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Summary

The Proportional-plus-Integral-plus-Derivative (PID) controllers have found wide

acceptance and applications in the industry for the past few decades(Wang et

al., 1999). Over 90% of controllers used in process control are of PID type (Ho and

Edgar, 2004). It is known that many of the control loops are not well tuned and

yield poor performance. An abundant amount of research has been conducted on

tuning and applications of PID controllers. Over the years, some common beliefs,

well-known formulas and tuning methods have been published. One of the common

beliefs is that the integral action in PID controllers reduces the system stability.

However, nobody has systematically examined its correctness. The classical PID

controller tuning methods proposed by Ziegler and Nichols in 1942 (Ziegler and

Nichols, 1942) include a formula Ti = 4Td, which is well known in control com-

munity. Another popular and widely used PID controller tuning method is the

dominant pole placement. It is to choose a pair of desired poles, which represent

the requirements on the closed-loop response, and make them dominant. However,

the existent design method cannot always guarantee the dominance of chosen poles

and thus sometimes results in poor control performance. With these considerations

in mind, this thesis is devoted to study (i) relationship on stabilizability of LTI

systems by P and PI controllers; (ii) one simple PID tuning method resulting in

Ti = 4Td and another method for dominant poles and phase margin; (iii) guar-

anteed dominant pole placement with PID controllers; (iv) internet-based control

system design with PID controllers.

Firstly, the relationship on stabilizability of linear time-invariant (LTI) systems

by P and PI controllers is investigated. It is found that PI is no poorer than P

vii



Summary viii

in terms of stabilization. PI can stabilize all the systems that P stabilizes but the

converse is not true in general. The cases with the equivalence of stabilizability by

P and PI are established and they are in general low-order systems with few zeros.

The cases with non-equivalence are also identified.

Secondly, two simple tuning methods for PID controllers are presented. A

framework for PID controller design is presented and it leads to the important

popular setting, Ti = 4Td which first appeared in the Ziegler and Nichols tuning

and is widely adopted today. The framework also provides some analytical PID

tuning formulas with improved performance over the ZN tuning. Besides, a simple

PID tuning method for dominant poles and phase margin specification is proposed.

Time domain specifications such as settling time and percentage overshoot are rep-

resented by a pair of dominant poles, which are then combined with phase margin

specification to achieve closed-loop stability and robustness. A graphical way is

developed to determine the PID settings to meet these specifications simultane-

ously.

Thirdly, guaranteed dominant pole placement with PID controllers is achieved

with two simple and easy methods. They are based on the Root-Locus and Nyquist

plot respectively. The basic idea is that the chosen pair of poles give rise to two

real equations which are solved for I and D terms via the proportional gain and

the locations of all other closed-loop poles can then be studied with respect to

this single variable gain. In the Root-Locus method the roots of the closed-loop

characteristic equation for all the positive values of KP are plotted and the range of

KP such that the roots other than the chosen dominant pair are all in the desired

region is then determined. In the Nyquist plot method the same idea is used but

the Nyquist contour is modified. If a solution exists, the parametrization of all

the solutions is explicitly given. The extension of theses two methods to MIMO

systems is also discussed in the decoupling framework. Together with the model

reduction techniques, the multivariable PID controller is developed. Satisfactory

performances are obtained in the examples.

Fourthly, a new design method for internet-based control systems in a dual-
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rate configuration is proposed. The design achieves load minimization and dynamic

performance specifications. It avoids the complexity of large scale system design by

focusing on individual control systems. In the dual-rate configuration, the plant

under control is first stabilized by a local controller with a high sampling rate.

The remote PID controller, which regulates the output according to the desirable

reference, adopts a low sampling rate to reduce load on the network. The upper

bound of the remote PID controller’s sampling time which meets the requirement

on control performance is derived and a simple tuning method for the remote PID

controller is presented.

The results presented in the thesis have very practical value as well as sound

theoretical contributions. The findings in the thesis can be applied to industrial

control systems, as shown from several real-time implementation tests.



Chapter 1

Introduction

1.1 Motivation

Automatic control has played a vital role in the advance of engineering and sci-

ence. It is extremely important in space-vehicle systems, missile-guidance sys-

tems, robotic systems, and so on. In addition, automatic control has become an

important and integral part of modern manufacturing and industrial processes

(Ogata, 2002). The key component in an automatic control system–the controller

receives information from input devices and generates commands for corrective

action to maintain system performance. The controller could be either a piece of

hardware or software code in a computer. Over the years, development of anal-

ysis and design of controllers has been a constant goal for control engineers and

great achievement has been made. Various types of controllers and advanced con-

trol schemes have been proposed and used in practice, which has improved system

performance and productivity.

The Proportional-Integral-Derivative (PID) controllers have been most com-

monly used in automatic control systems for decades. The controller structure is

simple and well understood by process engineers. It provides feedback, can elimi-

nate steady state offsets through integral action and anticipate the future through

derivative action (Astrom and Hagglund, 1995). They are fairly robust and ver-

satile over a wide range of processes. In fact, over 90% of industrial controllers

1
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are of the PID type. Today PID control is still an active research area in control

community due to its importance and the possibility for improvement. Almost all

control journals including IEEE TAC and Automatica continue to publish papers

on PID controllers. For example, Issue 1 in Volume 26 of IEEE Control Systems

Magazine, 2006, is a special issue on PID.

As mentioned above, the PID controller can eliminate steady-state offset for

step inputs through integral action. However, the integral action is widely believed

to have contributed negatively to stability of the closed-loop systems due to the

addition of one open-loop pole at the origin. And it is a long-standing, wide-spread,

and common belief or perception that the integral control deteriorates closed-loop

stability. Control engineers and researchers often think that integral action is use-

less for stabilization and PI control cannot do better stabilization than P control.

Besides, most people in the control community think that a system which cannot

be stabilized by the P controller is not stabilizable by the PI controller. However,

none of these similar beliefs are fully tested or theoretically proved. In fact, a

systematic answer to this stabilizability problem is lacking.

Stability is an important and fundamental requirement on system design but

it is not yet sufficient for PID control applications. System performance should be

always addressed. To ensure certain performance, many PID tuning methods have

been proposed over the years. The classical methods of tuning PID controllers were

developed by Ziegler and Nichols (1942). These methods are still widely used and

often form the basis for tuning procedures used by controller manufacturers and

process industry (Astrom and Hagglund, 1995). The first design method proposed

by Ziegler and Nichols is based on the open-loop step response of the system. The

PID parameters are directly given as functions of two parameters characterizing

the open-loop step response. The second design method is also called the Ziegler-

Nichols frequency response method. The design is based on knowledge of the

point on the Nyquist curve of the process transfer function where the Nyquist

curve intersects the negative real axis. This point is characterized by the ultimate

gain and ultimate period. Ziegler and Nichols have given simple formulas for the
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PID parameters in terms of the ultimate gain and ultimate period. Both of the

ZN tuning methods include a formula, Ti = 4Td, which is well known in control

community. Many other tuning methods either use this formula or slightly modify

it to Ti = δTd( δ is a tuning parameter) (Astrom and Hagglund, 1995; Cohen and

Coon, 1953; Tang et al., 2002; Ogata, 2002; Astrom and Hagglund, 1984; Ang et

al., 2005). The formula was not explained in their original paper. To our best

knowledge, nobody has given an analytical explanation for it.

System Performance is measured in either frequency domain or time domain.

Phase margin and gain margin are widely used as important measures when work-

ing in the frequency domain. Phase margin is calculated as the difference between

−180o and the actual phase angle of the open-loop transfer function measured at

the frequency where the magnitude of the open-loop transfer function is equal to

one. Gain margin, on the other hand, is calculated as the ratio of 1 to the mag-

nitude of the open-loop transfer function at the frequency where the phase angle

of the open-loop transfer function is −180o. Many PID tuning methods based on

phase margin and gain margin were presented in the literature (Ho et al., 1996; K.

et al., 1997; Tang et al., 2002; Fung et al., 1998; Lee, 2005). In Fung et al. (1998),

a graphical method was proposed to obtain exact gain and phase margins for PI

controller design. In Wang et al. (1999), a similar method for the PID controller

was presented.

In time domain, the settling time and overshoot of the output step response are

the important specifications widely used. These specifications may be transformed

into a damping ratio and an undamped natural frequency, and then represented

by a pair of poles. Pole placement in the state space and polynomial settings is

very popular. It first chooses a pair of dominant poles and places the closed-loop

poles in the desired locations in hope that all other poles are far to the left of

the assigned poles. If so achieved, the closed-loop system may have good chance

to meet the specifications represented by the assigned poles. To achieve arbitrary

pole placement for SISO systems, the equivalent output feedback control should

be at least of the plant order minus one. One difficulty with this method is that
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complex models lead to complex controllers. Arbitrary pole placement is otherwise

difficult to achieve if one has to use a low-order output feedback controller for a

high-order plant. For time-delay plants it is impossible to be done. One typical

example is that in process control, PID controller is used to regulate a plant with

delay.

To overcome this difficulty, one wishes to achieve dominant pole placement with

PID controllers. Different from the arbitrary pole placemnt, it only positions a pair

of conjugate poles which represent the requirements on the closed-loop response

and tries to make all other poles have negligible effects on the control performance.

One design for dominant pole placement was first introduced by P. Persson (Persson

and Astrom, 1993) and further explained in Astrom and Hagglund (1995). Their

method is often quite effective and well known in PID controller design (Astrom

and Hagglund, 1995; Ogata, 2002). However, it works well only for plants of first

or second order with small time delay. In the case of higher-order plants, their

design uses the plants’ simplified models, which are usually of second order plus

time delay. As a result, the chosen poles might not be dominant in reality and the

control performance would be unsatisfactory. In some cases, if not well handled,

it could even result in sluggish response or even instability of the closed-loop.

