
TWO PROBLEMS IN CONVEX CONIC

OPTIMIZATION

ZHAI XIAOJUN

(B.Sc., Northwestern Polytechnical University)

A THESIS SUBMITTED

FOR THE DEGREE OF MASTER OF SCIENCE

DEPARTMENT OF MATHEMATICS

NATIONAL UNIVERSITY OF SINGAPORE

2007

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarBank@NUS

https://core.ac.uk/display/48625261?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Acknowledgements

I would like to express my sincere gratitude to my graduate advisor Professor Toh

Kim-Chuan for his constant support, guidance and motivation. Remember two

years ago, he said to me that he was sure that I would learn something. After two

years’ study, today finally I can say, ”Yes, I did learn a lot from you, Sir.” I am

also grateful to the discussions with Professor Sun Defeng, he is a good researcher

with keen eyes.

I would like to thank all my colleagues in Department of Mathematics, NUS,

especially for Li Lu who offered me a lot of helpful discussions on the thesis.

At last I will thank for my family, my parents who support me all the time.

ii

1

Abstract

In the first part of the thesis we focus on smallest enclosing ball problem. The

smallest enclosing ball of balls problem (SEBB) is to find a ball that encloses a

set of balls in Rn. In this part, first we use a smoothing log-exponential aggrega-

tion function to smooth the objective function, then we apply Nesterov’s efficient

gradient method to the resulting Lipschitz continuous smooth convex optimization

problem. Further, we improve Nesterov’s algorithm by adaptively decreasing the

smoothing parameter and modified backtracking line search. From the viewpoint

of efficiency estimates, we are able to solve a non-smooth convex minimization

problem with O(1
ε
) iterations to achieve ε-accuracy in the approximate solution,

compared to the traditional bound O(1
ε2

) given by the subgradient method. At

last, we present a numerical comparison of the performance of different algorithms

in solving the SEBB problem. We show that the improved Nesterov’s algorithm is

able to solve large SEBB problem (in order of thousands) in moderate time.

The second part of the thesis is on the generalized convex quadratic semidef-

inite program (GQSDP). We use the primal-dual path following method to solve

(GQSDP). To deal with the ill-conditioned linear system, we design two types of

preconditioners and prove their effectiveness. At last, we show some numerical

results on the primal-dual path following method of solving (QSDP).

Contents

I Smallest Enclosing Ball Problem 4

1 Introduction 5

1.1 Smallest Enclosing Ball Problem . 5

1.2 Application . 7

1.3 Related Works and Outline . 7

2 Smooth Approximation 9

3 Nesterov’s Algorithm and Implementation for SEBB 14

3.1 Nesterov’s Algorithm . 14

3.1.1 Algorithm Analysis . 14

3.1.2 Complexity Analysis of Nesterov’s Algorithm 16

3.2 Apply Nesterov’s Algorithm to SEBB 16

3.2.1 Determine the Closed Convex Set Q 16

3.2.2 Determine d(x) . 17

3.2.3 Further Analysis of Implementation 18

3.2.4 Complexity Analysis of Nesterov’s Algorithm for SEBB . . . 19

4 Improvement on Nesterov’s Algorithm 20

2

Contents 3

4.1 Adaptively Decreasing the Smooth Parameter 20

4.2 Backtracking Line Search Scheme 21

4.2.1 Implementation of Traditional Backtracking 22

4.2.2 Modified Backtracking . 23

5 Numerical Results 26

II Generalized Convex Quadratic Semidefinite Program-

ming 30

6 Introduction 31

6.1 QSDP and GQSDP . 31

6.2 Application . 32

6.3 Related Work and Outline . 32

7 Computation of Newton Direction in GQSDP 34

8 Preconditioners for the Augmented Matrix 37

8.1 Partitioning the Augmented Matrix 37

8.2 Preconditioners . 40

8.2.1 Preconditioner I . 40

8.2.2 Preconditioner II . 46

9 Numerical Experiment for QSDP Solver 48

Bibliography 55

Part I

Smallest Enclosing Ball Problem

4

Chapter 1
Introduction

1.1 Smallest Enclosing Ball Problem

In this part, we study the problem of finding the closed ball of smallest radius

that contains a given set of n closed balls in d-dimensional Euclidean space. This

problem, which we denote by SEBB, generalizes the well understood problem of

finding the smallest enclosing ball of n given points, which is called SEBP. First

we define a ball in n dimensional space. A ball Bi in Rn with center ci ∈ Rn and

radius ri > 0 is the closed set Bi = {x ∈ Rn : ||x − ci|| ≤ ri}. From now on, we

denote the ball Bi with center ci and radius ri as Bi(ci, ri). Then we introduce

smallest enclosing ball of points problem.

Problem 1 (Smallest Enclosing Ball of Points). Given a set of points P = {p1, p2, ..., pm}
in Rn, we want to find a ball B∗ = B∗(c∗, r∗) with the smallest radius r∗, such that

P ⊆ B.

If the points in P become balls, then we get smallest enclosing ball of balls

problem, SEBB.

Problem 2 (Smallest Enclosing Ball of Balls). Given a set of balls B = {B1, B2, ..., Bm}
in Rn, we want to find a ball B∗ = B∗(c∗, r∗) with the smallest radius r∗ such that

∀Bi ∈ B, Bi ⊆ B∗.

5

1.1 Smallest Enclosing Ball Problem 6

In n-dimensional space, suppose the center of our smallest enclosing ball is c,

then in order to enclose the ball Bi(ci, ri), the smallest enclosing ball must have a

radius equal to ||c− ci||+ ri.

From now on, we denote the distance between a point xi and a ball B(ci, ri) to

be D(xi, B) = ||xi − ci|| + ri. Since we are trying to find the enclosing ball with

the smallest radius, the smallest enclosing ball problem can be formulated as the

following convex optimization problem:

min
x∈Rn

max
1≤i≤m

{||x− ci||+ ri} (1.1)

If we denote

fi(x) = ||x− ci||+ ri, i = 1, 2, ...m

and

f(x) = max
1≤i≤m

{fi(x)} (1.2)

then the problem (1.1) can be rewritten as

min
x∈Rn

f(x) (1.3)

We claim that the solution to (1.1) exists and is unique. First, for a smallest

enclosing ball problem with balls B = {B1, B2, ..., Bm}, we fix one point c, and

radius

r = max
i=1···m

D(c, Bi)

then B(c, r) enclose all the balls in B. Then we claim that the center of the smallest

enclosing ball is in the ball B(c, r), (see Proposition 4). In this close set B(c, r),

f(x) is continuous, thus must have a minimum. So the solution to (1.1) exists.

Second, the solution is unique. Otherwise there would exist two different balls, B1

and B2, of the same radius, with all balls in B are in B1 and B2. Then we can

always construct a smaller ball B̄ ⊇ B1 ∩B2, and B̄ contains all the balls in B.

1.2 Application 7

1.2 Application

Problem (1.1) arises in applications such as location analysis and military oper-

ations and now becomes an interesting topic in computational geometry. The

applications include collision detection [20], the computation of bounding sphere

hierarchies for clustering or efficient rendering of complex scenes, culling (e.g. for

visualization of molecular models [8]), farthest neighbour approximation [1], auto-

mated manufacturing [23], and similarity search in feature spaces [21].

1.3 Related Works and Outline

Many algorithms have been developed for SEBP and SEBB problem. For SEBP

problem, Megiddo [17] presented a deterministic O(m) algorithm for the case n < 3.

Welzl [5] developed an algorithm which is linear in m when n is small. For SEBB

problem, a C++ program based on Welzl’s algorithm and Gärtner’s implementa-

tion [3] is developed by David White [4]. Software packages, like [3] [4], are only

efficient when n < 30. Recently, Zhou et al. [7] have designed several efficient

algorithms to solve SEBB problem. They smooth the function f(x), reformulate

SEBB as an SOCP problem. Their algorithms can be used to solve problems where

n and m are large (in order of thousands).

In this part, we developed a new approach to solve the SEBB problem. Af-

ter applying Nesterov’s algorithm to the smoothed function f(x), we improve the

algorithm by allowing a new backtracking line search scheme, and a gradually de-

creasing smoothing parameter. Both of the techniques make our program faster.

With the improved algorithm, we can solve large size problems in moderate time

with m and n larger than 1000.

Problem(1.1) is a non-differentiable, non-smooth convex optimization problem.

1.3 Related Works and Outline 8

Because of the non-differentiability of the objective function, regular gradient meth-

ods cannot be used to solve the problem. In order to overcome this difficulty, in

Chapter 2 we smooth the function f(x) by a log-exponential aggregation function.

Then, we discuss the Nesterov’s algorithm and its implementation to the smoothed

SEBB problem in Chapter 3. In Chapter 4 we improve Nesterov’s algorithm by

allowing a new backtracking line searching scheme and smoothing parameter de-

creasing scheme in the algorithm. In Chapter 5 we report some numerical results,

which show a comparison of the algorithms proposed here.

Notation: We denote by Ck,p
L (Q) the class of functions with the following prop-

erties

• Any f(x) ∈ Ck,p
L (Q) is k times continuously differentiable on Q

• Its pth derivative is Lipschitz continuous on Q with the constant L such that

||f (p)(x)− f (p)(y)|| ≤ L||x− y||

for all x, y ∈ Q

Chapter 2
Smooth Approximation

Nesterov’s algorithm is a gradient method for smoothed, first order Lipschitz con-

tinuous convex function. Since f(x) is not smooth, in order to apply this algorithm

to SEBB problem, we have to smooth f(x) first. For any p > 0, define the smooth-

ing log-exponential aggregation function f(x; p) for f(x) in (1.2) as

f(x; p) = p ln

(
m∑

i=1

exp(gi(x; p)/p)

)
where gi(x; p) = ri +

√
||x− ci||2 + p2

(2.1)

After smoothing, we can see that f(x; p) is a smooth function with smoothing

parameter p. The following proposition lists some of the important properties of

f(x; p).

