Enhancement of Query Processing on XML Data

Yang Rui

NATIONAL UNIVERSITY OF SINGAPORE
2006

https://core.ac.uk/display/48625246?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Enhancement of Query Processing on XML Data

Yang Rui
(Master of Engineering)
(North China Electric Power University, China)

A THESIS SUBMITTED
FOR THE DEGREE OF DOCTOR OF PHILOSOPY
DEPARTMENT OF COMPUTER SCIENCE
SCHOOL OF COMPUTING
NATIONAL UNIVERSITY OF SINGAPORE
2006

Acknowledgements

“Many a little makes a mickle”. The work of this thesis is based on the cooperation of
many people. | would like to take this opportunity to express my gratitude to all those
who gave me the possibility to complete this thesis.

| want to thank the Computer Science Department of National University of Singa-
pore for providing scholarship to me and for giving me permission to commence this
thesis, to do the necessary research work and to use departmental facilities.

| am deeply indebted to my supervisor Dr. Anthony Tung, for his stimulating sug-
gestions and encouragement which helped me in all the time of research for and writing
of this thesis. He took me on the process of learning and made himself available even
through his very heavy travel, work and teaching schedule. At the same time, | would
also like to gratefully acknowledge the support of some very special individuals. They
are Professor Tok Wang Ling, Dr. Panos Kalnis and Dr. Stephane Bressan. | worked
with them to finish the papers and reports which consist of the main part of this thesis.
Thanks for their patience and directions.

My former colleagues from the computational biology lab and database/e-commerce
lab supported me in my research work. Special thankfulness should be expressed to
Dr. Jiaheng Lu. They mirrored back my ideas, an important process for me to shape
my thesis paper and future work. Also, we shared the enjoyable working environment,

interesting lectures and seminars; | appreciate their cherishable friendship.

Finally, I wish to express my love and gratitude to all my family and friends. I'd par-
ticularly like to thank my parents and brother for never advising me to quit this project.
They had more faith in me than could ever be justified by logical argument. Their end-
less support, encouragement, and understanding is my motive power to finish the long

journey in obtaining my degree in Computer Science.

Contents

Acknowledgements i
Summary Viii
1 Introduction 2
1.1 XMLDataModel 6
1.2 XML Similarity Search 8
1.3 XML PatternQuery e e e 10
1.4 Motivation for Similarity Query Study L. 14
1.5 Motivation for Pattern Query Study L. L. 16
1.6 Contribution 18
1.7 Organization. 21
2 Preliminaries and Related Work 23
21 XMLSchema 24
2.2 Notation 24
2.3 XML Similarity Search 26
2.3.1 Traditional Similarity Search Methods 26
2.3.2 Approximate String Matching Problem 28

2.3.3 Similarity Measure Between Tree-structured Data

Vi

2.3.4 XML Applications Associating Similarity Measure 37
24 XML PatternQuery 39
2.4.1 Relational-based Pattern Query Processing 40
2.4.2 Path Navigation-based Pattern Query Processing 43
2.4.3 Structure Join-based Pattern Query Processing 45
2.4.4 Query Processing Method Without Decomposition 64
2.4.5 Query Processing with More Complicate Predicates 65
25 Summary ... e e 65
3 Similarity Evaluation on XML Data 66
3.1 Introduction 66
3.2 Tree Structure Transformation 68
3.2.1 Binary Tree Representation of Forests (or Trees) 69
3.22 Observation 70
3.2.3 Vector Representationof Trees 71
3.2.4 LowerBoundof EditDistance 75
3.25 ExtendedStudyo 77
3.3 Enhancement of Similarity Search on Tree-structured Data 81
3.3.1 BasicAlgorithm 82
3.3.2 Optimistic Distance for Similarity Queries. 83
3.3.3 Similarity Search Algorithm 87
3.3.4 ComplexityAnalysis 92
3.4 ExperimentalResults, 93
3.41 SensitivityTest 95
3.4.2 Similarity Query Performance 100
3.4.3 Pruning Power With Respect To Binary Branch Levels 101
3.5 Conclusion 103

vii

4 Accelerating XML Twig Pattern Matching 105

4.1 Introduction 105

4.2 Theoretical Analysis 107
4.2.1 MatchingBlock. 107
4.2.2 Enlargement of the Optimal QueryClass 113

4.3 TwigContainment 118
43.1 DataStructure 118
4.3.2 Algorithm 121
4.3.3 Analysis offlwigContainment. 125

4.4 TwigPrefix 133
441 DataStructure 133
442 Algorithm 135
4.4.3 AnalysisoffwigPrefix 137

45 Timeand Space Analysis 138

4.6 PerformanceStudy 140
4.6.1 Experiment Settings and Datasets 140
4.6.2 Algorithms Based on Containment Numbering 142
4.6.3 Algorithms Based oBxtended Deweumbering 147
4.6.4 Comparison betwedmwigContainment andTwigPrefix 148

4.7 Conclusion 152

5 Conclusion 153

5.1 Main Contribution 153

52 FutureWork 155
5.2.1 Integrate XML documents 155
5.2.2 Incrementally Maintain Indexes for Similarity Search 156
5.2.3 Future Work for Pattern Queryon XML Data 156

viii

Summary

XML documents have recently become ubiquitous because of their varied applicability.
It is believed that progressively more and more Web data will be in XML format. Com-
munities of business and sciences are defining their own DTD to provide for a uniform
representation of data in specific areas [85, 87, 64, 62]. For example, in business, the
efforts have been taken to develop standardized XML vocabularies for recruiting and
other human resource functions [51], for publishers and printers (XPP) [42] etc. In sci-
entific area, especially the biological [81, 64] and chemistry area [63, 82], researchers
have brought XML power to the management of scientific data. The initial impetus for
XML may have been primarily to enhance the ability of remote applications to interpret
and operate on documents fetched over the Internet. However, from a database point of
view, XML raises different exciting possibility: with data stored in XML documents,
one should be able to issue queries over sets of XML documents to extract, synthesize,
and analyze their contents. Given the broad adoption of XML, it pressed for efficient
manipulations on the XML data in huge dataset. In this thesis, the efficient similarity
guery processing and pattern query processing on XML data is extensively studied.
XML data is self-describing through the nested structures of elements. Therefore,
XML data are usually modeled as rooted, ordered, labeled trees. Similarity search is to
find all objects in the database which are within a given distance from a given object

(range query) or to find the most similar objects in the database which are closest in

distance to a given objeck{NN query). Although similarity search has been exten-
sively studied on multivariate numeric data and categorical data vector, searching for
similar trees is still an open problem due to the high complexity of computing the tree
edit distance. In this thesis, XML data is transformed into an numerical multidimen-
sional vector which encodes the original structure information and content information.
The L, distance of the corresponding vectors, whose computational complexity is lin-
ear to the data size, forms a lower bound for the edit distance between trees. Based on
the theoretical analysis, a novel algorithm is presented which embeds the proposed dis-
tance into a filter-and-refine framework to process similarity search on tree-structured
data. The experimental results show that the new algorithm reduces dramatically the
distance computation cost. And it is especially suitable for accelerating similarity query
processing on large trees in massive datasets.

For the XML pattern query processing, an important operation is to search for all
occurrences of a twig pattern in an XML database. Most of the existing research work
surprisingly output all the distinct matches for all query nodes. However, in practice,
gueries written in XPath or XQuery only require to output answers which consist of the
distinct matches to the selected query nodes (called distinguished nodes). The straight-
forward approach is to makes an appropriate projection on the selected node matches by
post-processing the outputs of previous methods. Obviously, it is not optimal in most
cases. At the same time, the previous approaches are optimal only for limited class of
gueries. In this thesis, we prove that the sub-optimality of prior algorithms is due to
the matching blocks in the data streams. However, if only bindings of the distinguished
nodes are required, most blocks can be conquered by caching limited number of elements
in the main memory (bounded by the depth of documents). Based on these theoretical
analyses, two efficient query processing algorithms namegiContainment andTwig-

Prefix are proposed. They utilize containment labeling and prefix labeling respectively.

Unlike the prior methods, these algorithms only take one phase to avoid outputting ir-
relevant intermediate path solutions. Moreover, these two algorithms identify the same
optimal class which is much larger than those identified by the previous approaches. Fi-
nally, a set of experimental results on both real-life datasets and synthetic datasets verify
the effectiveness and the optimality of our new algorithms.

In summary, the contribution of this thesis is that we have successfully provided
efficient solutions to two types of similarity queries - the range query and:tN&l
query, and pattern queries on XML data. The results of our experiments also suggest
that our methods are especially suitable for accelerating the query processing on the
massive datasets consisting of XML data of large size and deeply-nested elements with

infrequent updates.

List of Tables

4.1
4.2
4.3
4.4
4.5
4.6

Matching Process for Example2 133
Character of the TestDataSets 141
Queries for DBLP and TreeBankData 142
Number of Output Elements for the Distinguished Node (Real) 147
Number of Required Cached Elements (Syn) 151
Number of Required Cached Elements(Real) 151

Xi

List of Figures

1.1 AnExampleof XMLData 3
1.2 AnOFEM Model of XML Data Structure 7
1.3 The Tree RepresentationBOM Model of XML Data 7

1.4 AnExampleof XQuery 10
1.5 TheTwigPatternQuery 12
1.6 Example of Sub-optimal Processing 17
21 AnExampleof XMLDTD 25
2.2 CasesofForestDistance 32
2.3 Examples of Constrained Mapping 36
2.4 Alignmentof TreelbandTy o 37

2.5 Dietz’s NumberingScheme 46
2.6 Containment Numbering Scheme 46
2.7 Example of Interval Numbering Scheme 47
2.8 Example oDewey IDScheme 47
2.9 The Transducer of the Extended Dewey Labeling Scheme 49
2.10 An example of Twig Query Decomposition 51
2.11 Relationship Cases for Two Elemeajsinde, 52
2.12 An Example of Data, Query and Stream Structures 55
2.13 Example of Stack Pushing, ..., 55

Xii

Xiii

2.14 Stack-encoded Results for PathQuery 55
2.15 Twig PatternQuery (&) o o o 58
2.16 Twig PatternQuery (b) 58
2.17 The running example of XML data for holistic twig join methods 58
2.18 The Refined Streaming Scheme'BivigJoin 60
2.19 An Example of Indexed XML Tree 62
220 Bf-treelIndexed 62
221 XR-treelndex 63
222 XB-treeIndex 63
3.1 TreeExamples 70
3.2 Tree Transformation, 70
3.3 Normalized Binary Tree Representation 71
3.4 Binary Branch Vector Representation 74
3.5 Treeswith O Binary BranchDistance 75
3.6 Insertion of Node UnderNodey’ 76
3.7 Changes of Binary Tree Incurred by Insertion 76
3.8 3-level Binary Branch Vector Examples 79
3.9 Sensitivity to Fanout Variation for Range Queries 96
3.10 Sensitivity to Fanout Variation fé-NN Queries 97
3.11 Sensitivity to Size of Trees for Range Queries 98
3.12 Sensitivity to Size of Trees férNN Queries 98
3.13 Sensitivity to Number of Labels in Trees for Range Queries 99
3.14 Sensitivity to Number of Labels in Trees foNN Queries 100
3.15 k-NN SearchesS oW BLP i 101
3.16 Range Searches &nBLP 102

3.17

Data Distribution on Distance 103

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17
4.18
4.19

Asample XMLtree e 108
lllustration to MatchingBlock 109
Example oBMBandUMB 111
lllustration of Theorem4.2.9 115
Optimal querynodes 116
Stack EncodingofQueryResults L 0L 120
Path PatternMatch 131
Queries for SyntheticData 142
Execution Time (Synthetic) 143
Output Element(Synthetic) 144
Output with varyingmemory (Q1) 145
Output with varyingmemory (Q6) 145
Output Element(real), 146
ExecutionTime(real) 146
Outputelements (Syn) 148
Execution Time (Syn) e 148
Outputelements(real), 149
ExecutionTime(real) 149

CPUand /O CostComparison 150

Chapter 1

Introduction

Internet and Web application is becoming more and more important nowadays. There-
fore, the publication of electronic data has been becoming universal. Most of these
electronic data appear as HTML documents on the Web and are generated automatically
from database. However, HTML aims to specify the representation of the information
instead of the structure and content of it. So, although HTML document is readable
to human-beings, it is difficult for other application programs to understand such data.
XML (eXtensible Markup Language) [19] was proposed by the World Wide Web Con-
sortium (W3C) as a new standard for data exchange on the Web to complement HTML.
Unlike HTML, XML is a textual representation of data which utilize the nested tree hi-
erarchy to depict the structural relationship between the data components. Figure 1.1 is
a fragment of a XML document which describe the movie information.

The basic component in XML data is the element, i.e., a piece of text bounded by
matching tags (such asmovie> and </movie> in the Figure 1.1). The elements can
be nested. Each element can be either of atomic value (i.e., raw character data) or com-
posite value (i.e., a sequence of nested subelements). In Figure 1.1, the root element
(MovieD B) has three nested subelemenb(ie, director andactor). The order of the
subelements within an element is sometimes significant in XML document (e.g. the or-

der of the actors). It is allowed to associate attribute/value pairs with elements (e.g., the

<?xml version="1.0" encoding="1SO-8859-1*?
<IDOCTYPEW4F_DOC SYSTEM “movies.dtd>
<MovieDB>
<Movie id = “a885", language = “English®*
<Title> Night of the Hunter, The</Title>
<Year> 1955</Year>
<Genres-
<Genre- Drama</Genre>
<Genre> Thriller </Genre>
</Genres-
<Directordirector;; = “al33"> Charles Laughtor:/Director>
<Cast>
<Actor actor;y = “a735"> Robert Mitchum</Actor>
<Actor actor;q = “a459”> Shelley Winters</Actor>

</Cast>
</Movie>

<Director id = “al133™
<FirstName- Charles</FirstName-
<LastName- Laughton</LastName-
<moviemovie;q = “a8904885"H

</Director>

<Actor id =“a735™>
<FirstName> Robert</FirstName-
<LastName- Mitchum </LastName-
<moviemovie;q = “a885"/>

<[/Actor>

</MovieDB>

Figure 1.1: An Example of XML Data

language specification of thenovie in the above example). A distinct attribute is object
IDs (e.g., the ID attributes of thewovie, actor anddirector elements). And through

this attribute and attribute IDREF (e.qg., thewie;, attribute of themovie element un-

deractor anddirector), XML allows the reference between elements. Attributes should
be unique among each element. The part of the syntax not enclosed within brackets is
referred to as PCDATA (Parsed Character Data). We say a document is well-formed if
it satisfies all these constraints. More details on the XML specification can be found
in [19]. We can see that XML is self-describing and irregular. In XML, new tags may be
defined at will to specify information and the structure relationship between information
elements. And the structure can be nested to arbitrary depth. And an XML document
can contain an optional description of its grammar. It is widely recognized as the data
representation, exchange and integration standard of the future.

Given the broad adoption of XML, a database system is required for efficient ma-
nipulation of XML data. In previous research efforts, XML database has been imple-
mented by using either traditional file system [3], relational database system [98, 38, 41],
object-oriented database system [15, 59, 100, 117] or semi-structured database sys-
tem [21, 78, 45, 6]. The native XML databases have been implemented as well [78,
6, 104, 103, 40, 52] (Accordingly, the other implementation mentioned above can be
called XML-enabled database). Using a file system is straightforward. However, it
does not support complex query processing (Full text searches are obviously not accu-
rate since markup, text and other syntax component not be distinguished.). Relational
database implementation is regarded as practical approach due to its wide deployment
in commercial world and its mature RDBMS technologies, e.g.,indexing, concurrency
control and transaction management, can be well exploited. Object-oriented database
systems allow a flexible storage system of XML data and support complicated query
processing. However, both of them are based on rigid schema definition and are not
natural for modeling the irregular XML data relationship. Furthermore, object-oriented
database systems are neither mature nor efficient enough for industry adoption. From

the above example, we can see that XML data are similar to semi-structured data. Both

of them are self-describing and have no rigid structure. So some research works done
on semi-structured data can be extended to process XML data. But there are still some
differences between them and XML data: XML is ordered while semi-structure data is
not; XML can mix text and element together; and XML have a lot of other stuff. entities,
processing instructors and comments. These differences make XML data management
harder than semi-structured data. Native XML database systems are designed especially
to store XML documents. Like other databases, they support features like transactions,
security, multi-user access, programmatic APIs, query languages, and so on. Native
XML database is capable to reserve the proper characteristics of XML. In addition, it
can handle schema changes and data updates more easily. However, efficient data ma-
nipulations are required for this kind of specialized database. This inspires the research
work of this thesis.

The efficiency problem of managing and querying XML documents poses interesting
challenges for database researchers. There are a lot of literatures about XML query
language [11], XML query optimization [79, 94, 98, 46, 58, 112, 7, 30] (including XML
numbering/encoding scheme, XML indexing, XML summary analysis etc.), and XML
compression [108, 70]. However, little research work has been done on the XML data
processing based on similarity measurement. And for the pattern query, optimizing the
I/O cost and reducing the size of the intermediate results still appeal lots of attentions.
The work of this thesis is mainly focused on improving the similarity query (or similarity
search) and pattern query (or pattern search) processing on XML data. In the next three
sections, we give a brief introduction to the modeling of XML data, the similarity search
and pattern search on XML. In the last 4 sections, we also present the motivation, main

contribution and organization of this thesis.

1.1 XML Data Model

Two types of models are most frequently used for XML data. One is the Stanford’s Ob-
ject Exchange Model@E M) [89, 4, 78]. Another one is the W3C’s Document Object
Model (DOM) [94, 58].

OFE M was introduced im SIMMIS (The Stanford-IBM Manager of Multiple Infor-
mation Sources) as a self-describing way of representing metadata. OEM was later mod-
ified for use in the_ore (Lightweight Object Repository) system to represent semistruc-
tured data. In thé.ore scheme, each object consists of a object identitigf)(a type
and a value. These effectively represent relationships between the containing object and
the target object. In order to make thgs M model suitable for XML data, the author
of [32] made some modification to it: XML element is a p@iid, value); whereeid is
an unique element identifer, andlue is either an atomic text string or a complex value
containing (optionally) the following four components: string-valued tag, an ordered list
of attribute-value pairs, an ordered list of attributes of type IDREF or IDREFS in the
form (label, eid), wherelabel is the attribute name, and an ordered list of subelements
in the form(label, eid), where thdabelis the subelement tags. Figure 1.2 is the M/
model for the movie element of the XML document fragment in Figure 1.1.

DOM model provides a mechanism for programs to access and manipulate parsed
XML content as a collection of objects. DOM represents a document as a hierarchy of
objects, called nodes, which are derived (by parsing) from a source representation of the
document. The DOM Level 1 working draft defines a set of object classes (and their in-
heritance relationships) for representing documents: document, element, attribute, text,
PI (processing instructor), comment and namespace objects. The XML document is pre-
sented to an application as a collection (actually, a tree) of objects. Most of these objects
would be of type node, and specifically of its subtypes element (representing the individ-

ual elements) and text (representing the content). Figure 1.3 is the tree representation of

‘ &1 ‘ Movie ‘(@id, "a885") (@Language, "English") ‘(TitIe,&2),(Year,&4),(Genr§,&6),(Director,&11),(Cast,&13)

‘ &2 ‘ Title‘ (Text,&3) ‘ ‘ &3 ‘ "Night of the Hunter, The" ‘

‘ aa ‘ Year ‘ (Text,&5) ‘ ‘ &5 ‘ "1955" ‘

‘ &6 ‘ Generes‘ (Genre,& 7),(Genre,& 9) ‘

‘ &7 ‘Genre‘ (Text,&8) ‘ &8 | "Drama’

‘ &9 ‘Genre‘ (Text,&lO)‘ ‘ &10‘ "ThriIIer"‘

‘ &11‘ Director‘(@Directorid,&llZ)‘ (Text,&12) ‘ ‘ &12‘ "Charles Laughton" ‘

‘ &13‘ Cast ‘(Actor,&l4) (Actor,& 16) ‘

‘&14‘ Actor ‘(@Actorid,&400) ‘ (Text,&15) ‘ ‘&15‘ "RobertMitchum"‘

‘ &16‘ Actor ‘ (@Actory & 560) ‘ (Text,&17) ‘ ‘ &17‘ "Shelley Winter" ‘

Figure 1.2: AnO E M Model of XML Data Structure

the DOM model of the above example. (The nodes are labeled in abbreviated form and

the text nodes are ignored for clarity.)

Figure 1.3: The Tree Representation/af) M/ Model of XML Data

In order to research the characteristics of XML data, we need the formalized data

model. In this thesis, XML database is modeled as a collection of rooted, ordered, la-

beled trees, denoted & As shown above, the XML documents may have hyperlinks

to other documents. In the meanwhile cycles may exist in the data due to the ID, IDREF
attributes of elements. Including these in the model gives rise to a graph rather than a
tree. However, they are not important in terms of the structures of the documents consid-
ered in this thesis. Hence, the ID-references and hyperlinks are ignored for simplicity.
Each XML data is modeled as a rooted, ordered, labeledltreEnere exists only one

root note, which has no parent. Every other node of the tree has exactly one parent and
it can be reached through a path of edges from the root. Aftrisecalledlabeled tree

if each node is assigned a symbol from a fixed finite alphabet. For XML data, the alpha-
bet consists of all the tag names and attribute names of XML data. And a tree is called
ordered treaf a left-to-right order among siblings i is given and order counts during

data processing. It is obvious that the graphic representation of our model is similar to
that of DOM except that we focus on the structural information which consists of the re-
lationships between elements and between elements and attributes. The notations related

to the data model is given in Chapter 2.

1.2 XML Similarity Search

Similarity search is an important core operation for many data analysis tasks on multime-
dia and time-series databases, biological and scientific databases. In this thesis, | focus
on two typical kinds of similarity queries on XML dataange queryand k-Nearest-
Neighbor query(k-NN query for short). Range queries find all objects in the database
which are within a given distancefrom a given objectk-NN queries find thé: most

similar objects in the database which are closest in distance to a given object. Other types
of search can be composed by these two similarity queries. These problems have been

extensively studied on numerical multi-dimensional data [50, 97, 13, 14, 72, 93, 119]

and the distance measures depend on the order among data. However, in many other ap-
plications, multivariate analysis is applied on complex data domains which may not have

a natural order. Transaction data (or categorical data) is an example of such domain. In
recent years, several indexing approaches were proposed to address the similarity search
problem on transaction datasets [8, 83, 77] too. XML data is another example among
which there are no natural orders.

XML data are often with no schema specification. Even if there is a schema, the data
conforms to it flexibly. Elements and attributes can be optional and one type of elements
can occur multiple times. Furthermore, in the XML document, the semantics specified
implicitly by the relationship between its components. Then the tree structures play an
important role on differentiating data. The measurement of XML data similarity can be
precise only if this information is exploited and introduced into the measure function.
Thus, the traditional distance measurements cannot be used straightforward in this area.
So it is still an open problem. Since XML data are usually modeled as rooted, ordered,
labeled trees, and due to the flexibility of XML representation power, several existing
works employ the tree edit distance measure on the XML data trees, i.e., the minimum
number of operations required to transform one tree to the other. The definition of allow-
able tree edit operation varies according to the application [9, 86, 49, 125, 126, 105, 124].
However, the computation complexity of this distance measure is quite high. In Chap-
ter 2, a brief introduction of these measures will be given. Assuming a similarity measure
between XML dataDist(T, T"), the formal definition of similarity queries are give in

Definition 1.2.1, Definition 1.2.2 respectively.

Definition 1.2.1 (k-NN query). A k-NN queryQ, = (Q, k, D) retrieves a seRy of
k data from DataseD, such that for any two datd € Ry, 7" ¢ Ry, Dist(Q,T) <
Dist(Q,T").

Definition 1.2.2 (Range query).Arange query), = (Q, ¢, D) retrieves a set of data,

10

from DatasetD, such thav'T € R,, Dist(Q,T) < ¢; andV1” ¢ R,, Dist(Q,T") > e.

1.3 XML Pattern Query

Unlike the similarity query, the pattern query on XML data should not be processed by
measuring the similarity between the query pattern and the XML data straightforwardly.
Instead, pattern queries specify both the structural and value constraints the result por-
tions of XML document should satisfy. As for the basic query abstractions, the XML
query language should support both select operation and join operation. Select oper-
ation picks up the elements satisfying the constrains specified in the query, while join
condition compares two or more XML attributes or data belonging to the same XML
data or different documents. Additionally, when dealing with XML data in which the
exact structure is not known, it is convenient to use a form of "navigational” query based
on path expressions which uses wildcards and regular expressions. Various query lan-
guages for extracting, transforming and integrating the XML content have been defined:
Lorel [4], XQuery [2, 37] XML-QL, XML-GL, XSLT, XQL and Quilt [11, 23]. Some of

them are in the tradition of database query languages like SQL, OQL and Datalog, while

others are more closely inspired by XML.

FOR $to IN doc(“movies.xml”)/movieDB//movie[@Language = “English],
WHERE $to//Director = “Charles Laughton”,
AND $to//Actor = “Robert Mitchum”,

ORDER BY $ty/Title,
RETURN < Movie > {$ty/T'itle} < /Movie >

Figure 1.4: An Example of XQuery

XQuery is defined by the W3C and is supported by all the major commercial database
engines (IBM, Oracle, Microsoft, etc.). In this thesis, we use it as the query language

of XML. XQuery is for finding and extracting elements and attributes from XML doc-

11

uments. It is built on XPath [1] expressions which navigate through elements and at-
tributes in an XML document. The Syntax of XPath is defined as:

PathExpr = /stepi/steps/---/stepy;
Jstensteps/ -+ i

step = Auwis :: NodeTest Predicatex

Each XPath expression consists of a sequence of location steps. Each step contains the
Axis, the NodeTest specification and zero or more Predicates. Axis specifies the tree rela-
tionship between the nodes selected by the location step and the context node. NodeTest
prescribes the node name or node type selected by it. And Predicates are expressions in
square brackets, which further refine the set of nodes selected by the location step. XPath
has 13 different axes of navigation, i.e. ancestor, ancestor-or-self, parent, attribute, child,
descendant, descendant-or-self, self, following, following-sibling, preceding, preceding-
sibling and namespace. In this thesis, we mainly study the child and descendant axes
navigation which are used to traverse to a child or a descendant element respectively.
They can be represented by and *//’ respectively for abbreviation. Figure 1.4 shows
an XQuery example. Théoc() function is used to open the “movies.xml” file and spec-
ify the context. The path expressidnc(“movies.xml”)/movieDB//movie is used to
select all the movie elements undebvieD B in the “movie.xml” file. All the selected
elements are bound with the varial$le (An XQuery variable is defined with & fol-
lowed by a name, e.dity). The predicatéQlanguage = “English”] further constrain
that the selected movie are in English. Symfdobllowed by the name is used to retrieve
the attribute.

XQuery also uses FLWOR expressions. FLWOR is an acronym for “FOR, LET,
WHERE, ORDER BY, RETURN?". In Figure 1.4, the FOR clause selects all movie ele-
ments under the document element that satisfy the query conditions and combines them

with the variable$t,. The WHERE clause specify the selection condition, i.e., the di-

12

rector is “Charles Laughton” and one of the actors is “Robert Mitchum”. The ORDER
BY clause requires that the results will be sorted bytilie. And the RETURN clause
specifies what should be returned, i.e., thide elements which satisfy the predicate
condition, and constructs the resulting movie elements.

As shown in the previous example, XQuery specify the pattern of selective predicate
on multiple elements which satisfy the specified tree structural relationship. Thus, these
gueries are also called structural queries. The most frequently proposed XML struc-
tural queries are tree (twig) pattern queries which can be represented by a node-labeled
tree [20]. For example, the following XQuery expression in Equation 1.2 can be repre-

sented by the twig shown in Figure 1.5.

//Movie[@Language = ‘English’ AND ./Director = “Charles Laughton” 1.2)
AND ./[Cast/Actor = “Robert Mitchum”]/Title

Since both XML data and XML queries are represented as trees, in the rest of the

IIM

@L

“English"

"Charles Laughton"

O
"Raobert Mitchum"

Figure 1.5: The Twig Pattern Query

thesis, “node” is used to refers to a tree node in the twig pattern, while “element” refers
to an element in the dataset, when the discrimination is necessary. Each node in the
twig also represents the content predicates on it, which usually specify tag names of the

elements, attribute value comparison, and string values of elements. The edges between

13

the nodes depict the structural containment relationships between the nodes. The parent-

child relationship predicates (PC for abbreviation) between elements and the element-

attribute constrains are represented by the single lines, while the ancestor-descendant

relationship predicates (AD for abbreviation) are represented by the double lines.
Evaluating a XML twig pattern quer§),, on a XML databasé is to identify all the

matches of the query nodes in. A match of@, in D is actually a mapping from the

guery nodes to the elements (or other components like attributes) of a certain XML data

T such that:

1. The predicates specified by the query nodes can be satisfied by their respective

images under the mapping 19

2. The structural relationship depicted by the edges between query nodes can be sat-

isfied by their respective images under the mappirifj.to

According to [20], the answer @, can be modeled asaary relation(d;, da, --- , d,)
where each tuple is a mapping of the query nodesrarsdthe number of query nodes,
i.e., the size of the query,, denoted agy),,|.

In recent years, many methods have been proposed to match XML twig queries ef-
ficiently. These methods can be classified into three categories according to the search-
ing strategies: the relational-based methods [98, 38, 41, 18], the path navigation meth-
ods [46, 80, 58, 32] and the structure-join-based methods. The structure join methods can
be further classified into binary structure join [41, 79, 10, 104, 103, 98, 123] and holistic
twig join methods [20, 28, 74, 55]. The relational-based methods require mapping the
XML data and store them into relational database, transforming the queries proposed
in XQuery into SQL and constructing the results retrieved from relational database into
XML documents according to query specification. As mentioned above, the relational-

based methods make use of the high reliability, scalability and optimized performance of

14

relational database. However, the challenge is that there is mismatch between the rela-
tional model and that of XML. The relational model is normalized, flat and fragmented,
while XML is un-normalized, nested and monolithic. These lead to the limitations of the
relational implementation of XML database. The path navigation methods are based on
the structural summary or path expression index and speed up query evaluation on XML
data by restricting the search to only relevant portion of the XML dafhe structure

join methods are also utilized as the core operation to answer queries. Various element
positional numbering schemes are devised to identify the elements which satisfy the
structural predicates [35, 123, 107, 88, 74]. Binary structure join methods decompose
the query pattern into a set of binary structural predicates and each predicate is evaluated
separately. By “stitching” together the binary structure join results, the final answers of
the whole queries can be obtained. Indexes can be utilized to accelerate the binary struc-
ture join process. However, there may exist too many intermediate results which cannot
contribute to the final answers. The suboptimality is incurred by query decomposition.
Unlike binary structure join approaches, the family of holistic twig join methods try to
process the queries as a whole and make sure that each output partial answer to the path
pattern queries can be merge-joinable with at least one partial answer for each other path

pattern in the twig. All these methods are introduced in Chapter 2.

1.4 Motivation for Similarity Query Study

Just as the management of traditional types of data, many research disciplines are based
on the similarity measurement of XML data, such as schema extraction, XML data stor-
age and retrieval, XML data version management, and the data mining techniques like
nearest neighbor classification methods, cluster analysis etc. And similarity search is

an important core operation for many data analysis tasks on multimedia and time-series

1Some of the path expression index are proposed to be implemented in relational database.

15

databases, biological and scientific databases. Now that more and more data are con-
veyed in XML language, efficient processing of this type of queries is a pressing re-
guirement.

The straightforward solution to similarity search is to sequentially scan all the data
items in the database. However, such processing is not practical at all. Firstly, with
the fast development of bioscience and the wide employment of internet database, the
volumes of the available complex data are becoming larger and larger. The size of a gene
sequence file is usually several Gigabytes. Itis unacceptable to load all data into the main
memory to sequentially scan such large volumes of data. Secondly, the computational
complexity of the distance measure between XML data makes it prohibitive for bulk
operations in the database. As mentioned in Section 1.1, XML data are modeled as
rooted ordered labeled trees. The well known distance function for trees is the edit
distance, which is defined as the minimum number of tree edit operations required to
transfer one tree into another. To compute this distance, dynamic programming method
is often used and the best known tree edit distance evaluation algorithms have more than
O(n?) runtime and space complexity for ordered trees witiodes [125, 29, 60]. While
to solve the similarity search, extra resources are required. So, itis not feasible to use this
brute force method to sequentially scan the whole database to process similarity queries.

