analogy with the 1D case,

we can see that diffusion in the direction of the gradient has the same forward-
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backward behavior between high and low gray levels areas leading to smoothing

or edge enhancement depending on the ratio gradient - contrast parameter. In the

orthogonal hyperplane, the diffusion is isotropic and controlled by the diffusion

function g = Φ′(x)
x

.

If we wish to take tensor diffusion into consideration, the same analysis is much

harder to make. Instead of Eq. (4.7), the equation to be analyzed is now:

∂tu = div(D∇u) (4.16)

In order to be able to analyze the directional behaviour of the matrix, we first find

a basis that would help the geometric representation of the matrix. This is given

by the reduction of D in a basis formed by its eigenvectors

∃(Γ, T ) ∈ (R3)2 such that D = T t Γ T, with: Γ =


λ0 0 0

0 λ1 0

0 0 λ2


The simplification of (4.16) using the eigenvector directions gives [34]

∂tu =
2∑

i=0

∂ei
(λiuei

) + λidiv(ei)uei
(4.17)

We see that part of the diffusion will be along the the second directional derivatives

in the direction of the eigenvectors weighted by the corresponding eigenvalues;

however, there are other terms that cannot be easily simplified in the general case.

If we look at the case where D is constant over the entire image, the diffu-

sion is then sum of the diffusions in the eigenvector directions weighted by the

corresponding eigenvalues, since all the other partial derivatives are null.

However, we have seen that a constant diffusivity does not give good results,

and diffusion is relevant only in the case where the diffusivity is non-homogeneous

across the image since D will be changed according to the local structure of the

image. We now consider the case where the eigenvector e0 gives the orientation
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of the local gradient; we have as a consequence: D∇u = λ0∇u, which yields the

scalar anisotropic equation where λ0 drives the diffusivity. Since the features of

the image in which we are interested are the edges, we will use: λ0 = λ0(ue0). We

use the framework defined above for the general tensor diffusion (4.17) and see if

we can link the results to the ones derived for scalar diffusion.

Since e0 is in the direction of the gradient we will have ue1 = 0 and ue2 = 0.

Equation (4.17) can be simplified to:

∂tu = ∂e0(λ0ue0) + λ0div(e0)ue0

= λ0ue0e0 + λ0(ue1e1 + ue2e2) + ∂e0(λ0)ue0ue0e0 (4.18)

This result shows an equivalent solution to 4.15 for the case where D has

an eigenvector in the direction of the gradient. In the general case, we choose

the eigenvectors to be in the direction of the gradient and in the corresponding

hyperplane as described previously. However, the regularization parameter σ used

on the gradient when computing the eigenvectors will generally offset e0 from the

gradient’s direction and the diffusivity D∇u cannot be easily simplified anymore.

4.5 Summary

We have presented a brief outlook of the vast potential of diffusion techniques, from

the simple physical process of heat equation to the more advanced tensor diffusion

schemes. In order to find an appropriate implementation for our current problem

we have to look carefully at the properties of the different techniques. We have

seen that scale space theory provides a very useful framework to ensure some prop-

erties of the diffusion filter: conservation of average gray value, convergence and

minimum-maximum compliance. Most importantly, energy minimization shows

that the process has a physical logic, i.e., we try to reduce information in the

image to keep only the features of interest which are the contours of the colon

in our case. Anisotropic diffusion suits particularly well the problem; it tries to
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build a piecewise image where the regions are separated by the detected contours.

Moreover, the contours can be enhanced thanks to the anisotropic behavior of the

filter as seen in Section 4.4. Both scalar and tensor anisotropic diffusion offer this

possibility, with the latter providing more powerful restoration properties as full

control of the diffusion process. We will therefore consider these two cases for

implementation.



Chapter 5

Implementation of Diffusion

Techniques for Noise Reduction

5.1 Choice of Functions

We have seen that, for both scalar and tensor diffusion, the diffusivity function is

responsible for the global behaviour of the filter. Instead of using the functions

defined by Perona and Malik, we investigate what the constraints on diffusivity

are, and from there proceed to set the optimal function.

For ease of understanding, it is preferable to use the same notations as in the

directional interpretation of the diffusion equation (4.15):

∂tu = Φ′′(|∇u|)uξξ +
Φ′(|∇u|)
|∇u|

n−1∑
i=1

ueiei

To ensure convergence of the energy minimization, a stability condition requires

the convexity of the energy, which leads to a unique global minimum. This can be

formulated mathematically by

Φ′′(|∇u|) ≥ 0 (5.1)

Φ′(|∇u|) ≥ 0 (5.2)

34
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Table 5.1: Diffusivity functions
Name Function Stability Restoration

Φ′(x)/x 5.1 5.2 5.3 5.4

Heat transfer 1
√ √ √

Perona & Malik,1 [33] e−( x
λ
)2

√ √

Perona & Malik, 2 [33] 1
1+( x

λ
)2

√ √

Charbonnier [51] (1 + (x
λ
)2)−

1
2

√ √ √ √

Black [52]

{
(1− (x

λ
)2)2 for/x < λ

0 elsewhere

√ √

Weickert [32]

{
1− e

−Cm
(x/λ)m for/x > 0

1 elsewhere

√ √ √

The restoration property expresses the logical behaviour of the filter:

• For high gradient areas the diffusion must only occur in the orthogonal hy-

perplane to the gradient direction for both edge and contrast enhancement.

However no diffusion should occur in the direction of the gradient.

• For homogeneous areas corresponding to |∇u| near to 0, the diffusion filter

must have an isotropic reaction.

For high gradient areas we will therefore look for functions that ensure:

lim
x→∞

Φ′′(x) = 0

lim
x→∞

Φ′(x)

x
= 0 (5.3)

lim
x→∞

Φ′′(x)

Φ′(x)/x
= 0

On the contrary, in homogeneous regions we will seek to let diffusion flow:

lim
x→0

Φ′′(x) = lim
x→0

Φ′(x)

x
≥ 0 (5.4)

We look at the different functions that have been proposed in the literature to

see what the possibilities when defining the diffusivity function are.
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We study 6 models which are presented in Table 5.1.

• The first model corresponds to the heat diffusion equation, with isotropic

homogeneous diffusion.

• The following two models are the ones proposed by Perona and Malik, at

the time when the complete diffusion framework had not been established;

hence, we can see that the stability and restoration constraints are not all

fulfilled.

• Convex functions were proposed by Charbonnier to deal with the instability

problems.

• The last two models are based on more recent work by Weickert and Black.

With the background of the diffusion equation better established, they focus

on some characteristics of the functions with less emphasis on the constraints

mentioned above. Black’s model is based on the Tukey function. Weickert’s

model is defined such that the flow Φ′(x) is increasing for x < λ and de-

creasing for x ≥ λ. m sets the slope of the model, and a usual compromise

is m = 4 as used in Figure 5.1.

The curves are presented in Figure 5.1. λ is set at 10 for all the models.

We can see that the global shape of the flow functions Φ′(x) is very close for all

functions, which is expected with the numerous constraints. However some small

differences lead to major changes in the diffusion equation. When x increases, all

the diffusivity coefficients tend toward 0; however, this value is only reached by

the Black function. For all the other models this means that diffusion will still

occur even for high gradients, whereas in the Black model, for gradients higher

than a specified value λ, the diffusion will be completely stopped. Only the Black

model can therefore ultimately lead to a piecewise steady state result, but might

have more difficulties when confronted with highly noised images. We note that

in the Black model, λ here sets the highest value after which the diffusion will be

stopped, while it plays the role of a contrast parameter in the other models. The
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Figure 5.1: Diffusivity functions



Implementation of Diffusion Techniques for Noise Reduction 38

contrast parameter in that case is internal to the Black model. Other differences

are for example the slopes of the flow function or its decreasing rate. The function

defined by Weickert has the interesting property to be nearly flat up to λ where it

then drops sharply, with the possibility of controlling the slope with m.

