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SUMMARY 

Data decomposition and ensemble learning have been used in several 

applications to improve the training time and generalization accuracy of machine 

learning methods. In these approaches, the number and type of members in the 

ensemble is known to be an important factor in determining its generalization error. 

In this thesis we present, in order to improve the generalization accuracy of the base 

learner, a new method for generating ensembles using data decomposition – 

Recursive Pattern Based Hybrid Training (RPHT). We use a recursive combination 

of global training and local training for supervised and unsupervised machine 

learning tasks. Here, global training introduces diversity in the hypotheses and local 

training adapts the solution to the pattern and error spaces. The resulting ensemble 

(also called pseudo global optima) is a deterministic number of sub- solutions that, 

when integrated, are capable of improved generalization with a shorter training time.   

We begin by demonstrating the algorithm using supervised learning problems 

in the domain of curve fitting and classification. The development of Recursive 

Pattern Based Hybrid Supervised learning (RPHS) using Constructive 

Backpropagation and Genetic Algorithm based neural networks as base learners 

demonstrate that our approach consistently achieves higher generalization accuracy 

than the base learning algorithm.  The algorithm is also consistently more accurate 

than other data decomposition based ensemble learners such as Multisieving and 

Output Parallelism.  

In order to improve the computational complexity of RPHS, we introduce the 

use of a clusterer as a pre-trainer, developing the Recursive Supervised Learning with 

Clustering and Combinatorial optimization (RSL-CC) algorithm. The algorithm, 
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whose generalization accuracy was comparable to RPHS, often performed with a 

lower training time.  

The worst-case generalization accuracy of RPHT is that of the base trainer. 

When the data handled are independent of each other, we prove that this condition 

occurs when the training data under-represents the problem space. We verify this 

property by building RPHT systems “on top of” several new machine-learning 

algorithms. We implemented the algorithm on top of Output Parallelism for 

classification problems and self-organizing maps and Higher Order Neurons for 

clustering problems. RPHT consistently performed better than the base algorithm.  

 In the development of suitable recursive hybrid algorithms for supervised 

and unsupervised learning, we also developed, on a necessity basis, several 

evolutionary training algorithms, including Evolutionary Higher Order Neurons and 

combinatorial clustering. A parallel version of recursive training was also 

implemented to reduce the training time and improve the generalization accuracy of 

the algorithm. 

The Recursive Pattern Based Hybrid Training algorithm, when applied on 

benchmark datasets, showed a 40% improvement in generalization accuracy for the 

classification problems tested and 50% improvement in the clustering accuracy for 

unsupervised learning.  
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1. Introduction 

1.1 Research problem and objectives 

The problem of local optima has long since prevented the widespread use of 

machine learning algorithms in industry. The presence of local optimal solutions 

often prevents machine learning algorithms from finding a true solution to the 

problem, often leading to long training times and low generalization accuracy.  

Here, we attempt to solve the problem of local optima and improve base learner 

generalization accuracy by a novel task decomposition based ensemble learner. The 

approach, Recursive Pattern Based Hybrid Training (RPHT), solves the local optima 

problem by going around it. We find, instead of a single optimal solution, several 

optimal solutions called pseudo-global optima. Each pseudo-global optimum is 

targeted to be globally optimal from the perspective of a subset of patterns. To form 

the complete solution to the problem, we integrate the pseudo-global optima.  

 The problem of local optima being prevalent in both supervised and 

unsupervised learning, our first research objective is to develop RPHT systems that 

improve the base learner accuracy for both supervised and unsupervised learning 

algorithms. This is the algorithm development phase of our research. 

New machine learning algorithms are coming out everyday in the market, each 

of them capable of dealing, to different extents, with the local optima problem. The 

second research objective of this thesis is to make recursive training an approach 

which could be built on top of existing and upcoming machine learning algorithms to 

improve their performance, such that the generalization accuracy of our approach is 

consistently better than that of the base learner.  This is the application phase of our 

research.  
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1.2 The approach of this thesis 

Biological and behavioral patterns are widely used as inspirations to machine 

learning algorithms. These include neural networks (Haykins, 1999), evolutionary 

algorithms (Goldberg, 1989), particle swarm optimization (Eberhart and Kennedy, 

1995), ant colony optimization (Dorigo et al., 1996) etc. Similar to these ideas, our 

thesis also models behavioral patterns. Here, we attempt to model the learning 

patterns of teams at work, using a “do what you do best” theory.  

Recursive pattern based training algorithms use pattern information to 

decompose a given problem and find several pseudo-global optima. The integration 

of all the pseudo-global optima would make the true solution to the problem, with 

higher generalization accuracy, but in a shorter period of time.  

The algorithms proposed are natural combinations of class based task 

decomposition and data decomposition. In general, a problem, depending on its 

topology, is divided into pattern based or class based subsets or both. Each subset is 

obtained by recursively isolating the “simpler” patterns from the “difficult” ones. As 

“simple” and “difficult” are determined by the learning algorithm, the approach is 

more “learner friendly”.  

In order to make the process more efficient, an evolutionary algorithm is used to 

perform global search. Global search identifies the simpler patterns from the point of 

view of the learner. These patterns are then isolated. A gradient descent algorithm, 

using neural networks, is then used to learn best these “simple” patterns in a way that 

avoids overfitting. The process is then repeated recursively with the “difficult” 

patterns until certain termination conditions are satisfied.  

Figure 1.1 shows the simplified architecture of the recursive training system. The 

input consists of an NI dimensional pattern vector. The output is an NO dimensional 
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vector. The integrator provides the selected inputs to the multiplexer, which then 

outputs the corresponding data input. The data inputs to the multiplexer are the 

outputs of each of the subnetworks. Each subnetwork is therefore a neural network (a 

three layered percepteron, or a Self Organizing Map). The integrator used in this 

thesis is a Nearest Neighbor classifier (Wong and Lane, 1983) with NI inputs and K 

outputs, where K is the number of recursions employed.  

Solution 1

Solution 2

Solution K

Integrator

Multiplexer
Output

 

Figure 1.1. The generalized recursive training system 

 To understand the concept behind Recursive Pattern Based Hybrid Training 

(RPHT), we consider a situation where a group of students are assigned a job of 

learning a set of examples (training patterns). At the end of the task, the group must 

collectively be able to solve a similar problem. Using recursive training, we assume 

that there is an infinite pool of students to draw groups from. A group of students is 

presented with all the examples. The easier examples are usually learnt faster. The 

students who first learn these easy examples (global learning) to a fair degree of 

accuracy are isolated. They are set to learn the same examples to perfection (local 

learning). Another set of students are now picked to learn the remaining (slightly harder) 

examples. Since there are now fewer examples, the students are now more focused 

towards these examples. The examples are progressively isolated along with the students 

Input 
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who specialize in them. The process continues until there are too few examples and 

further decomposing the task will result in overtraining of some of the students. A group 

of students is then selected to learn these tasks the best possible way.  

 The recursive learner documented in this thesis is a hybrid system of two or 

more learners. Typically, one of the learners is global in nature. Here, we use a 

Genetic Algorithm (GA) based neural network architectures to perform global 

search. These include Genetic Algorithm (Goldberg, 1989) based neural networks 

(GANNs) (Yao, 1993), GA based Self Organizing Maps (GASOMs) (Painho and 

Bacao, 2000), the evolutionary counter part to Higher Order Neurons (Lipson and 

Siegelmann, 2000; Ramanathan and Guan, 2007) etc. The other learner is local in 

nature. Algorithms employed in this thesis for local training include Backpropagation 

(Rumelhart et al., 1986), Constructive Backpropagation (Lehtokangas, 1999), Higher 

Order Neurons (Lipson and Siegelmann, 2000) etc. 

The general pseudo code for recursive pattern based learning is given below. The 

function Learn, written below, is recursively invoked, initially with recursionID=1. 

 

Algorithm 1.1. General pseudocode for the recursive pattern based training  

Learn(T, recursionID) 
1.  Train the system with the data T using the global learning algorithm. 
2.  If global learning is complete, 

a.  Identify and split the well-learnt patterns from the ill-learnt patterns. 
b. Use a local learning algorithm to further train the well-learnt patterns. 
Store the resulting network. 
c. Learn(ill-learnt patterns, recursionID+1). 

End If 
 
 

RPHT aims, like all ensemble methods, to build diverse and accurate 

solutions. Each solution caters to a subset of data. As subsets of data (constructed 

using the well learnt patterns in each recursion) are mutually exclusive from each 

other, the solutions are diverse across the domain. Each recursion also guarantees a 
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100% accurate solution on its well learnt patterns. The collective accuracy of the 

system is therefore high.   

1.2.1 Application domains 

Three major domains were considered as applications of recursive hybrid 

training – supervised learning, unsupervised learning and extensions. These are 

explained in the following subsections.  

1.2.1.1 Recursive Supervised Learning (RSL) 

We deal here with data whose inputs and outputs are present but not their 

corresponding relationship. Supervised learning attempts to model this input-output 

relationship. Recursive Supervised Learning also serves this purpose.  

It is related to task decomposition and ensemble approaches to supervised 

learning including incremental learning (Guan and Liu, 2002), Output Parallelism 

(Guan and Li, 2002, Guan et al., 2004), Multisieving (Lu et al., 1995), data subset 

selection (Lasarzyck et al., 2004, Gathercole et al., 1994) and Boosting (Meir and 

Ratsch, 2003). 

Unlike these approaches, however, the recursive hybrid approach to 

supervised learning combines global search (using GANNs (Yasunaga et al., 1999)) 

and local search (using Backpropagation (Rumelhart et al., 1986) and Constructive 

Backpropagation (Lehtokangas, 1999)). Each learner in the ensemble is therefore a 

result of two weak-learners. The evolutionary algorithm uses the number and 

topology of training and validation patterns to determine the number of ensembles 

and the architecture of each weak learner in the ensemble. The partitioning of the 

pattern space is completely automatic, and targeted (using a set of validation patterns 
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and several validation procedures) so as to find the best possible generalization 

accuracy for a given dataset.  

In this thesis, we present three major recursive pattern based supervised 

learning algorithms. These are summarized below: 

Recursive Pattern Based Hybrid Supervised Learning (RPHS) 

RPHS trains a set of labeled patterns using GANN based global search, splits 

the data into “learnt” and “unlearnt” patterns, optimizes on the “learnt” patterns using 

a GA based local search or using Backpropagation (BP), resulting in a pseudo-global 

optimal solution. The process repeats recursively using the “unlearnt” patterns until 

optimum generalization accuracy is attained. The system is then integrated using a 

Nearest Neighbor based pattern distributor. 

Recursive Supervised Learning with Clustering and Combinatorial optimization 

(RSL_CC) 

RSL-CC employs a pre-trainer which splits the data into class-based clusters, 

such that each cluster is distinctly separated from another cluster. GA is then used to 

solve a combinatorial optimization problem, where the optimal set of clusters for an 

ensemble component is selected. The process is repeated recursively using the 

remaining clusters and integrated using a Nearest Neighbor based pattern distributor. 

Parallel Recursive Pattern Based Hybrid Supervised Learning (P-RPHS) 

The algorithm explores the use of parallel ensembles. Each ensemble solves 

several overlapping subsets of patterns. The P-RPHS algorithm explores the 

possibility of using parallel overlapping recursions to improve the accuracy of the 

KNN pattern distributor and therefore to improve the generalization accuracy. With 

overlapping recursions, the number of recursions required to solve the problem is 

also reduced.  
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Illustration 

As illustration, we consider the training data of the TWO-SPIRAL dataset 

(Lang and Witbrock, 1988). The TWO-SPIRAL problem is an example of a difficult 

classification problem since it is impossible to define proper class boundaries on the 

training set. We observe that the TWO-SPIRAL data set can be split up as shown in 

the diagrams in Figure 1.2. While the original dataset is not easy to classify, each of 

the decomposed datasets are far simpler and can be classified by a simple neural 

network. 

In order to determine that the hybrid recursive combination of global and 

local search was the best possible for supervised learning, several brute force and 

alternate hybrid algorithms were developed. These include distance and topology 

based algorithms and also recursive training algorithms based on other learners. 

However, the general performance of these algorithms is less accurate than the 

hybrid learner proposed in this thesis.   
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Key: Class 1:  , Class 2:  . Dotted lines show lines of separation of the two classes 
(x and y represent the 1st and 2nd principal component values of the data respectively) 

Figure 1.2. The TWO-SPIRAL data set and an example of how it can be decomposed 
into several smaller datasets that are more easily separable  
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1.2.1.2 Recursive Unsupervised Learning (RUL) 

Unsupervised learning refers to a situation where the learner attempts to find 

the relationship between unlabelled patterns. The key idea of Recursive Unsupervised 

Learning (RUL), therefore, is to decompose a given problem and find several 

partitions of data, such that they can be grouped together to result in a system with 

higher correlation to ground truth information. As in the case of Recursive 

Supervised Learning, the algorithm achieves this by using a combination of global 

and local search, implementing a recursive sequence of global search, data splitting, 

local search and recombination to solve the problem.  

The Recursive Unsupervised Learning algorithm is related to ensemble 

clustering (Koza, 1992) and consensus clustering (Fred and Jain, 2005), but uses a 

fewer number of weak learners than consensus clustering. It also uses a divide-and-

conquer approach, as opposed to an ensemble approach. This is also computationally 

efficient.  

As in the case of Recursive Supervised Learning, the RUL algorithm begins 

by applying an evolutionary clustering algorithm to the data. The patterns which are 

clustered with a high confidence are then removed. The centroids are then shifted, 

using a local learning algorithm to find the “pseudo-global” cluster centroid. The 

patterns that were clustered earlier with low confidence are now focused upon and 

reclustered. The process is then repeated.  

1.2.1.3 Extensions 

We hypothesize that any gradient-descent based machine learning algorithm, 

which has the problem of getting into a local optima, can be optimized using RPHT 

to find and integrate a set of pseudo-global optimal solutions. The resulting system 
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has a generalization accuracy that is better than or at least equal to that of the base 

learner.  

We test this hypothesis on two recent algorithms, one for supervised learning 

and one for unsupervised learning. For the supervised learning domain, we use the 

Output Parallelism algorithm (Guan and Li, 2002, Guan et al., 2004). In unsupervised 

learning, we apply recursive training to the Higher Order Neuron (Lipson and 

Siegelmann, 2000) clustering algorithm. We outline below these two algorithms. 

Recursive Supervised Learning with Output Parallelism (OP-RPHS) 

OP-RPHS combines the strengths of class based and data based 

decomposition. The problem is first split into several subproblems, each representing 

a subset of output classes. RPHS is then applied to each of the subproblems, resulting 

in a system with higher generalization accuracy and parallel processing capabilities.   

Multi-order recursive clustering 

The multi-order recursive clustering algorithm is similar to Recursive 

Unsupervised Learning. However, the multi-order recursive clustering makes use of 

Higher Order Neurons (Lipson and Siegelmann, 2000) to perform local search. For 

global search, we developed a counter part to Higher Order Neurons – the 

Evolutionary Higher Order Neurons (eHONs). This combination of eHONs and 

Higher Order Neurons makes it possible for the system to detect arbitrary shaped 

clusters with good accuracy.  

1.3 Research contribution 

The algorithms, presented in this thesis, work towards developing data 

decomposition based algorithms for supervised and unsupervised learning with the 

following characteristics: 
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� Splits the data set automatically into reasonably simpler (and therefore more 

separable) subsets of data. 

 We devise a method by which we decompose the patterns automatically in a 

fashion that need not necessarily be class dependent. Further, we want that the 

patterns in each of these decomposed sets are more separable than the original 

class and therefore easier to train. In an earlier work, Lu et al. (1995) have 

implemented an automatic neural network decomposition of training patterns. 

However, their experimental results indicate that their decomposition does not 

contribute significantly to data separability. 

� Improves the overall training time and the generalization accuracy of the 

algorithm. 

 While all task decomposition algorithms result in reduced training time when 

compared with training the complete data set, many of these algorithms focus 

specifically on reducing the training error and overlook loss in generalization 

accuracy. This generalization accuracy can arise either due to overtraining as in 

the case of (Guan and Li, 2002) or due to errors in choosing the suitable solution 

(pattern distribution) (Guan et al., 2004).  

 In our research, we use, for supervised learning, a combination of a Nearest 

Neighbor algorithm and training to local optima.  We also use several early 

stopping algorithms prevent overtraining. In the case of unsupervised learning, 

recombination is performed at the end of each recursion, to ensure minimal loss 

of accuracy in division. We can therefore guarantee that the system accuracy is 

equal to, or better than that of the base learner. 

� Is relatively problem independent. 
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 Currently hybrid algorithms implemented include a combination of global 

search algorithms such as GA (Goldberg, 1989), genetic programming (Koza, 

1992) and evolutionary algorithms, along with local optimization techniques such 

as BP (Rumelhart et al., 1986) and dynamic BP (Jin and Gupta, 1999)). These 

combinations have been successfully used in the selection of neural network 

topology, initial weight selection as well as other applications (Yao, 1993). 

However, the combinatorial algorithms were based on either (a) The number of 

global training epochs implemented or (b) A property of the population such as 

convergence or genetic diversity.  However, these values are often problem 

dependent and cannot be generalized to suit various datasets. 

 Task decomposition techniques such as Output Parallelism (Guan and Li, 

2002, Guan et al., 2004) and Boosting (Meir and Ratsch, 2003) are also 

dependent on various parameters, such as optimal partitioning of outputs, optimal 

number of weak learners etc. The recursive pattern based learners are designed to 

be problem independent when compared to other hybrid and ensemble 

algorithms.  

1.4 Plan of thesis 

The rest of the thesis is organized as follows. Chapter 2 reviews related 

literature and presents them in the context of recursive supervised and Recursive 

Unsupervised Learning. Chapter 3 presents the scope of the RPHT training problem 

as well as the experimental setup for RSL and RUL.  

Chapter 4 presents Recursive Pattern Based Hybrid Supervised learning 

(RPHS). Chapter 5 presents clustering based Recursive Supervised Learning (RSL-

CC). Chapter 6 proposes the parallel version of RPHS (P-RPHS). Chapter 7 presents 
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an application of recursive hybrid supervised learning by combining it with Output 

Parallelism (Guan and Li, 2002, Guan et al., 2004), developing the combination of 

RPHS and task decomposition -  proposing the OP-RPHS training algorithm.  

 Chapter 8 moves on to Recursive Unsupervised Learning and presents the 

general algorithm as well as the application of Recursive Unsupervised Learning to 

Higher Order Neurons (Lipson and Siegelmann, 2000).  

Chapter 9 presents an overall discussion on Recursive Pattern Based Hybrid 

Training and concludes the thesis. 
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2. Related literature 

2.1 Introduction 

In this chapter, we discuss the literature leading up to the development of this 

thesis, beginning with the idea of machine learning. We then move on to the domains 

of  supervised and unsupervised machine learning, focusing on the use of neural 

network based algorithms for solving problems in these domains. The need for and 

the development of ensemble learning algorithms is discussed, highlighting the 

advantages and shortcomings of several ensemble learners proposed in literature. 

2.2 Machine learning 

The term “Machine Learning” (Nilson, 1990) refers to tasks associated with 

artificial intelligence, which are performed by computer systems. Such tasks include 

recognition, diagnosis, planning, robot control, prediction etc. Different learning 

mechanisms can be used, depending on the task to be performed by the machine.  

Machine learning has been gaining research interest over the years due to the 

following reasons (Nilson, 1990):  

� Machine learning algorithms are capable of learning by example to model I/O 

relationships and to approximate implicit relationships in the examples. 

� Techniques such as clustering are able to identify important relationships and 

correlations hidden among large piles of data. 

� Machine learning algorithms can be used for “on-the-job” improvement of 

existing machine designs (genetic programming). 

� Machines are able to deal with more data than humans and may therefore be 

capable of extracting more knowledge than their human counter part.  
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� Machines can be programmed to adapt to changing environments, thereby 

reducing the need for constant retraining and redesign. 

Machine learning algorithms have been developed over time to deal with the 

above aspects. Algorithms have been developed based on statistics, brain models, 

control theory, psychological models, artificial intelligence, and evolutionary models.  

There are two main applications of using machine learning to model a 

function – supervised and unsupervised learning. In supervised learning, the values 

of the outputs for the training samples in a set are known. We also assume that we 

can find a model that closely agrees with the outputs for the members of the set, and 

that the model is good especially if the set is large.  

In unsupervised learning, we simply have the training samples with no 

outputs for them. The problem, in this case, is to partition these samples into clusters 

in some appropriate way. Unsupervised learning methods have applications in 

taxonomic problems in which they classify data into meaningful categories.  

In this thesis, we shall consider the use of brain models (neural networks), 

evolutionary models (Genetic Algorithms) and their variants to perform recursive 

supervised and unsupervised learning. In this chapter, we begin by describing neural 

networks for supervised learning and discuss how, in literature, Genetic Algorithms 

have been used to improve the training of neural networks. We also explain their 

limitations, and describe how the development of ensemble learning, data 

decomposition and class based task decomposition overcome these limitations. We 

also discuss the weaknesses of these approaches, thereby formulating the scope for 

the Recursive Supervised Learning (RSL) algorithm. 

We then move on to the use of neural networks for unsupervised learning, the 

use of Self Organizing Maps, the introduction of second order, higher order and 
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ensemble clustering approaches, and discuss their limitations, thereby formulating 

the scope for the Recursive Unsupervised Learning (RUL) algorithm.  

