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Summary

XML documents have recently become ubiquitous because of their varied applicability.

It is believed that progressively more and more Web data will be in XML format. Com-

munities of business and sciences are defining their own DTD to provide for a uniform

representation of data in specific areas [85, 87, 64, 62]. For example, in business, the

efforts have been taken to develop standardized XML vocabularies for recruiting and

other human resource functions [51], for publishers and printers (XPP) [42] etc. In sci-

entific area, especially the biological [81, 64] and chemistry area [63, 82], researchers

have brought XML power to the management of scientific data. The initial impetus for

XML may have been primarily to enhance the ability of remote applications to interpret

and operate on documents fetched over the Internet. However, from a database point of

view, XML raises different exciting possibility: with data stored in XML documents,

one should be able to issue queries over sets of XML documents to extract, synthesize,

and analyze their contents. Given the broad adoption of XML, it pressed for efficient

manipulations on the XML data in huge dataset. In this thesis, the efficient similarity

query processing and pattern query processing on XML data is extensively studied.

XML data is self-describing through the nested structures of elements. Therefore,

XML data are usually modeled as rooted, ordered, labeled trees. Similarity search is to

find all objects in the database which are within a given distance from a given object

(range query) or to find thek most similar objects in the database which are closest in
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distance to a given object (k-NN query). Although similarity search has been exten-

sively studied on multivariate numeric data and categorical data vector, searching for

similar trees is still an open problem due to the high complexity of computing the tree

edit distance. In this thesis, XML data is transformed into an numerical multidimen-

sional vector which encodes the original structure information and content information.

TheL1 distance of the corresponding vectors, whose computational complexity is lin-

ear to the data size, forms a lower bound for the edit distance between trees. Based on

the theoretical analysis, a novel algorithm is presented which embeds the proposed dis-

tance into a filter-and-refine framework to process similarity search on tree-structured

data. The experimental results show that the new algorithm reduces dramatically the

distance computation cost. And it is especially suitable for accelerating similarity query

processing on large trees in massive datasets.

For the XML pattern query processing, an important operation is to search for all

occurrences of a twig pattern in an XML database. Most of the existing research work

surprisingly output all the distinct matches for all query nodes. However, in practice,

queries written in XPath or XQuery only require to output answers which consist of the

distinct matches to the selected query nodes (called distinguished nodes). The straight-

forward approach is to makes an appropriate projection on the selected node matches by

post-processing the outputs of previous methods. Obviously, it is not optimal in most

cases. At the same time, the previous approaches are optimal only for limited class of

queries. In this thesis, we prove that the sub-optimality of prior algorithms is due to

the matching blocks in the data streams. However, if only bindings of the distinguished

nodes are required, most blocks can be conquered by caching limited number of elements

in the main memory (bounded by the depth of documents). Based on these theoretical

analyses, two efficient query processing algorithms namedTwigContainment andTwig-

Prefix are proposed. They utilize containment labeling and prefix labeling respectively.
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Unlike the prior methods, these algorithms only take one phase to avoid outputting ir-

relevant intermediate path solutions. Moreover, these two algorithms identify the same

optimal class which is much larger than those identified by the previous approaches. Fi-

nally, a set of experimental results on both real-life datasets and synthetic datasets verify

the effectiveness and the optimality of our new algorithms.

In summary, the contribution of this thesis is that we have successfully provided

efficient solutions to two types of similarity queries - the range query and thek-NN

query, and pattern queries on XML data. The results of our experiments also suggest

that our methods are especially suitable for accelerating the query processing on the

massive datasets consisting of XML data of large size and deeply-nested elements with

infrequent updates.
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Chapter 1

Introduction

Internet and Web application is becoming more and more important nowadays. There-

fore, the publication of electronic data has been becoming universal. Most of these

electronic data appear as HTML documents on the Web and are generated automatically

from database. However, HTML aims to specify the representation of the information

instead of the structure and content of it. So, although HTML document is readable

to human-beings, it is difficult for other application programs to understand such data.

XML (eXtensible Markup Language) [19] was proposed by the World Wide Web Con-

sortium (W3C) as a new standard for data exchange on the Web to complement HTML.

Unlike HTML, XML is a textual representation of data which utilize the nested tree hi-

erarchy to depict the structural relationship between the data components. Figure 1.1 is

a fragment of a XML document which describe the movie information.

The basic component in XML data is the element, i.e., a piece of text bounded by

matching tags (such as<movie> and</movie> in the Figure 1.1). The elements can

be nested. Each element can be either of atomic value (i.e., raw character data) or com-

posite value (i.e., a sequence of nested subelements). In Figure 1.1, the root element

(MovieDB) has three nested subelement (movie, director andactor). The order of the

subelements within an element is sometimes significant in XML document (e.g. the or-

der of the actors). It is allowed to associate attribute/value pairs with elements (e.g., the

2
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<?xml version=“1.0” encoding=“ISO-8859-1”?>
<!DOCTYPEW4F DOC SYSTEM “movies.dtd”>
<MovieDB>

<Movie id = “a885”, language = “English”>
<Title> Night of the Hunter, The</Title>
<Year> 1955</Year>
<Genres>

<Genre> Drama</Genre>
<Genre> Thriller </Genre>

</Genres>
<Directordirectorid = “a133”> Charles Laughton</Director>
<Cast>

<Actor actorid = “a735”> Robert Mitchum</Actor>
<Actor actorid = “a459”> Shelley Winters</Actor>
...

</Cast>
</Movie>
...
<Director id = “a133”>

<FirstName> Charles</FirstName>
<LastName> Laughton</LastName>
<moviemovieid = “a8904885”/>
...

</Director>
...
<Actor id = “a735”>

<FirstName> Robert</FirstName>
<LastName> Mitchum</LastName>
<moviemovieid = “a885”/>
...

</Actor>
...

</MovieDB>

Figure 1.1: An Example of XML Data

language specification of themovie in the above example). A distinct attribute is object

IDs (e.g., the ID attributes of themovie, actor anddirector elements). And through

this attribute and attribute IDREF (e.g., themovieid attribute of themovie element un-
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deractor anddirector), XML allows the reference between elements. Attributes should

be unique among each element. The part of the syntax not enclosed within brackets is

referred to as PCDATA (Parsed Character Data). We say a document is well-formed if

it satisfies all these constraints. More details on the XML specification can be found

in [19]. We can see that XML is self-describing and irregular. In XML, new tags may be

defined at will to specify information and the structure relationship between information

elements. And the structure can be nested to arbitrary depth. And an XML document

can contain an optional description of its grammar. It is widely recognized as the data

representation, exchange and integration standard of the future.

Given the broad adoption of XML, a database system is required for efficient ma-

nipulation of XML data. In previous research efforts, XML database has been imple-

mented by using either traditional file system [3], relational database system [98, 38, 41],

object-oriented database system [15, 59, 100, 117] or semi-structured database sys-

tem [21, 78, 45, 6]. The native XML databases have been implemented as well [78,

6, 104, 103, 40, 52] (Accordingly, the other implementation mentioned above can be

called XML-enabled database). Using a file system is straightforward. However, it

does not support complex query processing (Full text searches are obviously not accu-

rate since markup, text and other syntax component not be distinguished.). Relational

database implementation is regarded as practical approach due to its wide deployment

in commercial world and its mature RDBMS technologies, e.g.,indexing, concurrency

control and transaction management, can be well exploited. Object-oriented database

systems allow a flexible storage system of XML data and support complicated query

processing. However, both of them are based on rigid schema definition and are not

natural for modeling the irregular XML data relationship. Furthermore, object-oriented

database systems are neither mature nor efficient enough for industry adoption. From

the above example, we can see that XML data are similar to semi-structured data. Both
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of them are self-describing and have no rigid structure. So some research works done

on semi-structured data can be extended to process XML data. But there are still some

differences between them and XML data: XML is ordered while semi-structure data is

not; XML can mix text and element together; and XML have a lot of other stuff: entities,

processing instructors and comments. These differences make XML data management

harder than semi-structured data. Native XML database systems are designed especially

to store XML documents. Like other databases, they support features like transactions,

security, multi-user access, programmatic APIs, query languages, and so on. Native

XML database is capable to reserve the proper characteristics of XML. In addition, it

can handle schema changes and data updates more easily. However, efficient data ma-

nipulations are required for this kind of specialized database. This inspires the research

work of this thesis.

The efficiency problem of managing and querying XML documents poses interesting

challenges for database researchers. There are a lot of literatures about XML query

language [11], XML query optimization [79, 94, 98, 46, 58, 112, 7, 30] (including XML

numbering/encoding scheme, XML indexing, XML summary analysis etc.), and XML

compression [108, 70]. However, little research work has been done on the XML data

processing based on similarity measurement. And for the pattern query, optimizing the

I/O cost and reducing the size of the intermediate results still appeal lots of attentions.

The work of this thesis is mainly focused on improving the similarity query (or similarity

search) and pattern query (or pattern search) processing on XML data. In the next three

sections, we give a brief introduction to the modeling of XML data, the similarity search

and pattern search on XML. In the last 4 sections, we also present the motivation, main

contribution and organization of this thesis.
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1.1 XML Data Model

Two types of models are most frequently used for XML data. One is the Stanford’s Ob-

ject Exchange Model (OEM ) [89, 4, 78]. Another one is the W3C’s Document Object

Model (DOM ) [94, 58].

OEM was introduced inTSIMMIS (The Stanford-IBM Manager of Multiple Infor-

mation Sources) as a self-describing way of representing metadata. OEM was later mod-

ified for use in theLore (Lightweight Object Repository) system to represent semistruc-

tured data. In theLore scheme, each object consists of a object identifier (oid), a type

and a value. These effectively represent relationships between the containing object and

the target object. In order to make theOEM model suitable for XML data, the author

of [32] made some modification to it: XML element is a pair(eid, value); whereeid is

an unique element identifer, andvalue is either an atomic text string or a complex value

containing (optionally) the following four components: string-valued tag, an ordered list

of attribute-value pairs, an ordered list of attributes of type IDREF or IDREFS in the

form (label, eid), wherelabel is the attribute name, and an ordered list of subelements

in the form(label, eid), where thelabel is the subelement tags. Figure 1.2 is theOEM

model for the movie element of the XML document fragment in Figure 1.1.

DOM model provides a mechanism for programs to access and manipulate parsed

XML content as a collection of objects. DOM represents a document as a hierarchy of

objects, called nodes, which are derived (by parsing) from a source representation of the

document. The DOM Level 1 working draft defines a set of object classes (and their in-

heritance relationships) for representing documents: document, element, attribute, text,

PI (processing instructor), comment and namespace objects. The XML document is pre-

sented to an application as a collection (actually, a tree) of objects. Most of these objects

would be of type node, and specifically of its subtypes element (representing the individ-

ual elements) and text (representing the content). Figure 1.3 is the tree representation of
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(Actor,&16)(Actor,&14)Cast&13

(Text,&5)Year&4

(Text,&3)Title&2

&8

Genre

Genre

(Text,&10)&9

(Text,&8)&7

(Title,&2),(Year,&4),(Genres,&6),(Director,&11),(Cast,&13)(@Language, "English")(@id, "a885")

(Text,&12)Director&11

(Text,&17)Actor&16

(Text,&15)Actor&14

Movie&1

"Charles Laughton"&12

"Thriller"&10

"Drama"

(@Actor  ,&400)     id

"Shelley Winter"&17

"Robert Mitchum"&15

(Genre,&7),(Genre,&9)Generes&6

"1955"&5

"Night of the Hunter, The"&3

(@Director  ,&112)

(@Actor  ,&560)     id

     id

Figure 1.2: AnOEM Model of XML Data Structure

the DOM model of the above example. (The nodes are labeled in abbreviated form and

the text nodes are ignored for clarity.)
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Figure 1.3: The Tree Representation ofDOM Model of XML Data

In order to research the characteristics of XML data, we need the formalized data

model. In this thesis, XML database is modeled as a collection of rooted, ordered, la-
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beled trees, denoted asD. As shown above, the XML documents may have hyperlinks

to other documents. In the meanwhile cycles may exist in the data due to the ID, IDREF

attributes of elements. Including these in the model gives rise to a graph rather than a

tree. However, they are not important in terms of the structures of the documents consid-

ered in this thesis. Hence, the ID-references and hyperlinks are ignored for simplicity.

Each XML data is modeled as a rooted, ordered, labeled treeT . There exists only one

root note, which has no parent. Every other node of the tree has exactly one parent and

it can be reached through a path of edges from the root. A treeT is calledlabeled tree

if each node is assigned a symbol from a fixed finite alphabet. For XML data, the alpha-

bet consists of all the tag names and attribute names of XML data. And a tree is called

ordered treeif a left-to-right order among siblings inT is given and order counts during

data processing. It is obvious that the graphic representation of our model is similar to

that of DOM except that we focus on the structural information which consists of the re-

lationships between elements and between elements and attributes. The notations related

to the data model is given in Chapter 2.

1.2 XML Similarity Search

Similarity search is an important core operation for many data analysis tasks on multime-

dia and time-series databases, biological and scientific databases. In this thesis, I focus

on two typical kinds of similarity queries on XML data:range queryandk-Nearest-

Neighbor query(k-NN query for short). Range queries find all objects in the database

which are within a given distanceτ from a given object;k-NN queries find thek most

similar objects in the database which are closest in distance to a given object. Other types

of search can be composed by these two similarity queries. These problems have been

extensively studied on numerical multi-dimensional data [50, 97, 13, 14, 72, 93, 119]
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and the distance measures depend on the order among data. However, in many other ap-

plications, multivariate analysis is applied on complex data domains which may not have

a natural order. Transaction data (or categorical data) is an example of such domain. In

recent years, several indexing approaches were proposed to address the similarity search

problem on transaction datasets [8, 83, 77] too. XML data is another example among

which there are no natural orders.

XML data are often with no schema specification. Even if there is a schema, the data

conforms to it flexibly. Elements and attributes can be optional and one type of elements

can occur multiple times. Furthermore, in the XML document, the semantics specified

implicitly by the relationship between its components. Then the tree structures play an

important role on differentiating data. The measurement of XML data similarity can be

precise only if this information is exploited and introduced into the measure function.

Thus, the traditional distance measurements cannot be used straightforward in this area.

So it is still an open problem. Since XML data are usually modeled as rooted, ordered,

labeled trees, and due to the flexibility of XML representation power, several existing

works employ the tree edit distance measure on the XML data trees, i.e., the minimum

number of operations required to transform one tree to the other. The definition of allow-

able tree edit operation varies according to the application [9, 86, 49, 125, 126, 105, 124].

However, the computation complexity of this distance measure is quite high. In Chap-

ter 2, a brief introduction of these measures will be given. Assuming a similarity measure

between XML data,Dist(T, T ′), the formal definition of similarity queries are give in

Definition 1.2.1, Definition 1.2.2 respectively.

Definition 1.2.1 (k-NN query). A k-NN queryQk = 〈Q, k,D〉 retrieves a setRk of

k data from DatasetD, such that for any two dataT ∈ Rk, T ′ /∈ Rk, Dist(Q, T ) ≤
Dist(Q, T ′).

Definition 1.2.2 (Range query).A range queryQr = 〈Q, ε, D〉 retrieves a set of dataRr
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from DatasetD, such that∀T ∈ Rr, Dist(Q, T ) ≤ ε; and∀T ′ /∈ Rr, Dist(Q, T ′) > ε.

1.3 XML Pattern Query

Unlike the similarity query, the pattern query on XML data should not be processed by

measuring the similarity between the query pattern and the XML data straightforwardly.

Instead, pattern queries specify both the structural and value constraints the result por-

tions of XML document should satisfy. As for the basic query abstractions, the XML

query language should support both select operation and join operation. Select oper-

ation picks up the elements satisfying the constrains specified in the query, while join

condition compares two or more XML attributes or data belonging to the same XML

data or different documents. Additionally, when dealing with XML data in which the

exact structure is not known, it is convenient to use a form of ”navigational” query based

on path expressions which uses wildcards and regular expressions. Various query lan-

guages for extracting, transforming and integrating the XML content have been defined:

Lorel [4], XQuery [2, 37] XML-QL, XML-GL, XSLT, XQL and Quilt [11, 23]. Some of

them are in the tradition of database query languages like SQL, OQL and Datalog, while

others are more closely inspired by XML.

FOR $t0 IN doc(“movies.xml”)/movieDB//movie[@Language = “English”],
WHERE $t0//Director = “Charles Laughton”,
AND $t0//Actor = “Robert Mitchum”,
ORDER BY $t0/T itle,
RETURN < Movie > {$t0/T itle} < /Movie >

Figure 1.4: An Example of XQuery

XQuery is defined by the W3C and is supported by all the major commercial database

engines (IBM, Oracle, Microsoft, etc.). In this thesis, we use it as the query language

of XML. XQuery is for finding and extracting elements and attributes from XML doc-
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uments. It is built on XPath [1] expressions which navigate through elements and at-

tributes in an XML document. The Syntax of XPath is defined as:

PathExpr ::= /step1/step2/ · · · /stepn;

step ::= Axis :: NodeTest Predicate∗
(1.1)

Each XPath expression consists of a sequence of location steps. Each step contains the

Axis, the NodeTest specification and zero or more Predicates. Axis specifies the tree rela-

tionship between the nodes selected by the location step and the context node. NodeTest

prescribes the node name or node type selected by it. And Predicates are expressions in

square brackets, which further refine the set of nodes selected by the location step. XPath

has 13 different axes of navigation, i.e. ancestor, ancestor-or-self, parent, attribute, child,

descendant, descendant-or-self, self, following, following-sibling, preceding, preceding-

sibling and namespace. In this thesis, we mainly study the child and descendant axes

navigation which are used to traverse to a child or a descendant element respectively.

They can be represented by ‘/’ and ‘//’ respectively for abbreviation. Figure 1.4 shows

an XQuery example. Thedoc() function is used to open the “movies.xml” file and spec-

ify the context. The path expressiondoc(“movies.xml′′)/movieDB//movie is used to

select all the movie elements undermovieDB in the “movie.xml” file. All the selected

elements are bound with the variable$t0 (An XQuery variable is defined with a$ fol-

lowed by a name, e.g.$t0). The predicate[@language = “English′′] further constrain

that the selected movie are in English. Symbol@ followed by the name is used to retrieve

the attribute.

XQuery also uses FLWOR expressions. FLWOR is an acronym for “FOR, LET,

WHERE, ORDER BY, RETURN”. In Figure 1.4, the FOR clause selects all movie ele-

ments under the document element that satisfy the query conditions and combines them

with the variable$t0. The WHERE clause specify the selection condition, i.e., the di-
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rector is “Charles Laughton” and one of the actors is “Robert Mitchum”. The ORDER

BY clause requires that the results will be sorted by thetitle. And the RETURN clause

specifies what should be returned, i.e., thetitle elements which satisfy the predicate

condition, and constructs the resulting movie elements.

As shown in the previous example, XQuery specify the pattern of selective predicate

on multiple elements which satisfy the specified tree structural relationship. Thus, these

queries are also called structural queries. The most frequently proposed XML struc-

tural queries are tree (twig) pattern queries which can be represented by a node-labeled

tree [20]. For example, the following XQuery expression in Equation 1.2 can be repre-

sented by the twig shown in Figure 1.5.

//Movie[@Language = ‘English’ AND ./Director = “Charles Laughton”

AND .//Cast/Actor = “Robert Mitchum”]/Title
(1.2)

Since both XML data and XML queries are represented as trees, in the rest of the

@L T
C

A

D

"Robert Mitchum"

"Charles Laughton"

"English"

//M

Figure 1.5: The Twig Pattern Query

thesis, “node” is used to refers to a tree node in the twig pattern, while “element” refers

to an element in the dataset, when the discrimination is necessary. Each node in the

twig also represents the content predicates on it, which usually specify tag names of the

elements, attribute value comparison, and string values of elements. The edges between
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the nodes depict the structural containment relationships between the nodes. The parent-

child relationship predicates (PC for abbreviation) between elements and the element-

attribute constrains are represented by the single lines, while the ancestor-descendant

relationship predicates (AD for abbreviation) are represented by the double lines.

Evaluating a XML twig pattern queryQp on a XML databaseD is to identify all the

matches of the query nodes inD. A match ofQp in D is actually a mapping from the

query nodes to the elements (or other components like attributes) of a certain XML data

T such that:

1. The predicates specified by the query nodes can be satisfied by their respective

images under the mapping toT ;

2. The structural relationship depicted by the edges between query nodes can be sat-

isfied by their respective images under the mapping toT .

According to [20], the answer toQp can be modeled as an-ary relation(d1, d2, · · · , dn)

where each tuple is a mapping of the query nodes andn is the number of query nodes,

i.e., the size of the queryQp, denoted as|Qp|.
In recent years, many methods have been proposed to match XML twig queries ef-

ficiently. These methods can be classified into three categories according to the search-

ing strategies: the relational-based methods [98, 38, 41, 18], the path navigation meth-

ods [46, 80, 58, 32] and the structure-join-based methods. The structure join methods can

be further classified into binary structure join [41, 79, 10, 104, 103, 98, 123] and holistic

twig join methods [20, 28, 74, 55]. The relational-based methods require mapping the

XML data and store them into relational database, transforming the queries proposed

in XQuery into SQL and constructing the results retrieved from relational database into

XML documents according to query specification. As mentioned above, the relational-

based methods make use of the high reliability, scalability and optimized performance of
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relational database. However, the challenge is that there is mismatch between the rela-

tional model and that of XML. The relational model is normalized, flat and fragmented,

while XML is un-normalized, nested and monolithic. These lead to the limitations of the

relational implementation of XML database. The path navigation methods are based on

the structural summary or path expression index and speed up query evaluation on XML

data by restricting the search to only relevant portion of the XML data.1 The structure

join methods are also utilized as the core operation to answer queries. Various element

positional numbering schemes are devised to identify the elements which satisfy the

structural predicates [35, 123, 107, 88, 74]. Binary structure join methods decompose

the query pattern into a set of binary structural predicates and each predicate is evaluated

separately. By “stitching” together the binary structure join results, the final answers of

the whole queries can be obtained. Indexes can be utilized to accelerate the binary struc-

ture join process. However, there may exist too many intermediate results which cannot

contribute to the final answers. The suboptimality is incurred by query decomposition.

Unlike binary structure join approaches, the family of holistic twig join methods try to

process the queries as a whole and make sure that each output partial answer to the path

pattern queries can be merge-joinable with at least one partial answer for each other path

pattern in the twig. All these methods are introduced in Chapter 2.

1.4 Motivation for Similarity Query Study

Just as the management of traditional types of data, many research disciplines are based

on the similarity measurement of XML data, such as schema extraction, XML data stor-

age and retrieval, XML data version management, and the data mining techniques like

nearest neighbor classification methods, cluster analysis etc. And similarity search is

an important core operation for many data analysis tasks on multimedia and time-series

1Some of the path expression index are proposed to be implemented in relational database.
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databases, biological and scientific databases. Now that more and more data are con-

veyed in XML language, efficient processing of this type of queries is a pressing re-

quirement.

The straightforward solution to similarity search is to sequentially scan all the data

items in the database. However, such processing is not practical at all. Firstly, with

the fast development of bioscience and the wide employment of internet database, the

volumes of the available complex data are becoming larger and larger. The size of a gene

sequence file is usually several Gigabytes. It is unacceptable to load all data into the main

memory to sequentially scan such large volumes of data. Secondly, the computational

complexity of the distance measure between XML data makes it prohibitive for bulk

operations in the database. As mentioned in Section 1.1, XML data are modeled as

rooted ordered labeled trees. The well known distance function for trees is the edit

distance, which is defined as the minimum number of tree edit operations required to

transfer one tree into another. To compute this distance, dynamic programming method

is often used and the best known tree edit distance evaluation algorithms have more than

O(n2) runtime and space complexity for ordered trees withn nodes [125, 29, 60]. While

to solve the similarity search, extra resources are required. So, it is not feasible to use this

brute force method to sequentially scan the whole database to process similarity queries.

Traditionally, to enable fast process data stored in the database, filter-and-refine

framework is used [114]. The basic idea is to get the results by a multi-step: In the

first step, an easy-to-compute or obvious distance function, which is the lower bound

of the actual distance, filters out most objects that have no possibility to be the qualify-

ing results. The candidates returned by the filtering step are then validated by using the

original complex similarity measure in the second step. Similarly, to process the opera-

tions on the tree-structured data based on similarity measure, distance-embedded lower

bounds can also be integrated into this framework to reduce the number of expensive
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similarity distance computations and speed up the search.

Since the real edit distance is of high computational cost, the efficiency of the multi-

step strategy is apparently determined by the efficiency of the filtration step. K. Kailing et

al [56] presented a set of filters for structural and content information in trees. However,

their filters are for unordered tree models and, at the same time, the structural and content

information separately are considered separately in their lower bounds. According to our

observation, to design a good filter for rooted ordered labeled trees, the order information

between sibling nodes in the tree structure is important for evaluating the distance be-

tween trees. Furthermore, the content conveyed by the tag name and the structure of the

trees should be explored together to avoid loss of information. Thus, the first purpose of

this thesis is to solve the similarity search problem efficiently on XML data by deploying

the filter-and-refine framework which is based on a well-defined, easy-to-compute and

accurate lower bound distance.

1.5 Motivation for Pattern Query Study

As mentioned above, searching for all occurrences of a twig pattern in the XML database

is an core operation in XML query processing. In recent years, many methods ([69, 20,

73, 28, 74, 55]) have been proposed to match XML twig queries efficiently.

In the foremost works ([123, 10]), the query patterns are decomposed into binary

structural relationships (either parent-child or ancestor-descendant relationships). Each

binary relationship is processed using structure join techniques and the final match re-

sults are obtained by “stitching” individual binary join results together. This approach

is not optimal due to the uncontrollable intermediate results. Bruno et al. [20] propose

a novel holistic approach namedTwigStack, which guarantees that each intermediate

path solution can contribute to the final solutions for queries which consist entirely of
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AD edges. However, when queries contain any PC relationship,TwigStack is non-

optimal since it may output a large size of intermediate matches to the individual path

expressions which do not contribute to final answers. The recently proposed algorithms,

TwigStackList [73] andTJFast [74], proposed by Lu. et al., guarantee the optimality

for queries in which PC relationships only occur under the non-branching query nodes

and thus slightly enlarge the optimal query class.iTwigJoin proposed in [28] is optimal

to AD-predicate-only or PC-predicate-only queries, or 1-branching-node-only queries.

However, the optimality for branching query nodes with PC relationships is still an open

problem.

FOR $t  IN //B[L]//D0

{$t  /text()}0

RETURN
<DATE>

</DATE> L

B

(a) (b)

*D

B1

B2

L1 D1

Figure 1.6: Example of Sub-optimal Processing

Another interesting observation is that all the above holistic approaches solve the

problem by producing the matching bindings forall nodes in a twig query. However, in

a practical application, this requirement is not necessary. In the XQuery expression, all

the matches of certain query nodes are required. However, for other query nodes, only

the existence of their matches are required. Query nodes whose matches shouldall be

returned are referred to asdistinguishednodes, and those used only for qualifying the

structural relationships of a query are referred to asexistential nodes. For example, in

the XQuery shown in Figure 1.6.a, onlyD is the distinguished node, whileB andL are

existential nodes. A straightforward approach to answer this query is to postprocess the

results of the previous methods and do an appropriateprojectionon the matches of those
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interesting nodes and remove the redundant query answers which appear in multiple

matches. For example, for the twig query in Figure 1.6.a and the data in Figure 1.6.b, all

previous algorithms (e.g.TwigStack, TwigStackList, TJFast ) output three intermedi-

ate path solutions(B1, D1),(B2, D1) and(B2, L1). Through projection and redundancy

removal, the real answerD1 will be retrieved. From the above example, we can see that

such a two-steps approach has two problems: (i) it outputs many matching elements of

theexistentialnodes that obviously are not required in the original query; and (ii) even if

only matching elements for thedistinguishednodes are considered, prior algorithms still

show the non-optimality by outputting many matches ofdistinguishednodes that do not

belong to final answers [20, 74, 28]. Therefore, previous approaches output “irrelevant”

element matches and “false” element matches.