Adding another robustness specification, like phase margin, to the above pole

placement method and working directly on the actual model of the plant can prob-

ably solve this problem. With the requirement on phase margin fulfilled, it is

possible to yield good control performances even if the chosen poles are not dom-

inant. Phase margin also ensures robust stability and accommodates uncertainty

in the process model used for control design. A graphical way can be developed

to obtain exact solutions without introducing any other tuning parameters or ap-

proximation. Therefore, such a tuning method based on pole placement and phase

margin is developed.

Another better way of solving this problem is to find some methods guar-

anteeing that the chosen poles are dominant. Different from the arbitrary pole

placement, the method does not place other poles at specific locations but only
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ensures they are in some locations far to the left of the dominant poles. To the

best of the authors’ knowledge, no method is available in the literature to achieve

that. Our idea, although it looks rather straightforward, is that the chosen pair

of poles give rise to two real equations which are solved for I and D terms via

the proportional gain and the locations of all other closed-loop poles can then be

studied with respect to this single variable gain by means of Root-locus or Nyquist

techniques. Two methods for guaranteed dominant pole placement, one based on

Root-locus and the other based on Nyquist techniques, are developed.

Besides the analysis and tuning methods of PID controllers, researchers are also

interested in the applications of PID controllers in new areas. Over the past two

decades, major advancements in the area of communication and computer networks

have taken place. This gave rise to a new paradigm in control systems analysis

and design, namely Networked Control System. Many systems fall under such

classification and several examples of NCSs can be found in various areas such

as: automotive industry, teleautonomy, teleoperation of robots, and automated

manufacturing systems (Yang, 2006; Hokayem and Abdallah, 2004; Tipsuwan and

Chow, 2003). Networks enable remote data transfers and data exchanges among

users, reduce the complexity in wiring connections and the costs of medias, and pro-

vide ease in maintenance. Several network protocols, such as Controller Area Net-

work (CAN) and Profitbus for industrial control have been released. Meanwhile,

extensive research has also been done on general computer networks especially

the Internet. With the decreasing price, increasing speed and widespread usages,

the internet-based control systems are attractive for use in control applications.

Internet-based control systems have found their applications in many areas, such

as telerobots, manufacturing industry, and virtual laboratories (Yang, 2006; Sri-

vastava and Kim, 2003).

Internet-based control is a very challenging and promising research field. There

are several problems to be tackled. The change of communication architecture from

point-to-point to the internet introduces time-delay uncertainty between sensors,

actuators and controllers. These time delays come from the time-sharing of the
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internet as well as the computation time required for physical signal coding and

communication processing. The characteristics of time delays are usually random.

Intensive research was done on stability analysis and methods to tackle instabil-

ity and uncertainty. Many control methodologies were proposed in the literature

(Tipsuwan and Chow, 2003; Guan and Yang, 2006). However, due to the difficult

nature of this stability problem, few encouraging and simple result has found so

far. Research has also been done on how the sampling time selection affects the

control performance (Yu et al., 2004; Lian et al., 2002), but nobody has worked out

how the control performance is affected by the sampling time. Furthermore, most

of the design methods proposed so far are unable to meet certain requirements on

control performance, such as overshoot and settling time of step response.

The stability issue is first encountered when using PID controllers in the internet-

based control system design. PID controllers are usually for benign and stable

processes while the internet-based control systems could easily become unstable

because of the random time delay. One simple solution to this problem is to adopt

a dual-rate configuration as presented in Yang and Yang (2007). Together with

some simplifications, it becomes possible to use some well-established methods for

PID control and propose a load minimization design method for the internet-based

control systems with dynamic performance specifications.

The work in the thesis is motivated towards the development of new under-

standing, tuning methods and applications for PID controllers to obtain the goal

of high control performance.

1.2 Contributions

In this thesis, new study on PID controllers has been carried out and their appli-

cation in new areas has been implemented. In particular, this thesis investigates

the following cases:

A. Relationship on stabilizability of LTI systems by P and PI Con-

trollers

The relationship on stabilizability of linear time-invariant (LTI) systems by
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P and PI controllers is investigated. It is found that PI is no poorer than P in

stabilization. PI can stabilize all the systems that P stabilizes but the converse

is not true in general. The cases with the equivalence of stabilizability by P and

PI are established and they are in general low-order systems with few zeros. The

cases with non-equivalence are also identified and presented.

B. Simple Tuning Methods for PID Controllers

Two simple tuning methods for PID controllers are presented. Firstly, a frame-

work for PID controller design is presented which leads to the important popular

and widely adopted setting, Ti = 4Td which first appeared in the Ziegler and

Nichols tuning. The framework provides analytical PID tuning formulas with im-

proved performance over the ZN tuning. Secondly, a simple PID tuning method

for dominant poles and phase margin specification is proposed. Time domain spec-

ifications as settling time and overshoot of step response are represented by a pair

of dominant poles, which is combined with phase margin specification to achieve

closed-loop stability and robustness. A graphical way is used to determine the PID

settings to meet these specifications simultaneously.

C. Guaranteed Dominant Pole Placement with PID Controllers

Guaranteed dominant pole placement with PID controllers is achieved with

two simple and easy methods. They are based on Root-Locus and Nyquist plot

respectively. In the Root-Locus method the roots of the closed-loop characteristic

equation for all the positive values of KP are plotted and the range of KP such that

the roots other than the chosen dominant pair are all in the desired region is then

determined. In the Nyquist plot method the same idea is used but the Nyquist

contour is modified. If a solution exists, the parametrization of all the solutions

is explicitly given. The extension of theses two methods to MIMO systems is also

discussed in the decoupling framework. Together with the model reduction tech-

niques, the multivariable PID controller is developed. Satisfactory performances

are obtained in the examples.

D. Internet-based Control Systems Design with PID Controllers

A new design method for internet-based control systems in a dual-rate config-
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uration to achieve load minimization and dynamic performance specifications is

proposed. It avoids the complexity of large scale system design by focusing on

individual control systems. In the dual-rate configuration, the plant under con-

trol is first stabilized by a local controller with a high sampling rate. The remote

PID controller, which regulates the output according to the desirable reference,

adopts a low sampling rate to reduce load on the network. The upper bound of

the remote PID controller’s sampling time which meets the requirement on control

performance is derived and a simple tuning method for the remote PID controller

is presented.

1.3 Organization of the Thesis

This thesis is organized as follows. Chapter 1 is the introduction, followed by

Chapter 2 on relationship on stabilizability of LTI systems by P and PI controllers.

Chapter 3 presents two simple tuning methods for PID controllers and Chapter 4

proposes the guaranteed dominant pole placement with PID controllers. Chapter

5 is on the internet-based control systems design with PID controllers. Chapter 6

concludes this thesis.



Chapter 2

Relationship of Stabilizability by

P and PI Controllers

2.1 Introduction

P and PI controllers are simple effective controllers and widely used in real life. In

process control, most loops are actually PI control (Astrom and Hagglund, 1995).

The integral action in PI controllers can eliminate steady-state offset, but it is be-

lieved to have contributed negatively to the stability of the closed-loop systems due

to the addition of one open-loop pole at the origin. Thus, control engineers seem to

think that integral action is useless for stabilization and PI control cannot do bet-

ter stabilization than P control. Most people believe that a system which cannot

be stabilized by the P controller is not stabilizable by the PI controller. However,

this belief is not fully tested or theoretically proved. In fact, a systematic answer

to this stabilizability problem is lacking. Let us address it more rigorously, the

question to ask is whether there is the equivalence between stabilizability by P and

PI in general. In other words, can P stabilize all the systems which PI stabilizes,

and conversely, can PI stabilize all the systems that P stabilizes? This chapter

aims to answer these questions and correct the common perception that the PI

controller is poorer than the P controller in stabilization of the system. It is found

that PI is no poorer than P in stabilization. PI can stabilize all the systems that

9
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Table 2.1. Stabilizability Equivalence by P and PI Controllers

G(s) = bmsm+bm−1sm−1+...+b1s+b0
sn+an−1sn−1+...+a1s+a0

, b0 6= 0 Equivalence

stable n < ∞
unstable with no zero: bm = bm−1 = ... = b1 = 0 n ≤ 4

unstable with one zero: bm = bm−1 = ... = b2 = 0, b1 6= 0 n ≤ 3

unstable with two zeros: b2 6= 0 no

P stabilizes but the converse is not true in general. The stabilizability equivalence

holds for all stable systems and for several types of low-order unstable systems.

Non-equivalence examples are presented for complementary cases to equivalence

ones. The proof for the high-order equivalent cases and search for non-equivalent

examples are the most challenging and difficult part of our research. The whole

picture of our research results can be seen in Table 2.1.

Please note that uncertainties of a system model in general do not affect the

validity of the results in Table 2.1. The robustness or stability margin may be

briefly discussed in two ways. Let us consider gain margin first. The change of

gain causes no change to our results. It is readily seen by having kG(s) (k is a

positive real number) in Table 2.1 instead of G(s), and then all the conditions hold

for any k. Another simple way to consider stability robustness is to keep some

common distance d of all poles from the stability boundary, the imaginary axis.

Let s = s′−d. And we require the poles at s-plane to have their real parts less than

−d < 0. This is equivalent to make the poles at s′-plane have their real parts less

than 0. When s = s′ − d is substituted to G(s) to transform s-plane to s′-plane,

the derivations and the results of this paper are still applicable, since the numbers

of zeros and poles do not change.