Proposition 1. The function f(x; p) has the following properties:

1. For any x ∈ Rn, and p1, p2 satisfying 0 < p1 < p2, we have

f(x, p1) < f(x; p2)

2. For any x ∈ Rn and p > 0, f(x) ≤ f(x; p) ≤ f(x) + p(1 + ln m).

3. For any p > 0, f(x; p) is continuously differentiable and strictly convex.

9

10

Proof. 1. For any x ∈ Rn and p1,p2 satisfying 0 < p1 < p2, by Jensen’s inequal-

ity,
[

m∑
i=1

(exp(gi(x; p2)))
1/p2

]p2

>

[
m∑

i=1

(exp(gi(x; p2)))
1/p1

]p1

>

[
m∑

i=1

(exp(gi(x; p1)))
1/p1

]p1

Hence, f(x; p1) < f(x; p2).

2. Fix p = p2 and let p1 → 0 in 1, we have f(x) < f(x; p). Let

g∞(x; p) = max
1≤i≤m

{gi(x; p)}

It is readily proven that f(x) ≤ g∞(x; p) ≤ f(x) + p. Thus, from (2.1), we

have

f(x; p) = g∞(x; p) + p ln
m∑

i=1

exp[(gi(x; p)− g∞(x; p))/p] ≤ g∞(x; p) + p ln m

Hence,

f(x) ≤ f(x; p) ≤ f(x) + p(1 + ln m)

3. For any p > 0, clearly, f(x; p) is continuously differentiable. Now we prove

that f(x; p) is strictly convex. From (2.1), we know

∇f(x; p) =
m∑

i=1

λi(x; p)

hi(x; p)
(x− ci) (2.2)

where

hi(x; p) =
√
||x− ci||2 + p2, τ(x; p) =

m∑
i=1

exp(gi(x; p)/p) (2.3)

λi(x; p) =
exp(gi(x; p)/p)

τ(x; p)
(2.4)

Further, we define

Qij =
(x− ci)(x− cj)

T

hi(x; p)hj(x; p)

From (2.2), we can get

∇2f(x; p) =
m∑

i=1

[
λi(x; p)

hi(x; p)
(In −Qii) +

λi(x; p)

p
Qii −

m∑
j=1

λi(x; p)λj(x; p)

p
Qij

]

11

For any z ∈ Rn with z 6= 0, by the Cauchy-Schwartz inequality,

||z||2 − zT Qiiz ≥ ||z||2 − ||z||2||(x− ci)/hi(x; p)||2 > 0 ∀i = 1, ...m.

Thus,

zT∇2f(x; p)z =
m∑

i=1

λi(x; p)

hi(x; p)
(||z||2 − zT Qiiz)

+
m∑

i=1

[
λi(x; p)

p
zT Qiiz −

m∑
j=1

λi(x; p)λj(x; p)

p
zT Qijz

]

>

m∑
i=1

[
λi(x; p)

p
zT Qiiz −

m∑
j=1

λi(x; p)λj(x; p)

p
zT Qijz

]

=
1

p

m∑
i=1

λi(x; p)a2
i −

1

p

(
m∑

i=1

λi(x; p)ai

)2

≥ 0 (2.5)

where

ai = zT (x− ci)/hi(x; p) (2.6)

This shows that ∇2f(x; p) is positive definite. Therefore, f(x; p) is strictly

convex. Note that the inequality (2.5) follows from the fact that

|
m∑

i=1

λi(x; p)ai| ≤
√√√√

m∑
i=1

λi(x; p)

√√√√
m∑

i=1

λi(x; p)a2
i

and
∑m

i=1 λi(x; p) = 1, λi(x; p) ≥ 0 for i = 1, ...m.

Now we want to look at the Lipschitz continuous property of f(x) and get the

Lipschitz constant, first we introduce a lemma.

Lemma 1. For any function f(x), x ∈ Rn which is twice continuous differentiable,

the first derivative of f(x) is Lipschitz continuous with constant L

||∇f(x)−∇f(y)|| ≤ L||x− y|| ∀x, y ∈ Rn

if

||∇2f(ω)|| ≤ L ∀ω ∈ Rn (2.7)

12

Proof. For any x, y ∈ Rn, we have

∇f(y) = ∇f(x) +

∫ 1

0

∇2f(x + t(y − x))(y − x)dt

= ∇f(x) +

(∫ 1

0

∇2f(x + t(y − x))dt

)
(y − x)

If (2.7) is satisfied, then

||∇f(y)−∇f(x)|| =
∣∣∣∣
∣∣∣∣
(∫ 1

0

∇2f(x + t(y − x))dt

)
· (y − x)

∣∣∣∣
∣∣∣∣

≤
∣∣∣∣
∣∣∣∣
∫ 1

0

∇2f(x + t(y − x))dt

∣∣∣∣
∣∣∣∣ · ||y − x||

≤
∫ 1

0

||∇2f(x + t(y − x))||dt · ||y − x|| ≤ L||y − x||

Proposition 2. The first derivative of f(x; p) in (2.1) is Lipschitz continuous with

constant 2
p
.

Proof. From Lemma 1 we know that if we can prove ||∇2f(x)|| ≤ L,∀x ∈ Rn then

L is the Lipschitz constant. From Proposition 1 we know that f(x; p) is strictly

convex, which means the Hessian matrix ∇2f(x) should be symmetric and positive

definite. By the definition of induced matrix 2-norm, we have

||∇2f(x)|| = max
||z||=1

||zT∇2f(x)z||

So, it is equivalent to proving that

max
||z||=1

zT∇2f(x; p)z ≤ 2

p
(2.8)

By the definition (2.3) and (2.4), we know that

λi(x; p) ≥ 0. hi(x; p) ≥ 0.
1

hi

=
1√

||x− ci||2 + p2
≤ 1

p

Further,
m∑

i=1

λi(x; p)

hi(x; p)
(zT Qiiz) =

m∑
i=1

λi(x; p)

hi(x; p)
· [zT (x− ci)]

2

hi(x; p)2
≥ 0

13

[zT (x− ci)]
2

h2
i

≤ ||x− ci||2∞
||x− ci||2 + p2

≤ 1

and
m∑

i=1

m∑
j=1

λi(x; p)λj(x; p)

p
zT Qijz =

1

p

(
m∑

i=1

λi(x; p)ai

)2

≥ 0

where ai is defined by (2.6).

We can now prove (2.8). From (2.5) we know that

zT∇2f(x; p)z =
m∑

i=1

λi(x; p)

hi(x; p)
(||z||2 − zT Qiiz)

+
m∑

i=1

[
λi(x; p)

p
zT Qiiz −

m∑
j=1

λi(x; p)λj(x; p)

p
zT Qijz

]

≤
m∑

i=1

λi(x; p)

hi(x; p)
||z||2 +

m∑
i=1

[
λi(x; p)

p
zT Qiiz

]

=
m∑

i=1

(
1

p
· [zT (x− ci)]

2

h2
i

+
1

hi

) · λi(x; p)

≤ (2/p)
m∑

i=1

λi(x; p) =
2

p
(2.9)

Note that (2.9) follows from the fact that
∑m

i=1 λi(x; p) = 1.

Chapter 3
Nesterov’s Algorithm and Implementation

for SEBB

3.1 Nesterov’s Algorithm

3.1.1 Algorithm Analysis

In [24] Nesterov discussed an efficient algorithm to solve the smooth convex min-

imization problem with Lipschitz continuous first derivative. Suppose we have a

function f(x) with continuous first derivative, defined on a convex subset Q of Rn,

i.e. f(x) ∈ C
(1,1)
L (Q) and we have

||∇f(x)−∇f(y)||∗ ≤ L||x− y|| ∀x, y ∈ Q

(we are using the Euclidean norm, so || · ||∗2 = || · ||2)
Since f(x) is convex, we have the following inequality

f(y) ≤ f(x) + 〈∇f(x), y − x〉+
1

2
L||y − x||2 (3.1)

Further, we take TQ(x) ∈ Q to be the optimal solution of the following minimization

problem

min
y

{
〈∇f(x), y − x〉+

1

2
L||y − x||2, y ∈ Q

}
(3.2)

14

3.1 Nesterov’s Algorithm 15

Substitute (3.2) to (3.1) we can get

f(TQ(x)) ≤ f(x) + min
y
{〈∇f(x), y − x〉+

1

2
L||y − x||2 : y ∈ Q} (3.3)

While we are updating our solution from x to TQ(x), (3.3) offers us an one step

minimization bound in Nesterov’s algorithm. Further, we need a prox-function to

implement Nesterov’s Algorithm , which can be defined as follows.

Define d(x) to be a function that is continuous and strongly convex on the closed

convex set Q ∈ Rn with convexity parameter σ > 0. Let x0 be the center of the

set Q.

x0 = arg min
x
{d(x) : x ∈ Q}

Without loss of generality assume that d(x0) = 0. Thus, for any x ∈ Q we have

d(x) ≥ 1

2
σ||x− x0||2 (3.4)

Now we are ready to use the Nesterov’s algorithm to solve the problem

min
x
{f(x) : x ∈ Q} (3.5)

where Q is a closed convex set and f(x) ∈ C1,1
L (Q).

Algorithm A

For k ≥ 0, do the following until some terminating criteria is satisfied

1. Compute f(xk) and ∇f(xk)

2. Find yk = TQ(xk)

3. Find

zk = arg min
x
{L

σ
d(x) +

k∑
i=0

i + 1

2
(f(xi) + 〈∇f(xi), x− xi〉) : x ∈ Q}

4. Set xk+1 = 2
k+3

zk + k+1
k+3

yk

Basically, The algorithm is trying to update recursively two sequences of points

{xk}∞k=0 and {yk}∞k=0 until yk is close enough to the optimum.

3.2 Apply Nesterov’s Algorithm to SEBB 16

3.1.2 Complexity Analysis of Nesterov’s Algorithm

In [24] Nesterov proves a theorem to measure the complexity of his algorithm.