Traditionally, to enable fast process data stored in the database, filter-and-refine
framework is used [114]. The basic idea is to get the results by a multi-step: In the
first step, an easy-to-compute or obvious distance function, which is the lower bound
of the actual distance, filters out most objects that have no possibility to be the qualify-
ing results. The candidates returned by the filtering step are then validated by using the
original complex similarity measure in the second step. Similarly, to process the opera-
tions on the tree-structured data based on similarity measure, distance-embedded lower

bounds can also be integrated into this framework to reduce the number of expensive

16

similarity distance computations and speed up the search.

Since the real edit distance is of high computational cost, the efficiency of the multi-
step strategy is apparently determined by the efficiency of the filtration step. K. Kailing et
al [56] presented a set of filters for structural and content information in trees. However,
their filters are for unordered tree models and, at the same time, the structural and content
information separately are considered separately in their lower bounds. According to our
observation, to design a good filter for rooted ordered labeled trees, the order information
between sibling nodes in the tree structure is important for evaluating the distance be-
tween trees. Furthermore, the content conveyed by the tag name and the structure of the
trees should be explored together to avoid loss of information. Thus, the first purpose of
this thesis is to solve the similarity search problem efficiently on XML data by deploying
the filter-and-refine framework which is based on a well-defined, easy-to-compute and

accurate lower bound distance.

1.5 Motivation for Pattern Query Study

As mentioned above, searching for all occurrences of a twig pattern in the XML database
is an core operation in XML query processing. In recent years, many methods ([69, 20,
73, 28, 74, 55]) have been proposed to match XML twig queries efficiently.

In the foremost works ([123, 10]), the query patterns are decomposed into binary
structural relationships (either parent-child or ancestor-descendant relationships). Each
binary relationship is processed using structure join techniques and the final match re-
sults are obtained by “stitching” individual binary join results together. This approach
is not optimal due to the uncontrollable intermediate results. Bruno et al. [20] propose
a novel holistic approach namdavigStack, which guarantees that each intermediate

path solution can contribute to the final solutions for queries which consist entirely of

17

AD edges. However, when queries contain any PC relationdhvgStack is non-
optimal since it may output a large size of intermediate matches to the individual path
expressions which do not contribute to final answers. The recently proposed algorithms,
TwigStackList [73] and TJFast [74], proposed by Lu. et al., guarantee the optimality
for queries in which PC relationships only occur under the non-branching query nodes
and thus slightly enlarge the optimal query cla3sigJoin proposed in [28] is optimal

to AD-predicate-only or PC-predicate-only queries, or 1-branching-node-only queries.

However, the optimality for branching query nodes with PC relationships is still an open

FOR $toIN //B[L]//D | o ®)
RETURN
<DATE> / \ @
{$t0/teXtO} *
| </DATE> L D ®
(b)

(@

problem.

A\

Figure 1.6: Example of Sub-optimal Processing

Another interesting observation is that all the above holistic approaches solve the
problem by producing the matching bindings &k nodes in a twig query. However, in
a practical application, this requirement is not necessary. In the XQuery expression, all
the matches of certain query nodes are required. However, for other query nodes, only
the existence of their matches are required. Query nodes whose matchesashbeld
returned are referred to asstinguished nodes, and those used only for qualifying the
structural relationships of a query are referred t@dstential nodes. For example, in
the XQuery shown in Figure 1.6.a, only is the distinguished node, while and L are
existential nodes. A straightforward approach to answer this query is to postprocess the

results of the previous methods and do an approppi@iectionon the matches of those

18

interesting nodes and remove the redundant query answers which appear in multiple
matches. For example, for the twig query in Figure 1.6.a and the data in Figure 1.6.b, all
previous algorithms (e.glwigStack, TwigStackList, TJFast) output three intermedi-
ate path solution§B;, D;),(B2, D1) and(B,, L1). Through projection and redundancy
removal, the real answédp; will be retrieved. From the above example, we can see that
such a two-steps approach has two problems: (i) it outputs many matching elements of
theexistentialnodes that obviously are not required in the original query; and (ii) even if
only matching elements for théistinguishedhodes are considered, prior algorithms still
show the non-optimality by outputting many matcheslistinguishechodes that do not
belong to final answers [20, 74, 28]. Therefore, previous approaches output “irrelevant”
element matches and “false” element matches.

In this thesis, we analyze the sub-optimality of the prior algorithms, and propose
novel efficient holistic twig join methods to process the queries which emphasis the
difference between thdistinguishechodes and thexistentiainodes. Through our work,

the optimal query class is essentially enlarged.

1.6 Contribution

The main contributions of this thesis are in two areas: enhancement of the similarity

guery and the twig pattern query on XML data.

1. The contribution of this thesis on similarity XML query processing can be sum-

marized as follows:

From the description above, we know that the bottle-neck of solving the XML
guery problems associated with similarity is the distance measure of XML data.
As it is show in Section 1.1, the XML data are usually modeled as labeled tree or

graph structures. The generic distance measure is edit-based distance. However,

19

the edit distance function is computed using dynamic programming algorithm and
the cost is very high [125, 99, 105, 124]. In this thesis, we propose a new distance
measure between XML data. The measure function is based on the transformation
of the XML data into its binary tree representation. The structural features and
the content information conveyed by the node label can be totally reserved by this
transformation. However, the new presentation is propitious to study the effect of
edit operations on the tree. Thegram-like structures on the trees are used in our
methods. These miniature structures capture the local pattern of each data. And
based on counting the frequency of all these structures, we can get a vector rep-
resentation for each data: each element in the vector is defined as the number of
occurrences of the corresponding miniature structure of the dataset. The vector el-
ements together describe the whole features of the XML tree structure. Thus, each
object is transformed to a sparse vector with non-zero items and the original

tree edit distance space is transferred to the vector space.witiorm distance.

The L, distance between the vectors is proved to be a close lower bound of the
edit distance between the original trees. The intuition here is that more similar the

XML data structures are, more common miniature structures they should share.

We also design and analyze novel algorithms which embed the lower bounds into
a multi-step framework to solve the similarity search problems. The computation
of the distance on the vector is orly(|7'|) for each comparison. With this lower

bound, most of the computation of the real distance, with time complexity

O(|T1]|T2|min(depth(T'1),leaves(T1))min(depth(T2),leaves(T2)))

, can be filtered. Like the-gram methods which are used to processing similarity

search on sequence data, our methods can be generalized according to different

20

dataset characteristics. Through the set of comprehensive performance study, it is

shown that our methods are both I/O and CPU efficient.

. The contribution of this thesis on twig pattern query processing can be summarized

as follows:

Firstly, theoretical analysis of the sub-optimality of previous algorithms is pre-
sented. The reason lies in the existencenatching block®n join data streams.
There are two kinds afmatching blocksi.e. bounded and unbounded matching
blocks. Previous algorithmwigStack [20] suffers the existence of any block
including bounded and unbounded matching block. While algorithmgStack-

List [73] andTJFast [74] make progress to efficiently process bounded matching
blocks, they still suffer from the existence of the unbounded ones. However, the re-
search in this thesis demonstrates that unbounded matching blocks which involve
theexistentialnodes should not result in the non-optimality of holistic algorithms.

In addition, an unbounded matching block involvigigtinguishechodes can also

be efficiently processed in most cases by selectively caching elements in the main

memory.

Based on the theoretical analysis, two novel algoritAmvgyContainment and
TwigPrefix using two popular element encoding schemes (i.e. ctirgainment
andprefixencoding schemes) are proposed in this thesis. The new algorithms em-
ploy thebit vectorandoutput liststructures (with bounded spaces) to store infor-
mation and solve the unbounded matching blocks involdistjinguishedhodes.

Thus, the new algorithms identify a much larger query class to guarantee the 1/0
optimality than the existing methods. In addition, it is shown that these two al-
gorithms have the same optimal query class because the theories are developed
independent of any specific labeling scheme. Finally, the new algorithms adopt

a novel framework for holistic twig pattern matching. Unlike the previous algo-

21

rithms, which require the postprocessing phrase to do projection on the matches of
the distinguished nodes and to remove redundant matching answers, the two new
methods proposed in this thesis iterate the input data once and directly output the

matching elements of the distinguished nodes.

An extensive set of experimental studies on synthetic and real datasets for perfor-
mance comparison is presented in this thesis. The results shoWnig&ontain-

ment andTwigPrefix outperform all tested previous methods. Moreover, although
TwigContainment andTwigPrefix have the same optimal query class, the exper-
imental results show thawigPrefix outperformsTwigContainment in terms of

the I/O cost and the total execution time.

1.7 Organization
The rest of this thesis are organized as follows:

e Chapter 2 introduces the background knowledge and related work about XML

similarity query and XML pattern query processing.

e Chapter 3 presents the research work on XML similarity query. An efficient
method based on the binary tree representation is proposed. Through this method,
the XML data tree is transformed into feature-encoded numerical vectors and the
distance defined on the numerical vector is utilized to provide pruning power and
facilitate the similarity queries on XML data. The experiments show that the prun-

ing power of the new algorithms leads to both CPU and 1/O efficient solutions.

e Chapter 4 presents our research work on XML pattern query. The theoretical anal-
ysis of the sub-optimality of the previous methods are given. Based on these anal-

ysis and the practical requirements of XQuery, two novel algorithms are proposed

22

in this chapter. Experimental results indicate that the new approaches require less

memory spaces, while enlarge the optimal query classes.

e Chapter 5 concludes the work in this thesis. This chapter summarizes the main
findings of this thesis. At the same time, limitations and future works are also

discussed in this chapter.

The work in Chapter 3 is published in [118], and the work in Chapter 4 is based on

the technical report of [76].

Chapter 2

Preliminaries and Related Work

In this chapter, | firstly give the background on XML schema languages and the no-
tations utilized in this thesis in Section 2.1 and Section 2.2. Then the background knowl-
edge of XML query processing is introduced which includes the part for XML similarity
search and the part for XML pattern query. The review of the research work closely
related to this thesis is given as well. The similarity search methods on different types
of datasets are briefly introduced in Section 2.3 and 2.3.2. Section 2.3.3 gives the in-
troduction to distance computation on tree-structured data. And various XML similarity
measure application is reviewed in Section 2.3.4 . There are lots of research literatures
about XML pattern query. According to the processing strategy, they can be classified
as relational-based approaches, path navigation approaches and structure join methods.
Most of the structure join methods are based on element encoding techniques, and they
can be further classified as binary structure join approaches, and holistic twig join ap-
proaches. And various indexing schemes have been proposed to facilitate the structure
joins. The novel pattern query processing methods proposed in this thesis belongs to
holistic twig join methods. Relational-based approaches, path navigation approaches
are briefly introduced in Section 2.4.1 and Section 2.4.2. In Section 2.4.3, | present
an detailed overview of binary and holistic XML structure join methods. Background

information of XML element numbering schemes, which are considered as one of the

23

24

foundations of structure join, is presented in Section 2.4.3. Review of the indexing tech-

nigues designed to facilitate structure join is also given in this section.
2.1 XML Schema

According to the introduction in Chapter 1, we know that XML documents are irregu-
lar. However, some XML documents do record related information and share the similar
structure. To better describe such XML data structures and constraints, several XML
schema languages have been proposed. Now the widely accept schema language is
DTD [19], which is a subset of SGML DTD. Essentially, a DTD specifies for every ele-
ment, the regular expression pattern that the subelement sequences of it need to conform
to. The DTD declaration syntax uses commas for sequendinfpr ‘(exclusive) OR,
parenthesis for grouping and the meta-characters, ‘?’, **’, and ‘+’ to denote respectively,
zero or one, zero or more and one or more occurrences of the preceding term. The DTD
can also be used to specify the attribute for an element (using ¥AETLIST > dec-
laration) and to declare an attribute that refers to another element (via an IDREF field).
Figure 2.1 illustrates part of DTD of the XML document shown in Figure 1.1. However,
DTD is not required for each document. If a document has a DTD and conforms to it,

then the document is valid.

2.2 Notation

In this thesis, XML data are modeled as rooted, ordered, labeled trees. The formal
specification of the model for each datais: = (N, E, ¥, label, Root(T)). N is a

finite set of nodeskE is the binary relation oV where each paifu, v) € E represents

the parent-child relationship between two nodes € N. Nodeu is the parent of node

v andw is one of the child nodes af. This is used to represent the structural information

25

<!ELEMENT MovieDB (Movie | Director| Actor | - - -)*
<!ELEMENT Movie (Title, Year, Genres, Director, Cast,) | (#PCDATA)>
<IATTLIST Movie
id CDATA #REQUIRED
Language CDATA#IMPLIED >
<!ELEMENT Title (#PCDATA) >
<!|ELEMENT Year (#:PCDATA) >
<!ELEMENT Genres (Genré) >
<IELEMENT Genre ¢:PCDATA) >
<IELEMENT Director (FirstName, LastName, Movie,-) | (#PCDATA) >
<IATTLIST Director director;q >
<!ELEMENT Cast (Actor| Actress) >
<!ELEMENT Actor (FirstName, LastName, Movie;-) | (#PCDATA) >
<IATTLIST Actor actor;q >

Figure 2.1: An Example of XML DTD

between the elements and their subelements, and between elements and their attributes.
There exists only one root note, denotedast(7') € N in a data, which has no parent.

Every other node of the tree has exactly one parept(ent(v)) and it can be reached
through a path of edges from the root. The nodes in the reaching pathrefancestors

of v, denoted agnce(v). Recursively, the nodes reached througre descendants of

v, denoted adesc(v). The nodes which have a common parefall the children ofu,

i.e., children(v)) are siblings. The order of the siblings from left to right is significant.

Y is the finite alphabet of tag names and attribute namesa@rél: N — X is a total
function. |T| is the number of nodes in tr&& or the size ofl".

Thedepth of a nodev € N, denoted adepth(v) is the number of edges on the path
from root(T') to v. The out-degree of, deg(v), is the number of children aof. These
definition can be extended such thiapth(7T) anddeg(T') denotes the maximum depth
and degree respectively of all the node&inA node without children is a leaf, otherwise

an internal/inner node. The number of leave§'a$§ denoted agaves(T). LetT'(v) be

26

the subtree of” rooted at node € N. Thepreorder traversabf 7'(v) is obtained by
visiting v and then recursively visiting'(vx) (vx € children(v), k = 1---4) in order.
Similarly, thepostorder traversabf 7'(v) is obtained by first visiting”(vy,) (k = 1- - -4)
in order, and thenm. Thepreorder numbeandpostorder numberdenoted agre(v) and
post(v) is the number of nodes precedingn the preorder and postorder traversal/of

respectively.

2.3 XML Similarity Search

For many databases, such as multimedia databases, DNA databases, financial databases,
medicine databases etc., retrieval of data that are similar to a given reference object is an
core operation. Although data can always be scanned sequentially, the amount of disc
I/O for the large database make such method prohibitive. Indexing methods are the most

primary and direct means to facilitate speedy search.

2.3.1 Traditional Similarity Search Methods

The basic idea is to get the results of similarity query by the multi-step filter-and-refine
approach: In the first step, an easy-to-compute or obvious distance function that lower
bounds the actual distance is evaluated to filter out the objects that are impossible to be
the answer. Then the candidates returned by the filtering step are validated by using the
original distance in the refinement step. Indexes are used to prune the searching space
and to reduce the amount of data fetched in response to a query and meet the performance
requirement. To perform nearest neighbor search, the branch-and-bound searching strat-
egy is the usual choice: The lower bound of the actual distance between the query object
and the data indexed are computed using the query object and the corresponding index

entry. A pessimistic bound is updated and maintained during the evaluation. The data

27

indexed by the entries which have lower bound exceeding the pessimistic bound can
be safely pruned and need not to be fetched from the disc. The data indexed by the
remaining entries should be further evaluated to eliminate the false positive.

The lower bound computation should make sure the correctness of the results. So the
results are always complete, leadinglt®% recall. Therefore, the main performance
measurement of the indexing methodgiscision The less false positives remain, the
more effective the index is. That means less data will be fetched from disc to be further
evaluated.

The Indexes which support similarity search on numeric multi-dimensional space
have been intensively studied [34, 50, 97, 13, 14, 72, 93, 119]. B-tree [34], ISAM in-
dexes, hashing binary trees, are designed for indexing data based on single-dimensional
keys, and are not suitable to deal with similarity search which is based on the distance
function of multiple parameters. R-tree [50, 97, 13] and its variations are well known
to yield good performances for the similarity search on the multi-dimensional points
and objects with spatial extents. The basic idedzefee and its variations is to hi-
erarchically partition the data space into a manageable number of smaller subspaces.
Spatial points and objects are indexed by their associating subspace. However, a poorly
designed partitioning strategy may lead to unnecessary multiple path traversal and cor-
rupt the performance of the index. The R-tree-based index deteriorates rapidly when
the dimensionality is high. This is because overlap in the directory increases rapidly
with increasing dimensionality of data. Many methods have been designed to deal with
such “dimensionality curse” problem [14, 72, 93, 119]. Recently, several indexing ap-
proaches were proposed to address the similarity search problem on transaction datasets
[8, 83, 77]. Extending the common methods from numerical, ordered domains to the
transactional data (or marketing data) is not straightforward. The reasons are: (i) Data

domains do not have a natural order; (i) The dimensionality of the transactions is very

28

large, and the datasets are very sparse. Thus these research work partition the search

space according to some clustering methods.

2.3.2 Approximate String Matching Problem

The Approximate string matchingroblem is to find the approximate occurrences of a
pattern in a data string. This problem usually measures the query pattern and the data
with edit distance functions [43, 106]: The substrings of data are signifies, by dynamic
programming, for at most editing operations (insertions, deletions and changes) are
needed to convert the substring to the pattern. However computing the edit distance
between strings requires time quadratic to the length of the strings in worst case, and
therefore, not applicable to large sequence databases.

(Q-gram distance of strings is an alternative distance measure in connection with
approximate string matchingroblem [102, 47]. LeE be a finite alphabet, and I&t be
the set consisting all strings ovEr andX? all string of lengthg over .. The definition

of g-gram distance is:

Definition 2.3.1 (g-gram distance between strings) For a stringr; = aqas - - - a,, let
U = Q11 - - - A+4—1, TOr somei, thenz; hasoccurrenceof v. Let G(x)[v] denote the
number of theoccurrence®f v in x;. Then theg-gram distancéetween two string:;
andzx; is:

Dy(wr.w2) =) |Glar)[o] = Gla)[o]l- (2.1)

veXd

Example 1. Given two strings “VACATION” and “VOCATION”, the 3-gram of them

are ##V, #V A, VAC, ACA, CAT, ATI, TIO, ION, ON#, N#4) and ##V,
#VO,VOC, OCA, CAT, ATI, TIO, ION, ON#, N#4+) respectively. Symbeg¥

is appended to make sure that each character in the strings is in 3 3-grams. Thus, their

3-gram distance equals 6.

29

Theorem 2.3.2.For anyz, y, z € ¥*,
1. Dy(z,y) > 0,D,(z,z) =0;
2. Dy(z,y) = Dy(y,x);
3. Dy(z,y) < Dy(x,2) + Dy(2,9);

It is easy to prove the properties gfgram distance in Theorem 2.3.2. However,
g-gram distance is not a metric, since two different strings can hgvgrm distance.

To solve theapproximate string matchingroblem, processing all the data positions
is rather slow. Filtration of data is a widely adopted technique to reduce the string area
processed by dynamic programming. One way is to develop necessary conditions for a
data area to include an approximate match of the pattern. These conditions often deal
with ¢g-grams of the pattern. The intuition is that whenever an approximate match occurs,
it has to resemble the original pattern, which is reflected by the existence of the same
g-grams in the pattern at the approximate matching position. It has been proved that
any edit operation destroys at magsy-grams of the original strings. Thusg;gram
distance can be deduced as a lower bound of the edit distance and can be a filtration on
the similarity search. However, as mentioned abgvgram distance is not an accurate
distance measure. So, for the similarity search, it can be used as filtration, but refinement

step to eliminate the false positive is required.

2.3.3 Similarity Measure Between Tree-structured Data

Many data mining techniques (for example, nearest neighbor classification methods,
cluster analysis, and multidimensional scaling methods) are based on similarity measures
between objects. There are essentially two ways to obtain measures of similarity. First,
they can be obtained directly from the objects. Alternatively, measures of similarity

may be obtained indirectly from the feature vector distance of the objects. Instead of

30

measuring similarity, we can also measure the dissimilarity which is the dual problem
of similarity measure. There are many ways to measure the similarity between trees, for
instance, the largest common sub-tree and the smallest common super-tree evaluation,
the tree edit distance, the alignment and transferable ratio between two trees [9, 86, 49,
125, 126, 105, 124]. Among these measurements, the editing-based distaacst
distance is mostly adopted and the focus of this thesis is limited on this measure.

Like the string edit distance measure, all the tree edit distance measures are based on
the set of primitive editing operations that can transfer one tree into another. In paper

[125], three kinds of operations on ordered labeled trees have been proposed:
¢ relabel: Changing the label of a nodeof 7.

¢ delete Deleting a non-root node means making the children af become the
children of theparent(v) and then removing (The children are inserted in the

place ofv as a sequence in the left-to-right order of theent(v)).

e insert: Insertingv as a child ofv’ in T" and makingv the parent of a consecutive

subsequence of the children«df Insertion is the complement of deletion.

Let A\ ¢ ¥ denote a special blank tag name. The cost function (X (J{\}) X

(X U{\}) — R is assigned to each edit operation:

v(a — b), wherea, b € (X|J{\}) anda # b
a = A\, means insertion
(2.2)
b =)\, means deletion

otherwise, means relabeling

And this cost function is constrained to be a metric. The generic similarity metric on
ordered labeled trees is unit cost edit distance. edit scriptbetween’; andT; is a

sequence of edit operations turniidg into 75. The cost of a edit script is the sum of

31

the cost of all the operations. Thereedist(T},T3), the edit distance betweéh and
T,, is defined as the minimum cost of the edit scripts that transfgrmto 75. And the
corresponding scripts are tloptimal edit scriptdetweenl’; and7;. (Theoptimal edit
scriptis not unique.)

An edit operation mappind M, T1, T5) (or M without confusion), between the nodes
of 77 and T, can be used as the graphic representation afdinscriptbetween them.
Assuming that there is an ordering between the nodes of trees arif} fhas theith
node of treé/’; and7x[j] is thejth node of tre€ls, (i,) defined inM meansl; [i] should
be changed ta@y[j] if T1[i] # T»[j]; or T1 [¢] remains unchanged T, [i| = T»[j]. If there
is no pair defined inV/ which containing: as the first integer, theith node inT; is
deleted. If no pair in M containgas the second integer, the¢th node inT; is inserted.
The edit operation mapping is one-to-one mapping and preserve the sibling and ancestor

relationship betweef; and7,. The cost of a mapping can be defined as:

y(M) =Y (Tl BED + Y ANl = A+) (A= Talj]) (2.3)

(i,j)EM iel jeJ

, Wherel, J are the sets of nodes not toucheddyin 77 and7; respectively. It has been
proved [125] that for a edit operation scrigt from 7} to T3, there exists a mappinty/
between them that satisfying M) < ~(Sc¢); and for a mapping//, there is aSc such
thaty(Sc) = v(M). So,

treedist(Ty,Ty) = min{~y(M)|M is a mapping from Ty to Ty} (2.4)

Hence, the edit distance computation can be achieved by computing the minimum cost
mapping.
Polynomial algorithms exist to compute the tree edit distance and the corresponding

edit script. The algorithms are all based on the classic dynamic programming techniques

32

Figure 2.2: Cases of Forest Distance

and most of them are simple combinatorial algorithms. A simple recursion is given for

the computation [17]:

Lemma 2.3.3.Let two foresty[l(i1) - - - i) andT5[I(j1) - - - 7] consist of the nod€$i,) - - - i
and the node$(j;) - - - j from T} and T; respectively (according tpostorder numbégy
wherel(v) retrieves the leftmost leaf of subtrégv). Theni and j are therightmost

roots (if any). We have,

forestdist(6,0) =

forestdist(Ty[l(iy) - --1],0) = forestdist(Ti[l(i1)---1 — 1],0) + ~v(T1[i]] — N)

forestdist(0, Ty[l(jy) - - - j]) = forestdist(0, To[l(j1) - j — 1]) + v(A — Ta[5])
(Ta[1(ix) - - 4], To[l(G1) -+ 1)

forestdzst(T ()i = 1), To[l(Gr) - - - 5]) + v(Thfi] — N),

forestdist(Ty[l(iy) - - -], To[l(j1) - - - 5 — 1]) + v(A — T[4]),

forestdist(Ty[I(iy) - --1(i) — 1], To[l(j1) - - - 1(5) — 1])

+ forestdist(Ty[1(i) - - -7 — 1], To[l(G) - - - j — 1]) + (T [i] — Tu[j]).

f orestdzst

= nun

\

Proof. (This proof is given in [125].) The first three equations are trivially true. To
prove the last equation, consider a minimum cost mappingetweeril; [I(i;) - - - i] and

To[l(j1) - - - j] shown in Figure 2.2.

33

Case 1:i is not touched by a mapping line (The first case in Figure 2.2). Thgh| —

A) € M and the first case of equation 4 is applies.

Case 2:j is not touched by a line. The\ — T5[j]) € M and the second case of equation

4 applies.

Case 3:7 andj are both touched by lines (The second case in Figure 2.2). This implies
that(i, j) € M. Otherwise, leti, h), (k,7) € M. If i is to the right ofk (or is the
proper ancestor of), thenh should be to the right of (or be the proper ancestor

of j). Both are impossible sincgis the right most root.

Since the edit operation mapping reserves the ancestor descendant relationship,

any node in subtre®, [i] can only touched by nodes i [;]. Hence,

forestdist(Ti[l(iy) - - - 1], Ta[l(j1) - - - j]) =
Forestdist(Ty[l(iy) - - - 1() — 1], Ta[l(G1) - - - 1(5) — 1])
+forestdist(Ty[1(i) -+ -i — 1), To[I(j) - - - 7 — 1]) + (T1[i] — Tu[5]).

The third case of equation 4 follows.
0

Lemma 2.3.3 suggests a dynamic program. The valygenafstdist(,) dependsona
constant number of subproblems of smaller size. Hence, the time complexity is bounded
by the number of subproblems @f [{(:;)- - -] times the number of subproblems of
T>[l(71) -+ - j]. The number of the subproblem is quadratic to the size of the forests
respectively.

The work in [125, 60] proved that the subproblem size can be reduced by revising
the recursion definition. Zhang et.al rewrite the last equation of Lemma 2.3.3 and have

the following lemma:

34

Lemma 2.3.4.Leti; € anc(i), j1 € anc(j). We can have:

(1) If (i) = I(1), andi(5) = I(j,), then

forestdist(Ty[l(i1) - - -], To[l(j1) - - - 4])

= treedist(Ty (i), Ta(5))

[forestdist(Ty[i(ix) - i — 1), Toll() -+~)) + 1(Tali] — A),
forestdist(Ty[1(iy) - --i], To[l(j1) - - - 5 — 1]) + v(A — Ta[4]),
forestdist(Ty[l(i1) - -1 — 1), To[l(j1) - - - — 1))

+y(T1[i] — Talj])-

= min

(2) If (i) # U(ir), andl(j) # (j,), then

forestdist(Ty[1(i1) - - 4], To[l(j1) - - - j])
Forestdist(Ty[1(iy) - --i — 1], To[l(j1) - - - 4]) + (Ta[i] — A),

=minq forestdist(Ty[l(i1) -], Ta[l(j1) - - 7 — 1]) + (A — Ta[4]),
forestdist(Ty[1(i1) - - 1(i) — 1], To[l(j1) - - - 1(j) — 1]) + treedist(Ty (i), To(j)).

Lemma 2.3.4 makes sure that before the computatiameetiist(7: (i), T»(j)), all
distancestreedist(11[i1], T»[71]) are available ifi; (or j;) is in the subtree off} (i)
(T2(7)) but notin the path fron7) (I(j)) toi (j). After the computation ofreedist (T} (i), Tz(5)),
all distancesreedist(T1(i1), T>(j1)) are available, wher&i,) = (i) andl(j1) = I(j).

Thekeyroots of T is defined as follows in [125].
keyroots(T) = {root(T)} U{u € N(T) | v has aleft sibling}

The specialsubforestF'(v) of T' is the forest under node € keyroots(T'). For a node
v € N(T), thecollapsed depthof v, cdepth(v), is defined as the number &tyroot

ancestors of. Also cdepth(T) is the maximum collapsed depth of all nodedin

35

Lemma 2.3.5. For an ordered tredl’, the relevant subproblem size w.r.t. the keyroots is

bounded byY)(|T|cdepth(T)). Andedepth(T) < min{depth(T), leaves(T)}.

Thus, the algorithm proposed in [125] to compute edit distance between trees is of
O(|T}| x |T5| x min(deptHT}), leaves$T))) x min(depth(1;), leaves$Ts))) time com-
plexity.

In paper [60], the worst case time complexity of the edit distance computation is
reduced further by decomposing a tieeto disjoint pathsheavy pathsFirst the nodes
of T is classified atnieavyor light as follows: The root idight. The child node of the
internal nodes with the maximum size is classifietheavy The edge to théght nodes
arelight edges while the one to théneavynodes aréneavy edgesThelight depthof
nodevw, ldepth(v), is the number of light edges on the path frenat(7") to v. In the
paper, Klein proved that the number @levantsubproblems w.r.t. the light nodes is
bounded byO(|T'|ldepth(T)) and for anyv € N(T'), ldepth(v) < log|T|+ O(1). Thus,
the worst case time complexity is boundedX(T:|?|Ts|log|T5|)

The main difference between various tree-distance algorithm is the set of allowing
edit operations. The earlier work in [96] allows insertion and deletion of single nodes
only at the leaves and relabeling of nodes anywhere in the tree. Definition in [125, 99,
105, 124] allow insertion and deletion of single nodes anywhere in a tree. In [124] a new
distance metric based on a restriction of the mappings between two trees is proposed.
The intuition is that two separate sub-treesTdfshould be mapped to two separate
subtrees iff,. The demonstration of constrained mapping is shown in Figure 2.3. The

constrained edit mapping is a kind of restricted mapping which satisfies:
1.1<i<|TY,1<j<|Ty;
2. the mapping is the one to one mapping, preserving sibling order and ancestor order

3. For any triple(iy, j1), (i2, j2) and(is, j3) in the mapping, letca() represent least

36

Not Constrained

Figure 2.3: Examples of Constrained Mapping

common ancestor functioty[lca(iy, i2)] is a proper ancestor of|is] iff ta[lca(j1, j2)]

is a proper ancestor 0§ ;]

While, the alignment distance in [105] allows only the insertion before the deletion. In
an alignment4 of two treesl’; andT5, the nodes labeled with (space are inserted into

T, andT;, to obtain two new tree$] and7’ with the same structure. And then the nodes
onT] are paired with the corresponding nodes/¢npair (a, b) means replacing if # b,

(a, \) means deletion operation atkl b)) means insertion. A score are assigned for each
pair. Thevalueof A is the sum of scores of all pairs of it. Note that a standard assumption
is that the score schemesatisfies triangle inequality. And the optimal alignment is one
that minimize the value of all possible alignments. Hignment distancés the value

of the optimal alignment. Figure 2.4 is an example of alignment.

37

a a (ad)
e\ d b /f (e (Af)
le c T02 d (bb) (€N (A\c) (dd)

optimal alignmentof T ;and T,

Figure 2.4: Alignment of Tre&; andTs

2.3.4 XML Applications Associating Similarity Measure

Just as mentioned previously, an XML data is formally modeled as a rooted ordered
labeled tree. So most literatures use the similarity measure between trees to solve the
problem of XML data. Guha et al. [48] presented an approximate XML join based
on the tree edit distance. In their method, XML documents are transformed into their
corresponding preorder and postorder traversal sequences. Then the maximum of the
string edit distance of the two sequences is used as the lower bound of the tree-edit dis-
tance. They also proposed to use a constrained tree-edit distance, which is of complexity
O(|T1]|T%|), as the upper bound of the generic tree edit distance to reduce the computa-
tion further. In addition, they use the reference sets to take advantage of the fact that the
tree edit distance is a metric, thus reducing the actual amount of edit-distance computa-
tions between pairs of trees. However, the complexity of computing the proposed lower
bounds is stillO(|T}||Tz|) (i.e., the complexity of sequence edit distance computation),
and it is not scalable to large dataset.

