
EFFICIENT SEARCH OF GENERAL AND-OR

KEYWORD QUERIES IN XML DATA

Wang Xianjun

NATIONAL UNIVERSITY OF SINGAPORE

2007

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarBank@NUS

https://core.ac.uk/display/48625232?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

EFFICIENT SEARCH OF GENERAL AND-OR

KEYWORD QUERIES IN XML DATA

Wang Xianjun

(B. Sci. Fudan University, P. R. China)

A THESIS SUBMITTED

FOR THE DEGREE OF MASTER OF SCIENCE

DEPARTMENT OF COMPUTER SCIENCE

NATIONAL UNIVERSITY OF SINGAPORE

2007

Acknowledgement

I would like to express my gratitude to all those who have shared the graduate life

with me and helped me in all kinds of ways. Without their encouragement and

support I would not be able to write this section.

Firstly, I would like to thank my supervisor, Professor Chan Chee Yong for his

guidance. He helped me to build a comprehensive understanding of my research

topics, and provided me with a source of stimulating suggestions. His extraordinary

patience and all kinds of supports are important for me.

I would like to particularly thank Sun Chong, Ni Yuan and Goenka Amit Kumar

for our discussions on my research work which helped me to acquire a deeper and

broader view.

My other collagues of the database group of the computer science department,

Chen Su, Chen Ding, Cheng Weiwei, Cao Yu, Li Yingguang, Xu Linhao, Yang

Xiaoyan, Zhang Zhenjie, Xiang Shili and Ni Wei, have been of great help.

I also feel the need to thank Chen Su, Zhuo Shaojie and Guo Dong for their

encouragement and support in life for years especially during the period of thesis

writing. They are such good and dedicated friends.

iii

iv

Finally, I would like to thank my parents, who are always trusting in me and

back up all of my decisions. They taught me to be thankful to life and made me

understand that the process is much more important than the end-result.

Contents

Summary vii

1 Introduction 1

1.1 Contributions . 3

1.2 Organization . 4

2 Related Work 5

2.1 Keyword Search over Relational Databases 6

2.2 Integrating Keyword Search with XML Query Language 7

2.3 Lowest Common Ancestor Computation 9

3 Preliminaries 14

3.1 Data Model . 14

3.2 Search Result . 19

3.3 Anchor Nodes . 20

4 Keyword Search Queries 23

4.1 Query Syntax . 23

v

CONTENTS vi

4.2 Query Transformation . 24

5 AND-OR Query Processing 27

5.1 Keyword Processing . 28

5.2 And Processing . 30

5.3 Or Processing . 34

5.4 Analysis . 42

6 Performance Study 45

6.1 Experimental Setup . 45

6.2 Experimental Results . 47

7 Conclusion 59

Summary

This thesis examines general form keyword search queries in XML data. The key-

word search for XML documents are important as XML has become the standard

for representing web data. Existing approaches have focused on integrating keyword

search with XML query language which require knowledge of query or algebra syn-

tax. Recent work got rid of this limitation and developed web-like keyword search

approaches. They attempted to address the conjunctive keyword searching prob-

lem based on the notion of smallest lowest common ancestor (SLCA) semantics.

However, they rarely consider keyword search with operators other than AND.

In this thesis, we have presented a novel approach to process general form AND-

OR keyword search queries. To the best of our knowledge, this is the first work to

handle keyword queries with any combination of AND and OR operators.

We utilize the tree structure to represent the keyword search query. The query

can be easily parsed into a query tree, with keywords in leaf nodes and operators

in root as well as intermediate nodes, and operands attached as children of the

operator nodes. Using the query tree, not only the query is naturally divided

into several subqueries in the form of subtrees in the query tree, but also the

vii

CONTENTS viii

processing can be broken up and specialized according to the type of the query

nodes. Consequently, no matter how many types of general form queries there

are, the processing methods we need to consider are now limited to three: how

to process the keyword node in the query tree, and how about the AND operator

nodes and the OR nodes.

We adopted the AND processing from SLCA computing algorithms and pro-

posed a comparison mechanism for OR processing which prunes intermediate re-

sults that cover other intermediate results. By delivering to the parent node the

intermediate results immediately when a new one is produced, a pipeline is built

in the query tree. We do not need to wait for all the matches of the child nodes

coming out. The first searching result can be quickly output while the search is

still running for following results. Quick response is critical to keyword search end

users. An important benefit due to the tree structure and the pipelined approach

is that the effect of increase in number of keywords is reduced by logarithm.

The efficiency of our approach is verified via comprehensive experiments. Al-

though the evaluation time is increasing with an increase in keyword frequency,

our approach has exhibited satisfying processing response and outperforms previ-

ous approaches in most cases especially when the query is a complex one. We also

find by experimental studies that our approach responds similarly to equivalent

queries with different depths and structures. That avoids query rewriting due to

the complexity and is surely to benefit both end users and search engine designers.

List of Figures

1.1 Example XML Trees T1 . 2

3.1 Example XML Document . 15

3.2 Example XML Document With Dewey Labeling 18

4.1 Eample Query Tree . 24

6.1 Pure AND Queries . 48

6.2 CNF Queries . 50

6.3 DNF Queries . 52

6.4 Queries With Depth of 4 . 53

6.5 Queries With Depth of 5 . 55

6.6 Queries With Varying Result Size 56

6.7 Varying Structure for Equal Queries 58

ix

Chapter 1

Introduction

Keyword search is a proven user-friendly way of querying in document systems and

World Wide Web.

For traditional query on relational databases, the processing approach is con-

strained by the structured query imposed by the SQL language. Users are supposed

to have a knowledge of the structure of the data or document that is to be queried.

They can only write a query by describing the data structure as well as their con-

straints. In addition to the structure constraint, the complexity of query language

is another cause that these methods are not so friendly and keyword search is

proposed as an alternative means.

As XML becomes the standard for representing web data, effective and efficient

methods to query XML data have become an increasingly important problem.

An XML query typically involves one or more sets of structurally related XML

elements that are the processing context used by the query. The structure informa-

1

Chapter 1. Introduction 2

x1

x2

b1

a1 c1

a2

a3

b2 d1

Figure 1.1: Example XML Trees T1

tion is used either to evaluate conditions or to return results. If a user knows the

document structure, he can write a meaningful query in XQuery [5] (or XPath [4])

specifying exactly how the nodes involved in the query are structurally connected

to each other. If the user does not have any knowledge of the structural relation-

ships, a keyword search query will be more helpful as long as the user can tell the

element tag names.

However, unlike a structured query where the connection among the data nodes

matching the query is specified precisely in the ”where” clause (in XQuery or SQL)

or as variable bindings (in XQuery), we need to automatically connect the match

nodes in a meaningful way. Recent work attempted to address the above problem

based on the notion of smallest lowest common ancestor (SLCA) semantics.

The following example illustrates the concept of SLCA-based keyword search.

Example 1.1

Consider the XML tree T1 shown in Figure 1.1, where the keyword nodes are

annotated with subscripts for ease of reference. Consider a keyword search using the

keywords {a, b} on T1. The lowest common ancestor(LCA) found will be {x2, b1, a3}

as x2 is the LCA of {a2, b1}, b1 is the LCA of {a1, b1}, a3 is the LCA of {a3, b2}.

Chapter 1. Introduction 3

But x2 is not a SLCA because it has a descendant node b1 that is a SLCA. As a

result, the SLCA-based keyword search will return a set of {a2, b1}. �

Not only the SLCA notion provides a meaningful connection, but also indicates

the granularity as well as the content of the returned information. However, all

those work focus on keyword conjunction but rarely consider keyword search with

operators other than AND. Therefore, in this thesis we introduce a novel approach

for processing general form keyword search queries that are any combination of

AND and OR operators.

1.1 Contributions

In this thesis, we are first to present an efficient approach for general form AND-OR

keyword search queries. Our contributions are summarized as follows:

• We propose a tree structure to represent the general form queries, no matter

how complex the query is. Utilizing the tree structure, we gain opportunities

for optimizing.

• We design a pipelined processing approach. The AND processing part is

adopted from SLCA algorithms. The OR processing part is designed based

on a comparing mechanism.

• Effectiveness and efficiency of our approach as well as some good properties

for keyword search are verified by extensive experimental study.

Chapter 1. Introduction 4

1.2 Organization

This thesis is organized as follows. We introduce the related work in Chapter

2. In Chapter 3 we present some basic definitions and notations as well as data

models. Our novel approach for general form keyword query processing is presented

in Chapter 4 and Chapter 5, introducing query transformation and processing

respectively. We exhibit our experimental study in Chapter 6 and conclude in

Chapter 7.

Chapter 2

Related Work

Extensive research has been done on keyword search. Besides those in the areas of

information retrieval and full-text search, [10, 7, 8] are systems supporting keyword

search over relational databases. [9] is the extension work on top of relational

databases supporting keyword search in XML documents.

Keyword search over XML databases has also attracted interest. Several ap-

proaches attempt to support information retrieval style search by expanding XQuery

or other structured query languages [13, 14, 17, 12, 9, 16]. Among these, [13, 12]

consider ranking schemes as well, which is one of the typical IR issues. Proximity

search is studied in [17, 13].

The idea of computing the most specific elements for conjunctive queries has

been actively explored using LCA (Lowest Common Ancestor), which is the closest

research area relevant to this work. As extensions of LCA, MLCA, SLCA and

GDMCT have been proposed in [18], [20] and [19] respectively.

5

Chapter 2. Related Work 6

2.1 Keyword Search over Relational Databases

In the studies of BANKS [10], DBXplorer [7], and DISCOVER [8], a database is

viewed as a graph with tuples (or objects) as nodes and relationships as edges. It

is required that all query keywords appear in the tree of nodes or tuples that are

returned as the answer to a query.