2.3 Supervised learning  

2.3.1 Neural networks for supervised learning 

The MultiLayered Percepteron (MLP) (Rumelhart et al., 1986) is a 

feedforward neural network with a multi layered structure. For the purpose of this 

thesis, we will consider, for simplicity, the three layered percepteron. Typically, the 

three layered MLP consists of a set of input nodes, one hidden layer, and an output 

layer. The input signal propagates through the network in the forward direction.  

Haykins (2000) presents the structure of the three layered percepteron as 

shown in Figure 2.1.  

 
Figure 2.1. Architecture of a typical three layered neural network 

 

MultiLayered Percepterons have been successfully applied to solve difficult 

and diverse problems using various training algorithms, including error 

Backpropagation, Constructive Backpropagation, Genetic Algorithm based neural 
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networks (GANNs), messy GANNs, and minimal coded GANNs. These algorithms are 

discussed in the next sub-section. 

2.3.1.1 Training algorithms 

Backpropagation 

Backpropagation is a gradient descent method using which the training error 

( trE ) of a neural network is minimized.  
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The Backpropagation algorithm, though widely applied in literature, has two 

major drawbacks, both related to its gradient based search, and its ability to get stuck 

in local optima. The error Backpropagation algorithm can only find the optimal 

solution if (a) the initial weights and (b) the network structure are preset to optimal 

values.  

However, both these parameters of the network are problem dependent and 

can only be set by trial and error. To help solve this problem, and to help the network 

overcome this problem of local optima, several algorithms have been developed.  

One notable algorithm, Constructive Backpropagation (CBP) (Lehtokangas, 

1999), is aimed at finding the optimal structure of a three layered neural network and 

its training mechanism is as outlined in the Appendix A.  

 

Genetic Algorithm based neural networks (GANNs) 

GANNs (Yao, 1983) combine the strengths of GA and neural networks by 

incorporating a global search element into the neural network training algorithm. 

They can be summarized as below:  
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Genetic Algorithms: The concept of Genetic Algorithms (Goldberg, 1989) is used 

commonly in optimization problems. The initial population pop(0) is generated at 

random and the following steps are repeated iteratively until the termination criterion 

is reached.  

Algorithm 2.1. Pseudocode of Genetic Algorithms 

1. Each individual in a population is evaluated. 
2. Parents are selected from pop(i) based on their fitness. 
3. Crossover is applied to form the offspring. 
4. The offspring are randomly changed by applying mutation. 
5. The offspring are recombined with the parents to form the generation pop(i+1)  

 

The application of GA to neural network training also follows the same 

approach, with the exception of the representation of weights as chromosomes.  

Chromosomal representation of neural network weights: The following steps are 

taken to convert the neural network weights to chromosomes so that GA-based 

neural network training (GANN) can be carried out. Consider the neural network as 

shown in Figure 2.2. 

 
Figure 2.2. Sample neural network 

 

As GA parameters – crossover and mutation – can only be applied to 

chromosomes, it is necessary to convert the network weights from network format to 

chromosomal format. Usually, chromosomes are set such that each element in a 

chromosome is representative of one linkage weight in the corresponding neural 

network. Therefore,  
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HOOHHIelem NNNNNNN +++=      

(2.2) 

where H represents hidden nodes. 

The weights of the neural network are represented as wnm for the link between 

node m and node n, i.e. w31 for the link between node 3 and node 1, w41 for the link 

between node 4 and node 1 and so on. The network in Figure 2.2, which has no 

biases, can therefore be represented by a 6 element chromosome with the 

chromosomal structure as given in Figure 2.3. 

 
Figure 2.3. Chromosomal representation of network in Figure 2.2 

 

The weights in the chromosomal elements can be represented either in binary 

format or as real numbers. For convenience, the real number representation of 

weights is chosen to represent the neural network linkage weights as chromosomes. 

Messy GANNs 

The use of variable length Genetic Algorithms was inspired by the concept of 

messy Genetic Algorithms. Messy Genetic Algorithms (mGAs) (Goldberg et al., 

1991) allow the use of variable length strings which may be over-specified or under-

specified with respect to the problem being solved.  The original work by Goldberg 

et al. shows that mGAs obtain tight building blocks and are thus more explorative in 

solving a given problem.  

To illustrate, let us consider an evolutionary approach to train a neural 

network. The network can evolve its weights as well as its structure with a Genetic 

Algorithm (Yao, 1993).  In a three-layered neural network, the number of free 

parameters, elemN ,  is given by equation (2.2). 

w31 w32 w41 w42 w53 w54 
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As explained earlier, each of these free parameters is one element of the 

chromosome and represents one of the weights or biases in the network. A 

chromosome is therefore defined by the value of elemN  which in turn depends on the 

value of HN , populations are initialized by generating a random number of hidden 

nodes for each individual and a corresponding chromosome. The generation of messy 

GANNs is summarized below: 

Algorithm 2.2. Pseudo code for the generation of messy GANNs 

For each chromosome 
a. Generate a random number HN  between min,HN  and max,HN . 

b. Using equation (2.2), determine elemN . 
c. Generate a real coded string with elemN  random neural network weight 
values.  

End for 
 

The chromosomes are reproduced using single point crossover and mutation. 

Crossover in messy GANNs is different from that for GAs and is as explained below: 

Single point crossover: Single point crossover chooses a crossover point that is an 

element of the shorter of the two selected chromosomes. For example, given two 

chromosomes i  and j , with ielemN ,  and jelemN ,  elements respectively, where 

jelemielem NN ,, <<<< , the crossover point p  is chosen such that ielemNp ,<<<< . The resulting 

offspring chromosomes therefore have jelemN ,  and ielemN ,  elements. This is 

illustrated by Figure 2.4. 
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Figure 2.4. Single point crossover in messy GANNs  

 

In the case where the crossover point chosen is not the same for both parents, 

there is a chance of creating an offspring with architecture different from that of 

either parent. In this case, it is necessary that the resulting network be a valid one, 

i.e., it contains an integer number of hidden nodes. Therefore, before performing 

crossover, the crossover point validity is checked by evaluating the number of 

elements in the resulting offspring (based on the selected crossover points) and then 

evaluating equation (2.3) to see whether it yields an integer value. Equation (2.3) is 

obtained by rearranging equation (2.2): 
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If either of the chromosomes is invalid, an alternative crossover point is chosen.  

Minimal coded GANNs 

The implementation of Minimal Coded Genetic Algorithms (MCG) (Gong et 

al., 2004, Satoh et al., 1996) was considered because the bulk of the training time of 

an evolutionary neural network is due to the evaluation of the fitness of an offspring. 
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In minimal coded GAs however, only a minimal number of offspring is generated at 

each stage.  The algorithm is outlined briefly below. 

Algorithm 2.3. Pseudo code for the generation of minimal coded GANNs 
1. From the population pop, select u parents randomly. 
2.  Generate ϑ  offspring from the u parents using crossover/mutation. 
3.  Choose 2 parents at random from u. 
4.  Of the two parents, 1 is replaced with the best from ϑ  and the other is replaced by 
a solution chosen by a roulette wheel selection procedure of a combined population 
of ϑ  offspring and 2 selected parents.  
 

Therefore, if we choose the values of u=4 and ϑ =1 for the GANNs, except 

for the initial population evaluation, the time taken for evolving one epoch using 

MCG is equivalent to the forward pass of the Backpropagation algorithm. 

2.3.1.2 Limitations 

All the training algorithms described above encounter, at some level, the 

problem of stagnation and premature convergence to local optima.  

The limitation of Backpropagation, as described earlier, lies in its gradient 

based search nature. Therefore, the correct setting of neural network structure and 

initial training weights becomes crucial to the finding of the correct solution.  

While Constructive Backpropagation goes one step further in solving this 

problem, the addition of one hidden node simply jogs the system out of stagnation. It 

does not guarantee the finding of global optima.  

GANNs, both messy and non messy, widen the search scope by incorporating 

a global search element. However, GAs are disadvantaged due to their long training 

time. Moreover, the global search nature of GAs also makes them unsuitable for local 

optimization. Therefore, GANNs are best used as hybrids (Yao, 1993) than by 

themselves.  
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Even with the use of hybrids several bottlenecks exist that prevent their 

widespread adaptation. One major problem is their dependency on problem 

dependent or heuristic parameters, such as the changing point between the use of 

GANNs and gradient descent techniques, which have to be set and tuned manually. 

The development of ensemble and divide and conquer approaches described 

below, deals with the limitations of local optimization and premature convergence by 

using a set of networks (trained using various algorithms) to conquer the problem in 

parts.  

2.3.2 Ensemble learning 

An ensemble of learners is a set of learners whose individual decisions are 

combined in some way (using either weighted or unweighted voting) to classify new 

samples. Ensemble learning is based on the assumption that “several minds are better 

than one”. 

The basic ensemble is created using Bayesian Averaging (Schapire, 1997). 

However, more recent ensembles have been shown to be highly effective. Boosting 

(Meir and Ratsch, 2003) and Bagging (Breiman, 1996) introduce diversity in the 

learners by manipulating the training samples. Bagging presents each weak learner a 

random bootstrap sample of the original training set. Several training samples appear 

multiple times to the final solution.  

Boosting is commonly known as the best “off the shelf” classifier in literature 

(Hastie et al., 2001). Like Bagging, Boosting creates diverse learners by 

manipulating the training samples. Unlike Bagging, however, Boosting uses the 

entire training set to perform the manipulation. For each iteration, the learning 

algorithm returns a hypothesis based on the training set. The error of the hypothesis 
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is used to calculate a corresponding weight for each training sample. As a result, 

more importance is given to the wrongly learnt patterns. The final classifier is 

generated by using a weighted vote of individual classifiers.     

2.3.3 Data decomposition 

Data decomposition is also oriented towards ensemble learning. However, 

instead of introducing diversity in the weak learners by manipulating the data and 

weighing erroneous patterns, data decomposition simply removes the learnt patterns. 

The advantage is that a finite number of learners is required for learning the patterns.  

Data decomposition can be multi level (as in the case of Multisieving) or 

single level. Single level data decomposition algorithms simply reduce the size of the 

dataset and thereby aim to reduce the computation time and to improve the 

generalization accuracy. Some data decomposition algorithms are discussed below.  

Multisieving 

The Multisieving algorithm (Lu et al., 1995) implements a sieving approach 

to task decomposition. In the Multisieving algorithm, a neural network is trained 

using all the available data until stagnation occurs. At that point, all the patterns 

which produce valid outputs, i.e., ξ<− jj od , are considered learnt and therefore 

isolated along with their corresponding network. The remaining (unlearnt) patterns 

are further trained using another network and the process is repeated until all the 

patterns are learnt. Using the TWO-SPIRAL problem, the authors showed the 

validity of their approach. 

Topology based selection 

Many papers have been written on the possibility of using a subset of training 

patterns for training instead of the whole dataset. A notable work by Foody (1998) 
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argued that the classifier structure can be determined by the border patterns (i.e., 

those whose Mahalanobhis distances are close to patterns of other classes), while the 

core patterns can be discarded.  

The topology based dynamic selection (Gathercole et al., 1994) again selects 

subsets of training patterns based on their difficulty. The difficulty of a pattern is 

determined by whether the pattern can be learnt with an accuracy of ξ . More and 

more “difficult” patterns are chosen until a desired subset size is reached. 

Evolutionary algorithms are used to determine the suitability of a pattern to be part of 

the subset based on the structure the population induces on the training pattern. The 

theory behind these approaches is that when training emphasis is given to the 

difficult patterns, it is possible to obtain an accurate classifier. 

2.3.4 Class based task decomposition 

Output Parallelism (Guan and Li, 2002, Guan et al., 2004) was proposed to 

reduce the training complexity by dividing the training data into subsets according to 

the output classes. Simply, the training set, consisting of NO classes will be divided 

into NO datasets of 2 classes, each subset consisting of data points from iClass  and 

i Class 1, where ONi ∈ . A subnetwork is then trained using each subset of data, 

thereby simplifying the training data complexity. The system therefore consists of a 

series of sub neural networks which are combined together to solve the problem. 

The pattern distributor was proposed on top of the Output Parallelism 

algorithm (Guan et al., 2004). The algorithm implemented a second neural network 

to distribute test patterns to the correct subnetwork. Empirically, the use of pattern 

                                                 
1 Each pattern is relabeled according to whether it belongs to 

i Class  or not to class i (
i Class ). In 

other words, if there are NO output classes and Ntr training patterns, NO sets of Ntr  patterns are formed, 
each with two output nodes.  
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distribution achieved better results when compared to the Output Parallelism 

algorithm. Output Parallelism is explained in greater detail in Appendix B.  

Table 2.1 summarizes the difference between selected ensemble learning, 

data decomposition and task decomposition data decomposition algorithms. 

2.3.5 Limitations of surveyed supervised learning algorithms 

While all the above are effective algorithms, each of them has strengths and 

drawbacks.  While Boosting and Bagging augment the performance of weak learners 

with a probability based weighing system, the accuracy of the algorithm is shown to 

depend on the number of weak learners used, this number being problem dependent 

(Meir and Ratsch, 2003). 

Output Parallelism and related classwise decomposition algorithms (Guan 

and Zhu, 2004, Guan and Li, 2002, Guan et al., 2004) pre-partition the dataset 

according to class labels. The assumption is that a two-class problem is generally 

easier to solve than a NO -class problem, and is therefore easier to solve by dividing it 

into NO two-class problems and solving a separate neural network for each one. The 

approach has been shown effective empirically. However it can be applied to 

classification problems only and therefore limited in nature. Further, the assumption 

that a two-class problem is simpler than a NO -class problem does not hold in some 

cases, in which the application of Output Parallelism can be questionable.  

The dependency on class is overcome by the subset selection algorithms 

(Gathercole et al., 1994, Foody, 1998, Lasarzyck et al., 2004) and the Multisieving 

algorithm (Lu et al., 1995). Subset selection algorithms aim to reduce computational 

intensity by performing training by using a subset of the patterns available as a 

representative of the whole pattern set. The subset used can be either static (Foody, 
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1998) or dynamic (Gathercole et al., 1994, Lasarzyck et al., 2004). The subsets of 

patterns are selected using either numerical methods or using evolutionary 

computation. While the computation intensity is definitely reduced by the use of this 

algorithm, we should take into account that using a subset of patterns does not 

guarantee optimal accuracy. Further, the size of the subset plays an important role in 

the performance of the algorithm and this again, is a problem dependant value.  

 

Table 2.1. Summary of the differences between selected ensemble training, data 
decomposition and task decomposition methods 

Algorithm Bagging Boosting Multisieving Topology 
based 

selection  

Output 
Parallelism 

Number of 
subsets 

User 
specified and 

problem 
dependant 

User 
specified and 

problem 
dependant 

Several 
 

One Less than or 
equal to the 
number of 

output classes 
Method of 

subset 
selection 

Random 
bootstrap 
subsets 

Learning 
capability of 
weak learner 

Isolation of 
untrained 

patterns when 
neural network 

stagnates 

Genetic 
Algorithm 
and then 
selecting 
unlearnt 
patterns 

Based on 
class labels 

Subset size Fixed by 
programmer 

Dynamic Dynamic Fixed Fixed 

Adaptability Fair Very flexible 
and adaptable 

Depends on the 
pre-specified 

error tolerance 
of the network 

Adapted to 
the selected 

subset of 
patterns only 

Not adaptable 

Training 
stopping 

Each weak-
learner 

completes 
training 

based on its 
own criteria.  

Each weak-
learner 

completes 
training 

based on its 
own criteria.  

Until the last 
training pattern 

is learnt (No 
validation) 

Validated 
according the 

subset 
selected 

Based on 
validation 

data manually 
selected 

according to 
output classes 

Testing Weighted 
function 

Weighted 
function 

Implemented in 
this thesis using 
a KNN based 

pattern 
distributor 

 

Direct testing 
on the neural 

network 
formed 

With or 
without  NN 
based pattern 

distributor 

 

The Multisieving algorithm (Lu et al., 1995), on the other hand, uses a 

succession of networks to train the system until all the patterns are learnt. While the 

algorithm is an efficient one, its accurate performance depends on the value of a 
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predefined error tolerance, which is a problem dependant value. The algorithm is 

therefore, not entirely adapted to the problem topology. 

In addition to the above mentioned weaknesses, all the algorithms, with the 

exception of Output Parallelism, focus on improving the training accuracy of the 

system. The existing tradeoff between training and generalization accuracy is often 

not considered. One common approach to improve training and generalization 

accuracy is the use of the early stopping criterion (Guan and Li, 2002) to stop 

training. Early stopping is explained in further detail in Appendix C. However, early 

stopping only guarantees the appropriate stopping of training, but does not evaluate 

the effectiveness of task decomposition. Since we need to know whether a 

decomposition step is effective or detrimental (i.e., whether a resulting subset is too 

small) the early stopping criterion is not sufficient to prevent overtraining. 

2.4 Unsupervised learning 

Data clustering is an important problem, but an extremely difficult one. The 

objective of clustering is to partition a set of unlabelled patterns into homogeneous 

clusters. A number of applications use clustering techniques to organize data. Some 

applications of clustering include data mining (Fasulo, 1999, Judd et al., 1997), 

information retrieval, and machine learning. However, in real world problems, 

clusters can take on arbitrary shapes, sizes, and degrees of separation. Clustering 

techniques require us to define a similarity measure between patterns, which is not 

easy due to the varying shapes of information present in data. Neural network 

solutions for clustering data include Self Organizing Maps (SOM) as well as second 

and higher order approaches.  
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2.4.1 Self Organizing Maps 

Self Organizing Maps (SOMs) (Kohonen, 1997) represent a type of neural 

network proposed for clustering purposes. They assign a synaptic weight ( (j)W ) to 

each neuron j(x). The winning neuron is the neuron that has the highest correlation 

with the input x, i.e., it is the neuron for which xW (j) •  is the largest, i.e., 

xWx (j) ⋅= maxarg)j( j    

(2.4) 

where the operator .  represents the Euclidean norm of the vector. The idea behind 

equation (2.4) is to select the neuron which exhibits maximum correlation with the 

input. Often used instead of equation (2.4) is the minimum Euclidean distance 

matching criterion (Kohonen, 1997), given below: 

 
xWx (j) −= minarg)j( j    

(2.5) 

However, the use of the highest correlation or the minimum distance 

matching criterion implies that (a) the features of the input domain are spherical, i.e., 

deviations are equal in all dimensions and (b) the distance between features must be 

larger than the distance between points in a feature. These two implications of the 

data can be summarized in the equations below: 

  nmNn,m InImI )()(,, �≈�≠∈∀ λλ    
(2.6) 

))()(())()((, 2121212121 xxxxxxxxx,x jjifjjifT ≠•>=•∈∀    
(2.7) 

In the above equations, the I�  operator represents the covariance of the data 

matrix I, mλ  is the thm  eigenvalue.  
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the data respectively) 

Figure 2.5. Artificially generated two-dimensional two class clusters illustrating the 
weakness of SOMs 

 

Table 2.2. Summary of the properties of the data in Figure 2.5 

Data 
Name 

Spherical clusters 
(Satisfies equation 

(2.6))? 

Clusters are sufficiently 
far apart (Satisfies 

equation (2.7))? 

Number of samples 
mis-clustered by 

SOM 
Data A Yes Yes 0 
Data B Yes No 9 
Data C No Yes 1 
Data D No No 10 

 

For an arbitrary set of data to fulfill these conditions could be difficult, 

especially in cases where such distributions of data are difficult to visualize and 

detect due to the high dimensionality of the problem. Even when the distribution of 

the data is detected through visualization, the SOM may not solve the problem when 

the conditions described in equations (2.6) and (2.7) are not satisfied.  

Consider, for example, the arrangements of two data clusters in two 

dimensions as shown in Figure 2.5. Table 2.1 summarizes the properties of these 

datasets in terms of their ability to satisfy equations (2.6) and (2.7). Due to the nature 
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of the data there is no guarantee that the SOM will be able to cluster correctly the sets 

of data other than Data A. 

2.4.2 Second order, higher order and ensemble clustering approaches  

Several methods have been proposed to overcome the problem of mis-

clustering. Second order curves, with the use of an inverse covariance matrix, are 

often used to capture ellipsoidal properties (Lipson et al., 1998). The concept of 

second order curves was expanded in several cases to include second order shells. 

Kohonen (1997) discussed the use of the weighted Euclidean distance measure that 

captures different variances in the components of input signals. The use of the 

Mahlanobhis distance was also considered. 

On the other hand, non-parametric techniques such as agglomeration (Blatt et 

al., 1996) attempt to find arbitrary shapes in the clusters. However, their performance 

also depends on the ability of the cluster to satisfy equation (2.7). 

Lipson and Siegelmann (2000) proposed the generalized Higher Order 

Neuron (HON) structure, which extended second order surfaces to arbitrary order 

hyper surfaces. These neurons had the capability to detect arbitrarily shaped clusters 

and were therefore desirable over spherical or ellipsoidal detecting of clusters. HON 

could also, in a correctly prescribed order, yield results similar to non parametric 

clustering techniques. 

On the other end of the clustering spectrum are the ensemble approaches. 

Ensemble learning, which is highly popular in the supervised learning domain, has 

just begun to take root in the domain of unsupervised learning.  

While there are many ensemble approaches to supervised classifications, 

combination of clustering partitions is a more challenging task than combining 
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partitions of labeled data. In the absence of labels, labeling clusters in different parts 

of the ensemble becomes a problem. A common approach to resolving this problem 

is consensus clustering (Fred and Jain, 2005, Fred and Jain, 2002, Strehl and Ghosh, 

2002, Topchy et al., 2005). 