Theorem 1. Let the sequence {xk}∞k=0 and {yk}∞k=0 be generated by Nesterov’s

Algorithm, then for any k ≥ 0, we have

(k + 1)(k + 2)

4
f(yk) ≤ min

x

{
L

σ
d(x) +

k∑
i=0

i + 1

2
[f(xi) + 〈∇f(xi), x− xi〉] : x ∈ Q

}

Therefore,

f(yk)− f(x∗) ≤ 4Ld(x∗)
σ(k + 1)(k + 2)

(3.6)

where x∗ is an optimal solution to the problem (3.5).

Define the absolute difference between current objective value and the optimum

value as d, given ε > 0, efficiency estimate for an algorithm is the order of steps

required to achieve ε < d.

Proposition 3. Nesterov’s Algorithm have an efficiency estimate of the order of

O
(√

L
ε

)
.

Proof. This is a natural result implied by Theorem 1.

3.2 Apply Nesterov’s Algorithm to SEBB

We are going to apply Nesterov’s algorithm to the smoothed SEBB, namely, we

are going to use Nesterov’s Algorithm to solve the problem

min
x
{f(x; p) : x ∈ Q} (3.7)

where Q is a closed convex set, f(x; p) is defined by (2.1).

3.2.1 Determine the Closed Convex Set Q

Nesterov’s algorithm requires the problem to be defined on a closed, convex set Q.

3.2 Apply Nesterov’s Algorithm to SEBB 17

Proposition 4. In problem (3.7), suppose the set of balls we are given is

B = {B1(c1, r1), · · · , Bm(cm, rm)}

then the smallest enclosing ball of set B is enclosed in the closed convex set given

by

B(0, max
i=1···m

D(0, Bi)).

Proof. Here we give the proof for the 2-dimensional case. First define

max
i=1···m

D(0, Bi) = r∗

See figure 3.1, O is the origin. We want to prove that the smallest enclosing ball for

B is enclosed in B(O, r∗). Suppose there exists a smallest enclosing ball B(O
′
, r

′
)

with center O
′
outside B(0, r∗), radius r

′ ≤ r∗, i.e. B(O
′
, r

′
) * B(O, r∗). Then we

can find an enclosing ball B(O
′′
, r

′′
) for B with smaller radius than r

′
. The center

O
′′ ∈ B(0, r∗), O

′′
is on the surface of B(0, r∗), and in a line with O

′
and O. We

will show that for all Bi(ci, ri) in B, D(O
′′
, Bi) ≤ D(O

′
, Bi).

Actually we can suppose X is the center of any ball in B, then X should in the

intersection of B(O, r∗) and B(O
′
r
′
), in the triangle 4O

′
O′′X, ∠XO′′O

′ ≥ π
2
, so

we always have ||O′′
X|| ≤ ||O′

X||. Thus O
′′ ∈ B(0, r∗) is the new smaller center

of enclosing ball.

Therefore,the smallest enclosing ball for B is enclosed in B(O, r∗).

3.2.2 Determine d(x)

We choose the prox-function in Nesterov’s algorithm to be

d(x) =
1

2
||x||2

which means σ = 1 and x0 = 0.

3.2 Apply Nesterov’s Algorithm to SEBB 18

Figure 3.1: Determine closed set Q

3.2.3 Further Analysis of Implementation

In order to apply the Nesterov’s algorithm to smallest enclosing ball problem, we

have to do some more analysis on details of the algorithm. At the second step of

the Nesterov’s algorithm, we have to find

TQ(x) = arg min
x
{〈∇f(x; p), y − x〉+

1

2
L||y − x||2} (3.8)

The objective function is differentiable and it is easy to see that the minimum is

achieved when the gradient of the above function reaches 0. Thus, optimal solution

is

y = x− ∇f(x; p)

L
(3.9)

At the third step of the algorithm, we have to find

arg min

{
Ld(x)

σ
+

k∑
i=0

i + 1

2
(f(xi; p) + 〈∇f(xi; p), x− xi〉)

}
(3.10)

Similarly to (3.8), the solution of the (3.10) is

zk = −
k∑

i=0

i + 1

2L
∇f(xi; p)

For computation efficiency, we use the recursive expression

zk = zk−1 − k + 1

2L
∇f(xk; p)

3.2 Apply Nesterov’s Algorithm to SEBB 19

3.2.4 Complexity Analysis of Nesterov’s Algorithm for SEBB

Proposition 5. By applying Nesterov’s Algorithm to problem 3.7, we can get effi-

ciency estimate of the order O(1
ε
).

Proof. By applying the Nesterov’s algorithm to SEBB, we have two types of errors.

First type of error arises from the smoothing approximation, i.e. replacing f(x)

with f(x; p), we denote this error by ε1. The other type of error is from Nesterov’s

algorithm, we denote this type of error as ε2.

Given ε > 0, we choose p = ε
1+ln m

, by Proposition 1

f(x; p) ≤ f(x) + p(1 + ln m)

this makes

ε1 = f(x; p)− f(x) ≤ ε

We also set ε2 = c · ε ≤ ε(c is a fixed scalar which ∈ (0, 1)). By Proposition 3,

Nesterov’s Algorithm has efficiency estimate of order O
(√

L
ε2

)
, which is equivalent

to O(
√

L
ε
). Further, we know L = 2

p
, which means

L =
2

p
=

1 + ln m

ε

Combine these two types of errors, we get the final result that Nesterov’s algorithm

has the efficiency estimate of O
(

1
ε

)
on smoothed SEBB problem.

Chapter 4
Improvement on Nesterov’s Algorithm

4.1 Adaptively Decreasing the Smooth Parame-

ter

In the Chapter 2, we use the log-exponential function to smooth f(x) and introduce

the smoothing parameter p. By the Proposition 1, we know that the smaller p is,

the smaller our approximation error is. However, if we use a small p throughout

the algorithm, it will result in a very big Lipschitz constant at the beginning. In

Nesterov’s algorithm, this will cause the step length 1/L to be very small, which

means that the improvement in each step is small. This may affect the efficiency

of our algorithm. The later numerical experiment also tells us that if we choose a

small p throughout the algorithm, our program will stagnate. One solution to this

problem is to allow the smoothing parameter p to decrease gradually to the target

value. We use an algorithm as follows (see [7].)

20

4.2 Backtracking Line Search Scheme 21

Algorithm B

Let σ ∈ (0, 1), x0 ∈ Rn and p0 > 0, ε1, ε2 > 0 be given,and set k := 0.

For k = 0, 1, 2 · · · , until pk ≤ ε1 do

1. Use an unconstrained minimization method to solve

min
x∈Rn

f(x; pk)

approximately, and obtain an xk such that ||∇f(xk, pk)|| ≤ ε2

2. set pk+1 = σpk, increment k by 1, and return to step 1.

Then we introduce a theorem to ensure that by using a decreasing smoothing

parameter scheme, the algorithm stills goes to the optimal solution of original

problem. (see [7])

Theorem 2. Let {xk}k≥1 be the sequence of points produced by Algorithm B, x∗ be

the unique optimal solution of the problem (1.3) i.e.

min
x∈Rn

f(x)

Then

lim
k→+∞

xk = x∗

4.2 Backtracking Line Search Scheme

Nesterov’s algorithm simultaneously generates two sequences toward the optimum

point. One of them (equation 3.9) can be described as

y = x− ∇f(x; p)

L

4.2 Backtracking Line Search Scheme 22

This is nothing but a line search process along the negative gradient direction. If

we consider the above equation as a gradient decent approach, then the line search

step 1/L is the step length we go along the −∇f(x) direction. The questions

here are: Is 1/L the optimal step length? Can we take larger steps? Actually we

can always find a line search scheme to do better by taking a larger step length

along the negative gradient direction, while still maintaining the convergence of

the algorithm, for example, by backtracking.

4.2.1 Implementation of Traditional Backtracking

The traditional back-tracking line search can be described as follows.

Backtracking Line Search Algorithm

Given 0 < α < 0.5, 0 < β < 1, and a descent direction −∇f(x) for f :

t := 1

while f(x− t∇f(x) > f(x)− αt||∇f(x)||2 t := βt

end

Instead of using the constant step length 1/L, we can use the above algorithm to

generate step length in each step. Before implementating the line search algorithm,

let us do some theoretical analysis first.

First we look at Nesterov’s algorithm. Substitute (3.9) to (3.1) gives us

f(y) = f(x− 1

L
∇f(x)) ≤ f(x)− 1

2L
||∇f(x)||2 (4.1)

which means in each step, Nesterov’s algorithm chooses a constant step length 1/L,

and at each step it decreases the objective function by at least 1
2L
||∇f(x)||2 .

4.2 Backtracking Line Search Scheme 23

On the other hand, for the above backtracking line search algorithm, the exit

condition is given by

f(x− t∇f(x)) ≤ f(x)− αt||∇f(x)||2 (4.2)

Proposition 6. Backtracking condition (4.2) is always satisfied whenever 0 ≤ t ≤
1/L and 0 < α ≤ 1/2.

Proof. See [22].

The above proposition means that if we use backtracking by choosing α = 0.5

and start to increase length step from t = 1/L, then the step length t should always

greater than 1/L. So for the backtracking line search, we have

f(y) = f(x− t∇f(x)) ≤ f(x)− 1

2L
||∇f(x)||2 (4.3)

Theoretically, the bound given by backtracking is the same as Nesterov’s algorithm

(4.1). However, in computational practice, at certain cost of backtracking, we can

normally get much larger search steps than 1/L.(See Figure 4.1.)That means we

can reduce the objective function by a larger amount in each step.

4.2.2 Modified Backtracking

It seems that implementing the backtracking line search in Nesterov’s algorithm

is promising, however, if we implement the traditional backtracking line search in

Nesterov’s algorithm directly, we will fail. The new algorithm is even slower (in

terms of cpu time) than the original Nesterov’s algorithm. By analyzing the profile

of our algorithm, we found that we took too much time in backtracking to deter-

mine the step length t in each step.