BANKS answers keyword queries by searching for steiner trees [11] containing

all keywords, using heuristics during the search. The identification of connected

trees is an NP-hard problem. As a result, the implementation of BANKS is tuned

for a graph that fits in main memory. Since it requires that all the data edges fit

in memory, it is not feasible for large data sets.

The structural constraints expressed in RDBMS schema is exploited in DBX-

plorer and DISCOVER to facilitate query processing. They share similar architec-

tures and first get the tuples containing keywords from the master index. After

that, a set of SQL queries corresponding to all different ways to connect the key-

words based on the schema graph are generated. The selection of the optimal

execution plan is proven to be NP-complete. Trees of tuples containing all the

keywords are connected through primary-foreign key relationships and are output

as query results.

Since RDBMS schema is needed in processing, the approaches can not be ap-

plied if the XML documents can not be mapped to a rigid relational schema.

Besides, they encounter similar problem as BANKS that they may need to read a

Chapter 2. Related Work 7

huge number of connecting tuples from the disk since it is impractical to store all

the connections between all pairs of nodes in the inverted index.

XKeyword [9] extends the work of DISCOVER by materializing path indices.

It reduces the number of joins in the generated SQL queries and provides fast

response times.

2.2 Integrating Keyword Search with XML Query

Language

Recently, there has been interests in integrating keyword search with structured

XML querying, among which [17] and [13] are two relatively early works. In [17]

XML-QL is extended with keyword search on subtrees of certain tags. It helps

novice users formulate queries even when they have no idea of the document struc-

ture. Besides, inverted file indices for XML documents are established in a rela-

tional database system. So full-text search as well as distributed query processing

are supported in a relational environment in [17].

XIRQL [13] is an extension of XQL for information retrieval. Several IR-related

features are supported in this system like weighting and ranking, relevance-oriented

search, data types with vague predicates, and semantic relativism.

XXL search engine is presented in [14], which has an SQL-like syntax. Both

exact-match and semantic-similarity search conditions can be expressed in XXL

because it exploits the structural information as well as the rich semantic annota-

Chapter 2. Related Work 8

tions. IR-style relevance ranking is supported in XXL. Ontological information and

suitable index structures are used to improve the search efficiency and effectiveness.

Xyleme [22] creates its own query language for XML query processing. It is an

extension of OQL [23] and provides a mix of database and information retrieval

characteristics.

Various XML full-text query languages have also been proposed. A recent work

[27] presents XFT algebra that accounts for element nesting in XML document

structure to evaluate queries with complex full-text predicates.

Although the above languages support flexible querying of XML, they still re-

quire knowledge of query or algebra syntax and are not suitable for naive users.

XRANK system [12] extends web-like keyword search to XML and requires no

knowledge of query syntax any more. The focus is its ranking mechanism. Given a

tree T containing all the keywords, XRANK assigns a score to T using an adaption

of PageRank algorithm of Google [26]. The score is obtained by combining the

ranking of all the ranked elements with keyword proximity considering document

order. The keyword search algorithm in XRANK utilizes inverted lists and returns

subtrees as answers. However, XRANK does not return connected trees to explain

how the keywords are connected to each other. Only the most specific result is

output although maybe it has parts that are semantically unrelated.

XSearch [15] is closely related to XRANK but employs more information-retrieval

techniques. Proximity is included in the ranking formula in terms of the size of

the relationship tree and it won’t be affected by the order of children, which is

Chapter 2. Related Work 9

different from XRANK. The main focus of XSearch is in laying the foundations for

a semantic search engine over XML documents. It attempts to return meaningful

results based on query as well as document structure. Two nodes are considered to

be semantically related if and only if there are no two distinct nodes with the same

tag name on the path between these two nodes (excluding themselves). A heuris-

tic called interconnection relationship is used to determine whether two nodes are

meaningfully related. However, interconnection does not work when two unrelated

nodes are under same entities. During execution, it uses an all-pairs interconnec-

tion index to check the connectivity between nodes, which is not efficient for large

XML documents and thus is impracticable in practice.

2.3 Lowest Common Ancestor Computation

The algorithms for computing the LCA of nodes in a tree are well known already

[24, 25]. From the study in [16] on, LCA computation applied to XML keyword

search queries has been extensively studied.

MEET [16] also creates a query language to enable keyword search in XML

documents. The meet operator is introduced to help users query XML databases

with whose content they are familiar with, but without requiring knowledge of tags

and hierarchies. The semantics of the meet operator is the nearest concept (i.e.

lowest ancestor) of objects. It operates on multiple sets where all nodes in the same

set are required to have the same schema. The meet operator of two nodes v1 and

Chapter 2. Related Work 10

v2 is implemented efficiently using joins on relations, where the number of joins is

the number of edges of the shorter one of the paths from v1 and v2 to their LCA.

In contrast to [16], some other works do not require schema information, thus

present a more user-friendly interface.

The concept of Smallest LCAs (SLCAs) was first proposed in [20]. SLCAs are

defined to be the LCAs that do not contain other LCAs. According to the SLCA

semantics, the result of a keyword query is the set of nodes that (i) contain the

keywords either in their tags or in the tags of their descendant nodes and (ii) they

have no descendant node that also contains all the keywords either in its own tag

or in the tags of its descendant nodes. Meaningful LCAs (MLCAs) is a similar

concept with SLCAs. Two nodes matching to different keywords are considered to

be meaningfully related if their LCA is an SLCA; a set of nodes consisting of one

match to each keyword is meaningfully related if every pair is meaningfully related,

and a MLCA is defined as the LCA of these nodes.

Y. Li et al [18] incorporates MLCA search in XQuery and proposes a simple,

novel XML document search technique, namely Schema-Free Query. By marking

structurally ambiguous elements with mlcas keyword and ambiguous tag names

with expand function, it enables users to query an XML document without full

knowledge of the document schema. At the same time, any partial knowledge

available to the user can be exploited to advantage. The predicates in an XQuery

are specified through MLCA. A stack-based algorithm is deviced for the MLCA

computation using structural joins.

Chapter 2. Related Work 11

Although both of the concept of MLCAs and that of interconnection in XSearch

are designed to capture the meaningful fragments of the XML document based on

tag names as well as keywords provided in a query, they are quite different when

XML data has more than one logical hierarchy, for example, when a entity have

different tag names. We have mentioned above that XSearch fail to recognize

meaningful structure when entities have different tag names. In contrast, search

based on MLCAs can recognize this fact and avoid returning incorrect result.

XKSearch also makes an effort to improve the efficiency and effectiveness of

keyword search against LCAs. For each keyword the system maintains a sorted list

of nodes that contain the keyword. The key property of SLCA search is that, given

two keywords k1 and k2 and a node v that contains keyword k1, one only needs to

find the left and right matches of v in the list of k2 in order to discover potential

solutions. If the number of keywords is more than two, the SLCA computation is

generalized based on the property: slca(S1, . . . , Sk) = slca(slca(S1, . . . , Sk−1, Sk)

where S1 to Sk are keyword lists and k > 2. The Indexed Lookup Eager algorithm

is thus derived and completes the computation accessing the k keyword lists in just

one round. Delivery of SLCAs is pipelined while intermediate LCAs are removed if

they are not SLCAs. The Scan Eager algorithm is exactly the same as the Indexed

Lookup Eager algorithm except that it maintains a cursor for each keyword list.

Experiments show that the Indexed Lookup Eager algorithm outperforms stack-

based algorithms [12, 18] by orders of magnitude when the keywords have different

frequencies. Meanwhile, the Scan Eager algorithm has been proven to be the best

Chapter 2. Related Work 12

variant for the case where the keywords have similar frequencies.

It can be observed that the SLCA computation in XKSearch goes a binary way

in that for a query with k keywords, the computation is transformed into a sequence

of k − 1 intermediate SLCA computations, each taking a pair of keyword lists as

inputs and outputs another list. An important observation is that the result size is

bounded by min|S1|, . . . , |Sk|. However, XKSearch incurs many unnecessary SLCA

intermediate computations even when the result size is small. C. Sun et al. [21]

optimizes the SLCA computation by exploiting this observation. Their multiway-

SLCA approach takes one data node from each keyword list in a single step. An

”anchor” node is chosen to drive the multiway SLCA computation and the match

anchored by this node is computed. The selections of the anchor node as well as

the next match are optimized based on the properties of the anchor node and the

algorithm thus can minimize redundant computations.

Recently, V. Hristidis et al. proposes the concept of Grouped Distance Minimum

Connecting Trees (GDMCTs), which is another variant of LCAs in [19]. It provides

an optimized version of the LCA-finding stack algorithm. When the result consists

of more than one path return subtrees, the stack-based algorithm first reduced

each path to an edge labeled with the path length, and then groups the isomorphic

reduced subtrees into a generalized tree. Thus the set of LCAs are returned along

with efficiently summarized explanations on why each node is an LCA, which is

the most important contribution of the work.

All the above research works utilizing LCA computation aim to and can only

Chapter 2. Related Work 13

be applied to process conjunctive queries, i.e. AND queries. They provide no

efficient solution for queries that contain an OR operation as LCA computation is

naturally incapable of dealing with disjunction of nodes. Observe this, C. Sun et al.

in [21] attempt to extend their approach to process more general keyword search

queries supporting combination of AND and OR boolean operators. However, they

only produce efficient algorithm that restricts the input keyword search query to be

expressed in conjunctive normal form (CNF). If the query is expressed in disjunctive

normal form (DNF) or any other forms, it has to be either transformed into CNF

first or be processed in a naive way.

This is the original motivation of our work that we intend to develop an efficient

approach of processing AND-OR keyword search queries in general form, i.e. any

combination of AND and OR operators without any additional conditions. Besides,

we provide a web-like style of keyword search that users are not required to have

any knowledge of the data being queried. They do not have to know any query

language either. We adopt the SLCA computation for conjunctive processing and

devise a comparison mechanism uniquely for disjunctive processing. Combining

these two and employing the hiding tree structure of the general form query, we

develop a pipelined multiway approach for general AND-OR keyword search.