2.4.3 Limitations of surveyed unsupervised learning approaches 

Although ensemble clustering methods attempt to overcome the spherical 

nature of SOMs and attempt to give an answer to the labeling uncertainty associated 

with clustering problems, a problem with these methods is the generation of 

partitions. Several methods are used to create partitions for clustering ensembles. 

Some choices of partition generation include the use of different regular clustering 

algorithms, different initializations, parameter values, etc. to induce randomness into 

a specific clustering algorithm, the use of weak clustering algorithms (Jain and 

Dubes, 1998) etc. All these methods generate independent partitions, and an 

ensemble is created based on the similarity between the data in each partitioning 

algorithm.  

While the ensemble clustering approach combines the strengths of different 

clustering approaches, the optimal number of partitions is unknown. Topchy et al., 

(2005) showed consensus clustering applied to some benchmark datasets using as 

many as 25 to 150 partitions. 
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3. Problem scope and experimental setup 

3.1 Introduction 

Ensemble learning algorithms using neural networks, while efficient and 

popular, have several weaknesses as has been discussed in the previous chapter. The 

majority of these weaknesses are due to uncertainties in the number and quality of 

the ensemble members. In this chapter, we discuss the formulation of the RPHT 

algorithm so as to overcome these weaknesses. We also draw out the scope of the 

thesis problem in relation to the context of ensemble learning and describe the 

experimental setup of the thesis.  

3.2 Problem scope 

RPHT has been described in Section 1.3 (Chapter 1) as an algorithm that 

improves the training time and generalization accuracy of machine learning by 

splitting the dataset automatically into reasonably simpler subsets of data. Being 

relatively problem independent, the algorithm can be built “on top of” existing 

machine learning techniques to improve their performance. We now formulate these 

goals in the context of the RPHT algorithm as an ensemble learning system.  

3.2.1 Assumptions 

In the development of the RPHT theory, we assume, for simplicity, that the 

training patterns are independent of each other. By independence, we mean that the 

data has spatial, but not temporal properties. Also, the training patterns are linearly 

independent, i.e., there are no associations between the training patterns. Simply, the 
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output Oi of the system depends on the input Ij only when i=j. All the theoretical 

analysis in the thesis have been based on this assumption. 

The problems considered in this thesis can therefore be solved by learners 

which are of a feedforward nature, such as Backpropagation and Constructive 

Backpropagation. 

Problems that fall into this domain, and are discussed in this thesis, include 

curve fitting, classification and clustering. All the experiments discussed have been 

performed on datasets that have been preprocessed to ensure that this assumption is 

true. 

3.2.2 Research goals 

The goals of the RPHT algorithms can therefore be stated as follows: 

To create an ensemble of learners to model a dataset with patterns that are 

independent of each other such that: 

1. The number of partitions in the learner is deterministic. 

2. The worst case generalization accuracy is better than that of the base 

learner. 

In Chapters 4 and 5, we shall provide mathematical proof of how the recursive 

training algorithms developed in this thesis fulfill these goals.   

3.3 Experimental setup for supervised learning 

3.3.1 Data sets analyzed 

In supervised learning, two kinds of problems were considered for simulation. 

Curve fitting problems were taken from the non-linear regression repository (NIST, 
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2000). The curve fitting accuracy, number of training epochs and standard deviation 

are used as measures to evaluate the robustness of the training algorithm. 

Several classification problems were selected from the UCI machine learning 

repository. The training algorithms were evaluated on the basis of their training time, 

generalization accuracy and solution complexity.    

3.3.1.1 Curve fitting problems 

The training algorithms were set to solve for the coefficients of each of the 

problem equations in Table 3.1. A normally distributed noise, �, was added to the 

training, testing and validation sets in order to test the generalization capability of the 

algorithms. All the problem definitions were obtained from the non-linear regression 

repository (NIST, 2000) and in order to have a sufficient number of training patterns, 

data was artificially generated using the problem definitions and added to the data in 

the repository. To obtain the training, testing and validation datasets, the dataset was 

randomly split into three parts in the ratio of 2:1:1.  

The problems were chosen according to varying degrees of difficulty, the 

ENSO problem being the easiest and the HAHN problem being the most difficult. 

The difficulty of a given problem is measured by the value of gP , the probability of 

finding a global optimal neighborhood. The pseudo code for evaluating gP  for a 

curve fitting problem is given in Algorithm 3.1. Note that this value of gP  can only 

be obtained when the problem structure is fixed and the ideal values of independent 

parameters are known. The values used here are therefore simply measures of 

difficulty and cannot be found in real world problems. 
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Table 3.1. Curve fitting problems considered  

Problem ID ENSO GAUSS HAHN 
Number of variables 9 8 7 
Fitness Function 2
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Coefficient values {10.51, 3.07, 0.53, 44.31, -1.62, 
0.525, 26.89, 0.212,1 .49} 

{98.778, 1.04x10-2, 100.489, 
67.481, 23.129, 71.994, 178.98, 

18.389} 

{1.078, -1.266x10-4, 4.087x10-3,  
-1.43x10-6, -5.76x10-3, -1.23x10-7,  

2.40x10-4} 
Problem difficulty ( gP ) 0.01 3.5x10-4 2.04x10-5 
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Algorithm 3.1. Pseudocode for evaluating the gP  value of a problem 
1. Initialize all the other independent parameters to optimal values. 
2. For all  i, where max,min, jj wiw ≤≤ , 
 a. Vary the value of i in small steps  
 b. Evaluate trE for each i 
 c. Plot the graph of trE  against i 
End for 
  

 The procedure in Algorithm 3.1 will give us the curve of trE  vs. jw  for a 

single dimension. From the curve, the value of gP  for the dimension j is given by:  

min,max,

1
min,,max,,

,
jj

G

m
gmgm

jg ww

ww
P

−

−
=
�

=  

 (3.1) 
 

where G is the number of global optima in the dimension j. The value of gP  for the 

whole problem Nelem independent parameters is therefore ∏
=

=
elemN

j
jgg PP

1
, . Where G=1 

and m=1 , min,,gmw , max,,gmw , max,jw  and min,jw  are as defined in Figure 3.1.  
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Figure 3.1. Illustration of gP  for a dimension with a single global optimum 

 

3.3.1.2 Classification Problems 

The TWO-SPIRAL problem 

Simulations were carried out on the TWO-SPIRAL problem in order to 

illustrate the advantage of the evolutionary search. Results are compared with those 

obtained by the Multisieving algorithm (Lu et al., 1995), which implements only 

neural network based learning, The dataset consists of 194 patterns, which were 

decomposed into sets of 2:1:1 for comparison with the Multisieving algorithm. To 

ensure a fair comparison to the Topology-based Subset Selection (TSS) algorithm 

(Lasarzyck et al., 2004), test and validation datasets of 192 patterns each were 

constructed by choosing points next to the original points in the dataset as mentioned 

in the TSS paper.  The modified TWO-SPIRAL data set is as given in Figure 3.2. 

min,,1max,,1 gg ww −  

min,max, jj ww −

Global Optima 
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Class 1 Class 2
 

Figure 3.2. Modified data for the TWO-SPIRAL problem 

 

Classification problems from the UCI database 

 Table 3.2 summarizes the properties of the other classification problems 

considered in this thesis. The problems were selected from the UCI repository such 

that they spanned a variety of input dimension, output dimension and data size. They 

also cover a range of difficulty, giving a wide range of generalization error values 

when Constructive Backpropagation (Lehtokangas, 1999) is used to train them. 

Table 3.2. Summary of the classification problems considered 

Problem 
Name 

SEGMENTATION VOWEL LETTER 
RECOGNITION 

SPAM PENDIGITS 

trN  1155 495 10000 2301 3747 

tstN  578 248 5000 1150 1874 

valN  577 247 5000 1150 1873 

IN  18 10 16 57 16 

ON  7 11 26 2 10 

 

1st principal component 

 

2nd principal component 
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3.3.2 Experimental parameters 

Table 3.3. Experimental parameters used in the Recursive Supervised Learning 
algorithms 

Parameter  Value 

Crossover probability 0.9 

Mutation probability 0.2 
Pattern learning tolerance for global training � 0.1 

Population size 50 

Neural network learning rate  10-2 

Generalization loss tolerance threshold 2 1.5 

Number of stagnation epochs before CBP increases 
one hidden node 

25 

Number of neighbors considered for KNN pattern 
distributor  

1 

 

Table 3.3 summarizes the parameters used in the experiments. As we wish for 

the training algorithm to be as problem independent as possible, we make all the 

experimental parameters constant for all problems and as given below. As the 

available data was split into training, testing and validation patterns in the ratio of 

2:1:1, each experiment was run 40 times, with 4-fold cross validation. All the 

experiments were conducted using a Pentium 4, 2.4GHz processor running on the 

windows platform.   

3.3.3 Benchmark algorithms for comparison 

The following control experiments were employed for comparing the results 

of the Recursive Supervised Learning algorithm. The reason for using these 

algorithms for comparison is described below:  

� Multisieving (Lu et al., 1995) with a KNN based pattern distributor3: 

                                                 
2 The generalization loss tolerance threshold was proposed by Guan and Li (2002) when preventing 
overtraining using early stopping.  
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Multisieving is a recursive task decomposition approach using only neural 

networks. Comparison with Multisieving is expected to show the advantage 

of employing global search in Recursive Supervised Learning. 

� Dynamic Topology-based Subset Selection (TSS) (Lasarzyck et al., 2004): 

TSS is a method which employs evolutionary algorithms for reducing the 

training data size. Comparing our results with TSS is expected to show the 

need for recursive decomposition.  

� Output Parallelism without pattern distributor (Guan and Li, 2002) and 

Output Parallelism with pattern distributor (Guan et al., 2004): 

Output Parallelism algorithms are class based decomposition algorithms. 

Comparison with these algorithms will illustrate the need to go beyond class 

based decomposition.  

� Constructive Backpropagation (CBP) (Lehtokangas, 1999): 

Constructive Backpropagation is a novel algorithm that jogs a neural network 

out of local optimum by adding a new hidden node to the architecture. It is an 

algorithm which tries to find the true global optimal solution. Analysis of the 

performance of recursive training when compared to CBP will empirically 

show the efficiency of pseudo-global optima.  

� Single clustering for supervised learning (Engelbrechet and Brits, 2002): 

This algorithm is used to compare the results with RSL-CC (Chapter 5) which 

makes use of clustering and GA based combinatorial optimization. Single 

clustering comes into play to illustrate the need for a GA based combinatorial 

optimization algorithm for better performance, even in the situation where a 

pre-trainer is used.  

                                                                                                                                           
3 The Multisieving algorithm did not propose a testing system. We are testing the generalization 
accuracy of the system using the KNN pattern distributor, similar to the RSL pattern distributor. 
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In addition to these algorithms, comparison for curve fitting problems is also 

done with linear interpolation (Vasconcelos et al., 2001), which is a single staged GA 

based hybrid training algorithm and with the percentage based hybrid pattern training 

(PHP) algorithm (Guan and Ramanathan, 2007).  

3.4 Experimental Setup for unsupervised learning 

3.4.1 Datasets analyzed 

The following benchmark datasets from the UCI repository were used to 

analyze the RUL algorithm. 

1. IRIS dataset (4 dimensions, 150 patterns) 

2. WINE dataset (13 dimensions, 178 patterns) 

3. GLASS dataset (9 dimensions, 214 patterns) 

Figure 3.3 shows the 2-dimensional principal component projections of these 

datasets. 

In addition to these data, the effectiveness of the RUL algorithms has also 

been illustrated on toy datasets described in Figure 2.5 (Chapter 2). 

3.4.2 Benchmark algorithms for comparison 

We compare the performance of the RUL algorithms with the following 

benchmark training algorithms. The experiments were run using the crossover and 

mutation probabilities, population size and learning rate as described in Section 3.3.2. 

� Higher Order Neurons (Lipson and Siegelmann, 2000): 

The higher-order neuron structure detects the presence of a continuum of cluster 

shapes from spherical to arbitrary shapes. Simulations are run with neurons of 

order 2 and order 3. Order 2 detects elliptical, oval and, to a certain extent, 

banana shapes, while order 3 detects other higher-order shapes to some extent. 
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� Self Organizing Maps (Kohonen, 1997): 

The Self Organizing Map can be viewed as a Higher Order Neuron of order 1. 

This algorithm detects spherical clusters and, to an extent, oval shaped clusters. 

� Consensus clustering (Strehl and Ghosh, 2002): 

An ensemble clustering approach, consensus clustering uses the agreement of 

weak learners to create optimal partitioning. 

 

 

(a) IRIS (3 clusters) 

 

(b) WINE (3 clusters) 

 

(c) GLASS (6 clusters) 

Figure 3.3. Distribution of data in IRIS, WINE and GLASS datasets 

1st principal component 

2nd principal component 

1st principal component 

2nd principal component 

1st principal component 

2nd principal component 
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4. Recursive Pattern Based Hybrid Supervised learning (RPHS) 

4.1 Introduction 

Imagine a situation where a teacher is to teach a group of students (the 

population) a set of examples (the tasks). In a normal classroom, the teacher would 

teach the various examples repeatedly until either the teacher is satisfied with the 

results or the students are unable to learn any more tasks. Usually, the aptitude of the 

students is limited and without a very good teacher, it is unlikely that they will learn 

all the tasks. On the other hand, although very good teachers are hard to find, it is 

necessary that the class learn all the examples. 

Therefore, a new solution is proposed. The teacher now teaches all the 

samples until some students (Group A) in the class learn some of the examples (Set 

A) (The students do not have to learn these examples perfectly; they can make some 

errors during the learning). Now the teacher isolates these Group A students and 

allows them to learn set A examples alone. 

The teacher now blanks the memory of the remaining students and focuses 

their attention on the remaining examples. As the students’ memories are 

reinitialized, their previous lack of knowledge will not come into account when 

dealing with the remaining examples. The teacher teaches the remaining samples 

until a group of students (Group B) learns some of them (Set B). The teacher now 

isolates Group B and lets them learn set B examples until they are perfected. 

This process is repeated until there are too few samples left to allow further 

decomposition. The class is then set to learn these remaining samples in the best way 

possible. The teacher therefore induces a team effort, such that, as a team, the class is 

able to solve the samples better than an individual student would. She isolates 



 45

students showing aptitude for a set of problems by allowing them to focus their 

attention on those examples in particular and not worry about the problems that they 

find difficult. These examples will still be learnt… there are other students who will 

show aptitude for these problems. 

The teacher’s job is therefore simplified. The students’ job is simplified as 

well, since they only have to learn those examples they find easy and can therefore 

solve them faster and better. 

This is the concept of RPHS algorithm. The pool of solutions (population), 

along with the teacher, uses a Genetic Algorithm based global search to decompose 

the datasets recursively. Each data subset i (consisting of a subset of examples) is 

considered simple by the solution Si that has learnt it to certain extent. This solution 

Si now concentrates on specializing on the decomposed dataset and learns it perfectly 

using a local training technique (based on neural networks). The set of solutions S 

obtained can therefore solve any test pattern in the domain as long as we know which 

subset of examples the new task belongs to. In RPHS, this subset identification is 

performed using the Nearest Neighbor algorithm. We also make use of extensive 

validation and early stopping techniques to ensure that overtraining is avoided. 

The RPHS algorithm displays the following salient properties: 

� Pattern training, as well as error training, are focused on, as opposed to error 

training only. Error training alone has the disadvantage of over-training some 

patterns while other patterns can be left untrained or under-trained. 

� Since difficult patterns receive more attention in training, there is a higher 

possibility of obtaining better training, as well as generalization accuracy. 
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� Since the RPHS algorithm is also clustering based, adding new training 

patterns after training is complete will simply result in the development of 

new clusters to deal with the new patterns, instead of complete retraining. 

� As progressively fewer samples are learnt in each recursion, the training time 

required for each epoch is reduced. 

� As the difficulty of the training patterns increases progressively with each 

recursion (from the point of view of the students), the population focuses 

more on the difficult samples. 

� The recursions stop when the number of samples reduces to a small amount, 

avoiding the likelihood of overtraining. 

� The decomposition algorithm takes the problem structure into account, while 

being problem independent at the same time. Therefore, this process is more 

natural than other data decomposition techniques described in Chapter 2.  

The RPHS algorithm also reduces dependence on several training parameters 

often introduced in other hybrid algorithms and subset finding algorithms. These 

include the subset size, the degree of error tolerance ξ  and the number of epochs to 

be trained before the training mode can change from global to local. 

4.2 Algorithm description 

4.2.1 Pseudo global optima 

The observed better performance of the RPHS algorithm can be attributed to 

the fact that we aim to find several pseudo-global solutions as opposed to a single 

global solution. We define a pseudo-global optimal solution as follows: 

Theorem 4.1:  A pseudo-global optima is a global optimum when viewed from the 

perspective of a (learnt) subset of training patterns.  
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Proof: 

Consider the use of the RPHS algorithm to model a function iS  such 

that )I ,(SO itr,iitr W=,  where W is the set of values to be optimized. The training 

error of a recursion i at any point of time is given by equation (4.1): 

iunlearnt,ilearnt,itr, EEE +=     

(4.1) 

At any given point, the training error can be split into the error of the learnt patterns 

iT  and the error of the unlearnt patterns )( iTT − .  

We can define the error tolerance jξ  of a pattern j as jj od −=jξ . If we 

define a pattern j as learnt if learntj ξξ ≤ , we can conclude that unlearntlearntj ξξξ <≤ . 

Also, as we approach the optimal points through gradient descent,  

0→ilearnt,E         

(4.2) 

 

Also, consider that at the end of evolutionary training, all the learnt patterns 

have an error less than the error tolerance learnt� , i.e.  

iunlearnt,Tlearntiunlearnt,i learnt,itr, EN�EEE
i

+≤+=     

(4.3) 

Recursive training splits up the training patterns after evolutionary training of 

recursion i such that the local training of recursion i is carried out with the patterns iT  

and the global training of recursion i+1 is carried out with the patterns �
=

i

1j
jT-T . 

Assuming data independence, the value of iunlearnt,E  is therefore a constant ,C, during 

local training, i.e. for any given local training epoch,  



 48

CEE ilearntitr += ,,     

(4.4) 
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Figure 4.1.  Illustration of the concept of pseudo-global optima 

Further, from equation (4.4), 0, →∂
∂

w

itrE  as 0→∂
∂

w

learntE . From 

equations (4.2) and (4.4), we can infer that the optimum found by a given recursion is 

pseudo-global, i.e., it is globally optimal from the perspective of the learnt patterns in 

a given recursion. Therefore Theorem 4.1 is proved.  

� 

As discussed in the next section, in contrast to the Multisieving algorithm, the 

recursive training solution adapts itself accordingly, regardless of the error tolerance, 

� , to the problem topology. This property can be attributed to local training at the 

end of each recursion. Finding a pseudo-global optimum therefore reduces the 

dependence of the algorithm on the error tolerance of learnt patterns � . It is also the 

natural optimum for the data subset.  

4.2.2 Hybrid recursive training and testing 

The RPHS training algorithm can be summarized as a hybrid, recursive 

algorithm. While hybrid combinations of Genetic Algorithms and neural networks 
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are used in various works to improve the accuracy of the neural network (Yao, 1993, 

Hamedi, 2005, Karzyanski et al., 2003), the RPHS algorithm is recursive, as outlined 

below. 

The hybrid algorithm uses Genetic Algorithms to find a partial solution with a 

set of learnt and unlearnt patterns. Neural networks are used to learn “to perfection” 

the learnt patterns and Genetic Algorithms are used again to tackle the unlearnt 

patterns. The process is repeated recursively until an increase in the number of 

recursion leads to over fitting. The training process is described in detail below.  

1. As we are only looking for a fast partial solution, we use GANNs to perform the 

global search across the solution space with all the available training patterns.  

2. We continue training until a) there is stagnation or b) a subset of the patterns are 

learnt. In this stage, we use a condition similar to that in Lasarzyck et al., (2004) 

and the Multisieving network (Lu et al., 1995) to identify learnt patterns, i.e., a 

pattern is considered learnt if learntξ≤− jj od , where learntξ  is the predefined error 

tolerance.4  

3. The dataset is now split into learnt and unlearnt patterns. With the unlearnt 

patterns, we repeat steps 1 to 3. 

4. Since the learnt patterns are only learnt up to a tolerance, learntξ , we use gradient 

descent to train the learnt patterns. The aim of local search is to best adapt the 

solution to the data topology. Backpropagation is used in all the recursions except 

the last one for which Constructive Backpropagation is used. The reason for this 

is explained later. The optimum thus found is called the pseudo-global optimal 

                                                 
4 Note that, similar to the Multisieving algorithm, a tolerance learntξ  is used to identify learnt patterns; 

the arbitrarily set value of learntξ  for RPHS does not affect the performance of the algorithm, as 
explained in section 4.2.1. 
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solution, and is found using a validation set of data to prevent overtraining and to 

overcome the dependence of the algorithm on learntξ .  

If the number of patterns in a data subset is small, especially as the number of 

recursions increases, it is possible for the pseudo-global optimal solution to over fit 

the data in the subset. In order to avoid this possibility, we use a validation dataset. 

The validation dataset is used along with the training data to detect generalization 

loss using an algorithm in (Guan and Li, 2002).   

