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SUMMARY 

The lattice Boltzmann Method (LBM) has attracted significant interest in the 

CFD community. Uniform grids in Cartesian coordinates are usually adopted in 

the standard LBM. The axisymmetric flows which are described by 

two-dimensional (2D) Navier-Stokes equations in cylindrical coordinates can be 

solved by three-dimensional (3D) standard LBM but they are not able to be solved 

by 2D standard LBM directly. To simulate the axisymmetric flows by using 2D 

LBM, we suggest a general method to derive axisymmetric lattice Boltzmann 

D2Q9 models in 2D coordinates.  

Using the general method, three different axisymmetric lattice Boltzmann 

D2Q9 model A, B and C were derived through inserting different source terms 

into the 2D lattice Boltzmann equation (LBE). Through fully considering the 

lattice effects in our derivation, all these models can mimic the 2D Navier-Stokes 

equation in the cylindrical coordinates at microscopic level. In addition, to avoid 

the singularity problem in simulations of Halliday et al. (2001), axisymmetric 

boundary conditions were proposed. 

The LBM results of steady flow and 3D Womersley flow in circular tubes 

agree well with the FVM solutions and exact analytical solutions, which validated 

our models. It is observed that the present models reduce the compressibility 

effect shown in the study of Halliday et al. (2001) and is much more efficient than 

the direct 3D LBM simulations.  

Using the axisymmetric model and the multi-block strategy, the steady and 

unsteady blood flows through constricted tubes and elastic vascular tubes were 

simulated. Our 3D multi-block LBM solver which has second-order accuracy in 

space was also used to study the blood flow through an asymmetric tube.  



 ix

Besides the above application, an incompressible axisymmetric D2Q9 model 

considering the swirling effect and buoyancy force was proposed to simulate the 

benchmark problems for melt flows in Czochralski crystal growth. This is a hybrid 

scheme with LBM for the axial and radial velocities and finite difference method 

for the azimuthal velocity and the temperature. It is found the hybrid scheme can 

give very accurate results. Compared with the previous model (Peng et al. 2003), 

the present axisymmetric model seems more stable and provides a significant 

advantage in the simulation of melt flow cases with high Reynolds number and 

high Grashof number. 

A revised axisymmetric D2Q9 model was also applied to investigate gaseous 

slip flow with slight rarefaction through long microtubes. In the simulations of 

microtube flows with Kno in range (0.01, 0.1), our LBM results agree well with 

analytical and experimental results. Our LBM is also found to be more accurate 

and efficient than DSMC when the slip flow in microtube was simulated.  

For the simulation of the heat and fluid flow with LBM, besides the above 

hybrid scheme, it can also be solved by a double-population thermal lattice 

Boltzmann equation (TLBE). A recent curved non-slip wall boundary treatment 

for isothermal LBE (Guo, et al., 2002) was successfully extended to handle the 2D 

and 3D thermal curved wall boundary for TLBE and proved to be of second-order 

accuracy. 

 

 

 

 

 



 x

LIST OF TABLES 

Table 2.1 Main parameters of popular 2D and 3D discrete velocity models.........43 

Table 4.1 Parameters for simulations of cases α=7.93 and α=3.17 when Nr =20 .93 

Table 4.2 The overall average error <ξ> comparison for two schemes to implement 
the pressure gradient ...................................................................................93 

Table 4.3 Mean density fluctuation .....................................................................93 

Table 4.4 The error of velocity field in 3D womersley flow ................................93 

Table 4.5 Comparison of CPU time and error between two lattice BGK model for 
3D womersley flow.....................................................................................94 

Table 4.6 Vortex Centers, Stream function and Location for Multi-block scheme 94 

Table 4.7 Comparison of CPU times in minutes to get 3 order of residual reduction 
for steady flow through constricted tube (Re=10) (number in parentheses is the 
number of steps) .........................................................................................94 

Table 4.8 The number of Lattices for block A,B,C,D and range in x,y,z direction 95 

Table 4.9 The position of the center of the primary vortices in plane z=H/2 ........95 

Table 6.1 The maximum stream function in x-r plane for Taylor-Couette flow (grid 
20×76) ......................................................................................................149 

Table 6.2 Comparison of CPU time for hybrid scheme and FVM simulation of 
Taylor-Couette flow (Re=100, grid 30×114)..............................................149 

Table 6.3 Grid independence test for Case A2, Gr=0, Rex=103, Rec=0...............149 

Table 6.4 Some results for the test cases by the hybrid scheme and QUICK* ....150 

Table 6.5 Numerical stability comparison for case A1.......................................151 

Table 7.1 Simulated diameter of microtubes for different gas flow (Kno=0.013)167 

Table 7.2 Efficiency and accuracy comparison (LBM and DSMC) (Kno=0.0134, 
Pr=2.5) .....................................................................................................167 

Table 8.1 Grid-dependence study for the natural convection in a square cavity at 
Ra=104 , ∆=0 ............................................................................................184 

Table 8.2 Numerical results for cases with ∆=0.5, Ra=103-106 ..........................184 

Table 8.3 Numerical results for Ra=104 with mesh size 103×103 and different ∆
.................................................................................................................184 

Table 8.4 The maximum stream function ψmax and the average Nusselt number Nua



 xi

.................................................................................................................184 

Table 8.5 Representative field values in the symmetric plane (y=0.5L) for 3D nature 
convection in cubical cavity with ∆=0.0, Ra=103-105 ................................185 

 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 xii

LIST OF FIGURES 

Figure 2.1 Streaming and collision steps in one time step....................................43 

Figure 2.2 Discrete velocity sets {ei} for D2Q9, D2Q7, D3Q19 and D3Q15 models
...................................................................................................................44 

Figure 2.3 The bounce back (a), half-way bounce back (b) and specular reflection (c) 
schemes ......................................................................................................44 

Figure 2.4 curved boundary geometry and lattice nodes. Open circles (○) are wall 
nodes and open squares (□) are the fluid nodes. The disks (●) are the nodes in 
physical boundary. Solid squares (■) are located in the fluid region but not on 
grid nodes. The thin solid lines are the grid lines. The thick arrows represent 
the trajectory of a particle interacting with the wall. ....................................45 

Figure 2.5 Curved wall boundary treatment of Guo et al. (2002a) .......................45 

Figure 2.6 Interface structure between fine and coarse blocks .............................46 

Figure 2.7 Bilinear spatial interpolation scheme..................................................46 

Figure 3.1 The computational domain for axisymmetric flow simulation ............63 

Figure 4.1 Geometry of constricted tubes............................................................95 

Figure 4.2 Velocity profiles in different position in case of S0=D, Re=50 ............96 

Figure 4.3 Relative error η in simulations with model A,B and C........................96 

Figure 4.4 Velocity profiles in different position in case of S0=D, Re=100...........97 

Figure 4.5 Streamlines and shear stress contours for case of S0=D, Re=100.........97 

Figure 4.6 Wall vorticity for case of S0=D, Re=100.............................................97 

Figure 4.7 Scheme to obtain wall shear stress and wall vorticity, the open square and 
circle represents the lattice node outside and inside of the boundary 
respectively. The near-wall fluid lattices are represented by filled circle. .....98 

Figure 4.8 Results obtained from model of Halliday et al. for case of S0=D, Re=10
...................................................................................................................98 

Figure 4.9 Maximum velocity in the axis of tube and the phase lag as a function of 
Womersley number .....................................................................................99 

Figure 4.10 The global error <ξ> as a function of the pipe radius Nr for α=7.93 and 
α=3.17........................................................................................................99 

Figure 4.11 The overall accuracy of extrapolation wall boundary condition 
combining with axisymmetric extrapolation scheme .................................100 



 xiii

Figure 4.12 Profiles of decreasing and increasing velocities along the radius of a 
tube for α=7.93, T=1200, Re=1200, τ=0.6, at t=nT/16 (n=0,…,15) (Uc=1.0, 
actually Umax~0.07)...................................................................................100 

Figure 4.13 Profiles of velocities along the radius of a tube for α=1.37, T=4000, 
Re=1.2, τ=1.5, at t=nT/16 (n=0,…,15) (Uc=0.01).......................................101 

Figure 4.14 Profiles of velocities along the radius of a tube for α=24.56, T=1000, 
Re=1920, τ=0.7, at t=nT/16 (n=0,…,15) (Uc=0.8, actually Umax~0.0056)...101 

Figure 4.15 Shear stress in a oscillatory tube flow for case α=7.93, T=1200, 
Re=1200, τ=0.6, at t=nT/16 (n=0,…,15) ....................................................102 

Figure 4.16 Geometry of flow over an axisymmetrical sphere placed in a 3D 
circular tube..............................................................................................102 

Figure 4.17 Streamlines for flows over an axisymmetrical sphere placed in a 3D 
circular tube at Re=50, 100 and 150 ..........................................................103 

Figure 4.18 Velocity profiles in different position for flows over an axisymmetrical 
sphere placed in a 3D circular tube (a) Re=50, (b) Re=100 ........................103 

Figure 4.19 Velocity (a) ux, (b) ur profiles in different position for flow over an 
axisymmetrical sphere placed in a 3D circular tube Re=150 ......................104 

Figure 4.20 Pressure contours for Re=400 (a) single-block case with a grid 67×67 
and (b) two-block case with a upper fine grid 133×37 and a lower coarse grid 
67×50 .......................................................................................................104 

Figure 4.21 Vorticity contours for Re=400 (a) single-block (67×67) case and (b) 
two-block case (a upper fine grid 133×37 and a lower coarse grid grid 67×50 )
.................................................................................................................105 

Figure 4.22 Stream function for Re=400 (a) single-block (67×67) case and (b) 
two-block case (a upper fine grid 133×37 and a lower coarse grid grid 67×50 )
.................................................................................................................105 

Figure 4.23 Spatial convergence rate for Re=400. The errors E1 and E2 are 
calculated relative to results obtained on a 259×259 grid. (a) Slope of linear fit 
of E1 (two-block case) is m=-2.21±0.16. Slope of linear fit of E1 (single-block 
case) is m=-2.12±0.38. (b) Slope of linear fit of E2 (two-block case) is 
m=-2.09±0.18. Slope of linear fit of E2 (single-block case) is m=-1.76±0.20.
.................................................................................................................106 

Figure 4.24 Three-dimensional geometry of the stenosis in 3D Cartesian 
coordinates................................................................................................106 

Figure 4.25 u velocities in the 8 planes were investigated for asymmetry..........106 

Figure 4.26 Solutions of 3D LBM and FVM (Re= 10) ......................................107 

Figure 4.27 Axial and radial velocity profiles in a 3D constricted tube (Re=100)



 xiv

.................................................................................................................107 

Figure 4.28 Geometry and multi-block strategy of 3D driven cavity flow .........107 

Figure 4.29 Comparison of ux profiles of the LBM multi-block case and 
single-block case with a Navier–Stokes (NS) solution (Salom 1999) at x/H 
=z/H =0.5 for Re=400 in a 3D lid-driven cavity flow.................................108 

Figure 4.30 Comparison of uy profiles of LBM multi-block case and single-block 
case with a NS solution (Salom 1999) at y/H =z/H =0.5 for Re=400 in a 3D 
lid-driven cavity flow. ...............................................................................108 

Figure 4.31 A pressure contour obtained from the single 653 block solution ......109 

Figure 4.32 A pressure contour obtained from the multi-block solution.............109 

Figure 4.33 Exemplary particle paths of the steady solution at Re = 400. Particles 
pass through the downstream secondary eddy region.................................110 

Figure 4.34 The pressure contours on the interface between block B and C.......110 

Figure 4.35 Mass and momentum fluxes contours on the interface between block B 
and C ........................................................................................................111 

Figure 4.36 2D projection of the discretized domain and the boundary nodes 
(denoted by open circle) on the yz plane (D=16 coarse lattice units) ..........111 

Figure 4.37 The multi-block strategy for a 3D constricted tube (xy plane).........112 

Figure 4.38 The velocity component ux and uy profile along a diameter in xy plane at 
x=0.5D, D and 2D .....................................................................................112 

Figure 4.39 Exemplary particle paths of the steady solution at Re = 50. ............112 

Figure 5.1 Blood flow through (a) 64%, (b) 75%, (c) 84% stenosis (S0=D, Re=50)
.................................................................................................................127 

Figure 5.2 Wall vorticity along the constricted tubes .........................................127 

Figure 5.3 Velocity profiles in different position in case of S0=D, Re=200.........128 

Figure 5.4 Velocity profiles in different position in case of S0=D, Re=400.........128 

Figure 5.5 Geometry and mesh of constricted tubes ..........................................128 

Figure 5.6 Streamlines and shear tress contours for constriction spacings L/D=1,2,3 
(Re=10).....................................................................................................129 

Figure 5.7 Streamlines and shear stress contours for constriction spacings 
L/D=1,2,3 (Re=50)....................................................................................129 

Figure 5.8 Streamlines and shear stress contours for constriction spacings 
L/D=1,2,3 (Re=300)..................................................................................130 



 xv

Figure 5.9 Variation of axial velocity on axis for different constriction spacings130 

Figure 5.10 Variation of wall vorticity for different constriction spacings..........131 

Figure 5.11 Inlet velocity profiles based on the Womersley solution. (a) Temporal 
variation of inlet volume flux. (b) Velocity profiles for α=4.  (c) Velocity 
profiles for α=8. ........................................................................................131 

Figure 5.12 The streamlines (above the axis) and vorticity contours (under the axis 
area) in the constricted tube for Re=200, St=0.32 at t=nT/10, n= 1,3,5,7,9 .132 

Figure 5.13 Wall vorticity obtained by LBM and FVM at t=nT/10, n= 1,2,3,4,5 for 
pulsatile flow through a constricted tube ...................................................132 

Figure 5.14 Wall vorticity obtained by LBM and FVM at t=nT/10, n= 6,7,8,9,10 for 
pulsatile flow through a constricted tube ...................................................133 

Figure 5.15 Geometry of the stenosis model .....................................................133 

Figure 5.16 Streamline of flows though 3D asymmetric stenosis (a) Re=100, (b) 
Re=200, (c) Re=500 ..................................................................................134 

Figure 5.17 Wall shear stress along axial position (53% 3D asymmetric stenosis) (a) 
Re=100, (b) Re=200, (c) Re=500...............................................................134 

Figure 5.18 Illustration of a moving boundary with velocity uw. The open circles (○) 
and square (□) denote the non-fluid and fluid nodes, respectively. The filled 
squares denote the nodes becoming fluid nodes from the non-fluid nodes after 
one time step.............................................................................................135 

Figure 5.19 Numerical and analytical solution for (a) radius in an elastic tube, (b) 
pressure on inner elastic tube ....................................................................135 

Figure 5.20 Variation of the radius at x = 40 after the walls are released at t=1000 . 
(a) steady flow on a 100×13 lattice (Re = 43.4); (b) pulsatile flow on a 100×13 
lattice with T = 2000 (α=2.06)...................................................................136 

Figure 5.21 Variation of radius in an elastic tube at t=nT+(k/10)T during a period 
(pulsatile flow on a 100×13 lattice with T = 2000, α=2.06)........................136 

Figure 6.1 Geometry of Taylor-Couette flow and boundary conditions..............151 

Figure 6.2 The contour of stream function, pressure and vorticity for case Re=150 
with grid 20×76 ........................................................................................152 

Figure 6.3 Convergence history for FLUENT and the hybrid scheme (LBM+FD)
.................................................................................................................152 

Figure 6.4 The momentum and thermal boundary conditions of melt flow in 
Czochralski crystal growth........................................................................153 

Figure 6.5 Streamlines and temperature contours of case A2, Gr=0, Rex=103, Rec=0



 xvi

.................................................................................................................153 

Figure 6.6 Streamlines and temperature contours of case B2, Gr=0, Rex=103, 
Rec=-250...................................................................................................154 

Figure 6.7 Streamlines and temperature contours of case C2, Gr=106, Rex=0, Rec=0
.................................................................................................................154 

Figure 6.8 Streamlines and temperature contours of case D2, Gr=105, Rex=102, 
Rec=0 ........................................................................................................154 

Figure 7.1 Axial-velocity distributions in the tube.............................................167 

Figure 7.2 Radial-velocity distributions along the tube......................................167 

Figure 7.3 Pressure distribution along the tube for different Pr (Kno=0.1) .........168 

Figure 7.4 Pressure distribution along the tube for different Knudsen number (Pr=2)
.................................................................................................................168 

Figure 7.5 Local Kn distribution along the tube for different Kno (Pr=2)...........169 

Figure 7.6 Slip velocity in wall along the tube for different Kno (Pr=2).............169 

Figure 7.7 Average axial velocity Uav along the tube for different Kno (Pr=2) ...170 

Figure 7.8 Mass flow rate normalized to non-slip mass flow rate as a function of Pr 
at Kno=0.1.................................................................................................170 

Figure 7.9 Normalized friction constant C* of gas flow in microtube as a function of 
Re (Kno=0.013) .........................................................................................171 

Figure 7.10 Velocity profiles at x/L=0.375 obtained by analytical solution, LBM 
and DSMC................................................................................................171 

Figure 8.1 Curved boundary and lattice nodes (open circle is wall nodes, open 
square is fluid nodes, filled circle is the physical boundary nodes in the link of 
fluid node and wall node)..........................................................................185 

Figure 8.2 Temperature profiles of the Couette flow at Re=10 with difference value 
of the radius ratio ......................................................................................186 

Figure 8.3 Temperature relative global errors versus the radius of the inner cylinder 
in the Couette flow. (m is the slope of linear fitting line) ...........................186 

Figure 8.4 Boundary condition and geometry of natural convection in a square 
cavity (N=13)............................................................................................187 

Figure 8.5 Streamlines of natural convection at Ra=103,104,105,106 for cases ∆=0.5
.................................................................................................................187 

Figure 8.6 Isotherms of natural convection at Ra=103,104,105,106 for cases ∆=0.5
.................................................................................................................188 



 xvii

Figure 8.7 Streamlines of nature convection in a concentric annulus at 
Ra=104,5×104,105. ....................................................................................188 

Figure 8.8 Isotherms of nature convection in a concentric annulus at 
Ra=104,5×104,105, the temperatures of inner cylinder and outer square are fix 
as 2.5, 1.5 respectively. .............................................................................189 

Figure 8.9 Configuration of natural convection in a 3D cubical cavity...............189 

Figure 8.10 3D isotherms for the natural convection in a cubical cavity at Ra=104 
(left) and105 (right). ..................................................................................190 

Figure 8.11 3D streamlines for the natural convection in a cubical cavity at Ra=104 
(left) and 105 (right). .................................................................................190 

Figure 8.12 3D isotherms for the natural convection from a sphere placed in the 
center of a cubical enclosure at Ra=104 (left) and 105 (right) .....................191 

Figure 8.13 3D streamlines for the natural convection from a sphere placed in the 
center of a cubical enclosure at Ra=104 (left) and 105 (right). ....................191 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 xviii

NOMENCLATURE 

Roman letters
A 
Bα 
Cαβ 
c 
cs 
ei 
E 
fi 
fi

+ 
Fα 
gi 
g,g0 
Gr 
Kn 
M 
Mmax  
Nr 
Nu 
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R 
St 
Si 
t 
T 
T 
Umax 
 
Uc 
 
u 
ux 
ur 
uα 
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function of body force in NS equation 
function of body force in NS equation 
function of body force in NS equation  
velocity δx/δt 
the speed of sound 
the particle velocity vector along direction i 
some additional source terms in NS equation 
the particle distribution function 
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the thermal energy density distribution function 
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time 
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fluid velocity vector 
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r component of the velocity 
α component of the velocity, α can represent x or r 
spatial position vector 
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δαβ 

Womersley number (Chapter 4) 
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Chapter 1   Introduction & Literature Review 

1.1 Background 

Fluid flow phenomena are very common in our everyday life. The flow of 

water in rivers, movement of air in the atmosphere, the ocean currents and the 

blood flow in animal cardiovascular system are all the common fluid flow 

phenomena. The systematical studies on fluid dynamics have been conducted 

since the 18th century. The fluid dynamics theory such as Navier-Stokes (NS) 

equation has been established to describe the fluid flow since the middle of the 

19th century. However, the NS equation cannot be solved theoretically without 

simplifications because till today the analytical solutions of the NS equation is 

only applicable to several ideal cases. When modern computers appeared in the 

1940’s, using the computers to solve the equation system and study the fluid 

dynamics became possible. From the 1940’s to today, popular computational fluid 

dynamics (CFD) methods such as finite difference method (FDM) and finite 

volume method (FVM) have been developed to solve the Navier-Stokes equation 

numerically. These CFD methods solve the NS equations directly and the macro 

variables such as velocity and pressure can be obtained. It is also noticed that the 

above NS equation is based on the continuity assumption at macroscopic level, 

which means the macro variables are well defined in a infinite small point and 

vary continuously from one point to another.  

On the other hand, the fluid system can also be viewed at microscopic level 

since fluid is composed of a huge number of atoms and molecules. Through 

modeling the motion of individual molecule and interactions between molecules, 

the behavior of fluid can also be simulated since the macroscopic variables (e.g., 
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pressure and temperature) can be obtained through statistical sampling. 

Sometimes, the molecular dynamics simulation is very necessary, for example, 

when the molecular mean free path is comparable to the flow characteristic length 

(e.g., in study of rarefied gas dynamics), the continuum assumption breaks down 

and the common CFD method at macroscopic level is not available. However, this 

microscopic computation needs much more computational time than the common 

CFD method at macroscopic level since it has to simulate the motions of a huge 

number of molecules. That is the main disadvantage of this method. 

Besides viewing the flow system at the above macroscopic scale and 

microscopic scale, one may also interested to view the system at an intermediate 

scale: the mesoscopic scale. At this scale, the lattice gas cellular automata (LGCA) 

was proposed to simulate fluid flows and other physical problems by Hardy, 

Pomeau and de Pazzis in 1973. This model considered a much smaller number of 

fluid ‘particles’ than molecular dynamics method because a fluid ‘particle’ is a 

large group of molecules. On the other hand, the fluid ‘particle’ is still 

considerably smaller than the smallest length scale of the simulation.  

The LGCA model proposed by Hardy et al. (1973) conserves mass and 

momentum but it does not yield the desired Navier-Stokes equation at the 

macroscopic level. Later it is found that through a multiple-scale expansion, a 

LGCA over a lattice with higher symmetry than that of Hardy et al. (1973) can 

simulate the Navier-Stokes equation at the macroscopic level (Frisch et al., 1986). 

Hence, the LGCA can also be viewed a non-direct solver for the Navier-Stokes 

equation. However, the LGCA method suffers from some drawbacks such as 

statistical noise and lack of Galilean invariance (Qian et al., 1992). To get rid of 

above drawbacks, McNamara et al. (1988) proposed to model lattice gas with 
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Boltzmann equation. Hence, the LGCA method was further improved and 

developed into lattice Boltzmann method (LBM) ( McNamara et al. 1988, Higuera 

et al. 1989, Qian, et al, 1992). 

Unlike traditional CFD methods (e.g., FDM and FVM), LBM is based on the 

microscopic kinetic equation for the particle distribution function and from the 

function, the macroscopic quantities can be obtained. The kinetic nature provides 

LBM some merits. Firstly, it is easy to program. Since the simple collision step 

and streaming step can recover the non-linear macroscopic advection terms, 

basically, only a loop of the two simple steps is implemented in LBM programs. 

Secondly, in LBM, the pressure satisfies a simple equation of state when simulate 

the incompressible flow. Hence, it is not necessary to solve the Poission equation 

by the iteration or relaxation methods as common CFD method when simulate the 

incompressible flow. The explicit and non-iterative nature of LBM makes the 

numerical method easy to parallelize (Chen et al. 1996).  

Over the past two decades, the LBM has achieved great progress in fluid 

dynamics studies (Chen and Doolen, 1998). The LBM can simulate the 

incompressible flow (Succi et al., 1991, Hou and Zou, 1995) and compressible 

flows (Alexander, 1992). The LBM has also been successfully applied to the 

multi-phase flow (Grunau et al., 1993), immiscible fluids (Gunstensen et al., 

1991), flows through porous media (Chen et al., 1991) and turbulence flow (Benzi 

and Succi, 1990, Teixeira, 1998).  

1.2 Axisymmetric LBM 

 As we know, the lattice Boltzmann method simulates the fluid flows through 

streaming and collision steps. In the streaming step, the post-collision distribution 
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function would stream to the nearby lattice nodes according to a certain lattice 

velocity model. Since all lattice velocity models are regular and defined in the 

Cartesian coordinates, the standard LBM is based on the Cartesian coordinate 

system and essentially requires uniform lattice grid.  

Hence, to simulate the axisymmetric flows which are two-dimensional or 

quasi-three-dimensional problems in cylindrical coordinates, we may have to 

carry out 3D simulation in 3D cubic lattices if we use the standard LBM. However, 

3D simulations mean a large grid size. It is not so efficient to simulate an 

axisymmetric swirling flow problem in that way.  

To simulate the axisymmetric flow more efficiently, Halliday et al. (2001) 

proposed an axisymmetric D2Q9 model for the steady axisymmetric flow 

problems and it seems successful for simulation steady flow in straight tube with 

low Reynolds number (i.e., Re<100). The main idea of the D2Q9 model is 

inserting several spatial and velocity-dependent source terms into the adjusted 

evaluation equation for the lattice fluid’s momentum distribution. That is very 

similar to the idea of inserting source terms to Navier-Stokes equation to simulate 

some kind of flow problems in the conventional CFD methods (e.g., when 

simulate multiphase flow, the surface tension effect is usually incorporated into 

the NS equation).  

However, Halliday et al. (2001) did not fully consider the lattice effects in 

their derivation and some important terms are not considered in their derivation. 

Hence, the model cannot recover the NS equation at macroscopic level correctly 

and it can only give poor simulation results for fluid flows in constricted or 

expended tubes. The problem would be addressed in Chapter 3 in detail.  

In addition, Halliday et al. (2001) did not provide the LBM treatment for the 
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axisymmetric boundary condition. As a result, they have to study the whole 

computational domain bounded by upper and lower straight walls. They try to 

avoid the singularity by placing the axis in the center of the computational grid 

within the computational domain.  

To further improve the computational efficiency and stability, as the other 

common CFD methods, axisymmetric flow problems should be simulated in an 

axisymmetric plane, which is a half computational domain of the above one. Thus, 

it is necessary to propose treatments for axisymmetric boundary.  

Later, Peng et al. (2003) also proposed an axisymmetric D2Q9 model which 

including more source terms, to simulate the axisymmetric flow with swirl or 

rotation. However, it was found that the axisymmetric model (Peng et al. 2003) is 

unstable when simulate the axisymmetric flows with high Reynolds number (e.g., 

Re=104) and high Grashof number (e.g., Gr=106) even with fine grid such as 200

×200.  

Hence, to obtain an accurate, efficient and more stable axisymmetric model is 

very necessary for study of the axisymmetric flows by LBM. 

1.3 Axisymmetric and Three-dimensional LBM 

Applications 

1.3.1 Study of Blood Flow 

Blood flow is a very complex phenomenon. The blood transports particles 

such as red and white blood cells through a sophisticated network of elastic 

branching tubes. The study of the arterial blood flow is of great interest to the 

cardiovascular doctors and fluid dynamicists because the majority of deaths in 
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developed countries result from cardiovascular diseases (Ku, 1997). Many 

cardiovascular diseases are due to abnormal blood flow in arteries. For example, 

in the disease of atherosclerosis, arterial stenoses are formed due to plaque growth. 

When the stenoses block more than about 70% (by area) of the artery, it is a 

significant health risk for the patient. On the other hand, very high shear stresses 

near the throat of the stenosis can activate platelets and thereby induce thrombosis 

(Ku, 1997). The blood clots in the arteries can totally block blood flow to the heart 

or brain. To further understand the hemodynamics in stenosed artery, it is 

necessary to carry out experimental or numerical studies.  

 Actually, much of our knowledge about blood flow comes from the 

experimental studies. Experimental studies for the steady and unsteady flows 

through rigid stenosed tubes with different constriction ratios were carried out by 

Young and Tsai (1973a, 1973b). However, these experimental studies mainly 

focused on the velocity measurement. In blood flow studies, to measure the 

near-wall shear stress is also very important. Shear stress may be determined 

through measured velocity which is very close to the wall. For steady flow, 

Ahmed and Giddens (1983) estimated the wall shear stress in stenosed tubes 

through the velocity measured by laser Doppler anemometry. However, for 

pulsatile flow, accurate measurements of distance from the wall and the shape of 

the velocity profile are technically difficult. A shear stress sensor is also not 

applicable for unsteady flow. Moreover, shear stress measurement also depends 

on the near-wall blood viscosity which is usually not precisely known. Thus 

arterial wall shear stress measurements are estimated and may have errors of 

20–50% (Ku, 1997). Besides the above drawback, experimental studies are 

usually expensive to carry out and in many cases in vivo measurements are 
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extremely difficult. 

Using numerical methods to study blood flow can overcome the above 

difficulties since the wall shear stress can be obtained accurately through CFD 

technology and it is very cheap to perform the blood flow simulation in computers. 

Using models of elastic tubes, CFD technology can also simulate the in vivo blood 

flow. Since the lattice Boltzmann method (LBM) has advantages such as ease of 

implementation, ease of parallelization and simple boundary treatments, the LBM 

may be very suitable for application in the blood flow simulation.  

In the following part we would have a review on topics about simulation 

blood flow using lattice Boltzmann method. 

Some studies have examined the fluid flows through different two- 

dimensional (2D) geometries to mimic the blood flow in circulation (Artoli, et al. 

2002a, Cosgrove et al., 2003). Artoli et al. (2002a) studied the accuracy of 2D 

Womersley flow using 2D 9-velocity (D2Q9) LBM model. They observed a time 

shift between the analytical solutions and the simulations. That can be attributed 

to the compressibility effect of D2Q9 model. Cosgrove et al. (2003) also studied 

the 2D Womersley flow and showed that the results of LBM incorporating the 

halfway bounce-back boundary condition are second order in spatial accuracy. For 

the steady blood flow in a symmetric bifurcation, Artoli, et al. (2004) obtained 

some preliminary results. However, the above studies only addressed simple 2D 

geometries. Actually, the 2D cases cannot represent the 3D vascular tubes and 3D 

real arterial bifurcation. 

The LBM was also applied to simulate the fluid flow through 3D straight 

circular tubes. The Poiseuille flow in 3D circular tube was studied by Maier et al. 

(1996). They found that using the simple bounce-back wall boundary treatment to 
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handle the curved surface may seriously decrease the computational accuracy or 

efficiency. To solve this problem, accurate 3D curved boundary treatments were 

proposed by Mei et al. (2000) and Bouzidi et al. (2001). Artoli et al. (2002b) used 

the above curved boundary treatments to study the pulsatile flow in a straight 3D 

circular pipe. They reported that compared with the analytical solutions, the error 

of velocity profiles can be reduced from 15% with the bounce back scheme to 7% 

with the accurate curved boundary condition (Bouzidi et al., 2001). Artoli et al. 

(2003) also studied the pulsatile flow in a 3D bifurcation model of the human 

abdominal aorta and gave preliminary results which were not confirmed by 

comparison with other numerical or experimental results.  

The above 3D blood flow simulations carried out by Artoli et al. (2002b) are 

too simple because the study only reported the flow in straight tubes. The study 

did not consider the 3D blood flow in stenosed tubes which are usually found in 

atherosclerosis cases. The study of the pulsatile flow in a 3D bifurcation model by 

Artoli et al. (2003) is only a preliminary study. It can be seen from the above 

review that studies on blood flow using LBM are still limited. The studies of 3D 

blood flow in tubes with different 3D constrictions and arterial bifurcation are 

necessary to carry out.  

Another problem is that the direct 3D simulations of flow in circular tubes 

(Artoli et al. 2002b) are very time-consuming for such an axisymmetric geometry. 

It is necessary to develop our accurate axisymmetric D2Q9 model to simulate the 

axisymmetric flow more efficiently. 

The above studies of blood flow through 2D and 3D rigid vascular tubes are 

relatively simple compared with the blood flow through the models of the elastic 

vascular tubes. In the models of elastic tube, the wall is compliant and distensible 
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which can mimic the blood flow in actual large arteries. Studies of blood flow 

through compliant tube using LBM have also been carried out. Fang et al. (1998) 

studied the pulsatile blood flow in a simple 2D elastic channel. In the study, an 

elastic and movable boundary condition was proposed by introducing the virtual 

distribution function at the boundary and some good results were obtained. With 

further development of non-slip wall boundary condition (Guo et al., 2002), the 

unsteady moving boundary condition was proposed as the second-order 

extrapolation of all the possible directions in the study of Fang et al. (2002). Their 

results of pulsatile flow in 2D elastic channel are somewhat consistent with the 

experimental data in 3D elastic tubes. The study of Fang et al. (2002) 

demonstrated the potential of LBM application in study of blood flow through 

compliant wall boundary. Hoekstra et al. (2004) studied the unsteady flows in a 

2D channel.  