In this thesis, we analyze the sub-optimality of the prior algorithms, and propose

novel efficient holistic twig join methods to process the queries which emphasis the

difference between thedistinguishednodes and theexistentialnodes. Through our work,

the optimal query class is essentially enlarged.

1.6 Contribution

The main contributions of this thesis are in two areas: enhancement of the similarity

query and the twig pattern query on XML data.

1. The contribution of this thesis on similarity XML query processing can be sum-

marized as follows:

From the description above, we know that the bottle-neck of solving the XML

query problems associated with similarity is the distance measure of XML data.

As it is show in Section 1.1, the XML data are usually modeled as labeled tree or

graph structures. The generic distance measure is edit-based distance. However,
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the edit distance function is computed using dynamic programming algorithm and

the cost is very high [125, 99, 105, 124]. In this thesis, we propose a new distance

measure between XML data. The measure function is based on the transformation

of the XML data into its binary tree representation. The structural features and

the content information conveyed by the node label can be totally reserved by this

transformation. However, the new presentation is propitious to study the effect of

edit operations on the tree. Theq-gram-like structures on the trees are used in our

methods. These miniature structures capture the local pattern of each data. And

based on counting the frequency of all these structures, we can get a vector rep-

resentation for each data: each element in the vector is defined as the number of

occurrences of the corresponding miniature structure of the dataset. The vector el-

ements together describe the whole features of the XML tree structure. Thus, each

object is transformed to a sparse vector with|T | non-zero items and the original

tree edit distance space is transferred to the vector space withL1 norm distance.

The L1 distance between the vectors is proved to be a close lower bound of the

edit distance between the original trees. The intuition here is that more similar the

XML data structures are, more common miniature structures they should share.

We also design and analyze novel algorithms which embed the lower bounds into

a multi-step framework to solve the similarity search problems. The computation

of the distance on the vector is onlyO(|T |) for each comparison. With this lower

bound, most of the computation of the real distance, with time complexity

O(|T1||T2|min(depth(T1), leaves(T1))min(depth(T2), leaves(T2)))

, can be filtered. Like theq-gram methods which are used to processing similarity

search on sequence data, our methods can be generalized according to different
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dataset characteristics. Through the set of comprehensive performance study, it is

shown that our methods are both I/O and CPU efficient.

2. The contribution of this thesis on twig pattern query processing can be summarized

as follows:

Firstly, theoretical analysis of the sub-optimality of previous algorithms is pre-

sented. The reason lies in the existence ofmatching blockson join data streams.

There are two kinds ofmatching blocks, i.e. bounded and unbounded matching

blocks. Previous algorithmTwigStack [20] suffers the existence of any block

including bounded and unbounded matching block. While algorithmsTwigStack-

List [73] andTJFast [74] make progress to efficiently process bounded matching

blocks, they still suffer from the existence of the unbounded ones. However, the re-

search in this thesis demonstrates that unbounded matching blocks which involve

theexistentialnodes should not result in the non-optimality of holistic algorithms.

In addition, an unbounded matching block involvingdistinguishednodes can also

be efficiently processed in most cases by selectively caching elements in the main

memory.

Based on the theoretical analysis, two novel algorithmsTwigContainment and

TwigPrefix using two popular element encoding schemes (i.e. thecontainment

andprefixencoding schemes) are proposed in this thesis. The new algorithms em-

ploy thebit vectorandoutput liststructures (with bounded spaces) to store infor-

mation and solve the unbounded matching blocks involvingdistinguishednodes.

Thus, the new algorithms identify a much larger query class to guarantee the I/O

optimality than the existing methods. In addition, it is shown that these two al-

gorithms have the same optimal query class because the theories are developed

independent of any specific labeling scheme. Finally, the new algorithms adopt

a novel framework for holistic twig pattern matching. Unlike the previous algo-
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rithms, which require the postprocessing phrase to do projection on the matches of

the distinguished nodes and to remove redundant matching answers, the two new

methods proposed in this thesis iterate the input data once and directly output the

matching elements of the distinguished nodes.

An extensive set of experimental studies on synthetic and real datasets for perfor-

mance comparison is presented in this thesis. The results show thatTwigContain-

ment andTwigPrefix outperform all tested previous methods. Moreover, although

TwigContainment andTwigPrefix have the same optimal query class, the exper-

imental results show thatTwigPrefix outperformsTwigContainment in terms of

the I/O cost and the total execution time.

1.7 Organization

The rest of this thesis are organized as follows:

• Chapter 2 introduces the background knowledge and related work about XML

similarity query and XML pattern query processing.

• Chapter 3 presents the research work on XML similarity query. An efficient

method based on the binary tree representation is proposed. Through this method,

the XML data tree is transformed into feature-encoded numerical vectors and the

distance defined on the numerical vector is utilized to provide pruning power and

facilitate the similarity queries on XML data. The experiments show that the prun-

ing power of the new algorithms leads to both CPU and I/O efficient solutions.

• Chapter 4 presents our research work on XML pattern query. The theoretical anal-

ysis of the sub-optimality of the previous methods are given. Based on these anal-

ysis and the practical requirements of XQuery, two novel algorithms are proposed
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in this chapter. Experimental results indicate that the new approaches require less

memory spaces, while enlarge the optimal query classes.

• Chapter 5 concludes the work in this thesis. This chapter summarizes the main

findings of this thesis. At the same time, limitations and future works are also

discussed in this chapter.

The work in Chapter 3 is published in [118], and the work in Chapter 4 is based on

the technical report of [76].



Chapter 2

Preliminaries and Related Work

In this chapter, I firstly give the background on XML schema languages and the no-

tations utilized in this thesis in Section 2.1 and Section 2.2. Then the background knowl-

edge of XML query processing is introduced which includes the part for XML similarity

search and the part for XML pattern query. The review of the research work closely

related to this thesis is given as well. The similarity search methods on different types

of datasets are briefly introduced in Section 2.3 and 2.3.2. Section 2.3.3 gives the in-

troduction to distance computation on tree-structured data. And various XML similarity

measure application is reviewed in Section 2.3.4 . There are lots of research literatures

about XML pattern query. According to the processing strategy, they can be classified

as relational-based approaches, path navigation approaches and structure join methods.

Most of the structure join methods are based on element encoding techniques, and they

can be further classified as binary structure join approaches, and holistic twig join ap-

proaches. And various indexing schemes have been proposed to facilitate the structure

joins. The novel pattern query processing methods proposed in this thesis belongs to

holistic twig join methods. Relational-based approaches, path navigation approaches

are briefly introduced in Section 2.4.1 and Section 2.4.2. In Section 2.4.3, I present

an detailed overview of binary and holistic XML structure join methods. Background

information of XML element numbering schemes, which are considered as one of the

23
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foundations of structure join, is presented in Section 2.4.3. Review of the indexing tech-

niques designed to facilitate structure join is also given in this section.

2.1 XML Schema

According to the introduction in Chapter 1, we know that XML documents are irregu-

lar. However, some XML documents do record related information and share the similar

structure. To better describe such XML data structures and constraints, several XML

schema languages have been proposed. Now the widely accept schema language is

DTD [19], which is a subset of SGML DTD. Essentially, a DTD specifies for every ele-

ment, the regular expression pattern that the subelement sequences of it need to conform

to. The DTD declaration syntax uses commas for sequencing, ‘|’ for (exclusive) OR,

parenthesis for grouping and the meta-characters, ‘?’, ‘*’, and ‘+’ to denote respectively,

zero or one, zero or more and one or more occurrences of the preceding term. The DTD

can also be used to specify the attribute for an element (using the<!ATTLIST> dec-

laration) and to declare an attribute that refers to another element (via an IDREF field).

Figure 2.1 illustrates part of DTD of the XML document shown in Figure 1.1. However,

DTD is not required for each document. If a document has a DTD and conforms to it,

then the document is valid.

2.2 Notation

In this thesis, XML data are modeled as rooted, ordered, labeled trees. The formal

specification of the model for each data is:T = (N, E, Σ, label, Root(T )). N is a

finite set of nodes.E is the binary relation onN where each pair(u, v) ∈ E represents

the parent-child relationship between two nodesu, v ∈ N . Nodeu is the parent of node

v andv is one of the child nodes ofu. This is used to represent the structural information
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<!ELEMENT MovieDB (Movie | Director| Actor | · · · )*
<!ELEMENT Movie (Title, Year, Genres, Director, Cast,· · · ) | (#PCDATA)>
<!ATTLIST Movie

id CDATA #REQUIRED
Language CDATA#IMPLIED >

<!ELEMENT Title (#PCDATA) >
<!ELEMENT Year (#PCDATA) >
<!ELEMENT Genres (Genre)+ >
<!ELEMENT Genre (#PCDATA) >
<!ELEMENT Director (FirstName, LastName, Movie,· · · ) | (#PCDATA) >
<!ATTLIST Director directorid >
<!ELEMENT Cast (Actor| Actress)+ >
<!ELEMENT Actor (FirstName, LastName, Movie,· · · ) | (#PCDATA) >
<!ATTLIST Actor actorid >
· · · · · ·

Figure 2.1: An Example of XML DTD

between the elements and their subelements, and between elements and their attributes.

There exists only one root note, denoted asRoot(T ) ∈ N in a data, which has no parent.

Every other nodev of the tree has exactly one parent (parent(v)) and it can be reached

through a path of edges from the root. The nodes in the reaching path ofv are ancestors

of v, denoted asance(v). Recursively, the nodes reached throughv are descendants of

v, denoted asdesc(v). The nodes which have a common parentv (all the children ofu,

i.e., children(v)) are siblings. The order of the siblings from left to right is significant.

Σ is the finite alphabet of tag names and attribute names andlabel : N → Σ is a total

function. |T | is the number of nodes in treeT , or the size ofT .

Thedepth of a nodev ∈ N , denoted asdepth(v) is the number of edges on the path

from root(T ) to v. The out-degree ofv, deg(v), is the number of children ofv. These

definition can be extended such thatdepth(T ) anddeg(T ) denotes the maximum depth

and degree respectively of all the nodes inT . A node without children is a leaf, otherwise

an internal/inner node. The number of leaves ofT is denoted asleaves(T ). Let T (v) be
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the subtree ofT rooted at nodev ∈ N . Thepreorder traversalof T (v) is obtained by

visiting v and then recursively visitingT (vk) (vk ∈ children(v), k = 1 · · · i) in order.

Similarly, thepostorder traversalof T (v) is obtained by first visitingT (vk) (k = 1 · · · i)
in order, and thenv. Thepreorder numberandpostorder number, denoted aspre(v) and

post(v) is the number of nodes precedingv in the preorder and postorder traversal ofT

respectively.

2.3 XML Similarity Search

For many databases, such as multimedia databases, DNA databases, financial databases,

medicine databases etc., retrieval of data that are similar to a given reference object is an

core operation. Although data can always be scanned sequentially, the amount of disc

I/O for the large database make such method prohibitive. Indexing methods are the most

primary and direct means to facilitate speedy search.

2.3.1 Traditional Similarity Search Methods

The basic idea is to get the results of similarity query by the multi-step filter-and-refine

approach: In the first step, an easy-to-compute or obvious distance function that lower

bounds the actual distance is evaluated to filter out the objects that are impossible to be

the answer. Then the candidates returned by the filtering step are validated by using the

original distance in the refinement step. Indexes are used to prune the searching space

and to reduce the amount of data fetched in response to a query and meet the performance

requirement. To perform nearest neighbor search, the branch-and-bound searching strat-

egy is the usual choice: The lower bound of the actual distance between the query object

and the data indexed are computed using the query object and the corresponding index

entry. A pessimistic bound is updated and maintained during the evaluation. The data
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indexed by the entries which have lower bound exceeding the pessimistic bound can

be safely pruned and need not to be fetched from the disc. The data indexed by the

remaining entries should be further evaluated to eliminate the false positive.

The lower bound computation should make sure the correctness of the results. So the

results are always complete, leading to100% recall. Therefore, the main performance

measurement of the indexing methods isprecision. The less false positives remain, the

more effective the index is. That means less data will be fetched from disc to be further

evaluated.

The Indexes which support similarity search on numeric multi-dimensional space

have been intensively studied [34, 50, 97, 13, 14, 72, 93, 119]. B-tree [34], ISAM in-

dexes, hashing binary trees, are designed for indexing data based on single-dimensional

keys, and are not suitable to deal with similarity search which is based on the distance

function of multiple parameters. R-tree [50, 97, 13] and its variations are well known

to yield good performances for the similarity search on the multi-dimensional points

and objects with spatial extents. The basic idea ofR-tree and its variations is to hi-

erarchically partition the data space into a manageable number of smaller subspaces.

Spatial points and objects are indexed by their associating subspace. However, a poorly

designed partitioning strategy may lead to unnecessary multiple path traversal and cor-

rupt the performance of the index. The R-tree-based index deteriorates rapidly when

the dimensionality is high. This is because overlap in the directory increases rapidly

with increasing dimensionality of data. Many methods have been designed to deal with

such “dimensionality curse” problem [14, 72, 93, 119]. Recently, several indexing ap-

proaches were proposed to address the similarity search problem on transaction datasets

[8, 83, 77]. Extending the common methods from numerical, ordered domains to the

transactional data (or marketing data) is not straightforward. The reasons are: (i) Data

domains do not have a natural order; (ii) The dimensionality of the transactions is very
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large, and the datasets are very sparse. Thus these research work partition the search

space according to some clustering methods.

2.3.2 Approximate String Matching Problem

The Approximate string matchingproblem is to find the approximate occurrences of a

pattern in a data string. This problem usually measures the query pattern and the data

with edit distance functions [43, 106]: The substrings of data are signifies, by dynamic

programming, for at mostk editing operations (insertions, deletions and changes) are

needed to convert the substring to the pattern. However computing the edit distance

between strings requires time quadratic to the length of the strings in worst case, and

therefore, not applicable to large sequence databases.

Q-gram distance of strings is an alternative distance measure in connection with

approximate string matchingproblem [102, 47]. LetΣ be a finite alphabet, and letΣ∗ be

the set consisting all strings overΣ, andΣq all string of lengthq overΣ. The definition

of q-gram distance is:

Definition 2.3.1 (q-gram distance between strings).For a stringx1 = a1a2 · · · an, let

v = aiai+1 · · · ai+q−1, for somei, thenx1 hasoccurrenceof v. Let G(x1)[v] denote the

number of theoccurrencesof v in x1. Then theq-gram distancebetween two stringx1

andx2 is:

Dq(x1, x2) =
∑
v∈Σq

|G(x1)[v]−G(x2)[v]|. (2.1)

Example 1. Given two strings “VACATION” and “VOCATION”, the 3-gram of them

are (##V , #V A, V AC, ACA, CAT , ATI, TIO, ION , ON#, N##) and (##V ,

#V O, V OC, OCA, CAT , ATI, TIO, ION , ON#, N##) respectively. Symbol#

is appended to make sure that each character in the strings is in 3 3-grams. Thus, their

3-gram distance equals 6.
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Theorem 2.3.2.For anyx, y, z ∈ Σ∗,

1. Dq(x, y) ≥ 0, Dq(x, x) = 0;

2. Dq(x, y) = Dq(y, x);

3. Dq(x, y) ≤ Dq(x, z) + Dq(z, y);

It is easy to prove the properties ofq-gram distance in Theorem 2.3.2. However,

q-gram distance is not a metric, since two different strings can have 0q-gram distance.

To solve theapproximate string matchingproblem, processing all the data positions

is rather slow. Filtration of data is a widely adopted technique to reduce the string area

processed by dynamic programming. One way is to develop necessary conditions for a

data area to include an approximate match of the pattern. These conditions often deal

with q-grams of the pattern. The intuition is that whenever an approximate match occurs,

it has to resemble the original pattern, which is reflected by the existence of the same

q-grams in the pattern at the approximate matching position. It has been proved that

any edit operation destroys at mostq q-grams of the original strings. Thus,q-gram

distance can be deduced as a lower bound of the edit distance and can be a filtration on

the similarity search. However, as mentioned above,q-gram distance is not an accurate

distance measure. So, for the similarity search, it can be used as filtration, but refinement

step to eliminate the false positive is required.

2.3.3 Similarity Measure Between Tree-structured Data

Many data mining techniques (for example, nearest neighbor classification methods,

cluster analysis, and multidimensional scaling methods) are based on similarity measures

between objects. There are essentially two ways to obtain measures of similarity. First,

they can be obtained directly from the objects. Alternatively, measures of similarity

may be obtained indirectly from the feature vector distance of the objects. Instead of
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measuring similarity, we can also measure the dissimilarity which is the dual problem

of similarity measure. There are many ways to measure the similarity between trees, for

instance, the largest common sub-tree and the smallest common super-tree evaluation,

the tree edit distance, the alignment and transferable ratio between two trees [9, 86, 49,

125, 126, 105, 124]. Among these measurements, the editing-based distance (tree edit

distance) is mostly adopted and the focus of this thesis is limited on this measure.

Like the string edit distance measure, all the tree edit distance measures are based on

the set of primitive editing operations that can transfer one tree into another. In paper

[125], three kinds of operations on ordered labeled trees have been proposed:

• relabel: Changing the label of a nodev of T .

• delete: Deleting a non-root nodev means making the children ofn become the

children of theparent(v) and then removingv (The children are inserted in the

place ofv as a sequence in the left-to-right order of theparent(v) ).

• insert: Insertingv as a child ofv′ in T and makingv the parent of a consecutive

subsequence of the children ofv′. Insertion is the complement of deletion.

Let λ /∈ Σ denote a special blank tag name. The cost functionγ : (Σ
⋃{λ}) ×

(Σ
⋃{λ}) → R is assigned to each edit operation:

γ(a → b), wherea, b ∈ (Σ
⋃{λ}) anda 6= b

a = λ, means insertion

b = λ, means deletion

otherwise, means relabeling

(2.2)

And this cost function is constrained to be a metric. The generic similarity metric on

ordered labeled trees is unit cost edit distance. Anedit scriptbetweenT1 andT2 is a

sequence of edit operations turningT1 into T2. The cost of a edit script is the sum of
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the cost of all the operations. Thentreedist(T1, T2), the edit distance betweenT1 and

T2, is defined as the minimum cost of the edit scripts that transformT1 into T2. And the

corresponding scripts are theoptimal edit scriptsbetweenT1 andT2. (Theoptimal edit

script is not unique.)

An edit operation mapping, (M, T1, T2) (orM without confusion), between the nodes

of T1 andT2 can be used as the graphic representation of anedit scriptbetween them.

Assuming that there is an ordering between the nodes of trees and thatT1[i] is theith

node of treeT1 andT2[j] is thejth node of treeT2, (i, j) defined inM meansT1[i] should

be changed toT2[j] if T1[i] 6= T2[j]; or T1[i] remains unchanged ifT1[i] = T2[j]. If there

is no pair defined inM which containingi as the first integer, thenith node inT1 is

deleted. If no pair in M containsj as the second integer, thenjth node inT2 is inserted.

The edit operation mapping is one-to-one mapping and preserve the sibling and ancestor

relationship betweenT1 andT2. The cost of a mapping can be defined as:

γ(M) =
∑

(i,j)∈M

γ(T1[i], T2[j]) +
∑
i∈I

γ(T1[i] → λ) +
∑
j∈J

γ(λ → T2[j]) (2.3)

, whereI, J are the sets of nodes not touched byM in T1 andT2 respectively. It has been

proved [125] that for a edit operation scriptSc from T1 to T2, there exists a mappingM

between them that satisfyingγ(M) ≤ γ(Sc); and for a mappingM , there is aSc such

thatγ(Sc) = γ(M). So,

treedist(T1, T2) = min{γ(M)|M is a mapping from T1 to T2} (2.4)

Hence, the edit distance computation can be achieved by computing the minimum cost

mapping.

Polynomial algorithms exist to compute the tree edit distance and the corresponding

edit script. The algorithms are all based on the classic dynamic programming techniques
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T2[j]

T2[j]T1[i]

T1[i]

Figure 2.2: Cases of Forest Distance

and most of them are simple combinatorial algorithms. A simple recursion is given for

the computation [17]:

Lemma 2.3.3.Let two forestT1[l(i1) · · · i] andT2[l(j1) · · · j] consist of the nodesl(i1) · · · i
and the nodesl(j1) · · · j from T1 andT2 respectively (according topostorder number),

wherel(v) retrieves the leftmost leaf of subtreeT (v). Theni and j are therightmost

roots (if any). We have,

forestdist(θ, θ) = 0

forestdist(T1[l(i1) · · · i], θ) = forestdist(T1[l(i1) · · · i− 1], θ) + γ(T1[i] → λ)

forestdist(θ, T2[l(j1) · · · j]) = forestdist(θ, T2[l(j1) · · · j − 1]) + γ(λ → T2[j])

forestdist(T1[l(i1) · · · i], T2[l(j1) · · · j])

= min





forestdist(T1[l(i1) · · · i− 1], T2[l(j1) · · · j]) + γ(T1[i] → λ),

forestdist(T1[l(i1) · · · i], T2[l(j1) · · · j − 1]) + γ(λ → T2[j]),

forestdist(T1[l(i1) · · · l(i)− 1], T2[l(j1) · · · l(j)− 1])

+forestdist(T1[l(i) · · · i− 1], T2[l(j) · · · j − 1]) + γ(T1[i] → T2[j]).

Proof. (This proof is given in [125].) The first three equations are trivially true. To

prove the last equation, consider a minimum cost mappingM betweenT1[l(i1) · · · i] and

T2[l(j1) · · · j] shown in Figure 2.2.



33

Case 1:i is not touched by a mapping line (The first case in Figure 2.2). Then(T1[i] →
λ) ∈ M and the first case of equation 4 is applies.

Case 2:j is not touched by a line. Then(λ → T2[j]) ∈ M and the second case of equation

4 applies.

Case 3:i andj are both touched by lines (The second case in Figure 2.2). This implies

that(i, j) ∈ M . Otherwise, let(i, h), (k, j) ∈ M . If i is to the right ofk (or is the

proper ancestor ofk), thenh should be to the right ofj (or be the proper ancestor

of j). Both are impossible sincej is the right most root.

Since the edit operation mapping reserves the ancestor descendant relationship,

any node in subtreeT1[i] can only touched by nodes inT2[j]. Hence,

forestdist(T1[l(i1) · · · i], T2[l(j1) · · · j]) =

forestdist(T1[l(i1) · · · l(i)− 1], T2[l(j1) · · · l(j)− 1])

+forestdist(T1[l(i) · · · i− 1], T2[l(j) · · · j − 1]) + γ(T1[i] → T2[j]).

The third case of equation 4 follows.

Lemma 2.3.3 suggests a dynamic program. The value offorestdist( , ) depends on a

constant number of subproblems of smaller size. Hence, the time complexity is bounded

by the number of subproblems ofT1[l(i1) · · · i] times the number of subproblems of

T2[l(j1) · · · j]. The number of the subproblem is quadratic to the size of the forests

respectively.

The work in [125, 60] proved that the subproblem size can be reduced by revising

the recursion definition. Zhang et.al rewrite the last equation of Lemma 2.3.3 and have

the following lemma:
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Lemma 2.3.4.Let i1 ∈ anc(i), j1 ∈ anc(j). We can have:

(1) If l(i) = l(i1), andl(j) = l(j1), then

forestdist(T1[l(i1) · · · i], T2[l(j1) · · · j])
= treedist(T1(i), T2(j))

= min





forestdist(T1[l(i1) · · · i− 1], T2[l(j1) · · · j]) + γ(T1[i] → Λ),

forestdist(T1[l(i1) · · · i], T2[l(j1) · · · j − 1]) + γ(Λ → T2[j]),

forestdist(T1[l(i1) · · · i− 1], T2[l(j1) · · · j − 1])

+γ(T1[i] → T2[j]).

(2) If l(i) 6= l(i1), andl(j) 6= l(j1), then

forestdist(T1[l(i1) · · · i], T2[l(j1) · · · j])

= min





forestdist(T1[l(i1) · · · i− 1], T2[l(j1) · · · j]) + γ(T1[i] → Λ),

forestdist(T1[l(i1) · · · i], T2[l(j1) · · · j − 1]) + γ(Λ → T2[j]),

forestdist(T1[l(i1) · · · l(i)− 1], T2[l(j1) · · · l(j)− 1]) + treedist(T1(i), T2(j)).

Lemma 2.3.4 makes sure that before the computation oftreedist(T1(i), T2(j)), all

distancestreedist(T1[i1], T2[j1]) are available ifi1 (or j1) is in the subtree ofT1(i)

(T2(j)) but not in the path froml(i) (l(j)) to i (j). After the computation oftreedist(T1(i), T2(j)),

all distancestreedist(T1(i1), T2(j1)) are available, wherel(i1) = l(i) andl(j1) = l(j).

Thekeyroots of T is defined as follows in [125].

keyroots(T ) = {root(T )}
⋃
{u ∈ N(T ) | v has a left sibling}

ThespecialsubforestF (v) of T is the forest under nodev ∈ keyroots(T ). For a node

v ∈ N(T ), the collapsed depthof v, cdepth(v), is defined as the number ofkeyroot

ancestors ofv. Also cdepth(T ) is the maximum collapsed depth of all nodes inT .
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Lemma 2.3.5.For an ordered treeT , the relevant subproblem size w.r.t. the keyroots is

bounded byO(|T |cdepth(T )). Andcdepth(T ) ≤ min{depth(T ), leaves(T )}.

Thus, the algorithm proposed in [125] to compute edit distance between trees is of

O(|T1| × |T2| × min(depth(T1), leaves(T1)) × min(depth(T2), leaves(T2))) time com-

plexity.

In paper [60], the worst case time complexity of the edit distance computation is

reduced further by decomposing a treeT into disjoint paths,heavy paths. First the nodes

of T is classified asheavyor light as follows: The root islight. The child node of the

internal nodes with the maximum size is classified asheavy. The edge to thelight nodes

are light edges, while the one to theheavynodes areheavy edges. The light depthof

nodev, ldepth(v), is the number of light edges on the path fromroot(T ) to v. In the

paper, Klein proved that the number ofrelevantsubproblems w.r.t. the light nodes is

bounded byO(|T |ldepth(T )) and for anyv ∈ N(T ), ldepth(v) ≤ log|T |+O(1). Thus,

the worst case time complexity is bounded toO(|T1|2|T2|log|T2|)
The main difference between various tree-distance algorithm is the set of allowing

edit operations. The earlier work in [96] allows insertion and deletion of single nodes

only at the leaves and relabeling of nodes anywhere in the tree. Definition in [125, 99,

105, 124] allow insertion and deletion of single nodes anywhere in a tree. In [124] a new

distance metric based on a restriction of the mappings between two trees is proposed.

The intuition is that two separate sub-trees ofT1 should be mapped to two separate

subtrees inT2. The demonstration of constrained mapping is shown in Figure 2.3. The

constrained edit mapping is a kind of restricted mapping which satisfies:

1. 1 ≤ i ≤ |T1|, 1 ≤ j ≤ |T2|;

2. the mapping is the one to one mapping, preserving sibling order and ancestor order

3. For any triple(i1, j1), (i2, j2) and(i3, j3) in the mapping, letlca() represent least
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Figure 2.3: Examples of Constrained Mapping

common ancestor function,t1[lca(i1, i2)] is a proper ancestor oft1[i3] iff t2[lca(j1, j2)]

is a proper ancestor oft2[j3]

While, the alignment distance in [105] allows only the insertion before the deletion. In

an alignmentA of two treesT1 andT2, the nodes labeled withλ (space) are inserted into

T1 andT2 to obtain two new treesT ′
1 andT ′

2 with the same structure. And then the nodes

onT ′
1 are paired with the corresponding nodes onT ′

2: pair(a, b) means replacing ifa 6= b,

(a, λ) means deletion operation and(λ, b) means insertion. A score are assigned for each

pair. ThevalueofA is the sum of scores of all pairs of it. Note that a standard assumption

is that the score schemeγ satisfies triangle inequality. And the optimal alignment is one

that minimize the value of all possible alignments. Thealignment distanceis the value

of the optimal alignment. Figure 2.4 is an example of alignment.
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Figure 2.4: Alignment of TreeT1 andT2

2.3.4 XML Applications Associating Similarity Measure

Just as mentioned previously, an XML data is formally modeled as a rooted ordered

labeled tree. So most literatures use the similarity measure between trees to solve the

problem of XML data. Guha et al. [48] presented an approximate XML join based

on the tree edit distance. In their method, XML documents are transformed into their

corresponding preorder and postorder traversal sequences. Then the maximum of the

string edit distance of the two sequences is used as the lower bound of the tree-edit dis-

tance. They also proposed to use a constrained tree-edit distance, which is of complexity

O(|T1||T2|), as the upper bound of the generic tree edit distance to reduce the computa-

tion further. In addition, they use the reference sets to take advantage of the fact that the

tree edit distance is a metric, thus reducing the actual amount of edit-distance computa-

tions between pairs of trees. However, the complexity of computing the proposed lower

bounds is stillO(|T1||T2|) (i.e., the complexity of sequence edit distance computation),

and it is not scalable to large dataset.