In the recent work, Kailing et.al. [56] presented a set of filters grounded on structure
and content-based information in trees. They proposed using the vectors of the height
histogram, the degree histogram and the label histogram to represent the structure as
well as content information of trees. The lower bound of the unordered-tree edit distance

can be derived from thé, distance among the vectors. They also suggested a way to

38

combine filtration to facilitate similarity query processing. However, their filters are for
unordered trees and cannot explore the structure information implicitly depicted by the
order of siblings. Moreover, their lower bounds are obtained by considering structure
and content information depicted by tag names separately. In Chapter 3, we suggest
combining the two sources of information to provide accurate lower bounds for the tree-
edit distance. And we compare the performance of our algorithm against the histogram
filtration methods.

Garofalakis and Kuma [44] correlate streams of XML data through approximate
matching in small space. They presented an efficient approximation of the tree edit
distance by embedding the tree-edit distance metrics (allowmg\aeoperation in ad-
dition to the basic operations) into a numeric vector space Witklistance norm. In
their method, XML trees are hierarchically parsed into valid subtrees in different phases.
Then the multi-set of valid subtrees is obtained by parsing the tree. The vector repre-
sentation is defined as the characteristic vector of the multi-set.LTloéstance of the
vectors guarantees an upper bound of distance distortion between two trees. However,
the method fails to give a constant lower bound on the tree-edit distance to facilitate the
retrieval of exact answers to the similarity queries based on similarity measure.

pg-Grams was introduced by Augsten et al. [12] as approximation of tree edit dis-
tance for ordered treespg-gram anchored at a nodein the tree consists gf — 1
ancestors angchildren ofu. The missing components are made up by appending nodes
with tag . Accordingly, thepg-gram profile of a tred’ is a vector consisting of the
occurrences of all theg-grams inT" and thepg-gram distance of trees is the distance of
the correspondingqg-gram profiles. The distance thus defined is sensitive to the inner
node changes and weight local changes less than distributed changes. The effectiveness
of this orientation depends on the application.

In change detection scenarios, two versions of the same document are given and the

39

difference is computed. Céba [33] takes advantage of existing element IDs, which
cannot be assumed for joins of data from different sources. Chawathe et al. [25] present
a heuristic solution for unordered trees that run®im?) time and for many cases in
O(n?). The X-Diff algorithm by Wang et al [113] allows leaf and sub-tree insertion
and deletion and node relabeling. To achié@? x deg(T') log(deg(T)) runtime, they
match only nodes with the same path to the root node. The distance measures presented
above are evaluated between pairs of documents.

Weis and Naumann [115] proposed a similarity measure between XML documents
in a duplicate detection framework. In the worst case, all pairs of elements have to be
compared. Puhlmann et al. [91] improved the efficiency by applying the Sorted Neigh-
borhood method to nested objects. Both approaches assume a known, common schema

of the matched documents and require a configuration step.

2.4 XML Pattern Query

To answer pattern queries on XML data, it is not efficient to measure the similarity be-
tween the query patten and the data directly. Firstly, the information about the position
in the document tree where a pattern matching can occur is not available in advance.
Secondly, it is difficult to define the similarity measure between query pattern and data
since XML pattern query consists of path expressions containing wildcards and regular
expressions. According to the searching strategy, previous XML pattern query meth-
ods can be classified as relational-based pattern query methods, path navigation-based
pattern query methods, structure join-based methods. There also exists some methods
which are based on query transformation instead of query decomposition. In this section,

we systematically study all of these methods.

40

2.4.1 Relational-based Pattern Query Processing

In practice, XML data can be managed by traditional database, such as relational or
object-oriented database. Relational database implementation is regarded as a practical
approach because of its wide deployment in commercial world and its mature RDBMS
technologies, e.g., indexing, concurrency control and transaction management. Some
previous work processes XML pattern query by using RDBMS [98, 38, 41]. They mainly

solve the following three subproblems [98]:

(1) Physical schema design: transferring the arbitrarily nested XML schema into the
flat table schema of relational database. The recursive structure of the XML data

requires special processing.

(2) Query mapping: converting XML queries to corresponding SQL queries over the

tables obtained from transformation.

(3) Result construction: exporting the existing data as XML

The first subproblem is a tradeoff between the storage cost and query processing per-
formance. This depends on the features of the data (the shape, the size and the recursive
property etc). The naive approach is to transform each element into a relation, with each
attribute of the element as one column of the table. The relationship between elements
is implemented by foreign keys. However, there is no one-to-one correspondence be-
tween the attributes of XML elements and the columns of relational tables. Furthermore,
this causes the fragmentation problem: To be space optimal, the irregularity of XML
requires to store different elements in different tables. However, this transformation may
cause too many join operations on multiple tables for XML query processing. If multiple
elements are mapped to a single table, there may be much waste on storage space.

One type of transformation is on generic XML data without schema assumption. The

methods proposed in [38] employ a heuristic to achieve efficient relational schema de-

41

sign. The frequently occurring portions of XML documents are stored in a relational
system, while the remainder is stored in an overflow graph. The intuition is that the
“interesting node groups” usually are the frequent ones. Then less joins are required
for many queries. The authors of [41] classified the transformation methods into 6 cate-
gories: According to the structural mapping, they propdsegdetable,Binary table and
Universaltable. And according to the value storage, there carahee inlinedandvalue
outlinedstrategies. Edge strategy completely fragments the input document into one ta-
ble with schemdsource, childNo, tag, target). This strategy incurs many (self) joins

over a large table to answer even simple queries. Furthermore, redundant information is
stored since tags are repeated. At the same time, updating operation is costly. Binary
strategy clusters the edges according to tags and horizontally partitions the Edge table.
Then joins are performed over much smaller tables and better performance is achieved
for query evaluation. Tags are not redundantly stored any more. Universal table stores
all edges in a single universal table. It is obtained by outer join all the Binary tables
and stores each node-to-leaf path in a tuple. The query performance can be improved
by Universal table by reducing the join operation. However, there still exits too much
redundancy in this table.

Shanmugasundaram [98] demonstrated how to map the XML schema into relational
schema by utilizing the DTD specification to evaluate powerful queries over XML doc-
uments. The shared inline techniques is proposed to inline as many subelements as pos-
sible in the element tables. If an element is of a shared type (the in-degree of itin DTD
graph is larger than 1), or it is recursively defined, or it consists of set of subelements,
then it cannot be inlined. Instead, separate table is constructed for it. However, the tables
for shared elements may lead to extra joins to answer path expressions. Hybrid inline
techniques try to solve this problem by inline some shared elements, i.e., the elements

with in-degree larger than 1 which are neither recursively defined nor consisting of set

42

subelements. However hybrid inline method may incur more SQL sub-queries. Ob-
viously, it is a fundamental tradeoff between reducing number of queries and reducing
number of joins for each query. In addition to XML schema, the relational schema works
at different efficiency according to different workloads. In [18], the authors proposed to
optimize the schema transformation by exploring the space of possible transformations
under the guidance of the cost evaluation which is defined according to the XML schema,
the data statistics and the query workload. However, the set of possible configurations is
very large - possibly infinite. Thus, the greedy algorithm is used to select efficient map-
ping alternatives for a variety of workloads. The selected configurations are robust to
variations on workloads and superior to the all-inlined strategy. However, the efficiency
of this methods depends on the accuracy of the statistics derivation.

To convert semistructured queries on XML to SQL, the path expressions need to be
transformed. In [98], the authors gave a framework. Firstly, the relation corresponding
to the context of the root path expressions need to be identified, and be transformed to
FROM clause of SQL. Then, joins between tables are required if the elements are not in
the same table. The recursive path expressions can be transformed to the union of two
SQL fragments within a least fix-point operator. Arbitrary and complicated queries need
to be transformed into simple (recursive) path expression first, and then to SQL queries
separately.

Relational implementation show limitations on converting the results of SQL queries
to complex structured XML documents, since the construction may contain tag variables
and grouping operations and complex elements. In [98], the authors proposed some
solutions to these problems. However, these require the processing outside relational

engineer, which abandoned the mature optimization techniques of RDBMS.

43

2.4.2 Path Navigation-based Pattern Query Processing

XML query languages (e.g. XPath and XQuery etc) specify the path expressions
which can be answered by navigating the irregular structures of data. However, such
guery processing may be very inefficient due to the navigation of the whole data graph,
especially when the objects are scattered on different locations of the disk. Structural
summaries or indexes of XML database can speed up query evaluation by restricting the
search to only the relevant portion of the XML data. Thus the extraction of indexes based
on structural summary of XML data has received a lot of research attention [46, 80, 58,
32]. Some of them are based on relational-based implementation.

The indexes for the semistructured data can be adopted to process XML queries [46,
36]. In [46], DataGuideis defined as the concise summaries on the semistructured data.
It describes every unique label path of a source exactly once and encodes no label path
that does not appear in the source and each objedataGuidecan have a link to its
corresponding target set in the source. Hence, we can find all source objects reachable
via a label path in time proportional to the length of it. One source database may have
multiple DataGuideamong which the optimal one should be explored. Furthermore,
multiple label paths can reach the same object and undistinguishabkatGuide To
solve these problemstrong DataGuides proposed [5]. It ensures that the set of all
label paths sharing the same target set with some/patthe source data equals to the
set of label paths in thetrong DataGuidehat share the same target set witfThus, it
can induce a one-to-one correspondence between source target sets bathGeide
objects.T-index [80] indexes all sequences of objects connected by a sequence of path
expressions defined by a template. 1-index indexes all objects reachable through an
arbitrary path expression from the root: Two nodes are equivalent (same entry in index)

if the set of paths into them from the root is the same. It is a non-deterministic version of

44

the strong data guide. 2-index indexes all pairs of objects connected by an arbitrary path
expression. I-index, objects that are indistinguishable w.r.t to a class of paths defined

by a path template are grouped into one equivalence class. Fine equivalence classes can
be constructed efficiently by using bi-simulatioDataGuides and 1-Index suffers two
problems. Firstly, they are inefficient when processing queries starting with descendant
predicate steps and queries containing wildcard “*”. Secondly, they do not support the
branching queries.

APEX[32], F' & B-Index [58] andindex Fabric[36] construct the index on refined
paths or pre-defined query patterns, instead of storing all paths from root to léales.
Fabric extendsDataGuide for text search. It keeps all label paths starting from the
root and encodes each label path with data value as a string, which can be efficiently
indexed by patricia trie. And the queries on keywords for elements are processed as
string search. In [58] the structural summary of schema-less data are constructed by
using the notion of inverse edges which capture the information about both in-coming
and out-going paths. This is so called Forward and Backward-IndéxX{ B-Index
). It has been improved that theé & B-Index is the smallest index graph that covers
all branching path expressions over graph data. Unfortunately, B-Index is usually
too big to be loaded in the main memory. When the database is hu§e-Index is
almost the same as the original data. To solve this problem, the index definition scheme
need to find the optimal tradeoffs between the size of the index and the queries to be
covered. APEX [32] takes advantages of query workload to mine the frequent query
path expressions and summarizes data paths that appear frequently in query workload.
In addition, it also maintains all paths of length two. 8&EXis flexible and faster than

strong DataGuide

45

2.4.3 Structure Join-based Pattern Query Processing

To process XML queries with recursive predicates, i.e., the AD relationship predicates,
the previously mentioned top-down evaluation can be inefficient - the whole subtree
rooted at an element needs to be tested. On the contrary, structure join methods utilize
certain element numbering scheme which encodes the position information of the ele-
ments, to verify the structural predicates on elements [123, 22, 101, 116, 107, 88, 74].
Based on this, various approaches of binary structure join [41, 79, 10, 104, 103, 98, 123]
and holistic twig join [20, 28, 74, 55] were proposed. The former class of approaches
firstly process the binary relationship constrains which are obtained by decomposing the
tree-pattern queries, and then merge-join the intermediate partial results to get the final

answers. While, the holistic twig join methods try to answer the queries as a whole.

Element Numbering Schemes

The main purpose of numbering/encoding XML elements, denoted as funaetiof)

on element is to allow fast identification of relationships between elements. (In some
literatures, the encoding positional numbers are also called as labels. However, the label
are specifically used as the node names of trees in this thesis.) There are two classes
of popular numbering schemes in the literatures, i.e.,cthr@ainment numberinor
range/region numbering[35, 123] andprefix numberingschemes [107, 88, 74]. The
containment numberingcheme supports efficient evaluation on AD and PC structural
relationships between elements. But this kind of schemes is not capable of supporting
data updates. Iprefix numberinggchemes, the number of an element is decided by the
number of its parent and its own tag name. Therefore, it can support the structural rela-
tionship verification by string matching methods. Meanwhile, it deals with data update
more flexibly than theontainment numberingcheme. Recently, many researchers have

begun to design dynamic XML labeling schemes to handle data updates [22, 101, 116].

46

(1.8) (1,16, 1)

/ O)
(2,4) (6,7) 2,92 (10, 15, 2)
/\ \ . \

31 42 63 75 66 43I (5,63 (11,12,3) (13,14,3)

Figure 2.5: Dietz’s NumberingFigureZ.& Containment Numbering Scheme
Scheme

Two earlier numbering schemes designed to decide the document structure is the
Dietz’s [39] scheme and Lee’s scheme [65]. Dietz’'s encode each node in the tree by
its preorder and postorder numbers. As we all know, the preorder number of a descen-
dant is larger than that of its ancestor, while the postorder number of a descendant is
smaller than that of its ancestor. Thps:(u) < pre(v) andpost(u) > post(v) is the
conditions to identify the AD relationship, which can be evaluated in constant time.
An example of Dietz’s encode is shown in Figure 2.5. Lee’s scheme models the doc-
uments ascompletek-ary tree wherek is the largest fanout of the tree. Each node
is encoded by the breadth-first traversal number of the enlarged tree. Then equation
num(parent(u)) = |(num(u) — 2)/k] + 1 can be used to determine PC relationship.
Obviously, the space overhead of this scheme can be prohibitively high. At the same
time, the updates of the documents cannot be processed straightforwardly by these two
methods.

The first containment encoding is ascribed to the work of Consens and Milo [35],
who discussed a fragment of PAT text searching operators for indexing text database.
Then Zhang et al. [123] introduced it to XML query processing using inverted list. Each
inverted list records the occurrences of an element type. Each occuarénhomlexed
by its document number, its position and its nesting depth within the document, denoted

by num(e) = (docID, LeftPos : RightPos, level). LeftPos (or RightPos) is

a7

(1, 100) 1

o)
(10, 30) (45, 20) 1. / 1.2
l\gZ& 5) \ f¥13
1.1.1

(15,5) (21,5 (50,10) (61,5) 1.1.2 121 122

Figure 2.7: Example of Interval Num- rigyre 2.8: Example ofDewey ID

bering Scheme Scheme
the position number of the start (or end) tag of the indexed element. The numbers are
sequentially arranged during depth-first traversal. Figure 2.6 shows a example of the
numbering scheme. Thereby, the position range of the ancestor elements should contain
that of the descendants, and the parent node level equals to the children level minus 1.
Such scheme is widely adopted in [52, 54, 20, 28]. However, the update processing based
on containment numbering is costly: The insertion of a new node leads to re-labeling of
all the ancestor nodes and all the nodes following it.

Interval encoding [69] is a variation of containment encoding, which aims to allevi-
ate the update awkward processing. Each elemestdentified by a pair of numbers
num(u) = (order, size). For a node: which is the parent of: order(u) < order(v),
andorder(v) 4 size(v) < order(u) + size(u). For two sibling nodes’ andv’, if v’ is
the predecessor of in preorder traversal, themder(u') + size(u') < order(v'). The
interval encoding of the above example is shown in Figure 2.7. Obviously, extra space
can be reserved to accommodate future insertions. However, the scheme will collapse if
no extra space is available.

To our best knowledgdDewey IDnumbering scheme is the first prefix numbering
scheme. It comes from the work of Tatarinov et al. [107] to represent XML order in
the relational data model. TH2ewey IDlabeled each element as follows: (1) The root

element is numbered by one-character string “1”; (2) The non-root elements are encoded

48

as the concatenation of their parent’s numbers and their positions among the siblings.
Thus, the ancestor number of an element can be derived directly from its own. For
example, in Figure 2.8, if a label of an element is1"2”, then it has 2 ancestor and

the labels of them arel”, “1.1” respectively. This encoding scheme supports efficient
evaluation of structural relationship between elements by prefix checking of the numbers.
However, from theDewey IDof an element alone, we cannot derive the tag nhame of its
ancestors.

Extended Dewesy[74] incorporates not only the structural relationships, but also the
element name information into the encoding. Froméktended Dewagumber of an
element alone, the names of all the elements in the path from the root to it can be derived.
The rational is to encode the element name under a specific parent context by using the
modulo function: For a element all its possible child element names are ordered as
< to,t1,- -+ ,t, >. If the child element’ of e has tag name; then a integertr is
assigned te@’ such thatr mod n = i. For text valuesy = —1. Similar toDewey I the
number ofe’ in extended Dewegre the concatenation efandz assign to it. The sibling
information can also be encoded. Specifically, given an elemenith tagt;; and its
left sibling element; (if exists) with tagt;; and numbey, theextended Deweyumber

of e;, num(e;), iIs num(parent(e;)).z, wherex is computed as follows:

v e; is the left most child ot,,;

T = LE xn|+1 otherwise, ifi < j;
n

(g xn|+1 otherwise.
n

According to the number of an element, the tag names of the elements from the root to
it can be decoded by finite state transducefFST). The symbols of the FST are non-
negative integers and1; The states are the tag names and an additional state, named

PCDATA,; For a state, if its ordered child element tags atet,, t1,--- ,t, >, then the

49

transition function is defined aXt,) = t;, wherek = = mod n. The output is the
current state after transition. Figure 2.9 is part of the transducer constructed according
to the DT D definition shown in Figure 2.1. For clarity, the tag names are represented by
the capital letters and the PCDATA state is omitted in Figure 2.9. Then XML path pattern
matching can be directly processed by string matching. For example, through FST, we
element labeled a0.1” is associated with path “MovieDB.Movie.Cast.Actor” in the
data, then its straightforward to identify that it matches a path pattern “//Cast/Actor”. In
the worst case, the space complexity of the FST is quadratic to the size of the tag name
alphabet and time complexity is linear to the length of the path, but independent of the

complexity of the schema definition.

0=¢pow

Figure 2.9: The Transducer of the Extended Dewey Labeling Scheme

O’Neil et al. [88] introduced a variation of prefix labeling scheme caldRDPATH
Unlike the extended Dewef74], the main goal ofORDPATHis to gracefully handle
insertion of XML nodes in the database. It uses odd numbers at the initial document
encoding. When there is an insertion on the document, the even number between two
odd numbers catenated with another odd number is labeled on the new node. Although

the insertion is processed in linear tin@RDPATHwastes half of the numbering space

50

by using odd numbers initially. This numbering scheme lose the level information too.
At the same time, the even number seeking process is time consuming if the insertions
follows multiple deletion. Wu et al. proposed in [116] a prime numbering scheme. This
scheme assign to each node a prime number. The position encoding of a node is the
product of its parent’s number and its own number. Thus, prime numbering scheme can
be viewed as an extension of the prefix labeling. Then for two nadexlv in the tree,

u is an ancestor of iff num(v) MOD num(u) = 0. This scheme can be used to encode
the dynamic ordered XML tree as followSimultaneous Congruenealues ofChinese
Remainder Theoreman determine the orders among siblings. When the document is
updated, it only requires to recalcul&emultaneous Congruencélowever, the recal-
culation is much time consuming. The CDBSgmpact Dynamic Binary Stringcheme
presented in [66] is orthogonal to specific labeling schemes. The order is maintained by
the lexicographical orders of the binary strings and the elaborately designed binary string
insertion methods. By using CDBS, the re-labeling is totally unnecessary. However, if

the insertion always occurs at the same place, the size of the numbers will increase fast.

Binary Structure Join Methods

Some of the previous work [41, 79, 10, 104, 103, 123, 98] has typically decomposed
the twig pattern into a set of binary relationship between pairs of query nodes, i.e., the
PC relationships and the AD relationships. Then the twig query can be processed by
two steps: Firstly, evaluate each of the binary structural relationships against the XML
database and a set of element pairs which satisfy the binary relationship predicate is
generated. Secondly, “stitch” together the basic matches obtained by the first step to get
the final results. For example, a pattern query expression shown in Figure 2.10.(a) can
be decomposed into the binary structural predicates shown in Figure 2.10.(b).

For most of the structure join methods, the data structure referred to as element

51

Book Book Book Book

N e v Al

Title Year Author Title Year Author
‘ I ‘ Title Year Author

XML 2000 Jone |]
‘XML’ ‘2000 ‘Jean’

@ (b)

Figure 2.10: An example of Twig Query Decomposition

streams is used to store the inverted lists of the encoding numbers of elements of the
same type. The encoding numbers in each stream are sorted in ascending document or-
der. When processing the queries, the element stigasatisfying the node predicate
of ¢, which is under consideration, is retrieved from the disk and iterated by an associ-
ated one-way cursor in the sorted order. The element (actually, the encoding number of
the element) pointed by the cursor is referred to as cursor element. An example of the
streams is shown in Figure 2.12. To evaluate the structure join matches is actually to
join the elements from two streams which satisfy the structural predicates. The struc-
ture specification can be efficiently checked by the numbering techniques mentioned in
Section 2.4.3. The related work mentioned in this section are all basedndainment
numberingscheme.

TheMulti-predicate Merge JoitMPMGJN) proposed in [123] is essentially a form
of nested-loop join. This approach scans the same element streams multiple times in
case the XML data is nested. The scanning of the parent query node elements consists of
the outer loop, while the scanning of the elements of the child query node consists of the
inner loop. However, for each outer loop, the scanning of child query node stream need
not to be start from the first element stored in it. The relationship between two elements
from the streams of two query nodesandq’ (¢’ is the ancestor query node g@f are

given in Figure 2.11. Assume thatis the first element in the stream@fvhich satisfies

52

root root

eq-Right < eq-Left eq-Left< ey Left
eq-Right > e.Right
(casel) (case2)
root root

eq-Left> e, .Left eq-Left> e, Right

eq-Right < e.Right

(case3) (case4)

Figure 2.11: Relationship Cases for Two Elementande,,

the relationship predicate with the previously accessed elegpeantstream ofy’. Then

e, ande, should be of relationship shown in Case 2 of Figure 2.11. For any elerhent
following e, in Sy, its child or descendant elements cannot preegde S,. Thus, the

inner loop fore, can start correctly from,, instead of the head of streamThe authors

of [69] differentiated 5 types of subexpressions for the path expression decomposition:
the one with unit components (the single element or single attribute), the one with two
element relationship specification, the one with element and attribute specification, the

one withKleene closur¢ésymbolized by *’ and ‘+’) specification and the one with union

53

specification. Accordingly, the author gave 3 types of join methods. The nested loop can
be safely avoided irF A-join since there is no recursive definition on attributésk-

Join solves the join between elements like MPMGJN, but seeking is not done on data
records directly. Instead, the algorithm searchesihdree indexes (XISS) for element

and attribute names, values and structures. The interval numbering scheme is utilized to
determine ancestor-descendant relationship in constant time. However, the elements in
child query node streams still need to be scanned for multiple times.

To avoid the multiple scan of the element streams Steek-Trealgorithm [10] uti-
lizes an internal stack to store a subset of the elements from streanTbk elements in
one stack from the bottom to the top are nested in one path of the data. Thus, For the Case
1in Figure 2.11, cursor elemeaf causee, to be popped out from the stack because it
cannot contribute to the future matching results. While for Casg 5 already iterated
and pushed into the stack befafgis reached. It remains in the stack aftgtis pushed
into the stack to encode the matches of the binary relationship constrain. After output the
required results, the stream @tan be safely advanced. If there exists no such element
and the stack is empty, can be safely skipped. Hence, only one sequential scais of
stream is necessary.

In the second step of binary structure join, the results evaluated in the previous step
need to be “stitched” together. The method based on selectivity and intermediate result
size estimation is required [79, 7, 71, 90, 68] to decide the optimal join order. The details
are not included in this thesis, since these topics are not closely related to the work here.

Although all the above methods were proposed to improve the efficiency of binary
structure join, there exists a basic limitation of these decomposition-based methods.
They may output large number of intermediate results which do not contribute to the
total answers to the query path pattern, not to mention the answers to the twig pattern

query. For example, if the quefy A/ B/C' is proposed on the data shown in Figure 2.12.

54

Firstly, we need to compute matches to the PC predicatd? or B/C. 2 answers will

be retrieved ford/ B query, i.e.(A;, B1) and(A,, Bs). And 3 answers will be retrieved

for B/C query, i.e.,(B;,C1), (B2, Cy) and (Bs, C3). However,(Bs, Cy) cannot con-
tribute to the total answer of the query. So, if any binary structural predicate is of low

selectivity, the input size and time expense for the later join will be quite high.

Holistic Twig Join Methods

In order to solve the problem of large amount of intermediate results, a series of holistic
twig query methods have been proposed to process the twig pattern as a whole [20, 28,
74, 55]. In these methods, the elements are also stored in the encoding number streams
and only the streams satisfy the query predicates of each query node are retrieved. Mean-
while, each query nodgis associated with a stackk’,, in which each item consists of
a pair: the positional encoding number of an element retrieved from the s&gaand
an pointer points to an item ifi,.,..¢(q) (TJFast [74] uses different data structures as
mentioned later). The stack is used to encode the partial/total answers to the twig pattern
qguery. And the elements stored in it satisfy two requirements: (1) When the element is
pushed into the stack, the algorithms make sure that it and the top elemgnt.of.,
satisfy the containment relationship. After the element is pushed into its stack, a pointer
is built to associate it to the top element®)f,,...;)- (2) The AD relationship between
elements in the same stack are implicitly encoded, i.e., elements are strictly nested from
bottom to top.

In paper [20], Bruno el at. proposed a novel path matching algorithm, dadtd
Stack to process linear path expressions. In this method, the twig query pattern is de-
composed into multiple root-to-leaf path patterns. The entire path queries are processed
in a top-down query predicate checking style. Before an elemgist pushed into its

stacksS,, all elements in the other stacks which end before it should be popped out first to

/Al\ JIA

DY |

. S

c, B Bs ‘
] c
Cz C3

(a) Data (b) Query

Figure 2.12: An Example of Data, Query and Stream Structures

After Visiting B,
—_—
Bi] [C
SKg SKc

N

SKa

Figure 2.14: Stack-encoded Results for Path Query

(c) Streams

Q u u
SKa SKg SKc

Figure 2.13: Example of Stack Pushing

Az

Al \IB3

B

Cs

SKa SKg

SKc

Output A1B1C;

(a) Stack encoding

A; B C
A; Bz C;

(b) Query results

55

make sure that all the stacks encodes compactly partial/complete answers of a path query

at any time.e, can be pushed into the stack iff (1) thg,,ent(q) iS NOt empty and (29,

56

and the top element of,,,..(q Satisfy the relationship constrain betweemrent(q)

andq. Once an element is pushed into the leaf query node stack, there must be some
answers to the corresponding query path. For the data, the stream structures and path
guery shown in Figure 2.12.a, 2.12.b and Figure 2.12.c, Figure 2.13 shows the stack
operation. In Figure 2.134;, B; and(are pushed into the stacks since they satisfy

PC relationship and the 2 requirements mentioned above. When elémeniterated,
elementB; andC; are popped out since they end befdte Figure 2.14.a shows the
partial results output and encoded in the stack. And Figure 2.14.b is the results of the
path query on the data. Unlikgtack-TregelementB; will not be pushed into stacks by
PathStack because there is no matching elements§ ii,. When(is iterated,SK g

is empty. SaC, cannot be pushed into its stack as well. The efficiency of this method
lies in two aspect: The stacks deployed can represent in linear space a potentially expo-
nential number (to the size of the query nodes) of answers. Meanwhile, it reduces the
guery processing cost since only the top element in the parent stack needs to be check
each time. The worst-case CPU time cost to solve path queries is linear to the sum of the
input streams and the output lists, which is independent of the size of any intermediate
binary join results.

Although PathStack method can process the path pattern query as a whole, as for
twig patterns, it cannot totally solve the problem incurred by decomposition. Some
printed partial answers to the path queries may not be merge-joinable at the branching
guery nodes. The methods dealing with the twig query as a whole are needed. Holistic
algorithm also consists of two steps: In step one, the partial answers of the path pattern
queries are output. In step two, the partial answers are joined to get the full answers
of the twig pattern. However, in step one, holistic algorithms try to output only the
partial answers which is merge-joinable with at least one solution to each of the other

root-to-leaf paths. We say thathas an solution extension if there is a solution for

57

the sub-query rooted at If the solution consists of only the cursor elements, then

has a minimal match, otherwise, it has possible match. Holistic algorithms retrieve the
highest query node that has a possible match each time. This makes sure that the
elements which match the ancestor query nodesasfd can contribute to a total query
answer have already been pushed into the corresponding stacks. Thus, after clear the
ancestor stack by,, if the S,q.ni(q) IS €mpty, the current element cannot be an answer

to the query. Otherwise, it is pushed into the stack. Once the stack of a leaf query node
is pushed into a element, there should be an partial solution which is merge-joinable
with at least one solution to each of the other query paths. Under the holistic twig join
scheme, the cursor elements of the streams can be classified into 3 types: the matching
elements, the useless elements and the blocked elements. A matching elgisent

a minimal match of;, but not in any future match gfarent(q). Holistic methods can

tell a matching element and safely push it in the stack. Useless elements are those which
do not participate in any possible match to its query node. It is safe to skip them. The
rest are blocked elements. For example, if we propose a query shown in Figure 2.15
on data in Figure 2.17, According tathStack, the partial answergA,, B;, C;) and
(A1, Bs, Dy), (A3, B2, D1) and (A, By, D5) to the path pattern queryt//B//C and
A//B//D respectively will be output. Obviously, they cannot be merged into a whole
answer. If holistic join methods are used, elemetis A,, Bs, By, Bs are skipped
because they are uselegs.cannot be pushed into the stack becatisés empty when

it is iterated. Thus, the above output partial solutions are not output by holistic methods.

However, the elements available are the cursor elements and those at the top of each
stack. From these information, only minimal matches can be exactly identified. Whether
a possible match exists for a node cannot be tell exactly. There are three cases for the

blocked elements. In the first case, they are in possible but not in any minimal match

58

A A

C/ \B
NN

C D
F|g.ure 2.15: Figure 2.16: Twig
Twig Pattern Pattern Query (b)
Query (a) ’

Aq

A SR AN
‘ A4 D2

I A

! CZB?: ‘
/N E
E;, D1

Figure 2.17: The running example of XML data for holistic twig join methods

to the query node. In the second case, they are in a minimal match to its node but is
only in the possible match of the parent query node. Or in the third case, they are not in
possible match of the parent query node. Thus, advancing any streams of block elements
without storing the cursor elements may cause the loss of results. The foremost holistic
method, TwigStack [20], relaxed the PC constrains to AD constrains for the internal
nodes when it verifies the solution extension to avoid the false dismissal. However,
this leads to useless intermediate results. For the query in Figure 2.16 and the data in
Figure 2.17, the cursor elements ate B, C4, D1, E;, B, and D is not in a match

to the PC relationship betweds and D. However,B; containsD; and B, may be in

a match with elements following@;. Similarly, D; may be in a match with elements
following B,. TwigStack pushesA;, B,, Ci, Dy, F; into the stacks according to the

containment relationship althougi,, B,, £1) and(A;, By, D;) are not the satisfactory

59

partial answers.
The concept of optimal twig pattern matching algorithm is officially defined in [28].
A twig pattern matching algorithm is optimal if it can satisfy the following tree condi-

tions:

1. Every element stream retrieved for the pattern (i.e., whose tag appears in the twig

pattern) is scanned only once.
2. None of the intermediate partial solutions output is redundant.

3. The space required by the algorithm is bounded by a factor which is independent

of source document size.

For an twig pattern matching method to be optimal, the case that all current elements
are blocked should never occur. ApparentlyjgStack is only optimal for path patterns
and AD only twig patterns, but sub-optimal to twig query containing PC relationships
[20, 74]. The later research work tries to minimize the blocked elements for queries and
expand the types of queries which can be optimally answered [73, 28, 74].