At the same time we observed that while the smoothing parameter p is decreasing

as the solution approaches the optimum, the step length t will first increase sharply,

and then decrease gradually. Throughout the whole process, the real step we can

take is always much larger than 1/L, (See Figure 4.1). We also observed that the

4.2 Backtracking Line Search Scheme 24

0 50 100 150 200 250 300
0

50

100

150

200

250

300

350

400

450

iterations

Step length of Alg2
Step length of Alg3

Figure 4.1: Step length of Alg2 and Alg3. Solid Curve–Alg3, Dashed Curve–Alg2

(for the definitions of algorithms Alg2 and Alg3, see Chapter 5)

current step length is similar to the last previous step length. This means that it

is not efficient enough if we start backtracking each time with the same initial step

length of t = 1, we are actually wasting a lot of time by doing that.

With the above discussions taken into account, we propose a modified backtrack-

ing line search algorithm which is more suitable for our problem.

4.2 Backtracking Line Search Scheme 25

Modified Backtracking Line Search Algorithm

Given 0 < α ≤ 0.5, 0 < β < 1.

At step k, given a descent direction −∇f(xk) for f :

tk := tk−1

for i = 1 : 2

if f(xk − t∇f(xk) > f(xk)− αt||∇f(xk)||2 tk := βtk

else tk = tk/β

end if

end for

Chapter 5
Numerical Results

We have many ways of solving (3.7), which is a smooth, convex problem. According

to the analysis above, we present 4 algorithms here.

• Alg0

We fix p during the optimization process. At the same time we use Nesterov’s

algorithm. The step length is given by 1/L, and L is obtained by Lemma 1,

i.e L = 2/p.

• Alg1

We fix p during the optimization process, We still use the Nesterov’s frame-

work, but instead of using 1/L as the step length, the step length is obtained

from the modified backtracking line search.

• Alg2

We decrease p as we described in Section 4.1. At the same time we use

Nesterov’s algorithm. The step length is given by 1/L, and L is obtained by

Lemma 1, i.e L = 2/p. Thus, the Lipschiz constant increases gradually as we

are approaching the optimum.

• Alg3

We decrease p as we described in Section 4.1. We still use the Nesterov’s

26

27

framework, but instead of using 1/L as the step length, the step length is

obtained from the modified backtracking line search.

Now we are going to implement the above 4 algorithms with Pentium IV Processor

3.0G personal computer with 1GB memory. All codes are written in Matlab 7.0.

For all the 4 algorithms, ε1 = 0.001, ε2 = 0.01, eventually p will goes to ε1
1+ln m

. For

Alg1 and Alg3 backtracking parameter α = 0.3, β = 0.7. For Alg2, σ = 0.9. For

Alg3, σ = 0.99.

The test problems are generated randomly. We use the following pseudo-random

sequence:

ψ0 = 7, ψi+1 = (445ψi + 1) mod 4096, i = 1, 2, · · ·
ψ̄i =

ψi

40.96
, i = 1, 2, · · · (5.1)

The elements of ci, i = 1, 2, · · · ,m, are successively set to ψ̄1, ψ̄2, · · · , in the order:

r1, c1(1), c1(2), · · · , c1(n), r2, c2(1), · · · , c2(n), · · · , rm, cm(1), · · · , cm(n)

The stopping criteria for all the 4 algorithms are

1. p = 0.1ε1 (for algorithms with a decreasing p)

2. ||∇f(xk)||2 ≤ ε1 or f(xk)−f(xk+1)
f(xk)

≤ ε1

The maximum number of iterations is 5000.

The numerical results are obtained and summarized in Table 1 and Table 2. In

these tables, n and m denote the dimension of the Euclidean space and the number

of balls, respectively, Obj Value denotes the value of the objective function at the

final iteration, Iter denotes the number of iterations, Time denotes the CPU time

in second for solving each problem.

The numerical experiments in Table 1 and Table 2 show that Alg3 performs the

28

best among the 4 algorithms. And the cpu time used by Alg3 is growing almost

linearly with n. Furthermore, we can see that the scheme of decreasing p plays a

critical rule in the performance of the whole algorithm. With parameter p fixed,

Alg0 and Alg1 both perform badly among all the algorithms. From our numerical

results we can also say that backtracking line search scheme really helps since the

algorithms with back-tracking scheme (Alg3) perform better than the one with just

using the step length of 1/L (Alg2) in both accuracy and speed.

We also show the converge processes of Alg2 and Alg3 in Fugure5.1 with a rel-

atively smaller problem size (n = 400, m = 500), it is clear that the convergence

rate of Alg3 is faster.

Problem Obj Value

n m Alg0 Alg1 Alg2 Alg3

400 1000 1.143019442e3 0.753746632e3 0.679606446e3 0.679603838e3

800 1000 1.615030305e3 1.03045247e3 0.916976776e3 0.916975382e3

1200 1000 1.978822015e3 1.247183943e3 1.100685012e3 1.100687195e3

1600 1000 2.279018895e3 1.420075406e3 1.253338679e3 1.253330549e3

2000 1000 2.550887995e3 1.586512287e3 1.390647515e3 1.390646052e3

Table 1: Objective function value at the final iteration.

Problem Alg0 Alg1 Alg2 Alg3

n m Time Iter Time Iter Time Iter Time Iter

400 1000 240.6 5000 396.6 5000 236.6 5000 103.1 1319

800 1000 460.8 5000 769.8 5000 459.9 5000 222.5 1453

1200 1000 681.4 5000 1150.9 5000 690.2 5000 402.5 1760

1600 1000 907.9 5000 1525.8 5000 911.8 5000 545.1 1797

2000 1000 1133.7 5000 1916.1 5000 1140.1 5000 818.4 2140

Table 2 : Performance comparison of the four algorithms in terms of total iterations and cpu

time

29

0 500 1000 1500 2000 2500 3000 3500
388

390

392

394

396

398

400

402

404

406

iterations

Obj value of Alg3
Obj value of Alg2

Figure 5.1: Objective Value of Alg2 and Alg3. Solid Curve–Alg3, Dashed Curve–

Alg2

Part II

Generalized Convex Quadratic

Semidefinite Programming

30

Chapter 6
Introduction

6.1 QSDP and GQSDP

First we introduce the following convex quadratic semidefinite program (QSDP)

(QSDP) min
X

1

2
X · Q(X) + C ·X
A(X) = b, X º 0 (6.1)

where Q : Sn → Sn is a given self-adjoint positive semidefinite linear operator in

Sn (the ”·” means the standard trace inner product in space Sn). A : Sn → Rm is a

linear map and b ∈ Rm. The notation X º 0 means that X is positive semidefinte.

The Lagrangian dual problem for (6.1) is as follows

(QSDD) max
X,y,Z

−1

2
X · Q(X) + bT y

AT (y)−Q(X) + Z = C, Z º 0 (6.2)

Then we introduce another problem, the linearly constrained convex quadratic

program (LCCQP), which has the following form

(LCCQP) min{1

2
xT Mx + dT x : Bx = b, x ∈ Rn

+} (6.3)

where x ∈ Rn
+ means x ∈ Rn and x ≥ 0.

Combining (QSDP) and (LCCQP), we get a more general problem which we call

31

6.2 Application 32

it generalized quadratic semidefinite program (GQSDP)

(GQSDP) min
X,u

1

2
X · Q(X) + C ·X +

1

2
uT Mu + dT u

A(X) + Bu = b

X º 0, u ≥ 0, X ∈ Sn, u ∈ Rp (6.4)

6.2 Application

A good application of (QSDP) is the computation of nearest correlation matrix

problem(see [15], [19], [14], [9], [11]). Given a data matrix D ∈ Sn (not necessarily

semidefinite) and a self-adjoint linear operator L on Sn, we want to solve

min
X
{1

2
||L(X −D)||2F : diag(X) = e,X º 0} (6.5)

Here e is a vector of ones. If we transform the above (6.5) to the standard (QSDP)

formulation like (6.1), we get Q = L2 and C = −L2(D). Later in Chapter 9 we

will solve this problem with an interior point method and show some numerical

results.

Another application is the nearest Euclidean distance matrix (EDM) problem, it

can also be formulated as (QSDP), (see [2]).

6.3 Related Work and Outline

After the formulation of (LCCQP), (QSDP) and (GQSDP), in this part we are

going to focus on the computational issues of these problems, especially on (QSDP)

and (GQSDP).

In [13] Luca discussed the preconditioning of the LCCQP. In [10] Toh proposed

primal-dual path following algorithm to solve (QSDP). Toh also analyzed the struc-

ture of the augmented system arisen from (QSDP) and designed 3 preconditioners

to help to solve the linear system.

6.3 Related Work and Outline 33

The work in this part is based on the above materials. We are going to solve

the (GQSDP) by a primal-dual path following method. In Chapter 7, we derive

the augmented system for (GQSDP). Then in Section 8.1 we analyze the resulting

augmented system. In order to solve the ill-conditioned system efficiently, in Section

8.2, we propose 2 preconditioners and prove some useful results about the spectral

distribution after preconditioning. In Chapter 9, we give some numerical results

based on the primal-dual path following algorithms in [10] to solve (QSDP).

Notation: We use the following notation and terminology. For an integer

n, we let n̄ = n(n + 1)/2. Given U ∈ Rq×l, V ∈ Rq×n, the symmetrized Kro-

necker product U ~ V is the linear map from Rn×l to Sq defined by U ~ V (M) =

(V MUT + UMT V T)/2. For U ∈ Rq×l, V ∈ Rq×n, the Kronecker product U ⊗ V is

the linear map from Rn×l to Rq×p defined by U ⊗ V (M) = V MUT . We use U ◦ V

to denote the Hadamard product of two matrices U, V with same dimension. The

set of symmetric positive semidefinite (definite) matrices is denoted by Sn
+(Sn

++).

We use || · ||2 (sometimes || · ||)to denote vector 2-norm or matrix 2-norm, || · ||F
to denote the Frobenius norm. The notation x = Θ(ν) means that there exist

constants c1, c2 > 0 independent of ν such that c1ν ≤ x ≤ c2ν. We denote the

identity matrix or operator of dimension d by Id.