In the recent work, Kailing et.al. [56] presented a set of filters grounded on structure

and content-based information in trees. They proposed using the vectors of the height

histogram, the degree histogram and the label histogram to represent the structure as

well as content information of trees. The lower bound of the unordered-tree edit distance

can be derived from theL1 distance among the vectors. They also suggested a way to
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combine filtration to facilitate similarity query processing. However, their filters are for

unordered trees and cannot explore the structure information implicitly depicted by the

order of siblings. Moreover, their lower bounds are obtained by considering structure

and content information depicted by tag names separately. In Chapter 3, we suggest

combining the two sources of information to provide accurate lower bounds for the tree-

edit distance. And we compare the performance of our algorithm against the histogram

filtration methods.

Garofalakis and Kuma [44] correlate streams of XML data through approximate

matching in small space. They presented an efficient approximation of the tree edit

distance by embedding the tree-edit distance metrics (allowing amoveoperation in ad-

dition to the basic operations) into a numeric vector space withL1 distance norm. In

their method, XML trees are hierarchically parsed into valid subtrees in different phases.

Then the multi-set of valid subtrees is obtained by parsing the tree. The vector repre-

sentation is defined as the characteristic vector of the multi-set. TheL1 distance of the

vectors guarantees an upper bound of distance distortion between two trees. However,

the method fails to give a constant lower bound on the tree-edit distance to facilitate the

retrieval of exact answers to the similarity queries based on similarity measure.

pq-Grams was introduced by Augsten et al. [12] as approximation of tree edit dis-

tance for ordered trees.pq-gram anchored at a nodeu in the tree consists ofp − 1

ancestors andq children ofu. The missing components are made up by appending nodes

with tag ∗. Accordingly, thepq-gram profile of a treeT is a vector consisting of the

occurrences of all thepq-grams inT and thepq-gram distance of trees is the distance of

the correspondingpq-gram profiles. The distance thus defined is sensitive to the inner

node changes and weight local changes less than distributed changes. The effectiveness

of this orientation depends on the application.

In change detection scenarios, two versions of the same document are given and the
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difference is computed. Cobèna [33] takes advantage of existing element IDs, which

cannot be assumed for joins of data from different sources. Chawathe et al. [25] present

a heuristic solution for unordered trees that runs inO(n3) time and for many cases in

O(n2). The X-Diff algorithm by Wang et al [113] allows leaf and sub-tree insertion

and deletion and node relabeling. To achieveO(n2 × deg(T ) log(deg(T )) runtime, they

match only nodes with the same path to the root node. The distance measures presented

above are evaluated between pairs of documents.

Weis and Naumann [115] proposed a similarity measure between XML documents

in a duplicate detection framework. In the worst case, all pairs of elements have to be

compared. Puhlmann et al. [91] improved the efficiency by applying the Sorted Neigh-

borhood method to nested objects. Both approaches assume a known, common schema

of the matched documents and require a configuration step.

2.4 XML Pattern Query

To answer pattern queries on XML data, it is not efficient to measure the similarity be-

tween the query patten and the data directly. Firstly, the information about the position

in the document tree where a pattern matching can occur is not available in advance.

Secondly, it is difficult to define the similarity measure between query pattern and data

since XML pattern query consists of path expressions containing wildcards and regular

expressions. According to the searching strategy, previous XML pattern query meth-

ods can be classified as relational-based pattern query methods, path navigation-based

pattern query methods, structure join-based methods. There also exists some methods

which are based on query transformation instead of query decomposition. In this section,

we systematically study all of these methods.
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2.4.1 Relational-based Pattern Query Processing

In practice, XML data can be managed by traditional database, such as relational or

object-oriented database. Relational database implementation is regarded as a practical

approach because of its wide deployment in commercial world and its mature RDBMS

technologies, e.g., indexing, concurrency control and transaction management. Some

previous work processes XML pattern query by using RDBMS [98, 38, 41]. They mainly

solve the following three subproblems [98]:

(1) Physical schema design: transferring the arbitrarily nested XML schema into the

flat table schema of relational database. The recursive structure of the XML data

requires special processing.

(2) Query mapping: converting XML queries to corresponding SQL queries over the

tables obtained from transformation.

(3) Result construction: exporting the existing data as XML

The first subproblem is a tradeoff between the storage cost and query processing per-

formance. This depends on the features of the data (the shape, the size and the recursive

property etc). The naive approach is to transform each element into a relation, with each

attribute of the element as one column of the table. The relationship between elements

is implemented by foreign keys. However, there is no one-to-one correspondence be-

tween the attributes of XML elements and the columns of relational tables. Furthermore,

this causes the fragmentation problem: To be space optimal, the irregularity of XML

requires to store different elements in different tables. However, this transformation may

cause too many join operations on multiple tables for XML query processing. If multiple

elements are mapped to a single table, there may be much waste on storage space.

One type of transformation is on generic XML data without schema assumption. The

methods proposed in [38] employ a heuristic to achieve efficient relational schema de-
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sign. The frequently occurring portions of XML documents are stored in a relational

system, while the remainder is stored in an overflow graph. The intuition is that the

“interesting node groups” usually are the frequent ones. Then less joins are required

for many queries. The authors of [41] classified the transformation methods into 6 cate-

gories: According to the structural mapping, they proposedEdgetable,Binary table and

Universaltable. And according to the value storage, there can bevalue inlinedandvalue

outlinedstrategies. Edge strategy completely fragments the input document into one ta-

ble with schema(source, childNo, tag, target). This strategy incurs many (self) joins

over a large table to answer even simple queries. Furthermore, redundant information is

stored since tags are repeated. At the same time, updating operation is costly. Binary

strategy clusters the edges according to tags and horizontally partitions the Edge table.

Then joins are performed over much smaller tables and better performance is achieved

for query evaluation. Tags are not redundantly stored any more. Universal table stores

all edges in a single universal table. It is obtained by outer join all the Binary tables

and stores each node-to-leaf path in a tuple. The query performance can be improved

by Universal table by reducing the join operation. However, there still exits too much

redundancy in this table.

Shanmugasundaram [98] demonstrated how to map the XML schema into relational

schema by utilizing the DTD specification to evaluate powerful queries over XML doc-

uments. The shared inline techniques is proposed to inline as many subelements as pos-

sible in the element tables. If an element is of a shared type (the in-degree of it in DTD

graph is larger than 1), or it is recursively defined, or it consists of set of subelements,

then it cannot be inlined. Instead, separate table is constructed for it. However, the tables

for shared elements may lead to extra joins to answer path expressions. Hybrid inline

techniques try to solve this problem by inline some shared elements, i.e., the elements

with in-degree larger than 1 which are neither recursively defined nor consisting of set
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subelements. However hybrid inline method may incur more SQL sub-queries. Ob-

viously, it is a fundamental tradeoff between reducing number of queries and reducing

number of joins for each query. In addition to XML schema, the relational schema works

at different efficiency according to different workloads. In [18], the authors proposed to

optimize the schema transformation by exploring the space of possible transformations

under the guidance of the cost evaluation which is defined according to the XML schema,

the data statistics and the query workload. However, the set of possible configurations is

very large - possibly infinite. Thus, the greedy algorithm is used to select efficient map-

ping alternatives for a variety of workloads. The selected configurations are robust to

variations on workloads and superior to the all-inlined strategy. However, the efficiency

of this methods depends on the accuracy of the statistics derivation.

To convert semistructured queries on XML to SQL, the path expressions need to be

transformed. In [98], the authors gave a framework. Firstly, the relation corresponding

to the context of the root path expressions need to be identified, and be transformed to

FROM clause of SQL. Then, joins between tables are required if the elements are not in

the same table. The recursive path expressions can be transformed to the union of two

SQL fragments within a least fix-point operator. Arbitrary and complicated queries need

to be transformed into simple (recursive) path expression first, and then to SQL queries

separately.

Relational implementation show limitations on converting the results of SQL queries

to complex structured XML documents, since the construction may contain tag variables

and grouping operations and complex elements. In [98], the authors proposed some

solutions to these problems. However, these require the processing outside relational

engineer, which abandoned the mature optimization techniques of RDBMS.
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2.4.2 Path Navigation-based Pattern Query Processing

XML query languages (e.g. XPath and XQuery etc) specify the path expressions

which can be answered by navigating the irregular structures of data. However, such

query processing may be very inefficient due to the navigation of the whole data graph,

especially when the objects are scattered on different locations of the disk. Structural

summaries or indexes of XML database can speed up query evaluation by restricting the

search to only the relevant portion of the XML data. Thus the extraction of indexes based

on structural summary of XML data has received a lot of research attention [46, 80, 58,

32]. Some of them are based on relational-based implementation.

The indexes for the semistructured data can be adopted to process XML queries [46,

36]. In [46],DataGuideis defined as the concise summaries on the semistructured data.

It describes every unique label path of a source exactly once and encodes no label path

that does not appear in the source and each object inDataGuidecan have a link to its

corresponding target set in the source. Hence, we can find all source objects reachable

via a label path in time proportional to the length of it. One source database may have

multiple DataGuideamong which the optimal one should be explored. Furthermore,

multiple label paths can reach the same object and undistinguishable inDataGuide. To

solve these problems,strong DataGuideis proposed [5]. It ensures that the set of all

label paths sharing the same target set with some pathl in the source data equals to the

set of label paths in thestrong DataGuidethat share the same target set withl. Thus, it

can induce a one-to-one correspondence between source target sets and theDataGuide

objects.T -index [80] indexes all sequences of objects connected by a sequence of path

expressions defined by a template. 1-index indexes all objects reachable through an

arbitrary path expression from the root: Two nodes are equivalent (same entry in index)

if the set of paths into them from the root is the same. It is a non-deterministic version of
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the strong data guide. 2-index indexes all pairs of objects connected by an arbitrary path

expression. InT -index, objects that are indistinguishable w.r.t to a class of paths defined

by a path template are grouped into one equivalence class. Fine equivalence classes can

be constructed efficiently by using bi-simulation.DataGuides and 1-Index suffers two

problems. Firstly, they are inefficient when processing queries starting with descendant

predicate steps and queries containing wildcard “*”. Secondly, they do not support the

branching queries.

APEX [32], F & B-Index [58] andIndex Fabric[36] construct the index on refined

paths or pre-defined query patterns, instead of storing all paths from root to leaves.Index

Fabric extendsDataGuide for text search. It keeps all label paths starting from the

root and encodes each label path with data value as a string, which can be efficiently

indexed by patricia trie. And the queries on keywords for elements are processed as

string search. In [58] the structural summary of schema-less data are constructed by

using the notion of inverse edges which capture the information about both in-coming

and out-going paths. This is so called Forward and Backward-Index (F & B-Index

). It has been improved that theF & B-Index is the smallest index graph that covers

all branching path expressions over graph data. Unfortunately,F & B-Index is usually

too big to be loaded in the main memory. When the database is huge,F & B-Index is

almost the same as the original data. To solve this problem, the index definition scheme

need to find the optimal tradeoffs between the size of the index and the queries to be

covered. APEX [32] takes advantages of query workload to mine the frequent query

path expressions and summarizes data paths that appear frequently in query workload.

In addition, it also maintains all paths of length two. So,APEXis flexible and faster than

strong DataGuide.
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2.4.3 Structure Join-based Pattern Query Processing

To process XML queries with recursive predicates, i.e., the AD relationship predicates,

the previously mentioned top-down evaluation can be inefficient - the whole subtree

rooted at an element needs to be tested. On the contrary, structure join methods utilize

certain element numbering scheme which encodes the position information of the ele-

ments, to verify the structural predicates on elements [123, 22, 101, 116, 107, 88, 74].

Based on this, various approaches of binary structure join [41, 79, 10, 104, 103, 98, 123]

and holistic twig join [20, 28, 74, 55] were proposed. The former class of approaches

firstly process the binary relationship constrains which are obtained by decomposing the

tree-pattern queries, and then merge-join the intermediate partial results to get the final

answers. While, the holistic twig join methods try to answer the queries as a whole.

Element Numbering Schemes

The main purpose of numbering/encoding XML elements, denoted as functionnum( )

on element is to allow fast identification of relationships between elements. (In some

literatures, the encoding positional numbers are also called as labels. However, the label

are specifically used as the node names of trees in this thesis.) There are two classes

of popular numbering schemes in the literatures, i.e., thecontainment numbering(or

range/region numbering) [35, 123] andprefix numberingschemes [107, 88, 74]. The

containment numberingscheme supports efficient evaluation on AD and PC structural

relationships between elements. But this kind of schemes is not capable of supporting

data updates. Inprefix numberingschemes, the number of an element is decided by the

number of its parent and its own tag name. Therefore, it can support the structural rela-

tionship verification by string matching methods. Meanwhile, it deals with data update

more flexibly than thecontainment numberingscheme. Recently, many researchers have

begun to design dynamic XML labeling schemes to handle data updates [22, 101, 116].
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Figure 2.6: Containment Numbering Scheme

Two earlier numbering schemes designed to decide the document structure is the

Dietz’s [39] scheme and Lee’s scheme [65]. Dietz’s encode each node in the tree by

its preorder and postorder numbers. As we all know, the preorder number of a descen-

dant is larger than that of its ancestor, while the postorder number of a descendant is

smaller than that of its ancestor. Thuspre(u) < pre(v) andpost(u) > post(v) is the

conditions to identify the AD relationship, which can be evaluated in constant time.

An example of Dietz’s encode is shown in Figure 2.5. Lee’s scheme models the doc-

uments ascompletek-ary tree, wherek is the largest fanout of the tree. Each node

is encoded by the breadth-first traversal number of the enlarged tree. Then equation

num(parent(u)) = b(num(u) − 2)/kc + 1 can be used to determine PC relationship.

Obviously, the space overhead of this scheme can be prohibitively high. At the same

time, the updates of the documents cannot be processed straightforwardly by these two

methods.

The first containment encoding is ascribed to the work of Consens and Milo [35],

who discussed a fragment of PAT text searching operators for indexing text database.

Then Zhang et al. [123] introduced it to XML query processing using inverted list. Each

inverted list records the occurrences of an element type. Each occurrencee is indexed

by its document number, its position and its nesting depth within the document, denoted

by num(e) = (docID, LeftPos : RightPos, level). LeftPos (or RightPos) is
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the position number of the start (or end) tag of the indexed element. The numbers are

sequentially arranged during depth-first traversal. Figure 2.6 shows a example of the

numbering scheme. Thereby, the position range of the ancestor elements should contain

that of the descendants, and the parent node level equals to the children level minus 1.

Such scheme is widely adopted in [52, 54, 20, 28]. However, the update processing based

on containment numbering is costly: The insertion of a new node leads to re-labeling of

all the ancestor nodes and all the nodes following it.

Interval encoding [69] is a variation of containment encoding, which aims to allevi-

ate the update awkward processing. Each elementu is identified by a pair of numbers

num(u) = (order, size). For a nodeu which is the parent ofv: order(u) < order(v),

andorder(v) + size(v) ≤ order(u) + size(u). For two sibling nodesu′ andv′, if u′ is

the predecessor ofv′ in preorder traversal, thenorder(u′) + size(u′) < order(v′). The

interval encoding of the above example is shown in Figure 2.7. Obviously, extra space

can be reserved to accommodate future insertions. However, the scheme will collapse if

no extra space is available.

To our best knowledge,Dewey IDnumbering scheme is the first prefix numbering

scheme. It comes from the work of Tatarinov et al. [107] to represent XML order in

the relational data model. TheDewey IDlabeled each element as follows: (1) The root

element is numbered by one-character string “1”; (2) The non-root elements are encoded
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as the concatenation of their parent’s numbers and their positions among the siblings.

Thus, the ancestor number of an element can be derived directly from its own. For

example, in Figure 2.8, if a label of an element is “1.1.2”, then it has 2 ancestor and

the labels of them are “1”, “ 1.1” respectively. This encoding scheme supports efficient

evaluation of structural relationship between elements by prefix checking of the numbers.

However, from theDewey IDof an element alone, we cannot derive the tag name of its

ancestors.

Extended Deweys [74] incorporates not only the structural relationships, but also the

element name information into the encoding. From theextended Dewaynumber of an

element alone, the names of all the elements in the path from the root to it can be derived.

The rational is to encode the element name under a specific parent context by using the

modulo function: For a elemente, all its possible child element names are ordered as

< t0, t1, · · · , tn >. If the child elemente′ of e has tag nameti then a integerx is

assigned toe′ such thatx mod n = i. For text values,x = −1. Similar toDewey ID, the

number ofe′ in extended Deweyare the concatenation ofe andx assign to it. The sibling

information can also be encoded. Specifically, given an elementei with tag ti′ and its

left sibling elementej (if exists) with tagtj′ and numbery, theextended Deweynumber

of ei, num(ei), is num(parent(ei)).x, wherex is computed as follows:

x =





i′ ei is the left most child ofep;

by
n
× nc+ i′ otherwise, ifi < j;

dy
n
× ne+ i′ otherwise.

According to the number of an element, the tag names of the elements from the root to

it can be decoded by afinite state transducer(FST). The symbols of the FST are non-

negative integers and−1; The states are the tag names and an additional state, named

PCDATA; For a statet, if its ordered child element tags are< t0, t1, · · · , tn >, then the
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transition function is defined asδ(t, x) = tk, wherek = x mod n. The output is the

current state after transition. Figure 2.9 is part of the transducer constructed according

to theDTD definition shown in Figure 2.1. For clarity, the tag names are represented by

the capital letters and the PCDATA state is omitted in Figure 2.9. Then XML path pattern

matching can be directly processed by string matching. For example, through FST, we

element labeled as “2.0.1” is associated with path “MovieDB.Movie.Cast.Actor” in the

data, then its straightforward to identify that it matches a path pattern “//Cast/Actor”. In

the worst case, the space complexity of the FST is quadratic to the size of the tag name

alphabet and time complexity is linear to the length of the path, but independent of the

complexity of the schema definition.
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Figure 2.9: The Transducer of the Extended Dewey Labeling Scheme

O’Neil et al. [88] introduced a variation of prefix labeling scheme calledORDPATH.

Unlike theextended Dewey[74], the main goal ofORDPATH is to gracefully handle

insertion of XML nodes in the database. It uses odd numbers at the initial document

encoding. When there is an insertion on the document, the even number between two

odd numbers catenated with another odd number is labeled on the new node. Although

the insertion is processed in linear time,ORDPATHwastes half of the numbering space
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by using odd numbers initially. This numbering scheme lose the level information too.

At the same time, the even number seeking process is time consuming if the insertions

follows multiple deletion. Wu et al. proposed in [116] a prime numbering scheme. This

scheme assign to each node a prime number. The position encoding of a node is the

product of its parent’s number and its own number. Thus, prime numbering scheme can

be viewed as an extension of the prefix labeling. Then for two nodesu andv in the tree,

u is an ancestor ofv iff num(v) MOD num(u) = 0. This scheme can be used to encode

the dynamic ordered XML tree as follows:Simultaneous Congruencevalues ofChinese

Remainder Theoremcan determine the orders among siblings. When the document is

updated, it only requires to recalculateSimultaneous Congruence. However, the recal-

culation is much time consuming. The CDBS (Compact Dynamic Binary String) scheme

presented in [66] is orthogonal to specific labeling schemes. The order is maintained by

the lexicographical orders of the binary strings and the elaborately designed binary string

insertion methods. By using CDBS, the re-labeling is totally unnecessary. However, if

the insertion always occurs at the same place, the size of the numbers will increase fast.

Binary Structure Join Methods

Some of the previous work [41, 79, 10, 104, 103, 123, 98] has typically decomposed

the twig pattern into a set of binary relationship between pairs of query nodes, i.e., the

PC relationships and the AD relationships. Then the twig query can be processed by

two steps: Firstly, evaluate each of the binary structural relationships against the XML

database and a set of element pairs which satisfy the binary relationship predicate is

generated. Secondly, “stitch” together the basic matches obtained by the first step to get

the final results. For example, a pattern query expression shown in Figure 2.10.(a) can

be decomposed into the binary structural predicates shown in Figure 2.10.(b).

For most of the structure join methods, the data structure referred to as element
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Figure 2.10: An example of Twig Query Decomposition

streams is used to store the inverted lists of the encoding numbers of elements of the

same type. The encoding numbers in each stream are sorted in ascending document or-

der. When processing the queries, the element streamSq satisfying the node predicate

of q, which is under consideration, is retrieved from the disk and iterated by an associ-

ated one-way cursor in the sorted order. The element (actually, the encoding number of

the element) pointed by the cursor is referred to as cursor element. An example of the

streams is shown in Figure 2.12. To evaluate the structure join matches is actually to

join the elements from two streams which satisfy the structural predicates. The struc-

ture specification can be efficiently checked by the numbering techniques mentioned in

Section 2.4.3. The related work mentioned in this section are all based oncontainment

numberingscheme.

TheMulti-predicate Merge Join(MPMGJN) proposed in [123] is essentially a form

of nested-loop join. This approach scans the same element streams multiple times in

case the XML data is nested. The scanning of the parent query node elements consists of

the outer loop, while the scanning of the elements of the child query node consists of the

inner loop. However, for each outer loop, the scanning of child query node stream need

not to be start from the first element stored in it. The relationship between two elements

from the streams of two query nodesq andq′ (q′ is the ancestor query node ofq) are

given in Figure 2.11. Assume thateq is the first element in the stream ofq which satisfies
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the relationship predicate with the previously accessed elementeq′ in stream ofq′. Then

eq andeq′ should be of relationship shown in Case 2 of Figure 2.11. For any elemente′q′

following eq′ in Sq′ , its child or descendant elements cannot precedeeq in Sq. Thus, the

inner loop fore′q′ can start correctly fromeq, instead of the head of streamq. The authors

of [69] differentiated 5 types of subexpressions for the path expression decomposition:

the one with unit components (the single element or single attribute), the one with two

element relationship specification, the one with element and attribute specification, the

one withKleene closure(symbolized by ‘*’ and ‘+’) specification and the one with union
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specification. Accordingly, the author gave 3 types of join methods. The nested loop can

be safely avoided inEA-join since there is no recursive definition on attributes.EE-

Join solves the join between elements like MPMGJN, but seeking is not done on data

records directly. Instead, the algorithm searches theB+-tree indexes (XISS) for element

and attribute names, values and structures. The interval numbering scheme is utilized to

determine ancestor-descendant relationship in constant time. However, the elements in

child query node streams still need to be scanned for multiple times.

To avoid the multiple scan of the element streams, theStack-Treealgorithm [10] uti-

lizes an internal stack to store a subset of the elements from stream ofq . The elements in

one stack from the bottom to the top are nested in one path of the data. Thus, For the Case

1 in Figure 2.11, cursor elementeq causeeq′ to be popped out from the stack because it

cannot contribute to the future matching results. While for Case 2,eq′ is already iterated

and pushed into the stack beforeeq is reached. It remains in the stack aftereq is pushed

into the stack to encode the matches of the binary relationship constrain. After output the

required results, the stream ofq can be safely advanced. If there exists no such element

and the stack is empty,eq can be safely skipped. Hence, only one sequential scan ofq’s

stream is necessary.

In the second step of binary structure join, the results evaluated in the previous step

need to be “stitched” together. The method based on selectivity and intermediate result

size estimation is required [79, 7, 71, 90, 68] to decide the optimal join order. The details

are not included in this thesis, since these topics are not closely related to the work here.

Although all the above methods were proposed to improve the efficiency of binary

structure join, there exists a basic limitation of these decomposition-based methods.

They may output large number of intermediate results which do not contribute to the

total answers to the query path pattern, not to mention the answers to the twig pattern

query. For example, if the query//A/B/C is proposed on the data shown in Figure 2.12.
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Firstly, we need to compute matches to the PC predicate:A/B or B/C. 2 answers will

be retrieved forA/B query, i.e.,(A1, B1) and(A2, B3). And 3 answers will be retrieved

for B/C query, i.e.,(B1, C1), (B2, C2) and(B3, C3). However,(B2, C2) cannot con-

tribute to the total answer of the query. So, if any binary structural predicate is of low

selectivity, the input size and time expense for the later join will be quite high.

Holistic Twig Join Methods

In order to solve the problem of large amount of intermediate results, a series of holistic

twig query methods have been proposed to process the twig pattern as a whole [20, 28,

74, 55]. In these methods, the elements are also stored in the encoding number streams

and only the streams satisfy the query predicates of each query node are retrieved. Mean-

while, each query nodeq is associated with a stackSKq, in which each item consists of

a pair: the positional encoding number of an element retrieved from the streamSq, and

an pointer points to an item inSparent(q) (TJFast [74] uses different data structures as

mentioned later). The stack is used to encode the partial/total answers to the twig pattern

query. And the elements stored in it satisfy two requirements: (1) When the element is

pushed into the stack, the algorithms make sure that it and the top element ofSparent(q)

satisfy the containment relationship. After the element is pushed into its stack, a pointer

is built to associate it to the top element ofSparent(q). (2) The AD relationship between

elements in the same stack are implicitly encoded, i.e., elements are strictly nested from

bottom to top.

In paper [20], Bruno el at. proposed a novel path matching algorithm, calledPath-

Stack to process linear path expressions. In this method, the twig query pattern is de-

composed into multiple root-to-leaf path patterns. The entire path queries are processed

in a top-down query predicate checking style. Before an elementeq is pushed into its

stackSq, all elements in the other stacks which end before it should be popped out first to
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make sure that all the stacks encodes compactly partial/complete answers of a path query

at any time.eq can be pushed into the stack iff (1) theSparent(q) is not empty and (2)eq
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and the top element ofSparent(q) satisfy the relationship constrain betweenparent(q)

andq. Once an element is pushed into the leaf query node stack, there must be some

answers to the corresponding query path. For the data, the stream structures and path

query shown in Figure 2.12.a, 2.12.b and Figure 2.12.c, Figure 2.13 shows the stack

operation. In Figure 2.13,A1, B1 andC1 are pushed into the stacks since they satisfy

PC relationship and the 2 requirements mentioned above. When elementB2 is iterated,

elementB1 andC1 are popped out since they end beforeB2. Figure 2.14.a shows the

partial results output and encoded in the stack. And Figure 2.14.b is the results of the

path query on the data. UnlikeStack-Tree, elementB2 will not be pushed into stacks by

PathStack because there is no matching elements inSKA. WhenC2 is iterated,SKB

is empty. SoC2 cannot be pushed into its stack as well. The efficiency of this method

lies in two aspect: The stacks deployed can represent in linear space a potentially expo-

nential number (to the size of the query nodes) of answers. Meanwhile, it reduces the

query processing cost since only the top element in the parent stack needs to be check

each time. The worst-case CPU time cost to solve path queries is linear to the sum of the

input streams and the output lists, which is independent of the size of any intermediate

binary join results.

