
The Mother

RECURSIVE PATTERN BASED HYBRID TRAINING

KIRUTHIKA RAMANATHAN

B.ENG. (HONS.), NUS

A THESIS SUBMITTED

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

NATIONAL UNIVERSITY OF SINGAPORE

2006

 ii

CONTENTS

SUMMARY___ viii

ACKNOWELDGEMENT__x

LIST OF TABLES___ xi

LIST OF FIGURES ___ xiii

LIST OF SYMBOLS___xv

LIST OF ABBREVIATIONS ___xvii

LIST OF PUBLICATIONS ORIGINATED FROM THIS WORK ___________ xviii

1. Introduction ___1

1.1 Research problem and objectives ________________________________1

1.2 The approach of this thesis _____________________________________2

1.2.1 Application domains ___ 5

1.3 Research contribution __10

1.4 Plan of thesis ___12

2. Related literature __14

2.1 Introduction __14

2.2 Machine learning __14

2.3 Supervised learning __16

2.3.1 Neural networks for supervised learning _____________________________ 16

2.3.2 Ensemble learning __ 23

2.3.3 Data decomposition ___ 24

2.3.4 Class based task decomposition______________________________________ 25

 iii

2.3.5 Limitations of surveyed supervised learning algorithms_______________ 26

2.4 Unsupervised learning __28

2.4.1 Self Organizing Maps ___ 29

2.4.2 Second order, higher order and ensemble clustering approaches_______ 31

2.4.3 Limitations of surveyed unsupervised learning approaches____________ 32

3. Problem scope and experimental setup _______________________________33

3.1 Introduction __33

3.2 Problem scope __33

3.2.1 Assumptions __ 33

3.2.2 Research goals __ 34

3.3 Experimental setup for supervised learning _______________________34

3.3.1 Data sets analyzed __ 34

3.3.2 Experimental parameters __ 40

3.3.3 Benchmark algorithms for comparison _______________________________ 40

3.4 Experimental Setup for unsupervised learning _____________________42

3.4.1 Datasets analyzed ___ 42

3.4.2 Benchmark algorithms for comparison _______________________________ 42

4. Recursive Pattern Based Hybrid Supervised learning (RPHS) _____________44

4.1 Introduction __44

4.2 Algorithm description __46

4.2.1 Pseudo global optima ___ 46

4.2.2 Hybrid recursive training and testing_________________________________ 48

 iv

4.3 Algorithm details __52

4.3.1 The RPHS efficiency model ___ 52

4.3.2 The use of Backpropagation and Constructive Backpropagation_______ 56

4.3.3 The choice of validation patterns_____________________________________ 57

4.3.4 Stopping recursions ___ 59

4.3.5 Worst case generalization accuracy __________________________________ 61

4.3.6 Inter and intra recursion separability _________________________________ 64

4.3.7 The RPHS computational complexity ________________________________ 66

4.4 Experimental results ___69

4.4.1 Training curves ___ 69

4.4.2 Studies on the TWO-SPIRAL problem_______________________________ 69

4.4.3 Generalization accuracies__ 74

4.4.4 Verification of the lower-bound of the RPHS generalization accuracy: A
study of the GLASS problem ___ 79

4.5 Discussions __80

5. Recursive Supervised Learning with Clustering and Combinatorial optimization
(RSL-CC)__82

5.1 Introduction __82

5.2 Algorithm description __82

5.2.1 Pre-training ___ 83

5.2.2 Training __ 84

5.2.3 Simulation __ 86

5.3 Algorithm details __86

 v

5.3.1 Illustration __ 86

5.3.2 Heuristics for improving the performance of the RSL-CC algorithm___ 90

5.3.3 Computational complexity of the RSL-CC algorithm _________________ 91

5.4 Experimental results ___93

5.5 Discussions __98

6. Parallel RPHS ___100

6.1 Introduction ___100

6.2 Algorithm description _______________________________________100

6.2.1 System overview ___ 100

6.2.2 Formal description of training algorithm ____________________________ 102

6.2.3 Simulation with the P-RPHS__ 103

6.3 Experimental results __106

6.3.1 Generalization accuracy __ 106

6.3.2 Effect of voting __ 108

6.4 Discussions ___108

7. Application: Output Parallelism based on RPHS (OP-RPHS) ____________110

7.1 Introduction ___110

7.2 Algorithm description _______________________________________111

7.2.1 System overview___ 111

7.3 Experimental results __113

7.4 Discussions ___116

8. Recursive Unsupervised Learning (RUL) ____________________________117

 vi

8.1 Introduction ___117

8.2 Algorithm description _______________________________________118

8.2.1 Problem formulation ___ 118

8.2.2 Related general theory__ 119

8.2.3 The basic RUL algorithm___ 120

8.2.4 The single order Recursive Unsupervised Learning algorithm ________ 123

8.3 Application: Higher Order Neurons (HONs) _____________________124

8.3.1 Evolutionary Higher Order Neurons (eHONs) _______________________ 124

8.3.2 eHON training algorithm ___ 125

8.3.3 The multi-order Recursive Unsupervised Learning algorithm ________ 127

8.4 Experimental results __129

8.4.1 Evaluation criteria__ 129

8.4.2 Results on hypothetical data __ 129

8.4.3 Results on real world data __ 133

8.5 Discussions ___134

9. Conclusions ___136

9.1 Perspectives ___137

Bibliography __139

Appendix ___145

A. Constructive Backpropagation_____________________________________146

B. Output Parallelism __148

C. Early stopping ___149

 vii

D. Higher Order Neurons ___150

 viii

SUMMARY

Data decomposition and ensemble learning have been used in several

applications to improve the training time and generalization accuracy of machine

learning methods. In these approaches, the number and type of members in the

ensemble is known to be an important factor in determining its generalization error.

In this thesis we present, in order to improve the generalization accuracy of the base

learner, a new method for generating ensembles using data decomposition –

Recursive Pattern Based Hybrid Training (RPHT). We use a recursive combination

of global training and local training for supervised and unsupervised machine

learning tasks. Here, global training introduces diversity in the hypotheses and local

training adapts the solution to the pattern and error spaces. The resulting ensemble

(also called pseudo global optima) is a deterministic number of sub- solutions that,

when integrated, are capable of improved generalization with a shorter training time.

We begin by demonstrating the algorithm using supervised learning problems

in the domain of curve fitting and classification. The development of Recursive

Pattern Based Hybrid Supervised learning (RPHS) using Constructive

Backpropagation and Genetic Algorithm based neural networks as base learners

demonstrate that our approach consistently achieves higher generalization accuracy

than the base learning algorithm. The algorithm is also consistently more accurate

than other data decomposition based ensemble learners such as Multisieving and

Output Parallelism.

In order to improve the computational complexity of RPHS, we introduce the

use of a clusterer as a pre-trainer, developing the Recursive Supervised Learning with

Clustering and Combinatorial optimization (RSL-CC) algorithm. The algorithm,

 ix

whose generalization accuracy was comparable to RPHS, often performed with a

lower training time.

The worst-case generalization accuracy of RPHT is that of the base trainer.

When the data handled are independent of each other, we prove that this condition

occurs when the training data under-represents the problem space. We verify this

property by building RPHT systems “on top of” several new machine-learning

algorithms. We implemented the algorithm on top of Output Parallelism for

classification problems and self-organizing maps and Higher Order Neurons for

clustering problems. RPHT consistently performed better than the base algorithm.

 In the development of suitable recursive hybrid algorithms for supervised

and unsupervised learning, we also developed, on a necessity basis, several

evolutionary training algorithms, including Evolutionary Higher Order Neurons and

combinatorial clustering. A parallel version of recursive training was also

implemented to reduce the training time and improve the generalization accuracy of

the algorithm.

The Recursive Pattern Based Hybrid Training algorithm, when applied on

benchmark datasets, showed a 40% improvement in generalization accuracy for the

classification problems tested and 50% improvement in the clustering accuracy for

unsupervised learning.

 x

ACKNOWELDGEMENT

I would like to acknowledge the following people for their help in the development

of this thesis:

Dr Sheng Uei Guan, Steven for his invaluable guidance and advice on the

development of the thesis problem and his help in working out the details of the

thesis.

The examiners and the members of the oral panel for their valuable feedback and

comments.

My parents, for their support and ensuring that there was hot food on the table

despite late nights.

Dr Adrian Curic for his debugging skills and criticisms and for simply being there.

Mr Teo King Hock for his technical support.

Mr Tan Chin Hiong and Ms Laxmi R Iyer in assisting with parts of the work in the

thesis, including the work on OP-RPHS.

And God for His blessings.

 xi

LIST OF TABLES

Table 2.1. Summary of the differences between selected ensemble training, data
decomposition and task decomposition methods ___________________________27

Table 2.2. Summary of the properties of the data in Figure 2.5 ________________30

Table 3.1. Curve fitting problems considered ______________________________36

Table 3.2. Summary of the classification problems considered ________________39

Table 3.3. Experimental parameters used in the Recursive Supervised Learning
algorithms ___40

Table 4.1. Comparison of generalization accuracy of curve fitting problems______75

Table 4.2. Summary of training time and generalization accuracy obtained over
different versions of RPHS and comparisons with benchmark algorithms________78

Table 4.3. Classification accuracy of for the GLASS problem _________________79

Table 5.1. Comparison of RSL-CC results with benchmark algorithms__________94

Table 6.1. Summary of the P-RPHS results on the SEGMENTATION problem__106

Table 6.2. Summary of the P-RPHS results on the VOWEL problem __________107

Table 6.3. Summary of the P-RPHS results on the LETTER RECOGNITION
problem __107

Table 6.4. Summary of the P-RPHS results on the SPAM problem ____________107

Table 6.5. Summary of the P-RPHS results on the PENDIGITS problem _______107

Table 6.6. Effect of voting on the generalization accuracy of the LETTER
RECOGNITION problem __108

Table 7.1. Summary of OP-RPHS results on the PENDIGITS problem_________114

Table 7.2. Summary of OP-RPHS results on the SEGMENTATION problem ___114

Table 7.3. Summary of OP-RPHS results on the VOWEL problem____________115

 xii

Table 8.1. RUL results for real world data and comparisons to benchmark algorithms
___135

 xiii

LIST OF FIGURES

Figure 1.1. The generalized recursive training system ________________________3

Figure 1.2. The TWO-SPIRAL data set and an example of how it can be decomposed
into several smaller datasets that are more easily separable ____________________8

Figure 2.1. Architecture of a typical three layered neural network______________16

Figure 2.2. Sample neural network ______________________________________18

Figure 2.3. Chromosomal representation of network in Figure 2.2______________19

Figure 2.4. Single point crossover in messy GANNs ________________________21

Figure 2.5. Artificially generated two-dimensional two class clusters illustrating the
weakness of SOMs __30

Figure 3.1. Illustration of gP for a dimension with a single global optimum ______38

Figure 3.2. Modified data for the TWO-SPIRAL problem ____________________39

Figure 3.3. Distribution of data in IRIS, WINE and GLASS datasets ___________43

Figure 4.1. Illustration of the concept of pseudo-global optima________________48

Figure 4.2. Recursive data decomposition employed by RPHS ________________50

Figure 4.3. The two level RPHS problem solver____________________________52

Figure 4.4. Sample data distribution for the decomposition of validation data_____58

Figure 4.5. The data distribution of the RPHS recursion tree __________________59

Figure 4.6. The overall RPHS training algorithm ___________________________60

Figure 4.7. Generalization error over two recursions of RPHS_________________61

Figure 4.8. The effect of using different sized initial populations for RPHS with the
SEGMENTATION, VOWEL and SPAM datasets __________________________68

 xiv

Figure 4.9. Training comparison between Linear Interpolation, PHP and RPHS for
ENSO, GAUSS and HAHN and comparison between RPHS and CBP for
SEGMENTATION, VOWEL, LETTER RECOGNITION and SPAM __________73

Figure 4.10. Comparison of RPHS and Multisieving in decomposing the TWO-
SPIRAL dataset ___75

Figure 5.1. Illustration of RSL-CC, with steps traced ________________________88

Figure 5.2. Decomposition of data for the VOWEL problem __________________96

Figure 5.3. Decomposition of data for the TWO-SPIRAL problem _____________98

Figure 6.1. System architecture of P-RPHS ______________________________101

Figure 6.2. Pattern distributor and P-RPHS simulation based on non-voting_____104

Figure 7.1. The OP-RPHS architecture __________________________________112

Figure 8.1. Illustration of RUL for two recursions on a hypothetical data set ____121

Figure 8.2. Flowchart describing the single-order recursive training algorithm __123

Figure 8.3. Flowchart describing the multi-order recursive training algorithm ___128

Figure 8.4. Clusters obtained by implementing SOMs on the data in Section 2.4 and
the number of misassigned patterns in each case __________________________130

Figure 8.5: Single order recursive clustering for dataset A___________________131

Figure 8.6. Single order recursive clustering for dataset B ___________________131

Figure 8.7. Single order recursive clustering for dataset C __________________132

Figure 8.8. Single order recursive clustering for dataset D ___________________132

Figure A.1. Training a new hidden unit in CBP ___________________________147

Figure B.1. Problem decomposition with Output Parallelism_________________148

Figure D.1. The internal representation of a self organizing, second and third order
neurons using eigentensors ___151

 xv

LIST OF SYMBOLS

α : Number of free parameters

ξ : Error tolerance of learnt patterns (learnt patterns have an

error less then or equal to ξ)

� : Normal distributed noise added to curve fitting data

� : Mean of generalization accuracy

σ : Standard deviation of generalization accuracy

iC : Patterns belonging to Class i

Chrom : Chromosome

d : The desired system output

E : Training/ testing/ validation error, as indicated by the

corresponding subscript

elem : Number of elements in a chromosome/ Number of

independent parameters

ep : Training epochs

G : Number of global optimal solutions

H : Hidden node

I : Inputs

i, j, m, n : Indices

L : Number of local optimal solutions

K : Number of recursions/ partitions in the ensemble

N : Denotes the number of patterns, inputs etc, as indicated by

the corresponding subscript

o : Output vector of the system

O : Outputs

 xvi

{ }1 2 KP = P , P , ...,P : Ensemble of subsets

Pg : Probability of finding a global optimal neighborhood

Pl : Probability of finding a local optimal neighborhood

Ppgs : Probability of finding a pseudo-global optimal solution

pop : Population of chromosomes

pp : Parallel processors

S : Neural network solution

S : Set of neural network solutions, S={S1, S2,…SK}

sysout : System outputs for parallel processing

t : Time taken for a process, as indicated by the corresponding

subscript

T : Data

TR : Training Data matrix

tr : Training patterns

TST : Test data matrix

tst : Test patterns

VAL : Validation data matrix

val : Validation patterns

W : Weights of neural network

w : Individual neural network weight element

x : Input pattern

{ }1 2 nX = x ,x , ...x : Set of n input patterns

ZH : Covariance tensor of Higher Order Neuron

 xvii

LIST OF ABBREVIATIONS

BP : Backpropagation

CBP : Constructive Backpropagation

eHON : Evolutionary Higher Order Neurons

GA : Genetic Algorithms

GANN : Genetic Algorithm based Neural Network

GASOM : Genetic Algorithm based Self Organizing Map

HON : Higher Order Neurons

KNN : Kth Nearest Neighbor

MLP : MultiLayered Percepteron

mGA : messy Genetic Algorithms

MCG : Minimal Coded Genetic Algorithm

OP : Output Parallelism

P-RPHS : Parallel Recursive Pattern Based Hybrid Supervised learning

PHP : Percentage based Hybrid Pattern training

RPHS : Recursive Pattern Based Hybrid Supervised learning

RPHT : Recursive Pattern Based Hybrid Training

RSL : Recursive Supervised Learning

RSL-CC : Recursive Supervised Learning with Clustering and Combinatorial

optimization

RUL : Recursive Unsupervised Learning

SOM : Self Organizing Map

TSS : Topology-based Subset Selection

 xviii

LIST OF PUBLICATIONS ORIGINATED FROM THIS WORK

Accepted/ published papers

Journal papers

1. Ramanathan Kiruthika and Sheng Uei Guan (2007), Multi-order neurons

for evolutionary higher order clustering and growth, Neural Computation

(To Appear) (ISI Impact factor 2005: 2.591. Top 9th Journal in Artificial

Intelligence).

2. Ramanathan Kiruthika and Sheng Uei Guan (2007), Clustering and

combinatorial optimization in Recursive Supervised Learning, Journal of

Combinatorial Optimization, 13(2), pp 137-152.

3. Sheng-Uei Guan and Kiruthika Ramanathan (2007), A lateral symmetry

approach to percentage based hybrid pattern (PHP) training, Journal of

Intelligent Systems, 16(3), 241-273.

4. Sheng-Uei Guan and Kiruthika Ramanathan (2007), Percentage-based

hybrid pattern training with neural network specific crossover, 1-26,

16(1), pp 1-26.

5. Iyer L R, Ramanathan Kiruthika, Sheng-Uei Guan (2006), Multi learner

based recursive supervised training, International Journal of Computational

Intelligence and Applications, 6(3), 429-449.

6. Ramanathan Kiruthika and Sheng Uei Guan (2007), Recursive percentage

based hybrid pattern training for supervised learning, Neural, Parallel and

Scientific Computation, Vol 15, 2007 (To Appear).

Book chapters

1. Ramanathan Kiruthika, Sheng Uei Guan (2006), Recursive Pattern Based

Hybrid Supervised training, Book Chapter for the book “Engineering

Hybrid Intelligent Systems”, Springer, Verlag (To Appear).

2. Ramanathan Kiruthika, Sheng Uei Guan (2006), Enhancing Recursive

Supervised Learning using clustering and combinatorial optimization

(RSL-CC), Book Chapter for the book “Engineering Hybrid Intelligent

Systems”, Springer, Verlag (To Appear).

3. Ramanathan Kiruthika, Sheng Uei Guan (2007), Single and multi order

neurons for Recursive Unsupervised Learning, Book chapter for the book

 xix

Artificial Intelligence for Advanced Problem Solving Techniques, Idea Group

inc, (To Appear).

Conference papers

1. Sheng Uei Guan, Ramanathan Kiruthika (2004), Recursive percentage

based hybrid pattern (RPHP) training for curve fitting, In Proc of the

IEEE Int. Conf. on Cybernetics and Intelligent Systems (CIS), Singapore,

Dec 1-3, 2004, pp 445-450.

2. Ramanathan Kiruthika, Sheng Uei Guan, Laxmi R Iyer (2006), Multi

learner based recursive learning, IEEE International conference on

Cybernetics and Intelligent Systems, Bangkok, Jun 7-9, 2006, pp 1-5.

3. Ramanathan Kiruthika, Sheng Uei Guan (2006), Recursive Self Organizing

Maps with hybrid clustering, IEEE International conference on Cybernetics

and Intelligent Systems, Bangkok, Jun 7-9, 2006, pp 1-6.

4. Ramanathan Kiruthika and Sheng Uei Guan (2007), Evolutionary

combinatorial optimization for Recursive Supervised Learning with

clustering, IEEE Congress on Evolutionary Computation, Singapore, Sept

25-28, 2007, (To Appear).

Papers under review

1. Chin Hiong Tan, Kiruthika Ramanathan, Sheng Uei Guan, Chunyu Bao,

Recursive hybrid decomposition with reduced pattern training, Neural

Processing Letters, Under Second Review.

2. Sheng Uei Guan, Ramanathan Kiruthika, Recursive pattern-based hybrid

supervised learning with neural nets and Genetic Algorithms, Artificial

Intelligence Review.

3. Ramanathan Kiruthika, Sheng Uei Guan, Recursive Unsupervised Learning

with single- and multi-order neurons, Journal of Research and Practice in

Information Technology.

4. Sheng Uei Guan, Ramanathan Kiruthika, Clustering irregular shapes using

evolutionary multi-order neurons, IJCIA.

 1

1. Introduction

1.1 Research problem and objectives

The problem of local optima has long since prevented the widespread use of

machine learning algorithms in industry. The presence of local optimal solutions

often prevents machine learning algorithms from finding a true solution to the

problem, often leading to long training times and low generalization accuracy.

Here, we attempt to solve the problem of local optima and improve base learner

generalization accuracy by a novel task decomposition based ensemble learner. The

approach, Recursive Pattern Based Hybrid Training (RPHT), solves the local optima

problem by going around it. We find, instead of a single optimal solution, several

optimal solutions called pseudo-global optima. Each pseudo-global optimum is

targeted to be globally optimal from the perspective of a subset of patterns. To form

the complete solution to the problem, we integrate the pseudo-global optima.

 The problem of local optima being prevalent in both supervised and

unsupervised learning, our first research objective is to develop RPHT systems that

improve the base learner accuracy for both supervised and unsupervised learning

algorithms. This is the algorithm development phase of our research.

New machine learning algorithms are coming out everyday in the market, each

of them capable of dealing, to different extents, with the local optima problem. The

second research objective of this thesis is to make recursive training an approach

which could be built on top of existing and upcoming machine learning algorithms to

improve their performance, such that the generalization accuracy of our approach is

consistently better than that of the base learner. This is the application phase of our

research.

 2

1.2 The approach of this thesis

Biological and behavioral patterns are widely used as inspirations to machine

learning algorithms. These include neural networks (Haykins, 1999), evolutionary

algorithms (Goldberg, 1989), particle swarm optimization (Eberhart and Kennedy,

1995), ant colony optimization (Dorigo et al., 1996) etc. Similar to these ideas, our

thesis also models behavioral patterns. Here, we attempt to model the learning

patterns of teams at work, using a “do what you do best” theory.

Recursive pattern based training algorithms use pattern information to

decompose a given problem and find several pseudo-global optima. The integration

of all the pseudo-global optima would make the true solution to the problem, with

higher generalization accuracy, but in a shorter period of time.

The algorithms proposed are natural combinations of class based task

decomposition and data decomposition. In general, a problem, depending on its

topology, is divided into pattern based or class based subsets or both. Each subset is

obtained by recursively isolating the “simpler” patterns from the “difficult” ones. As

“simple” and “difficult” are determined by the learning algorithm, the approach is

more “learner friendly”.

In order to make the process more efficient, an evolutionary algorithm is used to

perform global search. Global search identifies the simpler patterns from the point of

view of the learner. These patterns are then isolated. A gradient descent algorithm,

using neural networks, is then used to learn best these “simple” patterns in a way that

avoids overfitting. The process is then repeated recursively with the “difficult”

patterns until certain termination conditions are satisfied.

Figure 1.1 shows the simplified architecture of the recursive training system. The

input consists of an NI dimensional pattern vector. The output is an NO dimensional

 3

vector. The integrator provides the selected inputs to the multiplexer, which then

outputs the corresponding data input. The data inputs to the multiplexer are the

outputs of each of the subnetworks. Each subnetwork is therefore a neural network (a

three layered percepteron, or a Self Organizing Map). The integrator used in this

thesis is a Nearest Neighbor classifier (Wong and Lane, 1983) with NI inputs and K

outputs, where K is the number of recursions employed.

Solution 1

Solution 2

Solution K

Integrator

Multiplexer
Output

Figure 1.1. The generalized recursive training system

 To understand the concept behind Recursive Pattern Based Hybrid Training

(RPHT), we consider a situation where a group of students are assigned a job of

learning a set of examples (training patterns). At the end of the task, the group must

collectively be able to solve a similar problem. Using recursive training, we assume

that there is an infinite pool of students to draw groups from. A group of students is

presented with all the examples. The easier examples are usually learnt faster. The

students who first learn these easy examples (global learning) to a fair degree of

accuracy are isolated. They are set to learn the same examples to perfection (local

learning). Another set of students are now picked to learn the remaining (slightly harder)

examples. Since there are now fewer examples, the students are now more focused

towards these examples. The examples are progressively isolated along with the students

Input

 4

who specialize in them. The process continues until there are too few examples and

further decomposing the task will result in overtraining of some of the students. A group

of students is then selected to learn these tasks the best possible way.