However, the Reynolds number in the above studies are very low and the 

geometry of study is only 2D which is different from the 3D actual elastic artery. 

Due to the compressibility of LBM, the results of unsteady cases (Hoekstra et al. 

2004) are all inaccurate. Because the second-order extrapolation used to treat the 

compliant wall (Fang et al. 2002) is usually unstable in numerical method, 

numerical instability may be encountered for high Reynolds number cases. To 

further explore the LBM application in study of blood flow, it is necessary to 

propose or test other more robust moving boundary condition and apply our 

incompressible axisymmetric D2Q9 model.  
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1.3.2 Taylor-Couette Flow and Melt Flow in Czochralski 

Crystal Growth 

Many important engineering flows involve swirl or rotation, for example, the 

flows in combustion, turbomachinery and mixing tanks. In this part we focus on 

the axisymmetric flows with swirl and rotation which are more complex than the 

axisymmetric flows without rotation. As we know, an axisymmetric swirling flow 

is a quasi-three-dimensional problem for conventional Navier-Stokes solvers in 

the cylindrical coordinate system because the gradient for any variable in the 

azimuthal direction is zero. In our study, two typical axisymmetric swirling and 

rotating flows would be studied. 

One is Taylor-Couette flow between two concentric cylinders. At low 

rotational speed of the inner cylinder, the flow is steady and the vortices are planar. 

Three-dimensional vortices would begin to appear when the speed of rotation 

exceeds a critical value which depends on the radius ratio of two cylinders. 

Previously, there are some studies on Taylor-Couette flow using the conventional 

Navier-Stokes solvers (Liu, 1998). 

The other typical axisymmetric swirling flow is the melt flow in Czochralski 

(CZ) crystal growth. CZ crystal growth is one of the major prototypical systems 

for melt-crystal growth. It has received the most attention because it can provide 

large single crystals. In typical CZ crystal growth systems, the high Reynolds 

number and Grashof number of the melt make numerical simulation difficult. The 

conventional CFD methods such as finite volume and finite difference methods 

have been developed to simulate the CZ crystal growth flow problems (Buckle 

and Schafer, 1993, Xu et al., 1997, Raspo et al., 1996). The second-order central 

difference scheme is usually chosen to discretize the convection terms in NS 
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equations. However, for melt flows with high Reynolds number and Grashof 

number which are the requirement of growth of larger and perfect crystals, the 

convection terms in the NS equations become dominant and the second-order 

central difference scheme may be unsuitable due to enhanced numerical instability 

(Xu et al., 1997). If the low-order upwind scheme is used, accurate solutions can 

only be obtained by using very fine grid (Xu et al., 1997). Considering the 

discretization problem in conventional CFD method, lattice Boltzmann method 

(LBM) was proposed to simulate the melt flow in CZ crystal flow (Peng et al., 

2003). 

As we know, one main advantage is that the convection operator of LBM in 

phase space is linear which may overcome the above discretization difficulty in 

conventional CFD method. 

Following the idea of Halliday et al. (2001), Peng et al. (2003) used LBM to 

study the melt flow in CZ crystal growth as a quasi-three-dimensional problem. 

They proposed an axisymmetric D2Q9 LBM to solve the axial and radial velocity 

in an axisymmetric plane and swirl velocity and temperature were solved by finite 

difference method. However, Peng et al. (2003) only simulated test cases of lower 

Reynolds number and Grashof number.  

It was found that the axisymmetric model proposed by Peng et al. (2003) is 

unstable for simulations of melt flows with high Reynolds number (Re=104) and 

high Grashof number (Gr=106) even with very fine grid.  

 On the other hand, since the model proposed by Peng et al. (2003) is derived 

from the standard D2Q9 model, the compressible effect of standard D2Q9 model 

(Hou et al., 1995, He and Luo, 1997) may be involved into the simulation.  

To improve the numerical stability and eliminate the compressibility effect of 
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standard LBM, It is necessary to obtain a more robust incompressible 

axisymmetric D2Q9 model.  

1.3.3 Study of Gas Slip Flow in Microtubes 

MEMS (Micro-Electro-Mechanical-Systems) devices with dimensions 

ranging from 100 microns to 1 micron have found many applications in 

engineering and scientific researches (Gad-el-Hak, 1999). The fast development of 

these devices motivated the study of the fluid flow in MEMS (Arkilic et al., 1997). 

MEMS are often operated in gaseous environments where the molecular mean 

free path of the gas molecules could be the same order as the typical geometric 

dimension of the device. Hence the dynamics associated with MEMS can exhibit 

rarefied phenomena and compressibility effects (Arkilic et al., 1997). Usually the 

Knudsen number Kn is used to identify the effects. Kn is the ratio of the mean free 

path λ to the characteristic length L. Generally speaking, the continuum 

assumption for Navier–Stokes (NS) equations may break down if Kn>0.01. For a 

flow case 0.01<Kn<0.1, a slip velocity would appear in the wall boundary. The 

value of 0.1�Kn<10 are associated with a transition flow regime. In the slip-flow 

regime, by introducing a slip velocity at the solid boundary the NS solver can still 

be used. In the transition regime the conventional flow solver based on the NS 

equations is no longer applicable because the rarefaction effect is critical (Lim et 

al., 2002). 

Many analytical studies of rarefied flow in microchannel have been carried 

out since the 1970’s. An important analytical and experimental study for gaseous 

flow in two-dimensional (2D) microchannels was carried out by Arkilic et al. 

(1997). Through a formal perturbation expansion of the NS equations under an 
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assumption of 2D isothermal flow, the study demonstrates the relative 

significance of the contribution of compressibility and rarefied effects and good 

agreements between the analytical and experimental studies were observed. 

 There are also some analytical studies about rarefied flow in circular 

microtubes. Analytical studies of Prud’homme et al. (1986) and van den Berg et 

al. (1993) demonstrated nonconstant pressure gradients but their analysis did not 

incorporate rarefied behavior and the analysis is only one-dimensional (1-D) 

perturbation solution of the NS equations. Based on the assumption of isothermal 

flow, Weng et al. (1999) obtained the analytical solution for rarefied gas flow in 

long circular microtubes. Some experiments were also carried out to measure the 

friction constant C=f*Re in microtubes, which is not equal to 64 as the theoretical 

prediction for fully developed incompressible flow (Chio et al., 1991; Yu et al., 

1995). 

In addition to the above analytical and experimental investigations, there are 

many numerical studies on rarefied gas behavior in microchannels. Through 

introducing a slip velocity at the solid boundary, Beskok and Karniadakis (1993) 

presented numerical solutions of the Navier–Stokes and energy equations for 

flows with slight rarefaction. For simulations of microflow, the direct simulation 

Monte Carlo method (DSMC) (Bird 1994) are more popular because the approach 

is valid for the full range of flow regimes (continuum through free molecular). 

However, very large computational effort is required in the DSMC simulations 

since the total number of simulated particles is directly related to the number of 

molecules. 

Besides numerical solution of Navier–Stokes Equation and DSMC, the lattice 

Boltzmann method (LBM), which based on meso-scale level and has no 
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continuum assumption, was also applied to simulate the microflows (Lim et al., 

2002; Nie et al., 2002).  

Previous LBM study of microflow is only concentrated in microchannel. Here 

we would like to extend LBM to simulate axisymmetric flows in microtubes. 

1.4 Objectives and Significance of the Study 

The main aim of this study was to suggest a general method to derive D2Q9 

axisymmetric lattice Boltzmann models and apply these models to study the 

axisymmetric fluid flows. Developing D3Q19 incompressible isothermal and 

thermal LBM to study the 3D flows with complex geometries is also one of our 

aims. The more specific aims were: 

1) To suggest a general method to derivate D2Q9 models by inserting proper 

source terms into the lattice Boltzmann equation (LBE). An axisymmetric 

boundary condition is also proposed to simulate the axisymmetric flows more 

efficiently.   

 2) To apply our axisymmetric model and 3D incompressible model in study of 

blood flows through stenosed and elastic vascular tubes. The moving boundary 

condition for the flow through an elastic tube was tested. Blood flows through 3D 

asymmetric tube were also investigated.  

3) To apply a new axisymmetric D2Q9 model considering the swirling effect 

and buoyancy force to investigate melt flows in Czochralski crystal growth. 

4) To develop an axisymmetric D2Q9 model for simulation of gas slip flow in 

microtubes. The gas slip flows in long microtubes with the outlet Knudsen number 

0.01<Kn<0.1 were investigated in detail.  

5) To propose a robust thermal curved wall boundary treatment to solve 2D 



Chapter 1   Introduction & Literature Review 

 15

and 3D heat and fluid flow problems. 

Theoretically, our axisymmetric D2Q9 model should further improve the 

accuracy and efficiency of LBM application in study of axisymmetric flows. Our 

numerical model could be applied to predict hemodynamic flows and 

axisymmetric flows in engineering.   

However, the above flow phenomena are actually very complex, it is not 

possible to consider all the factors in the numerical studies. There are some 

assumptions made in our study.   

Firstly, the Blood flow, Taylor-Couette flow and the melt flow in Czochralski 

crystal growth are all assumed incompressible flow since the Mach number in our 

studies are usually much less than 0.3. 

Secondly, the blood is assumed Newtonian fluid since the blood usually 

behaves as a Newtonian fluid in large arteries, especially at moderate to high shear 

rates (Ku, 1997).  

To provide the basis for our LBM study, we will present the basic knowledge 

about LBM in Chapter 2 and the general method to derivate axisymmetric D2Q9 

models in detail in Chapter 3.  

1.5 Outline of Thesis 

In Chapter 2, the basic knowledge of lattice Boltzmann methods are 

introduced. The derivation and theory of the classical Boltzmann equation are 

discussed. A brief derivation from LBM to Navier-Stokes equation is also given. 

In Chapter 3, a general method to derivate D2Q9 axisymmetric models was 

suggested and three different models were proposed to simulate axisymmetric 

flows. The theoretical difference between our model and the previous models was 
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analyzed. Axisymmetric boundary conditions were presented. An incompressible 

isothermal and thermal 3D LBM was also presented.  

In Chapter 4, our axisymmetric D2Q9 models were evaluated. The spatial 

accuracies of the axisymmetric D2Q9 models with difference boundary conditions 

were compared in detail. The LBM’s compressibility effect was investigated in 

detail. The effects of Reynolds number and Womersley number on pulsatile flows 

in straight tube were also investigated. Then the accuracy and efficiency of 3D 

multi-block LBM solver were tested.  

 In Chapter 5, the steady and unsteady blood flows through axisymmetric and 

3D asymmetric stenosed vascular tubes were studied. The viscous flows in large 

distensible blood vessels were also investigated. The moving boundary conditions 

in flows through compliant tubes were tested.  

In Chapter 6, the axisymmetric swirling flows would be solved by a hybrid 

scheme. The axial and radial velocities were solved by LBM and swirl velocity 

and temperature were solved by finite difference method. This hybrid scheme was 

firstly validated by simulation of Taylor-Couette flows between two concentric 

cylinders. Then the melt flows in Czochralski crystal growth were studied in 

detail.  

In Chapter 7, a slightly compressible axisymmetric D2Q9 model was 

presented and applied to simulate the gas slip flow in microtubes. The gas slip 

flows in long microtubes with the outlet Knudsen number 0.01<Kn<0.1 were 

investigated in detail. The efficiency of LBM was compared with the DSMC 

method with is more common in micro-flow simulations. 

In Chapter 8, a recent curved non-slip wall boundary treatment for isothermal 

lattice Boltzmann equation (Guo et al. 2002a) is extended to handle the thermal 
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curved wall boundary. After the thermal boundary condition was validated, the 

natural convection in a square cavity, and the natural convection in a concentric 

annulus between an outer square cylinder and an inner circular cylinder were 

studied. 3D heat and fluid flows were also studied using this thermal curved wall 

boundary treatment. 
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 Chapter 2   Lattice Boltzmann Method 

In this chapter we focus our attention on the formulation of lattice Boltzmann 

equation (LBE) and the boundary conditions used in the present LBM simulations. 

2.1 Introduction 

The lattice Boltzmann method (LBM) is the successor of the lattice gas 

cellular automata (LGCA). Consequently, the LBM retains the advantages of 

LGCA (e.g., simplicity, locality and parallelism). On the other hand, LBM also 

get rid of the drawbacks such as statistical noise and lack of Galilean invariance 

(Qian et al., 1992) through modeling lattice gas with Boltzmann equation 

(Higuera et al., 1989, McNamara et al., 1988). 

The LBM can be regarded as a discrete, fictitious molecular dynamics 

numerical method in mesoscopic scale. In LBM, fluid particles which be regarded 

as a large group of molecules occupy the nodes of a regular lattice. During each 

time step, they propagate to the neighboring lattice sites according to a certain 

regular lattice velocity model and then undergo a collision. The collision follows 

very simple kinetic rules. The streaming (i.e., propagation) and collision steps can 

conserve mass, momentum and energy.  

The above two steps are illustrated in Figure 2.1. In the figure we can see that 

the density distribution function represented by vectors propagate along their 

directions of motion to the center lattice node “A”. Then in the collision step, the 

incoming distribution function value changes to a new outgoing value according 

to the relax collision rule.  
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2.2 Continuum Boltzmann Equation and Bhatnagar- 

Gross-Krook Approximation 

 Although the development of LBM for simulation of fluid dynamics was 

original from LGCA and independent of the continuum Boltzmann equation, later, 

it has been argued that the LBM can be derived from the continuum Boltzmann 

equation with a BGK collision model (He and Luo, 1997b, 1997c). To better 

understand LBM, the continuum Boltzmann equation would be introduced here 

briefly.  

The Boltzmann equation is a useful mathematical model to describe a fluid at 

microscopic level. The classical Boltzmann equation is an integro-differential 

equation for the single particle distribution function ( )tf ,,cx , which may be 

written as 

 ( )ffQff
t
f ,=

∂
∂+

∂
∂+

∂
∂

c
F

r
c , (2.1) 

where x is position in space, c is particle velocity and F is the body force. 

( )ffQ ,  is the collision integral describing the two-particle collision and can be 

written as 

 ( ) ( ) ( ) ( ) ( ) ( )[ ]2121
3 '', ccccccc 212 ffffddffQ −−ΩΩ= ∫∫ σ . (2.2) 

( )Ωσ  is the differential collision cross section for the two particle collision which 

transforms the velocities from {c1,c2} (incoming) into { c1’,c2’} (outgoing). 

The notion of local equilibrium is important for recovering the hydrodynamic 

behavior from the continuum Boltzmann equation. Mathematically, this requires 

that the collision term is annihilated (i.e., Q(f,f)=0) . It can be further shown (see, 

for example, Cercignani, 1988) that positive functions f exist which give Q(f,f)=0. 
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These equilibrium distribution functions are all of the form 

 ( ) ( )2exp 2cBcc CAf eq ++= , (2.3) 

where A, B and C are Lagrangian parameters carrying the functional dependence 

on the conjugate hydrodynamic fields ρ, u, e (internal energy). The Maxwell 

distribution function can be written as 

 ( ) ( ) ( )







 −−= −

RT
RTtf

D
eq

2
exp2,,

2

2
uccx πρ . (2.4) 

To solve the Boltzmann equation analytically or numerically, the complicated 

collision integral Q(f,f) is often replaced by a simpler expression. The most widely 

known replacement is called the Bhatnagar-Gross-Krook (BGK) approximation 

(Bhatnagar, Gross and Krook, 1954) 

 ( )
λ

eq

BGK
ffffQ −−=, , (2.5) 

where λ is a typical relaxation time associated with collision relaxation to the local 

equilibrium. 

In principle, the relaxation time λ is a complicated function of the distribution 

function f. The BGK approximation is intended to lump the whole spectrum of 

relaxation scales into a single constant value. 

2.3 Formulation of the Lattice Boltzmann Method 

2.3.1 Lattice Boltzmann Equation 

 The LBE with BGK models can be written as 

 ( ) ( ) ( ) ( )( )tftftftf eq
iiittii ,,1,, xxxex −−=++

τ
δδ  (i=0,1,…N), (2.6) 

where ( )tfi ,x  is the density distribution function, which depend on the position x 
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and time t. ( )tf eq
i ,x  is the corresponding equilibrium state which is depend on 

the local density ρ and velocity u. τ is the single dimensionless relation time 

constant which is related with the hydrodynamic viscosity by )5.0(2 −= τδν tsc . 

δt is the time step and cs is the sound speed. N is the number of discrete velocity. 

The above LBE (2.2) can be implemented by two steps, namely, collision and 

streaming. In the collision step 

 ),(),( tftff eq
ii

ne
i xx −= , (2.7) 

 ne
i

eq
ii ftftf )11()(),(

τ
−+=+ x,x , (2.8) 

where fi
ne is the non-equilibrium distribution function and ),( tfi x+  is the 

post-collision distribution function. 

In the streaming step, the post-collision distribution function would propagate 

to the neighbouring lattice nodes as illustrated by Eq. (2.9) 

 ( ) ),(, tftf ittii xex +=++ δδ . (2.9) 

 The macroscopic density ρ and momentum density ρuα are defined as 

momentum of distribution function fi  

 ∑
=

=
N

i
if

0

ρ  ,    ∑
=

=
N

i
ii feu

0
ααρ . (2.10) 

The equation of state is defined as  

 2
scp ρ= , (2.11) 

where p is the pressure.  

2.3.2 From the Continuum Boltzmann Equation to LBE 

Although the above LBE originated from the LGCA independently of the 

Boltzmann equation, we next show how the LBE can be derived from the 



Chapter 2   Lattice Boltzmann Method 

 22

continuum Boltzmann equation with a BGK collision model (He and Luo, 1997b, 

1997c). 

The Boltzmann equation (2.1) with BGK approximation (2.5) can be written 

as 

 ( ) ( ) ( ) ( )( )tftftf
t

tf eq ,,,,1,,,, cxcx
r
cxccx −−=

∂
∂+

∂
∂

λ
. (2.12) 

The velocity space of c can be discretized by introducing a finite set of velocities 

ei. In the discrete velocity space, the Boltzmann equation becomes 

 ( ) ( ) ( ) ( )( )tftftf
t

tf eq
ii

i
i

i ,,1,, xx
r
xex −−=
∂

∂+
∂

∂
λ

,  (i=0,1,…N), (2.13) 

where i indicate the different velocity direction and N is number of different 

velocities in the model. Integrating Eq. (2.13) from t to t+δt, with the second order 

of accuracy gives 

 ( ) ( ) ( ) ( )( )tftftftf eq
ii

t
ittii ,,,, xxxex −−=++

λ
δδδ . (2.14) 

With tδλτ = , Eq. (2.14) is identical with Eq. (2.6). 

2.3.3 Equilibrium Distribution  

 The equilibrium distribution function ( )tf eq
i ,x  in the LBE Eq. (2.6) or (2.14) 

is obtained by expanding the Maxwell-Boltzmann distribution function (i.e., Eq. 

(2.4) ) in Taylor series of u up to second-order. 

 

( ) ( ) ( )

( )

( ) ( )
( )

( )3
2

2

22

2

22

2

2

2

22
1

2
exp2

2
2exp

2
exp2

2
exp2,,

uuucucc

uucc

uccx

O
RTRTRTRT

RT

RTRT
RT

RT
RTtf

D

D

D
eq

+







−⋅+⋅+








−=








 −⋅








−=








 −−=

−

−

−

πρ

πρ

πρ

 (2.15) 
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Rewriting Eq. (2.15) in velocity space {ei} and noting that cs
2=RT from Eq. (2.11), 

we can obtain fi
eq(x,ei, t) in the LBE as 

 ( ) ( )








−⋅+⋅+== 2

2

4

2

2 22
1,),,(

ss

i

s

i
iii

eq
i ccc

Etf uueueuex ρωρ  (i=0,1,…N),(2.16) 

  where ( ) 







−= −

RT
RT i

D

i 2
exp2

2

2
eπω  is a weighting factor.  

2.3.4 Discrete Velocity Models 

The discrete velocity model is usually written as DnQm, where n is the space 

dimension and m is the number of velocities. The popular 2D and 3D discrete 

velocity models are D2Q9, D2Q7, D3Q19 and D3Q15, which are shown in Figure 

2.2. 

Then we would like to go back to the weighting factors ωi. They are chosen 

so as to ensure the mass and momentum conservation as well as the isotropy of 

lattice tensor (i.e., lattice tensor is invariant with respect to arbitrary orthogonal 

transformations) (Wolf-Gladrow, 2000). A lattice tensor of rank n is defined as 

 ∑=
i

iii nn
eeeL αααααα ...

2111 ... . (2.17) 

Jeffreys (1965) has proved that the isotropic tensor of rank 2 should be 

proportional to δαβ and an isotropic tensor of rank 3 should be proportional to δαβγ . 

The lattice tensors with odd rank vanish due to the symmetry of the lattice. If the 

lattice tensor of rank n is non-isotropic, weights ωi should be chosen to make the 

generalized lattice tensor (i.e., Eq. (2.18)) isotropic. 

 ∑=
i

iiii nn
eeeG αααααα ω ...

2111 ... . (2.18) 

Here we give an example of how to determine the weighting factors ωi for 
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D2Q9 model. The D2Q9 velocity model can also be written as Eq. (2.19).  








+−+−
−−=

cii
ciii

])4/2/)5sin[(],4/2/)5(cos[(2
])2/)1sin[(],2/)1(cos[(

)0,0(

ππππ
ππe    

8,7,6,5
4,3,2,1

0

=
=
=

i
i

i
,   (2.19) 

where txc δδ≡  is the unit speed, and δx and δt are the lattice constant and time 

step, respectively. 

Due to symmetry, the ωi for directions with identical speeds are equal. 

Consequently, for D2Q9 model, there are only 3 weighting factor to be 

determined (i.e., W0, W1 and W2). 

 






=

2

1

0

W
W
W

iω    
8,7,6,5
4,3,2,1

0

=
=
=

i
i

i
. (2.20) 

Due to the non-isotropy of lattice tensor of rank 4 in D2Q9 model, W2 is 

chosen as 4W1 to make the generalized lattice tensor isotropic. (Wolf-Gladrow, 

2000). When determining the weighting factor, besides the requirement of 

isotropy of lattice tensor, the weighting factor should ensure the mass and 

momentum conservation. That is  

 ∑
=

=
8

0i

eq
ifρ  ,   ∑

=

=
8

0i

eq
ii feu ααρ . (2.21) 

Substituting the Eq. (2.16) into the Eq. (2.21), it gives 

 1
8

0

=∑
=i

iω   and αββα δω 2
8

0
sii

i
i cee =∑

=

. (2.22) 

Hence,  

 144 210 =++ WWW  and 22
21 42 ccWW s=+ . (2.23) 

With 21 4WW =  and cs
2=c2/3 (Wolf-Gladrow, 2000), the weighting factors for 

D2Q9 model are obtained as 940 =W , 911 =W  and 3612 =W . 
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 The main parameters of popular 2D and 3D velocity models are listed in 

Table 2.1. 

2.4 From LBE to the Navier-Stokes Equation 

To show that the standard LBE can be used to describe fluids, here the 2D 

Navier-Stokes equations are derived by Chapman-Enskog expansion which is a 

multi-scale analysis developed by Chapman and Enskog between 1910 and 1920. 

The Chapman-Enskog expansion here relies on the Knudsen number Kn, which is 

the ratio of the molecular mean free path λ to the characteristic macroscopic length 

L. To treat the fluid as a continuous system, the Knudsen number should be much 

less than one.  

 Theoretically, the LBE simulates the compressible NS equation rather than 

the incompressible one since the spatial density variation is not zero in simulations. 

Only with the Mach number M<<1, can the LBE recover the incompressible NS 

equation.  

For incompressible flow, the continuity equation and NS momentum 

equations in the Cartesian coordinates (x,y) can be written as (White, 1991) 

 0=∂ ββu , (2.24) 

 ( ) ( ) 01 =∂+∂∂−∂+∂+∂ αββαβααββα ν
ρ

uupuuut . (2.25) 

It is noticed that the Einstein summation convention is used here. uα, uβ are the 

velocity ux or uy and α, β means x or y. ν in Eq.(2.25) is the kinematic viscosity 

related to the dynamic viscosity by ν=µ/ρ.  

In the following, we would show how Eq. (2.24) and (2.25) can be recoved 

from LBE using multi-scale analysis. In the derivation, the D2Q9 model is used 
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with c=1.  

Initially, we adopt the following expansions (He and Luo, 1997a),  

 ),,(
!

)1,,(
0

tyxfD
n

teyexf
n

i
n

n

iyixi ∑
∞

=

=+++ ε , (2.26) 

 








∂=∂
+∂+∂=∂

+++=

ββ ε
εε
εε

1

2
2

1

)2(2)1()0(

...
...

ttt

iiii ffff
, (2.27) 

where ε=δt and ( )ββ ∂⋅+∂≡ etD , β=x,y.  

Retaining terms up to O(ε2) in Eqs. (2.26) and (2.27) and substituting into 

LBE Eq. (2.6) results in the following equations: 

 O(ε0): ( ) 0/)0( =− τeq
ii ff , (2.28) 

 O(ε1): ( ) 0)1()0(
11 =+∂+∂ τββ iiit ffe , (2.29) 

 O(ε2): ( ) 01
2
11 )2()1(

11
)0(

2 =+∂+∂





 −+∂ iiitit ffef

ττ ββ . (2.30) 

The distribution function fi is constrained by the following relationships: 

 ρ=∑
=

8

0

)0(

i
if   ,   αα ρufe

i
ii =∑

=

8

0

)0( , (2.31) 

 0
8

0

)( =∑
=i

m
if   ,    0

8

0

)( =∑
=i

m
ii fe     for m>0. (2.32) 

Note that the general lattice tensors G(n) (Eq. (2.18)) for D2Q9 model are  

 αββααβ δω 2
8

0
s

i
iii ceeG ==∑

=

, (2.33) 

 αβγζζγβααβγζ ω ∆==∑
=

4
8

0
s

i
iiiii ceeeeG , (2.34) 

where αβδ  is the Kronecker tensors, and  

 βγαζβζαγγζαβαβγζ δδδδδδ ++=∆  . (2.35) 
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All the general lattice tensors with odd rank vanish due to the symmetry of the 

lattice. 

With the above properties of the tensor G(n), we have 

 αββαβα ρδρ 2
8

0

)0(
s

i
iii cuufee +=∑

=

, (2.36) 

 ( ) jkjkjjks
i

iikii ucfeee αββαβαβα δδδδδδρ ++=∑
=

2
8

0

)0( . (2.37) 

2.4.1 Mass Conservation 

Summing on i in Eq. (2.29), we obtain at O(ε)  

 ( ) 01 =∂+∂ ββ ρρ ut . (2.38) 

Then we proceed to O(ε2) now. Summing on i in Eq. (2.30) gives 

 02 =∂ ρt . (2.39) 

Combining Eq. (2.38) and Eq. (2.39) lead to the continuum equation 

 ( ) 0=∂+∂ ββ ρρ ut . (2.40) 

2.4.2 Momentum Conservation 

Multiplying Eq. (2.29) by eiα and summing on i, gives 

 00
11 =Π∂+∂ αββαρut , (2.41) 

where, ∑
=

=Π
8

0

)0(0

i
iii fee βααβ  is the zeroth-order momentum flux tensor. With 

0
αβΠ  given by Eq. (2.36), Eq. (2.41) gives 

 ( ) 02
11 =+∂+∂ αβαββα ρρδρ uucu st . (2.42) 

Multiplying Eq. (2.30) with eiα and summing over i gives, 
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 0
2
11 )1(

12 =Π∂





 −+∂ αββα τ

ρut , (2.43) 

where, )1()1(
ii

i
i fee βααβ ∑=Π  is the first-order momentum flux tensor. With the aid 

of Eqs. (2.29) and (2.37), we have 

 

( )[ ]βααβαβαβ

βααβ

βαβααβ

ρρρδτ

τ

τ

uuuc

feee

fDeefee

jjst

i
iikiikt

iti
i

iii
i

i

∂+∂+∂+Π∂−=
















∂+Π∂−=

−==Π

∑

∑∑

2)0(
1

)0()0(
1

)0(
1

)1()1(

. (2.44) 

For the term )0(
1 αβΠ∂ t  in Eq. (2.44), using Eqs. (2.38) and (2.42), it can be written 

as 

( ) ( )
( )[ ] ( )[ ]

( ) ( ) ( )322

1
22

1
2

1111
2)0(

1

uOuucuc

uuuucuuucuc

uuuuuuc

ss

tssts

ttttst

+∂+∂−∂−=

∂−∂+∂−∂+∂−∂=

∂−∂+∂+∂=Π∂

ρρρδ

ρρρρρρδ

ρρρρδ

αββαγγαβ

βαγαγαβγβγβααβ

βααββααβαβ

. (2.45) 

The terms of O(u3) can be neglected. The term ( )βααβαβ ρρρδ uuuc jjs ∂+∂+∂2  in 

Eq. (2.44) can also be written as 

 
( )

( ) ( ) ( )βααβαββααβ

βααβαβ

ρρρρδ

ρρρδ

uucuucuc

uuuc

ssjjs

jjs

∂+∂+∂+∂+∂=

∂+∂+∂
222

2

. (2.46) 

With Eqs. (2.45) and (2.46), the Eq. (2.43) can be written as  

 ( )[ ] 0
2
11 2

12 =∂+∂∂





 −+∂ βααββα ρ

τ
ρ uucu st . (2.47) 

With kinematic viscosity )5.0(2 −= τν sc  and Eqs. (2.42) and (2.47), the NS 

momentum equation can be recovered as 

 ( ) ( )[ ] 0=∂+∂∂−∂+∂+∂ αββαβααββα ρνρρ uupuuut . (2.48) 

 The density variation can be neglected in the flow with small Mach number. 

Consequently, the Eqs. (2.40) and (2.48) can recover the incompressible NS 
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equation (2.24) and (2.25). 

2.5 Incompressible LBM 

As illustrated in above section, if the density fluctuation can be neglected, the 

incompressible Navier-Stokes equation can be recovered from a LBE through the 

Chapman-Enskog procedure. However, in LBM, the density may fluctuate to a 

great extent in flows with large pressure gradient because the pressure and density 

variations satisfy the equation of states of an isothermal gas given by ∆p=cs
2∆ρ, 

where cs
2 is a constant. In many previous studies (Hou et al., 1995, Artoli et al., 

2002), the compressibility effect of standard lattice BGK (LBGK) model has been 

highlighted.  

Some incompressible models were proposed to eliminate the compressibility 

effect of the standard LBGK model (He and Luo, 1997a, Guo et al. 2000). One of 

the most successful incompressible LBGK model was proposed by He and Luo in 

1997. The incompressible LBGK model was validated by steady plane Poiseuille 

flow and the unsteady 2D womersley flow. In their model, the compressibility 

effect of the order o(M2) is explicitly eliminated (He and Luo, 1997a).  

It is noticed that the main difference between the incompressible LBM and 

the standard LBM is the form of equilibrium distribution function (He and Luo, 

1997a). Through substituting ρ = ρ0+δρ into the equilibrium distribution function 

(i.e., Eq. (2.16)) and neglecting the terms proportional to δρ(u/c), and δρ(u/c)2, a 

new equilibrium distribution function is proposed as (He and Luo, 1997a)    

 
( )





















−⋅+⋅+= 2

2

4

2

20 22
),,(

ss

i

s

i
ii

eq
i ccc

tf uueueex ρρω     (i=0,1,2…,N).(2.49) 

In the incompressible model, besides the limit of M<<1, for unsteady flow, an 
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additional condition T>>L/c must be satisfied, where T is the time scale of 

temporal variation and L is the characteristic length. 

2.6 Thermal LBE 

 After obtaining the athermal LBE, we would like to obtain the thermal LBE 

models which can be used to simulate heat transfer phenomena. In general, the 

present thermal lattice Boltzmann models can be classified into three categories: 

the multispeed approach (McNamara et al., 1993), the passive-scalar approach, 

and the double-population approach. In the multispeed approach (McNamara et al., 

1993), the internal energy term is incorporated with a density distribution function 

so that only the density distribution function is needed, however, these 

multi-speed models suffer severe numerical instability, and the temperature 

variation is limited to a narrow range (He et al., 1998). To enhance numerical 

stability, a separate distribution function which is independent of the density 

distribution is proposed in the passive-scalar thermal LBE model (Shan, 1997). 

