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Summary

Process identification plays an important role in process analysis, controller design,

system optimization and fault detection. One of the active and difficult areas in

process identification is in time delay systems. Time delay exists in many indus-

trial processes and has a significant effect on the performance of control systems.

Thus, identification of unknown time delay needs special attention. In this thesis,

a series of identification methods are proposed for continuous-time delay processes.

Both open-loop identification tests and closed-loop ones are considered. The initial

conditions are unknown and can be nonzero. The disturbance can be a static or dy-

namic one. Regression equations are derived according to types of test signals. All

the parameters including time delay are estimated without iteration. These identi-

fication methods show great robustness against noise in output measurements but

require no filtering of noisy data.

In the context of pulse tests, a two-stage integral identification method is pre-

sented for continuous-time delay processes. It is noticed that the output response

from a pulse test will still be significant and last for a long time after the pulse dis-

appears. We take advantage of this feature. The integral intervals are specifically

chosen and this enables easy and decoupled identification of the system parameters

in two stages.

In the context of step tests, a one-stage integral identification method is devel-

oped for continuous-time delay processes. The key idea is to make both upper and

lower limits of the inner integral dependent of the dummy variable of the outer in-

viii



Summary ix

tegral so that the initial conditions do not appear in the resulting integral equation.

In the context of relay tests, the fast Fourier transform based identification

method is revisited first and the need for further development is discussed. An

identification method from relay tests is proposed. By viewing a relay test as a

sequence of step tests, the integral technique is adopted to devise the algorithm.

A general integral identification method is then proposed. The identification test

can be of open-loop type such as pseudo random binary signals and pulse tests,

or of closed-loop type such as relay tests. The disturbance can be of general form.

The proposed new regression equation has more linearly independent functions and

thus enables to identify a full process model with time delay as well as combined

effects of unknown initial condition and disturbance without any iteration.

Most industrial processes are of multivariable in nature and time delay is present

in most industrial processes. Identification of multivariable processes with multiple

time delay is in great demand. To this end, an effective identification technique is

presented for multivariable delay processes. The technique covers all popular tests

used in applications, requires reasonable amount of computations, and provides

accurate and robust identification results.

The model obtained from process identification may be used for controller de-

sign. In the thesis, an analytical PID design method is proposed for continuous-

time delay systems to achieve approximate pole placement with dominance. It

is well known that a continuous-time feedback system with time delay has infi-

nite spectrum and it is impossible to assign such infinite spectrum with a finite-

dimensional controller. In such a case, only the partial pole placement may be

feasible and hopefully some of the assigned poles are dominant. But there is no

easy way to guarantee dominance of the desired poles. The idea presented is to

bypass continuous infinite spectrum problems by converting a delay process to a

rational discrete model and getting back continuous PID controller from its dis-
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crete form designed for the model with pole placement.

As shown in the given simulation examples and real time tests, the findings can

be applied to industrial control systems. The schemes and results presented in this

thesis have both theoretical contributions and practical values.



Chapter 1

Introduction

1.1 Motivation

The need for process model arises from various engineering tasks such as pro-

cess design, process control, plant optimization and fault detection (Ikonen and

Najin, 2002). Identification is the experimental approach to process modeling

(Åström and Wittenmark, 1990) and has been an active area in control engineering

(Soderstrom and Mossberg, 2000). Many text books and book chapters have been

published on identification, for examples, Soderstrom and Stoica (1983), Ljung

(1987), Unbehauen and Rao (1987), Sinha and Rao (1991), Johansson (1993) and

Ikonen and Najin (2002). It is also a hot topic in international academic journals

and many publications are available on this topic, see the following special issues:

Automatica 1981 v.17(1), Automatica 1990 v.26(1), IEEEAC 1992 v.37(7), Au-

tomatica 1995 v.31(12), Journal of Process Control 1995 v.5(2) and Automatica

2005 v.41(3).

System identification involves three components: test design, model structure

identification and parameter estimation (Ljung, 1999). A specific test is designed

and input and output responses during such a test will be then recorded. The

model structure and parameter are then identified. The objective of test design is

to excite the process sufficiently to enable identification of the process. A model

1
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with unknown parameters needs to be constructed. Various model structures are

available to assist in modeling a system. The choice of model structures is based

upon understanding of identification method and insight into identification test.

Parameter estimation is employed to determine the unknown model parameters

from recorded data set.

Identification tests are generally divided into open-loop tests and closed-loop

tests. Step tests and pulse tests are the most popular open-loop tests for their

simplicity (Luyben, 1973). They have their own merits. Step tests are the most

simple and dominant ones. Pulse tests return input and output to the original

stead-state and cause less perturbation to process operation. Though there are

many successful applications of open-loop identification, closed-loop identification

is also an important practical issue (Landau and Karimi, 1999). The most popular

closed-loop identification test is relay feedback (Åström and Hagglund, 1984).

Identification models are generally classified into parametric models and non-

parametric ones (Wellstead, 1981). Frequency response is a kind of nonparametric

model of processes. It is very useful for system analysis, such as Nyquist stability

studies, controller designs (Goodwin et al., 2001) and parametric model building

(Ljung and Glover, 1981). Parametric models are also preferred by many control

engineers (Unbehauen and Rao, 1987; Ninness, 1996; Ljung, 1985; Ljung, 1999),

because most of advanced control strategies are developed based on parametric

models (Morari and Zafiriou, 1989; Åström and Wittenmark, 1995; Narendra and

Annaswamy, 1989; Anderson and Moore, 1990; Zhou, 1998).

For nonparametric modeling, relay feedback is one of the popular tests because

frequency responses of processes can be obtained from relay tests. In the early

stage of study on relay identifications, only stationary response of a relay test was

used to estimate the process frequency at the oscillation frequency (Åström and

Hagglund, 1995). Later, an improvement was reported by Wang et al. (1997a).
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They use a biased relay feedback and can obtain two accurate process frequency

points from one test. These two estimated frequency points can be converted easily

to an first-order plus time delay (FOPTD) model of the process. A lot of chemi-

cal processes can be modelled by using this method. Another modification of the

standard relay was proposed by Bi et al. (1997): a parasitic relay is added to the

standard relay. This method can identify multiple points on the process frequency

response. Recently, relay identification based on fast Fourier transform (FFT) was

developed. It was first shown in Hang et al. (1995) that multiple points on the

process frequency response can be obtained in a step test by applying FFT. This

method has been further improved and used to identify multiple points simulta-

neously from standard relay tests (Wang et al., 1997b). Wang and his colleagues

introduced a decay exponential to rescale the input and output, then applied FFT

to obtain multiple points on the process frequency response. In Wang et al. (1999),

a modified method was developed. Low-pass filters are included in the control loop

and more robust identifications can be obtained. However, these FFT based iden-

tification methods assume that the relay test starts from a steady state and there

is no disturbance during the test. Besides, additional low-pass filters have to be

used to overcome the effect of the measurement noise. These restrictions can limit

their applications in some cases. It is desirable to remove these assumptions for

wider applications.

Among identification methods of parametric models, continuous-time identifi-

cation has been an active area for its advantages in retaining the models of actually

time-continuous dynamic systems in continuous-time domain (Sinha and Lastman,

1982; Saha and Rao, 1983; Unbehauen and Rao, 1987; Sagara and Zhao, 1990). An

important issue with identification of continuous-time parametric models is iden-

tification of time delay (Wang and Gawthrop, 2001; Garnier et al., 2003). Time

delay is a property of physical systems, by which response to the system input

is delayed in its effect (Shinskey, 1976). It exists in many industrial processes.

In most situations time delay is unknown. Because time delay has a significant
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effect on the performance of the control systems, its estimation needs special at-

tention (Gawthrop, 1984). Many existing identification methods do not consider

time delay or assume known delay because time delay appears nonlinearly in the

regression equation. For these reasons, there are continuing interests in identifica-

tions of delay processes. Some early methods estimate time delay with numerator

polynomial or transfer function. In Kurz and Goedecke (1981), a shift operator

model with expanded numerator polynomial is used to deal with unknown time

delays. Rational transfer functions, such as polynomial approximation and Pade

approximation, are used to estimate time delay in Gawthrop and Nihtila (1985)

and Souza et al. (1988), respectively. These methods proposed in the early days

increase the order of the models and have to identify more model parameters.

Later, a trial and error method was proposed. Elnaggar et al. (1989) assumes a

known delay and then estimates the other transfer function parameters. With the

estimated model, the estimated error is calculated. From all the obtained models,

the one which minimizes the estimated error is chosen as the identification result.

In Ferretti et al. (1991), an algorithm was proposed to recursively update the value

of a small delay by inspection of the phase contribution of the real negative zero

arising in the corresponding sampled system. This method is inefficient. In Mamat

and Fleming (1995) and Rangaiah and Krishnaswamy (1996), graphical methods

were proposed to identify low order models for continuous-time delay system. How-

ever, their methods cannot identify high-order processes and non-minimum-phase

systems and may lead to large estimation errors when noise is considerable.

Recently, new integration identification methods were reported for identifi-

cations of continuous-time delay systems (Wang and Zhang, 2001; Hwang and

Lai, 2004). Integration identification is a branch of linear filter identification

(Unbehauen and Rao, 1987; Rao and Unbehauen, 2006; Garnier et al., 2003). Like

other continuous-time identification methods, integration identification methods

consist of two main parts: signal processing (multiple integration) and parameter

estimation. The multiple integration works as a pre-filter to overcome the noise ef-
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fect (Unbehauen and Rao, 1990) like analog pre-filter (Young and Jakeman, 1981).

Integration approach for parameter estimation was first proposed by Diamessis

(1965). Later an improvement was made by treating the initial states of the sys-

tem as additional system parameters to be estimated (Mathew and Fairman, 1974).

By then, the effect of the disturbance had not been considered. With the devel-

opment of computer technologies, numerical integration is then used (Whitfield

and Messali, 1987). In Whitfield and Messali (1987), the effect of deterministic

disturbances at system input and output is also included in the analysis. A similar

integral-equation approach has been derived by Golubev and Wang (1982) from

a frequency-domain error criterion. From their works, efficiency and robustness

of integral equation methods have been shown. It was Wang and Zhang (2001)

who first proposed to apply integration method to identify continuous-time delay

systems from step tests without iterations. Their method takes advantage of the

simple nature of step input and a linear regression equation with a new param-

eterization is devised. The least-squares method is then applied to identify the

regression parameters, from which the full model parameters including time delay

are recovered. This method is so robust that the identification results are still

satisfactory without filtering of the measured output, which is corrupted by noise.

However, like FFT methods from relay tests, Wang’s integration method requires

that the tests start from zero initial conditions and there is no disturbance during

the test. Hwang and Lai (2004) proposed a two-stage identification algorithm,

which uses pulse signals as the input. Two regression equations are obtained from

the two edges of the pulse signal, respectively. Then the estimation and/or the

elimination of the initial conditions and disturbances become possible. Their re-

gression parameter vectors involve all parameters together in each of two stages,

and some of them are very complicated functions of process parameters and ini-

tial conditions. This method fails to work in the step test case, the most popular

one in process control applications, because a step test only has one change of its

magnitude. Simplified general identification methods are needed to identify delay

processes under unknown initial conditions and disturbance from popular identifi-
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cation tests.

Most industrial processes are of multivariable in nature (Ogunnaike and Ray,

1994; Maciejowski, 1989). To achieve performance requirements by using advanced

controller design methods, models of multivaribale processes are needed (Sinha and

Lastman, 1982; Zhu and Backx, 1993; Ikonen and Najin, 2002; Gevers et al., 2006).

To this end, many methods have been proposed to identify multivariable processes,

for examples, methods proposed in Whitfield and Messali (1987), Wang et al.

(2001b) and Garnier et al. (2007). But only a few of them consider time delays.

In Garnier et al. (2007), a model with input delays is considered but these time

delays are supposed to be known. In Wang et al. (2001b), relay tests are applied.

The frequency responses from the inputs to the outputs are obtained by applying

the FFT. The process step response is constructed by using the inverse FFT to

each process channel. Integral identification methods are then used to recover all

the process model parameters including time delay. Their method is very robust

in face of noise. However, their identification methods and those used in Wang et

al. (2003) require zero initial conditions and no significant disturbance. For easy

applications, these assumptions should be removed. Developing a general identifi-

cation method for multivariable delay processes is of great interest and value.

Control design is a key topic of control engineering. It is also one usage

of process identification (Hjalmarsson, 2005). Since the proportional-integral-

derivative(PID) controller was proposed, its tuning has been an attractive area

because PID control offers the simplest and most effective solution to many con-

trol problems (Ang et al., 2005). According to Yamamoto and Hashimoto (1991),

a large number of PID controllers are used in industry and some of them are not

well tuned. To improve this situation, many methods haven been proposed, such

as methods proposed in Persson and Åström (1993), Ho et al. (1995), Maffezzoni

(1997), Tan et al. (1999), Mattei (2001), Wang et al. (2001a), Zheng et al. (2002b)

and Zheng et al. (2002a). Among them, one important branch is the dominant
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pole placement. Tuning of PID controllers with dominant closed-loop poles was

first introduced by Persson and Åström (1993) and further explained in Åström

and Hagglund (1995). Both methods are based on a simplified model of processes

and thus cannot guarantee the chosen poles to be indeed dominant in reality. In

the case of high-order systems or systems with time delay, these conventional dom-

inant pole designs, if not well handled, could result in sluggish response or even

instability of the closed-loop. Thus it is desirable to have a method to make the

chosen poles dominant by using PID controller.

1.2 Contributions

In this thesis, a series of identification methods are proposed for continuous-time

delay processes under nonzero initial condition and disturbance. Both open-loop

tests and closed-loop tests are considered. Parametric models with time delay are

identified for single-variable continuous-time delay processes and multivariable de-

lay processes.

A. Process identification from pulse tests

A two-stage integral method is presented for continuous-time delay systems

from pulse tests. It is noticed that the output response from a pulse test will still

be significant and last for long after the pulse disappears. We take advantage of

this feature to manipulate integration intervals so that the integral equation and

thus regression equations are greatly simplified. This enables us to establish de-

coupled estimation of two sets of system parameters in a very simple manner from

pulse tests.

B. Process identification from step tests

An integral identification method is proposed for continuous-time delay sys-
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tems from step tests. The integration limits are specifically chosen to make the

resulting integral equation independent of the unknown initial conditions. This en-

ables identification of the process model from a step test by one-stage least-squares

algorithm without any iteration.

C. Process identification from relay tests

We revisit FFT based relay identification methods first and need for further

development is discussed. An integral identification method from relay tests is

then presented. By regarding a relay test as a sequence of step tests, the integral

technique is adopted to devise the algorithm. The method can yield a full process

model in the sense of a complete transfer function with delay or a complete fre-

quency response.

D. Process identification from piecewise step tests

An general identification algorithm is proposed for continuous-time delay sys-

tems for a wide range of input signals expressible as a sequence of step signals. It

is based on a novel regression equation which is derived by taking into account the

nature of the underlying test signal. The equation has more linearly independent

functions and thus enables to identify a full process model with time delay as well

as combined effects of unknown initial condition and disturbance without any it-

eration.

E. Multivariable processes identification

A robust identification method is proposed for multivariable continuous-time

processes with multiple time delay. Suitable multiple integrations are constructed

and regression equations linear in the aggregate parameters are derived with use

of the test responses and their multiple integrals. The process model parameters
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including the time delay is recovered by solving some algebraic equations.

F. PID controller design by approximate pole placement with domi-

nance

It is well known that a continuous-time feedback system with time delay has

infinite spectrum and it is not possible to assign such infinite spectrum with a

finite-dimensional controller. In such a case, only partial pole placement may be

feasible and hopefully some of the assigned poles are dominant. But there is no

easy way to guarantee dominance of the desired poles. An analytical PID design

method is proposed for continuous-time delay systems to achieve approximate pole

placement with dominance. Its idea is to bypass continuous infinite spectrum prob-

lem by converting a delay process to a rational discrete model and getting back

continuous PID controller from its discrete form designed for the model with pole

placement.

1.3 Organization of the thesis

The thesis is organized as follows. After the Introduction, Chapter 2 focuses on

identification of delay processes from pulse tests. Chapter 3 is devoted to process

identification from step tests. Chapter 4 presents an identification method from

relay tests. An improved identification method is developed in Chapter 5. In

Chapter 6, identification of multivariable delay processes is considered. Chapter 7

is concerned with a PID controller design method by approximate pole placement

with dominance. In Chapter 8, general conclusions are drawn and expectations for

further works are presented.



Chapter 2

Process Identification from Pulse

Tests

2.1 Introduction

Pulse testing can return inputs and outputs to the original steady state after the

test is finished. It is preferred in many industrial applications for this reason. Re-

cently, a two-stage identification method from pulse testing was proposed by Hwang

and Lai (2004). Two parts of a pulse test could be used to establish two sets of

integral equations so that estimation or elimination of non-zero initial conditions

becomes possible. But, their regression parameter vectors involve all parameters

together in each of two steps, and some of them are very complicated functions

of process parameters and initial conditions. In this chapter, we manipulate inte-

gration intervals so as to greatly simplify the integral equation and thus regression

equations. This enables us to establish decoupled estimation of two sets of system

parameters in a very simple manner.

This chapter is organized as follows. In Section 2.2, the proposed method is

presented. Simulation results are shown in Section 2.3. A real-time application is

given in Section 2.4. Conclusions are drawn in Section 2.5.

10
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2.2 Identification from pulse tests

Consider a nth-order continuous-time system with time delay,

y(n)(t)+ · · ·+a1y
(1)(t)+a0y(t) = bmu(m)(t−d)+ · · ·+ b1u

(1)(t−d)+ b0u(t−d)+ c,

(2.1)

where y(t) and u(t) are the output and input of the process, respectively, d is the

time delay and c is the static disturbance or a bias value of the process. d, c,

ai, i = 0, . . . , n− 1, and bj, j = 0, . . . , m, are unknown parameters to be estimated.

The initial conditions, y(i)(0), i = 1, . . . , n− 1, are also unknown and can be non-

zero. Suppose that the test signal, u(t), is a rectangular pulse with magnitude of

h and duration of T ,

u(t) = h [1(t)− 1(t− T )] , (2.2)

where 1(t) is the unit step. Note that (2.2) implies u(t) = 0, t ∈ [−d, 0], which

is the initial function for the input needed to make the time delay system (2.1)

well-posed. Figure 2.1 depicts the pulse input and the resulting output response.

It is noticed that the output response will be still significant and last for long after

the pulse disappears. We will take advantage of this feature to simplify the system

equation and carry out the parameter estimation into two steps: for ai and c in

the first step and bi and d in the second step.

To avoid using time derivatives of u(t) and y(t) in the identification of process

model, (2.1) will be converted to an integral equation. To this end, we need the

following integral notations,





I0f(t0, t) = f(t),

Ijf(t0, t) =
∫ t

t0

∫ τj−1

t0
· · · ∫ τ1

t0
f(τ0)dτ0dτ1 · · · dτj−1, j ≥ 1,

(2.3)

where τi, i = 0, . . . , j−1 are dummy variables for relevant integrals. In the first step

of our identification, we select one fixed time point t1 with t1 > d + T . Integrating
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Figure 2.1. Rectangular pulse response and input.

(2.1) from t1 to t > t1 n times yields

n−1∑

k=0

akIn−ky(t1, t) + y(t)−
n−1∑

k=0

αk
(t− t1)

k

k!
=

m∑

k=0

bkIn−ku(t1 − d, t− d) +
c(t− t1)

n

n!
,

(2.4)

where αi are related to process initial conditions at t1. Since t > t1 > d + T , the

input is always zero. We have

Iju(t1 − d, t− d) = 0, j = 0, · · · , n− 1. (2.5)

Substituting (2.5) into (2.4), we obtain

φT
1 (t)β = γ1(t), (2.6)

where

φT
1 (t) = [−I1y(t1, t) · · · −In−1y(t1, t) −Iny(t1, t) 1 (t− t1) · · · (t−t1)n

n!
],

γ1(t) = y(t),

and

β = [an−1 · · · a1 a0 α0 α1 · · · c]
T .
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One invokes (2.6) for t = ti, i = 2, . . . , N , to form

Γ1 = Φ1β

where Γ1 = [γ1(t2), . . . , γ1(tN)]T , and Φ1 = [φ1(t2), . . . , φ1(tN)]T . ti, i = 1, . . . , N ,

are chosen to meet t1 < t2 < . . . < tN , where N > 2n + 2. The least-squares

method is applied to get,

β̂ =
(
ΦT

1 Φ1

)−1
ΦT

1 Γ1, (2.7)

which gives the estimates for αi, c and ai.

In the second step, we integrate (2.1) in a reverse way from t1 to t, with d <

t < T + d, n times and this will still lead to (2.4). But, for d < t < d + T , we have

Iju(t1 − d, t− d) = h
(t− d− T )j

j!
. (2.8)

Substituting (2.8) into (2.4), we obtain

φT
2 θ = γ2(t), (2.9)

where

φT
2 = h[1 t t2 · · · tn],

γ2(t) =
n−1∑

k=0

akIn−ky(t1, t) + y(t)−
n−1∑

k=0

αk
(t− t1)

k

k!
− c

(t− t1)
n

n!
,

and

θ = [θ1 θ2 θ3 · · · θn+1]
T .

Once again, one invokes (2.9) for t = ti, i = N +1, . . . , M , so that the least-squares

method is applied to estimate θ. In this step, tN+1 > tN+2 > . . . > tM and

M −N − 1 > n + 1. The elements of θ are related to the model parameters bi and

d via

θk =
n∑

j=max(n−m,k−1)

bn−j(−d− T )j−k+1

(j − k + 1)!(k − 1)!
, k = 1, 2, · · · , n + 1. (2.10)

They are solved from k = n + 1, n, · · · , n + 1−m, to get

bi =
i∑

j=0

(n− i + j)!θn+1−i+j(d + T )j

j!
, i = 0, 1, · · · ,m. (2.11)
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They are substituted back to (2.10), for k = n−m, to get

m+1∑
j=0

(n−m− 1 + j)!θn−m+j(d + T )j

j!
= 0, (2.12)

which is solved for d. Once d is determined, bi can be easily computed from (2.11).