Lu et al. proposedwigStackList in [73]. It makes sure that if there is a PC relation-
ship below the branching nodeand its childg., the cursor element, can be pushed
into stack only if it or the elements following it if, satisfy the PC predicate with the
cursor elements of solution extension roogedThus even if there exists PC relationship
predicate under branching nodes, fiwagStackList is superior toTwigStack in that it
output less useless intermediate solutions. However, for the above example, the output
of TwigStackList is the same as that diwigStack. iTwigJoin [28] increases “paral-
lelism” to access elements with the same tag by the additional “context” information. It
uses refined streaming scheme, and partition the streams of eleméhig by Level
context or the more refined prefix-path context. For example, the streams for the data in

Figure 2.17 are shown in Figure 2.18wigJoin associates the useful streams according

60

to the context. For instance, the useftiistreams ofS, and S% are S% and .S% are re-
spectively. The logi¢TwigJoin is similar to that ofTwigStack, but adopted to process

the refined streaming scheme. For the above example, the elémemd B, will be

skipped since the useful stream of naddor S% = S4p begins withD,. So these two
elements have no descendant extensions in this stream. Thus the intermediate results
(A1, By, E1), (Ay, Bs, E1), (A1, By, Dy) and (A, Bs, D) are not output. However, if

the element?, does not exist in the data, the redundant restjt C;) and(A;, By, D>)

will still be output. The methods are proved to be optimal only for AD-relationship-only

guery, PC-relationship-only query and 1-branching-node query.

S

Sé ’Bl‘BZ‘ BA‘

$ [

SFEEE

S [E4Ed S b

Figure 2.18: The Refined Streaming Schemélabig.Join

TJFast proposed in [74] is based @axtended Dewagumbering scheme introduced
in Section 2.4.3. From the definition of tlextended Dewagyumber of an elemer,
the names of the all the elements in the path from the roetdan be derived directly.
Thus, whether elements are satisfying the path pattern queries can be checked by string
matching algorithm and only the numbers of elements matching the leaf query node need
to be scanned. This fact leads to two benefits: Firstly, the I/O cost is much smaller than
the previous methods. SecondiyFast can efficiently process path queries contain AD
relationships or wildcards«* by string-matching withdon’t caresymbols. Therefore,

to evaluate a twig pattern, the only key issue is to determine whether a path solution

61

can contribute to the solutions for the whole twig, i.e., whether it and solutions of other
path queries have common element which can match to the branching mdBast
guarantees that each output partial solution shares common elements from the branching
node streams (which are not physically retrieved from the disk) with at least one partial
solutions to all the other path queries. The PC relationship on non-branching nodes
can be guaranteed by string matching algorithm directly. So when there are only AD
relationships under branching nodds]Fast is proved to be optimal. However, for

the data and query shown in Figure 2.17 and Figure 2.16 respectively, the redundant

intermediate solutioA;, B, £;) will still be output.

Structure Join based on Indexed Documents

The previously mentioned structural join methods may still incur unnecessary 1/0O costs
since they need to scan the entire streams, especially in the case where only a small por-
tion of nodes in the streams satisfy the containment relationship. The potential benefits
of skipping elements that do not participate in the final twig match by using available
indexes are explored in the methods reviewed in this section [31, 54, 20]. They are
for both the binary structure join methods and the holistic twig join methods. For ex-
ample, assume that is a query node and is one of its child node. Let, ande,

are the cursor elements 6f, and.S,. If they are in relationship shown in Case 3 and
Case 4 of Figure 2.11 anflK, is empty after pop the elements ends befasethen

e, IS impossible have corresponding match of ngdeThus, cursor ofS, can be ad-
vanced till the first element whose start point is larger than that,oflf e, ande,

are in Case 1, cursor df, should forward to make the cursor element apdre in

Case 2, if possible. Otherwise, in Case 3 or Case 4, lande, are in Case 2 of Fig-

ure 2.11, the elements following, in S, but start beforez, should all be retrieved

to push into the stack. These are achieved by indexing the encoding number of each

62

element(Docld, LeftPos : RightPos, Level Num).

A(1,100)
B4(2,15) B,(20,75) B.1{(80,91)

| /N T |

B«(8,12) B422,35)BA40,65) Byd50,55) B1{85,90)

Bs(10,11) B¢(25,30)Bg(45,60)

By46,47)

Figure 2.19: An Example of Indexed XML Tree

NEEZNEN |
fEE \\ [] / % || & \\
(2,15) (20,75) (25,30) (46,47) (80,91)
(812) || (2235) |~ (40,65) || (5055 |_ | (8590)
(10,11) (45,60)

Figure 2.20:B*-tree Indexed

The Anc-DesB* method of [31] buildsB*-tree index for the elements in each
streams. The indexing key is tlie ft Pos of the encoding number. The index of element
B for the XML data in Figure 2.19 are shown in Figure 2.20R-tree (XML Region
Tree) proposed in [54] is essentiallyztree index on thd.e ft Pos of the containment
encoding numbers. Figure 2.21 is an example&di-tree index. In addition, each in-
ternal node associates a stab list. A elemenith encoding numbete.start, e.end) is
called to be stabbed by a kéyif e.start < k; < e.end. The elements are stored in the
leaf nodes as well as the stab list of the top-most internal node containing a key which

stabs it. In [20],TwigStack is extended tdwigStackXB by X B-tree index..X B-tree

63

is like a one dimensioR-tree index on the containment encodes and the intervals are
arranged according taXocld, LeftPos) as those inB-tree. Figure 2.22 shows the

X B-index for the data in Figure 2.19.

[@a2075)] {_ - ((2075) 2235)

ERIEDR \._4(40,65) (45,60) (46,47)]

[[agnitnin]] i —nil |/] (46.4065)

(2,15,n0) (20,75,yes) (25,30,n0) (46,47,yes) (80,91,n0)
(8,12,n0) |~ (22,35y€s) |~ (40,65,yes) || (50,55,n0) -~ (85,90,n0)
(20,11,n0) (45,60,yes)

Figure 2.21:X R-tree Index

\ 235 |, | (2590) N | \

\ 215 |, | (2039) N \ \ \ (2560) |, | (4655) |, | (80,90) \l \
(2,15) (20,75) (25,30) (46,47) (80,91)
812 || (2235) |— (4065 || (5055) |_| (8590)
(10,11) (45,60)

Figure 2.22:X B-tree Index

Jiang et al. [55] propose@SGeneric™, an novel holistic twig join based on the
indexing scheme of theontainment encodingf elements (e.g.B"-tree, X B-tree and
X R-tree [31, 20, 67] etc.). Itis proved that, in addition to the relationship between two
guery node, the relationship between a query noaed its descendant can be utilized to
skip more elements. If the stack @fs empty, even if its descendant nodes have solution
extension, there cannot exist a match to the whole twig query. Rather, it is safe to move

cursors of the descendants forward to locate a solution extensignToie authors also

64

gave three heuristics on the order of picking the broken edge in the subtree rogted at

improve the performance.

2.4.4 Query Processing Method Without Decomposition

The authors of [112, 92] developed methods which solve twig pattern queries as a whole.
Both methods transform the XML data trees and queries into sequences and the nodes
of the data sequences are stored with position numbers encoding the its positions in the
virtual trie indexes. The virtual index structure reduces the amount of data that need to be
searchedViST transforms XML data trees and the twig queries into structure-encoded
sequences which consist @f.label, e.prefiz) pairs in document order, whetebel is

the tag name of the elementn the XML document tree or the label of the query node,
andprefix represents the label path from the rooteto VIST performs subsequence
matching on the Transformed sequences to find twig patterns in XML documents. One
imminent weakness ofiSTis that the worst-case space requirement of the virtual index
structure is high because the prefix of the elements are required to encode the struc-
ture. At the same time, the query processing strategy may result in false alarms because
the subsequence matching method cannot distinguish the structures in which the two
elements are siblings from the structures where two elements have the same prefix. In
order to conquer this problem, the authors propasetstrained subsequence matching

in their later work [111]. In [111], Wang et al also discussed the optimal sequencing
strategy with regard to the time and space complexity to index and query XML data,
which should be guided by XML schema and data distribution of the dataset. The trans-
formation method oPRIX[92] is based orPriifer encoding of the tree structure which
constructs a one-to-one correspondence between a labeled tree and the transformed se-
guence. Non-matches are filtered out by subsequence search on the indexed sequences.

The twig matches are then found by applying refinement. The author proved that the

65

connectedness and the structure verification by the gap and frequency consistency is
necessary and sufficient to verify a partial twig match to the structure query. Thus no

postprocessing is required.

2.4.5 Query Processing with More Complicate Predicates

Recently, several research work focus to process the complicated query predicates in
addition to the PC and AD constrains [53, 75, 120]. They deal with the queries with
OR-predicate, ordering predicates and NOT-predicate respectively. The work presented

in this thesis can be extended to solve these complicated predicates too.

2.5 Summary

In this chapter, XML schema languages and the formal notations of the XML data model
are given first. Then we reviewed the techniques for XML similarity query processing

and XML pattern query processing. The review shows that the studies on similarity
guery processing is not sufficient although this query is the basis for many data manip-
ulations on XML. The efficiency needs to be improved if datasets consist of large sized
XML documents. For the XML pattern queries, although intensive research has been
conducted previously, the optimal processing of PC relationship constrains is still an

open problem. And the optimal query classes need to be enlarged further.

Chapter 3

Similarity Evaluation on XML Data

3.1 Introduction

In this chapter, the study of the structure similarity measure and similarity search on
large XML data in huge datasets is presented. These problems form the core operation
for many data analysis tasks (e.g., approximate join, clustefiN\ classification, data
cleansing, data integration etc). It is also useful for document management including
XML data searching under the presence of spelling errors, version management for XML
documents, etc. In practice, similarity query itself is the main data manipulation for
multimedia and time-series databases, biological and scientific databases. Since XML is
the de facto standard for data exchange on the web, more and more commercial data and
scientific data are conveyed in XML documents. Thus, efficiently processing similarity
evaluation on XML data poses interesting challenges for database researchers. However,
little research have been done on this area. There is still no efficient similarity search
algorithm for XML.

The main reason is that data model of XML is different from those of conventional
databases. As mentioned in Chapter 1, the data are often with no schema specification.
Even if there is schema, the data conforms to it flexibly. Elements and attributes can be

optional and elements can occur multiple times. The traditional distance measurements,

66

67

thus, cannot be used straightforward in this area. Furthermore, in the XML document,
the semantics specified implicitly by the relationship between its components. Then the
structures play important role on differentiating data. The measurement of XML data
similarity can be precise only if this information is exploited and introduced into the
measure function. However, this cannot be done directly by the traditional metric.

Now that there are lots of literatures discussing about the similarity measure of the
value content, in this chapter, we particularly focus on the that conveyed by the the
tree structures and tag names. Usually, the XML data are modeled as rooted ordered,
labeled tree-structural data (details are in Chapter 1). The generic distance measure is
edit-baseddistance [84]. However, theee edit distancdunction is computed using
dynamic programming algorithm and the cost is very high [125, 99, 105, 124]. Data
manipulations based on the tree edit distance directly can be very expensive both in
terms of CPU cost and disc 1/0Os, rendering it impractical for huge datasets.

In this chapter, a structure transformation on rooted, ordered, labeled trees is utilized
to develop a novel distance function based on both the structural and the content infor-
mation. It is proved that the proposed distance function is a lower bound of the tree
edit distance. The idea is similar to using a sey-@rams to bound the edit distance
of strings and thus filter out dissimilar strings [110]. Given a strijca g-gram is a
contiguous substring & of lengthgq. If S; and.S, are within edit distancé, S; and.S;
must share at leastaz (|5, |, |S2|) — (kK — 1)¢g — 1 commong-grams. Similarly a tree can
be characterized by a set@tevel binary branches, and it is shown that two tréeand
T, are within edit distancé precisely when they shaféx (¢ — 1) + 1] x k ¢-level binary
branches. Furthermore, just as string edit distance can be tightened if the positions of
the g-grams in the string are also taken into account [102, 47], so too tree-edit distance
can be tightened by using information detailing the positionglefel binary branches

in the trees.

68

By employing the distance function as the lower bound of the edit distance in the
filter-and-refine framework, the evaluation of the similarity queries can be solved in two
steps: In the filtering step, the lower bound is used to filter out most objects which are not
possible to be in the result. The remaining objects are candidates which are validated by
the original complex similarity measure during the refinement step. This strategy greatly
reduces the number of expensive distance computations in the original space.

The rest of this chapter is organized as follows: Section 3.2 presents the definition of
the transformed vector space and the new distance based on it, together with the formal
proof of the lower bound theorem. Section 3.3 discusses how to embed the new distance
function as the lower bound of edit distance into the framework for similarity search,
while in Section 3.4 a thorough experimental study of the new algorithms is presented.

Finally, Section 3.5 concludes this chapter.

3.2 Tree Structure Transformation

The key element of the new algorithm is to transform rooted, ordered, labeled trees to a
numeric multi-dimensional vector space equipped with the nbyrdistance. The map-

ping of a tre€l” to its numeric vector ensures that the features of the vector representation
retain the structural information of the original tree. Furthermore, the tree-edit distance
can be lower bounded by thg distance of the corresponding vectors. The lower bound
distance evaluation is computationally much less expensive than tiaboft (T, T7).

In this section, the transformation methods and the proof of the lower bound theorem are

presented.

69

3.2.1 Binary Tree Representation of Forests (or Trees)

The proposed mapping of tree structures into a numeric vector space is based on the
binary tree representation of rooted ordered labeled trees. For completeness, firstly the
binary tree representation of forests (or trees) is briefly introduced. The formal definition

of the binary tree is cited from [61]:
Definition 3.2.1 (Binary Tree). A binary treeconsists of a finite set of nodes. It is:
1. an empty set. Or

2. a structure constructed by a root node, the left subtree and the right subtree of the

root. Both subtrees are binary trees, too.

In a binary tree, the edges between parents and the left child nodes are different from
those between parents and the right child nodes. W&'yse (N, E;, E,, Root(T))
to represent a binary tre€u, vy, v, € N, if v; (vy resp.) is the left (right resp.) child of
u, then(u, v1); € E; ((u, v9), € E, resp.). A full binary tree is a binary tree in which
each node has exactly zero or two children.

There is a natural correspondence between forests and binary trees. The standard
algorithm to transform a forest (or a tree) to its corresponding binary tree is through the
left-child, right-sibling representation of the forest (tree): (i) Link all the siblings in the
tree with edges. (ii) Delete all the edges between each node and its children in the tree
except those edges which connect it with its first child. Note that the transformation does
not change the labels of vertices in the tréeandT; of Figure 3.1 can be transformed
into 77 and T shown in Figure 3.2. By rotating it, we can get the binary tr8¢%))
and B(T3) respectively shown in Figure 3!3The binary tree representation is denoted

asB(T) = (N, E;, E,, Root(T), label) in this chapter.

1The appended nodes with lalzeind the numbering of the nodes are explained in sections 3.2.3 and
3.3.2, respectively.

70

a
8
C
c dO do c d b
e
T1 T,

Figure 3.2: Tree Transformation

3.2.2 Observation

The inspiring observation is that edit operations change at most a fixed number of sibling
relationships. This is because each node in a tree can have a varying number of child
nodes but at most two immediate siblings. This is illustrated in the example of Figure 3.1.
The deletion of nodéin 77 incurs five changes in parent-child relationships: It destroys
the(a,b), (b, c), (b,d) edges, while generating thie, c), (a,d) edges. Atthe same time,

this edit operation only incurs four changes in sibling relationships: The one between
andb, and the one betweérande are destroyed. The sibling relationship betwéamd

¢, and the one betweehande are generated by the deletion operation.

71

B(T1) B(T2)

Figure 3.3: Normalized Binary Tree Representation

As mentioned in 3.2.1, a binary tree corresponding to a forest retains all the structure
information of the forest. Particularly, it gives a correspondence between trees and a
special class of binary trees which have a root without right subtree. in the binary tree
representation, the original parent-child relationships between nodes, except the ones
between each inner nodes and its first child, are removed. The removed parent-child
relationships are replaced by the link edges between the original siblings. This property
makes the transformed binary tree representation appropriate for highlighting the effect
of the edit-based operations on original trees. The novel algorithm proposed in this chap-
ter are based on such observation and exploit the binary tree transformation properties,
i.e. it store the structure information of trees by record the sibling relationship instead of

all the parent-child relationship.

3.2.3 Vector Representation of Trees

To encode the structural information the transformed binary tree represengfigrof
T is normalized as follows: IB(T), for any nodey, if « has no right (or left) child,

a e node (i.e., nodes with labeldo not exist inT’) is appended as’s right (or left)

72

child. This maked"” a full binary tree in which all the original nodes have two children
and all the leaves are with labe(as shown in Figure 3.3). The normalized binary tree
representation is defined &57") = (N U{¢}, Ei, E,., Root(B(T)), label), where

e denotes the appended nodes as well as their labels. To simplify the notation, in this
chapter, € N represents the node as well as its label where no confusion arises. In order
to quantify change detection in a binary tree, the conbeyry branchon normalized

binary trees is introduced:

Definition 3.2.2 (Binary Branch). Binary branch(or branch for short) is the branch
structure of one level in the binary tree. For a tfBeVu € N, there is a binary
branchBiB(u) in B(T') such thatBiB(u) = (Ny, E.,, E.,, Root(T,)), whereN, =
{u, uy, us} (w € N;u; € N\ e}, i =1, 2), By, = {{u,us1)1}, By, = {(u,us),} and

Root(T,,) = win the normalized3(T').
According to the properties of normalized binary trees, we can have Lemma 3.2.3:

Lemma 3.2.3. For each node: € N of a treeT’, u may appear in at most two binary
branches in the binary tree representatiil’).

PROOF:
1. u can occur as root in at most one binary branch. This is obvious.

2. u can occur as the left (or right) child in at most one binary branehcan not
occur as the left child in one branch and as the right child in another branch at
the same time; otherwise, must have two parents iB(7"). That is contrary to

the properties of trees.

Assume that the universe of binary brancli#&®3() of all trees in the dataset com-
poses alphabdf and the symbols in the alphabet are sorted lexicographically on the

stringuu;us. A representative vector of dimensigdr| can be built for each tree-structured

73

data record, with each dimension recording the number of occurrences of a correspond-
ing branch in the data. The formal definition of the binary branch vector is given in

Definition 3.2.4.

Definition 3.2.4 (Binary Branch Vector). Thebinary branch vectoB3 RV (T') of a tree
T is a vector(by, by, - - - byry), with each element; representing the number of occur-
rences of theth binary branch in the tredl’| is the size of the binary branch space of

the dataset.

To construct the binary branch vector of a tree, firstly an inverted file is built for all
binary branches, as shown in Fig. 3.4(a). An inverted file has two main parts: a vocabu-
lary which stores all distinct values being indexed, and an inverted list for each distinct
value which stores the identifiers of the records containing the value. The vocabulary
here consists of all existing binary branches in the datasets. The inverted list of each
component records the number of occurrences of it in the corresponding trees. The re-
sulting vectors of our transformation for the trees in Figure 3.1 and the normalized binary
trees in Figure 3.3 are shown in Figure 3.4(b).

Based on the vector representation, a new distance of the tree structure can be defined

as thelL; distance between the vector images of two trees:

Definition 3.2.5 (Binary Branch Distance). Let BRV (1) = (bi, by, -+, b)),
BRV(T3) = (b}, by, - - - b) be the binary branch vectors of tréBsand7; respectively.
The binary branch distance &f and75 is BDist(T}, Ts) = ZLF:|1|bZ- — bl

The binary branch distance has the properties listed below: F&i,.all, andTs in

the dataset,
1. BDZSt(Tl, TQ) >0, andBDiSt(Tl, Tl) = 0;

2. BDist(Ty, Ty) = BDist(Ty, T1);

74

ar-|bi-|br-ibj-1b-1cl-1d di-jel:
bl-|bl-|c|-|lc|-|el|-|E|"|E|-|E|-|E|-|€]-
s-‘c-ces-d-b E-T-
T M T, T, T [T
1] |1 1 2‘7 2| (1]
T, T, T T L] [T,]
1] 2] [1] [1] 2

(@) Inverted File

BRV(Ty) | 1|| 1 || 0 || 1 || 0 | | 2|| 0 | | 0|| 2 || 1 ||

BRV(T) |1].]o].[1]-]0]-]1]-[2]-]1]-]1]-]0]-]2]]

(b) Binary Branch Vectors

Figure 3.4: Binary Branch Vector Representation

3. BDZSt(Tl, Tg) S BDZSt(Tl, TQ) + BDZSt(TQ, Tg)

Proof. The first two properties are obvious. For the third propertyBI&l/ (T;) =
(bi1, big, ---, byr)) fori =1, 2, 3.

BDist(Ty, Ty) + BDist(Ty, Ts)
r r
- Zgil‘blj - b2j‘ + E|j:|1|b2j - ij'

> Z‘J'F:‘ﬂblj —bs;| = BDist(Ty, Ts)

O

The third property means that the binary branch distance satisfies the triangular inequal-
ity. However, BDist(T), T») = 0 cannot imply thatl; is identical to7,. This is
illustrated in Figure 3.5, where both trees have the same binary branch vector. So the

binary branch distance is not a metric on tree-structured data.

75

C DO C

Figure 3.5: Trees with 0 Binary Branch Distance
3.2.4 Lower Bound of Edit Distance
In this section, the theoretical analysis of the new methods are given.

Theorem 3.2.6.LetT and7” be two trees. If the tree-edit distance betw&eand 7’
is EDist(T,T"), then the binary branch distance between them satisfies the following:

BDist(T,T") < 5 x EDist(T,T’)

Proof. The theorem follows if it is proved that at mastx & binary branch distance is
incurred byk edit operations. Assume that edit operatietis edy, --- , ed; transform
T to T'. Accordingly, there is a sequence of trées= Ty — 17 — -+ — T, = T,
whereT; — T; viaed; for 1 < i < k. Let there bek; relabeling operations;,
insertions and:; deletions.k; + ky + k3 = k. It is sufficient to prove the theorem for

one step of the transformation.

1. Assume thatd; is a relabeling operation on some nadef the tree. According
to Lemma 3.2.3p occurs in at most two binary branchesM{7;_,). Obviously,
this operation retains the tree structure informatiof;of . In these two branches,
label(v) is changed to the new one in the target tF4d;). Assume that the count
of the two binary branches iBRV (T;_,) is in dimensionl; andl,, while the
two new binary branches are in dimensignandl,. Then BRV (T;_1)[l,,] —
BRV(T))[l,,] = 1, for m = 1,2. BRV(T,_1)[ln] — BRV(T))[lw] = —1, for
m' = 3,4. S0,BDist(T,_1,T;) < 4.

76

2. Assume thatd; inserts a node to transform’}_, to 7;. Obviously, whernv has
a parent, a left sibling, a right sibling and child nodes, this operation leads to the
maximum number of changes on the structure information. Figure 3.6 and Fig-
ure 3.7 demonstrate the insertion operation and the changes it causes on the binary
tree representation. Letbe inserted under nodéand child nodes; 1, - - - w1 m

of v" in T;_, become the child nodes ofin 7.

W1 W +m

Figure 3.6: Insertion of Node Under Node'

\Y
W1<)\
w, O
W, O\
WI+1O
W|+mO\O W|+m+1

v?EO

Figure 3.7: Changes of Binary Tree Incurred by Insertion

It is shown that at most five changes occur on the edgd3(®}_,): Two edges
(v, wiy1); and (v, wime1), representing the structure information rootedwon

are added into the binary tree. These edges comprise the binary saBc¢h).

e

So, assuming that it corresponds to dimengiotnBRV (1), thenBRV (T})[l] —

BRV (T;_41)[l] = 1. In addition, the sibling relationship betweepandw.,, and
betweenu;.,,, andw;,,+1 in T;_; (represented by, w;11), and{w; ., Witm+1)r
respectively inB(7;_,)) are destroyed. This leads to the destruction of one of each
binary branchBiBr,_, (w;) and BiBr,_, (wi1m). 2 Thus, the values for the two
corresponding dimensions i8RV (T;) are less than those iBRV (T;_;) by 1.
Finally, (w;, w;41), is replaced byw;, v), in B(T}) for v is the right sibling ofw,

after being inserted iff}. (witm, Witm1)r 1S replaced byw p,, €), for wy,, is

the right most child of in 7}; after insertion. Then the values of the corresponding
two dimensions, i.e BiB(w;, *, v) andBiB(winy, *, €),in BRV (T;) are larger

than those iIBBRV (T_,) by 1 each. To sum ug3Dist(T;_,, T;) is at most 5.

3. Deletion is complementary to insertion. Therefore the number of affected binary

branches must be bounded by the same amount as for insertion.
According to the triangular inequality property of binary branch distance, we have
BDist(T, T") < BDist(Ty, T1) + BDist(Ty, T3) + -+ - + BDist(Ty_1, Tk)

<4 Xk +5Xke+5xks<bxk
<5x EDist(T, T").

3.2.5 Extended Study

As shown above, the generalized analysis is similar to that of-tam method [110]
for solving thek-difference problem of strings. The number of occurrences of g@ach

gram (i.e., all strings of lengtipover the alphabet) in any two strings are counted. If two

2The* can be any label i&x or the labek.

78

strings are similar, they have maigrams in common. Formally, if the edit-distance of
stringsS; and S, is k, then they have at leastax(|S;],|S2|) — (k — 1)¢ — 1 ¢g-grams

in common. When applied to similarity search problems in which the full strings are
involved, theg-gram method usually trades off the false positive for the false negative
rate by adjusting the length of tlgegram searched [57]. Binary branches can be viewed
as playing the role of-gram structures for tree data. The vector images of trees can be
extended to record multiple level binary branch profiles. Firstly, the formal definition of

the g-level binary branch is given below:

Definition 3.2.7 g-level Binary Branch). Theg-level binary branctBiB_q(ng, ny, ---
, Maa_o) IS the perfect binary tree of height— 1, whereng, ny, -+, ne_s is the se-
guence obtained by preorder traversing the perfect binary tree (with all leaf nodes at the

same depth and all internal nodes having degree 2).

The binary branch defined in the previous section is indeed the two-level binary
branch. Similar to the computation gfgrams for strings, our sliding window is a per-
fect binary tree with heighf—1 (i.e., all leaves are of the same depth 1). The sliding
window shifts one level each time along the path from the root to the leaves. For each
nodeu in the tree, there is @&level binary branch rooted atin the binary tree represen-
tation consisting of the perfect binary subtree rooted.df the subtree of heighj — 1
rooted atu is not a perfect binary tree in the transformed representationdes can be
appended to complete it.

The multiple level binary branch is used to maintain structures of fixed size and
fixed shape in the original data. Obviously, it encodes more information than the two-
level binary branch. We can extend the binary branch vector tohtheacteristic vector
BRV q(T), which includes all the elements in tlyelevel binary branch space. The
g-level binary branch distancBDist_q(T, T") is defined as thé,; vector distance be-

tween the images of the treésand7” under the;-level mapping. Figure 3.8 shows the

79

3-level binary branch of thé; tree in Fig 3.1.

B(Ty)

Figure 3.8: 3-level Binary Branch Vector Examples

Theorem 3.2.8.Let 7" and 7" be two trees. If the tree-edit distance betwé&émnd
T"is EDist(T,T") = k, and the corresponding edit operation sequence consists of
k. relabeling operationsk, insertions andk; deletions, then the-level binary branch

distance between theBDist q(T,7") <[4 x (¢—1)+ 1] x k

Proof. The proof methods here are similar to those of Theorem 3.2.6.

It is sufficient to consider the case when the tree edit-distance betWeserd 7"
is 1. Let Anc(n,i) denote the lowesith ancestors of node. Let Path(ny,ny) be
the path from node,; to noden, in the tree, whilePathLen(n,, ny) be the length of

Path(ny, ne), i.e., the number of parent-child edges between ngdendn..

1. Assume thatl” is obtained fromI" by relabeling a node. It is obvious that

each node in the tre@ appears in at mosj ¢-level binary branches. These

80

are the ones rooted at the nodésc(n,q — 1) and the one rooted at itself if
PathLen(Root(B(T))) > (¢ — 1). For example, the triangles of the dashed line
in Figure 3.8 show the 3 3-level binary brancli€s, 6) appears. Then the rela-
beling of nodev destroys at mosjf g-level binary branches. At the same time,
it generate the same number@i-level binary branches if3(7"), one for each
of the destroyed ones. This leads to at mbst ¢ ¢-level binary branch distance

betweenl” and7".

. Assume thaf” is obtained froni" by inserting a node under node’ as shown in
Figure 3.7. Just as analyzed in Theorem 3.2.6, insertion of a node in the tree leads
to the destroy of at most two edges between parents and their right child nodes
in the transformed binary tree<(w;, w;11 >, and < w;1m, Wimi1 >») and
generate two new ones (w;, v >, and< w;,,,, € >,) for replacement. One edge

in the binary tree exits iy — 1) ¢-level binary branches. So these changes leads to
4 difference between thglevel binary branch vectors @f and7”. In addition, the
relationship between the inserted nadend it’s first child and it's next sibling are
added into the transformed binary treelsf < v, w;,1 > and< v, w1 >.
These two edges consists of a binary braBeBranch(v, w1, witme1). This
binary branch occurs ify — 1) g-level binary branches. However, except the one
rooted atv, all theseg-level binary branch also contairs w;, v >,. So the
difference of the value on the dimensions of thgge 2) g-level binary branches

are already counted. Only the the value of dimension ofjtheel binary branch
which is rooted ab is increased by 1. So, one insertion operation on any node
in the treeT to generatd” cause at mogtt x (¢ — 1) + 1] ¢-level binary branch

distance.

. The deletion is complementary to insertion. So each deletion operation cause at

most[4 x (¢ — 1) + 1] g-level binary branch distance too.

81
From the above analysis, we obtain:
BranchDist_q(T, T') < 2kiq + ko[4(q — 1) + 1] + k3[4(qg — 1) + 1] (3.2)

Sinceq > 2, BranchDist_q(T, T') < [4(¢ — 1) + 1]k O

The binary branch distancBDist_q(11,T) increases as the level of the binary
branchq increases. This is due to the fact that the higher the level is, the more infor-
mation of the tree structure is encoded in the binary branches. At one extresgual
to the height of the normalized transformed binary tree; then all the structural informa-
tion of the original tree is encoded. However, in such a situation, the filter algorithm is
of no use. At the other extremds equal to 1; in this case, the filter efficiency is too low.
We do not discuss this option as it records no structure information of the original tree at
all. According to Theorem 3.2.8Dist_q(T, T")/[4(q — 1) + 1] can be used as a series
of approximations for the tree-edit distance with different resolutions. So thedeiel
the binary branch can be adjusted to improve filter efficiency when solving the similarity

search problem.

3.3 Enhancement of Similarity Search on Tree-structured

Data

In the previous section, the tree structures and the tree edit distance metric are mapped to
a numeric vector space and the norm distance. Although, according to its properties,

the binary branch distance is not a metric, it approximates and lower bounds the tree-edit
distance metric. Just asgram methods can be used to speed up similarity search for
strings, the distance-embedded lower bounds can be integrated into the filter-and-refine

framework to speed up similarity search by reducing the number of expensive similar-

82

ity distance computations. This section presents the new filter-and-refine algorithm for

processing similarity search on the tree-structured data by exploiting the lower bounds.

3.3.1 Basic Algorithm

Similarity search on various data usually refers to range querieg aedrest neighbor
gueries. Range queries find all objects in the database which are within a given distance
7 from a given objectk nearest neighbok¢NN) queries find thé& most similar objects

in the database which are closest in distance to a given object. Other types of search
can be composed by these two similarity queries. When searching tree-structured data,
similarity is measured by tree-edit distance.

As mentioned in Chapter 1, the similarity evaluation of large trees in massive datasets
based on tree-edit distance is a computationally expensive operation. Traditionally, the
filter-and-refine architecture is utilized to reduce real distance computation by employing
the lower bounds of the real distance [95]: In the first step (i.e., filtration), objects that
cannot qualify are filtered out. In the second step (i.e., refinement), verification of the
original complex similarity measure is necessary only for the candidates filtered through.
The objects satisfying the query predicate are reported as results. The completeness of
the results is guaranteed by the lower bound property: If the lower bound distance is
greater than the query range, it is safe to filter out the data since its real edit distance
cannot be less than that range.

The new method proposed in this chapter is to embed an easy-to-compute distance
function that is the lower bound of the actual tree edit distance into the filter-and-refine
framework. The optimistic bound used by the similarity search is based on the binary
branch vector distance of the trees. In addition to the number of occurrences of individ-
ual binary branch, the positional information of the binary branch is also important in

exploring the structure information of the trees. In the description of this chapter, the

83

two-level binary branch is used. However, the approach can be easily generalized to

g-level binary branches.