Given a self-adjoint linear operator V (or a matrix) defined on a finite dimen-

sional inner product space, the set of eigenvalues of V is defined by eig(V). The

largest and smallest eigenvalues of V in magnitudes are denoted by λmax(V) and

λmin(V), respectively. For a linear map T : (X , •) → (Y , •), where X = Rk×l or S l

and Y = Rp×q or Sq, we define ||T || = max{||T (M)||F : ||M ||F ≤ 1}, the adjoint

of T is defined by T T .

Chapter 7
Computation of Newton Direction in

GQSDP

Recall the standard form of (GQSDP)

(GQSDP) min
X,u

1

2
X · Q(X) + C ·X +

1

2
uT Mu + dT u

A(X) + Bu = b

X º 0, u ≥ 0, X ∈ Sn, u ∈ Rp

The Lagrangian of (GQSDP) is given by

L(X,Z, u, y, t) =
1

2
X ·Q(X)+C ·X+

1

2
uT Mu+dT u+yT (b−A(X)−Bu)−Z ·X−tT u

Note that with fixed y, Z and t, L is convex in X and u. In order to get the

minimum of L, the derivative of X and u must vanish. Thus we have

∇XL = Q(X) + C −AT (y)− Z = 0

∇uL = Mu + d−BT y − t = 0

The Lagrangian dual problem of (GQSDP) is given by

(GQSDD) max
X,u,y,t

−1

2
X · Q(X)− 1

2
uT Mu + bT y

Q(X) + C −AT (y) = Z

Mu + d−BT y = t

Z º 0, t ≥ 0, Z ∈ Sn, t ∈ Rp, y ∈ Rm (7.1)

34

35

The interior point method we are using for (GQSDP) is a primal-dual path following

method. It is based on the perturbed KKT conditions associated with the primal-

dual pair (6.4) and (7.1), which are given by

−AT (y) + Z −Q(X) = C

BT y + t−Mu = d

XZ = µ1I

Ut = µ2e

X º 0, Z º 0,M º 0, u ≥ 0, t ≥ 0, X, Z ∈ Sn, u, t ∈ Rp (7.2)

where U=diag(u1, u2, · · · , up), e is the vector of ones, µ1 and µ2 are parameters to

be driven to 0 explicitly.

Let ρ ≥ 0 be a given constant. By adding the condition

−ρATA(X) = −ρAT b (7.3)

to the first condition in (7.2), we get an equivalent condition:

−AT (y) + Z −Qρ(X) = Cρ

where Qρ(X) := Q + ρATA and Cρ := C − ρAT b. The motivation of considering

such a transformation is from Remark 3.1 in [10].

Given the KKT equations for (GQSDP), we can derive the Newton direction

now. At a given iterate (X,Z, y, u, t), the search direction (∆X, ∆Z, ∆y, ∆u, ∆t)

is the solution of the following Newton system:

−Qρ(∆X) +AT (∆y) + ∆Z = Rds := Cρ − Z −AT (y) +Qρ(X)

A(∆X) + B∆u = Rc := b−A(X)−Bu

BT ∆y + ∆t−M∆u = Rdl := d−BT y − t + Mu

FS∆X + FX∆S = Rcs := σµ1I −HK(XS)

U∆t + T∆u = Rcl := σµ2e− Ut (7.4)

36

where FX and FS are linear operators on Sn that depend on the symmetrization

scheme HK(·) chosen, with K being the symmetrization matrix, and σ ∈ (0, 1) the

centering parameter; for more details, see for example in [16].

By eliminating ∆Z and ∆t in (7.4), we can get the following augmented equa-

tion:

−Qρ −F−1
X FS 0 AT

0 −U−1T −M BT

A B 0

∆X

∆u

∆y

 =

Ra

Rb

Rc

 (7.5)

where Ra = Rds − F−1
X Rcs, Rb = Rdl − U−1Rcl, T = diag(t1, · · · , tp) . In this

thesis, we will consider only the Nesterov-Todd (NT) symmetrization scheme for

which F−1
X FS = W−1~W−1, where W is the unique symmetric positive semidefinite

matrix satisfying WZW = X. For later convenience, we define

Jρ =

−Qρ −F−1
X FS 0 AT

0 −F BT

A B 0

where F = U−1T + M .

Chapter 8
Preconditioners for the Augmented

Matrix

8.1 Partitioning the Augmented Matrix

We make the following assumptions on (6.4) and (7.1).

Assumption 1. The problems (GQSDP) and (GQSDD) are strictly feasible and

the map [A, B] : Sn×Rp → Rm defined by [A, B](X, u) = A(X)+Bu is surjective.

The Assumption 1 guarantees the existence and uniqueness of the system (7.5).

Also the solution (X,Z, y, u, t) on the central path tends to the optimal solution

when µ1 and µ2 tend to zero.

Assumption 2. Strict complementarity holds for optimal solution (X∗, Z∗, y∗, u∗, t∗),

the ranks of X∗ and Z∗ sum to n, the ranks of U∗ = diag(u∗) and T ∗ = diag(t∗)

sum to p.

At each step of the interior point method, if X and Z satisfy XZ = µ1I, then

X and Z commute. Thus there is an orthogonal matrix P that simultaneously

diagonalizes X and Z, i.e.

X = PΛP T Z = PΣP T

37

8.1 Partitioning the Augmented Matrix 38

Further, we define P = P ~ P , Ã = AP and Q̃ρ = PTQρP . Assume the strict

complementary condition holds, we partition P with P1 and P2, denoting the first

r and the last n − r columns of P respectively, where r and s are the ranks of

optimal solution X∗ and Z∗, see [10]. We further define P1 = P1 ~ P1 : Sr → Sn,

P2 = 2(P1 ~ P2) : Rr×s → Sn, and P3 = P2 ~ P2 : Ss → Sn. (Note that at the

optimum (X∗, Z∗, y∗, u∗, t∗), P becomes P ∗, where P ∗ simultaneously diagnalizes

X∗ and Z∗ in the sense that X∗ = P ∗Λ∗(P ∗)T and Z∗ = P ∗Σ∗(P ∗)T , thus P∗ =

P ∗ ~ P ∗ and P∗1 = P ∗
1 ~ P ∗

1 , etc.) Under the Assumptions 1 and 2, on the central

path, the eigenvalue decomposition of W−1 must have the form

W−1 = PDP T = P1D1P
T
1 + P2D2P

T
2

It can be shown that D1 = diag(d1) ∈ Rr×r, P k
1 ∈ Rn×r correspond to the small

eigenvalues of the order Θ(
√

µ
1
), and D2 = diag(d2) ∈ Rs×s, P2 ∈ Rn×s cor-

respond to the large eigenvalues of the order Θ(1/
√

µ
1
), see [10]. Recall that

the notation γ = Θ(
√

µ
1
) means that there are constants c1, c2 > 0 such that

c1
√

µ
1
≤ γ ≤ c2

√
µ

1
for all µ1 (we decrease µ1 in every iteration). Further, the

following decomposition also holds [16]

W−1 ~ W−1 = (P ~ P)(D ~ D)(P ~ P)T =: PDPT (8.1)

where P = P ~ P and D = D ~ D. Let D1 = D1 ~ D1, D2 = D2 ⊗ D1 and

D3 = D2 ~ D2. Thus we can write D = diag(D1,D2,D3). Then it is easy that the

following decomposition holds

Jρ =

P 0 0

0 L 0

0 0 Im

−D − Q̃ρ 0 ÃT

0 −F̃ B̃T

Ã B̃ 0

PT 0 0

0 LT 0

0 0 Im

 (8.2)

where F̃ = LT (U−1T + M)L, B̃ = LT BL and L is permutation matrix. We also

define

J̃ρ =

−D − Q̃ρ 0 ÃT

0 −F̃ B̃T

Ã B̃ 0

8.1 Partitioning the Augmented Matrix 39

It is shown in [10] that Jρ is generally an ill-conditioned matrix, thus constructing

a preconditioner for Jρ is the main task. First We focus on

F̃ = LT (M + U−1T)L = LT ML + LT U−1L · LT TL

For future convenience, we define Ũ = LT UL , T̃ = LT TL and M̃ = LT ML. Thus

we can choose the a permutation matrix L in (8.2) so that

Ũ = diag(ũ1, · · · , ũp) T̃ = diag(t̃1, · · · , t̃p)

satisfy

ũ1 ≥ ũ2 ≥ · · · ≥ ũp > 0 0 < t̃1 ≤ t̃2 ≤ · · · ≤ t̃p

Assume that at the optimum point, strict complementarity holds, then Ũ becomes

Ũ∗ and T̃ becomes T̃ ∗. We must have ũ∗i t̃
∗
i = 0 (i = 1 · · · p), and

ũ∗1 ≥ · · · ≥ ũ∗i > ũ∗i+1 = · · · = ũ∗p = 0 0 = t̃∗1 = · · · = t̃∗p−j < t̃∗p−j+1 ≤ · · · ≤ t̃∗p

Here i and j are ranks of Ũ∗ and T̃ ∗, respectively, and satisfy i + j = p. Thus we

make the partition

Ũ =

 Ũ1

Ũ2

 T̃ =

 T̃1

T̃2

where Ũ1 ∈ Si, Ũ2 ∈ Sj and T̃1 ∈ Sj, T̃2 ∈ Si. We can also determine that Ũ1 and

T̃2 correspond to the eigenvalues of the order of Θ(1), while Ũ2 and T̃1 correspond

to the eigenvalues of the order of Θ(µ2).

After the above partition, we have

Ũ−1T̃ =

 Ũ−1

1 T̃1

Ũ−1
2 T̃2

with Ũ−1
1 T̃1 correspond to the eigenvalues of the order of Θ(µ2) and Ũ−1

2 T̃2 corre-

spond to the eigenvalues of the order of Θ(1
µ2

).

8.2 Preconditioners 40

Thus we can write

F̃ = LT ML + Ũ−1T̃ = M̃ + Ũ−1T̃ =

 M̃1 + Ũ−1

1 T̃1 M̃2

M̃T
2 M̃3 + Ũ−1

2 T̃2

where M̃ = LT ML and M̃ =

 M̃1 M̃2

M̃T
2 M̃3

.