However, the viscous heat dissipation and compression work done by the pressure 

cannot be taken into account (He et al., 1998). In the third approach (He et al., 

1998), the temperature field is obtained through an independent internal energy 

density distribution function. The model has better numerical stability and the 

viscous heat dissipation and compression work done by the pressure can be solved 

fundamentally.  

In our study, the double-population TLBE derived by He et al.(1998) is used. 

The two discrete evolution equations in the TLBE are illustrated as following 

 
( ) ( )

( ) ( )[ ] i
tf

tfeq
ii

tf

t

ittii

Ftftf
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δ

δδ
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,,
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,,

+
+−

+
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−++

xx

xex
, (2.50) 
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where, the new variables f  and g  are defined as 

 ( ) i
teq

ii
f

t
ii Fffff

2
5.0 δ
τ
δ

−−+=  , (2.52) 

 ( ) ii
teq

ii
g

t
ii qfgggg

2
5.0 δ
τ
δ

+−+= , (2.53) 

 eq
i

i
i f

RT
F )( ueG −= , (2.54) 

 ( ) ( )[ ]ueuue ∇⋅+∂∂−= iii tq . (2.55) 

f(x,t) and g(x,t) are the density distribution function and the thermal energy 

density distribution function in position x at time t respectively. τf and τg are the 

momentum and internal energy relax time, respectively. In Eq. (2.54), G are the 

external forces acting on unit mass. ei is the lattice velocity and i denotes the 

velocity direction. δx, δt and are the lattice spacing and time step size. Eq. (2.55) 

represents the effect of viscous heating and it can be expressed as (D’Orazio et al. 

2003)  

 ( ) ( ) ( )[ ] tiii ttttq δδδ ,, xuexuue −++−= . (2.56) 

For the D2Q9 model, the 9 discrete velocities are illustrated in Eq.(2.19). In 

above expression, txc δδ /= = 03RT , T0 is the average temperature.  

In Eqs. (2.50) to (2.55), eq
if , eq

ig are the equilibrium density distribution 

functions and equilibrium internal energy distribution functions respectively. They 

are defined as (He et al. 1998), 
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uueuex ρω  i=5,6,7,8, (2.60) 

where 3ccs = , ω0=4/9 ,  ωi =1/9, (i=1,2,3,4) ,  ωi =1/36, (i=5,6,7,8). The 

internal energy density is RTe ρρ =  for two-dimensional problems.  

Finally, the macroscopic density ρ and momentum ρu, internal energy per unit 

mass e, heat flux q, which is a vector different from qi in Eq. (2.53) or (2.55), 

kinetic viscosity ν and thermal diffusivity α are obtained by (He et al., 1998; 

D’Orazio et al., 2003)  

 ∑
=

=
8

0i
ifρ ,      

2
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i
iif

δρρ G
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, (2.61) 
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 −−= ∑ ∑
= =

eueq , (2.63) 

where,  

 0RTfτν =  and 02 RTgτα = . (2.64) 

2.7 Boundary Conditions 

 Modelling of the boundary condition is very important for the LBM because 

it would affect the overall accuracy and stability of the method. (Ziegler, 1993; 

Zou and He, 1997; He and Zou, et al., 1997).  
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2.7.1 Bounce-back Boundary Condition 

The most commonly used non-slip boundary condition in LBM is the bounce 

back scheme, which originates from the LGCA. To describe the boundary 

condition, a wall Ω∂  is specified. For a point x ( Ω∂∈x ), n is the inward unit 

normal vector of the wall. After the streaming step, the unknown distribution 

functions of ),( tfi x , 0>⋅ne i  can be evaluated by 

 ),(),( tftf ji xx = , (2.65) 

where ),( tf j x  is the distribution function in je  direction, where iji eee 2=− . 

However, the original bounce-back scheme is only of first order in numerical 

accuracy. Ziegler (1993) noticed that if the wall boundary is placed in the half way 

between a boundary site and an adjacent non-boundary site, the bounce-back 

scheme is of second-order.  

While for the free-slip boundary condition where no momentum is to be 

exchanged with the wall along the tangential component, specular reflection 

scheme can be applied. When use this scheme, after streaming step implemented, 

the unknown distribution functions of ),( tf i x , 0>⋅ne i  can be evaluated by 

 ),(),( tftf ki xx = , (2.66) 

and ),( tfk x  is the distribution function in ke  direction, where nee 2=− ki . 

The bounce-back, half-way bounce-back and specular reflection scheme are 

illustrated in Figure 2.3.  

2.7.2 Curved Wall Non-slip Boundary Condition 

Besides the bounce-back scheme, to handle the wall boundary, Skordos (1993) 

proposed to use the new equilibrium distribution function which includes velocity 
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gradients at the wall nodes. Chen et al. (1996) proposed a simple extrapolation 

scheme. Through the above schemes, the unknown distribution functions that 

come from the solid are well defined. However, all these boundary conditions are 

difficult to implement for general geometries because one has to distinguish the 

distribution functions according to the wall orientation and a special treatment is 

required for corner nodes. 

To handle wall boundary for general geometry, in 1998, an accurate curved 

wall boundary treatment was proposed by Filippova and Hanel (1998) and later 

improved by Mei et al. (1999). And later Mei et al. (2000) extended the 2D curved 

wall boundary treatment to 3D cases. Guo et al. (2002a) also proposed a curved 

wall boundary treatment based on the idea of Zou and He (1997). However, the 

most successful one was the treatment proposed by Bouzidi et al. (2001). It 

combined the “bounce back” scheme and spatial second-order interpolation. Mei 

et al. (2002) and Lallemand and Luo (2003) also found that the boundary 

condition is a simple, robust, efficient and accurate scheme. Here this boundary 

condition is introduced in detail.  

The concept of Bouzidi’s curve boundary treatment is very simple. Here, we 

use a 2D problem to illustrate the idea. In Figure 2.4, q is defined as the fraction of 

the intersection link in the fluid region: q=(|xf-xb|)/(|xf-xw|), where xf, xb and xw are 

positions of fluid node, boundary node and wall node respectively. Because the 

collision step is not applicable to the wall nodes, for the fluid node which is most 

near to the wall nodes, the distribution functions in some directions are actually 

unknown for the streaming step. For example, in Figure 2.4, for fluid node “j”, 

distribution functions f3, f4, f7, f6 are unknown.   

Bouzidi et al. (2001) used the scheme below to determine these unknowns. 
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Firstly the half way bounce-back boundary condition should be understood. In 

Figure 2.4, for case q =1/2, the actual position of the wall is located at “b3”, which 

is about one-half grid spacing beyond the last fluid node “j”. The distribution 

function f3(xj,t+1) can be obtained from a formula f3(xj,t+1)= f1
+(xj,t), which 

means the particle with the velocity e1, traveled one grid spacing for one time step.  

With the picture for the simple bounce-back scheme in mind, it is easy to 

understand the situation depicted for other cases. For case q<1/2, at time t, the 

distribution function of the particle with velocity e5 at the point “c”, which located 

at a distance 2 (1-2q)δx away from the grid point “j” would end up at the grid 

point “j” after bounce-back collision. That is indicated by the thick bent arrow in 

Figure 2.4. So, it is easy to obtain f7(xj,t+1) if we know f5
+(xc,t) because f7(xj,t+1)= 

f5
+(xc,t). Although xc is not a grid point, the value of f5

+(xc,t) at the point can be 

reconstructed by a quadratic interpolation involving values of f5
+(xj,t), f5

+(xd,t) and 

f5
+(xe,t). In a similar manner, for the case of q>1/2 depicted in Figure 2.4, we can 

construct f4(xj,t+1) by a quadratic interpolation involving f4(xa,t+1), f4(xf,t+1) and 

f4(xg,t+1), where f4(xa,t+1)= f2
+(xj,t). In this way, extrapolations in the boundary 

conditions are avoided for the sake of numerical stability. This leads to the 

following quadratic interpolation formulas. 

For the case of q<1/2: 

 
),x()21(),x()41(),()21(

)1,x(

e5d5
2

5

j7

tfqqtfqtfqq

tf
+++ −−−++=

+

jx
. (2.67) 

For case q>1/2, to get f4(xj,t+1), 
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The study of Lallemand and Luo (2003) provides more general formulas for 
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moving and stationary boundaries. 

For the curved wall boundary condition, the non-equilibrium distribution 

function extrapolation scheme (Guo et al. 2002a) illustrated in Figure 2.5 is also 

easy to implement. In the scheme, the velocity on wall nodes (lattice nodes 

outside and most near to physical boundary) is obtained from extrapolation (e.g., 

in Figure 2.5, to obtain the unknown f7
+(xw,t), velocity on “w” is extrapolated 

from velocity of “f” and “ff”) and p value obtained from the nearest fluid node, 

hence the equilibrium distribution function for wall nodes can be obtained through 

Eq. (2.16). With the corresponding non-equilibrium distribution function 

extrapolated from the fluid nodes, the collision step on wall nodes can be fulfilled. 

This treatment is proved to be second order in space. (Guo et al. 2002a) 

2.7.3 Inlet/Outlet Boundary Condition 

For the pressure and velocity boundary conditions, Zou and He (1997) 

proposed a scheme based on the bounceback of the non-equilibrium distribution 

function. Guo et al. (2002c) proposed a scheme based on an extrapolation method 

for non-equilibrium distribution. For example, if a particular velocity profile is 

specified, since the corresponding pressure of the fluid can be extrapolated from 

the next inner nodes, the equilibrium distribution function can be determined 

through Eq. (2.16). The corresponding non-equilibrium distribution function can 

be extrapolated from the next inner nodes. So the collision step can be 

implemented. For the pressure boundary condition, the pressure is specified and 

corresponding velocity is extrapolated from the inner nodes. The equilibrium and 

non-equilibrium part of distribution functions can be determined in the same way 

as inlet boundary condition.  
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2.8 Multi-block Strategy 

As we known, originally the numerical mesh for LBM is the uniform 

Cartesian grid which is identical as the “molecular” lattice. That makes LBM not 

so efficient (case of uniform fine grid) or accurate (case of uniform coarse grid) to 

achieve high resolution in regions involving large gradient of macro-dynamic 

variables. Later Nannelli and Succi (1992) proposed the finite volume lattice 

Boltzmann scheme to handle Cartesian non-uniform grids. Based on an 

interpolation strategy, some studies also extended the LBGK method to 

curvilinear grids (He and Doolen 1997a, 1997b). However, if the numerical mesh 

spacing is very different from the “molecular” lattice, the accuracy of the scheme 

may decrease in the regions of high gradients of macro-dynamic variables. 

(Filippova and Hanel, 2000)  

To avoid decoupling the numerical mesh and “molecular” lattice, Filippova 

and Hanel (1998, 2000) employed locally refined patches for uniform Cartesian 

grid in their studies. That means some finer grids are superposed on the basic, 

coarser grid. The coarse and fine grids have different relax time constants τ. The 

calculation proceeds with a small τ accordingly to the coarse grid, while on the 

finer grids with large τ, several time steps are performed to advance to the same 

time level. In this way, the accuracy of the LBGK scheme can be conserved. The 

coupling of solutions on the different meshes was solved by Filippova and Hanel 

(1998) through rescaling of the non-equilibrium part of distribution functions and 

second-order spatial interpolation in transition between different grids.  

Yu, et al. (2002) suggested a multi-block method for viscous flows slightly 

different from Fillippova and Hanel (1998). Yu, et al. (2002) decomposed the 

whole computational domain into several sub-domains. Some sub-domains adopt 
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fine meshes, the others adopt coarse meshes. The coupling of solutions on 

different meshes is identical to that of Fillippova and Hanel (1998) except the high 

order fitting for spatial and temporal interpolation is employed when transfer the 

information from coarse block to nearby fine grid.  

Although Yu, et al. (2002) used cubic spline interpolation and Fillippova and 

Hanel, (1998) used second-order interpolation on the grid interfaces, according to 

the Fillippova and Hanel’s (2000) analysis, the common error introduced in the 

solution on the interface between coarse and fine grids due to the linear 

interpolation of fi
eq,c’s from the neighboring nodes of the coarse grid is consistent 

with the order of accuracy of the solution on the coarse grid. Hence, in our study, 

for 2D cases, the simplest linear interpolation method is employed at the grid 

interfaces. For 3D cases, when transfer the distribution function from coarse grid 

to fine grid, bilinear spatial interpolation was used. The temporal interpolation for 

interface on fine grids is also linear. A multi-block strategy for 3D cases is next 

described in detail.  

In our study, the whole 3D computational domain was decomposed into 

several sub-domains with coarse or fine meshes. In this way, all parts of the flow 

can be solved with appropriate accuracy and memory and CPU time can be saved 

compared to a uniform fine grid. However, the transition of fi
+ in the interface of 

different grids is needed and multiple time steps are necessary on fine grids 

according to the refinement ratio due to the explicit manner of the LBGK scheme 

(Fillippova and Hanel, 2000). A typical interface structure between two different 

spacing blocks is illustrated in Figure 2.6. In the figure, the ratio of lattice spacing 

is n=δxc/δxf=2. The fine block’s boundary surface ABCD is embedded into the 

coarse block and the coarse block’s boundary surface EFGH is also embedded 
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into the fine block.  

To implement the multi-block strategy, the calculation procedure is almost the 

same as that of Yu et al. (2002) except for the spatial and temporal interpolation 

method. The procedure is briefly described below with δxc/δxf=2. 

1) Initialize the flow field  

2) Transfer fi
+,f(x, nδtc) to fi

+,c(x, nδtc) on the coarse block boundary interface 

(i.e., EFGH in Figure 2.6).  

3) Streaming in coarse block. 

4) Collision in coarse block, obtain fi
+,c(x, (n+1)δtc) in all coarse block lattices. 

5) Transfer fi
+,c(x, nδtc) to fi

+,f(x, nδtc) for lattices represented by “●” on the fine 

block boundary interface (i.e., ABCD in Figure 2.6), to obtain fi
+,f(x, nδtc) for 

lattices represented by “o” and “□” , spatial interpolation is needed.  

6) Streaming in fine block. 

7) Collision in fine block, obtain fi
+,f(x, (n+0.5)δtc) for all fine block lattices. 

8) Obtain fi
+,f(x, (n+0.5)δtc) from fi

+,c(x, nδtc) and fi
+,c(x, (n+1)δtc) on the fine 

block boundary interface (i.e., ABCD in Figure 2.6), Here spatial and 

temporal interpolations are needed. 

9) Streaming in fine block. 

10) Collision in fine block, obtain fi
+,f(x, (n+1)δtc) for all fine block lattices. 

Steps of 2) – 10) are iterated till the converge criteria is achieved. The 

macroscopic pressure p and momentum p0u were obtained just before each 

collision step. This was not indicated in above steps for simplicity. In above 

procedure, both the interpolation method and the transition of fi
+ between 

difference grids are important. A consistent and accurate relationship for the 

distribution function transition for different grids has been developed by Filippova 
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and Hanel (1998) and applied in our study. 

To get identical velocity on interface of coarse and fine meshes and make 

Ref=Rec, the kinetic viscosities on both grids should satisfy νf=νc , which lead to 

 )5.0(5.0 −=− cf n ττ , (2.69) 

where n is the ratio of time step or the lattice spacing n=δxc/δxf=δtc/δtf. To ensure 

the velocity and pressure continuously across the interface, we have 

 feq
i

ceq
i ff ,, = . (2.70) 

The distribution function can be split into equilibrium and non-equilibrium 

component as 

 neq
i

eq
ii fff += . (2.71) 

Under the assumption of continuous physical space (x,t) in the limit of small δt, 

the LBE can be expanded in Taylor series with respect to small δt as Eq. (2.72). 

 [ ] ( )3
22 1

2
tOfff

x
e

t
tf

x
e

t
t i

eq
iiiii δ

τ
δδ

α
α

α
α =−−








∂
∂+

∂
∂+








∂
∂+

∂
∂ . (2.72) 

Substituting Eq. (2.71) into Eq.(2.72) and sorting in order of δt, we obtain 

 ( )2tOf
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e
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tf eq
ii
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i δτδ

α
α +
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∂+

∂
∂−= . (2.73) 

Since the time and space derivatives of eq
if  are continuous across an interface 

between two different grids, omitting the term of O(δt2) , from Eq. (2.73) one can 

obtain 

 ( ) fneq
ifc

cneq
i fnf ,, /ττ=  . (2.74) 

Hence, through rescaling the non-equilibrium distribution function, the transition 

of the post distribution function from the fine grid to coarse grid can be written as 

Eq. (2.75). 
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Similarly, the transition of the post distribution function from the coarse grid to 

fine grid can be written as 

 cneq
i

c

fceq
i

f
i f

n
ff ,,, )1(

τ
τ −

+=+ . (2.76) 

According to Filippova and Hanel’s (2000) analysis, the higher order terms 

appearing from expression of fi
neq which are not rescaled correctly is 

approximately ~O(δt3) and can be omitted.   

From Figure 2.6, we can see that in the surface ABCD, for the lattices which 

represented by the filled circle, their post-collision distribution function fi
+,f which 

transited from coarse block is easy to obtain according to the above Eq. (2.76). 

However, getting fi
+,f for lattices which are represented by an open circle and open 

square cannot be done directly and an interpolation method is needed. 

In the present study, the simple bilinear interpolation was applied to get fi
+,f 

for lattices which represented by open circle and open square in Figure 2.7. For 

example, in Figure 2.7, through transition procedure (i.e., Eq. (2.76)), in point 

A,B,C,D, fi
+,f(xA), fi

+,f(xB), fi
+,f(xC) and fi

+,f(xD) are known. E is a lattice in fine 

boundary. To get the unknown fi
+,f(xE), firstly two parameter t and u are defined to 

describe the position of point E, 

 t ≡ (xE- xA)/(xD- xA),    u ≡ (yE- yA)/(yB- yA), (2.77) 

usually t and u each lie between 0 and 1, and fi
+,f(xE) can be obtain through below 

bilinear formula 

 fi
+,f(xE)=(1- t)(1- u)fi

+,f(xA)+(1- t)ufi
+,f(xB)+ tufi

+,f (xC)+ t(1- u)fi
+,f(xD).(2.78) 

Bilinear interpolation is the simplest interpolation in 2D surface. As the 

interpolating point wanders from grid square to grid square, the interpolated value 
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changes continuously. The circumstances of t, or u∈[-0.5,0]U [1,1.5] may be 

encountered in some cases. It is noticed that even when t and u are in the range 

[-0.5, 1.5], an interpolation result can also be obtained.  
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Table 2.1 Main parameters of popular 2D and 3D discrete velocity models 
 

Model ei ωi cs
2 

 

D2Q9 

(0,0) 

(±1,0)c, (0,±1)c 

(±1, ±1)c 

4/9 (i=0) 

1/9 (i=1,2,3,4) 

1/36 (i=5,6,7,8) 

 

c2/3 

D2Q7 (0,0) 

(±1,0)c, (±1/2, ± 3 /2)c 

1/2 (i=0) 

1/12 (i=1,…6) 

c2/4 

 

 

D3Q19 

(0,0,0) 

(±1,0,0)c, (0,±1,0)c, (0,0, ±1)c 

(±1, ±1,0)c, (0, ±1 , ±1)c, (±1,0, ±1)c 

1/3 (i=0) 

1/18 (i=1,…6) 

1/36 (i=7,…18) 

 

c2/3 

 

D3Q15 

(0,0,0) 

(±1,0,0)c, (0,±1,0)c, (0,0, ±1)c 

(±1, ±1, ±1)c 

2/9 (i=0) 

1/9 (i=1,…6) 

1/72 (i=7,…14) 

 

c2/3 

 

 
 

A A A

streaming collision
 

 
Figure 2.1 Streaming and collision steps in one time step 
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Figure 2.2 Discrete velocity sets {ei} for D2Q9, D2Q7, D3Q19 and D3Q15 
models 
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Figure 2.3 The bounce-back (a), half-way bounce-back (b) and specular reflection 

(c) schemes 
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Figure 2.4 curved boundary geometry and lattice nodes. Open circles (○) are wall 

nodes and open squares (□) are the fluid nodes. The disks (●) are the nodes in 
physical boundary. Solid squares (■) are located in the fluid region but not on grid 

nodes. The thin solid lines are the grid lines. The thick arrows represent the 
trajectory of a particle interacting with the wall. 
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Figure 2.5 Curved wall boundary treatment of Guo et al. (2002a) 
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Figure 2.6 Interface structure between fine and coarse blocks  
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Figure 2.7 Bilinear spatial interpolation scheme 
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 Chapter 3   Axisymmetric and 3D Lattice Boltzmann 
Models 

In this Chapter1, a general method to derive D2Q9 axisymmetric models was 

suggested and three different models were proposed to simulate axisymmetric 

flows. The theoretical difference between our model and the previous models was 

analyzed. Axisymmetric boundary conditions were presented. An incompressible 

3D isothermal LBM and 3D Thermal LBM were also presented.  

3.1 Source Term in LBE 

In the continuum Boltzmann equation (i.e., Eq.(2.1)), there is a body force 

term cF ∂∂f . In the LBE, a similar term may also be added to incorporate a 

body force. 

Buick et al. (2000) considered inserting the forcing term into the LBE to 

mimic the Navier-Stokes equation with the body force. The NS equation with 

body force can be written as 

 0=∂+∂ ββ ρρ ut , (3.1) 

 ( ) ( )[ ] ααβαββααββα ρνρρ Fuupuuut +∂+∂∂+−∂=∂+∂ . (3.2) 

The first scheme to incorporate the gravity into the LBE is combining the 

gravity term and the pressure tensor. This method is valid only when the density 

variation produced by the body force is negligible (Buick et al. 2000). The second 

scheme is calculating the equilibrium distribution with an altered velocity, for 

                                                
1 Part of this work has been published as: 
Lee, T.S., Huang, H., Shu, C., An axisymmetric incompressible Lattice-BGK 
model for simulation of the pulsatile flow in a circular pipe, Int. J. Numer. Meth. 
Fluids, 49(1), pp.99-116. (2005) 
Lee, T.S., Huang, H., Shu, C., An axisymmetric incompressible lattice Boltzmann 
model for pipe flow, Int. J. Mod. Phys. C., 17 (5), pp.645-661. (2006) 
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example, ( ) ( )*,, αρ uEtf i
eq

i =x  (refer to Eq. (2.16)), and 2*
ααα ρρ Fuu += , 

where ∑= ii feu ααρ  and Fα is the body force (Shan and Doolen, 1995). The 

third scheme is adding an additional term to the LBE. However, it is found that 

only through combining the second and third schemes can the NS equation with 

body force be recovered from the modified LBE correctly. (Buick et al. 2000; Guo 

et al. 2002b) 

Guo et al. (2002b) further analyzed the discrete lattice effects on forcing term 

in the LBM. In practical application, the method of adding 2
siii cFeS ααω=  to 

LBE to mimic the NS equation with body force F (He and Zou et al. 1997) is 

usually used for flows exposed to a constant body force. According to the analysis 

of Guo et al. (2002b), this method is incorrect if the velocity gradient in flow field 

is not zero. To mimic the NS equation with body force F, Luo (1998, 2000) 

proposed adding the source term ( ) ( )[ ] ααββαββα δω FceuecueS siisiii
42 ⋅+−=  

into the LBE. However, the LBE still cannot recover the NS equation with the 

body force F correctly due to not taking into account the discrete lattice effect. 

The other schemes of adding a force term (e.g., Ladd et al. 2001, Buick et al. 2000) 

were also analyzed by Guo et al. (2002b). Due to the limitation of the above 

schemes, Guo et al. (2002b) proposed 

 ( ) ( ) ( )[ ] ααββαββα δτω FceuecueS siisiii
42211' +−−=   

as a forcing term in LBE to recover the NS equation with body force correctly.   

3.2 Axisymmetric LBE 

As we known, comparing with the NS equation in 2D Cartesian coordinates, 

there are extra terms in NS equation in cylindrical coordinates. These extra terms 
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would be regarded as the body force terms in 2D NS equation in Cartesian 

coordinates. 

Through inserting forcing terms into the LBE, Halliday et al. (2001) proposed 

an axisymmetric D2Q9 model to simulate the axisymmetric flow in circular tube. 

However, in this model, the discrete lattice effects are not considered and the 

momentum and the equilibrium distribution function (EDF) are still defined as 

common standard D2Q9 model which do not include the effect of body force. 

Hence the NS equation in cylindrical coordinates may not be accurately recovered 

from the model.  

Here through considering the discrete lattice effects and refining the 

momentum and EDF in D2Q9 model, our model can recover the NS equation in 

cylindrical coordinates accurately. 

3.2.1 Incompressible NS Equation in Cylindrical 

Coordinates 

Here, we consider the axisymmetric flows of an incompressible liquid with an 

axis in x direction. The continuity equation (3.3) and Navier-Stokes momentum 

equations (3.4) in the pseudo-Cartesian coordinates (x,r) are used to describe the 

flow in axial and radial directions.  

 
r

uu r−=∂ ββ , (3.3) 

( ) ( ) E
r
uu

rr
uuupuuu r

r
r

r
t +






 −∂+−=∂∂−∂+∂+∂ αα

α
αββααββα δνν

ρ0

1 ,   (3.4) 

where βu (β=x,r) is the two components of velocity. αu  is the velocity xu  or 

ru . E is the additional source term which may appear in some flow problems. In 
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the above Equations we adopt the Einstein summation convention. 

3.2.2 Source Terms for Axisymmetric D2Q9 Model 

In the presence of a body force in the NS equation, to mimic the equation 

correctly, the LBE must be modified to account for the body force. Here we add a 

source term into the LBE as 

 ( ) ( ) ( ) ( )( ) it
eq

iiittii Stftftftf δ
τ

δδ +−−=++ ,,1,, xxxex . (3.5) 

Our derivation would begin from the incompressible D2Q9 model (He and 

Luo, 1997a). Hence the EDF fi
eq is defined as (He and Luo, 1997a) 
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with  

 t
i

ii mFfeu δρ ααα ∑ +=* . (3.7) 

Here m is a constant to be determined. The source term Si can be written in a 

power series in the particle velocity (Ladd, 2001) 
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where A, Bα and Cαβ are functions of body force in NS equation Fα. The zeroth to 

second momentum of Si are 

 AS
i

i =∑ ,   αα BeS
i

ii =∑ ,  ( ) 22
kjjkjksik

i
iji CCAceeS ++=∑ δ . (3.9) 

At the beginning of our derivation, we adopt the following expansions (Buick 

et al., 2000),  

 ),,(
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=+++ εδδδ , (3.10) 
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where ε=δt and ( )ββ ∂⋅+∂≡ etD , β=x,r. It is noticed that in Eq. (3.11), there is 

no “equilibrium” Si term. In the equations below, the Einstein summation 

convention is used. It should be noticed that since Si is expanded to O(ε2), the 

coefficient A, Bα and Cαβ in Eq. (3.9) should also be expanded to O(ε2) (e.g., 

A=εA(1)+ ε2A(2),  Bα=εBα
(1) + ε2Bα

(2))   

Retaining terms up to O(ε2) in Eqs. (3.10) and (3.11) and substituting them 

into Eq. (3.5) results in Eqs. (3.12), (3.13) and (3.14) as follows, 

 O(ε0): ( ) 0/)0( =− τeq
ii ff , (3.12) 

 O(ε1): ( ) ( ) 0)1()1()0(
11 =−+∂+∂ itiiit Sffe τδββ , (3.13) 
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The distribution function fi is constrained by the following relationships: 
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with the properties of the general lattice tensors G(n) (Eqs. (2.33), (2.34), (2.35)), 

we have 

 αββαβα δρ puufee
i

iii +=∑
=

**
0

8
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)0( , (3.17) 
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 ( ) *2
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)0(
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i
iikii ucfeee αββαβαβα δδδδδδρ ++=∑

=

. (3.18) 

Summing on i in Eq. (3.13), we obtain at O(ε)  

 ( ) )1(*
01

2
1 Aucp st =∂+∂ ββ ρ . (3.19) 

Rewriting Eq. (3.19) in a dimensionless form, we can see that a condition of 

Lx/(csT)<<1 should be satisfied to neglect the first LHS term (He and Luo, 1997a), 

where Lx is the character length in the x direction, T is the characteristic time of 

unsteady flow. That is an additional limit of our derivation besides condition 

Mach number M<<1. 

Multiplying Eq. (3.13) by eiα and summing on i, gives 

 ( ) )1(0
1

*
10 ααββα τρ Fmnut +=Π∂+∂ , (3.20) 

where, )1()1(
ββ nFB =  is assumed and n is a constant to be determined. 

αββαβααβ δρ puufee
i

iii +==Π ∑
=

**
0

8

0

)0(0  is the zeroth-order momentum flux tensor. 

To recover the Euler equation from Eq. (3.20), we can choose 

 ruA r
*

0
)1( ρ−= ,  1=+ τmn  and ruuF r

**
0

)1(
αα ρ−= . (3.21) 

 

Then we proceed to O(ε2) now. Summing on i in Eq. (3.14) gives 
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Since ( )2
2 st cp∂  is of order O(M3), it can be negligible (He and Luo, 1997a). 

Hence, we can obtain  
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Multiplying Eq. (3.14) with eiα and summing over i gives, 
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where )1()1(
ii

i
i fee βααβ ∑=Π  is the first-order momentum flux tensor. It can be 

written as 
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For the first term in Eq. (3.25), with similar derivation procedure in Eq. (2.45) and 

Eq. (3.20), we can obtain 

 ( ) ( )3)1(*)1(***
0

2)0(
1 uOFuFuruuc rkkst +++−∂−=Π∂ αββααβαβ δρ . (3.26) 

The terms of order O(u3) or higher in Eq. (3.26) can be neglected.  

For the second term in Eq. (3.25), with aid of Eq. (3.18), it can be written as 

 ( )***2
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)0(
βααβαββα δρ uuucfeee jjs

i
iikiik ∂+∂+∂=







∂ ∑ . (3.27) 

With the results of Eq. (3.9), the third term can be written as  

 ( )22 )1()1()1(2)1(
βααβαββα δτδτδ CCAcSee st

i
iiit ++=∑ . (3.28) 

Noticing the assumptions of )1()1(
ββ nFB = , )2()2(

ββ nFB =  and using Eqs. (3.21), 

(3.25), (3.26), (3.27), (3.28), Eq. (3.24) can be simplified as 

 )2(
1

)1(
2

*
20 2

1
ααββαα σδρ FFmu ttt +∂+∂






 −=∂ , (3.29) 

where the stress tensor σαβ is given by 
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.    (3.30) 

In Eq. (3.30), there are additional contributions to the viscous stress due to the 

discrete lattice effects and existence of body force. The artifact due to the lattice 

effect can be absorbed through redefine the viscosity as 

 )5.0(2 −= τδν tsc . (3.31) 

The contribution of the stress due to force in Eq. (3.30) can be cancelled through 

choosing )1(
αβC  as  

 ( )[ ] )1(*)1( 2112 βααβ τ FuC −=  or ( )[ ]( ))1(*)1(*)1( 211 αββααβ τ FuFuC +−= . (3.32) 

To eliminate the spatial and temporal derivation of )1(
αF  in Eqs. (3.22) and (3.29), 

we choose  

 21=m  and hence 2*
t

i
ii Ffeu δρ ααα ∑ += . (3.33) 

According to Eq. (3.21), we obtain  

 
τ2
11−=n . (3.34) 

Substituting the Eq. (3.30) into the Eq. (3.29), with aid of Eq. (3.31), the Eq. (3.29) 

can be further simplified and rewritten as 

 ( )( ) ( ) ( ) )2()1(2*2
0

*
20 1* ααααβα δτνρρ FAcuu stt +∂−−⋅∇∂+∂=∂ u . (3.35) 

In the axisymmetric case, ruu r
*** +∂=⋅∇ ββu . To recover the NS equations 

correctly, )2(
αF  should be chosen as follows  

 ( ) E
r

uu
r

AcF r
r

rst 0

*
*0)1(2)2( 1 ρδνρτδ αααα +








−∂+∂−−= . (3.36) 

With m=1/2, Eq. (3.23) can be simplified and rewritten as  
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βββ ρδδρδ +∂=∂−= . (3.37) 

Since the term )2(
αβC  does not appear in our derivation, finally, the formula of Si 

can be written as 

 








++
















−++= 2

)2(
)2(

22

)1(

2

)1(
)1(

2 s

i
i

s

ii

ss

i
ii c

nFeA
c
ee

c
C

c
nFeAS αα

αβ
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With above source terms A(1), Fα(1) (i.e., Eq. (3.21)),  A(2), Fα(2) (i.e., Eq. (3.37) 

and Eq. (3.36)) and )1(
αβC  (i.e., Eq. (3.32)), the Eqs. (3.19), (3.22) can recover the 

continuity equation Eq. (3.3) and Eqs. (3.20), (3.29) can recover the 

incompressible NS equation (i.e., Eq.(3.4)). 