Chapter 3

Preliminaries

Our approach for general keyword search is to be applied to an XML document,

which is conventionally represented by a tree structure. Part or whole of the doc-

ument will be returned as the search result. Before we introduce the details of our

approach, some preliminary information will be clarified regarding the data model

of the document being queried as well as the search result. We also introduce a

notion of anchor nodes in the core of SLCA computation approach.

3.1 Data Model

The eXtensible Markup Language (XML) is a hierarchical format. An XML docu-

ment consists of nested XML elements starting with the root element. Each element

can have attributes and values, in addition to nested subelements. XML also sup-

ports intra-document references represented using IDREFs, and inter-document

14

Chapter 3. Preliminaries 15

references represented using XLink. An XML document can optionally have a

schema. Besides XML Schema, Document Type Description (DTD) is a commonly

used method to describe the structure of an XML document and acts like a schema.

Since in our approach no schema information is needed, we will not discuss the

schema related issues. Figure 3.1 shows an example XML document representing

the proceedings of a conference. The 〈conf〉 element is the root element.

〈conf〉
〈name〉VLDB〈/name〉
〈year〉2006〈/year〉
〈paper〉

〈title〉Efficient Discovery of XML Data Redundancies〈/title〉
〈authors〉

〈author〉Cong Yu〈/author〉
〈author〉H.V. Jag〈/author〉

〈/authors〉
〈/paper〉
〈paper〉

〈title〉Answering Tree Pattern Queries Using Views〈/title〉
〈authors〉

〈author〉Laks V.S. Lakshmanan〈/author〉
〈author〉Hui(Wendy) Wang〈/author〉
〈author〉Zheng(Jessica) Zhao〈/author〉

〈/authors〉
〈/paper〉
· · ·
〈paper〉

· · ·
〈/paper〉

〈/conf〉

Figure 3.1: Example XML Document

We use tree structure to model XML documents. An XML document is a

rooted, ordered, labeled tree. Each node corresponds to an element or a value,

Chapter 3. Preliminaries 16

the root node of the tree corresponding to the root element. The edges connecting

nodes represent element-subelement or element-value relationships. Node labels are

either tags or values of the nodes. The ordering of sibling nodes implicitly defines

a total order on the nodes in a tree, obtained by a preorder traversal of the tree

nodes.

There are several labeling schemes for assigning a numerical id to each node in

XML tree structure. Here we use Dewey numbers [1] as our choice based on the

work in [6]. With Dewey labeling, each node is assigned a vector that represents

the path from the document’s root to the node. Each component of the path

represents the absolute order of an ancestor node and each path uniquely identifies

the absolute position of the node within the document.

The example XML document in Figure 3.1 with Dewey labeling is shown in

Figure 3.2. Using Dewey labeling, it is convenient to represent orders and rela-

tionships between nodes in XML tree structure. The LCA of nodes can be easily

derived by common prefix computing as well.

We use < to represent the preceding relationship of two Dewey numbers. For

example, 0.2.1.0 < 0.2.1.1. The node with Dewey number 0.2.1.0 precedes the node

with Dewey number 0.2.1.1 in preorder traverse. We use ≺ to represent the prefix

relationship. For example, 0.2.1 ≺ 0.2.1.1. Then the node with Dewey number

0.2.1 is on the path from the root node to the node with Dewey number, i.e. the

ancestor of the latter one. The former node is also the parent of the latter one

because the difference of the path length from root is only 1. Then it can be easily

Chapter 3. Preliminaries 17

derived that 0.2.1.0 and 0.2.1.1 are the Dewey numbers of two sibling nodes as they

have the same parent.

The above rules are displayed as follows. For two XML tree nodes n1, n2, and

their Dewey numbers d1, d2,

• Document order:

if d1 < d2, then n1 comes before n2 in document sequence.

• Siblings relationship:

n1 and n2 are siblings if and only if d1 and d2 only defer in the last component.

• Ancestor-Descendant relationship:

n1 is the ancestor of n2 if and only if d1 ≺ d2.

• Parent-Child relationship:

n2 is the child of n1 if and only if d1 ≺ d2 and length of d1 equals that of d2

minus 1.

• LCA:

the LCA of n1 and n2 is the node with Dewey number which is the longest

common prefix of d1 and d2.

Example 3.1

In Figure 3.2, node name has Dewey number 0.0, and node year has Dewey

number 0.1. Since 0.0 < 0.1, node name precedes node year. They are siblings

at the same time. The Dewey number 0.1.0 has a prefix 0.1, which is the Dewey

number of node year. According to the rules listed above, node 2006 is a descendant

(as well as a child in this case) of node year. �

Sometimes during the processing of keyword search a part of the XML document

is used to represent intermediate or final result. This part is denoted document

Chapter 3. Preliminaries 18

conf
0

name
0.0

VLDB
0.0.0

year
0.1

2006
0.1.0

paper
0.2

title
0.2.0

Efficient
Discovery of
XML Data

Redundancies
0.2.0.0

authors
0.2.1

author
0.2.1.0

Cong Yu
0.2.1.0.0

author
0.2.1.1

H.V.Jag
0.2.1.1.0

paper
0.3

title
0.3.0

Answering Tree
Pattern Queries

Using Views
0.3.0.0

authors
0.3.1

author
0.3.1.0

Laks V.S.
Lakshmanan

0.3.1.0.0

author
0.3.1.1

Hui(Wendy)
Wang

0.3.1.1.0

author
0.3.1.2

Zheng(Jessica)
Zhao

0.3.1.2.0

... paper

Figure 3.2: Example XML Document With Dewey Labeling

fragment. The document fragment is a consecutive part of an XML document

that contains some or all of the elements in the original document. The document

fragment is not necessarily well formed. There can be several separate trees without

a common root node. However, all the parent-child, ancestor-descendant and the

sibling relationships between two nodes in the document fragment are completely

preserved as they are in the original document.

We use a tuple (begin, end) to denote the document fragment. The label

begin denotes the beginning node of the fragment, and end is the last node of the

fragment. Since there may be several nodes sharing the same tag, we will use the

Dewey numbers instead of the node tags in practice.

Example 3.2

In Figure 3.1, the fragment in the inner box is a valid document fragment, which

Chapter 3. Preliminaries 19

is not well-formed. It begins at the element title and ends at the value of the next

title element and can be expressed in a tuple (0.2.0, 0.3.0.0). Its counterpart in

Figure 3.2 are the three subtrees rooted at node title(0.2.0), authors(0.2.1) and

title(0.3.0) respectively in the bold font. �

3.2 Search Result

When the keyword search query is applied to the XML document, a set of smallest

document fragments containing all the keywords may be returned as result. By

smallest we mean that the document fragment does not contain a smaller document

fragment that also contains all the keywords. For each document fragment, the

lowest common ancestor node of the subtrees corresponding to it is called the LCA

of the document fragment, which can be easily inferred from the tuple.

Definition 3.2.1 For a document fragment D with tuple (begin, end), its LCA

is the lowest common ancestor of its beginning and ending node, i.e. lca(D) =

lca(begin, end).

The example below is a simple conjunctive keyword search query with only two

keywords input and one result returned.

Example 3.3

Suppose a keyword query containing two keywords XML and view is applied to

the XML document in Figure 3.1. The data node with value Efficient Discovery

Chapter 3. Preliminaries 20

of XML Data Redundancies (0.2.0.0) under the element node title will be found

to contain one of the keywords XML. After that, in the data node with value

Answering Tree Pattern Queries Using Views (0.3.0.0) under the element node title

the other keyword ’view’ is found. An intuitive perception is conceived that the

part containing these two data nodes, which is the content in the box in Figure 3.2,

should be returned. However, since the query result should be subtrees, the LCA

of the document fragment is finally returned in place of the subtree rooted at conf

node. �

In the following chapter we will clarify the syntax and transformation of the

keyword search query before we present the query processing in our work.

3.3 Anchor Nodes

We adopt the multiway approach in [21] for SLCA computation. As a result, we

have to make the notion of anchor node as well as some of its properties clear since

it is the central idea of the approach.

Let K = {w1, · · · , wk} denote an input set of k keywords,where each keyword

wi is associated with a set Si of nodes in an XML document T (sorted in document

order).A set of nodes S = {v1, · · · , vk} is defined to be a match for K if |S| = |K|

and each vi ∈ Si for i ∈ [1, k]. We use Si to denote the data node list (sorted in

document order) associated with the keyword wi.

Given two nodes v and w in a document tree T , v ≺p w denotes that v precedes

Chapter 3. Preliminaries 21

w (or w succeeds v) in document order in T ; and v �p w denotes that v ≺p w or

v = w.

We use v ≺a w to denote that v is a proper ancestor of w in T , and v �a w

to denote that v = w or v ≺a w.

Consider a node v and a set of nodes S. The function next(v, S) returns the

first node in S that succeeds v if it exists; otherwise, it returns null. The function

pred(v, S) returns the predecessor of v in S, that is, the last node in S that precedes

v if it exists; otherwise, it returns null.

The function closest(v, S) computes the closest node in S to v as follows:

closest(v, S) =

⎧⎪⎪⎨
⎪⎪⎩

pred(v, S) if lca(v, next(v, S)) ≺a

lca(v, pred(v, S)),

next(v, S) otherwise.

The function closest(v, S) returns null if both pred(v, S) and next(v, S) are

null; and it returns the non-null value if exactly one of pred(v, S) and next(v, S)

is null. The function lca(v, w) computes the lowest common ancestor (or LCA) of

the two nodes v, w and returns null if any of its arguments is null.

Now we come to the notion of anchor nodes.

Definition 3.3.1 A match S = {v1, · · · , vk} is said to be anchored by a node

va ∈ S if for each vi ∈ S − {va}, vi = closest(va, Si). We refer to va as the anchor

node of S.