In the first step, the chosen t1 depends on d, but d is unknown and to be identi-

fied. This is the same issue as encountered in Hwang and Lai (2004). Fortunately,

one need not know the value of d to use our algorithm and a rough estimation

of its range is sufficient. Let d be in the range, [dmin, dmax]. We can then choose

t1 > T +dmax in the first step and dmax < t < dmin+T in the second step. t1 can not

be chosen so large that the pulse response is already at its steady state at the time

of t1. It is recommended that t1 is chosen as close to T +dmax as possible. In many

engineering applications, one can have simple, reliable and probably conservative

estimation of the range of d from knowledge of the process. For instance, if you

have transportation delay due to a long pipe, one can easily calculate [dmin, dmax]

based on the pipe length and fluid speed range. The experiment-based technique

to get the range estimation is also possible. For example, dmin may be set as the

time from the input signal injection to the point when the output response still

remains unchanged from the past trend, while dmax is the time from the input

signal injection to the point when the output response has got the changes from

the past trend well beyond the noise band (Åström and Hagglund, 1995). If no

engineering knowledge or experiment is available, a purely numerical method is

given in Hwang and Lai (2004) to estimate such a range.

The model structure identification is an important issue and has been discussed

in the literature. We adopt the standard practice as follows. We may start from

a first-order or second-order time delay system. With the estimated model, it is

easy to estimate the initial conditions at t = 0. The pulse response can be recov-

ered using the estimated model under estimated initial conditions and disturbance.

Compare the recovered response with the recorded one from the actual process.

If the error between them is acceptable, the identification task is completed and
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stops. Otherwise, we may increase n and/or m by one until the estimated response

fits to the recorded one well.

In the presence of noise, the measurement of the process output is corrupted. It

follows from Soderstrom and Stoica (1983) that the ordinary least-squares estimate

is not consistent. One solution is to use the instrumental variable (IV) method.

The IV method proposed by Wang and Zhang (2001) is adopted here.

The method described above can be applied with minor modifications to rect-

angular doublet pulses with magnitude of h and duration of T as well,

u(t) = h [1(t)− 21(t− T/2) + 1(t− T )] .

The only difference for rectangular doublet signal is that in the second step, we

choose d < t < T/2 + d < t1, for which

Iju(t1 − d, t− d) = 2h
(t− d− T

2
)j

j!
− h

(t− d− T )j

j!
. (2.13)

This leads to a new relationship of θk to bi:

θk =
n∑

j=max(n−m,k−1)

bn−j[2(−d− T
2
)j−k+1 − (−d− T )j−k+1]

(j − k + 1)!(k − 1)!
. (2.14)

They are solved from k = n + 1, n, · · · , n + 1−m, to get

bi = (n− i)!θn+1−i −
i−1∑
j=0

bj[2(−d− T
2
)i−j − (−d− T )i−j]

(i− j)!
, i = 0, 1, · · · ,m. (2.15)

They are substituted back to (2.14), for k = n−m. This gives rise to a (m + 1)th

degree polynomial equation in d, which leads to m + 1 roots for d. Once d is

chosen for the minimization of the error (Wang and Zhang, 2001), bi can be easily

computed from (2.15).
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2.3 Simulation

In this section, the proposed identification method is applied to three examples

below. Without loss of generality, the pulse height h is set to 1.

0 2 4 6 8 10 12 14 16 18 20
−0.5

0

0.5

1

1.5

t

y

0 2 4 6 8 10 12 14 16 18 20
−0.5

0

0.5

1

1.5

t

u

Process/non−minimum phase model
Minimum phase model

Figure 2.2. Rectangular pulse response and input for Example 2.1.

Example 2.1. Consider a 2nd-order process,

y(2)(t) + 1.5y(1)(t) + 0.5y(t) = −0.5u(1)(t− 1) + 0.5u(t− 1) + c,

subject to y(0) = 1, y(1)(0) = −2 and c = 0.25. A rectangular pulse with width of

T = 4 is applied as the input. The algorithm is applied with n = 2 and m = 1. In

the first step, we select t1 = 6 and the algorithm leads to

β = [1.5013 0.5008 1.2123 1.8196 0.2504]
T ,

so that â1 = 1.5013, â0 = 0.5008, and the estimated disturbance ĉ = 0.2504. In

the second step, the algorithm yields

θ = [8.7684 −3.0044 0.2501]
T .

In this case, (2.12) becomes

0.2501(d + T )2 − 3.0044(d + T ) + 8.7684 = 0,
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which gives two possible values of time delay, 3.015 and 0.998. d̂ = 3.015 leads to

y(2)(t) + 1.501y(1)(t) + 0.5008y(t) = 0.5045u(1)(t− 3.015) + 0.5003u(t− 3.015),

which is of minimum phase. It is discarded because the actual process is of non-

minimum phase (also, the resulting fitting error is bigger). For d̂ = 0.998, the

model is

y(2)(t) + 1.501y(1)(t) + 0.5008y(t) = −0.5045u(1)(t− 0.998) + 0.5003u(t− 0.998),

which is of non-minimum phase and fits to the pulse response better. Pulse re-

sponses of the actual process and the estimated models are compared in Figure

2.2. If a rectangular doublet pulse with width of T = 10 is used as the the test

signal, the proposed method leads to

y(2)(t) + 1.501y(1)(t) + 0.5008y(t) = −5.043u(1)(t− 0.993) + 0.5004u(t− 0.993),

with the estimated disturbance as ĉ = 0.2508. Pulse responses of the actual process

and estimated models are compared in Figure 2.3.

Example 2.2. Consider a high-order process (Hwang and Lai, 2004),

G(s) =
1

(s + 1)3(2s + 1)2
,

subject to y(0) = 0.25, y(i)(0) = 0, i = 1, 2, 3, 4 and c = 0.25. Simulation is

performed on this example using a rectangular pulse with width of T = 10. The

algorithm is applied with different model orders to get

Ĝ1(s) =
0.1628

s + 0.1621
e−3.67s,

Ĝ2(s) =
0.1135

s2 + 0.5917s + 0.1162
e−1.88s,

Ĝ3(s) =
0.0164s2 − 0.05263s + 0.1101

s3 + 1.318s2 + 0.654s + 0.1112
e−0.718s,

and

Ĝ4(s) =
−0.0254s3 + 0.01396s2 − 0.05111s + 0.1543

s4 + 2.488s3 + 2.366s2 + 0.9939s + 0.1547
e−0.263s.

Their Nyquist plots are compared in Figure 2.4.
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Figure 2.3. Rectangular doublet pulse response and input for Example 2.1.
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Figure 2.4. Nyquist curves for Example 2.2.
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Table 2.1. Identification results for Example 2.3

NSR Estimated model Estimated disturbance ε

0% 0.6273
s2+3.758s+3.137

e−0.105s 0.2509 2.01× 10−6

3% 0.6743
s2+3.99s+3.325

e−0.0982s 0.2631 5.93× 10−4

5% 0.6918
s2+4.08s+3.389

e−0.0937s 0.2667 1.58× 10−3

10% 0.6774
s2+4.027s+3.305

e−0.084s 0.2585 6.53× 10−3

15% 0.6025
s2+3.691s+2.96

e−0.0681s 0.2316 1.6× 10−2

25% 0.4599
s2+3.047s+2.317

e−0.0276s 0.1835 6.3× 10−2

Example 2.3. Consider Luyben’s heat exchanger model (Luyben, 1973):

G(s) =
0.2

(0.4s + 1)(0.8s + 1)
e−0.1s,

subject to y(0) = −1, y(1) = 2 and c = 0.25. To simulate practical conditions,

white noise is added to the process output to produce the output measurement

ỹ(t). The noise-to-signal ratio defined by

NSR =
mean(abs(noise))

mean(abs(signal))

is used to represent noise level. A rectangular pulse of h = 1 and T = 5 is applied to

the plant. The output is corrupted with white noise of NSR = 0, 3, 5, 10, 15, 25%,

respectively. The IV method is used to guarantee the identification consistency in

the presence of noise. For model structure identification, we start from n = 1 and

m = 0. This leads to a negative d, which is not possible. Thus, the first-order

modelling is discarded. With n = 2 and m = 0, reasonable models are obtained

and shown in Table 1 under the different noise levels. To evaluate the estimated

model, the time domain identification error is measured by

ε =
1

K

K∑

k=1

[ỹ(k)− ŷ(k)]2 , (2.16)

where ŷ(k) is the estimated pulse response. The identification performance in pres-

ence of noise is also shown in Table 2.1.
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2.4 Real time testing

The proposed method is also applied to a DC motor speed control system in Ad-

vanced Control Technology Lab, Department of Electrical and Computer Engineer-

ing, National University of Singapore. This experimental set-up consists of three

parts: a DC motor set, which is made by LJ Technical Systems Inc. and shown

in Figure 2.5, a PC with installed data acquisition cards and LabVIEW software,

and a power supply for the DC motor set. The system input is the voltage applied

to the DC motor, and the output is the voltage from the potentiometer, which is

used to measure the motor velocity. One pulse test with h = 2 and L = 1.6 was

conducted on the system. Using the proposed identification method, we got its

model as

Ĝ(s) =
4.309

s + 4.634
e−0.0197s.

The response for this Ĝ(s) under the same pulse input is shown with the dash line

in Figure 2.6, where the solid line is from the actual system. The effectiveness of

the proposed method is clear.

Figure 2.5. DC motor set.

2.5 Conclusion

In this chapter, a new method is presented to identify time delay systems with

possible non-zero initial conditions and constant disturbance from pulse tests. The
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Figure 2.6. Pulse response of the DC motor.

feature of short duration of pulse signals is employed to simplify dynamic equation

of the system, and enables easy and separate identification of the system parame-

ters in two steps. The effectiveness of this method has been demonstrated through

simulation and real-time implementation.



Chapter 3

Process Identification from Step

Tests

3.1 Introduction

Compared with pulse tests discussed in the previous chapter, the step test is more

popular for its simplicity. For a step test, only little equipment is needed. One

can even perform a step test manually. Thus the step test is still dominant in

real applications. In the past, most identification methods based on step tests

lead to low-order models (Åström and Hagglund, 1995) and cannot describe high-

order processes and non-minimum-phase systems. Wang and Zhang (2001) took

advantage of simplicity of the input of step tests and devised a linear identification

algorithm, which can generate low-order models or high-order models with time

delay. Their method, like the previous work on continuous system identification,

assumed that the initial conditions are zero and there is no disturbance. It is pos-

sible that the underlying process is operated to the constant steady state and kept

there so that the above assumption is met. On the other hand, these limitations

are the major concerns from application perspectives, as also raised by the review-

ers of Wang and Zhang (2001). It is definitely desirable to remove the assumption

for easy practical applications under the non-steady state condition.

22
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In this chapter, a new integral identification method is proposed for continuous-

time processes with time delay from one step test. The test can start from non-

zero initial conditions under static disturbances which are unknown. The proposed

method is a one-stage algorithm with no iteration. The key idea in our method is

to make both upper and lower limits of the inner integral dependent of the dummy

variable of the outer integral so that the initial conditions do not appear in the

resulting integral equation. The effectiveness of the proposed method is demon-

strated through examples.

This chapter is organized as follows. In Section 3.2, a common problem of the

existing integral identification methods is revealed. In Sections 3.3, the method is

presented for second-order modelling. The methods are further extended to high-

order modelling in Sections 3.4. The proposed method is applied for real time tests

in Section 3.5. Conclusions are drawn in Section 3.6.

3.2 Review of integral identification

In this section, we will use a 2nd-order model to show why the existing integral

methods are unable to identify such a model from a step test under unknown

non-zero initial conditions and static disturbance. Assume that a stable process is

represented by

y(2)(t) + a1y
(1)(t) + a0y(t) = b1u

(1)(t− d) + b0u(t− d) + c, (3.1)

where y(t) and u(t) are the output and input of the process, respectively, d is the

time delay and c is the static disturbance or a bias value of the process. Suppose

that at t = 0, a step input test is applied to the process with the initial conditions

of y(0) and y(1)(0). The task is to estimate the model parameters, a1, a0, b1, b0

and d, from the input u(t) and output measurement y(t) in presence of unknown

c and y(1)(0) which could be non-zero.
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To avoid the use of various time derivatives, which are too sensitive to noise,

(3.1) is transformed to an integral equation by multiple integration. Normally,

the integral interval is chosen from 0 to t (Whitfield and Messali, 1987). Thus,

integrating (3.1) from 0 to t twice gives

[
y(t)− y(0)− y(1)(0)t

]
+ a1

[∫ t

0

y(δ0)dδ0 − y(0)t

]
+ a0

∫ t

0

∫ δ1

0

y(δ0)dδ0dδ1

= b1

∫ t

0

∫ δ1

0

u(1)(δ0 − d)dδ0dδ1 + b0

∫ t

0

∫ δ1

0

u(δ0 − d)dδ0dδ1 +
ct2

2
, (3.2)

where y(1)(0) is present but unknown. This is the first obstacle which makes

the existing integral identification methods from step tests impossible to work

in presence of unknown initial conditions, while Hwang and Lai (2004) uses a

pulse test whose two signal levels (like two tests) give rise to two independent

equations so that the unknown initial conditions can be obtained or eliminated.

Under u(t) = 1(t), the unit step function, (3.2) can be re-written as

y(t) =
[
− ∫ t

0
y(δ0)dδ0 − ∫ t

0

∫ δ1
0

y(δ0)dδ0dδ1 1 t t2
]




a1

a0

y(0) + b0d2

2
− b1d

y(1)(0) + a1y(0)− b0d + b1

b0+c
2




:= φT (t)θ.

where there are five linear independent functions in φ(t), which enables estimation

of five parameters in θ. But there are seven unknowns, a1, a0, b1, b0, d, c and

y(1)(0). Not all of them can be found from θ. The presence of y(1)(0) in the re-

gression equation also increases the number of unknowns. This forms the second

obstacle for the current integral identification.

The essential cause which leads to these two obstacles and failure of the existing

methods is that when a differential equation is transformed to an integral equation

by multiple integration, the output derivative will inevitably appear in the resul-

tant integral equation as long as one of integration limits is fixed. It should be
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pointed out that all the existing methods including Hwang and Lai (2004) have one

integration limit fixed, indeed. In view of the above observation, the key idea is to

make both upper and lower limit of any inner integral dependent on the dummy

variable of the immediate next outer integral so that all the terms in the outcome

of inner integral are functions of the outer dummy variable, but not fixed.

3.3 The proposed method

To get rid of the problem in the existing methods, we employ the following double-

integral operation on f(t):

∫ τ

0

[∫ t+δ1

t−δ1

f(δ0)dδ0

]
dδ1. (3.3)

For y(2)(t), one sees

∫ τ

0

[∫ t+δ1

t−δ1

y(2)(δ0)dδ0

]
dδ1

=

∫ τ

0

[
y(1)(t + δ1)− y(1)(t− δ1)

]
dδ1

= y(t + τ)− 2y(t) + y(t− τ), (3.4)

which depends on y(t) only but not on y(1)(t). If, on the other hand, any term

in the outcome of
∫ t+δ1

t−δ1
y(2)(δ0)dδ0 was independent of δ1, then when integrated

with respect to δ1, there would be y(1)(0) in (3.4), which are not available. The

double-integral operation is applied to y(1)(t) and y(t), respectively,

∫ τ

0

[∫ t+δ1

t−δ1

y(1)(δ0)dδ0

]
dδ1 =

∫ τ

0

[y(t + δ1)− y(t− δ1)]dδ1, (3.5)

∫ τ

0

[∫ t+δ1

t−δ1

y(δ0)dδ0

]
dδ1, (3.6)

which can both be numerically evaluated with knowledge of y(t).

For the right hand side of (3.1), consider the step test first since the step

testing is the simplest and dominant in process control. Let u(t) = h1(t). Then
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u(t−d) = h1(t−d), the unit step function delayed by time of d. It is straightforward

to verify that ∫ t

0

1(1)(δ0 − d)dδ0 = 1(t− d), (3.7)

∫ t

0

1(δ0 − d)dδ0 = (t− d)1(t− d), (3.8)

∫ t

0

(δ0 − d)1(δ0 − d)dδ0 =
(t− d)2

2
1(t− d). (3.9)

It then follows that
∫ τ

0

[∫ t+δ1

t−δ1

1(δ0 − d)dδ0

]
dδ1

=
∫ τ

0

[(t + δ1 − d)1(t + δ1 − d)− (t− δ1 − d)1(t− δ1 − d)] dδ1,

=
1
2

[
(t + τ − d)21(t + τ − d)− 2(t− d)21(t− d) + (t− τ − d)21(t− τ − d)

]
, (3.10)

∫ τ

0

[∫ t+δ1

t−δ1

1(1)(δ0 − d)dδ0

]
dδ1

=
∫ τ

0

[1(t + δ1 − d)− 1(t− δ1 − d)] dδ1

= (t + τ − d)1(t + τ − d)− 2(t− d)1(t− d) + (t− τ − d)1(t− τ − d). (3.11)

Let τ be fixed and t satisfy t− τ < d ≤ t, which causes

1(t + τ − d) = 1(t− d) = 1, d ≤ t, (3.12)

1(t− τ − d) = 0, t− τ < d. (3.13)

Integrating (3.1) in form of (3.3) and making use of (3.4-3.6) and (3.10-3.13) yield

φT (t)θ = γ(t), t− τ < d ≤ t, (3.14)

where

φT (t) =
[
− ∫ τ

0

∫ t+δ1
t−δ1

y(1)(δ0)dδ0dδ1 − ∫ τ

0

∫ t+δ1
t−δ1

y(δ0)dδ0dδ1 ht2 ht h
]
, (3.15)

γ(t) =

∫ τ

0

∫ t+δ1

t−δ1

y(2)(δ0)dδ0dδ1, (3.16)

θ =




θ1

θ2

θ3

θ4

θ5




=




a1

a0

− b0
2

b0(τ + d)− b1

b0
2
(τ 2 − 2τd− d2) + b1(d + τ) + cτ2

h




. (3.17)
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One invokes (3.14) for t = ti, i = 1, 2, . . . , N , with N À 5 to form

Γ = Φθ, (3.18)

where Γ = [γ(t1), γ(t2), . . . , γ(tN)]T , and Φ = [φ(t1), φ(t2), . . . , φ(tN)]T . Then the

ordinary least-squares algorithm can be applied to (3.18) to find its solution

θ =
(
ΦT Φ

)−1
ΦT Γ

We can see that five θi estimated are not sufficient to determine six unknown

parameters, a1, a0, b1, b0, d, and c. An additional equation is obtained using the

steady-state of (3.1):

a0y(∞) = b0h + c, (3.19)

where y(∞) is estimated from the steady-state response. In noise situation, y(∞)

is calculated with a multi-point average for robustness. To get reliable estimate of

y(∞), the test must be maintained at final state for a while.

Equation (3.19) together with θi is sufficient to recover the model parameters

as 



a1 = θ1,

a0 = θ2,

b0 = −2θ3,

c = a0y(∞)− b0h,

d =
−(θ4+2τθ3)±

q
(θ4+2τθ3)2−4θ3(3θ3τ2+θ4τ+θ5− cτ2

h
)

2θ3
,

b1 = b0(τ + d)− θ4.

(3.20)

Equation (3.20) produces two solutions for d and b1. We can find the initial con-

ditions with estimated model and the step response and obtain the estimated step

response from the estimated model, static disturbance and initial conditions. By

comparing the estimated step response with the actual one, we can judge which

model is better. For detail, see Hwang and Lai (2004). The method is straightfor-

ward.
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Note that t = ti has been chosen to meet t − τ < d ≤ t, where d is unknown

and to be identified. This is not a problem. A rough estimation of the range of d

is sufficient. Let d be in the range, [dmin, dmax]. We can then choose ti ≥ dmax and

ti − τ ≤ dmin.

Note also from the requirement, t − τ < d ≤ t, or d ≤ t < d + τ , that the

range for t = ti, i = 1, 2, . . . , N, is given by τ . τ is usually big enough to let the

maximum integration interval [t1 − τ, tN + τ ] cover the entire output response for

full use of the information and best estimation of the model parameters. (ti − τ)

can be negative, that is, the output measurement before the step starts is needed.

This is absolutely not a problem in practice as a continuous industrial process runs

day after day, the data on the output measurement are all recorded and saved in

computer for years and can be retrieved easily for use in process identification.

It is concluded from the above development that even when the non-zero initial

conditions and static disturbance are unknown, a time-delay model of second order

can be identified from the process step response by applying one-stage least-squares

algorithm without iteration.

Example 3.1. Consider a 2nd-order process (Hwang and Lai, 2004):

y(2)(t) + 1.5y(1)(t) + 0.5y(t) = −0.5u(1)(t− 1) + 0.5u(t− 1) + c,

with c = 1. The unit step test is applied at t = 0. The resultant output shows an

inverse response, see Figure 3.1. The initial conditions are y(0) = 2.3, y(1)(0) =

−0.15. Note that y(1)(0) is supposed unknown and not used in identification. For

this example, Ts = 12.5. We choose τ = 6 and ti = 2.5, 2.1, . . . , 6.4, 6.5. The

maximum integral interval is from t1 − τ = −3.5 to tN + τ = 12.5, and well covers

the step response. The least-squares algorithm based on (3.14) leads to

θ̂ = [1.5001 0.5003 −0.2501 4.0025 38.2752]
T .
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Two models are obtained from (3.20) as

y(2)(t) + 1.5001y(1)(t) + 0.5003y(t) = −0.5126u(1)(t− 0.98) + 0.5003u(t− 0.98),

y(2)(t) + 1.5001y(1)(t) + 0.5003y(t) = 0.5126u(1)(t− 3.02) + 0.5003u(t− 3.02),

with the estimated disturbance as ĉ = 1.0004. With the estimated model, we

can estimate the process state at t = 0 is y(1)(0) = −0.1523. The estimated step

responses are shown in Figure 3.1, where the non-minimum phase model fits the

actual response much better than the minimum phase model.
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Figure 3.1. Step response and input for Example 3.1.