3.2.3 Other Choices of the Source Terms for 

Axisymmetric D2Q9 Models 

From the above derivation of Source terms, we can see that when we make 

appropriate choice in Eq. (3.21), in the order of O(ε1), the Euler equation can be 

recovered. However, if the macroscopic equations in the order of O(ε1) are not 

required to recover the Euler equation and we only intend to recover NS equation 

by combining the macroscopic equations of order O(ε1) and O(ε2) as a whole, the 

choice of the source terms can be different. 

In the following, we refer the above model as model A.  

If the macroscopic equations in the order of O(ε1) are not required to recover 

the Euler equation, for simplicity, we can make a choice as 

 ruA r
*

0
)1( ρ−= ,  1=+ τmn , m=1/2 and 0)1( =αF . (3.39) 

In this way, as a result, the expression of )1(
αβC  are highly simplified as 0)1( =αβC  

and )2(
αF  should becomes 
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A(2) is the same as Eq. (3.37). Then, in this scheme, the final expression of the 

source term is 
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nFeAAS ααωω . (3.41) 

This model will be referred as model B. 

 Alternatively, we can put all of the force terms in Fα(2) to Fα(1) and make 

Fα(2)=0. Actually, we can make a choice as follows 

 ruA r
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0
)1( ρ−= ,  1=+ τmn , m=1/2, (3.42) 

and  
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As a result, the )1(
αβC  should be 

 ( )[ ] )1(*)1( 2112 βααβ τ FuC −=  or ( )[ ]( ))1(*)1(*)1( 211 αββααβ τ FuFuC +−= , (3.44) 

which is identical to Eq. (3.32) in scheme A. 

In this scheme, A(2) is also the same as Eq. (3.37). Hence, for this model that 

will be referred as model C, the final expression of the source terms are 

 { })2(
22

)1(

2

)1(
)1(

2
A

c
ee

c
C

c
nFeAS i

s

ii

ss

i
ii ωδω αβ

βααβαα +
















−++= . (3.45) 

3.2.4 Theoretical Difference between Present and 

Previous Models 

Through comparison, it is found that present axisymmetric D2Q9 models are 

theoretically different from the previous axisymmetric models of Halliday et al. 
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(2001) and Peng et al. (2003). It should be noticed that the model of Peng et al. 

(2003) is identical to that of Halliday et al. (2001) if the swirl velocity is not 

considered. 

In the axisymmetric model of Halliday et al. (2001) and Peng et al. (2003), 

the velocity is not redefined as in the present schemes (i.e., Eq. (3.7)). It is just 

defined as common LBM (i.e., ∑=
i

ii feu ααρ ) and the components of 

non-equilibrium distribution function at scale O(ε1) and O(ε2) satisfy the following 

equations as standard LBM which is different from the Eq. (3.16) in our schemes.  

 0
8

0

)( =∑
=i

k
if ,    0

8

0

)( =∑
=i

k
ii fe α    (for k>0). (3.46) 

The source terms in their models are somewhat similar to those in our present 

model B. It seems their models are just for a specific case of model B with n=1, 

m=0, ruA rρ−=)1( , 0)1( =αF  and A(2), Fα(2) written as 

 ( ) ruucA rrst 22)2(
βββ ρδρδ +∂= , (3.47) 
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As a result, the macroscopic equations of their axisymmetric models (i.e., 

Halliday et al. (2001) and Peng et al. (2003)) are  
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uu rρρ ββ −=∂ , (3.49) 
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. (3.50) 

From Eqs. (3.49) and (3.50), we can see that the previous models can recover 

the continuity equation. However, it is also found that there are extra terms such as 

( )[ ]βαβ ρν u∂∂  and ( ) ( )ruc rst ρδτ α∂−− 21 , which cannot be canceled to recover 
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the correct NS equation (3.3). This failure is due to the fact that they did not fully 

consider the lattice effects in their derivation. It may also be noticed that besides 

the failure, the term of ruu rαρ−  in Eq. (3.3) is not considered in the models of 

Halliday et al. (2001) and Peng et al. (2003). However, this term is important 

since ( ) ( )αββαββα ρρρ uuuuruu r ∂=∂+ . 

After fully considering the lattice effects in our derivation and including the 

term ruu rαρ− , the correct A(2), Fα(2) for model of Halliday et al. (2001) should 

be the same as the choices of model B. 

In conclusion, the previous models of Halliday et al. (2001) and Peng et al. 

(2003) are only specific cases of present model B. 

3.2.5 Axisymmetric Boundary Condition  

In the study by Halliday et al. (2001), treatment of the axisymmetric boundary 

condition is not given. As a result, they have to study the whole computational 

domain bounded by upper and lower straight walls. They try to avoid the 

singularity (e.g., Eq. (3.47) and (3.48)) by placing the axis in the center of the 

computational grid within the computational domain.  

Using proper axisymmetric boundary conditions has many advantages. Firstly, 

with proper axisymmetric boundary conditions, the axisymmetric flow problem 

can be simulated in an axisymmetric plane, which is only a half the computational 

domain of the above. Hence, the computational efficiency can be further improved. 

Secondly, with the proper axisymmetric boundary conditions, the singularity 

problem may be solved.  

Here we propose a new scheme to treat the axisymmetric boundary. The 

computational domain for axisymmetric flow simulation is illustrated in Figure 
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3.1. In the figure, the axis is represented by the thick straight line while the curved 

thick line is the geometry of a constricted tube. There is an extra lattice layer 

outside the axis. Due to axis-symmetry,  

 ( ) ( ) 3,1, == = jixjix uu  and ( ) ( ) 3,1, == −= jirjir uu , (3.51) 

where i,j are lattice node index in the Cartesian coordinates. Since the kf  

(k=2,5,6) is unknown after the streaming step, they have to be determined to fulfill 

the collision and streaming steps. If we simply impose the unknown distribution 

function as ( )1,, === jik
eq

kk Eff uρ  (k=2,5,6), the numerical instability is easy to 

appear in the simulation.  

Here we propose a more stable treatment for the axisymmetric boundary 

condition. Firstly, from Eq. (3.25), the first-order momentum flux tensor can be 

written as 

( )[ ] ( )
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ρτδ
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uuc

FuFuuucfee

st

tst
k

kii

∂+∂−≈

+−∂+∂−==Π ∑
2
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)1()1(2
0

)1()1( 2
.    (3.52) 

In Eq. (3.52), comparing with the first term, the term of ( ))1()1(2 αββαδ FuFut +  is 

higher order term that can be neglected. Due to axis-symmetry, we have 

 ( ) ( )
3,1, ==

∂+∂−=∂+∂
jixyyxjixyyx uuuu  . (3.53) 

 Here the unknown distribution function at j=1 lattice nodes (i.e., lattice nodes 

in axisymmetric boundary) was proposed to calculate using the following equation 

 )1(
k

eq
kk fff +=  with ( )1,, == jik

eq
k Ef uρ  and ( ) ( ) 3,

)1(
1,

)1(
== −= jikjik ff .(3.54) 

In this way, the Eq. (3.53) can be satisfied and this boundary condition treatment 

is expected to be more stable since not only the equilibrium distribution function 

but also the non-equilibrium distribution function are considered. 

 It is also noticed that the specular reflection scheme (see Chapter 2) for lattice 
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nodes in axis can also handle the axisymmetric boundary (Peng et al. 2003). Using 

this scheme, the extra layer lattice nodes are not needed. Hence, the computational 

domain in vertical direction is beginning from the layer j=2 in Figure 3.1.  

3.3 Three-dimensional Incompressible LBE 

To simulate 3D viscous flows, usually, three athermal 3D Lattice Boltzmann 

Equation (LBE) models (D3Q15, D3Q19, and D3Q27) are available. Because the 

D3Q19 model provides a balance between computational reliability and efficiency 

comparing with the D3Q15 model and the D3Q27 model (Mei et al. 2000), here 

the D3Q19 velocity model was adopted in our simulation. To diminish the 

compressibility effect of the standard D3Q19 model (Artoli et al., 2002), the 

incompressible D3Q19 model proposed by He and Luo (1997a) are employed. 

As we known, the standard LBGK D2Q9 and D3Q19 models involve the 

compressibility effect (Hou et al., 1995; Artoli et al., 2002). To solve any problem, 

when using LBM, the pressure changes are described by density variance. In our 

present study of viscous flow through constricted vascular tubes, the 

non-dimensional pressure drop ∆p/(ρU2) is equal to cs
2∆ρ/(ρU2), where cs

2=1/3 

and U is the characteristic velocity (usually the maximum value of the inlet fully 

developed parabolic velocity profile). Hence, when using the standard D3Q19 

model to simulate the flow that involves high non-dimensional pressure drop, only 

very small U can be used to diminish the compressibility effects (i.e., to make 

∆ρ/ρ<<1). However, for certain Reynolds number, reducing U would make τ 

value very close to 0.5, which may lead to numerical instability. To solve the 

problem, the technique of increasing the mesh size is commonly used (He et al., 

1996), which may result in a much larger mesh system than conventional CFD 
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methods such as FVM. 

To eliminate the above difficulties, He and Luo (1997) proposed an 

incompressible D2Q9 model for steady and unsteady flows. Using the 

incompressible D2Q9 model, characteristic velocity U<0.15 is valid and not 

necessary to adopt very small value.  

In the present study, we applied an incompressible D3Q19 model which is 

similar to the incompressible D2Q9 model proposed by He and Luo (1997). In 

LBGK method, fi(x,t) is the distribution function for particles with velocity ei at 

position x=(x,y,z) and time t. u=(u,v,w), u,v,w are x, y and z component velocities 

respectively. The macroscopic density ρand momentum ρ0u are defined as 

 ρ=∑
=

18

0i
if ,     ue 0

18

0

ρ=∑
=i

iif . (3.55) 

where ρ0 is the average density. The 3D 19 velocity model can be written as  
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For this incompressible D3Q19 model, the equilibrium function fi
eq(x,t) is 

defined as 
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where i=0,1,2…..,18 with ω0=1/3 , ωi=1/18, (i=1,2,….6) , ωi =1/36, (i=7, 8,…18)  

cs
2=1/3 

3.4 Three-dimensional Incompressible Thermal LBE 

In order to solve the 3D thermal problems for the engineering application, a 

3D thermal model based on the double-population TLBE derived by He et 
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al.(1998) is used in our simulation. As 2D thermal lattice Boltzmann equations 

introduced in section 2.6, this 3D thermal model also uses two distribution 

functions to model the flow and thermal fields.  

The discrete evolution equations for the density distribution function f(x,t) 

and the thermal energy density distribution function g(x,t) are illustrated as 

follows (He et al.,1998) 

 ( ) ( ) ( ) ( )[ ] it
eq

ii
f

ittii Ftftftftf δ
τ

δδ +−−=−++ ,,1,, xxxex , (3.58) 

 ( ) ( ) ( ) ( )[ ]tgtgtgtg eq
ii

g
ittii ,,1,, xxxex −−=−++

τ
δδ , (3.59) 

where,  

 ( ) ( )[ ] Geueue ⋅⋅−−−= 42 )(5.01 siisiii ccF τω , (3.60) 

τf and τg are the momentum and internal energy relax time, respectively. In Eq. 

(3.60), G are the external forces acting on unit mass. ei is the lattice velocity and i 

denotes the velocity direction. δx, δt and are the lattice spacing and time step size.  

For D3Q19 model, the 19 discrete velocities are illustrated in Eq.(3.56). In 

above Eqs. (3.58) and (3.59), eq
if  are the equilibrium density distribution 

functions defiend by Eq.(3.57). eq
ig  are the equilibrium internal energy 

distribution functions defined as following (He et al. 1998), 
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where 3ccs = , ω0=1/3 , ωi=1/18, (i=1,2,….6) , ωi =1/36, (i=7, 8,…18). The 

internal energy density is 23 RTe ρρ =  for three-dimensional problems.  

The macroscopic density ρ and momentum ρu can be obtained through 

Eq.(3.55). Internal energy per unit mass e are defined as (He et al., 1998) 

 ∑
=

=
18

0i
igeρ . (3.64) 

The kinetic viscosity ν and thermal diffusivity α are obtained by 

( ) 25.0 sf ct −= τδν  and ( ) 95.05 −= gτα .        

It should notice that compared with the 2D TLBM introduced in section 2.6, 

the compression work done by the pressure and the viscous heat dissipation 

( ) ( )[ ]ueuue ∇⋅+∂∂−= iii tq  are neglected here for the incompressible 

applications (Peng et al., 2003b).  

 

 

 

j=1
j=2axis
j=3

 

Figure 3.1 The computational domain for axisymmetric flow simulation 
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 Chapter 4   Evaluation of Axisymmetric and 3D 
Lattice Boltzmann Models 

 In this Chapter2, we would evaluate our axisymmetric D2Q9 models. The 

simulation results were compared with analytical solutions or those obtained by 

finite volume method. The spatial accuracies of the axisymmetric D2Q9 models 

incorporating difference boundary conditions were compared in detail. The 3D 

LBM solver would also be validated. The multi-block strategy used in simulations 

would also be tested. 

4.1 Implementation of the Axisymmetric Models 

 In Chapter 3, three axisymmetric D2Q9 models through scheme A, B and C 

were derived. In these models, the source terms Fα
(1) (scheme C) or Fα(2) (scheme 

A and B) contain the derivatives of velocities.  

These velocity derivations can be computed from appropriate higher order 

momentums of non-equilibrium distribution function. The velocity derivatives 

∂rux+∂xur, ∂xux and ∂rur can all be obtained through Eq. (4.1) which is the same as 

Eq. (3.52) with α=x,β=r; α=β=x; α=β=r respectively 

                                                
2 Part of this work has been published as:  
Lee, T.S., Huang, H., Shu, C., An axisymmetric incompressible Lattice-BGK 
model for simulation of the pulsatile flow in a circular pipe, Int. J. Numer. Meth. 
Fluids, 49(1), pp.99-116. (2005) 
Lee, T.S., Huang, H., Shu, C., An axisymmetric incompressible lattice Boltzmann 
model for pipe flow, Int. J. Mod. Phys. C., 17 (5), pp.645-661. (2006) 
Huang, H., Lee, T.S., Shu, C., Lattice-BGK simulation of steady flow through 
vascular tubes with double constrictions, Int. J. Numer. Methods Heat Fluid 
Flow,16(2), pp. 185-203. (2006) 
Huang, H., Lee, T.S., Shu, C., A multi-block Lattice-BGK method for 3D viscous 
fluid flows, Asian Joint Conference on Propulsion and Power 2006, Apr.20-23, 
Beijing, China 
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For the term ∂rux , it equal to (∂rux+∂xur)-∂xur . Since (∂rux+∂xur) can be easily 

obtained by Eq. (4.1), only value of ∂xur is left unknown to determine ∂rux . Here 

we recourse to finite difference method to obtain ∂xur at lattice node (i,j), which 

can be calculated by following equation 

 ( ) ( ) ( )( ) ( )xjirjirjirx uuu δ2/,1,1, −+ −=∂ . (4.2) 

The values of ∂rux+∂xur, ∂xux , ∂rur , ∂rux and ∂xur for the lattice nodes which just 

on the wall boundary can also be calculated from Eqs. (4.1) and (4.2). Obtaining 

these values for lattice nodes on the periodic boundary is also easy. These 

derivative values for the lattice nodes on the inlet/outlet pressure-specified 

boundary are extrapolated from those of the inner nodes. 

After the above velocity derivatives are determined, the axisymmetric models 

can be implemented as common D2Q9 lattice Boltzmann models by adding the 

source terms into the post-collision distribution function and obtaining the macro 

variables by slightly revised formula t
i

ii mFfeu δρ ααα ∑ +=*  (i.e., Eq. (3.7)) if 

0≠m .  

4.2 Steady Flow through Constricted Tubes 

 To validate our axisymmetric D2Q9 models, the steady flows through 

constricted tubes were simulated.  

In our study, the geometry of the constrictions is described by Cosine curve. 

The geometry of the stenose is shown in Figure 4.1. If r0 is the radius of the 
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nonstenotic part of the pipe, radius of the stenose r(x) is given out as following 

 r(x) = r0 –βr0{1+cos[πx/ S0]}/2  (-S0< x <S0) , (4.3) 

where r0=D/2, β=50% is severity of stenose and the axial length of the stenose is 

2S0. To make flow fully developed and save grid nodes, the upstream and 

downstream boundaries are at S1=-3D and S2=8D as illustrated in Figure 4.1.  

In the simulations, the non-equilibrium distribution function extrapolation 

method (Guo et al. 2002a) was applied for curvature wall boundary. For the 

inlet/outlet boundary conditions, the pressure or velocity boundary condition 

treatments proposed by Guo, et al. (2002c) was adopted for its simplicity. At the 

inlet boundary, a fully developed parabolic velocity profile is specified. In the 

outlet boundary, the outlet pressure was specified and 0=∂∂ xu  was also 

imposed.  

It should notice that axisymmetric boundary conditions are very important in 

simulations. Without axisymmetric boundary conditions, we have to study the 

whole computational domain bounded by upper and lower straight walls and the 

axis should be placed in the center of the computational grid within the 

computational domain to avoid the singularity. Alternatively, if the axis is placed 

in the computational grid, source terms for lattice nodes in the axis should be 

interpolated from those of the upper and lower layer lattices (Lee, Huang and Shu, 

2006).  

Here we used axisymmetric boundary conditions. For the lattice nodes in the 

axis, the slip wall boundary condition introduced in Chapter 2 was used. The 

source terms on these lattice nodes are not necessary to be known. Hence, the 

singularity problem is avoided. 

In our simulations, Reynolds number defined as Re=U0D/ν, where U0 is 
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central value of the inlet parabolic velocity. The zero velocities are initialized 

everywhere. For defining steady state, our criterion is  

 6

,

10
),,(

),,(),,(
−<

+

−+
=∑

ji tji

jitji

trx

trxtrx

δ
δ

η
u

uu , (4.4) 

where the summation is over the entire system.  

 Firstly, we would like to compare the performance of the three axisymmetric 

models (model A, B and C) proposed in Chapter 3. The three models are used to 

simulate the same case with S0=D, Re=50. In the simulation, a uniform grid with  

Nx×Nr=441×22 (Nr is the lattice nodes in radial direction) was used. The 

nonstenotic radius is represented by 21 lattice nodes and Nr includes one extra 

layer beyond the wall boundary. After reach the criterion of Eq. (4.4), they are 

able to give the same accurate results illustrated in Figure 4.2. In the Figure, the 

velocity profiles in positions x=0, 0.5D, D and 2D are compared with that of 

Finite Volume method (FVM). The results obtained by FVM can be regard as 

accurate results since a fine grid (i.e., 881×41) is used in FVM simulations. In 

Figure 4.2, we can see that both the axial and radial velocity components agree 

well with that of FVM.  

To run 15000 time steps in this simulation, the CPU time taken by the model 

A,B and C are 359s, 368s, 389s respectively. It seems that model C takes slightly 

more CPU time than those of model A and B. It is easy to understand since the 

Fα(1) in model C is more complex than that of model A, slightly extra effort would 

be taken to calculate the term of ( )( ))1(*)1(*222 αββααββα δω FuFuceecn siisi +−  in Eq. 

(3.45). Among these models, since model A, B and C are all able to give accurate 

results and the model B has the simplest form, this model B is subsequently used 

mainly in all our following applications. 
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 The converge behavior (Relative error η is defined in Eq. (4.4)) of model A, 

B and C is almost identical which illustrated in Figure 4.3. 

For steady flow problem, the case of S0=D, Re=100 was also simulated. In the 

simulation, a uniform grid of Nx×Nr=441×22 was used. The results were given in 

Figure 4.4, Figure 4.5 and Figure 4.6. In the Figure 4.4, the velocity profiles in 

positions x=0, 0.5D, D and 2D are compared with that of FVM. Both the axial and 

radial velocity components agree well with that of FVM. In the Figure 4.5, the 

streamlines were shown above the axis and the shear stress contours were shown 

below the axis. The flow is separated and a circulating eddy exists behind the 

stenose. In the Figure 4.6, the wall vorticity obtained by LBM is compared with 

that of FVM. It seems the wall vorticity of the LBM solution has small 

discrepancy with that of FVM solution. That may due to the facts that finite 

difference method were used to calculate the wall vorticity and the grid we used is 

not very fine. The scheme to obtain wall shear stress and wall vorticity is 

illustrated in Figure 4.7. In Figure 4.7, the open square and circle represents the 

lattice node outside and inside of the boundary respectively. The near-wall fluid 

lattices are represented by filled circles. Here the wall shear stress and vorticity 

were approximated by those on the near-wall fluid lattices. The shear stress on 

lattice node can be obtained through the first order momentum of non-equilibrium 

distribution function (i.e., Eq(4.1)). After obtaining ∂xur at these lattice nodes 

through Eq. (4.2), the vorticity can be obtained.  

 For comparison purpose, a result obtained by the model of Halliday et al. 

(2001) is also shown. Our analysis of the Halliday et al (2001) model (refer to the 

part 3.2.4) and present simulation show that the model does not give accurate 

results for flow through constricted tubes. Figure 4.8 demonstrates that problem. 
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In Figure 4.8, the velocity profiles obtained by the model of Halliday et al. are 

compared with those of FVM. It is observed neither the axial nor the radial 

velocity profiles agree well with those of FVM for case S0=D, Re=10. The model 

of Halliday, et al. (2001) can only give poor results although very fine lattices 

Nx×ND=881×83 were used (Huang, Lee and Shu, 2004). 

4.3 Pulsatile Flow in Tube (3D Womersley Flow) 

After our models were validated by simulations of the steady axisymmetric 

flow problem, an unsteady axisymmetric flow problem was employed here to 

further validate our axisymmetric models. Since models A, B and C can all give 

accurate results and their performances of convergence are almost the same, in 

this section, only model B is used to do further validation. 

The unsteady axisymmetric flow problem employed here is the 3D 

Womersley flow. The 3D Womersley Flow (pulsatile flow in aixsymmetric pipe) is 

driven by periodic pressure gradient at the inlet of the pipe which is defined as 

 tiep
x
p ω*−=
∂
∂ , (4.5) 

where p* is the maximum amplitude of the sinusoidally varying pressure gradient. 

In our study, R is defined as the radius of the circular pipe. ω is the angular 

frequency and ν is the kinetic viscosity of fluid. The Reynolds number is defined 

as Re=2UcR/ν, where Uc is the characteristic velocity defined as  

 
ρνωρ

α
44

2*2* RppUc == , (4.6) 

which is the velocity that would be observed in the axis of the tube if a constant 

forcing term p* were applied in the limit of α→0. The Womersley number is 

defined as νωα /R= . The Strouhal number is defined as St=R/(UcT), where T 
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is the sampling period. 

The analytical solution for 3D Womersley flow (Artoli et al., 2002) is  
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where J0 is the zeroth order Bessel function of the first type. 

    All the simulations in this part began with an initial condition of zero 

velocity every where, and an initial run of 10T steps.  

It should be noticed that the maximum velocity Umax appear in tube axis 

during a sampling period would less than character velocity Uc for case α>0.  For 

a case of α>>1, the maximum velocity Umax would be much less than Uc . That is 

illustrated in Figure 4.9, which shows the normalized maximum velocity in tube 

axis Umax /Uc , and the phase lag of the velocity field, ζ (normalized by π), as a 

function of α. In the figure, the numerical results agree well with the analytical 

solution. It seems when oscillatory pressure gradient changes very fast and it is 

impossible for velocity field to reach the fully developed velocity profile with 

maximum value Uc. 

In the 3D Womersley flow simulations, to implement the uniform oscillatory 

pressure gradient, besides the scheme of both inlet and outlet pressures specified, 

the scheme of adding an equivalent oscillatory body force is also applicable 

(Cosgrove et al. 2003). When applying a uniform equivalent body force, the 

periodic boundary conditions should be imposed at the open ends of the pipe. 

After each collision step was implemented, the following oscillatory body force 

term (Guo et al. 2002b) 

 ( ) ( ) ( )[ ] ααββαββα δτω FceuecueS siisiii
42211' +−−=   i=1,2…..,8, (4.8) 
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should be added into the post-collision distribution function fi
+ as Eq. (4.9). 

 '),,(),,( iii Strxftrxf += ++     i=1,2…..,8. (4.9) 

In above Eq. (4.8), F=( p*cos(ωt), 0 ) is the body force. As the analysis of Guo et 

al. (2002b) shown, the present source term (i.e., Eq(4.8)) should be accurate. It is 

also noticed that in our previous work (Lee, Huang and Shu, 2005), the oscillatory 

body force term was 2' siii cFeS ααω=  (i=1,2…..,8) and is different from the 

present source term used. That is also valid since T in our previous work is very 

large (Guo et al. 2002b).  

4.3.1 Convergence Criterion and Spatial Accuracy 

To evaluate the error between the numerical and analytical solution, we 

introduce a velocity error formula which is illustrated in Eq. (4.10). At each time 

step the error can be defined as 

 

∑

∑ −
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ξ , (4.10) 

where u(ri) is the numerical solution, ua(ri) is the analytical velocity at ri in middle 

pipe. The overall average error <ξ> is averaged over the period T.  For all the 

cases in this study, the convergence criterion was set as following 
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where t was usually chosen as t=1+nT in this study. 

As we know, for the wall boundary condition, the extrapolation scheme (Guo 

et al. 2002a) or bounce-back scheme with interpolation (Bouzidi et al. 2001) can 
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be used. For the axisymmetric boundary condition, specular reflection scheme (i.e., 

slip wall boundary condition) or axisymmetric extrapolation scheme can be used. 

In this part, the overall spatial accuracy of the axisymmetric model B 

incorporating difference boundary conditions was evaluated. To eliminate the 

compressible effect and focus on the spatial accuracy evaluation, the equivalent 

oscillatory body force (Eq. (4.8)) was added into the post-collision distribution 

function and periodic boundary condition was used for two open ends of the pipe.  

Here in all simulations, the pipe length was chosen as 4Nr, where Nr is the 

number of lattice nodes in the radius (usually Nr excludes the extra layers outside 

the wall boundary). Two set parameters for our simulations of cases α=7.93 and 

α=3.17 when Nr =20 are listed in Figure 4.1. For a certain α, as Nr was increased α 

was kept constant by varying the period T accordingly within the range T>103. For 

cases of α=7.93 and α=3.17, the corresponding τ was kept constant at 0.6 and 1.0 

respectively. For all cases, p* was kept constant at 10-4.  

Firstly, the overall accuracy of the above two wall boundary conditions 

combining with specular reflection scheme was investigated. Figure 4.10 

illustrates the global errors as a function of the pipe radius Nr. In Figure 4.10, the 

solid lines represent the linear fits and the slope of each line is labeled. It seems 

the LBM incorporating the extrapolation wall boundary condition and specular 

reflection scheme (i.e., ‘Guo+slip’ in graph), is around second-order in space 

since the slope of the lines are -1.89 (α=7.93) and -2.01 (α=3.17). While the 

Bouzidi’s wall boundary condition slightly decrease the overall accuracy because 

the slope of the lines are -1.61 (α=7.93) and -1.83 (α=3.17). 

The overall accuracy of Guo’s wall boundary condition combining with 

axisymmetric extrapolation scheme for axisymmetric boundary was investigated. 
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Figure 4.11 shows the global errors as a function of the pipe radius Nr for α=7.93. 

It is found that this combination can only give first-order accuracy. 

 Hence, in the following simulations of this Chapter, the extrapolation wall 

boundary condition and specular reflection scheme for axisymmetric boundary are 

applied. 

4.3.2 Validation by Cases with Different Womersley 

Number 

In this part, the 3D Womersley flow results obtained by axisymmetric model 

B would be compared with the analytical solution. Here the scheme of adding 

oscillatory body force term was used to implement the uniform oscillatory 

pressure gradient. 

As a typical Reynolds number in the Abdominal aorta is about 1250 and a 

typical Womersley number α=8 (Artoli et al., 2002), in our simulations, firstly the 

case of Re=1200, α=7.93, T=1200, τ=0.6 was performed with Nr=21 and the 

corresponding Uc=1.0. The numerically evaluated velocity profiles along the 

radius are compared with the exact analytical solutions of Eq. (4.7) in Figures 4.12. 

In the figure, the velocity is normalized by Uc and the r-axis is normalized by the 

radius of the tube. Although in this case Uc=1.0, the Umax observed in whole 

oscillatory period is only about 0.063, M=0.063 3≈0.109<<1, which satisfy the 

limit of LBM. 

In the above study, parameters T=1200, τ=0.6, Uc=1.0 were chosen to avoid 

numerical stability and save CPU time. In the following, an example is given to 

illustrate this issue. If Uc=0.1 was assigned, to fix the parameter Re and α and use 

the same grid, the ν should be 1/300 and then τ is 0.51 with τ very close to 0.5, 
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numerical instability may appear. On the other hand, the corresponding T value 

would be 12000 and not just 1200. Hence much more CPU time is required. 

However, Uc=1.0 in this case is correct as in the whole period of the pulsatile flow 

M<<1. 

The overall numerical average error of the above case is about 1.23%. While 

Artoli, et al. (2002) mentioned that the overall average error for almost the same 

3D case is around 7% using standard D3Q19 model with the curve boundary 

condition proposed by Bouzidi, et al. (2001). Present better performance may be 

due to the incompressible D2Q9 model (He and Luo, 1997a) we used in our 

axisymmetric model derivation. The second order extrapolation wall boundary 

treatments may also account for the better performance. 

In the following, two more cases of different Womersley number were 

simulated. Figure 4.13 and Figure 4.14 show the velocity evolution of an 

oscillation over a period for α=1.373 and 24.56, respectively. For the case 

illustrated in Figure 4.13, T=4000, Re=1.2, τ=1.5, Uc=0.01, Nr= 21, which is a 

viscous-dominated system (Cosgrove et al. 2003). For case illustrated in Figure 

4.14, T=1000, Re=1920, τ=0.7, Uc=0.8, Nr=81, which is a momentum-dominated 

system in the laminar regime (Cosgrove et al. 2003). 

As we know, the shear stress tensor computation is important (e.g., for the 

study of hemodynamics). In LBM simulations, the shear stress tensor σxr can be 

conveniently calculated from Eq. (4.1). This calculation is usually implemented 

during the collision process. Here an example with α=7.93, T=1200, τ=0.6, 

Re=1200, Nr=21 are shown in Figure 4.15. In the figure, the numerically evaluated 

shear stress were compared with analytical solutions along the radius at time 

t=nT/16 (n=1,…,16). The numerical results agree well with analytical solution.  
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4.3.3 Comparison of Schemes to Implement Pressure 

Gradient 

All the above accurate results were achieved through adding force term into 

post collision step. Here, we would also like to make further investigation on the 

two schemes to implement pulsatile pressure gradient. In the Table 4.2, the 

performance of two schemes was compared. Here, in all of the cases considered, 

α=3.963, mesh size Nx×Nr=41×21, T=4800 and the convergence criterion is Eq. 

(4.11).   

For the scheme of specifying inlet/outlet pressure, from the derivation in 

Chapter 3, we notice that the value Lx/(csT) should be small enough to neglect the 

compressibility effect due to the time variation of pressure field (He and Luo, 

1997a). In these cases, T=4800>>Lx/cs=40 3 , which satisfy the limit. The physical 

meaning is that in the range of the distance Lx, the time, T, during which the flow 

field undergoes a macroscopic change must be greater than the time, Lx/cs (He and 

Luo, 1997a).  