An important feature lies in the coefficient Φ′′(x), which controls the diffusion

in the gradient direction as seen in Eq. 4.15. The models can be classified into two

groups: those which have a strictly positive coefficient and those whose coefficient

can take negative values. Table 5.1 shows us that the two Perona and Malik models,

as well the the ones defined by Black and Weickert, all fall into the second category.

If Φ′′(x) can take negative values, the convexity constraint will not be satisfied

anymore, leading to possible instabilities in the process. When Φ′′ is negative

the gradient is enhanced instead of being diffused, leading to a possibly better

contrast which seems a very interesting feature in the context of noise reduction

and contour preservation. Nevertheless this can be assimilated to the inverse heat

diffusion which is well know to be ill-posed, and discontinuities introduced by noise

can be increased. To ensure convergence of the process regularization needs to be

introduced.

5.2 Regularization

Numerous numerical simulations of the ill posed Perona and Malik process have

shown that in fact the implementation of the process works much better than

expected from theory. The usually impressive results of an ill-posed problem has

been therefore called the Perona and Malik paradox.

Discretization plays a important role in regularizing the equation, and although

formal explanations have not been established in the general case, current research

point to the same direction; namely, discretization yields a regularization [53].

The finer the discretization the less regularization is provided and the dangers of

instability are more significant. Among the artefacts that can occur, stair-casing is

the most frequent one, in which a smooth edge can be changed into a staircase like
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function. Weickert and Benhamouda have even proved that standard spatial finite

difference discretization transforms a Perona and Malik ill-posed problem into

a well-posed system of nonlinear ordinary differential equations (ODEs) which is

monotonically preserving under explicit time discretization [54]. No real instability

can thus occur other than the staircasing effect.

To become more independent of the implementation of the process, it comes

to mind to try to introduce a regularization in the process itself to stabilize it and

ignore the unreliable and imprecise implicit regularization.

Catte et al. have introduced a new model where the only change lies in the

gradient used in the diffusivity function [17]. A smoothed gradient∇uσ = ∇(Gσ?

u) is used where Gσ can be any smoothing kernel and for which the Gaussian is

used commonly. The diffusion equation can thus be written as

∂tu = div(g(|∇uσ|).∇u)

With this simple modification, they prove the existence and uniqueness of a solu-

tion for an initial image and its corresponding set of parameters.

It is interesting to note that Weickert’s tensor diffusion is based on this reg-

ularization of the scalar diffusion, and can even be considered as a particular

regularization of the general scalar anisotropic diffusion equation with the regular-

izing parameter σ controlling the smoothness of the contours. This latter property

is a practical consequence of spatial regularizations; they make the diffusion filter

insensitive to noise at a scale smaller than σ both in the tensore and scalar case.

Many other regularization schemes can be found, both in the spatial domain,

where the schemes work mainly on scale space features, as well as in the temporal

domain with the introduction of a relaxation time in the diffusivity, for instance.
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5.3 Numerical and Discrete Schemes

Practical experiments require the continuous differential equation to be discretized

both spatially and temporally. Various choices of discretization are possible and

this is a decisive factor in the stability of the process as well as the speed of

computation.

We can first show the path from the continuous model to a discrete one via a

semi discrete model which helps in the understanding of how the characteristics

of the scale space are controlled in the process. The scale space theory established

in the continuous framework also has to be adapted into a discrete environment

to ensure that the discrete process will have the exact same properties as the

continuous one. An exhaustive study can be found in [32]. Table 5.2 summarizes

the requirements needed to prove the major properties: well-posedness of the

problem, conservation of the average gray value, maximum-minimum property,

Lyapounov sequence ensuring smoothing, and convergence to a steady state.

• Continuous model: u(x, 0) = u0 on R3

∂tu = div(D.∇u) on R3 × [0,∞[
(5.5)

• Semi discrete model  u(0) = u0

du
dt

= A(u)u
(5.6)

• Discrete model  u0 = u0

uk+1 = Q(uk)uk
(5.7)

Since the spatial discretization is inherent in digital images, the step from the

fully continuous model to the semi-discrete one is fairly natural. The pixel struc-

ture assuring a discretization on a fixed rectangular grid is very well suited to

finite differences schemes which will be used for the approximation of the diffu-
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Table 5.2: Discretization models
Requirement Continuous Semi-discrete Discrete

Model Model Model
Smoothness D ∈ C∞ A Lipschitz continuous Q continuous
Symmetry D symmetric A Symmetric Q symmetric

Conservation divergence form, column sums null unitary column sums
reflective

boundary condition
Non-negativity positive non-negativity non-negativity

semi definite of A of Q
matrix

Connectivity D uniform irreducibility of A irreducibility of Q
positive definite positive diagonal

sivity. This is expressed in the above equation with the differentiation matrix

A. However, temporal discretization is not as straight forward and a numerical

scheme giving an example of how to pass from the semi discrete to the discrete

model is presented in below.

The temporal discretization of the semi-discrete model 5.6 can be done with

the usual explicit scheme. Let uk represent the image u at time t and uk+1 at time

t+ τ . The differentiation matrix A is here calculated at step k to approximate the

temporal derivative du
dt

:  u0 = u0

uk+1−uk

τ
= A(uk)uk

(5.8)

This corresponds to the discrete model with Q(uk) = I + τA(uk). This scheme is

the simplest one to implement and can be used with relatively big images since

the computation is direct. Yet, to ensure stability of the process the time step τ

has to be very small:

τ ≤ 1

maxi∈J |aii(uk)|
≤ 1

2n

with n being the dimension of the images.

To circumvent this problem, it is tempting to use the values at time k + 1 to
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estimate the differentiation matrix and apply it consequently at time k + 1:

 u0 = u0

uk+1−uk

τ
= A(uk+1)uk+1

(5.9)

This scheme is called the implicit scheme because the computations are done on

the basis of a smoother future image, rather than using the image itself to get to

an unknown future one. The stability of the process is considerably increased, but

the system is now nonlinear in uk+1 and hence much more difficult to solve and

computationally not viable for large images.