3.3.2 Optimistic Distance for Similarity Queries

The efficiency of the filter-and-refine architecture is based on the hypothesis that the
lower bound function is much quicker to evaluate than real distance. As shown in Sec-
tion 3.2.4, binary branch distance lower bounds edit distance effectively: The lower
bound function can be computed @X|7’| 4 |77|) time, which is much more succinct
than edit distance computation. So, using binary branch distance as optimistic bound
can reduce the overall processing time. Like usinggtiggam methods to solve the ap-
proximate string matching problem, not only the occurrences ofitpems, but also
their positions can be exploited to measure the similarity of the pattern and certain sub-
sequence of the strings [102, 47]. The idea is that: given two strings with distance less
thanl/, two identicalg-grams in the two strings respectively cannot be matched if their
positions differ by more thah Otherwise, more thahsymbols have to be inserted or
deleted. The size of the corresponding series edit operations must be larger than
Binary branch filtration also exhibits this property. First, a proposition is given as

follows:

Proposition3.3.1 Let the edit distance df; and7; be less tha. Each node: in the
trees is numbered by its preorder traverse position (or postorder traverse position). In
the mapping corresponding to the edit distance, the nodeT; cannot be mapped to

v € Ty if the difference of the numbers afandv is larger thari.

Proof. In the preorder traversal numbering, the numbers which are smaller than that of
u are assigned to ancestorswobr the nodes that are to the left@fwhile the ones that
are larger than that af are assigned to descendants or the nodes to the rightifice

the edit operation mapping preserves sibling order and ancestor order, if the two nodes

84

are matched, and their number difference is larger thtren there must be more than
deletions or insertions. This is contrary to the premise that the edit distance is less than
L.

For the postorder traverse position, the numbers which are smaller than thatef
assigned to descendantswodr the nodes that are to the left@fwhile the ones that are
larger than that of: are assigned to ancestors or the nodes to the rightlbthe number
of w is [more (or less) than that ef than there are more thamodes under (or above)

u or to the left (right) ofu. Similarly, there must be more thamleletions or insertions.

This is contrary to the premise that the edit distance is lessithan]

For each binary branckiB(u, uy, us), the positional structure is defined, denoted
as(BiB(u,uy,us), pre(u), post(u)), wherepre(u) andpost(u) are the preorder and
the postorder traversal positions ofin 7' respectively (resp. the preorder traverse
and inorder traverse aB(7')). Based on the positional binary branch, the mapping
M (Ty,Ts, pr) between the positional binary branchedpfandT; is defined with posi-
tional rangepr, which is any set of pairs of positional binary branchd$i (u, uy, us),

pre(u), post(u)), (BiB(v,v1,vs), pre(v), post(v))) satisfying:
1. the mapping is one-to-one;
2. BiB(u,uy,us) = BiB(v,vq,v3);
3. |pre(u) — pre(v)| < pr and|post(u) — post(v)| < pr.

Given two treed} andT, with EDist(1Ty, Tb) < [. For two positional binary branch
(BiB(u,uy,us), i1, i2) and(BiB(u, u1, us), 1}, i) in Ty andT, respectively, if the max-
imum positional differencesiax(|i; — i}, |i2 — i5]) > [, then the two binary branches
BiB(u,u1,us) in the two trees cannot be mapped to each other in the mapping leads to

the minimum number of edit operation.

85

For the example in Fig. 3.3, the numbering beside each node is the position speci-
fication of the corresponding binary branch. Then, the positional binary brancihesof
Fig. 3.3is: (BiB(a,b,€),1,8), (BiB(b,¢,b),2,3), (BiB(c,¢,d), 3,1), (BiB(d, €,€),4,2),
(BiB(b,c,e),5,6), (BiB(c,€,d),6,4), (BiB(d,¢¢€),7,5), (BiB(e,¢€,€),8,7). And
that of 7, are (BiB(a, b, €), 1,9), (Bib(b, ¢, ¢),2,5), (BiB(c, €,d), 3,1), (BiB(d, €,b),4,2),
(BiB(b,e,€),5,4), (BiB(e,¢€,¢€),6,3), (BiB(c,€,d),7,6), (BiB(d, e, e),8,7), (BiB(e,¢€,¢),9,8));
Assume the positional range: = 1. It is obvious that(BiB(c,¢,d),3,1) in T} can
only be mapped tdBiB(c,¢,d), 3,1) in Ty; While (BiB(c,¢€,d),6,4) and (BiB(c,
e,d),7,6) cannot be mapped to each othéRiB(e, ¢, ¢),8,7) in T; can be mapped to
(BiB(e,€,¢€),9,8) in Ty, but cannot be mapped {(®iB(e, ¢, €), 6, 3).

For two treed’; and75, we denote the maximum-sized mapping4s,. (11, T, pr).
The subset of it which is related to a given binary brar¢iB < I' is denoted as
M. ..(11, Ty, BiB, pr). Obviously,M, . (T\,T,, BiB,pr) is the maximum-sized map-

ping on the binary brancBk:B. Given the preorder and postorder position sequences of

BiBinT; andT; in ascending ordef)//

max

(Tl, 15, BZB,pT)‘ (Size OfM;nax(Tl, T, BiB, p?”))
can be computed in linear time. A new distance between two trees can be defined based

on|M! (T, T, BiB,pr)l:

Definition 3.3.2 (Positional Binary Branch Distance).Given two treed’ andTs;, their
binary branch vector& RV (T;) = (bi1, bia,- -+, byr|) (, wherei = 1,2) and the posi-

tional range specificatiopr, the positional binary branch distance with rapges

7|
PosBDist(Ty, T, pr) = Y (b1 + ba; — 2| My, (T1, T, j, pr))

Jj=1

Proposition3.3.3 If PosBDist(11,Ts,1) > 5 x [, thenE Dist(Ty,Ty) > .

Proof. We prove the contrapositive proposition: If the edit distance is less/ihiaen

86

PosBDist(Ty,T,,1) < 5 x [. According to the definition of positional binary branch,
PosBDist(Ty,T,,1) differs from BDist in that, inT; andT5, it does not match the
same binary branches whose position differences are larget.tRanany positional bi-

nary branch BiB(u, uy, us), pre(u), post(u)), if there is no element ia/,,,,.. (71, Tz, 1)

that corresponds to it, the nodeshould be changed by some edit operation. According

to Definition 3.3.2, the positional binary branch distance is the sum of the differences
on the binary branches incurred by the edit operations to ch@apnge 7;. And ac-
cording to Theorem 3.2.6, one edit operation changes at most 5 binary branches. Thus

PosBDist(Ty,Ty,1) <5 x L. O

Obviously the positional binary branch distance is related to the positional range
specification. Theoretically, the positional range for two tréesnd 7, can increase
from pr.i, = 0t0pro,... = |11|+|72| and the positional binary branch distance decrease
correspondingly. Givepr = pr,,.;,, the corresponding positional binary branch distance

computed has the maximum possible value:

PosBDist(Ty, Ty, prmin) = PosBDist

, computed by matching only the identical binary branches which have the same posi-
tions. Apparently,

POSBD/LStmam/5 > p’rmin

Givenpr = pr..., the corresponding positional binary branch computed has the mini-

mum possible value

PosBDist(Ty, Ts, primaz) = PosBDist,,, = BDist(Ty, Tz)

87

It is obvious that

POSBDiStmin/5 S EDZSt(Tla TQ) S PTrmaz

Then, there must be a given positional rapges.t. pr,.i, < pri < prme: Which is the
maximum positional range that satisfiBss B Dist(11, T, pr;)/5 > pr;. According to
the analysis of Proposition 3.3.B,Dist(Ty, Ty) > (pr+1), wherepr = proin, - -+ , pri.
Thus, (pr; 4+ 1) is a lower bound of edit distance. Note tHabDist(,) is the minimum
value for Pos BDist and that fopr; + 1, Pos BDist(Ty, Ty, pri + 1)/5 < (pr; + 1), s0

we have:

BDist(Ty,T)/5 < PosBDist(Ty, To,pri + 1) /5 < (pr; + 1)

Thus,pr;+1is a closer lower bound of edit distance betw&gandT; thanB Dist (T}, 13)/5.
A better optimistic boundpr,,, of the edit distance can be obtained by searching the

minimum value of the positional range; (prin < pri < prma:) satisfying

PostBDist(Ty, Ty, pri) /5 < pr;

In practice, we can reduce the search range further. Sidest (71, 72) > ||T1] — |T3||,
Prmin = ||T1] — |T»||. At the same time, it is meaningless to set fhg,,, to be larger

thanmax (|11, |T3]);

3.3.3 Similarity Search Algorithm

This section gives the algorithm for constructing vectors and a novel filter-and-refine
algorithm for similarity search utilizing the positional binary branch distance. The steps

of vector construction is shown in Algorithm 1.

88

Algorithm 1 vector construction

Input:

The data seD

Output:

The vector representations of the d&&V/,
The preorder positiongreOrder Pos,

The postorder positionsstOrder Pos,

1
2

10:
11:
12:
13:

© N R®

. initialize the inverted file indexX F'I to be empty;
: for each record” € D do
PrePosition = 0;
PostPosition =0 ;
Traverse(Root(T'), PrePosition, Post Position, IFI);
1 =0;
: for each entry in /F'I do
for each entryj in the inverted list of do
k = IFI[il[j].Td;
BRV[K|[l]. Bib « 1,
BRV k][l + +].Count «— I F1[i][j].occurrence;
Build positional sequencge-eOrder Pos|k;
Build positional sequencestOrder Pos[k];

Function: Traverse(R, & Preorder,& Postorder, [FI)

1

N ar®N

: construct binary brancBi By of R by calling
getFirstChild(R) andget NextSibling(R);
{two level binary branch
Preorder++;
insertPreOrder(Tid, BiBgr, [FI, Preorder);
for each child node; of R do

Traverse(r;, Preorder, Postorder, [FI);
Postorder++;
insert PostOrder(Tid, BiBg, [F 1, Postorder);

the vector representation. The inverted list of each binary branch records the data record

T4

it appears in the corresponding data. Firstly, each tree-structured data is recursively

In the vector construction algorithm, an extended inverted filé is utilized to build

d, the number of occurrences of this branch and the respective positions at which

traversed and théF'[is constructed by calling the functidhiraverse() to obtain the

binary branch information in Figure 3.3. In the function, the binary braBchy of the

89

current node is built by calling theet FiirstChild() andget N ext Sibling() functions of

the parser. Then, in functioimsertPreOrder(), the corresponding entry d®iBg in

IF1 is found by some hashing function. Then the component for @gidentified by

T'id) at the end of inverted list is updated: The number of occurrences is increased by
1. The preorder position of the branch is recorded. In funatigart PostOrder(), the
postorder position is recorded.

After the construction of F'I in Traverse(), the sparse vector representation of
each data are built by scannifg’'/ (in Line 7-13 of Algorithm 1): For each branch that
occurs in the data, thel of the branch and the number of its occurrences is recorded in
the vector. In addition, two arrays recording the branch positions (for preorder and pos-
torder respectively) are constructed fr@ifi/. Both are sorted according to the branches
and in ascending order. The positions are stored according to the binary lMareid
for each binary branch, the positions are stored in ascending order in the two sequence.

The procedure fok-NN search is shown in Algorithm 2. First, the quefy is
preprocessed to construct the vector representation and position sequences. The pro-
cess is similar tol'raverse() except that the inverted file need not to be built. In
line 3 of Algorithm 2, the optimistic bound of the distance between the query and each
data object is computed by calling functidfzarch L Bound(); The steps of function
SearchLBound() is shown in Algorithm 3.3.3. In the function, the optimistic bound is

searched for in the range

[dif f(size(vecr,), size(BRV[i])), max(size(vecr,), size(BRV[i]))]

. Since the search range is ordered, we use the binary search algorithm. In line 3 and
line 8 of FunctionSearch L Bound(), the distancé’osB Dist() are computed based on
|M7Inaac(>|

After the optimistic bounds of all the vectors are obtained, at line 4 of the Algo-

90

Algorithm 2 £-NN on tree-Structured data
Input: The data seD,
The vector representation of dataV/,
The preorder positionsreOrder Pos,
The postorder positionsstOrder Pos,
The queryly;
Output:
The result set of nearest neighbors @f,

1: construct vector and position arrayecr, ,
preOrder Post, andpostOrder Post, for T;;
2: for each vectoi in BRV do
3: LowerBound][i] = SearchLBound(vecr,, BRV[i],
preOrder Pos[i], postOrder Pos[i|, preOrder Posy,, postOrder Posr,),
sort theLower Bound and D into Lower Bound' and D’ in ascending order of the
lower bound distances;
initialize the max heapgd N IV, s.t. capacity(KNN)=k;
: for i From 0 To|D| do
. if (KNN.size = k)AND(Lower Bound'[i] >K N N[0].key) then
BREAK;
Retrieve the corresponding datg
10: editDist = EDIST(T;,T,);
11: if KN N.sizeis less thark then

&

12: insertT; with the keyeditDist in KNN ;

13: else

14: pop upK NN|[0];

15: insert and push dowh; with the keyedit Dist in KN N;;

16: return K NN

rithm 2, the Lower Bound array and the data tre@ are sorted in ascending order of

the optimistic bounds to ensure that vectors of high possibility in being the results are
processed before others. Second, the pruning procedure of traditional filter-and-refine
similarity search steps are adopted [95, 8, 77, 83] to reduce real distance computation.
A max heapK N N of capacityk is used to facilitate query processing. N N||.keys

are the real edit distance of the current resukSV N |[0].key has the maximum value

and it is the pessimistic bound. If the optimistic bound of the next vector is smaller
than the pessimistic bound, the d&taassociated with this vector need to be retrieved

and the real edit distance is evaluated (line 10). The real distance is used to update the

91

Function: SearchLBound(vech, BRV;, preOrder Pos;,
postOrder Pos;, preOrder Posr,, postOrder Posr,)
L proin = dif f(size(vecr,), size(BRV;));
2! Prmge = max(size(vecr,), size(BRVi))'
3: PosBDist . PosDif f(vecr,, BRV;, preOrder Pos;,
postOrder Pos;, preOrderPosT ,postOrder Post,, prmin);
if PosBDista:/5 < proi, then
Returnpr,,in;
while pro.in < prjes do
Prhatf = (PTmin + Prmaz)/2;
PosBDist = Posszf(vech, BRV;, preOrder Pos;,
postOrder Pos;, preOrderPosT , postOrder Posr,, PTrhaif);
9: if PosBDist/5 < prpqs then

P?NQ’.U."%

10: PTrmaz = PThalf — 1;
11: else
12: PTrmin = PThalf +1;

13: Returnprhalf +1;

current result as well as the pessimistic bound. This process continues till the optimistic
bound of the next vector is larger than the pessimistic bound. Then the query processing
ends. Itis impossible for the remaining data to be closer to the query than the results for
their lower bounds are already larger than the maximum distance between the query and
current results.

Range query processing is similariteNN query processing; The difference is that

there is a specified rangefor the query. According to Proposition 3.3.3,

max(PosBDist(T,T,,7)/5, propt)

should be considered as the optimistic bound in the filtering step. If it is largerrthan

the corresponding data cannot be the result and should be pruned accordingly.

92

3.3.4 Complexity Analysis

In this section, the time and space complexities analysis of the vector construction
method and optimistic bound computation method is given. In order to calculate run-
ning time complexity, each step of the algorithm is considered. Assume that the size of
the dataset, i.e., the total number of tree data object$)|isFor record!;, there argT;|

nodes in it. The vocabulary of inverted filg'/ is implemented by one hashing func-
tion. According to Algorithm 1, functiof raverse() is called recursively to traverse
each node and insert the binary branch information of the current nodéAitoEach

time the new entries are appended at the end of the inverted list. So each uptatfe of

is of constant time complexity. Thus, tlié’I construction is of linear complexity. As

we store inl F'I only the existing vocabulary of the dataset, the worst case is that all the
nodes in the datasets have got different binary branches. Thus, the size of the vocabulary

is at mostzg1 |T;|. In addition, each node in each tree has one corresponding entry in

the inverted list. In total, the space complexityIof] is aIsoO(ZLJi'1 |7;]). To build
the vector representation, the whdlE has to be scanned once. So the time and space
complexities of the whole vector construction algorithm are t@({Eﬂ IT3]).

Next, we analyze the optimistic bound computation complexity in our query pro-
cessing method. Given one quéfy, we need to compare its vector and its positional
sequence with those of each ddta As mentioned in section 3.3.3, we use the binary
search algorithm to obtain the optimistic bound betwig&n— |7, || andmax(|T;|, |1,])-

Each search process is of linear complexity{7;| + |7,|). Then the time complexity
for this step is()(z‘igll(]m +|T,]) x log(min(|T;|, |T,]))), and the space complexity is
O(SIZV T + T,).

93

3.4 Experimental Results

In this section, the performance comparison of the new filter-and-refine similarity search
algorithm which integrates binary branch distance and the lower bound of edit distance
(denoted a®3i Branch in Figure 3.9 through 3.17) against the histogram filtration meth-
ods proposed in [56] (denoted &&sto in those figures). The set of experiments were
done on synthetic datasets to show the algorithms’ sensitivity to different features of the
data. The experiments on real dataset show the algorithms’ performance on different
guery characteristics. Finally, the effect of leyebn the algorithm is discussed. All

the experiments are conducted on a workstation with Intel Pentium IV 2.4GHz CPU
and 1GB of RAM. And the the novel algorithm and the algorithms proposed in [56] are
implemented in C++.

The synthetic data generator is similar to that of [122], except that the simulation
of the website browsing behavior is not necessary, but instead the data distance need to
be controlled. The program constructs a set of trees based on specific parameters. Four
groups of parameters, the fanout of tree nodes, the size of trees, the number of labels
and the edit operations are all random variables conforming to some distributions. The
fanout and the size of the trees are sampled from normally distributed values, denoted
by N{z,z,}, wherex; andx, are the mean and standard deviation of the normal dis-
tribution. The number of labels in the dataset is denoted.bywherey is its value.
Multiple nodes in each tree can share the same label. For example, the specification
N{4,0.5}N{50,2} L8 means that in the generated trees, the fanout of nodes conforms
to normal distribution with mean 4 and variance 0.5. The total number of nodes in each
tree conforms to normal distribution with me&af and standard deviatiah And there
are eight labels in the whole dataset. We also use another pardmetée decay factor,
to explicitly specify the distribution of the edit operations. The generator consists of the

following steps: Firstly, a given number of seeds of the dataset are generated according

94

to the first three groups of parameters. At the beginning of each seed generation, the
maximum size is randomly sampled froN{50,2}. Then, the tree grows by breadth

first processing. The label of current node is sampled uniformly from the eight labels.
Next, we check whether the current size of the tree exceeds the maximum size. If so, the
process terminates. Otherwise, the number of children of current node is sampled from
N{4,0.5}. Secondly, new tree is generated from one of the seeds by changing each node
of it with the probability specified by)z. The changes are equiprobably insertion, dele-
tion, and relabeling. The data generated from the seeds is used as the seed for the next
data generation. In our experiments, we adopted 0.05 as the decay factor. Experiments
with other settings had similar results.

For the real datasets, we usBd3 L P, which consists of bibliographic information
on major computer science journals and proceedings. Itis of XML document format and
includes very bushy and shallow trees in the repository. The average depth is 2.902, and
there are 10.15 nodes on average in each tree.

In each experiment, 100 queries were randomly selected from the dataset. The re-
sults shown in this chapter were all averaged on the queries. CPU time consumption is
one performance measure. As real edit distance computation is the most costly part of
similarity search on tree-structured data, the percentage of data which are not filtered
out and for which the real distances have to be evaluated is an important measure of the

algorithm efficiency. It is defined as:

|True Positive| + |False Positive|
| Dataset|

) x 100%
Timings were based on processor time. As the source code of histogram filtration was
not available, for time consumption, we compared our filter-and-refine algorithm with
the sequential search algorithm.

For the histogram filtration algorithm, three types of histogram vectors are used: One

histogram records the distribution of heights of every node in the tree, a second records

95

the fanouts for each of the nodes, and a third records the distribution of labels used. As
mentioned in section 3.3.3, in the binary branch vector, only the non-zero dimension
is stored. Also, the positional information for binary branches is stored for each node
which equals to the size of the trees. To use equal amount of space, we set the sum of
dimension of the three type histogram vectors for one tree to be the averaged vector size

plus two averaged tree size in a given dataset.

3.4.1 Sensitivity Test

In the first set of experiments, a series of sensitivity analysis to the parameters of the
dataset is carried out. The first three arguments of the data generator were set with
different distributions. All the datasets generated included 2000 trees. Figure 3.9 to
Figure 3.13 show the relative performance of the methods for various parameter settings.
They compare the percentage of accessed data for the binary branch filtration and the
histogram filtration (shown as the bars in the figures) and the CPU time consumption of
the binary branch filtration and the sequential search (shown as the lines). The results
shown are for range queries as wellkasIN queries. Each range was set to be the 1/5 of
the average distance among the whole datasetsk#M queries, we retrieved 0.26

of the trees of the dataset.

Figure 3.9 and Figure 3.10 illustrate the performance of the two algorithms when
the fanout varied. The mean values of it in the four datasets increased from 2 to 8 with
the variance fixed to be 0.5. In order to analyze the effect of fanout, we diminished the
effect of tree size and label number. The mean values of the tree size in the four datasets
were all 50, and the standard deviation was limited to 2. Thus most trees in the datasets
should have a size range from 46 to 54. The label number for each dataset was fixed
at 8. It is shown that the binary branch filtration accessed at tm®st; of the number

of data objects accessed by the histogram filtration for the range queries and at most

96

23.08% for the k-NN queries. When fanout was 2, both filtration methods accessed the
most data. The reason is that the probability that the fanout of nodes is 0 is much higher
when the mean is set to be 2. Then the structure distance in this dataset is larger since the
variation of height is larger than other sets. When the fanout is increased to 4, the height
difference becomes much less. We also see that with increasing fanout, the histogram
filtration accessed less data for range queries. This is because degree histogram yields
better filtration power for larger fanout. However, for theNN queries, similar trends

did not appear since the mean of the real distance increased as the fanout increased, and
the search radius had to grow to retrieve theost similar data [24]. In Figure 3.10,

for the binary branch filtration, when the access rate is onlfo, the time consumption

of binary branch distance evaluation is onl92% of the CPU cost of sequential query
processing. This is consistent with the theoretical analysis that real distance consumption

is overwhelming. So the extra costs incurred by the filtering can be ignored.

Range: N{}N{50,2.0}L8D0.05
35 05
30 . _ u g 8;‘.5
g - = 194 5
S5 | (m— | 10355
§20 4 0.3 3
2] R 0.252%’
015
2 1 0.2 8
S 10 B 0.158
X 4 01 ©O
5 L
4 0.05
0 A : ‘ 0
2 4 Fanout © 8
I BiBranch % 3 Histo % N Result %
—aA— BiBranch —— Sequ

Figure 3.9: Sensitivity to Fanout Variation for Range Queries

Figure 3.11 and Figure 3.12 show the percentage of accessed data and CPU cost when

the mean size of trees varied. The results oftHéN queries are similar to that of the

97

KNN: N{}N{50,2.0}L8D0.05
8 0.5
41 0.45

7
3 /I_ 1 oa _
el 7 e
8 1035 §
o 5T 103 o
0 ' %)
o 4 - 025 =
9 3
<3 102 §
IS > 4 0.15 E
X i 101 O

1t 1 0.05

0 *—lJ 0

2 4 Fanout 6 8
I BiBranch % [Histo % —aA— BiBranch —— Sequ

Figure 3.10: Sensitivity to Fanout Variation fofNN Queries

range queries. In these experiments, the fanout of the datasets conforf¥iéd, 5} .

The label size is set as 8. The mean tree size varied from 25 to 125, and in each of the
four datasets, all the tree size values conformed to normal distribution with variance of 2.
The results show that for the range queries, the percentages of accessed data with binary
branch filtration were almost the same as the result size for various tree size values.
Histogram filtration needed to access much more data to process the same queries on
the same dataset. When the mean value of tree size was 125, the binary branch filtration
outperformed histogram filtration by more than a factor of 70 for range queries. The
reason is that with label number and fanout almost fixed, the height, degree and the label
histograms could vary little. The histogram information blurs the distance identification.
On the other hand, the increase of size led to the increase of the edit distances. So
the larger size caused worse performance of both our algorithm and histogram filtration
methods. However, binary branch filtration still outperformed histogram filtration for
various tree size. As can be seen, when the mean values of the tree size increased, the

time consumption for the computation of the real distances increased quadratically. So,

98

although the result size was almost the same, the sequential search time was too long
for the datasets with large size. Thus, our algorithm is quite efficient for the similarity

search on the large trees.

Range: N{4,0,5}N{}L8D0.05

80 ge: N{ NG} 3
} 70 | B] 25 _
< 60 o
) 2 9
- 50 o
&)
$ 40 15 =
9 3
Q
< 30 — (@]
5 ,{ =
o 20 a
> 05 (@)

10 '

0 ‘ - - 0

25 50 75 125
Tree Size
I BiBranch % == Histo % I Result %
—aA—BiBranch —m—Sequ

Figure 3.11: Sensitivity to Size of Trees for Range Queries

KNN: N{4,0.5}N{}L8D0.05

25 3
L 20| 129
‘&s‘ ©
fa) 12 §
o 15 -
2)
3 415 g
2 10 | O
5 11 2
> 5 m || (@)

A 4 05
0 . /l 0
25 50 Tree Size75 125
‘_ BiBranch % =3 Histo % —aA— BiBranch —— Sequ ‘

Figure 3.12: Sensitivity to Size of Trees foiNN Queries

Figure 3.13 and Figure 3.14 show how the algorithms performed with the number

99

of labels in the datasets increased. The parameters for the tree size and the fanout con-
formed toN{50,2.0} and N{4,0.5} respectively. The size of the label universals for

the four datasets vary as 8, 16, 32, 64. As shown in the figures, the binary branch fil-
tration algorithm always outperformed the histogram algorithm. When there were eight
labels in the dataset, the performance of histogram filtration was less effective than bi-
nary branch filtration by more than a factor of 20. In the two figures , with the increase of
the number of labels from 8 to 32, the histogram filtration improved much. The reason
is that the label histogram can perform better with a large label size. However, since the
histogram vector size was set to be comparable to the binary branch vector representa-
tion, and since the mean values of the distance increased with the label size becoming
larger, the performance began to degrade when the number of labels was larger than 32

for both the range queries akeNN queries.

Range: N{4,0.5}N{50,2.0}L{}D0.05

35 0.45
0! m = - 104
g 10355
o 25 ¢ 103 §
o)
§ 20 1 0250
e e 102 8
< O
5 10] 10153
[a
S 1 01 O
51 1 0.05
0 0

8 16 32 64
Label Number

I BiBranch % 3 Histo % I Result %
—aA—BiBranch —— Sequ

Figure 3.13: Sensitivity to Number of Labels in Trees for Range Queries

100

KNN: N{4,0.5}N{50,2.0}L{}D0.05

7 0.45

6 | —— a5 g 4 04
o] 4 035%
S 5 ‘8
e 103 8
° I — O
2 4 — 02590
83l 102 8
< @)
3 5 [] [] 0155
L 401 O

It 1 005

8 16 32 64
Label Number
I BiBranch % 2 Histo % —A— BiBranch —— Sequ ‘

Figure 3.14: Sensitivity to Number of Labels in Trees feNN Queries

3.4.2 Similarity Query Performance

The experiments described in this part were conducted to compare the performance of
the two filtration algorithms for the queries with different parameters. Figure 3.15 and
Figure 3.16 show the performance of the two algorithmskddN queries and range
queries on theDBLP data. We randomly chose 2000 data objects from the whole
DBLP dataset. 100 queries were randomly chosen from this set. The average tree size
of the the data was 10.15; And the average distance among the data was 5.031;

Figure 3.15 displays the-NN query results oD BL P data with thek varied from
5to 20. The CPU time for sequential search is also plotted in the figure. It can be seen
that the binary branch filtration accessed much less data than the histogram filtration. It
performed one to three times better than the histogram filtration. Sinde BheP data
clustered very well, the percentage of the accessed data was small and the search time of
binary branch filtration was only 1/6 of the sequential search time.

Figure 3.16 shows the results of range querie®d. P. When the range remained

less than the average distance among the data, the binary branch method clearly had

101

better filtration power than the histogram method. As the range continued to increase
to 10, the performance difference of the two methods decreased. The reason is that the
result set was almost the whole dataset. Compared to the results of the percentage of
data accessed in the previous experiments, the binary branch filtration here showed a
smaller advantage over histogram filtration. This is due to the fact tha? the P data
consists of shallow and small tree data, and the relatively small size of the binary branch

universal set blurs the distinctions among data.

KNN: DBLP
6 0.35

[|
[|
[|
[|
[|
[|
]I

Il
o Q
NN

(&

\
CPU Cost (second)

|
Il
o
-
o

% of Accessed Data
o
N

=
il
o
o
(&)

o

o LR]

5 7 10 12 K 15 17 20

‘ I BiBranch % /3 Histo % —A— BiBranch —— Sequ

Figure 3.15:k-NN Searches oW BL P

3.4.3 Pruning Power With Respect To Binary Branch Levels

Figure 3.17 shows the distribution of data according to distances between the data and
the queries oD BLP. The results here were averaged on the query number. The data
distribution on three kinds of distance are plotted: edit distance, binary branch distance
(BiBranch(2) in Figure 3.17) and histogram distance between each data and query.
Data distribution according to three and four-level binary branch distafés-@nch(3)

and BiBranch(4) in Figure 3.17) are also plotted. It can be seen that two-level binary

102

Range: DBLP
100 0.35
90 03
I 80 =
©
S 70 0.25 S
(8]
g 60 02 8
g 50 7
2 40 0.15 8
S 30 01 7
S 20 ©
10 0.05
0 0

mmm BiBranch % == Histo % mm Result %
—A—BiBranch —s—Sequ

Figure 3.16: Range Searches b3 L P

branch distance is a better lower bound of edit distance than the histogram distance.
Thus it can filter out much more data than histogram filtration when processing similar-
ity search. When the distance is less than 3, three and four-level binary branch distance
are also better than histogram distance. When the range is larger than 3, the data distri-
bution is almost the same for three and four-level binary branch distance and histogram
filtration distance. According to the definition of the multiple level binary branch, for the
shallow tree-structured data like BL P records, multiple level binary branch distance

is not an efficient lower bound for edit distance.

From the above analysis, it is obvious that the binary branch filtration is robust since
it outperforms histogram filtration on processing various types of datasets and on various
settings of the queries. It is particularly suitable for processing real datasets in spite of
their skewed nature. This may be because it encodes structure information as well as the
label information into the binary branch vector representations and positional sequences.
In contrast, histogram filtration blurs the distinctions between trees since it uses only

the histogram information, and the height, fanout and label histogram are considered

103

DBLP
100

90
80
70

. Jf X

Data Distribution %

40
2 /e
o N/ et
10

0

1 2 3 4 5 6 7 8 9 10 1" 12
Distance

—eo— Edit —=— Histo —a— BiBranch(2)

—HB—BiBranch(3) —— BiBranch(4)

Figure 3.17: Data Distribution on Distance

separately.

3.5 Conclusion

XML data is becoming ubiquitous as it can express the hierarchical dependencies among
data components and can be used to model data in many applications. Just as for other
types of data, searches based on similarity measure are in the core of many operations
for tree-structured data. However, the computational complexity of the general dissimi-
larity measure (i.e., the tree-edit distance) render the brute force methods prohibitive for
processing large trees in huge datasets.

In this chapter, an efficient method based on the binary tree representation is pro-
posed. The XML data tree is transformed into binary branch numerical vectors. This
characteristic vectorecords the structural information of the original tree, andfthe
norm distance on the vector space is proved to be the lower bound of the tree-edit dis-

tance. Moreover, the vector representation of trees can be generalized by using multiple

104

level binary branches; this enables the structural information to be encoded in differ-
ent granularity. Since the novel lower bound is much easier to obtain than the original
distance measure, it can be embedded in the filter-and-refine architecture to reduce the
computation of real edit distance between data and queries and guarantee no false neg-
atives. In addition, novel filter-and-refine similarity search algorithms are given, which
exploits the positional binary branch properties to obtain a better lower bound of edit
distance. The results of the experiments show that the new algorithm is robust to varying
dataset features and query parameters. The pruning power of the new algorithms leads

to both CPU and 1/O efficient solutions.