 The recursive learner documented in this thesis is a hybrid system of two or

more learners. Typically, one of the learners is global in nature. Here, we use a

Genetic Algorithm (GA) based neural network architectures to perform global

search. These include Genetic Algorithm (Goldberg, 1989) based neural networks

(GANNs) (Yao, 1993), GA based Self Organizing Maps (GASOMs) (Painho and

Bacao, 2000), the evolutionary counter part to Higher Order Neurons (Lipson and

Siegelmann, 2000; Ramanathan and Guan, 2007) etc. The other learner is local in

nature. Algorithms employed in this thesis for local training include Backpropagation

(Rumelhart et al., 1986), Constructive Backpropagation (Lehtokangas, 1999), Higher

Order Neurons (Lipson and Siegelmann, 2000) etc.

The general pseudo code for recursive pattern based learning is given below. The

function Learn, written below, is recursively invoked, initially with recursionID=1.

Algorithm 1.1. General pseudocode for the recursive pattern based training

Learn(T, recursionID)
1. Train the system with the data T using the global learning algorithm.
2. If global learning is complete,

a. Identify and split the well-learnt patterns from the ill-learnt patterns.
b. Use a local learning algorithm to further train the well-learnt patterns.
Store the resulting network.
c. Learn(ill-learnt patterns, recursionID+1).

End If

RPHT aims, like all ensemble methods, to build diverse and accurate

solutions. Each solution caters to a subset of data. As subsets of data (constructed

using the well learnt patterns in each recursion) are mutually exclusive from each

other, the solutions are diverse across the domain. Each recursion also guarantees a

 5

100% accurate solution on its well learnt patterns. The collective accuracy of the

system is therefore high.

1.2.1 Application domains

Three major domains were considered as applications of recursive hybrid

training – supervised learning, unsupervised learning and extensions. These are

explained in the following subsections.

1.2.1.1 Recursive Supervised Learning (RSL)

We deal here with data whose inputs and outputs are present but not their

corresponding relationship. Supervised learning attempts to model this input-output

relationship. Recursive Supervised Learning also serves this purpose.

It is related to task decomposition and ensemble approaches to supervised

learning including incremental learning (Guan and Liu, 2002), Output Parallelism

(Guan and Li, 2002, Guan et al., 2004), Multisieving (Lu et al., 1995), data subset

selection (Lasarzyck et al., 2004, Gathercole et al., 1994) and Boosting (Meir and

Ratsch, 2003).

Unlike these approaches, however, the recursive hybrid approach to

supervised learning combines global search (using GANNs (Yasunaga et al., 1999))

and local search (using Backpropagation (Rumelhart et al., 1986) and Constructive

Backpropagation (Lehtokangas, 1999)). Each learner in the ensemble is therefore a

result of two weak-learners. The evolutionary algorithm uses the number and

topology of training and validation patterns to determine the number of ensembles

and the architecture of each weak learner in the ensemble. The partitioning of the

pattern space is completely automatic, and targeted (using a set of validation patterns

 6

and several validation procedures) so as to find the best possible generalization

accuracy for a given dataset.

In this thesis, we present three major recursive pattern based supervised

learning algorithms. These are summarized below:

Recursive Pattern Based Hybrid Supervised Learning (RPHS)

RPHS trains a set of labeled patterns using GANN based global search, splits

the data into “learnt” and “unlearnt” patterns, optimizes on the “learnt” patterns using

a GA based local search or using Backpropagation (BP), resulting in a pseudo-global

optimal solution. The process repeats recursively using the “unlearnt” patterns until

optimum generalization accuracy is attained. The system is then integrated using a

Nearest Neighbor based pattern distributor.

Recursive Supervised Learning with Clustering and Combinatorial optimization

(RSL_CC)

RSL-CC employs a pre-trainer which splits the data into class-based clusters,

such that each cluster is distinctly separated from another cluster. GA is then used to

solve a combinatorial optimization problem, where the optimal set of clusters for an

ensemble component is selected. The process is repeated recursively using the

remaining clusters and integrated using a Nearest Neighbor based pattern distributor.

Parallel Recursive Pattern Based Hybrid Supervised Learning (P-RPHS)

The algorithm explores the use of parallel ensembles. Each ensemble solves

several overlapping subsets of patterns. The P-RPHS algorithm explores the

possibility of using parallel overlapping recursions to improve the accuracy of the

KNN pattern distributor and therefore to improve the generalization accuracy. With

overlapping recursions, the number of recursions required to solve the problem is

also reduced.

 7

Illustration

As illustration, we consider the training data of the TWO-SPIRAL dataset

(Lang and Witbrock, 1988). The TWO-SPIRAL problem is an example of a difficult

classification problem since it is impossible to define proper class boundaries on the

training set. We observe that the TWO-SPIRAL data set can be split up as shown in

the diagrams in Figure 1.2. While the original dataset is not easy to classify, each of

the decomposed datasets are far simpler and can be classified by a simple neural

network.

In order to determine that the hybrid recursive combination of global and

local search was the best possible for supervised learning, several brute force and

alternate hybrid algorithms were developed. These include distance and topology

based algorithms and also recursive training algorithms based on other learners.

However, the general performance of these algorithms is less accurate than the

hybrid learner proposed in this thesis.

-8

-6

-4

-2

0

2

4

6

8

-6 -4 -2 0 2 4 6

x

y

Original data set

 8

-8

-6

-4

-2

0

2

4

6

8

-6 -4 -2 0 2 4 6

x

y

Decomposed data set 1

-8

-6

-4

-2

0

2

4

6

8

-6 -4 -2 0 2 4 6

x

y

Decomposed data set 2

-8

-6

-4

-2

0

2

4

6

8

-6 -4 -2 0 2 4 6

x

y

Decomposed data set 3

Key: Class 1: , Class 2: . Dotted lines show lines of separation of the two classes
(x and y represent the 1st and 2nd principal component values of the data respectively)

Figure 1.2. The TWO-SPIRAL data set and an example of how it can be decomposed
into several smaller datasets that are more easily separable

 9

1.2.1.2 Recursive Unsupervised Learning (RUL)

Unsupervised learning refers to a situation where the learner attempts to find

the relationship between unlabelled patterns. The key idea of Recursive Unsupervised

Learning (RUL), therefore, is to decompose a given problem and find several

partitions of data, such that they can be grouped together to result in a system with

higher correlation to ground truth information. As in the case of Recursive

Supervised Learning, the algorithm achieves this by using a combination of global

and local search, implementing a recursive sequence of global search, data splitting,

local search and recombination to solve the problem.

The Recursive Unsupervised Learning algorithm is related to ensemble

clustering (Koza, 1992) and consensus clustering (Fred and Jain, 2005), but uses a

fewer number of weak learners than consensus clustering. It also uses a divide-and-

conquer approach, as opposed to an ensemble approach. This is also computationally

efficient.

As in the case of Recursive Supervised Learning, the RUL algorithm begins

by applying an evolutionary clustering algorithm to the data. The patterns which are

clustered with a high confidence are then removed. The centroids are then shifted,

using a local learning algorithm to find the “pseudo-global” cluster centroid. The

patterns that were clustered earlier with low confidence are now focused upon and

reclustered. The process is then repeated.

1.2.1.3 Extensions

We hypothesize that any gradient-descent based machine learning algorithm,

which has the problem of getting into a local optima, can be optimized using RPHT

to find and integrate a set of pseudo-global optimal solutions. The resulting system

 10

has a generalization accuracy that is better than or at least equal to that of the base

learner.

We test this hypothesis on two recent algorithms, one for supervised learning

and one for unsupervised learning. For the supervised learning domain, we use the

Output Parallelism algorithm (Guan and Li, 2002, Guan et al., 2004). In unsupervised

learning, we apply recursive training to the Higher Order Neuron (Lipson and

Siegelmann, 2000) clustering algorithm. We outline below these two algorithms.

Recursive Supervised Learning with Output Parallelism (OP-RPHS)

OP-RPHS combines the strengths of class based and data based

decomposition. The problem is first split into several subproblems, each representing

a subset of output classes. RPHS is then applied to each of the subproblems, resulting

in a system with higher generalization accuracy and parallel processing capabilities.

Multi-order recursive clustering

The multi-order recursive clustering algorithm is similar to Recursive

Unsupervised Learning. However, the multi-order recursive clustering makes use of

Higher Order Neurons (Lipson and Siegelmann, 2000) to perform local search. For

global search, we developed a counter part to Higher Order Neurons – the

Evolutionary Higher Order Neurons (eHONs). This combination of eHONs and

Higher Order Neurons makes it possible for the system to detect arbitrary shaped

clusters with good accuracy.

1.3 Research contribution

The algorithms, presented in this thesis, work towards developing data

decomposition based algorithms for supervised and unsupervised learning with the

following characteristics:

 11

� Splits the data set automatically into reasonably simpler (and therefore more

separable) subsets of data.

 We devise a method by which we decompose the patterns automatically in a

fashion that need not necessarily be class dependent. Further, we want that the

patterns in each of these decomposed sets are more separable than the original

class and therefore easier to train. In an earlier work, Lu et al. (1995) have

implemented an automatic neural network decomposition of training patterns.

However, their experimental results indicate that their decomposition does not

contribute significantly to data separability.

� Improves the overall training time and the generalization accuracy of the

algorithm.

 While all task decomposition algorithms result in reduced training time when

compared with training the complete data set, many of these algorithms focus

specifically on reducing the training error and overlook loss in generalization

accuracy. This generalization accuracy can arise either due to overtraining as in

the case of (Guan and Li, 2002) or due to errors in choosing the suitable solution

(pattern distribution) (Guan et al., 2004).

 In our research, we use, for supervised learning, a combination of a Nearest

Neighbor algorithm and training to local optima. We also use several early

stopping algorithms prevent overtraining. In the case of unsupervised learning,

recombination is performed at the end of each recursion, to ensure minimal loss

of accuracy in division. We can therefore guarantee that the system accuracy is

equal to, or better than that of the base learner.

� Is relatively problem independent.

 12

 Currently hybrid algorithms implemented include a combination of global

search algorithms such as GA (Goldberg, 1989), genetic programming (Koza,

1992) and evolutionary algorithms, along with local optimization techniques such

as BP (Rumelhart et al., 1986) and dynamic BP (Jin and Gupta, 1999)). These

combinations have been successfully used in the selection of neural network

topology, initial weight selection as well as other applications (Yao, 1993).

However, the combinatorial algorithms were based on either (a) The number of

global training epochs implemented or (b) A property of the population such as

convergence or genetic diversity. However, these values are often problem

dependent and cannot be generalized to suit various datasets.

 Task decomposition techniques such as Output Parallelism (Guan and Li,

2002, Guan et al., 2004) and Boosting (Meir and Ratsch, 2003) are also

dependent on various parameters, such as optimal partitioning of outputs, optimal

number of weak learners etc. The recursive pattern based learners are designed to

be problem independent when compared to other hybrid and ensemble

algorithms.

1.4 Plan of thesis

The rest of the thesis is organized as follows. Chapter 2 reviews related

literature and presents them in the context of recursive supervised and Recursive

Unsupervised Learning. Chapter 3 presents the scope of the RPHT training problem

as well as the experimental setup for RSL and RUL.

Chapter 4 presents Recursive Pattern Based Hybrid Supervised learning

(RPHS). Chapter 5 presents clustering based Recursive Supervised Learning (RSL-

CC). Chapter 6 proposes the parallel version of RPHS (P-RPHS). Chapter 7 presents

 13

an application of recursive hybrid supervised learning by combining it with Output

Parallelism (Guan and Li, 2002, Guan et al., 2004), developing the combination of

RPHS and task decomposition - proposing the OP-RPHS training algorithm.

 Chapter 8 moves on to Recursive Unsupervised Learning and presents the

general algorithm as well as the application of Recursive Unsupervised Learning to

Higher Order Neurons (Lipson and Siegelmann, 2000).

Chapter 9 presents an overall discussion on Recursive Pattern Based Hybrid

Training and concludes the thesis.

 14

2. Related literature

2.1 Introduction

In this chapter, we discuss the literature leading up to the development of this

thesis, beginning with the idea of machine learning. We then move on to the domains

of supervised and unsupervised machine learning, focusing on the use of neural

network based algorithms for solving problems in these domains. The need for and

the development of ensemble learning algorithms is discussed, highlighting the

advantages and shortcomings of several ensemble learners proposed in literature.

2.2 Machine learning

The term “Machine Learning” (Nilson, 1990) refers to tasks associated with

artificial intelligence, which are performed by computer systems. Such tasks include

recognition, diagnosis, planning, robot control, prediction etc. Different learning

mechanisms can be used, depending on the task to be performed by the machine.

Machine learning has been gaining research interest over the years due to the

following reasons (Nilson, 1990):

� Machine learning algorithms are capable of learning by example to model I/O

relationships and to approximate implicit relationships in the examples.

� Techniques such as clustering are able to identify important relationships and

correlations hidden among large piles of data.

� Machine learning algorithms can be used for “on-the-job” improvement of

existing machine designs (genetic programming).

� Machines are able to deal with more data than humans and may therefore be

capable of extracting more knowledge than their human counter part.

 15

� Machines can be programmed to adapt to changing environments, thereby

reducing the need for constant retraining and redesign.

Machine learning algorithms have been developed over time to deal with the

above aspects. Algorithms have been developed based on statistics, brain models,

control theory, psychological models, artificial intelligence, and evolutionary models.

There are two main applications of using machine learning to model a

function – supervised and unsupervised learning. In supervised learning, the values

of the outputs for the training samples in a set are known. We also assume that we

can find a model that closely agrees with the outputs for the members of the set, and

that the model is good especially if the set is large.

In unsupervised learning, we simply have the training samples with no

outputs for them. The problem, in this case, is to partition these samples into clusters

in some appropriate way. Unsupervised learning methods have applications in

taxonomic problems in which they classify data into meaningful categories.

In this thesis, we shall consider the use of brain models (neural networks),

evolutionary models (Genetic Algorithms) and their variants to perform recursive

supervised and unsupervised learning. In this chapter, we begin by describing neural

networks for supervised learning and discuss how, in literature, Genetic Algorithms

have been used to improve the training of neural networks. We also explain their

limitations, and describe how the development of ensemble learning, data

decomposition and class based task decomposition overcome these limitations. We

also discuss the weaknesses of these approaches, thereby formulating the scope for

the Recursive Supervised Learning (RSL) algorithm.

We then move on to the use of neural networks for unsupervised learning, the

use of Self Organizing Maps, the introduction of second order, higher order and

 16

ensemble clustering approaches, and discuss their limitations, thereby formulating

the scope for the Recursive Unsupervised Learning (RUL) algorithm.

2.3 Supervised learning

2.3.1 Neural networks for supervised learning

The MultiLayered Percepteron (MLP) (Rumelhart et al., 1986) is a

feedforward neural network with a multi layered structure. For the purpose of this

thesis, we will consider, for simplicity, the three layered percepteron. Typically, the

three layered MLP consists of a set of input nodes, one hidden layer, and an output

layer. The input signal propagates through the network in the forward direction.

Haykins (2000) presents the structure of the three layered percepteron as

shown in Figure 2.1.

Figure 2.1. Architecture of a typical three layered neural network

MultiLayered Percepterons have been successfully applied to solve difficult

and diverse problems using various training algorithms, including error

Backpropagation, Constructive Backpropagation, Genetic Algorithm based neural

 17

networks (GANNs), messy GANNs, and minimal coded GANNs. These algorithms are

discussed in the next sub-section.

2.3.1.1 Training algorithms

Backpropagation

Backpropagation is a gradient descent method using which the training error

(trE) of a neural network is minimized.

2

1

1
�

=

−=
trN

i
ii

tr
tr N

E od

(2.1)

The Backpropagation algorithm, though widely applied in literature, has two

major drawbacks, both related to its gradient based search, and its ability to get stuck

in local optima. The error Backpropagation algorithm can only find the optimal

solution if (a) the initial weights and (b) the network structure are preset to optimal

values.

However, both these parameters of the network are problem dependent and

can only be set by trial and error. To help solve this problem, and to help the network

overcome this problem of local optima, several algorithms have been developed.

One notable algorithm, Constructive Backpropagation (CBP) (Lehtokangas,

1999), is aimed at finding the optimal structure of a three layered neural network and

its training mechanism is as outlined in the Appendix A.

Genetic Algorithm based neural networks (GANNs)

GANNs (Yao, 1983) combine the strengths of GA and neural networks by

incorporating a global search element into the neural network training algorithm.

They can be summarized as below:

 18

Genetic Algorithms: The concept of Genetic Algorithms (Goldberg, 1989) is used

commonly in optimization problems. The initial population pop(0) is generated at

random and the following steps are repeated iteratively until the termination criterion

is reached.

Algorithm 2.1. Pseudocode of Genetic Algorithms

1. Each individual in a population is evaluated.
2. Parents are selected from pop(i) based on their fitness.
3. Crossover is applied to form the offspring.
4. The offspring are randomly changed by applying mutation.
5. The offspring are recombined with the parents to form the generation pop(i+1)

The application of GA to neural network training also follows the same

approach, with the exception of the representation of weights as chromosomes.

Chromosomal representation of neural network weights: The following steps are

taken to convert the neural network weights to chromosomes so that GA-based

neural network training (GANN) can be carried out. Consider the neural network as

shown in Figure 2.2.

Figure 2.2. Sample neural network

As GA parameters – crossover and mutation – can only be applied to

chromosomes, it is necessary to convert the network weights from network format to

chromosomal format. Usually, chromosomes are set such that each element in a

chromosome is representative of one linkage weight in the corresponding neural

network. Therefore,

 19

HOOHHIelem NNNNNNN +++=

(2.2)

where H represents hidden nodes.

The weights of the neural network are represented as wnm for the link between

node m and node n, i.e. w31 for the link between node 3 and node 1, w41 for the link

between node 4 and node 1 and so on. The network in Figure 2.2, which has no

biases, can therefore be represented by a 6 element chromosome with the

chromosomal structure as given in Figure 2.3.

Figure 2.3. Chromosomal representation of network in Figure 2.2

The weights in the chromosomal elements can be represented either in binary

format or as real numbers. For convenience, the real number representation of

weights is chosen to represent the neural network linkage weights as chromosomes.

Messy GANNs

The use of variable length Genetic Algorithms was inspired by the concept of

messy Genetic Algorithms. Messy Genetic Algorithms (mGAs) (Goldberg et al.,

1991) allow the use of variable length strings which may be over-specified or under-

specified with respect to the problem being solved. The original work by Goldberg

et al. shows that mGAs obtain tight building blocks and are thus more explorative in

solving a given problem.

To illustrate, let us consider an evolutionary approach to train a neural

network. The network can evolve its weights as well as its structure with a Genetic

Algorithm (Yao, 1993). In a three-layered neural network, the number of free

parameters, elemN , is given by equation (2.2).

w31 w32 w41 w42 w53 w54

 20

As explained earlier, each of these free parameters is one element of the

chromosome and represents one of the weights or biases in the network. A

chromosome is therefore defined by the value of elemN which in turn depends on the

value of HN , populations are initialized by generating a random number of hidden

nodes for each individual and a corresponding chromosome. The generation of messy

GANNs is summarized below:

Algorithm 2.2. Pseudo code for the generation of messy GANNs

For each chromosome
a. Generate a random number HN between min,HN and max,HN .

b. Using equation (2.2), determine elemN .
c. Generate a real coded string with elemN random neural network weight
values.

End for

The chromosomes are reproduced using single point crossover and mutation.

Crossover in messy GANNs is different from that for GAs and is as explained below:

Single point crossover: Single point crossover chooses a crossover point that is an

element of the shorter of the two selected chromosomes. For example, given two

chromosomes i and j , with ielemN , and jelemN , elements respectively, where

jelemielem NN ,, <<<< , the crossover point p is chosen such that ielemNp ,<<<< . The resulting

offspring chromosomes therefore have jelemN , and ielemN , elements. This is

illustrated by Figure 2.4.

 21

Figure 2.4. Single point crossover in messy GANNs

In the case where the crossover point chosen is not the same for both parents,

there is a chance of creating an offspring with architecture different from that of

either parent. In this case, it is necessary that the resulting network be a valid one,

i.e., it contains an integer number of hidden nodes. Therefore, before performing

crossover, the crossover point validity is checked by evaluating the number of

elements in the resulting offspring (based on the selected crossover points) and then

evaluating equation (2.3) to see whether it yields an integer value. Equation (2.3) is

obtained by rearranging equation (2.2):

1++++++++
−−−−

====
oI

oelem
H NN

NN
N

(2.3)

If either of the chromosomes is invalid, an alternative crossover point is chosen.

Minimal coded GANNs

The implementation of Minimal Coded Genetic Algorithms (MCG) (Gong et

al., 2004, Satoh et al., 1996) was considered because the bulk of the training time of

an evolutionary neural network is due to the evaluation of the fitness of an offspring.

 22

In minimal coded GAs however, only a minimal number of offspring is generated at

each stage. The algorithm is outlined briefly below.

Algorithm 2.3. Pseudo code for the generation of minimal coded GANNs
1. From the population pop, select u parents randomly.
2. Generate ϑ offspring from the u parents using crossover/mutation.
3. Choose 2 parents at random from u.
4. Of the two parents, 1 is replaced with the best from ϑ and the other is replaced by
a solution chosen by a roulette wheel selection procedure of a combined population
of ϑ offspring and 2 selected parents.

Therefore, if we choose the values of u=4 and ϑ =1 for the GANNs, except

for the initial population evaluation, the time taken for evolving one epoch using

MCG is equivalent to the forward pass of the Backpropagation algorithm.

2.3.1.2 Limitations

All the training algorithms described above encounter, at some level, the

problem of stagnation and premature convergence to local optima.

The limitation of Backpropagation, as described earlier, lies in its gradient

based search nature. Therefore, the correct setting of neural network structure and

initial training weights becomes crucial to the finding of the correct solution.

While Constructive Backpropagation goes one step further in solving this

problem, the addition of one hidden node simply jogs the system out of stagnation. It

does not guarantee the finding of global optima.

GANNs, both messy and non messy, widen the search scope by incorporating

a global search element. However, GAs are disadvantaged due to their long training

time. Moreover, the global search nature of GAs also makes them unsuitable for local

optimization. Therefore, GANNs are best used as hybrids (Yao, 1993) than by

themselves.

 23

Even with the use of hybrids several bottlenecks exist that prevent their

widespread adaptation. One major problem is their dependency on problem

dependent or heuristic parameters, such as the changing point between the use of

GANNs and gradient descent techniques, which have to be set and tuned manually.

The development of ensemble and divide and conquer approaches described

below, deals with the limitations of local optimization and premature convergence by

using a set of networks (trained using various algorithms) to conquer the problem in

parts.

2.3.2 Ensemble learning

An ensemble of learners is a set of learners whose individual decisions are

combined in some way (using either weighted or unweighted voting) to classify new

samples. Ensemble learning is based on the assumption that “several minds are better

than one”.

The basic ensemble is created using Bayesian Averaging (Schapire, 1997).

However, more recent ensembles have been shown to be highly effective. Boosting

(Meir and Ratsch, 2003) and Bagging (Breiman, 1996) introduce diversity in the

learners by manipulating the training samples. Bagging presents each weak learner a

random bootstrap sample of the original training set. Several training samples appear

multiple times to the final solution.

Boosting is commonly known as the best “off the shelf” classifier in literature

(Hastie et al., 2001). Like Bagging, Boosting creates diverse learners by

manipulating the training samples. Unlike Bagging, however, Boosting uses the

entire training set to perform the manipulation. For each iteration, the learning

algorithm returns a hypothesis based on the training set. The error of the hypothesis

 24

is used to calculate a corresponding weight for each training sample. As a result,

more importance is given to the wrongly learnt patterns. The final classifier is

generated by using a weighted vote of individual classifiers.

2.3.3 Data decomposition

Data decomposition is also oriented towards ensemble learning. However,

instead of introducing diversity in the weak learners by manipulating the data and

weighing erroneous patterns, data decomposition simply removes the learnt patterns.

The advantage is that a finite number of learners is required for learning the patterns.

Data decomposition can be multi level (as in the case of Multisieving) or

single level. Single level data decomposition algorithms simply reduce the size of the

dataset and thereby aim to reduce the computation time and to improve the

generalization accuracy. Some data decomposition algorithms are discussed below.

Multisieving

The Multisieving algorithm (Lu et al., 1995) implements a sieving approach

to task decomposition. In the Multisieving algorithm, a neural network is trained

using all the available data until stagnation occurs. At that point, all the patterns

which produce valid outputs, i.e., ξ<− jj od , are considered learnt and therefore

isolated along with their corresponding network. The remaining (unlearnt) patterns

are further trained using another network and the process is repeated until all the

patterns are learnt. Using the TWO-SPIRAL problem, the authors showed the

validity of their approach.