The idea to solve the nonlinearity is to use time k to control the diffusion but

to apply it at another time, in the future. A β semi-implicit scheme is defined in

that objective:

 u0 = u0

uk+1−uk

τ
= A(uk)(βuk+1 + (1− β)uk)

(5.10)

Hence,

uk+1 = (I − τβA(uk))−1(i + τ(1− β)A(uk))uk (5.11)

For all β, the scheme is now linear in uk and can be reduced to a linear system

which comprises an inversion. The complexity of the linear system depends on the

form of the inverse to be computed. The value β = 0 would lead to the direct

explicit scheme, whereas the value β = 1 gives a true semi-implicit scheme, in

which the diffusion is calculated at time k but applied at time k +1. The stability

is also much greater since it is stable for all time steps satisfying:

τ ≤ 1

(1− β) maxi∈J |aii(uk)|
(5.12)

For the case where β = 1 the scheme will be stable unconditionally of the time

step. The properties from the scale space theory as defined in Table 5.2 will also

be ensured provided A satisfies the requirements of the semi discrete model.
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Now that we are not limited by small time steps to approximate the diffusivity,

we would also like the model to be computationally efficient. The inverse which

needs to be calculated is a major drawback, and a simplification has been proposed

in [55] with the additive operator splitting (AOS) scheme. This novel scheme is

based on the semi-implicit scheme (β = 1) and separates the coordinates to treat

them independently as 1D processes. Letting n be the dimension of the images,

we can write:

A(uk) =
n∑

l=1

Al(u
k) (5.13)

with Al being the differentiation matrix along the lth dimension. The semi-implicit

scheme can therefore be written as

uk+1 = (I − τ
n∑

l=1

Al(u
k))−1uk (5.14)

The approximation made with the AOS scheme yields:

uk+1 =
1

n

n∑
l=1

(I − nτAl(u
k))−1uk (5.15)

A Taylor expansion shows that the order of approximation of the AOS scheme is

the same as the semi-implicit one (first order). Now that the matrix A is the sum

of matrices working on 1D processes, we can see that we still have to invert some

matrices in order to be able to get the value at a new time. The trick is that since

we are dealing with one dimensional processes, the matrix can be arranged so as

to be working on tridiagonal matrices. The inversion of such matrices can be done

much more efficiently than a standard inversion scheme, giving the true strength

of the technique in comparison to classical semi-implicit schemes.

The implementation of the AOS scheme is easily done in the scalar diffusion

case, where the differentiation matrices A can be obtained and separated without

much difficulty,and it creates a discrete scale space as defined in Table 5.2 with all

the corresponding properties.
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However, the tensor diffusion case is much more difficult to implement practi-

cally. The main difficulty is to split the 3D diffusion tensor D correctly into 1D

diffusivities to fill the matrices Al. In order to obtain the properties of the diffu-

sion filter, such as maximum−minimum principle, stability, wellposedness etc., we

require each directional diffusivity to fulfill some constraints. The complexity of

such an implementation is such that it will not be dealt with in this work and ten-

sor diffusion experiments will be done using a classic non-optimal explicit scheme.

More details on AOS schemes in tensor diffusion filters can be found in [56].

The freedom to select a larger time step τ means that fewer iterations are

needed to reach the same diffusion time, and the algorithm becomes faster. Though

long step times carry the drawback of weakening the precision of the filtering by

doing larger approximations, Weickert has shown that under normal considerations

it is about 11 times more efficient than the stable explicit scheme [55]. Table 5.3

summarizes the characteristics of the different techniques.

captionNumerical schemes
Technique Formula stability cost Efficiency

Explicit uk+1 = (I + τA(uk))uk low low low
β Semi-implicit uk+1 = (I + (1 − β)τA(uk)) (I −

βτA(uk))−1uk
high high moderate

AOS uk+1 = 1
n

∑n
l=1(I − nτAl(u

k))−1uk high low high
Implicit nonlinear high very high low

5.4 Choice of Parameters

With the framework having been defined above, the chosen functions and param-

eters for the experiments are presented below.

Both the scalar and tensor-based diffusion will be compared to determine the

method with higher restoration properties. For ease of comparison, the same func-

tion will be chosen in the gradient direction for both the scalar and tensor-based

schemes. For the latter, the diffusion will be set to 1 in the orthogonal hyperplane

to the gradient, which should help edge restoration as described previously.
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Functions: The preferred function to be retained is the one defined by Weickert,

because of its enhancement properties and interesting characteristics (flat

diffusivity up to λ, slope that can be controlled). Since one of the stability

requirements is not fulfilled (Table 5.1), the Gaussian regularization on the

gradient will also be taken into account in the process. The much desired edge

enhancement capabilities of Weickert’s function justifies totally the choice

not to take a fully compliant function. The parameter m enables us to

control the slope of the diffusion function, and the choice of the parameter

lies in the compromise between stability and edge enhancement. The retained

value m = 4 is a reasonable choice under a regularized process and gives good

enhancement of edges. The implementation with Weickert’s function will be

tested against other functions to confirm the efficiency of the chosen scheme.

Numerical scheme: The efficiency of the AOS scheme offers very good stability

independently of the step time and makes it preferable compared to other

possibilities. Since it is based on the inversion of tridiagonal matrices, one

has to make sure that this is done efficiently to ensure the lowest computa-

tional cost possible. The Thomas algorithm is perfectly suited to the task

since it manages to invert those matrices with a computational cost propor-

tional to the number of pixels and the dimension.

For the tensor-based diffusion where the AOS scheme cannot be easily im-

plemented, the direct explicit scheme will be used.

Time step: The stability of the AOS scheme is independent of the time step. This

gives us the freedom to select a larger τ so that the number of iterations is

globally reduced and the algorithm becomes faster. The AOS scheme also

ensures that for all τ the diffusion process can be assimilated to a scale

space transformation with all the corresponding properties. However step

times that are too large would weaken the filtering effect of the the diffusion

filter and only yield a rough approximation of the ideal continuous result.

The choice of time step τ is therefore a compromise between efficiency and
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accuracy. For the explicit scheme, the step time is set as to ensure stability

as shown earlier.

Diffusion time: The total diffusion time controls the degree of simplification de-

sired for the smoothed image. This is a very tricky part and it is subject

to many never ending discussions. As long as convergence is ensured, we

can try out different diffusion times and choose the most appropriate one

for the current problem. Very long diffusion times will tend toward segmen-

tation like results, and one has to take into consideration whether this is

the kind of result that is desired with such an implementation or whether

it is more oriented toward image denoising. For the experiments we opt to

show the evolution of the scale space along with the diffusion time, to allow

comparisons and to give us an insight into the problem.

Contrast parameter: All the diffusivity functions have a contrast parameter λ

which acts as a contour detection. If the ratio gradient - contrast parameter

is large, it is synonymous to an edge, and diffusion should be restrained in

the orthogonal direction of the edge. This parameter has to be set with

care; if it is too low the restoration of the image would be close to null, if

it is too high some edges would be smoothed out. This will be be verified

quantitatively in Section 5.5.1. To this end we will try to set the contrast

parameter statistically. Since we only wish to keep the higher gradients we

can set it as a quantile in the cumulative histogram of the image absolute

gradients. Analysis of the images has shown that the 40% percentile yields

good results. This may seem quite low for images which are supposed to

highlight the strong contours of the colon predominantly, however it comes

from the characteristics of the datasets. They are large and include many

other medical features other than the colon; the kidneys, bottom part of the

liver, small intestine and even the skin interface are also depicted with good

contrast, which increases the proportion of high gradients in the cumulative

histogram.
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5.5 Results and Comparison

5.5.1 Analysis of parameters and diffusion techniques

We first wish to do a quantitative analysis of the diffusion process under different

implementations and parameters. We would like to be sure that the theoretical

properties seen previously are verified, and be able to set the parameters optimally

for a specific problem.

To meet the above objectives we create a test image (Fig. 5.2) with features

that we are likely to encounter in the real dataset, namely, thin structures. Sharp

corners are also present in the image so that there is an easy way of investigating the

preciseness of contours. Gaussian and speckle noise are added to the test image to

model a noisy dataset. The Gaussian added is of mean zero and standard deviation

0.4 times the intensity range in the image while the speckle noise is controlled by

u = u + ηu

with η being uniformly distributed of mean 0 and standard deviation 0.1. the

Gaussian noise is characteristic of natural images whereas speckle noise is here to

distort more significantly the images. We end up with a relatively noisy image

where noise reduction will be hard to perform. The SNR is measured using

(a) Original model (b) Noised model

Figure 5.2: Test image
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SNR(dB) = 10 log10(
Psignal

Pnoise

) = 20 log10(
Asignal

Anoise

)

This gives an SNR of 18.97 for the noisy image.