It is seen that τ 2 appears in θ5 and it may cause θ5 to be relatively much large

to other θi. To avoid possible numerical computation problems from this, one may

rescale time by tnew = Ft. For instance, take F = 0.1 in the above example. This

yields

θ̂new = [15.0095 50.2623 −25.1319 40.2554 38.5036]
T ,

which has its parameter values relatively much closer to each other than the orig-

inal estimation without time rescaling.
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In the presence of noise in the measurement of the process output, the ordinary

least-squares estimate is not consistent (Soderstrom and Stoica, 1983). One solu-

tion is to use the instrumental variable (IV) method to guarantee the identification

consistency in the presence of noise. The IV method proposed by Wang and Zhang

(2001) is adopted. For simulation, the ratio of the standard deviation of noise to

the standard deviation of the output signal is used as the measure of the noise-

to-signal ratio (NSR). A white noise of NSR = 3, 5, 10, 15, 25%, is added to the

process output of Example 1 to produce the corrupted output measurement ỹ(t),

respectively. The models estimated by the IV method under the different noise

levels are shown in Table 3.1 with respect to the time domain identification error

measured by

ε =
1

K

K∑

k=1

[ỹ(k)− ŷ(k)]2 , (3.21)

where ŷ(k) is the estimated step response. Table 3.1 indicates robust identification

results. The Nyquist plots of the process and the models obtained under noise

level of NSR = 10, 25% are given in Figure 3.2.
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Figure 3.2. Nyquist plot for Example 3.1.
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3.4 High-order modelling from step tests

In this section, we extend the preceding 2nd-order modelling to a general case.

Consider an nth-order continuous system with delay,

y(n)(t)+ · · ·+a1y
(1)(t)+a0y(t) = bmu(m)(t−d)+ · · ·+ b1u

(1)(t−d)+ b0u(t−d)+ c,

(3.22)

where m < n. A step test of u(t) = h1(t) is applied at t = 0. Define an n-time

integration operator on f(t) as follows,

Pnf(t) =

∫ τ

0

∫ τ+δn−1

τ−δn−1

· · ·
∫ τ+δ2

τ−δ2

∫ t+δ1

t−δ1

f(δ0)dδ0dδ1 · · · dδn−2dδn−1, n ≥ 2. (3.23)

It can be readily shown that

Pn1
(l)(t−d) =

1

(n− l)!

2n−2∑

k=0

ck(t+(n−1−k)τ−d)n−l1(t+(n−1−k)τ−d), l = 0, 1, . . . , m,

(3.24)

where
[
c0 c1 . . . c2n−2

]
= Cn is calculated recursively as C2 =

[
1 −2 1

]
, and

Ci =
[
Ci−1 0 0

]
−

[
0 0 Ci−1

]
, i = 3, 4, . . . , n.

Let τ be fixed and t meet t− (n−1)τ < d ≤ t− (n−2)τ . Then, (3.24) becomes

Pn1
(l)(t− d) =

1

(n− l)!

2n−3∑

k=0

ck(t + (n− 1− k)τ − d)n−l, l = 0, 1, . . . , m.

Table 3.1. Identification results for Example 3.1

NSR Estimated model Estimated disturbance Error ε

3% −0.4729s+0.5062
s2+1.502s+0.4971

e−1.02s 0.9864 8.32× 10−4

5% −0.4527s+0.5096
s2+1.503s+0.4953

e−1.03s 0.9783 2.1× 10−3

10% −0.4106s+0.5166
s2+1.506s+0.4917

e−1.07s 0.9622 6.3× 10−3

15% −0.3534s+0.5252
s2+1.508s+0.4872

e−1.12s 0.9421 1.48× 10−2

25% −0.2075s+0.5423
s2+1.514s+0.4782

e−1.28s 0.9016 4.3× 10−2
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The right hand side of (3.22) is

m∑

k=0

bkPnu
(k)(t− d) + Pnc = h

n∑
i=0

(βit
i),

where




β0 =
∑m

j=0
bj

(n−j)!

(∑2n−3
k=0 ck ((n− 1− k)τ − d)n−j

)
+ Pnc

h
,

βi =
∑min(m,n−i)

j=0
bj

i!(n−i−j)!

(∑2n−3
k=0 ck ((n− 1− k)τ − d)n−j−i

)
, i = 1, 2, . . . , n.

(3.25)

Applying Pn on (3.22) yields

φT (t)θ = γ(t), t− (n− 1)τ < d ≤ t− (n− 2)τ, (3.26)

where

γ(t) = Pny
(n)(t), (3.27)

φT (t) = [−Pny
(n−1)(t) · · · −Pny(t) htn · · · ht h], (3.28)

θT =
[
an−1 · · · a0 βn · · · β1 β0

]
. (3.29)

Invoke t = ti, i = 1, 2, . . . , N in (3.26) to form

Γ = Φθ, (3.30)

where Γ = [γ(t1), γ(t2), . . . , γ(tN)]T , and Φ = [φ(t1), φ(t2), . . . , φ(tN)]T . The ordi-

nary least-squares algorithm can be applied to (3.30) to find its solution

θ =
(
ΦT Φ

)−1
ΦT Γ. (3.31)

Note that there are n + m + 3 unknown parameters, ai, i = 1, . . . , n, bj, j =

0, . . . , m, d and c. If m < n − 1, the process model can be recovered from (3.25).

But, if m = n− 1, the estimated θ is not enough to solve the unknowns and (3.19)

is needed.

The above approach produces m + 1 possible solutions for time delay d and

thus m+1 possible models. Wang and Zhang (2001) suggested choosing one which

minimizes the error (3.21). We follow their method.
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In general, the order of the process is unknown before identification. The model

structure identification is an important issue and has been discussed in the litera-

ture. We adopt the standard practice as follows. One may start from a second-order

time delay system. If the error measured by (3.21) is acceptable, the identification

task is completed. Otherwise, one may increase n and/or m by one until the error

becomes acceptable.

Choice of τ , ti and N are discussed as follows. By (3.26), t = ti, i = 1, . . . , N,

and τ should meet

t− (n− 1)τ < d ≤ t− (n− 2)τ. (3.32)

The maximum integration interval is [tmin, tmax] = [t1 − (n− 1)τ, tN + (n− 1)τ ].

It should cover the entire test duration. To this end, we have

tN + (n− 1)τ = Ts, (3.33)

where Ts is the ending time of the test duration. The left hand side of (3.32) gives

tN − (n− 1)τ < d. (3.34)

Subtract (3.34) from (3.33):

2(n− 1)τ > Ts − d. (3.35)

Choose 2(n− 1)τ ≈ Ts to meet (3.35), which result in

τ ≈ Ts

2(n− 1)
. (3.36)

Equation (3.32) can be rearranged as

d + (n− 2)τ ≤ t < d + (n− 1)τ.

Suppose d ∈ [dmin dmax]. Once τ is calculated from (3.36), ti are chosen as

dmax + (n− 2)τ ≤ ti < dmin + (n− 1)τ. (3.37)

N is such that t1, t2, . . ., and tN meet (3.37).
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Example 3.2. Consider a high-order process

y(4)(t) + 4y(3)(t) + 6y(2)(t) + 4y(1)(t) + y(t) = u(t− 2) + c,

with y(0) = 1.1, y(1)(0) = −0.15, y(2)(0) = 0.13, y(3)(0) = −0.1 and c=1. Its

transfer function is G(s) = e−2s

(s+1)4
. The unit step test is applied at t = 0. The test

duration is 16. With n = 3 and m = 0, the model is obtained as

Ĝ(s) =
0.4207

s3 + 1.785s2 + 1.516s + 0.4243
e−2.56s.

The Nyquist plots of the process and model are given in Figure 3.3.
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Figure 3.3. Nyquist plot for Example 3.2.

3.5 Real time testing

Lab Test The proposed method was tested on a temperature control system made

by National Instruments Corp. in Advanced Control Technology Lab, Department

of Electrical and Computer Engineering, National University of Singapore. The

experiment setup consists of two parts: a chamber set with a 20W bulb and a

fan; a personal computer with data acquisition cards and LabVIEW software. The
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temperature is to be controlled by the power supply to the bulb. An identification

test was performed on the system and the recorded inputs and the output are

given in Figure 3.4. At t = 0, y(0) and y(1)(0) are nonzero. Applying the proposed

identification method yields

y(2)(t) + 18.55y(1)(t) + 55.34y(t) = 632.6u(t− 0.106).

The response for this model under the same input is also shown in Figure 3.4. The

effectiveness of the proposed method is obvious.
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Figure 3.4. Step responses and input of the temperature control system.

Field Test Xi-Hua-Feng pulp and paper mills is located in Wuzhi, Henan

Province, P. R. China. Three kinds of pulps are made by the mills: wood pulp,

grass pulp and recycled-paper pulp. These pulps are mixed together in the mix-

ing tank. The flowchart of this process is given in figure 3.5. It is required to

stabilize the pulp concentration without large deviations from the given operation

conditions. The flow rate of the pulp is often tuned to meet different manufacture
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requirements and it is important to monitor and control the flow rate. One needs

to identify a model for the pulp flow rate. The process considered consists of a

valve, FV1 in figure 3.5 and a pipe(DN100). The input is the position of the valve

and the output is the flow rate(m3/h) in the pipe. A step test was applied by

moving the valve from the fully close to 1/6 open position. The resultant response

of the flow rate is given in Figure 3.6. The proposed method was applied and one

model obtained as

y(2)(t) + 2.267y(1)(t) + 0.9351y(t) = 214.3u(t− 3.2).

The response for this model under the same input is also shown in Figure 3.6.

Figure 3.5. Flowchart of the mixing procedure.

3.6 Conclusions

In this chapter, a new integral method has been proposed for identification of

linear continuous-time delay processes with unknown initial conditions and static
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Figure 3.6. Step test of the flow control system.

disturbance from step tests. The integration limits are specially chosen to make

the integral equation independent of the unknown initial conditions. The process

model is obtained by one-stage least-squares algorithm with no iteration. The ef-

fectiveness of the proposed method is demonstrated by simulation, lab test and

field experiment.



Chapter 4

Process Identification from Relay

Tests

4.1 Introduction

In this chapter, process identification from relay tests is discussed. Among closed-

loop identifications, process identification from relay feedback is a very active re-

search area over the last 2 decades. The area was pioneered by Åström and Hag-

glund (1995). In the early stage of development, only stationary response of the

relay feedback system is used to estimate the process frequency response at the os-

cillation frequency as well as zero frequency (in case of biased relay). The informa-

tion so identified is adequate to tune simple controllers with simple specifications,

but insufficient to tune controllers with high performance specifications. This has

led to more recent development on identification of the process frequency response

at multiple points from relay tests (Wang et al., 1997a; Wang et al., 1997b; Bi et

al., 1997; Wang et al., 1999). With the estimated frequency response, a transfer

function model can be obtained by some fitting techniques and it enables tuning

and implementation of model-based controllers.

In this chapter, we revisit the FFT-based identification method first and the

need for further development is discussed. Then a new identification method from

38
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relay tests under non-zero initial conditions and disturbance is proposed. A relay

test is regarded as a sequence of step tests and the integral technique is adopted

to devise the algorithm. The proposed method can yield a full process model in-

cluding time delay. Because of the use of process output integrals, the resulting

integral based estimation is very robust in face of noise in output measurements.

This chapter is organized as follows. In Section 4.2, the FFT based identifi-

cation method is reviewed and the need for further development is highlighted.

In Section 4.3, the method is presented for first-order modelling. The method is

extended to high-order modelling in Section 4.4. Conclusions are drawn in Section

4.5.

4.2 FFT method revisited

A relay feedback system is shown in Figure 4.1. The relay function is shown in

Figure 4.2 and described as

u(t) =





u+, if e(t) > ε+, or e(t) ≥ ε− and u(t−) = u+,

u−, if e(t) < ε−, or e(t) ≤ ε+ and u(t−) = u−,

(4.1)

where ε+, ε− ∈ R with ε− < ε+ indicating hysteresis; u−, u+ ∈ R and u− 6= u+; t−

is time point just before t and u(t−) is the relay output at the time point of t−.

If the process has a phase lag of at least π radians, the relay feedback will usually

cause the system to oscillate. In most cases, a stable limit cycle will result. The

corresponding input and output time responses can be used to perform process

identification.

Multiple points on the process frequency response could be obtained from a

relay test using relay transients. Suppose that the process is initially at the rest

and a relay feedback is applied to it. The process input and output are recorded

from the initial time until the system reaches a stationary oscillation. Note that



Chapter 4. Process Identification from Relay Tests 40

Relay

Controller

Process
+

-

r

Noise

u(t)
+

+

Figure 4.1. Relay feedback system.

u

e

u

u

+-

-

+

Figure 4.2. Relay function.

u(t) and y(t) are neither periodic nor absolutely integrable and then the FFT

cannot be applied to compute the frequency response of the process correctly by

using G(jω) = FFT (y(t))/FFT (u(t)). To rectify it, one period of the stationary

oscillation of y(t) and u(t) are copied backward to form periodic signals ys(t) and

us(t). y(t) and u(t) then are decomposed into two parts: the periodic stationary

cycle parts ys(t) and us(t) and the transient parts ∆y(t) and ∆u(t) as

y(t) = ys(t) + ∆y(t),

and

u(t) = us(t) + ∆u(t).

In the case of zero initial conditions and no disturbance, it follows that the process

transfer function is given by

G(s) =
Y (s)

U(s)
=

∆Y (s) + Ys(s)

∆U(s) + Us(s)
,

where ∆Y (s) and ∆U(s) are the Laplace transforms of the transient parts ∆y(t)

and ∆u(t), respectively, Ys(s) and Us(s) are the Laplace transforms of ys(t) and
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us(t), respectively. Suppose that t = Te, y(t) and u(t) have entered the stationary

oscillation and after t = Te, ∆y(t) and ∆u(t) are approximately zero. ∆Y (jωl), l =

1, . . . , m, is computed using the FFT as follows

∆Y (jωl) = FFT (∆y(kT )) = T
N−1∑

k=0

∆y(KT )e−jωlkT , l = 1, 2, . . . , m,

where y(kT ), k = 0, 1, . . . , N − 1 are samples of y(t), T is the sampling interval,

and (N − 1)T = Te, m = N/2, and ωl = 2πl/(NT ). Ys(jωl) are computed using

digital integral as

Ys(jωl) =
1

1− e−jωlTc

Nc∑

k=0

ys(kT )e−jωlkT T, l = 1, 2, . . . , m,

where Nc = (Tc−T )/T and Tc is the period of stationary oscillation from the relay

feedback test. Similarly, ∆U(jωl) and Us(jωl) are found. Thus, we have

G(jωl) =
∆Y (jωl) + Ys(jωl)

∆U(jωl) + Us(jωl)
, l = 1, 2, . . . , m. (4.2)

Formula (4.2) works when the noise is relatively small but could produce big errors

if noise is significant.

Wang et al. (1999) has suggested use of low-pass filters as an anti-noise mea-

sure and achieved reasonable estimation in face of significant noise. If the phase

crossover frequency of the process is unknown before relay tests, design of low pass

filter was done by trial and error and not detailed there. Note also that in their

scheme, a low-pass filter is placed inside the loop when a relay is conducted, which

will give a smoother output and more regular oscillations than one without a filter

inside the loop. But this implies that a filter must be designed and implemented

before a relay test, and requires a prior information of the process dynamics. In

the rest of this section, we will remove this requirement and give a filter design

without a prior knowledge of the process.

First, we conduct a relay test on the process without any filter inserted to

the loop, as shown in Figure 4.1. The test ends when a stationary oscillation is
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achieved with the oscillation frequency of ωo. To handle noisy data, the resulting

output response, y(t), is processed by a low-pass filter, F (s) = 1
(Tf s+1)n before the

FFT method is applied. It is important to choose a proper cut-off frequency for

the low-pass filter to achieve desired identification results. In control engineering,

the process frequency response in [0, ωc] is mostly critical for controller design,

where ωc is the phase crossover frequency. Then, the filter cut-off frequency, 1/Tf ,

is normally chosen as (3−5)ωc. But in practice, one does not know ωc before iden-

tification. This problem is solved by using the relay feedback oscillation frequency,

ωo, in place of it. The experience shows that ωo is usually close to ωc and available

from a relay test. In summary, we design a low-pass filter as

F (s) =
1

(Tfs + 1)n
, 1/Tf = Mωo, M ∈ [3, 5].

With a filter so designed, the original output is filtered. The filtered output, ŷ(t),

and the input, u(t), are processed by the FFT method. Note that due to use of

the filter, the result so obtained is ĜF (jωi), the estimated frequency response of

G(s)F (s), but not of G(s). One can recover the estimate of G(jw) as

Ĝ(jωi) =
ĜF (jωi)

F (jωi)
. (4.3)

To evaluate the above revised FFT method and compare with the original one in

Wang et al. (1999), simulation is conducted in noisy case. The noise-to-signal ratio

defined by

NSR =
mean(abs(noise))

mean(abs(signal))

is used to represent a noise level. The identification error is measured by the worst

case error,

ERR1 = max

∣∣∣∣∣
ĜF (jωi)−G(jωi)

G(jωi)

∣∣∣∣∣ , i = 1, · · · ,M,

without removing the filter’s frequency response, and

ERR2 = max

∣∣∣∣∣
Ĝ(jωi)−G(jωi)

G(jωi)

∣∣∣∣∣ , i = 1, · · · ,M, (4.4)

with the filter’s frequency response removed, where in both cases, ωi ∈ [0, ωc] are

considered.
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Example 4.1. Consider a continuous-time delay process (Wang et al., 1999),

G(s) =
1

5s + 1
e−5s.

Suppose zero initial conditions and no disturbance. A relay experiment is per-

formed at t = 0, with u+ = 0.5 and u− = −0.5. A white noise with NSR = 13% is

added to the process output to produce the output measurement y(t). This output

measurement is sent to the relay input. The relay output is applied to the process.

The width of the hystersis should be bigger than the noise band. For this example

we set ε+ = 0.2 and ε− = −0.2. Time responses of y(t) and u(t) are shown in

Figure 4.3. Once such a relay test is completed, the y(t) is processed by a low-pass

filter. We try both ωo and ωc as guidelines for filter cut-off frequency selection.

For this example, ωc ≈ 0.4, and ωo ≈ 0.334. We also vary the multiple in the filter

to see its effects and suitable range. Finally, The FFT method is applied to get

the frequency response estimation, and the identification errors are also computed.

The results are shown in Table 4.1. It can been seen that the difference from use

of ωo or ωc for filtering is negligible. The filter multiple M as 3 − 5 should be

adequate. It is noted that removal of the filter’s frequency response from ĜF (s) by

using (4.3) is required to get good identification result for G(jw). The reason is

that for the cutoff frequency set at (3− 5)ωc, even though the magnitude of F (s)

is approximate to 1 in [0, ωc], the phase of F (s) makes ĜF (s) deviate from G(s)

around ωc and leads to significant estimation errors.

Note that the FFT method assumes zero initial conditions and no disturbance.

Such assumptions are relaxed in the proposed method in the next two sections.

4.3 First-order modelling

For a relay test, the relay output or the process input can be expressed as the sum

of step functions:

u(t) =
N∑

k=0

uk(t) =
N∑

k=0

hk1(t− tk), (4.5)
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Figure 4.3. Process output and input of relay experiment for Example 4.1.

Table 4.1. Identification errors for Example 4.1

Filter cutoff frequency, 1/Tf Filter, 1
Tfs+1 ERR1 ERR2

3ωo
1

s+1 41.84 % 10.61 %

3ωc
1

0.83s+1 36.55 % 10.56 %

4ωo
1

0.75s+1 33.97 % 10.54 %

4ωc
1

0.625s+1 29.84 % 10.52 %

5ωo
1

0.6s+1 29.00 % 10.51 %

5ωc
1

0.5s+1 24.24 % 11.20 %

∞ 1 28.29 % 28.29 %



Chapter 4. Process Identification from Relay Tests 45

where 1(t) is a unit step and time tk is a relay switching instant. See one example

given in Figure 4.4. As a result, the methods for process identification from step

tests looks possible to be employed to estimate a process model from relay tests.

Process modelling from step tests is popular (Åström and Hagglund, 1995; Wang

and Zhang, 2001). To get a general model with reasonable accuracy, least squares

based methods are often adopted. One problem with such methods is delay esti-

mation which needs iterations. Wang and Zhang (2001) devised a linear identifi-

cation algorithm for all the model parameters including delay. In their method,

A differential equation with time delay is transformed to an integral equation

by means of multiple integration (Whitfield and Messali, 1987) and the original

model parameters are re-grouped to form a new linear regression equation. The

integral identification has proven robust against noise in measurements (Golubev

and Wang, 1982). However, Wang and Zhang (2001), like all the previous works

on continuous system identification, assumed that the initial conditions are zero

and there is no disturbance. Thus, their method cannot be applied to relay test,

not only because the the initial conditions and/or disturbance may not be zero

when a relay test starts, but also because the initial conditions at the subsequent

relay switching times can never be zero even though the initial conditions are zero

and there is no disturbance when a relay test starts. Thus, we need a new step

identification algorithm which allows non-zero initial conditions in order for it to

be applicable to the relay case.

In this section, we consider a first-order continuous-time delay system,

y(1)(t) + a0y(t) = b0u(t− d) + c, (4.6)

where y(t) and u(t) are the output and input of the process, respectively; d is the

time delay; and c is the static disturbance and/or a bias value of the process. The

task is to estimate the model parameters, a0, b0, d and c, from one relay test. We

define an integration operator on f(t) as follows,

P1f(t) =

∫ t+τ

t−τ

f(δ0)dδ0. (4.7)
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Figure 4.4. Process output and input of relay experiment.

Integrating (4.6) with (4.7) yields

P1y
(1)(t) + a0P1y(t) = b0P1u(t− d) + P1c. (4.8)

In the left-hand side, both

P1y
(1)(t) = y(t + τ)− y(t− τ),

and

P1y(t) =

∫ t+τ

t−τ

y(δ0)dδ0,

can be numerically evaluated with knowledge of y(t). The right-hand side is

P1u(t− d) =
N∑

k=0

(P1uk(t− d)) .

It is straightforward to verify that

P11(t− d) = (t + τ − d)1(t + τ − d)− (t− τ − d)1(t− τ − d).