Topology based selection

Many papers have been written on the possibility of using a subset of training

patterns for training instead of the whole dataset. A notable work by Foody (1998)

 25

argued that the classifier structure can be determined by the border patterns (i.e.,

those whose Mahalanobhis distances are close to patterns of other classes), while the

core patterns can be discarded.

The topology based dynamic selection (Gathercole et al., 1994) again selects

subsets of training patterns based on their difficulty. The difficulty of a pattern is

determined by whether the pattern can be learnt with an accuracy of ξ . More and

more “difficult” patterns are chosen until a desired subset size is reached.

Evolutionary algorithms are used to determine the suitability of a pattern to be part of

the subset based on the structure the population induces on the training pattern. The

theory behind these approaches is that when training emphasis is given to the

difficult patterns, it is possible to obtain an accurate classifier.

2.3.4 Class based task decomposition

Output Parallelism (Guan and Li, 2002, Guan et al., 2004) was proposed to

reduce the training complexity by dividing the training data into subsets according to

the output classes. Simply, the training set, consisting of NO classes will be divided

into NO datasets of 2 classes, each subset consisting of data points from iClass and

i Class 1, where ONi ∈ . A subnetwork is then trained using each subset of data,

thereby simplifying the training data complexity. The system therefore consists of a

series of sub neural networks which are combined together to solve the problem.

The pattern distributor was proposed on top of the Output Parallelism

algorithm (Guan et al., 2004). The algorithm implemented a second neural network

to distribute test patterns to the correct subnetwork. Empirically, the use of pattern

1 Each pattern is relabeled according to whether it belongs to

i Class or not to class i (
i Class). In

other words, if there are NO output classes and Ntr training patterns, NO sets of Ntr patterns are formed,
each with two output nodes.

 26

distribution achieved better results when compared to the Output Parallelism

algorithm. Output Parallelism is explained in greater detail in Appendix B.

Table 2.1 summarizes the difference between selected ensemble learning,

data decomposition and task decomposition data decomposition algorithms.

2.3.5 Limitations of surveyed supervised learning algorithms

While all the above are effective algorithms, each of them has strengths and

drawbacks. While Boosting and Bagging augment the performance of weak learners

with a probability based weighing system, the accuracy of the algorithm is shown to

depend on the number of weak learners used, this number being problem dependent

(Meir and Ratsch, 2003).

Output Parallelism and related classwise decomposition algorithms (Guan

and Zhu, 2004, Guan and Li, 2002, Guan et al., 2004) pre-partition the dataset

according to class labels. The assumption is that a two-class problem is generally

easier to solve than a NO -class problem, and is therefore easier to solve by dividing it

into NO two-class problems and solving a separate neural network for each one. The

approach has been shown effective empirically. However it can be applied to

classification problems only and therefore limited in nature. Further, the assumption

that a two-class problem is simpler than a NO -class problem does not hold in some

cases, in which the application of Output Parallelism can be questionable.

The dependency on class is overcome by the subset selection algorithms

(Gathercole et al., 1994, Foody, 1998, Lasarzyck et al., 2004) and the Multisieving

algorithm (Lu et al., 1995). Subset selection algorithms aim to reduce computational

intensity by performing training by using a subset of the patterns available as a

representative of the whole pattern set. The subset used can be either static (Foody,

 27

1998) or dynamic (Gathercole et al., 1994, Lasarzyck et al., 2004). The subsets of

patterns are selected using either numerical methods or using evolutionary

computation. While the computation intensity is definitely reduced by the use of this

algorithm, we should take into account that using a subset of patterns does not

guarantee optimal accuracy. Further, the size of the subset plays an important role in

the performance of the algorithm and this again, is a problem dependant value.

Table 2.1. Summary of the differences between selected ensemble training, data
decomposition and task decomposition methods

Algorithm Bagging Boosting Multisieving Topology
based

selection

Output
Parallelism

Number of
subsets

User
specified and

problem
dependant

User
specified and

problem
dependant

Several

One Less than or
equal to the
number of

output classes
Method of

subset
selection

Random
bootstrap
subsets

Learning
capability of
weak learner

Isolation of
untrained

patterns when
neural network

stagnates

Genetic
Algorithm
and then
selecting
unlearnt
patterns

Based on
class labels

Subset size Fixed by
programmer

Dynamic Dynamic Fixed Fixed

Adaptability Fair Very flexible
and adaptable

Depends on the
pre-specified

error tolerance
of the network

Adapted to
the selected

subset of
patterns only

Not adaptable

Training
stopping

Each weak-
learner

completes
training

based on its
own criteria.

Each weak-
learner

completes
training

based on its
own criteria.

Until the last
training pattern

is learnt (No
validation)

Validated
according the

subset
selected

Based on
validation

data manually
selected

according to
output classes

Testing Weighted
function

Weighted
function

Implemented in
this thesis using
a KNN based

pattern
distributor

Direct testing
on the neural

network
formed

With or
without NN
based pattern

distributor

The Multisieving algorithm (Lu et al., 1995), on the other hand, uses a

succession of networks to train the system until all the patterns are learnt. While the

algorithm is an efficient one, its accurate performance depends on the value of a

 28

predefined error tolerance, which is a problem dependant value. The algorithm is

therefore, not entirely adapted to the problem topology.

In addition to the above mentioned weaknesses, all the algorithms, with the

exception of Output Parallelism, focus on improving the training accuracy of the

system. The existing tradeoff between training and generalization accuracy is often

not considered. One common approach to improve training and generalization

accuracy is the use of the early stopping criterion (Guan and Li, 2002) to stop

training. Early stopping is explained in further detail in Appendix C. However, early

stopping only guarantees the appropriate stopping of training, but does not evaluate

the effectiveness of task decomposition. Since we need to know whether a

decomposition step is effective or detrimental (i.e., whether a resulting subset is too

small) the early stopping criterion is not sufficient to prevent overtraining.

2.4 Unsupervised learning

Data clustering is an important problem, but an extremely difficult one. The

objective of clustering is to partition a set of unlabelled patterns into homogeneous

clusters. A number of applications use clustering techniques to organize data. Some

applications of clustering include data mining (Fasulo, 1999, Judd et al., 1997),

information retrieval, and machine learning. However, in real world problems,

clusters can take on arbitrary shapes, sizes, and degrees of separation. Clustering

techniques require us to define a similarity measure between patterns, which is not

easy due to the varying shapes of information present in data. Neural network

solutions for clustering data include Self Organizing Maps (SOM) as well as second

and higher order approaches.

 29

2.4.1 Self Organizing Maps

Self Organizing Maps (SOMs) (Kohonen, 1997) represent a type of neural

network proposed for clustering purposes. They assign a synaptic weight ((j)W) to

each neuron j(x). The winning neuron is the neuron that has the highest correlation

with the input x, i.e., it is the neuron for which xW (j) • is the largest, i.e.,

xWx (j) ⋅= maxarg)j(j

(2.4)

where the operator . represents the Euclidean norm of the vector. The idea behind

equation (2.4) is to select the neuron which exhibits maximum correlation with the

input. Often used instead of equation (2.4) is the minimum Euclidean distance

matching criterion (Kohonen, 1997), given below:

xWx (j) −= minarg)j(j

(2.5)

However, the use of the highest correlation or the minimum distance

matching criterion implies that (a) the features of the input domain are spherical, i.e.,

deviations are equal in all dimensions and (b) the distance between features must be

larger than the distance between points in a feature. These two implications of the

data can be summarized in the equations below:

 nmNn,m InImI)()(,, �≈�≠∈∀ λλ
(2.6)

))()(())()((, 2121212121 xxxxxxxxx,x jjifjjifT ≠•>=•∈∀
(2.7)

In the above equations, the I� operator represents the covariance of the data

matrix I, mλ is the thm eigenvalue.

 30

y

x

y

Data A Data B

y

x

 y

x

Data C Data D
Key: Class 1: , Class 2 (x and y refer to the 1st and 2nd principal component values of

the data respectively)

Figure 2.5. Artificially generated two-dimensional two class clusters illustrating the
weakness of SOMs

Table 2.2. Summary of the properties of the data in Figure 2.5

Data
Name

Spherical clusters
(Satisfies equation

(2.6))?

Clusters are sufficiently
far apart (Satisfies

equation (2.7))?

Number of samples
mis-clustered by

SOM
Data A Yes Yes 0
Data B Yes No 9
Data C No Yes 1
Data D No No 10

For an arbitrary set of data to fulfill these conditions could be difficult,

especially in cases where such distributions of data are difficult to visualize and

detect due to the high dimensionality of the problem. Even when the distribution of

the data is detected through visualization, the SOM may not solve the problem when

the conditions described in equations (2.6) and (2.7) are not satisfied.

Consider, for example, the arrangements of two data clusters in two

dimensions as shown in Figure 2.5. Table 2.1 summarizes the properties of these

datasets in terms of their ability to satisfy equations (2.6) and (2.7). Due to the nature

 31

of the data there is no guarantee that the SOM will be able to cluster correctly the sets

of data other than Data A.

2.4.2 Second order, higher order and ensemble clustering approaches

Several methods have been proposed to overcome the problem of mis-

clustering. Second order curves, with the use of an inverse covariance matrix, are

often used to capture ellipsoidal properties (Lipson et al., 1998). The concept of

second order curves was expanded in several cases to include second order shells.

Kohonen (1997) discussed the use of the weighted Euclidean distance measure that

captures different variances in the components of input signals. The use of the

Mahlanobhis distance was also considered.

On the other hand, non-parametric techniques such as agglomeration (Blatt et

al., 1996) attempt to find arbitrary shapes in the clusters. However, their performance

also depends on the ability of the cluster to satisfy equation (2.7).

Lipson and Siegelmann (2000) proposed the generalized Higher Order

Neuron (HON) structure, which extended second order surfaces to arbitrary order

hyper surfaces. These neurons had the capability to detect arbitrarily shaped clusters

and were therefore desirable over spherical or ellipsoidal detecting of clusters. HON

could also, in a correctly prescribed order, yield results similar to non parametric

clustering techniques.

On the other end of the clustering spectrum are the ensemble approaches.

Ensemble learning, which is highly popular in the supervised learning domain, has

just begun to take root in the domain of unsupervised learning.

While there are many ensemble approaches to supervised classifications,

combination of clustering partitions is a more challenging task than combining

 32

partitions of labeled data. In the absence of labels, labeling clusters in different parts

of the ensemble becomes a problem. A common approach to resolving this problem

is consensus clustering (Fred and Jain, 2005, Fred and Jain, 2002, Strehl and Ghosh,

2002, Topchy et al., 2005).

2.4.3 Limitations of surveyed unsupervised learning approaches

Although ensemble clustering methods attempt to overcome the spherical

nature of SOMs and attempt to give an answer to the labeling uncertainty associated

with clustering problems, a problem with these methods is the generation of

partitions. Several methods are used to create partitions for clustering ensembles.

Some choices of partition generation include the use of different regular clustering

algorithms, different initializations, parameter values, etc. to induce randomness into

a specific clustering algorithm, the use of weak clustering algorithms (Jain and

Dubes, 1998) etc. All these methods generate independent partitions, and an

ensemble is created based on the similarity between the data in each partitioning

algorithm.

While the ensemble clustering approach combines the strengths of different

clustering approaches, the optimal number of partitions is unknown. Topchy et al.,

(2005) showed consensus clustering applied to some benchmark datasets using as

many as 25 to 150 partitions.

 33

3. Problem scope and experimental setup

3.1 Introduction

Ensemble learning algorithms using neural networks, while efficient and

popular, have several weaknesses as has been discussed in the previous chapter. The

majority of these weaknesses are due to uncertainties in the number and quality of

the ensemble members. In this chapter, we discuss the formulation of the RPHT

algorithm so as to overcome these weaknesses. We also draw out the scope of the

thesis problem in relation to the context of ensemble learning and describe the

experimental setup of the thesis.

3.2 Problem scope

RPHT has been described in Section 1.3 (Chapter 1) as an algorithm that

improves the training time and generalization accuracy of machine learning by

splitting the dataset automatically into reasonably simpler subsets of data. Being

relatively problem independent, the algorithm can be built “on top of” existing

machine learning techniques to improve their performance. We now formulate these

goals in the context of the RPHT algorithm as an ensemble learning system.

3.2.1 Assumptions

In the development of the RPHT theory, we assume, for simplicity, that the

training patterns are independent of each other. By independence, we mean that the

data has spatial, but not temporal properties. Also, the training patterns are linearly

independent, i.e., there are no associations between the training patterns. Simply, the

 34

output Oi of the system depends on the input Ij only when i=j. All the theoretical

analysis in the thesis have been based on this assumption.

The problems considered in this thesis can therefore be solved by learners

which are of a feedforward nature, such as Backpropagation and Constructive

Backpropagation.

Problems that fall into this domain, and are discussed in this thesis, include

curve fitting, classification and clustering. All the experiments discussed have been

performed on datasets that have been preprocessed to ensure that this assumption is

true.

3.2.2 Research goals

The goals of the RPHT algorithms can therefore be stated as follows:

To create an ensemble of learners to model a dataset with patterns that are

independent of each other such that:

1. The number of partitions in the learner is deterministic.

2. The worst case generalization accuracy is better than that of the base

learner.

In Chapters 4 and 5, we shall provide mathematical proof of how the recursive

training algorithms developed in this thesis fulfill these goals.

3.3 Experimental setup for supervised learning

3.3.1 Data sets analyzed

In supervised learning, two kinds of problems were considered for simulation.

Curve fitting problems were taken from the non-linear regression repository (NIST,

 35

2000). The curve fitting accuracy, number of training epochs and standard deviation

are used as measures to evaluate the robustness of the training algorithm.

Several classification problems were selected from the UCI machine learning

repository. The training algorithms were evaluated on the basis of their training time,

generalization accuracy and solution complexity.

3.3.1.1 Curve fitting problems

The training algorithms were set to solve for the coefficients of each of the

problem equations in Table 3.1. A normally distributed noise, �, was added to the

training, testing and validation sets in order to test the generalization capability of the

algorithms. All the problem definitions were obtained from the non-linear regression

repository (NIST, 2000) and in order to have a sufficient number of training patterns,

data was artificially generated using the problem definitions and added to the data in

the repository. To obtain the training, testing and validation datasets, the dataset was

randomly split into three parts in the ratio of 2:1:1.

The problems were chosen according to varying degrees of difficulty, the

ENSO problem being the easiest and the HAHN problem being the most difficult.

The difficulty of a given problem is measured by the value of gP , the probability of

finding a global optimal neighborhood. The pseudo code for evaluating gP for a

curve fitting problem is given in Algorithm 3.1. Note that this value of gP can only

be obtained when the problem structure is fixed and the ideal values of independent

parameters are known. The values used here are therefore simply measures of

difficulty and cannot be found in real world problems.

 36

Table 3.1. Curve fitting problems considered

Problem ID ENSO GAUSS HAHN
Number of variables 9 8 7
Fitness Function 2

1

1
�

=

−=
trN

i
ii

tr
tr N

E od

Ntr 500 250 1000
Ntst 250 125 500

of Patterns

Nval 250 125 500
Number of recursions 3 3 4
Fitting function

επ

ππ

ππ

π

++

++

+

++=

)
w

x
(w

)
w

x
(w)

w
x

(w

)
w

x
(w)

x
(w

)
x

(wwy

7
9

7
8

4
6

4
53

21

2
sin

2
cos

2
sin

2
cos

12
2

sin

12
2

cos

()[]

()[] ε++

−−+

−=

2
8

2
76

2
5

2
43

21

exp

exp

exp

/wx-w- w

/wwx w

x)w(wy

 ε+
+++
+++

=
3

7
2

65

3
4

2
321

1 xwxwxw

xwxwxww
y

Coefficient values {10.51, 3.07, 0.53, 44.31, -1.62,
0.525, 26.89, 0.212,1 .49}

{98.778, 1.04x10-2, 100.489,
67.481, 23.129, 71.994, 178.98,

18.389}

{1.078, -1.266x10-4, 4.087x10-3,
-1.43x10-6, -5.76x10-3, -1.23x10-7,

2.40x10-4}
Problem difficulty (gP) 0.01 3.5x10-4 2.04x10-5

 37

Algorithm 3.1. Pseudocode for evaluating the gP value of a problem
1. Initialize all the other independent parameters to optimal values.
2. For all i, where max,min, jj wiw ≤≤ ,
 a. Vary the value of i in small steps
 b. Evaluate trE for each i
 c. Plot the graph of trE against i
End for

 The procedure in Algorithm 3.1 will give us the curve of trE vs. jw for a

single dimension. From the curve, the value of gP for the dimension j is given by:

min,max,

1
min,,max,,

,
jj

G

m
gmgm

jg ww

ww
P

−

−
=
�

=

 (3.1)

where G is the number of global optima in the dimension j. The value of gP for the

whole problem Nelem independent parameters is therefore ∏
=

=
elemN

j
jgg PP

1
, . Where G=1

and m=1 , min,,gmw , max,,gmw , max,jw and min,jw are as defined in Figure 3.1.

 38

0
-44 wj

Etr

Figure 3.1. Illustration of gP for a dimension with a single global optimum

3.3.1.2 Classification Problems

The TWO-SPIRAL problem

Simulations were carried out on the TWO-SPIRAL problem in order to

illustrate the advantage of the evolutionary search. Results are compared with those

obtained by the Multisieving algorithm (Lu et al., 1995), which implements only

neural network based learning, The dataset consists of 194 patterns, which were

decomposed into sets of 2:1:1 for comparison with the Multisieving algorithm. To

ensure a fair comparison to the Topology-based Subset Selection (TSS) algorithm

(Lasarzyck et al., 2004), test and validation datasets of 192 patterns each were

constructed by choosing points next to the original points in the dataset as mentioned

in the TSS paper. The modified TWO-SPIRAL data set is as given in Figure 3.2.

min,,1max,,1 gg ww −

min,max, jj ww −

Global Optima

 39

Class 1 Class 2

Figure 3.2. Modified data for the TWO-SPIRAL problem

Classification problems from the UCI database

 Table 3.2 summarizes the properties of the other classification problems

considered in this thesis. The problems were selected from the UCI repository such

that they spanned a variety of input dimension, output dimension and data size. They

also cover a range of difficulty, giving a wide range of generalization error values

when Constructive Backpropagation (Lehtokangas, 1999) is used to train them.

Table 3.2. Summary of the classification problems considered

Problem
Name

SEGMENTATION VOWEL LETTER
RECOGNITION

SPAM PENDIGITS

trN 1155 495 10000 2301 3747

tstN 578 248 5000 1150 1874

valN 577 247 5000 1150 1873

IN 18 10 16 57 16

ON 7 11 26 2 10

1st principal component

2nd principal component

 40

3.3.2 Experimental parameters

Table 3.3. Experimental parameters used in the Recursive Supervised Learning
algorithms

Parameter Value

Crossover probability 0.9

Mutation probability 0.2
Pattern learning tolerance for global training � 0.1

Population size 50

Neural network learning rate 10-2

Generalization loss tolerance threshold 2 1.5

Number of stagnation epochs before CBP increases
one hidden node

25

Number of neighbors considered for KNN pattern
distributor

1

Table 3.3 summarizes the parameters used in the experiments. As we wish for

the training algorithm to be as problem independent as possible, we make all the

experimental parameters constant for all problems and as given below. As the

available data was split into training, testing and validation patterns in the ratio of

2:1:1, each experiment was run 40 times, with 4-fold cross validation. All the

experiments were conducted using a Pentium 4, 2.4GHz processor running on the

windows platform.

3.3.3 Benchmark algorithms for comparison

The following control experiments were employed for comparing the results

of the Recursive Supervised Learning algorithm. The reason for using these

algorithms for comparison is described below:

� Multisieving (Lu et al., 1995) with a KNN based pattern distributor3:

2 The generalization loss tolerance threshold was proposed by Guan and Li (2002) when preventing
overtraining using early stopping.

 41

Multisieving is a recursive task decomposition approach using only neural

networks. Comparison with Multisieving is expected to show the advantage

of employing global search in Recursive Supervised Learning.

� Dynamic Topology-based Subset Selection (TSS) (Lasarzyck et al., 2004):

TSS is a method which employs evolutionary algorithms for reducing the

training data size. Comparing our results with TSS is expected to show the

need for recursive decomposition.

� Output Parallelism without pattern distributor (Guan and Li, 2002) and

Output Parallelism with pattern distributor (Guan et al., 2004):

Output Parallelism algorithms are class based decomposition algorithms.

Comparison with these algorithms will illustrate the need to go beyond class

based decomposition.

� Constructive Backpropagation (CBP) (Lehtokangas, 1999):

Constructive Backpropagation is a novel algorithm that jogs a neural network

out of local optimum by adding a new hidden node to the architecture. It is an

algorithm which tries to find the true global optimal solution. Analysis of the

performance of recursive training when compared to CBP will empirically

show the efficiency of pseudo-global optima.

� Single clustering for supervised learning (Engelbrechet and Brits, 2002):

This algorithm is used to compare the results with RSL-CC (Chapter 5) which

makes use of clustering and GA based combinatorial optimization. Single

clustering comes into play to illustrate the need for a GA based combinatorial

optimization algorithm for better performance, even in the situation where a

pre-trainer is used.

3 The Multisieving algorithm did not propose a testing system. We are testing the generalization
accuracy of the system using the KNN pattern distributor, similar to the RSL pattern distributor.

 42

In addition to these algorithms, comparison for curve fitting problems is also

done with linear interpolation (Vasconcelos et al., 2001), which is a single staged GA

based hybrid training algorithm and with the percentage based hybrid pattern training

(PHP) algorithm (Guan and Ramanathan, 2007).

3.4 Experimental Setup for unsupervised learning

3.4.1 Datasets analyzed

The following benchmark datasets from the UCI repository were used to

analyze the RUL algorithm.

1. IRIS dataset (4 dimensions, 150 patterns)

2. WINE dataset (13 dimensions, 178 patterns)

3. GLASS dataset (9 dimensions, 214 patterns)

Figure 3.3 shows the 2-dimensional principal component projections of these

datasets.

In addition to these data, the effectiveness of the RUL algorithms has also

been illustrated on toy datasets described in Figure 2.5 (Chapter 2).

3.4.2 Benchmark algorithms for comparison

We compare the performance of the RUL algorithms with the following

benchmark training algorithms. The experiments were run using the crossover and

mutation probabilities, population size and learning rate as described in Section 3.3.2.

� Higher Order Neurons (Lipson and Siegelmann, 2000):

The higher-order neuron structure detects the presence of a continuum of cluster

shapes from spherical to arbitrary shapes. Simulations are run with neurons of

order 2 and order 3. Order 2 detects elliptical, oval and, to a certain extent,

banana shapes, while order 3 detects other higher-order shapes to some extent.

 43

� Self Organizing Maps (Kohonen, 1997):

The Self Organizing Map can be viewed as a Higher Order Neuron of order 1.

This algorithm detects spherical clusters and, to an extent, oval shaped clusters.

� Consensus clustering (Strehl and Ghosh, 2002):

An ensemble clustering approach, consensus clustering uses the agreement of

weak learners to create optimal partitioning.

(a) IRIS (3 clusters)

(b) WINE (3 clusters)

(c) GLASS (6 clusters)

Figure 3.3. Distribution of data in IRIS, WINE and GLASS datasets

1st principal component

2nd principal component

1st principal component

2nd principal component

1st principal component

2nd principal component

 44

4. Recursive Pattern Based Hybrid Supervised learning (RPHS)

4.1 Introduction

Imagine a situation where a teacher is to teach a group of students (the

population) a set of examples (the tasks). In a normal classroom, the teacher would

teach the various examples repeatedly until either the teacher is satisfied with the

results or the students are unable to learn any more tasks. Usually, the aptitude of the

students is limited and without a very good teacher, it is unlikely that they will learn

all the tasks. On the other hand, although very good teachers are hard to find, it is

necessary that the class learn all the examples.

Therefore, a new solution is proposed. The teacher now teaches all the

samples until some students (Group A) in the class learn some of the examples (Set

A) (The students do not have to learn these examples perfectly; they can make some

errors during the learning). Now the teacher isolates these Group A students and

allows them to learn set A examples alone.