From Table 4.2, we can see that for the scheme of specifying pressure on 

inlet/outlet boundary, the overall average error increase with ∆p between two ends 

or Reynolds number, which is consistent with the conclusion for 2D Womersley 

flow (He and Luo, 1997a). For the scheme of adding forcing term, the overall 

average error decreases slightly with ∆p. That also agrees with results of Artoli, et 

al. (2002). It seems that the scheme of applying additional forcing term has 

advantages than the scheme of specify pressure on inlet/outlet boundary for 

simulations of the 3D Womersley flow, which has uniform pressure gradient at 

any time. 
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4.3.4 Compressibility Effect and Comparison with 

Halliday’s Model 

    In this section, the compressibility effect was investigated in detail. One 

quantity that may represent compressibility is the mean variation of density. It is 

defined as 

 ( )( ) Ntx
tx∑ −=∆
,

2
0

0

),(1 ρρ
ρ

, (4.12) 

where the mean density is ρ0 and N is the total number of nodes. For comparison, 

three cases of Re=1200, α=7.93 were simulated by our axisymmetric model and 

Halliday’s model. In all simulations, Nx×Nr =41×21, the Re and α were kept 

constant through varying T , p* and τ value. In the three cases, the maximum 

Mach number Mmax in tube axis are 0.109, 0.055 and 0.022 respectively. The 

scheme of specifying inlet/outlet pressure was used to implement pressure 

gradient. The results of density fluctuation were listed in Table 4.3. The table 

shows that for both models of Halliday and present,  

∆ ( Mmax= 0.055) ≈
4
1 ∆ ( Mmax= 0.109), 

and  

∆ ( Mmax= 0.022) ≈
25
1 ∆ ( Mmax= 0.109). 

These results demonstrated that ∆ is proportional to M2. The ∆ obtained by our 

model and Halliday’s model are almost identical. In the following, another 

comparison was performed to show the advantage of our model more clearly. 

As we know, the velocity field error can also be employed to investigate the 

compressibility effect (He and Luo, 1997a). In this comparison, four cases with 

α=3.963, Nx×Nr =41×21, T=4800 were simulated using both present model and the 
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Halliday’s model. The scheme of specifying inlet/outlet pressure was chosen to 

implement pressure gradient. Table 4.4 shows the velocity field error measured by 

θ and <θ> . θ at time t is defined as 
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where the summation is over the radius in middle pipe and the overall average 

error <θ> is averaged over the period T. The θmax means the maximum value of θ 

in a sampling period. In Table 4.4, the Mmax in tube axis for case 1 to 4 are 0.054, 

0.108, 0.272 and 0.544, respectively.  

Comparing the maximum particular velocity error and the overall numerical 

average errors of two models in Table 4.4, it is observed that as Mmax in tube axis 

increase, the corresponding errors of Halliday’s increases much faster than present 

incompressible model. The observation is consistent with conclusion got for the 

standard and incompressible D2Q9 models (He and Luo, 1997a). Hence, 

comparing with Halliday’s model, present model can eliminate the compressibility 

effect. 

4.3.5 Comparison with 3D LBM: 

To show the performance of the proposed model, several cases were also 

simulated by the 3D incompressible LBGK model. The 3D simulation is based on 

the D3Q19 lattice velocity model. The mesh size used for the axisymmetric model 

is Nx×Nr =81×21, while in the 3D LBM simulation, the mesh size used is 

Nx×Ny×Nz= 81×41×41. Notice in 3D simulations the curvature wall boundary 

treatment (Guo et al., 2002a) was applied. In this comparison, two cases with 

parameters of α=7.93, T=1200, τ=0.6 were simulated. Table 4.5 listed the overall 
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numerical average error, period number to reach convergence criterion Eq. (4.11) 

and the CPU time required by our axisymmetric model B and 3D LBM.  

All the computations were carried out on a super computer (Compaq ES40: 

total performance of 5300 Mflops) in the National University of Singapore. It can 

be observed from Table 4.5 that the periodic number of iteration required by 3D 

LBM is equal to that of the axisymmetric model. However, the 3D LBM 

simulation takes about 280 times more CPU time than present axisymmetric 

model to obtain solutions. Hence, our axisymmetric model is much more efficient 

for such an axisymmetric pulsatile flow problem. According to the overall average 

error, the axisymmetric LBM result is slightly better than the 3D LBM result. One 

possible reason is that the axisymmetric model did not involve the error in the 

circumferential direction. 

4.4 Flow over an Axisymmetrical Sphere Placed in a 3D 

Circular Tube 

To further demonstrate the validation of our axisymmetric D2Q9 model, the 

flow over an axisymmetrical sphere placed in a 3D circular tube is also studied 

here. If the flow field is assumed axisymmetric, our present axisymmetric D2Q9 

model can be used to study this axisymmetric flow. The geometry of the ball and 

circular tube are illustrated in the Figure 4.16. The diameter of the ball is D and 

the diameter and length of tube are 2D and L, respectively. The Reynolds number 

is defined as Re= νDU 0 , where U0 is the maximum velocity in the inlet parabolic 

velocity profile. In all our LBM simulations, there are 30 lattice nodes in the 

radius of tube and uniform square grid is used.  

Using LBM, the cases of Re=50, 100 and 150 were carried out. The 
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streamlines for these cases are illustrated on Figure 4.17. For Reynolds number 50 

and 100, the flows are passing over the sphere without separation. For Re=150, 

there is a circulation zone immediately behind the sphere.  

 To validate our LBM results, the axial velocity profiles in different axial 

positions are compared with those obtained by FVM in Figure 4.18. It seems that 

the axial velocity profiles all agree very well with those given by FVM. The axial 

and radial velocity profiles in different axial position for Re=150 are also 

compared with those given by FVM in Figure 4.19. It is found that both the axial 

and radial velocity profiles given by our LBM simulation are highly consistent 

with those given by FVM. 

4.5 Test of Multi-block Strategy by 2D Driven Cavity 

Flows  

To validate our 2D multi-block LBM solver, in this part, benchmark problem 

of 2D driven cavity flow was simulated. In this problem, the top boundary moves 

from left to right with velocity U. In all of our simulations, the uniform top 

velocity was set as U=0.1 and character length L=256. The non-equilibrium 

distribution function extrapolation method (Guo et al. 2002c) was used for top 

moving boundary condition and the non-slip boundary condition (Guo et al. 2002a) 

was also used for the other three stationary wall boundary. In our simulations, 

Cartesian coordinates with the origin located at lower left corner were used. 

Initially, the velocities of all nodes except the top nodes are set to zero. For all the 

cases run in this section, steady state is reached when the difference between the 

maximum value of the stream function for successive 10,000 steps is less than 

10-5.  
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Our simulations were carried out for Re=400 using (i) a single block with a 

grid 67×67 (i.e., 64 lattice units in one side), and (ii) two block with a upper fine 

grid 133×37 and a lower coarse grid 67×50. For the coarse block, δxc=δtc=4 and 

τc=0.548, for the fine block δxf=δtf=2 and τf=0.596. Figure 4.20 shows the pressure 

contours of the single block case and multi-block case. Figure 4.21 shows the 

vorticity contours of the two cases. The vorcitity is normalized by µU/L. For the 

figures of the multi-block case, the interface between fine and coarse mesh is also 

plotted. It is observed that in the single-block case, since only 64×64 grid points 

with dx=4 cover the physical domain 256×256, oscillations exist for the pressure 

and vorticity contours in the upper corner regions. While for the results of 

multi-block case, the pressure and vorticity contours are smoother and resolution 

on upper corner region is improved significantly.  

 Figure 4.22 shows the stream function for above two cases. The ψmax value for 

the primary vortex and the ψmin values for the lower left and lower right vortices 

along with the x and y coordinates of the center are listed in Table 4.6. The 

maximum stream function value for single-block and multi-block case are 0.1108 

and 0.1092 respectively. Compared with the result of Ghia et al. (1982), for stream 

function, the single-block case is slightly more accurate than the multi-block case. 

That may be due to the interpolation error introduced at the interface.  

To investigate the spatial convergence rate, two relative velocity errors, the 

L1 and L2 error were calculated according to the following formula 
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where u, v are the x and y components of the velocity at a lattice node, 

respectively. The subscript 0, 1 indicate the 259×259 case and two-block cases, 

respectively and the sums are taken over the entire lattice system. Figure 4.23 

shows the overall spatial convergence rate of single-block cases and two-block 

cases. The lattice units of multi-block cases are based on the horizontal lattice 

units on the lower coarse grid. For single-block case and multi-block case with 

same lattice units, although the higher resolution obtained in upper corner region 

in multi-block case, the errors E1 and E2 of multi-block case are slightly larger 

than those of single-block case due to the interpolation error. However, it is found 

that the overall convergence rate of multi-block cases is approximately 

second-order in space. Hence, the linear interpolation accuracy is consistent with 

the second-order spatial accuracy of LBM. The above numerical experiments 

further proved that the common error introduced in the solution on the interface 

between coarse and fine grids due to the linear interpolation of fi
eq,c’s from the 

neighboring nodes of the coarse grid is consistent with the order of accuracy of the 

solution on the coarse grid (Fillippova and Hanel, 2000). 

4.6 3D Flow through Axisymmetric Constricted Tubes 

In this part, our 3D LBM program would be validated by the cases of 3D flow 

through axisymmetric constricted tubes. Accuracy and efficiency of 3D LBM 

solver are compared with that of finite volume solver (i.e., FLUENT).  

Geometry of the constrictions is described by a Cosine curve. The geometry 

of the stenosis is shown in Figure 4.24. If r0 is the radius of the nonstenotic part of 

the tube, radius of the stenosis r(x) is given by following formula 

 r(x) = r0 –βr0{1+cos[πx/D]}/2  (-S0< x <S0) (4.16) 
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where D=2r0 , 2S0 is the length of stenosis and β=50% is severity of the stenosis. 

In the cases studied here, S0=D.  

In our simulations, the 3D Cartesian coordinates with the origin located at 

center of the constriction were used. In Eq. (4.16), 22 zyr += . To make flow 

fully developed and save grid nodes, the upstream and downstream boundaries are 

at S1=-3D and S2=8D as illustrated in Figure 4.24.  

 In our LBM simulations, the 3D uniform cubic lattices were used and for 

curved wall boundary condition, the bounce-back scheme (Bouzidi et al. 2001) 

was used. Initially the velocities of all lattices are set as zero and the criterion of 

steady state is defined as  

 4
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where i, j are the lattice nodes in z=0 plane and u(i,j,t), v(i,j,t) are x,y component 

velocity at time t respectively.  

Firstly, to investigate whether the flow is axis-symmetric is interesting for 

such 3D simulation. To measure the asymmetry, a variable of state, χ is defined as 

(Luo, 1997) 

 [ ]2)()(∑ Ω∈
−=

ji,x ji,ji, xx uuχ  (4.18) 

where Ω is one of eight planes illustrated in Figure 4.25. Plane i can be described 

in cylinder coordinate system by 4/)1( πϕ −= i , ( 81 ≤≤ i ). ijx  is an 

axisymmetric node of ji,x . It is obvious that when the flow pattern is 

axisymmetric, χ=0. However, the value of χ, is not exactly zero when the system 

reaches its steady state, which depends on the system size in the simulation. To 

investigate value of χ, cases of Re=10, 50 and 150 were simulated. Through 
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observation made with two lattice system sizes, Nx×Ny×Nz = 221×23×23 (i.e., 20 

lattice units in a diameter) and 441×43×43 (i.e., 40 lattice units in a diameter), it is 

found that the values of χ at the steady state decays to zero as Nx
-3.  

Then, the results of 3D LBM and FVM are presented and compared. Appling 

the two solvers, the case of Re=10, 100 are simulated. In the following figures of 

velocity comparison, due to axis-symmetry, only the data along a radius are shown 

for results obtained from FVM. 

The case of Re=10 was simulated using a lattice size lattice system sizes 

Nx×Ny×Nz = 331×33×33 (i.e., 30 lattice units in a diameter). In Figure 4.26, the 

normalized axial and radial velocity component U, V profiles in different x 

positions, wall vorticity and pressure drop along axis obtained by Lattice BGK 

method are compared with those of FVM. It is found that the results obtained by 

LBGK and FVM agree very well. The wall vorticity of the LBGK solution has 

small discrepancy with that of FVM. That is easy to explain since the finite 

difference method was involved in vorticity calculation and only 31 fluid lattice 

nodes in a nonstenotic diameter.  

In Figure 4.27, for case of Re=100 and Nx×Ny×Nz = 441×43×43 (i.e., 40 lattice 

units in a diameter), comparisons of the normalized axial and radial component 

velocity at different axial position are illustrated. The results of LBGK method 

agree well with that of FVM. 

 In the following part, the accuracy and efficiency of 3D LBM solver are 

investigated in detail. For comparison purpose, a pressure-based finite-volume 

Navier-Stokes solver, FLUENT (a commercial software), is used. When applying 

FLUENT, we used an implicit solver, which is relatively efficient in obtaining 

steady-state solutions. However, the LBM is a time-accurate explicit solver. We 
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should notice the difference when we compare their efficiency. Actually, some 

other studies (e.g., Noble et al., 1996) have found that the LBM is as efficient as 

conventional methods when similar explicit time-marching schemes are used. 

For comparison, three uniform meshes with Nx×Ny×Nz = 111×13×13(coarse), 

221×23×23(medium) and 441×43×43(fine) grid nodes are used for LBGK solver 

to simulate case of Re=10. Each finer mesh is obtained by doubling the number of 

cells of the coarser mesh in each direction. Unstructured linear brick element 

meshes with equivalent total grid nodes are generated for FVM solver.  

The overall order of accuracy of a solution can be estimated using the 

following formula (Ferziger and Peric, 1999) 
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where φ represents a dependent variable; N is the total number of points compared; 

and subscripts h,2h,4h stand for solutions on fine, medium, and coarse meshes 

with grid spacing doubled each time. Here, the accuracy is presented in terms of 

u-velocity component. With φ=u in Eq. (4.19), the order of accuracy for LBGK 

solver estimated from the solutions with the three grids is 1.89. The average 

discretization error of a simulation on mesh h can be estimated via the Richardson 

extrapolation (Ferziger and Peric, 1999) as  
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In the above, the denominator in the first equation is the estimated average 

“exact’’ solution and n in the second equation is the order of accuracy of the 

solver obtained from Eq. (4.19) (Lai et al., 2001). If Eq. (4.20) is used to estimate 

the average errors on the medium and fine meshes for u velocity, it is found that 

LBGK solutions have discretization errors of about 1.33% and 0.40% for the 
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medium and fine mesh, respectively.  

The efficiency of each solver is evaluated by comparing the respective 

computing times required. This comparison is not straightforward. To minimize 

the influence of computers and convergence criterion, in this study, both the 

LBGK solver and FLUENT are executed on a super computer (Compaq ES40: 

total performance of 5300 Mflops) in the National University of Singapore. The 

initial conditions of the flow field are the same. The residual used to monitor the 

convergence is defined using the u-momentum equation for two solvers, and they 

are defined as (Lai et al., 2001)  
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Note that all the computations are carried out on a single-CPU of the computer 

Compaq ES40, which does not take parallel advantage of the lattice Boltzmann 

method. In Table 4.7, it seems that the lattice BGK simulation takes about 6-10 

times more CPU time to obtain the steady-state solutions when compared with 

FVM (FLUENT) implicit solver.  

4.7 Three-dimensional Driven Cavity Flow  

Flow structure in the 3D driven cavity is more complex than 2D driven cavity, 

as shown by Iwatsu et al. (1989). The presence of side-walls produces totally 3D 

vortex structure in cavity. Due to the corner singularity in 3D driven cavity flow, 

the macro-dynamic variables gradient near to the region of upper corner is very 

high. 3D simulations are very time-consuming and it is hard to obtain accurate 

results near the region with a uniform coarse grid for computation. Here the 
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multi-block strategy applied to the 3D driven cavity problem. The multi-blocks is 

constructed based on a single coarse block Nx×Ny×Nz= 65×65×65 as shown in 

Figure 4.28. The grid resolution near to the upper corner (block A and B) is 

increased by a factor of 2. In this multi-block case δxc=1 and δxf=0.5. The number 

of Lattices for block A,B,C,D and the range in x,y,z direction are listed in Table 

4.8. For comparison purpose the simulation of cubic driven cavity flow with a 

uniform grid Nx×Ny×Nz = 65×65×65 is also performed. 

There are two schemes to handle boundary conditions. For the first scheme, 

the side length of cubic cavity is H=62δxc with 63 coarse lattice nodes. The coarse 

block is located in Cartesian coordinates -δxc≤x≤63δxc, -δxc≤y≤63δxc, 

-δxc≤z≤63δxc. All of the six most outside layer lattices are defined as “wall nodes” 

with q=0 (refer to Figure 2.4) to implement the curve boundary treatment. The 

other inner 63×63×63 lattice nodes are defined as “fluid nodes”. Initially, the 

velocity at all “fluid nodes”, except the top layer “fluid nodes”, is set to zero and 

uniform fluid pressure p0=1.0cs
2 is imposed initially. The non-equilibrium 

distribution function extrapolation method (Guo et al. 2002c) was used for top 

moving boundary condition. The upper corners are singularity points can be 

treated as part of lid or stationary wall, our test shown that there is little difference.  

For the second scheme, the top moving lid can be located between two layers 

(e.g., y=63δxc, y=62δxc) with q=0.5 and other stationary walls are all located 

between two lattice layers (e.g., the bottom wall can be located between y=-δxc 

and y=0) with q=0.5 (refer to Figure 2.4). Hence, the side length of cubic cavity is 

H=63δxc. Since the above two schemes give similar results, here only the result of 

first treatment is presented.  

For the multi-block case, it is easy to understand that the boundary conditions 
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can be handled with the first scheme or combine of both schemes. Here we also 

only present the results with first treatment. 

Next, the results of single-block case and multi-block case for Re=400 are 

presented. The Reynolds number defined as Re=UH/ν. The top lid moves with 

velocity U=0.2 in x direction. For incompressible model, U=0.2 is still valid. For 

the multi-block case, the relaxation time parameter is τc =0.593 for the coarse grid 

block and τf =0.686 for the fine-grid block. Here, the Multi-block Navier-Stokes 

solution obtained by Salom (1999) used as the benchmark result. 

The positions of the centers of the primary vortices in the plane z=H/2 are 

listed in Table 4.9. It seems the result of multi-block case is more accurate than 

the single-block case.  

In Figure 4.29, the ux profiles at x/H =z/H =0.5 using multi blocks and a single 

block is compared with the benchmark solution (Salom, 1999) for Re=400. In 

Figure 4.30, uy profiles at y/H =z/H =0.5 using multi blocks and a single block is 

also compared. From Figure 4.29 and Figure 4.30, we can see that both 

single-block solution and multi-block solution agree well with the benchmark 

result. The solution of multi-block LBGK is better than that of single coarse 

block. 

From the above comparison, we can see that although the single block method 

with 65×65×65 lattices can obtain satisfactory velocity field, the multi-block 

method can improve the numerical accuracy.  

Figure 4.31 shows a pressure contour of p=0.3318 from the single-block case. 

In Figure 4.31, the pressure contour exhibits oscillations near the upper corner due 

to the insufficient resolution near the singularities. Figure 4.32 shows the same 

pressure contour obtained from the multi-block case. It is observed that except the 
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very small oscillation near the conjunction area of moving lid and stationary walls, 

the pressure contour becomes much smoother than that in Figure 4.31. In Figure 

4.32, we also observed that the pressure contour is rather continuous across the 

interface of block B, C and interface of block B, D. Hence, the multi-block 

method can highly improve the accuracy of pressure field near the singularity 

corner area.  

Finally, to validate the spatial and temporal interpolation of post-collision 

distribution functions, particle paths, pressure, mass flux and momentum flux near 

the block interfaces were examined in detail in the following. For the multi-block 

LBGK method, the interpolation is only applied to distribution function and other 

macro-dynamic variables are conserved automatically across the interfaces (Yu et 

al, 2002).   

 Figure 4.33 illuminates a picture of particle paths. The particle paths are all 

pass through in the secondary eddy area. For observation convenience, only part 

of the each particle path is shown. The particle paths are all continuous across the 

interfaces.  

Figure 4.34 shows the pressure contours on the interface between the block B 

and C. The dashed curves represent the contours in fine grid B and the solid 

curves represent the contours in coarse grid C. The dashed curves and solid curves 

are match very well. It is also observed that the contours are very smooth except 

the conjunction area of moving lid and stationary wall. The area shown in Figure 

4.34 and Figure 4.35 is x=47δxc, y∈[48δxc, 61δxc], z∈[δxc, 61δxc]. Figure 4.35 

shows that mass and momentum fluxes on the interface between the block B and 

C, where ρ= p/cs
2. The dashed contours all agree well with the solid contours. The 

mass ρux, ρuy,and momentum ρux
2 cross the interface seems very continuous.  
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The 3D multi-block LBGK cases are simulated on a super computer (Compaq 

ES40: total performance of 5300 Mflops) in the National University of Singapore. 

The CPU time for this multi-block case is about 2,360 minutes. There are about 

525,000 lattice nodes (280,000 fine lattice nodes and 245,000 coarse lattice nodes) 

in the computational domain. If a single fine block Nx×Ny×Nz =127×127×127 was 

adopted, totally about 2,048,000 lattices, the CPU time and memory requirement 

may increase dramatically. Considering one time step in the coarse grid requires 2 

time steps in fine grid block, for a single uniform fine block, the CPU time for the 

single fine block case can be estimated as 

2,360×(2,048,000×2)/(280,000×2+245,000)~ 12,000 min (7.3day) 

Hence, here the multi-block LBGK method can save more than 80% CPU time 

compared with uniform fine case while the multi-block method can still obtain 

accurate resolution in most regions. 

4.8 Multi-Block for 3D Flow through Stenotic Vessels 

Here, a 3D test case of fluid flow through constricted circular pipe is 

investigated. The geometry of the stenosed tube is the same as that illustrated in 

Figure 4.24 and Eq. (4.16) with S0=D/2.  

For this case, the curved boundary treatment is important. Figure 4.36 shows 

a 2D projection of the discretized domain at x=3.0D and the boundary nodes 

(denoted by open circular) on the yz plane where tube diameter is 16 lattice units. 

Geometrically, the fraction of the intersected link q∈[0,1) is not constant over the 

entire boundary for the simulation of the pipe flow.  

A case of Re=50 with a single block Nx×Ny×Nz =177×19×19 (i.e., 16 lattice 

units in a diameter) was simulated. The parameter are U=0.1 and τ=0.596. 
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However, the calculation procedure is unsuccessful and results cannot be obtained 

due to numerical instability. Because there are only 8 lattice units for throat 

diameter, this single block seems too coarse to describe such a tube with complex 

geometry. Hence, we refined the grid resolution of region near the stenose 

increased by factor 2, the multi-block strategy illustrated in Figure 4.37. The front 

coarse block lattices is Nx×Ny×Nz =25×19×19, x∈[-3.0D,-1.5D], the rear coarse 

block Nx×Ny×Nz =105×19×19, x∈[1.5D,8D], For the fine block involving the 

throat Nx×Ny×Nz =101×37×37, (i.e., 32 lattice units in a diameter), 

x∈[-1.5625D,1.5625D].  

The multi-block case for Re=50 is successful. The u,v velocity profiles at 

x=0.5D, D and 2D are illustrated in Figure 4.38. For comparison, the solution 

obtained from a pressure-based finite-volume Navier-Stokes solver (FLUENT, a 

commercial software) is used as a benchmark in this study. To get accurate result, 

the Navier-Stokes solution was obtained from very fine meshes. Both the ux and 

uy component velocity profiles at different x position agree very well with those of 

FLUENT solution. To demonstrate the velocity continuity across the interface, 

Figure 4.39 shows the exemplary particle paths in this case. We can see the 

velocities conserved continuity crossing the interface. 

From this 3D multi-block case, we can see that adopting a fine grid in 

complex geometry regions can get high resolution in these regions and satisfy the 

LBM stability requirement. While on the other region, coarse mesh may be 

enough to obtain accurate resolution. Hence multi-block LBM can save CPU time 

as well as memory compared with the case with a single fine grid.  
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4.9 Summary 

As we can see in section 4.1, with the implementating our axisymmetric 

model, most of the velocity derivations can be conveniently calculated from 

appropriate higher order momentums of non-equilibrium distribution function. 

Through using our axisymmetric boundary conditions, the singularity problem in 

simulations of Halliday et al. (2001) is avoided. 

In simulations of flow through a constricted tube, compared with FVM 

solution, our axisymmetric model A, B and C can all give accurate results while 

the model of Halliday et al. (2001) can only give relatively poor result. Since the 

model B has the simplest form, this model is subsequently used mainly in all our 

applications. 

The 3D Womersley flow simulations with different Reynolds number and 

Womersley number further validated our axisymmetric model B. The LBM 

incorporating the extrapolation wall boundary condition and specular reflection 

scheme (i.e., ‘Guo+slip’ in graph), is around second-order in space. While the 

spatial convergence ratio of Bouzidi’s wall boundary condition is about 1.6. 

It is found that applying additional forcing term can eliminate the overall 

average error in velocity field than the scheme of both pressures on inlet and 

outlet boundary specified for simulations of the 3D Womersley flow, which has 

uniform pressure gradient at any time. 

It is observed that compared with Halliday’s model, the present model can 

eliminate the compressibility effect. It is also observed that our axisymmetric 

model is much more efficient for such an axisymmetric pulsatile flow problem 

than direct 3D LBM simulation. The study of flows over an axisymmetrical 

sphere placed in a 3D circular tube further validates our models. 
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The multi-block strategy was tested here to solve flow problems efficiently 

and achieve higher resolution in regions involving large gradient of macro-dynamic 

variables, the whole computational domain was decomposed into several 

sub-domains. Some sub-domains adopted fine grids, the others adopted coarse 

meshes.  

In our study, 2D driven cavity flows were simulated to test the accuracy of 

linear interpolation in interface of coarse mesh and fine mesh. Our numerical 

experiments further proved that the common error introduced in the solution on 

the interface between coarse and fine grids due to the linear interpolation in space 

and time is consistent with the order of accuracy of the solution on the coarse grid. 

The accuracy and efficiency of 3D LBM solver are tested through simulations 

of steady flow through constricted tube. Our 3D LBM solver approximately has 

second-order accuracy in space (i.e., spatial convergence rate is 1.89). It seems 

that the 3D LBM simulation takes about 6-10 times more CPU time than 3D FVM 

(FLUENT) implicit solver to obtain the steady-state solutions. 

Two 3D multi-block cases were simulated to validate the bilinear 

interpolation on the interface of coarse grid and fine grid. One is the 3D driven 

cavity flow and the other is the 3D steady fluid flow through axisymmetric 

constricted tubes. It seems the solution of the 3D multi-block LBGK is more 

accurate than that of a single block. The continuity of pressure, velocity, mass and 

momentum fluxes on interfaces were presented. For simulation of 3D flow 

through axisymmetric constricted tube, multi-block case improves numerical 

stability of single-block case and obtained accurate result. 
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Table 4.1 Parameters for simulations of cases α=7.93 and α=3.17 when Nr =20 

 
 α=7.93 α=3.17 

p* 0.0001 0.0001 
T 1200 1500 
τ 0.6 1.0 

 
 
 

Table 4.2 The overall average error <ξ> comparison for two schemes to 
implement the pressure gradient 

 
Scheme 

Cases 
Scheme of Addition 

Force term <ξ> 
Scheme of Specify 

pressure on inlet/outlet 
BC <ξ> 

Re=12, p*=10-5  8.14e-3  9.01e-3 
Re=120, p*=0.0001  6.88e-3  1.54e-2 
Re=600, p*=0.0005  6.78e-3  6.62e-2 

 
 
 
 

Table 4.3 Mean density fluctuation 

 
 
 
 

Table 4.4 The error of velocity field in 3D womersley flow 

 
 
 
 
 
 

Halliday’s 
model 

Present 
model 

Models 
Cases 

∆ (%) ∆ (%) 
Mmax= 0.109,  τ=0.6 ,  p*=0.001 cs

2,  T=1200 1.657 1.659 
Mmax= 0.055,  τ=0.55 , p*=0.00025 cs

2, T=2400 0.4117 0.4118 
Mmax= 0.022,  τ=0.52,  p*=0.00004 cs

2, T=6000 0.0658 0.0658 

Halliday’s model   Present model Models 
Cases θmax <θ> (%) θmax <θ> (%) 
1 Re=120, p*=0.0001 0.00670 0.0484 0.00661  0.0462 
2 Re=240, p*=0.0002 0.0148  0.145 0.0154 0.135 
3 Re=600, p*=0.0005 0.0736  0.781 0.0581   0.697 
4 Re=1200, p*=0.001 0.385   2.93 0.191   2.44 
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Table 4.5 Comparison of CPU time and error between two lattice BGK model for 
3D womersley flow 

 
Cases Models To satisfy 

convergence 
criterion, Total 

iterate Period (T) 

CPU 
(min) 

<ξ> 

3D (D3Q19) 24 338 1.288e-002 Re=1200 
2D (present model) 24 1.20 1.145e-002 

3D (D3Q19) 24 281 1.193e-2 Re=120 
2D (present model) 24 1.16 1.165e-2 

 
 
 
 
 
Table 4.6 Vortex Centers, Stream function and Location for Multi-block scheme 

 
  Primary vortex Lower left vortex Lower right vortex 

Re  ψmax x y ψmin x y ψmin x y 

400 A 0.1108 0.5569 0.6081 -5.03e-6 0.0460 0.0468 -5.17e-4 0.8905 0.1247 

400 B 0.1092 0.5627 0.6108 -4.15e-6 0.0465 0.0466 -6.12e-4 0.8757 0.1254 

400 C 0.1139 0.5547 0.6055 -1.42e-5 0.0508 0.0469 -6.42e-4 0.8906 0.1250 

A present simulation with grid 67×67 
B present simulation with two-block (a upper fine grid 133×37 and a lower coarse 
  grid 67×50 ) 
C Ghia et al., 1982 
 

 

Table 4.7 Comparison of CPU times in minutes to get 3 order of residual 
reduction for steady flow through constricted tube (Re=10) (number in 

parentheses is the number of steps) 
 

solver Coarse mesh  Medium mesh Fine mesh 
LBGK 

simulation 
4.3 (3,600) 80.8 (8,947) 2101 (21,240) 

FVM(FLUENT) 0.5 (30) 6.2 (120) 323.2 (370) 
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Table 4.8 The number of Lattices for block A,B,C,D and range in x,y,z direction 
 
BLOCK 3D Lattices  

Nx×Ny×Nz 

x y z 

A (fine) 33×33×129 [-δxc, 15δxc] [47δxc, 63δxc] [-δxc, 63δxc] 

B (fine) 33×33×129 [47δxc, 63δxc] [47δxc, 63δxc] [-δxc, 63δxc] 

C (coarse) 35×17×65 [14δxc, 48δxc] [47δxc, 63δxc] [-δxc, 63δxc] 

D (coarse) 65×49×65 [-δxc, 63δxc] [-δxc, 48δxc] [-δxc, 63δxc] 

 

 

Table 4.9 The position of the center of the primary vortices in plane z=H/2 
 

Method x/H y/H 

Multi-block LBGK 0.624 0.582 

Single-block LBGK 0.623 0.574 

NS solution (Iwatsu et al. 1989) 0.625 0.587 
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Figure 4.1 Geometry of constricted tubes 
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Figure 4.2 Velocity profiles in different position in case of S0=D, Re=50 
 
 
 
 
 
 

 
 

Figure 4.3 Relative error η in simulations with model A,B and C 
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Figure 4.4 Velocity profiles in different position in case of S0=D, Re=100 
 

 
 

Figure 4.5 Streamlines and shear stress contours for case of S0=D, Re=100 
 

 

Figure 4.6 Wall vorticity for case of S0=D, Re=100 
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boundary

Fluid

 
 
Figure 4.7 Scheme to obtain wall shear stress and wall vorticity, the open square 

and circle represents the lattice node outside and inside of the boundary 
respectively. The near-wall fluid lattices are represented by filled circle.  