This chapter is organized as follows. Section 2.2 gives the problem formation

and preliminaries. Sections 2.3 and 2.4 discuss the non-zero and one-zero plants

respectively. Section 2.5 discusses the plants with two or more zeros and Section

2.6 is the conclusion.
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2.2 Problem Formulation and Preliminaries

Consider a LTI system described by the transfer function,

G(s) =
N(s)

D(s)
, (2.1)

where N(s) and D(s) are co-prime polynomials given by

N(s) = bmsm + bm−1s
m−1 + ... + b1s + b0,

D(s) = sn + an−1s
n−1 + ... + a1s + a0,

with n ≥ m. In this chapter, we assume that G(s) has no zero at s = 0 to avoid

any unstable zero-pole cancellation with a PI controller:

N(0) 6= 0. (2.2)

This assumption is necessary to address a meaningful stabilizability comparison

between P and PI control because otherwise PI control can never internally stabilize

a system with a zero at the origin.

The system (2.1) is controlled in the conventional unity negative output feed-

back configuration, as depicted in Figure 2.1.

C s G s

R(s) Y(s) 

Figure 2.1. Unity output feedback control System

The controller C(s) can be of P type:

CP (s) = K, (2.3)

or of PI type :

CPI(s) = KP +
KI

s
,KI 6= 0, (2.4)
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where KI 6= 0 is imposed so that the latter always has non-zero integral action and

P is never a special case of PI. It is to make two controllers exclusive of each other

and thus stabilizability equivalence study meaningful. Please note that K, KP and

KI could be either negative or positive. The resulting closed-loop characteristic

equation is

D(s) + KN(s) = 0 (2.5)

for P-control, and

sD(s) + (KP s + KI) N(s) = 0 (2.6)

for PI-control.

Our problem at hand is to find the class of the system, G(s), for which both

equations, (2.5) and (2.6), can be made stable (having all the roots with neg-

ative real parts) by suitable choice of relevant parameters involved. If this is

the case, G(s) is called stabilizability-equivalent by P and PI controllers. Thus,

stabilizability-equivalent cases are the systems which both P and PI can stabilize or

the conditions for the stabilizability by P and PI are the same. The non-equivalent

cases are the systems which P cannot stabilize but PI can, or P can stabilize but

PI cannot.

For a stable system, by the Root-Locus, it is always stabilizable by P-control

as long as the gain K is sufficiently small. For PI-control, let KP = 0 so that it

reduces to I control. A stable system with (2.2) is also stabilizable by I-control

as long as |KI | is sufficiently small and G(0)KI > 0. This establishes Lemma 2.1

below.

Lemma 2.1. The class of stable systems is stabilizability-equivalent by P and PI

controllers.

Lemma 2.1 facilitates us to consider the problem for unstable systems only. For

unstable systems we have established Lemma 2.2.

Lemma 2.2. If a system given by (2.1) and (2.2) is stabilizable by a P controller,

so is it by a PI controller.
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Proof. If a system given by (2.1) and (2.2) is stabilizable by a P controller, then

there is some K such that the characteristic equation (2.5) is stable. The closed-

loop characteristic equation with PI, (2.6), can be rewritten as

s [D(s) + KN(s)] + [(KP −K) s + KI ] N(s) = 0,

or

1 +
KI

s




(
KP−K

KI
s + 1

)
N(s)

D(s) + KN(s)


 = 0.

This can be viewed as the closed-loop characteristic equation with KI

s
controlling

the plant:

(
KP−K

KI
s + 1

)
N(s)

D(s) + KN(s)
,

which has a non-zero static gain due to (2.2) and is stable as its denominator is

the same as the left side of (2.5). It follows from the Root-Locus technique that

there is always a non-zero KI such that the closed-loop is stable, that is, there also

exits a PI controller stabilizing G(s). This completes the proof.

Lemma 2.2 states that stabilizability by P implies stabilizability by PI. As a

result, one only needs to address the converse case: when does stabilizability by

PI imply stabilizability by P. Combined with Lemma 2.1, this side of problem on

stabilizability equivalence for unstable systems will be discussed in terms of the

number of zeros associated with the system in the subsequent sections.

2.3 Plants with No Zero

The equivalence of stabilizability holds for a plant of up to fourth order with

no zero. Because the proofs on the plants of third or lower order are relatively

simple, only the proof on the fourth-order plant is presented below for the sake

of demonstration. For non-equivalent cases, one example of fifth order is provided

and explained.
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First-order. The transfer function of the first-order system without any zero

is given by

G(s) =
b0

s + a0

.

P control gives the closed-loop characteristic equation as

s + (Kb0 + a0) = 0, (2.7)

which is compared with the PI case:

s2 + (KP b0 + a0) s + KIb0 = 0. (2.8)

It is straightforward to see that (2.7) and (2.8) can always be made stable by P

and PI controller parameters, respectively. Thus the equivalence holds.

Example 1.1. Let

G(s) =
1

s− 1
.

It can be stabilized by a P controller CP (s) = 2 and also a PI controller CPI(s) =

2 + 1
s
, respectively.

Second-order. The transfer function of the second-order system with no zero

is given by

G(s) =
b0

s2 + a1s + a0

.

The closed-loop characteristic equation with a P controller is

s2 + a1s + (a0 + Kb0) = 0. (2.9)

The stability requires

(i)a1 > 0, (ii)a0 + Kb0 > 0. (2.10)

The closed-loop characteristic equation with a PI controller is

s3 + a1s
2 + (a0 + KP b0) s + KIb0 = 0. (2.11)
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The Routh array of (2.11) is given as follows:

s3 1 a0 + KP b0

s2 a1 KIb0

s1 a0 + KP b0 − KIb0
a1

s0 KIb0

The stability requires

(i)a1 > 0, (ii)a0 + KP b0 > 0, (iii)KIb0 > 0, (iv)a0 + KP b0 − KIb0

a1

> 0. (2.12)

Equation (2.12) implies (2.10) because from (2.12) we can show that (2.10) is

true by letting . Therefore, PI stabilization ensures P stabilization here. The

equivalence of stabilizability holds.

Example 2.2. Let

G(s) =
1

s2 + s− 2

It can be stabilized by a P controller CP (s) = 4 and also a PI controller CPI(s) =

4 + 1
s
, respectively.

Third-order. The transfer function of the third-order system with no zero is

given by

G(s) =
b0

s3 + a2s2 + a1s + a0

.

The closed-loop characteristic equation with a P controller is

s3 + a2s
2 + a1s + (a0 + Kb0) = 0. (2.13)

The Routh array of (2.13) is

s3 1 a1

s2 a2 a0 + Kb0

a1 a1 − a0+Kb0
a2

s0 a0 + Kb0

The stability requires

(i)a2 > 0, (ii)a1 > 0, (iii)a0 + Kb0 > 0, (iv)a1 − a0 + Kb0

a2

> 0. (2.14)
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The closed-loop characteristic equation with a PI controller is

s4 + a2s
3 + a1s

2 + (a0 + KP b0) s + KIb0 = 0. (2.15)

The Routh array of (2.15) is given as follows:

s4 1 a1 KIb0

s3 a2 a0 + KP b0

s2 a1 − a0+KP b0
a2

KIb0

s1 a0 + KP b0 − KIa2b0

a1−a0+KP b0
a2

s0 KIb0

The stability requires

(i)a2 > 0, (ii)a1 > 0, (iii)a0 + KP b0 > 0, (iv)KIb0 > 0,

(v)a1 − a0 + KP b0

a2

> 0, (vi)a0 + KP b0 − KIa2b0

a1 − a0+KP b0
a2

> 0. (2.16)

Suppose that (2.16) is true. Let K = KP . Then,

a0 + Kb0 = a0 + KP b0 > 0,

a1 − a0 + Kb0

a2

= a1 − a0 + KP b0

a2

> 0.

Thus, equation (2.16) implies (2.14). PI stabilization ensures P stabilization. The

equivalence of stabilizability holds.

Example 2.3. Let

G(s) =
1

s3 + s2 + 5s + 6
.

It can be stabilized by a P controller CP (s) = −3 and also a PI controller CPI(s) =

−3 + 1
s
, respectively.

Fourth-order. The transfer function of fourth-order plant with no zero is

given by

G(s) =
b0

s4 + a3s3 + a2s2 + a1s + a0

, b0 6= 0.

The closed-loop characteristic equation with a P controller is

s4 + a3s
3 + a2s

2 + a1s + (a0 + Kb0) = 0. (2.17)
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The Routh array of (2.17) is given as follows:

s4 1 a2 a0 + Kb0

s3 a3 a1

s2 a2 − a1

a3
a0 + Kb0

s1 a1 − a3(a0+Kb0)

a2−a1
a3

s0 a0 + Kb0

The stability requires

(i)a3 > 0, (ii)a2 > 0, (iii)a1 > 0, (iv)a0 + Kb0 > 0,

(v)a2 − a1

a3

> 0, (vi)a1 − a3 (a0 + Kb0)

a2 − a1

a3

> 0. (2.18)

The closed-loop characteristic equation with a PI controller is

s5 + a3s
4 + a2s

3 + a1s
2 + (a0 + KP b0) s + KIb0 = 0. (2.19)

The Routh array of (2.19) is

s5 1 a2 a0 + KP b0

s4 a3 a1 KIb0

s3 a3 a0 + KP b0 − KIb0
a3

s2 a1 −
a3

�
a0+KP b0−KIb0

a3

�

a2−a1
a3

KIb0

s1 a0 + KP b0 − KIb0
a3

− KIb0
�
a2−a1

a3

�

a1−
a3(a0+KP b0−

KIb0
a3 )

a2−
a1
a3

s0 KIb0

The stability requires

(i)a3 > 0, (ii)a2 > 0, (iii)a1 > 0, (iv)a0 + KP b0 > 0, (v)KIb0 > 0, (vi)a2 − a1

a3

> 0,

(vii)a1 −
a3

(
a0 + KP b0 − KIb0

a3

)

a2 − a1

a3

> 0,

(viii)a0 + KP b0 − KIb0

a3

−
KIb0

(
a2 − a1

a3

)

a1 −
a3

�
a0+KP b0−KIb0

a3

�

a2−a1
a3

> 0. (2.20)
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It is straightforward to see, by comparing (2.20) with (2.18), that (2.20) will imply

(2.18) if one shows (iv) and (vi) of (2.18) using (2.20). Suppose that (2.20) is true.