The teacher now blanks the memory of the remaining students and focuses

their attention on the remaining examples. As the students’ memories are

reinitialized, their previous lack of knowledge will not come into account when

dealing with the remaining examples. The teacher teaches the remaining samples

until a group of students (Group B) learns some of them (Set B). The teacher now

isolates Group B and lets them learn set B examples until they are perfected.

This process is repeated until there are too few samples left to allow further

decomposition. The class is then set to learn these remaining samples in the best way

possible. The teacher therefore induces a team effort, such that, as a team, the class is

able to solve the samples better than an individual student would. She isolates

 45

students showing aptitude for a set of problems by allowing them to focus their

attention on those examples in particular and not worry about the problems that they

find difficult. These examples will still be learnt… there are other students who will

show aptitude for these problems.

The teacher’s job is therefore simplified. The students’ job is simplified as

well, since they only have to learn those examples they find easy and can therefore

solve them faster and better.

This is the concept of RPHS algorithm. The pool of solutions (population),

along with the teacher, uses a Genetic Algorithm based global search to decompose

the datasets recursively. Each data subset i (consisting of a subset of examples) is

considered simple by the solution Si that has learnt it to certain extent. This solution

Si now concentrates on specializing on the decomposed dataset and learns it perfectly

using a local training technique (based on neural networks). The set of solutions S

obtained can therefore solve any test pattern in the domain as long as we know which

subset of examples the new task belongs to. In RPHS, this subset identification is

performed using the Nearest Neighbor algorithm. We also make use of extensive

validation and early stopping techniques to ensure that overtraining is avoided.

The RPHS algorithm displays the following salient properties:

� Pattern training, as well as error training, are focused on, as opposed to error

training only. Error training alone has the disadvantage of over-training some

patterns while other patterns can be left untrained or under-trained.

� Since difficult patterns receive more attention in training, there is a higher

possibility of obtaining better training, as well as generalization accuracy.

 46

� Since the RPHS algorithm is also clustering based, adding new training

patterns after training is complete will simply result in the development of

new clusters to deal with the new patterns, instead of complete retraining.

� As progressively fewer samples are learnt in each recursion, the training time

required for each epoch is reduced.

� As the difficulty of the training patterns increases progressively with each

recursion (from the point of view of the students), the population focuses

more on the difficult samples.

� The recursions stop when the number of samples reduces to a small amount,

avoiding the likelihood of overtraining.

� The decomposition algorithm takes the problem structure into account, while

being problem independent at the same time. Therefore, this process is more

natural than other data decomposition techniques described in Chapter 2.

The RPHS algorithm also reduces dependence on several training parameters

often introduced in other hybrid algorithms and subset finding algorithms. These

include the subset size, the degree of error tolerance ξ and the number of epochs to

be trained before the training mode can change from global to local.

4.2 Algorithm description

4.2.1 Pseudo global optima

The observed better performance of the RPHS algorithm can be attributed to

the fact that we aim to find several pseudo-global solutions as opposed to a single

global solution. We define a pseudo-global optimal solution as follows:

Theorem 4.1: A pseudo-global optima is a global optimum when viewed from the

perspective of a (learnt) subset of training patterns.

 47

Proof:

Consider the use of the RPHS algorithm to model a function iS such

that)I ,(SO itr,iitr W=, where W is the set of values to be optimized. The training

error of a recursion i at any point of time is given by equation (4.1):

iunlearnt,ilearnt,itr, EEE +=

(4.1)

At any given point, the training error can be split into the error of the learnt patterns

iT and the error of the unlearnt patterns)(iTT − .

We can define the error tolerance jξ of a pattern j as jj od −=jξ . If we

define a pattern j as learnt if learntj ξξ ≤ , we can conclude that unlearntlearntj ξξξ <≤ .

Also, as we approach the optimal points through gradient descent,

0→ilearnt,E

(4.2)

Also, consider that at the end of evolutionary training, all the learnt patterns

have an error less than the error tolerance learnt� , i.e.

iunlearnt,Tlearntiunlearnt,i learnt,itr, EN�EEE
i

+≤+=

(4.3)

Recursive training splits up the training patterns after evolutionary training of

recursion i such that the local training of recursion i is carried out with the patterns iT

and the global training of recursion i+1 is carried out with the patterns �
=

i

1j
jT-T .

Assuming data independence, the value of iunlearnt,E is therefore a constant ,C, during

local training, i.e. for any given local training epoch,

 48

CEE ilearntitr += ,,

(4.4)

Wi

Err
or

*

E tr

E tr '= E unlearnt,i Global
Optimum

wi

Error

*

E tr,i

E tr '-> E unlearnt,i Global
Optimum

Figure 4.1. Illustration of the concept of pseudo-global optima

Further, from equation (4.4), 0, →∂
∂

w

itrE as 0→∂
∂

w

learntE . From

equations (4.2) and (4.4), we can infer that the optimum found by a given recursion is

pseudo-global, i.e., it is globally optimal from the perspective of the learnt patterns in

a given recursion. Therefore Theorem 4.1 is proved.

�

As discussed in the next section, in contrast to the Multisieving algorithm, the

recursive training solution adapts itself accordingly, regardless of the error tolerance,

� , to the problem topology. This property can be attributed to local training at the

end of each recursion. Finding a pseudo-global optimum therefore reduces the

dependence of the algorithm on the error tolerance of learnt patterns � . It is also the

natural optimum for the data subset.

4.2.2 Hybrid recursive training and testing

The RPHS training algorithm can be summarized as a hybrid, recursive

algorithm. While hybrid combinations of Genetic Algorithms and neural networks

 49

are used in various works to improve the accuracy of the neural network (Yao, 1993,

Hamedi, 2005, Karzyanski et al., 2003), the RPHS algorithm is recursive, as outlined

below.

The hybrid algorithm uses Genetic Algorithms to find a partial solution with a

set of learnt and unlearnt patterns. Neural networks are used to learn “to perfection”

the learnt patterns and Genetic Algorithms are used again to tackle the unlearnt

patterns. The process is repeated recursively until an increase in the number of

recursion leads to over fitting. The training process is described in detail below.

1. As we are only looking for a fast partial solution, we use GANNs to perform the

global search across the solution space with all the available training patterns.

2. We continue training until a) there is stagnation or b) a subset of the patterns are

learnt. In this stage, we use a condition similar to that in Lasarzyck et al., (2004)

and the Multisieving network (Lu et al., 1995) to identify learnt patterns, i.e., a

pattern is considered learnt if learntξ≤− jj od , where learntξ is the predefined error

tolerance.4

3. The dataset is now split into learnt and unlearnt patterns. With the unlearnt

patterns, we repeat steps 1 to 3.

4. Since the learnt patterns are only learnt up to a tolerance, learntξ , we use gradient

descent to train the learnt patterns. The aim of local search is to best adapt the

solution to the data topology. Backpropagation is used in all the recursions except

the last one for which Constructive Backpropagation is used. The reason for this

is explained later. The optimum thus found is called the pseudo-global optimal

4 Note that, similar to the Multisieving algorithm, a tolerance learntξ is used to identify learnt patterns;

the arbitrarily set value of learntξ for RPHS does not affect the performance of the algorithm, as
explained in section 4.2.1.

 50

solution, and is found using a validation set of data to prevent overtraining and to

overcome the dependence of the algorithm on learntξ .

If the number of patterns in a data subset is small, especially as the number of

recursions increases, it is possible for the pseudo-global optimal solution to over fit

the data in the subset. In order to avoid this possibility, we use a validation dataset.

The validation dataset is used along with the training data to detect generalization

loss using an algorithm in (Guan and Li, 2002).

TR Global
Training

Local
Training

TR-TR1

TR1

TR-TR1
-TR2

TR2

TR-
(TR1+TR2+…+TRK)

S2

SK

S1

Figure 4.2. Recursive data decomposition employed by RPHS

The data decomposition technique of the RPHS algorithm can be best

described by Figure 4.2. During the first recursion, the entire training set (T) is

trained using global training until stagnation occurs. Only the learnt patterns are

learnt further using Backpropagation, with measures to prevent overtraining. This

ensures the finding of a pseudo-global optimal solution. The second recursion repeats

the same procedure with the unlearnt patterns. The process repeats until the total

 51

number of patterns in a given recursion (Recursion K) is too small, in which case,

Constructive Backpropagation is applied to the whole dataset to learn the remaining

patterns to the best possible extent. Algorithm 4.1 gives the detailed pseudo code of

the RPHS algorithm.

Algorithm 4.1. Detailed pseudo code of the RPHS algorithm
Train (TR , VAL , i,)
{

1. Use Genetic Algorithms to learn the dataset TR using a new set of
chromosomes

 2. If1 stagnation occurs:
 a. Identify the learnt patterns.

b. Split TR into iTR (consisting of the learnt patterns) and
()iTRTR − . (consisting of the unlearnt patterns). Find corresponding

iVAL and ()iVAL-VAL as shown in Section 4.3.3.
c. iTR is now trained with the existing solution using the
Backpropagation algorithm. The procedure is validated using dataset

iVAL .
d. If2 local training is complete (stagnation OR generalization loss):
 If3 ()iTRTR − has too few patterns:

 i. iTR = ()iTRTR − :
ii. Locally train iTR until Generalization loss OR
stagnation:
iii. STORE network iS :

 iv. END Training:
 Else:

 i. STORE iS :
 ii. Train (()iTRTR − , ()iVAL-VAL , i+1):

 End if3

 End If2
 End If1

}

Testing in the RPHS algorithm is implemented using a Nearest Neighbor

(KNN) (Wong and Lane, 1983) based pattern distributor. KNN was used to

implement the pattern distributor due to the ease of its implementation and good

preliminary results. At the end of the RPHS training phase, we have K subsets of

 52

data. A given test pattern is matched with its Nearest Neighbor. If the neighbor

belongs to subset i, the pattern is also deemed as belonging to subset i. The solution

for subset i is then used to find the output of the pattern. A multiplexer is used for

this function. The KNN distributor provides the selected input for the multiplexer,

while the outputs of subnetworks 1 to K are the data inputs. This process is

illustrated by Figure 4.3.

 Figure 4.3. The two level RPHS problem solver

4.3 Algorithm details

4.3.1 The RPHS efficiency model

In order to illustrate the advantage that RPHS has over other algorithms with

respect to training time, we assume that, for all i∈Nelem, each Etr vs. wi curve has G

 53

globally optimal solutions and L locally optimal solutions, we make the following

assumptions to simplify our analysis:

� There is at least one global optimal solution for the problem considered. i.e.,

for all i, each Etr vs. wi curve, must have at least one global optimal solution.

� All the global optima occur with probabilities gP and the local optima occur

with probabilities lP , i.e., for a single dimension,

1=+ lg LPGP

(4.5)

� An optimum (local or global) can always be found, i.e., there is no stagnation

due to plateaus on the surface.

A global optimal solution occurs only if the values of training error are optimum for

all dimensions. The total probability of finding a global optimal solution in a Nelem -

dimensional error space is therefore the product of gGP , over all the Nelem

dimensions: ∏
=

=
elemN

i
igg GPP

1
, .

Since pseudo optimal solutions only require the presence of local minima, the

probability of finding a pseudo-globally optimal solution is:

1=+= lgpgs PPP

(4.6)

From equation (4.6), we know that a pseudo-global optimal solution will always be

found, for any problem. Therefore pgsg PP ≤ and

pgsepgep NN ,, ≥

(4.7)

For the RPHS algorithm, we require K recursions to decompose the problem.

Let us assume, for calculation simplicity, that the reduction in patterns at each

 54

recursion is the same, i.e., where
τ
1

 represents the fraction of unlearnt patterns at

each recursion, 12321 −==== K
tr

tr
tr

tr
tr

trtrtr �

N N
�

N, N
�

N, NNN
K

. The

following conditions have to be taken into account to find the best value of K.

Condition Set 4.1. Primary set of conditions for RPHS efficiency

Condition 1: Training Accuracy

For good training accuracy, every pattern, no matter how difficult, needs to be

learnt. In order to make sure that every pattern is learnt, K recursions are required,

where ()()tr� NceilK log= .

Condition 2: Generalization accuracy

In order to ensure generalization accuracy and to filter out noise components,

we need to make sure that there are enough training patterns in the Kth recursion. For

this let us first begin by using, the rule of thumb advocated by in Haykins (2000) for

the number of training patterns required for good generalization accuracy in a

problem. K is therefore set such that the number of training patterns in the Kth

recursion is greater than 10 times the number of free parameters.

Therefore, for optimal training we require elemK
tr N

�

N
10

1
>− .

Solving for K, we obtain:

�
�
�

�
�
�
�

�
��
�

�
��
�

�
=

elem

tr
� N

N
ceilK

10
log

(4.8)

Conditions 1 and 2, give us an ideal value of K as given by equation (4.8).

Note that if the training is stopped by stagnation, it means that there is little

correlation between the training, testing and validation data. In this case, more

 55

training patterns are required for the reliability of the solution, and a smaller K is

advocated. The termination conditions for this case are discussed in Section 4.3.4.

Condition 3: Training time

As K recursions are required for RPHS to give accurate training results, we

can say that RPHS training is faster than other methods that focus on finding a single

global optima listed in the survey (Carvalho and Freitas, 2004, Rovithakis et al.,

2004, Vasconcelos et al., 2001, Yasunaga et al., 1999) if the number of epochs

required to find a global optimal solution is greater than the number of epochs

required to find K local optimal solutions.

�
=

>
K

i
ipgs,ep,gep, NN

0

(4.9)

where K is as given in equation (4.8). We assume that the number of epochs required

to obtain an optimal solution is inversely proportional to the probability of obtaining

that solution, i.e., epNP /β= , where P is the probability of finding the optima and

Nep is the number of epochs required to find the optima and β is a proportionality

constant. We further assume that for a problem with G global optima and L local

optima, LG+=== βββ ...21 , i.e., the probability of finding a pseudo-global optima is

equal to or greater than the probability of finding a global optima.

We hypothesize that for inequality (4.9) to be true, inequality (4.10) should be

satisfied.

K
Pg

1<

(4.10)

 56

Theorem 4.2. For the RPHS technique to find K pseudo optimal solutions and be

more efficient than a technique to find the single global optimal solution, the

probability of finding the global optimal solution must be smaller than 1/K.

Proof:

We prove the validity of inequality (4.10) by assuming that the opposite is

true, i.e., KPg
1≥ . This means that the probability of finding a global minimum is

not very difficult. Therefore, from (4.9),

�
=

≥
K

i
ipgsep

gep NN

1
,,

,

11
, resulting in �

=
≤

K

i
ep,pgs,iep,g NN

1

, i.e., classical GA will perform

faster than the RPHS. Therefore, for RPHS to be faster than classical GA, inequality

(4.10) must hold.

�

Implications of Theorem 4.2:

If the number of recursions, K, is small, Pg is often less than 1/K and the

RPHS algorithm solves the problem in fewer epochs. On the other hand, the number

of independent training patterns required for RPHS to be successful in generalization

is determined by equation (4.8). This means that RPHS requires more training

patterns than single-staged algorithms. If the number of training patterns is too small,

then the generalization accuracy of RPHS will be equal to the generalization

accuracy of the base learner trained with the same amount of data. This property is

discussed in Section 4.3.5.

4.3.2 The use of Backpropagation and Constructive Backpropagation

With reference to Figure 4.1, local training is simply an error minimization

procedure, where the patterns involved are already learnt. As such, there is no need to

 57

change the structure of the subsolution, and only Backpropagation is used in

executing this search.

However, the final recursion aims to get the best network to fit the remaining

data. In order to ensure this, it is necessary to search for both the optimal network

structure and its weights. Constructive Backpropagation is therefore applied only for

the last recursion.

 Limiting local search to simple Backpropagation in all recursions except the

last one conserves training time and improves the algorithm efficiency.

4.3.3 The choice of validation patterns

For optimal training, it is necessary to use suitable validation data for each

decomposed training set. In this section we propose and justify the algorithm for

choosing the optimal validation data for each subset of training data.

Consider the distribution of data shown in Figure 4.4. Each colored zone

represents data from a different recursion. The patterns learnt by solution i are

explicitly exclusive of the patterns learnt by solution j, ji ≠∀ . The RPHS

decomposition tree in Figure 4.2 can therefore be expressed as shown in Figure 4.5.

According to Figure 4.5 and the RPHS training algorithm described in Section 4.2,

the first recursion begins with TR , the data to be globally trained, At the end of the

recursion, TR is split into 1TR (data to be locally trained) to give 1S (the network

representing the Data 1TR , and ()1TRTR − (data to be globally trained to give

solutions 2 to K). We represent all the networks that represent ()1TRTR − as 1S ,

i.e., the data that is represented by 1S can never be represented by 1S . We therefore

propose the following pseudo code for validation.

 58

Given a set of patterns, FindVi finds out which patterns can possibly be

solved by the solutions that exist. Patterns that can be solved are isolated and used as

specific validation sets. Besides a more accurate validation dataset, it is also possible

to obtain the intermediate generalization capability of the system, which is useful is

stopping recursions, as described in the next section.

Algorithm 4.2. Pseudocode for validation
Do until stagnation or early stopping
 Optimize MSE criterion locally().
 Validate ().
End

Validate()

FindVi().
Use the validation set iVAL to validate the solution iS for recursion i.

FindVi()
For each validation pattern
 Use KNN.
 If Pattern � iTR
 Add Pattern to iVAL .
End

Figure 4.4. Sample data distribution for the decomposition of validation data

 59

TR

TR-TR1

TR1

TR-TR1
-TR2

TR2

TR-
(TR1+TR2+…+TRK)

S1

S2

SK

S1

S2

Figure 4.5. The data distribution of the RPHS recursion tree

The intermediate pattern distributor is similar to that described in Section

4.2.2, except that it only has two outputs. Its responsibility is to decide whether a

pattern is suitable for validating the subset of patterns in question or not.

4.3.4 Stopping recursions

In Section 4.3.1, we described the conditions for stopping the RPHS

algorithm if a) the number of free parameters is known and b) there is a sufficient

number of training data. However, often, this is not the case. We are sometimes

presented with situations where the number of data patterns is too small. In other

situations, especially when using dynamic neural network structures, it is impossible

to predetermine the number of free parameters. In this section, we present a method

to terminate the RPHS algorithm during such situations.

 60

Unlearnt
Data i

Training
subset i

Validation
subset i

Unused
Validation

Data i

Unlearnt Data i
+

Training subset i

GANN
subnetwork i

Intermediate
Pattern

Distributor (KNN) i=i+1

Learnt Data

Backpropagation
training

Constructive backpropagation
training

No Yes

i=i+1
Unlearnt

Training
subset i

Validation
subset i

Unused
Validation

Data i

Unlearnt Data i
+

Training subset i

Intermediate
Pattern

Distributor (KNN)
Learnt Data

Backpropagation
training

training

No Yes
Validation accuracy (i)

>
Validation accuracy (i-1)

Final
subnetwork i

Final
subnetwork i

Data suited to
subnetwork i

Note: In the above flowchart, the following process is described.
1. The unlearnt data for recursion i (All the data for i=1) is used to train a

GANN subnetwork.
2. Based on the learnt and unlearnt data from the recursion i, the Nearest

Neighbor algorithm is used to decompose the validation data into validation
subset i: iVAL (Patterns belonging to recursion i) and iVAL (Patterns
belonging to recursions other than i).

3. The training subset i and validation subset i are used together with the GANN
subnetwork to obtain the final subnetwork.

4. If the validation accuracy of the first i subnetworks is lower than the
validation accuracy of the first 1−i subnetworks, the final subnetwork i is
retrained using the remaining unlearnt data and the training subset i to the
best possible extent possible.

5. If 4 is not true, then 1, 2 and 3 are repeated with the remaining unlearnt
patterns.

Figure 4.6. The overall RPHS training algorithm

Decompositions of data in the RPHS algorithm are done as follows: An

intermediate pattern distributor with two outputs is implemented after each recursion

as described in the previous section. Using the intermediate pattern distributor, we

 61

obtain the validation error (ival,E) and training error (itr,E)5 of a recursion i. at the end

of each recursion. If 1)-(ival,ival, EE > , the recursion i is overtraining the system.

Therefore only the results of i-1 recursions are considered. The overall RPHS

training algorithm can therefore be described as shown in Figure 4.6 .

4.3.5 Worst case generalization accuracy

A primary goal of recursive training as described in this thesis is to ensure that

decomposition of data does not compromise upon the generalization accuracy of the

system. We therefore designed the decomposition criteria of the RPHS system such

that the worst case generalization accuracy of the system would be better than the

generalization accuracy of the base weak learner. Here, we provide rigorous proof of

the system’s generalization capabilities and discuss the tradeoffs in employing the

RPHS system.

Global
Training

Local
Training

TR-TR1
(E2,0)

TR
(E1,0)

TR1
(E1,1)

TR1
(E1,1’)

TR2
(E2,1)

TR2
(E2,1’)

Figure 4.7. Generalization error over two recursions of RPHS

5 Both ival,E and itr,E represent the percentage of (training and validation) patterns in error of the
RPHS system with i recursions.

 62

Figure 4.7 shows the generalization error of RPHS across two recursions. Here, the

terms E1,0 and E2,0 represent the error at the beginning of recursions 1 and 2. E1,1 and

E2,1 represent the error at the end of global training while E1,1
’ and E2,1

’ represent the

error at the end of local training, such that 0,21,10,1 EEE += . More generally for any

given recursion i,

0,11,0, ++= iii EEE

(4.11)

As discussed in Section 4.2.1, if data independence is assumed,

0',' 1,21,1 →EE if E refers to the training error of the system. However, if we perform

local training using early stopping and a validation dataset as described in Appendix

C, and consider E to represent the validation error of the system, 0',' 1,21,1 >EE . The

total validation error of the system at the end of the first recursion can be given by

'
1,10,11, EEEval += , i.e., for any given recursion i, the total validation error will be

given by

�
=

+=
i

j
jiival EEE

1

'
1,0,,

(4.12)

That is, at the end of the second recursion, the total validation error will be given by

'' 1,11,20,22, EEEEval ++=

(4.13)

This represents the validation error of the learnt patterns at the end of recursions 1

and 2 and the validation error for the unlearnt patterns in recursion 2. We can

consider a decomposition as being effective (i.e., it does not result in a loss of

generalization accuracy) if

 ivalival EE ,1, >−

(4.14)

 63

From equation (4.12), this condition can be simplified as below:

��
=

−

=
− +>+

i

j
ji

i

j
ji EEEE

1

'
1,0,

1

1

'
1,0,1 , i.e.,

'
1,0,0,1 iii EEE +>−

(4.15)

i.e., the validation error (of the learnt and unlearnt patterns) at the end of a given

recursion must be less than the validation error of the unlearnt patterns at the end of

the previous recursion.

 We can clearly see that the only time when the condition in equation (4.15)

will not be satisfied is when the decomposition of data is unsatisfactory. Therefore

equation (4.15) is deemed as a sufficient condition for the continuation of recursive

decomposition and training.

Equation (4.15) is only dependent on the training and validation errors of the

system. Prior information on the data topology and its distribution need not therefore

be known when determining the termination of RPHS training.

Theorem 4.3. If the training patterns are independent of each other, the worst case

generalization accuracy of the RPHS system is the generalization accuracy of the

base learner6.

Proof:

We use the condition in equation (4.15) to determine the worst case

generalization accuracy of the RPHS system. The largest validation error of the

system, given a certain data set T, is simply 0,1E , the error when no training has taken

place in the system. The second decomposition will always be a valid one if

6 Here, the term base learner (or weak leaner) is as described in Chapter 2 and is defined as a
classification system that achieves an accuracy of greater than 0.5 on a two class problem. The weak
learner is therefore a system that is slightly better than a “no-knowledge” system.

 64

'
1,20,20,1 EEE +>

From Figure 4.6, we can observe that if the converse is true, i.e. if '
1,20,20,1 EEE +< ,

the result of the second recursion will be dropped and the base learner will be trained

using the data of the first recursion. The worst-case generalization of the RPHS

system is therefore the accuracy of the base learner. Theorem 4.3 is therefore proved.

�

4.3.6 Inter and intra recursion separability

In Section 4.2.2, we have described the RPHS testing algorithm as a Kth

Nearest Neighbor based pattern distributor. If the data solved by recursion i and

recursion j are well separated, then the Kth Nearest Neighbor will give error-free

pattern distribution.