 
 
 
 
 
 
 

 
 
Figure 4.8 Results obtained from model of Halliday et al. for case of S0=D, Re=10 
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Figure 4.9 Maximum velocity in the axis of tube and the phase lag as a function of 

Womersley number 
 
 
 

 
 

Figure 4.10 The global error <ξ> as a function of the pipe radius Nr for α=7.93 
and α=3.17 
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Figure 4.11 The overall accuracy of extrapolation wall boundary condition 
combining with axisymmetric extrapolation scheme  

 
 
 
 
 

 
 
Figure 4.12 Profiles of decreasing and increasing velocities along the radius of a 

tube for α=7.93, T=1200, Re=1200, τ=0.6, at t=nT/16 (n=0,…,15) (Uc=1.0, 
actually Umax~0.07) 
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Figure 4.13 Profiles of velocities along the radius of a tube for α=1.37, T=4000, 
Re=1.2, τ=1.5, at t=nT/16 (n=0,…,15) (Uc=0.01) 

 
 
 

 

 
 
Figure 4.14 Profiles of velocities along the radius of a tube for α=24.56, T=1000, 

Re=1920, τ=0.7, at t=nT/16 (n=0,…,15) (Uc=0.8, actually Umax~0.0056) 
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Figure 4.15 Shear stress in a oscillatory tube flow for case α=7.93, T=1200, 
Re=1200, τ=0.6, at t=nT/16 (n=0,…,15) 

 
 
 

 
 

Figure 4.16 Geometry of flow over an axisymmetrical sphere placed in a 3D 
circular tube  
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Re=50

Re=100

Re=150

 
 

Figure 4.17 Streamlines for flows over an axisymmetrical sphere placed in a 3D 
circular tube at Re=50, 100 and 150 

 

 
 

Figure 4.18 Velocity profiles in different position for flows over an 
axisymmetrical sphere placed in a 3D circular tube (a) Re=50, (b) Re=100 
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Figure 4.19 Velocity (a) ux, (b) ur profiles in different position for flow over an 
axisymmetrical sphere placed in a 3D circular tube Re=150 
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Figure 4.20 Pressure contours for Re=400 (a) single-block case with a grid 67×67 
and (b) two-block case with a upper fine grid 133×37 and a lower coarse grid 

67×50 
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Figure 4.21 Vorticity contours for Re=400 (a) single-block (67×67) case and (b) 
two-block case (a upper fine grid 133×37 and a lower coarse grid grid 67×50 ) 
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Figure 4.22 Stream function for Re=400 (a) single-block (67×67) case and (b) 
two-block case (a upper fine grid 133×37 and a lower coarse grid grid 67×50 ) 
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Figure 4.23 Spatial convergence rate for Re=400. The errors E1 and E2 are 

calculated relative to results obtained on a 259×259 grid. (a) Slope of linear fit of 
E1 (two-block case) is m=-2.21±0.16. Slope of linear fit of E1 (single-block case) 
is m=-2.12±0.38. (b) Slope of linear fit of E2 (two-block case) is m=-2.09±0.18. 

Slope of linear fit of E2 (single-block case) is m=-1.76±0.20.   
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Figure 4.24 Three-dimensional geometry of the stenosis in 3D Cartesian 
coordinates 
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Figure 4.25 u velocities in the 8 planes were investigated for asymmetry 
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Figure 4.26 Solutions of 3D LBM and FVM (Re= 10) 

 

 
Figure 4.27 Axial and radial velocity profiles in a 3D constricted tube (Re=100) 

0

10

20

30

40

50

60

y

0

10

20

30

40

50

60

x

0

10

20

30

40

50

60

z

X

Y

Z

A

B

C

D

U

 
Figure 4.28 Geometry and multi-block strategy of 3D driven cavity flow 
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Figure 4.29 Comparison of ux profiles of the LBM multi-block case and 
single-block case with a Navier–Stokes (NS) solution (Salom 1999) at x/H =z/H 

=0.5 for Re=400 in a 3D lid-driven cavity flow. 
 

 

 
 
Figure 4.30 Comparison of uy profiles of LBM multi-block case and single-block 

case with a NS solution (Salom 1999) at y/H =z/H =0.5 for Re=400 in a 3D 
lid-driven cavity flow. 
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Figure 4.31 A pressure contour obtained from the single 653 block solution 
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Figure 4.32 A pressure contour obtained from the multi-block solution 
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Figure 4.33 Exemplary particle paths of the steady solution at Re = 400. Particles 
pass through the downstream secondary eddy region. 
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Figure 4.34 The pressure contours on the interface between block B and C 
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Figure 4.35 Mass and momentum fluxes contours on the interface between block 
B and C 
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Figure 4.36 2D projection of the discretized domain and the boundary nodes 
(denoted by open circle) on the yz plane (D=16 coarse lattice units) 
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Figure 4.37 The multi-block strategy for a 3D constricted tube (xy plane) 
 

 
 

Figure 4.38 The velocity component ux and uy profile along a diameter in xy plane 
at x=0.5D, D and 2D  
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Figure 4.39 Exemplary particle paths of the steady solution at Re = 50.  
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 Chapter 5   Blood Flow through Constricted Tubes 

 In this chapter3, the steady and unsteady blood flows through axisymmetric 

and 3D asymmetric stenosed vascular tubes were studied. The viscous flows in 

large distensible blood vessels were also investigated. 

5.1 Steady and Pulsatile Flows in Axisymmetric 

Constricted Tubes 

5.1.1 Steady Flows in Constricted Tubes 

Firstly, the steady flows through a single constriction with different 

geometries were studied. In this study, geometry of the constriction is described 

by Cosine curve (i.e., Eq. (4.3)) and illustrated by Figure 4.1. For cases with 

severe constricted stenosis or higher Reynolds number, to improve the numerical 

stability of LBM and save CPU time, the multi-block strategy is used.  

Three cases of S0=D, Re=50 with β=40%, β=50%, β=60% were simulated. 

The area constriction of the three cases is 64%, 75% and 84%, respectively. Figure 

5.1 shows the streamlines of the above cases. When Re=50, streamlines of the 

case with 64% stenosis is smooth and no flow separation occurs in the 

downstream of the stenosis. For the case with 75% stenosis, there is a very small 

eddy behind the stenosis. For more severe constricted stenosis, there is a larger 

eddy behind the stenosis. The wall vorticity of the above cases normalized by 

ρU2/Re is illustrated in Figure 5.2. It is clear that for the same Reynolds number, 

                                                
3 Part of this work has been published as a conference paper: 
Huang, H., Lee, T.S., Shu, C., Simulation pulsatile flow in constricted tubes by 
Lattice Boltzmann method, Asian Joint Conference on Propulsion and Power 2006, 
Apr.20-23, Beijing, China 
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when the constriction is more severe, the maximum wall vorticity is larger. It is 

also clear that for case of 75% and 84% stenosis, the wall vorticity reverses to 

negative value behind the stenosis due to the flow separation.  

 Two cases with higher Reynolds number were simulated. In the two cases, 

S0=D, β=50% and Reynolds number is 200 and 400, respectively. The axial and 

radial velocity profiles of the two cases are shown in Figures 5.3 and 5.4. For high 

Re cases, the axial velocity profiles behind the stenosis are very different from the 

parabolic shape and there is an eddy behind the stenosis. To recover the initial 

parabolic shape, representing Poiseuille flow again, the distance downstream from 

the stenosis would be longer for higher Reynolds number. 

In the following, we would like to discuss the effect of distance between two 

adjacent stenoses on streamlines, shear stress, vorticity and velocity distribution as 

blood pass through them. 

The geometry of two stenoses and mesh are shown in Figure 5.5. If r0 is the 

radius of the nonstenotic part of the pipe, radius of the stenoses r(x) is given as 

following, 

 r(x) = r0 –βr0{1+cos[π(x-x0)/ S0]}/2  (-S0< x-x0 <S0), (5.1) 

where r0=D/2, β=50% is severity of stenoses and the axial length of each stenosis 

is 2S0. The distance between two stenoses is defined as L. In Eq. (5.1), for the first 

and second stenosis, x0=0 and x0=L, respectively. In our simulations, S0= D/2. The 

tube extends -3.5D and 17D upstream and downstream of the centre of the 

constriction, respectively.  

A group of results for L/D=1,2,3 with Reynolds number 10, 50 and 300 are 

illustrated in Figures 5.6, 5.7, 5.8, respectively.  

In the three figures, the flow streamlines are illustrated above the axis and the 
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shear stress contours are below the axis. The shear stress values labelled in the 

figures are normalized by ρU2/Re, where U is the characteristic velocity. The 

maximum normalized shear stress value for Re=10, 50 and 300 case are about 

40.40, 54.58 and 102.34 respectively. From Figure 5.6, we can see that when 

Re=10, the streamlines and shear stress contours for L/D= 1,2,3 are similar. The 

flow around each constriction almost has no interference with other.  

In Figure 5.7, three cases of Re=50 are illustrated. The streamlines and shear 

stress contours for L/D=2 and 3 are similar. The shear stress contours 

demonstrated that for case L/D=1, there are weak interference. The streamlines in 

cases of Re=50 clearly demonstrate flow separation and small eddies formed 

behind the stenoses.  

In Figure 5.8, we can see that when Re=300, between the two constrictions, 

there is a circulation zone which fills most part of the valley region. The shear 

stress fields are altered and the recirculatory eddy from the upstream constriction 

is spread downstream and affects the flow passing through the downstream 

constriction. In these cases, there are a separation streamline that divides the flows 

into two parts: the recirculating flow field between two constrictions and the main 

flow field near the center of the tube with relatively straight and parallel 

streamlines.   

The variations of the axial velocity and wall vorticity due to the influence of 

the constriction spacing ratios and Reynolds number are shown in Figure 5.9 and 

5.10 respectively. In Figure 5.9, it is obvious that the maximum axial velocity on 

axis does not occur at the throat because at that point, the fluid is still in 

acceleration and actually the maximum axial velocity occurs slightly downstream 

of each of the constrictions. For all cases with Re=300 and case of Re=50, L/D=1, 
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the maximum velocity value near the second constriction is slightly higher than 

the maximum value at the first constriction because the flow interference between 

the double constrictions exists. For the other cases with lower Reynolds number or 

large constriction spacing, the flow interference is very weak and the maximum 

velocity values near the two constrictions are almost same. 

For the wall vorticity, the magnitude of the wall vorticity value increases 

rapidly when the flow approaches the constriction and reaches a peak value 

slightly before the throat position. At a location downstream of the peak value the 

wall vorticity decreases rapidly and reverses to a negative value when the 

separation begins at the wall of the tube. It is also obvious that the peak wall 

vorticity value increases with increasing Reynolds number. For all cases of 

Re=300 and case of Re=50, L/D=1, the flow interference exists. In those cases, the 

second peak wall vorticity values are always lower than the first ones. However, 

for other cases, the flow interference is very weak and the two peak values are 

almost the same. 

5.1.2 Pulsatile Flows in Constricted Tubes 

In this part, the pulsatile flows in constricted tubes were simulated. The 

geometry of constricted tubes is also described by Eq. (4.3) and illustrated by 

Figure 4.1.  

The pulsatile flow is achieved by introducing a volumetric flow rate Q, which 

plotted in Figure 5.11. The flow rate Q is varied in a sinusoidal manner as Q(t) 

=(Qmax/2)[1-cos(2πt/T)], where Qmax is the maximum flow rate and T is the time 

period of the pulsatile flow. Although the physiological waveforms are not 

sinusoidal, the sinusoidal waveform has been considered a simple prototype of 
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physiological waveforms in a number of past experimental studies (e.g., Young 

and Tsai, 1973a) and is also adopted in our study. 

The Reynolds number defined as Re=UmaxD/ν. The characteristic velocity was 

defined as Umax=4Qmax/(πD2). As we know, when applying the lattice BGK model, 

the maximum velocity in flow field usually should not exceed 0.15 when cs= 31 . 

In present cases, the Umax was chosen as 0.02. The Womersley number is defined 

as νωα /R= . The Strouhal number is defined as ( )TUDSt max/2π= . 

In some previous computational study, a sinusoidally varying parabolic 

velocity profile was employed at the inlet (Liao et al., 2004, Mittal et al. 2003). 

That is valid when the upstream of constrictions (i.e., inlet segment) is long 

enough. However, if the inlet segment is short, the fully developed pulsatile flow 

profile should be employed since the pulsatile flow profile in a tube is 

significantly different from a parabolic profile when Womersley numbers greater 

than about one. As we know, in the physiological flow study, the Womersley 

numbers are all much greater than one. Hence, in our study, the profile of laminar 

fully developed pulsatile flow in a tube is employed as the inflow condition. This 

inflow is obtained from the following equation 
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102

2

δωχχ
ρ

ν ++=







∂
∂+

∂
∂−

∂
∂ t

r
u

rr
u

t
u

cn , (5.2) 

where χ0 and χcn are the steady and oscillatory pressure gradients, respectively. χcn 

and δ1 are chosen to satisfy the required minimum and maximum bulk velocity in 

Eq. (5.3).  
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The value of δ2 , σu was defined in the study of Uchida (1956). The final solution 
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of Eq. (5.2) is (Uchida, 1956) 
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It is noticed that in Eq. (5.4), different χcn should be chosen for different α to 

satisfy the Eq. (5.3). Form Eq. (5.4), we can see that the normalized inlet velocity 

profile only depends on the Womersley number. The profile shapes for α=4 and 8 

are shown in Figure 5.11 (b) and (c) respectively for four different phases in the 

pulsation.  

As we known, Reynolds number is defined as  

 
( )

( ) 35.0
Re maxmax

−
==

τ
δ

ν c
DUDU x   (5.5) 

In the following discussion, for convenience, c is equal to 1. Form Eq. (5.5) 

we can see that for a certain Re and D/δx (i.e., a certain uniform grid), if Umax 

decreases, τ would be closer to 0.5. As a result, for a certain Re and grid, to ensure 

the numerical stability, Umax should not be too small. On the other hand, Lx/csT 

should be very small to eliminate the compressible effect due to the time variation 

of pressure field. The above requirements mean Strouhal number may not exceed 

a certain number. For example, if Umax>0.02c, Lx=14D, Lx/csT<10-2, then 

 St=2πD/(UmaxT)<0.129. (5.6) 

From Eq. (5.5) and Eq. (5.6), it is found that increasing the numerical stability, 

which makes τ closer to 0.5, can decrease the characteristic velocity Umax so as to 

simulate high St cases. If the numerical stability is not improved, it is no way to 

simulate cases of higher Re and high St.  

The technique of increasing the mesh size is usually used to increase 
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numerical stability, which also means computational time increasing dramatically. 

Here multi-block strategy was used to increase numerical stability and save CPU 

time. As the study in Chapter 4, a fine mesh was used for the constricted part of 

the tube (there are 40 lattice nodes in a non-occluded radius).  

In the following part, some results are presented. The pulsatile flow in the 

constricted tube with Re=200, St=0.32, α=4.0 case was simulated. In the case, 

Umax = 0.02 and T=78500δtf, so as to ensure Lx/csT≈ 2.4×10-2.  

In our simulations, the zero velocities are initialized everywhere. At the inlet 

boundary, pulsatile flow velocity profiles were specified. In the outlet boundary, 

the outlet pressure was specified and 0=∂∂ xu  was also imposed.  

The pulsatile flow pattern at different time is illustrated in Figure 5.12. At 

beginning, the inlet velocity is very small and the vorticity in the tube is very 

small. The streamlines were almost parallel to the geometry of the tube. When the 

inlet velocity becomes larger, an eddy behind the constriction is formed and the 

magnitude of the wall vorticity value increases rapidly when the flow approaches 

the constriction and reaches a peak value slightly before the throat position. After 

t=0.5T, the flow inlet velocity decreasing and the vortex becomes weaker. After 

t=0.9T, the inlet velocity further decreases and the pressure gradient in tube is 

negative and reverse the flow. A long weak vortex formed in the right hand of the 

constriction. 

The same pulsatile flow simulation using finite volume method (FVM) was 

also performed. The wall vorticity obtained by LBM and FVM at time t=0.1T, 

0.2T, 0.3T, 0.4T, 0.5T are compared in Figure 5.13. The wall vorticity at time 

t=0.6T, 0.7T, 0.8T, 0.9T, T are illustrated in Figure 5.14. The wall vorticities is 

normalized by Umax/D. As illustrated in Figure 5.13 and Figure 5.14, the wall 
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vorticity obtained by LBM agree well with that of the FVM. Due to the uniform 

square mesh used in LBM, the wall vorticity was obtained by extrapolation. The 

highest wall vorticity predicted by LBM is slightly larger than that of FVM. The 

position of highest local wall vorticity predicted by LBM is slightly behind that 

predicted by FVM although all wall vorticity curve reach their highest value 

slightly upstream of the constriction. 

5.2 3D Steady Viscous Flow through an Asymmetric 

Stenosed Tube 

As we known, the constrictions of stenosed vascular tube can be roughly 

grouped into two basic types: approximately axisymmetric stenosis and stenosis 

formed by an isolated surface protuberance from one wall. (Young and Tsai, 

1973a) In this study, the second type of constriction was considered and steady 

flows through three-dimensional asymmetric stenosis were simulated.  

Figure 5.15 depicts the model used in our study. The model basically consists 

of straight rigid tube having a circular cross section with a protuberance from one 

wall. We call this side “Side A” and the opposite unstenosed side “Side B”. In 

longitudinal section, the stenosis shape in our model follows a circular shape. 

Figure 5.15(a) shows the longitudinal section of the model, and Figure 5.15(b) 

shows a typical cross section across the stenotic region. In Figure 5.15(a), ζ is the 

height of the stenosis and S0 is a half of the stenotic length, r0 is the radius of the 

unobstructed part of the tube and Rm is the radius of the circular stenosis. 

With the origin situated as shown in Figure 5.15(a), the equation for the wall 

boundary is described using Cartesian coordinates (x, y, z) by the following 
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where d is a function of x which can be obtained through solving the Eq. (5.8). 

 ( )[ ] 222
mm RxRd =+−+ ζ   0sx ≤  (5.8) 

The model solved here is of 53% area occlusion and S0=1.5r0 . The center of 

the stenosis is at the origin (see Figure 5.15(a)). The cases of Reynolds number 

100,200, 500 were simulated. 

The streamline for case Re=100, 200 and 500 is illustrated in Figure 5.16 (a), 

(b) and (c) respectively. In each case, the velocity profile in z=0 plane is not 

symmetrical at the stenosis and in the downstream vicinity of the stenosis. It is 

also clear that the vorticity magnitude of the eddy behind the stenosis increases 

with Reynolds number. 

As our model is not symmetric about the centreline, it is interesting to 

compare the shear stresses on the opposite sides of the tube. We have labeled 

“Side A” as the side with the stenosis, and ‘Side B” is the side with no 

protuberance. Figure 5.17 (a), (b), (c) shows the variation of shear stresses along 

the walls on Sides A and B for the case of Re=100,200,500, respectively. The wall 

shear stress is normalized by the ρU2/Re. It is observed that shear stresses on both 

Side A and Side B reach their maximum value just before the throat of the 

stenosis (at x=0). There are distinct differences in the shear stresses exerted on 

Side A and B. On Side B, there is no negative shear stress. Hence, no flow 

separation or backflow occurs on this side of the wall. On Side A, there is a region 

of negative shear stress since flow separation occurs. It is also observed that the 

maximum shear stress on Side A and Side B increases with the Reynolds number. 
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In all cases, the peak shear stress on Side A is higher than that on Side B. For 

Re=100,200,500 considered in our study, the peak shear stress ratio on Side A and 

Side B is 1.45, 1.69, 2.11 respectively.  

5.3 Steady and Unsteady Flows in an Elastic Tube 

For simulations of flow in elastic tubes, moving boundary treatment would be 

encountered. As we know, for the stationary curved wall boundary, extrapolation 

scheme (Guo et al. 2002a) and improved bounce-back scheme (Bouzidi et al. 2001) 

are available. In this study the extrapolation scheme (Guo et al. 2002a) was used 

to handle the curved wall boundary. When we extend this boundary conditions for 

a moving boundary illustrated in Figure 5.18, we should ensure the velocity of the 

moving wall uw<< cs. When lattice node changes from wall node into fluid node 

as indicated by filled square in Figure 5.18, one must specify the unknown 

distribution functions (e.g., f3,f4,f7,f8 for lattice node A).  

Here, a second order extrapolation is used to compute the unknown 

distribution functions along the direction of a chosen discrete velocity ei which 

maximizes the quantity n·ei, where n is the out-normal vector of the wall at the 

point A in Figure 5.18 through which the node moves to fluid region (Lallemand 

and Luo, 2003). For example, the unknown distribution functions ( )Aif x  

(i=3,4,7,8) at node xA can be determined by the following extrapolation formula 

 ( ) ( ) ( ) ( )433 exxxx ++−= CiCiBiAi ffff . (5.9) 

Other methods to obtain values of these unknown distribution functions are also 

suggested in the study of Lallemand and Luo (2003). Since those possible 

schemes produce similar results as the above scheme (Lallemand and Luo, 2003), 

only the above treatment was used in present study. 
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In this section, we performed simulation of a long and thin axisymmetric 

elastic pipe with length L. We assume a linear relationship between pressure p(x) 

and radius R(x) as following  

 ))(()( oo RxRpxp −=− β , (5.10) 

where po is the pressure outside the tube, Ro is the radius for zero transmural 

pressure (i.e., the pressure difference between the inside and outside of tube) and β 

is a compliance constant. Eq. (5.10) is a good representation of the pulmonary 

blood vessels (Fung, 1997). We assume the pipe is long and thin (i.e., L>>Ro), the 

pipe is smooth under deformation and the entry and exit effects are neglected. 

Hence, the local flow field can be assumed to be the parabolic Poiseuille profile 

(Fung, 1997). The longitudinal velocity u(x,r) in the tube at (x,r) is 
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where r is the distance from the axis. uc(x,r) is the velocity at axis which can be 

written as 

 
ρν4
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The volume-flow rate at x is  
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From Eq. (5.10), we obtain  

 [ ]
dx

xRd
x
xp )()( β=

∂
∂ . (5.14) 

Consequently, with Eq. (5.13) and Eq. (5.14), the volume-flow rate can be written 

as  
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 [ ]
dx

xRdxRxQ )(
8

)()(
4

ν
πβ−=  (5.15) 

In a stationary, non-permeable axisymmetric tube, Q is a constant through the 

length of the tube. Integrating Eq. (5.15), we obtain, for steady flow, an explicit 

expression for R(x) in terms of the inlet and outlet radius is 

 ( )
5/1

555 )0()0()()(






 +−= R

L
xRLRxR . (5.16) 

Substituting Eq. (5.16) into the Eq. (5.10), we can obtain the theoretical formula 

for pressure p(x).  

In our simulation, the Reynolds number was defined as 

 [ ] [ ]
2

44

10
)()0(4Re

ν
β

νπ L
LRR

R
Q −== . (5.17) 

Firstly we simulate a steady case with pin = 1.00294, pout = 0.99762, p0=1.0, 

002.0=β , 1=τ , Re=43.4 and the pipe is 100 lattice units in length. The initial 

equilibrium radius of the tube is R0=9.5 for p0 =1.0 and the computational grid is 

100×13. At beginning, zero velocities were initialized in the whole flow field 

with the fixed wall. After the flow field reached a steady state, the wall was 

released. The pressure at each segment of the physical boundary is obtained by 

linear extrapolation and the fluid and the radius can be instantaneously determined 

by Eq. (5.10). Then the new geometry of the tube was adapted and 10 LBGK 

iterations are performed, the pressure is again measured, etc. This cycle is iterated 

until the following convergence criterion reached,   

 4
1

10
)(

)()(
−

+

<
−

=
∑

∑
i i

n
i i

n
i

n

xR

xRxR
ε , (5.18) 

where the superscript is the time level and the summation is over the all lattice 

units in length.  
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Figure 5.19 shows the resulting diameter and pressure as a function of 

position in the elastic tube. The theoretical curves (Eq. (5.16)) are shown as well. 

Our numerical results agree well with analytical solutions. It is also noticed that 

the curve or the expression for R(x) and p(x) of a 2D case with same parameters 

(Fang et al. 2002) are significantly different from the present study because the 2D 

case only consider the flow in elastic channel (Fang et al. 2002). If we change the 

parameter of τ and keep the other parameter in the case constant, when 63.0=τ  

which means Re=641, numerical simulation is still stable. For higher Re, 

numerical instability appears. 

The unsteady periodic flow with pin = 0.9985+0.003sin(2πt/T), pout = 0.9985, 

p0=1.0, 002.0=β , 7.0=τ  and Womersley number 06.2=α  was also 

simulated. The initial equilibrium radius of the tube is R0=9.5 for p0 =1.0 and the 

computational grid is 100×13. The simulation procedure is similar as that of 

steady flow. Figure 5.20 shows an example of this settling of the tube wall for 

both the above steady and periodic flows after the walls are released at t=1000. 

Figure 5.21 shows the curve of R(x) at different times during one period.  

In our simulations, it is found difficult to simulate the higher Womersley case 

due to numerical instability. For example, if Lx>10R0 (to ensure our assumption 

L>>Ro), Lx/csT<0.05, then 

 ( ) νπνπνπα 0000 005.021005.022 RcRcRTR ss ×=×<= . (5.19) 

As ν is determined by τ , which cannot be very close to 0.5, the larger is the grid 

size, the higher Womersley number can be achieved. However, due to limitation 

of grid size, case of very high Womersley number cannot be simulated.  
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5.4 Summary 

In this Chapter, firstly, the steady flows through a single constriction with 

different geometries were studied. It is clear that for the same Reynolds number, 

when the constriction is more severe, the maximum wall vorticity is larger. If there 

is a flow separation, the wall vorticity reverses to negative value behind the 

stenosis. We also discussed the effect of distance between two adjacent stenoses 

on streamlines, shear stress, vorticity and velocity distribution as blood pass 

through them. In those cases, if flow interference exists, the second peak wall 

vorticity values are always lower than the first ones and the maximum velocity 

value near the second constriction is slightly higher than that at the first 

constriction. 

The unsteady flow through constricted tube was also simulated. The 

sinusoidal waveform was considered as a simple prototype of physiological 

waveforms. The case Re=200, St=0.32, α=4.0 was simulated and the LBM result 

agree well with that of FVM. It is also found that if the numerical stability is not 

improved, it is no way to simulate cases of higher Re and high St.  

To consider more complex 3D stenosed model, the steady flow through a 3D 

asymmetric model was also simulated. It is observed that there is a distinct and 

significant difference in the wall shear stresses between the stenosed side and the 

side with no protuberance. The peak shear stress ratio of the two sides may be 

useful for study of the atherosclerotic process. 

The steady and pulsatile flows in an elastic tube were simulated using a tube 

law. We improved the study of Fang et al. (2002) by applying our axisymmetric 

D2Q9 model since Fang et al. (2002) only consider the 2D elastic channel that is 

significantly different from the real tube.  
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Figure 5.1 Blood flow through (a) 64%, (b) 75%, (c) 84% stenosis (S0=D, Re=50) 

 
 

 
 

Figure 5.2 Wall vorticity along the constricted tubes 
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Figure 5.3 Velocity profiles in different position in case of S0=D, Re=200 
 

 

 
 

Figure 5.4 Velocity profiles in different position in case of S0=D, Re=400 
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Figure 5.5 Geometry and mesh of constricted tubes 
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Figure 5.6 Streamlines and shear tress contours for constriction spacings 
L/D=1,2,3 (Re=10) 
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Figure 5.7 Streamlines and shear stress contours for constriction spacings 
L/D=1,2,3 (Re=50) 
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Figure 5.8 Streamlines and shear stress contours for constriction spacings 
L/D=1,2,3 (Re=300) 

 

 
Figure 5.9 Variation of axial velocity on axis for different constriction spacings 
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Figure 5.10 Variation of wall vorticity for different constriction spacings 
 

 
 

Figure 5.11 Inlet velocity profiles based on the Womersley solution. (a) Temporal 
variation of inlet volume flux. (b) Velocity profiles for α=4.  (c) Velocity profiles 

for α=8. 
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Figure 5.12 The streamlines (above the axis) and vorticity contours (under the axis 

area) in the constricted tube for Re=200, St=0.32 at t=nT/10, n= 1,3,5,7,9 
 

 
 
Figure 5.13 Wall vorticity obtained by LBM and FVM at t=nT/10, n= 1,2,3,4,5 for 

pulsatile flow through a constricted tube 
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Figure 5.14 Wall vorticity obtained by LBM and FVM at t=nT/10, n= 6,7,8,9,10 

for pulsatile flow through a constricted tube 
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Figure 5.15 Geometry of the stenosis model 
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Figure 5.16 Streamline of flows though 3D asymmetric stenosis (a) Re=100, (b) 

Re=200, (c) Re=500 

 
Figure 5.17 Wall shear stress along axial position (53% 3D asymmetric stenosis) 

(a) Re=100, (b) Re=200, (c) Re=500 
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Figure 5.18 Illustration of a moving boundary with velocity uw. The open circles 
(○) and square (□) denote the non-fluid and fluid nodes, respectively. The filled 
squares denote the nodes becoming fluid nodes from the non-fluid nodes after one 

time step 
 

 

 
 
Figure 5.19 Numerical and analytical solution for (a) radius in an elastic tube, (b) 

pressure on inner elastic tube 
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Figure 5.20 Variation of the radius at x = 40 after the walls are released at t=1000 . 

(a) steady flow on a 100×13 lattice (Re = 43.4); (b) pulsatile flow on a 100×13 
lattice with T = 2000 (α=2.06) 

 
 
 
 
 
 

 
 

Figure 5.21 Variation of radius in an elastic tube at t=nT+(k/10)T during a period 
(pulsatile flow on a 100×13 lattice with T = 2000, α=2.06) 
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 Chapter 6   LBM for Simulation of Axisymmetric 
Flows with Swirl 

In this Chapter4, the axisymmetric swirling flows would be solved by a hybrid 

scheme. The axial and radial velocities were solved by axisymmetric LBM and 

swirl velocity and temperature were solved by finite difference method. This 

hybrid scheme was firstly validated by simulation of Taylor-Couette flows 

between two concentric cylinders. Then the four benchmark problems for 

numerical simulation of the melt flows in Czochralski (CZ) crystal growth 

(Wheeler et al., 1990) were studied in detail.  

6.1 Hybrid Axisymmetric LBM and Finite Difference 

Method 

We consider the problems of the laminar axisymmetric swirling flow of an 

incompressible liquid. The continuity equation (6.1) and Navier-Stokes 

momentum equations (6.2) in the pseudo-Cartesian coordinates (x,r) are used to 

describe the flow in axial (x direction) and radial directions.  
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Where βu (β=x,r) is the two components of velocity and αu  is the velocity xu  

                                                
4 This work has been published as: 
Huang, H., Lee, T.S., Shu, C., Hybrid lattice-Boltzmann finite-difference 
simulation of axisymmetric swirling and rotating flows, Int. J. Numer. Meth. 
Fluids, 53(11), pp.1707-1726. (2007) 
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or ru . In the above equation, uz is the swirl velocity. E is the additional source 

term, which may appear in melt flows in CZ crystal growth. The Einstein 

summation convention is adopted. 

 Here for simplicity, the axisymmetric model B in Chapter 3 was used to 

simulate axial and radial velocities. In the model B, A(1) , A(2) and Fα(1) are all the 

same as that in Chapter 3 part 3.2.3 except here, the )2(
αF  is 
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For the axisymmetric swirling flow, there are no circumferential gradients but 

there may still be non-zero swirl velocity uz. The momentum equation for 

azimuthal velocity is 
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 The above momentum equation for azimuthal velocity can be solved by finite 

difference method. In this Chapter, Eq. (6.4) was solved explicitly by using 

first-order forward difference scheme in time and the second-order central 

difference scheme (e.g., Eq. (6.6) and (6.7)) for space discretization as Eq. (6.5).  
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6.1.1 Boundary Conditions 

In our simulations in this Chapter, when using LBM to solve the axial and 

radial velocities, the specular reflection scheme was used for axisymmetric 

boundary. As we know, specular reflection scheme can be applied to free-slip 

boundary condition where no momentum is to be exchanged with the boundary 

along the tangential component. Hence, for the free surface (e.g., x=H, Rx<r<Rc in 

Figure 6.4) in our simulated case, the specular boundary condition is also applied. 

For non-slip wall boundary, the bounce-back scheme was used. 

When using the finite difference method to solve the equation for swirl 

velocity or the heat equation, we may encounter the Neumann boundary condition. 

Here the Neumann boundary condition was transferred into the Dirichlet boundary 

condition. For example, if 0=∂∂ xT  was imposed at the boundary x=0 (i.e., the 

r-axis, refer to Figure 6.4), the T value in the boundary lattice node (1,j) can be 

determined by extrapolation from the inner lattice nodes as 

( ) ( ) ( )( ) 34 ,3,2,1 jjj TTT −= , where j is the lattice index in r coordinate. 

6.2 Taylor-Couette flows 

Figure 6.1 illustrates the geometry of Taylor-Couette flow. Our computational 

domain is a r-x plane. The governing equations for the axisymmetric swirl flow 

are equations (6.1), (6.2) and (6.4) with E=0 in Eq. (6.2). The boundary conditions 

used in our simulation are also illustrated in the Figure 6.1. The Reynolds number 

is defined as νWD=Re , where W is the azimuthal velocity of inner cylinder, D 

is the gap of the annulus and ν is the fluid viscosity. The radius ratio of inner 

cylinder and out cylinder is set as 0.5. The aspect ratio is set as 3.8. 
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Firstly, the grid independence of the results was examined and it was found 

that with grid 20×76 uniform grid, present numerical method can give very 

accurate results. The maximum stream functions in r-x plane for cases of Re=85, 

100 and 150 were listed in Table 6.1. It seems that even with grid 20×76, The 

results of our hybrid scheme agree well with those of Liu (1998), which were 

obtained by very fine grid. The contours of stream function, pressure and vorticity 

for case Re=150 were shown in Figure 6.2. From Figure 6.2, we can see the four 

cell secondary mode. These contours and flow pattern also agree well with the 

results of Liu (1998). 