Now we consider the similar problem under the framework of (QSDP). First we

define the corresponding matrices. In (QSDP), The corresponding part for J̃ρ is

B̃ρ, which can be defined as

B̃ρ =

 −D − Q̃ρ ÃT

Ã 0

 (8.3)

We also define

Bρ =

 −F−1

X FS −Qρ AT

A 0

And thus we have

Bρ =

 P 0

0 Im

 B̃ρ

 PT 0

0 Im

 (8.4)

8.2 Preconditioners

8.2.1 Preconditioner I

It is easy to see that matrix Jρ is ill-conditioned. In [10] Toh has proven that the

||Bρ|| → ∞ when µ1 → 0. We can also see from the above analysis that when

µ2 → 0, it makes Ũ−1
1 T̃1 → 0 and Ũ−1

2 T̃2 → ∞, which shows that F̃ (thus F)

is also badly conditioned. Therefore, in order to apply an iterative method to

solve the Newton system, we have to rely on preconditioning technique. The first

preconditioner we are going to propose is

Ωρ =

−PΓρPT 0 AT

0 −LΦLT BT

A B 0

 (8.5)

8.2 Preconditioners 41

where Γρ = diag(H1,H2,H3) satisfying the condition

σ1I ¹ H1 ¹ σ̄1I, σ2I ¹ H2 ¹ σ̄2I, D3 ¹ H1 ¹ D3 + σ̄3I (8.6)

and Φ = diag(Φ1, Φ2) satisfying the condition

λ1I ¹ Φ1 ¹ λ̄1I, Ũ−1
2 T̃2 ¹ Φ2 ¹ λ̄2I (8.7)

Note that we have the following decomposition

Ωρ =

P 0 0

0 L 0

0 0 Im

−Γρ 0 ÃT

0 −Φ B̃T

Ã B̃ 0

PT 0 0

0 LT 0

0 0 Im

 (8.8)

And we denote

Ω̃ρ =

−Γρ 0 ÃT

0 −Φ B̃T

Ã B̃ 0

 (8.9)

We are going to analyze the spectrum of the preconditioned matrix under this

preconditioner, i.e to analyze the spectrum of the matrix Ω−1
ρ Jρ. From the decom-

position (8.2) and (8.8), we can see that it is equivalent to analyzing the matrix

Ω̃−1
ρ J̃ρ.

Lemma 2. Suppose U ∈ Sp is symmetric positive definite, and V ∈ Rm×p has

full row rank. Let G = [−U, V T ; V, 0]. Suppose Û is a symmetric positive definite

approximation of U , and we consider Ĝ = [−Û , V T ; V, 0] as a preconditioner for

G.Then Ĝ−1G has 2m eigenvalues located at 1, and the remaining p−m eigenvalues

are those of the matrix ZT Û− 1
2 UÛ− 1

2 Z, where Z ∈ Rp×(p−m) is a matrix whose

columns form an orthogonal basis of N (V Û− 1
2).

Proof. See Theorem 2 in [12].

The spectrum analysis of preconditioned matrix in (GQSDP) is based on the

one with (QSDP), thus we will review some similar results in (QSDP) . First, the

8.2 Preconditioners 42

preconditioner similar to (8.5) is

Ψρ =

 −PΓρPT AT

A 0

We also have

Ψρ =

 P 0

0 Im

 −Γρ ÃT

Ã 0

 PT 0

0 Im

 (8.10)

and

Ψ̃ρ =

 −Γρ ÃT

Ã 0

In order to make further analysis, we make two assumptions on (QSDP).

Assumption 3. The problem (QSDP) and (QSDD) are strictly feasible and that

A is surjective.

Assumption 4. Strict complementary holds for (X∗, y∗, Z∗) in the sense of Al-

izadeh, Haeberly, and Overton [6].

In [10], Toh gives the spectrum analysis for the preconditioned matrix Ψ−1
ρ Bρ

for (QSDP), which can be stated by the following lemma.

Lemma 3. Suppose that Assumptions 3 and 4 hold. Let {Z l = [Z l
1; Z

l
2; Z

l
3]}n̄−m

l=1 be

an orthogonal set in Sr ×Rr×s × Ss that form a basis of N (ÃkΓ
− 1

2
ρ).

Consider the following matrix

Gρ = ZT Γ
− 1

2
ρ (D + Q̃ρ)Γ

− 1
2

ρ Z

1. Suppose H1,H2,H3 in Γρ satisfy the condition (8.6) and (P∗1)TQρP∗1 Â 0.

Then there exist positive constants c1, c2 such that for iteration number suffi-

ciently large,

eig(Gρ) ⊂ [c1, c2] (8.11)

2. Suppose D ¹ Γρ ¹ D + Q̃ρ.Then

eig(Gρ) ⊂ 1 +
[
0, ||Qρ||max{σ−1

1 , σ−1
2 , Θ(µ1)}

]
. (8.12)

8.2 Preconditioners 43

3. Suppose β(D + Q̃ρ) ¹ Γρ ¹ β̄(D + Q̃ρ) for some constants β, β̄ > 0, Then

eig(Gρ) ⊂
[
β̄−1, β−1

]

Proof. See Theorem 4.4 in [10].

And the following theorem states the spectrum property of preconditioned ma-

trix Ω−1
ρ Jρ.

Theorem 3. Suppose that Assumption 1 and 2 hold. Let Z be an orthogonal set

that form a basis of N (ÃΓ−
1
2 , B̃Ψ− 1

2).

1. The preconditioned matrix Ω−1
ρ Jρ has 2m eigenvalues located at 1. The re-

maining p + n̄−m eigenvalues are those of the matrix

Vρ = ZT

 Γ

− 1
2

ρ (D + Q̃ρ)Γ
− 1

2
ρ 0

0 Φ− 1
2 F̃Φ− 1

2

Z (8.13)

2. Suppose H1,H2,H3 in Γρ satisfy the condition (8.6) and (P∗1)TQρP∗1 Â 0.

And Φ = diag(Φ1, Φ2) satisfy the condition (8.7), M̃1 converge to M̃∗
1 (M̃∗

1 Â
0). Then there exist positive constants c1 and c2 such that for iteration number

sufficiently large, we have

eig(Vρ) ⊂ [c1, c2] (8.14)

3. Suppose D ¹ Γρ ¹ D + Q̃ρ, and Ũ−1T̃ ¹ Φ ¹ Ũ−1T̃ + M , denote b1 =

||Qρ||max{σ−1
1 , σ−1

2 , Θ(µ1)} and b2 = ||M ||max{λ−1
1 , Θ(µ2)}. Then

eig(Vρ) ⊂ 1 + [0, max(b1, b2)] (8.15)

4. Suppose β(D+Q̃ρ) ¹ Γρ ¹ β̄(D+Q̃ρ) for some constants β, β̄ > 0, γ(Ũ−1T̃ +

M̃) ¹ Φ ¹ γ̄(Ũ−1T̃ + M̃) for some constants γ, γ̄ > 0, Then

eig(Vρ) ⊂ [min(γ̄−1, β̄−1), max(γ−1, β−1)] (8.16)

8.2 Preconditioners 44

Proof.

1. The result can be easily implied by Lemma 2.

2. It can be shown that Vρ can be written as follows (see the proof of Lemma

3)

Vρ = ZT

diag(H1,H2)
− 1

2 Υρdiag(H1,H2)
− 1

2 0 0

0 Is̄ 0

0 0 Φ− 1
2 F̃Φ− 1

2

Z+O(

√
µ1||Qρ||)

where

Υρ =

 D1 + PT

1 QρP1 PT
1 QρP2

PT
2 QρP D2 + PT

2 QρP2

Also, Φ− 1
2 F̃Φ− 1

2 can be written as follows

Φ− 1
2 F̃Φ− 1

2 =

 Φ

− 1
2

1 (Ũ−1
1 T̃1 + M̃1)Φ

− 1
2

1 Φ
− 1

2
1 M̃2Φ

− 1
2

2

Φ
− 1

2
2 M̃T

2 Φ
− 1

2
1 Φ

− 1
2

2 (Ũ−1
2 T̃2 + M̃3)Φ

− 1
2

2

=

 Φ

− 1
2

1 (Ũ−1
1 T̃1 + M̃1)Φ

− 1
2

1 0

0 Ij

 + O(

√
µ2||M ||)

Therefore, we have

Vρ = ZT

Υ 0 0 0

0 Is̄ 0 0

0 0 Ξ 0

0 0 0 Ij

Z + O(

√
µ2||M ||) + O(

√
µ1||Qρ||)

where Υ := diag(H1,H2)
− 1

2 Υρdiag(H1,H2)
− 1

2 , Ξ := Φ
− 1

2
1 (Ũ−1

1 T̃1 + M̃1)Φ
− 1

2
1 .

If condition 8.7 is satisfied, then

Φ
− 1

2
1 (Ũ−1

1 T̃1 + M̃1)Φ
− 1

2
1 º λ̄−1

1 (Ũ−1
1 T̃1 + M̃1) (8.17)

From (8.17), as µ2 is driven to 0, Ũ−1
1 T̃1 approaches 0, and M̃1 converges to

M∗
1 (M∗

1 Â 0). So there exists a constant d1 > 0 such that

λmin(Φ
− 1

2
1 (Ũ−1

1 T̃1 + M̃1)Φ
− 1

2
1) ≥ d1 > 0 (8.18)

8.2 Preconditioners 45

Similarly,

Φ
− 1

2
1 (Ũ−1

1 T̃1 + M̃1)Φ
− 1

2
1 ¹ λ−1

1 (Ũ−1
1 T̃1 + M̃1) (8.19)

and there exists constant d2 > 0 such that

λmax(Φ
− 1

2
1 (Ũ−1

1 T̃1 + M̃1)Φ
− 1

2
1) ≤ d2 < ∞ (8.20)

By Lemma 3, we know that there exist constant c1, c2 > 0

eig(diag(H1,H2)
− 1

2 Υρdiag(H1,H2)
− 1

2) ⊂ [c1, c2] (8.21)

Combine (8.18), (8.20) and (8.21), the result is easily followed.