Although PathStack method can process the path pattern query as a whole, as for

twig patterns, it cannot totally solve the problem incurred by decomposition. Some

printed partial answers to the path queries may not be merge-joinable at the branching

query nodes. The methods dealing with the twig query as a whole are needed. Holistic

algorithm also consists of two steps: In step one, the partial answers of the path pattern

queries are output. In step two, the partial answers are joined to get the full answers

of the twig pattern. However, in step one, holistic algorithms try to output only the

partial answers which is merge-joinable with at least one solution to each of the other

root-to-leaf paths. We say thatq has an solution extension if there is a solution for
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the sub-query rooted atq. If the solution consists of only the cursor elements, thenq

has a minimal match, otherwise, it has possible match. Holistic algorithms retrieve the

highest query nodeq that has a possible match each time. This makes sure that the

elements which match the ancestor query nodes ofq and can contribute to a total query

answer have already been pushed into the corresponding stacks. Thus, after clear the

ancestor stack byeq, if the Sparent(q) is empty, the current element cannot be an answer

to the query. Otherwise, it is pushed into the stack. Once the stack of a leaf query node

is pushed into a element, there should be an partial solution which is merge-joinable

with at least one solution to each of the other query paths. Under the holistic twig join

scheme, the cursor elements of the streams can be classified into 3 types: the matching

elements, the useless elements and the blocked elements. A matching elementeq is in

a minimal match ofq, but not in any future match ofparent(q). Holistic methods can

tell a matching element and safely push it in the stack. Useless elements are those which

do not participate in any possible match to its query node. It is safe to skip them. The

rest are blocked elements. For example, if we propose a query shown in Figure 2.15

on data in Figure 2.17, According toPathStack, the partial answers(A1, B1, C1) and

(A1, B3, D1), (A3, B2, D1) and (A1, B4, D2) to the path pattern queryA//B//C and

A//B//D respectively will be output. Obviously, they cannot be merged into a whole

answer. If holistic join methods are used, elementsA3, A4, B3, B4, B5 are skipped

because they are useless.C1 cannot be pushed into the stack becauseSB is empty when

it is iterated. Thus, the above output partial solutions are not output by holistic methods.

However, the elements available are the cursor elements and those at the top of each

stack. From these information, only minimal matches can be exactly identified. Whether

a possible match exists for a node cannot be tell exactly. There are three cases for the

blocked elements. In the first case, they are in possible but not in any minimal match
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Figure 2.17: The running example of XML data for holistic twig join methods

to the query node. In the second case, they are in a minimal match to its node but is

only in the possible match of the parent query node. Or in the third case, they are not in

possible match of the parent query node. Thus, advancing any streams of block elements

without storing the cursor elements may cause the loss of results. The foremost holistic

method,TwigStack [20], relaxed the PC constrains to AD constrains for the internal

nodes when it verifies the solution extension to avoid the false dismissal. However,

this leads to useless intermediate results. For the query in Figure 2.16 and the data in

Figure 2.17, the cursor elements areA1, B2, C1, D1, E1, B2 andD1 is not in a match

to the PC relationship betweenB andD. However,B2 containsD1 andB2 may be in

a match with elements followingD1. Similarly, D1 may be in a match with elements

following B2. TwigStack pushesA1, B2, C1, D1, E1 into the stacks according to the

containment relationship although(A1, B2, E1) and(A1, B2, D1) are not the satisfactory
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partial answers.

The concept of optimal twig pattern matching algorithm is officially defined in [28].

A twig pattern matching algorithm is optimal if it can satisfy the following tree condi-

tions:

1. Every element stream retrieved for the pattern (i.e., whose tag appears in the twig

pattern) is scanned only once.

2. None of the intermediate partial solutions output is redundant.

3. The space required by the algorithm is bounded by a factor which is independent

of source document size.

For an twig pattern matching method to be optimal, the case that all current elements

are blocked should never occur. Apparently,TwigStack is only optimal for path patterns

and AD only twig patterns, but sub-optimal to twig query containing PC relationships

[20, 74]. The later research work tries to minimize the blocked elements for queries and

expand the types of queries which can be optimally answered [73, 28, 74].

Lu et al. proposedTwigStackList in [73]. It makes sure that if there is a PC relation-

ship below the branching nodeq and its childqc, the cursor elementeq can be pushed

into stack only if it or the elements following it inSq satisfy the PC predicate with the

cursor elements of solution extension rootedqc. Thus even if there exists PC relationship

predicate under branching nodes, theTwigStackList is superior toTwigStack in that it

output less useless intermediate solutions. However, for the above example, the output

of TwigStackList is the same as that ofTwigStack. iTwigJoin [28] increases “paral-

lelism” to access elements with the same tag by the additional “context” information. It

uses refined streaming scheme, and partition the streams of elements byTag + Level

context or the more refined prefix-path context. For example, the streams for the data in

Figure 2.17 are shown in Figure 2.18.iTwigJoin associates the useful streams according
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to the context. For instance, the usefulB streams ofS1
A andS3

A areS2
B andS4

B are re-

spectively. The logiciTwigJoin is similar to that ofTwigStack, but adopted to process

the refined streaming scheme. For the above example, the elementB1 andB2 will be

skipped since the useful stream of nodeD for S2
B = SAB begins withD2. So these two

elements have no descendant extensions in this stream. Thus the intermediate results

(A1, B2, E1), (A1, B3, E1), (A1, B2, D1) and(A1, B3, D1) are not output. However, if

the elementE2 does not exist in the data, the redundant result(A1, C1) and(A1, B4, D2)

will still be output. The methods are proved to be optimal only for AD-relationship-only

query, PC-relationship-only query and 1-branching-node query.

A
1S 1A

2E

D
3S 2D4A3AA

3S 2A

4B2BB
2S 1B

C

D
5S 1D

E
5S 1E

5BB
4S 3B2CC

4S 1

Figure 2.18: The Refined Streaming Scheme ofiTwigJoin

TJFast proposed in [74] is based onextended Dewaynumbering scheme introduced

in Section 2.4.3. From the definition of theextended Dewaynumber of an elemente,

the names of the all the elements in the path from the root toe can be derived directly.

Thus, whether elements are satisfying the path pattern queries can be checked by string

matching algorithm and only the numbers of elements matching the leaf query node need

to be scanned. This fact leads to two benefits: Firstly, the I/O cost is much smaller than

the previous methods. Secondly,TJFast can efficiently process path queries contain AD

relationships or wildcards “∗” by string-matching withdon’t caresymbols. Therefore,

to evaluate a twig pattern, the only key issue is to determine whether a path solution
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can contribute to the solutions for the whole twig, i.e., whether it and solutions of other

path queries have common element which can match to the branching node.TJFast

guarantees that each output partial solution shares common elements from the branching

node streams (which are not physically retrieved from the disk ) with at least one partial

solutions to all the other path queries. The PC relationship on non-branching nodes

can be guaranteed by string matching algorithm directly. So when there are only AD

relationships under branching nodes,TJFast is proved to be optimal. However, for

the data and query shown in Figure 2.17 and Figure 2.16 respectively, the redundant

intermediate solution(A1, B2, E1) will still be output.

Structure Join based on Indexed Documents

The previously mentioned structural join methods may still incur unnecessary I/O costs

since they need to scan the entire streams, especially in the case where only a small por-

tion of nodes in the streams satisfy the containment relationship. The potential benefits

of skipping elements that do not participate in the final twig match by using available

indexes are explored in the methods reviewed in this section [31, 54, 20]. They are

for both the binary structure join methods and the holistic twig join methods. For ex-

ample, assume thatq′ is a query node andq is one of its child node. Leteq′ and eq

are the cursor elements ofSq′ andSq. If they are in relationship shown in Case 3 and

Case 4 of Figure 2.11 andSKq′ is empty after pop the elements ends beforeeq, then

eq is impossible have corresponding match of nodeq. Thus, cursor ofSq can be ad-

vanced till the first element whose start point is larger than that ofeq′; If eq′ and eq

are in Case 1, cursor ofSq′ should forward to make the cursor element andeq are in

Case 2, if possible. Otherwise, in Case 3 or Case 4; Ifeq′ andeq are in Case 2 of Fig-

ure 2.11, the elements followingeq′ in Sq′ but start beforeeq should all be retrieved

to push into the stack. These are achieved by indexing the encoding number of each
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element(DocId, LeftPos : RightPos, LevelNum).
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11B  (80,91)

12B  (85,90)

1

1B (2,15)
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Figure 2.19: An Example of Indexed XML Tree
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Figure 2.20:B+-tree Indexed

The Anc-Des-B+ method of [31] buildsB+-tree index for the elements in each

streams. The indexing key is theLeftPos of the encoding number. The index of element

B for the XML data in Figure 2.19 are shown in Figure 2.20.XR-tree (XML Region

Tree) proposed in [54] is essentially aB+tree index on theLeftPos of the containment

encoding numbers. Figure 2.21 is an example ofXR-tree index. In addition, each in-

ternal node associates a stab list. A elemente with encoding number(e.start, e.end) is

called to be stabbed by a keyki if e.start ≤ ki ≤ e.end. The elements are stored in the

leaf nodes as well as the stab list of the top-most internal node containing a key which

stabs it. In [20],TwigStack is extended toTwigStackXB by XB-tree index.XB-tree
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is like a one dimensionR-tree index on the containment encodes and the intervals are

arranged according to (DocId, LeftPos) as those inB-tree. Figure 2.22 shows the

XB-index for the data in Figure 2.19.

nil(19,nil,nil)

(40,65,yes) (85,90,no)

(80,91,no)

(50,55,no)

(46,47,yes)

(45,60,yes)

(25,30,no)

(22,35,yes)

(20,75,yes)

(8,12,no)

(10,11,no)

(2,15,no)

(46,47)(45,60)(40,65)(79,nil,nil)(46,40,65)

(22,35)(20,75)(24,20,75)

Figure 2.21:XR-tree Index
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Figure 2.22:XB-tree Index

Jiang et al. [55] proposedTSGeneric+, an novel holistic twig join based on the

indexing scheme of thecontainment encodingof elements (e.g.,B+-tree,XB-tree and

XR-tree [31, 20, 67] etc.). It is proved that, in addition to the relationship between two

query node, the relationship between a query nodeq and its descendant can be utilized to

skip more elements. If the stack ofq is empty, even if its descendant nodes have solution

extension, there cannot exist a match to the whole twig query. Rather, it is safe to move

cursors of the descendants forward to locate a solution extension forq. The authors also
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gave three heuristics on the order of picking the broken edge in the subtree rooted atq to

improve the performance.

2.4.4 Query Processing Method Without Decomposition

The authors of [112, 92] developed methods which solve twig pattern queries as a whole.

Both methods transform the XML data trees and queries into sequences and the nodes

of the data sequences are stored with position numbers encoding the its positions in the

virtual trie indexes. The virtual index structure reduces the amount of data that need to be

searched.ViST transforms XML data trees and the twig queries into structure-encoded

sequences which consist of(e.label, e.prefix) pairs in document order, wherelabel is

the tag name of the elemente in the XML document tree or the label of the query node,

andprefix represents the label path from the root toe. ViST performs subsequence

matching on the Transformed sequences to find twig patterns in XML documents. One

imminent weakness ofViST is that the worst-case space requirement of the virtual index

structure is high because the prefix of the elements are required to encode the struc-

ture. At the same time, the query processing strategy may result in false alarms because

the subsequence matching method cannot distinguish the structures in which the two

elements are siblings from the structures where two elements have the same prefix. In

order to conquer this problem, the authors proposedconstrained subsequence matching

in their later work [111]. In [111], Wang et al also discussed the optimal sequencing

strategy with regard to the time and space complexity to index and query XML data,

which should be guided by XML schema and data distribution of the dataset. The trans-

formation method ofPRIX [92] is based onPrüfer encoding of the tree structure which

constructs a one-to-one correspondence between a labeled tree and the transformed se-

quence. Non-matches are filtered out by subsequence search on the indexed sequences.

The twig matches are then found by applying refinement. The author proved that the
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connectedness and the structure verification by the gap and frequency consistency is

necessary and sufficient to verify a partial twig match to the structure query. Thus no

postprocessing is required.

2.4.5 Query Processing with More Complicate Predicates

Recently, several research work focus to process the complicated query predicates in

addition to the PC and AD constrains [53, 75, 120]. They deal with the queries with

OR-predicate, ordering predicates and NOT-predicate respectively. The work presented

in this thesis can be extended to solve these complicated predicates too.

2.5 Summary

In this chapter, XML schema languages and the formal notations of the XML data model

are given first. Then we reviewed the techniques for XML similarity query processing

and XML pattern query processing. The review shows that the studies on similarity

query processing is not sufficient although this query is the basis for many data manip-

ulations on XML. The efficiency needs to be improved if datasets consist of large sized

XML documents. For the XML pattern queries, although intensive research has been

conducted previously, the optimal processing of PC relationship constrains is still an

open problem. And the optimal query classes need to be enlarged further.



Chapter 3

Similarity Evaluation on XML Data

3.1 Introduction

In this chapter, the study of the structure similarity measure and similarity search on

large XML data in huge datasets is presented. These problems form the core operation

for many data analysis tasks (e.g., approximate join, clustering,k-NN classification, data

cleansing, data integration etc). It is also useful for document management including

XML data searching under the presence of spelling errors, version management for XML

documents, etc. In practice, similarity query itself is the main data manipulation for

multimedia and time-series databases, biological and scientific databases. Since XML is

the de facto standard for data exchange on the web, more and more commercial data and

scientific data are conveyed in XML documents. Thus, efficiently processing similarity

evaluation on XML data poses interesting challenges for database researchers. However,

little research have been done on this area. There is still no efficient similarity search

algorithm for XML.

The main reason is that data model of XML is different from those of conventional

databases. As mentioned in Chapter 1, the data are often with no schema specification.

Even if there is schema, the data conforms to it flexibly. Elements and attributes can be

optional and elements can occur multiple times. The traditional distance measurements,

66
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thus, cannot be used straightforward in this area. Furthermore, in the XML document,

the semantics specified implicitly by the relationship between its components. Then the

structures play important role on differentiating data. The measurement of XML data

similarity can be precise only if this information is exploited and introduced into the

measure function. However, this cannot be done directly by the traditional metric.

Now that there are lots of literatures discussing about the similarity measure of the

value content, in this chapter, we particularly focus on the that conveyed by the the

tree structures and tag names. Usually, the XML data are modeled as rooted ordered,

labeled tree-structural data (details are in Chapter 1). The generic distance measure is

edit-baseddistance [84]. However, thetree edit distancefunction is computed using

dynamic programming algorithm and the cost is very high [125, 99, 105, 124]. Data

manipulations based on the tree edit distance directly can be very expensive both in

terms of CPU cost and disc I/Os, rendering it impractical for huge datasets.

In this chapter, a structure transformation on rooted, ordered, labeled trees is utilized

to develop a novel distance function based on both the structural and the content infor-

mation. It is proved that the proposed distance function is a lower bound of the tree

edit distance. The idea is similar to using a set ofq-grams to bound the edit distance

of strings and thus filter out dissimilar strings [110]. Given a stringS, a q-gram is a

contiguous substring ofS of lengthq. If S1 andS2 are within edit distancek, S1 andS2

must share at leastmax(|S1|, |S2|)− (k−1)q−1 commonq-grams. Similarly a tree can

be characterized by a set ofq-level binary branches, and it is shown that two treesT1 and

T2 are within edit distancek precisely when they share[4∗ (q−1)+1]∗k q-level binary

branches. Furthermore, just as string edit distance can be tightened if the positions of

theq-grams in the string are also taken into account [102, 47], so too tree-edit distance

can be tightened by using information detailing the positions ofq-level binary branches

in the trees.
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By employing the distance function as the lower bound of the edit distance in the

filter-and-refine framework, the evaluation of the similarity queries can be solved in two

steps: In the filtering step, the lower bound is used to filter out most objects which are not

possible to be in the result. The remaining objects are candidates which are validated by

the original complex similarity measure during the refinement step. This strategy greatly

reduces the number of expensive distance computations in the original space.

The rest of this chapter is organized as follows: Section 3.2 presents the definition of

the transformed vector space and the new distance based on it, together with the formal

proof of the lower bound theorem. Section 3.3 discusses how to embed the new distance

function as the lower bound of edit distance into the framework for similarity search,

while in Section 3.4 a thorough experimental study of the new algorithms is presented.

Finally, Section 3.5 concludes this chapter.

3.2 Tree Structure Transformation

The key element of the new algorithm is to transform rooted, ordered, labeled trees to a

numeric multi-dimensional vector space equipped with the normL1 distance. The map-

ping of a treeT to its numeric vector ensures that the features of the vector representation

retain the structural information of the original tree. Furthermore, the tree-edit distance

can be lower bounded by theL1 distance of the corresponding vectors. The lower bound

distance evaluation is computationally much less expensive than that ofEDist(T, T ′).

In this section, the transformation methods and the proof of the lower bound theorem are

presented.
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3.2.1 Binary Tree Representation of Forests (or Trees)

The proposed mapping of tree structures into a numeric vector space is based on the

binary tree representation of rooted ordered labeled trees. For completeness, firstly the

binary tree representation of forests (or trees) is briefly introduced. The formal definition

of the binary tree is cited from [61]:

Definition 3.2.1 (Binary Tree). A binary treeconsists of a finite set of nodes. It is:

1. an empty set. Or

2. a structure constructed by a root node, the left subtree and the right subtree of the

root. Both subtrees are binary trees, too.

In a binary tree, the edges between parents and the left child nodes are different from

those between parents and the right child nodes. We useTB = (N, El, Er, Root(T ))

to represent a binary tree.∀u, v1, v2 ∈ N , if v1 (v2 resp.) is the left (right resp.) child of

u, then〈u, v1〉l ∈ El (〈u, v2〉r ∈ Er resp.). A full binary tree is a binary tree in which

each node has exactly zero or two children.

There is a natural correspondence between forests and binary trees. The standard

algorithm to transform a forest (or a tree) to its corresponding binary tree is through the

left-child, right-sibling representation of the forest (tree): (i) Link all the siblings in the

tree with edges. (ii) Delete all the edges between each node and its children in the tree

except those edges which connect it with its first child. Note that the transformation does

not change the labels of vertices in the tree.T1 andT2 of Figure 3.1 can be transformed

into T ′
1 andT ′

2 shown in Figure 3.2. By rotating it, we can get the binary treesB(T1)

andB(T2) respectively shown in Figure 3.3.1 The binary tree representation is denoted

asB(T ) = (N, El, Er, Root(T ), label) in this chapter.

1The appended nodes with labelε and the numbering of the nodes are explained in sections 3.2.3 and
3.3.2, respectively.
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3.2.2 Observation

The inspiring observation is that edit operations change at most a fixed number of sibling

relationships. This is because each node in a tree can have a varying number of child

nodes but at most two immediate siblings. This is illustrated in the example of Figure 3.1.

The deletion of nodeb in T1 incurs five changes in parent-child relationships: It destroys

the(a, b), (b, c), (b, d) edges, while generating the(a, c), (a, d) edges. At the same time,

this edit operation only incurs four changes in sibling relationships: The one betweenb

andb, and the one betweenb ande are destroyed. The sibling relationship betweenb and

c, and the one betweend ande are generated by the deletion operation.
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Figure 3.3: Normalized Binary Tree Representation

As mentioned in 3.2.1, a binary tree corresponding to a forest retains all the structure

information of the forest. Particularly, it gives a correspondence between trees and a

special class of binary trees which have a root without right subtree. in the binary tree

representation, the original parent-child relationships between nodes, except the ones

between each inner nodes and its first child, are removed. The removed parent-child

relationships are replaced by the link edges between the original siblings. This property

makes the transformed binary tree representation appropriate for highlighting the effect

of the edit-based operations on original trees. The novel algorithm proposed in this chap-

ter are based on such observation and exploit the binary tree transformation properties,

i.e. it store the structure information of trees by record the sibling relationship instead of

all the parent-child relationship.

3.2.3 Vector Representation of Trees

To encode the structural information the transformed binary tree representationB(T ) of

T is normalized as follows: InB(T ), for any nodeu, if u has no right (or left) child,

a ε node (i.e., nodes with labelε do not exist inT ) is appended asu’s right (or left)
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child. This makesT a full binary tree in which all the original nodes have two children

and all the leaves are with labelε (as shown in Figure 3.3). The normalized binary tree

representation is defined asB(T ) = (N
⋃{ε}, El, Er, Root(B(T )), label), where

ε denotes the appended nodes as well as their labels. To simplify the notation, in this

chapteru ∈ N represents the node as well as its label where no confusion arises. In order

to quantify change detection in a binary tree, the conceptbinary branchon normalized

binary trees is introduced:

Definition 3.2.2 (Binary Branch). Binary branch(or branch for short) is the branch

structure of one level in the binary tree. For a treeT , ∀u ∈ N , there is a binary

branchBiB(u) in B(T ) such thatBiB(u) = (Nu, Eul
, Eur , Root(Tu)), whereNu =

{u, u1, u2} (u ∈ N ; ui ∈ N
⋃{ε}, i = 1, 2), Eul

= {〈u, u1〉l}, Eur = {〈u, u2〉r} and

Root(Tu) = u in the normalizedB(T ).

According to the properties of normalized binary trees, we can have Lemma 3.2.3:

Lemma 3.2.3.For each nodeu ∈ N of a treeT , u may appear in at most two binary

branches in the binary tree representationB(T ).

PROOF:

1. u can occur as root in at most one binary branch. This is obvious.

2. u can occur as the left (or right) child in at most one binary branch.u can not

occur as the left child in one branch and as the right child in another branch at

the same time; otherwise,u must have two parents inB(T ). That is contrary to

the properties of trees.

Assume that the universe of binary branchesBiB() of all trees in the dataset com-

poses alphabetΓ and the symbols in the alphabet are sorted lexicographically on the

stringuu1u2. A representative vector of dimension|Γ| can be built for each tree-structured
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data record, with each dimension recording the number of occurrences of a correspond-

ing branch in the data. The formal definition of the binary branch vector is given in

Definition 3.2.4.

Definition 3.2.4 (Binary Branch Vector). Thebinary branch vectorBRV (T ) of a tree

T is a vector(b1, b2, · · · b|Γ|), with each elementbi representing the number of occur-

rences of theith binary branch in the tree.|Γ| is the size of the binary branch space of

the dataset.

To construct the binary branch vector of a tree, firstly an inverted file is built for all

binary branches, as shown in Fig. 3.4(a). An inverted file has two main parts: a vocabu-

lary which stores all distinct values being indexed, and an inverted list for each distinct

value which stores the identifiers of the records containing the value. The vocabulary

here consists of all existing binary branches in the datasets. The inverted list of each

component records the number of occurrences of it in the corresponding trees. The re-

sulting vectors of our transformation for the trees in Figure 3.1 and the normalized binary

trees in Figure 3.3 are shown in Figure 3.4(b).

Based on the vector representation, a new distance of the tree structure can be defined

as theL1 distance between the vector images of two trees:

Definition 3.2.5 (Binary Branch Distance). Let BRV (T1) = (b1, b2, · · · , b|Γ|),

BRV (T2) = (b′1, b
′
2, · · · b′|Γ|) be the binary branch vectors of treesT1 andT2 respectively.

The binary branch distance ofT1 andT2 is BDist(T1, T2) = Σ
|Γ|
i=1|bi − b′i|

The binary branch distance has the properties listed below: For allT1, T2 andT3 in

the dataset,

1. BDist(T1, T2) ≥ 0, andBDist(T1, T1) = 0;

2. BDist(T1, T2) = BDist(T2, T1);
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Figure 3.4: Binary Branch Vector Representation

3. BDist(T1, T3) ≤ BDist(T1, T2) + BDist(T2, T3).

Proof. The first two properties are obvious. For the third property, letBRV (Ti) =

(bi1, bi2, · · · , bi|Γ|) for i = 1, 2, 3.

BDist(T1, T2) + BDist(T2, T3)

= Σ
|Γ|
j=1|b1j − b2j|+ Σ

|Γ|
j=1|b2j − b3j|

≥ Σ
|Γ|
j=1|b1j − b3j| = BDist(T1, T3)

The third property means that the binary branch distance satisfies the triangular inequal-

ity. However,BDist(T1, T2) = 0 cannot imply thatT1 is identical toT2. This is

illustrated in Figure 3.5, where both trees have the same binary branch vector. So the

binary branch distance is not a metric on tree-structured data.
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3.2.4 Lower Bound of Edit Distance

In this section, the theoretical analysis of the new methods are given.

Theorem 3.2.6.Let T andT ′ be two trees. If the tree-edit distance betweenT andT ′

is EDist(T, T ′), then the binary branch distance between them satisfies the following:

BDist(T, T ′) ≤ 5× EDist(T, T ′)

Proof. The theorem follows if it is proved that at most5 × k binary branch distance is

incurred byk edit operations. Assume that edit operationsed1, ed2, · · · , edk transform

T to T ′. Accordingly, there is a sequence of treesT = T0 → T1 → · · · → Tk = T ′,

whereTi−1 → Ti via edi for 1 ≤ i ≤ k. Let there bek1 relabeling operations,k2

insertions andk3 deletions.k1 + k2 + k3 = k. It is sufficient to prove the theorem for

one step of the transformation.

1. Assume thatedi is a relabeling operation on some nodev of the tree. According

to Lemma 3.2.3,v occurs in at most two binary branches inB(Ti−1). Obviously,

this operation retains the tree structure information ofTi−1. In these two branches,

label(v) is changed to the new one in the target treeB(Ti). Assume that the count

of the two binary branches inBRV (Ti−1) is in dimensionl1 and l2, while the

two new binary branches are in dimensionl3 and l4. ThenBRV (Ti−1)[lm] −
BRV (Ti)[lm] = 1, for m = 1, 2. BRV (Ti−1)[lm′ ] − BRV (Ti)[lm′ ] = −1, for

m′ = 3, 4. So,BDist(Ti−1, Ti) ≤ 4.
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2. Assume thatedj inserts a nodev to transformTj−1 to Tj. Obviously, whenv has

a parent, a left sibling, a right sibling and child nodes, this operation leads to the

maximum number of changes on the structure information. Figure 3.6 and Fig-

ure 3.7 demonstrate the insertion operation and the changes it causes on the binary

tree representation. Letv be inserted under nodev′ and child nodeswl+1, · · ·wl+m

of v′ in Tj−1 become the child nodes ofv in Tj.

v

...
...

......

...

...

v’

......

.........

v’

lw2w1ww l+m+1l+mwlw2w1w w

w l+ml+1w

l+m+1

Figure 3.6: Insertion of Nodev Under Nodev′

... ......

...

...

v

...

......

...

...

v’

...

...

w l+m

w l+2

l+m+1w
w l+1

w l

2w

1w

v’

...

...

l+m+1w

l+mw
l+1w

lw

w2
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Figure 3.7: Changes of Binary Tree Incurred by Insertion

It is shown that at most five changes occur on the edges ofB(Tj−1): Two edges

〈v, wl+1〉l and 〈v, wl+m+1〉r representing the structure information rooted onv

are added into the binary tree. These edges comprise the binary branchBiB(v).
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So, assuming that it corresponds to dimensionl in BRV (Tj), thenBRV (Tj)[l]−
BRV (Tj−1)[l] = 1. In addition, the sibling relationship betweenwl andwl+1, and

betweenwl+m andwl+m+1 in Tj−1 (represented by〈wl, wl+1〉r and〈wl+m, wl+m+1〉r
respectively inB(Tj−1)) are destroyed. This leads to the destruction of one of each

binary branchBiBTj−1
(wl) andBiBTj−1

(wl+m). 2 Thus, the values for the two

corresponding dimensions inBRV (Tj) are less than those inBRV (Tj−1) by 1.

Finally, 〈wl, wl+1〉r is replaced by〈wl, v〉r in B(Tj) for v is the right sibling ofwl

after being inserted inTj. 〈wl+m, wl+m+1〉r is replaced by〈wl+m, ε〉r for wl+m is

the right most child ofv in Tj after insertion. Then the values of the corresponding

two dimensions, i.e.,BiB(wl, ∗, v) andBiB(wl+m, ∗, ε), in BRV (Tj) are larger

than those inBRV (Tj−1) by 1 each. To sum up,BDist(Tj−1, Tj) is at most 5.

3. Deletion is complementary to insertion. Therefore the number of affected binary

branches must be bounded by the same amount as for insertion.

According to the triangular inequality property of binary branch distance, we have

BDist(T, T ′) ≤ BDist(T0, T1) + BDist(T1, T2) + · · ·+ BDist(Tk−1, Tk)

≤ 4× k1 + 5× k2 + 5× k3 ≤ 5× k

≤ 5× EDist(T, T ′).