However, the RPHS algorithm described so far does not guarantee that data

subsets from two recursions are well separated. Error can therefore be introduced into

the system because of the pattern distributor. In this section we discuss the efforts

made to increase the separability between data subsets. Empirically, there is some

improvement in the experimental results when the separation criterion is

implemented, although there is a tradeoff in time. We outline below the method

proposed to implement subset separability.

Definition 4.1: Inter-recursion separation is defined as the separation between the

learnt data of recursion i, (iTR) and the data learnt by other recursions (iTR).The

two data subsets are mutually exclusive.

 65

Definition 4.2: Intra-recursion separation represents the separation of the data in the

same subset of RPHS. In the case of learning with neural networks, the MSE error

can be used as a substitute for the intra recursion separation.

Separability criterion

The separability criterion is a mathematical expression that evaluates the

separation between two sets of data. In this work, we will use the Bhattacharya

criterion of separability for a 2-class problem (Fukunaga, 1990).

()
()

2
1

2
1

1

2
1

log
2
1

2
)'(

8
1

i

i

i

i

i
BattD

TRTR

TRTR

TRTR
TRTR

TRTR

i

i

i

i

i

�+�

�+�

+−
�
�

�

�

�
�

�

� �+�
−=

−

µµµµ

(4.16)

In the equation above, µ is the data mean and � is the covariance matrix It should

be noted that the selection of the Bhattacharya criterion is purely arbitrary. Other

criterion that can be used are Fisher’s criterion (Fukunaga, 1990), Mahalanobhis

distance (Foody, 1998), etc.

Objective function for global training

In order to increase the inter recursion separation; we modify the fitness function for

GANNs as given by the equation below.

)()1()()(1
1

iBattitr
tr

i ChromDwChromE
N
w

Chromg −−=

(4.17)
In equation (4.17) 1w is the importance of the intra recursion separation with respect

to the chromosome fitness. In this chapter, we present our results with 5.01 =w .

 66

4.3.7 The RPHS computational complexity

Here we present an argument to the computational complexity of the RPHS

algorithm. Let the time taken to forward pass a single pattern through a neural

network be t and the number of training patterns at the start of each recursion be
itrN .

For simplicity, we assume the following. (i) The neural network architecture is the

same throughout. (ii) The time required for other computations (Backpropagation,

crossover, mutation, selection, etc.) is negligible when compared to the evaluation

time. The second assumption is valid as the exp function of the forward pass stage is

more computationally intensive than the other functions. Therefore the total time

required for epN epochs of CBP is tNNt trepCBP 1
= .

The total time required for RPHS with minimal coded GA (29) can also be

expressed as a summation of the time taken in each recursion i,

�
=

+=
K

i
iegratorRPHS ttt

1
int . The time taken for each recursion is given as below.

tNNtNNtNNt
iii trpopltrlieptrgiepi ++= ,,,

(4.18)

where giepN , and liepN , refer to the number of epochs required for global and local

training in recursion i.
itrN and

iltrN , refer to the number of patterns at the

beginning of recursion i and the number of patterns learnt at the end of recursion i

respectively. The last term refers to the initialization of the recursion population with

Npop chromosomes.

The bulk of the time in the equation above depends on the third term, i.e., the

initial evaluation of the chromosome population in each recursion. The justification

of the above claim is from the following property of RPHS and evolutionary search:

 67

From the experimental results observed and due to the capability of Genetic

Algorithms to find a partial solution faster, we can also say that giepN , is small. In

the experiments carried out, the value of giepN , is usually less than 20 epochs.

The location of the pseudo-global optimal solution found by GA is relatively

unimportant as the pseudo-global optima is always globally optimal in terms of the

patterns selected. This implies that with a small population size, the RPHS algorithm

is likely to be a fast algorithm.

In order to observe the effect of the number of chromosomes popN on the

training time and the generalization accuracy of the RPHS system, we performed a

set of experiments using the MCG based RPHS algorithm with a varying number of

chromosomes. The graphs below show the trend in training time and generalization

accuracy for initial population sizes between 5 and 30. The population size of 5

chromosomes was chosen so that MCG can be implemented with 4 chromosomes for

mating and still retains the best fitness values.

0

200

400

600

800

1000

5 10 15 20 25 30
Number of chromsomes in the initial population of

each recursion (Npop)

T. Time (s)

0

10

20

30

40

50
C. Error (%)

Training Generalization

(a) SEGMENTATION

 68

0

100

200

300

400

500

5 10 15 20 25 30
Number of Chromosomes in the Initial Population of

each recursion (Npop)

T.Time (s)

0

10

20

30

40

50
C. Error (%)

Training time Generalization Error

(b) VOWEL

0

100

200

300

400

5 10 15 20 25 30
Number of chromsomes in the initial population of each

recursion (Npop)

T. Time (s)

0
5
10
15
20
25
30
35
40
45
50 C. Error (%)

Training Time Generalization Error

(c) SPAM

Figure 4.8. The effect of using different sized initial populations for RPHS with the
SEGMENTATION, VOWEL and SPAM datasets

It is interesting to note that the number of chromosomes Npop in the initial

population of each recursion does not play a big role in the generalization accuracy of

the system. This is, once again, an expected property of the RPHS algorithm as it is

the Backpropagation algorithm that completes the training of the system according to

the validation data. The part played by the Genetic Algorithm is only partial training

and it is the presence of the local optima, not its relative position that is important for

the RPHS algorithm. Therefore, if training time is an issue, using the minimal

 69

requirement of 5 chromosomes and implementing MCG can solve the problem with

comparable accuracy to a larger population.

Therefore, the most efficient training time for the RPHS algorithm will be as

given by equation (4.19) which is based on equation (4.18),

��
==

+++=+=
K

i
trltrlieptrgiepegrator

K

i
iegratorRPHS tNtNNtNNtttt

iii
1

,,,int
1

int 5

(4.19)

4.4 Experimental results

4.4.1 Training curves

The training curves compare the advantage of the use of RPHS over single

staged training algorithms. We compare the training curve of RPHS, for curve fitting

problems, with single staged algorithms. Percentage based hybrid pattern training

(Guan and Ramanathan, 2007) and linear interpolation (Vasconcelos et al., 2001) are

some of the more recent hybrid algorithms developed using evolutionary algorithms

only. For classification problems, the training curve of RPHS is compared to that of

Constructive Backpropagation (Lehtokangas, 1999).

The simulation results show that the RPHS algorithm has a lower training

error than all the other algorithms that are used in comparison. In particular, both the

GAUSS and the HAHN problems have a very small value of Pg. It is observed from

the set of graphs in Figure 4.9 that the number of training epochs required when

using RPHS is much lower than the results using single staged hybrid training.

4.4.2 Studies on the TWO-SPIRAL problem

According to Lu et al (1995), the Multisieving algorithm achieved 100%

training accuracy. However, with the small number of training patterns, 100%

 70

training accuracy does not hold much value unless accompanied by equal

generalization capability. We therefore compare the data splitting mechanisms of the

Multisieving algorithm (as reported in Lu et al. (1995)) and the RPHS algorithm.

This will show us the clear advantage of using evolutionary algorithms as a base for

data decomposition. Figure 4.10(a) shows the original training data of the TWO-

SPIRAL set and the decomposition of the data by the RPHS and the Multisieving

algorithm Figure 4.10(b). The lines show separation between the two classes of the

TWO-SPIRAL problem.

It is observed that the global search implicitly finds separable sets of data, i.e.,

compared to the original dataset, the decomposed datasets are more separable and

hence more suited for Backpropagation training. The separation is better defined with

the RPHS algorithm than with the Multisieving algorithm.

0

5

10

15

20

25

30

35

40

0 500 1000 1500 2000Epochs

M
SE RPHS PHP Linear Interpolation

ENSO

 71

0

5

10

15

20

25

30

0 2000 4000 6000 8000 10000 12000 14000
Epochs

M
S

E PHP RPHS Linear Interpolation

GAUSS

0

0.01

0.02

0.03

0.04

0.05

0.06

0 5000 10000 15000 20000 25000 30000
epochs

M
SE PHP RPHS Linear Interpolation

HAHN

 72

SPAM

SEGMENTATION

 73

VOWEL

LETTER RECOGNITION

Figure 4.9. Training comparison between Linear Interpolation, PHP and RPHS for

ENSO, GAUSS and HAHN and comparison between RPHS and CBP for
SEGMENTATION, VOWEL, LETTER RECOGNITION and SPAM

 74

4.4.3 Generalization accuracies

Table 4.1 compares the mean (µ) and variance (σ2) of the RPHS

generalization accuracies of the curve fitting problems with those of LI and PHP.

Table 4.2 compares the generalization accuracy and training time of the RPHS with

CBP (Lehtokangas, 1999) OP (Guan and Li, 2002, Guan et al., 2004), Multisieving

(Lu et al., 1995) and TSS (Lasarzyck et al., 2004). The benchmark datasets from the

UCI repository, described in Chapter 3, are used for the experiments.

-8

-6

-4

-2

0

2

4

6

8

-6 -4 -2 0 2 4 6

x

y

Original Dataset

-8

-6

-4

-2

0

2

4

6

8

-6 -4 -2 0 2 4 6
x

y

Recursion=1

-8

-6

-4

-2

0

2

4

6

8

-6 -4 -2 0 2 4 6x

y

Recursion=2

-8

-6

-4

-2

0

2

4

6

8

-6 -4 -2 0 2 4 6
x

y

Recursion=3

(a) Decomposition using the RPHS algorithm (x and y represent the 1st and 2nd
principle component values of the data respectively)

 75

(b) Decomposition using the Multisieving algorithm (Lu et al., 1995) (x and y
represent the 1st and 2nd principle component values of the data respectively)

Figure 4.10. Comparison of RPHS and Multisieving in decomposing the TWO-
SPIRAL dataset

 Table 4.1. Comparison of generalization accuracy of curve fitting problems

Linear
Interpolation
Accuracy

PHP Accuracy RPHS Accuracy Problem
Name

µ σ2 µ σ2 µ σ2

ENSO 0.74 0.13 0.74 0.11 0.85 0.06
GAUSS 0.64 0.21 0.72 0.15 0.87 0.09
HAHN 0.40 0.09 0.45 0.09 0.68 0.06

RPHS training is carried out with four options (i) Genetic Algorithms with

no decomposition of validation patterns (RPHS-GAND), (ii) Genetic Algorithms

with decomposition of validation patterns (RPHS-GAD), (iii) MCG (Gong et al.,

x

y

x

y

x

y

Original Dataset Recursion=1

Recursion=2 Recursion=3

x

y

 76

2004) with no decomposition of validation patterns (RPHS-MCGND), and (iv)

MCG with decomposition of validation patterns (RPHS-MCGD). The Genetic

Algorithms and Minimal Coded GAs (MCG) are used in the global training phase as

described in Chapter 2. The graphs in Figure 4.9 compare CBP with the 4th training

option (RPHS-MCGD).

Based on the results presented, we can make the following observations and

classify them according to training time and generalization accuracy.

Generalization accuracy

� All the RPHS algorithms give better generalization accuracy when compared

to the traditional algorithms (CBP, TSS and Multisieving).

� The algorithms which include the decomposition of validation data, although

marginally longer than that without decomposition, have better generalization

accuracy than Output Parallelism. As the algorithms implementing Output

Parallelism do so with a manual decomposition of validation data, it follows

that a version of RPHS will be more accurate than corresponding algorithms

based on Output Parallelism.

� Implementing RPHS with the separation criterion gives the best

generalization accuracy although there is a large tradeoff in time.

� The RPHS algorithm that uses MCG with the decomposition of validation

patterns (MCGD) provides the best tradeoff between training time and

generalization accuracy. When compared to RPHS-GAD and RPHS with

separation, the tradeoff in generalization accuracy is minimal when compared

to the reduction in training time.

� The number of recursions required by RPHS, on average, is lower than the

number of classes in a problem and gives better generalization accuracy. This

 77

appears to suggest that classwise decomposition of data is not the most

optimal.

Training time

� The training time required by CBP is the shortest of all the algorithms.

However, as seen from the tables and graphs, this short training time is most

likely due to premature convergence of the CBP algorithm.

� Apart from the CBP algorithm, the RPHS algorithm carried out with MCG

has shorter training time than the Output Parallelism algorithms. The training

time of the Multisieving algorithm is larger or less than the RPHS-MCG

based algorithms depending on the datasets. This is expected as the nature of

the dataset determines the number of levels that Multisieving has to be

implemented and therefore influences the training time.

� The basic contribution of the Minimal Coded Genetic Algorithms is the

reduction of training time. However, there is a small tradeoff in generalization

accuracy when MCGs are used. This can be observed across all the problems.

� The use of the separation criterion with the RPHS algorithm increases the

training time by several folds. This is expected as the training time includes

the calculation of the inverse covariance matrix (Section 4.3.6, equation

(4.16)). This is the tradeoff for obtaining marginally better generalization

accuracy.

The time taken using the separation criterion may or may not be acceptable

depending on the problem dimension, the number of patterns, etc. However, when

the primary goal is to improve the generalization accuracy of the system and the

learning is done offline, the separability scheme can be included for better results.

 78

Table 4.2. Summary of training time and generalization accuracy obtained over different versions of RPHS and comparisons with benchmark
algorithms7

SEGMENTATION VOWEL LETTER
RECOGNITION

SPAM TWO-SPIRAL

C. Error
(%)

C. Error
(%)

C. Error
(%)

C. Error (%) C. Error
(%)

Algorithm used

T. time
(s)

� �

T.
time
(s) � �

T. time
(s)

� �

T.
time
(s) � �

T.
time
(s) � �

CBP 693.8 6.20 - 237.9 37.16 - 20845.1 21.67 - 43.6 27.92 - 15.6 49.38 -
Multisieving 760.6 7.28 - 318.2 39.43 - 55349.0 65.04 - 123.1 21.06 - 35.9 23.61 -

OP - - - 418.9 25.54 - 42785.4 20.06 - N.A N.A - N.A N.A -
OP with PD 2219.2 7.10 - 534.3 24.89 - 45625.4 18.64 - N.A N.A - N.A N.A -

Topology-based
Subset Selection

- - - - - - - - - - - - - 28.0 -

Average number of
RPHS recursions

7.20 6.42 21.30 2.48 2.65

RPHS-GAND 1004.8 6.45 0.7 812.9 25.27 3.2 38461.0 13.14 4.2 142.2 21.00 0.7 76.3 15.42 5.1
RPHS-GAD 1151.8 6.08 0.6 842.2 16.72 3.2 47447.0 11.10 3.3 156.8 20.75 0.6 87.9 10.54 3.5

RPHS-MCGND 545.8 6.59 0.5 396.3 23.24 3.1 27282.0 13.08 2.3 58.7 22.11 0.4 45.7 13.25 3.0
RPHS- MCGD 688.3 6.30 0.5 473.9 17.73 3.1 29701.0 12.42 2.1 82.8 20.97 0.4 59.9 11.08 3.0

RPHS with
separation

1435.7 6.12 0.2 884.6 14.82 3.0 94898.0 10.92 1.9 517.6 18.76 0.2 129.2 10.31 2.8

7 The generalization accuracy of OP and CBP are the same for two- class problems such as SPAM and TWO-SPIRAL. The results of OP (Guan et al., 2004) and TSS
(Lasarzyck et al., 2004) have been taken from the respective research papers. Simulations on CBP were performed as part of our research.

 79

4.4.4 Verification of the lower-bound of the RPHS generalization accuracy: A

study of the GLASS problem

The GLASS problem consists of 9 inputs, 6 outputs and 214 patterns. When

split into a set of training, testing and validation patterns in the ratio of 2:1:1, we

obtain training, testing and validation sets of size 107, 53 and 54 patterns. The small

number of training patterns when compared to the problem dimensionality makes the

GLASS problem ideal as a counter example for verifying the worst case

generalization capability of RPHS., i.e., for verifying Theorem 4.3. In this section we

present the results of the CBP, RPHS and Output Parallelism algorithms on the

GLASS problem.

Table 4.3. Classification accuracy of the GLASS problem

Algorithm Mean C. Error (%)
CBP 35.09
RPHS 35.09
RPHS with 2 recursions 38.52
RPHS with 3 recursions 42.13
OP 39.43

As expected, due to the small number of training patterns when compared to

the problem dimension, we notice that the classification error steadily increases with

increasing number of recursions. However, as discussed in Section 4.3.5,

implementing the RPHS algorithm as shown in Figure 4.6 results in the execution of

the RPHS algorithm with one recursion, i.e., the classification error of the algorithm

on the GLASS dataset is 35.09. This is the same as the classification error of CBP,

the base learner implemented. Theorem 4.3 is therefore verified.

 80

4.5 Discussions

In this chapter, we have proposed the RPHS algorithm, a topology adaptive

method to implement task decomposition automatically. With a combination of

automatic selection of validation patterns and adaptive detection of decomposition

extent, the algorithm enables to decompose efficiently the data into subsets, such that

the generalization accuracy of the problem is improved. We have proved and verified

that the generalization accuracy of the algorithm presented is always better than or

equal to that of the base learner.

We have compared the classification accuracy and training time of the

algorithm with six algorithms, illustrating the effectiveness of (1) recursive subset

finding, (2) pattern topology oriented recursions, and (3) efficient combination of

gradient descent and evolutionary training. We found that the classification accuracy

of the algorithm is better than both Constructive Backpropagation algorithm and

Output Parallelism. The improvement in generalization accuracy when compared to

the Constructive Backpropagation is up to 60% and 40% when compared to Output

Parallelism. The training time of the algorithm is also better than the time required by

the Output Parallelism algorithm.

On a conceptual level, the main contribution of RPHS is twofold. Firstly, the

algorithm shows, both theoretically and empirically, that when training is performed

based on pattern topology using a combination of evolutionary training and gradient

descent, generalization is better than partitioning the data based on output classes. It

also shows that the combination of EAs and gradient descent is better than the use of

gradient descent only, as in the case of the Multisieving algorithm (Lu et al., 1995).

Secondly, the chapter also presents a data separation method to improve

further the generalization accuracy of the system by consciously reducing the pattern

 81

distributor error. While this is shown, both conceptually and empirically, to reduce

the generalization error, the algorithm incurs some cost due to its increased training

time. One future work involves reducing this training time without compromising the

accuracy.

 82

5. Recursive Supervised Learning with Clustering and
Combinatorial optimization (RSL-CC)

5.1 Introduction

Let us reconsider the teacher-student scenario of RPHS proposed in Chapter

4. In the scenario, the teacher feeds the students with the examples until a group of

students learns a subset of samples. The group specializes on the learnt samples, and

the teacher moves on to teach the rest of the examples to a new set of students.

In RSL-CC, we place a constraint on the learning capability of students. We

hypothesize that, if a student is able to learn a sample, he is probably able to learn

similar samples. Samples are therefore grouped together, and students are expected to

learn the samples in groups.

By limiting the flexibility allowed to the student, RSL-CC controls the subset

groupings. A higher authority decides that it is more efficient for students to learn the

examples in groups and groups the examples accordingly. If this higher authority is

efficient, the task domain and therefore the decision making requirement of the

students are reduced. The teaching time is also reduced.

5.2 Algorithm description

The system proposed consists of a pre-trainer and a trainer. The pre-trainer is

made up of a clusterer and a pattern distributor. The clusterer splits the data set into

clusters of patterns. The pattern distributor assigns validation patterns to each of

these clusterers. The trainer now solves a combinatorial optimization problem,

choosing the clusters that can be learnt with best training and validation accuracy.

These clusters now form the “easy” patterns which are then learnt using a gradient

descent algorithm to create the first subnetwork. The remaining clusters form the

 83

“difficult” patterns. The trainer now focuses attention on the difficult patterns,

thereby recursively isolating and learning increasingly “difficult” patterns and

creating several corresponding subnetworks.

The use of Genetic Algorithms in selecting clusters is expected to be more

efficient than their use in the selection of patterns for two reasons.

� The number of combinations is now k
n C as opposed to

liT

iT

N
N C

,

, , where the

number of available clusters n , is less than the number of training patterns

iTN , . Similarly, the number of clusters chosen, k , is smaller than the number

of training patterns chosen liTN , . The search space is now smaller, therefore

increasing the probability of finding the better solutions

� The distribution of validation information is performed during pre-training, as

opposed to during the training time. Validation pattern distribution is

therefore a one-off process, thereby saving training time.

The RSL-CC algorithm can be described in two parts, pre-training and training. In

this section, we explain these two aspects of training in detail.

5.2.1 Pre-training

1. We express valvaltrtr OIOI and , , as a combination of NO classes of patterns, i.e.,

}...I , I,{II ON2 CCC
trtrtrtr

1=

}...� ,� ,{�O ON21 CCC
trtrtrtr =

}I,...,I,{II ON21 CCC
valvalvalval =

}O,...,O,{OO ON21 CCC
valvalvalval =

2. The datasets valvaltrtr OIOI and , , are split into NO subsets as shown below,

 84

 { } { } { }ONONONON22221111 CCCCC
l

CCCCCCC O,I,O,I,....O,I,O,I,O,I,O,I valvaltrtrvavaltrtrvalvaltrtr

(5.1)

where each subset in expression (5.1) consists of only patterns from one class.

3. Each subset, { } Ovalvaltrtr Ni ∈,iiii CCCC O,I,O,I , now undergoes a clustering treatment as

shown below:

� Cluster iCI tr into iCk partitions or natural clusters. Any clustering

algorithm can be used, including SOMs (Kohonen, 1997), K-means

(Kohonen, 1997), Agglomerative Hierarchical Clustering (Blatt et al.,

1996).

� Using a pattern distributor, patterns in iCI val are assigned to one of the iCk

partitions. In this thesis, we implement the pattern distributor using the

Nearest Neighbor algorithm (Wong and Lane, 1983).

� Each validation or training pattern in a given cluster kjj ∈,iC , has the

same output pattern.

4. The total number of clusters is now the sum of the natural clusters formed in each

class.

 �
=

=
ON

i
c kN

1

iC

(5.2)

5.2.2 Training

1. Number of recursions i=1

2. A set of binary chromosomes are created, each chromosome having cN elements,

where cN is defined as in (5.2).

 85

An element in a chromosome is set at 0 or 1, 1 indicating that the corresponding

cluster will be selected for solving using recursion i.

3. A Genetic Algorithm is executed to minimize the recursion error iE , the average

of the training and validation errors trE and valE

()valtri EEE +=
2
1

(5.3)

4. The best chromosome bestChrom is a binary string with a combination of 0s and

1s, with the size cN . The following steps are executed

 i. 0=i
cN , []VAL[],TR ii ==

ii. For j=1 to cN

 if 1)(==jChrombest

 ++i
cN

 (j)chromii best
TRTRTR +=

(j)chromii best
VALVALVAL +=

 iii. The data is updated as follows:

TR = TR - iTR

VAL = VAL - iVAL

i
ccc NNN −=

++i

iv. iTR and iVAL are used to find iS , the solution network corresponding to

the subset of data in recursion i.

5. Steps 2 to 4 are repeated with the new values of TR , VAL , cN and i .

 86

5.2.3 Simulation

Simulating and testing the RSL-CC algorithm was implemented, as in RPHS,

using a Nearest Neighbor (KNN) (Wong and Lane, 1983) based pattern distributor.

This method was described in Chapter 4.

5.3 Algorithm details

5.3.1 Illustration

The RSL-CC algorithm can be viewed as finding successively simpler subsets

of data and developing a subnetwork to solve each subset. The size of the “difficult”

subset becomes smaller as training proceeds, thereby allowing the system to focus

more on the “complicated” data. When the size of the remaining dataset becomes too

small, we find that there is no motivation for further decomposition and the

remaining data is trained in the best possible way. Later in this thesis, we observe

how the use of GA’s combinatorial optimization takes care of when to stop

recursions automatically. The use of GAs to select patterns as in the case of RPHS

requires extensive tests against detrimental decomposition and overtraining. The

proposed RSL-CC algorithm uses Genetic Algorithms to detect detrimental

decompositions and eliminates explicit tests against overtraining. This property of

RSL-CC is described in detail later in the thesis. As a result, the resulting algorithm

is self sufficient and very simple, with minimal adaptations.