Chapter 4

Accelerating XML Twig Pattern
Matching

4.1 Introduction

As business and enterprizes generate and exchange XML data more often, there is an
increasing need for efficient processing of pattern queries on this type of data. Searching
for all occurrences of a twig pattern in the XML database is a core operation in XML
query processing. An XML twig query, represented as a labeled tree, is essentially a
complex selection predicate on batinuctureandcontentof the XML documents. While
value-based conditions can be efficiently evaluated with traditional indexing schemes,
answering the structural constraints is a challenging task. This chapter is mainly focused
on twig queries which are the basic component of declarative XML query languages,
such as XQuery and XPath.

The previously proposed methods [69, 20, 73, 28, 74, 55] have been proved to be
I/O optimal only to some specific query classes. The problem of the binary structure
join methods is mainly due to the query decomposition [69]. While for holistic twig
join methods, the problem is caused by the sequential scan of the element streams. At
any point, only the cursor elements and the elements stored in the stacks are visible.

However, according to these information, it is impossible to completely identify whether

105

106

the cursor elements are in a match to the whole twig pattern. Thus some “useless” partial
solutions which do not contribute to the final answers have to be output to avoid false
dismissal.

Another inspiring observation is that all the previous holistic approaches solve the
problem by producing the matching bindings &l nodes in a twig query. However,
in a practical application, this requirement is not necessary. In this thesis, query nodes
whose matches should all be retrieved are referred thstimguishedhodes, and those
used only for qualifying the structural relationships of a query are referregistential
nodes. As mentioned in Chapter 1, straightly utilizing the results of previously proposed
methods and dprojectionon those distinguished nodes matches is not efficient. Firstly,
such method outputs all matches of existential nodes and is not 1/0 optimal; Secondly,
even if only matching elements for distinguished nodes are considered, prior algorithms
still show the non-optimality by outputting many matches of distinguished nodes that do
not belong to final answers.

In this chapter, theoretical analysis of the reasons for the non-optimality of the pre-
vious methods is given. And the practical requirements for answering twig queries is
exploited to develop two novel twig matching algorithms which do not output the inter-
mediate path matching results. By utilizing a limited size of main memory, these algo-
rithms are guaranteed to be optimal for a much broader class of queries than the prior
methods. The rest of the chapter is organized as follows. In Section 4.2, the definition
of bounded and unbounded matching blocks is given. | introduce as well a set of theory
to expose the relationships between query structures and optimal holistic join algorithms
in this part. Section 4.3 and Section 4.4 present two new holistic twig join algorithms
based on theontainmentindprefixnumbering schemes respectively, together with the
correctness and the complexity discussion of them in Section 4.5. Section 4.6 presents

comprehensive experimental studies on the performance comparison between the novel

107

algorithms proposed in this chapter and the prior methods, as well as the comparison

between the two new algorithms. Section 4.7 concludes the chapter.

4.2 Theoretical Analysis

In this section, | theoretically analyze the reason for the non-optimality of the previous
holistic twig join algorithms and the possibility to design new holistic algorithms that
are optimal for a larger query class than the previous methods.

In this chapter, the pattern queries are referred tQognd the nodes in it are denoted
by ¢ (with its subscript representing thé&h node according to the preorder traversal of
it). The XML dataset are denoted by (with its subscript; represent théth XML
data). As in the previous literatures of holistic approaches, a structure named XML
element stream is associated to each query node. The stream is a posting list (or inverted
list) containing the encoding numbers of the XML elements which have the same label,
and all elements are ordered according to doeument positionsMore specifically,
for the containmennumbering scheme, all elements are sorted by the value of the pair
(Docld, LeftPos); while for theprefixnumbering scheme, all elements are sorted by
the lexicography order. There is a unique cursor for each stream. It moves in the single
direction to scan all elements once in increasing order. The element pointed by the cursor
in a stream is referred to as cursor element. The stream of queryghldenoted as

S, and the elements in it is denotedegs(or with the prime characters).

4.2.1 Matching Block

The existing holistic twig join algorithms consists of two phases: (i) in the first phase,
the partial solutions to each individual root-to-leaf path expression are output as as in-

termediate results; and (ii) in the second phase, the element paths are merged to produce

108

the final answers for the whole twig query. However, for queries with PC relationships,

many state-of-the-art algorithms cannot guarantee that each intermediate solution output
in the first phase can be merged with other partial solutions in the second phase. In other
words, many useless intermediate solutions may be produced in the first phase, as shown

in the following example.
Level

P:Purchase
S:Seller

I:Item
L:Location
N:Name
M:Manufacturer
B:Buyer
D:Date

C:Code

Figure 4.1: A sample XML tree

Example4.2.1 Consider the document in Figure 4.1 and the qu&fy/|/N. Firstly,
I, M, and N; are scanned. we cannot determine whether orfnet a query answer.
At this point, it is to know that/; has a child)M, i.e., M;. However,N; is not child of
I;. We do not know whethef, has a childV after V;. At the same timeN; may have
parentM after M; (In this example N; hasM, as its parent). Now holistic algorithms
meet a dilemma, i.e., no stream can be advanced before we determine whettieor
N is in an answer. Previous methods hastily pushingnto stack and output the path
(11, My), which may become useless intermediate path if there wer&'niot join data.

O

In the following , we formalize the observation in Example 4.2.1 into a concept,
matching block, which describe a situation wherein, in order to guarantee the optimality
of algorithm, two or more different data streams have to wait for the other to advance

elements, so neither ever does.

109

Definition 4.2.2 (Matching Block). Given an XML documenD and a query)), assume
thatg;, ¢; are two query nodes in Q. Lef,, e;. (in order) be two elements in data stream
Sq,- Similarly, lete,, eﬁh (in order) be two elements in data streai. We say that the

4-tuple< e, e, e, €, > is amatching blockfor @ on D if and only if the pairs of

/
4;

elementse,,, e,), (e, €4,) are the matching bindings to Q, bl;., e,;) and (e, e)

are not. (Figure 4.2 illustrates this concept graphically)

Tq [.-eq ..eg

] €q,in the same match with eqand
$>< eq;in the same match with eqput

; €4, isnot in the same match with €q,
Tq, [....eqj o €0] :

Figure 4.2: lllustration to Matching Block

In Example 4.2.1,< M, M,, N\, N, > is an instance of matching block since
(M, Ny), (Ms, Ny) are components of the matching tuplés M, N,) and(1,, Ms, Ny)
but (M, N;) and (M-, N,) are not. The possibility of the existencermafitching blocks
forces holistic algorithms to storg and M, in the stacks to avoid the loss of results.
However, they may not participate in the whole matches of the query. So, “useless” in-
termediate path solutions may be output and thus causes the sub-optimality. The detailed
analysis is given at Chapter 2 Section 2.4.3. The following lemma identifies a query class

where we cannot find any document with blocks.

Lemma 4.2.3. Suppose) is a twig query with only AD relationships in all structural

predicates, there exists no matching block@on any documenb.

Proof. Letg; andg; be any two query nodes . We prove this by rule of contradiction.
Assume that an instance of matching bleck,,, e/ , eqj,e;j > occurs when evaluating
@ on some documen®. Without loss of generality, let,, precede:,; according to the

preorder traverse of the data trEeThen, there can be two cases:

110

1. ¢; is an ancestor af; in Q. Obviously,e,, should be an ancestor gf . Otherwise,
eq, must end before the start ef , and thus the start ef, ande; . Thene,, and
e;j cannot satisfy AD relationship, which is contrary to the definition of matching
block. Because,, is an ancestor of, , ¢,, is also an ancestor ef,. Therefore,

< eq;, €4, > Is also a matching binding, which contradict the definition of block.

2. ¢; andg; are in the different root-to-leaf pathesdh Assume that ir), nodeg;, is
the lowest common ancestor (ablirC A4, i.e., the lowest node in the twig which
is the ancestor of botfy andg;). In these two matches, 4, binds to one element
eq, In the data, ther,, ande,, must match the path query betwegnandg;; e,
ande,, must match the path query betwegrandg;. Soe,,, ¢,, ande,, should be

in one match. This is contrary to the fact thak,,, ¢, , ¢, e;j > is a block.

Otherwise, assumg, matches to two different nodeg, ande;, (in order) in these
two matches. Similar to the analysis of Case,],should be the ancestor ef .
And e, e, ande; is in one matchg; , e, ande; is in another. Since there
are only AD edges betweep, ¢; andg,, ¢;, thene,, must also be the ancestor of
e, andey,. Soe,, , e, ande, are also in a matches which is contradict the block

. , -
assumption. The matches amaig, e,, ande; are similar.

From the above reasoning, we know that for two query ngdesdg; (i < j) with
block matches in their streams, if they are in one query path, then there should be at
least 1 PC edge between them and the two blocked matchgsrafst be in the same
data path. Ifj; is not an ancestor af;, the two matches of thelrCA query nodey;,, e,,
ande;, should be in one path. According to Lemma 4.2.3, no block can occur during
evaluating queries with only AD relationships. Thus all the holistic join algorithms can

guarantee the optimality for such queries.

111

However, blocks do not necessarily lead to the non-optimality of holistic algorithms.
Next, we define one type of blocks which can be processed optimally by caching limited

number of elements in the main memory.

Definition 4.2.4 (Bounded and Unbounded Matching Block).Given a query and

an XML documentD, assume that e, e;’, e, ;” > is an instance of matching block
forQonD. < eq ,eq ,efb,eqj (e € qi, e;’i, e;’i’ and €q;r efb, e;’_, e;’; are in order
respectively) is aembedded blockin < e, e, ¢, j]” >if <e e ,e; ,eg > is also

a matching block.

Furthermore, if the number of distinct elements that are involve in some embedded
blocks betweer,, ande;! in S, (or betweere,; ande;’ in S;;) is no more than the
maximum depth of documet, then< e, e;/, e, ;” is called abounded matching

block(B M B), otherwise it is amunbounded matching block(U M B). O

1/B/>~2\ Cra A
A
Cl/ Agm\B m+1

Document Query

Figure 4.3: Example oBM B andU M B

For example, consider the query and the documentin Figured 8., A,,, C1, Cyqq >
is a bounded block, because the number of distinct elements betlyeserd A,, that be-
long to some embedded block is no more tharnwhich is bounded by the depth of

the document. In contrast, By, B,,.1,C1, Cpvy1 > is an unbounded block. This is

112

becausen or m’ is not bounded by the depth of the document and the number of dis-
tinct elements betweeR; andB,,,,; (or betweerC; andC,,) that are involved in the

embedded blocks may be much greater than the depth of documents.

Lemma 4.2.5.U M B can only occur between query nodes which are in different query

path.

Proof. Assume that; is an ancestor query node @f, and there is a block match
€qi» €q5 Cq;» e’qj > between them. It is similar to the 1st case of Lemma 4.2.3. Elements

eq; andey, should be in one path, otherwisg ande; cannot be in the same path and

cannot in a match. Thus the lemma is proved. O

Lemma 4.2.6.Supposé) is a twig query with only AD relationships to connect branch-
ing nodes, given any document there cannot be any unbounded matching block when

evaluating@ on D.

Proof. According to Lemma 4.2.5/ M B only occurs between the query nodes which
are in the different path. Let;, andg; are two query nodes in different path @fand

let g, be their LC'A. Assume there is al M B < ey, e, , e, €, > 0On them anc,,
precedes,, in document order. Similar to the 2nd case of Lemma 44, 3nust have
two different matches,, ande;, (in order). Meanwhileg,, must be an ancestor ef, .
Since there are only AD relationship predicates unglee,, , e,, ande,, must be in one

match. Sois’ , e’ ande’ . Thus, there cannot exist any matching block at all between
qdh q; qj y g

¢, q; andg,.

Since the number of distinct elements involvedBa/ B is less than the depth of
the documents, it is reasonable to assume that holistic algorithms can cache all these

elements in the main memory. However, f61\/ B, we cannotassume that holistic

113

algorithms can cache all elements involved in the main memory. In the following section,
a query class is identified where there is oity/ B on any given document. Thus,
this query class can also be proceseptimally by holistic algorithms. The difference

betweenB M B andU M B motivates the design of new query processing algorithm.

4.2.2 Enlargement of the Optimal Query Class

Lemma 4.2.6 identifies a query class that only cauBé@$B. The analysis of this
section shows that this optimal query class can be substantially enlarged if the differ-
ence between thdistinguishedhodes and thexistentialnodes is exploited. As can be
seen in Example 4.2.1, thdistinguishednode in the query is only (not M or N).

< My, M5, N1, N, > may become an unbounded block if there are mavy &lements

being I;’s children beforeN, and many ‘N” elements beings’s children before)s.
However, this unbounded block can still be efficiently processed. Instead of outputting
the concrete patk: 7, M; >, only the information thaf,; has an appropriate chili/

(M here) need to be maintained. And ol can fulfill the matching condition and
trigger the output of ;. Thus the streams can be advanced without loss the results.

The above observation shows that the existence of unbounded block in the undis-
tinguished (i.e.existentia) data streams can be conquered by recording the matching
information in the main memory. In the rest of this section, theorems are developed to
identify the query class on which all unbounded blocks only occur in undistinguished
data streams. To achieve this purpose, the definition ofiistexguished patlandopti-

mal distinguished nodia the query tree is given as follows:

Definition 4.2.7 (Distinguished Path).Assume the query nodg in () is the distin-

guished node, the query path from roogjcconsists of the distinguished path

Definition 4.2.8 (Optimal Distinguished Node).A query nodey; in () is optimal if and
only if

114

e ¢; is the root of() or,

e the parent node,.....;) Of ¢; is optimal and all the other child nodes @f,c,..(i)

must connect to it through AD relationship

Suppose thaf) is a twig query with the distinguished nodg. ¢, is called optimal

distinguished node if it is optimal.

Theorem 4.2.9.Assume thaf) is a twig query with a single distinguished nogge If it
is an optimal distinguished node, then there iSh% B involving the streant,, on any

documentD for Q).

Proof. As shown in the Lemma 4.2.6, for the query nodes in one path, there cannot be
unbounded matching blocks between elements in their streams. Since all the descendant
guery nodes of the distinguished naglds in a path with it, we know that all the query
nodes undeg, cannot have UMBs with it. And all the nodes on the distinguished path
above it cannot hav& M B with the distinguished node. The proof of the other nodes

are given here. There are two cases for each of the branching node associated with the
distinguished path. One case is that the edge of the distinguished path under the branch-
ing node is PC relationship constrain. Another case is that the edge of the distinguished
path under the branching node is AD predicate. Figure 4.4.(a), (b) shows these two cases
respectively, where, is the branching node under study apdepresents its other child
nodes. In Figure 4.4 the dashed lines represent the elliptical paths and the dots represents

the elliptical parts of the query.

1. For the first case shown in Figure 4.4.(a), assume that there is matching block
< g5 €y Caj e;j > betweeny; andg;. We know that in these two matches, node
g, Must be matched to two nodeg ande; in order. Otherwises,, ande,; (e,
ande;j) are actually in one match, which is contrary to the definition of matching

block. And it is sure that,, ande;, are in one data path. Otherwisg, starts

115

(a) (b)

Figure 4.4: lllustration of Theorem 4.2.9

aftere,, ends and they cannot be in the same match. Because the predicates are
AD relationship between, andq., ¢,, ande,, should also match the path query
betweeny, andg;. Thuse,,, ¢,, ande,, can be in one match, which is contrary to

the assumption that e, e, ,e,., e, > is a matching block. Thus there cannot

!/
qj

beU M B for any document. The proof for the casezy;, e, eq,, €, > is similar.
2. For the second case shown in Figure 4.4.(b), the proof is similar to Lemma 4.2.5.
O

Theorem 4.2.9 shows that the optimal query class can be much larger than the pre-
vious ones. An excellent example is that when the queoy node is the singlelistin-
guishednode, the optimality of the new holistic algorithms can be guaranteed regardless

of the PC and AD combinations under it.

Theorem 4.2.10.1f) is a tree pattern query with multiple distinguished node and all of
them are optimal, then there cannotié/ B involving the matches of any distinguished

guery node.

Proof. Theorem 4.2.10 is a natural extension of Theorem 4.2.9. We only need to prove
the case between any two distinguished nag@sdg; in the query. Obviously, ifg;

andg; are in the same query path, then there i$id B between them.

116

Assume that;; andg; are at different path and theC' A of ¢; andg; is ¢,. From The-
orem 4.2.9, we know that under noglg there can exists at most one PC predicate among
the constrains connecting the two child nodegoivhich are on the two distinguished
path ofg; andg; respectively. Similar to the proof of the first case of Theorem 4.2.9, we

know that there cannot be matching block betwegemndg; . O

Figure 4.5 show some examples of the newly extended optimal queries. It should be
/N /\
B/C\D B C

E F D
(a) (b)

(c)

Figure 4.5: Optimal query nodes

noted that these theorems are not associated with any specific labeling scheme. In the
next section, two novel algorithms are developed, which are based on the two popular
labeling schemes (i.econtainmentand prefix schemes) respectively which are optimal

to query class specified by the above theorems.

Remark4.2.11 The non-optimality of holistic twig algorithms originates from the pos-

sible existence omatching blocksn data streams. When there is any block in data

117

streams;TwigStack[20] may show its non-optimality by outputting “useless” interme-
diate results. But our above analysis suggests that not all blocks undoubtedly lead to the
non-optimality for holistic algorithms. In particular, blocks can be categorized to two
types: BM B andU M B, whereinBM B can be conquered by caching limited number

of element in main memory. As an example, previous algoritimgStackList[73] ef-
ficiently handlesBM B and guarantees the optimality for queries which have PC edges
in non-branching edges. UnfortunatelyyigStackList cannot be extended to handle

U M B efficiently, because that requires to cache too many elements in the main mem-
ory. In the worst case, all elements in a document should be cached in the main memory.
However, according to the above analysis,thd B in undistinguishedlata streams can

still be efficiently processed by recording some matching information and by selectively
storing limited elements in main memory. Since previous algorithms do not differentiate

existentiainodes frondistinguishechodes, they cannot explore this improvement space.

Algorithm iTwigJoin proposed by Chen et al [28] can identify a larger optimal query
class tharTfwigStack andTwigStackList since, in essencélwigJoin solves thematch-
ing blockby separating elements to different streams. Thus, our theory is applicable to
their work for making further improvement.

In the following section, two novel algorithms are proposed to evaluate XML twig
gueries. The challenge is to implement the theoretical results to enlarge the optimal
guery class. As an evidence of theneralityof the theoretical results, two algorithms
are proposed, which are based on the poptdatainmenandprefixnumbering schemes

respectively.

118

4.3 TwigContainment

TwigContainment, inspired byTwigStack [20], is based on containment numbering
scheme. Firstly, the algorithm for queries with a single distinguished node is presented.
And then it is naturally extended to support multiplistinguishednhodes. The section

begins with the introduction of the data structures and notations.

4.3.1 Data Structure

The query twig and the streams of query nodes are modeled similarly as in the previ-
ous work of TwigStack [20]. A twig query on XML can be represented with a small
tree structure. There are four self-explaining functions of the twig nodevot(¢) and
isLeaf(q) verify whetherg is the root node or a leaf nod&.Dist(q) andis Ance Dist(q)
verify whetherg is distinguished node and whethds ancestor of the distinguished node
respectively.parent(q), children(q) andsubtree Nodes(q) retrieve the parent node of
q, the child nodes of and the nodes in the subtree rooted atspectively. And func-
tions PC(¢;, q;) (AD(¢;,q;,)) is used to check whethey is the parent (resp. ancestor)
node ofg;.

There is a data streaff) associated with each query nagén which all the elements
can satisfy the predicate specified fay The record of each element), consists of
its positional representatiqiDocld, Le ft Pos : Right Pos, Level), whereDocld is the
datarecord idlLeft Pos andRight Pos are its containment numbers alladel records on
which level the element is in the data. We ugéo refer to these elements.Next(S,)
denotes the cursor element&f. And nextL(S,) can retrieve thée ft Pos value of the
cursor element. The stream can be advanced to the next elentgwith the procedure

advance(S,). Each stream is supplemented by an virtual ending element represented by

1The description of the algorithm ignoii@ocId firstly. However, it is easy to extend it to deal with
Docld.

119

(00, 00,00). And the end of the stream can be checked by functiof(S,). Assume
¢. is a child node of;, Rel,(e,, ¢,.) check if elements, ande,, satisfy the relationship
between; andgq.. If it is AD predicate between them, this is implemented by checking
whethere,.Le ft Pos < e, .LeftPos ande,.RightPos > e, .RightPos. For the PC
relationship, other than the above requiremeptl.evel should equal t@, .Level — 1
in order that they satisfy PC relationship.

The stack structure ifwigStack is extended in the algorithm here to present match-
ing results. In particular, there is an extended stéi¢k associated with each query node
¢. Each item in stacks consists of a 4-tuteumn(e,), bitVector, outputList, ptr P).
num(e,) is the encoding number of the corresponding elemagfitom S,. The length
of bitVector equals tdchildren(q)| + 1. The first|children(q)| bits are matching bits.
If the element in an stack item has the correct extension of the childqotien its cor-
responding bit is “1”. Otherwise, it is reset. The last bit is a flag to identify whether the
item of e, is referred to by atr P in child ¢.’s stack ifg. is in distinguished path. And
output List contains the elements which match the distinguished nodes that possibly be-
come the final query answers:t P points to an item inSy,,..n¢(q) With whiche, satisfy
the relationship constrains betwegandparent(q). There are several functions on the
stacks.empty(ES,), pop(ES,), push(ES,, e,,0, NIL), topL(ES,), andtopR(ES,).
The last two operations return theftPos and Right Pos attribute of the element in
top item. push(ES,, e,,0, NIL) is used to push the new item into the stack, with
0, andN L as the value of the first three fields. Meanwhile; P is pointed to the top
of ESparent(q)- Although the items of the stack can only be pushed into or popped up
from the top, all the items can be visited during processing, which is implemented by the
operations on the items of the extended st&¢k/ ec(ES,, Itm), output L(ES,, Itm),
elem(ES,, Itm) andprt(ES,, Itm) are used to retrieve the four fields of thenth item

in ES, respectivelybit(ES,, q., [tm) retrieve they,. bit of the Itmth item in stackt'S,,.

120

bit(E Sy, q., Itm).set is to change the bit from “0” to “1”.

Given these differences of the stack definition, it is still used to record the partial
results of the query. Similar to the stacksTwigStack method, the elements in the
extended stack from the bottom to the top satisfy the AD relationship. At every point
during the computing, for each item in sta€l,,, (i) if all matching bits inbitV ector are
“1”, then its element, is guaranteed to match the subtree query rooted vifhhere-
fore, if ¢ is the root, ther, is guaranteed to be the root of a match to the whole query,
and (i) Ve € outputList is the query answer if and only #, match the whole twig
query. Therefore, whether an elementc outputList is a query answer can laecu-
rately described by the correspondingtV ector. For ease of description, the element
e, Which matches to one of the other query nodes and satisfy the pattern betaeén
¢’ with ¢, is defined as theorrelative nodeof e,, denoted asorr(e,, ¢'). corr(e,, q') is

not one and only.

A4(1,10,1)

(232) B, Ay (49.2)
19y Bl 2\, A
(563 B, Cu783) g o

Figure 4.6: Stack Encoding of Query Results

Example4.3.1 Figure 4.6 illustrates the stack configuration to notan a twig query
for a sample document. There are two items, corresponding to elerteatsl A, in the
stackS 4. SinceA; has one childB; and no child element to mateh, bitV ector="10".

In contrast, in the item for,, matching bits obitVector = “11”, becaused, has two
child B, andC}, which satisfy the PC relationships in the query. ConsequeBtlys

the query answer. On the contraf, is not an answer.

121

Algorithm 3 TwigContainment
Input: @ is a query twig pattern with distinguished noge
1: while =(end(root(Q))) do
Qact = getMinSource(root(Q));
cleanStack(root(Q), nextL(S,,.,));
if is Root(qact) OF mempty(E Sparent(qae:)) theN
FLAG = moveStreamT oStack(qact, Sgpers ESquer)
advance(Sy);
if (isLeaf(qaee) aNdFLAG = true) then
update Bit(qqe);
Function: end(q)
returnvg, € subtreeNodes(q) : isLeaf(q;) = eof(Sy,);
Function get MinSource(q)
returng; € subtreeNodes(q) S.t.nextL(S,,) is minimal;

i

© N akR W

4.3.2 Algorithm

The main procedure diwigContainment is depicted in Algorithm 3. Unlik@wigStack,

this method operates in one phases. And merge-join part of different distinguished
nodes’ matches does not need a separate phase. The key idea is to repeatedly insert
elements that are possible query answers intwtligut List of the extended stack of
thedistinguishedhode and propagate these elements up totteut List of the query

root; the whole query is matched bottom up. Thus, the process is reverse to that of
TwigStack. Firstly, I will give the processing algorithm for queries with 1 distinguished
node. The extension to multiple distinguished nodes will be introduced later.

In Algorithm 3, the elements in the data streams of each query node are iterated till
all the streams reach the ends. Line 2 identifies the stream containing the next node to
be processed. That is the one whose cursor element is with the most/styiahtos
attribute. This guarantee that before an elemepts pushed into its stack’'S,, the
elementsorr(ey, parent(q)) are already ISy, eni(q)-

In Line 3, cleanStack() makes sure that before a element is pushed into its stack, all

the elements in the stacks which end before it are recursively popped up from the stacks.

122

ProcedurecleanStack(q, nextL)

1: for Vq. € children(q) do
2: cleanStack(q.,nextL);

3: while topR(ES,) < nextL do
4. if isRoot(q) then
5: if all matching bits obitVec(ES,, top) are “1” then
6: outputoutput L(ES,, top);
7: else
8: Itm = nextMatch(q);
9: Appendoutput L(ES,, Itm) with output L(ES,, top);
10: elseifisDist(q) then
11: if isLeaf(q) or all matching bits obitVec(ES,, top) are “1” then
12: Appendoutput L(ESparent(q), tr(E Sy, top)) with elem(E Sy, top) ;
13: elseifisAnceDist(q) then
14: if all matching bits obitVec(ES,, top) are “1" then
15: Appendoutput L(E Sparent(q), Pt (ESq, top)) With output L(ES,, top) ;
16: else
17: Itm = nextMatch(ES,);
18: Appendoutput L(E'S,, Itm) with output L(ES,, top);
19: if g isin distinguished patthen
20: bit(E Sparent(q), 0, ptr(LSy, top)).reset,

21: pop(ES,);

ProcedurenextMatch(q)

1: if AD not exists between andg, then

2 returno;

3: for Itm, from top to bottondo

4 if bit(ES,, q., Itmy) is “1”, with ¢. underq in distinguished patthen
5 break;

6: return/tmy;

The details are shown in ProcedufeanStack(). It has 3 functionalities. Firstly, for

those elements which have the descendant extension, but matches to existential nodes,
it only maintains their matching information and pops out them from stack. Secondly,
for those elements which have descendant extension and match to distinguished node,
it merges the matches of the distinguished nodes in theéput List to that of the cor-
relative element in the parent stack, and then pops them out from the stack. Thirdly, it

is used to popped out and skip the elements which do not have descendant extension.

123

ProcedureupdateBit(q)
1: if isLeaf(q) then

2. if PC(parent(q),q) then

3: bit(E Sparent(q)s 4, top).set;

4: else

5: for Vitm € ESparent(q) dO

6: bit(E Sparent(q): ¢ 1tm).set;

7. updataBit(parent(q));

8: else

90 FLAG =0;

10: for Vitm, € ES, do

11: if all matchhing bit$itVec(ES,, [tm,) arel “1” then
12: for Itms from ptr(ES,, Itm,) down to Odo
13: if bit(ESparent(q), ¢, Itms) is “0” then
14: bit(ESparent(q): 4> 1tms).set,

15: else

16: FLAG =1;

17: break;

18: if PC(parent(q),q) then

19: break;

20: if FLAG == 1then

21: FLAG =0

22: break;

23: if =isRoot(q) then
24: updateBit(parent(q));

Details can be seen in the analysis of Subsection 4.3.3.

ProcedureupdateBit(q) is called due to the push-into of any new element to the
leaf stacks. Since the algorithm makes sure that when an element is pushed into the
stack, its ancestors which match the query path from root to its corresponding query
node are already in the stacks, the pushing of the element into leaf stack means that
there must be a match to a path pattern query. Then the matching information for the
correlative elements in the ancestor stacks need to be updated. Actually, it is propagated
to the correlative elements from the stacks of leaf nodes to that of the root. However, for
the inner query node, only if it has the exact descendant extension (This is achieved by

checking theitVector of its own on Line 11.), its matching bit of its ancestors in the

124

Function moveStreamT oStack(q, Sy, ES,)

1: if PC(parent(q),q) then
2: if PCy(elem(E Sparent(q), top), Next(S,)) then
push(ES,, Next(S,),0, NIL);
bit(ESparent(q); 0, top).set;
returntrue;
else
return false;
else
push(ES,, Next(S,;),0, NIL);
10: bit(ESparent(q), 0, top).set,
11: returntrue;

© N2 AW

parent stack can be set as “1”. Each tim& @ (parent(q), ¢), matching information of
at most 1 element in parent stack need to be updatetiDIlfparent(q), ¢), the matching
information of the elements which correlate with the leaf element newly pushed into
the stack, but not with the leaf element proceeding it need to be updated. While the
last line of ProcedureleanStack() makes sure that when the possibleput List is
propagated, the matching information for the elements in distinguished path stacks are
reset and prepared to record the future matching information of the path pattern.

Line 4, 5 (FunctionnoveStreamT oStack()) of TwigContainment makes sure that
only e, which satisfy the path pattern query from rootgtoan be pushed into the stack.
Line 5 push the element from the stream to the stack. After a element is pushed into the
extended stack, the stream can be advanced. In the procedue&treamToStack(),
we push the next elements) into £S,, and set the value &ftV ector as all “0”. This
is due to the fact that whenis iterated, its possible correlative elements which matches
to the nodes under have not been accessed yet. Note that the valwet Giector and
output List may be changed later on in Procedugelate Bit(q) andcleanStack() due

to the appearance of new matching elements.

125

4.3.3 Analysis ofTwigContainment

In this section, the proof of the correctness and completeness of the algdwilg@on-

tainment is given.
Lemma 4.3.2. Consider the following fragment in ProcedurieanStack():

for Vq. € children(q) do
cleanStack(q.);
whiletopR(ES,) < nextL do

pop(ES,)

If in Algorithm 3, ¢, = ¢ ande, is cursor element of,, beforee, is pushed into the

extended stack'S,, the following properties hold:

(1) Allthe elements in stacks (from bottom to the top) are guaranteed to lie on a root-

to-leaf path in the XML database.

(2) All the elements popped out from the ancestors stacksahnot be in the same

solution withe, and the elements following in the streams.

(3) All the elements popped out from the descendant stacksanifnot be in the same

solution withe, and the elements following in the streams.

Proof. °

(1) According to Algorithm 3, the elements in streams are processed according to pre-
order. ProceduréeanStack() is called recursively in preorder of the query nodes.
From above fragment, we know that all the elements remaining in the stacks are
those which end after, starts. Since elements in XML documents are nested.

The remaining elements must end afigends. Since elements start aftgistarts

126

haven not be accessed yet. Thus, after calliagn.Stack(root(Q)), nextL(S,,.,)).
all the elements in the stacks satisfies: Le ft Pos < e,.Le ft Pos < e,.Right Pos <

e.RightPos, 1.e. they are in the same path with

(2) Let ¢” be any ancestor af in Q ande, is popped out before, is pushed into
ES,. Theney.RightPos < eq.LeftPos. Assuming that,, is in the same so-
lution with e, or the element following,, thene, . Right Pos > e,.Right Pos >

eq.Le ft Pos, which is contradictory to the assumption.

(3) Letq” be any descendant gfin ande,~ is popped out before, is pushed into
ES,. Theney.RightPos < eq.LeftPos. Assuming that,, is in the same so-
lution with e, or the element following,,, thene,.. Right Pos > e, ».Le ftPos >
eq.Le ft Pos, which is contradictory to the assumption.

]

Lemma 4.3.3. Algorithm 3 makes sure that all and only the elemepis S, that satisfy

the predicates betweefot(Q)) andq are pushed into the stacks.