Let K = KP − KI

a3
. It follows from (v), (vi) and (vii) of (2.20) that

KIb0

(
a2 − a1

a3

)

a1 −
a3

�
a0+KP b0−KIb0

a3

�

a2−a1
a3

> 0.

One then sees

a0 + Kb0 = a0 + KP b0 − KIb0

a3

> a0 + KP b0 − KIb0

a3

−
KIb0

(
a2 − a1

a3

)

a1 −
a3

�
a0+KP b0−KIb0

a3

�

a2−a1
a3

> 0,

where the last equality is due to (viii) of (2.20). Besides, from (vii) of (2.20), one

has

a1 − a3 (a0 + Kb0)

a2 − a1

a3

= a1 −
a3

(
a0 + KP b0 − KIb0

a3

)

a2 − a1

a3

> 0

Therefore, (2.18) is true as well. PI stabilization guarantees P stabilization here.

The equivalence of stabilizability holds.

Example 2.4. Let

G(s) =
1

s4 + s3 + 3s2 + s + 3
.

It can be stabilized by a P controller CP (s) = −2 and also a PI controller CPI =

−2 + 0.1
s

, respectively.

Fifth-order. It is found that the equivalence of stabilizability by P and PI does

not hold when the plant is of fifth order with no zero. This is due to the increased

elements of the Routh array of the closed-loop characteristic equation. With P, one

coefficient in the first column of the Routh array contains the square of K. It is

thus possible that this coefficient is always non-positive for some specific plants if

other coefficients in the first column are kept positive. But with PI, this coefficient

could be positive due to the presence of another variable, KI . One example, which

cannot be stabilized by any P controller but can be stabilized by PI, is provided

here.
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Example 2.5. Let

G(s) =
1

s5 + 2s4 + 2s3 + 3s2 + s + 0.5
.

With a P controller, the closed-loop characteristic equation is

s5 + 2s4 + 2s3 + 3s2 + s + (0.5 + K) = 0.

Its Routh array is

s5 1 2 1

s4 2 3 0.5 + K

s3 0.5 0.75− 0.5K

s2 2K 0.5 + K

s1 − (K−0.5)2

2K

s0 0.5 + K

Since no K exists such that 2K and − (K−0.5)2

2K
are positive simultaneously, P con-

troller cannot stabilize this system. This can be verified by the root loci of positive

and negative gain, as shown in Figure 2.2. For any single value of K, no matter

whether it is positive or negative, there is at least one root not in the left-half

plane.

However, a PI controller

CPI(s) = 0.5 +
0.1

s

is found to be able to stabilize this system. The closed-loop characteristic equation

is s6 + 2s5 + 2s4 + 3s3 + s2 + s + 0.1 = 0. The poles are located at s = −0.0478±
1.0145j, s = −0.0229 ± 0.7153j, s = −1.7505 and s = −0.1081, which are all

stable.

Remark 2.1. Equivalence does not hold in general. But there could be equivalent

examples such as G(s) = 1
s5+4s4+10s3+10s2+5s−1

, which can be stabilized by a P

controller CP (s) = 2 and CPI = 2 + 0.1
s

.
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Figure 2.2. Root-Locus of G(s) in Example 2.5 for positive (in solid blue lines)

and negative (in dashed green lines) K

Higher-order. Consider Example 5 with the same controller but the plant

being cascaded with 1
(αs+1)m , where α is a small positive number and m is a positive

integer. The Nyquest curve of such a new open-loop for either P or PI case can be

made as close as possible to the counterpart of the original loop and thus causes

no change of encirclements with respect to the critical point. The equivalence of

stabilizability by P and PI fails in such cases, too.

Example 2.6. Let

G(s) =
1

s5 + 2s4 + 2s3 + 3s2 + s + 0.5

(
1

0.0001s + 1

)4

.

Like G(s) in Example 2.5, G(s) here has two unstable poles at s = 0.0195±1.1388j.

This plant cannot be stabilized by P controller, which can be verified by the root

loci of positive and negative gain, as shown in Figure 2.3 and 2.4. Figure 2.4 is the

zoom-in version focusing on the roots very near the y-axis. For any single value of

K, no matter whether it is positive or negative, there is at least one root not in

the left-half plane.
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Nevertheless, the same PI controller in Example 2.5,

CPI(s) = 0.5 +
0.1

s

can stabilize this plant. The closed-loop poles are located at s = −10001.0626 ±
1.0628j, s = −9998.9374 ± 1.0624j, s = −1.7505, s = −0.0228 ± 0.7152j and

s = −0.1081 which are all stable.
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Figure 2.3. Root-Locus of G(s) in Example 2.6 for positive (in solid blue lines)

and negative (in dashed green lines) K
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Figure 2.4. Zoomed-in Root-Locus of G(s) in Example 2.6 for positive (in solid

blue lines) and negative (in dashed green lines) K

Time-delay cases. For the sake of completeness, let us address the problem for

time-delay plants (Gu et al., 2003). In Lu (2006), five types of unstable time-delay

plants of up to second order with no zero are studied and the stabilizability results

are displayed in Table 2.2. All the first-order unstable plants are studied there

and all the cases of up to second-order except the plants with two unstable poles,

which neither P nor PI can stabilize, are also considered. From their results and our

Lemma 2.2 before, one therefore concludes that the equivalence of stabilizability

by P and PI holds for time-delay plants of first order and second order with no

zero.
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Table 2.2. Summary of some stabilizability results for time-delay plants

Plant Model P PI

1
s
e−Ls ∀L > 0 ∀L > 0

1
s(s+1)

e−Ls ∀L > 0 ∀L > 0

1
s−1

e−Ls L < 1 L < 1

1
s(s−1)

e−Ls none none

1
(s−1)(Ts+1)

e−Ls L < 1− T L < 1− T

2.4 Plants with One Zero

In this section, the equivalence of stabilizability holds for a plant of up to third

order with one zero. Two examples of higher orders are provided for non-equivalent

cases.

First-order. The transfer function of the first-order system with one zero is

given by

G(s) =
b1s + b0

s + a0

.

With a P controller, the closed-loop characteristic equation is

(1 + Kb1)

(
s +

Kb0 + a0

1 + Kb1

)
= 0.

It can also be written as

(1 + Kb1)

(
s + a0 +

b0 − b1a0

1
K

+ b1

)
= 0.

There always exists a K 6= 0 such that the term a0+
b0−b1a0

1
K

+b1
is positive. Therefore, P

controller can stabilize this kind of systems. Thus, the equivalence of stabillizability

holds.

Example 2.7. Let

G(s) =
s + 1

s− 2
.

It can be stabilized by a P controller CP (s) = 5 and also a PI controller CPI(s) =

5 + 1
s
, respectively.
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Second-order. The transfer function of the second-order delay-free unstable

systems with one zero is written as

G(s) =
b1s + b0

s2 + a1s + a0

where b1 6= 0. The closed-loop characteristic equation with a P controller is

s2 + (a1 + Kb1) s + (a0 + Kb0) = 0. (2.21)

The stability of (2.21) requires

(i)a1 + Kb1 > 0, (ii)a0 + Kb0 > 0. (2.22)

The closed-loop characteristic equation with a PI controller is

s3 + (a1 + KP b1) s2 + (a0 + KIb1 + KP b0) s + KIb0 = 0. (2.23)

The Routh array of (2.23) is

s3 1 a0 + KIb1 + KP b0

s2 a1 + KP b1 KIb0

s1 a0 + KIb1 + KP b0 − KIb0
a1+KP b1

s0 KIb0

The stability requires

(i)a1 + KP b1 > 0, (ii)a0 + KIb1 + KP b0 > 0,

(iii)a0 + KIb1 + KP b0 − KIb0

a1 + KP b1

> 0, (iv)KIb0 > 0. (2.24)

Suppose that (2.24) is true. Let K = KP + b1
b0

KI . Then,

a1 + Kb1 = a1 +

(
KP + KI

b1

b0

)
b1 = a1 + KP b1 +

(
b1

b0

)2

KIb0 > a1 + KP b1 > 0,

a0 + Kb0 = a0 + KP b0 + KIb1 > 0.

Therefore, PI stabilization guarantees P stabilization here. The equivalence holds.

Example 2.8. Let

G(s) =
s + 1

s2 + s− 2
.
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It can be stabilized by a P controller CP (s) = 3 and also a PI controller CPI = 3+ 1
s
.

Third-order. The transfer function of third-order plant with one zero is given

by

G(s) =
b1s + b0

s3 + a2s2 + a1s + a0

, b1 6= 0.

The closed-loop characteristic equation with a P controller is

s3 + a2s
2 + (a1 + Kb1) + (a0 + Kb0) = 0. (2.25)

The Routh array of (2.25) is

s3 1 a1 + Kb1

s2 a2 a0 + Kb0

s1 a1 + Kb1 − a0+Kb0
a2

s0 a0 + Kb0

The stability requires

(i)a2 > 0, (ii)a1+Kb1 > 0, (iii)a0+Kb0 > 0, (iv)a1+Kb1−a0 + Kb0

a2

> 0. (2.26)

The closed-loop characteristic equation with a PI controller is

s4 + a2s
3 + (a1 + KP b1) s2 + (a0 + KP b0 + KIb1) s + KIb0 = 0. (2.27)

The Routh array of (2.27) is

s4 1 a1 + KP b1 KIb0

s3 a2 a0 + KP b0 + KIb1

s2 a1 + KP b1 − a0+KP b0+KIb1
a2

s1 a0 + KP b0 + KIb1 − KIa2b0

a1+KP b1−a0+KP b0+KIb1
a2

s0 KIb0

The stability requires

(i)a2 > 0, (ii)a1 + KP b1 > 0, (iii)a0 + KP b0 + KIb1 > 0,

(iv)KIb0 > 0, (v)a1 + KP b1 − a0 + KP b0 + KIb1

a2

> 0,

(vi)a0 + KP b0 + KIb1 − KIa2b0

a1 + KP b1 − a0+KP b0+KIb1
a2

> 0. (2.28)
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Suppose that (2.28) is true. Let K = KP b0+KIb1
b0

. Then,

a1 + Kb1 = a1 + KP b1 + KIb0

(
b1

b0

)2

> a1 + KP b1 > 0,

a0 + Kb0 = a0 + KP b0 + KIb1 > 0,

a1 + Kb1 − a0 + Kb0

a2

= a1 + KP b1 − a0 + KP b0 + KIb1

a2

+ KIb0

(
b1

b0

)2

> a1 + KP b1 − a0 + KP b0 + KIb1

a2

> 0.