We first check the influence of the type of diffusion process. Since we have seen

the limitations of linear scale space, we will focus on the two types of anisotropic

diffusion processes, namely scalar and tensor diffusion. The same diffusivity func-

tion is chosen for the two schemes and the parameters are set identically. Two

values of for the regularization parameter (σ = 1 and σ = 3) are tested in order

to verify that the experiment is not corrupt by this parameter.

The SNR curves are represented as a function of the diffusion time, and the

result corresponding to the best SNR for each curve is represented underneath,

(Fig. 5.3). A brief analysis of the curves show that they all have the same general

aspect, although their maxima are reached at different times in the scale space.

This would correspond to a faster scale space behaviour for the tensor scheme

which is not surprising because the flow is much stronger than in the scalar case

since in the hyperplane normal to the gradient the diffusion is set at 1 so that it

flow freely.

We also notice that once each curve reaches its maximum, the SNR decreases.

This is caused by over-diffusion, when the diffusion starts to affect the contours.

As anticipated, it happens much more quickly for tensor diffusion. This is further

highlighted by the images which show very different results; while edges are very

well defined in the scalar case with a low regularization, for the equivalent case with

a tensor diffusivity, there is still some noise in the homogeneous regions. It shows

that complete noise reduction can only be obtained at the expense of a change in

the contours; the corners are not as sharp anymore but start to be rounded, and

the top part of the thin structure is not well defined anymore. On the positive

side, the tensor scheme offers higher edge restoration; when the edges are badly

affected by noise, scalar diffusion has not managed to restore straight edges when

tensor based diffusion has.
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(b) Scalar Diffusion,
σ = 1, t=100, SNR=28.67

(c) Scalar Diffusion,
σ = 3, t=5, SNR=28.18

(d) Tensor Diffusion,
σ = 1, t=12, SNR=28.38

(e) Tensor Diffusion,
σ = 3, t=3, SNR=28.67

Figure 5.3: Analysis of the diffusion scheme
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If we look at the influence of the regularization parameter we can see that it

does have a negative influence on the process. With tensor diffusion, the edges

are a bit more rounded and less precise, while with scalar diffusion the edges get

smoothened and the reduced restoration properties of the process does not manage

to get them back.

We now examine the influence of the contrast parameter. We keep the process

that yield the best results previously, namely, scalar diffusion with a regularization

parameter of 1, and do experiments by changing the contrast parameter. The

results are presented in the same manner in Fig. 5.4.

The results are in agreement with the theoretical results. When the contrast

parameter is set low, the process has difficulty removing the noise. We observe

that after a very long time, the edges are still extremely noisy. Since the diffusion

is reduced significantly at the edges, an extremely long time is required to enhance

the edge. The background which has been perfectly restored shows however that

λ = 5 is a value high enough to smoothen the edge if there is no information in

the image. On the opposite, a high value of λ does not recognize edges anymore,

and the diffusion is not restrained anywhere. Careful examination shows that the

edges are starting to get diffused in some areas, and this image corresponds to the

highest SNR because the diffusion would only affect the image even more as time

increases.

Lastly we check whether the desired properties of Weickert’s function hold

their theoretical promises in the experiments. We use Charbonnier’s fully compli-

ant function as well as the heat equation diffusion to verify that there is a gain

in choosing the diffusivity function carefully. All the other parameters are set

identically for ease of comparison.

From the best case images (Fig. 5.5) the edge enhancing capacity of Weickert’s

function proves to be very efficient. Looking at the SNR curves, it seems that

the diffusion process is not effective for the two other models because their SNR

curves drop right after a few iterations. This is because the models do not have
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(b) Scalar Diffusion,
λ = 5, t=1000, SNR=28.46

(c) Scalar Diffusion,
λ = 12, t=100, SNR=28.67

(d) Scalar Diffusion,
λ = 20, t=4, SNR=28.44

Figure 5.4: Influence of the contrast parameter
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(b) Scalar Diffusion, Weickert,
t = 100, SNR=28.67

(c) Scalar Diffusion, Charbonnier,
t = 4, SNR=28.29

(d) Scalar Diffusion, Heat,
t = 2, SNR=27.99

Figure 5.5: Influence of the diffusivity function
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edge enhancing capacity and the noise is removed at the expense of smoothing the

edge. However, we observe that diffusion based on Charbonnier’s function achieves

better results than heat diffusion. This is because Charbonnier’s model reduces

the diffusion at edges. Nonetheless, the reduction is not sufficient for images with

a high noise level.

From these experiments we see that the parameters have a tremendous influence

over the diffusion process. The results presented here show that the experiments

are in accordance with the theoretical results established. It is not clear whether

the scalar or tensor scheme is preferred. The first one aims at better localization

of the edges but offers lower restoration than tensor based diffusion. Both schemes

will be tried out on real images.

5.5.2 Application to MR abdominal images

The datasets used for the experiments come directly from the MR acquisition

protocol. Their original size is 512× 512× 80 along the 3 spatial dimensions with

resolutions of respectively 1mm, 1mm and 2mms. They are therefore resampled

before processing with bicubic interpolation to give isotropic datasets of size 512×

512 × 160. A time step of 10 is chosen for the scalar anisotropic diffusion under

AOS scheme, as a compromise between efficiency and accuracy. For the tensor

case, the step size is set at 0.1 as required for stability of the explicit scheme. A

regularization σ = 1 is applied to both implementations.

The total computation time is about one hour for the 3D AOS scheme imple-

mented in Matlab on a single core Pentium IV 3.0 GHz PC with 1GB of RAM

memory running on Windows XP. Using multiple cores and increasing the mem-

ory should reduce significantly the processing time. The large size of the dataset

justifies the high memory requirements to achieve acceptable processing time.

The results of a slice of the dataset for increasing diffusion times are presented

in Fig. 5.6 with the same results zoomed in on a detail proposed in Fig. 5.7.

We observe that the tensor based process has a faster scale space behaviour
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Figure 5.6: Diffusion Scale spaces. Left column: scalar anisotropic diffusion. Right
column: tensor anisotropic diffusion, from top to bottom t = 0, 10, 100, 1000
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Figure 5.7: Diffusion Scale spaces, zoom of Fig. 5.6. Top row: scalar anisotropic
diffusion. Bottom row: tensor anisotropic diffusion, from left to right t =
0, 10, 100, 1000
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than the scalar one, as seen on the test image. The diffusion along the edge

also creates a rounding effect which causes sharp corners to be turned into round

shapes, creating a flow-like effect. Small structures are eliminated in favor of

elongated boundaries. This is very inconvenient in our current problem because it

would smoothen polyps (by making them lose their original shape as they appear

flatter), as well as making them appear smaller. The texture of the colon wall,

which is not perfectly smooth and can even be a bit rough in case of tumors, would

also be totally lost with that process. This behaviour is not surprising has it was

on of the main findings of Weickert [32] on the restoration properties of tensor

based anisotropic diffusion.