Example

Figure 5.1 illustrates a scenario where the RSL-CC algorithm is applied to

create a system to learn the dataset shown. The steps performed on the dataset are

traced below. With the data in Figure 5.1, the best chromosome selected at the end of

 87

the first recursion has the configuration: “0 0 1 0 1 1 1 0 0 1 1 0 0 1 0 0 1”, the

chromosome selected at the end of the second recursion has a configuration: “1 0 1 0

1 1 1 1 1”. And at the end of the third recursion, the chromosome has the

configuration “1 1”. All the remaining data is selected and the training is complete.

Termination criteria

The grouping of patterns means that clusters of patterns are selected for each

subset. Further, in contrast with any other method, the proposed GA-based recursive

subset selection procedure selects the optimal subset combination.

Theorem 5.1. Given an infinite pool of chromosomes, the decomposition of data

performed by RSL-CC is the optimal decomposition solution based on the available

data.

Proof:

Let us assume that the population of chromosomes is diverse and that at least

one chromosome is within a possible global optimal region and has the capability of

being evolved into it. This assumption is valid since the probability of finding a

pseudo-global optima is the same as that of finding a local or global optimum.

If the subset chosen at recursion i is not optimal, an alternative subset will be

chosen. The largest possible alternative subset is the training set for that recursion,

�
−

=

−=
1i

1j
ji TRTRTR .

At the recursion i, the subset chosen, iP , is such that i
i TRP ⊆ . If any

i
i TRP ⊂ is found to be suboptimal, no decomposition will be performed and the

training will terminate after i recursions. The size of the last subset is therefore iTR .

�

 88

a. Hypothetical data pre-training: Patterns are clustered according to 1: class labels and 2.
Natural clusters within each class. Clusters 1,3,5,8,12, 14,15 and 17 contain patterns from
class 1 and the rest of the clusters contain patterns from class 2.

b. The combinatorial optimization procedure of
the 1st recursion selects the above clusters as
the “easy” patterns. They are isolated and
separately learnt.

c. These patterns are the “difficult”
patterns of the 1st recursion, they are
focused on in the second recursion.

d. The above patterns are considered “easy” by
the combinatorial optimization of the second
recursion and are isolated and learnt separately.

e. The remaining “difficult” patterns of the
second recursion are solved by the 3rd
recursion.

Figure 5.1. Illustration of RSL-CC, with steps traced

 89

Theorem 5.2. The worst case generalization accuracy of RSL-CC is the

generalization accuracy of the base learner.

Proof:

Theorem 5.2 follows from Theorem 4.3 and Theorem 5.1. The generalization

accuracy will equal that of the base learner if the largest subset is chosen at the end of

global training in the first recursion, i.e., 1
1 TRP = .

�

We therefore have the following termination conditions:

Condition set 5.1: Termination conditions for RSL-CC

Condition 1: No clusters of patterns are left in the system.

Condition 2: Only one cluster is left in the remaining data.

Condition 3: More than one cluster is present in the remaining data, but all the

clusters belong to the same class.

Condition 1 occurs when the optimal choice in a system is to choose all the

clusters as decomposition is not favorable. Conditions 2 and 3 describe dealing with

cases when it is not necessary to create a classifier due to the homogeneity of output

classes.

Fitness function for combinatorial optimization

In equation (5.3), we defined the fitness function as an average of the training

and validation errors obtained when training the subset selected by the chromosome,

()valtr EE +
2
1

. The values of trE and valE are calculated as follows:

1. Design a 3-layered neural network with an arbitrary number of hidden nodes

(we use an arbitrary 10 nodes, for the purpose of this thesis).

 90

2. Use the training and validation subsets selected by the corresponding

chromosome to train the network.

The best performing network is chosen as bestChrom .

5.3.2 Heuristics for improving the performance of the RSL-CC algorithm

We propose here several methods to improve the algorithm, making it more

efficient and accurate implementation-wise.

Population size

The number of elements in each chromosome depends on the total number of

clusters formed. However, the number of chromosomes in the population, in this

thesis, is evaluated as follows:

),2min(pop
N

chrom NN c=

(5.4)

This means that the population size is either popN , a constant for the maximal

population size, or if cN is small, cN2 .

The argument behind the use of a smaller population size is so that when

there are 4 clusters, for example, it is not efficient to evaluate a large number of

chromosomes. So only 16 chromosomes are created and evaluated.

 Number of generations

In the case where the number of chromosomes is cN2 , only one generation,

with no chromosome duplication is performed, as this is sufficient for the complete

exploration of the search space. This step is again to ensure the efficiency of the

algorithm.

Duplication of chromosomes

 91

Again, with efficiency in mind, we ensure that in the case where the

population size is cN2 , we ensure that all the chromosomes are unique. Therefore,

when the number of clusters is small, the algorithm is a brute force technique.

5.3.3 Computational complexity of the RSL-CC algorithm

In this section we present a simplified model for the computational

complexity of RSL-CC versus the computational complexity of RPHS. As in Section

4.3.7 (Chapter 4), we let the time taken to forward pass a single pattern through a

neural network be t and the number of training patterns at the start of each recursion

be tri. Likewise, for simplicity, we assume the following.

i. The neural network architecture is the same throughout.

ii. The time required for other computations (Backpropagation, crossover,

mutation, selection, etc.) is negligible when compared to the evaluation time.

Further, we assume that the same number of recursions is required for both

RPHS and RSL-CC to solve a given problem.

The last assumption is not always true, as from the experimental results in

Section 5.4, we will see that RSL-CC generally requires fewer recursions to solve a

problem. Nevertheless, for simplicity, we assume that the two algorithms require the

same number of recursions.

Similar to how we defined the time taken for RPHS training, we can define a

similar measure of training time for RSL-CC as given in equation below:

pretrainer

K

i
iegratorCCRSL tttt ++= �

=
−

1
int

(5.5)

 92

Here, egratort int refers to the training time of the pattern distributor, pretrainert the

training time of the clustering based pre-trainer and it refers to the training time of

the recursion i .

it can be expressed as the sum of two elements:

� The time taken for evaluating each chromosome for giepN , epochs (the global

training phase).

� The time taken for local training using bestChrom .

�
=

+=
pop

i

N

j
jeplepi tNNtNNt

1
,, j

ii trtr

(5.6)

As in the case of RPHS, itr refers to the data available at the beginning of the

recursion i. j
itr refers to the data selected by the chromosome j, such that itrtr j

i ⊆ .

In the case where Minimal Coded Genetic Algorithms were not used with RPHS, the

expression for it for RPHS can be written as follows:

�
=

+=
popN

j
giepliepRPHSi tNNtNNt

1
,,, j

ii trtr

(5.7)

Theorem 5.3. All other conditions being constant, since i
j

i trtr ⊆ , the training time

for RSL-CC is less than that of RPHS.

It correspondingly follows that if minimal coding were applied in both cases,

the training time for RSL-CC will still be shorter than that of RPHS-MCGD.

However, in this thesis, experimental implementations refer to RSL-CC without

minimal coding.

 93

5.4 Experimental results

The generalization error of RSL-CC (Table 5.1) is comparable to the

generalization error of RPHS algorithm and is a general improvement over other

recent algorithms. The RPHS algorithms used in the tables are the RPHS-MCGD and

RPHS-GAD, discussed in Section 4.4. Significant improvement can be observed in

the VOWEL dataset.

The training time for the RSL-CC algorithm is much shorter than the training

time for RPHS-GAD. This is expected from our analysis in 5.3.3. However, it is

interesting to note that the training time for the LETTER RECOGNITION problem is

less than half of the other recent algorithms. This reduction in training time comes

from the reduction of the problem space from the selection of patterns to the

selection of clusters, where clusters are selected from 100 possible clusters while

RPHS has to select patterns out of 10,000, thereby reducing the solution space by

100 fold.

 On the other hand, for the VOWEL problem, the problem space is reduced by

only about 13 fold. The performance of RSL-CC is more efficient when the reduction

of the problem space is more significant than the GA-based combinatorial

optimization.

The results of the TWO-SPIRAL dataset were compared with Constructive

Backpropagation, Multisieving and the Topology-based Subset Selection algorithms

only. This is because the TWO-SPIRAL problem is a two-class problem. Therefore

implementing the Output Parallelism will not make a difference to the results

obtained by CBP.

 94

Table 5.1. Comparison of RSL-CC results with benchmark algorithms

VOWEL LETTER RECOGNITION TWO-SPIRAL

C. Error (%) C. Error (%) C. Error (%)

Algorithm used

T.time (s)

� �

T.time (s)

� �

T.time (s)

� �

Constructive
Backpropagation

237.9 37.16 - 20845.0 21.67 - 15.6 49.38 -

Multisieving with KNN
pattern distributor

318.2 39.43 - 55349.1 65.04 - 35.9 23.61 -

Output Parallelism 418.9 25.54 - 42785.4 20.06 - N.A N.A -

Output Parallelism with
pattern distributor

534.3 24.89 - 45625.4 18.64 - N.A N.A -

RPHS-MCGD 473.9 17.73 3.15 29701.0 12.42 2.14 59.9 11.08 3.01
RPHS-GAD 842.2 16.72 3.21 47447.0 11.10 3.30 87.9 10.54 3.52

Single clustering 458.4 25.24 - N.A NA - 14.3 10.82 -
RSL-CC 547.3 9.84 3.55 12682.0 13.04 4.11 30.6 10.82 2.11

RSL-CC details
(average values)

38 clusters, 8 recursions

100 clusters, 16 recursions 4 clusters, 2.5 recursions

 95

Data Subset P1 found by the first recursion of RSL-CC

Data Subset P2 found by the second recursion of RSL-CC

Data Subset P3 found by the third recursion of RSL-CC

Data Subset P4 found by the forth recursion of RSL-CC

 96

Data Subset P5 found by the fifth recursion of RSL-CC

Data Subset P6 found by the sixth recursion of RSL-CC

Figure 5.2. Decomposition of data for the VOWEL problem

 97

Figure 5.2 and Figure 5.3 illustrate the data decomposition for the VOWEL

and TWO-SPIRAL problems respectively. Only one instance of decomposition is

presented in the figures. From the figures, we can observe that the data is separated

according to topology. No rules are followed with respect to the class composition of

the data. In some subsets (VOWEL recursion 5, TWO-SPIRAL recursions 1 and 2),

only one class is represented while in others, multiple classes are represented. From

these figures and the experimental results presented, the hypothesis that a topology

based selection is better than class based and one-pass algorithms is reinforced. The

decomposition presented is the 2 dimensional projection on the principal component

axis (PCA) (Fukunaga, 1990) of the input space.

a. The original TWO-SPIRAL training data

-8

-6

-4

-2

0

2

4

6

8

-7 -5 -3 -1 1 3 5 7 x

y

 98

b. Data Subset P1 found by the first recursion of RSL-CC

c. Data Subset P2 found by the second recursion of RSL-CC

d. Data Subset P3 found by the third recursion of RSL-CC

Figure 5.3. Decomposition of data for the TWO-SPIRAL problem

(x and y represent the 1st and 2nd principle component values of the data respectively)

5.5 Discussions

In this chapter, we presented the RSL-CC algorithm which divides the

problem space into class based clusters, where combinations of clusters will form

subsets for recursive training. The problem therefore becomes a combinatorial

 99

optimization problem, where the clusters chosen for each subset becomes the

parameter to be optimized. Genetic Algorithms were used to solve this problem to

select subsets for recursive training.

The subset chosen is then trained separately, and the combinatorial

optimization problem is repeated with the remaining clusters. The situation

progresses recursively until all the patterns are learnt. The subnetworks are then

integrated using a KNN-based pattern distributor and a multiplexer.

Our results showed that reducing the problem space into clusters simplifies

the problem space and produces generalization accuracy which are either comparable

to or better than other recent algorithms in the same area.

Future work would include parallelizing the RSL-CC algorithm and exploring

the use of other clustering methods such as K-means or SOM on the algorithm. The

study of the effect of various clustering algorithms will help us determine better the

algorithm simplicity and robustness. Also to be studied and determined are methods

to further reduce the training time of combinatorial optimization, alternative fitness

functions and ways to determine the robustness of class based clustering.

 100

6. Parallel RPHS

6.1 Introduction

The idea behind Parallel RPHS (or P-RPHS) is to begin with several

populations performing global search. Each population learns the subset that is

easiest to it. The individual populations are then set to focus on the patterns that they

have already learnt to arrive at their subsolutions. However, the number of patterns

learnt now increases to the union of the subsets learnt by the individual solutions.

The second recursion has therefore fewer patterns to learn.

We can observe that P-RPHS has two advantages with respect to RPHS.

Firstly, as more patterns are likely to be learnt in each recursion, and as recursions

are performed in parallel, we will be able to complete the training with a fewer

recursions and a shorter training time.

Secondly, there is a possibility of overlap between the learnt patterns of

different processors. Therefore, even if one of the subsolutions is wrong in predicting

the output of a given pattern, this error can be overridden by a comprehensive voting

system based on majority and confident votes. It is therefore expected that the

parallel RPHS algorithm can attain better generalization accuracies in a shorter

period.

6.2 Algorithm description

6.2.1 System overview

The proposed P-RPHS system is a two-level system as shown in Figure 6.1.

Simply put, the input signal is distributed across two layers. The first layer is the

 101

recursion chooser. The pattern is determined, based on its Nearest Neighbor, as

having been solved in a given recursion i. The input is then passed through the

various subnetworks in recursion i.

Note that each recursion results in a set of subnetworks or processors.

Therefore, a pattern selected as belonging to a recursion i can belong to any of the

subnetworks in recursion i. The pattern is therefore selected, again using a Nearest

Neighbor algorithm, to belong to one or more of the subnetworks in the processors

set i.

Each of the selected subnetworks now predicts its output to the pattern. Given

that sysoutN outputs are produced, the correct output among them is chosen by a

voting system that will be described in Section 6.2.3.2.

Figure 6.1. System architecture of P-RPHS

 102

6.2.2 Formal description of training algorithm

As in the RPHS and RSL-CC algorithms, the P-RPHS algorithm takes TR as the

training patterns to the system and VAL as the validation data, and comes up with an

ensemble of K subsets. Let P represent this ensemble of K subsets, such that

{{{{ }}}}K21 P,...,P,PP ==== , where, for , { }ii
i VAL,TRP = .

Further, iP can be written as:

i
N

i
2

i
1

i P....PPP
pp

���= ,

ppNi,i,2i,1i TR....TRTRTR ���=

and

ppNi,i,2i,1i VAL....VALVALVAL ���=

(6.1)

where ppN refers to the number of parallel processors in each recursion.

The problem is now to find a set of a set of neural networks

{ }K21 ,...SS,SS = , where 1S solves 1P , 2S solves 2P and so on.

Here, { }
ppNiii SSS ,2,1, ,...,,=iS , with each neural network holding the corresponding

solution for each of the subsets i
1P to i

Npp
P .

The parallel RPHS algorithm can therefore be expressed by the following

pseudocode. Since the last recursion produces only one subnetwork, the number of

subnetworks in the system is given by (6.2).

() 11 +−= ppssubnetwork NKN

(6.2)

 103

Algorithm 6.1. Pseudocode of the P-RPHS algorithm

Train (TR , VAL , i)
{
 1. For j=1: ppN

a. Use Genetic Algorithms to learn the dataset TR using a new set of
chromosomes.

 { i. Identify the learnt patterns.
ii. Find ji,TR (consisting of the learnt patterns) and

corresponding ji,VAL .

iii. ji,TR is now trained with the existing solution using the
Backpropagation algorithm. The procedure is validated using
dataset ji,VAL .

iv. The solution jiS , is recorded.
}

End For
2. Find

ppNi,i,2i,1i TR....TRTRTR ���= and

ppNi,i,2i,1i VAL....VALVALVAL ���= .

3. Compute ()iTRTR − and ()iVALVAL − .
4. If ()iTRTR − has too few patterns
{ a. iTR = ()iTRTR − .

b. Locally train iTR until Generalization loss OR stagnation.
c. STORE network iS .

 d. END Training.
}
Else
{ STORE { }

ppNiii SSS ,2,1, ,...,,=iS .

Train (()iTRTR − , ()iVALVAL − , i+1).
 }

End If
}

6.2.3 Simulation with the P-RPHS

The two-level system of the P-RPHS warrants a slightly complicated

simulation procedure when compared to that of RPHS and RSL-CC. Two pattern

distributors were proposed – non-voting and voting based.

 104

6.2.3.1 The non-voting simulator for RPHS

Figure 6.2. Pattern distributor and P-RPHS simulation based on non-voting

The single level non voting P-RPHS system (Figure 6.2) consists of a system

similar to that of the RPHS and RSL-CC systems.

Simulation is therefore performed as given in the following pseudocode:

Algorithm 6.2. Pseudocode for the non-voting based P-RPHS simulator

1. For Each Test Pattern
 a. Find the Nearest Neighbor.

b. Choose one processor j in one recursion i to which the Nearest Neighbor
belongs.

 c. Solve the test pattern using the corresponding network jiS , .

 105

The non-voting simulator is based on the assumption that each of the

subnetworks jiS , is error free for the patterns belonging to the corresponding

domain. Ties in the processor outputs are therefore ignored.

The response time of a system that does not implement voting is therefore the

sum of the response time of the pattern distributor and the response time of the

selected neural network solution.

jiSegratorrespresp ttt
,int, +=

(6.3)

6.2.3.2 The voting based P-RPHS simulator

The voting based simulator can be described by the following pseudo code.

Algorithm 6.3. Pseudocode for the voting based P-RPHS simulator

 For each test pattern
 a. Find the Nearest Neighbor.

b. Choose all the subsets, ji,TR , which the pattern belongs to. Let this

number of processors be sysoutN such that ppsysout NN ≤ .

c. For sysoutNj :1=

 i. Solve the test pattern using jiS , .
End For
d. If nm OO =∈∀ ,, sysoutNnm //All the solutions give the same output.

i. Output sysoutNm ∈,mO . //An arbitrary output is selected from

sysoutN .
Else
 i. Count the frequency of output sysoutNm ∈∀,mO .

ii. If one of the outputs occur with more frequency
 Predict the most frequent output.
Else If any of the of the outputs are predicted with more confidence
 Predict the most confident output.
Else

 Predict an output at random.
 End If
 End If

End For

 106

Assuming that the time taken to compute confidence score is negligible, the

response time of the voting simulator is the response time of the pattern distributor

plus the response time of all the selected processors. It can be given by the equation

below:

�
=

+=
ysoutNs

j
jiegratorrespresp tStt

1
,int,

(6.4)

6.3 Experimental results

6.3.1 Generalization accuracy

The tables below summarize the generalization accuracy of P-RPHS when

compared to other algorithms discussed in this thesis. Comparisons have been

performed with CBP and RPHS- MCGD. Results present the training time in series,

the classification error with voting, the training and the network complexities of the

P-RPHS system. The standard deviations of classification error is given in brackets.

 These results are analyzed in Section 6.4. The effect of voting on the

generalization accuracy of P-RPHS is analyzed in Section 6.3.2.

Table 6.1. Summary of the P-RPHS results on the SEGMENTATION problem
C. error(%) Algorithm used T. time

(s) � �
Mean # of
recursions

Mean # of
Hidden Nodes

CBP 693.80 6.20 - 1 29.4
RPHS- MCGD 333.54 6.30 0.50 6 334.8

2 Processor P-RPHS 354.15 5.71 0.58 6 656.4
3 Processor P-RPHS 412.86 5.54 0.55 5 805.0
4 Processor P-RPHS 515.24 5.56 0.63 4 860.0
5 Processor P-RPHS 602.07 5.55 0.53 4 940.0

 107

Table 6.2. Summary of the P-RPHS results on the VOWEL problem

C. error (%) Algorithm used T. time
(s) � �

Mean # of
recursions

Mean # of
Hidden Nodes

CBP 237.90 37.16 - 1 41.0
RPHS- MCGD 473.88 17.73 3.10 11 597.6

2 Processor P-RPHS 518.24 12.39 2.63 7 754.6
3 Processor P-RPHS 600.22 9.20 2.74 6 1018.8
4 Processor P-RPHS 719.58 8.66 2.58 7 1547.0
5 Processor P-RPHS 798.76 7.69 2.42 6 1690.8

Table 6.3. Summary of the P-RPHS results on the LETTER RECOGNITION
problem

C. error(%) Algorithm used T.time
(s)

� �

Mean # of
recursions

Mean # of
Hidden Nodes

CBP 20845 21.67 1 73.6
RPHS- MCGD 29701 12.42 2.10 22 876.0

2 Processor P-RPHS 12442 12.56 2.39 10 1670.0
3 Processor P-RPHS 13352 12.14 2.43 8.5 2050.0
4 Processor P-RPHS 15185 11.38 2.05 9.5 2440.0
5 Processor P-RPHS 16028 11.38 2.08 10 2713.3

Table 6.4. Summary of the P-RPHS results on the SPAM problem

C. error(%) Algorithm used T. time
(s)

� �

Mean # of
recursions

Mean # of
Hidden Nodes

CBP 43.65 27.92 1 23.0
RPHS- MCGD 82.80 20.97 0.40 3 162.0

2 Processor P-RPHS 120.15 20.65 0.62 2.5 237.5
3 Processor P-RPHS 156.38 20.60 0.53 2.5 325.0
4 Processor P-RPHS 180.44 20.56 0.47 2 282.0
5 Processor P-RPHS 215.12 20.54 0.49 2 274.0

Table 6.5. Summary of the P-RPHS results on the PENDIGITS problem

C. error(%) Algorithm used T. time
(s)

� �

Mean # of
recursions

Mean # of
Hidden Nodes

CBP 1202.03 6.50 1 64.6
RPHS- MCGD 1994.73 2.80 1.10 6 215.4

2 Processor P-RPHS 1236.80 3.22 0.90 4 399.2
3 Processor P-RPHS 1954.30 2.43 1.07 4 560.0
4 Processor P-RPHS 2154.50 2.45 0.80 4 717.3
5 Processor P-RPHS 2688.30 2.43 0.87 4 956.0

 108

6.3.2 Effect of voting

The process of voting, as described in Section 6.2.3.2, was designed to choose

the most confident output in case of conflicting outputs in the processors.

Empirically, though, it was observed that voting only made a difference to the

generalization accuracy of the LETTER RECOGNITION. This difference, given in

Table 6.6 shows the classification errors with and without voting for the 2, 3, 4, and 5

processor setup. It is clearly observed that voting plays a very significant part in the

improvement of the classification accuracy of the P-RPHS system. However, the

response time of the system is increased, almost by twofold, by the computation of

multiple outputs and the calculation of confidence scores. The computational

intensity of the voting system was described in Section 6.2.3.2.

Table 6.6. Effect of voting on the generalization accuracy of the LETTER
RECOGNITION problem

C. Error
with voting

(%)

C. Error
without

voting (%)

Number of
Processors

� � � �

Response
time without

voting (s)

Response
time with
voting (s)

2 12.56 2.39 15.93 3.52 0.61 1.21
3 12.14 2.43 15.61 2.69 1.02 2.03
4 11.38 2.05 14.03 2.47 1.27 2.53
5 11.38 2.08 13.97 2.36 1.41 2.68

6.4 Discussions

This chapter proposes a parallel RPHS system with information exchange and

collection at the end of each recursion. The system shows good general improvement

over the RPHS system in Chapter 4 in terms of generalization accuracy. One thing

that is noticeable in the parallel version is the training time. The training time given

 109

in Section 6.4 is the series training time. The series training time refers to the total

training time of the system as given in equation (6.5)

��
= =

=
K

i

N

j
jitotal

p

tt
1 1

,

(6.5)

This implies that this time refers to the sum of the time taken to execute each

processor in each recursion. The linear nature of the relationship between the training

time and the number of processors shows that if, on the other hand, the P-RPHS were

run in parallel, the training time of the system would be reduced by several fold.

It is also observed that the number of recursions and the classification

accuracy converges across processors. For the datasets tested, this convergence

occurs most likely when the number of processors used is between 3 and 4. The

network complexity also appears to converge in all the problems except the

PENDIGITS problem.

Voting to determine the generalization capability of P-RPHS was found to be

advantageous, but mostly unnecessary. In fact, the advantage of voting only came

into consideration when working with the LETTER RECOGNITION dataset. All

other datasets resulted in the same generalization accuracy with and without voting.