Therefore, PI stabilizabtion also ensures P stabilization here. The equivalence

holds here.

Example 2.9. Let

G(s) =
s− 1

s3 + s2 + 5s + 6
.

It can be stabilized by a P controller CP (s) = −4 and also a PI controller CPI(s) =

−4− 1
s
.

Fourth-order. The equivalence of stabilizability by P and PI does not hold

when the system is of fourth order. Similar to the case of the fifth-order with no

zero, with P or PI, one coefficient in the first column of the Routh array contains

the square of K or KP . For certain plants, it is possible that if other coefficients

in the first column are positive this coefficient is always non-positive with P but

could be positive with PI due to the presence of another variable, KI . Example 10

is provided here for demonstration.

Example 2.10. Let

G10(s) =
s− 1

s4 + s3 + 3s2 + s + 3
.

With a P controller, the closed-loop characteristic equation is

s4 + s3 + 3s2 + (K + 1) s + (3−K) = 0.

Its Routh array is

s4 1 3 3−K

s3 1 K + 1

s2 2−K 3−K

s1 (K−1)2

K−2

s0 3−K
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Since no K exists such that 2 − K and (K−1)2

K−2
are positive simultaneously, P

controller cannot stabilize the system. It can be further verified by the root loci

of both positive and negative, as shown in Figure 2.5. For any single value of K,

no matter whether it is positive or negative, there is at least one root not in the

left-half plane.
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Figure 2.5. Root-Locus of G(s) in Example 2.10 for positive (in solid blue lines)

and negative (in dashed green lines) K

On the other hand, a simple PI controller

CPI = 1− 0.5

s

can stabilize the system. The closed-loop characteristic equation is

s5 + s4 + 3s3 + 2s2 + 1.5s + 0.5 = 0.

The poles are, s = −0.1267 ± 1.4562j, s = −0.1561 ± 0.7172j and s = −0.4344,

which are all located in the left-half plane.

Higher-order. Consider Example 2.10 with the same controller but the plant

being cascaded with 1
(αs+1)m , where α is a small positive number and m is a positive

integer. The Nyquest curve of such a new open-loop for either P or PI case can be
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made as close as possible to the counterpart of the original loop and thus causes

no change of encirclements with respect to the critical point. The equivalence of

P and PI stabilizability fails in such cases, too.

Example 2.11. Let

G(s) =
s− 1

s4 + s3 + 3s2 + s + 3

(
1

0.0001s + 1

)4

.

G(s) has two unstable poles at s = 0.2030 ± 1.1449j. This plant cannot be

stabilized by P controller, which is verified by the root-loci of positive and negative

gain, in Figure 2.6 and 2.7. Figure 2.7 is the zoom-in version focusing on the roots

very near the y-axis. For any single value of K, no matter whether it is positive

or negative, there is at least one root not in the left-half plane.

Nevertheless, the same PI controller in Example 2.10,

CPI(s) = 1− 0.5

s

can stabilize this plant. The closed-loop poles are located at s = −10009.9954, s =

−10000.0075± 10.0028j, s = −9989.9897, s = −0.1265± 1.4561j, s = −0.1562±
0.7170j and s = −0.4346, which are all stable.
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Figure 2.6. Root-Locus of G(s) in Example 2.11 for positive (in solid blue lines)

and negative (in dashed green lines) K
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Figure 2.7. Zoomed-in Root-Locus of G(s) in Example 2.11 for positive (in solid

blue lines) and negative (in dashed green lines) K
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2.5 Plants with Two or More Zeros

It is found that the equivalence of stabilizability by P and PI does not hold in

general for a plant with two or more zeros. A different approach has been taken to

search for the non-equivalent example. Based on the Routh’s Stability Criterion,

all the parameters in the closed-loop characteristic equation should be positive in

order to have stability of the closed-loop system. When the term of s does not exist

in both the denominator and nominator of the open-loop system transfer function,

there would be no way for P to stabilize the system but it is possible for PI to

stabilize, since PI has an s term but P does not. We have found two examples of

non-equivalent cases for demonstration, one at second-order and the other at third

order.

Example 2.12. Let

G(s) =
s2 + 1

s2 + 2
.

With a P controller, the closed-loop characteristic equation is

(K + 1) s2 + (2K + 1) = 0. (2.29)

Equation (2.29) lacks the term of s, so it always have roots located in the right-half

plane or at the imaginary-axis regardless of what K is chosen. P controller cannot

stabilize the system. It can be further verified by the root loci of both positive

and negative gains, as shown in Figure 2.8. For any single value of K, no matter

whether it is positive or negative, there is at least one root not in the left-half

plane.

However, a PI controller, such as,

CPI(s) = 1 +
1

s

can stabilize the system. Its closed-loop characteristic equation is

2s3 + s2 + 3s + 1 = 0. (2.30)

The roots of (2.30) are s = −0.0772± 1.2003j and s = −0.3456, all located in the

left-half plane.
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Figure 2.8. Root-Locus of G(s) in Example 2.12 for positive (in solid blue lines)

and negative (in dashed green lines) K

Example 2.13. Let

G(s) =
s2 + 0.1

s3 − 0.3s2 − 0.016
.

With a P controller, the closed-loop characteristic equation is

s3 + (KP − 0.3) s2 + (0.1KP − 0.016) = 0. (2.31)

Similarly, Equation (2.31) lacks the term of s, thus P controller cannot stabilize

the system. It can be further verified by the root loci of both positive and negative

gains. We find that a PI controller,

CPI(s) = 0.5 +
0.5

s

can stabilize the system. The closed-loop characteristic equation is

s4 + 0.2s3 + 0.5s2 + 0.034s + 0.05 = 0.

The poles are s = −0.0865± 0.5888j and s = −0.0135± 0.3755j, all located in the

left-half plane.
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Plants of higher order and with more zeros. Consider Example 3 again

with the plant being cascaded with (βs+1)l

(αs+1)m , where α and β are some small positive

numbers, l and m are positive integers. The Nyquest curve of such a new open-loop

for either P or PI case can be made as close as possible to the counterpart of the

original loop and thus causes no change of encirclements with the critical point.

Therefore, the conclusion drawn in Example 3 holds for the plant of higher order

or with more zeros, that is, PI may stabilize but P cannot. The equivalence of

stabilizability by P and PI fails in such cases as well.

Example 2.14. Let

G(s) =
s2 + 1

s2 + 2

(
0.001s + 1

0.002s + 1

)
.

With a P controller, the closed-loop characteristic equation is

(0.002 + 0.001K) s3 + (1 + K) s2 + (0.004 + 0.001K) s + (2 + K) = 0. (2.32)

According to the Root-Loci of positive and negative gains, in Figure 2.9 and 2.10,

Equation (2.32) always has some of its roots located in the right-half plane or at

the imaginary-axis for any value of K.

However, a PI controller, such as,

CPI(s) = 1 +
1

s

can stabilize the system, since its closed-loop characteristic equation,

0.003s4 + 2.001s3 + 1.005s2 + 3.001s + 1 = 0,

has the roots at s = −666.4996, s = −0.0773 ± 1.2003j and s = −0.3457, all in

the left-half plane.
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Figure 2.9. Root-Locus of G(s) in Example 2.14 for positive (in solid blue lines)

and negative (in dashed green lines) K
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Figure 2.10. Zoomed-in Root-Locus of G(s) in Example 2.14 for positive (in solid

blue lines) and negative (in dashed green lines) K
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2.6 Conclusion

In this chapter, the relationship on stabilizability of LTI systems by P and PI

controllers is studied. It is shown that the equivalence of stabilizability by P and

PI holds for the classes of (i)stable plants, (ii)plants of up to fourth order with no

zero, (iii)plants of up to third order with one zero. The equivalence fails for other

classes of plants in general and non-equivalent examples are provided.



Chapter 3

Simple Tuning Methods for PID

Controllers

3.1 Preview

After discussing the relationship of stabilizability by P and PI controllers in Chap-

ter 2, Chapter 3 is focused on tuning of PID controllers. The fist section proposes a

tuning method which leads to the famous formula Ti = 4Td. In the second section

another tuning method for dominant poles and phase margin is proposed.

3.2 Why Ti = 4Td for PID Controller Tuning?

3.2.1 Introduction

Among hundreds of PID tuning rules reported in the literature, one presented by

Ziegler and Nichols in 1942 (Ziegler and Nichols, 1942) is still among the most

famous and applicable ones. The ZN tuning includes a formula, Ti = 4Td, which

is well known in control community. Many other tuning methods either use this

formula or slightly modify it to Ti = δTd( δ is a tuning parameter) (Astrom and

Hagglund, 1995; Cohen and Coon, 1953; Tang et al., 2002; Ogata, 2002; Astrom

and Hagglund, 1984; Ang et al., 2005). The formula was not explained in their

original paper and looks a bit mysterious. To our best knowledge, nobody has

35



Chapter 3. Simple Tuning Methods for PID Controllers 36

given an analytical explanation for it. It was an incidence that when we designed a

framework for PID design which results in Ti = 4Td. Our objective in this section

is to present this framework and the corresponding tuning formula with improved

performance.