On the contrary, the scalar diffusion exhibits a very slow scale space evolu-

tion. The edges stay very well localized and structures stay very well defined for

a reasonably long time provided they have a scale and contrast sufficient not to

be considered as noise from the beginning. The noise reduction potential of scalar

anisotropic diffusion is however lower on the edges. While the diffusion along

the edges tries to yield smooth edges as a major feature, the scalar scheme pro-

tects the boundaries as much as possible from any major change, thus weakening

correspondingly the noise reduction properties on the edges.

Both processes are also capable of enhancing boundaries, as can be seen in

Fig. 5.7 where some smooth edges become better defined after some time, and the

average gray levels are conserved in the image as shown theoretically.

The evolution of both scale spaces shows a tendency to create piecewise regions

in the images, delimited by strong contours that are enhanced and with internal

details and noise that are smoothed out. This is well suited as a pre-segmentation

step where only the most important regions will be kept from the original image.

Careful analysis shows that the predominant features are slightly different for the

two schemes: while tensor-based anisotropic diffusion tries to conserve the global

aspect of the most representative regions the longest at the cost of localization and

precision, the scalar scheme gives preference to accuracy over the global perception
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of the region.

The scale parameter t reveals here its full importance: it creates a complete

family of segmentation-like images, and not a single result to which the diffusion

tends as the diffusion time increases. Setting t corresponds therefore to choosing at

which level of hierarchy in the scale space we want to stop the process. From Fig.

5.6 we can set the parameter t with relative ease in the scalar diffusion experiments:

t = 1000 is obviously too long since we can see that some structures have already

disappeared; while at t = 10 the image is still heavily corrupted by noise, that we

would like to reduce further. In between the two, t = 100 offers precise and neat

contours with a low noise level inside the regions, which are appropriate features

to continue onto a segmentation process.

With clear edges, the scalar scheme yields manifestly superior results for the

present purpose. We should not forget that the global objective is to obtain a

model of the colon for clinical analysis so has to be able to detect polyps an tumors

as small as a few millimeters. In consequence, we try to keep as many details as

possible on the colon wall. The tensor diffusion process smooths excessively the

boundary and it corresponds to significant loss of information which cannot be

tolerated here.

5.5.3 Comparison with other noise removal techniques

We test the anisotropic diffusion techniques proposed above against other classic

noise reduction techniques to assess the strength of our implementation. Only

a qualitative comparison will be provided because qualitative results established

on SNR computation does not represent very efficiently all the features we are

looking for in the results. Moreover the results are clear enough for a qualitative

comparison. The implementation retained for comparison is the one giving the

better results for our objective, i.e., the scalar anisotropic diffusion with a total

diffusion time equal to 100.

The quality of the noise reduction proposed is clearly unrivaled by the classic
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(a) Scalar Anisotropic Diffusion,
t = 0

(b) Scalar Anisotropic Diffusion,
t = 100

(c) Gaussian smoothing, σ = 3 (d) Gaussian smoothing, σ = 5

(e) Median filtering, 5× 5× 5
neighborhood

(f) Median filtering, 10× 10× 10
neighborhood

(g) Wiener filtering, 5× 5× 5
neighborhood

(h) Wiener filtering, 10× 10× 10
neighborhood

Figure 5.8: Comparison of noise reduction techniques
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techniques shown in Figure 5.8.

As shown theoretically, Gaussian filtering has a strong noise reduction potential

but blurs the features very quickly. Since we need to keep all possible information

on the edges it is not suited to the current case. Median and Wiener filtering both

appear inefficient for the high level of noise in the image: when applied on a small

neighborhood the effect is insignificant and if the neighborhood is increase blurring

becomes significant and edges cannot be well localized anymore.

5.6 Conclusion

We derive a pre-processing method to reduce noise and enhance some features,

namely the colon wall, from our original datasets. We have shown that the most

efficient implementation is a scalar anisotropic diffusion technique with Weickert’s

edge enhancing diffusivity function. This technique has lower restoration strength

than the equivalent tensor based technique, but it is preferred because we wish to

change the edges as little as possible. Since the edges are the colon wall we are

trying to segment, obtaining the most accurate edges is essential in order not to

change the shape of the polyps that lie on the colon wall. A main difficulty for the

implementation was the big size of the dataset, which is not the most appropriate

for an iterative technique. We have derived however an efficient numerical scheme

which guarantees stability of the process and allows us to lengthen the step times

with minimal loss on accuracy.



Chapter 6

Segmentation of the Colon for

Virtual Colonoscopy

6.1 Objectives

The goal of the process is to segment the colon lumen from the patient abdominal

dataset in order to construct a complete 3D colon model for visualization. Con-

temporary approaches should aim at automated segmentation in order to fit into

a clinical virtual colonoscopy software.

The process presented in this chapter has the objective to segment the inner

boundary of the colon from the images, i.e., the interface between the colon wall

and the colon lumen. The colon wall is a soft tissue with a thickness of usually

around 2mm, which makes it very difficult to be seen on the current MR datasets,

and nearly impossible to segment with good accuracy. A true modeling of the

colon would build a model where the colon is represented with its full thickness;

however, here we will just create a surface representing the inner interface of the

colon, and we will call it the model of the colon. Since the first objective of virtual

colonoscopy is to simulate the endoluminal views of an endoscope, obtaining the

inner boundary of the colon can be considered as sufficient to test the validity

of the process in clinical experiments. We will then see how further features can
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be added to a virtual colonoscopy system, either with further processing to the

current segmented results or with new segmentation methods. As shown in Section

5.5 the diffusion process tends to segmentation-like results, with piecewise regions

in the image. We have seen that it is not possible to push to a higher level in

the scale space without degrading the contours and loosing valuable information.

Thus the segmentation process has to be finished by techniques other than the

diffusion. An algorithm for this purpose is proposed in the following section.

6.2 Global Segmentation Algorithm

The core of the adaptive thresholding segmentation algorithm is the local threshold

computation which leads to the threshold map, which is then used to obtain the

segmentation results. The local threshold computation is based on the properties

of the diffusion process, an accurate pre-processed dataset is therefore essential

here. A flow chart of the global segmentation algorithm is depicted in Figure 6.1.

The first part of the algorithm is the diffusion process (a) which is described in the

previous chapter. The rest of the algorithm will use mainly the diffused dataset,

as in local threshold computation, to use some properties of the diffusion more

efficiently.

Before all, we need to locate the colon in the dataset, what is simple to do

for the human eye but is much more difficult to do automatically. The topology

of the colon is very convenient since it is basically a simply connected tube with

many folds and curves With a single point inside the colon, we should be able to

access all of it without going through the colon wall. In practice collapsed areas

and tumors could change significantly this topology so we need more than a single

seed point for safety, as provided by the automatic selection seed algorithm (Fig.

6.1(b)) described in Section 6.3.

Numerous routines throughout the segmentation process (such as region grow-

ing and morphological operations) will make use of those seeds points showing

their importance. For example, some algorithms (Fig. 6.1(d),(i)) might need a
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Figure 6.1: Global segmentation algorithm overview



Segmentation of the Colon for Virtual Colonoscopy 63

starting point inside the colon and the correctness of the seeds will determine the

quality of the final outcome. In most cases it is crucial to set aside some areas that

have the same characteristics as the colon and could be misinterpreted as part of it.

The processing of those areas would not only increase greatly the computational

load but also lead to mis segmented results with unwanted material not part of

the colon.