This observation seems to reinforce the confidence of the pseudo-global optima and

that each pseudo-global optima is error free on the training subset.

 110

7. Application: Output Parallelism based on RPHS (OP-RPHS)

7.1 Introduction

Output Parallelism (Guan et al., 2004), a task decomposition method

proposed to reduce the output dimension is used to simplify classification problems.

The classifier, instead of learning to distinguish between NO output classes, learns to

distinguish instead between two classes, i.e., to distinguish between iclass and

iclass . The problem’s output space is now reduced by NO times. The details of

Output Parallelism can be found in Appendix B.

We attempted this combination of RPHS with Output Parallelism for two

reasons. Firstly, RPHS with Output Parallelism (OP) is an advantageous combination

due to the pre simplification of the dataset before applying recursive training. The

system is therefore able to identify more easily the “simpler” and “difficult” patterns,

resulting in outputs with high confidence and low standard deviation.

More importantly, in chapters 4 to 6, we had described recursive algorithms

which were developed with traditional algorithms (Genetic Algorithms,

Backpropagation) as their base. Although newer algorithms such as Minimal Coded

Genetic Algorithms (Gong et al., 2004) and Constructive Backpropagation

(Lehtokangas, 1999) were used, they were but tools in the efficient development of

the algorithm. However, newer and better algorithms for machine learning are

coming up every day. What, then, is the role of recursive training in the future?

This is an important question to ask ourselves, and to ensure that RPHS does

not become “just another algorithm”; we designed it such that it could be easily built

on top of other machine learning algorithms. CBP and MCG aside, we build RPHS

on top of a more complicated algorithm and observe the learning improvement. We

 111

had proved earlier in Chapters 4 and 5 that the generalization accuracy of RPHS and

RSL-CC is better than the generalization accuracy of the base learner. In this chapter,

we verify this theorem using the OP algorithm.

Output Parallelism was chosen because it was a recent development.

Moreover, it was a product of our lab, and has been well developed and documented.

Source codes were therefore easily available for us to construct and develop upon.

Also, the algorithm itself is fairly straightforward and, similar to RPHS, uses several

sub- procedures such as validation and early stopping to ensure good accuracy. This

made the OP an ideal candidate algorithm for testing the extendibility and flexibility

of RPHS.

In this chapter, we present a method for combined decomposition, Output

Parallelism with recursive pattern-based hybrid supervised training (OP-RPHS). OP-

RPHS employs a combination of both class decomposition and domain

decomposition in its architecture hence integrates the advantages of both methods.

OP-RPHS can be grown and trained in parallel on parallel processing units, thereby

improving training time. Using the final network structure of OP-RPHS, OP-RPHS

outperformed both conventional OP and RPHS in terms of classification accuracy.

The results are consistent across three benchmark datasets.

7.2 Algorithm description

7.2.1 System overview

OP-RPHS employs a combination of both class and domain decomposition in

its architecture hence integrates the advantages of both methods. The fundamentals

of OP-RPHS are built upon OP and RPHS. Sub-modules in OP can be trained in

parallel and no communication is required amongst sub-modules during training.

 112

Consequently, we can also model each sub-module in OP as an independent neural

network system that contains a partial solution to the original problem. In RPHS, the

GA recursively partitions the original input data space into n sub-networks. From

this point onwards, no further communication is needed amongst the sub-modules

and each sub-module is then trained to fit the local data on each sub-space. In this

light, we can model the OP-RPHS system as shown in Figure 7.1. Subsequently,

each sub-module can be modeled as an independent neural network system that

outputs a complete solution to the original problem.

Since all sub-modules in both OP and RPHS can be modeled as independent

neural network systems, each of these sub-modules can be further decomposed by

other decomposition methods. In addition, OP operates on the output space while

RPHS operates on the data space. As such, OP and RPHS are individual

decomposition techniques that can be applied to solving a single problem.

OP
sub problem 1

OP
sub problem n-1

OP
Sub problem n

RPHS unit 1

RPHS unit n-1

RPHS unit n

Final
Solution

Merge

Figure 7.1. The OP-RPHS architecture

Input

 113

Let us assume that a problem has IN inputs, NO outputs and Ntr training

patterns. In our design of OP-RPHS, OP is first applied to decompose the original

problem by its output classes into n sub-problems. Each sub-module will receive the

full input training patterns, tr, as the original problem. After the first stage of

decomposition, RPHS is applied to decompose each sub-module into K recursions or

K sub-networks. Each sub-network here has IN inputs and the same number of

outputs unit as its parent sub-module, as illustrated by Figure 7.1. Furthermore,

parallel processing can be easily implemented in this design and each sub-module

can be trained on separate machines, thereby reducing training time. The central

system here is only needed for pre-processing and the merging of output data at the

end.

In this chapter, sub-module is used to refer to neural network units

decomposed by class using OP, while sub-network refers to neural network units

decomposed by domain using RPHS. As such, the original problem is decomposed

by OP-RPHS into n sub-modules in the first phase, and each sub-module is further

decomposed into K sub-networks in the second phase. Hence, the solution neural

network consists of a total of n sub-modules and (n ×K) sub-networks. Parallel

training time refers to the time taken for the slowest parallel sub-module to complete

its training. Series training time assumes there are no parallel processing units

available so all sub-modules are trained sequentially on one processor.

7.3 Experimental results

First, the effect of various output partitioning combinations were investigated

to identify the most suitable combination for a given problem using OP-RPHS. The

following naming convention for each output partitioning scheme is adopted. Using

PENDIGITS as an example, OP-RPHS (full partition) represents dividing

 114

PENDIGITS into 10 sub-modules of 1 output unit each. OP-RPHS [2 2 2 2 2]

represents dividing it into 5 sub-modules, each sub-module have 2 output units. OP-

RPHS [1 1 1 1 2 2 2] would represent 7 sub-modules, the first four sub-modules

having 1 output unit while the last three have 2 output units.

Table 7.1. Summary of OP-RPHS results on the PENDIGITS problem

T. time (s) C.accuracy Architecture Series Parallel
Mean # of

hidden units � �
CBP 1202.0 1202.3 64.6 0.935 0.008
OP 4846.3 1852.5 528.2 0.947 0.003
RPHS 1994.7 1994.7 215.4 0.972 0.011
OP-RPHS
[2 2 2 2 2] 1690.4 354.7 548.1 0.943 0.107
OP-RPHS
[1 1 1 1 2 2 2] 2221.6 349.7 623.1 0.964 0.037
OP-RPHS
(full partitioning) 3514.9 359.1 747.8 0.988 0.000

Table 7.2. Summary of OP-RPHS results on the SEGMENTATION problem

T. time (s) C.accuracy

Architecture

Series Parallel

Mean # of
hidden
units

� �

CBP 115.7 115.7 29.4 0.938 0.006
OP 1619.3 651.5 443.1 0.929 0.005
RPHS 333.5 333.5 213.1 0.939 0.005
OP-RPHS
[2 2 3] 388.3 141.8 372.3 0.921 0.049
OP-RPHS
[1 1 1 2 2] 305.6 73.2 413.5 0.932 0.033
OP-RPHS
(full partitioning) 794.1 118.8 521.6 0.941 0.000

 115

Table 7.3. Summary of OP-RPHS results on the VOWEL problem

T. time (s) C.accuracy Architecture Series Parallel
Mean # of

hidden units � �
CBP 134.1 134.1 41.0 0.665 0.132
OP 317.3 88.2 415.4 0.756 0.031
RPHS 308.9 308.9 597.6 0.823 0.034
OP-RPHS
[2 2 2 2 3] 389.3 84.8 587.9 0.912 0.060
OP-RPHS
[1 1 1 1 1 2 2 2] 289.2 47.3 687.1 0.890 0.060
OP-RPHS
(full partitioning) 771.4 72.5 839.5 0.935 0.000

From Tables 7.1 to 7.3, we observed that OP-RPHS (full partition) obtains the

best classification accuracy amongst all output combinations. However, OP-RPHS

(full partition) in series configuration takes the longest time to train. This is due to

the large number of sub-modules to train as each sub-module is a separate neural

network system. However, looking at the parallel training time, OP-RPHS (full

partition) achieves the maximum percentage improvements over its series training

time. This exemplifies the parallel processing advantage of OP-RPHS. As for

network complexity, we anticipated and validated from our results that OP-RPHS

(full partition) has the largest total number of hidden units. This is because its

overall structure contains the largest number of independent sub-modules. The full

partitioning structure using OP-RPHS is adopted for the subsequent comparisons

since it attains the highest classification accuracy.

Compared to conventional OP and RPHS, there is at least 99.99% level of

confidence that OP-RPHS has higher classification accuracy. As to network

complexity, OP-RPHS contains more hidden units compared to OP and RPHS. We

have anticipated this result as the OP-RPHS architecture is an overall more modular

network than either OP or RPHS.

 116

Using an optimized architecture, OP-RPHS outperforms both conventional

OP and RPHS in terms of classification accuracy and parallel training time. The

tradeoff is that the overall network complexity is increased. The experiments

conducted on all three benchmark datasets produced consistent results.

7.4 Discussions

OP-RPHS that employs a combination of both class decomposition and

domain decomposition in its architecture hence integrates the advantages of both

methods. We have tested our approach with three benchmark datasets, PENDIGITS,

SEGMENTATION and VOWEL taken from the UCI repository of machine learning

databases.

Based on the OP-RPHS architecture, a complex problem can be flexibly

partitioned into simpler sub-modules as chosen. With full partitioning, OP-RPHS

outperformed both conventional OP and RPHS in terms of classification accuracy

parallel training time. The tradeoff is that the overall network complexity, and

therefore the response time, is increased.

 117

8. Recursive Unsupervised Learning (RUL)

8.1 Introduction

In a way, we can look at recursive clustering as a situation where a child

learns to distinguish between two sets of photographs, one taken in the jungle and

another in the desert. There are also photographs in the set which show different

degrees of jungle/desert combination. One would want to cluster them according to

the percentage of jungle in them (>50% jungle: cluster 1, <50%jungle: cluster 2).

However, instead of distinguishing the photos all at once, it makes more sense to first

distinguish between the all jungle and all desert photos. The next level would be to

distinguish between the jungle-predominant and desert-predominant photos. The

jungle-predominant photos will then be associated with the jungle photos and the

desert-predominant ones with the desert photos and so on. The advantages of this

approach, compared to ensemble clustering, are as follows:

1. The approach does not need to execute several clustering algorithms and find

consensus between them, as grouping is done between 2 subsets of data at one

time. This is expected to save the training time.

2. We hypothesize that only two clustering algorithms (one global and one local in

nature) are needed, as opposed to the multitude of algorithms required by the

ensemble methods.

This chapter is divided into two parts. Section 8.2 describes the general

algorithm for Recursive Unsupervised Learning. Section 8.3 describes the application

of the RUL approach to the more recent Higher Order Neuron training algorithm

(Lipson and Siegelmann, 2000). This application of Recursive Unsupervised

Learning shows that RUL, like RPHS, can be regarded as an approach and be built

 118

on top of any local search algorithm to improve its performance. This extendibility is

a major contribution of this chapter.

8.2 Algorithm description

8.2.1 Problem formulation

Let { }n21 ,...xx,xX = be a representation of N patterns. ix may be defined,

for instance, over some d dimensional feature space, dR∈ix . A clustering algorithm

takes X as input and organizes the N patterns into k clusters according to some

similarity measure between patterns, forming a data partition P. Different clustering

algorithms will, in general, produce different partitions for the same dataset.

Different clustering results can also be produced by the same clustering algorithm by

using different algorithmic parameter values or different initializations.

Consider X being split into subsets using K recursions of clustering

algorithms and let ���� represent the ensemble of K subsets. ���� is therefore called a

clustering ensemble.

{ }K21 ...P ,P ,PP =

{ }1
k

1
2

1
1

1
1

...C ,C ,CP =

:

{ }K
k

K
2

K
1

K
K

...C ,C ,CP =

Where i
jC is the thj cluster in the data partition iP . Each such partition iP has ik

clusters and jiN , is the number of patterns in i
jC , with ��

= =

=
K

i

k

j
ji

i

NN
1 1

, .

We are now interested in finding an optimal set of clusters optP using the

information available in the N different data partitions in ���� . optP will therefore be a

 119

single partition such that { }opt
K

opt
2

opt
1

opt ...C ,C ,CP = , where K as the number of

clusters in optP . optP should satisfy the following:

1. Consistency with the clustering ensemble ���� .

2. Consistency with ground truth information (true cluster labels).

The first property implies that the clusters in optP , the final set of clusters, must not

disagree or affect the accuracy of the clustering ensemble ���� , meaning that error in

recombining the clusters must be kept to a minimum. The second property is used as

an additional validation to verify the accuracy of the clustering results.

8.2.2 Related general theory

As the Recursive Unsupervised Learning algorithm is a hybrid approach,

Genetic Algorithm based global clustering techniques are given high importance and

their development is outlined in this section.

Evolutionary algorithms have been used to find global solutions in many

applications, including neural network applications for supervised learning (Yao,

1993). Inspired by this, Painho and Bacao (2000) applied Genetic Algorithms to

clustering problems with good effect. The Genetic Algorithm applied is simple and

retains the form of SOMs, but with evolutionary representation of the weights.

More simply, since the objective is to maximize the value xW)(⋅i for each

pattern x , a population of real coded chromosomes encode)(W i , for each cluster i.

Each chromosome therefore consists of IkN elements, where k is the number of

clusters. The chromosomes are evaluated in batch mode, such as to maximize:

��
= ∈

⋅
K

i 1 kCx

(i) xW

(8.1)

 120

Crossover and mutation are performed and a new generation of chromosomes is

produced. The process is continued until the system stagnates or until a maximum

number of epochs is reached.

8.2.3 The basic RUL algorithm

8.2.3.1 Overview of producing recursive clustering ensembles

Recursive clustering algorithms produce a clustering ensemble

{ }n21 ...P ,P ,PP = as described in Section 8.2.1. The ensembles 1P to nP are

created as shown in the algorithm below. The algorithm is initialized with the

number of recursions 1=i and with X=Data .

Algorithm 8.1. Pseudocode for creating an RUL ensemble

While <i Maximum number of recursions
1. Global clustering Data
2. [])(DataedillClusterred,wellCluste split= //function split defined in

Section 8.2.3.2
3. iP =Local clustering redwellCluste
4. If 1>i
 a. optP =combine(iP,P opt)
 Else
 b. optP = iP
 End If

5. edillClusterData = , ++i ;

In order to better understand how the RUL algorithm works, we present the

hypothetical distribution of data as shown in Figure 8.1, where each of the steps in

the proposed algorithm are illustrated for two recursions.

 121

(a) Recursion 1: Step 1
* and @ denote the neurons representing
the clusters found. - - - represents the
cluster boundary while ___ represents the
true class boundary. Patterns close to the
cluster boundary are defined as ill
clustered

(b) Recursion 1: Steps 2, 3, 4
The well clustered patterns are now
removed and isolated. A local clustering
algorithm (SOM/HON) is applied to shift
the neurons, as indicated by the arrows.

(c) Recursion 2: Step 5, 1
Ill clustered patterns from the previous
recursion re clustered. Cluster boundaries
represented by - - -

(d) Recursion 2: Steps 2, 3
The well clustered patterns are isolated
and the means shifted

(e) Recursion 2: Step 4
Neurons of each recursion are associated with nearest neurons of previous recursions.
New associated clusters formed as shown by the arrows.

Figure 8.1. Illustration of RUL for two recursions on a hypothetical data set

 122

8.2.3.2 Splitting the Data

Step 2 of each recursion involves splitting the data into well clustered and ill

clustered patterns. The splitting process involves two steps: (a) Sorting using the

minmin rule and (b) choosing well-clustered data.

Sorting the data

For a given recursion i, after step 1.1, a partition { }iiii
rk21 ...C ,C ,CP = , is

created. The data is now sorted based on the clusters formed using a minmin rule, as

given by expression (8.2).

()()() r
i
n

i
m

i
nn

i
mmnm knmDist ∈≠∈∈∀ ,,,,,,minmin CCCxCxxx

(8.2)

Here, ()nmDist x,x , refers to a measure of distance between two patterns, mx and

nx .

Effectively, expression (8.2) means that the patterns are sorted such that

patterns from a cluster i which are closest to patterns in cluster j, ji ≠ (i.e., patterns

nearest to the cluster boundary in Figure 8.1a) can be isolated. These are the patterns

which are clustered with the most uncertainty.

Choosing well-clustered data

The patterns with the most uncertainty, i.e., the patterns which best satisfy

expression (8.2) are isolated. We motivate this by referring to equation (8.3):

() ()i
n

i
mnm

i
n

i
mnmnm if if Data CCxxCCxxx,x ≠⋅>=⋅∈∀ ,

(8.3)

Removing the uncertain data set will ensure more patterns are present in the resulting

subset which satisfy equation (8.3). Equation (8.3) represents the agreement of the

clusters formed by the unsupervised learning algorithm with the ground truth

information.

 123

Heuristically, we have set the number of patterns isolated as fifty percent of

the data in that recursion, i.e., 2/)(DatasizeofredwellCluste = .

8.2.4 The single order Recursive Unsupervised Learning algorithm

The single-order recursive clustering algorithm aims at identifying irregularly

shaped clusters. Using the spherical property of the SOM recursively to cluster and

decompose the dataset, the algorithm aims to find boundaries that are closer to the

ground truth information. Figure 8.2 describes the single-order recursive clustering

algorithm.

Train using
GA based SOMs

Split with Euclidean
distance based minmin rule

Continue training
using an

SOM
to shift the means

Maximum
Recursions?

No

Yes

Patterns far from those
of other classes?

Train using
GA based SOMs

Split with Euclidean
distance based minmin rule

Continue training
using an

SOM
to shift the means

Maximum
Recursions?

No

Yes

Patterns far from those
of other classes?

i=i+1

No Yes

Illclustered
Data i

Well clustered
Data i

Figure 8.2. Flowchart describing the single-order recursive training algorithm

 124

Figure 8.2 is similar to that in Algorithm 8.1 with the addition of the stopping

process. During the last recursion, all the remaining ill clustered patterns are taken as

a whole and clustered to the best possible extent.

8.3 Application: Higher Order Neurons (HONs)

The Higher Order Neuron structure (Lipson and Siegelmann, 2000)

generalizes the spherical and ellipsoidal scheme that is proposed by the Self

Organizing Maps and second order structures. The use of the Higher Order Neuron

structure gives rise to a continuum of cluster shapes between the classic spherical-

ellipsoidal clustering systems and the fully parametric approach. Clusters of data in

the real world are usually in arbitrary shapes. The “shape” of a cluster is referred to

as the order of the neuron representing it. Further details of Higher Order Neurons

are given in Appendix D.

In this section we discuss the application of RUL to Higher Order Neurons.

The first step is therefore to develop a global search counterpart for Higher Order

Neurons. We call the algorithm developed evolutionary HONs or eHONs.

8.3.1 Evolutionary Higher Order Neurons (eHONs)

We propose the Evolutionary Higher Order Neurons as an extension of the

Higher Order Neuron structure and the evolutionary Self Organizing Map. The idea

of Evolutionary Higher Order Neurons is motivated (other than to provide a global

base for recursive search) by the following reasoning: Lipson’s Higher Order

Neurons are shown to exhibit improved performance. However, some of our

simulations (presented in Section 8.4) showed that the order of the neuron plays an

important part in the meaning of the clusters formed. A Higher Order Neuron does

 125

not necessarily perform better than a lower order neuron. In the HONs, the order of

the neuron is pre-specified by the user.

Moreover, for a given dataset, only a single order of neuron is used to

represent all the clusters in their work. We feel that this is a limitation to the

algorithm. Data is usually distributed irregularly, with some classes taking on

spherical forms, some with elliptical or banana forms or even higher order forms.

We propose in this chapter a Messy Evolutionary Algorithm (Goldberg et al.,

1991) based multi-order HONs. The training algorithm is outlined below.

8.3.2 eHON training algorithm

Batch version of HONs

A batch version of HONs is implemented to facilitate their use with

evolutionary algorithms. The batch algorithm is similar to the online algorithm

proposed by Lipson et al., (2000) in Appendix D. However, instead of choosing a

winning neuron by using)1(1 /minarg −− ⊗= m
j fj xZ H , we implemented a batch

minimization criterion such as the one used in equation (8.1) of the evolutionary

SOMs. The algorithm focuses on minimizing equation (8.4).

()��
= ∈

−− ⊗
K

i Cx

m
i

i

f
1

)1(1
/ xZ i

H

(8.4)

Chromosome Initialization

 The initialization of chromosomes is done as outlined by the following steps:

1. Each data point is randomly assigned to one of the K clusters.

2. The covariance tensor of order m, i
HZ , for the cluster Ki ∈ is initialized as

 126

�
∈

−=
iCx

m)1(2xZ i
H

(8.5)

Chromosome structure

Each chromosome is coded as an array of structures, each consisting of two

components: the order of a chromosome and the value of the tensor, as given below:

struct chromosome
{
 neuron NEURON[K];
};
struct neuron
{
 int order ;
 int tensor[][] ;
} ;

A tensor, regardless of the neuron order, is flattened out into a two-dimensional

Kronecker matrix (Graham, 1981) in a similar form as used by Lipson.

Global search properties

Global search in eHONs is simulated by large range mutation. There are two

criteria for large range mutation:

� A random element in a tensor is mutated with a probability 1P .

� The order of the tensor is changed with a probability 2P . The tensor is now

reinitialized using equation (8.5).

Fitness function

The fitness function is the optimization of the expression in equation (8.4).

The expression is minimized so as to maximize the cluster tightness.

 127

8.3.3 The multi-order Recursive Unsupervised Learning algorithm

The development of the multi-order recursive clustering algorithm arose due

to the following factors:

� To test the capacity to extend the basic RUL algorithm as an application to

other global clustering approaches.

� Different classes of the same data could have different orders of clusters, i.e.,

the ground truth of one class may be of a different order from the ground truth

of another class.

� Different parts of the same class may have different orders. i.e., a class of

patterns may be partly spherical and partly “banana shaped” necessitating the

use of a combination of first and third order neurons to cluster the class

properly.

Due to these constraints, especially the last one, it seems to us that

representing a NO-class data with NO clusters of the same order, as done by Lipson, or

even with NO clusters of different orders, as in the case of eHONs may not be an

adequate representation.

However, the eHONs deal with the first problem by forming clusters of

different orders. The recursive Multi-order neurons aim to solve the second problem

of irregularly shaped clusters without resorting to arbitrarily high orders.

Figure 8.3 describes the multi-order recursive training algorithm. From Figure

8.3, we observe the following differences between the single-order recursive

clustering algorithm and the multi-order recursive clustering algorithm:

� The multi-order recursive clustering algorithm makes use of the eHONs.

� The minmin rule for checking the uncertainty of clustering is based on the

higher order of the neurons instead of the Euclidean distance.

 128

� The local clustering to shift the means is based on the order that was found by

the global clustering phase.

� To simplify computation, we implement the system such that the maximum

order that a neuron can take increases with the number of recursions. This

follows from the fact that the complexity of the border increases as we

increase the number of recursions. The implementation is such that the first

recursion only implements 1st and 2nd order neuron, the second recursion

implements 2nd and 3rd order neurons and so on.. The multi-order structure of

each recursion aims to select the best natural clusters for the data present.

Ill clustered

Data i

Train using ith and i+1th order neurons
Distributed Neuron structure

GA trained
Split with Higher order based minmin rule

Well clustered
Data i

i=i+1

Continue training
Using same orders
With Higher order
Neurons (HONs)

Maximum
Recursions?

No

Patterns far from those
of other classes?

No

Ill clustered

Train using ith
Distributed Neuron structure

GA trained
Split with Higher order based minmin rule

i=i+1

Continue training
Using same orders
With Higher order
Neurons (HONs)

Maximum
Recursions?

Patterns far from those
of other classes?

Yes

Yes

Figure 8.3. Flowchart describing the multi-order recursive training algorithm

 129

8.4 Experimental results

8.4.1 Evaluation criteria

Evaluation of the system is performed using two criteria.

1. The consistency with the clustering ensemble:

The consistency with the clustering ensemble is a measure of how associating

the cluster recombination after each recursion affects the accuracy of the final

clusters formed. The idea is that there should not be a mislabeling of clusters during

recombination. In this introductory work, the consistency is only visualized based on

two-dimensional principal component projection of the actual data and the clusters

formed.