Let τ be fixed. Choose t to meet

tk−1 + d ≤ t− τ < tk + d ≤ t + τ < tk+1 + d. (4.9)
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We have

P1uk(t− d) = hk(t + τ − tk − d),

P1uj(t− d) = 0, tj > tk,

and

P1uj(t− d) = hjP11, tj < tk.

The right-hand side of (4.8) can be then rearranged as follows,

b0P1u(t− d) + P1c

=
[
hk(t− tk + τ) +

(∑k−1
l=0 hl

)
P11 hk P11

]



b0

−b0d

c


 .

Equation (4.8) then becomes

φT (t, tk)θ = γ(t), (4.10)

where

γ(t) = P1y
(1)(t),

φT (t, tk) = [−P1y(t) hk(t− tk + τ) + 2τ
∑k−1

l=0 hl hk 2τ ],

and

θ =




a0

b0

−b0d

c




.

Choose t = tki, i = 0, 1, 2, . . . , Mk, to meet tk−1 + d ≤ tki − τ < tk + d ≤ tki + τ <

tk+1 + d. One invokes (4.10) for tki to form the regression form

Γk = Ψkθ,

where

Γk = [γ(tk0), . . . , γ(tkMk
)]T ,

and

Ψk = [φ(tk0, tk), . . . , φ(tkMk
, tk)]

T .
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From the first N + 1 switches of one relay test, Γk, k = 0, . . . , N and Ψk, k =

0, . . . , N , are obtained. Then, we have

Γ = Ψθ,

where

Γ =
[
ΓT

0 . . . ΓT
N

]T
,

and

Ψ =
[
ΨT

0 , . . . , ΨT
N

]T
.

The ordinary least-squares method can be applied to find the solution

θ̂ =
[
θ̂1, θ̂2, θ̂3, θ̂4

]T

=
(
ΨT Ψ

)−1
ΨT Γ.

In the presence of noise in the measurement of the process output, the instrumental

variable (IV) method similar to Wang and Zhang (2001) is adopted to guarantee

the identification consistency. After θ is estimated, the model parameters can be

recovered as follows: 



â0 = θ̂1,

b̂0 = θ̂2,

d̂ = − θ̂3

θ̂2
,

ĉ = θ̂4.

Selection of t = tki depends on d, while d is to be identified and unknown. It

is possible to estimate a range of d. Let d be in the range, (dmin, dmax). dmin may

be set as the time from the input signal injection to the point when the output

response still remains unchanged from the past trend, while dmax is the time from

the input signal injection to the point when the output response has changed from

the past trend well beyond the noise band. Besides, such a range can be estimated

with purely numerical method (Hwang and Lai, 2004). With dmin < d < dmax, we

can then choose tk−1+dmax ≤ tki−τ ≤ tk+dmin and tk+dmax ≤ tki+τ ≤ tk+1+dmin.
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Choice of τ is discussed as follows. For first order modelling, t = tki and τ should

meet (4.9). For kth step test, the maximum integration interval [tk0 − τ, tkMk
+ τ ]

should cover the entire step test duration. To this end, we have

tkMk
+ τ = tk+1 + dmin, (4.11)

and

tkMk
− τ ≤ tk + dmin. (4.12)

Subtract (4.12) from (4.11):

2τ ≥ tk+1 − tk. (4.13)

Choose 2τ ≈ tk+1 − tk to meet (4.13) and we have

τ ≈ tk+1 − tk
2

.

We require t and τ to meet (4.9). For k = 0, t−1 is not defined. It is not a

problem. When k = 0, we let τ and t meet

t− τ < t0 + d ≤ t + τ < t1 + d.

t − τ can be negative, that is, the output measurement before the relay test is

needed. In practice, a continuous industrial process runs day after day and the

data on the output measurement are all recorded and saved. It is easy to retrieve

these data before relay test for use in process identification.

Example 4.2. Consider a continuous-time delay process with the same transfer

function as in Wang et al. (1999), but subject to y(0) = −1.5 and c = 0.2:

5y(1)(t) + y(t) = u(t− 5) + c,

Then, the FFT method cannot be applied. An relay experiment is performed at

t = 0, with u+ = 0.5 and u− = −0.5. The process input and output are shown in

Figure 4.5. The proposed method leads to

θT =
[
0.2007 0.2006 −1.0031 0.0397

]
.
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Figure 4.5. Process output and input of relay experiment for Example 4.2.

A model is obtained as follows

y(1)(t) + 0.2007y(t) = 0.2006u(t− 5),

with a estimated disturbance as ĉ = 0.0395. The identification error, ERR2, is

0.22%, which is due to some computational errors.

Table 4.2. Identification errors for Example 4.2

Method NSR=13 % NSR=25 % NSR=35 %

Original FFT method 10.14 % 12.79 % 13.57 %

Revised FFT method 10.51 % 12.86 % 14.95 %

Proposed method 1.37 % 2.19 % 3.11 %

To compare the proposed method with the FFT one, a new relay test, the same

as in Wang et al. (1999). With u+ = 0.5, u− = −0.5, ε+ = 0.2 and ε− = −0.2,

under zero initial conditions and no disturbance is performed, with the output

corrupted with noise of NSR = 13, 25, 35%, respectively. Time sequences of y(t)
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Figure 4.6. Process output and input of relay experiment for Example 4.3.

and u(t) in a relay test under NSR = 13% are shown in Figure 4.3. The pro-

posed method is applied with no need for any low-pass filter and the results are

exhibited in Table 4.2. On the other hand, the FFT method requires a filter. The

stationary oscillation frequency is ωo ≈ 0.334, and a filter is designed with M = 5

as F (s) = 1
0.6s+1

. The FFT results are also shown in Table 4.2. Even without the

low-pass filter, the proposed method is robust and can achieve better identification

results than the FFT method does. The effectiveness of the proposed method is

evident.

Example 4.3. Consider a 2nd-order process

5y(2)(t) + 6y(1)(t) + y(t) = u(t− 4.5) + c,

subject to y(1)(0) = −0.2, y(0) = −1.5 and a static disturbance of 0.2. A relay

experiment is performed at t = 0, with u+ = 2 and u− = −2. The process input

and output are shown in Figure 4.6. The proposed method leads to

y(1)(t) + 0.1958y(t) = 0.1947u(t− 5.44),

The identification error is 4.00%. Despite the presence of model structure mis-

match, the accuracy of the estimated model is excellent.
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4.4 n-th order modelling

Consider an n-th order continuous-time delay system,

y(n)(t)+ · · ·+a1y
(1)(t)+a0y(t) = bmu(m)(t−d)+ · · ·+ b1u

(1)(t−d)+ b0u(t−d)+ c,

(4.14)

where n ≥ 2 and m < n. Use a multiple integration as follows

Pnf(t) =

∫ τ

0

∫ τ+δn−1

τ−δn−1

· · ·
∫ τ+δ2

τ−δ2

∫ t+δ1

t−δ1

f(δ0)dδ0dδ1 · · · dδn−2dδn−1, n ≥ 2. (4.15)

Integrating (4.14) with (4.15), we have

Pny
(n)(t) +

n−1∑

l=0

alPny
(l)(t) =

m∑
j=0

bjPnu
(j)(t− d) + Pnc. (4.16)

In the left-hand side of (4.16), we have





Pny(t) =
∫ τ

0

∫ τ+δn−1

τ−δn−1
· · · ∫ τ+δ2

τ−δ2

∫ t+δ1
t−δ1

y(δ0)dδ0dδ1 · · · dδn−2dδn−1,

Pny
(1)(t) =

∫ τ

0

∫ τ+δn−1

τ−δn−1
· · · ∫ τ+δ2

τ−δ2
(y(t + δ1)− y(t− δ1)) dδ1 · · · dδn−2dδn−1,

...

Pny
(n)(t) =

∑2n−2
k=0 cky (t + (n− 1− k)τ) ,

where
[
c0 c1 . . . c2n−2

]
, Cn is calculated recursively as C2 =

[
1 −2 1

]
, and

Ci =
[
Ci−1 0 0

]
−

[
0 0 Ci−1

]
, i = 3, 4, . . . , n.

Note that since the upper and lower limits of any inner integral are made de-

pendent on the dummy variable of the immediate next outer integral so that all the

terms in the outcome of inner integral are functions of the outer dummy variable,

but not fixed, Pny
(l)(t), l = 1, . . . , n− 1, be numerically evaluated with knowledge

of y(t) without involving initial conditions, y(1)(0), y(2)(0), . . ., and y(n−1)(0).

It can be readily shown that

Pn1
(l)(t−d) =

1

(n− l)!

2n−2∑

k=0

ck(t+(n−1−k)τ−d)n−l1(t+(n−1−k)τ−d), l = 0, 1, . . . , n−1.
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Let τ be fixed. Choose t to meet

tk−1+d < t−(n−1)τ < tk+d ≤ t−(n−2)τ < · · · < t+(n−1)τ < tk+1+d. (4.17)

We have

Pn1(l)(t− tk − d) =
1

(n− l)!

2n−3∑

i=0

ci (t + (n− 1− i)τ − tk − d)(n−l)
, l = 0, 1, 2, . . . , m, n ≥ 2,

Pn1
(l)(t− tj − d) = 0, l = 1, 2, . . . , m, tj 6= tk,

Pnuj(t− d) = 0, tj > tk,

and

Pnuj(t− d) = hjPn1, tj < tk.

The right-hand side of (4.16) can be rearranged as follows,

m∑

j=0

bjPnu(j)(t− d) + Pnc

=




hk

n!

(∑2n−3
i=0 ci(t + (n− 1− i)τ − tk)n

)
+ (

∑k−1
l=0 hl)Pn1

hk

(n−1)!

(∑2n−3
i=0 ci(t + (n− 1− i)τ − tk)n−1

)

...
hk

1!

(∑2n−3
i=0 ci(t + (n− 1− i)τ − tk)

)

hk

0!

(∑2n−3
i=0 ci

)

Pn1




T 


α0

α1

...

αn−1

αn

c




,

where

αi =

min(i,m)∑

l=0

bl(−d)(i−l)

(i− l)!
, i = 0, 1, . . . , n. (4.18)

Then, Equation (4.16) becomes

φT (t, tk)θ = γ(t), (4.19)

where

γ(t) = Pny
(n)(t),
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φ(t, tk) =




−Pny(n−1)(t)
...

−Pny(1)(t)

−Pny(t)
hk

n!

(∑2n−3
i=0 ci(t + (n− 1− i)τ − tk)n

)
+ (

∑k−1
l=0 hl)Pn1

hk

(n−1)!

(∑2n−3
i=0 ci(t + (n− 1− i)τ − tk)n−1

)

...
hk

1!

(∑2n−3
i=0 ci(t + (n− 1− i)τ − tk)

)

hk

0!

(∑2n−3
i=0 ci

)

Pn1




,

and

θ =
[
an−1 . . . a1 a0 α0 α1 . . . αn−1 αn c

]T

.

Choose t = tki, i = 0, 1, 2, . . . , Mk, to meet tk−1 + d < tki − (n − 1)τ < tk + d ≤
tki − (n− 2)τ < · · · < tki + (n− 1)τ < tk+1 + d. One invokes (4.19) for t = tki to

form the regression form

Γk = Ψkθ,

where

Γk = [γ(tk0), . . . , γ(tkMk
)]T ,

and

Ψk = [φ(tk0, tk), . . . , φ(tkMk
, tk)]

T .

From the first N + 1 switches of one relay test, Γk, k = 0, . . . , N and Ψk, k =

0, . . . , N are obtained. Then, we have

Γ = Ψθ,

where

Γ =
[
ΓT

0 . . . ΓT
N

]T
,

and

Ψ =
[
ΨT

0 , . . . , ΨT
N

]T
.
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Once θ is estimated by applying the least-squares method or IV method, the model

parameters can be recovered. From (4.18) for i = 0, . . . , m, we have





b0 = α0,

bi = αi −
∑i−1

l=0
bl(−d)(i−l)

(i−l)!
, i = 1, . . . , m.

(4.20)

Substituting (4.20) into (4.18) for i = m + 1, an (m + 1)-th order linear equation

of d is derived. Once d is obtained, bj, j = 0, . . . , m can be solved from (4.20).

The above approach produces (m + 1) possible solutions for time delay d and thus

(m + 1) possible models. We follows the method in Wang and Zhang (2001) to

choose the appropriate model.

For nthe order modelling, t = tki and τ should meet (4.17). For kth step test,

the maximum integration interval [tk0 − (n− 1)τ, tkMk
+ (n− 1)τ ] should cover

the entire step test duration. To this end, we have

tkMk
+ (n− 1)τ = tk+1 + dmin, (4.21)

and

tkMk
− (n− 1)τ ≤ tk + dmin. (4.22)

Subtract (4.22) from (4.21):

2(n− 1)τ ≥ tk+1 − tk. (4.23)

Choose 2(n− 1)τ ≈ tk+1 − tk to meet (4.23), which result in

τ ≈ tk+1 − tk
2(n− 1)

. (4.24)

Example 3 (Continued). Applying the proposed method in this section with

n = 2 and m = 0 yields

y(2)(t) + 1.224y(1)(t) + 0.2026y(t) = 0.2043u(t− 4.51).

The identification error is 0.85%. To compare the proposed method with the FFT

one, a new relay test is performed with u+ = 0.5, u− = −0.5, ε+ = 0.2 and
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ε− = −0.2, under zero initial conditions and no disturbance. The output cor-

rupted with noise of NSR = 13, 25, 35%, respectively. The proposed method is

applied with no need for any low-pass filter and the results are exhibited in Table

4.3. The robustness of the proposed method is obvious. The stationary oscillation

frequency is ωo ≈ 0.3 and a low-pass filter is designed as F (s) = 1
0.67s+1

for the

FFT method. The FFT results are also shown in Table 4.3. The proposed method

is more accurate under the same noise level.

Table 4.3. Identification errors for Example 4.3

Method NSR=13 % NSR=25 % NSR=35 %

Original FFT method 6.14 % 9.21 % 10.67 %

Revised FFT method 6.44 % 10.10 % 12.99 %

Proposed method 2.39 % 3.76 % 8.13 %

Example 4.4. Consider a continuous-time delay process (Wang et al., 1999):

25y(3)(t) + 35y(2)(t) + 11y(1)(t) + y(t) = u(t− 2.5) + c.

subject to y(2)(0) = 0, y(1)(0) = 0, y(0) = 4 and c = 1. The proposed method with

n = 2 and m = 0 leads to

Ĝ(s) =
0.03351

s2 + 0.335s + 0.03388
e−3.02s.

The identification error is 3.32%. If the relay test is applied subject to y(2)(0) =

−0.4, y(1)(0) = 0.4, y(0) = 2 and c = 1, the proposed method with n = 2 and

m = 0 leads to

Ĝ(s) =
0.03411

s2 + 0.3486s + 0.03366
e−3.11s.

The identification error is 3.04%.

To compare the proposed method with the FFT one, a new relay test is

performed with u+ = 0.5, u− = −0.5, ε+ = 0.3 and ε− = −0.3, under zero
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initial conditions and no disturbance. The output is corrupted with noise of

NSR = 13, 25, 35%, respectively. The proposed method is applied with no low-pass

filter and the results are exhibited in Table 4.4. The robustness of the proposed

method is obvious. The stationary oscillation frequency is ωo ≈ 0.21 and a low-

pass filter is designed as F (s) = 1
s+1

for the FFT method. The FFT results are

also shown in Table 4.4. Compared with FFT method, the effectiveness of the

proposed method is evident.

Table 4.4. Identification errors for Example 4.4

Method NSR=13 % NSR=25 % NSR=35 %

Original FFT method 6.74 % 7.98 % 8.17 %

Revised FFT method 6.51% 7.91 % 12.43 %

Proposed method 5.48 % 6.58 % 7.45 %

4.5 Conclusion

In this chapter, a new identification method from relay tests is proposed. By

regarding a relay test as a sequence of step tests, the integral technique is adopted

to devise the algorithm. The method can yield a full process model in the sense

of a complete transfer function with delay or a complete frequency response. The

effectiveness of the proposed method is demonstrated through simulation.



Chapter 5

Process Identification from

Piecewise Step Tests

5.1 Introduction

In Chapter 4, it is proposed that a relay test can be regarded as a sequence of

step tests. In this chapter, this idea is further developed. A general identification

method is proposed for continuous-time delay processes. The identification test

can be of open-loop such as pseudo random binary signals (PRBS), which are used

in Ahmed et al. (2006), and pulse tests, which are used in Hwang and Lai (2004)

or of closed-loop type such as relay tests, which are used in Wang et al. (2006).

Compared with recent developments reported on identification of continuous-time

delay systems based on integration techniques, the proposed method has many

advantages. In Hwang and Lai (2004), two regression equations are obtained from

the two edges of the pulse signal respectively, and model parameters are estimated

in two steps. Their regression parameter vectors involve all parameters together

in either of the two steps and some of them are very complicated functions of pro-

cess parameters and initial conditions. In Ahmed et al. (2006), the identification

method needs an iterative procedure for the time delay estimation. The method

proposed in Wang et al. (2006) needs the output measurement before the relay test,

and also considers, like many previous identification methods, the constant distur-

58
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bance only. For the identification method proposed in this chapter, no prior process

data before identification test is needed, and the initial conditions are unknown

and can be nonzero, and the disturbance can be of general form. The regression

equation is derived taking into account nature of the underlying test signal. The

equation has more linearly independent functions and thus enables identification

of a full process model with time delay as well as combined effects of unknown ini-

tial condition and disturbance without any iteration. All the parameters including

time delay in the regression equation are estimated in one step. The method shows

great robustness against noise in output measurements but requires no filtering of

noisy data.

The remainder of this chapter is organized as follows. In Section 5.2, the pro-

posed method is presented for second-order modelling. The method is extended to

high-order modelling in Section 5.3. Conclusions are drawn in Section 5.4.

5.2 Second-order modelling

This section focuses on the modelling of second-order systems. It serves for motiva-

tion of the general method to be described in the next section and for recommended

use in applications since such a second-order model essentially covers most practical

industrial processes. Consider a second-order continuous-time delay system,

y(2) + a1y
(1)(t) + a0y(t) = b1u

(1)(t− d) + b0u(t− d) + l(t), (5.1)

where y(t) and u(t) are the output and input of the process, respectively; d is the

time delay; and l(t) is an unknown disturbance or a bias to the process. The task

is to estimate the model parameters, a1, a0, b1, b0 and d from one test. The test

input under consideration is supposed to be in the form of

u(t) =
N∑

j=0

uj(t) =
N∑

j=0

hj1(t− tj), (5.2)
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where 1(t) is the unit step function, N ≥ 1, and uj(t) is a step input with magnitude

of hj and applied at t = tj. This form covers many types of signals including open-

loop tests such as PRBS, rectangular pulses with magnitude of h and duration of

T ,

u(t) = h1(t)− h1(t− T ), (5.3)

and rectangular doublet pulses,

u(t) = h1(t)− 2h1(t− T

2
) + h1(t− T ),

as well as close-loop tests such as relay tests, see one example in Section 5.2. The

relay function is described as

u(t) =





u+, if e(t) > ε+, or e(t) ≥ ε− and u(t−) = u+,

u−, if e(t) < ε−, or e(t) ≤ ε+ and u(t−) = u−,

(5.4)

where ε+, ε− ∈ R with ε− < ε+ indicating hysteresis; u−, u+ ∈ R and u− 6= u+.

A multiple integration operator on f(t) is defined as follows,




P0f(t) = f(t),

Pjf(t) =
∫ t

0

∫ τj−1

0
· · · ∫ τ1

0
f(τ0)dτ0dτ1 · · · dτj−1, j ≥ 1.

(5.5)

Applying P2 to (5.1) yields

P2y
(2)(t) + a1P2y

(1)(t) + a0P2y(t) = b1P2u
(1)(t− d) + b0P2u(t− d) + P2l(t). (5.6)

For the left-hand side, we have

P2y
(2)(t) = y(t)− y(0)− y(1)(0)t, (5.7)

P2y
(1)(t) =

∫ t

0

y(τ0)dτ0 − y(0)t, (5.8)

and

P2y(t) =

∫ t

0

∫ τ1

0

y(τ0)dτ0dτ1. (5.9)

For the right hand side, it is straightforward to verify that

P21(t− d) =
(t− d)2

2!
1(t− d),
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and

P21
(1)(t− d) = (t− d)1(t− d).

It then follows that

P2u(t− d) =
N∑

j=0

P2uj(t− d) =
N∑

j=0

hj(t− tj − d)2

2!
1(t− tj − d), (5.10)

and

P2u
(1)(t− d) =

N∑
j=0

P2u
(1)
j (t− d) =

N∑
j=0

hj(t− tj − d)1(t− tj − d). (5.11)

Choose t to meet

tk + d ≤ t < tk+1 + d, (5.12)

where tk and tk+1 are the kth and (k + 1)th input switch instants, respectively.

Equations (5.10) and (5.11) become

P2u(t− d) =
k∑

j=0

hj(t− tj − d)2

2!
, (5.13)

and

P2u
(1)(t− d) =

k∑
j=0

hj (t− tj − d) . (5.14)

Suppose that there holds

P2l(t) =

Q∑
j=0

βjt
j, (5.15)

where Q is an integer. Equation (5.15) stands for the multiple integrations of the

generalized disturbances (Hwang and Lai, 2004) more than a static disturbance for

which l(t) = c1(t), P2l(t) = ct2

2
and Q = 2.

Substituting (5.7), (5.8), (5.9), (5.13) ,(5.14) and (5.15) into (5.6) gives

(
y(t)− y(0)− y(1)(0)t

)
+ a1

(∫ t

0

y(τ0)dτ0 − y(0)t

)
+ a0

∫ t

0

∫ τ1

0

y(τ0)dτ0dτ1

= b1

k∑
j=0

hj(t− tj − d) + b0

k∑
j=0

hj(t− tj − d)2

2!
+

Q∑
j=0

βjt
j. (5.16)

Equation (5.16) can then be rearranged as follows,

φT (t, tk)θ = γ(t), tk + d ≤ t < tk+1 + d, (5.17)
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where

φ(t, tk) =




− ∫ t

0
y(τ0)dτ0

− ∫ t

0

∫ τ1

0
y(τ0)dτ0dτ1

∑k
j=0 hj

∑k
j=0 hj(t− tj)

∑k
j=0 hj(t− tj)2

1

t

t2

...

tQ




, θ =




a1

a0

θ0

θ1

θ2

α0

α1

α2

...