3.2.5 Extended Study

As shown above, the generalized analysis is similar to that of theq-gram method [110]

for solving thek-difference problem of strings. The number of occurrences of eachq-

gram (i.e., all strings of lengthq over the alphabet) in any two strings are counted. If two

2The∗ can be any label inΣ or the labelε.
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strings are similar, they have manyq-grams in common. Formally, if the edit-distance of

stringsS1 andS2 is k, then they have at leastmax(|S1|, |S2|) − (k − 1)q − 1 q-grams

in common. When applied to similarity search problems in which the full strings are

involved, theq-gram method usually trades off the false positive for the false negative

rate by adjusting the length of theq-gram searched [57]. Binary branches can be viewed

as playing the role ofq-gram structures for tree data. The vector images of trees can be

extended to record multiple level binary branch profiles. Firstly, the formal definition of

theq-level binary branch is given below:

Definition 3.2.7 (q-level Binary Branch). Theq-level binary branchBiB q(n0, n1, · · ·
, n2q−2) is the perfect binary tree of heightq − 1, wheren0, n1, · · · , n2q−2 is the se-

quence obtained by preorder traversing the perfect binary tree (with all leaf nodes at the

same depth and all internal nodes having degree 2).

The binary branch defined in the previous section is indeed the two-level binary

branch. Similar to the computation ofq-grams for strings, our sliding window is a per-

fect binary tree with heightq−1 (i.e., all leaves are of the same depthq−1). The sliding

window shifts one level each time along the path from the root to the leaves. For each

nodeu in the tree, there is aq-level binary branch rooted atu in the binary tree represen-

tation consisting of the perfect binary subtree rooted atn. If the subtree of heightq − 1

rooted atu is not a perfect binary tree in the transformed representation,ε-nodes can be

appended to complete it.

The multiple level binary branch is used to maintain structures of fixed size and

fixed shape in the original data. Obviously, it encodes more information than the two-

level binary branch. We can extend the binary branch vector to thecharacteristic vector

BRV q(T ), which includes all the elements in theq-level binary branch space. The

q-level binary branch distanceBDist q(T, T ′) is defined as theL1 vector distance be-

tween the images of the treesT andT ′ under theq-level mapping. Figure 3.8 shows the
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3-level binary branch of theT1 tree in Fig 3.1.
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Figure 3.8: 3-level Binary Branch Vector Examples

Theorem 3.2.8.Let T and T ′ be two trees. If the tree-edit distance betweenT and

T ′ is EDist(T, T ′) = k, and the corresponding edit operation sequence consists of

k1 relabeling operations,k2 insertions andk3 deletions, then theq-level binary branch

distance between themBDist q(T, T ′) ≤ [4× (q − 1) + 1]× k

Proof. The proof methods here are similar to those of Theorem 3.2.6.

It is sufficient to consider the case when the tree edit-distance betweenT andT ′

is 1. Let Anc(n, i) denote the lowestith ancestors of noden. Let Path(n1, n2) be

the path from noden1 to noden2 in the tree, whilePathLen(n1, n2) be the length of

Path(n1, n2), i.e., the number of parent-child edges between noden1 andn2.

1. Assume thatT ′ is obtained fromT by relabeling a nodev. It is obvious that

each node in the treeT appears in at mostq q-level binary branches. These



80

are the ones rooted at the nodesAnc(n, q − 1) and the one rooted atv itself if

PathLen(Root(B(T ))) ≥ (q − 1). For example, the triangles of the dashed line

in Figure 3.8 show the 3 3-level binary branchesb(5, 6) appears. Then the rela-

beling of nodev destroys at mostq q-level binary branches. At the same time,

it generate the same number ofq q-level binary branches inB(T ′), one for each

of the destroyed ones. This leads to at most2 × q q-level binary branch distance

betweenT andT ′.

2. Assume thatT ′ is obtained fromT by inserting a nodev under nodev′ as shown in

Figure 3.7. Just as analyzed in Theorem 3.2.6, insertion of a node in the tree leads

to the destroy of at most two edges between parents and their right child nodes

in the transformed binary tree (< wl, wl+1 >r and< wl+m, wl+m+1 >r) and

generate two new ones (< wl, v >r and< wl+m, ε >r) for replacement. One edge

in the binary tree exits in(q−1) q-level binary branches. So these changes leads to

4 difference between theq-level binary branch vectors ofT andT ′. In addition, the

relationship between the inserted nodev and it’s first child and it’s next sibling are

added into the transformed binary tree ofT ′: < v, wl+1 >l and< v, wl+m+1 >.

These two edges consists of a binary branchBiBranch(v, wl+1, wl+m+1). This

binary branch occurs in(q − 1) q-level binary branches. However, except the one

rooted atv, all theseq-level binary branch also contains< wl, v >r. So the

difference of the value on the dimensions of these(q − 2) q-level binary branches

are already counted. Only the the value of dimension of theq-level binary branch

which is rooted atv is increased by 1. So, one insertion operation on any node

in the treeT to generateT ′ cause at most[4 × (q − 1) + 1] q-level binary branch

distance.

3. The deletion is complementary to insertion. So each deletion operation cause at

most[4× (q − 1) + 1] q-level binary branch distance too.
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From the above analysis, we obtain:

BranchDist q(T, T ′) ≤ 2k1q + k2[4(q − 1) + 1] + k3[4(q − 1) + 1] (3.1)

Sinceq ≥ 2, BranchDist q(T, T ′) ≤ [4(q − 1) + 1]k

The binary branch distanceBDist q(T1, T2) increases as the level of the binary

branchq increases. This is due to the fact that the higher the level is, the more infor-

mation of the tree structure is encoded in the binary branches. At one extreme,q is equal

to the height of the normalized transformed binary tree; then all the structural informa-

tion of the original tree is encoded. However, in such a situation, the filter algorithm is

of no use. At the other extremeq is equal to 1; in this case, the filter efficiency is too low.

We do not discuss this option as it records no structure information of the original tree at

all. According to Theorem 3.2.8,BDist q(T, T ′)/[4(q− 1) + 1] can be used as a series

of approximations for the tree-edit distance with different resolutions. So the levelq of

the binary branch can be adjusted to improve filter efficiency when solving the similarity

search problem.

3.3 Enhancement of Similarity Search on Tree-structured

Data

In the previous section, the tree structures and the tree edit distance metric are mapped to

a numeric vector space and theL1 norm distance. Although, according to its properties,

the binary branch distance is not a metric, it approximates and lower bounds the tree-edit

distance metric. Just asq-gram methods can be used to speed up similarity search for

strings, the distance-embedded lower bounds can be integrated into the filter-and-refine

framework to speed up similarity search by reducing the number of expensive similar-
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ity distance computations. This section presents the new filter-and-refine algorithm for

processing similarity search on the tree-structured data by exploiting the lower bounds.

3.3.1 Basic Algorithm

Similarity search on various data usually refers to range queries andk nearest neighbor

queries. Range queries find all objects in the database which are within a given distance

τ from a given object;k nearest neighbor (k-NN) queries find thek most similar objects

in the database which are closest in distance to a given object. Other types of search

can be composed by these two similarity queries. When searching tree-structured data,

similarity is measured by tree-edit distance.

As mentioned in Chapter 1, the similarity evaluation of large trees in massive datasets

based on tree-edit distance is a computationally expensive operation. Traditionally, the

filter-and-refine architecture is utilized to reduce real distance computation by employing

the lower bounds of the real distance [95]: In the first step (i.e., filtration), objects that

cannot qualify are filtered out. In the second step (i.e., refinement), verification of the

original complex similarity measure is necessary only for the candidates filtered through.

The objects satisfying the query predicate are reported as results. The completeness of

the results is guaranteed by the lower bound property: If the lower bound distance is

greater than the query range, it is safe to filter out the data since its real edit distance

cannot be less than that range.

The new method proposed in this chapter is to embed an easy-to-compute distance

function that is the lower bound of the actual tree edit distance into the filter-and-refine

framework. The optimistic bound used by the similarity search is based on the binary

branch vector distance of the trees. In addition to the number of occurrences of individ-

ual binary branch, the positional information of the binary branch is also important in

exploring the structure information of the trees. In the description of this chapter, the
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two-level binary branch is used. However, the approach can be easily generalized to

q-level binary branches.

3.3.2 Optimistic Distance for Similarity Queries

The efficiency of the filter-and-refine architecture is based on the hypothesis that the

lower bound function is much quicker to evaluate than real distance. As shown in Sec-

tion 3.2.4, binary branch distance lower bounds edit distance effectively: The lower

bound function can be computed inO(|T | + |T ′|) time, which is much more succinct

than edit distance computation. So, using binary branch distance as optimistic bound

can reduce the overall processing time. Like using theq-gram methods to solve the ap-

proximate string matching problem, not only the occurrences of theq-grams, but also

their positions can be exploited to measure the similarity of the pattern and certain sub-

sequence of the strings [102, 47]. The idea is that: given two strings with distance less

thanl, two identicalq-grams in the two strings respectively cannot be matched if their

positions differ by more thanl. Otherwise, more thanl symbols have to be inserted or

deleted. The size of the corresponding series edit operations must be larger thanl.

Binary branch filtration also exhibits this property. First, a proposition is given as

follows:

Proposition3.3.1. Let the edit distance ofT1 andT2 be less thanl. Each nodeu in the

trees is numbered by its preorder traverse position (or postorder traverse position). In

the mapping corresponding to the edit distance, the nodeu ∈ T1 cannot be mapped to

v ∈ T2 if the difference of the numbers ofu andv is larger thanl.

Proof. In the preorder traversal numbering, the numbers which are smaller than that of

u are assigned to ancestors ofu or the nodes that are to the left ofu, while the ones that

are larger than that ofu are assigned to descendants or the nodes to the right ofu. Since

the edit operation mapping preserves sibling order and ancestor order, if the two nodes
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are matched, and their number difference is larger thanl, then there must be more thanl

deletions or insertions. This is contrary to the premise that the edit distance is less than

l.

For the postorder traverse position, the numbers which are smaller than that ofu are

assigned to descendants ofu or the nodes that are to the left ofu, while the ones that are

larger than that ofu are assigned to ancestors or the nodes to the right ofu. If the number

of u is l more (or less) than that ofv, than there are more thanl nodes under (or above)

u or to the left (right) ofu. Similarly, there must be more thanl deletions or insertions.

This is contrary to the premise that the edit distance is less thanl.

For each binary branchBiB(u, u1, u2), the positional structure is defined, denoted

as(BiB(u, u1, u2), pre(u), post(u)), wherepre(u) andpost(u) are the preorder and

the postorder traversal positions ofu in T respectively (resp. the preorder traverse

and inorder traverse ofB(T )). Based on the positional binary branch, the mapping

M(T1, T2, pr) between the positional binary branches ofT1 andT2 is defined with posi-

tional rangepr, which is any set of pairs of positional binary branches ((BiB(u, u1, u2),

pre(u), post(u)), (BiB(v, v1, v2), pre(v), post(v))) satisfying:

1. the mapping is one-to-one;

2. BiB(u, u1, u2) = BiB(v, v1, v2);

3. |pre(u)− pre(v)| ≤ pr and|post(u)− post(v)| ≤ pr.

Given two treesT1 andT2 with EDist(T1, T2) ≤ l. For two positional binary branch

(BiB(u, u1, u2), i1, i2) and(BiB(u, u1, u2), i
′
1, i

′
2) in T1 andT2 respectively, if the max-

imum positional differencesmax(|i1 − i′1|, |i2 − i′2|) > l, then the two binary branches

BiB(u, u1, u2) in the two trees cannot be mapped to each other in the mapping leads to

the minimum number of edit operation.
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For the example in Fig. 3.3, the numbering beside each node is the position speci-

fication of the corresponding binary branch. Then, the positional binary branches ofT1 in

Fig. 3.3 is: ((BiB(a, b, ε), 1, 8), (BiB(b, c, b), 2, 3), (BiB(c, ε, d), 3, 1), (BiB(d, ε, ε), 4, 2),

(BiB(b, c, e), 5, 6), (BiB(c, ε, d), 6, 4), (BiB(d, ε, ε), 7, 5), (BiB(e, ε, ε), 8, 7)). And

that ofT2 are ((BiB(a, b, ε), 1, 9), (Bib(b, c, c), 2, 5), (BiB(c, ε, d), 3, 1), (BiB(d, ε, b), 4, 2),

(BiB(b, e, ε), 5, 4), (BiB(e, ε, ε), 6, 3), (BiB(c, ε, d), 7, 6), (B iB(d, ε, e), 8, 7), (BiB(e, ε, ε), 9, 8));

Assume the positional rangepr = 1. It is obvious that(BiB(c, ε, d), 3, 1) in T1 can

only be mapped to(BiB(c, ε, d), 3, 1) in T2; While (BiB(c, ε, d), 6, 4) and (BiB(c,

ε, d), 7, 6) cannot be mapped to each other.(BiB(e, ε, ε), 8, 7) in T1 can be mapped to

(BiB(e, ε, ε), 9, 8) in T2, but cannot be mapped to(BiB(e, ε, ε), 6, 3).

For two treesT1 andT2, we denote the maximum-sized mapping asMmax(T1, T2, pr).

The subset of it which is related to a given binary branchBiB ∈ Γ is denoted as

M ′
max(T1, T2, BiB, pr). Obviously,M ′

max(T1, T2, BiB, pr) is the maximum-sized map-

ping on the binary branchBiB. Given the preorder and postorder position sequences of

BiB in T1 andT2 in ascending order,|M ′
max(T1, T2, BiB, pr)| (size ofM ′

max(T1, T2, BiB, pr))

can be computed in linear time. A new distance between two trees can be defined based

on |M ′
max(T1, T2, BiB, pr)|:

Definition 3.3.2 (Positional Binary Branch Distance).Given two treesT1 andT2, their

binary branch vectorsBRV (Ti) = (bi1, bi2, · · · , bi|Γ|) (, wherei = 1, 2) and the posi-

tional range specificationpr, the positional binary branch distance with rangepr is

PosBDist(T1, T2, pr) =

|Γ|∑
j=1

(b1j + b2j − 2|M ′
max(T1, T2, j, pr)|)

Proposition3.3.3. If PosBDist(T1, T2, l) > 5× l, thenEDist(T1, T2) > l.

Proof. We prove the contrapositive proposition: If the edit distance is less thanl, then
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PosBDist(T1, T2, l) ≤ 5 × l. According to the definition of positional binary branch,

PosBDist(T1, T2, l) differs from BDist in that, in T1 andT2, it does not match the

same binary branches whose position differences are larger thanl. For any positional bi-

nary branch(BiB(u, u1, u2), pre(u), post(u)), if there is no element inMmax(T1, T2, l)

that corresponds to it, the nodeu should be changed by some edit operation. According

to Definition 3.3.2, the positional binary branch distance is the sum of the differences

on the binary branches incurred by the edit operations to changeT1 to T2. And ac-

cording to Theorem 3.2.6, one edit operation changes at most 5 binary branches. Thus

PosBDist(T1, T2, l) ≤ 5× l.

Obviously the positional binary branch distance is related to the positional range

specification. Theoretically, the positional range for two treesT1 andT2 can increase

from prmin = 0 to prmax = |T1|+|T2| and the positional binary branch distance decrease

correspondingly. Givenpr = prmin, the corresponding positional binary branch distance

computed has the maximum possible value:

PosBDist(T1, T2, prmin) = PosBDistmax

, computed by matching only the identical binary branches which have the same posi-

tions. Apparently,

PosBDistmax/5 > prmin

Givenpr = prmax, the corresponding positional binary branch computed has the mini-

mum possible value

PosBDist(T1, T2, prmax) = PosBDistmin = BDist(T1, T2)
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It is obvious that

PosBDistmin/5 ≤ EDist(T1, T2) ≤ prmax

Then, there must be a given positional rangepri s.t. prmin ≤ pri ≤ prmax which is the

maximum positional range that satisfiesPosBDist(T1, T2, pri)/5 > pri. According to

the analysis of Proposition 3.3.3,EDist(T1, T2) ≥ (pr+1), wherepr = prmin, · · · , pri.

Thus,(pri + 1) is a lower bound of edit distance. Note thatBDist(, ) is the minimum

value forPosBDist and that forpri + 1, PosBDist(T1, T2, pri + 1)/5 ≤ (pri + 1), so

we have:

BDist(T1, T2)/5 ≤ PosBDist(T1, T2, pri + 1)/5 ≤ (pri + 1)

Thus,pri+1 is a closer lower bound of edit distance betweenT1 andT2 thanBDist(T1, T2)/5.

A better optimistic bound,propt, of the edit distance can be obtained by searching the

minimum value of the positional rangepri (prmin ≤ pri ≤ prmax) satisfying

PostBDist(T1, T2, pri)/5 ≤ pri

In practice, we can reduce the search range further. SinceEDist(T1, T2) ≥ ||T1|− |T2||,
prmin = ||T1| − |T2||. At the same time, it is meaningless to set theprmax to be larger

thanmax(|T1|, |T2|);

3.3.3 Similarity Search Algorithm

This section gives the algorithm for constructing vectors and a novel filter-and-refine

algorithm for similarity search utilizing the positional binary branch distance. The steps

of vector construction is shown in Algorithm 1.
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Algorithm 1 vector construction
Input:
The data setD
Output:
The vector representations of the dataBRV ,
The preorder positionspreOrderPos,
The postorder positionspostOrderPos,

1: initialize the inverted file indexIFI to be empty;
2: for each recordT ∈ D do
3: PrePosition = 0;
4: PostPosition = 0 ;
5: Traverse(Root(T ), P rePosition, PostPosition, IFI);
6: l = 0;
7: for each entryi in IFI do
8: for each entryj in the inverted list ofi do
9: k = IFI[i][j].T id;

10: BRV [k][l].Bib ← i;
11: BRV [k][l + +].Count ← IFI[i][j].occurrence;
12: Build positional sequencepreOrderPos[k];
13: Build positional sequencepostOrderPos[k];

Function: Traverse(R, & Preorder, & Postorder, IFI)

1: construct binary branchBiBR of R by calling
getF irstChild(R) andgetNextSibling(R);
{two level binary branch}

2: Preorder++;
3: insertPreOrder(Tid,BiBR, IFI, Preorder);
4: for each child noderi of R do
5: Traverse(ri, P reorder, Postorder, IFI);
6: Postorder++;
7: insertPostOrder(Tid, BiBR, IFI, Postorder);

In the vector construction algorithm, an extended inverted fileIFI is utilized to build

the vector representation. The inverted list of each binary branch records the data record

Tid, the number of occurrences of this branch and the respective positions at which

it appears in the corresponding data. Firstly, each tree-structured data is recursively

traversed and theIFI is constructed by calling the functionTraverse( ) to obtain the

binary branch information in Figure 3.3. In the function, the binary branchBiBR of the
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current node is built by calling thegetF irstChild() andgetNextSibling() functions of

the parser. Then, in functioninsertPreOrder( ), the corresponding entry ofBiBR in

IFI is found by some hashing function. Then the component for dataT (identified by

Tid) at the end of inverted list is updated: The number of occurrences is increased by

1. The preorder position of the branch is recorded. In functioninsertPostOrder( ), the

postorder position is recorded.

After the construction ofIFI in Traverse( ), the sparse vector representation of

each data are built by scanningIFI (in Line 7-13 of Algorithm 1): For each branch that

occurs in the data, theid of the branch and the number of its occurrences is recorded in

the vector. In addition, two arrays recording the branch positions (for preorder and pos-

torder respectively) are constructed fromIFI. Both are sorted according to the branches

and in ascending order. The positions are stored according to the binary branchid. And

for each binary branch, the positions are stored in ascending order in the two sequence.

The procedure fork-NN search is shown in Algorithm 2. First, the queryTq is

preprocessed to construct the vector representation and position sequences. The pro-

cess is similar toTraverse( ) except that the inverted file need not to be built. In

line 3 of Algorithm 2, the optimistic bound of the distance between the query and each

data object is computed by calling functionSearchLBound( ); The steps of function

SearchLBound( ) is shown in Algorithm 3.3.3. In the function, the optimistic bound is

searched for in the range

[diff(size(vecTq), size(BRV [i])), max(size(vecTq), size(BRV [i]))]

. Since the search range is ordered, we use the binary search algorithm. In line 3 and

line 8 of FunctionSearchLBound( ), the distancePosBDist() are computed based on

|M ′
max()|.
After the optimistic bounds of all the vectors are obtained, at line 4 of the Algo-
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Algorithm 2 k-NN on tree-Structured data
Input: The data setD,
The vector representation of dataBRV ,
The preorder positionspreOrderPos,
The postorder positionspostOrderPos,
The queryTq;
Output:
The result set ofk nearest neighbors ofTq

1: construct vector and position arraysvecTq ,
preOrderPosTq andpostOrderPosTq for Tq;

2: for each vectori in BRV do
3: LowerBound[i] = SearchLBound(vecTq , BRV [i],

preOrderPos[i], postOrderPos[i], preOrderPosTq , postOrderPosTq);
4: sort theLowerBound andD into LowerBound′ andD′ in ascending order of the

lower bound distances;
5: initialize the max heapKNN , s.t. capacity(KNN)=k;
6: for i From 0 To|D| do
7: if (KNN.size = k)AND(LowerBound′[i] >KNN [0].key) then
8: BREAK;
9: Retrieve the corresponding dataTi;

10: editDist = EDIST (Ti, Tq);
11: if KNN.size is less thank then
12: insertTi with the keyeditDist in KNN ;
13: else
14: pop upKNN [0];
15: insert and push downTi with the keyeditDist in KNN ;
16: returnKNN ;

rithm 2, theLowerBound array and the data treeid are sorted in ascending order of

the optimistic bounds to ensure that vectors of high possibility in being the results are

processed before others. Second, the pruning procedure of traditional filter-and-refine

similarity search steps are adopted [95, 8, 77, 83] to reduce real distance computation.

A max heapKNN of capacityk is used to facilitate query processing.KNN [].keys

are the real edit distance of the current results.KNN [0].key has the maximum value

and it is the pessimistic bound. If the optimistic bound of the next vector is smaller

than the pessimistic bound, the dataTi associated with this vector need to be retrieved

and the real edit distance is evaluated (line 10). The real distance is used to update the
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Function:SearchLBound(vecTq , BRVi, preOrderPosi,
postOrderPosi, preOrderPosTq , postOrderPosTq)

1: prmin = diff(size(vecTq), size(BRVi));
2: prmax = max(size(vecTq), size(BRVi));
3: PosBDistmax = PosDiff(vecTq , BRVi, preOrderPosi,

postOrderPosi, preOrderPosTq , postOrderPosTq , prmin);
4: if PosBDistmax/5 ≤ prmin then
5: Returnprmin;
6: while prmin ≤ prmax do
7: prhalf = (prmin + prmax)/2;
8: PosBDist = PosDiff(vecTq , BRVi, preOrderPosi,

postOrderPosi, preOrderPosTq , postOrderPosTq , prhalf );
9: if PosBDist/5 ≤ prhalf then

10: prmax = prhalf − 1;
11: else
12: prmin = prhalf + 1;
13: Returnprhalf + 1;

current result as well as the pessimistic bound. This process continues till the optimistic

bound of the next vector is larger than the pessimistic bound. Then the query processing

ends. It is impossible for the remaining data to be closer to the query than the results for

their lower bounds are already larger than the maximum distance between the query and

current results.

Range query processing is similar tok-NN query processing; The difference is that

there is a specified rangeτ for the query. According to Proposition 3.3.3,

max(PosBDist(T, Tq, τ)/5, propt)

should be considered as the optimistic bound in the filtering step. If it is larger thanτ ,

the corresponding data cannot be the result and should be pruned accordingly.
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3.3.4 Complexity Analysis

In this section, the time and space complexities analysis of the vector construction

method and optimistic bound computation method is given. In order to calculate run-

ning time complexity, each step of the algorithm is considered. Assume that the size of

the dataset, i.e., the total number of tree data objects, is|D|. For recordTi, there are|Ti|
nodes in it. The vocabulary of inverted fileIFI is implemented by one hashing func-

tion. According to Algorithm 1, functionTraverse() is called recursively to traverse

each node and insert the binary branch information of the current node intoIFI. Each

time the new entries are appended at the end of the inverted list. So each update ofIFI

is of constant time complexity. Thus, theIFI construction is of linear complexity. As

we store inIFI only the existing vocabulary of the dataset, the worst case is that all the

nodes in the datasets have got different binary branches. Thus, the size of the vocabulary

is at most
∑|D|

i=1 |Ti|. In addition, each node in each tree has one corresponding entry in

the inverted list. In total, the space complexity ofIFI is alsoO(
∑|D|

i=1 |Ti|). To build

the vector representation, the wholeIFI has to be scanned once. So the time and space

complexities of the whole vector construction algorithm are bothO(
∑|D|

i=1 |Ti|).
Next, we analyze the optimistic bound computation complexity in our query pro-

cessing method. Given one queryTq, we need to compare its vector and its positional

sequence with those of each dataTi. As mentioned in section 3.3.3, we use the binary

search algorithm to obtain the optimistic bound between||Ti|−|Tq|| andmax(|Ti|, |Tq|).
Each search process is of linear complexityO(|Ti| + |Tq|). Then the time complexity

for this step isO(
∑|D|

i=1(|Ti|+ |Tq|)× log(min(|Ti|, |Tq|))), and the space complexity is

O(
∑|D|

i=1 |Ti|+ |Tq|).
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3.4 Experimental Results

In this section, the performance comparison of the new filter-and-refine similarity search

algorithm which integrates binary branch distance and the lower bound of edit distance

(denoted asBiBranch in Figure 3.9 through 3.17) against the histogram filtration meth-

ods proposed in [56] (denoted asHisto in those figures). The set of experiments were

done on synthetic datasets to show the algorithms’ sensitivity to different features of the

data. The experiments on real dataset show the algorithms’ performance on different

query characteristics. Finally, the effect of levelq on the algorithm is discussed. All

the experiments are conducted on a workstation with Intel Pentium IV 2.4GHz CPU

and 1GB of RAM. And the the novel algorithm and the algorithms proposed in [56] are

implemented in C++.

The synthetic data generator is similar to that of [122], except that the simulation

of the website browsing behavior is not necessary, but instead the data distance need to

be controlled. The program constructs a set of trees based on specific parameters. Four

groups of parameters, the fanout of tree nodes, the size of trees, the number of labels

and the edit operations are all random variables conforming to some distributions. The

fanout and the size of the trees are sampled from normally distributed values, denoted

by N{x1, x2}, wherex1 andx2 are the mean and standard deviation of the normal dis-

tribution. The number of labels in the dataset is denoted byLy, wherey is its value.

Multiple nodes in each tree can share the same label. For example, the specification

N{4, 0.5}N{50, 2}L8 means that in the generated trees, the fanout of nodes conforms

to normal distribution with mean 4 and variance 0.5. The total number of nodes in each

tree conforms to normal distribution with mean50 and standard deviation2. And there

are eight labels in the whole dataset. We also use another parameterDz, the decay factor,

to explicitly specify the distribution of the edit operations. The generator consists of the

following steps: Firstly, a given number of seeds of the dataset are generated according
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to the first three groups of parameters. At the beginning of each seed generation, the

maximum size is randomly sampled fromN{50, 2}. Then, the tree grows by breadth

first processing. The label of current node is sampled uniformly from the eight labels.

Next, we check whether the current size of the tree exceeds the maximum size. If so, the

process terminates. Otherwise, the number of children of current node is sampled from

N{4, 0.5}. Secondly, new tree is generated from one of the seeds by changing each node

of it with the probability specified byDz. The changes are equiprobably insertion, dele-

tion, and relabeling. The data generated from the seeds is used as the seed for the next

data generation. In our experiments, we adopted 0.05 as the decay factor. Experiments

with other settings had similar results.

For the real datasets, we usedDBLP , which consists of bibliographic information

on major computer science journals and proceedings. It is of XML document format and

includes very bushy and shallow trees in the repository. The average depth is 2.902, and

there are 10.15 nodes on average in each tree.

In each experiment, 100 queries were randomly selected from the dataset. The re-

sults shown in this chapter were all averaged on the queries. CPU time consumption is

one performance measure. As real edit distance computation is the most costly part of

similarity search on tree-structured data, the percentage of data which are not filtered

out and for which the real distances have to be evaluated is an important measure of the

algorithm efficiency. It is defined as:
( |True Positive|+ |False Positive|

|Dataset|
)
× 100%

Timings were based on processor time. As the source code of histogram filtration was

not available, for time consumption, we compared our filter-and-refine algorithm with

the sequential search algorithm.