Proof. Firstly, it is necessary to prove that all the elements that satisfy the path pattern
are pushed into the stacks. This can be proved by induction on the leyelFalr the
elements inS,.. (), they are pushed into the stacks directly according to Line 5 of Al-
gorithm 3. The property holds. Suppose that the property holds for any node of level
i in query. Letq be on thei + 1th level and lety’ be its parent node. Assume thgt

be an element from the stream $f, which satisfies the query predicate from rootto
There must be an elemen} from S, which on the path from root element g and
match the predicates fromvot(()) to ¢’. Obviouslye, is processed before,. Since

¢’ is of leveli, e, must be pushed int&'S, according to inductive hypothesis. Obvi-
ously,e,.LeftPos < e,.LeftPos < eq.RightPos < ey.RightPos; Any elements,

accessed betweefy ande, satisfiese,..LeftPos < e,.LeftPos. Thuse, cannot be

127

popped out fromE'S, beforee, is pushed into stack'S,. According to Line 4¢, can
be pushed intd’S,,.

Next, we need to prove that éf, does not satisfy the predicates frowvt(()) to g,
it cannot be pushed into the stack. According to Algorithne3can be pushed in to
ES, if and only if £S),,eni(q) IS NOt empty after callingleanStack(), ande,, together
With top(E Sparent(q)), Satisfies the predicate betweemandparent(q). Obviously, for
any element; remains in stackS; after this function call, its associated element in
the ES,qreni(s) Should remain in the stack as well. Thus,ffS,,,n () iS NOt empty,
the element in stacks must comprise the path pattern matehyfQf'S,,,,ent(q)). And if
eq andtop(ESyarent(q)) Satisfy the predicate betwegrandparent(q), there must be a

pattern match foe, in the stacks. This is contradictory to the assumption. O

According to Lemma 4.3.3, if an element is pushed into the extended stack of one
of the leaf nodes, the element can match the path pattern query from the root to the leaf

node.
Lemma 4.3.4. Procedureupdate Bit() makes sure that:

(1) If all matching bits ofbitVec(ES,, Itm) are “1” in the stack of an inner node,

then the elementem(ES,, Itm) is in a match to the sub-query rootedt

(2) Lete, be an element in the stadks,. If it has a match to the sub-query rooted at

q, the correspondingitV ector will be set as all “1” before it is popped out.
Proof. °

(1) (Induction on the height af.) The height of a leaf node is defined as 0; And the
height of a internal node is defined as the largest height of its children plus 1. For
the elements pushed into the leaf stack, although the assodiating:tor are not

updated, they surely match the sub-query rooted at the leaf node. Suppose that

128

for the query nodes of heiglit the property is verified. For the nodeof height
i + 1, assume that, is in £'S, and has all “1"bitV ector matching information.
Fromupdate Bit() we know thatvg. € chilren(q), there must exists a elemen
which has all “1"bitVector in ES,, and satisfies the predicate betweeandg..
¢.'s height is at most, thus,e,, is in a match to the sub-query rootedgat And
according toupdateBit(), e, ande,, (Vg. € children(q)) satisfy the predicate

between; andg.. Thuse, is in a match to the sub-query rootedzat

(2) According to the first property of Lemma 4.3¢2 satisfies predicates fronaot (@)
to ¢. Assumey’ is a descendant node @fande, = corr(e,, ¢'). Thus,e, must
satisfy the predicates fromvot(Q)) to ¢’ and be pushed into the stack. We prove
by induction on the height of the query node. Assums of height 1. Once,,
is pushed into the stack, thedate Bit() is called and the corresponding bitf
will be set. Since all its descendant matches starts before it ends, the matching bits
of e,’s bitVector are set to be all “1” before it is popped. Assume the nodes of
height: verify this property. Now let; is of heighti 4+ 1. Then all thebitVector
of the child node matches ef should be set all “1” before popped out according
to hypothesis. According tapdate Bit(), once they are set as all “1”, through
updateBit(parent(q)), the bit ofq is set. Thus the property is verified gn

[

According to the second property of Lemma 4.3.2, if a elenagipopped out with
its correspondingitV ector not being all “1”, then it cannot be in a match to the sub-
query rooted ag. We know that the elements §).,,..(q) are pushed intd'S,,..(q); Then
according to the two properties of Lemma 4.3.4, for any elemgpt), if and only if it
is in a match ofY, its corresponding matching bits bV ector can be set to be all “1”
before it is popped out fromv'S,,.«(q). However, one element in thes,. ..,) may have

multiple solution matches.

129

Lemma 4.3.5. The procedureleanStack() can make sure that

(1) each solutiore,, to the distinguished nodg, can be merged into theutput List
of the correlative elememt,,, cni(q,) (if any) in theES,qycni(q,) DefOree,arent(q,) 1S

popped out;

(2) the outputList containing each solutior,, will not be dropped during query

evaluation;
(3) and the elements,, in the streamS,, which is not the solution cannot be output.
Proof. e

(1) Lete,, be a result. Them,, must match the predicates betweent(()) andg,
(i.e. e,, has ancestor extension). According to Lemma 4.3.2, it must be pushed
into the stackES,, when it is iterated by the cursor. At the same timg,is in
a partial solution of the sub-query rootedqat(i.e., it has descendant extension).
According to Lemma 4.3.4, its matching bitstitV ector must be set as all “1”
after all its descendant extensions are iterated. Since procedureStack() are
called in recursive ordet,, can be propagated to thetput List of the correlative

element inESy,,ni(q,) DEfOre it is popped out.

(2) For this item, we need to prove that each solutignwill be successfully prop-
agated from the stack of th¢éh ancestor, denoted d@sS,,, to that of thei + 1th
ancestor,ElS,, ., (exceptroot(Q)) during the evaluation and can be output suc-
cessfully fromES, . (q). According to ProcedureleanStack() and Procedure
nextMatch(), e,, can be propagated if and only if there is a correlative elemgnt
which has descendant extensiorty,,. And e, is propagated in theutputList

of the correlative element ef,. We have two cases:

130

(a) There is only PC relationship betweenandq,; Thus, the partial solution
between them associatirg, is one and only, i.e. the match traced by the
parent pointer in each stack. Thug, can be successfully propagated from

ES, 10 ES,

i1
(b) There exists AD relationship betweenandgy; If e,, is dropped, the reason
is that, at certain ancestor level,(0 < j < i), e, IS propagated in the
outputList of e, (the lowest ancestor with descendant extension) whose
correlative element,, in ES,, has no descendant extension.In procedure
nextMatch(), elemente,, is merged into theutput List of e; which also
has a match to the whole path pattern contairindf AD constrain is under
¢; in the path leading tq,, obviously,e;j is also correlative te,,. Otherwise,
the path pattern betweepnandg, is shown in Figure 4.7.(a) wherg is the
first query node followed by the AD constrain undgrk may equal to j).
The dashed line and dotted line represent the part whose constrain can be
ignored. The correlative element af (e,,) is different to that ofe;j (e,.)
in £S,,. The match is shown in Figure 4.7.b. Singefollowed by AD
constrain in the path,, is also correlative te,,. So doeg; . Because,, is
in a whole match, there must be a element which is correlativg, tand has
descendant extension #iS,,. So,e,, can be successfully propagated from

ES, to ES,

i+1
Inductively, all the solutions can be output successfully.

(3) According to Lemma 4.3.3, i,,, e,, Which has no ancestor extension cannot be
pushed into the stack. According to the first itesy), which has no descendant
extension cannot be propagated into the parent stagl.ofAnd according to

the second item¢,, which does not satisfy other pattern constrains cannot be

131

=0 —0

93

=0--

Figure 4.7: Path Pattern Match

propagated from théh ancestor stack to thet 1th ancestor stack.

]

The ProcedureleanStack() outputs theoutputList of the elements in the stack
ES,o01() before they are popped out if théiitV ector are all “1”. From Lemma 4.3.5,
we can be sure that all the different matches to the distinguishedqyaate correctly

output. So we have the following Theorem:

Theorem 4.3.6.Given a twig query and an XML databas®, Algorithm TwigCon-

tainment correctly returns all the answers fa@p on D.

It is noted that the distinguished nodes are propagated only to the lowest correla-
tive elements in the parent stack. By doing this, the memory space and the answers
which appear in multiple solution matches will not be output redundantly (one of the
main problem offwigStack). The correctness and the completeness of the algorithm is
proved.

If the final answers are required be presented in sorted document order, in Procedure
CleanStack(), when any element is popped from the stack of the root, we cannot di-

rectly output all elements in itsutput List (Line 25). Instead, itsutput List need to be

132

merged into that of the next element in root stack. In general, the output of elements is
blocked until all answers prior to them in the sort order can be computed.

When there are multiple distinguished nodes in the queries, algofithgContain-
ment should create the corresponding put List for each of them. We know that each
output List associates with a element, then the merge join part are processed when the
element is popped out and thetputList is propergated to the element in the parent
stack. However, a matches to one distinguished node can be joined with matches of
other distinguished node at different level. For example, in Figure 4.6, if the query is
A[//Cx]/Bx, then both(C4, B,) and(C4, Bs) are solutions. Then for each branching
nodeq which has more than one outgoing distinguished paths, whemtet List of
e, IS propogated, it should be merged to that of the parent stack element’s as well as
to that of the element’s which is undey in £S, if the corresponding constrain is AD
relationship. It is important to note the differences betw@egigStack andTwigCong-
tainment. TwigStack may output many path solutions that do not contribute to any final
answers. HoweveiwigContainment guarantees that each output is one of the final

answers.

Example 2. We use the XML document and query in Figure 4.6 again to illustrate how to
usebitVector to avoid outputting “useless” elements. Table 1. traces the entire match-
ing process by showing thigtV ector updates and the corresponding stack operations.
Note that for this example, the previous algorithms (&wggStack and TwigStackList)

will output a useless path solutiod(, B;), but TwigContainment only output one

useful solutionB,. O

133

Step| cleanStack() | moveStreamToStack() | updateBit()
1 push(ESy4, A1,0,NIL)
2 push(ESg, B1,0,NIL) | (A, “10", NIL)
3 | (AL, “10", B))

pop(ESg) push(ESy4, A2,0, NIL)

4 push(ESp, By,0, NIL) | (Ag, “10", NIL)
5 (Ag, “10”, BQ)

pop(ESg) push(ESc,C1,0, NIL) | (A, “11”, By)
6 pop(ESc)

outputB;

pop(ES)

pop(ESa)

Table 4.1: Matching Process for Example 2

4.4 TwigPrefix

In this section, the second novel algorithmyigPrefix is presented, which is inspired

by theextended Dewegncoding method proposed in [74xtended Deweig a prefix
numbering scheme and encodes the element name under a specific parent context by
using modulo function. A finite state transducer (FST) can be defined according to the
XML schemato decode the encoding numbers along the path from the root to an element.
Thus, from theextended Dewagumbering of an element alone, the names of the all the
elements in the path from the root to this element can be derived. The details of this
element decoding method and the FST is introduced in Section 2.4.3. In the following
section, the additional data structures and notations us@digPrefix is introduced

first.

4.4.1 Data Structure

For each leaf node; in the twig query, there is a associating streﬁgp The stream
containsextended Deweayumbers of elements that match the node typ&he element

numbers in the stream are sorted in #sEendingexicographical order (which is ac-

134

tually consistent with the pre-order traverse of the elements). The fur‘u@éim(gql)
returns theextended Deweyumber of the cursor element in the streain Operation
advance(S,,) skips the pointers to the next elements. For two elememasde, 2 (p is

an ancestor of), ProcedureRel,(e,, e,) verifies whether they matches the path pattern
betweerp andg.

Similarly, a twig query on XML can be represented with a small tree strucfure
Given a query node, functions LBA(q) and HBD(q) return thelowest branching
ancestomode ofq and thehighest branching descendawitq respectively if they exists
(if ¢ is a branching nodeyitself is returned). For example, in Figure 4163 A(C) = A.

In addition, the self-explaining functioris Branch(q) andisTopBranch(q) is used to
determine whethey is a branching node and the highest branching node accordingly. If
q is a branching node, Functiaibl(q) returns the set of all branching nodgsand leaf
nodesy, underg s.t. there is no branching node betweesndg,, and betweer andg;.
FunctionisDist(q) andisAnceDist(q) check whethey is the distinguished node or is
an ancestor of the distinguished node.

TwigPrefix keeps a extended stack structllfr:éqb for each branching nodg during
execution too. Each item in stacks consists of a 4-tuplen (e,), bitVector, output List, ptr P),
which has the similar property as that in stacksTeigContainment. However, the
num() is theextended Dewegumber, the size dfitVector is |dbl(q)| now. (With the
dewey encoding method, the flag bit is not necessary.) And it should be noted that the
ptr P of each item inﬁgq is pointed to its lowest correlative element in the stack of the
LBA(q) (if existing). Functionszlem(b::qq, Itm), bitVec(Equ, Itm), outputL(qu, Itm),
ptr(ﬁéq,[tm) and bz’t(b?@q,qi,ftm) (¢; € dbl(q)) are defined similarly as those of
TwigContainment. The maximal number of elements in each stack is no more than the

max depth of the document. Furthermore, since dmmgnchingnodes have extended

Here,e,, ande, represent both the elements and the numbers of them

135

Algorithm 4 TwigPrefix
Input: @ is a twig pattern query with distinguished nagle
1: for Vg €) do
isLeaf(q) = locateMatchedElem(q);
. while —(end(root(Q))) do
Gact = getMinSource(root(Q));
cleanStack(root(Q), next(ng)) ;
moveStramToStack(qact);
advance(gqm)i
update Bit(qae);
. locateMatched Elem(qaet);
Procedure: locate M atched Elem/(q)
{ Assume that the prefix of elememtzt(S,) isny /ny/ - - - /ny, }
while =((ny/ns/ - - - /n; match path pattern querygfand(n, matches)) do
advance(S,);

© XN QTR WD

stack structures ifwigPrefix, aresponsible nodassociated with the the distinguished

nodegq,, denoted asesp(q,) is defined as follows.

Definition 4.4.1 (Responsible Node)For adistinguishednodeg, in query (@, its re-

sponsible nodés defined as:

HBD(qq) if HBD(q,) exists;
resp(qq) =
LBA(qy) otherwise, ifLBA(q,) exists.

4.4.2 Algorithm

The main algorithm offwigPrefix is shown in Algorithm 4 and all stack operations are
shown in FunctioncleanStack(,) andupdateBit(). The main idea offwigPrefix is
also to uséitVector to precisely record the matching results and wg&ut List to
contain possibly matching elements. The procedit@ge M atchElem(), is similar to

that in algorithmT JFast[74].

136

ProcedurecleanStack(q,)

1

N

10:
11:
12:

13:

14:
15:

16:
17:
18:
19:
20:
21:
22:
23:

24.
25:
26:

. for Vq. € dbl(q) do
if isBranch(q.) then
cleanStack(q,, e);
while elem(ﬁgq, top) is not an ancestor efdo
if isTopBranch(q) then
if matching bits ofn'tVec(E’:S”q, top) are all “1” then
OutputoutputL(E\:S’q, top);
else
Itm = nextMatch(q);
AppendoutputL(E:gq, Itm) with outputL(ﬁgq, top);
else ifg = resp(Q) and matching bits dfitVec(q, top) are all “1” then
if ¢ = HBD(qq) then
Append outputL(EtS’LBA(q),ptr(E\:S”q)) with e,
elem(ﬁgq, top) andelem(ﬁgLBA(q),ptr(ﬁgq));
else . .
Append output L(ESppa), ptr(ES,)) with e,
elem(ﬁgq, top) ande;
break;
else ifisAnceDist(q) then
if matching bits obitVec(q, top) are all “1” then
AppendoutputL(E’.vS’LBA(q),ptr(ETS’q, top)) with OutputL(ETS’q, top) ;
break;
else
Itm = nextMatch(q)
AppendoutputL(ETSq, Itm) with outputL(Equ, top);
pop(ESy);
if isTopBranch(q) then
clear “1 ” bit for items in stacks of distinguished path;

correlated with

d

correlated with

d

ProcedurenextMatch(q)

1

2:

A w

. for Itm; from top to bottondo
if elem(ES,, q., [tm,) satisfy pattern betweepandg., with ¢. € dbl(q) in dis-
tinguished pathhen
break;
returnftmy;

The Procedurend() of Algorithm 4 is the same as that in Algorithm 3.

137

ProcedureupdateBit(q)
1: if isLeaf(q) then
2: bit(ﬁgLBA(q), q, [tmy).set;
3: else
4: for VIitm, € l%‘q do
5 if bitVec(l@Sq, Itm,) are all “1” then
6: for VIitms € ET?LBA((]) do
7 if Reld(elem(EvSLBA(q), Itms), elem(ﬁgq, Itm,)) then
8: bit(E\:S'LBA(q), q, [tms).set;
9: if =isTopBranch(q) then
10: updateBit(LBA(q));

Procedure moveStreamT oStack(q)

1: for ¢; in path fromroot(Q) to ¢ do
2: if isBranch(g;) then N

3 for all elemente matchingg; in theprefiz(next(S,)) do
4 if e is descendant oflem(ES,,, top) then
5 push(ES,,, e, 0, NIL);

4.4.3 Analysis ofTwigPrefix

Lemma 4.4.2. ProcedurecleanStack() makes sure that When an elemepts pushed

into the extended stadﬁ?q, the following properties hold:

(1) All the elements in one stack (from bottom to the top) are guaranteed to lie on a

root-to-leaf path in the XML database.

(2) All and only the elements, in §q that satisfy the predicates betweemwt(()) and

g are pushed into the stacks.

(3) All the elements popped out from the ancestor branching node stacks cannot be in

the same solution with, and the elements following, in the streams.

(4) All the elements popped out from the descendant stacks cannot be in the same

solution withe, and the elements following in the streams.

138

Lemma 4.4.3. Procedureupdate Bit() makes sure that:

(1) If matching bits oﬂn'tVec(Equ, Itm) are all “1” in the stack of a inner nodey,

then the elemem‘lem(Equ, Itm) is in a match to the sub-query rootedat

(2) Lete, be an element in the staﬁsq. If it has a match to the sub-query rooted at

q, the correspondingitV ector will be set as all “1” before it is popped out.

Theorem 4.4.4.Given a twig query) and an XML databas®, Algorithm TwigPrefix

correctly returns all the answers f@p on D.

The proof of Lemma 4.4.2 and Lemma 4.4.3 and Theorem 4.4.4 are similar to that
of TwigContainment. For the queries with more than 1 distinguished node, the output

methods are similar to that divigContainment as well.

4.5 Time and Space Analysis

While the correctness and completeness hold for any given query, the I/O optimality
holds only for the case where alistinguishechodes are optimal in Definition 4.2.8. In-
tuitively, this can be explained that when distinguishedhodes are optimal nodes, there
are onlyunbounded matching blocksee Theorem 4.2.9). ThuByigContainment and
TwigPrefix are able to cache limited number of elementsqditput Lists in the main
memory and guarantee that each output elements in the two ProcettuneStack()

for TwigContainment and TwigPrefix respectively belong to the final query solutions.

Theorem 4.5.1.Consider an XML databas® and a twig query)) where all distin-
guished nodes are optimal nodes. The worst case I/0 complexityig€ontainment
and TwigPrefix is linear in the sum of the sizes of input and final query solution lists.

The worst-case space complexity is linear in the maximal depth in

139

Proof. According to the theoretical analysis of the algorithm, only the matches of the
distinguished nodes which contribute to the final answers are output by AlgoTitingn
Containment andTwigPrefix. Thus, the worst case 1/0 complexity is linear in the sum
of the sizes of input and final query solution lists.

The key factor of the proof of the space complexity is to show that when all dis-
tinguished nodes are optimal nodes, given any st&&s(or E:S‘q), the number of the
elements in itsoutput Lists are no more than the max depth of the XML document.
It is shown that AlgorithmTwigContainment and TwigPrefix only store the matches
to the distinguished node in theitputList. According to Theorem 4.2.9 and Theo-
rem 4.2.10, there is n& M B on the stream of optimal distinguished nodes. And ac-
cording to Lemma 4.3.5, one match of the distinguished node appears in at most one
output List in any stack. The stack size is no longer than the maximum length of the

XML documents. Thus the lemma is proved. O

When the main memory is extremely small and the query document is extremely
large, if the distinguished node is not optimal, bdtigPrefix and TwigContainment
cannot guarantee that all the elementsutput List can be fit in the main memory. In
this case, some elementsdntput List should be output as intermediate results. How-
ever, this is a rare practical occasion. In the next section, it is shown that for a large
query class, even in the constraints of limited memadwigPrefix and TwigContain-
ment guarantees that each output intermediate element belongs to final solutions. In
sum, as the evidence of the generality of the theory on matching block, two algorithms
TwigPrefix and TwigContainment are proposed which are based on different number-
ing scheme, but identify the same optimal query class to fulfill the results of Theorem
4.2.9 and 4.2.10. However, as shown in the next experimental part, altiaugfArefix
andTwigContainment share the same query class for optimality, for the case of a non-

optimal query, two algorithms may output different number of intermediate results due

140

to the discrepancy of their numbering schemes.

4.6 Performance Study

In this section, extensive experimental studyTafigContainment and TwigPrefix is
performed on real-life and synthetic data sets. The results verify the effectiveness, in
terms of accuracy and optimality, of tAevigContainment and TwigPrefix as holistic

twig join algorithms for large XML data sets. These benefits become apparent in a com-
parison to previously proposed three algorithfmggStack [20], TwigStackList [73]

and TJFast [74]. Overall, this empirical study indicates thawigContainment and
TwigPrefix fully exploit the key observation fodistinguishednodes and thus signifi-
cantly outperforms the existing holistic join algorithms. In addition, it also shows that
TwigPrefix outperformsiwigCongtainment with respect to I/O cost and main memory

requirement.

4.6.1 Experiment Settings and Datasets

AlgorithmsTwigStack, TwigContainment andTwigPrefix are implemented in JDK 1.4
using the file system as a simple storage engine. The codesgtackList andTJFast

come from authors of original papers [73, 74]. The reason that these three algorithms
chosen for comparisons is thawigStack, TwigStackList and TJFast are optimal for
different query classTwigStack is a well-known holistic twig algorithm, which is very
efficient when query contains only AD relationshifisvigStackList extendTwigStack

by adding list structure and thus identify a larger optimal query class. Fifdligst is

based on a variant of prefix numbering scheme. It is claimed to significantly reduce 1/O
cost by accessing only numbersleaf query nodes.

The experiments are all conducted on a workstation with Intel Pentium IV 1.7GHz

141

CPU and 512M of RAM. The operating system is windows XP. To offer a comprehen-
sive evaluation of the new algorithms on different query types and on data with different
features, both synthetic dataset and real XML data are used. The synthetic dataset is
generated randomly. There are totally 7 lahéls A,,..., A7 in the dataset and labels

are assigned uniformly from them. Two real datagefs.. P andTreeBank [16, 109]

are used since they have different characteristi¢s.L P is a broad and shallow docu-

ment, butl'ree Bank has very deep recursive structure. Table 4.2 summarizes the dataset

characteristics.
Synthetic| DBLP | TreeBank
Size(MB) 8.8 130 82
Elements(million) 1.0 3.3 2.4
Max/Avg Depth | 12/6.1 6/2.9 36/7.8

Table 4.2: Character of the Test Data Sets

In order to compare the performance of different algorithms under different work-
loads, a set of queries is designed, which have different features in terms of twig struc-
tures anddistinguishednodes. All queries tested for random data sets are shown in
Figure 4.8. In particularg), (), contain only PC relationships, whitg; contains only
AD relationships and),,Qs5,Q¢ have different combinations of both PC and AD rela-
tionships. All queries proposed #oree Bank and D BL P data are shown in Table 4.3.

In particular,@-, Qs and @1, have singledistinguishednodes and other queries have
multiple distinguishechodes. Note that iy, all nodes arelistinguishednes. We use

this query to show that even in the case when all queries nodes are distinguished nodes,
our algorithms still outperform previous methods.

The performance measurement includes number of intermediate results, memory size
and processing time in the experiments. The number of intermediate elements evaluates
the total number of intermediate elements, which reflects I/O costs. The measurement of

varying main memory size is used to test whether algorithms perform well in the case of

142

* a* a*

A AN

b ¢ d b* c d

(@ Qg (b) Q, (© Q3
a ar a
/N SN SN
e c e g c e ¢

f* g
(d) Qq (e Qs (f) Qg

Figure 4.8: Queries for Synthetic Data

Dataset | Query

Q7

DBLP

/larticle[./[cdrom]//author*

Qs

DBLP

/linproceedings[author]//title/sup*

Qo

DBLP

llinproceedings*[author]//title/sup

Q10

TreeBank

IS*[INPIN]IINP

Qll

TreeBank

PP[//IN*/NP/VBN*

QlQ

TreeBank

PP*[.//IN*]/NP*/VBN*

QlS

TreeBank

VP*[NNJ/S*

Q14

TrreBank

S[ADJP*|/PP[/INP]//IN

Table 4.3: Queries for DBLP and TreeBank Data

limited main memory. The total execution time is obtained by averaging the time elapsed
to answer a query with six consecutive runs, discarding the best and worst performance

results.

4.6.2 Algorithms Based on Containment Numbering

In this section, the performances of the algorithfmsgStack, TwigStackList andTJ-

Fast on the real and synthetic data sets are presented. In the first set of experiments,

143

the main memory size is limited to 10K, to compare the performance of algorithms un-
der the constraints of a small main memory. Figure 4.9 shows the query performance
in terms of response times (in seconds) and Figure 4.10 shows the number of output
elements for different queriesiwigContainment is distinctly more efficient than the
other algorithms for all six queries. This is due to the fact fwagContainment output

less “useless” intermediate results. With the limited memory setlinggStack and
TwigStackList have to output most of intermediate path matches to the second mem-
ory and reload them in the second phase for merging. HowBvggContainment se-
lectively cache limited elements in theitput List instead of outputting many useless
intermediate elements. This result suggests that under the constraints of limited mem-
ory, TwigContainment can efficiently utilize the small main memory and achieve better

performance thamwigStack andTwigStackList.

70t | | | TwigStack =1]
TwigStackList =——=3
) i TwigContainment |
L 60 .
§ - P
[} 50 [.
K2
(] L
£ 40
.5 30 |
3
g 20+t
n
10 |
0

Q1 Q2 Q3 Q4 Q5 Q6

Queries

Figure 4.9: Execution Time (Synthetic)

Figure 4.11 and Figure 4.12 illustrate the performance of the algorithms on different
size of main memory. Figure 4.11 shows the number of output elements of the three
algorithms for query); where the number of elements allowed to be cached in main

memory varied from 10K to 50K. Figure 4.12 is the result {g4. The two figures

144

1000 ‘ — ;
TwigStack
= TwigStackList =——=3
TwigContainment =
100 —

10 |

L

Ql Q2 Q3 Q4 Q5 Q6

Queries

Number of elements (K)

Figure 4.10: Output Element(Synthetic)

show that the output elements BwigContainment is always much less than that of
TwigStack and TwigStackList. In particular, forQ),, with the increasing of the size of
the available main memory, the output sizelafigStack and TwigStackList decreases
linearly. The reason is thaivigStack and TwigStackList cache the intermediate re-
sults in the main memory and reduce the number of output elements. But the output of
TwigContainment remains the same and equals to the final result size. This result con-
firms to Theorem 4.2.9, i.eTwigContainment is an optimal algorithm for the queries
where the root is the only distinguished node. For qugyyall algorithms are not opti-
mal according to the theoretical analysis. ButigContainment still output much less
elements thadwigStack and TwigStackList. Finally, note that when the number of
cached elements reaches 30KjigContainment does not output any useless elements
for this data. It means that such main memory size is enough to hold the all the uncertain
elements in theutput Lists.

The next experiment is to compare the performance of three algorithifisceBank
and DBLP datasets. Figure 4.14 and Figure 4.13 show the results of the time con-

sumed and the number of output elements. For the execution@meé)s, QQy, andQ

145

—&— TwigStack | TwigStackL ist —&— TwigContainment—X— Useful
50

45t 0\,**\‘
40 1 D\D\D\D_\D

<
=
s
2
S 357
% 30
T 25 f
o
S 20
S 15t
0]
€ 10
2 |l X 2 2 2 X
0
10 20 30 40 50
Number of cached elements(K)

Figure 4.11: Output with varying memory (Q1)

| —&— TwigStack —0— TwigStackList —— TwigCortainment —<— Useful
30

25 -

20‘\’\‘\’\‘\0
15D\D\D\D\ﬂ\ﬂ

10 |
#ﬁ * — kX

10 20 30 40 50 60
Number of cached elements(K)

Number of total element output(K

Figure 4.12: Output with varying memory (Q6)

TwigStackList use much less time than that@figStack and comparable tdwigCon-
tainment. For Q, Q12, @13 andl) 4, the consumed time olwigStackList is signifi-

cantly greater than that diwvigContainment. Again, the effect of the reduction of I/O

146

cost inTwigContainment makes this algorithm superior TovigStack andTwigStack-

List, reaching up t&1% improvement in execution time for all queries.

| = TwigStack ——— |
1000 TwigStackList —=3
< TwigContainment =
Py
% _
E 100 [
Q
(] — —
]
g
= 10
>
Z :L
1 || || || -
Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14
Queries
Figure 4.13: Output Element(real)
289s
60 L | | | | ‘Twig‘Stack —]
TwigStackList =3
) TwigContainment
T 50t 1
o —
S - - _
» 40 ¢ —
£
= 30 —
e
9
‘3’ 20
(O]
x
Ll 10 |
0

Q7 Q8 Q9 Q10 Q11 Q12 Q13 Ql4

Queries

Figure 4.14: Execution Time (real)

Table 4.4 reports a comparison among the three algorithms about the number of out-
put elements only for thdistinguishedhodes. The surprising result is that, o3 L P

data (0--Q9), three algorithms output the same number of elements fatitimguished

147

node. This is due to the fact thatBLP is a rather regular dataset without recursive
structure. In contrast, faf'ree Bank data, which is deeply recursivéwigStack out-

puts large number of “useless” elements. For example, to queryTwigStack output
368983 elements, but only 10675 of them are in the final answers. Notice tiatitpr
Containment, the numbers in Table 4.4 is the same as that of the total output elements,
but for Twigstack and TwigstackList, these numbers are much fewer than that of the

total output elements.

Qr | Gs | Qo Q10 Qu Q12 Q13 Q14
TwigStack 3722 | 605| 1166 | 368983| 13790| 21298 | 23616| 32928

TwigStackList | 3722 | 605 | 1166| 10675 | 1586 | 2882 | 470 | 5941
TwigContainment 3722| 605 | 1166| 10675 | 1317 | 2395 | 118 | 5446
Results 3722| 605| 1166| 10675 | 1317 | 2395 | 118 | 5446

Table 4.4: Number of Output Elements for the Distinguished Node (Real)

4.6.3 Algorithms Based orExtended DeweyWumbering

In this section the performances BdFast and TwigPrefix are compared. Both algo-
rithms are based on thextended DeweNumbering schemes. The queries shown in
Figure 4.8 are also utilized over the synthetic datasets.

Figure 4.15 and Figure 4.16 show the number of elements output and the execution
time. As shown from these result§wigPrefix is more efficient tharrJFast for all
gueries. These results reaffirm the effectiveness of the new algorithms.

Finally, TIJFast and TwigPrefix are compared oved BL P andTree Bank dataset.

The results are shown in Figure 4.17 and Figure 4.18. For all quéregPrefix is

again more efficient thahJFast.

148

(] 'TJFast T
TwigPrefix —=
<
—~ 100 f _
‘E -
(O]
£
)
(] L
ks
5 10t
QO
1S
>
Z m W
1
Q1 Q2 Q3 Q4 Q5 Q6
Queries
Figure 4.15: Output elements (Syn)
20 ‘ ‘
TJFast
. TwigPrefix /—=
w .
©
0 _
= L
o
()
&')/ -
(O]
E 10 B L
c
i)
5
O
(O]
x
] W
0

Q1 Q2 Q3 Q4 Q5 Q6

Queries

Figure 4.16: Execution Time (Syn)

4.6.4 Comparison betweewigContainment and TwigPrefix

In this section, we compare the performance between the two new algorithms with the
memory size setting to be 10K. Figure 4.19 shows the CPU and I/O cost comparison.
We can see that for synthetic data sBtjgPrefix outperformsTwigContainment for

query@3 and@g in terms of output element size. That is because the synthetic data re-

149

100 ‘ ‘ ‘
TJFast
TwigPrefix —= _
o -
2]
=
(O]
E —
(]
© 10
kS
@
o]
| HT m
>
Z W
LB L TR it
Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14
Queries
Figure 4.17: Output elements (real)
TJFast

30 (] TwigPrefix ==—= 1
T/)\ -
0 _
e L - —
o
o —
()
< 20+
(O]
E
c
S
3 10+
(O]
x
Ll

0

Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14

Queries

Figure 4.18: Execution Time (real)

curse deeply and thextended Dewegumbering scheme can encode the element more
succinctly and utilize the memory more efficiently. Thus more element can be cached
in the memory. But for real dataset, bailvigContainment and TwigPrefix output the
results only , and thus both are optimal. In the mean whilggPrefix obviously out-

performsTwigContainment in terms of CPU cost. This is due to the fact tkatended

150

Deweynumbering can encode exactly the whole path for each element and accordingly,

the query processing can be up to 7 times faster TwagPrefix.