The properties of the anchor node shown below guarantee that the matches are

restrict to those that are anchored by some node. We omit the proofs and direct

Chapter 3. Preliminaries 22

interested readers to [21].

Lemma 3.3.2 If lca(S) is an SLCA and v ∈ S, then lca(S) = lca(S ′), where S ′

is the set of nodes anchored by v.

Lemma 3.3.3 If lca(S) and lca(S ′) are distinct SLCAs, then S ∩ S ′ = ∅.

Lemma 3.3.4 Let V and W be two matches such that V ≺p W . If lcaW is not

a descendant of lcaV , then for any match X where W ≺p X, lcaX is also not a

descendant of lcaV .

Lemma 3.3.5 Consider two matches S and S ′. They are almost the same except

for two nodes u ∈ S and v ∈ S ′, where u �a v, then lca(S) �a lca(S ′).

Lemma 3.3.5 can be easily deduced from Lemma 3.3.4

Along with the anchor node, now we need a triple (begin, end, anchor) to

represent the anchored match. The label anchor stands for the anchor node of the

match in SLCA computation. The other two labels remain the same meanings in

the tuple (begin, end) representing a document fragment.

Chapter 4

Keyword Search Queries

The general form keyword search query we discussed is the combination of AND

and OR boolean operators. Although the keyword queries can be expressed in

either one of CNF and DNF, we seek a more general form that has no restrictions.

4.1 Query Syntax

The AND-OR keyword search queries are of the form:

Q = (Q) | (Q) AND (Q) | (Q) OR (Q) | k,

where k denotes some keyword.

The query syntax supports any combination of AND and OR. Conventionally

AND operation will be applied prior to OR operation. An example query is as

follows:

Example 4.1

23

Chapter 4. Keyword Search Queries 24

VLDB AND ((XML AND views) OR (Jag AND Lakshmanan))

The query asks for any information containing ’VLDB’ as well as ’XML’ and

’views’, or ’Jag’ and ’Lakshmanan’. �

4.2 Query Transformation

To process the keyword search query, we should first parse the query and get the

information of keywords and operators. The query will be transformed into a

multiple-branched query tree, where the keywords and operators information are

stored in the tree nodes.

There are two types of nodes in the query tree. The operator nodes represent

the boolean operators in the query, and the keyword nodes represent the keywords

in the query. Keyword nodes reside in leaves of the tree while the root and inter-

mediate nodes are operator nodes. The child nodes of those operator nodes are the

corresponding operands. Levels of the operator nodes are determined by the op-

eration order as well as the association indicated by the parentheses. Accordingly,

inner terms are lower in the query tree.

AND

VLDB OR

AND

XML views

AND

Jag Lakshmanan

Figure 4.1: Eample Query Tree

Chapter 4. Keyword Search Queries 25

For the query in Example 4.1, the corresponding query tree is illustrated in Fig-

ure 4.1. The two innermost terms ’XML AND views’, and ’Jag AND Lakshmanan’

are at the bottom of the tree. They are connected by a parent operator node OR,

which is the right child of the root node. The left child is another keyword ’VLDB’.

The root node AND denotes that the outermost operation is a conjunction.

For a node in the query tree, the type information (whether it is an AND oper-

ator, an OR operator or a keyword) is stored in the node. For each operator node

we also maintain its child node list. If the query node is a keyword, its characters

will be stored as well, which are used to get records from database. Besides, a

database cursor is maintained for every keyword node marking the current position

in the keyword data list in the database. If one keyword appears more than once in

the query, multiple cursors will be maintained and accessed separately with regard

to every appearance of the keyword. Consequently, no confusion will be caused.

We choose the tree structure not only because it is a good form that can rep-

resent any general form keyword search query with any combination of AND and

OR operations, but also because tree structure can be easily decomposed and re-

composed during processing. Every subtree of the query tree is a general form

keyword search query itself. Thus the original query can be easily broken down

to smaller and simpler subqueries. Those subqueries can be AND queries, OR

queries, or queries only containing one keyword. Different processing approaches

can be applied according to the types of these subqueries.

During the processing, the intermediate matching document fragment at each

Chapter 4. Keyword Search Queries 26

query node is recorded in the form of the (begin, end, anchor) triple. Details

of the algorithms will be discussed in the next chapter.

Chapter 5

AND-OR Query Processing

In this chapter, we present our approach for processing general form keyword search

queries in XML data.

After the keyword search query has been parsed into the query tree, the pro-

cessing begins from the root node and spreads downward to every tree node. It asks

for one at a time appropriate matching document fragment from each child of the

current node to be processed. The child nodes ask their children in the same way

recursively, and matching document fragments are passed upward and processed

according to the type of the parent node. If the parent node is an AND node, a

conjunction of all the document fragments from child nodes is performed and a

smallest document fragment covering all those document fragments is produced as

a new match. If the parent node is an OR node, the most preceding one among all

the document fragments from child nodes is chosen as the new match. All the inter-

mediate matches at each query tree node are produced in the document sequence,

27

Chapter 5. AND-OR Query Processing 28

Algorithm 1 General Keyword Search Algorithm

1: result = ∅
2: while (getNext(root) 	= null) do
3: result = result ∪ lca(root.triple)
4: end while
5: return result

getNext (node)
1: if (node is a keyword node) then
2: return getNextKey(node)
3: else if (node.operator = AND) then
4: return getNextAnd(node)
5: else if (node.operator = OR) then
6: return getNextOr(node)
7: end if

which is convenient for further computations above.

The algorithm for processing AND-OR general form keyword search queries is

illustrated in Algorithm 1. At each query node, we use the function getNext to

fetch the next suitable document fragment and record it in the triple attached

to the node. The getNext function will direct the processing to different routines

according to the type of query nodes. The smallest subtree containing the document

fragment at the root node is computed via the lca function in step 3 and output to

the final result set.

In the following, we will introduce the processing approach for each type of

query node. We begin with the simplest one getNextKey.

5.1 Keyword Processing

Before we start to introduce the procedure of getNextKey, we first recall some

properties of anchor node and LCA computation.

Chapter 5. AND-OR Query Processing 29

Algorithm 2 Processing Keyword Nodes

getNextKey (node)
Input: keyword node
Output: triple (begin, end, anchor)
1: node.cursor = node.cursor + 1
2: if (nodeList[node.cursor] = null) then
3: return null
4: else if (nodeList[node.cursor + 1] 	= null) then
5: while nodeList[node.cursor] �a nodeList[node.cursor + 1] do
6: if (nodeList[node.cursor + 1] 	= null) then
7: node.cursor + +
8: else
9: break

10: end if
11: end while
12: end if
13: node.triple.begin = node.triple.end = node.triple.anchor = nodeList[node.cursor]
14: return node.triple

According to Lemma 3.3.5, if two matches S and S ′ only differ in two nodes v

and w where v ≺a w, then lca(S) ≺a lca(S ′). Given that we only accept as result

the smallest document fragments that do not contain others, the match S will be

pruned.

Based on this fact, we optimize the procedure of finding the next fitting keyword

data node by skipping those that are ancestors of other nodes in the keyword node

lists.

For every keyword node in the query tree we maintain a cursor, which is initiated

to the first data node, marking the next data node in the corresponding keyword

data lists to be processed. To get the next keyword data node, search begins from

the cursor until a data node is found which is not the ancestor of the following

(step 5 to 11). The triple is produced from the Dewey number of the data node

Chapter 5. AND-OR Query Processing 30

directly (step 13). The cursor is advanced every time the function getNextKey is

called until it reaches the end and reports a null result (step 3).

Example 5.1

Consider a keyword author in Figure 3.2. The triples produced at this key-

word node are (0.2.1.0, 0.2.1.0, 0.2.1.0), (0.2.1.1, 0.2.1.1, 0.2.1.1), (0.3.1.0, 0.3.1.0,

0.3.1.0), (0.3.1.1, 0.3.1.1, 0.3.1.1), and (0.3.1.2, 0.3.1.2, 0.3.1.2), in sequence. The

cursor of the keyword has been advanced five times. �

5.2 And Processing

When we encounter an AND node, a conjunction should be performed among its child

nodes, which is the function getNextAnd called in step 4 in the function getNext

of Algorithm 1. The semantics of AND operation is to find a smallest document

fragment which covers all matching document fragments from the child nodes.

The And processing approach is adopted from the multiway-SLCA algorithm

in [21]. The detail of the function getNextAnd is demonstrated in Algorithm 3. A

child list is maintained for each AND node. The child nodes are denoted as child[i]

in the algorithm, where i is from 1 to the amount of the child nodes denoted as

childCount.

By Lemma 3.3.3, to compute the new match, document fragments from child

nodes already used before should be skipped. As a result, new document fragments

from child nodes are fetched, which is performed in steps 1 to 7. If any one of the

Chapter 5. AND-OR Query Processing 31

Algorithm 3 Processing And Nodes

getNextAnd (node)
Input: And node
Output: triple (begin, end, anchor)
1: for each child[i] do
2: {prepare each child node for candidate fragments}
3: child[i].triple = getNext(child[i])
4: if (child[i].triple = null) then
5: return null
6: end if
7: end for
8: {choose the anchor node}
9: node.triple.anchor = last(child[i].triple.anchor) for each i ∈ [1, childCount]

10: for each child[i] do
11: {compute the anchored match}
12: child[i].triple = getClosestTriple(child[i], node.triple.anchor)
13: end for
14: node.triple.begin = first(child[i].triple.begin) for each i ∈ [1, childCount]
15: node.triple.end = last(child[i].triple.end) for each i ∈ [1, childCount]
16: return node.triple

child runs out of data nodes, no new matches can be found and the algorithm

returns null (step 5).