Once the seed points are obtained, we wish to detect automatically a rough

approximation of the contours of the colon. Since the dataset resulting from the

diffusion process is fairly homogeneous, basic global thresholding (Fig. 6.1(c)) can

be applied directly to obtain an approximation of the colon lumen. A region grow-

ing operation (Fig. 6.1(d)) starting from the seeds is then also used to constrain

the process only to the areas which are connected to the seeds. This first approxi-

mation can seem very rough but we are not looking here for a good approximation

of the colon wall but just for regions inside the colon lumen.

We detect the contours of the selected areas (Fig. 6.1(e)) in order to select

points on those contours which will be used for computation of the local threshold

(Fig. 6.1(f)) to establish the threshold map. The number of points used will

however be reduced to decrease the computational load and limit redundancy. For

each retained point an optimal local threshold is set as defined in Section 6.4 and

the thresholding surface is completed using interpolation (Fig. 6.1(g)). The last

part of the adaptive thresholding scheme will make use of morphological operations

(Fig. 6.1(i)) in addition to the threshold map to segment (Fig. 6.1(h) the colon

from the diffused dataset. The morphological operations used here consist of a

closing: dilatation followd by erosion, which is useful to fill in small holes and

gaps.

The intermediate results (rough contours, threshold map, etc.) can be seen in

Appendix A.
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6.3 Automatic Seed Selection

As mentionned previously, seeds inside the colon are essential because they are

the foundation on which the rest of the algorithm is constructed. Throughout the

algorithm, they set the path so that the result of the segmentation is the colon

free of any unwanted material.

The colon is easily recognizable by the human eye in MR images due to these

characteristics: it is big, the colon lumen is mainly black, and it has a tube-like

shape covered with complicated folds. However these features are not used by

algorithms as efficiently as we humans do. Some characteristics make its pre-

cise localization especially hard: people come in different sizes, their colon itself

can take different shapes and sizes and some parts of the colon can move in the

abdomen.

We know from scale space theory that an image is formed of information at

different levels of detail, for objects of different sizes and shown at different scales.

Since here we are not so much interested in the details of the colon but more

in finding an approximate location, the use of a higher scale would be perfectly

adequate. To this end we will use the idea behind pyramidal trees, i.e., taking the

diffused dataset at a higher scale and lower resolution in order to obtain a new

dataset of a much lower size. We will still be able to obtain from the latter the

features of interest here: namely, the locations of the colon’s lumen.

Using thresholding and morphological operations (dilatation and substraction)

we are able to separate some areas inside the colon from the rest of soft tissues, and

map the locations back to the dataset in its original size. It is interesting to note

that the use of a dataset of smaller size is here very important because numerous

morphological operations are needed and it would be too long and computationally

very demanding if done on the full-size image.
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6.4 Local Threshold Computation

The local threshold computation process forms the core of the adaptive threshold-

ing algorithm since it will determine the fixed values in the threshold map. The

surface will then be interpolated to obtain a full threshold map which can segment

the images.

A variety of techniques have been proposed for adaptive thresholding. The

minimization of the error between two Gaussian curves chosen to fit the histogram

of a subregion is among the most frequent pattern recognition techniques but it

is rather costly for numerous local computations on big images. We will obtain

inspiration from it to develop a faster scheme.

Yanowitz and Bruckstein [57] made the observation that the optimal local

threshold for an edge is to be found in the area of transition of the edge. The

difficulty lies however in localizing that area with precision and in finding the

average value in the middle of the edge. In most cases we are likely to obtain a

value on one side of the edge and not in the middle of it.

The pre-processing diffusion step can however provide us useful information on

the contours where we would like the segmentation to operate. We know exactly

how the diffusion behaves at the edges since the entire diffusion process has been

built around these constraints; i.e., the edge will be sharpened so has to separate

the homogenized regions (see Figure 6.2). The two local Gaussian curves that can

classically approximate the local edge will therefore tend to two single gray values

under the diffusion process. It is then much easier to know all the characteristics of

the edge. We know exactly what the edge side values are since the diffusion tends

toward it (see Fig. 6.2). Once these values are detected it is easy to get a middle

value that would split the edge in two. For more robust detection, the difference

between the histogram of the diffused image and the corresponding histogram from

the original image is used for analysis instead of just using information from the

diffused dataset. This difference is also normalized by the original data to produce

a more robust feature. Actually the local neighborhood for which the threshold
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is computed is unlikely to lie exactly on the edge, that is why it is more accurate

to work with normalized histograms. Also, in the very noisy cases or those with

edges with varying gray levels it gives a stronger descriptor of the diffusion process

for more accurate results.

6.5 Results

The segmentation algorithm has been implemented in C++. The total time needed

for segmentation on a Pentium IV 3.0 GHz with 1GB of RAM memory running

on Windows XP is of 40 minutes. The process has relatively high memory require-

ments and at least 1GB of RAM is advisable. The reconstructed colon resulting

from the segmentation of the dataset used in the previous experiments is shown

with the use of 3D rendering techniques in Figure 6.3. An endoscopic view of a

polyp lying on the colon wall is also proposed in Figure 6.4. 2D slices of the same

data showing the segmented result on top of the original dataset can be consulted

in Appendix B.

We can see that the colon appears to be fully segmented as one connected

surface from the cecum to the rectum. There are no holes in the surface and the

folds look natural. The surface also seems to be quite smooth. Though we have

seen that the diffusion preprocessing does not provide any smoothing of boundaries;

the smooth appearance could be due to the low resolution of the dataset as well

as the rendering techniques.

The polyp seen in the endoscopic view has a round shape and should be distin-

guished easily. After discussion with a radiologist we were told that it is large and

lying on the colon wall, which is why it does not pertrude from the surface. The

view of the radiologist is that the polyp looks realistic. We would like to be sure

that the small structures which can be distinguished on the dataset such as polyps

are correctly segmented and will be accurately rendered in a virtual colonoscopy

system. Clinical requirements show that polyps of 10mm should be detected, while

it would be preferable to also obtain a good sensitivity for polyps between 5 to
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(a) Edge area of an original image (b) Edge area of the corresponding
diffused image

(c) Local histogram of original image (d) Local histogram of diffused image

(e) Normalized difference of histograms

Figure 6.2: Local features used for adaptive thresholding
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Figure 6.3: Segmented colon

Figure 6.4: Endoscopic view of a polyp
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10mm. Since there is no analytical way to know if our implementation can achieve

such requirements we would need a radiologist to analyze the segmentation results

using his own knowledge to validate the process.

6.6 Discussion

6.6.1 Consequences of diffusion on the segmentation re-

sults

The diffusion process plays a fundamental role in the segmentation toward the

construction of a 3D model. The MR dataset has originally an inconvenient inho-

mogeneity artifact which is prejudicial to the segmentation. Combined with the

wide range of intensity values that the colon wall can take, it prevents the use of a

global contrast enhancement method that would not operate optimally on the full

dataset, possibly even deteriorating the information in the areas that are badly

affected by the inhomogeneity. The latter is removed partially with the diffusion

process and we could think that a global thresholding scheme would be sufficient

to complete of the segmentation; however the size of the dataset and the many

differences in intensities of the colon wall itself make it inappropriate.

When having to set a global threshold for the full dataset, the inhomogeneity

forces it to be very low. In some areas the soft tissues have gray values very

proximate to other noisy areas inside the colon lumen. If we set a threshold value

that would be near optimality for the majority of edges, some soft tissues could

be badly segmented and the segmentation could leak outside the colon. On the

contrary, if the threshold is set very low, we are likely to missegment some area and

perform an non optimal segmentation for the majority of edges. The segmentation

cannot therefore be completed with a simple thresholding scheme after diffusion.