 

TR Global  
Training 

Local  
Training 

TR-TR1 

TR1 

TR-TR1 
-TR2 

TR2 

TR-
(TR1+TR2+…+TRK) 

S2 

SK 

S1 
 

Figure 4.2. Recursive data decomposition employed by RPHS 

The data decomposition technique of the RPHS algorithm can be best 

described by Figure 4.2. During the first recursion, the entire training set (T) is 

trained using global training until stagnation occurs. Only the learnt patterns are 

learnt further using Backpropagation, with measures to prevent overtraining. This 

ensures the finding of a pseudo-global optimal solution. The second recursion repeats 

the same procedure with the unlearnt patterns. The process repeats until the total 
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number of patterns in a given recursion (Recursion K) is too small, in which case, 

Constructive Backpropagation is applied to the whole dataset to learn the remaining 

patterns to the best possible extent. Algorithm 4.1 gives the detailed pseudo code of 

the RPHS algorithm. 

Algorithm 4.1. Detailed pseudo code of the RPHS algorithm 
Train ( TR , VAL , i,) 
{  

1. Use Genetic Algorithms to learn the dataset TR  using a new set of 
chromosomes 

 2. If1 stagnation occurs: 
  a. Identify the learnt patterns. 

b. Split TR  into iTR  (consisting of the learnt patterns) and 
( )iTRTR − . (consisting of the unlearnt patterns). Find corresponding 

iVAL  and ( )iVAL-VAL  as shown in Section 4.3.3. 
c. iTR  is now trained with the existing solution using the 
Backpropagation algorithm. The procedure is validated using dataset 

iVAL . 
d. If2  local training is complete (stagnation OR generalization loss): 
 If3 ( )iTRTR −  has too few patterns: 

 i. iTR = ( )iTRTR − : 
ii. Locally train iTR  until Generalization loss OR 
stagnation: 
iii. STORE network iS : 

  iv. END Training: 
 Else: 

 i. STORE iS : 
  ii. Train ( ( )iTRTR − , ( )iVAL-VAL , i+1): 

   End if3 

   End If2 
 End If1 

} 
 
 

Testing in the RPHS algorithm is implemented using a Nearest Neighbor 

(KNN) (Wong and Lane, 1983) based pattern distributor. KNN was used to 

implement the pattern distributor due to the ease of its implementation and good 

preliminary results. At the end of the RPHS training phase, we have K subsets of 
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data. A given test pattern is matched with its Nearest Neighbor. If the neighbor 

belongs to subset i, the pattern is also deemed as belonging to subset i. The solution 

for subset i is then used to find the output of the pattern. A multiplexer is used for 

this function. The KNN distributor provides the selected input for the multiplexer, 

while the outputs of subnetworks 1 to K are the data inputs.  This process is 

illustrated by Figure 4.3.   

 

 

  Figure 4.3. The two level RPHS problem solver 

4.3 Algorithm details 

4.3.1 The RPHS efficiency model  

In order to illustrate the advantage that RPHS has over other algorithms with 

respect to training time, we assume that, for all i∈Nelem, each Etr vs. wi curve has G 
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globally optimal solutions and L locally optimal solutions, we make the following 

assumptions to simplify our analysis: 

� There is at least one global optimal solution for the problem considered. i.e., 

for all i, each Etr vs. wi curve, must have at least one global optimal solution.  

� All the global optima occur with probabilities gP  and the local optima occur 

with probabilities lP , i.e., for a single dimension,  

1=+ lg LPGP       

( 4.5) 

� An optimum (local or global) can always be found, i.e., there is no stagnation 

due to plateaus on the surface.   

A global optimal solution occurs only if the values of training error are optimum for 

all dimensions. The total probability of finding a global optimal solution in a Nelem -

dimensional error space is therefore the product of gGP , over all the Nelem 

dimensions: ∏
=

=
elemN

i
igg GPP

1
, .  

Since pseudo optimal solutions only require the presence of local minima, the 

probability of finding a pseudo-globally optimal solution is: 

1=+= lgpgs PPP    

(4.6) 

From equation (4.6), we know that a pseudo-global optimal solution will always be 

found, for any problem. Therefore pgsg PP ≤  and 

pgsepgep NN ,, ≥    

(4.7) 

For the RPHS algorithm, we require K recursions to decompose the problem. 

Let us assume, for calculation simplicity, that the reduction in patterns at each 
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recursion is the same, i.e., where 
τ
1

 represents the fraction of unlearnt patterns at 

each recursion, 12321 −==== K
tr

tr
tr

tr
tr

trtrtr �

N ...... N
�

N, N
�

N, NNN
K

. The 

following conditions have to be taken into account to find the best value of K. 

Condition Set 4.1. Primary set of conditions for RPHS efficiency  

Condition 1: Training Accuracy 

For good training accuracy, every pattern, no matter how difficult, needs to be 

learnt. In order to make sure that every pattern is learnt, K recursions are required, 

where ( )( )tr� NceilK log= . 

Condition 2: Generalization accuracy  

In order to ensure generalization accuracy and to filter out noise components, 

we need to make sure that there are enough training patterns in the Kth recursion. For 

this let us first begin by using, the rule of thumb advocated by in Haykins (2000) for 

the number of training patterns required for good generalization accuracy in a 

problem.  K is therefore set such that the number of training patterns in the Kth 

recursion is greater than 10 times the number of free parameters.  

Therefore, for optimal training we require elemK
tr N

�

N
10

1
>− .  

Solving for K, we obtain: 

�
�
�

�
�
�
�

�
��
�

�
��
�

�
=

elem

tr
� N

N
ceilK

10
log     

(4.8) 

Conditions 1 and 2, give us an ideal value of K as given by equation (4.8). 

Note that if the training is stopped by stagnation, it means that there is little 

correlation between the training, testing and validation data. In this case, more 
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training patterns are required for the reliability of the solution, and a smaller K is 

advocated. The termination conditions for this case are discussed in Section 4.3.4.  

Condition 3: Training time 

As K recursions are required for RPHS to give accurate training results, we 

can say that RPHS training is faster than other methods that focus on finding a single 

global optima listed in the survey (Carvalho and Freitas, 2004, Rovithakis et al., 

2004, Vasconcelos et al., 2001, Yasunaga et al., 1999) if the number of epochs 

required to find a global optimal solution is greater than the number of epochs 

required to find K local optimal solutions.  

�
=

>
K

i
ipgs,ep,gep, NN

0
     

(4.9) 

where K is as given in equation (4.8). We assume that the number of epochs required 

to obtain an optimal solution is inversely proportional to the probability of obtaining 

that solution, i.e., epNP /β= , where P is the probability of finding the optima and 

Nep is the number of epochs required to find the optima and β  is a proportionality 

constant. We further assume that for a problem with G global optima and L local 

optima, LG+=== βββ ...21 , i.e., the probability of finding a pseudo-global optima is 

equal to or greater than the probability of finding a global optima. 

We hypothesize that for inequality (4.9) to be true, inequality (4.10) should be 

satisfied. 

K
Pg

1<    

(4.10) 
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Theorem 4.2. For the RPHS technique to find K pseudo optimal solutions and be 

more efficient than a technique to find the single global optimal solution, the 

probability of finding the global optimal solution must be smaller than 1/K. 

Proof: 

We prove the validity of inequality (4.10) by assuming that the opposite is 

true, i.e., KPg
1≥ . This means that the probability of finding a global minimum is 

not very difficult. Therefore, from (4.9), 

 

�
=

≥
K

i
ipgsep

gep NN

1
,,

,

11
, resulting in �

=
≤

K

i
ep,pgs,iep,g NN

1

, i.e., classical GA will perform 

faster than the RPHS.  Therefore, for RPHS to be faster than classical GA, inequality 

(4.10) must hold.  

� 

Implications of Theorem 4.2: 

If the number of recursions, K, is small, Pg is often less than 1/K and the 

RPHS algorithm solves the problem in fewer epochs. On the other hand, the number 

of independent training patterns required for RPHS to be successful in generalization 

is determined by equation (4.8). This means that RPHS requires more training 

patterns than single-staged algorithms. If the number of training patterns is too small, 

then the generalization accuracy of RPHS will be equal to the generalization 

accuracy of the base learner trained with the same amount of data. This property is 

discussed in Section 4.3.5. 

4.3.2 The use of Backpropagation and Constructive Backpropagation 

With reference to Figure 4.1, local training is simply an error minimization 

procedure, where the patterns involved are already learnt. As such, there is no need to 
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change the structure of the subsolution, and only Backpropagation is used in 

executing this search.  

However, the final recursion aims to get the best network to fit the remaining 

data. In order to ensure this, it is necessary to search for both the optimal network 

structure and its weights. Constructive Backpropagation is therefore applied only for 

the last recursion.   

 Limiting local search to simple Backpropagation in all recursions except the 

last one conserves training time and improves the algorithm efficiency.  

4.3.3 The choice of validation patterns 

For optimal training, it is necessary to use suitable validation data for each 

decomposed training set. In this section we propose and justify the algorithm for 

choosing the optimal validation data for each subset of training data.  

Consider the distribution of data shown in Figure 4.4. Each colored zone 

represents data from a different recursion. The patterns learnt by solution i are 

explicitly exclusive of the patterns learnt by solution j, ji ≠∀ . The RPHS 

decomposition tree in Figure 4.2 can therefore be expressed as shown in Figure 4.5. 

According to Figure 4.5 and the RPHS training algorithm described in Section 4.2, 

the first recursion begins with TR , the data to be globally trained, At the end of the 

recursion, TR  is split into 1TR  (data to be locally trained) to give 1S  (the network 

representing the Data 1TR , and ( )1TRTR −  (data to be globally trained to give 

solutions 2 to K). We represent all the networks that represent ( )1TRTR −  as 1S , 

i.e., the data that is represented by  1S  can never be represented by 1S . We therefore 

propose the following pseudo code for validation.  
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Given a set of patterns, FindVi finds out which patterns can possibly be 

solved by the solutions that exist. Patterns that can be solved are isolated and used as 

specific validation sets. Besides a more accurate validation dataset, it is also possible 

to obtain the intermediate generalization capability of the system, which is useful is 

stopping recursions, as described in the next section.  

 

Algorithm 4.2. Pseudocode for validation  
Do until stagnation or early stopping 
 Optimize MSE criterion locally(). 
 Validate (). 
End 
 
Validate() 

FindVi().  
Use the validation set iVAL   to validate the solution iS  for recursion i. 

 
FindVi() 
For each validation pattern 
 Use KNN. 
 If Pattern � iTR  
  Add Pattern to iVAL .  
End 
 

 
Figure 4.4. Sample data distribution for the decomposition of validation data 
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Figure 4.5. The data distribution of the RPHS recursion tree 

 

The intermediate pattern distributor is similar to that described in Section 

4.2.2, except that it only has two outputs. Its responsibility is to decide whether a 

pattern is suitable for validating the subset of patterns in question or not.  

4.3.4 Stopping recursions 

In Section 4.3.1, we described the conditions for stopping the RPHS 

algorithm if a) the number of free parameters is known and b) there is a sufficient 

number of training data. However, often, this is not the case. We are sometimes 

presented with situations where the number of data patterns is too small. In other 

situations, especially when using dynamic neural network structures, it is impossible 

to predetermine the number of free parameters. In this section, we present a method 

to terminate the RPHS algorithm during such situations.  
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Final 
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Note: In the above flowchart, the following process is described. 
1. The unlearnt data for recursion i (All the data for i=1) is used to train a 

GANN subnetwork.  
2. Based on the learnt and unlearnt data from the recursion i, the Nearest 

Neighbor algorithm is used  to decompose the validation data into validation 
subset i: iVAL  (Patterns belonging to recursion i) and iVAL  (Patterns 
belonging to recursions other than i).  

3. The training subset i and validation subset i are used together with the GANN 
subnetwork to obtain the final subnetwork. 

4. If the validation accuracy of the first i  subnetworks is lower than the 
validation accuracy of the first 1−i  subnetworks, the final subnetwork i  is 
retrained using the remaining unlearnt data and the training subset i to the 
best possible extent possible.  

5. If 4 is not true, then 1, 2 and 3 are repeated with the remaining unlearnt 
patterns. 

Figure 4.6. The overall RPHS training algorithm  

Decompositions of data in the RPHS algorithm are done as follows: An 

intermediate pattern distributor with two outputs is implemented after each recursion 

as described in the previous section. Using the intermediate pattern distributor, we 
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obtain the validation error ( ival,E ) and training error ( itr,E )5 of a recursion i. at the end 

of each recursion. If 1)-(ival,ival, EE > , the recursion i is overtraining the system. 

Therefore only the results of i-1 recursions are considered. The overall RPHS 

training algorithm can therefore be described as shown in Figure 4.6 . 

4.3.5 Worst case generalization accuracy 

A primary goal of recursive training as described in this thesis is to ensure that 

decomposition of data does not compromise upon the generalization accuracy of the 

system. We therefore designed the decomposition criteria of the RPHS system such 

that the worst case generalization accuracy of the system would be better than the 

generalization accuracy of the base weak learner. Here, we provide rigorous proof of 

the system’s generalization capabilities and discuss the tradeoffs in employing the 

RPHS system. 
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Training 

TR-TR1 
(E2,0) 

TR 
(E1,0) 

TR1 
(E1,1) 

TR1 
(E1,1’) 

TR2 
(E2,1) 

TR2 
(E2,1’) 

 

Figure 4.7. Generalization error over two recursions of RPHS 

                                                 

5 Both ival,E  and itr,E  represent the percentage of (training and validation) patterns in error of the 
RPHS system with i recursions. 
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Figure 4.7 shows the generalization error of RPHS across two recursions. Here, the 

terms E1,0 and E2,0 represent the error at the beginning of recursions 1 and 2. E1,1 and 

E2,1 represent the error at the end of global training while E1,1
’ and E2,1

’ represent the 

error at the end of local training, such that 0,21,10,1 EEE += . More generally for any 

given recursion i,   

0,11,0, ++= iii EEE  

(4.11) 

As discussed in Section 4.2.1, if data independence is assumed, 

0',' 1,21,1 →EE  if E refers to the training error of the system. However, if we perform 

local training using early stopping and a validation dataset as described in Appendix 

C, and consider E to represent the validation error of the system, 0',' 1,21,1 >EE . The 

total validation error of the system at the end of the first recursion can be given by 

'
1,10,11, EEEval += , i.e., for any given recursion i, the total validation error will be 

given by  

�
=

+=
i

j
jiival EEE

1

'
1,0,,  

(4.12) 

That is, at the end of the second recursion, the total validation error will be given by  

'' 1,11,20,22, EEEEval ++=   

(4.13) 

This represents the validation error of the learnt patterns at the end of recursions 1 

and 2 and the validation error for the unlearnt patterns in recursion 2. We can 

consider a decomposition as being effective (i.e., it does not result in a loss of 

generalization accuracy) if 

  ivalival EE ,1, >−  

(4.14) 
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From equation (4.12), this condition can be simplified as below: 

��
=

−

=
− +>+

i

j
ji

i

j
ji EEEE

1

'
1,0,

1

1

'
1,0,1 , i.e., 

'
1,0,0,1 iii EEE +>−  

(4.15) 

i.e., the validation error (of the learnt and unlearnt patterns) at the end of a given 

recursion must be less than the validation error of the unlearnt patterns at the end of 

the previous recursion.  

 We can clearly see that the only time when the condition in equation (4.15) 

will not be satisfied is when the decomposition of data is unsatisfactory. Therefore 

equation (4.15) is deemed as a sufficient condition for the continuation of recursive 

decomposition and training.  

Equation (4.15) is only dependent on the training and validation errors of the 

system. Prior information on the data topology and its distribution need not therefore 

be known when determining the termination of RPHS training. 

Theorem 4.3. If the training patterns are independent of each other, the worst case 

generalization accuracy of the RPHS system is the generalization accuracy of the 

base learner6. 

Proof: 

We use the condition in equation (4.15) to determine the worst case 

generalization accuracy of the RPHS system. The largest validation error of the 

system, given a certain data set T, is simply 0,1E , the error when no training has taken 

place in the system. The second decomposition will always be a valid one if  

                                                 
6 Here, the term base learner (or weak leaner) is as described in Chapter 2 and is defined as a 
classification system that achieves an accuracy of greater than 0.5 on a two class problem. The weak 
learner is therefore a system that is slightly better than a “no-knowledge” system.  
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'
1,20,20,1 EEE +>  

From Figure 4.6, we can observe that if the converse is true, i.e. if '
1,20,20,1 EEE +< , 

the result of the second recursion will be dropped and the base learner will be trained 

using the data of the first recursion. The worst-case generalization of the RPHS 

system is therefore the accuracy of the base learner. Theorem 4.3 is therefore proved.  

� 

4.3.6 Inter and intra recursion separability 

In Section 4.2.2, we have described the RPHS testing algorithm as a Kth 

Nearest Neighbor based pattern distributor. If the data solved by recursion i and 

recursion j are well separated, then the Kth Nearest Neighbor will give error-free 

pattern distribution. 

However, the RPHS algorithm described so far does not guarantee that data 

subsets from two recursions are well separated. Error can therefore be introduced into 

the system because of the pattern distributor. In this section we discuss the efforts 

made to increase the separability between data subsets. Empirically, there is some 

improvement in the experimental results when the separation criterion is 

implemented, although there is a tradeoff in time. We outline below the method 

proposed to implement subset separability. 

Definition 4.1: Inter-recursion separation is defined as the separation between the 

learnt data of recursion i, ( iTR ) and the data learnt by other recursions ( iTR ).The 

two data subsets are mutually exclusive. 
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Definition 4.2: Intra-recursion separation represents the separation of the data in the 

same subset of RPHS. In the case of learning with neural networks, the MSE error 

can be used as a substitute for the intra recursion separation. 

Separability criterion 

The separability criterion is a mathematical expression that evaluates the 

separation between two sets of data. In this work, we will use the Bhattacharya 

criterion of separability for a 2-class problem (Fukunaga, 1990). 
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(4.16) 

 

In the equation above, µ  is the data mean and �  is the covariance matrix It should 

be noted that the selection of the Bhattacharya criterion is purely arbitrary. Other 

criterion that can be used are Fisher’s criterion (Fukunaga, 1990), Mahalanobhis 

distance (Foody, 1998), etc. 

Objective function for global training 

In order to increase the inter recursion separation; we modify the fitness function for 

GANNs as given by the equation below.  

)()1()()( 1
1

iBattitr
tr

i ChromDwChromE
N
w

Chromg −−=     

(4.17) 
In equation (4.17) 1w  is the importance of the intra recursion separation with respect 

to the chromosome fitness. In this chapter, we present our results with 5.01 =w .  
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4.3.7 The RPHS computational complexity 

Here we present an argument to the computational complexity of the RPHS 

algorithm. Let the time taken to forward pass a single pattern through a neural 

network be t and the number of training patterns at the start of each recursion be 
itrN . 

For simplicity, we assume the following. (i) The neural network architecture is the 

same throughout. (ii) The time required for other computations (Backpropagation, 

crossover, mutation, selection, etc.) is negligible when compared to the evaluation 

time. The second assumption is valid as the exp function of the forward pass stage is 

more computationally intensive than the other functions. Therefore the total time 

required for epN  epochs of CBP is tNNt trepCBP 1
= . 

The total time required for RPHS with minimal coded GA (29) can also be 

expressed as a summation of the time taken in each recursion i, 

�
=

+=
K

i
iegratorRPHS ttt

1
int . The time taken for each recursion is given as below. 

tNNtNNtNNt
iii trpopltrlieptrgiepi ++= ,,,    

(4.18) 

where giepN ,  and liepN ,  refer to the number of epochs required for global and local 

training in recursion i. 
itrN  and 

iltrN ,  refer to the number of patterns at the 

beginning of recursion i and the number of patterns learnt at the end of recursion i 

respectively. The last term refers to the initialization of the recursion population with 

Npop chromosomes.  

The bulk of the time in the equation above depends on the third term, i.e., the 

initial evaluation of the chromosome population in each recursion. The justification 

of the above claim is from the following property of RPHS and evolutionary search: 
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From the experimental results observed and due to the capability of Genetic 

Algorithms to find a partial solution faster, we can also say that giepN ,  is small. In 

the experiments carried out, the value of giepN ,  is usually less than 20 epochs. 

The location of the pseudo-global optimal solution found by GA is relatively 

unimportant as the pseudo-global optima is always globally optimal in terms of the 

patterns selected. This implies that with a small population size, the RPHS algorithm 

is likely to be a fast algorithm. 

In order to observe the effect of the number of chromosomes popN  on the 

training time and the generalization accuracy of the RPHS system, we performed a 

set of experiments using the MCG based RPHS algorithm with a varying number of 

chromosomes. The graphs below show the trend in training time and generalization 

accuracy for initial population sizes between 5 and 30. The population size of 5 

chromosomes was chosen so that MCG can be implemented with 4 chromosomes for 

mating and still retains the best fitness values. 
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(c) SPAM 

Figure 4.8. The effect of using different sized initial populations for RPHS with the  
SEGMENTATION, VOWEL and SPAM datasets 

It is interesting to note that the number of chromosomes Npop in the initial 

population of each recursion does not play a big role in the generalization accuracy of 

the system. This is, once again, an expected property of the RPHS algorithm as it is 

the Backpropagation algorithm that completes the training of the system according to 

the validation data. The part played by the Genetic Algorithm is only partial training 

and it is the presence of the local optima, not its relative position that is important for 

the RPHS algorithm. Therefore, if training time is an issue, using the minimal 
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requirement of 5 chromosomes and implementing MCG can solve the problem with 

comparable accuracy to a larger population.  