Once the child nodes are ready, the anchor node is computed. In step 9, the last

one among all the anchors of the document fragments from child nodes is selected

as the anchor of the match. The corresponding anchored match is computed in

steps 10 to 13, by choosing from each child node appropriate document fragments

closest to the current anchor (based on Lemma 3.3.2). The selection is performed

by comparing LCAs of the anchor and neighboring document fragments of the child

node in the function getClosestTriple displayed in Algorithm 4. The function keeps

on fetching the next document fragment of the current child node until it finds

the lowest LCA. The match is found and represented as a triple of which begin is

Chapter 5. AND-OR Query Processing 32

Algorithm 4 getClosestTriple

getClosestTriple (node, anchor)
Input: query node, anchor
Output: triple (begin, end, anchor)
1: olderTriple = node.triple
2: while (getNext(node) 	= null) do
3: if (lca(anchor, triple.anchor) �a lca(anchor, olderTriple.anchor)) then
4: {older triple is closer}
5: node.triple = olderTriple
6: return node.triple
7: end if
8: end while
9: return node.triple

the first of all the begins and end is the last of all the ends of the child document

fragments.

We use two examples to illustrate the detailed procedure of AND processing.

Example 5.2

Consider ’XML AND views’ in Example 3.3 and the document fragment in

Figure 3.1. If the query is applied to the document fragment, the processing be-

gins from the root node of the query tree, and function getNextAnd(And) is called.

There are two children of the AND node: XML, and views, both are keyword

nodes. Subsequently, getNextKey(XML) and getNextKey(views) are called. The

first returns a triple (0.2.0.0, 0.2.0.0, 0.2.0.0), and the second returns (0.3.0.0,

0.3.0.0, 0.3.0.0). The latter one thus is selected as the anchor of current AND oper-

ation. The anchored match is computed and the triple (0.2.0.0, 0.3.0.0, 0.3.0.0) is

returned as the matching fragment (exactly the content in the box in Figure 3.1).

�

Chapter 5. AND-OR Query Processing 33

Example 5.3

Consider another one ’author AND Jag’. Functions getNextKey(author) and

getNextkey(Jag) are called. The first returns a triple (0.2.1.0, 0.2.1.0, 0.2.1.0). The

second returns a triple (0.2.1.1.0, 0.2.1.1.0, 0.2.1.1.0) and is chosen as the anchor.

Based on it, the closest triple is computed. The LCA of current triple of author

and the anchor is 0.2.1. The LCA of the next triple of author (0.2.1.1, 0.2.1.1,

0.2.1.1) and the author is 0.2.1.1 and is recognized as closer. The following triple

is (0.3.1.0, 0.3.1.0, 0.3.1.0) and the LCA is 0, which is the ancestor of the previous

LCA 0.2.1.1. As a result, the triple (0.2.1.1, 0.2.1.1, 0.2.1.1) is the closest to the

anchor. The new match is computed according to step 14 and 15 in Algorithm 3

and a triple (0.2.1.1, 0.2.1.1.0, 0.2.1.1.0) representing the subtree rooted at the

node author (with Dewey number 0.2.1.1) is returned. �

In steps 1 to 7, the child nodes are prepared in the sequence they appear in

the query. Different from the SLCA computing algorithms in [21], the child nodes

are not sorted according to the frequencies of their document fragments. That is

because in the tree structure, it is quite costly to get all the document fragments

sorted at each query node. Furthermore, the sorted lists in [21] can be reused

because they are keyword data lists. In contrast, the sorted document fragments

cannot be reused because they are computed according to given query terms. As

a result, the sorting procedure is a waste in a sense.

On the other hand, due to the tree structure, the processing at the AND node

stops once any one of its child nodes runs out of new matches. It ensures that

Chapter 5. AND-OR Query Processing 34

the total number of intermediate results produced is no more than the smallest

among the numbers of document fragments from child nodes. At the same time,

redundant computing of new document fragments from other child nodes is avoided

and processing time as well as database accesses are saved.

Example 5.4

We continue with the processing of ’author AND Jag’ at the AND node in

Example 5.3. Functions getNextKey(author) and getNextkey(Jag) are called again.

The first returns a triple (0.3.1.0,0.3.1.0,0.3.1.0) and the second returns null. The

checking at step 4 in Algorithm 3 reports a null result of the AND processing. Fur-

ther calling of getNextKey(author) is skipped although there are two more document

fragments at the author keyword node according to the result in Example 5.1. �

5.3 Or Processing

The semantics of OR operation is to combine the intermediate results from its

child nodes by eliminating those document fragments that cover others. Then

getNextOr finds one document fragment at a time which is a smallest independent

one. By smallest, we mean that the fragment does not cover other fragments. By

independent, we mean that the fragment does not intersect with others. Thus we

need to compare the document fragments pairwise between every two child nodes,

pruning those that do not suit until we output a fit one.

Thus the core of OR processing is the comparison. A straightforward method

Chapter 5. AND-OR Query Processing 35

can be as follows:

1. Compute all the document fragments from child nodes and put them in a set.

2. Compare every two document fragments by computing their LCAs.

3. Discard the document fragments whose LCAs are ancestors of others’ and

output the left to the result set.

Unfortunately, most of the time the naive method is unsatisfactory. First of all,

the comparison between every two document fragments is quite time-consuming,

even if the comparison within the same node can be skipped (given that the matches

at the query node are output in document order). Secondly, quite a number of LCA

computations are brought in on demand of the comparison. Unless the LCA of a

document fragment is recorded, every time it is involved in a comparison, its LCA

computation is performed again. Last and the most importantly, the processing

pipeline in the query tree breaks down because we have to wait for the processing

at the OR node finish producing all its matches and even worse, we need to sort

the matches for further processing.

We thus attempt to find an optimized method avoiding the shortcomings listed

above. The observation that the document fragments from one child nodes are

naturally in document order assists the optimization against the large number of

comparisons. Consider two document fragment D1 and D2 which are two matches

at query node q1, and another document fragment D3 from query node q2. If

D3 ≺p D1 ≺p D2 and D3 is disjoint with D1, then D3 is also disjoint with D2. This

Chapter 5. AND-OR Query Processing 36

is a generalization of Lemma 3.3.4. Based on this, if a preceding document fragment

is disjoint with an early document fragment at some node, it won’t get related with

the document fragment produced at the same node in the following. That is to say,

comparisons are not needed for obviously faraway document fragment pairs.

Furthermore, LCA computations are not always needed to decide whether a doc-

ument fragment covers others. Recall that we use a triple (begin, end, anchor)

to represent the document fragment. By comparing the labels in the triple, we can

perceive the relationships between two document fragments at a smaller expense

(It is apparent that the cost of comparing two Dewey numbers is cheaper than that

of computing and comparing the LCAs of two pairs of Dewey numbers).

There can be three possible relationships between two document fragments,

represented in the form of triples as follows:

For two matching document fragments A and B, the triple of A is a(begin, end,

anchor); the triple of B is b(begin, end, anchor). Suppose a.begin �p b.begin:

1. a.begin �p b.begin �p b.end �p a.end

A covers B.

2. a.begin �p b.begin �p a.end �p b.end or a.end �a b.begin

A intersects with B. Further LCA computing is needed to decide whether A

covers B or B covers A.

3. a.end �p b.begin and a.end �a b.begin

A and B are disjoint.

Chapter 5. AND-OR Query Processing 37

Thus we can infer the relationships between two document fragments by com-

paring their begin and end labels instead of comparing LCAs. Consequently, LCA

computing is performed only when necessary. Unqualified intermediate matches

are eliminated according to the result of comparison.

In case 1, A should be pruned because it contains a smaller match B. In case

2, the one that found to be the ancestor should be pruned. If the LCAs of two

document fragments are by chance the same, any one of the document fragments

can be pruned since they represent the same intermediate result. In case 3, neither

of the two will be pruned. We can continue with the comparisons between other

document fragments. If a document fragment is not pruned after it has been

compared with its counterparts from all the other nodes, it will be output as a

qualified match at the OR node.

In our approach, every child node of the OR node has a triple representing its

current match except that those run out of new matches. If all the child nodes

run out of new matches, the processing stops and returns null. If only one child

node has new matches, its matching document fragment will be output directly as

a match at the OR node without being compared. Otherwise, the comparisons will

keep running and stops only when a match is output.

The detail of OR processing is shown in Algorithm 5. Before the central com-

parisons, some preparations are performed.

First of all, we prepare each child node for candidate document fragments by

calling the function checkChild whose detail is demonstrated in Algorithm 6. If

Chapter 5. AND-OR Query Processing 38

Algorithm 5 Processing Or Nodes

getNextOr (node)
Input: Or node
Output: triple (begin, end, anchor)
1: if (checkChild(node) = false) then
2: return null
3: end if
4: while (true) do
5: prec = selectPrec(node)
6: if (prec = −1) then
7: return null
8: end if
9: {the comparison begins}

10: for (i = 0; i < childcount; i + +) do
11: while ((child[i].triple = null)or(i = prec)) do
12: i + +
13: end while
14: if (child[i].triple.begin �p child[prec].triple.end) then
15: if (child[i].triple.end �p child[prec].triple.end) then
16: {case 1}
17: getNext(child[prec]); break
18: else
19: {case 2}
20: if (ancestorLCA(child[prec], child[i]) = true) then
21: getNext(child[prec]); break
22: else if (ancestorLCA(child[i], child[prec]) = true then
23: getNext(child[i])
24: end if
25: end if
26: else if (child[prec].triple.end �a child[i].triple.begin) then
27: {case 2}
28: if (ancestorLCA(child[prec], child[i]) = true) then
29: getNext(child[prec]); break
30: else if (ancestorLCA(child[i], child[prec]) = true then
31: getNext(child[i])
32: end if
33: else
34: {case 3}
35: end if
36: if (i = childCount) then
37: {a round of comparison ends}
38: node.triple = child[prec].triple
39: child[prec].triple = getNext(child[prec])
40: return node.triple
41: end if
42: end for
43: end while

Chapter 5. AND-OR Query Processing 39

Algorithm 6 checkChild

checkChild (node)
Input: Or node
Output: boolean
1: count = 0
2: for each child[i] do
3: if (child[i].triple = null) then
4: child[i].triple = getNext(child.[i])
5: count + +
6: end if
7: end for
8: if (count = node.childCount) then
9: return false

10: else
11: return true
12: end if

Algorithm 7 selectPrec

selectPrec (node)
Input: Or node
Output: the prec index
1: prec = 1
2: while (child[prec].triple = null) do
3: prec + +
4: if (prec ≥ childCount) then
5: return -1
6: end if
7: end while
8: for (i = prec + 1; i < childCount; i + +) do
9: if (child[i].triple.begin �p child[prec].triple.begin) then

10: prec = i
11: end if
12: end for
13: return prec

all the child nodes have no new matches any more, then no new matches can be

computed at the OR node.