For the histogram filtration algorithm, three types of histogram vectors are used: One

histogram records the distribution of heights of every node in the tree, a second records
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the fanouts for each of the nodes, and a third records the distribution of labels used. As

mentioned in section 3.3.3, in the binary branch vector, only the non-zero dimension

is stored. Also, the positional information for binary branches is stored for each node

which equals to the size of the trees. To use equal amount of space, we set the sum of

dimension of the three type histogram vectors for one tree to be the averaged vector size

plus two averaged tree size in a given dataset.

3.4.1 Sensitivity Test

In the first set of experiments, a series of sensitivity analysis to the parameters of the

dataset is carried out. The first three arguments of the data generator were set with

different distributions. All the datasets generated included 2000 trees. Figure 3.9 to

Figure 3.13 show the relative performance of the methods for various parameter settings.

They compare the percentage of accessed data for the binary branch filtration and the

histogram filtration (shown as the bars in the figures) and the CPU time consumption of

the binary branch filtration and the sequential search (shown as the lines). The results

shown are for range queries as well ask-NN queries. Each range was set to be the 1/5 of

the average distance among the whole datasets. Fork-NN queries, we retrieved 0.25%

of the trees of the dataset.

Figure 3.9 and Figure 3.10 illustrate the performance of the two algorithms when

the fanout varied. The mean values of it in the four datasets increased from 2 to 8 with

the variance fixed to be 0.5. In order to analyze the effect of fanout, we diminished the

effect of tree size and label number. The mean values of the tree size in the four datasets

were all 50, and the standard deviation was limited to 2. Thus most trees in the datasets

should have a size range from 46 to 54. The label number for each dataset was fixed

at 8. It is shown that the binary branch filtration accessed at most3.35% of the number

of data objects accessed by the histogram filtration for the range queries and at most
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23.08% for thek-NN queries. When fanout was 2, both filtration methods accessed the

most data. The reason is that the probability that the fanout of nodes is 0 is much higher

when the mean is set to be 2. Then the structure distance in this dataset is larger since the

variation of height is larger than other sets. When the fanout is increased to 4, the height

difference becomes much less. We also see that with increasing fanout, the histogram

filtration accessed less data for range queries. This is because degree histogram yields

better filtration power for larger fanout. However, for thek-NN queries, similar trends

did not appear since the mean of the real distance increased as the fanout increased, and

the search radius had to grow to retrieve thek most similar data [24]. In Figure 3.10,

for the binary branch filtration, when the access rate is only1.4%, the time consumption

of binary branch distance evaluation is only1.92% of the CPU cost of sequential query

processing. This is consistent with the theoretical analysis that real distance consumption

is overwhelming. So the extra costs incurred by the filtering can be ignored.
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Figure 3.9: Sensitivity to Fanout Variation for Range Queries

Figure 3.11 and Figure 3.12 show the percentage of accessed data and CPU cost when

the mean size of trees varied. The results of thek-NN queries are similar to that of the
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Figure 3.10: Sensitivity to Fanout Variation fork-NN Queries

range queries. In these experiments, the fanout of the datasets conformed toN{4, 0.5}.
The label size is set as 8. The mean tree size varied from 25 to 125, and in each of the

four datasets, all the tree size values conformed to normal distribution with variance of 2.

The results show that for the range queries, the percentages of accessed data with binary

branch filtration were almost the same as the result size for various tree size values.

Histogram filtration needed to access much more data to process the same queries on

the same dataset. When the mean value of tree size was 125, the binary branch filtration

outperformed histogram filtration by more than a factor of 70 for range queries. The

reason is that with label number and fanout almost fixed, the height, degree and the label

histograms could vary little. The histogram information blurs the distance identification.

On the other hand, the increase of size led to the increase of the edit distances. So

the larger size caused worse performance of both our algorithm and histogram filtration

methods. However, binary branch filtration still outperformed histogram filtration for

various tree size. As can be seen, when the mean values of the tree size increased, the

time consumption for the computation of the real distances increased quadratically. So,
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although the result size was almost the same, the sequential search time was too long

for the datasets with large size. Thus, our algorithm is quite efficient for the similarity

search on the large trees.
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Figure 3.11: Sensitivity to Size of Trees for Range Queries
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Figure 3.12: Sensitivity to Size of Trees fork-NN Queries

Figure 3.13 and Figure 3.14 show how the algorithms performed with the number
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of labels in the datasets increased. The parameters for the tree size and the fanout con-

formed toN{50, 2.0} andN{4, 0.5} respectively. The size of the label universals for

the four datasets vary as 8, 16, 32, 64. As shown in the figures, the binary branch fil-

tration algorithm always outperformed the histogram algorithm. When there were eight

labels in the dataset, the performance of histogram filtration was less effective than bi-

nary branch filtration by more than a factor of 20. In the two figures , with the increase of

the number of labels from 8 to 32, the histogram filtration improved much. The reason

is that the label histogram can perform better with a large label size. However, since the

histogram vector size was set to be comparable to the binary branch vector representa-

tion, and since the mean values of the distance increased with the label size becoming

larger, the performance began to degrade when the number of labels was larger than 32

for both the range queries andk-NN queries.
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Figure 3.13: Sensitivity to Number of Labels in Trees for Range Queries
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Figure 3.14: Sensitivity to Number of Labels in Trees fork-NN Queries

3.4.2 Similarity Query Performance

The experiments described in this part were conducted to compare the performance of

the two filtration algorithms for the queries with different parameters. Figure 3.15 and

Figure 3.16 show the performance of the two algorithms fork-NN queries and range

queries on theDBLP data. We randomly chose 2000 data objects from the whole

DBLP dataset. 100 queries were randomly chosen from this set. The average tree size

of the the data was 10.15; And the average distance among the data was 5.031;

Figure 3.15 displays thek-NN query results onDBLP data with thek varied from

5 to 20. The CPU time for sequential search is also plotted in the figure. It can be seen

that the binary branch filtration accessed much less data than the histogram filtration. It

performed one to three times better than the histogram filtration. Since theDBLP data

clustered very well, the percentage of the accessed data was small and the search time of

binary branch filtration was only 1/6 of the sequential search time.

Figure 3.16 shows the results of range queries onDBLP . When the range remained

less than the average distance among the data, the binary branch method clearly had
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better filtration power than the histogram method. As the range continued to increase

to 10, the performance difference of the two methods decreased. The reason is that the

result set was almost the whole dataset. Compared to the results of the percentage of

data accessed in the previous experiments, the binary branch filtration here showed a

smaller advantage over histogram filtration. This is due to the fact that theDBLP data

consists of shallow and small tree data, and the relatively small size of the binary branch

universal set blurs the distinctions among data.
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Figure 3.15:k-NN Searches onDBLP

3.4.3 Pruning Power With Respect To Binary Branch Levels

Figure 3.17 shows the distribution of data according to distances between the data and

the queries onDBLP . The results here were averaged on the query number. The data

distribution on three kinds of distance are plotted: edit distance, binary branch distance

(BiBranch(2) in Figure 3.17) and histogram distance between each data and query.

Data distribution according to three and four-level binary branch distances (BiBranch(3)

andBiBranch(4) in Figure 3.17) are also plotted. It can be seen that two-level binary
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Figure 3.16: Range Searches onDBLP

branch distance is a better lower bound of edit distance than the histogram distance.

Thus it can filter out much more data than histogram filtration when processing similar-

ity search. When the distance is less than 3, three and four-level binary branch distance

are also better than histogram distance. When the range is larger than 3, the data distri-

bution is almost the same for three and four-level binary branch distance and histogram

filtration distance. According to the definition of the multiple level binary branch, for the

shallow tree-structured data likeDBLP records, multiple level binary branch distance

is not an efficient lower bound for edit distance.

From the above analysis, it is obvious that the binary branch filtration is robust since

it outperforms histogram filtration on processing various types of datasets and on various

settings of the queries. It is particularly suitable for processing real datasets in spite of

their skewed nature. This may be because it encodes structure information as well as the

label information into the binary branch vector representations and positional sequences.

In contrast, histogram filtration blurs the distinctions between trees since it uses only

the histogram information, and the height, fanout and label histogram are considered
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separately.

3.5 Conclusion

XML data is becoming ubiquitous as it can express the hierarchical dependencies among

data components and can be used to model data in many applications. Just as for other

types of data, searches based on similarity measure are in the core of many operations

for tree-structured data. However, the computational complexity of the general dissimi-

larity measure (i.e., the tree-edit distance) render the brute force methods prohibitive for

processing large trees in huge datasets.

In this chapter, an efficient method based on the binary tree representation is pro-

posed. The XML data tree is transformed into binary branch numerical vectors. This

characteristic vectorrecords the structural information of the original tree, and theL1

norm distance on the vector space is proved to be the lower bound of the tree-edit dis-

tance. Moreover, the vector representation of trees can be generalized by using multiple
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level binary branches; this enables the structural information to be encoded in differ-

ent granularity. Since the novel lower bound is much easier to obtain than the original

distance measure, it can be embedded in the filter-and-refine architecture to reduce the

computation of real edit distance between data and queries and guarantee no false neg-

atives. In addition, novel filter-and-refine similarity search algorithms are given, which

exploits the positional binary branch properties to obtain a better lower bound of edit

distance. The results of the experiments show that the new algorithm is robust to varying

dataset features and query parameters. The pruning power of the new algorithms leads

to both CPU and I/O efficient solutions.



Chapter 4

Accelerating XML Twig Pattern
Matching

4.1 Introduction

As business and enterprizes generate and exchange XML data more often, there is an

increasing need for efficient processing of pattern queries on this type of data. Searching

for all occurrences of a twig pattern in the XML database is a core operation in XML

query processing. An XML twig query, represented as a labeled tree, is essentially a

complex selection predicate on bothstructureandcontentof the XML documents. While

value-based conditions can be efficiently evaluated with traditional indexing schemes,

answering the structural constraints is a challenging task. This chapter is mainly focused

on twig queries which are the basic component of declarative XML query languages,

such as XQuery and XPath.

The previously proposed methods [69, 20, 73, 28, 74, 55] have been proved to be

I/O optimal only to some specific query classes. The problem of the binary structure

join methods is mainly due to the query decomposition [69]. While for holistic twig

join methods, the problem is caused by the sequential scan of the element streams. At

any point, only the cursor elements and the elements stored in the stacks are visible.

However, according to these information, it is impossible to completely identify whether

105
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the cursor elements are in a match to the whole twig pattern. Thus some “useless” partial

solutions which do not contribute to the final answers have to be output to avoid false

dismissal.

Another inspiring observation is that all the previous holistic approaches solve the

problem by producing the matching bindings forall nodes in a twig query. However,

in a practical application, this requirement is not necessary. In this thesis, query nodes

whose matches should all be retrieved are referred to asdistinguishednodes, and those

used only for qualifying the structural relationships of a query are referred asexistential

nodes. As mentioned in Chapter 1, straightly utilizing the results of previously proposed

methods and doprojectionon those distinguished nodes matches is not efficient. Firstly,

such method outputs all matches of existential nodes and is not I/O optimal; Secondly,

even if only matching elements for distinguished nodes are considered, prior algorithms

still show the non-optimality by outputting many matches of distinguished nodes that do

not belong to final answers.

In this chapter, theoretical analysis of the reasons for the non-optimality of the pre-

vious methods is given. And the practical requirements for answering twig queries is

exploited to develop two novel twig matching algorithms which do not output the inter-

mediate path matching results. By utilizing a limited size of main memory, these algo-

rithms are guaranteed to be optimal for a much broader class of queries than the prior

methods. The rest of the chapter is organized as follows. In Section 4.2, the definition

of bounded and unbounded matching blocks is given. I introduce as well a set of theory

to expose the relationships between query structures and optimal holistic join algorithms

in this part. Section 4.3 and Section 4.4 present two new holistic twig join algorithms

based on thecontainmentandprefixnumbering schemes respectively, together with the

correctness and the complexity discussion of them in Section 4.5. Section 4.6 presents

comprehensive experimental studies on the performance comparison between the novel
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algorithms proposed in this chapter and the prior methods, as well as the comparison

between the two new algorithms. Section 4.7 concludes the chapter.

4.2 Theoretical Analysis

In this section, I theoretically analyze the reason for the non-optimality of the previous

holistic twig join algorithms and the possibility to design new holistic algorithms that

are optimal for a larger query class than the previous methods.

In this chapter, the pattern queries are referred to byQ, and the nodes in it are denoted

by q (with its subscripti representing theith node according to the preorder traversal of

it). The XML dataset are denoted byD (with its subscripti represent theith XML

data). As in the previous literatures of holistic approaches, a structure named XML

element stream is associated to each query node. The stream is a posting list (or inverted

list) containing the encoding numbers of the XML elements which have the same label,

and all elements are ordered according to thedocument positions. More specifically,

for thecontainmentnumbering scheme, all elements are sorted by the value of the pair

(DocId, LeftPos); while for theprefix numbering scheme, all elements are sorted by

the lexicography order. There is a unique cursor for each stream. It moves in the single

direction to scan all elements once in increasing order. The element pointed by the cursor

in a stream is referred to as cursor element. The stream of query nodeqi is denoted as

Sqi
and the elements in it is denoted aseqi

(or with the prime characters).

4.2.1 Matching Block

The existing holistic twig join algorithms consists of two phases: (i) in the first phase,

the partial solutions to each individual root-to-leaf path expression are output as as in-

termediate results; and (ii) in the second phase, the element paths are merged to produce
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the final answers for the whole twig query. However, for queries with PC relationships,

many state-of-the-art algorithms cannot guarantee that each intermediate solution output

in the first phase can be merged with other partial solutions in the second phase. In other

words, many useless intermediate solutions may be produced in the first phase, as shown

in the following example.

6

5

4

3

2

1

"part1"

"Dec""NewYork"

"Nov"
 2

Level

D  1M

1I

1S

"HP"

"part2""IBM"

1P

C:Code

D:Date

B:Buyer

N:Name

L:Location

I:Item

S:Seller

P:Purchase

M:Manufacturer
"S001" I  1L

 1D  2B

 1B

  2M 1N

 2N

1C

2

Figure 4.1: A sample XML tree

Example4.2.1. Consider the document in Figure 4.1 and the queryI∗[M ]/N . Firstly,

I1, M1 andN1 are scanned. we cannot determine whether or notI1 is a query answer.

At this point, it is to know thatI1 has a childM , i.e.,M1. However,N1 is not child of

I1. We do not know whetherI1 has a childN afterN1. At the same time,N1 may have

parentM afterM1 (In this example,N1 hasM2 as its parent). Now holistic algorithms

meet a dilemma, i.e., no stream can be advanced before we determine whetherI1, M1 or

N1 is in an answer. Previous methods hastily pushingI1 into stack and output the path

(I1,M1), which may become useless intermediate path if there were notN2 in join data.

2

In the following , we formalize the observation in Example 4.2.1 into a concept,

matching block, which describe a situation wherein, in order to guarantee the optimality

of algorithm, two or more different data streams have to wait for the other to advance

elements, so neither ever does.
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Definition 4.2.2 (Matching Block). Given an XML documentD and a queryQ, assume

thatqi, qj are two query nodes in Q. Leteqi
, e′qi

(in order) be two elements in data stream

Sqi
. Similarly, leteqj

, e′qj
(in order) be two elements in data streamSqj

. We say that the

4-tuple< eqi
, e′qi

, eqj
, e′qj

> is a matching blockfor Q on D if and only if the pairs of

elements(eqi
, e′qj

), (e′qi
, eqj

) are the matching bindings to Q, but(eqi
, eqj

) and(e′qi
, e′qj

)

are not. (Figure 4.2 illustrates this concept graphically)2

qj
e  ’qi

e q i
e qj

in the same match with      and

in the same match with      but

is not in the same match with
j

T .... .... ....q

e

e qi
e ’qiqi

T .... .... ....

e qj
e ’qj

e qi
e  ’qj

Figure 4.2: Illustration to Matching Block

In Example 4.2.1,< M1,M2, N1, N2 > is an instance of matching block since

(M1, N2), (M2, N1) are components of the matching tuples(I1,M1, N2) and(I2,M2, N1)

but (M1, N1) and(M2, N2) are not. The possibility of the existence ofmatching blocks

forces holistic algorithms to storeI1 andM1 in the stacks to avoid the loss of results.

However, they may not participate in the whole matches of the query. So, “useless” in-

termediate path solutions may be output and thus causes the sub-optimality. The detailed

analysis is given at Chapter 2 Section 2.4.3. The following lemma identifies a query class

where we cannot find any document with blocks.

Lemma 4.2.3. SupposeQ is a twig query with only AD relationships in all structural

predicates, there exists no matching block forQ on any documentD.

Proof. Let qi andqj be any two query nodes inQ. We prove this by rule of contradiction.

Assume that an instance of matching block< eqi
, e′qi

, eqj
, e′qj

> occurs when evaluating

Q on some documentD. Without loss of generality, leteqi
precedeeqj

according to the

preorder traverse of the data treeT . Then, there can be two cases:



110

1. qi is an ancestor ofqj in Q. Obviously,eqi
should be an ancestor ofe′qi

. Otherwise,

eqi
must end before the start ofe′qi

, and thus the start ofeqj
ande′qj

. Theneqi
and

e′qj
cannot satisfy AD relationship, which is contrary to the definition of matching

block. Becauseeqi
is an ancestor ofe′qi

, eqi
is also an ancestor ofeqj

. Therefore,

< eqi
, eqj

> is also a matching binding, which contradict the definition of block.

2. qi andqj are in the different root-to-leaf pathes inQ. Assume that inQ, nodeqh is

the lowest common ancestor (abbr.LCA, i.e., the lowest node in the twig which

is the ancestor of bothqi andqj). In these two matches, ifqh binds to one element

eqh
in the data, theneqh

andeqi
must match the path query betweenqh andqi; eqh

andeqj
must match the path query betweenqh andqj. Soeqh

, eqi
andeqj

should be

in one match. This is contrary to the fact that< eqi
, e′qi

, eqj
, e′qj

> is a block.

Otherwise, assumeqh matches to two different nodeseqh
ande′qh

(in order) in these

two matches. Similar to the analysis of Case 1,eqh
should be the ancestor ofe′qh

.

And eqh
, eqi

ande′qj
is in one match;e′qh

, e′qi
, andeqj

is in another. Since there

are only AD edges betweenqh, qi andqh, qj, theneqh
must also be the ancestor of

e′qh
andeqj

. Soeqh
, eqi

andeqj
are also in a matches which is contradict the block

assumption. The matches amonge′qh
, eqi

ande′qj
are similar.

From the above reasoning, we know that for two query nodesqi andqj (i < j) with

block matches in their streams, if they are in one query path, then there should be at

least 1 PC edge between them and the two blocked matches ofqi must be in the same

data path. Ifqi is not an ancestor ofqj, the two matches of theirLCA query nodeqh, eqh

ande′qh
should be in one path. According to Lemma 4.2.3, no block can occur during

evaluating queries with only AD relationships. Thus all the holistic join algorithms can

guarantee the optimality for such queries.
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However, blocks do not necessarily lead to the non-optimality of holistic algorithms.

Next, we define one type of blocks which can be processed optimally by caching limited

number of elements in the main memory.

Definition 4.2.4 (Bounded and Unbounded Matching Block).Given a queryQ and

an XML documentD, assume that< eqi
, e′′′qi

, eqj
, e′′′qj

> is an instance of matching block

for Q on D. < e′qi
, e′′qi

, e′qj
, e′′qj

> (eqi
, e′qi

, e′′qi
, e′′′qi

and eqj
, e′qj

, e′′qj
, e′′′qj

are in order

respectively) is anembedded blockin < eqi
, e′′′qi

, eqj
, e′′′qj

> if < e′qi
, e′′qi

, e′qj
, e′′qj

> is also

a matching block.

Furthermore, if the number of distinct elements that are involve in some embedded

blocks betweeneqi
ande′′′qi

in Sqi
(or betweeneqj

ande′′′qj
in Sqj

) is no more than the

maximum depth of documentD, then< eqi
, e′′′qi

, eqj
, e′′′qj

> is called abounded matching

block(BMB), otherwise it is anunbounded matching block(UMB). 2

...

...

...

Document

B C

A

Query

A1

B1 Bm A2 Cm’+1

An

C1 Cm’ Bm+1

Figure 4.3: Example ofBMB andUMB

For example, consider the query and the document in Figure 4.3.< A1, An, C1, Cm′+1 >

is a bounded block, because the number of distinct elements betweenA1 andAn that be-

long to some embedded block is no more thann, which is bounded by the depth of

the document. In contrast,< B1, Bm+1, C1, Cm′+1 > is an unbounded block. This is
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becausem or m′ is not bounded by the depth of the document and the number of dis-

tinct elements betweenB1 andBm+1 (or betweenC1 andCm′+1) that are involved in the

embedded blocks may be much greater than the depth of documents.

Lemma 4.2.5.UMB can only occur between query nodes which are in different query

path.

Proof. Assume thatqi is an ancestor query node ofqj, and there is a block match<

eqi
, e′qi

, eqj
, e′qj

> between them. It is similar to the 1st case of Lemma 4.2.3. Elements

eqi
ande′qi

should be in one path, otherwiseeqi
ande′qj

cannot be in the same path and

cannot in a match. Thus the lemma is proved.

Lemma 4.2.6.SupposeQ is a twig query with only AD relationships to connect branch-

ing nodes, given any documentD, there cannot be any unbounded matching block when

evaluatingQ onD.

Proof. According to Lemma 4.2.5,UMB only occurs between the query nodes which

are in the different path. Letqi andqj are two query nodes in different path ofQ and

let qh be theirLCA. Assume there is anUMB < eqi
, e′qi

, eqj
, e′qj

> on them andeqi

precedeseqj
in document order. Similar to the 2nd case of Lemma 4.2.3,qh must have

two different matcheseqh
ande′qh

(in order). Meanwhile,eqh
must be an ancestor ofe′qh

.

Since there are only AD relationship predicates underqh, eqh
, eqi

andeqj
must be in one

match. So ise′qh
, e′qi

ande′qj
. Thus, there cannot exist any matching block at all between

qi, qj andqh.

Since the number of distinct elements involved inBMB is less than the depth of

the documents, it is reasonable to assume that holistic algorithms can cache all these

elements in the main memory. However, forUMB, we cannotassume that holistic
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algorithms can cache all elements involved in the main memory. In the following section,

a query class is identified where there is onlyBMB on any given document. Thus,

this query class can also be processedoptimallyby holistic algorithms. The difference

betweenBMB andUMB motivates the design of new query processing algorithm.

4.2.2 Enlargement of the Optimal Query Class

Lemma 4.2.6 identifies a query class that only causesBMB. The analysis of this

section shows that this optimal query class can be substantially enlarged if the differ-

ence between thedistinguishednodes and theexistentialnodes is exploited. As can be

seen in Example 4.2.1, thedistinguishednode in the query is onlyI (not M or N ).

< M1,M2, N1, N2 > may become an unbounded block if there are many “M ” elements

beingI1’s children beforeN2 and many “N ” elements beingI2’s children beforeM2.

However, this unbounded block can still be efficiently processed. Instead of outputting

the concrete path< I1,M1 >, only the information thatI1 has an appropriate childM

(M1 here) need to be maintained. And onlyN2 can fulfill the matching condition and

trigger the output ofI1. Thus the streams can be advanced without loss the results.

The above observation shows that the existence of unbounded block in the undis-

tinguished (i.e.existential) data streams can be conquered by recording the matching

information in the main memory. In the rest of this section, theorems are developed to

identify the query class on which all unbounded blocks only occur in undistinguished

data streams. To achieve this purpose, the definition of thedistinguished pathandopti-

mal distinguished nodein the query tree is given as follows:

Definition 4.2.7 (Distinguished Path).Assume the query nodeqd in Q is the distin-

guished node, the query path from root toqd consists of the distinguished path

Definition 4.2.8 (Optimal Distinguished Node).A query nodeqi in Q is optimal if and

only if
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• qi is the root ofQ or,

• the parent nodeqparent(i) of qi is optimal and all the other child nodes ofqparent(i)

must connect to it through AD relationship

Suppose thatQ is a twig query with the distinguished nodeqd. qd is called optimal

distinguished node if it is optimal.

Theorem 4.2.9.Assume thatQ is a twig query with a single distinguished nodeqd. If it

is an optimal distinguished node, then there is noUMB involving the streamSqd
on any

documentD for Q.

Proof. As shown in the Lemma 4.2.6, for the query nodes in one path, there cannot be

unbounded matching blocks between elements in their streams. Since all the descendant

query nodes of the distinguished nodeqd is in a path with it, we know that all the query

nodes underqd cannot have UMBs with it. And all the nodes on the distinguished path

above it cannot haveUMB with the distinguished node. The proof of the other nodes

are given here. There are two cases for each of the branching node associated with the

distinguished path. One case is that the edge of the distinguished path under the branch-

ing node is PC relationship constrain. Another case is that the edge of the distinguished

path under the branching node is AD predicate. Figure 4.4.(a), (b) shows these two cases

respectively, whereqa is the branching node under study andqc represents its other child

nodes. In Figure 4.4 the dashed lines represent the elliptical paths and the dots represents

the elliptical parts of the query.

1. For the first case shown in Figure 4.4.(a), assume that there is matching block

< eqd
, e′qd

, eqj
, e′qj

> betweenqd andqj. We know that in these two matches, node

qa must be matched to two nodeseqa ande′qa
in order. Otherwise,eqd

andeqj
(e′qd

ande′qj
) are actually in one match, which is contrary to the definition of matching

block. And it is sure thateqa ande′qa
are in one data path. Otherwise,e′qj

starts
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Figure 4.4: Illustration of Theorem 4.2.9

after eqa ends and they cannot be in the same match. Because the predicates are

AD relationship betweenqa andqc, eqa andeqj
should also match the path query

betweenqa andqj. Thuseqa, eqi
andeqj

can be in one match, which is contrary to

the assumption that< eqd
, e′qd

, eqj
, e′qj

> is a matching block. Thus there cannot

beUMB for any document. The proof for the case< eqj
, e′qj

, eqd
, e′qd

> is similar.

2. For the second case shown in Figure 4.4.(b), the proof is similar to Lemma 4.2.5.

Theorem 4.2.9 shows that the optimal query class can be much larger than the pre-

vious ones. An excellent example is that when the queryroot node is the singledistin-

guishednode, the optimality of the new holistic algorithms can be guaranteed regardless

of the PC and AD combinations under it.

Theorem 4.2.10.If Q is a tree pattern query with multiple distinguished node and all of

them are optimal, then there cannot beUMB involving the matches of any distinguished

query node.

Proof. Theorem 4.2.10 is a natural extension of Theorem 4.2.9. We only need to prove

the case between any two distinguished nodesqi andqj in the queryQ. Obviously, ifqi

andqj are in the same query path, then there is noUMB between them.
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Assume thatqi andqj are at different path and theLCA of qi andqj is qa. From The-

orem 4.2.9, we know that under nodeqa, there can exists at most one PC predicate among

the constrains connecting the two child nodes ofqa which are on the two distinguished

path ofqi andqj respectively. Similar to the proof of the first case of Theorem 4.2.9, we

know that there cannot be matching block betweenqi andqj.

Figure 4.5 show some examples of the newly extended optimal queries. It should be

C D

E F

( a ) ( b )

A*

D

B C*

B C

( c )
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*E F G H
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*

B

A
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Figure 4.5: Optimal query nodes

noted that these theorems are not associated with any specific labeling scheme. In the

next section, two novel algorithms are developed, which are based on the two popular

labeling schemes (i.e.containmentandprefixschemes) respectively which are optimal

to query class specified by the above theorems.

Remark4.2.11. The non-optimality of holistic twig algorithms originates from the pos-

sible existence ofmatching blocksin data streams. When there is any block in data
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streams,TwigStack[20] may show its non-optimality by outputting “useless” interme-

diate results. But our above analysis suggests that not all blocks undoubtedly lead to the

non-optimality for holistic algorithms. In particular, blocks can be categorized to two

types:BMB andUMB, whereinBMB can be conquered by caching limited number

of element in main memory. As an example, previous algorithmTwigStackList[73] ef-

ficiently handlesBMB and guarantees the optimality for queries which have PC edges

in non-branching edges. Unfortunately,TwigStackList cannot be extended to handle

UMB efficiently, because that requires to cache too many elements in the main mem-

ory. In the worst case, all elements in a document should be cached in the main memory.