Therefore, the most efficient training time for the RPHS algorithm will be as 

given by equation (4.19) which is based on equation (4.18), 
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(4.19) 

4.4 Experimental results 

4.4.1 Training curves  

The training curves compare the advantage of the use of RPHS over single 

staged training algorithms. We compare the training curve of RPHS, for curve fitting 

problems, with single staged algorithms. Percentage based hybrid pattern training 

(Guan and Ramanathan, 2007) and linear interpolation (Vasconcelos et al., 2001) are 

some of the more recent hybrid algorithms developed using evolutionary algorithms 

only. For classification problems, the training curve of RPHS is compared to that of 

Constructive Backpropagation (Lehtokangas, 1999). 

The simulation results show that the RPHS algorithm has a lower training 

error than all the other algorithms that are used in comparison. In particular, both the 

GAUSS and the HAHN problems have a very small value of Pg. It is observed from 

the set of graphs in Figure 4.9 that the number of training epochs required when 

using RPHS is much lower than the results using single staged hybrid training. 

4.4.2  Studies on the TWO-SPIRAL problem 

According to Lu et al (1995), the Multisieving algorithm achieved 100% 

training accuracy. However, with the small number of training patterns, 100% 
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training accuracy does not hold much value unless accompanied by equal 

generalization capability. We therefore compare the data splitting mechanisms of the 

Multisieving algorithm (as reported in Lu et al. (1995)) and the RPHS algorithm. 

This will show us the clear advantage of using evolutionary algorithms as a base for 

data decomposition. Figure 4.10(a) shows the original training data of the TWO-

SPIRAL set and the decomposition of the data by the RPHS and the Multisieving 

algorithm Figure 4.10(b). The lines show separation between the two classes of the 

TWO-SPIRAL problem.  

It is observed that the global search implicitly finds separable sets of data, i.e., 

compared to the original dataset, the decomposed datasets are more separable and 

hence more suited for Backpropagation training. The separation is better defined with 

the RPHS algorithm than with the Multisieving algorithm. 
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Figure 4.9. Training comparison between Linear Interpolation, PHP and RPHS for 

ENSO, GAUSS and HAHN and comparison between RPHS and CBP for 
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4.4.3 Generalization accuracies 

Table 4.1 compares the mean (µ) and variance (σ2) of the RPHS 

generalization accuracies of the curve fitting problems with those of LI and PHP. 

Table 4.2 compares the generalization accuracy and training time of the RPHS with 

CBP (Lehtokangas, 1999) OP (Guan and Li, 2002, Guan et al., 2004), Multisieving 

(Lu et al., 1995) and TSS (Lasarzyck et al., 2004). The benchmark datasets from the 

UCI repository, described in Chapter 3, are used for the experiments. 
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(a) Decomposition using the RPHS algorithm (x and y represent the 1st and 2nd 
principle component values of the data respectively) 
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(b) Decomposition using the Multisieving algorithm (Lu et al., 1995) (x and y 
represent the 1st and 2nd principle component values of the data respectively) 

Figure 4.10. Comparison of RPHS and Multisieving in decomposing the TWO-
SPIRAL dataset  

 Table 4.1. Comparison of generalization accuracy of curve fitting problems 

Linear 
Interpolation 
Accuracy 

PHP Accuracy RPHS Accuracy Problem 
Name 

µ σ2 µ σ2 µ σ2 

ENSO 0.74 0.13 0.74 0.11 0.85 0.06 
GAUSS 0.64 0.21 0.72 0.15 0.87 0.09 
HAHN 0.40 0.09 0.45 0.09 0.68 0.06 

 

RPHS training is carried out with four options (i) Genetic Algorithms with 

no decomposition of validation patterns (RPHS-GAND), (ii) Genetic Algorithms 

with decomposition of validation patterns (RPHS-GAD), (iii) MCG (Gong et al., 
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2004) with no decomposition of validation patterns (RPHS-MCGND), and (iv) 

MCG with decomposition of validation patterns (RPHS-MCGD). The Genetic 

Algorithms and Minimal Coded GAs (MCG) are used in the global training phase as 

described in Chapter 2. The graphs in Figure 4.9 compare CBP with the 4th training 

option (RPHS-MCGD).  

Based on the results presented, we can make the following observations and 

classify them according to training time and generalization accuracy. 

Generalization accuracy 

� All the RPHS algorithms give better generalization accuracy when compared 

to the traditional algorithms (CBP, TSS and Multisieving). 

� The algorithms which include the decomposition of validation data, although 

marginally longer than that without decomposition, have better generalization 

accuracy than Output Parallelism. As the algorithms implementing Output 

Parallelism do so with a manual decomposition of validation data, it follows 

that a version of RPHS will be more accurate than corresponding algorithms 

based on Output Parallelism. 

� Implementing RPHS with the separation criterion gives the best 

generalization accuracy although there is a large tradeoff in time.  

� The RPHS algorithm that uses MCG with the decomposition of validation 

patterns (MCGD) provides the best tradeoff between training time and 

generalization accuracy. When compared to RPHS-GAD and RPHS with 

separation, the tradeoff in generalization accuracy is minimal when compared 

to the reduction in training time. 

� The number of recursions required by RPHS, on average, is lower than the 

number of classes in a problem and gives better generalization accuracy. This 
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appears to suggest that classwise decomposition of data is not the most 

optimal. 

Training time 

� The training time required by CBP is the shortest of all the algorithms. 

However, as seen from the tables and graphs, this short training time is most 

likely due to premature convergence of the CBP algorithm. 

� Apart from the CBP algorithm, the RPHS algorithm carried out with MCG 

has shorter training time than the Output Parallelism algorithms. The training 

time of the Multisieving algorithm is larger or less than the RPHS-MCG 

based algorithms depending on the datasets. This is expected as the nature of 

the dataset determines the number of levels that Multisieving has to be 

implemented and therefore influences the training time.  

� The basic contribution of the Minimal Coded Genetic Algorithms is the 

reduction of training time. However, there is a small tradeoff in generalization 

accuracy when MCGs are used. This can be observed across all the problems.  

� The use of the separation criterion with the RPHS algorithm increases the 

training time by several folds. This is expected as the training time includes 

the calculation of the inverse covariance matrix (Section 4.3.6, equation 

(4.16)). This is the tradeoff for obtaining marginally better generalization 

accuracy. 

The time taken using the separation criterion may or may not be acceptable 

depending on the problem dimension, the number of patterns, etc. However, when 

the primary goal is to improve the generalization accuracy of the system and the 

learning is done offline, the separability scheme can be included for better results. 
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Table 4.2. Summary of training time and generalization accuracy obtained over different versions of RPHS and comparisons with benchmark 
algorithms7 

SEGMENTATION VOWEL LETTER 
RECOGNITION 

SPAM TWO-SPIRAL 

C. Error 
(%) 

C. Error 
(%) 

C. Error 
(%) 

C. Error (%) C. Error 
(%) 

Algorithm used 

T. time 
(s) 

� � 

T. 
time 
(s) � � 

T. time 
(s) 

� � 

T. 
time 
(s) � � 

T. 
time 
(s) � � 

CBP 693.8 6.20 - 237.9 37.16 - 20845.1 21.67 - 43.6 27.92 - 15.6 49.38 - 
Multisieving 760.6 7.28 - 318.2 39.43 - 55349.0 65.04 - 123.1 21.06 - 35.9 23.61 - 

OP - - - 418.9 25.54 - 42785.4 20.06 - N.A N.A - N.A N.A - 
OP with PD 2219.2 7.10 - 534.3 24.89 - 45625.4 18.64 - N.A N.A - N.A N.A - 

Topology-based 
Subset Selection 

- - - - - - - - - - - - - 28.0 - 

Average number of 
RPHS recursions 

7.20 6.42 21.30 2.48 2.65 

RPHS-GAND 1004.8 6.45  0.7 812.9 25.27  3.2 38461.0 13.14  4.2 142.2 21.00  0.7 76.3 15.42  5.1 
RPHS-GAD 1151.8 6.08  0.6 842.2 16.72  3.2 47447.0 11.10  3.3 156.8 20.75  0.6 87.9 10.54  3.5 

RPHS-MCGND 545.8 6.59  0.5 396.3 23.24 3.1 27282.0 13.08  2.3 58.7 22.11 0.4 45.7 13.25  3.0 
RPHS- MCGD 688.3 6.30  0.5 473.9 17.73 3.1 29701.0 12.42  2.1 82.8 20.97  0.4 59.9 11.08  3.0 

RPHS with 
separation 

1435.7 6.12 0.2 884.6 14.82  3.0 94898.0 10.92  1.9 517.6 18.76  0.2 129.2 10.31  2.8 

 

                                                 
7 The generalization accuracy of OP and CBP are the same for two- class problems such as SPAM and TWO-SPIRAL. The results of OP (Guan et al., 2004) and TSS 
(Lasarzyck et al., 2004) have been taken from the respective research papers. Simulations on CBP were performed as part of our research. 
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4.4.4 Verification of the lower-bound of the RPHS generalization accuracy: A 

study of the GLASS problem 

The GLASS problem consists of 9 inputs, 6 outputs and 214 patterns. When 

split into a set of training, testing and validation patterns in the ratio of 2:1:1, we 

obtain training, testing and validation sets of size 107, 53 and 54 patterns. The small 

number of training patterns when compared to the problem dimensionality makes the 

GLASS problem ideal as a counter example for verifying the worst case 

generalization capability of RPHS., i.e., for verifying Theorem 4.3. In this section we 

present the results of the CBP, RPHS and Output Parallelism algorithms on the 

GLASS problem. 

Table 4.3. Classification accuracy of the GLASS problem 

Algorithm Mean C. Error (%) 
CBP 35.09 
RPHS 35.09 
RPHS with 2 recursions 38.52 
RPHS with 3 recursions 42.13 
OP 39.43 

 

As expected, due to the small number of training patterns when compared to 

the problem dimension, we notice that the classification error steadily increases with 

increasing number of recursions. However, as discussed in Section 4.3.5, 

implementing the RPHS algorithm as shown in Figure 4.6 results in the execution of 

the RPHS algorithm with one recursion, i.e., the classification error of the algorithm 

on the GLASS dataset is 35.09. This is the same as the classification error of CBP, 

the base learner implemented. Theorem 4.3 is therefore verified.  
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4.5 Discussions 

In this chapter, we have proposed the RPHS algorithm, a topology adaptive 

method to implement task decomposition automatically. With a combination of 

automatic selection of validation patterns and adaptive detection of decomposition 

extent, the algorithm enables to decompose efficiently the data into subsets, such that 

the generalization accuracy of the problem is improved. We have proved and verified 

that the generalization accuracy of the algorithm presented is always better than or 

equal to that of the base learner.   

We have compared the classification accuracy and training time of the 

algorithm with six algorithms, illustrating the effectiveness of (1) recursive subset 

finding, (2) pattern topology oriented recursions, and (3) efficient combination of 

gradient descent and evolutionary training. We found that the classification accuracy 

of the algorithm is better than both Constructive Backpropagation algorithm and 

Output Parallelism. The improvement in generalization accuracy when compared to 

the Constructive Backpropagation is up to 60% and 40% when compared to Output 

Parallelism. The training time of the algorithm is also better than the time required by 

the Output Parallelism algorithm. 

On a conceptual level, the main contribution of RPHS is twofold. Firstly, the 

algorithm shows, both theoretically and empirically, that when training is performed 

based on pattern topology using a combination of evolutionary training and gradient 

descent, generalization is better than partitioning the data based on output classes. It 

also shows that the combination of EAs and gradient descent is better than the use of 

gradient descent only, as in the case of the Multisieving algorithm (Lu et al., 1995). 

Secondly, the chapter also presents a data separation method to improve 

further the generalization accuracy of the system by consciously reducing the pattern 
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distributor error. While this is shown, both conceptually and empirically, to reduce 

the generalization error, the algorithm incurs some cost due to its increased training 

time. One future work involves reducing this training time without compromising the 

accuracy. 
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5. Recursive Supervised Learning with Clustering and 
Combinatorial optimization (RSL-CC) 

5.1 Introduction 

Let us reconsider the teacher-student scenario of RPHS proposed in Chapter 

4. In the scenario, the teacher feeds the students with the examples until a group of 

students learns a subset of samples.  The group specializes on the learnt samples, and 

the teacher moves on to teach the rest of the examples to a new set of students.  

In RSL-CC, we place a constraint on the learning capability of students. We 

hypothesize that, if a student is able to learn a sample, he is probably able to learn 

similar samples. Samples are therefore grouped together, and students are expected to 

learn the samples in groups.  

By limiting the flexibility allowed to the student, RSL-CC controls the subset 

groupings. A higher authority decides that it is more efficient for students to learn the 

examples in groups and groups the examples accordingly. If this higher authority is 

efficient, the task domain and therefore the decision making requirement of the 

students are reduced. The teaching time is also reduced.  

5.2 Algorithm description 

The system proposed consists of a pre-trainer and a trainer. The pre-trainer is 

made up of a clusterer and a pattern distributor. The clusterer splits the data set into 

clusters of patterns. The pattern distributor assigns validation patterns to each of 

these clusterers. The trainer now solves a combinatorial optimization problem, 

choosing the clusters that can be learnt with best training and validation accuracy. 

These clusters now form the “easy” patterns which are then learnt using a gradient 

descent algorithm to create the first subnetwork. The remaining clusters form the 
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“difficult” patterns. The trainer now focuses attention on the difficult patterns, 

thereby recursively isolating and learning increasingly “difficult” patterns and 

creating several corresponding subnetworks.  

The use of Genetic Algorithms in selecting clusters is expected to be more 

efficient than their use in the selection of patterns for two reasons. 

� The number of combinations is now k
n C  as opposed to 

liT

iT

N
N C

,

, , where the 

number of available clusters n , is less than the number of training patterns 

iTN , . Similarly, the number of clusters chosen, k , is smaller than the number 

of training patterns chosen liTN , . The search space is now smaller, therefore 

increasing the probability of finding the better solutions 

� The distribution of validation information is performed during pre-training, as 

opposed to during the training time. Validation pattern distribution is 

therefore a one-off process, thereby saving training time.  

The RSL-CC algorithm can be described in two parts, pre-training and training. In 

this section, we explain these two aspects of training in detail. 

5.2.1 Pre-training 

1. We express valvaltrtr OIOI  and  , ,  as a combination of NO classes of patterns, i.e.,  

}...I , I,{II ON2 CCC
trtrtrtr

1=  

}...� ,� ,{�O ON21 CCC
trtrtrtr =  

}I,...,I,{II ON21 CCC
valvalvalval =  

}O,...,O,{OO ON21 CCC
valvalvalval =  

2. The datasets valvaltrtr OIOI  and  , ,  are split into NO subsets as shown below, 
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 { } { } { }ONONONON22221111 CCCCC
l

CCCCCCC O,I,O,I,....O,I,O,I,O,I,O,I valvaltrtrvavaltrtrvalvaltrtr    

(5.1) 

where each subset in expression (5.1) consists of only patterns from one class.  

3. Each subset, { } Ovalvaltrtr Ni ∈,iiii CCCC O,I,O,I , now undergoes a clustering treatment as 

shown below: 

� Cluster iCI tr  into iCk  partitions or natural clusters. Any clustering 

algorithm can be used, including SOMs (Kohonen, 1997), K-means 

(Kohonen, 1997), Agglomerative Hierarchical Clustering (Blatt et al., 

1996).  

�  Using a pattern distributor, patterns in iCI val  are assigned to one of the iCk  

partitions. In this thesis, we implement the pattern distributor using the 

Nearest Neighbor algorithm (Wong and Lane, 1983). 

� Each validation or training pattern in a given cluster kjj ∈,iC , has the 

same output pattern. 

4. The total number of clusters is now the sum of the natural clusters formed in each 

class.  

 �
=

=
ON

i
c kN

1

iC    

(5.2) 

5.2.2 Training 

1. Number of recursions i=1 

2. A set of binary chromosomes are created, each chromosome having cN  elements, 

where cN  is defined as in (5.2).  
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An element in a chromosome is set at 0 or 1, 1 indicating that the corresponding 

cluster will be selected for solving using recursion i. 

3. A Genetic Algorithm is executed to minimize the recursion error iE , the average 

of the training and validation errors trE  and valE  

( )valtri EEE +=
2
1

    

(5.3) 

4. The best chromosome bestChrom  is a binary string with a combination of 0s and 

1s, with the size cN . The following steps are executed 

 i. 0=i
cN , []VAL[],TR ii ==  

ii. For j=1 to cN  

  if 1)( ==jChrombest   

   ++i
cN  

   (j)chromii best
TRTRTR +=  

(j)chromii best
VALVALVAL +=  

 iii. The data is updated as follows: 

TR = TR - iTR  

VAL = VAL - iVAL  

i
ccc NNN −=  

++i  

iv. iTR and iVAL  are used to find iS , the solution network corresponding to 

the subset of data in recursion i. 

5. Steps 2 to 4 are repeated with the new values of TR , VAL , cN  and i . 
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5.2.3 Simulation 

Simulating and testing the RSL-CC algorithm was implemented, as in RPHS, 

using a Nearest Neighbor (KNN) (Wong and Lane, 1983) based pattern distributor. 

This method was described in Chapter 4. 

5.3 Algorithm details 

5.3.1 Illustration 

The RSL-CC algorithm can be viewed as finding successively simpler subsets 

of data and developing a subnetwork to solve each subset. The size of the “difficult” 

subset becomes smaller as training proceeds, thereby allowing the system to focus 

more on the “complicated” data. When the size of the remaining dataset becomes too 

small, we find that there is no motivation for further decomposition and the 

remaining data is trained in the best possible way. Later in this thesis, we observe 

how the use of GA’s combinatorial optimization takes care of when to stop 

recursions automatically. The use of GAs to select patterns as in the case of RPHS 

requires extensive tests against detrimental decomposition and overtraining. The 

proposed RSL-CC algorithm uses Genetic Algorithms to detect detrimental 

decompositions and eliminates explicit tests against overtraining. This property of 

RSL-CC is described in detail later in the thesis. As a result, the resulting algorithm 

is self sufficient and very simple, with minimal adaptations. 

Example  

Figure 5.1 illustrates a scenario where the RSL-CC algorithm is applied to 

create a system to learn the dataset shown. The steps performed on the dataset are 

traced below. With the data in Figure 5.1, the best chromosome selected at the end of 
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the first recursion has the configuration: “0 0 1 0 1 1 1 0 0 1 1 0 0 1 0 0 1”, the 

chromosome selected at the end of the second recursion has a configuration: “1 0 1 0 

1 1 1 1 1”. And at the end of the third recursion, the chromosome has the 

configuration “1 1”. All the remaining data is selected and the training is complete. 

Termination criteria 

The grouping of patterns means that clusters of patterns are selected for each 

subset. Further, in contrast with any other method, the proposed GA-based recursive 

subset selection procedure selects the optimal subset combination.  

Theorem 5.1. Given an infinite pool of chromosomes, the decomposition of data 

performed by RSL-CC is the optimal decomposition solution based on the available 

data.  

Proof: 

Let us assume that the population of chromosomes is diverse and that at least 

one chromosome is within a possible global optimal region and has the capability of 

being evolved into it. This assumption is valid since the probability of finding a 

pseudo-global optima is the same as that of finding a local or global optimum.  

If the subset chosen at recursion i is not optimal, an alternative subset will be 

chosen. The largest possible alternative subset is the training set for that recursion, 

�
−

=

−=
1i

1j
ji TRTRTR . 

At the recursion i, the subset chosen, iP , is such that  i
i TRP ⊆ . If any 

i
i TRP ⊂  is found to be suboptimal, no decomposition will be performed and the 

training will terminate after i recursions. The size of the last subset is therefore iTR . 

� 
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a. Hypothetical data pre-training: Patterns are clustered according to 1: class labels and 2. 
Natural clusters within each class. Clusters 1,3,5,8,12, 14,15 and 17 contain patterns from 
class 1 and the rest of the clusters contain patterns from class 2.  

  

b. The combinatorial optimization procedure of 
the 1st recursion selects the above clusters as 
the “easy” patterns. They are isolated and 
separately learnt. 

c. These patterns are the “difficult” 
patterns of the 1st recursion, they are 
focused on in the second recursion. 

  

d. The above patterns are considered “easy” by 
the combinatorial optimization of the second 
recursion and are isolated and learnt separately. 

e. The remaining “difficult” patterns of the 
second recursion are solved by the 3rd 
recursion.  

Figure 5.1. Illustration of RSL-CC, with steps traced 
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Theorem 5.2. The worst case generalization accuracy of RSL-CC is the 

generalization accuracy of the base learner. 

Proof: 

Theorem 5.2 follows from Theorem 4.3 and Theorem 5.1. The generalization 

accuracy will equal that of the base learner if the largest subset is chosen at the end of 

global training in the first recursion, i.e., 1
1 TRP = . 

� 

We therefore have the following termination conditions: 

Condition set 5.1: Termination conditions for RSL-CC 

Condition 1: No clusters of patterns are left in the system. 

Condition 2: Only one cluster is left in the remaining data. 

Condition 3: More than one cluster is present in the remaining data, but all the 

clusters belong to the same class. 

Condition 1 occurs when the optimal choice in a system is to choose all the 

clusters as decomposition is not favorable. Conditions 2 and 3 describe dealing with 

cases when it is not necessary to create a classifier due to the homogeneity of output 

classes.  