3.2.2 Why Ti = 4Td

Consider a process with its transfer function, G(s). Suppose that G(s) is non-

integral and G(0) is finite and positive. The process is controlled in the conventional

unity feedback configuration by a PID controller of interacting form,

C(s) = K ′
(

1 +
1

sT ′
i

)
(1 + sT ′

d) . (3.1)

This form is most common in commercial PID controllers (Astrom and Hagglund,

1995). It is re-written in the standard version,

C(s) = KP

(
1 +

1

Tis
+ Tds

)
, KP > 0, Ti > 0, Td > 0, (3.2)

which has to satisfy

Ti − 4Td ≥ 0 (3.3)

in order to fit into the format of (3.1). Typically, control system design speci-

fications include the percentage overshoot and settling time/rising time in time

domain, which may be represented by a pair of dominant poles (Ogata, 2002):

p1,2 = −α± jβ, α > 0, β > 0. Besides, one may also wish to minimize regulation

error. Let us take the integral error (Astrom and Hagglund, 1995): IE =
∫∞

0
e(t)dt,

where e(t) is the error between the step set-point and the resultant output response.

In order to make IE meaningful, the dominant poles, i.e. p1,2 = −α ± jβ, chosen

should be lightly-damped or close to the critically-damped case. Our PID con-

troller design objective is to find the PID settings such that the IE is minimized

subject to p1,2 = −α± jβ being the poles of the resultant closed-loop system.

Since p1 = −α+jβ should be a pole of the closed-loop, it satisfies the following

characteristic equation: 1+C(p1)G(p1) = 0, which, after taking real and imaginary
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parts, Re[ ] and Im[ ], become KP

[
1
Ti
− α (α2 − β2) Td

]
and KP (β − 2αβTd) =

Im
[
− P1

G(p1)

]
. They are solved to get

Td =
1

2α
−

Im
[
− p1

G(p1)

]

2αβKP

, (3.4)

Ti =
KP

Re
[
−p1

G(p1)

]
+ α2−β2

2αβ
Im

[
− p1

G(p1)

]
+ α2+β2

2α
KP

. (3.5)

It follows from the final-value theorem that

IE = lim
t→∞

∫ t

0

e(t)dt = lim
t→∞

E(s) = lim
t→∞

1

sG(s)C(s)
=

1

G(0)KP

Ti

=
1

G(0)
{

Re
[
−p1

G(p1)

]
+ α2−β2

2αβ
Im

[
− p1

G(p1)

]
+ α2+β2

2α
KP

} . (3.6)

The greater KP is, the smaller the IE is. But allowable KP is limited by (3.3).

Substituting (3.4) and (3.5) into (3.3) and solving the resulting inequality with

respect to KP gives

1

β
Im

[
− p1

G (p1)

]
− α

β2
Re

[
− p1

G (p1)

]
− α

β2

√
Re2

[
− p1

G (p1)

]
+ Im2

[
− p1

G (p1)

]
≤ KP

≤ 1

β
Im

[
− p1

G (p1)

]
− α

β2
Re

[
− p1

G (p1)

]
+

α

β2

√
Re2

[
− p1

G (p1)

]
+ Im2

[
− p1

G (p1)

]
.

The IE specification is minimized when KP takes its maximum value in the above

range:

KP =
1

β
Im

[
− p1

G (p1)

]
− α

β2
Re

[
− p1

G (p1)

]
+

α

β2

√
Re2

[
− p1

G (p1)

]
+ Im2

[
− p1

G (p1)

]
.

(3.7)

Substituting (3.7) into (3.4) and (3.5) gives

Ti =

2

{√
Re2

[
− p1

G(p1)

]
+ Im2

[
− p1

G(p1)

]
−Re

[
− p1

G(p1)

]}

βIm
[
− p1

G(p1)

]
− αRe

[
− p1

G(p1)

]
+ α

√
Re2

[
− p1

G(p1)

]
+ Im2

[
− p1

G(p1)

] , (3.8)

Td =

√
Re2

[
− p1

G(p1)

]
+ Im2

[
− p1

G(p1)

]
−Re

[
− p1

G(p1)

]

2

{
βIm

[
− p1

G(p1)

]
− αRe

[
− p1

G(p1)

]
+ α

√
Re2

[
− p1

G(p1)

]
+ Im2

[
− p1

G(p1)

]} ,

(3.9)
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which obviously gives Ti = 4Td.

Now consider positiveness of three PID parameters. From (3.7), KP > 0 is

equivalent to

Im
[
− p1

G(p1)

]
√

Re2
[
− p1

G(p1)

]
+ Im2

[
− p1

G(p1)

]
−Re

[
− p1

G(p1)

] > −α

β
. (3.10)

One can verify from (3.4) and (3.5) that KP > 0 implies Ti > 0 as well as Td > 0.

The condition (3.10) is used to check if the chosen specifications/closed-loop poles

are achievable with PID control.

3.2.3 PID Tuning

It is straightforward to obtain from the preceding section the following PID tuning

procedure:

1) Specify a pair of desired dominant poles of a closed loop system, p1,2, ac-

cording to the given specifications;

2) Check if (3.10) is true;

3) Calculate KP and Td by (3.7) and (3.9), respectively, and let Ti = 4Td if yes;

otherwise, go to Step 1 to relax the specifications.

Example 3.1 is provided below to illustrate the design procedure in detail.

Example 3.1. Consider a high-order process,

G1(s) =
1

(s + 1)8
.

Suppose that the specifications are the overshot of 15% and the settling time

of 20s. The corresponding poles are obtained via some approximation formulae

(Ogata, 2002) as p1,2 = −0.2028 ± j0.3331. In this case, (3.10) is true and the

resulting PID controller is C(s) = 0.6468
(
1 + 1

5.2002s
+ 1.3001s

)
. Comparison is

made with the ZN tuning which yields C(s) = 1.1304
(
1 + 1

7.576s
+ 1.894s

)
and

modified ZN tuning of Astrom and Hagglund method (Astrom and Hagglund, 1984)

with phase margin of φm = π
4

which gives C(s) = 1.3246
(
1 + 1

11.6438s
+ 2.911s

)
.

Step set-point and disturbance responses are shown in Figure 3.1. The proposed

method yields better performance owing to good control of closed-loop poles.
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Figure 3.1. Setpoint and disturbance responses by proposed method, ZN method

and AH method in Example 3.1

3.2.4 Conclusion

The popular formula, Ti = 4Td, in the Z-N tuning, is obtained when the IE speci-

fication is minimized subject to some pole placement requirement. This also leads

to a new analytical PID tuning with improved performance.



Chapter 3. Simple Tuning Methods for PID Controllers 40

3.3 PID Tuning for Dominant Poles and Phase

Margin

3.3.1 Introduction

In this section, a simple but effective PID tuning method for dominant poles and

phase margin specifications is proposed, through employing the design idea of Lee

(2005) with changes from a lead compensator to a PID controller and from the error

constants to phase margin. Phase margin is included here to ensure robust stability

and accommodate uncertainty in the process model used for control design. A

graphical way is developed to obtain exact solutions without introducing any other

tuning parameters or approximation.

The rest of this section is organized as follows. Subsection 3.3.2 presents the

proposed PID design method in detail and an example is given in Subsection 3.3.3.

Subsection 3.3.4 concludes the section.

3.3.2 The Proposed Method

Let a process be represented by its transfer function, G(s). The process is controlled

in the conventional unity feedback configuration by a PID controller,

C(s) = KP +
KI

s
+ KDs, KP > 0, KI > 0, KD > 0. (3.11)

Suppose that control design specifications as the settling time, rising time, peak

time and/or percentage overshoot for a step input can be represented by a pair of

dominant poles (Ogata, 2002):

p1,2 = −α± jβ, α > 0, β > 0. (3.12)

One should be aware that the existent dominant pole placement method cannot

guarantee the assigned poles to be dominant(Astrom and Hagglund, 1995). In fact,

a system with time delay has an infinite spectrum (infinite poles) and thus it is

not feasible to determine dominance either analytically or numerically. However,

in practice, if the poles or equivalently specifications are given reasonably, they
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are achievable by PID controller and the resulting performance will be close to the

given specifications. That implies that the designed system behaves similarly to the

one with chosen poles as dominant. In that sense, the dominant pole placement is

achieved. This argument is essentially a post-check of pole dominance by examining

closeness of the designed control system to the desired one.

To insure performance and robustness, we use the phase margin as another

design specification. The phase margin, φm, in the standard engineering practice,

is usually chosen to meet 0 < φm < π
2
. Our design objective is then to determine

the PID controller such that (3.12) are the poles (hopefully dominant) of the closed-

loop system, and the open-loop system, C(s)G(s), has the specified phase margin,

φm.

One substitutes one of the two dominant poles, p1, into the characteristic equa-

tion of the closed loop system:

1 + C (p1) G (p1) = 0,

which breaks into real and imaginary parts,

KI −KP α + KD

(
α2 − β2

)
= Re

[
− p1

G (p1)

]
, (3.13)

KP β − 2αβKD = Im

[
− p1

G (p1)

]
, (3.14)

where Re[ ] and Im[ ] denote the real and imaginary parts of the complex number

inside the bracket. It follows from the phase margin definition that

G (jωg) C (jωg) = −ejφm ,

where ωg is the gain crossover frequency of the open loop system G(s)C(s). Simi-

larly, splitting it into its real and imaginary parts yields

KP = Re

[
− ejφm

G (jωg)

]
, (3.15)

KDωg − KI

ωg

= Im

[
− ejφm

G (jωg)

]
. (3.16)
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The solutions of (3.13)-(3.16) is bound to be finite as the number of unknowns,

namely KP , KI , KD and ωg equals the number of equations. Unfortunately, it is

difficult to find ωg because of the nonlinearity of (3.15) and (3.16). Here a graphical

method motivated by (Lee, 2005) is developed to determine ωg as follows.