However, according to the above analysis, theUMB in undistinguisheddata streams can

still be efficiently processed by recording some matching information and by selectively

storing limited elements in main memory. Since previous algorithms do not differentiate

existentialnodes fromdistinguishednodes, they cannot explore this improvement space.

Algorithm iTwigJoin proposed by Chen et al [28] can identify a larger optimal query

class thanTwigStack andTwigStackList since, in essence,iTwigJoin solves thematch-

ing blockby separating elements to different streams. Thus, our theory is applicable to

their work for making further improvement.

In the following section, two novel algorithms are proposed to evaluate XML twig

queries. The challenge is to implement the theoretical results to enlarge the optimal

query class. As an evidence of thegeneralityof the theoretical results, two algorithms

are proposed, which are based on the popularcontainmentandprefixnumbering schemes

respectively.
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4.3 TwigContainment

TwigContainment, inspired byTwigStack [20], is based on containment numbering

scheme. Firstly, the algorithm for queries with a single distinguished node is presented.

And then it is naturally extended to support multipledistinguishednodes. The section

begins with the introduction of the data structures and notations.

4.3.1 Data Structure

The query twig and the streams of query nodes are modeled similarly as in the previ-

ous work ofTwigStack [20]. A twig query on XML can be represented with a small

tree structure. There are four self-explaining functions of the twig node:isRoot(q) and

isLeaf(q) verify whetherq is the root node or a leaf node.isDist(q) andisAnceDist(q)

verify whetherq is distinguished node and whetherq is ancestor of the distinguished node

respectively.parent(q), children(q) andsubtreeNodes(q) retrieve the parent node of

q, the child nodes ofq and the nodes in the subtree rooted atq respectively. And func-

tionsPC(qi, qj) (AD(qi, qj)) is used to check whetherqi is the parent (resp. ancestor)

node ofqj.

There is a data streamSq associated with each query nodeq, in which all the elements

can satisfy the predicate specified byq. The record of each element inSq consists of

its positional representation(DocId, LeftPos : RightPos, Level), whereDocId is the

data record id,LeftPos andRightPos are its containment numbers andlevel records on

which level the element is in the data. We useeq to refer to these elements.1 Next(Sq)

denotes the cursor element ofSq. And nextL(Sq) can retrieve theleftPos value of the

cursor element. The stream can be advanced to the next element inSq with the procedure

advance(Sq). Each stream is supplemented by an virtual ending element represented by

1The description of the algorithm ignoreDocId firstly. However, it is easy to extend it to deal with
DocId.
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(∞,∞,∞). And the end of the stream can be checked by functioneof(Sq). Assume

qc is a child node ofq, Reld(eq, eqc) check if elementseq andeqc satisfy the relationship

betweenq andqc. If it is AD predicate between them, this is implemented by checking

whethereq.LeftPos < eqc .LeftPos andeq.RightPos > eqc .RightPos. For the PC

relationship, other than the above requirement,eq.Level should equal toeqc .Level − 1

in order that they satisfy PC relationship.

The stack structure inTwigStack is extended in the algorithm here to present match-

ing results. In particular, there is an extended stackESq associated with each query node

q. Each item in stacks consists of a 4-tuple(num(eq), bitV ector, outputList, ptrP ).

num(eq) is the encoding number of the corresponding elementeq from Sq. The length

of bitV ector equals to|children(q)|+ 1. The first|children(q)| bits are matching bits.

If the element in an stack item has the correct extension of the child nodeqc, then its cor-

responding bit is “1”. Otherwise, it is reset. The last bit is a flag to identify whether the

item of eq is referred to by aptrP in child qc’s stack ifqc is in distinguished path. And

outputList contains the elements which match the distinguished nodes that possibly be-

come the final query answers.prtP points to an item inESparent(q) with whicheq satisfy

the relationship constrains betweenq andparent(q). There are several functions on the

stacks.empty(ESq), pop(ESq), push(ESq, eq, 0, NIL), topL(ESq), andtopR(ESq).

The last two operations return theleftPos andRightPos attribute of the element in

top item. push(ESq, eq, 0, NIL) is used to push the new item into the stack, witheq,

0, andNIL as the value of the first three fields. Meanwhile,ptrP is pointed to the top

of ESparent(q). Although the items of the stack can only be pushed into or popped up

from the top, all the items can be visited during processing, which is implemented by the

operations on the items of the extended stack.bitV ec(ESq, Itm), outputL(ESq, Itm),

elem(ESq, Itm) andprt(ESq, Itm) are used to retrieve the four fields of theItmth item

in ESq respectively.bit(ESq, qc, Itm) retrieve theqc bit of theItmth item in stackESq.
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bit(ESq, qc, Itm).set is to change the bit from “0” to “1”.

Given these differences of the stack definition, it is still used to record the partial

results of the query. Similar to the stacks inTwigStack method, the elements in the

extended stack from the bottom to the top satisfy the AD relationship. At every point

during the computing, for each item in stackESq, (i) if all matching bits inbitV ector are

“1”, then its elementeq is guaranteed to match the subtree query rooted withq. There-

fore, if q is the root, theneq is guaranteed to be the root of a match to the whole query,

and (ii) ∀e ∈ outputList is the query answer if and only ifeq match the whole twig

query. Therefore, whether an elemente ∈ outputList is a query answer can beaccu-

rately described by the correspondingbitV ector. For ease of description, the element

eq′ which matches to one of the other query nodes and satisfy the pattern betweenq and

q′ with eq is defined as thecorrelative nodeof eq, denoted ascorr(eq, q
′). corr(eq, q

′) is

not one and only.

B* C

A

A1

B1 A2

B2 C1

(1,10,1),("10"), (B1)

 (4,9,2), ("11"), (B2)(1,10,1)

(2,3,2) (4,9,2)

(5,6,3) (7,8,3)

 SA

Figure 4.6: Stack Encoding of Query Results

Example4.3.1. Figure 4.6 illustrates the stack configuration to nodeA in a twig query

for a sample document. There are two items, corresponding to elementsA1 andA2 in the

stackSA. SinceA1 has one childB1 and no child element to matchC, bitV ector=“10”.

In contrast, in the item forA2, matching bits ofbitV ector = “11′′, becauseA2 has two

child B2 andC1, which satisfy the PC relationships in the query. Consequently,B2 is

the query answer. On the contrary,B1 is not an answer.
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Algorithm 3 TwigContainment
Input : Q is a query twig pattern with distinguished nodeqd

1: while ¬(end(root(Q))) do
2: qact = getMinSource(root(Q));
3: cleanStack(root(Q), nextL(Sqact));
4: if isRoot(qact) or¬empty(ESparent(qact)) then
5: FLAG = moveStreamToStack(qact, Sqact , ESqact);
6: advance(Sq);
7: if (isLeaf(qact) andFLAG = true) then
8: updateBit(qact);

Function: end(q)

return∀qi ∈ subtreeNodes(q) : isLeaf(qi) ⇒ eof(Sqi
);

Function getMinSource(q)

returnqi ∈ subtreeNodes(q) s.t.nextL(Sqi
) is minimal;

4.3.2 Algorithm

The main procedure ofTwigContainment is depicted in Algorithm 3. UnlikeTwigStack,

this method operates in one phases. And merge-join part of different distinguished

nodes’ matches does not need a separate phase. The key idea is to repeatedly insert

elements that are possible query answers into theoutputList of the extended stack of

thedistinguishednode and propagate these elements up to theoutputList of the query

root; the whole query is matched bottom up. Thus, the process is reverse to that of

TwigStack. Firstly, I will give the processing algorithm for queries with 1 distinguished

node. The extension to multiple distinguished nodes will be introduced later.

In Algorithm 3, the elements in the data streams of each query node are iterated till

all the streams reach the ends. Line 2 identifies the stream containing the next node to

be processed. That is the one whose cursor element is with the most smallLeftPos

attribute. This guarantee that before an elementseq is pushed into its stackESq, the

elementscorr(eq, parent(q)) are already inESparent(q).

In Line 3,cleanStack() makes sure that before a element is pushed into its stack, all

the elements in the stacks which end before it are recursively popped up from the stacks.
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ProcedurecleanStack(q, nextL)

1: for ∀qc ∈ children(q) do
2: cleanStack(qc, nextL);
3: while topR(ESq) < nextL do
4: if isRoot(q) then
5: if all matching bits ofbitV ec(ESq, top) are “1” then
6: outputoutputL(ESq, top);
7: else
8: Itm = nextMatch(q);
9: AppendoutputL(ESq, Itm) with outputL(ESq, top);

10: else ifisDist(q) then
11: if isLeaf(q) or all matching bits ofbitV ec(ESq, top) are “1” then
12: AppendoutputL(ESparent(q), ptr(ESq, top)) with elem(ESq, top) ;
13: else ifisAnceDist(q) then
14: if all matching bits ofbitV ec(ESq, top) are “1” then
15: AppendoutputL(ESparent(q), ptr(ESq, top)) with outputL(ESq, top) ;
16: else
17: Itm = nextMatch(ESq);
18: AppendoutputL(ESq, Itm) with outputL(ESq, top);
19: if q is in distinguished paththen
20: bit(ESparent(q), 0, ptr(ESq, top)).reset;
21: pop(ESq);

ProcedurenextMatch(q)

1: if AD not exists betweenq andqd then
2: return0;
3: for Itm1 from top to bottomdo
4: if bit(ESq, qc, Itm1) is “1”, with qc underq in distinguished paththen
5: break;
6: returnItm1;

The details are shown in ProcedurecleanStack(). It has 3 functionalities. Firstly, for

those elements which have the descendant extension, but matches to existential nodes,

it only maintains their matching information and pops out them from stack. Secondly,

for those elements which have descendant extension and match to distinguished node,

it merges the matches of the distinguished nodes in theiroutputList to that of the cor-

relative element in the parent stack, and then pops them out from the stack. Thirdly, it

is used to popped out and skip the elements which do not have descendant extension.
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ProcedureupdateBit(q)

1: if isLeaf(q) then
2: if PC(parent(q), q) then
3: bit(ESparent(q), q, top).set;
4: else
5: for ∀Itm ∈ ESparent(q) do
6: bit(ESparent(q), q, Itm).set;
7: updataBit(parent(q));
8: else
9: FLAG = 0;

10: for ∀Itm1 ∈ ESq do
11: if all matchhing bitsbitV ec(ESq, Itm1) arel “1” then
12: for Itm2 from ptr(ESq, Itm1) down to 0do
13: if bit(ESparent(q), q, Itm2) is “0” then
14: bit(ESparent(q), q, Itm2).set;
15: else
16: FLAG = 1;
17: break;
18: if PC(parent(q), q) then
19: break;
20: if FLAG == 1 then
21: FLAG = 0
22: break;
23: if ¬isRoot(q) then
24: updateBit(parent(q));

Details can be seen in the analysis of Subsection 4.3.3.

ProcedureupdateBit(q) is called due to the push-into of any new element to the

leaf stacks. Since the algorithm makes sure that when an element is pushed into the

stack, its ancestors which match the query path from root to its corresponding query

node are already in the stacks, the pushing of the element into leaf stack means that

there must be a match to a path pattern query. Then the matching information for the

correlative elements in the ancestor stacks need to be updated. Actually, it is propagated

to the correlative elements from the stacks of leaf nodes to that of the root. However, for

the inner query node, only if it has the exact descendant extension (This is achieved by

checking thebitV ector of its own on Line 11.), its matching bit of its ancestors in the
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Function moveStreamToStack(q, Sq, ESq)

1: if PC(parent(q), q) then
2: if PCd(elem(ESparent(q), top), Next(Sq)) then
3: push(ESq, Next(Sq), 0, NIL);
4: bit(ESparent(q), 0, top).set;
5: returntrue;
6: else
7: returnfalse;
8: else
9: push(ESq, Next(Sq), 0, NIL);

10: bit(ESparent(q), 0, top).set;
11: returntrue;

parent stack can be set as “1”. Each time, ifPC(parent(q), q), matching information of

at most 1 element in parent stack need to be updated. IfAD(parent(q), q), the matching

information of the elements which correlate with the leaf element newly pushed into

the stack, but not with the leaf element proceeding it need to be updated. While the

last line of ProcedurecleanStack() makes sure that when the possibleoutputList is

propagated, the matching information for the elements in distinguished path stacks are

reset and prepared to record the future matching information of the path pattern.

Line 4, 5 (FunctionmoveStreamToStack()) of TwigContainment makes sure that

only eq which satisfy the path pattern query from root toq can be pushed into the stack.

Line 5 push the element from the stream to the stack. After a element is pushed into the

extended stack, the stream can be advanced. In the proceduremoveStreamToStack(),

we push the next elements inSq into ESq, and set the value ofbitV ector as all “0”. This

is due to the fact that whene is iterated, its possible correlative elements which matches

to the nodes underq have not been accessed yet. Note that the value ofbitV ector and

outputList may be changed later on in ProcedureupdateBit(q) andcleanStack() due

to the appearance of new matching elements.
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4.3.3 Analysis ofTwigContainment

In this section, the proof of the correctness and completeness of the algorithmTwigCon-

tainment is given.

Lemma 4.3.2.Consider the following fragment in ProcedurecleanStack():

for ∀qc ∈ children(q) do

cleanStack(qc);

while topR(ESq) < nextL do

· · · ;
pop(ESq)

If in Algorithm 3,qact = q andeq is cursor element ofSq, beforeeq is pushed into the

extended stackESq, the following properties hold:

(1) All the elements in stacks (from bottom to the top) are guaranteed to lie on a root-

to-leaf path in the XML database.

(2) All the elements popped out from the ancestors stacks ofq cannot be in the same

solution witheq and the elements followingeq in the streams.

(3) All the elements popped out from the descendant stacks ofq cannot be in the same

solution witheq and the elements followingeq in the streams.

Proof. •

(1) According to Algorithm 3, the elements in streams are processed according to pre-

order. ProcedurecleanStack() is called recursively in preorder of the query nodes.

From above fragment, we know that all the elements remaining in the stacks are

those which end aftereq starts. Since elements in XML documents are nested.

The remaining elements must end aftereq ends. Since elements start aftereq starts
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haven not be accessed yet. Thus, after callingcleanStack(root(Q), nextL(Sqact)),

all the elementse in the stacks satisfies:e.LeftPos < eq.LeftPos < eq.RightPos <

e.RightPos, i.e. they are in the same path witheq.

(2) Let q′′ be any ancestor ofq in Q andeq′′ is popped out beforeeq is pushed into

ESq. Theneq′′ .RightPos < eq.LeftPos. Assuming thateq′′ is in the same so-

lution with eq or the element followingeq, theneq′′ .RightPos > eq.RightPos >

eq.LeftPos, which is contradictory to the assumption.

(3) Let q′′ be any descendant ofq in Q andeq′′ is popped out beforeeq is pushed into

ESq. Theneq′′ .RightPos < eq.LeftPos. Assuming thateq′′ is in the same so-

lution with eq or the element followingeq, theneq′′ .RightPos > eq′′ .LeftPos >

eq.LeftPos, which is contradictory to the assumption.

Lemma 4.3.3.Algorithm 3 makes sure that all and only the elementseq in Sq that satisfy

the predicates betweenroot(Q) andq are pushed into the stacks.

Proof. Firstly, it is necessary to prove that all the elements that satisfy the path pattern

are pushed into the stacks. This can be proved by induction on the level ofq. For the

elements inSroot(Q), they are pushed into the stacks directly according to Line 5 of Al-

gorithm 3. The property holds. Suppose that the property holds for any node of level

i in query. Letq be on thei + 1th level and letq′ be its parent node. Assume thateq

be an element from the stream ofSq, which satisfies the query predicate from root toq.

There must be an elementeq′ from Sq′ which on the path from root element toeq and

match the predicates fromroot(Q) to q′. Obviouslyeq′ is processed beforeeq. Since

q′ is of level i, eq′ must be pushed intoESq′ according to inductive hypothesis. Obvi-

ously,eq′ .LeftPos < eq.LeftPos < eq.RightPos < eq′ .RightPos; Any elementseq′′

accessed betweeneq′ andeq satisfieseq′′ .LeftPos < eq.LeftPos. Thuseq′ cannot be
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popped out fromESq′ beforeeq is pushed into stackESq. According to Line 4,eq can

be pushed intoESq.

Next, we need to prove that ifeq does not satisfy the predicates fromroot(Q) to q,

it cannot be pushed into the stack. According to Algorithm 3,eq can be pushed in to

ESq if and only if ESparent(q) is not empty after callingcleanStack(), andeq, together

with top(ESparent(q)), satisfies the predicate betweenq andparent(q). Obviously, for

any elementei remains in stackESi after this function call, its associated element in

the ESparent(i) should remain in the stack as well. Thus, ifESparent(q) is not empty,

the element in stacks must comprise the path pattern match fortop(ESparent(q)). And if

eq andtop(ESparent(q)) satisfy the predicate betweenq andparent(q), there must be a

pattern match foreq in the stacks. This is contradictory to the assumption.

According to Lemma 4.3.3, if an element is pushed into the extended stack of one

of the leaf nodes, the element can match the path pattern query from the root to the leaf

node.

Lemma 4.3.4.ProcedureupdateBit() makes sure that:

(1) If all matching bits ofbitV ec(ESq, Itm) are “1” in the stack of an inner nodeq,

then the elementelem(ESq, Itm) is in a match to the sub-query rooted atq;

(2) Let eq be an element in the stackESq. If it has a match to the sub-query rooted at

q, the correspondingbitV ector will be set as all “1” before it is popped out.

Proof. •

(1) (Induction on the height ofq.) The height of a leaf node is defined as 0; And the

height of a internal node is defined as the largest height of its children plus 1. For

the elements pushed into the leaf stack, although the associatingbitV ector are not

updated, they surely match the sub-query rooted at the leaf node. Suppose that
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for the query nodes of heighti, the property is verified. For the nodeq of height

i + 1, assume thateq is in ESq and has all “1”bitV ector matching information.

FromupdateBit() we know that∀qc ∈ chilren(q), there must exists a elementeqc

which has all “1”bitV ector in ESqc and satisfies the predicate betweenq andqc.

qc’s height is at mosti, thus,eqc is in a match to the sub-query rooted atqc. And

according toupdateBit(), eq andeqc (∀qc ∈ children(q)) satisfy the predicate

betweenq andqc. Thuseq is in a match to the sub-query rooted atq.

(2) According to the first property of Lemma 4.3.2,eq satisfies predicates fromroot(Q)

to q. Assumeq′ is a descendant node ofq andeq′ = corr(eq, q
′). Thus,eq′ must

satisfy the predicates fromroot(Q) to q′ and be pushed into the stack. We prove

by induction on the height of the query node. Assumeq is of height 1. Onceeq′

is pushed into the stack, theupdateBit() is called and the corresponding bit ofeq

will be set. Since all its descendant matches starts before it ends, the matching bits

of eq’s bitV ector are set to be all “1” before it is popped. Assume the nodes of

heighti verify this property. Now letq is of heighti + 1. Then all thebitV ector

of the child node matches ofeq should be set all “1” before popped out according

to hypothesis. According toupdateBit(), once they are set as all “1”, through

updateBit(parent(q)), the bit ofq is set. Thus the property is verified onq.

According to the second property of Lemma 4.3.2, if a elementeq popped out with

its correspondingbitV ector not being all “1”, then it cannot be in a match to the sub-

query rooted atq. We know that the elements inSroot(Q) are pushed intoESroot(Q); Then

according to the two properties of Lemma 4.3.4, for any elementeroot(Q), if and only if it

is in a match ofQ, its corresponding matching bits inbitV ector can be set to be all “1”

before it is popped out fromESroot(Q). However, one element in theESroot(Q) may have

multiple solution matches.
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Lemma 4.3.5.The procedurecleanStack() can make sure that

(1) each solutioneqd
to the distinguished nodeqd can be merged into theoutputList

of the correlative elementeparent(qd) (if any) in theESparent(qd) beforeeparent(qd) is

popped out;

(2) the outputList containing each solutioneqd
will not be dropped during query

evaluation;

(3) and the elementseqd
in the streamSqd

which is not the solution cannot be output.

Proof. •

(1) Let eqd
be a result. Theneqd

must match the predicates betweenroot(Q) andqd

(i.e. eqd
has ancestor extension). According to Lemma 4.3.2, it must be pushed

into the stackESqd
when it is iterated by the cursor. At the same time,eqd

is in

a partial solution of the sub-query rooted atqd (i.e., it has descendant extension).

According to Lemma 4.3.4, its matching bits inbitV ector must be set as all “1”

after all its descendant extensions are iterated. Since procedurecleanStack() are

called in recursive order,eqd
can be propagated to theoutputList of the correlative

element inESparent(qd) before it is popped out.

(2) For this item, we need to prove that each solutioneqd
will be successfully prop-

agated from the stack of theith ancestor, denoted asESqi
, to that of thei + 1th

ancestor,ESqi+1
(exceptroot(Q)) during the evaluation and can be output suc-

cessfully fromESroot(Q). According to ProcedurecleanStack() and Procedure

nextMatch(), eqd
can be propagated if and only if there is a correlative elementeqi

which has descendant extension inESqi
. And eqd

is propagated in theoutputList

of the correlative element ofeqi
. We have two cases:
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(a) There is only PC relationship betweenqi andqd; Thus, the partial solution

between them associatingeqd
is one and only, i.e. the match traced by the

parent pointer in each stack. Thus,eqd
can be successfully propagated from

ESqi
to ESqi+1

(b) There exists AD relationship betweenqi andqd; If eqd
is dropped, the reason

is that, at certain ancestor level,j (0 < j < i), eqd
is propagated in the

outputList of eqj
(the lowest ancestor with descendant extension) whose

correlative elementeqi
in ESqi

has no descendant extension.In procedure

nextMatch(), elementeqd
is merged into theoutputList of e′qj

which also

has a match to the whole path pattern containingqd. If AD constrain is under

qi in the path leading toqd, obviously,e′qj
is also correlative toeqd

. Otherwise,

the path pattern betweenqi andqd is shown in Figure 4.7.(a) whereqk is the

first query node followed by the AD constrain underqi (k may equal to j).

The dashed line and dotted line represent the part whose constrain can be

ignored. The correlative element ofeqi
(eqk

) is different to that ofe′qj
(e′qk

)

in ESqk
. The match is shown in Figure 4.7.b. Sinceqk followed by AD

constrain in the path,e′qk
is also correlative toeqd

. So doese′qi
. Becauseeqd

is

in a whole match, there must be a element which is correlative toeqd
and has

descendant extension inESqi
. So,eqd

can be successfully propagated from

ESqi
to ESqi+1

Inductively, all the solutions can be output successfully.

(3) According to Lemma 4.3.3, inSqd
, eqd

which has no ancestor extension cannot be

pushed into the stack. According to the first item,eqd
which has no descendant

extension cannot be propagated into the parent stack ofqd. And according to

the second item,eqd
which does not satisfy other pattern constrains cannot be
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Figure 4.7: Path Pattern Match

propagated from theith ancestor stack to thei + 1th ancestor stack.

The ProcedurecleanStack() outputs theoutputList of the elements in the stack

ESroot(Q) before they are popped out if theirbitV ector are all “1”. From Lemma 4.3.5,

we can be sure that all the different matches to the distinguished nodeqd are correctly

output. So we have the following Theorem:

Theorem 4.3.6.Given a twig queryQ and an XML databaseD, AlgorithmTwigCon-

tainment correctly returns all the answers forQ onD.

It is noted that the distinguished nodes are propagated only to the lowest correla-

tive elements in the parent stack. By doing this, the memory space and the answers

which appear in multiple solution matches will not be output redundantly (one of the

main problem ofTwigStack). The correctness and the completeness of the algorithm is

proved.

If the final answers are required be presented in sorted document order, in Procedure

CleanStack(), when any element is popped from the stack of the root, we cannot di-

rectly output all elements in itsoutputList (Line 25). Instead, itsoutputList need to be
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merged into that of the next element in root stack. In general, the output of elements is

blocked until all answers prior to them in the sort order can be computed.

When there are multiple distinguished nodes in the queries, algorithmTwigContain-

ment should create the correspondingoutputList for each of them. We know that each

outputList associates with a element, then the merge join part are processed when the

element is popped out and theoutputList is propergated to the element in the parent

stack. However, a matches to one distinguished node can be joined with matches of

other distinguished node at different level. For example, in Figure 4.6, if the query is

A[//C∗]/B∗, then both(C1, B1) and(C1, B2) are solutions. Then for each branching

nodeq which has more than one outgoing distinguished paths, when theoutputList of

eq is propogated, it should be merged to that of the parent stack element’s as well as

to that of the element’s which is undereq in ESq if the corresponding constrain is AD

relationship. It is important to note the differences betweenTwigStack andTwigCong-

tainment. TwigStack may output many path solutions that do not contribute to any final

answers. However,TwigContainment guarantees that each output is one of the final

answers.

Example 2. We use the XML document and query in Figure 4.6 again to illustrate how to

usebitV ector to avoid outputting “useless” elements. Table 1. traces the entire match-

ing process by showing thebitV ector updates and the corresponding stack operations.

Note that for this example, the previous algorithms (e.g.TwigStack andTwigStackList)

will output a useless path solution (A1, B1), but TwigContainment only output one

useful solutionB2. 2
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Step cleanStack() moveStreamToStack() updateBit()
1 push(ESA, A1, 0, NIL)
2 push(ESB, B1, 0, NIL) (A1, “10′′, NIL)
3 (A1, “10′′, B1)

pop(ESB) push(ESA, A2, 0, NIL)
4 push(ESB, B2, 0, NIL) (A2, “10′′, NIL)
5 (A2, “10′′, B2)

pop(ESB) push(ESC , C1, 0, NIL) (A2, “11′′, B2)
6 pop(ESC)

outputB2

pop(ESA)
pop(ESA)

Table 4.1: Matching Process for Example 2

4.4 TwigPrefix

In this section, the second novel algorithm,TwigPrefix is presented, which is inspired

by theextended Deweyencoding method proposed in [74].Extended Deweyis a prefix

numbering scheme and encodes the element name under a specific parent context by

using modulo function. A finite state transducer (FST) can be defined according to the

XML schema to decode the encoding numbers along the path from the root to an element.

Thus, from theextended Dewaynumbering of an element alone, the names of the all the

elements in the path from the root to this element can be derived. The details of this

element decoding method and the FST is introduced in Section 2.4.3. In the following

section, the additional data structures and notations used inTwigPrefix is introduced

first.

4.4.1 Data Structure

For each leaf nodeql in the twig query, there is a associating streamS̃ql
. The stream

containsextended Deweynumbers of elements that match the node typeql. The element

numbers in the stream are sorted in theascendinglexicographical order (which is ac-
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tually consistent with the pre-order traverse of the elements). The functionnext(S̃ql
)

returns theextended Deweynumber of the cursor element in the streamS̃ql
. Operation

advance(S̃ql
) skips the pointers to the next elements. For two elementsep andeq

2 (p is

an ancestor ofq), ProcedureReld(ep, eq) verifies whether they matches the path pattern

betweenp andq.

Similarly, a twig query on XML can be represented with a small tree structureQ.

Given a query nodeq, functionsLBA(q) and HBD(q) return thelowest branching

ancestornode ofq and thehighest branching descendantof q respectively if they exists

(if q is a branching node,q itself is returned). For example, in Figure 4.6,LBA(C) = A.

In addition, the self-explaining functionsisBranch(q) andisTopBranch(q) is used to

determine whetherq is a branching node and the highest branching node accordingly. If

q is a branching node, Functiondbl(q) returns the set of all branching nodesqb and leaf

nodesql underq s.t. there is no branching node betweenq andqb, and betweenq andql.

FunctionisDist(q) andisAnceDist(q) check whetherq is the distinguished node or is

an ancestor of the distinguished node.