Since we want to output the matching document fragments in document order,

it is straightforward that we start the comparison from the most preceding one

among all the document fragments from child nodes. We select the first comparing

triple by calling the function selectPrec which is displayed in Algorithm 7. If all

Chapter 5. AND-OR Query Processing 40

Algorithm 8 ancestorLCA

ancestorLCA (node, node)
Input: Query nodes n1, n2

Output: boolean
1: LCA1 = lca(n1.triple.begin, n1.triple.end)
2: LCA2 = lca(n2.triple.begin, n2.triple.end)
3: if (LCA1 ≺a LCA2) then
4: return true
5: else
6: return false
7: end if

the child nodes have no new matches any more, selectPrec returns null indicating

that no prec indexing the preceding document fragment exist. Otherwise, in steps 8

to 12 existing document fragments are compared by their begin label to decide the

most preceding one to be returned.

After the preparation is done, a new round of comparison starts in step 10

in getNextOr in Algorithm 5. If the result of the comparison falls into case 2,

the LCAs of the two document fragments have to be computed and compared by

calling the function ancestorLCA in Algorithm 8 to decide whether any one of them

should be pruned. If the prec triple is pruned in step 17 in case 1 or in steps 21

and 29 in case 2, the current round of comparison stops and a new round starts

with an updated prec triple. Otherwise the comparison continues between the prec

triple and the triples in the following, sometimes causing those triples updated. If

the prec triple is not pruned after comparing with all the triples provided by other

child nodes, then it is a suitable match and is returned (step 36 to 41).

It can be observed that the triple of child nodes are not necessarily updated

every time getNextOr is called. They are only updated either when the triple has

Chapter 5. AND-OR Query Processing 41

not yet been produced or when the triple expires. Both the pruning in the cases

above and the selection of the triple as matches can make the triple expire. Among

those triples that are eligible as matches, we output them in document order. The

order can be obtained at the same time the comparison runs.

Now we provide a whole view of our approach after the processing methods

according to different types of query nodes have been introduced.

The search begins from the root node, and goes on in a top-down manner.

Each child node of the root node is asked to provide a new one of theirs matches to

compute the final match. Those intermediate query nodes then pass the requests to

their children to compute their own matches. The request for matching document

fragment is spread down until it reaches the leaf node i.e. keyword query node.

Match at the leaf node is computed and a document fragment is returned to its

parent node. The parent node gets all its child nodes ready for a match and

then is able to compute one of its own match and returns the match to its parent

node. When the root node finishes computing and finds a match to the query (or

recognizes a null result to the query), the match is output and a new round of

searching begins (or the searching stops).

We use an AND-OR query to demonstrate the processing detail of OR node as

well as the flow of the whole query processing.

Example 5.5

Now consider the query ’(XML AND views) OR (author AND Jag)’. The

processing begins from the OR node in the query tree. It asks its two child nodes

Chapter 5. AND-OR Query Processing 42

for document fragments. Both of the AND nodes have not been processed yet

and their triples are null. The processing then goes to getNext(AND) for both

of them. The first returns a triple (0.2.0.0, 0.3.0.0, 0.3.0.0) (as in Example 5.2).

The second one returns a triple (0.2.1.1,0.2.1.1.0,0.2.1.1.0) (as in Example 5.3). By

checking the begin and end labels, the first document fragment are found to cover

the second one and falls into case 1. The first one thus is pruned and the second

triple (0.2.1.1,0.2.1.1.0,0.2.1.1.0) is returned.

The query processing continues and getNextOr is called again. At this time,

the first getNextAnd returns null. If the second getNextAnd returns any match, the

match will be output to result directly. However, as in Example 5.4, a null result is

returned. Consequently, there is only one result found for the query ’(XML AND

views) OR (author AND Jag)’ : the subtree rooted at element author with Dewey

number 0.2.1.1. �

5.4 Analysis

We can observe that by delivering to the parent node the intermediate results

immediately when a new one is produced, a pipeline is built in the query tree. We

don’t need to wait for all the matches of the child nodes coming out. The first

searching result can be quickly output while the search is still running for following

results. The quick response is a big satisfaction to keyword search end users.

Besides, since keywords are stored in database and fetched in document order,

Chapter 5. AND-OR Query Processing 43

and the processing at AND as well as OR node retain this property, matches are

produced in document order naturally. The order in reverse assists in the processing

at AND/OR node. Consequently, the cost of sorting search results is saved.

Different from the work in XKSearch [20] and in [21], our approach cannot uti-

lize the frequency variation of the keywords appearing in the query for optimization.

This is mainly because we cover the OR query in addition to absolute AND query.

For an AND query, the result size is no larger than the size of the smallest inter-

mediate result from its child nodes. However, for an OR query, the result size is

no less than that of the largest intermediate match. It is possible that the size of

result grows up to the sum of all the intermediate matches. Consequently, the OR

query receives no benefit from the frequency bounding.

Furthermore, during processing we cannot pre-estimate the size of intermediate

results especially when the query is a complex one whose query tree is deep and

comprises of both AND and OR nodes. Even if we rearrange the keyword nodes

according to their frequencies at the bottom of the query tree, we cannot control the

processing flow to ensure that the intermediate nodes are still in frequency order.

If we compute the frequencies of results for every intermediate nodes and get them

rearranged at AND nodes to facilitate the processing, the cost is too expensive

and not so rewarding. Worse still, the sorting requires all candidate matches to be

ready, which spoils the pipeline.

Even though the frequency cannot be employed for optimization, the compar-

ing of triples instead of LCA computing in our approach gains efficiency. Since

Chapter 5. AND-OR Query Processing 44

the keyword search query we study is in general form and no limit is set to its

complexity, we cannot establish an upper bound of the time complexity for our

algorithms. We will demonstrate our efficiency in the next chapter by extensive

experiments instead.

Chapter 6

Performance Study

To verify the effectiveness as well as the efficiency of our approach, we conducted a

comprehensive study to compare the performance against existing approaches for

evaluating AND-OR keyword search queries.

6.1 Experimental Setup

We implemented our algorithms in Java using Apache Xerces XML parser and

Berkeley DB [2]. The parser for keyword search query was also written in Java

which builds a query tree before the query is processed.

Our experiments were conducted on the DBLP data [3]. All the data nodes are

organized using a B+ tree where the keys are the keywords of the data nodes. The

data associated with each key is a list of Dewey numbers of the data nodes directly

containing the keyword.

45

Chapter 6. Performance Study 46

We use AOG to refer to our general form AND-OR approach. The algorithm we

mainly compared with is the AND-OR multiway-SLCA (AOMS) approach in [21].

Since the keyword search queries that can be processed in AOMS are limited to be

in CNF, we rewrote the general form AND-OR queries into CNF for processing in

AOMS. For example, the query (algorithms AND 2005) OR (approach AND 1999)

will be rewritten into an equivalent query (algorithms OR approach) AND (2005

OR approach) AND (2005 OR approach) AND (2005 OR 1999).

IAOMS is the indexed version of AOMS. The difference between AOMS and

IAOMS is that IAOMS uses a lookup style method to find the next match while

AOMS scans its keyword lists to get the next match. However, our approach can

only apply the scanning method as we do not necessarily have a ready-for-use list to

look up for the next match. That is due to the pipelined processing which produces

only one new intermediate result for each query node when asked by their parent

nodes. As a result, we do not have an indexed version of AOG and we compare

AOG with both AOMS and IAOMS.

We also implemented two binary variants for comparing, AOSE for AND-OR

Scan Eager and AOILE for AND-OR Indexed Lookup Eager. They are exten-

sions of the binary approaches in [20] for AND-OR queries. Similar to AOMS and

IAOMS, AOSE and AOILE can only be applied to CNF queries.

We generated general form AND-OR keyword search queries by varying the

following parameters: the number of keywords in the query N , the height of the

query tree H , and the frequency of each keyword. We also vary the query structure

Chapter 6. Performance Study 47

to investigate performances of varied queries.

Our experiments were conducted on a 3.0GHz desktop with 1GB of RAM run-

ning Windows XP.

6.2 Experimental Results

As mentioned above, AOMS, IAOMS, AOSE and AOILE can only process keyword

queries in CNF. Consequently, they cannot be applied to pure OR queries which

our approach can easily deal with. We omit the performance study of pure OR

queries here as a result.

First of all, we compare our approach with the multiway-SLCA approach in

pure AND queries.

Experiment 1. Pure AND Queries

Pure AND queries refer to keyword search queries that consist of AND nodes

and keywords only, for example, focus AND peer AND ieee. In this experiment,

we vary the number of keywords from 2 to 5 and compare the performances of

the 5 approaches. The results are displayed in Figure 6.1 under different key-

word frequencies. In Figure 6.1(a), 6.1(c) and 6.1(e), all the keywords have the

same frequencies of 10, 100 and 1000 respectively. In Figure 6.1(b), 6.1(d), and

6.1(f), frequencies of keywords varies from 10 to 100, 10 to 1000, and 100 to 1000

respectively.

In the binary and multiway-SLCA approach, all the keyword lists are sorted.