Fitness function for combinatorial optimization 

In equation (5.3), we defined the fitness function as an average of the training 

and validation errors obtained when training the subset selected by the chromosome, 

( )valtr EE +
2
1

. The values of trE  and valE  are calculated as follows: 

1. Design a 3-layered neural network with an arbitrary number of hidden nodes 

(we use an arbitrary 10 nodes, for the purpose of this thesis). 
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2. Use the training and validation subsets selected by the corresponding 

chromosome to train the network.  

The best performing network is chosen as bestChrom . 

5.3.2 Heuristics for improving the performance of the RSL-CC algorithm 

We propose here several methods to improve the algorithm, making it more 

efficient and accurate implementation-wise. 

Population size 

The number of elements in each chromosome depends on the total number of 

clusters formed. However, the number of chromosomes in the population, in this 

thesis, is evaluated as follows: 

),2min( pop
N

chrom NN c=    

(5.4) 

This means that the population size is either popN , a constant for the maximal 

population size, or if cN  is small, cN2 .  

The argument behind the use of a smaller population size is so that when 

there are 4 clusters, for example, it is not efficient to evaluate a large number of 

chromosomes.  So only 16 chromosomes are created and evaluated. 

 Number of generations 

In the case where the number of chromosomes is cN2 , only one generation, 

with no chromosome duplication is performed, as this is sufficient for the complete 

exploration of the search space. This step is again to ensure the efficiency of the 

algorithm.  

Duplication of chromosomes 
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Again, with efficiency in mind, we ensure that in the case where the 

population size is cN2 , we ensure that all the chromosomes are unique. Therefore, 

when the number of clusters is small, the algorithm is a brute force technique. 

5.3.3 Computational complexity of the RSL-CC algorithm 

In this section we present a simplified model for the computational 

complexity of RSL-CC versus the computational complexity of RPHS. As in Section 

4.3.7 (Chapter 4), we let the time taken to forward pass a single pattern through a 

neural network be t and the number of training patterns at the start of each recursion 

be tri. Likewise, for simplicity, we assume the following.  

i. The neural network architecture is the same throughout.  

ii. The time required for other computations (Backpropagation, crossover, 

mutation, selection, etc.) is negligible when compared to the evaluation time. 

Further, we assume that the same number of recursions is required for both 

RPHS and RSL-CC to solve a given problem.  

The last assumption is not always true, as from the experimental results in 

Section 5.4, we will see that RSL-CC generally requires fewer recursions to solve a 

problem. Nevertheless, for simplicity, we assume that the two algorithms require the 

same number of recursions.  

Similar to how we defined the time taken for RPHS training, we can define a 

similar measure of training time for RSL-CC as given in equation below: 

pretrainer

K

i
iegratorCCRSL tttt ++= �

=
−

1
int  

(5.5) 
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Here, egratort int  refers to the training time of the pattern distributor, pretrainert  the 

training time of the clustering based pre-trainer and it  refers to the training time of 

the recursion i . 

it  can be expressed as the sum of two elements: 

� The time taken for evaluating each chromosome for giepN ,  epochs (the global 

training phase). 

� The time taken for local training using bestChrom . 

�
=

+=
pop

i

N

j
jeplepi tNNtNNt

1
,, j

ii trtr  

(5.6) 

As in the case of RPHS, itr  refers to the data available at the beginning of the 

recursion i. j
itr  refers to the data selected by the chromosome j, such that itrtr j

i ⊆ . 

In the case where Minimal Coded Genetic Algorithms were not used with RPHS, the 

expression for it  for RPHS can be written as follows: 

�
=

+=
popN

j
giepliepRPHSi tNNtNNt

1
,,, j

ii trtr  

(5.7) 

Theorem 5.3. All other conditions being constant, since i
j

i trtr ⊆ , the training time 

for RSL-CC is less than that of RPHS.  

It correspondingly follows that if minimal coding were applied in both cases, 

the training time for RSL-CC will still be shorter than that of RPHS-MCGD.   

However, in this thesis, experimental implementations refer to RSL-CC without 

minimal coding.  
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5.4 Experimental results 

The generalization error of RSL-CC (Table 5.1) is comparable to the 

generalization error of RPHS algorithm and is a general improvement over other 

recent algorithms. The RPHS algorithms used in the tables are the RPHS-MCGD and 

RPHS-GAD, discussed in Section 4.4. Significant improvement can be observed in 

the VOWEL dataset. 

The training time for the RSL-CC algorithm is much shorter than the training 

time for RPHS-GAD. This is expected from our analysis in 5.3.3. However, it is 

interesting to note that the training time for the LETTER RECOGNITION problem is 

less than half of the other recent algorithms. This reduction in training time comes 

from the reduction of the problem space from the selection of patterns to the 

selection of clusters, where clusters are selected from 100 possible clusters while 

RPHS has to select patterns out of 10,000, thereby reducing the solution space by 

100 fold.  

 On the other hand, for the VOWEL problem, the problem space is reduced by 

only about 13 fold. The performance of RSL-CC is more efficient when the reduction 

of the problem space is more significant than the GA-based combinatorial 

optimization. 

The results of the TWO-SPIRAL dataset were compared with Constructive 

Backpropagation, Multisieving and the Topology-based Subset Selection algorithms 

only. This is because the TWO-SPIRAL problem is a two-class problem. Therefore 

implementing the Output Parallelism will not make a difference to the results 

obtained by CBP. 



 94 

Table 5.1. Comparison of RSL-CC results with benchmark algorithms  
 

VOWEL LETTER RECOGNITION TWO-SPIRAL 

C. Error (%) C. Error (%) C. Error (%) 

Algorithm used 

T.time (s) 

� � 

T.time (s) 

� � 

T.time (s) 

� � 

Constructive 
Backpropagation 

237.9 37.16 - 20845.0 21.67 - 15.6 49.38 - 

Multisieving with KNN 
pattern distributor 

318.2 39.43 - 55349.1 65.04 - 35.9 23.61 - 

Output Parallelism 418.9 25.54 - 42785.4 20.06 - N.A N.A - 

Output Parallelism with 
pattern distributor 

534.3 24.89 - 45625.4 18.64 - N.A N.A - 

RPHS-MCGD 473.9 17.73 3.15 29701.0 12.42  2.14 59.9 11.08  3.01 
RPHS-GAD 842.2 16.72  3.21 47447.0 11.10  3.30 87.9 10.54  3.52 

Single clustering 458.4 25.24 - N.A NA - 14.3 10.82 - 
RSL-CC 547.3 9.84  3.55 12682.0 13.04  4.11 30.6 10.82  2.11 

RSL-CC details 
(average values) 

38 clusters, 8 recursions 
 

100 clusters, 16 recursions 4 clusters, 2.5 recursions 
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Data Subset P1 found by the first recursion of RSL-CC 

 
 

Data Subset P2 found by the second recursion of RSL-CC 

 
Data Subset P3 found by the third recursion of RSL-CC 

 
Data Subset P4 found by the forth recursion of RSL-CC 
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Data Subset P5 found by the fifth recursion of RSL-CC 

 

Data Subset P6 found by the sixth recursion of RSL-CC 

Figure 5.2. Decomposition of data for the VOWEL problem 



 97

Figure 5.2 and Figure 5.3 illustrate the data decomposition for the VOWEL 

and TWO-SPIRAL problems respectively. Only one instance of decomposition is 

presented in the figures. From the figures, we can observe that the data is separated 

according to topology. No rules are followed with respect to the class composition of 

the data. In some subsets (VOWEL recursion 5, TWO-SPIRAL recursions 1 and 2), 

only one class is represented while in others, multiple classes are represented. From 

these figures and the experimental results presented, the hypothesis that a topology 

based selection is better than class based and one-pass algorithms is reinforced. The 

decomposition presented is the 2 dimensional projection on the principal component 

axis (PCA) (Fukunaga, 1990) of the input space.  

 
a. The original TWO-SPIRAL training data 
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b. Data Subset P1 found by the first recursion of RSL-CC 

 
c. Data Subset P2 found by the second recursion of RSL-CC 

 
d. Data Subset P3 found by the third recursion of RSL-CC 

 

Figure 5.3. Decomposition of data for the TWO-SPIRAL problem 

(x and y represent the 1st and 2nd principle component values of the data respectively) 

5.5 Discussions 

In this chapter, we presented the RSL-CC algorithm which divides the 

problem space into class based clusters, where combinations of clusters will form 

subsets for recursive training. The problem therefore becomes a combinatorial 
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optimization problem, where the clusters chosen for each subset becomes the 

parameter to be optimized. Genetic Algorithms were used to solve this problem to 

select subsets for recursive training.  

The subset chosen is then trained separately, and the combinatorial 

optimization problem is repeated with the remaining clusters. The situation 

progresses recursively until all the patterns are learnt. The subnetworks are then 

integrated using a KNN-based pattern distributor and a multiplexer. 

Our results showed that reducing the problem space into clusters simplifies 

the problem space and produces generalization accuracy which are either comparable 

to or better than other recent algorithms in the same area.  

Future work would include parallelizing the RSL-CC algorithm and exploring 

the use of other clustering methods such as K-means or SOM on the algorithm. The 

study of the effect of various clustering algorithms will help us determine better the 

algorithm simplicity and robustness. Also to be studied and determined are methods 

to further reduce the training time of combinatorial optimization, alternative fitness 

functions and ways to determine the robustness of class based clustering. 
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6. Parallel RPHS 

6.1  Introduction 

 

The idea behind Parallel RPHS (or P-RPHS) is to begin with several 

populations performing global search. Each population learns the subset that is 

easiest to it. The individual populations are then set to focus on the patterns that they 

have already learnt to arrive at their subsolutions. However, the number of patterns 

learnt now increases to the union of the subsets learnt by the individual solutions. 

The second recursion has therefore fewer patterns to learn. 

We can observe that P-RPHS has two advantages with respect to RPHS. 

Firstly, as more patterns are likely to be learnt in each recursion, and as recursions 

are performed in parallel, we will be able to complete the training with a fewer 

recursions and a shorter training time.  

Secondly, there is a possibility of overlap between the learnt patterns of 

different processors. Therefore, even if one of the subsolutions is wrong in predicting 

the output of a given pattern, this error can be overridden by a comprehensive voting 

system based on majority and confident votes. It is therefore expected that the 

parallel RPHS algorithm can attain better generalization accuracies in a shorter 

period.  

6.2 Algorithm description 

6.2.1 System overview 

The proposed P-RPHS system is a two-level system as shown in Figure 6.1. 

Simply put, the input signal is distributed across two layers. The first layer is the 
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recursion chooser. The pattern is determined, based on its Nearest Neighbor, as 

having been solved in a given recursion i. The input is then passed through the 

various subnetworks in recursion i. 

Note that each recursion results in a set of subnetworks or processors. 

Therefore, a pattern selected as belonging to a recursion i can belong to any of the 

subnetworks in recursion i. The pattern is therefore selected, again using a Nearest 

Neighbor algorithm, to belong to one or more of the subnetworks in the processors 

set i.  

Each of the selected subnetworks now predicts its output to the pattern. Given 

that sysoutN  outputs are produced, the correct output among them is chosen by a 

voting system that will be described in Section 6.2.3.2. 

 

Figure 6.1. System architecture of P-RPHS 
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6.2.2 Formal description of training algorithm 

As in the RPHS and RSL-CC algorithms, the P-RPHS algorithm takes TR  as the 

training patterns to the system and VAL as the validation data, and comes up with an 

ensemble of K  subsets. Let P represent this ensemble of K  subsets, such that 

{{{{ }}}}K21 P,...,P,PP ==== , where, for , { }ii
i VAL,TRP = . 

Further, iP  can be written as:  

i
N

i
2

i
1

i P....PPP
pp

���= , 

ppNi,i,2i,1i TR....TRTRTR ���=  

and  

ppNi,i,2i,1i VAL....VALVALVAL ���=  

(6.1) 

where ppN  refers to the number of parallel processors in each recursion.  

The problem is now to find a set of a set of neural networks 

{ }K21 ,...SS,SS = , where 1S  solves 1P , 2S  solves 2P  and so on. 

Here, { }
ppNiii SSS ,2,1, ,...,,=iS , with each neural network holding the corresponding 

solution for each of the subsets i
1P  to i

Npp
P . 

The parallel RPHS algorithm can therefore be expressed by the following 

pseudocode. Since the last recursion produces only one subnetwork, the number of 

subnetworks in the system is given by (6.2). 

( ) 11 +−= ppssubnetwork NKN  

(6.2) 
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Algorithm 6.1. Pseudocode of the P-RPHS algorithm 

Train ( TR , VAL , i) 
{  
 1. For  j=1: ppN  

a. Use Genetic Algorithms to learn the dataset TR  using a new set of 
chromosomes. 

  { i. Identify the learnt patterns. 
ii. Find ji,TR  (consisting of the learnt patterns) and 

corresponding ji,VAL .  

iii. ji,TR  is now trained with the existing solution using the 
Backpropagation algorithm. The procedure is validated using 
dataset ji,VAL . 

iv. The solution  jiS ,  is recorded. 
} 

End For 
2. Find 

ppNi,i,2i,1i TR....TRTRTR ���=  and  

   
ppNi,i,2i,1i VAL....VALVALVAL ���= . 

3. Compute ( )iTRTR −  and ( )iVALVAL − . 
4. If  ( )iTRTR −  has too few patterns 
{ a. iTR = ( )iTRTR − . 

b. Locally train iTR  until Generalization loss OR stagnation. 
c. STORE network iS . 

  d. END Training. 
} 
Else 
{ STORE { }

ppNiii SSS ,2,1, ,...,,=iS . 

Train ( ( )iTRTR − , ( )iVALVAL − , i+1). 
             } 

End If 
} 

6.2.3 Simulation with the P-RPHS 

The two-level system of the P-RPHS warrants a slightly complicated 

simulation procedure when compared to that of RPHS and RSL-CC. Two pattern 

distributors were proposed – non-voting and voting based.  
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6.2.3.1 The non-voting simulator for RPHS 

 

Figure 6.2. Pattern distributor and P-RPHS simulation based on non-voting 

The single level non voting P-RPHS system (Figure 6.2) consists of a system 

similar to that of the RPHS and RSL-CC systems.  

Simulation is therefore performed as given in the following pseudocode: 

Algorithm 6.2. Pseudocode for the non-voting based P-RPHS simulator 

1. For Each Test Pattern 
         a. Find the Nearest Neighbor. 

b. Choose one processor j in one recursion i to which the Nearest Neighbor 
belongs. 

  c. Solve the test pattern using the corresponding network jiS , . 
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The non-voting simulator is based on the assumption that each of the 

subnetworks jiS ,  is error free for the patterns belonging to the corresponding 

domain. Ties in the processor outputs are therefore ignored.  

The response time of a system that does not implement voting is therefore the 

sum of the response time of the pattern distributor and the response time of the 

selected neural network solution. 

jiSegratorrespresp ttt
,int, +=  

(6.3) 

6.2.3.2 The voting based P-RPHS simulator 

The voting based simulator can be described by the following pseudo code.  

Algorithm 6.3. Pseudocode for the voting based P-RPHS simulator 

 For each test pattern 
 a. Find the Nearest Neighbor. 

b. Choose all the subsets, ji,TR , which the pattern belongs to. Let this 

number of processors be sysoutN  such that ppsysout NN ≤ . 

c. For sysoutNj :1=  

 i. Solve the test pattern using jiS , . 
End For 
d. If nm OO =∈∀ ,, sysoutNnm  //All the solutions give the same output. 

i. Output sysoutNm ∈,mO . //An arbitrary output is selected from 

sysoutN . 
Else 
 i. Count the frequency of output sysoutNm ∈∀,mO . 

ii. If one of the outputs occur with more frequency 
 Predict the most frequent output. 
Else If any of the of the outputs are predicted with more confidence 
 Predict the most confident output. 
Else  

                         Predict an output at random. 
                 End If 
    End If 

End For 
 

  



 106

Assuming that the time taken to compute confidence score is negligible, the 

response time of the voting simulator is the response time of the pattern distributor 

plus the response time of all the selected processors. It can be given by the equation 

below:  

�
=

+=
ysoutNs

j
jiegratorrespresp tStt

1
,int,  

(6.4) 

6.3 Experimental results  

6.3.1 Generalization accuracy 

The tables below summarize the generalization accuracy of P-RPHS when 

compared to other algorithms discussed in this thesis. Comparisons have been 

performed with CBP and RPHS- MCGD. Results present the training time in series, 

the classification error with voting, the training and the network complexities of the 

P-RPHS system. The standard deviations of classification error is given in brackets.   

 These results are analyzed in Section 6.4. The effect of voting on the 

generalization accuracy of P-RPHS is analyzed in Section 6.3.2. 

Table 6.1. Summary of the P-RPHS results on the SEGMENTATION problem  
C. error(%)  Algorithm used T. time 

(s) � � 
Mean # of 
recursions 

Mean # of 
Hidden Nodes 

CBP 693.80 6.20 - 1 29.4 
RPHS- MCGD 333.54 6.30  0.50 6 334.8 

2 Processor P-RPHS 354.15 5.71  0.58 6 656.4 
3 Processor P-RPHS 412.86 5.54  0.55 5 805.0 
4 Processor P-RPHS 515.24 5.56  0.63 4 860.0 
5 Processor P-RPHS 602.07 5.55  0.53 4 940.0 
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Table 6.2. Summary of the P-RPHS results on the VOWEL problem  

C. error (%) Algorithm used T. time  
(s) � � 

Mean # of 
recursions 

Mean # of 
Hidden Nodes  

CBP 237.90 37.16 - 1 41.0 
RPHS- MCGD 473.88 17.73  3.10 11 597.6 

2 Processor P-RPHS 518.24 12.39  2.63 7 754.6 
3 Processor P-RPHS 600.22 9.20  2.74 6 1018.8 
4 Processor P-RPHS 719.58 8.66  2.58 7 1547.0 
5 Processor P-RPHS 798.76 7.69  2.42 6 1690.8 

 

Table 6.3. Summary of the P-RPHS  results on the LETTER RECOGNITION 
problem  

C. error(%) Algorithm used T.time 
(s) 

� � 

Mean # of 
recursions 

Mean # of 
Hidden Nodes  

CBP 20845 21.67  1 73.6 
RPHS- MCGD 29701 12.42  2.10 22 876.0 

2 Processor P-RPHS 12442 12.56  2.39 10 1670.0 
3 Processor P-RPHS 13352 12.14  2.43 8.5 2050.0 
4 Processor P-RPHS 15185 11.38  2.05 9.5 2440.0 
5 Processor P-RPHS 16028 11.38  2.08 10 2713.3 

 

Table 6.4. Summary of the P-RPHS results on the SPAM problem  

C. error(%) Algorithm used T. time  
(s) 

� � 

Mean # of 
recursions 

Mean # of 
Hidden Nodes  

CBP 43.65 27.92  1 23.0 
RPHS- MCGD 82.80 20.97  0.40 3 162.0 

2 Processor P-RPHS 120.15 20.65  0.62 2.5 237.5 
3 Processor P-RPHS 156.38 20.60  0.53 2.5 325.0 
4 Processor P-RPHS 180.44 20.56  0.47 2 282.0 
5 Processor P-RPHS 215.12 20.54  0.49 2 274.0 

 

Table 6.5. Summary of the P-RPHS results on the PENDIGITS problem  

C. error(%) Algorithm used T. time  
(s) 

� � 

Mean # of 
recursions 

Mean # of 
Hidden Nodes  

CBP 1202.03 6.50   1 64.6 
RPHS- MCGD 1994.73 2.80  1.10 6 215.4 

2 Processor P-RPHS 1236.80 3.22  0.90 4 399.2 
3 Processor P-RPHS 1954.30 2.43  1.07 4 560.0 
4 Processor P-RPHS 2154.50 2.45  0.80 4 717.3 
5 Processor P-RPHS 2688.30 2.43  0.87 4 956.0 
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6.3.2 Effect of voting 

The process of voting, as described in Section 6.2.3.2, was designed to choose 

the most confident output in case of conflicting outputs in the processors. 

Empirically, though, it was observed that voting only made a difference to the 

generalization accuracy of the LETTER RECOGNITION. This difference, given in 

Table 6.6 shows the classification errors with and without voting for the 2, 3, 4, and 5 

processor setup. It is clearly observed that voting plays a very significant part in the 

improvement of the classification accuracy of the P-RPHS system. However, the 

response time of the system is increased, almost by twofold, by the computation of 

multiple outputs and the calculation of confidence scores. The computational 

intensity of the voting system was described in Section 6.2.3.2. 

Table 6.6. Effect of voting on the generalization accuracy of the LETTER 
RECOGNITION problem 

C. Error 
with voting 

(%) 

C. Error 
without 

voting (%) 

Number of 
Processors 

� � � � 

Response 
time without 

voting (s) 

Response 
time with 
voting (s) 

2 12.56  2.39 15.93  3.52 0.61 1.21 
3 12.14  2.43 15.61 2.69 1.02 2.03 
4 11.38  2.05 14.03  2.47 1.27 2.53 
5 11.38  2.08 13.97  2.36 1.41 2.68 

6.4 Discussions 

This chapter proposes a parallel RPHS system with information exchange and 

collection at the end of each recursion. The system shows good general improvement 

over the RPHS system in Chapter 4 in terms of generalization accuracy. One thing 

that is noticeable in the parallel version is the training time. The training time given 
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in Section 6.4 is the series training time. The series training time refers to the total 

training time of the system as given in equation (6.5) 

��
= =

=
K

i

N

j
jitotal

p

tt
1 1

,  

(6.5) 

 

This implies that this time refers to the sum of the time taken to execute each 

processor in each recursion. The linear nature of the relationship between the training 

time and the number of processors shows that if, on the other hand, the P-RPHS were 

run in parallel, the training time of the system would be reduced by several fold.  