αQ




=




a1

a0

b0d2

2 − b1d

b1 − b0d

b0
2

β0 + y(0)

β1 + y(1)(0) + a1y(0)

β2

...

βQ




and γ(t) = y(t).

The parameters αi, i = 0, 1, . . . , Q, are used to account for the effects of the

aforementioned nonzero initial conditions and the disturbance. Choose t = tki,

i = 0, 1, 2, . . . , Mk, to meet tk + d ≤ tki < tk+1 + d. One invokes (5.17) for tki:

Ψkθ = Γk, (5.18)

where Ψk = [φ(tk0, tk), . . . , φ(tkMk
, tk)]

T and Γk = [γ(tk0), . . . , γ(tkMk
)]T . From

the N + 1 input switches of one test, Γk and Ψk, k = 0, . . . , N , are obtained and

combined to

Ψθ = Γ,

where Ψ =
[
ΨT

0 , . . . , ΨT
N

]T
and Γ =

[
ΓT

0 . . . ΓT
N

]T
. The ordinary least-squares

method can be applied to find the solution

θ̂ =
[
â1, â0, θ̂0, θ̂1, θ̂2, α̂0, α̂1, . . . , α̂P

]T

=
(
ΨT Ψ

)−1
ΨT Γ.

In the presence of noise in the measurement of the process output, the instrumental

variable (IV) method is adopted to guarantee the identification consistency. For

our case, the instrumental variable Z(tki) is chosen as

Z(tki) =
[
(tki)

−(Mid−1) . . . (tki)
−1 1 tki . . . (tki)

2n+2+Q−Mid

]
,

where Mid is the quotient of 2n+2+Q
2

; n is order of the model, and n = 2 for second-

order modelling.
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After θ is estimated, its first 2 elements directly yield the parameters a1 and

a0, and the others produce b1, b0 and d via





b0 = 2θ̂2,

d =
−θ̂1±

√
θ̂2
1−4θ̂0θ̂2

2θ̂2
,

b1 = θ̂1 + b0d.

(5.19)

Selection of t = tki depends on d, while d is to be identified and unknown. It

is possible to estimate a range of d. Let d be in the range, [dmin, dmax]. dmin may

be set as the time from the input signal injection to the point when the output

response still remains unchanged from the past trend, while dmax is the time from

the input signal injection to the point when the output response has changed from

the past trend well beyond the noise band. Besides, such a range can be estimated

with purely numerical method (Hwang and Lai, 2004). With dmin < d < dmax,

we can then choose tk + dmax ≤ tki < tk+1 + dmin. One difference between this

method and the one by Ahmed et al. (2006) is this choice of t. We implicitly assume

some priori knowledge of time delay, while Ahmed et al. (2006) finds d by iteration.

It is easy to extend our method to identify the model parameters from the test

which has the input in the form of:

u(t) =
N∑

j=0

hj(t− tj)1(t− tj),

where tj is an input switch time. It is straightforward to find that

Pn(t− d)1(t− d) =
(t− d)n+1

(n + 1)!
1(t− d).

Following the above development procedure, one will obtain an identification method

similar to the proposed one. Because this kind of test signals are not widely used,

the identification based on such inputs is not discussed in details in this chapter.
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Figure 5.1. Process output and input of relay experiment for Example 5.1.

Example 5.1. Consider a continuous-time delay process,

y(2)(t) + 2y(1)(t) + y(t) = u(t− 5) + l,

subject to y(0) = −1.5, y(1)(0) = −1.5 and l = 0.2. The relay test in (5.4) is

applied at t = 0 with u+ = 1, u− = −1, ε+ = 0.4 and ε− = −0.4. The process

input and output are shown in Figure 5.1. Suppose 3.5 < d < 6.5. The proposed

method with m = 0 and Q = 2 leads to

θ =
[
2.0202 1.0203 12.7793 −5.1066 0.5102 −1.4793 −4.6046 0.1020

]T

.

The model is recovered as

y(2)(t) + 2.02y(1)(t) + 1.02y(t) = 1.02u(t− 5). (5.20)

Suppose that the identification error is measured by the worst case error,

ERR = max

∣∣∣∣∣
Ĝ(jωi)−G(jωi)

G(jωi)

∣∣∣∣∣ , i = 1, · · · ,M, (5.21)

where Ĝ(jωi) and G(jωi) are the estimated response and the actual ones, respec-

tively. Only ωi ∈ [0, ωc], where ωc is the phase crossover frequency of the process,

are considered. For this example, ERR = 0.62%, which is due to computational

errors.
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Figure 5.2. Pulse response and input for Example 5.1.

For the same process, a pulse in (5.3) is applied at t = 0 with h = 1 and T = 10.

The process input and output are shown in Figure 5.2. The proposed method with

m = 0 and Q = 2 leads to the same identification result as in (5.20).

We then consider a changing disturbance. The changing disturbance is simu-

lated by letting 1(t) pass through the transfer function of 0.2
(15s+1)

. The proposed

method with m = 0 and Q = 3 leads to

y(2)(t) + 1.943y(1)(t) + 0.9831y(t) = 0.9753u(t− 4.98),

with ERR = 0.8%.

To simulate practical conditions, white noise is added to corrupt the output.

The noise-to-signal ratio defined by

NSR =
mean(abs(noise))

mean(abs(signal))
,

is used to represent the noise level. A relay test in (5.4) is applied at t = 0 with

u+ = 1, u− = −1, ε+ = 0.8 and ε− = −0.8. The output is corrupted by noise

of NSR = 5%, 10%, 20%, 30% and 40%, respectively. The proposed method is

applied without low-pass filtering and the identification errors are 0.91%, 1.12%,
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4.59%, 8.47% and 18.97%, respectively.

Table 5.1. Identification results for different second order processes

True models Ahmed’s method Proposed method

1.25e−0.234s

0.25s2+0.7s+1
1.25(±0.02)e−0.239(±0.042)s

0.25(±0.029)s2+0.697(±0.02)s+1
1.255(±0.0631)e−0.22(±0.034)s

0.262(±0.028)s2+0.716(±0.041)s+1

2e−4.1s

100s2+25s+1
2(±0.04)e−4.13(±0.742)s

99.4(±19.7)s2+25(±0.67)s+1
2.01(±0.091)e−4.08(±0.119)s

100.7(±3.481)s2+25.1(±1.183)s+1

(−4s+1)e−0.615s

9s2+2.4s+1
(−4(±0.0913)s+1(±0.06))e−0.6157(±0.07)s

8.99(±0.15)s2+2.41(±0.15)s+1
(−4.03(±0.08)s+1.03(±0.0757))e−0.617(±0.0294)s

9.11(±0.2841)s2+2.43(±0.1265)s+1

In Table 5.1, the identification results for a number of second order processes

(Ahmed et al., 2006) are given and compared with those in Ahmed et al. (2006).

The NSR for all cases are 10%. These identification results are from 500 Monte

Carlo simulations. The parameters shown are the means of 500 Monte Carlo simu-

lations and the numbers in the parentheses are the estimated standard deviation of

these estimates. The proposed method produces satisfactory identification results

similar to Ahmed et al. (2006), but the model parameters are recovered in one

step without iterations. In Table 5.1, a non-minimum phase (NMP) process is also

considered. Ahmed et al. (2006) takes special procedure for identification of NMP

processes. In contrast, the proposed method treats the identification of the NMP

processes and that of minimum phase processes in the same way.

Our regression equation in (5.17) is different from that used by the previous in-

tegral identification methods, such as two-step algorithm in Hwang and Lai (2004)

where

φT (t)θ = γ(t),

where

φT (t) = [−y(t) −P1y(t) h ht . . . htQ],

θ = [a2 a1 θ̄1 θ̄2 . . . θ̄Q],

γ(t) = P2y(t).
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θ̄i are combinations of the model parameters, bj, d, non-zero initial conditions and

the disturbance. In our new regression equation, new elements,
∑k

j=0 hj(t−tj)
i, i =

0, 1, 2, are added into φ(t, tk). They are not only mutually independent but also

independent with ti, i = 0, 1, 2. θi, i = 0, 1, 2 in θ are related to bj and d, while

αi, i = 0, . . . , Q account for the effects of the nonzero initial conditions and distur-

bance. This enables estimation of all the regression parameters in one step.

In Wang et al. (2006), the output measurement before the relay test is required

and the input should be kept constant so as to eliminate the effect of the unknown

initial conditions. Like many previous identification methods, Wang et al. (2006)

considers the static disturbance only. In contrast, the proposed method makes no

use of process input and output before the test. It can be carried out under com-

plex disturbances by including αi, i = 0, . . . , Q, which account for the combined

effects of the nonzero initial conditions and disturbance in the regression equations.

In Ahmed et al. (2006), the filter transfer function as

F (s) =
βn

s(s + λ)n
,

is applied. One has to choose the parameter λ, which is nontrivial (Sinha and

Rao, 1991). Moreover, this method needs an iterative procedure for the time delay

estimation and takes special procedure for identification of NMP processes. These

problems are not present in the proposed method.

5.3 n-th order modelling

Consider an nth-order continuous-time delay system,

y(n)(t)+ · · ·+a1y
(1)(t)+a0y(t) = bmu(m)(t−d)+ · · ·+b1u

(1)(t−d)+b0u(t−d)+ l(t),

(5.22)
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where m < n. Integrating (5.22) with (5.5) for n times, we have

Pny
(n)(t) +

n−1∑

l=0

alPny
(l)(t) =

m∑
j=0

bjPnu
(j)(t− d) + Pnl(t). (5.23)

It can be readily shown that

Pn1
(l)(t− d) =

(t− d)n−l

(n− l)!
1(t− d), l = 0, 1, . . . , m,

and

Pnu
(l)(t− d) =

N∑
j=0

hj(t− tj − d)n−l

(n− l)!
1(t− tj − d), l = 0, 1, . . . , m.

Choose t to meet (5.12), and we have

Pnu
(l)(t− d) =

k∑
j=0

hj(t− tj − d)n−l

(n− l)!
, l = 0, 1, . . . , m. (5.24)

The multiple integral of l(t) is supposed to be

Pnl(t) =

Q∑
j=0

βjt
j. (5.25)

Equation (5.23) can be rearranged as

φT (t, tk)θ = γ(t), (5.26)

where

φ(t, tk) =




− ∫ t

0
y(τ0)dτ0

...

− ∫ t

0

∫ τn−1

0
· · · ∫ τ1

0
y(τ0)dτ0dτ1 · · · dτn−1

∑k
j=0 hj

∑k
j=0 hj(t− tj)

...
∑k

j=0 hj(t− tj)
n

1

t
...

tQ




, θ =




an−1

. . .

a0

θ0

θ1

. . .

θn

α0

α1

. . .

αQ




, and γ(t) = y(t).
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The parameters αi, i = 1, . . . , Q, are used to account for the effects of the afore-

mentioned nonzero initial conditions and the disturbance. Note that the first n

elements of θ are the model parameters ai, i = 0, . . . , n − 1, while θi, i = 0, . . . , n

are combinations of the model parameters bj, j = 0, . . . , m, and d is given by

θi =
n∑

j=max(n−m,i)

(−d)j−ibn−j

(j − i)!i!
, i = 0, 1, . . . , n. (5.27)

Choose t = tki, i = 0, 1, 2, . . . , Mk, to meet tk + d ≤ tki < tk+1 + d. One invokes

(5.17) for tki:

Ψkθ = Γk,

where Ψk = [φ(tk0, tk), . . . , φ(tkMk
, tk)]

T and Γk = [γ(tk0), . . . , γ(tkMk
)]T . From

the N + 1 input switches of one test, Γk and Ψk, k = 0, . . . , N , are obtained and

combined to

Ψθ = Γ,

where Ψ =
[
ΨT

0 , . . . , ΨT
N

]T
and Γ =

[
ΓT

0 . . . ΓT
N

]T
. Once θ is estimated by applying

the least-squares method or IV method, the model parameters can be recovered.

From (5.27) for i = 0, . . . , m + 1, we can recover d from the following algebraic

equation:
m+1∑
j=0

(n−m− 1 + j)!θn−1−m+jd
j

j!
= 0. (5.28)

Once d is obtained, the parameters bj, j = 0, . . . , m are then calculated as

bj =

j∑
i=0

(n− j + i)!θn−j+id
i

i!
, j = 0, 1, . . . , m. (5.29)

The above approach produces (m + 1) possible solutions for time delay d and thus

(m + 1) possible models. We follow the method in Wang and Zhang (2001) and

Hwang and Lai (2004) to choose the appropriate model.

Example 5.2. Consider a continuous-time delay process, G(s) = e−2s

(s+1)4
or

y(4)(t) + 4y(3)(t) + 6y(2)(t) + 4y(1)(t) + y(t) = u(t− 2) + l(t),
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subject to y(3)(0) = y(2)(0) = y(1)(0) = y(0) = −0.5. A changing disturbance is

simulated by letting 1(t) pass by 0.2
20s+1

. A relay experiment is performed at t = 0,

with u+ = 1, u− = −1, ε+ = 0.4 and ε− = −0.4. The proposed method with

n = 2, m = 0 and Q = 3 leads to

y(2)(t) + 1.037y(1)(t) + 0.3748y(t) = 0.3561u(t− 3.04),

with ERR = 5.15%. The proposed method with n = 3, m = 0 and Q = 4 leads to

y(3)(t) + 2.038y(2)(t) + 1.689y(1)(t) + 0.4606y(t) = 0.475u(t− 2.4),

with ERR = 4.01%. The effectiveness of the proposed method is evident.

5.4 Conclusion

In this chapter, an improved integral identification method is proposed for continuous-

time delay systems. By treating the test input as a sequence of step tests and

noting more independent functions available from the changing input levels, a new

regression equation is established and enables effective estimation of a full trans-

fer function with delay under unknown initial conditions and disturbance. The

effectiveness of the proposed method is demonstrated through simulations.
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Multivariable Process

Identification

6.1 Introduction

Identification and control of single variable processes have been well studied (Åström

and Hagglund, 1995; Ljung, 1999; Wang et al., 2005; Wang et al., 2006; Liu et al.,

2007). However, most industrial processes are of multivariable in nature. Process

identification of multivariable processes is in great demand (Cott, 1995; Zhu, 1998).

An important issue with multivarible process identification is time delay. Its es-

timation needs special attention. Based on novel integration techniques, robust

identification methods have been proposed for single variable delay processes in

the previous chapters. In Chapter 2 and 3, the identification methods from pulse

tests and step tests are proposed, respectively. In Chapter 4, an identification

method from relay tests is presented. An improved general method is developed

in Chapter 5. Extending these SISO identification methods to MIMO cases is of

great interest and value.

In this chapter, an integral identification method is presented for multivariable

processes with multiple time delays. It adopts the integral technique and can work

under non-zero initial conditions and dynamic disturbances. The effectiveness of

71
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the proposed method is demonstrated through simulation and real time implemen-

tation.

This chapter is organized as follows. In Section 6.2, the identification method is

developed for two-input and two-output (TITO) time delay processes. Simulation

examples are given in Section 6.3. The proposed method is extended to the general

cases in Section 6.4. In Section 6.5, the proposed method is applied to a physical

thermal control system. Conclusions are drawn in Section 6.6.

6.2 TITO processes

To introduce our method with simplicity and clarity, let us consider a TITO

continuous-time delay process first,


Y1(s)

Y2(s)


 =


G11(s) G12(s)

G21(s) G22(s)





U1(s)

U2(s)


 ,

where Y1(s) and Y2(s) are the Laplace transforms of two outputs, y1(t) and y2(t),

U1(s) and U2(s) are the Laplace transforms of two inputs, u1(t) and u2(t), and

Gi,j(s) =
αij(s)

βij(s)
e−dijs, i = 1, 2 and j = 1, 2. The given TITO process may be de-

composed into 2 two-input and single-output sub-processes, which can be described

as

Yi(s) =
[
Gi1(s) Gi2(s)

]
U(s),

=
[

αi1(s)
βi1(s)

e−di1s αi2(s)
βi2(s)

e−di2s

]
U(s), i = 1, 2.

Let the common denominator of Gi1 and Gi2 be β∗i (s). We have

β∗i (s)Yi(s) =
[
α∗i1(s)e

−di1s α∗i2(s)e
−di2s

]
U(s), i = 1, 2.

The equivalent differential equations are

y
(ni)
i (t) +

ni−1∑

k=0

ai,ky
(k)
i (t) =

2∑
j=1

mij∑

k=0

bij,ku
(k)
j (t− dij) + wi(t), i = 1, 2, (6.1)
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where wi(t) account for the unknown disturbances and biases. Our task is to

identify ai,k, bij,k and dij from some tests on the process. During the identification

test, two separate sets of piecewise step signals are applied on two inputs at t = 0,

respectively. The test signals under consideration are

u1(t) =

K1∑

k=0

h1,k1(t− t1,k),

where 1(t) is the unit step, K1 ≥ 1 and t1,k, k = 1, . . . , K1 are the switching time

instants of u1(t), and

u2(t) =

K2∑

k=0

h2,k1(t− t2,k),

where K2 ≥ 1 and t2,k, k = 1, . . . , K2 are the switching time instants of u2(t).

Such forms of ui, i = 1, 2, cover many types of test signals such as steps, rectangu-

lar pulses, rectangular doublet pulses, PRBS signals and the relay feedback output.

To eliminate those derivatives in (6.1), we introduce a multiple integration

operator,

Pjf(t) :=

∫ t

0

∫ δj−1

0

· · ·
∫ δ1

0

f(δ0)dδ0dδ1 · · · dδj−1, j ≥ 1. (6.2)

Integrating (6.1) with (6.2) ni times yields

Pni
y

(ni)
i (t)+

ni−1∑

k=0

ai,kPni
y

(k)
i (t) =

mi1∑

k=0

bi1,kPni
u

(k)
1 (t−di1)+

mi2∑

k=0

bi2,kPni
u

(k)
2 (t−di2)+Pni

wi(t).

(6.3)

Its left-hand side is

Pni
y

(n)
i (t) +

ni−1∑

k=0

ai,kPni
y(k)(t) = yi(t) +

ni−1∑

k=0

ai,kPni−ky(t) +

ni−1∑

k=0

λi,kt
k, (6.4)

where the last term corresponds to the initial conditions of the output. In the

right-hand side, it follows that

Pni
u

(p)
1 (t− di1) =

K1∑

k=0

h1,k(t− t1,k − di1)
ni−p

(ni − p)!
1(t− t1,k − di1), p = 0, 1, . . . , mi1,

and

Pni
u

(p)
2 (t− di2) =

K2∑

k=0

h2,k(t− t2,k − di2)
ni−p

(ni − p)!
1(t− t2,k − di2), p = 0, 1, . . . , mi2.
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Suppose that there holds

Pni
wi(t) =

qi∑

k=0

νi,kt
k, (6.5)

where qi is an integer. Equation (6.5) covers a wide range of disturbances (Hwang

and Lai, 2004) with its simplest as the static disturbance for which wi(t) = c1(t),

Pni
wi(t) = ctni

ni!
and qi = ni.

Equation (6.3) is then cast into the following regression linear in a new param-

eterization:

φT
i (t)θi = γi(t), (6.6)

where γi(t) = yi(t),

φi(t) =




−P1yi(t)
...

−Pni
yi(t)

∑K1

k=0 h1,k1(t− t1,k − di1)
∑K1

k=0 h1,k(t− t1,k)1(t− t1,k − di1)
...

∑K1

k=0 h1,k(t− t1,k)
ni1(t− t1,k − di1)

∑K2

k=0 h2,k1(t− t2,k − di2)
∑K2

k=0 h2,k(t− t2,k)1(t− t2,k − di2)
...

∑K2

k=0 h2,k(t− t2,k)
ni1(t− t2,k − di2)

1

t
...

tqi




, θi =




θi,1

...

θi,ni

θi,ni+1

θi,ni+2

...

θi,2ni+1

θi,2ni+2

θi,2ni+3

...

θi,3ni+2

θi,3ni+3

θi,3ni+4

...

θi,3ni+3+qi




.

The first ni elements in θi are the model parameter ai,k:

θi,k = ai,ni−k, k = 1, . . . , ni. (6.7)
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θi,k, k = ni + 1, . . . , 2ni + 1 are functions of di1 and bi1,k, k = 0, . . . , mi1,

θi,k =

ni∑

p=max(ni−mi1,k−ni−1)

(−di1)
p−k+ni+1 bi1,ni−p

(p− k + ni + 1))! (k − ni − 1)!
, k = ni +1, . . . , 2ni +1.

(6.8)

θi,k, k = 2ni + 2, . . . , 3ni + 2, are functions of di2 and bi2,k, k = 0, . . . , mi2,

θi,k =

ni∑

p=max(ni−mi2,k−2ni−2)

(−di2)
p−k+2ni+2 bi2,ni−p

(p− k + 2ni + 2)! (k − 2ni − 2)!
, k = 2ni+2, . . . , 3ni+2.

(6.9)

θi,k, k = 3ni + 3, . . . , 3ni + 3 + qi, account for the collective effects of the ini-

tial conditions and the disturbances. Note that all the elements in φi(t) should

be mutually independent over the real number field to enable identifiability of

the parameter vector, θi. This is not the case if t1,k = t2,k for all k, for which
∑K1

k=0 h1,k(t − t1,k)
p1(t − t1,k − di1) and

∑K2

k=0 h2,k(t − t2,k)
p1(t − t2,k − di2), p =

0, . . . , ni, become dependent of each other. This should be avoided by the identi-

fication test design.

One invokes (6.6) for t = t0, . . . , tN , to get

Ψiθi = Γi, (6.10)

where Ψi = [φi(t0), . . . , φ(tN)]T and Γi = [γi(t0), . . . , γ(tN)]T . The ordinary least-

squares method can be applied to find the solution

θ̂i =
(
ΨT

i Ψi

)−1
ΨT

i Γi.

In the presence of noise in the measurement of the process output, the instrumental

variable (IV) method is adopted to guarantee the identification consistency. For
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our case, the instrumental variable Zi(t) is chosen as

Zi(t) =




1
tni

...