3. We condider the partition Z = (Z1;Z2), then (8.13) can be written as

Vρ = (ZT
1 ,ZT

2)

 Γ

− 1
2

ρ (D + Q̃ρ)Γ
− 1

2
ρ 0

0 Φ− 1
2 F̃Φ− 1

2

 Z1

Z2

that is,

Vρ = (ZT
1 Γ

− 1
2

ρ (D + Q̃ρ)Γ
− 1

2
ρ Z1,ZT

2 Φ− 1
2 F̃Φ− 1

2Z2)

Since we have Ũ−1T̃ ¹ Φ ¹ Ũ−1T̃ + M̃ = F̃ . We can deduct that

ZT
2 Φ− 1

2 F̃Φ− 1
2Z2 = I + ZT

2 Φ− 1
2 (F̃ − Φ)Φ− 1

2Z2

Since F̃ − Φ º 0, it is clear that ZT
2 Φ− 1

2 F̃Φ− 1
2Z2 º I. Further,

I + ZT
2 Φ− 1

2 (F̃ − Φ)Φ− 1
2Z2 = I + ZT

2 Φ− 1
2 (M̃ − (Φ− Ũ−1T̃))Φ− 1

2Z2

¹ I + ZT
2 Φ− 1

2 M̃Φ− 1
2Z2 ¹ I + ZT

2 Φ− 1
2 ||M ||Φ− 1

2Z2

We denote Y = Φ− 1
2Z2, then

I = ZTZ = YT ΦY =
(
YT

1 YT
2

)

 Φ1 0

0 Φ2

 Y1

Y2

 = YT

1 Φ1Y1+YT
2 Φ2Y2

º λ1YT
1 Y1 + Θ(1/µ2)YT

2 Y2 º min(λ1, Θ(1/µ2)YTY

So we can see that

ZT
2 Φ− 1

2 F̃Φ− 1
2Z2 ¹ I +

[
0, ||M ||max{λ−1

1 , Θ(µ2)}
]
I (8.22)

8.2 Preconditioners 46

From(8.12), we can imply that (see the proof of Lemma 3)

ZT
1 Γ

− 1
2

ρ (D + Q̃ρ)Γ
− 1

2
ρ Z1 ¹ I +

[
0, ||Qρ||max{σ−1

1 , σ−1
2 , Θ(µ1)}

]
I (8.23)

Combining (8.22) and (8.23), the result follows.

4. Since

γ(Ũ−1T̃ + M̃) ¹ Φ ¹ γ̄(Ũ−1T̃ + M̃)

it implies

γΦ− 1
2 (Ũ−1 + M̃)Φ− 1

2 ¹ I ¹ γ̄Φ− 1
2 (Ũ−1T + M̃)Φ− 1

2

By multiplying Z2 and ZT
2 , we get

γ̄−1I ¹ ZT
2 Φ− 1

2 F̃Φ− 1
2Z2 ¹ γ−1I (8.24)

Combine with part 3 of Lemma 3, we are done.

8.2.2 Preconditioner II

The second preconditioner we are going to propose is

Πρ =

−PΓρPT 0 AT

0 −E BT

A B 0

 (8.25)

where E = diag(M) + U−1T . Note we have the following decomposition

Πρ =

P 0 0

0 Ip 0

0 0 Im

−Γρ 0 ÃT

0 −E BT

Ã B 0

PT 0 0

0 Ip 0

0 0 Im

 (8.26)

Theorem 4. Suppose that Assumption 1 and 2 hold. Let Z be an orthogonal set

that form a basis of N (ÃΓ−
1
2 , BE− 1

2).

8.2 Preconditioners 47

1. The preconditioned matrix Π−1
ρ Jρ has 2m eigenvalues located at 1. The re-

maining p + n̄−m eigenvalues are those of the matrix

Vρ = ZT

 Γ

− 1
2

ρ (D + Q̃ρ)Γ
− 1

2
ρ 0

0 E−1F

Z (8.27)

2. Suppose H1,H2,H3 in Γρ satisfy the condition (8.6) and (P∗1)TQρP∗1 Â 0.

Also we require M Â 0. Then there exist positive constants c1 and c2 such

that for iteration number sufficiently large, we have

eig(Vρ) ⊂ [c1, c2] (8.28)

Proof.

1. Note that E is a diagonal matrix. Then the statement follows from Lemma

2.

2. Note that we have the result (see Corollary 4.5 in [13])

min{λmin(N
−1M), 1} ≤ λmin(E

−1F) ≤ λmax(E
−1F) ≤ max{λmax(N

−1M), 1}
(8.29)

where N = diag(M). With the condition M Â 0, it implies that there exist

d1, d2 > 0 which

λmin(E
−1F) ⊂ [d1, d2] (8.30)

Combine with (8.11), we are done.

We can see that Preconditioner II requires M Â 0, which is stricter than the

requirement of Preconditioner I (condition 8.7). However, Preconditioner II surely

has a simpler form.

Chapter 9
Numerical Experiment for QSDP Solver

In this chapter we list some of the numerical results of solving the (QSDP) prob-

lem using an inexact primal-dual path following algorithm with different types of

preconditioners. The program is written in Matlab, and based on SDPT3. We are

running the program on an Intel Pentium PC 3.0 Hz with 512 RAM memory.

The problem we are going to solve in this chapter is the nearest correlation matrix

problem (6.5). For the linear operator Q, there are three different kind of products

we are going to consider

• Symmetric Kronecker product, which means that Q(X) = U ~ U(X), for a

given U ∈ S+
n . We denote this product with K.

• Hadamard product, which means that Q(X) = U ◦X for a given U ∈ Sn and

Uij ≥ 0,∀i, j. We denote this product with H.

• A new product which is designed to be Q(X) = 1
2
(UX + XU), U ∈ S+

n for a

given U . We denote this product with N.

For the approximate correlation matrix D in (6.5), we simulate three different types

of matrices using the method in [18]. The first type is a totally random correlation

matrix which we denote by RD; The second type is a simulated correlation matrix

from the AR(1) model, we denote by AR1; The third type is a simulated correlation

matrix from the compound symmetry model, we denote by CSM. We denote the

48

49

correlation matrix simulated by AR(1) model by ΣAR, then

Σ−1
AR = T

′
D−1T

where D = 0.01I and T = (−φt,s), with φt,t = 1, φt+1,t = 0.8, and φt,s = 0

otherwise. Define the correlation matrix generated by compound symmetry model

by ΣCSM , then

Σ−1
CSM = T

′
D−1T

where D = diag(σ2
1, · · · , σ2

n) with

σ2
t = σ2

{
1− (t− 1)ρ2

1 + (t− 1)ρ

}
(t ≥ 1)

and T = (−φt,s) with φt,t = 1, φt,j = ρ{1 + (t − 1)ρ}−1 , for t ≥ 2, j = 1, · · · , t −
1, σ = 1 and ρ = 0.5. After generating the correlation matrix, we perturb the

correlation matrix with another matrix which has Frobenius norm equal to 1, then

assign the resulting matrix to D in (6.5). For the three preconditioners we are using,

we denote them with P1, P2 and P3, for details of the (QSDP) preconditioners,

please see [10]. In the experiment, we also change ρ in Qρ to see the difference.