As detailed in Section 6.4, the properties of the diffusion provide us a adaptive

thresholding framework to work on.

The strength of the preprocessing step is therefore double; not only does it
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reduce the noise level considerably, but the adaptive thresholding scheme also

relies entirely on its edge properties.

It is also important to note that the edge enhancement property of anisotropic

diffusion acts naturally toward removing the partial volume effects. With a straighter

edge the uncertainties usually brought into the segmentation process by PVE are

considerably reduced without the need of additional heuristics.

6.6.2 Reliability of the segmentation process

As for all automated processes, reliability concerns of the entire segmentation

process have to be investigated. First, we note that the segmentation relies entirely

on the preprocessing diffusion step. We therefore have to make sure that the

entire diffusion process is performed the most accurately. The robustness of the

diffusion algorithm is an important point, with the main concern being the very

thin structures in the image that must not be smoothened. When the colon is badly

distended it can happen that different part of the colon are in contact. Taking into

account the thickness of the colon wall which is around 2mm, it creates structures

that may be smaller that smallest polyps we are trying to detect and it could lead

to these structures being smoothed by the diffusion process. Even if a radiologist

would have no difficulty in detecting it as it does not look natural and cannot

correspond to any pathology of the colon, it is a major drawback because it will

jeopardize the outcome of the algorithm.

We have seen how the region growing algorithms rely on the topology of the

colon to the separate the colon lumen from unwanted materials. If a boundary is

smoothed the topology changes and the region growing process will leak outside

the colon. A stopping criteria would have to be implemented in order to contain

the leak that can compromise the full segmentation process. When a leak occurs,

apart from mis-segmenting the colon, it creates new edges outside the colon; if the

leak is important it can lengthen considerably the duration of the segmentation

and possibly lead the process to run out of memory.
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It can very difficult to perform the segmentation of the colon exclusively of

unwanted material. When seeds are automatically selected, it can happen that

the small intestine is mistakenly considered as part of the colon. The results will

show part of the small intestine, which is not a major drawback however because

it can be easily recognized by the radiologists. Manual seed selection could solve

the problem in that case.

6.7 Use of Segmentation Results in Virtual Colon-

oscopy

6.7.1 Conventional use

Once the colon is segmented in the 3D dataset, the visualization and analysis part

of virtual colonoscopy come into play. These are globally indifferent from any

techniques used in any other virtual colonoscopy software. No matter which is the

imaging protocol, we wish to reconstruct a colon model to aim at the same virtual

navigation inside the colon.

Rendering techniques have to be used for visualization of 3D data. Surface

rendering techniques using the segmented results and based on the marching cubes

algorithm or adaptive skeleton climbing are among the most commonly used, and

the latter is the one being used in the software developed internally [58].

Different views can be used for examination, but endoscopic views (Figure 6.5)

are the most liked by the physicians since they simulate a real endoscopy which

they are used to. A user friendly environment (Figure 6.6) must also be provided

for examination purposes providing real time rendering and interactivity which are

essential requirements. Through a user-friendly interface, the radiologist should

be able to navigate freely to search for polyps within the colon. To this end,

automatically extracted flight path based on the medial axis computed on the seg-

mented colon is necessary to provide automatic navigation for ease of visualization.
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Figure 6.5: Endoscopic view of the segmented colon

Discussion with physicians show that they rely importantly on the cross sectional

views to spot areas at risk. The software should therefore incorporate such views

on which the segmented information can be superposed as in Figure 6.6. This is

important because the radiologist should always have the possibility to check the

results of the automatic segmentation process when in doubts.

The use of the segmented results is however not restricted to visualization pro-

cedures and medial axis computation, and further information can be extracted

from the segmented data to be at the clinician’s disposition during the examina-

tion. Polyp detection algorithms are for instance an active area of research today.

The idea is to go through the segmented colon to automatically detect polyps or

least list potential polyps candidates. The polyps found can then be indicated to

the physician on the virtual colonoscopy software for him to go directly and focus

on the areas at risk during examination, saving him valuable time required other-

wise to spot polyps in the data. It follows that an accurate polyp detection scheme
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would help achieving very high sensitivity rates, making virtual colonoscopy a more

reliable procedure.

Figure 6.6: Virtual colonoscopy software

6.7.2 Future Work

MR screening techniques opens new horizons for virtual colonoscopy. When ana-

lyzing MR abdominal images, the physician looks at the shape of the colon wall to

detect polyps and tumors, and usually also uses the change in intensities to help

his judgment. The unrivaled imaging of soft tissues offered by MRI, combined

with the further injection of contrast agent, opens the path to distinguishing the

colon wall entirely and not just by its inner boundary delimiting the colon lumen,

as it is done for CT based techniques which offer very low contrast between soft

tissues. The tumors and polyps show in almost all cases an increase in thickness of

the colon wall compared to an healthy colon wall, giving additional information for
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examination. The colon wall intensity can also give meaningful knowledge about

the visualized areas, since polyps, tumors or unwanted materials (remaining fluids,

faeces, etc.) can sometimes appear with different intensities indicating a region to

be analyzed with care to the radiologist.

Those observations could be expanded into new features for a virtual colonoscopy

software providing an enhanced examination environment.

First the intensity of the inner surface of the colon wall could be mapped onto

the reconstructed model. Instead of showing endoscopic views of a single colored

model we would experience something closer to real colonoscopy. Getting the local

intensity of the soft tissues is a fairly straight forward operation considering the

operations done previously. When computing the local threshold we just need to

keep the value of the side of the edge (corresponding to the colon wall) and link it

to the corresponding location. Similarly to how the threshold surface is completed,

we can get a intensity surface that we will map onto the reconstructed colon. This

feature is based on information extracted from the diffused dataset rather than

the original one, we would therefore be viewing an average local intensity instead

of the precise colon wall intensity. The impossibility to distinguish the colon wall

with precision in the original data due to high noise level and low resolution is

at the origin of this drawback; if the colon wall is hardly or not recognizable it

is likely to be merge with some adjacent tissues in the diffused dataset. This is

not a major concern however since the use of the technique is not to show with

exactitude the colon wall’s intensity but more to highlight the regions at risk; and

if a region had a change in intensity it would be shown by this technique.

Another feature to which physicians look forward to with great expectations

is getting data about the colon wall thickness. It is known that areas with polyps

and tumors correspond to an increase in the colon wall’s thickness. If we could

extract that information from the datasets and color code it into the model we

would be able to provide an endoscopic with an additional detection feature coded

into another dimension in the model. This would create true value to MR virtual
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colonoscopy since it would give information that conventional colonoscopy and

even CT colonography cannot access. Regions at risk would be much more easily

identifiable, giving globally a more powerful visualization technique, increasing the

sensitivity of the process while reducing the examination time for the physicians.

The main problem with this feature is that the current technology does not enable

us to measure the colon wall’s thickness. While it can be identified in very few

cases by the human eye, major improvements will still be needed to implement

that feature automatically in a virtual colonoscopy software.

Lastly, there is also major on going research on automatic polyp detection. In-

tegrating all the above mentionned information on the regions at risk of the colon

into an automatic software for polyp detection has to be considered the ultimate

goal of VC systems. The work of physicians would then be greatly enhanced by

reducing considerably the time needed to analyze each dataset. He could focus

directly on regions at risk, with all the information at his disposal for diagno-

sis thanks to advanced 3D rendering techniques. This kind of human machine

cooperation will drive the development of wide spread MR based VC systems.