It is also observed that the number of recursions and the classification 

accuracy converges across processors. For the datasets tested, this convergence 

occurs most likely when the number of processors used is between 3 and 4. The 

network complexity also appears to converge in all the problems except the 

PENDIGITS problem. 

Voting to determine the generalization capability of P-RPHS was found to be 

advantageous, but mostly unnecessary. In fact, the advantage of voting only came 

into consideration when working with the LETTER RECOGNITION dataset. All 

other datasets resulted in the same generalization accuracy with and without voting. 

This observation seems to reinforce the confidence of the pseudo-global optima and 

that each pseudo-global optima is error free on the training subset.  



 110

7. Application: Output Parallelism based on RPHS (OP-RPHS)  

7.1 Introduction 

Output Parallelism (Guan et al., 2004), a task decomposition method 

proposed to reduce the output dimension is used to simplify classification problems. 

The classifier, instead of learning to distinguish between NO output classes, learns to 

distinguish instead between two classes, i.e., to distinguish between iclass  and 

iclass . The problem’s output space is now reduced by NO times. The details of 

Output Parallelism can be found in Appendix B.  

We attempted this combination of RPHS with Output Parallelism for two 

reasons. Firstly, RPHS with Output Parallelism (OP) is an advantageous combination 

due to the pre simplification of the dataset before applying recursive training. The 

system is therefore able to identify more easily the “simpler” and “difficult” patterns, 

resulting in outputs with high confidence and low standard deviation.  

More importantly, in chapters 4 to 6, we had described recursive algorithms 

which were developed with traditional algorithms (Genetic Algorithms, 

Backpropagation) as their base. Although newer algorithms such as Minimal Coded 

Genetic Algorithms (Gong et al., 2004) and Constructive Backpropagation 

(Lehtokangas, 1999) were used, they were but tools in the efficient development of 

the algorithm. However, newer and better algorithms for machine learning are 

coming up every day. What, then, is the role of recursive training in the future? 

This is an important question to ask ourselves, and to ensure that RPHS does 

not become “just another algorithm”; we designed it such that it could be easily built 

on top of other machine learning algorithms. CBP and MCG aside, we build RPHS 

on top of a more complicated algorithm and observe the learning improvement. We 
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had proved earlier in Chapters 4 and 5 that the generalization accuracy of RPHS and 

RSL-CC is better than the generalization accuracy of the base learner. In this chapter, 

we verify this theorem using the OP algorithm.   

Output Parallelism was chosen because it was a recent development. 

Moreover, it was a product of our lab, and has been well developed and documented. 

Source codes were therefore easily available for us to construct and develop upon. 

Also, the algorithm itself is fairly straightforward and, similar to RPHS, uses several 

sub- procedures such as validation and early stopping to ensure good accuracy. This 

made the OP an ideal candidate algorithm for testing the extendibility and flexibility 

of RPHS. 

In this chapter, we present a method for combined decomposition, Output 

Parallelism with recursive pattern-based hybrid supervised training (OP-RPHS). OP-

RPHS employs a combination of both class decomposition and domain 

decomposition in its architecture hence integrates the advantages of both methods.  

OP-RPHS can be grown and trained in parallel on parallel processing units, thereby 

improving training time. Using the final network structure of OP-RPHS, OP-RPHS 

outperformed both conventional OP and RPHS in terms of classification accuracy.  

The results are consistent across three benchmark datasets. 

7.2 Algorithm description 

7.2.1 System overview 

OP-RPHS employs a combination of both class and domain decomposition in 

its architecture hence integrates the advantages of both methods.  The fundamentals 

of OP-RPHS are built upon OP and RPHS.  Sub-modules in OP can be trained in 

parallel and no communication is required amongst sub-modules during training.  
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Consequently, we can also model each sub-module in OP as an independent neural 

network system that contains a partial solution to the original problem.  In RPHS, the 

GA recursively partitions the original input data space into n sub-networks.  From 

this point onwards, no further communication is needed amongst the sub-modules 

and each sub-module is then trained to fit the local data on each sub-space.  In this 

light, we can model the OP-RPHS system as shown in Figure 7.1.  Subsequently, 

each sub-module can be modeled as an independent neural network system that 

outputs a complete solution to the original problem. 

Since all sub-modules in both OP and RPHS can be modeled as independent 

neural network systems, each of these sub-modules can be further decomposed by 

other decomposition methods.  In addition, OP operates on the output space while 

RPHS operates on the data space.  As such, OP and RPHS are individual 

decomposition techniques that can be applied to solving a single problem. 

OP 
sub problem 1

OP
sub problem n-1

OP
Sub problem n

RPHS unit 1

RPHS unit n-1

RPHS unit n

Final 
Solution

Merge

 
 

Figure 7.1. The OP-RPHS architecture 

 

Input 
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Let us assume that a problem has IN  inputs, NO outputs and Ntr training 

patterns.  In our design of OP-RPHS, OP is first applied to decompose the original 

problem by its output classes into n sub-problems.  Each sub-module will receive the 

full input training patterns, tr, as the original problem.  After the first stage of 

decomposition, RPHS is applied to decompose each sub-module into K recursions or 

K sub-networks.  Each sub-network here has IN  inputs and the same number of 

outputs unit as its parent sub-module, as illustrated by Figure 7.1.  Furthermore, 

parallel processing can be easily implemented in this design and each sub-module 

can be trained on separate machines, thereby reducing training time.  The central 

system here is only needed for pre-processing and the merging of output data at the 

end. 

In this chapter, sub-module is used to refer to neural network units 

decomposed by class using OP, while sub-network refers to neural network units 

decomposed by domain using RPHS.  As such, the original problem is decomposed 

by OP-RPHS into n  sub-modules in the first phase, and each sub-module is further 

decomposed into K sub-networks in the second phase.  Hence, the solution neural 

network consists of a total of n  sub-modules and ( n ×K) sub-networks.  Parallel 

training time refers to the time taken for the slowest parallel sub-module to complete 

its training.  Series training time assumes there are no parallel processing units 

available so all sub-modules are trained sequentially on one processor. 

7.3 Experimental results  

First, the effect of various output partitioning combinations were investigated 

to identify the most suitable combination for a given problem using OP-RPHS.  The 

following naming convention for each output partitioning scheme is adopted.  Using 

PENDIGITS as an example, OP-RPHS (full partition) represents dividing 
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PENDIGITS into 10 sub-modules of 1 output unit each.  OP-RPHS [2 2 2 2 2] 

represents dividing it into 5 sub-modules, each sub-module have 2 output units.  OP-

RPHS [1 1 1 1 2 2 2] would represent 7 sub-modules, the first four sub-modules 

having 1 output unit while the last three have 2 output units. 

Table 7.1. Summary of OP-RPHS results on the PENDIGITS problem 

T. time (s) C.accuracy  Architecture Series Parallel 
Mean # of 

hidden units  � � 
CBP 1202.0 1202.3 64.6 0.935  0.008 
OP 4846.3 1852.5 528.2 0.947  0.003 
RPHS 1994.7 1994.7 215.4 0.972  0.011 
OP-RPHS 
[2 2 2 2 2] 1690.4 354.7 548.1 0.943  0.107 
OP-RPHS 
[1 1 1 1 2 2 2] 2221.6 349.7 623.1 0.964  0.037 
OP-RPHS 
(full partitioning) 3514.9 359.1 747.8 0.988  0.000 

 

Table 7.2. Summary of OP-RPHS results on the SEGMENTATION problem 

T. time (s) C.accuracy 

Architecture 

Series Parallel 

Mean # of 
hidden 
units 

 

� � 

CBP 115.7 115.7 29.4 0.938  0.006 
OP 1619.3 651.5 443.1 0.929  0.005 
RPHS 333.5 333.5 213.1 0.939  0.005 
OP-RPHS 
[2 2 3] 388.3 141.8 372.3 0.921  0.049 
OP-RPHS 
[1 1 1 2 2] 305.6 73.2 413.5 0.932  0.033 
OP-RPHS 
(full partitioning) 794.1 118.8 521.6 0.941  0.000 
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Table 7.3. Summary of OP-RPHS results on the VOWEL problem 

T. time (s) C.accuracy Architecture Series Parallel 
Mean # of 

hidden units  � � 
CBP 134.1 134.1 41.0 0.665  0.132 
OP 317.3 88.2 415.4 0.756  0.031 
RPHS 308.9 308.9 597.6 0.823  0.034 
OP-RPHS 
[2 2 2 2 3] 389.3 84.8 587.9 0.912  0.060 
OP-RPHS 
[1 1 1 1 1 2 2 2] 289.2 47.3 687.1 0.890  0.060 
OP-RPHS 
(full partitioning) 771.4 72.5 839.5 0.935  0.000 

 

From Tables 7.1 to 7.3, we observed that OP-RPHS (full partition) obtains the 

best classification accuracy amongst all output combinations.  However, OP-RPHS 

(full partition) in series configuration takes the longest time to train.  This is due to 

the large number of sub-modules to train as each sub-module is a separate neural 

network system.  However, looking at the parallel training time, OP-RPHS (full 

partition) achieves the maximum percentage improvements over its series training 

time.  This exemplifies the parallel processing advantage of OP-RPHS.  As for 

network complexity, we anticipated and validated from our results that OP-RPHS 

(full partition) has the largest total number of hidden units.  This is because its 

overall structure contains the largest number of independent sub-modules.  The full 

partitioning structure using OP-RPHS is adopted for the subsequent comparisons 

since it attains the highest classification accuracy. 

Compared to conventional OP and RPHS, there is at least 99.99% level of 

confidence that OP-RPHS has higher classification accuracy.  As to network 

complexity, OP-RPHS contains more hidden units compared to OP and RPHS.  We 

have anticipated this result as the OP-RPHS architecture is an overall more modular 

network than either OP or RPHS. 
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Using an optimized architecture, OP-RPHS outperforms both conventional 

OP and RPHS in terms of classification accuracy and parallel training time.  The 

tradeoff is that the overall network complexity is increased.  The experiments 

conducted on all three benchmark datasets produced consistent results. 

7.4 Discussions 

OP-RPHS that employs a combination of both class decomposition and 

domain decomposition in its architecture hence integrates the advantages of both 

methods.  We have tested our approach with three benchmark datasets, PENDIGITS, 

SEGMENTATION and VOWEL taken from the UCI repository of machine learning 

databases.  

Based on the OP-RPHS architecture, a complex problem can be flexibly 

partitioned into simpler sub-modules as chosen.  With full partitioning, OP-RPHS 

outperformed both conventional OP and RPHS in terms of classification accuracy  

parallel training time.  The tradeoff is that the overall network complexity, and 

therefore the response time, is increased.   
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8. Recursive Unsupervised Learning (RUL) 

8.1 Introduction 

In a way, we can look at recursive clustering as a situation where a child 

learns to distinguish between two sets of photographs, one taken in the jungle and 

another in the desert. There are also photographs in the set which show different 

degrees of jungle/desert combination. One would want to cluster them according to 

the percentage of jungle in them (>50% jungle: cluster 1, <50%jungle: cluster 2). 

However, instead of distinguishing the photos all at once, it makes more sense to first 

distinguish between the all jungle and all desert photos. The next level would be to 

distinguish between the jungle-predominant and desert-predominant photos. The 

jungle-predominant photos will then be associated with the jungle photos and the 

desert-predominant ones with the desert photos and so on. The advantages of this 

approach, compared to ensemble clustering, are as follows: 

1. The approach does not need to execute several clustering algorithms and find 

consensus between them, as grouping is done between 2 subsets of data at one 

time. This is expected to save the training time.  

2. We hypothesize that only two clustering algorithms (one global and one local in 

nature) are needed, as opposed to the multitude of algorithms required by the 

ensemble methods. 

This chapter is divided into two parts. Section 8.2 describes the general 

algorithm for Recursive Unsupervised Learning. Section 8.3 describes the application 

of the RUL approach to the more recent Higher Order Neuron training algorithm 

(Lipson and Siegelmann, 2000). This application of Recursive Unsupervised 

Learning shows that RUL, like RPHS, can be regarded as an approach and be built 
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on top of any local search algorithm to improve its performance. This extendibility is 

a major contribution of this chapter.    

8.2 Algorithm description 

8.2.1 Problem formulation 

Let { }n21 ,...xx,xX =  be a representation of N patterns. ix  may be defined, 

for instance, over some d dimensional feature space, dR∈ix . A clustering algorithm 

takes X  as input and organizes the N patterns into k clusters according to some 

similarity measure between patterns, forming a data partition P. Different clustering 

algorithms will, in general, produce different partitions for the same dataset. 

Different clustering results can also be produced by the same clustering algorithm by 

using different algorithmic parameter values or different initializations.  

Consider X being split into subsets using K recursions of clustering 

algorithms and let ����  represent the ensemble of K subsets. ����  is therefore called a 

clustering ensemble.  

{ }K21 ...P ,P ,PP =  

{ }1
k

1
2

1
1

1
1

...C ,C ,CP =  

: 

{ }K
k

K
2

K
1

K
K

...C ,C ,CP =  

Where i
jC  is the thj  cluster in the data partition iP . Each such partition iP  has ik  

clusters and jiN ,  is the number of patterns in i
jC , with ��

= =

=
K

i

k

j
ji

i

NN
1 1

, .  

We are now interested in finding an optimal set of clusters optP  using the 

information available in the N different data partitions in ���� . optP  will therefore be a 
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single partition such that { }opt
K

opt
2

opt
1

opt ...C ,C ,CP = , where K  as the number of 

clusters in optP . optP  should satisfy the following: 

1. Consistency with the clustering ensemble ���� . 

2. Consistency with ground truth information (true cluster labels). 

The first property implies that the clusters in optP , the final set of clusters, must not 

disagree or affect the accuracy of the clustering ensemble ���� , meaning that error in 

recombining the clusters must be kept to a minimum. The second property is used as 

an additional validation to verify the accuracy of the clustering results.  

8.2.2 Related general theory  

As the Recursive Unsupervised Learning algorithm is a hybrid approach, 

Genetic Algorithm based global clustering techniques are given high importance and 

their development is outlined in this section.  

Evolutionary algorithms have been used to find global solutions in many 

applications, including neural network applications for supervised learning (Yao, 

1993). Inspired by this, Painho and Bacao (2000) applied Genetic Algorithms to 

clustering problems with good effect. The Genetic Algorithm applied is simple and 

retains the form of SOMs, but with evolutionary representation of the weights. 

More simply, since the objective is to maximize the value xW )( ⋅i  for each 

pattern x , a population of real coded chromosomes encode )(W i , for each cluster i. 

Each chromosome therefore consists of IkN  elements, where k is the number of 

clusters. The chromosomes are evaluated in batch mode, such as to maximize: 

��
= ∈

⋅
K

i 1 kCx

(i) xW   

( 8.1) 
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Crossover and mutation are performed and a new generation of chromosomes is 

produced. The process is continued until the system stagnates or until a maximum 

number of epochs is reached. 

8.2.3 The basic RUL algorithm 

8.2.3.1 Overview of producing recursive clustering ensembles 

Recursive clustering algorithms produce a clustering ensemble 

{ }n21 ...P ,P ,PP =  as described in Section 8.2.1.  The ensembles 1P  to nP  are 

created as shown in the algorithm below. The algorithm is initialized with the 

number of recursions 1=i  and with X=Data . 

Algorithm 8.1. Pseudocode for creating an RUL ensemble 

While <i Maximum number of recursions 
1. Global clustering Data  
2. [ ] )(DataedillClusterred,wellCluste split=  //function split defined in 

Section 8.2.3.2 
3. iP =Local clustering redwellCluste  
4. If 1>i    
       a. optP =combine( iP,P opt ) 
    Else  
       b. optP = iP  
  End If 

5. edillClusterData = , ++i ; 

 

In order to better understand how the RUL algorithm works, we present the 

hypothetical distribution of data as shown in Figure 8.1, where each of the steps in 

the proposed algorithm are illustrated for two recursions. 
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(a) Recursion 1: Step 1 
* and @ denote the neurons representing 
the clusters found. - - - represents the 
cluster boundary while ___ represents the 
true class boundary. Patterns close to the 
cluster boundary are defined as ill 
clustered 

(b) Recursion 1: Steps 2, 3, 4 
The well clustered patterns are now 
removed and isolated. A local clustering 
algorithm (SOM/HON) is applied to shift 
the neurons, as indicated by the arrows.   

 
 

 

(c) Recursion 2: Step 5, 1 
Ill clustered patterns from the previous 
recursion re clustered. Cluster boundaries 
represented by - - - 

(d) Recursion 2: Steps 2, 3 
The well clustered patterns are isolated 
and the means shifted 

 

 
(e) Recursion 2: Step 4 
Neurons of each recursion are associated with nearest neurons of previous recursions. 
New associated clusters formed as shown by the arrows. 

Figure 8.1.  Illustration of RUL for two recursions on a hypothetical data set 
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8.2.3.2 Splitting the Data 

Step 2 of each recursion involves splitting the data into well clustered and ill 

clustered patterns. The splitting process involves two steps: (a) Sorting using the 

minmin rule and (b) choosing well-clustered data. 

Sorting the data 

For a given recursion i, after step 1.1, a partition { }iiii
rk21 ...C ,C ,CP = , is 

created. The data is now sorted based on the clusters formed using a minmin rule, as 

given by expression (8.2).  

( )( )( ) r
i
n

i
m

i
nn

i
mmnm knmDist ∈≠∈∈∀ ,,,,,,minmin CCCxCxxx     

(8.2) 

Here, ( )nmDist x,x , refers to a measure of distance between two patterns, mx  and 

nx .  

Effectively, expression (8.2) means that the patterns are sorted such that 

patterns from a cluster i which are closest to patterns in cluster j, ji ≠  (i.e., patterns 

nearest to the cluster boundary in Figure 8.1a) can be isolated. These are the patterns 

which are clustered with the most uncertainty.  

Choosing well-clustered data 

The patterns with the most uncertainty, i.e., the patterns which best satisfy 

expression (8.2) are isolated.  We motivate this by referring to equation (8.3):  

( ) ( )i
n

i
mnm

i
n

i
mnmnm  if  if Data CCxxCCxxx,x ≠⋅>=⋅∈∀ ,   

(8.3) 

Removing the uncertain data set will ensure more patterns are present in the resulting 

subset which satisfy equation (8.3). Equation (8.3) represents the agreement of the 

clusters formed by the unsupervised learning algorithm with the ground truth 

information. 
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Heuristically, we have set the number of patterns isolated as fifty percent of 

the data in that recursion, i.e., 2/)(DatasizeofredwellCluste = . 

8.2.4 The single order Recursive Unsupervised Learning algorithm 

The single-order recursive clustering algorithm aims at identifying irregularly 

shaped clusters. Using the spherical property of the SOM recursively to cluster and 

decompose the dataset, the algorithm aims to find boundaries that are closer to the 

ground truth information. Figure 8.2 describes the single-order recursive clustering 

algorithm. 

 

Train using  
GA based  SOMs 

Split with Euclidean 
distance based  minmin rule 

Continue training  
using an  

SOM  
to shift the means 

Maximum 
Recursions? 

No 

Yes  

Patterns far from those 
of other classes? 

Train using  
GA based  SOMs 

Split with Euclidean 
distance based  minmin rule 

Continue training  
using an  

SOM  
to shift the means 

Maximum 
Recursions? 

No 

Yes  

Patterns far from those 
of other classes? 

i=i+1 

No Yes  

Illclustered 
Data i 

Well clustered 
Data i 

 

Figure 8.2.  Flowchart describing the single-order recursive training algorithm 
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Figure 8.2 is similar to that in Algorithm 8.1 with the addition of the stopping 

process. During the last recursion, all the remaining ill clustered patterns are taken as 

a whole and clustered to the best possible extent.   

8.3 Application: Higher Order Neurons (HONs) 

The Higher Order Neuron structure (Lipson and Siegelmann, 2000) 

generalizes the spherical and ellipsoidal scheme that is proposed by the Self 

Organizing Maps and second order structures. The use of the Higher Order Neuron 

structure gives rise to a continuum of cluster shapes between the classic spherical-

ellipsoidal clustering systems and the fully parametric approach. Clusters of data in 

the real world are usually in arbitrary shapes. The “shape” of a cluster is referred to 

as the order of the neuron representing it. Further details of Higher Order Neurons 

are given in Appendix D.  

In this section we discuss the application of RUL to Higher Order Neurons. 

The first step is therefore to develop a global search counterpart for Higher Order 

Neurons. We call the algorithm developed evolutionary HONs or eHONs. 

8.3.1 Evolutionary Higher Order Neurons (eHONs) 

We propose the Evolutionary Higher Order Neurons as an extension of the 

Higher Order Neuron structure and the evolutionary Self Organizing Map. The idea 

of Evolutionary Higher Order Neurons is motivated (other than to provide a global 

base for recursive search) by the following reasoning: Lipson’s Higher Order 

Neurons are shown to exhibit improved performance. However, some of our 

simulations (presented in Section 8.4) showed that the order of the neuron plays an 

important part in the meaning of the clusters formed. A Higher Order Neuron does 
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not necessarily perform better than a lower order neuron.  In the HONs, the order of 

the neuron is pre-specified by the user.  