1
t∑K1

k=0 h1,k1(t− t1,k − di1)
∑K1

k=0 h1,k(t− t1,k)1(t− t1,k − di1)
...

∑K1

k=0 h1,k(t− t1,k)
ni1(t− t1,k − di1)

∑K2

k=0 h2,k1(t− t2,k − di2)
∑K2

k=0 h2,k(t− t2,k)1(t− t2,k − di2)
...

∑K2

k=0 h2,k(t− t2,k)
ni1(t− t2,k − di2)

1

t
...

tqi




.

It should be pointed out that for a selected t, the value of some elements of φi

depend on di1, di2, which are to be identified and unknown. It is possible to

estimate a range of di1 and di2 (Hwang and Lai, 2004). In many engineering

applications, one can have simple reliable and probably conservative estimation of

the range of time delay from knowledge of the process. For example, the range

of transportation delay due to a long pipe can be easily estimated based on the

pipe length and fluid speed range. Besides, one may start with a rough estimated

delay range and use the proposed method to find d̂i1 and d̂i2, estimates of di1 and

di2. Then with d̂i1 and d̂i2, one retunes the ranges of time delays and apply the

proposed method again to achieve a better estimation. Let di1 and di2 be in the

ranges of
[
di1, di1

]
and

[
di2, di2

]
, respectively. Define

T̂1 =

K1−1⋃

k=0

{
t|t1,k + di1 ≤ t < t1,k+1 + di1

} ⋃ {
t|(t1,K1 + di1 ≤ t ≤ Tend

}
,
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and

T̂2 =

K2−1⋃

k=0

{
t|t2,k + di2 ≤ t < t2,k+1 + di2

} ⋃ {
t|t2,K2 + di2 ≤ t ≤ Tend

}
,

where Tend is the ending time of the identification test. Then, t should be taken in

the set of

T = T̂1

⋂
T̂2,

to apply (6.10). There is no need to solve the estimation equation for each of the

delay within the estimated range. Once the estimate ranges of time delays are

given, time delays can be obtained by solving some polynomial equations without

iteration. Then, all other parameters than delays are determined accordingly.

Once θi is estimated by applying the least-squares method or IV method, the

model parameters can be recovered. From (6.8) for k = 2ni + 1−mi1, . . . , 2ni + 1,

bi1,k, k = 0, . . . , mi1 can be expressed as the functions of di1 and θi,k,

bi1,k =
k∑

p=0

(ni − k + p)! θi,2ni+1−k+p dp
i1

p!
, k = 0, 1, . . . , mi1. (6.11)

Substitute bi1,k, k = 0, . . . , mi1 into (6.8) for k = 2ni −mi1, and we have

mi1+1∑

k=0

(ni −mi1 − 1 + k)! θi,2ni−mi1+k dk
i1

k!
= 0. (6.12)

Equation (6.12) is solved to get di1 and bi1,k, k = 0, . . . , mi1 are then obtained from

(6.11). Similarly, we can find di2 from the following algebraic equations:

mi2+1∑

k=0

(ni −mi2 − 1 + k)! θi,3ni+1−mi2+k dk
i2

k!
= 0.

bi2,k, k = 0, . . . , mi2, are then calculated as

bi2,k =
k∑

p=0

(ni − k + p)! θi,3ni+2−k+p dp
i2

p!
, k = 0, 1, . . . , mi2.

The proposed method will lead to mij + 1 estimates for dij, just like Wang and

Zhang (2001) and Hwang and Lai (2004). By inspecting the lag between the input

and output signals, the selection can be made simply. The selection can be also
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made by virtue of the consistency between various sets of bij,k and dij and those

ignored relations (Hwang and Lai, 2004).

6.3 Simulation studies

Example 6.1. Consider the well-known Wood-Berry binary distillation column

plant:

G(s) =




12.8e−s

16.7s+1
−18.9e−3s

21s+1

6.6e−7s

10.9s+1
−19.4e−3s

14.4s+1


 .

The equivalent differential equations are

350.7y
(2)
1 (t) + 37.7y

(1)
1 (t) + y1(t) = 268.8u

(1)
1 (t− 1) + 12.8u1(t− 1)

− 315.63u
(1)
2 (t− 3)− 18.9u2(t− 3) + ŵ1(t),(6.13)

and

156.96y
(2)
2 (t) + 25.3y

(1)
2 (t) + y2(t) = 95.04u

(1)
1 (t− 7) + 6.6u1(t− 7)

− 211.46u
(1)
2 (t− 3)− 19.4u2(t− 3) + ŵ2(t).(6.14)

Case A. Assume that ŵ1(t) = 1(t) and ŵ2(t) = 0.51(t) and the identification test

starts from nonzero initial conditions: y1(0) = −1, y
(1)
1 (0) = 1, y2(0) = 0.5 and

y
(1)
2 (0) = 2. The test signals, u1(t) and u2(t), are both pulse signals,

u1(t) = 1(t)− 1(t− 60),

and

u2(t) = 1(t)− 1(t− 30).

The process inputs and outputs are shown in Figure 6.1 and the sampling interval

is 0.02. Suppose that 0 ≤ d11 ≤ 2, 0 ≤ d12 ≤ 6. It leads to

T̂1 = {t|2 ≤ t < 60, or 62 ≤ t < 100} ,

T̂2 = {t|6 ≤ t < 30, or 36 ≤ t < 100} ,

T = T̂1

⋂
T̂2

= {t|6 ≤ t < 30, or 36 ≤ t < 60, or 62 ≤ t < 100} .
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Figure 6.1. Identification test of Example 6.1.
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Figure 6.2. Calculation of T.
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T̂1 and T̂2 have some elements in common and these elements are included in T .

In other word, the elements in T are members of both T̂1 and T̂2. This can be

seen clearly in Figure 6.2. Choose t = t0, . . . , tN in T , n1 = 2, m11 = m12 = 1 and

q1 = 2. The proposed method leads to two estimates for d11: one is −39.05 and

the other is 1.02. The time delay must be positive so that we choose d̂11 = 1.02.

The proposed method also leads to two estimates for d12: −29.11 and 3.02. For

the same reason, we choose d̂12 = 3.02. The first sub-process is then obtained as:

y
(2)
1 (t) + 0.1079y

(1)
1 (t) + 0.002867y1(t) = 0.7715u

(1)
1 (t− 1.02) + 0.0367u1(t− 1.02)

− 0.9062u
(1)
2 (t− 3.02)− 0.05418u2(t− 3.02),

with Ĝ11 = 0.7715s+0.0367
s2+0.1079s+0.002867

e−1.02s and Ĝ12 = −0.9062s−0.05418
s2+0.1079s+0.002867

e−3.02s. Suppose

that 0 ≤ d21 ≤ 14, 0 ≤ d22 ≤ 6. The proposed method with n2 = 2, m21 = m22 = 1

and q2 = 2 leads to the second sub-process as:

y
(2)
2 (t) + 0.162y

(1)
2 (t) + 0.006423y2(t) = 0.6115u

(1)
1 (t− 7.02) + 0.04239u1(t− 7.02)

− 1.361u
(1)
2 (t− 3.02)− 0.1246u2(t− 3.02),

with Ĝ21 = 0.6115s+0.04239
s2+0.162s+0.006423

e−7.02s and Ĝ22 = −1.361s−0.1246
s2+0.162s+0.006423

e−3.02s. The identifi-

cation error, ERR = {ERRij}, is measured by the worst case error,

ERRij = max

∣∣∣∣∣
Ĝij(jωk)−Gij(jωk)

Gij(jωk)

∣∣∣∣∣ , k = 1, · · · ,M, (6.15)

where Ĝij(jωk) and Gij(jωi) are the estimated frequency response and the actual

ones. The Nyqusit curve for a phase ranging from 0 to −π is considered, be-

cause this part is the most significant for control design. For this example, the

identification error is

ERR =


4.04% 1.46%

0.95% 1.59%


 .

In real applications, numerical integration is employed to calculate the multiple

integration of the output and this introduces errors. Better identification results

can be obtain by sampling the process response with a small sampling interval. If

the sampling interval is 0.2, the proposed method leads to the identification error
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as

ERR =


16.39% 5.90%

3.22% 6.42%


 .

In this case, the identification result is still acceptable. If the sampling interval is

chosen as 1 and the identification error is obtained as

ERR =


83.31% 30.98%

19.53% 34.53%


 .

The identification error is very large. From these simulations, one can find that

small sampling interval leads to good identification results. Generally, chemical

processes have slow response. With the development of computer technologies, the

sampling interval can be set very small and enough data can be obtained easily for

use in process identification.

Case B. This is the same as Case A expect that process outputs are subject

to changing disturbances, where ŵ1(t) and ŵ2(t) are simulated by letting 1(t)

pass through the transfer functions of 1
15s+1

and −3
20s+1

, respectively. The proposed

method, with n1 = n2 = 2, m11 = m12 = m21 = m22 = 1 and q1 = q2 = 3, leads to

y
(2)
1 (t) + 0.1103y

(1)
1 (t) + 0.003y1(t) = 0.7718u

(1)
1 (t− 1.03) + 0.03851u1(t− 1.03)

− 0.9058u
(1)
2 (t− 3.03)− 0.05637u2(t− 3.03),

with Ĝ11 = 0.7718s+0.03851
s2+0.1103s+0.003

e−1.03s and Ĝ12 = −0.9058s−0.05637
s2+0.1103s+0.003

e−3.03s, and

y
(2)
2 (t) + 0.1528y

(1)
2 (t) + 0.00582y2(t) = 0.6054u

(1)
1 (t− 7) + 0.0376u1(t− 7)

− 1.36u
(1)
2 (t− 3.03)− 0.1119u2(t− 3.03),

with Ĝ21 = 0.6054s+0.0376
s2+0.1528s+0.00582

e−7s and Ĝ22 = −1.36s−0.1119
s2+0.1528s+0.00582

e−3.03s. The identifica-

tion error is

ERR =


4.15% 1.45%

1.91% 1.61%


 .
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Case C. This is the same as Case B except that a white noise is added to corrupt

the outputs. The noise-to-signal ratio defined by

NSR =
mean(abs(noise))

mean(abs(signal))
,

(denoted N1) and

NSR =
variance(noise)

variance(signal)
,

(denoted N2) are used to represent a noise level. Let the outputs be corrupted

with noise of N1 = 15%, 25% and 40% or N2 = 3%, 7% and 18%, respectively.

Suppose that the estimated ranges of time delays are 0.5 ≤ d11 ≤ 1.5, 2 ≤ d12 ≤ 4,

6 ≤ d21 ≤ 9 and 2 ≤ d22 ≤ 4. The identified parameters are expressed as the mean

and standard deviation of each estimate from 20 noisy simulations and shown in

Table 6.1.

In case of noise, we may also start with rough estimated delay ranges given

in Case A and use the proposed method to find d̂ij, estimates of dij. Then with

d̂ij, we retunes the ranges of time delays and apply the proposed method again to

achieve a better estimation. For example, in case of N1 = 15%, one identification

test is applied. The proposed method, with 0 ≤ d11 ≤ 2, 0 ≤ d12 ≤ 6, 0 ≤ d21 ≤ 14

and 0 ≤ d22 ≤ 6, leads to d̂11 = 1.08, d̂12 = 2.88, d̂21 = 7.23 and d̂22 = 3.05, with

the identification error of

ERR =


13.50% 9.66%

5.62% 6.42%


 .

We then retunes the ranges of the time delays as the above and the proposed

method leads to a smaller identification error

ERR =


6.85% 10.07%

5.63% 3.80%


 .
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Table 6.1. Estimated model parameters of Example 6.1

N1 = 15% (N2 = 3%) N1 = 25% (N2 = 7%) N1 = 40% (N2 = 18%)

â1,1 0.1101± 0.0076 0.1116± 0.0135 0.1126± 0.0225

â1,0 0.0029± 0.0007 0.0031± 0.0008 0.0032± 0.0013

b̂11,1 0.7746± 0.0235 0.7695± 0.0249 0.7284± 0.1765

b̂11,0 0.0389± 0.0064 0.0393± 0.0106 0.0395± 0.0187

d̂11 1.0232± 0.0801 1.0523± 0.1489 0.9909± 0.3228

b̂12,1 −0.9117± 0.0342 −0.9045± 0.0334 −0.9046± 0.0555

b̂12,0 −0.0549± 0.0076 −0.0573± 0.0086 −0.0579± 0.0143

d̂12 3.0499± 0.1254 3.0421± 0.1440 3.0561± 0.2381

â2,1 0.1554± 0.0097 0.1581± 0.0143 0.1607± 0.0242

â2,0 0.0060± 0.0005 0.0061± 0.0009 0.0063± 0.0015

b̂21,1 0.6066± 0.0345 0.6127± 0.0445 0.6126± 0.0753

b̂21,0 0.0403± 0.0056 0.0413± 0.0078 0.0429± 0.0133

d̂21 6.9337± 0.2134 6.9397± 0.2045 6.9233± 0.3372

b̂22,1 −1.3642± 0.0375 −1.3663± 0.0486 −1.3620± 0.0835

b̂22,0 −0.1130± 0.0096 −0.1156± 0.0122 −0.1180± 0.0206

d̂22 3.0548± 0.0841 3.0678± 0.1103 3.0796± 0.1857
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Example 6.2. Consider a TITO system,

G(s) =




2e−2.7s

5s+1
0.5e−3s

2s+1

0.4e−2.5s

6s+1
2.2e−3.8s

10s+1


 .

A closed-loop relay feedback is applied on this example. The relay feedback system

is shown in Figure 6.3. The relay unit is described as

u(t) =





u+, if e(t) > ε+, or e(t) ≥ ε− and u(t−) = u+,

u−, if e(t) < ε−, or e(t) ≤ ε+ and u(t−) = u−,

(6.16)

where e(t) and u(t) are the relay input and output, respectively. The relay exper-

iment is applied at t = 0 with u+ = 1, u− = −1, ε+ = 0.8 and ε− = −0.8 under

zero initial conditions and nonzero static disturbances of ŵ1 = ŵ2 = 0.51(t). The

process inputs and outputs are shown in Figure 6.4 and the sampling interval is

0.02. Suppose that 2 ≤ d11 ≤ 3, 2 ≤ d12 ≤ 3, 2 ≤ d21 ≤ 3 and 3 ≤ d22 ≤ 4. The

proposed method, with n1 = n2 = 2, m11 = m12 = m21 = m22 = 1 and q1 = q2 = 2,

leads to

Ĝ(s) =




0.4067s+0.1947
s2+0.6886s+0.09707

e−2.7s 0.2489s+0.04814
s2+0.6886s+0.09707

e−2.99s

0.06743s+0.007456
s2+0.2814s+0.01911

e−2.52s 0.2177s+0.04014
s2+0.2814s+0.01911

e−3.8s


 ,

with the identification error as follows

ERR =


1.21% 0.82%

2.45% 4.52%


 .

6.4 General MIMO processes

The TITO identification method is now extended to a general MIMO processe.

Consider a process with l inputs and m outputs,

Y (s) = G(s)U(s),

where Y (s) = [Y1(s) · · · Yi(s) · · · Yl(s)]
T is the output vector, U(s) = [U1(s) · · · Uj(s) · · · Um(s)]T

is the input vector, and G(s) = {Gij(s)} =
{

αij(s)

βij(s)
e−dijs

}
, with i = 1, . . . , l and
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Figure 6.3. Relay feedback experiment.
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Figure 6.4. Identification test of Example 6.2.
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j = 1, . . . , m, is the process transfer function matrix. The given MIMO process

may be decomposed into l sub-processes, which can be described as

Yi(s) =
[
Gi1(s) · · · Gij(s) · · ·Gim(s)

]
U(s)

=
[

αi1(s)
βi1(s)

e−di1s · · · αij(s)

βij(s)
e−dijs · · · αim(s)

βim(s)
e−dims

]
U(s), i = 1, . . . , l.

Let the common denominator of all Gij, j = 1, . . . , m be β∗i (s). We have

β∗i (s)Yi(s) =
[
α∗i1(s)e

−di1s · · · α∗ij(s)e
−dijs · · · α∗im(s)e−dims

]
U(s), i = 1, . . . , l.

The equivalent differential equations are

y
(ni)
i (t) +

ni−1∑

k=0

ai,ky
(k)
i (t) =

m∑
j=1

mij∑

k=0

bij,ku
(k)
j (t− dij) + wi(t), i = 1, . . . , l. (6.17)

The inputs under considerations are

uj(t) =

Ki∑

k=0

hj,k1(t− tj,k), j = 1, . . . , m,

where tj,k is the kth switch instant of uj(t).

Integrating (6.17) with (6.2) ni times yields

Pni
y

(ni)
i (t) +

ni−1∑

k=0

ai,kPni
y

(k)
i (t) =

m∑
j=0

mij∑

k=0

bij,kPni
u

(k)
j (t− dij) + Pni

wi(t). (6.18)

The left-hand side is (6.4) again. For the right-hand side, it follows that

Pni
u

(p)
j (t− dij) =

Kj∑

k=0

hj,k(t− tj,k − dij)
ni−p

(ni − p)!
1(t− tj,k − dij), p = 0, 1, . . . , mij.

Equation (6.18) can be rearranged as

φT
i (t)θi = γi(t), (6.19)
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where γi(t) = yi(t),

φi(t) =




−P1yi(t)
...

−Pni
yi(t)

∑K1

k=0 h1,k1(t− t1,k − di1)
∑K1

k=0 h1,k(t− t1,k)1(t− t1,k − di1)
...

∑K1

k=0 h1,k(t− t1,k)
ni1(t− t1,k − di1)

...
∑Km

k=0 hm,k1(t− tm,k − dim)
∑Km

k=0 hm,k(t− tm,k)1(t− tm,k − dim)
...

∑Km

k=0 hm,k(t− tm,k)
ni1(t− tm,k − dim)

1

t
...

tqi




, θi =




θi, 1
...

θi, ni

θi,ni+1

θi,ni+2

...

θi,2ni+1

...

θi,m(ni+1)

θi,m(ni+1)+1

...

θi,m(ni+1)+ni

θi,(m+1)(ni+1)

θi,(m+1)(ni+1)+1

...

θi,(m+1)(ni+1)+qi




.

Note that the first ni elements of θi are the same as (6.7). θi,k, k = j(ni + 1) +

1, . . . , j(ni + 1) + ni, and j = 1, . . . , m, are combinations of the model parameters

bij,k, k = 0, . . . , mij and dij, and are given by

θi,k =
ni∑

p=max(ni−mij ,k−j(ni+1))

(−dij)p−k+j(ni+1) bij,ni−p

(p− k + j(ni + 1))! (k − j(ni + 1))!
, k = j(ni+1), . . . , j(ni+1)+ni.

(6.20)

θi,k, k = (m + 1)(ni + 1), . . . , (m + 1)(ni + 1) + qi account for the effects of the

aforementioned nonzero conditions and the disturbances.

Suppose that dij, j = 1, . . . , m are in the ranges of
[
dij, dij

]
. Define

T̂j =

Kj−1⋃

k=0

{
t|tj,k + dij ≤ t < tj,k+1 + dij

} ⋃ {
t|(tj,Kj

+ dij ≤ t ≤ Tend

}
, j = 1, . . . , m.

Then, t should be taken in the set of

T =
m⋂

j=1

T̂j.
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One invokes (6.19) for t in T with t = t0, t1, . . . , tN , and they give

Ψiθi = Γi, (6.21)

where Ψi = [φi(t0), . . . , φi(tN)]T and Γi = [γi(t0), . . . , γi(tN)]T . The ordinary least-

squares method can be applied to find the solution; in the presence of noise in

the measurement of the process output, the instrumental variable (IV) method

is adopted to guarantee the identification consistency. Once θi is estimated by

applying the least-squares method or IV method, the model parameters can be

recovered. We can recover dij from θi,k, k = j(ni + 1), . . . , j(ni + 1) + ni, using the

following algebraic equations:

mij+1∑

k=0

(ni −mij − 1 + k)! θi,j(ni+1)+ni−1−mij+k dk
ij

k!
= 0, i = 1, . . . , l, and j = 1, . . . , m.

Once dij are obtained, the parameter bij,k are then calculated as

bij,k =
k∑

p=0

(ni − k + p)! θi,j(ni+1)+ni−k+p dp
ij

p!
, k = 0, 1, . . . , mij, i = 1, . . . , l, and j = 1, . . . , m.

Example 6.3. Consider a system in Vasnani (1995)

G(s) =




119e−5s

21.7s+1
40e−5s

337s+1
−2.1e−5s

10s+1

77e−5s

50s+1
76.7e−3s

28s+1
−5e−5s

10s+1

93e−5s

50s+1
−36.7e−5s

166s+1
−103.3e−4s

23s+1


 .

The equivalent differential equations are

73129y
(3)
1 (t) + 10900y

(2)
1 (t) + 368.7y

(1)
1 (t) + y1(t) = 401030u

(2)
1 (t− 5) + 41293u

(2)
1 (t− 5) + 119u1(t− 5)

+ 8680u
(2)
2 (t− 5) + 1268u

(2)
2 (t− 5) + 40u2(t− 5)

− 15357u
(2)
3 (t− 5)− 753.27u

(2)
3 (t− 5)− 2.1u3(t− 5) + ŵ1(t),

14000y
(3)
2 (t) + 2180y

(2)
2 (t) + 88y

(1)
2 (t) + y2(t) = 21560u

(2)
1 (t− 5) + 2926u

(2)
1 (t− 5) + 77u1(t− 5)

+ 38350u
(2)
2 (t− 3) + 4602u

(2)
1 (t− 3) + 76.7u2(t− 3)

− 7000u
(2)
3 (t− 5)− 390u

(2)
1 (t− 5)− 5u2(t− 5) + ŵ2(t),

and

190900y
(3)
3 (t) + 13268y

(2)
3 (t) + 239y

(1)
3 (t) + y3(t) = 355074u

(2)
1 (t− 5) + 17577u

(2)
1 (t− 5) + 93u1(t− 5)

− 42205u
(2)
2 (t− 5)− 2679.1u

(2)
1 (t− 5)− 36.7u2(t− 5)

− 857390u
(2)
3 (t− 4)− 22313u

(2)
1 (t− 4)− 103.3u2(t− 4) + ŵ3(t).
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Figure 6.5. Identification test of Example 6.3.