Secondly, the efficiencies of our hybrid scheme (LBM+FD) and explicit finite 

volume method (FVM) were compared. The efficiency is evaluated by comparing 

the respective computing times required. To minimize the influence of computers 

and convergence criterion, in this study, both our hybrid scheme solver and FVM 

solver (FLUENT) are executed on a super computer (Compaq ES40: total 

performance of 5300 Mflops) in the National University of Singapore. In our 

simulations, the zero velocities were initialized everywhere. The residual used to 

monitor the convergence is defined using the uz-momentum equation for two 

solvers as below:  
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Note that all the computations are carried out on a single-CPU of the computer 

Compaq ES40, which does not take parallel advantage of the LBM.  

For comparison purpose, the case of Taylor-Couette flow for Re=100 using 
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grid 30×114 was simulated. In the explicit FVM solver (FLUENT), the Courant 

number was set as CFL=1. The convergence for the hybrid scheme and FVM 

solver is displayed in Figure 6.3 in terms of relative residual error (the residual 

expressions were normalized by the initial residual). The overall convergence 

trend of our hybrid scheme is similar to that of FVM solver.  

The CPU times for hybrid scheme and FVM are also listed in Table 6.2. It 

seems that to reach the same convergence criterion, our LBM+FD solver (τ=0.59) 

takes almost the same CPU time as the explicit FVM solver. The calculation of 

LBM+FD solver with relax time constant τ=0.68 is faster than calculation with 

τ=0.59.  

According to our experience, for a 2D flow case with same grid, usually the 

explicit FLUENT solver requires about 8 times larger CPU time per iteration than 

our 2D LBM solver. It is also observed that for axisymmetric cases without 

rotation, the FLUENT solver requires about 4 times larger CPU time per iteration 

than axisymmetric LBM.  

From Table 6.2, it is found that for the axisymmetric flow with rotation, 

compared with LBM+FD solver, FLUENT requires about 3.35 times larger CPU 

time per iteration. It is also observed from our numerical experiment that the time 

spent for the solving of the Eq. (6.5) (i.e., FD) in our LBM+FD scheme is around 

12% of total CPU time. 

6.3 Flows in Czochralski Crystal Growth 

After our hybrid scheme was validated by Taylor-Couette flow simulations, 

the hybrid scheme was used to study the melt flows in Czochralski crystal growth. 

In the CZ crystal growth, the melt flow is very complex because it is a 



Chapter 6   LBM for Simulation of Axisymmetric Flows with Swirl 

 142

combination of natural convection due to thermal gradients and forced convection 

due to rotation of the crystal and the crucible. Here, the Wheeler benchmark 

problems (Wheeler, 1990) in numerical simulation of melt flows in CZ crystal 

growth were studied in detail. The configuration and the momentum and thermal 

boundary conditions are all illustrated in Figure 6.4. In the problem, a vertical 

cylindrical crucible filled with a melt to a height H=Rc rotates with an angular 

velocity Ωc . In the top of the melt, it is bounded by a coaxial crystal with radius 

Rx=βRc (β=0.4) which rotates with angular velocity Ωx. There is a phase boundary 

between the crystal and melt. In the top right part of melt (R>Rx), there is a free 

surface. The ux, ur, uz are the axial, radial and azimuthal velocity component, 

respectively.  

The continuity and momentum equations for Czochralski crystal growth can 

also illustrated by Eq. (6.1), (6.2) and (6.4) with xcTTgE αδβ )(0 −= . For the 

buoyancy force term xcTTgE αδβ )(0 −= , the Boussinesq approximation is 

applied, where g is the gravity acceleration; β0 is the thermal expansion coefficient; 

Tc is the temperature of crucible. The governing equation of temperature is 
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This equation can be solved explicitly by finite-difference method as Eq. (6.5). 

However, in this part, to accelerate convergence rate, finite difference equations 

for Eq. (6.4) and (6.10) were solved by the tridiagonal matrix algorithm (TDMA) 

at each iteration. 

The dimensionless parameters: Reynolds number Rec, Rex, Prandtl number Pr 

and Grashof number Gr are defined as 
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where α is the thermal diffusivity. In our simulations, Pr =0.05. The value of 

characteristic velocity ( ) cxct RTTgU −= 0β  is chosen 0.15 for Gr<=105 and 

0.25 for Gr>105. When Ut is determined, the kinetic viscosity ν can be determined 

by the dimensionless numbers Gr. Then, the relaxation times τ is determined by 

the equation ( )5.02 −= τδν tsc . Another characteristic velocity βxch RU Ω=  is 

also used when Gr=0 in our simulation and it is usually set as 0.1.  

For the results, Rc, and cRν  are used as the characteristic length, speed 

scales and the dimensionless temperature is defined as ( ) ( )xcx TTTTT −−=' , 

where Tx is the temperature of the crystal. 

In our simulations, the zero velocities and zero temperature were initialized 

everywhere and the convergence criterion in our simulation was set as:  
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where i, j are the lattice nodes index. 

To compare with available data of Raspo et al. (1996), Buckle et al. (1993) 

and Xu et al. (1997), all of the present numerical results are expressed as stream 

function. The stream function ψ is defined as 

 xru
r

−=
∂
∂ψ ,   rru

x
−=

∂
∂ψ  (6.12) 

with ψ=0 on the all boundaries of computing plane. In the following, the 

minimum and maximum values of stream function denoted by ψmin and ψmax will 

be used to compare the results of our hybrid scheme with available data in the 

literature (Xu et al., 1997; Raspo et al., 1996).  
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Firstly, the grid independence of the results was examined. The case A2, with 

Gr=0, Rex=103, Rec=0, was calculated by 3 kind of grids. The ψmin and ψmax are 

compared with result of Raspo et al. (1996) in Table 6.3. In Table 6.3, we can see 

that an 100×100 grid is sufficient to obtain accurate results. 

After the grid independence study, as many as 11 cases with different 

parameter sets were simulated. The 11 cases listed in Table 6.4 were classified 

into 4 groups. In group A, the crystal rotates with Rex varyes from 102 to 104, 

while the crucible is at rest and Gr is set to zero. In group B, the crystal and 

crucible rotate in opposite directions. Groups A and B are all forced convection 

problems. The cases in group C are natural convection problems. Those in group 

D are closer to practical applications because these melt flows combined both the 

natural convection and forced convection.  

Table 6.4 shows the comparison of computed minimum and maximum stream 

function for all above 11 cases. In the table, the number in the bracket followed 

the case type indicates the grid size used. If not specified, the grid used in our 

simulation is 100×100. For comparison, we also present the results of Xu et al. 

(1997) using the second-order difference scheme with a grid size of 80×80. In all 

cases, the maximum absolute values of stream function computed by the LBM 

agree very well with those of Xu et al. (1997). Some very small deviations 

between the computed minimum absolute values of stream function can be 

neglected since the minimum absolute values of stream function are so small 

compared with the maximum absolute values. Due to requirement of numerical 

stability, the simulation of cases A3, B3, C2 used fine grids. The issue of 

numerical stability will be discussed in detail in the following section 6.4. 

Figure 6.5 shows the calculated streamlines and temperature contours of case 
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A2. That’s a typical result for group A. There is a primary vortex induced by 

rotation of the crystal. For the cases of group A, when the Reynolds number of 

crystal rotation is increased from 102 to 104, the maximum absolute value of the 

stream function increases from 0.2272 to 40.47, which means the intensity of 

vortex increases. For higher Reynolds number cases in group A, the center of the 

vortex moves towards the side wall of the crucible and the highest velocity region 

moves from the upper left corner to the upper right corner. Hence, better quality 

crystal can be produced if Rex is high. 

Figure 6.6 illustrates the streamlines and temperature contours of case B2, 

which represent the flow pattern of group B. For cases in group B, the crystal and 

crucible rotate in opposite directions. As a result, there are two vortices with 

opposite directions appearing in the upper left corner just below the crystal and 

the lower right corner. With the increase of rotation speeds of the crystal and 

crucible, the upper left vortex produced moves towards right corner and the lower 

right primary vortex induced by the crucible rotation moves to the left and 

dominates the flow field. It is noticed that for cases of forced convection problems 

where Gr=0 (cases in group A and B), the contours of temperature are very 

similar.  

Figure 6.7 shows the streamlines and temperature contours of case C2. In this 

natural convection flow case, the crucible and the crystal are all at rest. There is a 

primary vortex induced by the temperature difference between the crystal and 

crucible. Compared with temperature contours in Figure 6.5 and Figure 6.6, the 

temperature contours of case C2 in Figure 6.7 shows the effect of buoyancy force 

on the temperature field.  

Figure 6.8 shows the streamlines and temperature contours of case D2. The 
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streamlines and contours illustrated the combined effects of the natural convective 

flow and forced convective flow. It is found that the streamlines and temperature 

contours of cases in group D are very similar to those of case C1 which Grashof 

number is also equal to 105. From Table 6.4, it is also found that the ψmax of cases 

in group D are all very close to that of case C1. That means in cases of group D, if 

Rex<103, the natural convective flow dominates the melt flow while the force 

convective flow induced by the crystal only has minor effect. 

6.4 Numerical Stability Comparison for Axisymmetric 

lattice Boltzmann Models 

The numerical stability of LBM depends on the relax time τ, the Mach 

number of the flow and the size of mesh. It is well known that in LBM if τ is very 

close to the 0.5, numerical instability would appear. τmin is usually case-dependent. 

The Reynolds number is usually defined as ( )
( )5.0

Re 2 −
==

τ
δ

ν s

x

c
DUcUD , the Mach 

number in LBM is 1<<= scUM . To simulate cases of high Reynolds number, 

with limitation of τmin and Mach number, we must increase the value of ( )xD δ  

(i.e., enlarge the grid size). 

Generally speaking, adding complex position and time dependent source 

terms into the lattice Boltzmann equation would decrease the numerical stability. 

As our analysis in Chapter 3 shown, the previous model of Peng et al. (2003) is 

only a specific case of our general model and it recovers the NS equations in 

axisymmetric coordinates with some error. Compared with the model of Peng et al. 

(2003), our present model is much simpler since Fα(1)=0 and uz only appears in the 

term Fα(2) and gradients of uz are not included. Hence, the present model is 
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expected to be more stable.  

 To compare the numerical stability of our model and previous model (Peng et 

al. 2003), the benchmark case A1 of melt flow in CZ crystal growth was simulated 

by the two models with the same boundary condition treatment. As we know, the 

numerical stability can be demonstrated by the minimum τ value at which 

numerical instability does not appear. However, it is hard to find out the exact τmin. 

Here the τmin was found approximately by the following way. The τmin is set as 

k0125.05.0min +=τ , where k >0 is a integer, the τmin is found out by finding the 

minimum k value at which numerical instability does not appear. So the numerical 

experiment was carried out to find τmin. The τmin for the two models is listed in the 

Table 6.5. From Table 6.5, we can see that in all cases, τmin of present model are all 

smaller than that of Peng et al. (2003). It seems our present model is more stable. 

The numerical stability is very important for simulation of high Reynolds 

number or high Grashof number cases. For example, if the case of Gr=107 is to be 

simulated by our model, since ( ) GrRUc ctts =−= 5.02 τδν , we have 

 ( )
t

s

x

c

cU
GrcR 5.02 −= τ

δ
 (6.13) 

Substituting 25.0≤tU  (i.e., M<<1 in LBM) and 6125.0≥τ  (numerical 

stability requirement) into the Eq. (6.13), it is found the mesh points in Rc should 

satisfy the Eq. (6.14) 

 ( ) ( ) 474
25.01

105.06125.0315.0 72

≈
×

×−×≥−=
t

s

x

c

cU
GrcR τ

δ
 (6.14) 

That means to simulate the case of Gr=107, the coarsest grid should be 474×474, 

otherwise, the numerical instability would encounter in the simulation. While for 

this case of Gr=107, if numerical stability of the Peng’s model (2003) requires 
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7375.0≥τ , grid as fine as 1000×1000 is required. Hence, our numerical method 

provides a significant advantage in simulation melt flow cases with high Reynolds 

number and high Grashof number.  

6.5 Summary 

As conventional CFD solvers, present hybrid scheme combining the lattice 

Boltzmann methods and finite difference method is able to solve the axisymmetric 

swirling flow as a quasi-three-dimensional problem. This hybrid scheme was 

successfully applied to simulate the Taylor-Couette flow between two concentric 

cylinders. It was found the residual convergence behavior of this hybrid scheme is 

similar to that of explicit FVM. It is found that compared with LBM+FD solver, 

FLUENT requires about 3.35 times larger CPU time per iteration. However, to 

reach the same convergence criterion, the CPU time taken by our LBM+FD solver 

and explicit FVM solver are of same order. 

The hybrid scheme was also applied to simulate flows in Czochralski crystal 

growth. Compared with the results in other literature, the hybrid scheme is able to 

provide very accurate results for benchmark problems. Present axisymmetric 

D2Q9 model also seems more stable than that of Peng et al.(2003). As a result, 

this scheme can give accurate results for high Reynolds number and high Grashof 

number cases.  
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Table 6.1 The maximum stream function in x-r plane for Taylor-Couette flow 
(grid 20×76) 

 
Re ψmax ψmax* 

85 4.810×10-2 4.854×10-2 

100 5.501×10-2 5.542×10-2 

150 6.427×10-2 6.439×10-2 

* Liu, 1998 

Table 6.2 Comparison of CPU time for hybrid scheme and FVM simulation of 
Taylor-Couette flow (Re=100, grid 30×114) 

 
 Steps CPU time (s) ψmax 

FLUENT 13200 1523 5.530×10-2 

LBM+FD (τ=0.59 ) 45300 1560 5.553×10-2 

LBM+FD (τ=0.68) 21800 742 5.612×10-2 

Liu,1998 - - 5.542×10-2 

 
 

Table 6.3 Grid independence test for Case A2, Gr=0, Rex=103, Rec=0 
 

Grid ψmin ψmax 

50×50 -4.73 1.80×10-4 

100×100 -4.98 7.31×10-5 

150×150 -5.046 6.52×10-5 

Raspo et al.1996 -5.074 7.89×10-5 
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Table 6.4 Some results for the test cases by the hybrid scheme and QUICK* 
 

Case Gr Rex Rec ψmin ψmax ψmin* ψmax* 

A1 0 102 0 -2.272×10-1 7.921×10-6 -2.172×10-1 4.063×10-6 

A2 0 103 0 -4.979×100   7.311×10-5 -4.994×100 1.826×10-5 

A3 (200) 0 104 0 -4.047×101 2.413×10-1 -4.117×101 1.044×10-1 

B1 0 102 -25 -4.785×10-2 1.140×10-1 -4.433×10-2 1.177×10-1 

B2 0 103 -250 -1.491×100   1.084×100 -1.478×100 1.148×100 

B3 (250) 0 104 -2500 -8.226×100   5.075×100 -8.725×100 5.388×100 

C1 105 0 0 -1.213×10-3 2.863×101 -5.798×10-4 2.841×101 

C2 (150) 106 0 0 -3.805×10-1 9.320×101 -1.200×10-1 9.251×101 

D1 105 101 0 -1.178×10-3 2.863×101 -5.785×10-4 2.841×101 

D2 105 102 0 -1.564×10-4 2.860×101 -4.517×10-4 2.838×101 

D3 105 103 0 -5.562×10-1 2.528×101 -5.677×10-1 2.517×101 

 
* Xu et al. 1997 
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Table 6.5 Numerical stability comparison for case A1 
 

Grid τmin (Present model) τmin (Peng et.al, 2003) 

20×20 0.6125 0.6875 

40×40 0.625 0.725 

60×60 0.625 0.7375 

80×80 0.625 0.7375 

100×100 0.625 0.7375 
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Figure 6.1 Geometry of Taylor-Couette flow and boundary conditions 
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Figure 6.2 The contour of stream function, pressure and vorticity for case Re=150 

with grid 20×76 

 
 
Figure 6.3 Convergence history for FLUENT and the hybrid scheme (LBM+FD) 

 



Chapter 6   LBM for Simulation of Axisymmetric Flows with Swirl 

 153

gravity

H

R = Rx
x

r

Crystal

Melt

Rc

β c

T=Tc

A

∂ ∂T/ r=0

∂ ∂T/ x=0

T=Tx T=T + (T -T )x c x
(r-R )
(R-R )

x

c x

gravity

H

R = Rxx

r

Crystal

Melt

Rc

β c

u =0
u / x=0
u / x=0

x

r

z

u =0
u =0
u =rΩ

x

r

z x
∂ ∂
∂ ∂

u =0
u =0
u = RΩ

x

r

z c c

u =0
u =0
u =rΩ

x

r

z c

u / r=0
u =0
u =0

x

r

z

∂ ∂

A

 
 

Figure 6.4 The momentum and thermal boundary conditions of melt flow in 
Czochralski crystal growth 
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Figure 6.5 Streamlines and temperature contours of case A2, Gr=0, Rex=103, 
Rec=0 
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Figure 6.6 Streamlines and temperature contours of case B2, Gr=0, Rex=103, 

Rec=-250 
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Figure 6.7 Streamlines and temperature contours of case C2, Gr=106, Rex=0, 

Rec=0 
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Figure 6.8 Streamlines and temperature contours of case D2, Gr=105, Rex=102, 

Rec=0 
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 Chapter 7   Gas Slip Flow in Long Micro-tubes 

In this Chapter5, firstly, a slightly revised axisymmetric LBM is proposed to 

mimic the weakly compressible NS equations at macroscopic level and boundary 

condition is discussed. Then the LBM is applied to simulate the slip flow in 

microtubes for cases 0.01<Kn<0.1 with different inlet/outlet pressure ratio. The 

results are compared with analytical solution or the available experimental data. 

Finally, the efficiency and accuracy comparisons between DSMC and LBM are 

carried out. 

7.1 Compressible NS Equation and Axisymmetric LBM 

Gas slip flow in a long micro-tube (the radius of the microtube is small 

compared with its length) with 0.01<Kn<0.1 can be regarded as a internal weakly 

compressible, isothermal flow. The microtube flow is assumed to be axisymmetric. 

Hence, the time-invariant constant viscosity Navier-Stokes equations for such a 

compressible fluid, ignoring body force, are (Weng et al. 1999)  

 ( ) ( ) ( ) ( )[ ]u⋅∇∂+∂+∂+∂+−∂=∂+∂ xrrxxrx UUrUpUVUU 311 22µρ , (7.1) 

( ) ( ) ( ) ( ) ( )[ ]u⋅∇∂+−∂+∂+∂+−∂=∂+∂ rrrxrrx rVVVrVpVVVU 311 222µρ ,  (7.2) 

where rVVU rx +∂+∂=⋅∇ u . 

The continuity equation is given by  

 0=+∂+∂ rVVU rx ρρρ  (7.3) 

The equation of state for an ideal gas is given by 

                                                
5 This work has been published as: 
Huang, H., Lee, T.S., Shu, C., Lattice Boltzmann Simulation Gas Slip Flow in 
Long Microtubes, Int. J. Numer. Meth. for Heat & Fluid Flow,  (in press, 17(6), 
2007) 
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 RTp ρ= . (7.4) 

In the above equations, U and V are the axial and radial components of 

velocity u, µ is the molecular viscosity, ρ is the density, p is the pressure and R is 

the specific gas constant. In Eqs. (7.1) and (7.2), we have assumed a Stokes 

continuum hypothesis for the second coefficient of viscosity.  

To simulate the microtube flow, here, our axisymmetric model is derived 

from standard D2Q9 model with including more compressibility effect. Following 

the scheme B in Chapter 3, the source term added into the LBE is   

 { }








++= 2

)2(
)2()1(

s

i
iii c

nFeAAS ααωω   (i=0,1,2…,8), (7.5) 

where ( )τ211−=n . A(1) and A(2) are chosen as following  

 ruA rρ−=)1( , (7.6) 

 and ( ) ( ) ruupruA rrtrtt 221
)2(

βββ ρδδρδ +∂=∂−= . (7.7) 

The )2(
αF  is chosen as 

( ) ( )u⋅∇∂−
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α 3
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r
uu

rr
uc

r
uuF .  (7.8) 

It should notice that in our present model, the density and velocities uα (α=x,r) are 

defined as 

 ∑=
i

ifρ  ,  2)2(
ααα δρ Ffeu t

i
ii∑ += . (7.9) 

At macroscopic level, the following continuity and momentum equations can be 

recovered.  

 ( )
r
uu r

t
ρρρ ββ −=∂+∂ , (7.10) 
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For steady flow (i.e., 0=∂ ρt  and 0=∂ αρut ) and when the density variation is 

very small in the flow with small Mach number, the Eqs. (7.10) and (7.11) is 

almost identical as compressible NS equations (i.e. Eq. (7.3), Eq. (7.1) and Eq. 

(7.2)) . 

7.1.1 Knudsen Number and Boundary Condition 

Correlating the parameter τ with Kn is important for LBM application in 

simulation micro-flows (Nie et al., 2002; Tang et al., 2004). Here an expression  

between Kn and τ which based on the gas kinematics (Tang et al., 2004) is used 

but we derived it in a simpler way as follows. 

From the kinetic theory of gases, the density can be determined by 

 Tkmp B=ρ , (7.12) 

where m represents the molecular mass and kB is the Boltzmann constant. On the 

other hand, in LBM, we know that ρ2
scp = . Hence, we have  

 2
sB cmTk = . (7.13) 

For an ideal gas modeled as rigid spheres, the mean free path λ is related to 

the viscosity ν as  

 λνν m5.0= , (7.14) 

where the mean velocity of the molecular vm= mTkB π/8 . Hence, we have 

 ( )
Dm NDvD

Kn 5.0
6

2 −=== τπνλ   or 5.0
6
+=

π
τ DKnN , (7.15) 
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where D is the diameter of a microtube, ND is the lattice number in the tube 

diameter, Kn is local Knudsen number. Since the mean free path is inversely 

proportional to the pressure, the local Kn can be calculated by 

 
),( rxp

pKnKn oo= , (7.16) 

where Kno and po are the Kn and the pressure at the outlet. So, in Eq. (7.15), τ is 

variable along the microtube and the corresponding ν can be obtained from 

ν=cs
2δt(τ-0.5). 

Another important issue about using LBM to simulate the micro flows is the 

wall boundary condition. For this condition, the bounce-back scheme is usually 

used to realize non-slip boundary condition when simulating continuum flow. On 

the other hand, the specular reflection scheme (Lim et al., 2002) can be applied to 

the free-slip boundary condition where no momentum is to be exchanged with the 

wall along the tangential component. For real gas flow in microtubes, a 

combination of the two schemes is considered here. To describe boundary 

condition treatment, a wall Ω∂  is completely specified. For a point x ( Ω∂∈x ), 

n is the inward unit normal vector of the wall. After streaming step implemented, 

the unknown distribution functions of ),( tfi x , 0>⋅ne i  can be evaluated by 

(Succi, 2002) 

 ( ) ),(1),(),( tfbtbftf kji xxx −+= , (7.17) 

where ),( tf j x  is the distribution function in je  direction, where iji eee 2=− , 

and ),( tfk x  is the distribution function in ke  direction, where nee 2=− ki . b 

is the bounce-back probability chosen as 0.7 (Tang et al., 2004).  

For the inlet/outlet boundary conditions, the extrapolation scheme (Guo et al. 

2002c) was applied. The axisymmetric extrapolation boundary condition we 
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proposed in Chapter 3 is applied for axisymmetric boundary condition.  

7.2 Analytical Solutions for Micro-tube Flow 

The streamwise velocity profile (first-order slip-flow model) in a long 

microtube with rarefaction effect is given by Weng, et al. (1999) as 

 ( )











+








−

∂
∂−=
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0

2
0 21

4
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rr
r

x
prrxU λ

µ
, (7.18) 

where λ is the molecular mean free path, r0 is the radius of the microtube. Since 

2/0 Dr =  and local DKn λ= , using Eqs. (7.16) and (7.18), we have 
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16
,

22
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, (7.19) 

where ( ) oprxpp ,~ = .  

The pressure distribution in a long microtube is given by Weng, et al. (1999) 

as  

 ( ) ( )
2
1

222 ~1616648














 −+−+++−= xSSSSSSS inoutinoutinin ππππ
＋ , (7.20) 

where ( ) pKnS o
~1−

= π , ( ) Pr
1−

= πoin KnS , ( ) 1−
= πoout KnS , oin pp=Pr and 

Lxx /~ = . L is the tube length. Hence, Eq. (7.20) can also be rewritten as, 

 ( ) ( ) ( ) ( )( )xKnxKnKnKnxp oooo
~1Pr16Pr~16188~~ 22 −+++++−= . (7.21) 

From Eq. (7.21) we can see that gas flowing in a long microtube with a significant 

pressure drop will also exhibit compressibility effects. 

The mass flow rate is computed by multiplying Eq. (7.18) by the density and 

integrating across the tube. The dimensional mass flow rate is given by Weng, et 

al. (1999) as 
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Hence, the dimensional mass flow rate at outlet of microtube is 
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The non-dimensional pressure gradient along the tube can be calculated from Eq. 

(7.21) as, 
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( ) ( ) ( )( )xKnxKnKn

Kn
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−++++
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With Eq. (7.24), the Eq. (7.23) can also be written as 

 ( ) ( )[ ]1Pr161Pr
256

2
24

−+−= o
o Kn

LRT
pDq

µ
π

&  . (7.25) 

In addition, the mass flow rate for the continuum gas (without the rarefaction 

effect) is  

 ( ) ( ) ( )
LRT

pD
x
p

RT
Dq o

continuum
1Pr

256256

22424 −=
∂
∂−=

µ
π

µ
π

&  . (7.26) 

7.3 Numerical Results of Micro-tube Flow 

7.3.1 Distributions of Pressure and Velocity 

In our simulation, the radius is represented by 11 lattice nodes (10 lattice 

space) and the length of the tube is 20 times of the diameter except for specially 

noted cases. In all of the cases, the Mach number in tube is very low. Even for 

case of Pr=3.0, maximum Mach number in tube is M=0.15/cs <<1, which satisfy 

the requirement of our axisymmetric D2Q9 model. The streamwise momentum 

accommodation coefficient σ=1 has been used for almost all engineering 

calculations (Weng et al., 1999). Therefore we take σ =1 throughout this Chapter. 
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Figures 7.1 and 7.2 show the axial and radial velocity distribution along the 

tube (Pr=2, Kno=0.1) respectively. The U, V velocity contours are also illustrated 

in Figures 7.1 and 7.2 respectively. From Figure 7.1, we can see that the axial 

velocity profile is parabolic type and the slip velocity at the wall and the central 

velocity increase toward the exit. Due to the pressure decreasing, the density of 

gas also decreases along the tube. To satisfy mass conservation, the average 

velocity must increase toward the exit. In Figure 7.2, the magnitude of the radial 

velocity is much smaller than that of axial velocity. These results are consistent 

with previous studies on microchannels (Arkilic et al., 1997 and Lim et al., 2002). 

The pressure distribution along the tube predicted from the first slip boundary 

condition is illustrated in Eq. (7.27), which is originally given by Weng et al. 

(1999) (i.e., Eq. (7.21)). 

 ( ) ( ) ( ) ( )( )xKnxKnKnKnxp oooo
~1Pr16Pr~16188~~ 22 −+++++−= . (7.27) 

In Eq. (7.27), p~  is the pressure normalized by outlet pressure, Lxx =~ , L is the 

tube length. Pr is the ratio of the inlet and outlet pressure. 

The pressure drop along the tube which deviate from linear pressure drop for 

different Pr with the outlet Knudsen number Kno=0.1 are shown in Figure 7.3. 

When Pr increase, the compressibility effect within the tube is also increase, 

results in a larger deviation from the linear pressure distribution. In Figure 7.3, it 

is also found that our results agree well with Eq. (7.27). 

The pressure drops along the tube for different outlet Kno are shown in Figure 

7.4. Compared with the analytical solution Eq. (7.27), the results of LBM is quite 

good. Figure 7.4 demonstrates that the larger Kno, the smaller the deviation from 

the linear pressure distribution. It seems that the rarefaction effect (indicate by Kno) 

can decrease the curvature in the pressure distribution which caused by the 



Chapter 7   Gas Slip Flow in Long Micro-tubes 

 162

compressibility effect. Maybe that means the compressibility effect and the 

rarefaction effect on the pressure distribution are contradictory.  

The Knudsen numbers along the streamwise direction are shown in Figure 7.5. 

Kn is a function of the local pressure. With the decreasing pressure along the tube, 

the Knudsen number increases and reaches its maximum value at the outlet. For 

different outlet Kno , the slope of Kn curve along the tube is different. For smaller 

Kno, the slope of Kn curve is larger although Pr is same.  

In Figure 7.6, the variation of slip velocity along the microtube wall is 

presented. The analytical solution of slip velocity (i.e., Eq. (7.19)) can be 

normalized by the central velocity at outlet Uoc , 
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, (7.28) 

where xdpd ~~  is the non-dimensional pressure gradient and the ( )oxdpd ~~  means 

the pressure gradient at exit. 

Hence, the analytical solution for slip velocity on the wall and average 

velocity in microtube are Eq. (7.29) and Eq. (7.30) respectively: 
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Form Eq. (7.29) we can see that since the local Knudsen number increases 

and the slope of pressure drop also increases along the tube, the slip velocity on 

the wall would increase along the microtube. Figure 7.7 illustrates the average 

velocity variations along the streamwise direction. The average velocity increases 

as the flow proceeds down the tube since density decrease along the microtube. In 

Figures 7.6 and 7.7, both the slip velocity on wall and local bulk velocity along 
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the microtube agree well with that of the analytical solution. 

7.3.2 Mass Flow Rate and Normalized Friction Constant 

The effect of rarefaction on mass flow rate is investigated by comparison of 

the LBE result with analytical predictions. The nondimensional mass flow rate Q~  

can be expressed as a function of pressure ratio (obtained from Eq. (7.25) and Eq. 

(7.26)) 

 ( ) 1Pr
161~
+

+== o

continuum

Kn
q

qQ
&

&  (7.31) 

In Figure 7.8, the nondimensional mass flow rate computed by the LBE method 

for Kno=0.1 is compared with the first order analytical prediction Eq. (7.31). For 

all cases, slip effects become less pronounced with increasing pressure ratio. The 

LBE results agree well with analytical results and the deviation is less than 4%.  

Then in Figure 7.9, the friction factors predicted by present LBM simulations 

are compared with experimental results of Kim et al. (2000). The theoretical 

friction constant (C0=f*Re=64) for fully developed incompressible flow is used to 

normalize friction constant C=f*Re. The microtubes used in the experiment are 

also illustrated in Figure 7.9. Here our numerical data were taken from results of 

cases Kno=0.013 with different inlet/outlet pressure ration. In these cases, for 

Kn=λ/D=0.013, the corresponding simulated diameters D of microtubes for 

Nitrogen, Argon and Helium are listed in Table 7.1. The diameters of our 

simulation are all close to that of corresponding experimental facility. Hence our 

numerical results are valid to compare with the experimental data. In Figure 7.9, 

the normalized friction constant C* obtained by LBM ranges from 0.80 to 0.86, 

which agree well with the experiment data.   
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Besides the experiments of Kim et al. (2000), Chio et al. (1991) also found 

that for nitrogen flow in microtube with diameters smaller than 10 micrometers, 

C=f*Re=53. Another experiment conducted by Yu et al. (1995) concluded that 

C=f*Re=50.13 for laminar nitrogen flow in microtubes with diameter 19 

micrometers. In Figure 7.9, it was observed that our numerical data are also in 

consistent with their experimental results (Choi et al., 1991; Yu et al., 1995). 

7.3.3 Comparison with DSMC 

To demonstrate the efficiency of the LBM, we compared the accuracy and 

efficiency of the LBM and DSMC. It is well known that DSMC is the most 

popular model for simulation of micro flows. DSMC is a particle-based method 

proposed by Bird (1994). Unlike the molecular dynamics (MD) method which 

takes each individual molecule into consideration, DSMC method assumes that a 

group of molecules have the same properties such as velocity and temperature 

which can be obtained by statistical analysis. In this way, the computational effort 

can be greatly reduced compared with the MD method (Bird, 1976; Bird 1994). 

Here, the developed DSMC code (Mao et al., 2003) was used to simulate the slip 

flow in microtubes. 