2. Consistency with the ground truth information:

The consistency with the ground truth information is measured by the number

of misassigned patterns, i.e., the number of patterns not clustered together with their

true classes.

8.4.2 Results on hypothetical data

In this section we consider the four different datasets presented in Figure 8.4.

They represent the combination of spherical and oval clusters discussed in Section

2.4 (Chapter 2). With these datasets, we illustrate the use of single-order recursive

clustering to create the clustering ensemble P , and in creating the final data partition

optP .

Figure 8.4 shows the clusters obtained by using SOMs on each of the datasets

in Section 2.4 (Chapter 2) and the number of misassigned patterns in each case.

 130

x

y

 x

y

Data A: 0 misassigned patterns Data B: 9 misassigned patterns

x

y

x

y

Data C: 1 misassigned pattern Data D: 10 misassigned patterns

Figure 8.4. Clusters obtained by implementing SOMs on the data in Section 2.4 and
the number of misassigned patterns in each case

(x and y refer to the 1st and 2nd principal component values of the data respectively)

In order to illustrate the effect of recursion, we apply the Single-Order

Recursive Clusterer on these datasets. The data partitions 1P to NP that form the

clustering ensemble P are shown, as well as their integration to form optP are shown

in the figures below. From the figures, it is observed that the use of recursion to

decompose and recluster data improves significantly the clustering accuracy, i.e., the

number of misassigned patterns is significantly reduced. This is especially true in the

case of datasets B and D, which do not satisfy equation (8.3). In the figures below, x

and y axes refer to the 1st and 2nd principal component values of the data respectively.

 131

x

y

x

y

Data A: 1P , : clusters obtained Data A: 2P , : clusters obtained

x

y

Data A: optP : 0 mis-clustered patterns for the recursive single-order algorithm. Dots
in optP indicate the representing single-order neurons

Figure 8.5: Single order recursive clustering for dataset A

x

y

x

y

Data B: 1P , : clusters obtained Data B: 2P , : clusters obtained

x

y

Data B: optP (3 mis-clustered patterns for the recursive single-order algorithm.
Dots in optP indicate the representing single-order neurons)

Figure 8.6. Single order recursive clustering for dataset B

 132

x

y

Data C: 1P , : clusters obtained Data C: 2P , : clusters obtained

Data C: 3P , : clusters obtained Data C: optP (1 mis-clustered pattern for the
recursive single-order algorithm. Dots in

optP indicate the representing single-order
neurons.)

Figure 8.7. Single order recursive clustering for dataset C

Data D: 1P , : clusters obtained Data D: 2P , : clusters obtained

Data D: 3P , : clusters obtained Data D: optP (0 mis-clustered patterns for the
recursive single-order algorithm. Red dots in

optP indicate the representing single-order
neurons.)

Figure 8.8. Single order recursive clustering for dataset D

x x

y

x

y

y

y y

y y

x
x

x x

 133

8.4.3 Results on real world data

8.4.3.1 Algorithm descriptions

This chapter effectively proposes three new algorithms:

1. eHONs: Higher order self organizing neurons with evolutionary capabilities which

identify the best possible order for a chromosome based on a population generated

with various multi-order chromosomes.

2. Recursive SOMs: This algorithm operated using the system design given in

Section 8.2.4. Recursive clustering is done with purely single-order neurons.

3. Recursive multi-order clustering: The algorithm is operated using the system

design given in Section 8.3.3. Recursion is performed using multi-order neurons and

the eHON structure.

The algorithms are compared using the experimental setup discussed in

Section 3.4 (Chapter 3) with base and benchmark clustering algorithms.

8.4.3.2 Correlation with ground truth information in real world data

In this section we present the correlation with ground truth information (the

available class labels), for the IRIS, WINE and GLASS datasets. The table below

presents the average number of misassigned patterns, the standard deviation across

20 runs, as well as the number of partitions in the data ensemble P for each of the

algorithms described in Section 8.4.3.1. Training was carried out, in each problem,

for 300 epochs, or until stagnation. Stagnation for 10 epochs or more during

recursive training was used as a criterion for splitting the data into well clustered and

ill clustered patterns.

 The results show that the recursive approach generally improves the

performance of the underlying clustering algorithm. For all the results reported, with

 134

the same number of partitions in the ensemble, the recursive single-order clustering

improves the results of the SOMs and the eSOMs, while the use of the recursive

multi-order clustering improves the results obtained by the HONs and the eHONs.

The number of misassigned patterns for the IRIS and the WINE datasets are better

than or comparable to those of ensemble clustering, albeit requiring a fewer number

of partitions.

8.5 Discussions

In this chapter, we have introduced the concept of recursive clustering, an

ensemble approach to unsupervised learning. Unlike other ensemble approaches,

which are based on the consensus between several weak clusterers, the recursive

clustering approach creates ensembles by recursive decomposition of data, thereby

focusing more and more on the cluster boundary, and thus making it better correlated

with ground truth information.

In addition to the recursive approach, we have also introduced the idea of

Evolutionary Higher Order Neurons. The eHONs work by identifying the best order

a cluster can take, thereby identifying the complexity of each cluster.

The combination of the eHONs and recursive clustering appears to work well

on the real world data presented in this chapter, with the number of misassigned

patterns reduced by as much as 50% on the WINE dataset. We also saw empirically

that the performance is better than or at least comparable to ensemble clustering

approaches, though with a significantly smaller number of partitions.

Although the recursive approach to clustering is an effective one, it has only

been targeted for irregular clusters, but not for overlapping clusters. Overlapping

clusters, however, occur commonly in the real world and future work on the

recursive approach will be needed to handle overlapping clusters.

 135

Table 8.1. RUL results for real world data and comparisons to benchmark algorithms

IRIS WINE GLASS

Number of misassigned
patterns

Number of misassigned
patterns

Number of misassigned
patterns

Algorithm

� �

Number of
partitions
in the data
ensemble

� �

Number of
partitions
in the data
ensemble

� �

Number of
partitions
in the data
ensemble

HON (Higher Order
Neuron), order=2

4 0.00 1 60 0.00 1 176 0.00 1

HON (Higher Order
Neuron), order=3

7 0.00 1 70 0.00 1 157 0.00 1

SOM (Self Organizing
Map) HON order =1

23 0.00 1 72 0.00 1 115 0.00 1

Ensemble clustering
(Strehl and Ghosh, 2002)

4.5 - 100 30 - 25 - - -

eSOMs (Evolutionary
SOMs)

16 3.38 1 57 2.45 1 115 2.59 1

eHONs (to find the optimal
order for a given class)

3.5 0.99 1 49 1.84 1 110 1.32 1

Recursive SOMs (Single-
order Recursive

Unsupervised Learning)

8 0.57 3 51 0.66 4 111 0.73 6

Recursive HONs (multi-
order Recursive

Unsupervised Learning)

2 0.57 3 30 0.43 4 104 0.48 6

 136

9. Conclusions

The subject of our work was the development and implementation of

Recursive Pattern Based Hybrid Training algorithms. Our research belongs to the

category of the use of ensemble learning and task decomposition methods increase

the generalization accuracy of machine learning algorithms.

Through our work, we have obtained the following important results:

1. We have obtained the theoretical idea of pseudo-global optima – optima

which could be local from the view of all the training patterns, but are global

from the perspective of a subset of patterns. We also showed how several

pseudo-global optima could be integrated to form the true optimal solution to

a problem.

2. We have also shown theoretically that the worst case generalization accuracy,

assuming data independence, of the system is that of the base learner. This

important result ensured that the recursive trainer performed with no loss of

generalization accuracy when compared to the base-learner and improved the

generalization accuracy when presented with suitable data.

3. We have used the idea of pseudo-global optima effectively to create ensemble

data decomposition networks (RPHS) which use only 12 −−−−K weak learners

for optimal performance. Before our work, the number of weak learners was

arbitrary (Meir and Ratsch, 2003) and problem dependent.

4. We have developed a combinatorial algorithm for decomposition (RSL-CC),

which hybridizes clustering, evolutionary algorithms and neural networks.

This is a novel hybrid decomposition algorithm which simplifies the training

algorithm for recursive decomposition.

 137

5. We have also developed a parallel version of recursive decomposition and

have shown that the parallel training time for the algorithm can be further

reduced, and the generalization accuracy improved, by allowing for limited

information exchange between processors after the global training in each

recursion.

6. We also extended the idea of recursive data decomposition to unsupervised

learning (RUL), showing empirically that the recursive combination of

‘global’ and ‘local’ clustering results in significantly “more meaningful”

clusters. As with supervised learning, the RUL also requires a deterministic

number of weak learners (12 −−−−K). This is a novel contribution in the field of

ensemble clustering.

7. Finally, we extend the idea of Recursive decomposition to a more meaningful

level by using it as a tool to improve the performance of other algorithms.

Two examples were given. In the domain of supervised learning, we applied

recursive decomposition to Output Parallelism (Guan and Li, 2002, Guan et

al., 2004) and in the domain of unsupervised learning, it was applied to

Higher Order Neurons (Lipson and Siegelmann, 2000). In both cases, we

found that with minimal modifications to the existing algorithm, the idea of

recursive training can be applied with improved performance.

9.1 Perspectives

Recursive training as a tool

By using the recursive decomposition technique, a set of algorithms can be

developed with various machine algorithms at their base. As newer machine learning

algorithms come into play everyday, with increased efficiency and accuracy, there is

 138

always the scope of applying recursive training as a tool on these algorithms to push

further their performance. Future research can follow along these lines.

Overcoming the limitations of recursive training

Recursive training encounters a bottle neck when pattern imbalance is

encountered, as in the case of OP-RPHS (Chapter 7). One of the methods that was

used to overcome this bottle neck of pattern imbalance was to make the pattern set

more balanced by introducing reduced pattern training. Yet, the introduction of

reduced pattern training could be both computationally intensive (in high

dimensional data) and problem dependent. Future work would investigate this

bottleneck and identify ways to solve the problem., including the use of Genetic

Algorithms to solve the task.

Using multilevel recursive decompositions

The recursive training algorithms for supervised learning make use of a pattern

distributor. The individual subsolutions being error free, the error of the Recursive

Supervised Learning algorithm depends heavily on the error of the pattern

distributor.

The current implementation of the pattern distributor is a Kth Nearest Neighbor.

Other pattern distributor algorithms exist, which are based on neural networks (Guan

et al., 2004).

However, given that the pattern distributor is essentially a classifier, we can

implement a pattern distributor using a second Recursive learner. The resulting

system would then be a multi-level hierarchical recursive learner.

 139

Bibliography

Blatt M, Wiseman S and Domany E (1996). Supermagnetic clustering of data,

Physical Review Letters, 76(18), pp 3251-3254.

Breiman L (1996), Bagging predictors, Machine learning 24(2), pp123-140.

Carvalho D R and Freitas A A (2004), A hybrid decision tree/ Genetic Algorithm

method for data mining, Information sciences: an international journal, 163(1-3),

pp13-35.

Dorigo M, Maniezzo V, Colorni A (1996), Ant System: Optimization by a colony of

cooperating agents, IEEE transactions on systems, man, and cybernetics-part B,

26(1), pp 29-41.

Eberhart R C and Kennedy J (1995), A new optimizer using particle swarm theory,

Proceedings of the sixth international symposium on micro machine and human

science, Nagoya, Japan, pp 39-43.

Engelbrechet A P and Brits R (2002), Supervised training using an unsupervised

approach to active learning, Neural processing letters, 15(3), pp 247-260.

Fahlman S E and Lebiere C (1991), The cascade-correlation learning architecture,

Advances in neural information processing, 2, pp 524-532.

Fasulo D (1999), An analysis of recent work on clustering, Technical report UW-

CSE-01-03-02, Univ. of Washington, Seattle, available online at

http://www.cs.washington.edu/homes/ dfasulo/clustering.ps.

Foody G M (1998), Issues in training set selection and refinement for classification

by a feedforward neural network, IEEE international Geoscience and Remote

Sensing Symposium Proceeding, 1(6-10), pp 409-411.

 140

Fred A , Jain A K (2002), Data clustering using evidence accumulation, 16th

international conference on pattern recognition, pp 276-280.

Fred A and Jain A K (2005), Combining multiple clustering using evidence

accumulation, IEEE transactions on Pattern analysis and Machine Intelligence, 27(6),

pp 835-850.

Fukunaga K (1990), Introduction to Statistical Pattern Recognition, Boston:

Academic Press.

Gathercole C, Ross P and Bridge S (1994), Dynamic training subset selection for

supervised learning in genetic programming, Lecture notes in Computer Science,

866, pp 312-321.

Goldberg D E (1989), Genetic Algorithms in Search, Optimization and Machine

Learning: Addition Wesley.

Goldberg D E, Deb K, and Korb B (1991), Don't worry, be messy, Proceedings of the

fourth international conference in Genetic Algorithms and their applications, edited

by Belew R and Booker L, pp 24-30.

Gong D X, Ruan X G and Qiao J F (2004), A neuro computing model for real coded

Genetic Algorithm with the minimal generation gap, Neural computing and

applications, 13, pp 221-228.

Graham A (1981), Kronecker products and matrix calculus with applications: New

York, Wiley.

Guan S U, Liu J (2002), Incremental Ordered Neural Network Training, Journal of

intelligent systems, 12(3), pp 137-172.

Guan S U and Li S(2002), Parallel Growing and Training of Neural networks using

Output Parallelism, IEEE transactions on neural networks, 13(3), pp 542-550.

 141

Guan S U and Zhu F (2004), Class decomposition for GA-based classifier agents – A

Pitt approach, IEEE transactions on systems, man, and cybernetics, part B:

Cybernetics, 34(1), pp 381-392.

Guan S U, Neo T N and Bao C (2004), Task decomposition using pattern distributor,

Journal of intelligent systems 13(2), pp 123-150.

Guan S U, Ramanathan K (2007), Percentage based hybrid pattern training with

neural network specific crossover, Journal of Intelligent Systems, 15(1), pp1-26.

Hamedi M (2005), Intelligent fixture design through a hybrid system of artificial

neural network and Genetic Algorithm, Artificial intelligence review, 23(3), pp 295-

311.

Hastie T, Tibshirani R and Friedman J(2001), The elements of statistical learning:

Data mining, inference, and prediction, Springer Series in Statistics: Springer-Verlag

Haykins, Simon (1999), Neural Networks: Prentice Hall.

Jain A K and Dubes, R C (1998), Algorithms for clustering data: Prentice Hall.

Jin L and Gupta M M (1999), Stable dynamic Backpropagation learning in RNNs,

IEEE transactions in neural networks, 10(6), pp 1321-1333.

Judd D, McKinley P and Jain A K (1997), Large scale parallel data clustering, IEEE

Transactions on pattern analysis and machine intelligence, 19(2), pp 153-158.

Karzyanski M, Mateos A, Herrero J and Dopazo J (2003), Using a Genetic

Algorithm and a percepteron for feature selection and supervised class learning in

DNA microarray data, Artificial intelligence review, 20(1-2), pp 39-51.

Kohonen, T (1997), Self Organizing Maps. Berlin: Springer-Verlag.

Koza J R (1992), Genetic Programming, On the Programming of computers by

means of natural selection: MIT Press.

 142

Lang K J and Witbrock M J (1988), Learning to Tell Two-spirals Apart, 1988

Connectionist Models Summer School, pp 52-59.

Lasarzyck C W G, Dittrich P and Banzhaf W (2004), Dynamic subset selection based

on a fitness case topology, Evolutionary computation, 12(2), pp 223 – 242.

Lehtokangas M (1999), Modeling with Constructive Backpropagation, Neural

networks, 12, pp 707-716.

Lipson H, Siegelmann H T (2000), Clustering irregular shapes using Higher Order

Neurons, Neural computation 12, pp 2331-2353.

Lipson, H, Hod, Y and Siegelmann, H T (1998). Higher order clustering metrics for

competitive learning neural networks. Isreal-Korea bi national conference on new

themes in computer aided geometric modeling. Tel-Aviv, Israel, pp 181-188.

Lu B L, Ito K, Kita H and Nishikawa Y(1995), Parallel and modular Multisieving

neural network architecture for constructive learning, In proceedings of the 4th

international conference on artificial neural networks. 409, pp 92-97.

Mao J and Jain A (1996). A Self Organizing network for hyper ellipsoidal clustering

(HEC), IEEE Transactions on neural networks, 7, pp 16-39.

Meir R and Rätsch G (2003), An introduction to Boosting and leveraging. Advanced

lectures on machine learning, Springer, pp 119-184.

National Institute of Standards and Technology (2000), Statistical reference datasets,

http://www.itl.nist.gov/div898/strd/index.html.

Nilson, N (1990), The mathematical foundations of learning machines, San

Francisco: Morgan Kaufmann.

 143

Painho M, Bacao R (2000), Using Genetic Algorithms in Clustering Problems,

Geocomputation 2000, available online at

http://www.geocomputation.org/2000/GC015/Gc015.htm.

Ramanathan K, Guan S U (2006), “Clustering Irregular shapes using evolutionary

multi order neurons”, Neural Computation, In Press.

Rovithakis G A, Chalkiadakis I, Zeravakis M E (2004), High – order neural network

structure selection for function approximation applications using Genetic Algorithms,

IEEE transactions on systems, man and cybernetics, 34(1), pp 150-158.

Rumelhart D, Hinton G and Williams R (1986). Learning internal representations by

error propagation., Parallel distributed processing, edited by Rumelhart D and

McClelland J, 1 MIT Press, pp 318-352.

Satoh H, Yamamura M, Kobayashi S (1996), Minimal Generation Gap model for

GAs considering both exploration and exploitation. 4th international conference on

soft computing, Iizuka, Japan, pp 494-497.

Schapire R E (1997), Using output codes to boost multiclass learning problems,

Fourteenth international conference on machine learning, San Francisco, pp 313-321.

Strehl A, Ghosh J (2002), Cluster ensembles – a knowledge reuse framework for

combining multiple partitions, Journal of Machine Learning Research, 3, pp 583-617.

The UCI Machine Learning repository:

http://www.ics.uci.edu/~mlearn/MLRepository.html.

Topchy A, Behrouz M B, Jain A K and Punch W F (2005), Adaptive clustering

ensembles, 17th international conference on pattern recognition, 1, pp 272 – 275.

Vasconcelos J A, Ramirez J A , Takahashi R H C and Saldanha R R (2001),

Improvements in Genetic Algorithms, IEEE transactions on magnetics, 37(5), pp

3566-3569.

 144

Wong M A and Lane T (1983), A kth Nearest Neighbor clustering procedure, Journal

of the Royal Statistical Society (B), 45(3), pp 362-368.

Yao X (1993), A review of evolutionary artificial neural networks, International

Journal of Intelligent Systems, 8(4), pp 539-567.

Yasunaga M, Yoshida E and Yoshihara I (1999), Parallel Backpropagation using

Genetic Algorithms: Real-time BP Learning on the Massively Parallel Computer CP-

PACS, IEEE international joint conference on neural networks, pp 4175-4180.

 145

Appendix

 146

A. Constructive Backpropagation

Constructive Backpropagation (Lehtokangas, 1999) is an extension of

Backpropagation (Rumelhart et al., 1986) and is related to cascade correlation (Fahlman

and Lebiere, 1991). Constructive Backpropagation is computationally just as effective as

cascade correlation. However, the error is propagated through a maximum of one hidden

layer, thereby resulting in a simpler implementation. The algorithm is outlined below:

Initialization

The neural network has no hidden units. The outputs are fed by the bias weights

and the possible direct connections from the inputs to the outputs. The mean square error

is now reduced by minimizing:

�
=

−=
trN

i
iitr ODE

12
1

Training a new hidden unit

We connect inputs to the new hidden unit (where the new unit is the ith unit, i>0)

and its outputs to the output units, as shown in the Figure A.1 below. The training error is

now given by:

2

,

1

02
1
� � �

�
�

�
�
�
�

�
−−=

−

=kl

i

j
ilikjljilktr hvhvdE

Here, lkd is the desired output in the thk output unit for the thl training pattern,

jkv is the connection from the thj hidden neuron to the thk output unit, jlh is the output

 147

of the thj hidden neuron for the thl training pattern that was left from the previously

added neurons.

Figure A.1. Training a new hidden unit in CBP

Freeze new hidden unit

The weights connected to the new unit are permanently fixed.

Test for convergence

Stop the training if the current architecture yields an acceptable solution.

Otherwise add a new hidden unit and iterate.

The use of CBP has been shown to perform automatic neural network structure

adaptation and is shown empirically to be useful in problems with a large amount of data.

 148

B. Output Parallelism

Output Parallelism (Guan and Li, 2002, Guan et al., 2004) was proposed to

flexibly divide a problem into several sub-problems, each of which is composed of the

whole input vector and a fraction of the output vector. Each module is responsible for

producing a fraction of the output vector of the original problem. The modules are then

grown and trained in parallel and incorporated with the Constructive Backpropagation

algorithm (Lehtokangas, 1999).

A K-class problem is divided into r subproblems as shown in Figure B.1

Figure B.1. Problem decomposition with Output Parallelism

Each subproblem is solved by growing and training a feed forward neural network

(module). A collection of modules is the overall solution to the original problem.

 149

C. Early stopping

In order to prevent over- or under-training of a neural network, a validation set of

data (with valN patterns) is used to terminate the network training. The total training error

of a neural network is defined based on the difference between the desired and the

obtained outputs of the network as shown below:

� −=
trN

tr nOnDnE
1

)()(
2
1

)(

where trN is the number of training patterns in the system.

The network’s validation error at a given epoch n is therefore

� −=
valN

val nOnDnE
1

)()(
2
1

)(.

The total error of the network is therefore)()()(nEnEnE valtrtot += .

The value Eopt(n) is defined to be the lowest validation set error obtained in

epochs up to epoch n, i.e.,)'(min)(
'

nEnE totnnopt ≤
= .

The generalization loss at epoch n is defined as the relative increase of the total

error over the minimum so far.

)1
)(
)(

()(−=
nE
nE

nGL
opt

tot

The validation set termination criterion is set such that a high generalization loss

will result in termination of the training. This method is specifically designed to reduce

the possibility of loss of generalization accuracy due to over-training. Early stopping was

proposed by Guan and Li (2002).

 150

D. Higher Order Neurons

In Higher Order Neurons (Lipson and Siegelmann, 2000), the spherical restriction

of ordinary neurons is relaxed by replacing the weight vector with a general higher order

tensor. This tensor captures multilinear correlations among the signals associated with the

neurons. It also permits capturing shapes with holes or detached areas. In (Lipson and

Siegelmann, 2000), Higher Order Neurons were shown to exhibit stability and good

training performance with hebbian learning. The algorithm is performed as follows:

1. Select the number of clusters (or number of neurons) NO, and the order of the

neurons (m) for a given problem.

2. The neurons are initialized with �
=

−=
n

i

m

1

)1(2
iH xZ . HZ is the covariance tensor of

the data, initialized to a midpoint value. In the case of a second order problem, the

covariance tensor is simply the correlation matrix �
=

⋅=
n

i 1
iiH xxZ . For higher

order tensors, this value is calculated by writing down 1−m
Hx as a vector with all

the thm degree permutations of { },1,...xx,x d21 and finding HZ as the matrix

summing the outer product of all these vectors. The value of the inverse of the

tensor is found and normalized using its determinant f to obtain f
1

HZ−
.

3. The winning neuron for a given pattern is computed using

1)(m
H xZ −− ⊗= fj j /minarg 1 . Here, ⊗ denotes tensor multiplication.

 151

4. The winning neuron is now updated using)1(2 −+= m
ioldH,newH, xZZ η , where η is

the learning rate. The new values of HZ and f
1

HZ−
 are stored.

5. Steps 3 and 4 are repeated.

Ideally, while the first order neuron finds spherical shapes, and the second order

neuron finds ellipsoidal shapes (with two principal directions), The third order neuron,

which makes use of the covariance tensor (having a cubical shape), finds four principal

directions and copes with banana shaped clusters. Figure D.1 shows the neuron

information of the first, second and third order neuron respectively.

Representation of first order neurons Representation of second order neurons

Representation of third order neurons

Figure D.1. The internal representation of a self organizing, second and third order
neurons using eigentensors

x x