Suppose that ŵ1(t) = 100 1(t), ŵ2(t) = 20 1(t) and ŵ3(t) = 100 1(t) and the

identification test starts from nonzero initial conditions: y1(0) = y2(0) = y3(0) = 1,

y
(1)
1 (0) = y

(1)
2 (0) = y

(1)
3 (0) = 0.5 and y

(2)
1 (0) = y

(2)
2 (0) = y

(2)
3 (0) = −0.2. The

process inputs and outputs are shown in Figure 6.5.

Let 0 < d11 < 7, 0 < d12 < 7, 1 < d13 < 6, 0 < d21 < 7, 0 < d22 < 5,

0 < d23 < 6, 2 < d31 < 7, 1 < d32 < 7 and 0 < d33 < 7. The proposed method with

ni = 3 mij = 2 and qi = 3, where i = 1, 2, 3 and j = 1, 2, 3, leads to the MIMO

transfer function matrix Ĝ(s) = {Ĝij}, where

Ĝ11 =
5.506s2 + 0.5666s + 0.001628

s3 + 0.1494s2 + 0.005058s + 1.375 ∗ 10−5
e−5.02s,

Ĝ12 =
0.1192s2 + 0.01741s + 0.0005498

s3 + 0.1494s2 + 0.005058s + 1.375 ∗ 10−5
e−5.02s,

Ĝ13 =
−0.2107s2 − 0.01034s− 2.8 ∗ 10−5

s3 + 0.1494s2 + 0.005058s + 1.375 ∗ 10−5
e−5.02s,
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Ĝ21 =
1.547s2 + 0.2097s + 0.005514

s3 + 0.156s2 + 0.006295s + 7.132 ∗ 10−5
e−5.02s,

Ĝ22 =
2.751s2 + 0.3297s + 0.005481

s3 + 0.156s2 + 0.006295s + 7.132 ∗ 10−5
e−3.02s,

Ĝ23 =
−0.5019s2 − 0.02793s− 0.0003587

s3 + 0.156s2 + 0.006295s + 7.132 ∗ 10−5
e−5.02s,

Ĝ31 =
1.864s2 + 0.09219s + 0.0004873

s3 + 0.06955s2 + 0.001253s + 5.244 ∗ 10−6
e−5.02s,

Ĝ32 =
−0.2215s2 − 0.01405s− 0.0001917

s3 + 0.06955s2 + 0.001253s + 5.244 ∗ 10−6
e−5.02s,

and

Ĝ33 =
−4.499s2 − 0.117s− 0.0005396

s3 + 0.06955s2 + 0.001253s + 5.244 ∗ 10−6
e−4.02s,

with the identification error as

E =




0.68% 0.63% 3.02%

0.67% 1.09% 1.92%

0.64% 1.89% 2.36%


 .

6.5 Real time testing

The proposed method is also applied to a temperature chamber system in Advanced

Control Technology lab, Department of Electrical and Computer Engineering, Na-

tional University of Singapore. The experiment setup consists of two parts: a

thermal chamber set (which is made by National Instruments Corp. and shown in

Figure 6.6) and a personal computer with data acquisition cards and LabVIEW

software. The system has two inputs: one is to control 12V Light with 20W Halo-

gen Bulb, the other is to control 12V Fan. The system output is the temperature

of the temperature chamber. Extra transport delays are simulated by using Lab-

VIEW software. An identification test is applied at t = 0. The process inputs and

the output are given in Figure 6.7 and the sampling interval is 0.1 second. u1(t)

in Figure 6.7 is used to control the fan speed, and u2(t) is used to control the light

intensity. First, we estimate the range of time delays roughly: 0 ≤ d11 ≤ 0.8 and

0 ≤ d12 ≤ 0.8. Applying the proposed method with n1 = 2, m11 = m12 = 1 and

q1 = 2, the estimated time delays are obtained as d̂11 = 0.555 and d̂12 = 0.354.
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Figure 6.6. Temperature chamber set.

Based on these estimated time delays, we can de-tune the ranges of time delay

more accurately: 0.3 ≤ d11 ≤ 0.7 and 0.2 ≤ d12 ≤ 0.6. Applying the proposed

identification method again and one obtains the model as follows,

y(2)(t) + 3.333y(1)(t) + 1.089y(t) = −32.39u
(1)
1 (t− 0.58)− 29.76u1(t− 0.58)

+ 49.52u
(1)
2 (t− 0.495) + 32.12u2(t− 0.495).

If the disturbance is static, the initial conditions can be then estimated (Hwang

and Lai, 2004). The estimated response of the model and the real one are shown

in Figure 6.7 for comparison. The effectiveness of the proposed method is obvious.

6.6 Conclusion

The need for a process model arises from various engineering field such as system

analysis, prediction, monitoring, controller design, plant optimization and fault

detection. Most industrial processes are of multivariable in nature and time de-

lay is present in most industrial processes. Implementation of modern advanced

controllers, such as internal model control, explicitly makes use of process models.

Thus, identification of multivariable processes with time delay is in great demand

and an effective technique for it is presented in this chapter. The technique covers
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Figure 6.7. Process responses and inputs of the thermal control system.

all popular tests used in applications, requires reasonable amount of computations,

and provide accurate and robust identification results.



Chapter 7

PID Controller Design by

Approximate Pole Placement

7.1 Introduction

Control design is another important topic of control engineering. It is also one

usage of process identification. In a typical control textbook, the standard 2nd-

order system is discussed in great detail and used to guide practical control system

design even if the underlying system is not of 2nd-order. The assumption to make

such a design hold is that there is a dominant 2nd-order dynamics. The desired

closed-loop poles are calculated from certain control specifications such as percent-

age overshoot and settling time. However, continuous-time delay control systems

are infinite-dimensional (Åström and Wittenmark, 1997). They have infinite spec-

trum and it is impossible to assign such infinite spectrum with a finite-dimensional

controller (Michiels et al., 2002). Instead, one naturally wishes to assign a pair of

poles which dominate all other poles. This idea was first introduced by Persson and

Åström (1993) and further explained in Åström and Hagglund (1995). In Coelho

(1998), this idea is developed for the tuning of lead-lag controllers. Both methods

are based on a simplified model of processes and thus cannot guarantee the chosen

poles to be indeed dominant in reality.

93
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In this chapter, an analytical PID design method is proposed for continuous-

time delay systems to achieve approximate placement of two desired poles with

dominance. A continuous delay process is converted to a low-order rational discrete

model. A discrete PID controller is designed to ensure dominant pole placement

in discrete domain. This is a finite-dimensional problem and the solution for pole

placement is readily available. The designed discrete PID controller is finally con-

verted back to the continuous one. The poles in continuous domain are generally

not precisely the same as originally set. It is argued that exact pole placement is

not necessary as practical design specifications are commonly set as ranges instead

of precise values and approximate ones should be sufficient as long as they donot

deviate too much from the ideal ones. The dominance and error of the assigned

poles are measured and checked for the design. It is shown by simulation that the

proposed method works well with great dominance and negligible error of approx-

imately assigned desired poles for a large range of normalized dead time up to at

least 4. It should also be pointed out that discretization of a continuous process

and discrete PID calculations are purely employed as a design intermediate and

can be viewed as a fictitious process to get a workable continuous PID controller.

No sampling is applied anyway. Performance of our design should be judged from

that of the so-obtained continuous PID controller, rather from discretization errors

involved.

Continuous controller design is always carried out in continuous domain, and

this causes an infinite spectrum assignment problem for a delay process under PID

control, a hard and open problem, while the proposed method of transform into

and out of a discrete model is first of its kind. It brings the infinite spectrum

assignment problem to an approximate finite spectrum assignment problem by a

special selection of sampling time. A simple solution is then obtained. No method

is available in the literature to guarantee dominance of the assigned poles for PID

control of a continuous delay process but the proposed method can do so.
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This chapter is organized as follows. In Section 7.2, the problem under consid-

eration is formulated. In Section 7.3, the design method is presented for monotonic

processes. Simulation examples are given in Section 7.4. In Section 7.5, the pro-

posed method is applied to a thermal control system. Positive PID setting is dis-

cussed in Section 7.6. In Section 7.7, the design method is presented for oscillatory

processes. Finally, conclusions are drawn in the Section 7.9.

7.2 Problem statement

A block diagram of a PID control system is shown in Figure 7.1, where G̃(s) is a

continuous-time delay process and C(s) is the PID controller. Suppose that control

system design specifications are represented by the overshoot and settling time on

its closed-loop step response. The overshoot is usually achieved by setting a suitable

damping ratio, ξ. A reasonable value of the damping ratio is typically in the range

of 0.4 to 1. The settling time, Ts, cannot be taken arbitrarily but largely limited by

the process characteristics and available magnitude of the manipulated variable. If

Ts is too large, the response is very slow, which is bad performance and should be

avoided. On the other hand, if Ts is too small, this may cause very large control

signal and less robust control system. From view of dominant pole placement,

pole dominance is also difficult to realize (Åström and Hagglund, 1995; Zhang et

al., 2002) if Ts is very small. In this thesis, through extensive simulation, we adopt

the following expirical formula to choose Ts for the process with a monotonic step

response:

Ts = T (4.5 + 7.5
L

T
)(

0.35

ξ
+ 0.5), (7.1)

where T and L are the equivalent time constant and dead time of the process. The

natural frequency, ωo, is calculated with ωo = 4
ξTs

. Then, the specifications can be

transferred to the corresponding desired 2nd-order dynamics:

s2 + 2ξωos + ω2
o = 0.

Its two roots are denoted by ps,1 with a positive imaginary part and ps,2, which

are the desired closed-loop poles to be achieved and be dominant by our controller
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design.

G(s)C(s)
u y+

˜

Figure 7.1. PID control systems.

The actual closed-loop system has its characteristic equation:

1 + G̃(s)C(s) = 0.

Let its roots or closed-loop poles be p̃s,i, i = 1, 2, . . .. They are ordered such that

p̃s,i meets Re(p̃s,i) ≥ Re(p̃s,i+1) and if Re(p̃s,i) = Re(p̃s,i+1), Im(p̃s,i) > Im(p̃s,i+1),

where Re(p̃s,i) and Im(p̃s,i) are the real and imaginary parts of p̃s,i, respectively.

Note that the actual poles, p̃s,i, i = 1, 2, may not be the same as the desired

ones: ps,1 and ps,2, and p̃s,i, i = 1, 2, may not be dominant enough with respect to

other poles. Thus, we introduce two measures to reflect them: the relative pole

assignment error,

EP = max(

∣∣∣∣
p̃s,1 − ps,1

ps,1

∣∣∣∣ ,

∣∣∣∣
p̃s,2 − ps,2

ps,2

∣∣∣∣), (7.2)

and the relative dominance,

ED =
Re(p̃s,3)

Re(p̃s,2)
. (7.3)

Our problem of approximate pole placement with dominance is to determine a con-

tinuous controller C(s) so as to produce reasonably small relative pole assignment

error and large relative dominance, say, EP ≤ 20% and ED ≥ 3, which are used as

defaults.

The difficulty of the above problem lies in existence of an infinite number of

closed-loop poles for a continuous delay process under PID control. It is impossible

to assign all the closed-loop poles. However, a continuous-time delay process may

be converted to a low-dimensional discrete system with some special sampling time

selection. In this thesis, discrete design is used as a bridge to approximate pole
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placement in continuous PID control systems but no sampling is done in the real

control system of Figure 7.1.

7.3 The proposed method

Let a continuous-time delay process G̃(s) have a monotonic step response and be

represented by a first-order time delay model:

G(s) =
K

Ts + 1
e−Ls. (7.4)

In this thesis, we choose the sampling time h as h = L to make the discretized

process, G(z), have the lowest order. The process has a pole at − 1
T
. This pole

is mapped via z = ehs (adopted in pole-zero matching method in Franklin et al.

(1990)), to the pole of its discrete equivalent at T̃ = e−L/T . so that K
Ts+1

is converted

to K̃
z−T̃

, where K̃ is selected to match the static gain, K
Ts+1

|s=0 = K̃
z−T̃

|z=1, and thus

K̃ = K(1 − e−L/T ). Note that The discrete equivalent of e−Ls is 1
z

under h = L.

Overall, the process in form of (7.4) is converted to

G(z) =
K̃

z(z − T̃ )
. (7.5)

The continuous PID controller in form of

C(s) = Kp(1 +
1

Tis
+ Tds), (7.6)

is also converted to the discrete-time model,

C(z) =
k1z

2 + k2z + k3

z − 1
, (7.7)

where k1, k2 and k3 are the functions of Kp, Ti and Td. The characteristic polyno-

mial of the discrete closed-loop system is

Acl(z) = z(z− T̃ )(z−1)(1+G(z)C(z)) = z3 +(k1K̃−1− T̃ )z2 +(T̃ +k2K̃)z+k3K̃.

(7.8)



Chapter 7. PID Controller Design by Approximate Pole Placement 98

On the other hand, the given ps,1 and ps,2 have the desirable discrete characteristic

polynomial as follows

Ade(z) = (z − pz,1)(z − pz,2)(z − pz,3) = z3 + p1z
2 + p2z + p3, (7.9)

where pz,1 = eLps,1 , pz,2 = eLps,2 , and pz,3 is a user-defined parameter and set at

e10LRe(ps,1) in this thesis. Equalizing Acl(z) with Ade(z) yields

k1 =
p1 + 1 + T̃

K̃
,

k2 =
p2 − T̃

K̃
,

k3 =
p3

K̃
.

Once k1, k2 and k3 are known, the two zeros of C(z) can be calculated as z1,2 =
−k2±

√
k2
2−4k1k3

2k1
. Using the pole-zero matching method gives the continuous con-

troller as

C(s) =
Kc(s− log(z1)

L
)(s− log(z2)

L
)

s
,

with Kc selected to match the gain of C(s) at s = 0.1m
L

, where m is the smallest

integer and meets e0.1m 6= 1, z1 and z2. Finally, C(s) can be then rearranged into

the form in (7.6) with its settings given as follows,

Kp = −Kc(log(z1) + log(z2))

L
,

Ti = −L(log(z1) + log(z2))

log(z1)log(z2)
,

Td = − L

log(z1) + log(z2)
.

To apply the above method to a non-first-order process G̃(jω) with monotonic

step response, we have to obtain its first-order approximate model G(s) in form

of (7.4). The simplest technique is to match the model frequency response with

the process one at two frequency points, ω = 0 and ω = ωp, the phase cross-over

frequency. The formulas are well known (Wang et al., 2003):

K = G̃(0), (7.10)

T =

√
K2 − |G̃(jωp)|2
|G̃(jωp)|2ω2

p

, (7.11)

L =
π + tan−1(−ωpT )

ωp

. (7.12)
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Gain and phase margins are basic measure of the system’s robustness. In

this thesis, we apply these specifications to judge robustness of the design results.

Tuning ξ will give suitable robust stability of the closed-loop system against the

parameter uncertainties.

7.4 Simulation study

Example 7.1. Consider an exact first order process with G̃(s) = 1
s+1

e−Ls, and

study our design with several typical values of L. Let L = 0.5 first. Suppose that

the desired damping ratio is ξ = 0.7. Ts is calculated from (7.1) as 8.25. We

have ps,1 = −0.4848 + 0.4946i, ps,2 = −0.4848 − 0.4946i. The third pole is then

ps,3 = 10Re(ps,1) = −4.848. The proposed method with these specifications leads

to the discrete PID:

C(z) =
−0.009416z2 + 0.366z − 0.1386

z − 1
,

and via the pole-zero matching method, the continuous PID:

C(s) =
−0.0321s2 + 0.1726s + 0.4505

s
,

which is rearranged in form of (7.6) as

C(s) = 0.1726(1 +
1

0.3832s
− 0.1859s).

The closed-loop poles are calculated from the roots of 1 + G̃(s)C(s) = 0 with a

40th order Pade approximate to the time delay as p̃s,1 =−0.5135 + 0.4837i, p̃s,2

=−0.5135 − 0.4837i, p̃s,3 =−5.6623, p̃s,4 =−6.4016 + 13.1493i, p̃s,5 =−6.4016 −
13.1493i, . . .. It follows that EP = 4.43% and ED = 11.03. The gain margin and

phase margin are 6.64 and 63.92o, respectively. The step response and the manipu-

lated variable are shown in Figure 7.2. The settling time of the the control system

is 8.5 and the overshoot is 3.71% with the corresponding damping ratio of 0.72.

The step responses of the discrete system, G(z)C(z)
1+G(z)C(z)

, and the prototype continuous

system, 2.326
s3+5.818s2+5.181s+2.326

with its poles at the desired −0.4848 ± 0.4946i and
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one extra at −4.848, are also given in Figure 7.3 for comparisons, from which one

sees that the the designed continuous system is quite close to them.
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Figure 7.2. Step response and manipulated variable of Example 7.1 with L = 0.5.
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Figure 7.3. Step response of Example 7.1 with L = 0.5.
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Consider L = 2. Suppose that the desired damping ratio is ξ = 0.7. Ts

is calculated from (7.1) as 19.5. We have ps,1 = −0.2051 + 0.2093i and ps,2 =

−0.2051 + 0.2093i. The third pole is at −2.051. The proposed method with these

specifications leads to the discrete PID:

C(z) =
−0.1083z2 + 0.3758z − 0.008416

z − 1
,

and via the pole-zero matching method, the continuous PID:

C(s) =
−0.1179s2 − 0.1506s + 0.1384

s
,

which is rearranged in form of (7.6) as follows

C(s) = −0.1506(1− 1

1.0883s
+ 0.7829s).

The closed-loop poles are p̃s,1 =−0.1913 + 0.2284i, p̃s,2 =−0.1913 − 0.2284i, p̃s,3

=−1.0131 + 3.0847i, p̃s,4 =−1.0131− 3.0847i, . . .. It follows that EP = 8.04% and

ED = 5.30. The gain margin and phase margin are 2.59 and 57.25o, respectively.

The step response and the manipulated variable are shown in Figure 7.4. The

settling time is 22.95 and the overshoot is 7.49% with the corresponding damp-

ing ratio of 0.64. The step responses of the discrete system, G(z)C(z)
1+G(z)C(z)

, and the

prototype continuous system, 0.1761
s3+2.462s2+0.9274s+0.1761

, with its poles at the desired

−0.2051± 0.2093i and −2.051, are also given in Figure 7.5 for comparison.

Consider L = 4. Suppose that the desired damping ratio is ξ = 0.7. Ts

is calculated from (7.1) as 34.5. We have ps,1 = −0.1159 + 0.1183i and ps,2 =

−0.1159− 0.1183i. The third pole is at −1.159. The proposed method with these

specifications leads to the discrete PID:

C(z) =
−0.1131z2 + 0.3953z − 0.0039

z − 1
,

and via the pole-zero matching method, the continuous PID:

C(s) =
−0.207s2 − 0.1743s + 0.07457

s
,
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Figure 7.4. Step response and manipulated variable of Example 7.1 with L = 2.
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Figure 7.5. Step response of Example 7.1 with L = 2.
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Figure 7.6. Step response and manipulated variable of Example 7.1 with L = 4.
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Figure 7.7. Step response of Example 7.1 with L = 4.
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which is rearranged in form of (7.6) as follows

C(s) = −0.1743(1− 1

2.3366s
+ 1.1880s).

The closed-loop poles are p̃s,1 =−0.1184 + 0.1289i, p̃s,2 =−0.1184 − 0.1289i, p̃s,3

=−0.3704 + 1.5947i, p̃s,4 =−0.3704− 1.5947i, . . .. It follows that EP = 6.56% and

ED = 3.12. The gain margin and phase margin are 2.48 and 58.02o, respectively.

The step response and the manipulated variable are shown in Figure 7.6. The

settling time is 39.73 and the overshoot is 5.94% with the corresponding damp-

ing ratio of 0.67. The step responses of the discrete system, G(z)C(z)
1+G(z)C(z)

, and the

prototype continuous system, 0.03181
s3+1.391s2+0.2963s+0.03181

, with its poles at the desired

−0.1159± 0.1183i and −1.159, are also given in Figure 7.7 for comparison.

Example 7.2. Consider a high-order process, G̃(s) = (2s+1)
(s+1)2(4s+1)

e−s . By Formulas

(7.10), (7.11) and (7.12), we obtain its first-order approximate as

G(s) =
1

3.743s + 1
e−1.49s.

Suppose that the desired damping ratio is ξ = 0.7. Ts is calculated from (7.1) as

28. We have ps,1 = −0.1427+0.1456i and ps,2 = −0.1427−0.1456i. The third pole

is at −1.427. The proposed method with these specifications leads to the discrete

PID:

C(z) =
−0.07994z2 + 0.5168z − 0.2366

z − 1
,

and via the pole-zero matching method, the continuous PID:

C(s) =
−0.2485s2 + 0.1808s + 0.14

s
,

which is rearranged in form of (7.6) as

C(s) = 0.1808(1 +
1

1.2910s
− 1.3747s).

The closed-loop poles are p̃s,1 = −0.1530 + 0.1369i, p̃s,2 = −0.1530 − 0.1369i,

p̃s,3 = −0.7307+0.3366i, p̃s,4 = −0.7307−0.3366i, . . .. It follows that EP = 6.62%

and ED = 4.77. The gain margin and phase margin are 5.47 and 63.81o, respec-

tively. The step response and the manipulated variable is shown in Figure 7.8. The
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settling time of the control system is 28.28 and the overshoot is 3.41% with the

corresponding damping ratio of 0.73. The step responses of the discrete system,

G(z)C(z)
1+G(z)C(z)

, and the prototype continuous system, 0.05931
s3+1.713s2+0.4489s+0.05931

with its

poles at −0.1427±0.1456i and −1.427, are also given in Figure 7.9 for comparison.