In the DSMC simulation, the working gas is nitrogen. The physical geometry 

is 200µm long and radius of the tube is 2.5µm. The computational region is an 

axisymmetric plane divided into 400×30 sampling cells and each cell contains 4 

subcells. The total number of simulated particles is about 4.8×105. That means 

nearly 40 particles in a sampling cell (Mao et al., 2003). In this part, the case of 

Kno=0.0134 and Pr=2.5 was simulated. 

In the LBM simulation, the uniform square lattices 801×21 is used to simulate 
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the same microtube flow. For this case, if the computational domain is an 

axisymmetric plane and the axisymmetric boundary condition is applied, the 

calculation is unstable. However, when the computational domain is bounded by 

upper and lower straight walls and the aixs is placed in the center of domain, the 

calculation is stable. Hence, here the diameter is represented by 21 lattice nodes.  

The present DSMC and LBM calculations were performed on a single-CPU 

of the computer Compaq ES40 supercomputer. For the efficiency comparison, the 

same convergence criterion was set as: 

 610
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 (7.32) 

The velocity field error is measured by θ which is defined as:  

 ( ) ∑∑ −=
i

ia
i

iai rururu )()()( 22θ  (7.33) 

where ua(ri) is the analytical solution obtained by Weng et al. (1999) and ri is the 

mesh point at intersection x/L=0.375 where the microflow is supposed to be in 

fully developed region.  

The efficiency and accuracy comparison is listed in Table 7.2. The mesh or 

cell number is comparable for LBM and DSMC simulations. However, since 

DSMC still has to simulate 4.8×105 particles, it used much larger memory than 

LBM in the simulation. To obtain the well converged results, DSMC takes much 

more CPU time than LBM.  

The velocity profiles at intersection x/L=0.375 obtained by analytical solution 

(Weng et al., 1999), LBM and DSMC are illustrated in Figure 7.10. The velocity 

U is normalized by outlet Uoc. r is normalized by the diameter. Compared with the 

analytical solution, the result of LBM seems more accurate than that of DSMC. 
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7.4 Summary 

In this chapter, a revised axisymmetric D2Q9 model was applied to 

investigate gaseous slip flow with slight rarefaction through long microtubes. 

With assumption of small Mach number, this axisymmetric LBGK model can 

successfully recovered the weakly compressible Navier-Stokes equation in the 

cylindrical coordinates through Chapman Enskog expansion. For the slip wall 

boundary condition, the wall boundary condition combined the bounce-back and 

specular reflection scheme was applied for microtube flows with Kno in range 

(0.01, 0.1). 

In the simulations of microtube flows with Kno in range (0.01, 0.1), the 

distributions of pressure, the slip velocity and the average velocity along the 

microtube all agree well with the analytical results. The friction factors are 

compared with experimental results and good agreements are also observed.  

Through comparison, it was found that our LBM is more accurate and 

efficient than DSMC when simulating the slip flow in microtube. Although the 

present LBM is only applied to the slip flow simulation (0.01<Kn0<0.1) in 

microtubes, the LBM may be extended to study the transition flow or higher 

Knudsen number cases in the future.  
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Table 7.1 Simulated diameter of microtubes for different gas flow (Kno=0.013) 
 

Gas (105 Pa) Nitrogen Argon Helium 
Mean free path (nm) 67 72 196 

Diameter of tube (µm) 5.2 5.5 15.0 
 
 

Table 7.2 Efficiency and accuracy comparison (LBM and DSMC) (Kno=0.0134, 
Pr=2.5) 

 
Method CPU time 

(s) 
Mesh or 

Cells 
Memory 

(M) 
θ 

LBM 4.52×102 1.6×104 9.2 4.31×10-4 
DSMC 3.22×104 1.2×104 31.4 3.3×10-3 
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Figure 7.1 Axial-velocity distributions in the tube 
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Figure 7.2 Radial-velocity distributions along the tube 
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Figure 7.3 Pressure distribution along the tube for different Pr (Kno=0.1) 
 

 
 

Figure 7.4 Pressure distribution along the tube for different Knudsen number 
(Pr=2) 
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Figure 7.5 Local Kn distribution along the tube for different Kno (Pr=2) 
 

 
 

Figure 7.6 Slip velocity in wall along the tube for different Kno (Pr=2) 
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Figure 7.7 Average axial velocity Uav along the tube for different Kno (Pr=2) 
 

 
 

Figure 7.8 Mass flow rate normalized to non-slip mass flow rate as a function of 
Pr at Kno=0.1 
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Figure 7.9 Normalized friction constant C* of gas flow in microtube as a function 

of Re (Kno=0.013) 
 

 
 

Figure 7.10 Velocity profiles at x/L=0.375 obtained by analytical solution, LBM 
and DSMC 
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Chapter 8   Extended Application of LBM 

In this Chapter6, a double-population thermal lattice Boltzmann model was 

applied to study the heat and fluid flow. A recent curved non-slip wall boundary 

treatment for isothermal lattice Boltzmann equation (Guo et al. 2002a) is extended 

to handle the thermal curved wall boundary. Firstly, the numerical simulations of 

Couette flow between two circular cylinders were used to validate the thermal 

boundary condition treatment. Then the natural convection in a 2D square cavity, 

and the natural convection in a concentric annulus between an outer square 

cylinder and an inner circular cylinder were studied. Complex 3D heat and fluid 

flows were also studied using this thermal boundary condition. 

 

8.1 Thermal Curved Wall Boundary Condition 

The double-population thermal lattice Boltzmann equation (TLBE) is 

introduced in Chapter 2. An accurate and simple curved wall boundary condition 

is important for application of the thermal lattice Boltzmann model. 

As we know, basically, to evaluate internal energy density distribution 

functions, the two main steps of TLBE model are collision and streaming. In the 

collision step, the post-collision distribution function obtained by  

 ( ) ( ) ( ) ( ) iigg
eq

igigi qftgtgtg τωωω −+−=
+

,,1, xxx , (8.1) 

where ( )tt gg δτδω 5.0+= . In the streaming step, the distribution functions of 

new time level is 

                                                
6 Part of this work has been published as: 
Huang, H., Lee, T.S., Shu, C., Thermal curved boundary treatment for the thermal 
lattice Boltzmann equation, Int. J. Mod. Phys. C. , 17(5), pp. 631-643 (2006) 
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 ( )tgtttg iii ,),( xex
+

=++ δδ  (8.2) 

However, to fulfill the streaming step, some unknown internal energy density 

distribution functions on near-wall lattices should be determined. For example, in 

Figure 8.1, it is obvious that to fulfill the streaming step, some unknown 

( )tg wi ,x
+

 (i=3,7) in wall nodes xw need to be specified. To specify ( )tg wi ,x
+

, in 

Eq. (8.1) the term ( )tg wi ,x  can be decomposed into two parts (Guo et al. 2002a), 

 ( ) ( ) ( )tgtgtg w
ne
iw

eq
iwi ,,, xxx += , (8.3) 

where ( )tg w
eq
i ,x  and ( )tg w

ne
i ,x  are the equilibrium and nonequilibrium part of 

( )tg wi ,x .  

 Firstly, we discuss how to determine the equilibrium part ( )tg w
eq
i ,x . Eq. 

(2.58), (2.59) and (2.60) illustrated that once ρ(xw), T(xw), u(xw) is known, then 

( )tg w
eq
i ,x  can be determined. Here, for simplicity, ρw, Tw, uw are used to denote 

ρ(xw), T(xw), u(xw), the macro variables in other lattice nodes are written in this 

way. Here, ρw is specified as ρw= ρ(xw+ei)=ρf. Tw is determined by linear 

extrapolation using either Tw1=(Tb+(∆-1)Tf)/∆ or Tw2=(2Tb+(∆-1)Tff)/(1+∆). 

Where ∆ is the fraction of the intersected link in the fluid region ∆=|xf-xb|/|xf-xw|, 

which is illustrated in Figure 8.1. Usually, Tw1 can be used as a good 

approximation for Tw for ∆>0.75, However, if ∆ is small, using Tw1 to evaluate Tw 

may cause instability. Alternative, for ∆<0.75 we used Tw=∆Tw1+(1-∆)Tw2. The 

extrapolation scheme is the same as that of Guo et al. (2002a). 

Next, to determine the ( )tg w
ne
i ,x , extrapolation method is also used. 

( )tg w
ne
i ,x  is evaluated as ( ) ( ) ( ) ( )tgtgtg ff

ne
if

ne
iw

ne
i ,1,, xxx ∆−+∆= . From the 

Chapman-Enskog analysis (He et al. 1998), we know that ( )tg w
ne
i ,x  can be 
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expressed as xi
ne
i gg δ)1(= , where )1(

ig is of the same order as eq
ig . 

Since ( ) ( ) ( )xfiwi Otgtg δ=− ,, )1()1( xx , ( ) ( ) ( )2,, xf
ne
iw

ne
i Otgtg δ=− xx . For lattice 

node xff, the accuracy analysis is the same as above. That means the 

approximation ( )tg w
ne
i ,x  is of second order in space which is in consistent with 

TLBE.  

Finally, the thermal curved boundary treatment to specify ( )tg wi ,x
+

 is 

 ( ) ( ) ( ) ( ) iiggw
ne
igw

eq
iwi qftgtgtg τωω −−+=

+
,1,, xxx . (8.4) 

Since the Neumann curved wall boundary can be transferred into Dirichlet 

boundary condition, then the above Dirichlet curved wall boundary treatment can 

also be applied to Neumann curved wall boundary. As an example, we consider 

the same wall node “w” in Figure 8.1. Once the heat flux (temperature 

gradient nT ∂∂ ) at “b” is given, n is the unit vector normal to the local wall and 

pointing to fluid region. ( )inT ∂∂  is used to represent the temperature gradient in 

ei direction. That is ( ) ( ) iii nTnT ene /∂∂=∂∂ . Using Taylor series expansion, 

with second order accuracy in space, the temperature on node “w” can be 

approximated by  

 ( )( ) 324 tiifffw enTTTT δ∂∂−−= . (8.5) 

Hence, after the equilibrium part is evaluated according to Dirichlet and Neumann 

boundary constraints, and the non-equilibrium part is obtained using a first-order 

extrapolation from fluid lattices, ( )tg wi ,x
+

 is obtained to fulfill the streaming 

step. 
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8.2 Validation of the Thermal Curved Wall Boundary 

Condition 

To demonstrate the capability of the present thermal curved wall boundary 

treatment and investigate its spatial accuracy, the Couette flow between two 

circular cylinders is simulated. In this flow, the inner cylinder with radius r1 

rotates with a constant tangent velocity u0 (u0=ωr1, ω is the angular velocity) and 

the outer cylinder with radius r2 is kept stationary. The temperature of inner 

cylinder is kept as T1 and that of outer cylinder is kept T2. This Couette flow has 

the following analytical solution,  

 ( ) 
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where ( )2
0 1 ηη −= uC , η=r1/r2, the Prandtl number Pr=ν/α, ν is the kinetic 

viscosity and α is the thermal diffusivity. 

In simulations, a uniform square mesh is used to cover the flow domain. The 

present thermal boundary treatment is applied to the surfaces of the outer and 

inner cylinders. Firstly, cases of Re=(r2-r1)u0/v =10 with different values of η are 

conducted. In these cases τf=0.1, τg=0.1, r2=40, and r1 changes according to r2 and 

η. The temperature profiles are plotted together with the analytical ones in Figure 

8.2. The excellent agreement between the TLBM and the analytical solutions 

demonstrates the reliability of the present boundary treatment. 

Spatial accuracy of the treatment is also tested for cases of Re=10 and 30. In 

these cases, τf=0.1, τg=0.1 and η=0.5. r1 changes from 8 to 64, and r2 changes 

according to η and r1. The relative global L2 norm errors in the temperature field 
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E2 are measured and shown in Figure 8.3. In Figure 8.3, the slopes of the linear 

fitting lines for Re=10 and 30 are -1.98 and -2.00 respectively. The slopes are all 

very close to -2, which confirmed the thermal curved wall treatment is 

second-order accuracy. 

8.3 Natural Convection in a Square Cavity 

In order to further validate the thermal boundary treatment, a natural 

convection in a two-dimensional square cavity is investigated. The temperature 

difference between the left and right walls introduces a temperature gradient in the 

fluid, which induces the natural convection in the cavity. The top and bottom 

walls are adiabatic. The definition of ∆ and the boundary conditions are illustrated 

in Figure 8.4. Here to test the thermal boundary treatment, ∆=0.25, 0.5, 0.75 were 

studied. The actual size of the cavity is L×L=(N-3+2∆)×(N-3+2∆). N is the total 

lattice nodes in each spatial direction.   

The Boussinesq approximation is applied to the buoyancy force term. This 

means that the properties β and ν are considered as constants, and the buoyancy 

term is assumed to depend linearly on the temperature, ( )jG 00 TTg −= ρβρ , 

where β is the thermal expansion coefficient, g0 is the acceleration due to gravity, 

T0 is the average temperature, here it is 1.0, and j is the vertical direction opposite 

to that of gravity. 

The dynamical similarity depends on two dimensionless parameters: the 

Prandtl number Pr and the Rayleigh number Ra defined as 

 αν=Pr , (8.8) 

 ( ) ναβ 3
210 LTTgRa −= . (8.9) 

In our simulations, Pr=0.7. The value of characteristic velocity 



Chapter 8   Extended Application of LBM 

 177

( )LTTgUc 210 −= β  was chosen 0.1 for Ra<=105 and 0.15 for Ra>105. When Uc 

is determined, the kinetic viscosity ν and the thermal diffusivity α can be 

determined by the two dimensionless numbers Pr and Ra through Eqs. (8.8) and 

(8.9). The two relaxation times τf, τg, are determined by Eq. (2.64). Another 

characteristic velocity LU α=∞  is also used to normalize velocity and stream 

functions.  

The Nusselt number is one of the most important dimensionless parameters in 

describing the convective heat transport. The average Nusselt number in the whole 

flow domain is defined by 

 ( ) ( )∫ ∫−
=

L L

xa dxdyyxq
TT

LNu
0 021

,
α

, (8.10) 

where qx is the heat flux in x direction. 

Firstly, the grid-dependence study is listed in Table 8.1, the data were taken 

from cases of ∆=0, Ra=104. The grid size is taken as N×N, where N is the total 

lattice nodes in each spatial direction. Table 8.1 shows the numerical results of 

normalized umax on the vertical midplane of the cavity and corresponding position 

y, normalized vmax on the horizontal midplane and corresponding position x, and 

Nua. When grid size becomes larger, our results are closer to the benchmark 

solutions of Shu and Xue (1998). Grid size 103×103 is fine enough to obtain 

accurate results. Hence in the studies of other cases, the grid size used is 103×103.  

Table 8.2 shows the numerical results of cases with ∆=0.5 (actual size of the 

cavity is 101 ×101) for a wide range of Rayleigh numbers. The benchmark 

numerical solutions using the differential quadrature (DQ) method (Shu and Xue, 

1998) are also listed for comparison. It can be seen from Table 8.2 that, our 

numerical results agree very well with those of Shu and Xue (1998). With the 
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increase of the Rayleigh number, due to the enhancement of natural convection, 

normalized umax , normalized vmax , Nua are increased greatly, and the position of 

maximum vertical velocity on the horizontal midplane moves closer to the wall. 

Figure 8.5 and 8.6 show the contour of normalized stream function and isotherms 

of Ra=103, 104, 105, 106. These plots all agree well with those of Shu and Xue 

(1998). 

To investigate the effect of different ∆, cases with ∆=0, 0.25, 0.5, 0.75 for 

Ra=104 were simulated. The results are illustrated in Table 8.3. It can be seen 

from Table 8.3 that for different ∆, TLBE with present thermal boundary 

treatments is able to give very accurate results.  

8.4 Natural Convection in a Concentric Annulus between 

an Outer Square Cylinder and an Inner Circular Cylinder 

The natural convection in a concentric annulus between an outer square 

cylinder and an inner circular cylinder were investigated for Rayleigh numbers 

104, 5×104 and 105. The geometry ratio between the square cylinder and circular 

cylinder is defined as η=2ri/L and is fixed at 0.4 in our simulation. The 

temperatures of inner cylinder and outer square are fix as 2.5, 1.5 respectively. 

Here in our simulations the grid size is 103×103. The Prandtl number Pr = 0.71 

and ( ) 1.0210 =−= LTTgUc β . Eq. (8.8) and (8.9) are also used to determine the 

kinetic viscosity ν and the thermal diffusivity α.  

The non-dimensional stream function is defined as ∞= LU*ψψ , ψ* is 

dimensional stream function and LU α=∞ , The contours of non-dimensional 

stream functions in the annulus at Ra=104,5×104,105 are shown in Figure 8.7. The 

streamline of ψ=0 is almost in the vertical midplane and the contours are 
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symmetric with respect to vertical midplane. The isotherms in the annulus are 

shown in Figure 8.8, the contours are also symmetric with respect to the vertical 

midplane. Figure 8.7 and Figure 8.8. are all in good agreement with those plots of 

Shu and Zhu (2002) and Peng et al. (2004). 

Since in the steady state, the Nusselt numbers along the inner and outer walls 

are the same, there is no need to pay separate attentions to the average Nusselt 

numbers for the outer and inner boundaries. The average Nusselt number on the 

inner cylinder or outer square can be computed by below definition, 

 ( ) STT

SnT
Nua

21

2

−

∂∂
= ∫Ω
α
α

, (8.11) 

where T is the dimensional temperature, nT ∂∂  is the temperature gradient in the 

direction normal to the boundary. Ω is the boundary of inner or outer surface. S is 

the half length of corresponding boundary Ω. T1, T2 are the dimensional 

temperatures on the inner and outer walls respectively, α is the thermal 

conductivity. Here to avoid the difficulty of obtaining nT ∂∂  in the inner 

circular boundary, we calculated the Nua from the outer square boundary.   

The numerical results of the maximum stream function ψmax and the average 

Nusselt number Nua are shown in Table 8.4. The benchmark results using the DQ 

method (Shu and Zhu, 2002) are also included for comparison. Good agreement 

between present results and the benchmark results further validates the thermal 

curved wall boundary treatment.  

8.5 Natural Convection in a 3D Cubical Cavity  

In order to verify our thermal curved wall boundary treatment, we carried out 

the computation for a 3D fluid flow and heat transfer problems using the 3D 
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incompressible thermal LBM introduced in Chapter 3. The first problem 

considered is a natural convection in a 3D cubical cavity with two vertical side 

walls maintained at different temperatures. The remaining walls are adiabatic. The 

problem definition and the boundary conditions are displayed in Figure 8.9. In this 

figure, the temperature of left vertical side wall is set as T1=1.5 and the right one is 

T2=2.5. 

The Boussinesq approximation is applied to the buoyancy force term. This 

means that the properties β and ν are considered as constants, and the buoyancy 

term is assumed to depend linearly on the temperature, ( )kG 00 TTg −= ρβρ , 

where β is the thermal expansion coefficient, g0 is the acceleration due to gravity, 

( ) 2210 TTT +=  is the average temperature, here it is 2.0, and k is the vertical 

direction opposite to that of gravity. 

The dynamical similarity depends on two dimensionless parameters: the 

Prandtl number Pr and the Rayleigh number Ra which are already defined in 

Eq.(8.8) and Eq.(8.9) respectively. 

In our simulations, Pr=0.71. The value of characteristic velocity 

( )LTTgUc 210 −= β  was chosen 0.1 for Ra<105 and 0.2 for Ra>=105. When Uc 

is determined, the kinetic viscosity ν and the thermal diffusivity α can be 

determined by the two dimensionless numbers Pr and Ra through Eqs. (8.8) and 

(8.9). And then by equations ( ) 25.0 sf ct −= τδν  and ( ) 95.05 −= gτα , two 

relaxation times τf, τg, are determined. 

Nusselt number Nu is an important dimensionless parameter in describing the 

convective heat transport. The local Nusselt numbers at the isothermal wall x=0 

are defined as 
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and the mean Nusselt number and overall Nusselt number are defined as 
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Numerical simulations of the natural convection in a cubic cavity at Rayleigh 

numbers of 103–105 are carried out using the particle velocity model of D3Q19. 

Table 8.5 shows representative quantities of the flow field and the heat transfer 

rates in the symmetry plane y=0.5L. In this symmetry plane, the following 

quantities of the flow field are included: the maximum horizontal velocity umax on 

the vertical mid-line in this plane and its location z, the maximum vertical velocity 

vmax on the horizontal mid-line and its location x. The Nusselt numbers defined in 

this symmetric plane at the vertical boundary x=0 (refer to the vertical thick 

boundary line in Figure 8.9) are also included in Table 8.5. They are the maximum 

value of the local maximum and minimum Nusselt number Numax and Numin and 

their locations z and the average Nusselt number Numean. The numerical results of 

a NS solver (Fusegi et al., 1991) are also included for comparison.  

In Table 8.5, it seems that our simulation results generally compare well with 

those obtained from NS solver. The discrepancies are usually within 4% for case 

Ra=103 and Ra=104. For case Ra=105, the discrepency is around 7% which may 

due to small grid size in our simulation.  

The 3D isothermal contours in the cavity for Ra=104 and 105 are shown in 

Figure 8.10. The three contours are T=1.75, 2, 2.25, respectively. To know the 

global behavior of the 3D natural convection, 3D streamlines passing through the 
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planes y=0.5L and y=0.85L for Ra=104 and 105 are plotted in Figure 8.11.  

8.6 Natural Convection from a Sphere Placed in the 

Center of a Cubical Enclosure 

The natural convection from a sphere placed in the center of a cubical 

enclosure is also simulated using 3D incompressible TLBE. The inner sphere and 

outer cubic walls maintained at different temperatures. The temperatures of sphere 

and cubic are set as T1=1.5 and T2=2.5, respectively. 

The Boussinesq approximation is also applied to the buoyancy force term 

which is assumed as ( )kG 00 TTg −= ρβρ , where ( ) 2210 TTT +=  is the 

average temperature, here it is 2.0. 

In our simulations, Pr=0.71. The value of characteristic velocity 

( )LTTgUc 210 −= β  was chosen 0.1 for Ra<105 and 0.2 for Ra>=105.  

The 3D isothermal contours in this concentric cavity for Ra=104 and 105 are 

shown in Figure 8.12. The three isothermal contours illustrated in the figures are 

T=2.25, 2, 1.75, respectively. To know the global behavior of the 3D natural 

convection, 3D streamlines passing through the line y=0.5L, z=0.5L for Ra=104 

and 105 are plotted in Figure 8.13. 

8.7 Summary 

In this Chapter, the thermal curved wall boundary was successfully handled 

by introducing the non-equilibrium extrapolation method. The unknown 

distribution population at a wall node which is necessary to fulfill streaming step 

is decomposed into its equilibrium and non-equilibrium parts. The equilibrium 

part is evaluated according to Dirichlet and Neumann boundary constraints, and 
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the non-equilibrium part is obtained using a first-order extrapolation from fluid 

lattices.  

The numerical simulation of Couette flow between two circular cylinders 

confirmed the thermal curved wall treatment is second-order accuracy. The results 

of natural convection in a square cavity, and the natural convection in a concentric 

annulus between an outer square cylinder and an inner circular cylinder all agree 

very well with available data in the literature. That further validated the present 

thermal curved wall boundary treatment. Using this thermal curved wall boundary 

treatment, we also carried out the simulations for the natural convection in a 

cubical cavity and the natural convection from a sphere placed in the center of a 

cubical enclosure. Our numerical results demonstrated that this thermal curved 

wall boundary treatment can be applied to 3D thermal flow problems with 

complex geometry easily. 
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Table 8.1 Grid-dependence study for the natural convection in a square cavity at 
Ra=104 , ∆=0 

 
Mesh 53×53 103×103 153×153 DQ* 
umax 15.980 16.133 16.133 16.190 

y 0.818 0.819 0.823 0.825 
vmax 19.390 19.580 19.580 19.638 

x 0.121 0.120 0.120 0.120 
Nua 2.225 2.241 2.244 2.245 

* Shu and Xue 1998 
 
 

Table 8.2 Numerical results for cases with ∆=0.5, Ra=103-106 
 

Ra 103 104 105 106 
 TLBE DQ* TLBE DQ* TLBE DQ* TLBE DQ* 

umax 3.652 3.649 16.197 16.190 34.844 34.736 64.872 64.775
y 0.817 0.815 0.827 0.825 0.856 0.855 0.847 0.850 

vmax 3.705 3.698 19.613 19.638 68.582 68.640 219.18 220.64
x 0.173 0.180 0.124 0.120 0.064 0.065 0.035 0.035 

Nua 1.118 1.118 2.243 2.245 4.512 4.523 8.729 8.762 
* Shu and Xue 1998 
 
 

Table 8.3 Numerical results for Ra=104 with mesh size 103×103 and different ∆ 
 

 ∆=0 ∆=0.25 ∆=0.5 ∆=0.75 DQ* 
umax 16.133 16.218 16.197 16.173 16.190 

y 0.819 0.828 0.827 0.825 0.825 
vmax 19.580 19.652 19.613 19.600 19.638 

x 0.120 0.122 0.124 0.116 0.120 
Nua 2.241 2.240 2.243 2.239 2.245 

* Shu and Xue 1998 
 
 
 

Table 8.4 The maximum stream function ψmax and the average Nusselt number 
Nua 

 
 ψmax Nua 

Ra TLBE DQ# TLBE DQ# 
104 0.99 0.97 3.22 3.24 

5×104 4.96 4.82 4.01 4.02 
105 8.27 8.10 4.79 4.86 

# Shu and Zhu 2002 
 
 
 
 



Chapter 8   Extended Application of LBM 

 185

 
 

Table 8.5 Representative field values in the symmetric plane (y=0.5L) for 3D 
nature convection in cubical cavity with ∆=0.0, Ra=103-105 

 
Ra 103 104 105 

 TLBE NS 
solver* 

TLBE NS 
solver* 

TLBE NS 
solver* 

Meshes in 
x,y and z 

32 32 32 62 42 62 

umax 0.1306 0.1314 0.1957 0.2013 0.1354 0.1468 
z/L 

(x/L=0.5) 
0.2000 0.2000 0.1667 0.1833 0.1500 0.1453 

vmax 0.1309 0.1320 0.2131 0.2252 0.2248 0.2471 
x/L 

(z/L=0.5) 
0.8333 0.8333 0.8667 0.8833 0.925 0.9353 

Numax 1.441 1.420 3.441 3.652 7.106 7.795 
Numax 

position z/L 
0.033 0.08333 0.2333 0.1623 0.200 0.08256 

Numin 0.7124 0.7639 0.5792 0.6110 0.7568 0.7867 
Numin 

position z/L 
1.0 1.0 1.0 1.0 1.0 1.0 

Numean 1.132 1.105 2.372 2.302 4.841 4.646 
* Fusegi et al., 1991 
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Figure 8.1 Curved boundary and lattice nodes (open circle is wall nodes, open 
square is fluid nodes, filled circle is the physical boundary nodes in the link of 

fluid node and wall node) 
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Figure 8.2 Temperature profiles of the Couette flow at Re=10 with difference 
value of the radius ratio 

 

 
Figure 8.3 Temperature relative global errors versus the radius of the inner 

cylinder in the Couette flow. (m is the slope of linear fitting line) 
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Figure 8.4 Boundary condition and geometry of natural convection in a square 
cavity (N=13) 
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Figure 8.5 Streamlines of natural convection at Ra=103,104,105,106 for cases 
∆=0.5 
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Figure 8.6 Isotherms of natural convection at Ra=103,104,105,106 for cases ∆=0.5 
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Figure 8.7 Streamlines of nature convection in a concentric annulus at 
Ra=104,5×104,105. 
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Figure 8.8 Isotherms of nature convection in a concentric annulus at 

Ra=104,5×104,105, the temperatures of inner cylinder and outer square are fix as 
2.5, 1.5 respectively. 
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Figure 8.9 Configuration of natural convection in a 3D cubical cavity. 
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 Figure 8.10 3D isotherms for the natural convection in a cubical cavity at Ra=104 

(left) and105 (right). 
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Figure 8.11 3D streamlines for the natural convection in a cubical cavity at 
Ra=104 (left) and 105 (right). 
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Figure 8.12 3D isotherms for the natural convection from a sphere placed in the 
center of a cubical enclosure at Ra=104 (left) and 105 (right) 
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Figure 8.13 3D streamlines for the natural convection from a sphere placed in the 

center of a cubical enclosure at Ra=104 (left) and 105 (right). 
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Chapter 9    Conclusions and Future Work 

In this study, we suggest a general method to derive axisymmetric lattice 

Boltzmann D2Q9 models in 2D coordinates. Using the general method, three 

different axisymmetric lattice Boltzmann D2Q9 models A, B and C were derived 

through inserting different source terms into the 2D LBE. Through fully 

considering the lattice effects in our derivation, all these models can mimic the 2D 

Navier-Stokes equation in the cylindrical coordinates at microscopic level. In 

addition, to avoid the singularity problem in simulations of Halliday et al. (2001), 

axisymmetric boundary models were proposed.  

Compared with FVM solution, our axisymmetric model A, B and C can all 

provide accurate results. The 3D Womersley flow simulations with different 

Reynolds number and Womersley number further validated our axisymmetric 

model B. This model B is subsequently used mainly in all our applications. The 

LBM incorporating the extrapolation wall boundary condition (Guo et al., 2002a) 

and specular scheme for axisymmetric boundary is second-order in space. While 

the spatial convergence ratio of Bouzidi’s wall boundary condition is about 1.6. 

Using the axisymmetric model and the multi-block strategy, the steady and 

unsteady blood flows through constricted tubes and elastic vascular tubes were 

simulated. The flow patterns through tubes with different constriction ratio, 

Reynolds number are consistent with those given by other CFD method. 

Direct 3D simulations are necessary in studies of the blood flow through 

asymmetric tubes. Our 3D LBM solver approximately has second-order accuracy 

in space (i.e., spatial convergence rate is 1.89) for flow in constricted tubes. It is 

found that there is a distinct and significant difference in the wall shear stresses 

between the stenosed side and the side with no protuberance.  
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A hybrid scheme combining the axisymmetric LB model and finite 

difference method was applied to solve the axisymmetric flows with rotation as a 

quasi-three-dimensional problem. The Taylor-Couette flows between two 

concentric cylinders and melt flows in Czochralski crystal growth were simulated. 

Compared with results in other literature, the hybrid scheme can provide very 

accurate results for benchmark problems. The present axisymmetric D2Q9 model 

also seems more stable than that of Peng et al. (2003). As a result, this scheme 

provides accurate results for high Reynolds number and high Grashof number 

cases with smaller grid size.  

A revised axisymmetric D2Q9 model was also applied to investigate gaseous 

slip flow with slight rarefaction through long microtubes. In the simulations of 

microtube flows with Kno in range (0.01, 0.1), our LBM results agree well with 

analytical and experimental results. Our LBM is also found to be more accurate 

and efficient than DSMC when simulating the slip flow in microtube.  

To simulate heat and fluid flow problem, a curved non-slip wall boundary 

treatment for isothermal Lattice Boltzmann equation (LBE) was successfully 

extended to handle the thermal curved wall boundary for a double-population 

thermal LBE. The method proved to be of second-order accuracy.  

As far as I know, no one has proposed a general method to derive 

axisymmetric 2D LB models and no one has applied the models to simulate the 

blood flow in tubes or slip flow in micro-tubes. Our study suggests that LBM can 

also be a useful tool to study the blood flows and micro-tube flows. Our study also 

demonstrates that LBM can be use to study complex 3D heat and fluid flows. 

As one of the novel CFD methods, LBM has not been explored 

comprehensively. The compressibility effect still exists in our axisymmetric 
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model and can be eliminated only if Lx/csT<<1 and Mach number M<<1 are 

satisfied. In our study, due to limitation of mesh size and numerical instability, it 

is still difficult to simulate the cases with higher Re and large Womersley number 

α.  

 

Future research on the area of 3D and axisymmetric LBM should be carried 

out in the following three aspects. 

1) For the LBM itself, the numerical stability should be further improved to 

simulate steady cases with higher Re number and pulsatile flow cases with high 

Womersley number α. That means the further improvements of wall boundary 

conditions and inlet/outlet boundary condition are needed because the calculation 

stability is mainly affected by these boundary conditions. Moving boundary 

condition in LBM also should be further improved.  

2) Further study on incompressible LBM is needed to improve the results of 

unsteady flows since the compressibility of LBM model still affects the accuracy 

of our results especially for the unsteady flow cases. 

   3) Although present LBM is only applied to the slip flow simulation 

(0.01<Kn0<0.1) in microtube, the LBM may be extended to study the transition 

flow or higher Knudsen number cases in the future.  
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