1 TwigCon(Time) mm=m TwigPre(Time) —a— TwigCon(Elem) —¢— TwigPre(Elem)

N
a1

AN i
[\
/

> 3
]
8

]
&
Output Element (K)

Time (S
5 8B 88 &8 &

& 44:
U @ @ M Q5 % Q7 Q8 Qo Q0 QU Q2 QI3 Ql4

Queries

5
|
¢ Ny
S

[&)]

)]

o

o

Figure 4.19: CPU and I/0O Cost Comparison

As analyzed in Section 4.2, Section 4.4.3 and Section 4.5, the two new algorithms
can guarantee the optimality for all kinds of queries if the available main memory is
large enough. Table 4.5 shows that the max number of elements that should be stored in
the main memory to guarantee the optimalityTefigContainment and TwigPrefix for

synthetic data. There are two interesting findings:

(1) Comparatively speakingwigPrefix outperformsiwigContainment since it stores
fewer elements in the main memory on all queries tihagContainment does.
This is due to the difference of numbering schemes in these two algoritBras.
tended Deweynumbering scheme allowBvigPrefix to see the whole path by ac-
cessing only one element and therefore avoids storing redundant elements in the

main memory.

(2) The number of elements that is needed to store in main memorpwigPrefix
is always small for all queries (e.g. the max number is 622, only about 6K Bytes

memory). As mentioned in Section 4.4, we can deliberately design queries which

151

Qi | Q2| Q3| Qu | Qs Qs
TwigContainment 176 | 575 | 184 | 5453 | 253 | 26939

TwigPrefix 4 | 14| 4 | 187 | 240| 622

Table 4.5: Number of Required Cached Elements (Syn)

Q? QS QQ QlO Qll Q12 QIS Q14
TwigContament 4 | 7 | 8 | 13 | 54 | 82 | 10 | 17

TwigPrefix 314 |5 3 /11982 4 7

Table 4.6: Number of Required Cached Elements (Real)

require TwigPrefix to cache a large number of elements such that they cannot
be fitted into the small main memory. However, the empirical results show that
even for the datasets which have the very deeply recursive structure, such as the
synthetic dataset arifiree Bank, it is not easy to find such unnatural queries to

show the non-optimality ofwigPrefix.

Table 4.6 shows the max number of elements cached in the main memaryifpr
Prefix andTwigContainment algorithms to guarantee the optimality. Interestingly, un-
like the results in Table 4.5, the numbers of cached elements inTvagPrefix and
TwigContainment are very small. Therefore, for real datasets, elwigContainment
can guarantee that each output element belongs to final answers under the constraint of
small available main memory.

From the above experimental results we can see that TwidpgContainment and
TwigPrefix have high performance on both the synthetic dataset and real dataset. And
the main reason for the better performanca@wigPrefix is due to the encoding scheme.
However,Extended Dewegncoding scheme is not always feasible in the practical appli-
cation. For example, it cannot be applicable to the streaming dataset when the schema is

not available TwigContainment and reginal encoding is suitable for that situation.

152

4.7 Conclusion

XML data is rich in structure; and this calls for efficient structure join algorithms in or-
der to facilitate XML query processing. In this chapter, the issue of XML twig pattern
matching is studies. The critical observation is that, in most applications, only the result
bindings of contain selecteddt all) nodes are required. The theoretical analysis shows
that the sub-optimality of previous holistic twig algorithm is due to blo@ndedor un-
bounded matching blodiB M B andU M B). Itis also analytically shown that tHéM B

that involves only undistinguished query nodes should not lead to the non-optimality of
holistic twig algorithms.

Based on these analysis, two novel algorithms are proposed in this chapter. They
are based on theontainmentand prefix numbering schemes respectively. These two
algorithms not only avoid the output of elements todistinguishedjuery nodes, but
also give the guarantee to the optimality for a much larger query class. The efficiency
of these algorithms lies in the fact that the matching information, instead of different
matches of the non-distinguished node is necessary. An excellent example is that two
algorithms guarantee the optimality for any query with thet being thedistinguished

node, regardless of the combinations of PC and AD relationships within the query.

Chapter 5

Conclusion

In this chapter, we summarize the contributions of this thesis and discuss the future

work on the similarity queries and pattern queries based on our methods.
5.1 Main Contribution

In this thesis, we extensively studied how to enhance two core operations on XML data,
i.e., the similarity query and the pattern query on XML data. Similarity search is to find
all objects in the database which are within a given distance from a given object (range
guery) or to thek most similar objects in the database which are closest in distance to a
given object g-NN query). While XML twig pattern query is to identify all the matches

of the query nodes in data, which is actually a mapping from the query nodes to the
elements of a certain XML data s. t. the predicates specified by the query nodes and the
structural relationship depicted by the edges of the query nodes can be satisfied by their
respective images under the mapping.

In this thesis, we propose a new distance between XML data. The measure func-
tion is based on the transformation of XML data into miniature structural feature vec-
tors which combines the structural and content information conveyed by the node label.
These miniature structure captures the local pattern of each data and the vector elements

together describe the whole features of the XML tree structure. Each object is trans-

153

154

formed to a sparse vector withi| non-zero items. Thé, distances between the vectors
are proved to be the lower bounds of the edit distance between the original tree struc-
tures. The intuition here is similar to that @¢fgram methods solving approximate string
matching problem. Thus, the original tree edit distance space is transferred to the vector
space withZ,; norm distance.

We design and analyze the algorithms to embed the lower bounds into multi-step
framework to solve the similarity search problems. The computation of the distance
on the vector is only)(|7T'|) for each comparison. With this lower bound, most of the

computation of the real distance, with time complexity of

O(|T1||T2|min(depth(T'1), leaves(T1))min(depth(T2),leaves(T2)))

, can be filtered. Like the-gram methods which are used to processing similarity search
on sequence data, our methods can be generalized according to different dataset charac-
teristics. The comprehensive performance study experiments show that our methods are
both I/0O and CPU efficient.

For the XML twig query processing, firstly, we theoretically analyze the reason of the
sub-optimality of previous algorithms and show that the existenceadthing block®n
join data streams is the main cause. Previous algorithm suffers the existence of both the
bounded and unbounded matching blocks. However, the research in this thesis demon-
strates that unbounded matching block which involvesettistentialnodes should not
result in the non-optimality of holistic algorithms. In addition, an unbounded matching
block involving distinguishednhodes also can be efficiently processed in most cases by
selectively caching elements in the main memory.

Based on the theoretical analysis, we propose two novel algorifiggContain-
ment andTwigPrefix based ortontainmentindprefixnumbering schemes respectively.

The new algorithms employ tHat vectorandoutput liststructures to store information

155

with bounded spaces to solve the unbounded matching blocks invahstigguished
nodes. It is proved that the new algorithms identify a much larger I/O optimal query
class. Because the theories are developed independent of any specific labeling scheme,
these two algorithms have the same optimal query class. Finally, the new algorithms
adopt a novel framework for holistic twig pattern matching. They makes one pass on the
input data and directly output the matching elements of the distinguished node, without
postprocessing phrase to do projection. The extensive experimental studies on synthetic
and real datasets for performance comparison is presented in this thesis. The results
show thatTwigContainment and TwigPrefix outperform all tested previous methods.
Moreover, althoughfwigContainment and TwigPrefix have the same optimal query
class, the experimental results show thatgPrefix outperformsTwigContainment in

terms of the I/O cost and the total execution time.

5.2 Future Work

In this section, we propose several possible future work area based on the studies pre-

sented in this thesis.

5.2.1 Integrate XML documents

In order to integrate XML data from different sources, approximate matching method for
trees is needed. For most of the data-centric XML document, the orders among siblings is
not closely related to the information conveyed. Thus the approximate matching should
be based on rooted, unordered, labeled trees. The distance function presented in this
thesis is on ordered trees. However, the methods can be extended by using a canonical
form representation for labeled rooted unordered trees [121]. From a rooted unordered

tree we can derive many rooted ordered trees, we can uniquely select one as the canonical

156

form to represent the corresponding rooted unordered tree. Thus;-txee() binary
branch distance can be extended to measure unordered trees as well. Thratighehe
binary branch vector representation, the XML approximate join can then be transformed

to equality join on vectors.

5.2.2 Incrementally Maintain Indexes for Similarity Search

The similarity query processing methods proposed in this thesis is not utilizing any in-
dexing structure currently. However, indexes of the positional miniature structure fea-
tures ¢-level binary branches) can be constructed to prune the search spaces. Further-
more, XML documents may be updated constantly especially for the scientific data con-
veyed by XML [63, 82, 62]. The similarity search methods proposed in this paper is
based on static XML data. It cannot be extended directly to process the dynamic dataset.
However, building the incrementally maintained index is possible since each edit opera-
tion only have a local effect on the index. Thus, based on the index, the efficiency and

effectiveness of similarity search processing can be improved further.

5.2.3 Future Work for Pattern Query on XML Data

The observation and theory made in this work shed new light on many related works. Re-
cently, there appears some efforts to solve the queries with preceding, preceding-sibling,
following, following-sibling axes [75], “NOT” predicate [120], “OR” predicate [53] and
for XML documents based on graph data model (TweigStackD [26]. In this thesis, the
most research work are focused on the XQuery expressions with child and descendant
axes. In the future, the work can be extended to solve the other axes queries easily.

Yet, recently, some researchers proposed that the FOR, LET, WHERE and RETURN

clause of XQuery are of different semantics, and it is better to matching these expressions

157

as a whole in terms of the generalized tree pattern (GTP) [27].

FOR $6IN //A/B[//D]
LET $c = $b//C (5.1)
RETURN $b, $c

For example, In the above XQuery, the naden the above query is optional, since
according to the semantics of XQuery statement, any expression in the LET or RETURN
clauses is optional. That means element which matches Bocen be a result even
without any descendant element. And the matches6fnode must be grouped together
under their commom® ancestor match since in a LET clause, the variable only takes one
value, a single item or a sequence. In the future work, solutions can be proposed to
answer the challenges proposed by this generalized tree pattern query.

Furthermore, query processing methods based on indexed docudsisde [20]

and X R-tree index [55] indexes) can also be explored in the future work.

Bibliography

[1] Xml path language (xpathhttp://www.w3.0rg/TR/xpath , Nov 1999.

[2] Xquery 1.0: An xml query languagéitp://www.w3.org/TR/xquery/
Jun 2006.

[3] S. Abiteboul, S. Cluet, and T. Milo. Querying and updating the filePdoc. 19th
Int’l Conf. Very Large Data Basepages 73—-84, 1993.

[4] S. Abiteboul, D. Quass, J. McHugh, J. Widom, and J. Wiener. The lorel query

language for semistructured data. volume 1, 1996.

[5] Serge Abiteboul, Peter Buneman, and Dan Sudata on the Web from Relations

to Semistructured Data and XMIMorgan Kaufmann Publisher, 1999.

[6] Serge Abiteboul, Luc Segoufin, and Victor Vianu. Representing and querying

XML with incomplete information.12th PODS conference 2002001.

[7] A. Aboulnaga, A. R. Alameldeen, and J. F. Naughton. Estimating the selectivity
of XML path expressions for internet scale applicationsVLDB, Roma, lItaly,

September 2001.

[8] C. C. Aggarwal, J. L Wolf, and P. S. Yu. A new method for similarity indexing of
market basket data. IRIGMOD, pages 407418, 1999.

158

159

[9] Akutsu and Halldorsson. On the approximation of largest common subtrees and

largest common point set$CS: Theoretical Computer Scien@33, 2000.

[10] Shurug Al-Khalifa, H. V. Jagadish, Jignesh M. Patel, Yuging Wu, Nick Koudas,
and Divesh Srivastava. Structural joins: A primitive for efficient XML query

pattern matching. INCDE, page 141. IEEE Computer Society, 2002.

[11] Dongwon Lee Angela Bonifati. Technical survey of XML schema and query

languages. IfSubmitted for journal publication001.

[12] Nikolaus Augsten, Michael H. &len, and Johann Gamper. Approximate match-

ing of hierarchical data using pg-grams.\MhDB, pages 301-312, 2005.

[13] Norbert Beckmann, Hans-Peter Kriegel, Ralf Schneider, and Bernhard Seeger.
The R*-tree: An efficient and robust access method for points and rectangles. In

SIGMOD, pages 322-331, 1990.

[14] Stefan Berchtold, Daniel A. Keim, and Hans-Peter Kriegel. The X-tree: An index
structure for high-dimensional data. fL.DB, 1996.

[15] Elisa Bertino and Won Kim. Indexing techniques for queries on nested objects.
IEEE Transactions on Knowledge and Data Engineeriti(?):196—214, June
1989.

[16] Dblp bibliographies. http://www.informatik.uni-trier.de/ley/
db/ .

[17] Philip Bille. A survey on tree edit distance and related problen@&S: Theoretical
Computer Scien¢&37, 2005.

160

[18] Philip Bohannon, Juliana Freire, Prasan Roy, and Jerome Simeon. From XML
schema to relations: A cost-based approach to XML storag€DiE conference

page 64, 2002.

[19] T. Bray, J. Paoli, and C. M. Sperberg-McQueen. Extensible markup language
XML, http://lwww.w3.0rg/TR/REC-sml , Oct 2000.

[20] Nicolas Bruno, Nick Koudas, and Divesh Srivastava. Holistic twig joins: optimal

XML pattern matching. IrSIGMOD Conferencepages 310-321. ACM, 2002.

[21] P. Buneman, S. Davidson, G. Hillebrand, and D. Suciu. A query language and
optimization techniques for unstructured dataA@M-SIGMOD pages 505-516,
1996.

[22] Barbara Catania, Wen Qiang Wang, Beng Chin Ooi, and Xiaoling Wang. Lazy
XML updates: Laziness as a virtue of update and structural join efficiency. In

SIGMOD Conferencepages 515-526, 2005.

[23] D. Chamberlin, J. Robie, and D. Florescu. Quilt: An XML query language for

heterogeneous data sourcesWebDB 1999.

[24] Edgar Chavez and Gonzalo Navarro. Towards measuring the searching complex-
ity of metric sapces. IRroc. of the Mexican Computing Meetimmages 969-978,
2001.

[25] Sudarshan S. Chawathe and Hector Garcia-Molina. Meaningful change detection
in structured dateSIGMOD Record (ACM Special Interest Group on Management
of Data), 26(2):26—37, June 1997.

[26] Li Chen, Amarnath Gupta, and M. Erdem Kurul. Stack-based algorithms for
pattern matching on DAGs. MLDB, pages 493-504.

[27]

[28]

[29]

[30]

[31]

[32]

161

Songting Chen, Hua-Gang Li, Junichi Tatemura, Wang-Pin Hsiung, Divyakant
Agrawal, and K. Selcuk Candan. Twigack: Bottom-up processing of

generalized-tree-pattern queries over XML document&/LUDB. ACM, 2005.

Ting Chen, Jiaheng Lu, and Tok Wang Ling. On boosting holism in XML twig
pattern matching using structural indexing techniquesSIBMOD Conference

pages 455-466. ACM, 2005.

Weimin Chen. New algorithm for ordered tree-to-tree correction probleornal

of Algorithms 40(2):135-158, 2001.

Zhiyuan Chen, H. V. Jagadish, Flip Korn, Nick Koudas, S. Muthukrishnan, Ray-
mond Ng, and Divesh Srivastava. Counting twig matches in a tre@€rda. of

17th Int’l Conf. on Data Engineeringages 595-604, 2001.

Shu-Yao Chien, Zografoula Vagena, Donghui Zhang, Vassilis J. Tsotras, and
Carlo Zaniolo. Efficient structural joins on indexed XML documentsVLDB,

pages 263-274, 2002.

Chin-Wan Chung, Jun-Ki Min, and Kyuseok Shim. APEX: an adaptive path index
for XML data. INnACM SIGMOD conf

[33] Gregory Cobena, Serge Abiteboul, and @& Marian. Detecting changes in
XML documents. INCDE, 2002.

[34] D. Comer. The ubiquitous B-treACM Computing Survey1(2):121-137, 1979.

[35] M. Consens and T. Milo. Optimizing queries on files. 3StIGMOD Conference
1994.

[36] Brian F. Cooper, Neal Sample, Michael J. FranklimsI&R. Hjaltason, and Moshe

Shadmon. A fast index for semistructured data.Pmceedings of the 27th In-

162

ternational Conference on Very Large Data Bases(VLDB, @Bges 341-350,
September 2001.

[37] S. J. DeRose. Xquery: A unified syntax for linking and querying general XML.
In WWW The Query Language Workshop (Q998.

[38] A. Deutsch, M. F. Fernandez, and D. Suciu. Storing semistructured data with
STORED. InProceedings of the ACM SIGMOD International Conference on
Management of Datal 999.

[39] Paul F. Dietz. Maintaining order in a linked list. 8TOC pages 122-127, 1982.

[40] Thorsten Fiebig, Sven Helmer, Carl-Christian Kanne, Guido Moerkotte, Julia
Neumann, Robert Schiele, and Till Westmann. Natix: A technology overview.
In NODe 2002 Web and Database-Related Workshops on Web, Web-Services, and

Database Systems

[41] Daniela Florescu and Donald Kossmann. Storing and querying XML data using
an RDBMS. Bulletin of the Technical Committee on Data Engineeripgges
27-34, September 1999.

[42] XML for Publishers and Printers (XPP).http://www.xyvision.com/

Xpp.asp , 2002.

[43] Z. Galil and K. Park. An improved algorithm for approximate string-matching.
Automata, Languages and Programming (ICALP’89), Lecture Notes in Compute

Science372:394-404, 1989.

[44] Minos N. Garofalakis and Amit Kumar. XML stream processing using tree-edit

distance embedding&CM Trans. Database Sy€0(1):279-332, 2005.

163

[45] Roy Goldman, Jason McHugh, and Jennifer Widom. From semistructured data to
XML: Migrating the lore data model and query language.WebDB (Informal
Proceedings)pages 25-30, 1999.

[46] Roy Goldman and Jennifer Widom. DataGuides: Enabling query formulation and

optimization in semistructured databases. pages 436—-445. VLDB, 1997.

[47] Luis Gravano, Panagiotis G. Ipeirotis, H. V. Jagadish, Nick Koudas, S. Muthukr-
ishnan, and Divesh Srivastava. Approximate string joins in a database (almost)

for free. InVLDB, pages 327-340, 2001.

[48] Sudipto Guha, H. V. Jagadish, Nick Koudas, Divesh Srivastava, and Ting Yu.
Approximate XML joins. INSIGMOD Conferenceages 287—-298, 2002.

[49] Arvind Gupta and Naomi Nishimura. Finding largest subtrees and smallest su-

pertrees Algorithmicag 21(2):183-210, 1998.

[50] A. Guttman. R-trees: a dynamic index structure for spatial searchin@&1Gn

MOD, pages 47-57, 1984,
[51] HR-XML. http://lwww.hr-xml.org , 2001.

[52] H. V. Jagadish, Shurug Al-Khalifa, Adriane Chapman, Laks V. S. Lakshmanan,
Andrew Nierman, Stelios Paparizos, Jignesh M. Patel, Divesh Srivastava, Nuwee
Wiwatwattana, Yuging Wu, and Cong Yu. Timber: A native xml datab&4d>B
Journal 11(4):274-291, 2002.

[53] Haifeng Jiang, Hongjun Lu, and Wei Wang. Efficient processing of XML twig
gueries with OR-predicates. Froceedings of the 2004 ACM SIGMOD Inter-
national Conference on Management of Data 2004, Paris, France, June 13-18,

2004 pages 59-70, 2004.

164

[54] Haifeng Jiang, Hongjun Lu, Wei Wang, and Beng Chin Ooi. XR-tree: Indexing
XML data for efficient structural joins. IlCDE, pages 253—-263, 2003.

[55] Haifeng Jiang, Wei Wang, Hongjun Lu, and Jeffrey Xu Yu. Holistic twig join on
indexed XML document. I'VLDB. ACM, 2003.

[56] K. Kailing, H. P. Kriegel, S. Sabnauer, and T. Seidl. Efficient similarity search
for hierarchical data in large databasesEDBT, pages 676—693, March. 2004.

[57] Juha Karkkainen. Computing the threshold fergram filters. INSWAT pages
348-357, 2002.

[58] Raghav Kaushik, Jeffery F Naughton, Philip Bohannon, and Henry F Korth. Cov-
ering indexes for branching path queries. Aroc. of the 2002 ACM SIGMOD

international conference on Management of datages 133-144, 2002.

[59] A. Kemper and G. Moerkotte. Access support in object basesPréo. ACM
SIGMOD Conf, page 364, Atlantic City, NJ, May 1990.

[60] Philip N. Klein. Computing the edit-distance between unrooted ordered trees. In

ESA: Annual European Symposium on Algorithirg98.

[61] Donald E. Knuth.The Art of Computer Programmingiddison-Wesley Pub Co,
1997.

[62] Bioinformatic Sequence Markup Languagéttp://www.labbook.com/

products/standards.asp , 2001.
[63] Chemical Makeup Language. http://www.xml-cml.org/
information/position.html , 2001.

[64] Gene Expression Markup Languagehttp://xml.coverpages.org/

omgGeneExpression.html , 2000.

165

[65] Yonk Kyu Lee, Seong-Joon Yoo, and Kyoungro Yoon. Index structures for struc-
tured documents. IACM First International Conference on Digital Libraries

pages 91-99, Bethesda, Maryland, USA, Mar 1996.

[66] Changging Li, Tok Wang Ling, and Min Hu. Efficient processing of updates in
dynamic XML data. INCDE, page 13, 2006.

[67] Hanyu Li, Mong-Li Lee, Wynne Hsu, and Chao Chen. An evaluation of XML
indexes for structural joinSIGMOD Record33(3):28-33, 2004.

[68] Hanyu Li, Mong-Li Lee, Wynne Hsu, and Gao Cong. An estimation system for
XPath expressions. WCDE, page 54, 2006.

[69] Quanzhong Li and Bongki Moon. Indexing and querying XML data for regular
path expressions. hhe VLDB Journglpages 361-370, 2001.

[70] Hartmut Liefke and Dan Suciu. Xmill: an efficient compressor for xml data. In

SIGMOD, pages 153-164, 2000.

[71] Lipyeow Lim, Min Wang, Sriram Padmanabhan, Jeffrey Scott Vitter, and Ronald
Parr. XPathLearner: An on-line self-tuning markov histogram for XML path

selectivity estimation. 1WLDB, pages 442-453, 2002.

[72] King-Ip Lin, H. V. Jagadish, and Christos Faloutsos. The TV-Tree: An index
structure for high-dimensional dataVLDB Journal: Very Large Data Basgs

3(4):517-542, 1994.

[73] Jiaheng Lu, Ting Chen, and Tok Wang Ling. Efficient processing of XML twig
patterns with parent child edges: a look-ahead approaclIKM, pages 533—
542, 2004.

166

[74] Jiaheng Lu, Tok Wang Ling, Chee Yong Chan, and Ting Chen. From region en-
coding to extended dewey: On efficient processing of XML twig pattern matching.

In VLDB, pages 193-204. ACM, 2005.

[75] Jiaheng Lu, Tok Wang Ling, Tian Yu, Changqing Li, and Wei Ni. Efficient pro-
cessing of ordered XML twig pattern. DEXA pages 300-309, 2005.

[76] Jiaheng Lu, Rui Yang, TokWang Ling, and Anthony K. H. Tung. Efficiently

mining frequent trees in a forest. In Technical Report, NUS006.

[77] Nikos Mamoulis, David W. Cheung, and Wang Lian. Similarity search in sets and

categorical data using the signature treeldBE, pages 75—-86, 2003.

[78] J. Mchugh, S. Abiteboul, R. Goldman, D. Quass, and J. Widom. Lore: A database
management system for semistructured da&GMOD record 26:54—-66, Sep
1997.

[79] J. McHugh and J. Widom. Query optimization for XML. Rroceedings of the
25th International Conference on Very Large Data Bases (VLDB, 88)es 315—
326, September 1999.

[80] T. Milo and D. Suciu. Index structures for path expressiondCIDT: 7th Inter-

national Conference on Database Theat999.

[81] NCBI Molecular Biology Data Modelhttp://www.ncbi.nlm.nih.gov/
Sitemap/Summary/asnl.html , 2002.

[82] Molecular Dynamics Language Home Page (MoDhitp://violet.csa.

iisc.ernet.in/"modl/ , 1999.

[83] Alexandros Nanopoulos and Yannis Manolopoulos. Efficient similarity search for

market basket data’he VLDB Journgl11(2):138-152, 2002.

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

167

A. Nierman and H.V.Jagadish. Evaluating structural similarity in XML docu-

ments. InProc. Fifth Int'l Workshop Web and Databasdsine. 2002.
News Industry Text Format (NIFThttp://www.nitf.org , 1998.

Naomi Nishimura, Prabhakar Ragde, and Dimitrios M. Thilikos. Finding smallest
supertrees under minor containmddECS: International Journal of Foundations

of Computer Scieng¢éd.1, 2000.

Open Financial Exchange (OFE). http://www.ofx.net/ofx/

specview/SpecView.html , 1999,

Patrick E. O’Neil, Elizabeth J. O’Neil, Shankar Pal, Istvan Cseri, Gideon Schaller,
and Nigel Westbury. ORDPATHSs: Insert-friendly XML node labels SliMOD
Conferencepages 903-908, 2004.

Yannis Papakonstantinou, Hector Garcia-Molina, and Jennifer Widom. Object

exchange across heterogeneous information sourcéSDIE.

Neoklis Polyzotis and Minos Garofalakis. Statistical synopses for graph-
structured XML databases. Proceedings of the ACM SIGMOD International
Conference on Management of Data, June 3-6, 2002, Madison, WI, h#§As
358-369, 2002.

Sven Puhlmann, Melanie Weis, and Felix Naumann. XML duplicate detection

using sorted neighborhoods. BEDBT, 2006.

Praveen Rao and Bongki Moon. PRIX: Indexing and querying XML usitidgor
sequences. IICDE, pages 288-300, 2004.

168

[93] Y. Sakurai, M. Yoshikawa, S. Uemura, and H. Kojima. The A-tree: An index
structure for high-dimensional spaces using relative approximationvLDB,

pages 516-526, 2000.

[94] Torsten Schlieder and Felix Naumann. Approximate tree embedding for querying
XML data. InACM SIGIR Workshop On XML and Information Retrievethens,
Greece, Jul 2000.

[95] Thomas Seidl and Hans-Peter Kriegel. Optimal multi-step k-nearest neighbor

search. IrSIGMOD, pages 154-165.

[96] Stanley M. Selkow. The tree-to-tree editing problemmformation Processing

Letters 6:184-186, December 1977.

[97] Timos K. Sellis, Nick Roussopoulos, and Christos Faloutsos. The R+-Tree: A

dynamic index for multi-dimensional objects. W.DB, pages 507-518, 1987.

[98] J. Shanmugasundaram, K. Tufte, G. He, C. Zhang, D. Dewitt, and J. Naughton.
Relational database for querying XML documents: Limitations and opportunities.

In Proc. 25th Int’l Conf. Very Large Data Basgsages 302—314, 1999.

[99] Dennis Shasha and Kaizhong ZhaAgproximate Tree Pattern Matchin@xford
University, 1997.

[100] T. Shimura, M. Yoshikawa, and S. Uemura. Storage and retrieval of xml docu-
ments using object-relational databasesPtac. 10th Int'l Conf. Database and

Expert Systems Applicationsages 206—217, 1999.

[101] Adam Silberstein, Hao He, Ke Yi, and Jun Yang. BOXes: Efficient maintenance
of order-based labeling for dynamic XML data. I@DE, pages 285-296. IEEE

Computer Society, 2005.

169

[102] Erkki Sutinen and Jorma Tarhio. On usigigram locations in approximate string

matching. InProc. of 3rd Annual European Symposiymages 327-340, 1995.

[103] The Niagara System. University of wisconghttp://www.cs.wisc.edu/

niagara/

[104] The Tukwila System. University of washingtorttp://data.cs.

washington.edu/integration/tukwila/

[105] Jiang Tao, Lusheng Wang, and Kaizhong Zhang. Alignment of trees - an alter-
native to tree edit. IrMTheoretical Computer Science (TC8dlume 143, pages

75-86, 1995.

[106] J. Tarhio and E. Ukkonen. Boyer-moore approach to apprximate string matching.
In Proc. 2nd Scand. Workshop on Algorithm Theory (SWAT’90), Lecture Notes in

Computer Scienggages 348-359, 1990.

[107] Igor Tatarinov, Stratis Viglas, Kevin S. Beyer, Jayavel Shanmugasundaram, Eu-
gene J. Shekita, and Chun Zhang. Storing and querying ordered XML using a
relational database system. 3lGMOD Conferenggages 204-215, 2002.

[108] Pankaj M. Tolani and Jayant R. Haritsa. XGRIND: A query-friendly xml com-
pressor. INCDE, 2002.

[109] TreeBank. University of washington xml repositoriaitp://www.cs.

washington.edu/research/xmldatasets/

[110] Esko Ukkonen. Approximate string-matching with g-grams and maximal

matches.Theoretical Computer Scienc@?2:191-211, 1992.

[111] Haixun Wang and Xiaofeng Meng. On the sequencing of tree structures for XML

indexing. InICDE, pages 372-383, 2005.

170

[112] Haixun Wang, Sanghyun Park, Wei Fan, and Philip S. Yu. ViST: A dynamic index
method for querying XML data by tree structuresSIGMOD Conferencgpages
110-121, 2003.

[113] Yuan Wang, David J. DeWitt, and Jin yi Cai. X-diff: An effective change de-
tection algorithm for XML documents. IRroceedings of the 19th International

Conference on Data Engineeringages 519-530, Bangalore, India, 2003.

[114] R. Weber, H.-J. Schek, and S. Blott. A quantitative ananlysis and performance
study for similarity search methods in high-dimensional space/UDB, pages

194-205, 1998.

[115] Melanie Weis and Felix Naumann. DogmatiX tracks down duplicates in XML. In

SIGMOD Conferencepages 431-442. ACM, 2005.

[116] Xiaodong Wu, Mong-Li Lee, and Wynne Hsu. A prime number labeling scheme
for dynamic ordered XML trees. IICDE, pages 66—78, 2004.

[117] Zhaohui Xie and Jiawei Han. Join index hierarchies for supporting efficient navi-

gations in object-oriented databasesVLDB.

[118] Rui Yang, Panos Kalnis, and Anthony K. H. Tung. Similarity evaluation on tree-

structured data. ISIGMOD Conferenceages 754—-765. ACM, 2005.

[119] Cui Yu. High-dimensional IndexingPhD thesis, National University of Singa-

pore, Singapore, 2001.

[120] Tian Yu, Tok Wang Ling, and Jiaheng Lu. TwigstacklistA holistic twig join
algorithm for twig query with not-predicates on XML data. DASFAA pages
249-263, 2006.

171

[121] Yirong Yang Yun Chi, Yi Xia and Richard R. Muntz. Mining closed and maximal
frequent subtrees from databases of labeled rooted trE€SE Trans. Knowl.

Data Eng, 17(2):190-202, 2005.

[122] Mohammed J. Zaki. Efficiently mining frequent trees in a forest.SIGKDD,
pages 71-80, 2002.

[123] Chun Zhang, Jeffrey Naughton, David DeWitt, Qiong Luo, and Guy Lohman.
On supporting containment queries in relational database management systems.

SIGMOD Recorgd30(2):425-436, June 2001.

[124] Kaizhong Zhang. Algorithms for the constrained editing distance between ordered
labeled trees and related problemsPhaitern Regonitiopvolume 28, pages 463—

474, 1995.

[125] Kaizhong Zhang and Danis Shasha. Simple fast algorithms for the editing dis-
tance between trees and related proble®IKCOMP: SIAM Journal on Comput-

ing, 18:1245-1262, 1989.

[126] Kaizhong Zhang, Dennis Shasha, and Jason T. L. Wang. Approximate tree match-

ing in the presence of variable length don't cares. volume 16, pages 33-66, 1994.