In practice, the measurement noise and unmodelled dynamics, such as distur-

bances, are generally present. For the same example, the measurement noise is

simulated by adding a white noise to the output and a disturbance with the mag-

nitude of −0.3 is added to the output at t = 30. The response, y(t), the measured

output, yn(t), and the manipulated variable, u(t), are shown in Figure 7.10. The

effectiveness of our method is shown.
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Figure 7.8. Step response and manipulated variable of Example 7.2.
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Figure 7.9. Step response of Example 7.2.
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Figure 7.10. Step response, measured response and manipulated variable of Ex-

ample 7.2.
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7.5 Real time testing

In this section, the proposed PID tuning method is also applied to a temperature

chamber system, which is made by National Instruments Corp. and shown in

Figure 6.6. The experiment setup consists of a thermal chamber and a personal

computer with data acquisition cards and LabVIEW software. The system input,

u, is the adjustable power supply to 20W Halogen bulb. The system output, y, is

the temperature of the temperature chamber. The model of the process is

G(s) =
29.49e−0.106s

0.6853s + 1
.

The proposed method with ξ = 0.8 leads to the PID controller as

C(s) = 0.0047(1 +
1

0.1535s
− 1.3408s).

This ideal PID is not physically realizable and is thus replaced by

C(s) = 0.0047(1 +
1

0.1535s
− 1.3408s

(1.3408/N)s + 1
),

where N = 4, in the real time testing. Before the test is applied, the control

system is at a steady state. At t = 0, the reference input is changed from 29 to

27. The process input and output are given in Figure 7.11. The step response of

the prototype continuous system, 20.8
s3+13.2s2+26.09s+20.8

are also given in Figure 7.11

for comparison. The designed system has satisfying performance.

7.6 Positive PID settings

It is noted from the simulation results in the preceding section that some of the

PID parameters are not positive. In many applications, it is not permissible. To

avoid this problem, we choose the controller in the form of

C(s) = Kp(1 +
1

Tis
)(

s + β

s + α
), (7.13)

which corresponds to the practical form (no pure D) of PID controller in the

cascaded structure (Åström and Hagglund, 1995; Ang et al., 2005). We choose
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Figure 7.11. Step response and manipulated variable of the thermal chamber.

Ti = T to cancel the pole of G(s). The open-loop transfer function, G(s)C(s), is

converted by the pole-zero matching method to its discrete equivalent,

G(z)C(z) =
K̂

z

k1z + k2

(z − 1)(z + k3)
, (7.14)

where K̂ = K/T , and k1, k2, k3 are the functions of Kp, β and α. The discrete

closed-loop characteristic polynomial is

Acl(z) = z3 + (k3 − 1)z2 + (K̂k1 − k3)z + K̂k2.

By making Acl(z) = Ade(z), we can solve for k1, k2 and k3 as

k1 =
p1 + p2 + 1

K̂
, (7.15)

k2 =
p3

K̂
, (7.16)

k3 = p1 + 1. (7.17)
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Once k1, k2 and k3 are known, we obtain the controller parameters in continuous

domain as

β = −log(
−k2

k1

)/L, (7.18)

α = −log(−k3)/L, (7.19)

Kp =

k1e0.1m+k2

(e0.1m+t3)(e0.1m−1)

10L(0.1m+dL)
m(0.1m+cL)

, (7.20)

where m is the smallest integer, which meets e0.1m 6= 1,−k3,−k2

k1
.

Example 1 (continued). Consider Example 1 again with L = 0.5. Suppose that

the desired damping ratio is ξ = 0.7 and Ts = 8.25 as before. The controller in

form of (7.13) is obtained as

C(s) = 0.2195(1 +
1

s
)(

s + 1.8901

s + 0.9878
).

The closed-loop poles are calculated as p̃s,1 = −0.5382 + 0.4020i, p̃s,2 = −0.5382−
0.4020i, p̃s,3 = −7.32, . . .. For this example, EP = 15.43% and ED = 13.6. The

closed-loop pole at −1 is concealed by the closed-loop zero at −1. The gain margin

and phase margin are 10.31 and 68.53o, respectively. The step response and the

manipulated variable are shown in Figure 7.12. The settling time of the resultant

control system is 5.45 and the overshoot is 1.63% with the corresponding damping

ratio of 0.79. The step responses of the discrete system, G(z)C(z)
1+G(z)C(z)

, and the pro-

totype continuous system, 2.326
s3+5.818s2+5.181s+2.326

, are also given in Figure 7.13 for

comparison.

7.7 Oscillation processes

Some practical processes such as temperature loops exhibit oscillatory or essentially

2nd-order behavior in its step response. The first-order modelling is not adequate

for them. Instead, one has to use the following model:

G(s) =
K

s2 + as + b
e−Ls. (7.21)
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Figure 7.12. Step response and manipulated variable of Example 7.1 with L = 0.5.
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Figure 7.13. Step response of Example 7.1 with L = 0.5.
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Define pg,i, i = 1, 2 as the roots of s2 + as + b = 0. The equivalent time constant

of the oscillation process is defined as T = −1
Re(pg,i)

. To set a desired 2nd-order

dynamic properly, the damping ratio is chosen as before, while the following new

formula,

Ts = T (1 + 15
L

T
)(

0.35

ξ
+ 0.5), (7.22)

is used for determining Ts. For this kind of processes, we exploit the controller in

the form of

C(s) = Kp(1 +
1

Tis
+ Tds)(

s + β

s + α
), (7.23)

and choose Ti and Td to cancel the poles of G(s):

Td =
1

a
,

Ti =
a

b
.

Then, the resulting open-loop G(s)C(s) and its discrete equivalent are the same as

those in Section 7.6 with K̂ = K/a. The procedure there applies to obtain Kp, β

and α from (7.15), (7.16) and (7.17). With k1, k2 and k3, we calculate Kp, β and

α according to (7.18), (7.19) and (7.20).

Example 7.3. Consider a oscillation process, G̃(s) = 1
s2+1.2s+1

e−0.7s. The equiva-

lent time constant of the process is T = 1.667. Suppose that the desired damping

ratio is ξ = 0.7. Ts is calculated from (7.22) as 13. We have ps,1 = −0.3288+0.3354i

and ps,2 = −0.3288− 0.3354i. The third pole is at −3.288. The proposed method

in this section with these specifications leads to the continuous controller:

C(s) = 0.1953(1 +
1

1.2s
+ 0.8333s)(

s + 1.1410

s + 0.6256
).

The closed-loop poles are calculated as p̃s,1 = −0.3585 + 0.2755i, p̃s,2 = −0.3585−
0.2755i, p̃s,3 = −5.0949, p̃s,4 = −6.1839+10.3973i, p̃s,5 = −6.1839−10.3973i, . . .. It

follows EP = 14.24% and ED = 14.21. The closed-loop pole at −0.6000± 0.8000i

are concealed by the closed-loop zeros. The gain margin and phase margin are

10.72 and 68.51o, respectively. The step response and the manipulated variable

are shown in Figure 7.14. The settling time of the control system is 11 and the
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overshoot is 2.04% with the corresponding damping ratio of 0.77. The step re-

sponses of the discrete system, G(z)C(z)
1+G(z)C(z)

, and the prototype continuous system,

0.7252
s3+3.945s2+2.382s+0.7252

, are also given in Figure 7.15 for comparison.

For comparison with first-order design method, by (7.10), (7.11) and (7.12), we

obtain its first-order model as

G(s) =
1

1.235s + 1
e−1.44s.

Suppose the desired damping ratio is ξ = 0.7. Ts = 16.4 is calculated from (7.1)

with T = 1.235 and L = 1.44. The proposed method in Section 7.3 with these

specification leads to the continuous PID:

C(s) = −0.0457(1− 1

0.2481s
+ 1.6713s).

The closed-loop poles, are calculated as p̃s,1 = −0.3437, p̃s,2 = −0.4066 + 0.5870i,

p̃s,3 = −0.4066 − 0.5870i, p̃s,4 = −6.69 + 5.47i, p̃s,5 = −6.69 − 5.47i, . . .. The

resulting dominant poles are −0.3437 and −0.4066 ± 0.5870i, which are far from

the desired ones.

Example 7.4. Consider a high-order oscillation process, G̃(s) = 1
(0.8s+1)(s2+1.1s+1)

e−2s.

Applying the identification method proposed by Liu et al. (2007), we obtain one

of its estimations as

G(s) =
0.702

s2 + 0.9708s + 0.7114
e−2.33s,

with the equivalent time constant of T = 2.06. Suppose that the desired damping

ratio is ξ = 0.7. Ts is calculated from (7.22) as 37. We have ps,1 = −0.1081+0.1103i

and ps,2 = −0.1081− 0.1103i. The third poles is at −1.081. The proposed method

in this section with these specifications leads to the continuous controller:

C(s) = 0.0637(1 +
1

1.3646s
+ 1.0301s)(

s + 0.4567

s + 0.2306
).

The closed-loop poles are calculated as p̃s,1 = −0.1178 + 0.0941i, p̃s,2 = −0.1178−
0.0941i, p̃s,3 = −0.5221 + 0.8374i, p̃s,4 = −0.5221 − 0.8374i, . . .. It follows



Chapter 7. PID Controller Design by Approximate Pole Placement 113

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

1.2

1.4

y(
t)

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

1.2

1.4

t

u
(t

)

Figure 7.14. Step response and manipulated variable of Example 7.3.
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Figure 7.15. Step response of Example 7.3.
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EP = 12.24% and ED = 4.43. The gain margin and phase margin are 10.02 and

67.34o, respectively. The step response and the manipulated variable are shown

in Figure 7.16. The settling time of the resultant control system is 35.36 and

the overshoot is 2.1% with the corresponding damping ratio of 0.77. The step

responses of the discrete system, G(z)C(z)
1+G(z)C(z)

, and the prototype continuous system,

0.02576
s3+1.297s2+0.2575s+0.02576

, are also given in Figure 7.17 for comparison.

7.8 Multivariable case

In fact, many real-life industrial processes are multivariable in nature. It is of great

interest and value to extend our single variable PID tuning method to multivarible

PID controller design. Let G(s) = [gij(s)] be the m×m multivarible process and

C(s) = [cij(s)] be the multivarible controller. To overcome the effects of cross-

coupled interactions, a decoupler, D(s) = [dij(s)], is designed first. By using the

method proposed in Wang (2003), we have

dji(s) =
Gij(s)

Gii(s)
dii(s), (7.24)
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Figure 7.16. Step response and manipulated variable of Example 7.4.
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Figure 7.17. Step response of Example 7.4.

and Q(s) = G(s)D(s) as

Q(s) = diag {qii(s)} = diag

{ |G(s)|
Gii(s)

dii(s)

}
,

where Gij(s) is cofactor corresponding to gij(s) in G(s). qii(s) may be complicated

to implement or even not rational and cannot be used to design controllers directly,

so that model reduction techniques based on step tests (Wang and Zhang, 2001)

are applied to obtain rational and proper estimates of qii(s), q̂ii(s). With the PID

tuning methods proposed in the above sections, single variable PID controllers,

kii(s), i = 1, ..., m, are designed for q̂ii(s), i = 1, ..., m, and the multivariable

controller C(s), with

cij(s) = dij(s)kjj(s), (7.25)

is obtained. Suppose Ĉ(s) = [ĉij(s)] is a multivariable PID controller. If cij(s) in

C(s) is PID type, we choose ĉij(s) = cij(s). For cij(s), which is not PID type, its

estimate in form of PID, ĉij(s), is obtained by using model reduction techniques

in Wang et al. (2001a). The multivariable PID controller Ĉ(s) is then designed for

G(s).
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Example 7.5. Consider a multivariable process,

G(s) =




1
s+1

1
s+2

1
s+3

1
s+1.5


 .

By choosing d11(s) = d22(s) = 1, the decoupler is designed as follows

D(s) =


 1 − s+1

s+2

− s+1.5
s+3

1


 ,

according to (7.24). We have

Q(s) =




2.5s+4.5
(s+1)(s+2)(s+3)

0

0 2.5s+4.5
(s+1.5)(s+2)(s+3)


 .

One first-order time delay model of Q(s) is obtained by using the method proposed

in Wang and Zhang (2001),

Q̂(s) =




0.7597e−0.286s

s+1.013
0

0 0.7671e−0.288s

s+1.534


 .

For q̂11(s) = 0.7597e−0.286s

s+1.013
, suppose that the desired damping ratio is ξ = 0.6 and Ts

is calculated from (7.1) as 7.13. The proposed single variable PID tuning method

leads to

k11(s) = 0.1621(1 +
1

0.1718s
− 1.3291s).

For q̂22(s) = 0.7671e−0.288s

s+1.534
, suppose that the desired damping ratio is ξ = 0.6 and Ts

is calculated from (7.1) as 5.52. The proposed single variable PID tuning method

leads to

k22(s) = 0.2599(1 +
1

0.1488s
− 0.4296s).

C(s) is calculated according to

C(s) =


 k11(s) k22(s)d12(s)

k11(s)d21(s) k22(s)


 .

c12(s) = k22(s)d12(s) and c21(s) = k11(s)d12(s) are high-order controllers. By using

the method in Wang et al. (2001a), we have

ĉ12(s) = −0.5540− 0.8733

s
+ 0.1976s,
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and

ĉ21(s) = −0.2459− 0.4718

s
+ 0.1378s,

respectively. Ĉ(s) is

Ĉ(s) =


 0.1621 + 0.9435

s
− 0.2154s −0.5540− 0.8733

s
+ 0.1976s

−0.2459− 0.4718
s

+ 0.1378s 0.2599 + 1.7466
s

− 0.1117s


 .

The step responses of the resultant multivariable PID control system to unit set-

point changes are shown in Figure 7.18. For the first loop, the settling time of

the multivariable PID control system is 6.95 and the overshoot is 12.47% with the

corresponding damping ratio of 0.55. For the second loop, the settling time is 5.11

and the overshoot is 10.68% with the corresponding damping ratio of 0.58. Step

responses of the original control system with C(s) as the controller are also given

in 7.18 for comparison.
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Figure 7.18. Step response of Example 7.5.

(Solid line, Ĉ(s); dash line, C(s))
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Example 7.6. Consider the Vinate and luyben plant,

G(s) =




−0.2e−s

7s+1
1.3e−0.3s

7s+1

−2.8e−1.8s

9.5s+1
4.3e−0.35s

9.2s+1


 .

By choosing d11(s) = 1 and d22(s) = e−0.7s, the decoupler is designed as follows

D(s) =


 1 6.5

2.8(9.2s+1)e−1.45s

4.3(9.5s+1)
e−0.7s


 ,

according to (7.24). One first-order time delay model of Q(s) = G(s)D(s) is

obtained by using the method proposed in Wang and Zhang (2001),

Q̂(s) =




0.08677e−1.86s

s+0.1342
0

0 −1.459e−2.27s

s+0.105


 .

For q̂11(s) = 0.08677e−1.86s

s+0.1342
, suppose that the desired damping ratio is ξ = 0.7 and Ts

is calculated from (7.1) as 47.48. The proposed single variable PID tuning method

leads to

k11(s) = 0.2612(1 +
1

1.9506s
− 7.1775s).

For q̂22(s) = −1.459e−2.27s

s+0.105
, suppose that the desired damping ratio is ξ = 0.7 and Ts

is calculated from (7.1) as 60.00. The proposed single variable PID tuning method

leads to

k22(s) = −0.0118(1 +
1

2.3800s
− 10.1746s).

After C(s) is calculated from D(s) and kii, i = 1, 2 according to (7.25), Ĉ(s) is

obtained as

Ĉ(s) =


0.2612 + 0.1339

s
− 1.8748s −0.0767− 0.0322

s
+ 0.7804s

0.1540 + 0.0872
s

− 1.1404s −0.0072− 0.0050
s

+ 0.1264s


 .

The step responses of the resultant multivariable PID control system to unit set-

point changes are shown in Figure 7.19. For the first loop, the settling time of

the multivariable PID control system is 49.84 and the overshoot is 6.6% with the

corresponding damping ratio of 0.65. For the second loop, the settling time is 67.76

and the overshoot is 7.34% with the corresponding damping ratio of 0.64. Step

responses of the original control system with the controller of C(s) are also given



Chapter 7. PID Controller Design by Approximate Pole Placement 119

0 50 100 150 200 250 300
−0.5

0

0.5

1

1.5

y 1(t)

0 50 100 150 200 250 300
−0.5

0

0.5

1

1.5

t

y 2(t)

Figure 7.19. Step response of Example 7.6.

(Solid line, Ĉ(s); dash line, C(s))

in 7.19 for comparison.

Example 7.7. Consider the well-known Wood/Berry process,

G(s) =




12.8e−s

16.7s+1
−18.9e−3s

21.0s+1

6.6e−7s

10.9s+1
−19.4e−3s

14.4s+1


 .

By choosing d11(s) = d22(s) = 1, the decoupler is designed as follows

D(s) =


 1 (315.63s+18.90)e−2s

268.80s+12.80

(95.04s+6.60)e−4s

211.46s+19.40
1


 ,

according to (7.24). One first-order time delay model of Q(s) = G(s)D(s) is

obtained as,

Q̂(s) =




6.374e−1.065s

5.414s+1
0

0 −9.691e−3.12s

7.942s+1


 .

For q̂11(s) = 6.374e−1.065s

5.414s+1
, suppose that the desired damping ratio is ξ = 0.7 and Ts

is calculated from (7.1) as 32.35. The proposed single variable PID tuning method
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leads to

k11(s) = 0.0204(1 +
1

1.0388s
− 9.4551s).

For q̂22(s) = −9.691e−3.12s

7.942s+1
, suppose that the desired damping ratio is ξ = 0.7 and Ts

is calculated from (7.1) as 59.14. The proposed single variable PID tuning method

leads to

k22(s) = −0.0187(1 +
1

2.7246s
− 3.0100s).

After C(s) is calculated from D(s) and kii, i = 1, 2 according to (7.25), Ĉ(s) is

obtained as

Ĉ(s) =


0.0204 + 0.0196

s
− 0.1929s 0.0073− 0.0101

s
− 0.4114s

0.0287 + 0.0067
s

− 0.2643s −0.0187− 0.0069
s

+ 0.0563s


 .

The step responses of the resultant multivariable PID control system to unit set-

point changes are shown in Figure 7.20. Step responses of the original control

system with the controller of C(s) are also given in Figure 7.20 for comparison.

The original control system can achieve the desired performance approximately.

The performance of the resultant multivariable PID control is not as good as the

original control system, but it is still acceptable.

7.9 Conclusion

In this chapter, an analytical PID design method has been presented for continuous-

time delay systems to achieve approximate pole placement with dominance. It

greatly simplifies the continuous infinite spectrum assignment problem with a de-

lay process to a 3rd-order pole placement problem in discrete domain for which the

closed-form solution exists and is converted back to its continuous PID controller.

The method works well for both monotonic and oscillatory processes of low or high

order. Finally, the method is employed to design multivariable PID controller for

multivariable delay processes.
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Figure 7.20. Step response of Example 7.7.
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Chapter 8

Conclusions

8.1 Main findings

A. Simplified identification of delay processes from pulse tests

A new method is presented to identify time delay systems with possible non-

zero initial conditions and constant disturbance from pulse tests. The feature of

pulse tests are employed to simplify dynamic equation of the system, and enables

easy and separate identification of the system parameters in two steps.

B. Identification of delay processes from step tests

An integral identification method is proposed for continuous-time delay systems

in presence of both unknown initial conditions and static disturbances from a step

test. The integration limits are specifically chosen to make the resulting integral

equation independent of the unknown initial conditions. This enables identification

of the process model from a step test by one-stage least-squares algorithm without

any iteration.

C. Identification of delay processes from relay tests

122



Chapter 8. Conclusions 123

A new method is presented for process identification from relay tests. By re-

garding a relay test as a sequence of step tests, the integral technique is adopted

to devise the algorithm. The method can yield a full process model in the sense of

a complete transfer function with delay or a complete frequency response.

D. Improved identification of delay processes from piecewise step tests

An improved identification algorithm is presented for continuous-time delay

processes under unknown initial conditions and disturbances for a wide range of

input signals expressible as a sequence of step signals. It is based on a novel regres-

sion equation which is derived by taking into account the nature of the underlying

test signal. The equation has more linearly independent functions and thus en-

ables to identify a full process model with time delay as well as combined effects

of unknown initial condition and disturbance without any iteration.

E. Identification of multivariable processes with multiple time delays

A robust identification method is proposed for multiple-input and multiple out-

put (MIMO) continuous-time processes with multiple time delay. Suitable multiple

integrations are constructed and regression equations linear in the aggregate pa-

rameters are derived with use of the test responses and their multiple integrals.

The process model parameters including the time delay is recovered by solving

some algebraic equations.

F. Approximate pole placement with dominance for continuous delay

processes by PID controllers

It is well known that a continuous-time feedback system with time delay has

infinite spectrum and it is not possible to assign such infinite spectrum with a

finite-dimensional controller. In such a case, only partial pole placement may be
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feasible and hopefully some of the assigned poles are dominant. But there is no

easy way to guarantee dominance of the desired poles. An analytical PID design

method is proposed for continuous-time delay processes to achieve approximate

pole placement with dominance. Its idea is to bypass continuous infinite spectrum

problem by converting a delay process to a rational discrete model and getting back

continuous PID controller from its discrete form designed for the model with pole

placement. It greatly simplifies the continuous infinite spectrum assignment prob-

lem with a delay process to a 3rd-order pole placement problem in discrete domain

for which the closed-form solution exists and is converted back to its continuous

PID controller.

8.2 Suggestions for further work

A. Identification of unstable processes

In this research, we assume that the process will reach a steady state and its

input and output responses can then be used to identify a model for the process.

The assumption can be easily be met by stable continuous-time delay processes.

Identification of unstable or integral processes was not considered explicitly (re-

lay feedback may stabilize some unstable processes). In real applications, some

chemical processes, such as chemical reactors, are unstable. To identify these un-

stable processes, modifications and extensions of the proposed methods are needed.

B. Identification of nonlinear processes

The processes considered in this thesis are assumed to be linear. In practice, all

physical systems are nonlinear in nature. Recently, nonlinear control for nonlin-

ear processes is becoming an active research area. The extension of the proposed

identification methods to nonlinear processes is in great interests and demand.

C. Dominant pole placement for multivariable processes
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Multi-loop or decentralized controllers are sometimes favored than multivari-

able controllers because the multi-loop control system has the simpler structure

and less control parameters. When dominant closed-loop poles are used to guide

practical control system design for multivariable delay processes, it is a great chal-

lenge to obtain desired closed-loop performances, or make the assigned closed-loop

poles dominant, by using multi-loop PID controllers.
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