Chapter 6. Performance Study 48

 0

 20

 40

 60

 80

 100

 120

5432

E
va

lu
at

io
n

T
im

e
(m

s)

#Keywords

AOG
AOMS
IAOMS
AOSE
AOILE

(a) small frequency = 10

 0

 20

 40

 60

 80

 100

 120

5432

E
va

lu
at

io
n

T
im

e
(m

s)

#Keywords

(b) frequency (10, 100)

 0

 20

 40

 60

 80

 100

 120

5432

E
va

lu
at

io
n

T
im

e
(m

s)

#Keywords

(c) medium frequency = 100

 0

 20

 40

 60

 80

 100

 120

5432

E
va

lu
at

io
n

T
im

e
(m

s)

#Keywords

(d) frequency (10, 1000)

 0

 20

 40

 60

 80

 100

 120

5432

E
va

lu
at

io
n

T
im

e
(m

s)

#Keywords

(e) large frequency = 1000

 0

 20

 40

 60

 80

 100

 120

5432

E
va

lu
at

io
n

T
im

e
(m

s)

#Keywords

(f) frequency (100, 1000)

Figure 6.1: Pure AND Queries

Their database cursors also get ready before matches are computed. As a result, no

matter the keyword frequency is large or small, the evaluation time always includes

a startup cost which is only related to the number of keywords. As AOG does not

Chapter 6. Performance Study 49

perform a pre-sorting and only accesses the keyword data nodes during the query

processing, its performance is more related to the keyword frequency. When the

keyword frequency is small, AOG takes advantage of zero startup cost and ends

quickly (as in Figure 6.1(a), 6.1(b), 6.1(c)). When the keyword frequency is large,

the influence of startup costs in the binary and multiway-SLCA approaches decrease

and their optimizations utilizing the sorted keyword lists to get the next match take

effect. Consequently, they reveal better performances (as in Figure 6.1(e)). Besides,

when the frequencies vary significantly (as in Figure 6.1(d) and 6.1(f)), the indexed

lookup method IAOMS and AOILE are more efficient. Genrally AOSE and AOILE

reveal worse performences than AOMS and IAOMS. But still they outperform AOG

in pure AND queries.

Experiment 2. CNF Queries

CNF queries can be directly be processed by the binary and multiway-SLCA

approaches. We adopted the AND processing method from their SLCA computing

approach but did not introduce their optimization making use of frequency knowl-

edge because this optimization can only be applied in conjunctive computation and

can not be generalized into AND-OR processing. Nevertheless, with OR processing

introduced, in each conjunction the sorting cost increases compared to pure AND

queries in the binary and multiway-SLCA approaches. In contrast, the label com-

paring method instead of LCA computation for AND and OR processing in AOG

saves up the time cost and redeems the weakness mentioned above.

The results of CNF query is demonstrated in Figure 6.2. The evaluation time

Chapter 6. Performance Study 50

 1

 10

 100

 1000

c3-k3c4-k2c2-k3c2-k2

E
va

lu
at

io
n

T
im

e
(m

s)

Query Class

AOG AOMS IAOMS AOSE AOILE

(a) small frequency = 10

 1

 10

 100

 1000

c3-k3c4-k2c2-k3c2-k2

E
va

lu
at

io
n

T
im

e
(m

s)

Query Class

AOG AOMS IAOMS AOSE AOILE

(b) frequency (10, 100)

 1

 10

 100

 1000

c3-k3c4-k2c2-k3c2-k2

E
va

lu
at

io
n

T
im

e
(m

s)

Query Class

AOG AOMS IAOMS AOSE AOILE

(c) medium frequency = 100

 1

 10

 100

 1000

c3-k3c4-k2c2-k3c2-k2

E
va

lu
at

io
n

T
im

e
(m

s)

Query Class

AOG AOMS IAOMS AOSE AOILE

(d) frequency (10, 1000)

 1

 10

 100

 1000

c3-k3c4-k2c2-k3c2-k2

E
va

lu
at

io
n

T
im

e
(m

s)

Query Class

AOG AOMS IAOMS AOSE AOILE

(e) large frequency = 1000

 1

 10

 100

 1000

c3-k3c4-k2c2-k3c2-k2

E
va

lu
at

io
n

T
im

e
(m

s)

Query Class

AOG AOMS IAOMS AOSE AOILE

(f) frequency (100, 1000)

Figure 6.2: CNF Queries

on the y-axis is in logscale. Each class of queries is denoted by cM-kN, where M

denotes number of conjunctions in the query and N denotes number of keywords

in each conjunction. Then the number of keywords is N multiplied by M .

Chapter 6. Performance Study 51

It is noticed that for CNF queries, the number of keywords in each conjunction

M has a larger impact than the number of conjunctions in the binary and multiway-

SLCA approaches, especially for the indexed version IAOMS and AOILE. However,

our approach is less sensitive to the query structure and exhibits a steady trend

that the evaluation time is linear to the number of keywords in the query. This is

due to the spread-down processing style in the query tree.

In average, the evaluation time is reduced by 50 percent using our approach

compared with the evaluation time of AOMS. We also outperform IAOMS greatly

especially when the number of keywords in each conjunction exceeds 3. The per-

formances of AOSE and AOILE are even worse when the keywords have similar

frequencies. But when the frequency varies, AOILE has a relatively better perfor-

mance than the multiway-SLCA approach although AOG is still the winner.

Experiment 3. DNF Queries

Since DNF queries cannot be directly processed by multiway-SLCA approach,

query rewriting is needed. Generally, the transformed CNF query is more complex

than the original DNF query with keywords duplicated. For example, the simplest

CNF for the query

(editor AND 1999) OR (1997 AND ieee)OR (2001 AND c.) is

(editor OR 1997 OR 2001) AND (editor OR 1997 OR c.) AND (editor OR 2001

OR ieee) AND (1997 OR 2001 OR 1999) AND (1997 OR c. OR 1999) AND

(editor OR c. OR ieee) AND (2001 OR 1999 OR ieee) AND (c. OR 1999 OR

ieee)

Chapter 6. Performance Study 52

The original DNF query will not be viewed as a very complex one if it is pro-

cessed by AOG. However, its CNF counterpart may be quite a challenge for the

multiway-SLCA approach.

 1

 10

 100

 1000

100010010

E
va

lu
at

io
n

T
im

e
(m

s)

Frequency

AOG AOMS IAOMS AOSE AOILE

(a) equal frequency (d2-k3)

 1

 10

 100

 1000

100010010

E
va

lu
at

io
n

T
im

e
(m

s)

Frequency

AOG AOMS IAOMS AOSE AOILE

(b) varying frequency (d2-k3)

 1

 10

 100

 1000

100010010

E
va

lu
at

io
n

T
im

e
(m

s)

Frequency

AOG AOMS IAOMS AOSE AOILE

(c) equal frequency (d3-k2)

 1

 10

 100

 1000

100010010

E
va

lu
at

io
n

T
im

e
(m

s)

Frequency

AOG AOMS IAOMS AOSE AOILE

(d) varying frequency (d3-k2)

Figure 6.3: DNF Queries

In Figure 6.3, queries are classified in a similar way with CNF queries. The

dM-kN in the caption of each figure denotes the number of disjunctions M in the

query and the number of keywords N in each disjunction. Our approach obviously

beats the other 4 by a significant magnitude. The average processing cost of AOG

is 10 percent of the costs of AOMS and IAOMS, and 5 percent of the costs of AOSE

and AOILE.

Chapter 6. Performance Study 53

Experiment 4. Deep AND-OR Queries

 1

 10

 100

100-100010-100010-100100010010

E
va

lu
at

io
n

T
im

e
(m

s)

Frequency

AOG AOMS IAOMS AOSE AOILE

(a) AND rooted

 1

 10

 100

 1000

100-100010-100010-100100010010

E
va

lu
at

io
n

T
im

e
(m

s)

Frequency

AOG AOMS IAOMS AOSE AOILE

(b) OR rooted

Figure 6.4: Queries With Depth of 4

We now examine the performance of deep AND-OR queries with a depth more

than 3 in the query tree. Both CNF queries and DNF queries discussed before

are shallow queries with a depth of 3. Since our approach is a pipelined one, the

processing time is related to the length of the pipeline, i.e. the depth of the query

Chapter 6. Performance Study 54

tree. Thus, deep AND-OR queries require longer processing time.

 1

 10

 100

 1000

100-100010-100010-100100010010

E
va

lu
at

io
n

T
im

e
(m

s)

Frequency

AOG AOMS IAOMS AOSE AOILE

(a) AND rooted

 1

 10

 100

 1000

 10000

100-100010-100010-100100010010

E
va

lu
at

io
n

T
im

e
(m

s)

Frequency

AOG AOMS IAOMS AOSE AOILE

(b) OR rooted

Figure 6.5: Queries With Depth of 5

In Figure 6.4 are the results of queries whose depth is 4. In Figure 6.5 are

queries with depth 5. Compare the performances in Figure 6.4(a) and 6.4(b), we

can find that the evaluation time of queries with an OR node as the root node of

the query tree is far more than that with an AND node as the root node. Similar

Chapter 6. Performance Study 55

trend can also be found in Figure 6.5(a) and 6.5(b).

Furthermore, the increase in the evaluation time is not much when the root

node is an AND node, comparing Figure 6.4(a) and 6.5(a). In contrast, there is a

remarkable increase in the evaluation time when the root node is an OR node and

the depth of the query changes from 4 to 5 (Figure 6.4(b) and 6.5(b)). Comparing

the performances in both figures, it shows once again that AOG has a better capa-

bility of processing disjunctions while the binary and multiway-SLCA approaches

are efficient only for conjunctive processing.

Experiment 5. Result Size

In the following two experiments, we try to find out other factors which have

an impact on the evaluation time of our algorithm. We have demonstrated in the

previous experiments that the frequency of keywords, as well as the query structure

(for example, depth of the query, type of root node) are tightly connected with the

performance.