One sees from (3.14) and (3.15) that,

KD =
1

2α
Re

[
− ejφm

G (jωg)

]
− 1

2αβ
Im

[
− p1

G (p1)

]
. (3.17)

Substituting (3.15) and (3.17) into (3.13) gives

KI = Re

[
− p1

G (p1)

]
+

α2 − β2

2αβ
Im

[
− p1

G (p1)

]
+

α2 + β2

2α
Re

[
− ejφm

G (jωg)

]
,

and (3.17) and (3.16) together yield

KI =
ωg

2

2α
Re

[
− ejφm

G (jωg)

]
− ωg

2

2αβ
Im

[
− p1

G (p1)

]
− ωgIm

[
− ejφm

G (jωg)

]
.

These two expressions for KI lead us to define

f1(ω) = Re

[
− p1

G (p1)

]
+

α2 − β2

2αβ
Im

[
− p1

G (p1)

]
+

α2 + β2

2α
Re

[
− ejφm

G (jωg)

]
, (3.18)

f2(ω) =
ωg

2

2α
Re

[
− ejφm

G (jωg)

]
− ωg

2

2αβ
Im

[
− p1

G (p1)

]
− ωgIm

[
− ejφm

G (jωg)

]
. (3.19)

f1(ω) and f2(ω) are plotted with respect to ω in the same diagram. Their inter-

sections make (3.13)-(3.16) hold and the value of KI can be read directly from the

intersection points if there are any. Then KD and KP are obtained as

KD =
1

α2 + β2

{
KI −Re

[
− p1

G (p1)

]
− α

β
Im

[
− p1

G (p1)

]}
, (3.20)

KP =
2α

α2 + β2

{
KI −Re

[
− p1

G (p1)

]
− α2 − β2

2αβ
Im

[
− p1

G (p1)

]}
. (3.21)

In control engineering practice, the same sign for KP , KI and KD is required. By

(3.20) and (3.21), KD > 0 and KP > 0 requires,

KI > Re

[
− p1

G (p1)

]
+

α

β
Im

[
− p1

G (p1)

]
= Ki1,
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KI > Re

[
− p1

G (p1)

]
+

α2 − β2

2αβ
Im

[
− p1

G (p1)

]
= Ki2,

so KI must meet

KI > max {0, Ki1, Ki2} . (3.22)

If there is no intersection of f1(ω) and f2(ω), it means that PID controllers cannot

achieve the required specifications. In other words, the required specifications are

unreasonable. One has to relax the specifications subsequently, usually by simply

increasing settling time. The computation should be re-done with the relaxed

specifications and the curves are to be drawn then.

When there are multiple intersection points of f1(ω) and f2(ω), solutions which

do not meet the constraint of (3.22) are to be ignored and the one with minimum

frequency should be chosen. It is because a relative lower work frequency is ex-

pected in process control practice. If there is no intersection between f1(ω) and

f2(ω) satisfying (3.22), it means that no PID controller can meet the specifications.

In this case, the desired dominant poles or phase margin specifications need to be

altered to allow for the intersections satisfying the constraint of (3.22) exists.

The design procedure for PID controller is thereby summarized as:

1) Specify the phase margin and obtain a pair of desired dominant poles of

a closed loop system, p1,2, according to the prescribed time domain performance

indexes such as overshoot, settling time or other specifications by some formulae

from rules of thumb (Shen, 2001);

2) Plot f1(ω) and f2(ω) according to (3.18) and (3.19);

3) Obtain the value of KI from the intersection points of f1(ω) and f2(ω) which

meets (3.22), and calculate KD and KP by (3.20) and (3.21).

3.3.3 An example

Example 3.2. Consider a stable high order process quoted as the first example

in (Fung et al., 1998):

G(s) =
1

(s + 1)4 .
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It is required that the overshot is not larger than 10% and the 2% settling time is

less than 15s. This leads to a pair of dominant poles as p1,2 = −0.2751± 0.3753j

via some approximation formulae 3.20. Take the phase margin as φm = 60o, as

normally used in practice. We plot f1(ω) and f2(ω) in Figure 3.2, and a suitable

intersection point, which has the lowest frequency and makes KD as well as KP

positive, is found.

Figure 3.2. Plots of f1(ω) and f2(ω) in Example 3.2

The PID controller is thus obtained as

C(s) = 0.4969

(
1 +

1

1.926s
+ 0.1534s

)
.

Comparison is made with Fung’s (Fung et al., 1998) and Ziegler-Nichols method.

For Fung’s method, with gain and phase margins set as 3.0 and 60o , the PI

controller is obtained as C(s) = 0.848+ 0.297
s

. For ZN method, the critical oscillation

period and gain are Tcr = 6.2832 and Kcr = 4, respectively, and a PID controller is

obtained as C(s) = 2.4
(
1 + 1

3.1416s
+ 0.7854s

)
. Output time response to the unit

step set-point at t=0 and step disturbance of magnitude of 0.5 at t = 50s are

exhibited in Figure 3.3. The proposed controller yields satisfactory performance.
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Figure 3.3. Setpoint and disturbance responses in nominal case by proposed

method, Fung’s method and ZN method in Example 3.2

3.3.4 Conclusion

A simple but effective PID tuning method for dominant poles and phase margin

specification has been presented in this section. The method transforms the prob-

lem of solving a set of nonlinear coupled equations into finding the intersection

point of two graphs plotted using the frequency response information of the pro-

cess. The solvability of the problem is related to the existence and the number of

the intersection points of the two graphs. However, it is noted that selection of

the pair of desired dominant poles is critical as it affects solvability of the problem

and deviation of actual performance from expectation



Chapter 4

Guaranteed Dominant Pole

Placement with PID Controllers

4.1 Introduction

Dominant pole placement design was first introduced by P. Persson (Persson and

Astrom, 1993) and further explained in Astrom and Hagglund (1995). Their meth-

ods are based on a simplified model of plants and thus cannot always guarantee

the chosen poles are indeed dominant in reality. In the case of high-order plants

or plants with time delay, the conventional dominant pole placement design, if not

well handled, could result in sluggish response or even instability of the closed-loop.

To the best of the authors’ knowledge, no method is available in the literature to

guarantee the dominance of the assigned poles in the above case.

The last chapter discusses a method to solve this problem by adding phase

margin in the design but the performance is still not guaranteed. It is thus desirable

to find out ways to ensure the dominance of chosen poles and also the closed-loop

stability. This chapter aims to present some methods which provide guaranteed

dominant pole placement with PID controllers. The common idea behind our

methods is that the chosen pair of poles give rise to two real equations which are

solved for I and D terms via the proportional gain and the locations of all other

closed-loop poles can then be studied with respect to this single variable gain by

46



Chapter 4. Guaranteed Dominant Pole Placement with PID Controllers 47

means of Root-locus or Nyquist techniques. Hence, two methods for guaranteed

dominant pole placement with PID controller are naturally developed.

The rest of the chapter is organized as follows. Section 4.2 states the problem

and preliminary. Sections 4.3 and 4.4 each present a method along with illustrating

examples. Section 4.5 is the extension to MIMO systems and Section 4.6 concludes

the chapter.

4.2 Problem Statement and Preliminary

Consider a plant described by its transfer function,

G(s) =
N(s)

D(s)
e−sL, (4.1)

where N(s)/D(s) is a proper and co-prime rational function. A PID controller in

the form of

C(s) = KP +
KI

s
+ KDs

is used to control the plant in the conventional unity output feedback configuration.

The closed-loop characteristic equation is

1 + C(s)G(s) = 0. (4.2)

The closed-loop transfer function is

H(s) =
N(s) (KDs2 + KP s + KI)

D(s)s + N(s)e−Ls (KDs2 + KP s + KI)
e−Ls. (4.3)

Suppose that the requirements of the closed-loop control performance in frequency

or time domain are converted into a pair of conjugate poles (Astrom and Hagglund,

1995):

ρ1,2 = −a±bj. (4.4)

Their dominance requires that the ratio of the real part of any of other poles to

−a exceeds m (m is usually 3 to 5) and there are no zeros nearby. Thus, we want

all other poles to be located at the left of the line of s = −ma, that is, the desired
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-ma

Im 

Re

A

A

2

1

Figure 4.1. Desired region(hatched) of other poles

region as hatched in Figure 4.1. The problem of the guaranteed dominant pole

placement is to find the PID parameters such that all the closed-loop poles lie in

the desired region except the dominant poles, ρ1,2.

Substitute ρ1 = −a + bj into (4.2):

KP +
KI

−a + bj
+ KD(−a + bj) = − 1

G(ρ1)
,

which is a complex equation. Solving the two equations given by its real and

imaginary parts for KI and KD in terms of KP yields





KI = a2+b2

2a
Kp − (a2 + b2) X1,

KD = 1
2a

Kp + X2,
(4.5)

where

X1 =
1

2b
Im

[ −1

G(ρ1)

]
+

1

2a
Re

[ −1

G(ρ1)

]
, X2 =

1

2b
Im

[ −1

G(ρ1)

]
− 1

2a
Re

[ −1

G(ρ1)

]
.

This simplifies the original problem to a one-parameter problem for which well

known methods like Root-locus and Nyquist plot are applicable now.
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4.3 Root-Locus Method

The root-locus method is to show movement of the roots of the characteristic

equation for all values of a system parameter. We plot the roots of the closed-loop

characteristic equation for all the positive values of KP and determine the range of

KP such that the roots other than the chosen dominant pair are all in the desired

region.

Substituting (4.5) into (4.2) yields

1+X2
N(s)e−Ls

D(s)
s−(

a2 + b2
)
X1

N(s)e−Ls

D(s)s
+KP

N(s)e−Ls

D(s)

s2 + 2as + (a2 + b2)

2as
= 0.