Moreover, for a given dataset, only a single order of neuron is used to 

represent all the clusters in their work. We feel that this is a limitation to the 

algorithm. Data is usually distributed irregularly, with some classes taking on 

spherical forms, some with elliptical or banana forms or even higher order forms.  

We propose in this chapter a Messy Evolutionary Algorithm (Goldberg et al., 

1991) based multi-order HONs. The training algorithm is outlined below.   

8.3.2 eHON training algorithm 

Batch version of HONs 

A batch version of HONs is implemented to facilitate their use with 

evolutionary algorithms. The batch algorithm is similar to the online algorithm 

proposed by Lipson et al., (2000) in Appendix D. However, instead of choosing a 

winning neuron by using )1(1 /minarg −− ⊗= m
j fj xZ H , we implemented a batch 

minimization criterion such as the one used in equation ( 8.1) of the evolutionary 

SOMs. The algorithm focuses on minimizing equation (8.4). 

( )��
= ∈

−− ⊗
K

i Cx

m
i

i

f
1

)1(1
/ xZ i

H     

(8.4) 

 

Chromosome Initialization 

 

 The initialization of chromosomes is done as outlined by the following steps: 

1. Each data point is randomly assigned to one of the K clusters.  

2. The covariance tensor of order m, i
HZ , for the cluster Ki ∈  is initialized as  
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�
∈

−=
iCx

m )1(2xZ i
H    

(8.5) 

 

Chromosome structure 

Each chromosome is coded as an array of structures, each consisting of two 

components: the order of a chromosome and the value of the tensor, as given below:  

struct chromosome 
{ 
 neuron NEURON[K]; 
}; 
struct neuron 
{ 
 int order ; 
 int tensor[][] ; 
} ; 
 

A tensor, regardless of the neuron order, is flattened out into a two-dimensional 

Kronecker matrix (Graham, 1981) in a similar form as used by Lipson.   

Global search properties 

Global search in eHONs is simulated by large range mutation. There are two 

criteria for large range mutation: 

� A random element in a tensor is mutated with a probability 1P . 

� The order of the tensor is changed with a probability 2P . The tensor is now 

reinitialized using equation (8.5). 

Fitness function 

The fitness function is the optimization of the expression in equation (8.4). 

The expression is minimized so as to maximize the cluster tightness. 
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8.3.3 The multi-order Recursive Unsupervised Learning algorithm 

The development of the multi-order recursive clustering algorithm arose due 

to the following factors: 

� To test the capacity to extend the basic RUL algorithm as an application to 

other global clustering approaches.  

� Different classes of the same data could have different orders of clusters, i.e., 

the ground truth of one class may be of a different order from the ground truth 

of another class. 

� Different parts of the same class may have different orders. i.e., a class of 

patterns may be partly spherical and partly “banana shaped” necessitating the 

use of a combination of first and third order neurons to cluster the class 

properly. 

Due to these constraints, especially the last one, it seems to us that 

representing a NO-class data with NO clusters of the same order, as done by Lipson, or 

even with NO clusters of different orders, as in the case of eHONs may not be an 

adequate representation. 

However, the eHONs deal with the first problem by forming clusters of 

different orders. The recursive Multi-order neurons aim to solve the second problem 

of irregularly shaped clusters without resorting to arbitrarily high orders. 

Figure 8.3 describes the multi-order recursive training algorithm. From Figure 

8.3, we observe the following differences between the single-order recursive 

clustering algorithm and the multi-order recursive clustering algorithm: 

� The multi-order recursive clustering algorithm makes use of the eHONs. 

� The minmin rule for checking the uncertainty of clustering is based on the 

higher order of the neurons instead of the Euclidean distance.  
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� The local clustering to shift the means is based on the order that was found by 

the global clustering phase. 

� To simplify computation, we implement the system such that the maximum 

order that a neuron can take increases with the number of recursions. This 

follows from the fact that the complexity of the border increases as we 

increase the number of recursions. The implementation is such that the first 

recursion only implements 1st and 2nd order neuron, the second recursion 

implements 2nd and 3rd order neurons and so on.. The multi-order structure of 

each recursion aims to select the best natural clusters for the data present. 

 
Ill clustered  

Data i 

Train using  ith and i+1th order neurons 
Distributed Neuron structure 

GA trained 
Split with Higher order based  minmin rule 

Well clustered  
Data i 

i=i+1 

Continue training  
Using same orders  
With Higher order  
Neurons ( HONs ) 

Maximum  
Recursions?  

No 

Patterns far from those 
of other classes? 

No 

Ill clustered  

Train using  ith 
Distributed Neuron structure 

GA trained 
Split with Higher order based  minmin rule 

i=i+1 

Continue training  
Using same orders  
With Higher order  
Neurons ( HONs ) 

Maximum  
Recursions?  

Patterns far from those 
of other classes? 

Yes 

Yes 

 

Figure 8.3.  Flowchart describing the multi-order recursive training algorithm 
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8.4 Experimental results 

8.4.1 Evaluation criteria 

Evaluation of the system is performed using two criteria. 

1. The consistency with the clustering ensemble:  

The consistency with the clustering ensemble is a measure of how associating 

the cluster recombination after each recursion affects the accuracy of the final 

clusters formed. The idea is that there should not be a mislabeling of clusters during 

recombination. In this introductory work, the consistency is only visualized based on 

two-dimensional principal component projection of the actual data and the clusters 

formed. 

2. Consistency with the ground truth information: 

The consistency with the ground truth information is measured by the number 

of misassigned patterns, i.e., the number of patterns not clustered together with their 

true classes.  

8.4.2 Results on hypothetical data 

In this section we consider the four different datasets presented in Figure 8.4. 

They represent the combination of spherical and oval clusters discussed in Section 

2.4 (Chapter 2). With these datasets, we illustrate the use of single-order recursive 

clustering to create the clustering ensemble P , and in creating the final data partition 

optP . 

Figure 8.4 shows the clusters obtained by using SOMs on each of the datasets 

in Section 2.4 (Chapter 2) and the number of misassigned patterns in each case. 
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x 
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 x 

y 

 

Data A: 0 misassigned patterns Data B: 9 misassigned patterns  

 

x 

y 

 

 

x 

y 

 
Data C: 1 misassigned pattern Data D: 10 misassigned patterns 

Figure 8.4. Clusters obtained by implementing SOMs on the data in Section 2.4 and 
the number of misassigned patterns in each case 

(x and y refer to the 1st and 2nd principal component values of the data respectively) 
 

In order to illustrate the effect of recursion, we apply the Single-Order 

Recursive Clusterer on these datasets. The data partitions 1P  to NP  that form the 

clustering ensemble P  are shown, as well as their integration to form optP  are shown 

in the figures below.  From the figures, it is observed that the use of recursion to 

decompose and recluster data improves significantly the clustering accuracy, i.e., the 

number of misassigned patterns is significantly reduced. This is especially true in the 

case of datasets B and D, which do not satisfy equation (8.3). In the figures below, x 

and y axes refer to the 1st and 2nd principal component values of the data respectively. 
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Data A: 1P  , : clusters obtained Data A: 2P  , : clusters obtained 

x 

y 

 

Data A: optP : 0 mis-clustered patterns for the recursive single-order algorithm. Dots 
in  optP  indicate the representing single-order neurons 

Figure 8.5: Single order recursive clustering for dataset A 
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Data B: 1P  , : clusters obtained Data B: 2P  , : clusters obtained 

x 

y 

 

Data B: optP  (3 mis-clustered patterns for the recursive single-order algorithm. 
Dots in optP  indicate the representing single-order neurons) 

Figure 8.6. Single order recursive clustering for dataset B 
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Data C: 1P  , : clusters obtained Data C: 2P  , : clusters obtained 

  

Data C: 3P , : clusters obtained Data C: optP  (1 mis-clustered pattern for the 
recursive single-order algorithm. Dots in 

optP  indicate the representing single-order 
neurons.) 

Figure 8.7.  Single order recursive clustering for dataset C  

 

 

 

Data D: 1P  , : clusters obtained Data D: 2P  , : clusters obtained 

 

 

Data D: 3P , : clusters obtained Data D: optP  (0 mis-clustered patterns for the 
recursive single-order algorithm. Red dots in 

optP  indicate the representing single-order 
neurons.) 

Figure 8.8. Single order recursive clustering for dataset D 
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8.4.3 Results on real world data 

8.4.3.1 Algorithm descriptions 

This chapter effectively proposes three new algorithms:  

1. eHONs: Higher order self organizing neurons with evolutionary capabilities which 

identify the best possible order for a chromosome based on a population generated 

with various multi-order chromosomes. 

2. Recursive SOMs: This algorithm operated using the system design given in 

Section 8.2.4. Recursive clustering is done with purely single-order neurons. 

3. Recursive multi-order clustering: The algorithm is operated using the system 

design given in Section 8.3.3. Recursion is performed using multi-order neurons and 

the eHON structure.  

The algorithms are compared using the experimental setup discussed in 

Section 3.4 (Chapter 3) with base and benchmark clustering algorithms.   

8.4.3.2 Correlation with ground truth information in real world data  

In this section we present the correlation with ground truth information (the 

available class labels), for the IRIS, WINE and GLASS datasets. The table below 

presents the average number of misassigned patterns, the standard deviation across 

20 runs, as well as the number of partitions in the data ensemble P  for each of the 

algorithms described in Section 8.4.3.1. Training was carried out, in each problem, 

for 300 epochs, or until stagnation. Stagnation for 10 epochs or more during 

recursive training was used as a criterion for splitting the data into well clustered and 

ill clustered patterns.  

 The results show that the recursive approach generally improves the 

performance of the underlying clustering algorithm. For all the results reported, with 
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the same number of partitions in the ensemble, the recursive single-order clustering 

improves the results of the SOMs and the eSOMs, while the use of the recursive 

multi-order clustering improves the results obtained by the HONs and the eHONs. 

The number of misassigned patterns for the IRIS and the WINE datasets are better 

than or comparable to those of ensemble clustering, albeit requiring a fewer number 

of partitions. 

8.5 Discussions 

In this chapter, we have introduced the concept of recursive clustering, an 

ensemble approach to unsupervised learning. Unlike other ensemble approaches, 

which are based on the consensus between several weak clusterers, the recursive 

clustering approach creates ensembles by recursive decomposition of data, thereby 

focusing more and more on the cluster boundary, and thus making it better correlated 

with ground truth information.  

In addition to the recursive approach, we have also introduced the idea of 

Evolutionary Higher Order Neurons. The eHONs work by identifying the best order 

a cluster can take, thereby identifying the complexity of each cluster. 

The combination of the eHONs and recursive clustering appears to work well 

on the real world data presented in this chapter, with the number of misassigned 

patterns reduced by as much as 50% on the WINE dataset. We also saw empirically 

that the performance is better than or at least comparable to ensemble clustering 

approaches, though with a significantly smaller number of partitions.  

Although the recursive approach to clustering is an effective one, it has only 

been targeted for irregular clusters, but not for overlapping clusters. Overlapping 

clusters, however, occur commonly in the real world and future work on the 

recursive approach will be needed to handle overlapping clusters. 
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Table 8.1. RUL results for real world data and comparisons to benchmark algorithms 

IRIS WINE GLASS 

Number of misassigned 
patterns 

Number of misassigned 
patterns 

Number of misassigned 
patterns 

Algorithm 

� � 

Number of 
partitions 
in the data 
ensemble 

� � 

Number of 
partitions 
in the data 
ensemble 

� � 

Number of 
partitions 
in the data 
ensemble 

HON (Higher Order 
Neuron), order=2 

4 0.00 1 60 0.00 1 176 0.00 1 

HON (Higher Order 
Neuron), order=3 

7 0.00 1 70 0.00 1 157 0.00 1 

SOM (Self Organizing 
Map) HON order =1 

23 0.00 1 72 0.00 1 115 0.00 1 

Ensemble clustering 
(Strehl and Ghosh, 2002) 

4.5  - 100 30  - 25 - - - 

eSOMs (Evolutionary 
SOMs) 

16 3.38 1 57 2.45 1 115 2.59 1 

eHONs (to find the optimal 
order for a given class) 

3.5 0.99 1 49 1.84 1 110 1.32 1 

Recursive SOMs (Single-
order Recursive 

Unsupervised Learning) 

8 0.57 3 51 0.66 4 111 0.73 6 

Recursive HONs (multi-
order Recursive 

Unsupervised Learning) 

2  0.57 3 30 0.43 4 104 0.48 6 
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9. Conclusions  

The subject of our work was the development and implementation of 

Recursive Pattern Based Hybrid Training algorithms. Our research belongs to the 

category of the use of ensemble learning and task decomposition methods increase 

the generalization accuracy of machine learning algorithms. 

Through our work, we have obtained the following important results: 

1. We have obtained the theoretical idea of pseudo-global optima – optima 

which could be local from the view of all the training patterns, but are global 

from the perspective of a subset of patterns. We also showed how several 

pseudo-global optima could be integrated to form the true optimal solution to 

a problem.  

2. We have also shown theoretically that the worst case generalization accuracy, 

assuming data independence, of the system is that of the base learner. This 

important result ensured that the recursive trainer performed with no loss of 

generalization accuracy when compared to the  base-learner and improved the 

generalization accuracy when presented with suitable data.  

3. We have used the idea of pseudo-global optima effectively to create ensemble 

data decomposition networks (RPHS) which use only 12 −−−−K  weak learners 

for optimal performance. Before our work, the number of weak learners was 

arbitrary (Meir and Ratsch, 2003) and problem dependent. 

4. We have developed a combinatorial algorithm for decomposition (RSL-CC), 

which hybridizes clustering, evolutionary algorithms and neural networks. 

This is a novel hybrid decomposition algorithm which simplifies the training 

algorithm for recursive decomposition.  
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5. We have also developed a parallel version of recursive decomposition and 

have shown that the parallel training time for the algorithm can be further 

reduced, and the generalization accuracy improved, by allowing for limited 

information exchange between processors after the global training in each 

recursion.  

6. We also extended the idea of recursive data decomposition to unsupervised 

learning (RUL), showing empirically that the recursive combination of 

‘global’ and ‘local’ clustering results in significantly “more meaningful” 

clusters. As with supervised learning, the RUL also requires a deterministic 

number of weak learners ( 12 −−−−K ). This is a novel contribution in the field of 

ensemble clustering. 

7. Finally, we extend the idea of Recursive decomposition to a more meaningful 

level by using it as a tool to improve the performance of other algorithms. 

Two examples were given. In the domain of supervised learning, we applied 

recursive decomposition to Output Parallelism (Guan and Li, 2002, Guan et 

al., 2004) and in the domain of unsupervised learning, it was applied to 

Higher Order Neurons (Lipson and Siegelmann, 2000). In both cases, we 

found that with minimal modifications to the existing algorithm, the idea of 

recursive training can be applied with improved performance. 

9.1 Perspectives 

Recursive training as a tool 

By using the recursive decomposition technique, a set of algorithms can be 

developed with various machine algorithms at their base. As newer machine learning 

algorithms come into play everyday, with increased efficiency and accuracy, there is 
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always the scope of applying recursive training as a tool on these algorithms to push 

further their performance. Future research can follow along these lines. 

 

Overcoming the limitations of recursive training 

Recursive training encounters a bottle neck when pattern imbalance is 

encountered, as in the case of OP-RPHS (Chapter 7). One of the methods that was 

used to overcome this bottle neck of pattern imbalance was to make the pattern set 

more balanced by introducing reduced pattern training. Yet, the introduction of 

reduced pattern training could be both computationally intensive (in high 

dimensional data) and problem dependent. Future work would investigate this 

bottleneck and identify ways to solve the problem., including the use of Genetic 

Algorithms to solve the task. 

 

Using multilevel recursive decompositions 

The recursive training algorithms for supervised learning make use of a pattern 

distributor. The individual subsolutions being error free, the error of the Recursive 

Supervised Learning algorithm depends heavily on the error of the pattern 

distributor.  

The current implementation of the pattern distributor is a Kth Nearest Neighbor. 

Other pattern distributor algorithms exist, which are based on neural networks (Guan 

et al., 2004).  

However, given that the pattern distributor is essentially a classifier, we can 

implement a pattern distributor using a second Recursive learner. The resulting 

system would then be a multi-level hierarchical recursive learner.  
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A. Constructive Backpropagation 

Constructive Backpropagation (Lehtokangas, 1999) is an extension of 

Backpropagation (Rumelhart et al., 1986) and is related to cascade correlation (Fahlman 

and Lebiere, 1991). Constructive Backpropagation is computationally just as effective as 

cascade correlation. However, the error is propagated through a maximum of one hidden 

layer, thereby resulting in a simpler implementation. The algorithm is outlined below: 

Initialization 

The neural network has no hidden units. The outputs are fed by the bias weights 

and the possible direct connections from the inputs to the outputs. The mean square error 

is now reduced by minimizing:  
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Training a new hidden unit 

We connect inputs to the new hidden unit (where the new unit is the ith unit, i>0) 

and its outputs to the output units, as shown in the Figure A.1 below. The training error is 

now given by: 
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Here, lkd  is the desired output in the thk  output unit for the thl  training pattern, 

jkv  is the connection from the thj  hidden neuron to the thk  output unit, jlh  is the output 
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of the thj  hidden neuron for the thl  training pattern that was left from the previously 

added neurons.  

 

Figure A.1. Training a new hidden unit in CBP 

Freeze new hidden unit 

The weights connected to the new unit are permanently fixed. 

Test for convergence 

Stop the training if the current architecture yields an acceptable solution. 

Otherwise add a new hidden unit and iterate.  

The use of CBP has been shown to perform automatic neural network structure 

adaptation and is shown empirically to be useful in problems with a large amount of data.  
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B. Output Parallelism 

Output Parallelism (Guan and Li, 2002, Guan et al., 2004) was proposed to 

flexibly divide a problem into several sub-problems, each of which is composed of the 

whole input vector and a fraction of the output vector. Each module is responsible for 

producing a fraction of the output vector of the original problem. The modules are then 

grown and trained in parallel and incorporated with the Constructive Backpropagation 

algorithm (Lehtokangas, 1999). 

A K-class problem is divided into r subproblems as shown in Figure B.1 

 

Figure B.1. Problem decomposition with Output Parallelism 

Each subproblem is solved by growing and training a feed forward neural network 

(module). A collection of modules is the overall solution to the original problem.   
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C. Early stopping 

In order to prevent over- or under-training of a neural network, a validation set of 

data (with valN  patterns) is used to terminate the network training. The total training error 

of a neural network is defined based on the difference between the desired and the 

obtained outputs of the network as shown below: 

� −=
trN

tr nOnDnE
1

)()(
2
1

)(  

where trN  is the number of training patterns in the system.    

The network’s validation error at a given epoch n is therefore 

� −=
valN
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The total error of the network is therefore )()()( nEnEnE valtrtot +=  .  

The value Eopt(n) is defined to be the lowest validation set error obtained in 

epochs up to epoch n, i.e., )'(min)(
'

nEnE totnnopt ≤
= . 

The generalization loss at epoch n is defined as the relative increase of the total 

error over the minimum so far. 
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The validation set termination criterion is set such that a high generalization loss 

will result in termination of the training. This method is specifically designed to reduce 

the possibility of loss of generalization accuracy due to over-training. Early stopping was 

proposed by Guan and Li (2002). 
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D. Higher Order Neurons 

In Higher Order Neurons (Lipson and Siegelmann, 2000), the spherical restriction 

of ordinary neurons is relaxed by replacing the weight vector with a general higher order 

tensor. This tensor captures multilinear correlations among the signals associated with the 

neurons. It also permits capturing shapes with holes or detached areas. In (Lipson and 

Siegelmann, 2000), Higher Order Neurons were shown to exhibit stability and good 

training performance with hebbian learning. The algorithm is performed as follows: 

1. Select the number of clusters (or number of neurons) NO, and the order of the 

neurons (m) for a given problem.  

2. The neurons are initialized with �
=

−=
n

i

m

1

)1(2
iH xZ . HZ  is the covariance tensor of 

the data, initialized to a midpoint value. In the case of a second order problem, the 

covariance tensor is simply the correlation matrix �
=

⋅=
n

i 1
iiH xxZ . For higher 

order tensors, this value is calculated by writing down 1−m
Hx  as a vector with all 

the thm  degree permutations of { },1,...xx,x d21 and finding HZ  as the matrix 

summing the outer product of all these vectors. The value of the inverse of the 

tensor is found and normalized using its determinant f  to obtain f
1

HZ−
. 

3. The winning neuron for a given pattern is computed using 

1)(m
H xZ −− ⊗= fj j /minarg 1 . Here, ⊗  denotes tensor multiplication.  



 151 

4. The winning neuron is now updated using )1(2 −+= m
ioldH,newH, xZZ η , where η  is 

the learning rate. The new values of HZ  and f
1

HZ−
 are stored. 

5. Steps 3 and 4 are repeated.  

Ideally, while the first order neuron finds spherical shapes, and the second order 

neuron finds ellipsoidal shapes (with two principal directions), The third order neuron, 

which makes use of the covariance tensor (having a cubical shape), finds four principal 

directions and copes with banana shaped clusters. Figure D.1 shows the neuron 

information of  the first, second and third order neuron respectively. 

  
Representation of first order neurons Representation of second order neurons 

 
Representation of third order neurons 

Figure D.1.  The internal representation of a self organizing, second and third order 
neurons using eigentensors 
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