TwigPrefix keeps a extended stack structurẽESqb
for each branching nodeqb during

execution too. Each item in stacks consists of a 4-tuple(num(eq), bitV ector, outputList, ptrP ),

which has the similar property as that in stacks ofTwigContainment. However, the

num() is theextended Deweynumber, the size ofbitV ector is |dbl(q)| now. (With the

dewey encoding method, the flag bit is not necessary.) And it should be noted that the

ptrP of each item inẼSq is pointed to its lowest correlative element in the stack of the

LBA(q) (if existing). Functionselem(ẼSq, Itm), bitV ec(ẼSq, Itm), outputL(ẼSq, Itm),

ptr(ẼSq, Itm) and bit(ẼSq, qi, Itm) (qi ∈ dbl(q)) are defined similarly as those of

TwigContainment. The maximal number of elements in each stack is no more than the

max depth of the document. Furthermore, since onlybranchingnodes have extended

2Here,ep andeq represent both the elements and the numbers of them
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Algorithm 4 TwigPrefix
Input : Q is a twig pattern query with distinguished nodeqd

1: for ∀q ∈ Q do
2: isLeaf(q) ⇒ locateMatchedElem(q);
3: while ¬(end(root(Q))) do
4: qact = getMinSource(root(Q));
5: cleanStack(root(Q), next(S̃qact)) ;
6: moveStramToStack(qact);
7: advance(S̃qact);
8: updateBit(qact);
9: locateMatchedElem(qact);

Procedure: locateMatchedElem(q)

{ Assume that the prefix of elementnext(S̃q) is n1/n2/ · · · /nk }
while ¬((n1/n2/ · · · /nk match path pattern query ofq) and(nk matchesq)) do

advance(S̃q);

stack structures inTwigPrefix, a responsible nodeassociated with the the distinguished

nodeqd, denoted asresp(qd) is defined as follows.

Definition 4.4.1 (Responsible Node).For adistinguishednodeqd in queryQ, its re-

sponsible nodeis defined as:

resp(qd) =





HBD(qd) if HBD(qd) exists;

LBA(qd) otherwise, ifLBA(qd) exists.

4.4.2 Algorithm

The main algorithm ofTwigPrefix is shown in Algorithm 4 and all stack operations are

shown in FunctioncleanStack( , ) andupdateBit(). The main idea ofTwigPrefix is

also to usebitV ector to precisely record the matching results and useoutputList to

contain possibly matching elements. The procedureslocateMatchElem(), is similar to

that in algorithmTJFast[74].
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ProcedurecleanStack(q, e)

1: for ∀qc ∈ dbl(q) do
2: if isBranch(qc) then
3: cleanStack(qc, e);
4: while elem(ẼSq, top) is not an ancestor ofe do
5: if isTopBranch(q) then
6: if matching bits ofbitV ec(ẼSq, top) are all “1” then
7: outputoutputL(ẼSq, top);
8: else
9: Itm = nextMatch(q);

10: AppendoutputL(ẼSq, Itm) with outputL(ẼSq, top);
11: else ifq = resp(Q) and matching bits ofbitV ec(q, top) are all “1” then
12: if q = HBD(qd) then
13: Append outputL(ẼSLBA(q), ptr(ẼSq)) with eqd

correlated with

elem(ẼSq, top) andelem(ẼSLBA(q), ptr(ẼSq));
14: else
15: Append outputL(ẼSLBA(q), ptr(ẼSq)) with eqd

correlated with

elem(ẼSq, top) ande;
16: break;
17: else ifisAnceDist(q) then
18: if matching bits ofbitV ec(q, top) are all “1” then
19: AppendoutputL(ẼSLBA(q), ptr(ẼSq, top)) with outputL(ẼSq, top) ;
20: break;
21: else
22: Itm = nextMatch(q)

23: AppendoutputL(ẼSq, Itm) with outputL(ẼSq, top);
24: pop(ẼSq);
25: if isTopBranch(q) then
26: clear “1 ” bit for items in stacks of distinguished path;

ProcedurenextMatch(q)

1: for Itm1 from top to bottomdo
2: if elem(ESq, qc, Itm1) satisfy pattern betweenq andqc, with qc ∈ dbl(q) in dis-

tinguished paththen
3: break;
4: returnItm1;

The Procedureend() of Algorithm 4 is the same as that in Algorithm 3.
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ProcedureupdateBit(q)

1: if isLeaf(q) then
2: bit(ẼSLBA(q), q, Itm2).set;
3: else
4: for ∀Itm1 ∈ ẼSq do
5: if bitV ec(ẼSq, Itm1) are all “1” then
6: for ∀Itm2 ∈ ẼSLBA(q) do
7: if Reld(elem(ẼSLBA(q), Itm2), elem(ẼSq, Itm1)) then
8: bit(ẼSLBA(q), q, Itm2).set;
9: if ¬isTopBranch(q) then

10: updateBit(LBA(q));

ProceduremoveStreamToStack(q)

1: for qi in path fromroot(Q) to q do
2: if isBranch(qi) then
3: for all elemente matchingqi in theprefix(next(S̃q)) do
4: if e is descendant ofelem(ẼSqi

, top) then
5: push(ẼSqi

, e, 0, NIL);

4.4.3 Analysis ofTwigPrefix

Lemma 4.4.2.ProcedurecleanStack() makes sure that When an elementeq is pushed

into the extended stack̃ESq, the following properties hold:

(1) All the elements in one stack (from bottom to the top) are guaranteed to lie on a

root-to-leaf path in the XML database.

(2) All and only the elementseq in S̃q that satisfy the predicates betweenroot(Q) and

q are pushed into the stacks.

(3) All the elements popped out from the ancestor branching node stacks cannot be in

the same solution witheq and the elements followingeq in the streams.

(4) All the elements popped out from the descendant stacks cannot be in the same

solution witheq and the elements followingeq in the streams.
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Lemma 4.4.3.ProcedureupdateBit() makes sure that:

(1) If matching bits ofbitV ec(ẼSq, Itm) are all “1” in the stack of a inner nodeq,

then the elementelem(ẼSq, Itm) is in a match to the sub-query rooted atq;

(2) Let eq be an element in the stack̃ESq. If it has a match to the sub-query rooted at

q, the correspondingbitV ector will be set as all “1” before it is popped out.

Theorem 4.4.4.Given a twig queryQ and an XML databaseD, AlgorithmTwigPrefix

correctly returns all the answers forQ onD.

The proof of Lemma 4.4.2 and Lemma 4.4.3 and Theorem 4.4.4 are similar to that

of TwigContainment. For the queries with more than 1 distinguished node, the output

methods are similar to that ofTwigContainment as well.

4.5 Time and Space Analysis

While the correctness and completeness hold for any given query, the I/O optimality

holds only for the case where alldistinguishednodes are optimal in Definition 4.2.8. In-

tuitively, this can be explained that when alldistinguishednodes are optimal nodes, there

are onlyunbounded matching blocks(see Theorem 4.2.9). Thus,TwigContainment and

TwigPrefix are able to cache limited number of elements inoutputLists in the main

memory and guarantee that each output elements in the two ProcedurescleanStack()

for TwigContainment andTwigPrefix respectively belong to the final query solutions.

Theorem 4.5.1.Consider an XML databaseD and a twig queryQ where all distin-

guished nodes are optimal nodes. The worst case I/O complexity ofTwigContainment

and TwigPrefix is linear in the sum of the sizes of input and final query solution lists.

The worst-case space complexity is linear in the maximal depth inD.
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Proof. According to the theoretical analysis of the algorithm, only the matches of the

distinguished nodes which contribute to the final answers are output by AlgorithmTwig-

Containment andTwigPrefix. Thus, the worst case I/O complexity is linear in the sum

of the sizes of input and final query solution lists.

The key factor of the proof of the space complexity is to show that when all dis-

tinguished nodes are optimal nodes, given any stacksESq (or ẼSq), the number of the

elements in itsoutputLists are no more than the max depth of the XML document.

It is shown that AlgorithmTwigContainment andTwigPrefix only store the matches

to the distinguished node in theoutputList. According to Theorem 4.2.9 and Theo-

rem 4.2.10, there is noUMB on the stream of optimal distinguished nodes. And ac-

cording to Lemma 4.3.5, one match of the distinguished node appears in at most one

outputList in any stack. The stack size is no longer than the maximum length of the

XML documents. Thus the lemma is proved.

When the main memory is extremely small and the query document is extremely

large, if the distinguished node is not optimal, bothTwigPrefix andTwigContainment

cannot guarantee that all the elements inoutputList can be fit in the main memory. In

this case, some elements inoutputList should be output as intermediate results. How-

ever, this is a rare practical occasion. In the next section, it is shown that for a large

query class, even in the constraints of limited memory,TwigPrefix andTwigContain-

ment guarantees that each output intermediate element belongs to final solutions. In

sum, as the evidence of the generality of the theory on matching block, two algorithms

TwigPrefix andTwigContainment are proposed which are based on different number-

ing scheme, but identify the same optimal query class to fulfill the results of Theorem

4.2.9 and 4.2.10. However, as shown in the next experimental part, althoughTwigPrefix

andTwigContainment share the same query class for optimality, for the case of a non-

optimal query, two algorithms may output different number of intermediate results due
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to the discrepancy of their numbering schemes.

4.6 Performance Study

In this section, extensive experimental study ofTwigContainment andTwigPrefix is

performed on real-life and synthetic data sets. The results verify the effectiveness, in

terms of accuracy and optimality, of theTwigContainment andTwigPrefix as holistic

twig join algorithms for large XML data sets. These benefits become apparent in a com-

parison to previously proposed three algorithmsTwigStack [20], TwigStackList [73]

and TJFast [74]. Overall, this empirical study indicates thatTwigContainment and

TwigPrefix fully exploit the key observation fordistinguishednodes and thus signifi-

cantly outperforms the existing holistic join algorithms. In addition, it also shows that

TwigPrefix outperformsTwigCongtainment with respect to I/O cost and main memory

requirement.

4.6.1 Experiment Settings and Datasets

AlgorithmsTwigStack, TwigContainment andTwigPrefix are implemented in JDK 1.4

using the file system as a simple storage engine. The codes ofTwigStackList andTJFast

come from authors of original papers [73, 74]. The reason that these three algorithms

chosen for comparisons is thatTwigStack, TwigStackList andTJFast are optimal for

different query class.TwigStack is a well-known holistic twig algorithm, which is very

efficient when query contains only AD relationships.TwigStackList extendTwigStack

by adding list structure and thus identify a larger optimal query class. Finally,TJFast is

based on a variant of prefix numbering scheme. It is claimed to significantly reduce I/O

cost by accessing only numbers ofleaf query nodes.

The experiments are all conducted on a workstation with Intel Pentium IV 1.7GHz
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CPU and 512M of RAM. The operating system is windows XP. To offer a comprehen-

sive evaluation of the new algorithms on different query types and on data with different

features, both synthetic dataset and real XML data are used. The synthetic dataset is

generated randomly. There are totally 7 labelsA1, A2,..., A7 in the dataset and labels

are assigned uniformly from them. Two real datasetsDBLP andTreeBank [16, 109]

are used since they have different characteristics.DBLP is a broad and shallow docu-

ment, butTreeBank has very deep recursive structure. Table 4.2 summarizes the dataset

characteristics.

Synthetic DBLP TreeBank
Size(MB) 8.8 130 82

Elements(million) 1.0 3.3 2.4
Max/Avg Depth 12/6.1 6/2.9 36/7.8

Table 4.2: Character of the Test Data Sets

In order to compare the performance of different algorithms under different work-

loads, a set of queries is designed, which have different features in terms of twig struc-

tures anddistinguishednodes. All queries tested for random data sets are shown in

Figure 4.8. In particular,Q1, Q2 contain only PC relationships, whileQ3 contains only

AD relationships andQ4,Q5,Q6 have different combinations of both PC and AD rela-

tionships. All queries proposed toTreeBank andDBLP data are shown in Table 4.3.

In particular,Q7, Q8 andQ10 have singledistinguishednodes and other queries have

multipledistinguishednodes. Note that inQ12, all nodes aredistinguishedones. We use

this query to show that even in the case when all queries nodes are distinguished nodes,

our algorithms still outperform previous methods.

The performance measurement includes number of intermediate results, memory size

and processing time in the experiments. The number of intermediate elements evaluates

the total number of intermediate elements, which reflects I/O costs. The measurement of

varying main memory size is used to test whether algorithms perform well in the case of
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Figure 4.8: Queries for Synthetic Data

Dataset Query
Q7 DBLP //article[.//cdrom]//author*
Q8 DBLP //inproceedings[author]//title/sup*
Q9 DBLP //inproceedings*[author]//title/sup*
Q10 TreeBank /S*[.//VP/IN]//NP
Q11 TreeBank PP[.//IN*]/NP/VBN*
Q12 TreeBank PP*[.//IN*]/NP*/VBN*
Q13 TreeBank VP*[NN]/S*
Q14 TrreBank S[ADJP*]/PP[.//NP]//IN

Table 4.3: Queries for DBLP and TreeBank Data

limited main memory. The total execution time is obtained by averaging the time elapsed

to answer a query with six consecutive runs, discarding the best and worst performance

results.

4.6.2 Algorithms Based on Containment Numbering

In this section, the performances of the algorithmsTwigStack, TwigStackList andTJ-

Fast on the real and synthetic data sets are presented. In the first set of experiments,
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the main memory size is limited to 10K, to compare the performance of algorithms un-

der the constraints of a small main memory. Figure 4.9 shows the query performance

in terms of response times (in seconds) and Figure 4.10 shows the number of output

elements for different queries.TwigContainment is distinctly more efficient than the

other algorithms for all six queries. This is due to the fact thatTwigContainment output

less “useless” intermediate results. With the limited memory setting,TwigStack and

TwigStackList have to output most of intermediate path matches to the second mem-

ory and reload them in the second phase for merging. HoweverTwigContainment se-

lectively cache limited elements in theoutputList instead of outputting many useless

intermediate elements. This result suggests that under the constraints of limited mem-

ory, TwigContainment can efficiently utilize the small main memory and achieve better

performance thanTwigStack andTwigStackList.
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Figure 4.9: Execution Time (Synthetic)

Figure 4.11 and Figure 4.12 illustrate the performance of the algorithms on different

size of main memory. Figure 4.11 shows the number of output elements of the three

algorithms for queryQ1 where the number of elements allowed to be cached in main

memory varied from 10K to 50K. Figure 4.12 is the result forQ6. The two figures



144

 1

 10

 100

 1000

Q6Q5Q4Q3Q2Q1

N
um

be
r 

of
 e

le
m

en
ts

 (
K

)

Queries

TwigStack
TwigStackList

TwigContainment
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show that the output elements byTwigContainment is always much less than that of

TwigStack andTwigStackList. In particular, forQ1, with the increasing of the size of

the available main memory, the output size ofTwigStack andTwigStackList decreases

linearly. The reason is thatTwigStack andTwigStackList cache the intermediate re-

sults in the main memory and reduce the number of output elements. But the output of

TwigContainment remains the same and equals to the final result size. This result con-

firms to Theorem 4.2.9, i.e.,TwigContainment is an optimal algorithm for the queries

where the root is the only distinguished node. For queryQ6, all algorithms are not opti-

mal according to the theoretical analysis. ButTwigContainment still output much less

elements thanTwigStack andTwigStackList. Finally, note that when the number of

cached elements reaches 30K,TwigContainment does not output any useless elements

for this data. It means that such main memory size is enough to hold the all the uncertain

elements in theoutputLists.

The next experiment is to compare the performance of three algorithms onTreeBank

andDBLP datasets. Figure 4.14 and Figure 4.13 show the results of the time con-

sumed and the number of output elements. For the execution time,Q7, Q8, Q9, andQ10
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Figure 4.11: Output with varying memory (Q1)
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Figure 4.12: Output with varying memory (Q6)

TwigStackList use much less time than that ofTwigStack and comparable toTwigCon-

tainment. For Q11, Q12, Q13 andQ14, the consumed time ofTwigStackList is signifi-

cantly greater than that ofTwigContainment. Again, the effect of the reduction of I/O
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cost inTwigContainment makes this algorithm superior toTwigStack andTwigStack-

List, reaching up to51% improvement in execution time for all queries.

 1

 10

 100

 1000

Q14Q13Q12Q11Q10Q9Q8Q7

N
um

be
r 

of
 e

le
m

en
ts

 (
K

)

Queries

TwigStack
TwigStackList

TwigContainment

Figure 4.13: Output Element(real)
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Figure 4.14: Execution Time (real)

Table 4.4 reports a comparison among the three algorithms about the number of out-

put elements only for thedistinguishednodes. The surprising result is that, forDBLP

data (Q7-Q9), three algorithms output the same number of elements for thedistinguished
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node. This is due to the fact thatDBLP is a rather regular dataset without recursive

structure. In contrast, forTreeBank data, which is deeply recursive,TwigStack out-

puts large number of “useless” elements. For example, to queryQ10, TwigStack output

368983 elements, but only 10675 of them are in the final answers. Notice that forTwig-

Containment, the numbers in Table 4.4 is the same as that of the total output elements,

but for Twigstack andTwigstackList, these numbers are much fewer than that of the

total output elements.

Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14

TwigStack 3722 605 1166 368983 13790 21298 23616 32928
TwigStackList 3722 605 1166 10675 1586 2882 470 5941

TwigContainment 3722 605 1166 10675 1317 2395 118 5446
Results 3722 605 1166 10675 1317 2395 118 5446

Table 4.4: Number of Output Elements for the Distinguished Node (Real)

4.6.3 Algorithms Based onExtended DeweyNumbering

In this section the performances ofTJFast andTwigPrefix are compared. Both algo-

rithms are based on theextended DeweyNumbering schemes. The queries shown in

Figure 4.8 are also utilized over the synthetic datasets.

Figure 4.15 and Figure 4.16 show the number of elements output and the execution

time. As shown from these results,TwigPrefix is more efficient thanTJFast for all

queries. These results reaffirm the effectiveness of the new algorithms.

Finally, TJFast andTwigPrefix are compared overDBLP andTreeBank dataset.

The results are shown in Figure 4.17 and Figure 4.18. For all queries,TwigPrefix is

again more efficient thanTJFast.
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4.6.4 Comparison betweenTwigContainment and TwigPrefix

In this section, we compare the performance between the two new algorithms with the

memory size setting to be 10K. Figure 4.19 shows the CPU and I/O cost comparison.

We can see that for synthetic data set,TwigPrefix outperformsTwigContainment for

queryQ3 andQ6 in terms of output element size. That is because the synthetic data re-
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curse deeply and theExtended Deweynumbering scheme can encode the element more

succinctly and utilize the memory more efficiently. Thus more element can be cached

in the memory. But for real dataset, bothTwigContainment andTwigPrefix output the

results only , and thus both are optimal. In the mean while,TwigPrefix obviously out-

performsTwigContainment in terms of CPU cost. This is due to the fact thatExtended



150

Deweynumbering can encode exactly the whole path for each element and accordingly,

the query processing can be up to 7 times faster thanTwigPrefix.
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Figure 4.19: CPU and I/O Cost Comparison

As analyzed in Section 4.2, Section 4.4.3 and Section 4.5, the two new algorithms

can guarantee the optimality for all kinds of queries if the available main memory is

large enough. Table 4.5 shows that the max number of elements that should be stored in

the main memory to guarantee the optimality ofTwigContainment andTwigPrefix for

synthetic data. There are two interesting findings:

(1) Comparatively speaking,TwigPrefix outperformsTwigContainment since it stores

fewer elements in the main memory on all queries thanTwigContainment does.

This is due to the difference of numbering schemes in these two algorithms.Ex-

tended Deweynumbering scheme allowsTwigPrefix to see the whole path by ac-

cessing only one element and therefore avoids storing redundant elements in the

main memory.

(2) The number of elements that is needed to store in main memory forTwigPrefix

is always small for all queries (e.g. the max number is 622, only about 6K Bytes

memory). As mentioned in Section 4.4, we can deliberately design queries which
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Q1 Q2 Q3 Q4 Q5 Q6

TwigContainment 176 575 184 5453 253 26939
TwigPrefix 4 14 4 187 240 622

Table 4.5: Number of Required Cached Elements (Syn)

Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14

TwigContament 4 7 8 13 54 82 10 17
TwigPrefix 3 4 5 3 19 82 4 7

Table 4.6: Number of Required Cached Elements (Real)

requireTwigPrefix to cache a large number of elements such that they cannot

be fitted into the small main memory. However, the empirical results show that

even for the datasets which have the very deeply recursive structure, such as the

synthetic dataset andTreeBank, it is not easy to find such unnatural queries to

show the non-optimality ofTwigPrefix.

Table 4.6 shows the max number of elements cached in the main memory forTwig-

Prefix andTwigContainment algorithms to guarantee the optimality. Interestingly, un-

like the results in Table 4.5, the numbers of cached elements in bothTwigPrefix and

TwigContainment are very small. Therefore, for real datasets, evenTwigContainment

can guarantee that each output element belongs to final answers under the constraint of

small available main memory.

From the above experimental results we can see that bothTwigContainment and

TwigPrefix have high performance on both the synthetic dataset and real dataset. And

the main reason for the better performance ofTwigPrefix is due to the encoding scheme.

However,Extended Deweyencoding scheme is not always feasible in the practical appli-

cation. For example, it cannot be applicable to the streaming dataset when the schema is

not available.TwigContainment and reginal encoding is suitable for that situation.
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4.7 Conclusion

XML data is rich in structure; and this calls for efficient structure join algorithms in or-

der to facilitate XML query processing. In this chapter, the issue of XML twig pattern

matching is studies. The critical observation is that, in most applications, only the result

bindings of contain selected (not all) nodes are required. The theoretical analysis shows

that the sub-optimality of previous holistic twig algorithm is due to theboundedor un-

bounded matching block(BMB andUMB). It is also analytically shown that theUMB

that involves only undistinguished query nodes should not lead to the non-optimality of

holistic twig algorithms.

Based on these analysis, two novel algorithms are proposed in this chapter. They

are based on thecontainmentandprefix numbering schemes respectively. These two

algorithms not only avoid the output of elements forundistinguishedquery nodes, but

also give the guarantee to the optimality for a much larger query class. The efficiency

of these algorithms lies in the fact that the matching information, instead of different

matches of the non-distinguished node is necessary. An excellent example is that two

algorithms guarantee the optimality for any query with theroot being thedistinguished

node, regardless of the combinations of PC and AD relationships within the query.



Chapter 5

Conclusion

In this chapter, we summarize the contributions of this thesis and discuss the future

work on the similarity queries and pattern queries based on our methods.

5.1 Main Contribution

In this thesis, we extensively studied how to enhance two core operations on XML data,

i.e., the similarity query and the pattern query on XML data. Similarity search is to find

all objects in the database which are within a given distance from a given object (range

query) or to thek most similar objects in the database which are closest in distance to a

given object (k-NN query). While XML twig pattern query is to identify all the matches

of the query nodes in data, which is actually a mapping from the query nodes to the

elements of a certain XML data s. t. the predicates specified by the query nodes and the

structural relationship depicted by the edges of the query nodes can be satisfied by their

respective images under the mapping.

In this thesis, we propose a new distance between XML data. The measure func-

tion is based on the transformation of XML data into miniature structural feature vec-

tors which combines the structural and content information conveyed by the node label.

These miniature structure captures the local pattern of each data and the vector elements

together describe the whole features of the XML tree structure. Each object is trans-

153
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formed to a sparse vector with|T | non-zero items. TheL1 distances between the vectors

are proved to be the lower bounds of the edit distance between the original tree struc-

tures. The intuition here is similar to that ofq-gram methods solving approximate string

matching problem. Thus, the original tree edit distance space is transferred to the vector

space withL1 norm distance.

We design and analyze the algorithms to embed the lower bounds into multi-step

framework to solve the similarity search problems. The computation of the distance

on the vector is onlyO(|T |) for each comparison. With this lower bound, most of the

computation of the real distance, with time complexity of

O(|T1||T2|min(depth(T1), leaves(T1))min(depth(T2), leaves(T2)))

, can be filtered. Like theq-gram methods which are used to processing similarity search

on sequence data, our methods can be generalized according to different dataset charac-

teristics. The comprehensive performance study experiments show that our methods are

both I/O and CPU efficient.

For the XML twig query processing, firstly, we theoretically analyze the reason of the

sub-optimality of previous algorithms and show that the existence ofmatching blockson

join data streams is the main cause. Previous algorithm suffers the existence of both the

bounded and unbounded matching blocks. However, the research in this thesis demon-

strates that unbounded matching block which involves theexistentialnodes should not

result in the non-optimality of holistic algorithms. In addition, an unbounded matching

block involving distinguishednodes also can be efficiently processed in most cases by

selectively caching elements in the main memory.

Based on the theoretical analysis, we propose two novel algorithmsTwigContain-

ment andTwigPrefix based oncontainmentandprefixnumbering schemes respectively.

The new algorithms employ thebit vectorandoutput liststructures to store information
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with bounded spaces to solve the unbounded matching blocks involvingdistinguished

nodes. It is proved that the new algorithms identify a much larger I/O optimal query

class. Because the theories are developed independent of any specific labeling scheme,

these two algorithms have the same optimal query class. Finally, the new algorithms

adopt a novel framework for holistic twig pattern matching. They makes one pass on the

input data and directly output the matching elements of the distinguished node, without

postprocessing phrase to do projection. The extensive experimental studies on synthetic

and real datasets for performance comparison is presented in this thesis. The results

show thatTwigContainment andTwigPrefix outperform all tested previous methods.

Moreover, althoughTwigContainment and TwigPrefix have the same optimal query

class, the experimental results show thatTwigPrefix outperformsTwigContainment in

terms of the I/O cost and the total execution time.

5.2 Future Work

In this section, we propose several possible future work area based on the studies pre-

sented in this thesis.

5.2.1 Integrate XML documents

In order to integrate XML data from different sources, approximate matching method for

trees is needed. For most of the data-centric XML document, the orders among siblings is

not closely related to the information conveyed. Thus the approximate matching should

be based on rooted, unordered, labeled trees. The distance function presented in this

thesis is on ordered trees. However, the methods can be extended by using a canonical

form representation for labeled rooted unordered trees [121]. From a rooted unordered

tree we can derive many rooted ordered trees, we can uniquely select one as the canonical
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form to represent the corresponding rooted unordered tree. Thus, the (q-level) binary

branch distance can be extended to measure unordered trees as well. Through theq-level)

binary branch vector representation, the XML approximate join can then be transformed

to equality join on vectors.

5.2.2 Incrementally Maintain Indexes for Similarity Search

The similarity query processing methods proposed in this thesis is not utilizing any in-

dexing structure currently. However, indexes of the positional miniature structure fea-

tures (q-level binary branches) can be constructed to prune the search spaces. Further-

more, XML documents may be updated constantly especially for the scientific data con-

veyed by XML [63, 82, 62]. The similarity search methods proposed in this paper is

based on static XML data. It cannot be extended directly to process the dynamic dataset.

However, building the incrementally maintained index is possible since each edit opera-

tion only have a local effect on the index. Thus, based on the index, the efficiency and

effectiveness of similarity search processing can be improved further.

5.2.3 Future Work for Pattern Query on XML Data

The observation and theory made in this work shed new light on many related works. Re-

cently, there appears some efforts to solve the queries with preceding, preceding-sibling,

following, following-sibling axes [75], “NOT” predicate [120], “OR” predicate [53] and

for XML documents based on graph data model (i.e.TwigStackD [26]. In this thesis, the

most research work are focused on the XQuery expressions with child and descendant

axes. In the future, the work can be extended to solve the other axes queries easily.

Yet, recently, some researchers proposed that the FOR, LET, WHERE and RETURN

clause of XQuery are of different semantics, and it is better to matching these expressions
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as a whole in terms of the generalized tree pattern (GTP) [27].

FOR $b IN //A/B[//D]

LET $c := $b//C

RETURN $b, $c

(5.1)

For example, In the above XQuery, the nodeC in the above query is optional, since

according to the semantics of XQuery statement, any expression in the LET or RETURN

clauses is optional. That means element which matches nodeB can be a result even

without any descendantC element. And the matches ofC node must be grouped together

under their commonB ancestor match since in a LET clause, the variable only takes one

value, a single item or a sequence. In the future work, solutions can be proposed to

answer the challenges proposed by this generalized tree pattern query.

Furthermore, query processing methods based on indexed documents (XB-tree [20]

andXR-tree index [55] indexes) can also be explored in the future work.
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