Another factor related to the evaluation time of AND-OR queries is found to

be the size of the final results, as indicated in Figure 6.6. Queries are generated

randomly and grouped according to their result size. Evaluation time is noted down

and compared.

When the result size is less than or equal to 10, the evaluation time is quite

diverse, as in Figure 6.6(a). However, when the result size approaches 100 or more,

the evaluation time for AOG, AOMS as well as IAOMS all fall into a relatively stable

range respectively (in Figure 6.6(b) and 6.6(c)). In Figure 6.1(e), when the result

Chapter 6. Performance Study 56

 1

 10

 100

 1000

Q4Q3Q2Q1

E
va

lu
at

io
n

T
im

e
(m

s)

Query

AOG AOMS IAOMS AOSE AOILE

(a) result size = 10

 1

 10

 100

 1000

Q4Q3Q2Q1

E
va

lu
at

io
n

T
im

e
(m

s)

Query

AOG AOMS IAOMS AOSE AOILE

(b) result size = 100

 1

 10

 100

 1000

 10000

Q4Q3Q2Q1

E
va

lu
at

io
n

T
im

e
(m

s)

Query

AOG AOMS IAOMS AOSE AOILE

(c) result size = 1000

Figure 6.6: Queries With Varying Result Size

size is around 1000, AOSE and AOILE show very bad performances compared with

the others. That is because of the large amount of intermediate results generated

during the processing. When the result size is small, AOSE and AOILE sometimes

can have better performances.

AOG still reveals better performance than AOMS and IAOMS.

Experiment 6. Vary Rewriting

We infer from Experiment 4 that the depth of the query may affect the evalua-

tion time. It is also shown in Experiment 4 that the query structure have an impact

as well. However, if the queries with different depths and structures but represent

Chapter 6. Performance Study 57

the same semantics, will the structure difference affect the evaluation time? To

investigate this, we choose Queries 13-15 and rewrite them into several equivalent

queries with different depths and structures and compare their evaluation times.

Query 13:

1. (2005 AND views AND chapter)AND (information OR algorithms OR analysis)

2. (2005 AND (views AND chapter))AND (information OR (algorithms OR anal-

ysis))

3. 2005 AND views AND (chapter AND (information OR (algorithms OR analy-

sis)))

4. 2005 AND (views AND (chapter AND (information OR (algorithms OR analy-

sis))))

Query 14:

1. (2005 AND views) OR (chapter AND information) OR (algorithms OR analy-

sis)

2. (2005 AND views) OR ((chapter AND information) OR (algorithms OR anal-

ysis))

3. (2005 AND views) OR (((chapter AND information) OR algorithms) OR anal-

ysis)

4. (((((2005 AND views) OR chapter)AND information) OR algorithms) OR

analysis)

Query 15:

1. (2001 AND pages) OR (ieee AND database) OR (algorithms OR approach)

Chapter 6. Performance Study 58

2. (2001 AND pages) OR ((ieee AND database) OR (algorithms OR approach))

3. (2001 AND pages) OR (((ieee AND database) OR algorithms) OR approach)

4. (((((ieee AND database) OR pages) AND 2001) OR algorithms) OR approach)

 1

 10

 100

 1000

6543

E
va

lu
at

io
n

T
im

e
(m

s)

Depth

Q13 Q14 Q15

Figure 6.7: Varying Structure for Equal Queries

The evaluation times are shown in Figure 6.7. The x-axis denotes the depth

of the query. We can notice that evaluation times hardly change with the trans-

formation of the queries. That means for a given keyword search, no matter in

which form it is expressed, our approach will return with similar response time.

This is a useful property for keyword search processing because we do not need to

rewrite the input queries for efficiency consideration. The search engine system is

simplified while time cost is saved.

Chapter 7

Conclusion

In this thesis, we have presented a novel approach to process general form AND-

OR keyword search queries. To the best of our knowledge, this is the first work to

handle keyword queries with any combination of AND and OR operators.

We utilize the tree structure to represent the keyword search query. The query

can be easily parsed into a query tree, with keywords in leaf node and operators

in root as well as intermediate nodes, and operands attached as children of the

operator nodes. Using the query tree, not only the query is naturally divided

into several subqueries in the form of subtrees in the query tree, but also the

processing can be broken up and specialized according to the type of the query

nodes. Consequently, no matter how many types of general form queries there

are, the processing methods we need to consider are now limited to three: how to

process the keyword node in the query tree, and the AND operator node as well as

the OR node.

59

Chapter 7. Conclusion 60

We adopted the AND processing from SLCA computing algorithms ([16], [18],

[20], [21]) and proposed a comparison mechanism for OR processing which prunes

intermediate results that cover other intermediate results. By delivering to the

parent node the intermediate results immediately when a new one is produced, a

pipeline is built in the query tree. We do not need to wait for all the matches of

the child nodes coming out. The first searching result can be quickly output while

the search is still running for following results. Quick response time is critical to

keyword search end users. An important benefit due to the tree structure and the

pipelined-approach is that the impact of increase in keyword numbers in the query

on query processing is reduced by logarithm.

The efficiency of our approach is verified via comprehensive experiments. Al-

though the evaluation time is increasing with an increase in keyword frequency, our

approach has exhibited satisfying processing response and outperforms multiway-

SLCA approach in most cases especially when the query is a complex one. We

also find by experimental studies that our approach responds steadily to equivalent

queries in different structures. That avoids query rewriting due to the complexity

and is surely to benefit both end users and search engine designers.

Our current work in this thesis still cannot handle queries with NOT operator,

which is commonly used in full-texted keyword searches. As part of our future work,

we intend to extend our approach to deal with complex keyword search queries with

any combination of AND, OR, and NOT operators. Besides, our search returns

the precise answers. Some other approximate answers that may interest the users

Chapter 7. Conclusion 61

thus are completely rejected. Another direction consequently lies in integrating

proximity search as well as ranking mechanism into our approach.

Bibliography

[1] V. Vesper. Let’s Do Dewey. http://www.mtsu.edu/ vvesper/dewey2.htm.

[2] Berkeley DB. http://www.sleepycat.com.

[3] DBLP. http://www.informatik.uni-trier.de/ ley/db.

[4] W3C. XML Path Language(XPath) 1.0. http://www.w3.org/TR/xpath.

[5] Scott Boag, D. Chamberin, Mary Fernandez, Daniela Florescu, Jonathan

Robie, Jerome Simeon. XQuery 1.0: An XML query language.

http://www.w3.org/TR/xquery.

[6] I. Tatarinov, S. Viglas, K. Beyer, J. Shanmugasundaram, E. Shekita, and

C. Zhang. Storing and Querying Ordered XML Using a Relational Database

System. SIGMOD 2002.

[7] S. Agrawal, S. Chaudhuri, G. Das. DBXplorer: A System for Keyword-Based

Search over Relational Databases. ICDE 2002.

[8] V. Hristidis, Y. Papakonstantinou. DISCOVER: Keyword Search in Relational

Databases. VLDB 2002.

62

BIBLIOGRAPHY 63

[9] V. Hristidis, Y. Papakonstantinou, A. Balmin. Keyword Proximity Search on

XML Graphs. ICDE 2003.

[10] G. Bhalotia, C. Nakhe, A. Hulgeri, S. Chakrabarti, S. Sudarshan. Keyword

Searching and Browsing in Databases using BANKS. ICDE 2002.

[11] J. Plesnik. A Bound for the Steiner Tree Problem in Graphs. Math Slovaca,

31:155-163, 1981.

[12] L. Guo, F. Shao, C. Botev, J. Shanmugasundaram. XRank: Ranked Keyword

Search over XML Documents. SIGMOD 2003.

[13] N. Fuhr, K. Grobjohann. XIRQL: A Query Language for Information Re-

trieval in XML documents. SIGIR 2001.

[14] A. Theobald, G. Weikum. The Index-Based XXL Search Engine for Querying

XML Data with Relevance Ranking. EDBT 2002.

[15] S. Cohen, J. Mamou. Y. Kanza, Y. Sagiv. XSearch: A Semantic Search Engine

for XML. VLDB 2003.

[16] A. Schmidt, M. Kersten, M. Windhouwer. Querying XML Documents Made

Easy: Nearest Concept Queries. ICDE 2001.

[17] D. Florescu, D. Kossmann, L. Manolescu. Integrating Keyword Search into

XML Query Processing. WWW 2000.

[18] Y. Li, C. Yu, H. V. Jagadish. Schema-free XQuey. VLDB 2004.

BIBLIOGRAPHY 64

[19] V. Hristidis, N. Koudas, Y. Papakonstantinou, D. Srivastava. Keyword Prox-

imity Search on XML Trees. TKDE 2006.

[20] Y. Xu, Y. Papakonstantinou. Efficient Keyword Search for Smallest LCAs in

XML Databases. SIGMOD 2005.

[21] C. Sun, C.-Y. Chan, A. K. Goenka. Multiway SLCA-based Keyword Search in

XML Data. WWW 2007.

[22] V. Aguilera, S. Cluet, F. Wattez. Xyleme Query Architecture. WWW 2001.

[23] S. Cluet. Designing OQL: Allowing Objects to be Queried. Information Sys-

tems, 23(5): 279-305, 1998.

[24] D. Harel, R. E. Tarjan. Fast Algorithms for Finding Nearest Common Ances-

tors. SIAM J. Comput., 13(2): 338-355, 1984.

[25] B. Schieber, U. Vishkin. on Finding Lowest Common Ancestors: Simplification

and Parallelization. SIAM J. Comput., 17(6): 1253-1262, 1988.

[26] S. Brin, L. Page The Anatomy of a Large-scale Hypertextual Web Search

Engine. Computer Networks, 30(1-7): 107-117, 1998.

[27] S. Amer-Yahia, E. Curtmola, A. Deutsch. Flexible and Efficient XML Search

with Complex Full-text Predicates. SIGMOD 2006.