Chapter 7

Conclusion

We have presented a method based on anisotropic diffusion techniques to segment

the colon from abdominal MR volumetric datasets in view of their use for virtual

colonoscopy. This method can be divided into two major phases: a pre-processing

step which enhances the important features of the colon, followed by a segmenta-

tion step which extracts the inner boundary of the colon in view of constructing a

3D model of the colon.

The strength of the diffusion technique is that it is used in both phases: While

the anisotropic diffusion process forms the first phase by itself, the second phase

is based on its properties to yield a segmentation scheme.

The difficulty of using MR images for virtual colonoscopy comes from the ad-

verse characteristics of the images which prevents easy segmentation of the colon.

We have shown how the scale space created by the diffusion process can provide

a framework which can enhance the features needed for segmentation by reducing

the important noise level and enhancing the contours of the colon. However much

care is needed to develop a scale space suitable under the numerous constraints:

we have seen for example how the restoration properties of the tensor scheme

looses information on the contours or how the features are best at a certain level

in the scale space. We have also managed to get a numerical implementation of the

process which offers stability and that is adapted to the big size of our datasets.
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The tenuous work needed to yield a good diffusion is leveraged when deriving

the segmentation process. An adaptive thresholding scheme is developed based

on the enhancement properties of the diffusion process making possible the seg-

mentation of the inner boundary of the colon. The validation of the process is

a difficult task since it would require a radiologist to analyze the quality of the

outcome based on his own knowledge. It is nonetheless imperative to assess the

reliability of the process to be sure that polyps bigger than 10 mm and possibly

than 5mm can be detected.

Some improvements could be proposed to develop a more efficient scheme. For

images of such characteristics the pre processing step seems essential to perform

the segmentation. Nonetheless, the segmentation proposed is only intensity based,

more advances schemes which would take spatial information into account should

help getting more precise results. Letting aside the technical constraints the use

of Gradient Vector Flow deformable models could for example be well suited to

the problem, since they use spatial information as well as the diffusion process to

steer the deformable model. Active contours are certainly one of the keys areas to

be investigated to be able to mesure the performance of the current segmentation

process.

The outcome of the segmentation process is also restricted for now to the inner

boundary of the colon. With such information, a virtual colonoscopy system can

be implemented with the conventional endoscopic views, automatic flight path and

possibly even automatic polyp detection features. However all those features can

already be found in commercial CT virtual colonoscopy systems. The true value

of an MR based system would lie not only in its radiation free acquisition protocol,

but most importantly in the additional features it would bring, predominantly the

thickness of the colon wall. However the quality of the datasets is such that in most

cases today we cannot distinguish the colon wall except from its inner boundary

which does not give the opportunity for advanced features. The limitations of

the acquisition technique, being mainly the length of the acquisition time and the
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resolution of the datasets are keys issues and they are quite unlikely to change in the

near future, preventing the wide spread of MR based VC systems. The rationale

of an MR virtual colonoscopy system is still dependent on majortechnological

improvements of data acquisition.



Appendix A

Intermediate Results of the

Segmentation Algorithm

The intermediate results of the segmentation process are presented for one slice of

a dataset.

Figure A.1: Seed points resulting from automatic seed selection
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Figure A.2: Rough segmented colon after global segmentation and region growing

Figure A.3: Incomplete threshold map after computation of thresholds at the edge
points
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Figure A.4: Complete threshold map after interpolation

Figure A.5: Final segmented result after adaptive thresholding and region growing



Appendix B

Segmentation Results

Figure B.1: Segmented result of slice 19 of dataset MRC712
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Figure B.2: Segmented result of slice 27 of dataset MRC712

Figure B.3: Segmented result of slice 41 of dataset MRC712
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Figure B.4: Segmented result of slice 60 of dataset MRC712



Bibliography

[1] E. Ward and V. Cokkinides, “Colorectal cancer facts and figures,” Atlanta,

US, 2005.

[2] S. Landis, T. Murry, S. Bodden, and et al, “Cancer statistics, 1998,” Cancer

Journal for Clinicians, vol. 48, pp. 6–29, 1998.

[3] L. Rosen, “Screening and surveillance for colorectal cancer,” Arlington

Heights, IL, US, 2002.

[4] C. Becker, M. Schatzl, H. Feist, and et al, “Radiation exposure during ct

examination of thorax and abdomen. comparison of sequential, psiral and

electron beam computed tomography,” Radiologe, vol. 38, pp. 726–729, 1998.

[5] D. Brenner and M. Georgsson, “Mass screening with ct colonography: Should

the radiation exposure be of concern?” Gastroenterology, vol. 129, pp. 328–

337, 2005.

[6] T. Lauenstein, “Mr colonography: current status,” European Radiology,

vol. 16, pp. 1519–1526, July 2006.

[7] W. Lubold and et al., “Colonic masses: detection with mr colonogrpahy,”

Radiology, vol. 216, pp. 383–388, 2000.

[8] G. Pappalardo and et al., “Magnetic resonance colonography versus conven-

tional colonoscopy for the detection of colonic endoluminal lesions,” Gastroen-

terology, vol. 119, pp. 300–304, 2000.

85



BIBLIOGRAPHY 86

[9] D. Chen, T. Button, H. Li, W. Huang, and Z. Liang, “Mr imaging and segmen-

tation of the colon wall for virtual colonoscopy,” Proc. International Society

of Magnetic Resonance in Medicine, vol. 3, p. 2203, 1999.

[10] N. Rofsky, V. Lee, G. Laub, M. Pollack, G. Krinsky, D. Thomasson, M. Am-

brosino, and J. Weinreb, “Abdominal mr imaging with a volumetric interpo-

lated breath-hold examination,” Radiology, vol. 212, pp. 876–884, 1999.

[11] W. Ajaj, T. Lauenstein, G. Pelster, S. Goehde, J. Debatin, and S. Ruehm,

“Mr colonography: How does air compare to water for colonic distention?”

Journal of Magnetic Resonance Imaging, vol. 19, pp. 214–221, 2004.

[12] T.Lauenstein, C. Herborm, F. Vogt, S. Goehde, J. Debatin, and S. Ruehm,

“Dark lumen mr colonography: initial experience,” Rofo Fortschr Geb Roent-

genstr, vol. 173, pp. 785–789, 2001.

[13] J. Montagnat, M. Sermesant, H. Delingette, G. Malandain, and N. Ayache,

“Anisotropic filtering for model-based segmentation of 4D cylindrical echocar-

diographic images,” Pattern Recognition Letters - Special Issue on Ultrasonic

Image Processing and Analysis, vol. 24, no. 4-5, pp. 815–828, February 2003.

[14] U. Clarenz, U. Diewald, and M. Rumpf, “Anisotropic geometric diffusion in

surface processing,” in Proceedings of Visualization 2000, T. Ertl, B. Hamann,

and A. Varshney, Eds., 2000, pp. 397–405.

[15] G. Gerig, R. Kikinis, O. Kbler, and F. Jolesz, “Nonlinear anisotropic filtering

of mri data,” IEEE Transactions on Medical Imaging, vol. 11, no. 2, pp.

221–232, June 1992.

[16] K. Krissian, “Diffusion anisotrope d’images cérébrales 3D et segmentation
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[25] M. Sermesant, “Modèle électromécanique du coeur pour lanalyse dimage et
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