K product, P1 ρ = 0 ρ=1 ρ=10

(n=100) cpu time iteration cpu time iteration cpu time iteration

RD N/A N/A 81.5 18 82.3 19

AR1 2.9 9 3.1 10 3.9 13

CSM 2.7 9 3.3 11 4.3 14

(n=200) cpu time iteration cpu time iteration cpu time iteration

RD 402.9 16 322.9 18 316.5 20

AR1 8.6 9 10.3 11 11.8 13

CSM 8.2 9 9.9 11 11.6 13

(n=400) cpu time iteration cpu time iteration cpu time iteration

RD 2373.0 16 2227.0 19 1670.7 20

AR1 51.8 10 57.2 11 66.5 13

CSM 49.6 10 54.6 11 65.2 13

50

H product, P1 ρ = 0 ρ=1 ρ=10

(n=100) cpu time iteration cpu time iteration cpu time iteration

RD 10.7 12 8.1 14 10.6 16

AR1 4.1 8 5.5 10 6.0 12

CSM 6.7 10 7.1 12 7.2 14

(n=200) cpu time iteration cpu time iteration cpu time iteration

RD 38.0 12 45.2 16 45.5 18

AR1 19.9 9 19.1 10 24.3 13

CSM 21.2 10 26.7 13 26.7 14

(n=400) cpu time iteration cpu time iteration cpu time iteration

RD 281.5 13 203.3 15 253.5 18

AR1 164.9 10 156.8 11 160.9 13

CSM 205.4 12 207.7 14 191.7 16

N product, P1 ρ = 0 ρ=1 ρ=10

(n=100) cpu time iteration cpu time iteration cpu time iteration

RD 22.6 13 20.0 16 22.6 18

AR1 7.3 8 9.5 11 9.0 12

CSM 7.2 9 7.8 11 8.8 13

(n=200) cpu time iteration cpu time iteration cpu time iteration

RD 110.0 14 92.2 17 77.4 18

AR1 34.3 9 35.2 11 38.8 13

CSM 26.8 9 30.4 11 33.2 13

(n=400) cpu time iteration cpu time iteration cpu time iteration

RD 506.3 14 463.2 17 447.7 19

AR1 173.0 9 196.0 11 217.5 13

CSM 159.4 10 157.6 11 197.0 14

51

K product, P2 ρ = 0 ρ=1 ρ=10

(n=100) cpu time iteration cpu time iteration cpu time iteration

RD 49.0 15 38.1 17 38.3 18

AR1 2.7 9 2.9 10 3.7 13

CSM 2.6 9 3.1 11 4.0 14

(n=200) cpu time iteration cpu time iteration cpu time iteration

RD 190.4 16 191.2 18 187.3 20

AR1 8.5 9 10.2 11 11.9 13

CSM 8.1 9 9.7 11 11.7 13

(n=400) cpu time iteration cpu time iteration cpu time iteration

RD 949.0 16 889.1 18 980.4 20

AR1 51.6 10 57.0 11 66.2 13

CSM 49.6 10 54.5 11 66.6 13

H product, P2 ρ = 0 ρ=1 ρ=10

(n=100) cpu time iteration cpu time iteration cpu time iteration

RD 15.0 12 15.8 15 16.0 16

AR1 4.0 8 5.4 10 6.0 12

CSM 6.8 10 7.1 12 7.1 14

(n=200) cpu time iteration cpu time iteration cpu time iteration

RD 37.5 12 56.8 15 58.8 17

AR1 20.2 9 19.4 10 24.8 13

CSM 21.5 10 27.7 13 27.4 14

(n=400) cpu time iteration cpu time iteration cpu time iteration

RD 251.0 13 233.9 15 250.5 17

AR1 164.1 10 156.2 11 160.2 13

CSM 205.3 12 207.8 14 190.9 16

52

N product, P2 ρ = 0 ρ=1 ρ=10

(n=100) cpu time iteration cpu time iteration cpu time iteration

RD 19.8 13 23.0 16 22.1 17

AR1 7.4 8 9.5 11 9.0 12

CSM 7.5 9 8.1 11 8.8 13

(n=200) cpu time iteration cpu time iteration cpu time iteration

RD 82.1 14 73.2 16 78.7 18

AR1 35.0 9 35.8 11 40.6 13

CSM 26.6 9 30.6 11 33.3 13

(n=400) cpu time iteration cpu time iteration cpu time iteration

RD 327.0 14 341.8 16 349.6 18

AR1 173.4 9 196.6 11 216.6 13

CSM 159.6 10 155.9 11 197.0 14

K product, P3 ρ = 0 ρ=1 ρ=10

(n=100) cpu time iteration cpu time iteration cpu time iteration

RD 69.8 15 65.9 17 48.0 18

AR1 2.7 9 3.0 10 3.9 13

CSM 2.7 9 3.2 11 4.1 14

(n=200) cpu time iteration cpu time iteration cpu time iteration

RD 245.1 16 251.2 18 263.6 20

AR1 8.3 9 9.9 11 11.6 13

CSM 8.5 9 10.3 11 12.0 13

(n=400) cpu time iteration cpu time iteration cpu time iteration

RD 1518.8 16 1518.6 18 1497.9 20

AR1 51.8 10 57.0 11 66.3 13

CSM 49.4 10 54.6 11 65.2 13

53

H product, P3 ρ = 0 ρ=1 ρ=10

(n=100) cpu time iteration cpu time iteration cpu time iteration

RD 6.8 11 7.5 14 8.0 15

AR1 4.4 8 5.6 10 6.1 12

CSM 6.7 10 7.1 12 7.3 14

(n=200) cpu time iteration cpu time iteration cpu time iteration

RD 28.3 12 44.4 15 45.9 17

AR1 20.5 9 19.3 10 24.9 13

CSM 21.9 10 27.4 13 27.5 14

(n=400) cpu time iteration cpu time iteration cpu time iteration

RD 201.7 13 183.5 15 214.3 17

AR1 165.3 10 156.2 11 160.7 13

CSM 204.9 12 208.3 14 191.5 16

N product, P3 ρ = 0 ρ=1 ρ=10

(n=100) cpu time iteration cpu time iteration cpu time iteration

RD 16.0 13 18.2 16 18.8 17

AR1 8.0 8 10.3 11 9.6 12

CSM 7.6 9 8.4 11 9.4 13

(n=200) cpu time iteration cpu time iteration cpu time iteration

RD 81.6 15 73.4 16 73.6 18

AR1 34.8 9 35.4 11 39.6 13

CSM 26.7 9 29.8 11 33.4 13

(n=400) cpu time iteration cpu time iteration cpu time iteration

RD 417.6 15 408.8 17 445.5 19

AR1 173.8 9 196.4 11 217.2 13

CSM 160.3 10 156.2 11 197.8 14

(All the cpu time above is in term of second, N/A means the algorithm does not converge)

From the above tables, we notice that with different choices of correlation ma-

trix, the time cost to solve the (QSDP) is dramatically different. The one with

54

random correlation matrix cost the most time, the simulated AR(1) and CSM ma-

trix (which are more like real-world correlation matrix) cost less time. We can also

see that with different choices of ρ, the time is also different, especially for the

preconditioner P1. This phenomenon is interesting, it suggest that we may able

to choose different ρ to different problem in order to reduce the computation time.

However, to make this point clearer, it requires further analysis to the structure of

the problem.

Bibliography

[1] A. Goel, P. Indyk, and K. Varadarajan. Reductions among high dimensional

proximity problems. In Proceedings of the twelfth annual ACM-SIAM sympo-

sium on Discrete algorithms, pages 769-778. Society for Industrial and Applied

Mathematics, 2001.

[2] A. Y. Alfakih, A. Khandani, and H. Wolkowicz, Solving Euclidean distance

matrix completion problems via semidefinite programming, Computational Op-

timization and Applications, 12 (1999), pp. 13-30.

[3] B. Garter, Smallest enclosing ball - fast and robust in C++,

http://www.inf.ethz.ch/personal/gaertner/miniball.html.

[4] D. White, Enclosing ball software, http://vision.ucsd.edu/ dwhite/ball.html.

[5] E. Welzl, Smallest enclosing disks (balls and ellipsoids), H. Maurer, editor,

New Results and New Trends in Computer Science, 359-370, Springer-Verlag,

1991.

[6] F. Alizadeh, J.-P. A. Haeberly, and M. L. Overton, Complementarity and

nondegeneracy in semidefinite programming, Math. Programming, 77 (1997),

pp. 111-128.

55

Bibliography 56

[7] Guanglu Zhou, Kim-Chuan Toh and Jie Sun. Efficient algorithms for the

smallest enclosing ball problem. Comput. Optim. Appl,30(2):147-160, 2005.

[8] H.-M. Will. Computation of additively weighted Voronoi cells for applications

in molecular biology. PhD thesis, ETH Zurich, 1998.

[9] H. Qi and D. Sun, Quadratic convergence and numerical experiments of New-

ton’s method for computing the nearest correlation matrix , preprint, Depart-

ment of Mathematics, National University of Singapore.

[10] Kim-Chuan Toh. An inexact primal-dual path following algorithm for convex

quadratic SDP, Mathematical Programming, to appear.

[11] K. C. Toh, R. H. Tutuncu, and M. J. Todd, Inexact primal-dual path-following

algorithms for a special class of convex quadratic SDP and related problems,

Technical Report 1421, School of Operations Research and Industrial Engi-

neering, Cornell University, Ithaca, New York, 2005.

[12] K. C. Toh, K. K. Phoon, and S. H. Chan, Block preconditioners for symmetric

indefinite linear systems, Int. J. Numerical Methods in Engineering, 60 (2004),

pp. 1361-1381.

[13] L. Bergamaschi, J. Gondzio and G. Zilli, Preconditioning indefinite systems

in interior point methods for optimization, Computational Optimization and

Applications, 28 (2004), pp. 149-171.

[14] J. Malick, A dual approach to semidefinite least-squares problems, SIAM J.

Matrix Anal. Appl., 26 (2004), pp. 272-284.

[15] M. F. Anjos, N. J. Higham, P. L. Takouda, and H. Wolkowicz, A semidefinite

programming approach for the nearest correlation matrix problem, Research

Report, Department of Combinatorics and Optimization, University of Wa-

terloo, 2003.

Bibliography 57

[16] M.J Todd, K.C Toh, and R.H Tütüncü.On the Nesterov-Todd direction in

semidefinite programming SIAM J. Optimization,8 (1998), pp.769-796.

[17] N. Megiddo, Linear-time algorithms for linear programming in ¡3 and related

problems, SIAM J. Comput., 12 (1983) 759-776.

[18] Naiping Liu, Mohsen Pourahmadi and Linxu Liu, Covariance matrix selection

and estimation via penalised normal likelihood, Biometrika (2006), 93, 1, pp

85-98.

[19] N. J. Higham, Computing the nearest correlation matrix problem from finance,

IMA J. Numerical Analysis, 22 (2002), pp. 329-343.

[20] P. M. Hubbard. Approximating polyhedra with spheres for time-critical colli-

sion detection. ACM Trans. Graph., 15(3) : 179-210, 1996.

[21] R. Kurniawati, J. S. Jin, and J. A. Shepherd. The SS+-tree: an improved

index structure for similarity searches in a high-dimensional feature space. In

Proc. 5th Storage and Retrieval for Image and Video Databases SPIE, volume

3022, pages 110-120, 1997.

[22] Stephen Boyd, Lieven Vandenberghe. Convex Optimization. Cambridge Uni-

versity Press 2004.

[23] T. H. Hopp and C. P. Reeve. An algorithm for computing the minimum cov-

ering sphere in any dimension. Technical Report NISTIR 5831, National In-

stitute of Standards and Technology, 1996.

[24] Yu. Nesterov. Smooth minimization of non-smooth functions. Mathematical

Programming, 103, pp. 127-152, 2005.

[25] Yu. Nesterov. Introductory Lectures on Convex Programming. 1996.

TWO PROBLEMS IN CONVEX CONIC

OPTIMIZATION

ZHAI XIAOJUN

NATIONAL UNIVERSITY OF SINGAPORE

2007

T
W

O
P

R
O

B
L
E
M

S
IN

C
O

N
V

E
X

C
O

N
IC

O
P

T
IM

IZ
A

T
IO

N
Z
H

A
I

X
IA

O
J
U

N
2
0
0
7

T
W

O
P

R
O

B
L
E
M

S
IN

C
O

N
V

E
X

C
O

N
IC

O
P

T
IM

IZ
A

T
IO

N
Z
H

A
I

X
IA

O
J
U

N
2
0
0
7