(4.6)

Dividing both sides by the terms without KP gives:

1 + KP G(s) = 0, (4.7)

where

G(s) =
N(s) [s2 + 2as + (a2 + b2)] e−Ls

2aD(s)s + 2aX2N(s)s2e−Ls − 2a (a2 + b2) X1N(s)e−Ls
. (4.8)

It can be easily verified that the manipulation does not change the roots. Two

examples are provided below to prove that.

Example 4.1. Consider a fourth-order process,

G(s) =
1

(s + 1)2(s + 5)2 .

If the overshoot is to be less than 5% and the rising time less than 2.5 s, the cor-

responding dominant poles are ρ1,2 = −0.6136± 0.6434j. Equation (4.5) becomes





KI = 0.6442KP − 0.1847,

KD = 0.8149KP − 12.4627.

And it follows from (4.6) that

1 +
12.4627s

(s + 1)2(s + 5)2
− 0.1847

s(s + 1)2(s + 5)2
+ KP

s2 + 1.227s + 0.7905

1.227s(s + 1)2(s + 5)2
= 0,

s(s + 1)2(s + 5)2 + 12.4627s2 − 0.1847

s(s + 1)2(s + 5)2
+ KP

s2 + 1.227s + 0.7905

1.227s(s + 1)2(s + 5)2
= 0,
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1.227 [s(s + 1)2(s + 5)2 + 12.4627s2 − 0.1847] + KP (s2 + 1.227s + 0.7905)

1.227s(s + 1)2(s + 5)2
= 0,

1.227s5 + 14.73s4 + 56.45s3 + 58.33s2 + 30.68s− 0.2267 + KP (s2 + 1.227s + 0.7905)

1.227s(s + 1)2(s + 5)2
= 0.

While (4.7) gives

1 + KP
s2 + 1.227s + 0.7905

1.227s5 + 14.73s4 + 56.45s3 + 58.33s2 + 30.68s− 0.2267
= 0,

1.227s5 + 14.73s4 + 56.45s3 + 58.33s2 + 30.68s− 0.2267 + KP (s2 + 1.227s + 0.7905)

1.227s5 + 14.73s4 + 56.45s3 + 58.33s2 + 30.68s− 0.2267
= 0.

It is observed that (4.6) and (4.7) have the same roots or zeros but their poles are

different.

Example 4.2. Consider a third-order delay process

G(s) =
1

(s + 1)(s + 10)2
e−0.2s.

If the overshoot is to be less than 5% and the 2%-settling time less than 7 s, the

dominant poles are ρ1,2 = −0.6051± 0.6345j. Equation (4.5) becomes





KI = 0.6352KP + 44.8739,

KD = 0.8264KP − 30.1640.

Similarly, it follows from (4.6) that

1− 30.16s

(s + 1)(s + 10)2
e−0.2s+

44.87

s(s + 1)(s + 10)2
e−0.2s+KP

s2 + 1.2102s + 0.7687

1.2102s(s + 1)(s + 10)2
e−0.2s = 0,

s(s + 1)(s + 10)2 − 30.16s2e−0.2s + 44.87e−0.2s

s(s + 1)(s + 10)2
+KP

(s2 + 1.2102s + 0.7687) e−0.2s

1.2102s(s + 1)(s + 10)2
= 0,

1.2102 [s(s + 1)(s + 10)2 − 30.16s2e−0.2s + 44.87e−0.2s] + KP (s2 + 1.2102s + 0.7687) e−0.2s

1.2102s(s + 1)(s + 10)2
= 0.

Equation (4.7) gives

1 + KP
(s2 + 1.2102s + 0.7687) e−0.2s

1.2102 [s(s + 1)(s + 10)2 − 30.16s2e−0.2s + 44.87e−0.2s]
= 0,

1.2102 [s(s + 1)(s + 10)2 − 30.16s2e−0.2s + 44.87e−0.2s] + KP (s2 + 1.2102s + 0.7687) e−0.2s

1.2102 [s(s + 1)(s + 10)2 − 30.16s2e−0.2s + 44.87e−0.2s]
= 0.

Please note again that only the poles have changed.
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Let us continue to present our method. If G(s) has no time-delay term, G(s)

is a proper rational transfer function since the degrees of its nominator and de-

nominator of G(s) equal those of the closed-loop transfer function’s nominator and

denominator, respectively. The root locus of (4.7) can easily be drawn with Matlab

as KP varies. The interval of KP for guaranteed dominant pole placement can be

determined from the root locus. Example 4.3 shows the design procedure in detail.

Example 4.3. Consider a fourth-order process,

G(s) =
1

(s + 1)2(s + 5)2 .

If the overshoot is to be less than 5% and the rising time less than 2.5 s, the cor-

responding dominant poles are ρ1,2 = −0.6136± 0.6434j. Equation (4.5) becomes





KI = 0.6442KP − 0.1847,

KD = 0.8149KP − 12.4627.

And it follows from (4.8) that

G(s) =
s2 + 1.227s + 0.7905

1.227s5 + 14.73s4 + 56.45s3 + 58.33s2 + 30.68s− 0.2267
.

The root-locus of G(s) is exhibited in Figure 4.2 with the solid lines while the edge

of the desired region with m = 3 is indicated with dashed lines. Note that G(s)

is of 5-th order and has five branches of root loci, of which two are fixed at the

dominant poles while the other three move with the gain. From the root-locus, two

intersection points corresponding to root locus entering into and departing from

the desired region are located and give the gain range of KP ∈ (36, 51), which

ensures all other three poles in the desired region. Besides, the positiveness of KD

and KI requires KP > 15.2935. Taking the joint solution of these two, we have

KP ∈ (36, 51). If KP = 50 is chosen, the PID controller is

C(s) = 50 +
32.0233

s
+ 28.2832s.

The zeros of the closed-loop system are at s = −0.8839 ± 0.5934j, which are not

near the dominant poles. Figure 4.3 shows the step response of the closed-loop

system.
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Figure 4.2. Root-Locus for Example 4.3

0 1 2 3 4 5 6 7 8 9
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time (sec)

O
ut

pu
t

Overshoot: 7%

Settling Time: 1.25s

Figure 4.3. Closed-loop step response for Example 4.3
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4.4 Nyquist Plot Method

If G(s) has time delay, so will be G(s). Then, drawing the root locus for it could

be difficult and checking locations of infinite poles is a forbidden task. Note that

the Nyquist plot works well for delay systems. The Nyquist stability criterion

determines the number of unstable closed-loop poles based on the Nyquist plot

and the open-loop unstable poles. We use the same idea but have to modify

the conventional Nyquist contour. The Modified Nyquist contour is obtained by

shifting the conventional Nyquist contour to the left by ma, as Figure 4.1 shows.

The image of G(s) when s traverses the modified Nyquist contour is called the

modified Nyquist plot. The number of poles located outside the desired region

plays the same role as that of unstable poles in the standard Nyquist criterion.

Rewrite (4.7) as

1
KP

+ G(s) = 0. (4.9)

It always has ρ1,2 as its two roots by our construction. These two lie outside the

desired region. We want no more to ensure dominant pole placement. Equiva-

lently, we want the modified Nyquist plot of G(s) to have the number of clockwise

encirclements with respect to (− 1
KP

, 0) equal to 2 minus the number of poles of

G(s) outside the desired region. This condition will determine the interval of KP

such that roots of (4.9) other than two dominant poles are in the desired region.

To find the poles of G(s) located outside the desired region, note that they

are simply the roots of its denominator. Thus, we construct another characteristic

equation from the denominator of G(s) in (4.8) as follows:

1 + Go(s) = 0, (4.10)

where

Go(s) =
X2N(s)s2 − (a2 + b2) X1N(s)

D(s)s
e−Ls.

Go(s) has its rational part with the degrees of its nominator and denominator being

equal to those of the open-loop transfer function’s nominator and denominator,
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respectively. The number of the roots of (4.10), that is, poles of G(s) lying outside

the desired region, equals the number of clockwise encirclements of the modified

Nyquist plot of Go(s) with respect to (−1, 0), plus the number of poles of Go(s)

located outside the desired region. The latter is easy to find from the known

denominator of Go(s), which is, D(s)s.

The design procedure is summarized as follows.

Step 1. Find the poles of Go(s) (the roots of D(s)s) outside the desired region

and name its total number as P+

Go
;

Step 2. Draw the modified Nyquist plot of Go(s), count the number of clockwise

encirclements with respect to the −1 + j0 point as N+

Go
, and obtain the number of

poles of G(s) outside the desired region as P+

G
= N+

Go
+ P+

Go
;

Step 3. Draw the modified Nyquist plot of G(s) and find the range of KP during

which the clockwise encirclements with respect to the (− 1
KP

, 0) is 2-P+

G
.

We now provide examples to illustrate the design procedure in detail.

Example 4.4. Consider a third-order delay process

G(s) =
1

(s + 1)(s + 10)2
e−0.2s.

If the overshoot is to be less than 5% and the 2%-settling time less than 7 s, the

dominant poles are ρ1,2 = −0.6051± 0.6345j. (4.5) becomes




KI = 0.6352KP + 44.8739,

KD = 0.8264KP − 30.1640.

We have

G(s) =
(s2 + 1.2102s + 0.7687) e−0.2s

1.2102 [s(s + 1)(s + 10)2 − 30.16s2e−0.2s + 44.87e−0.2s]
,

Go(s) =
−30.16s2 + 44.87

s(s + 1)(s + 10)2 e−0.2s.

Take m = 5. We have ma = 3.0255 and s = 0,−1 as two poles of Go(s) which

are outside the desired region and P+

Go
= 2. Figure 4.4 is the modified Nyquist

plot of Go(s) and there is one clockwise encirclement with respect to the point

(−1, 0), that is, N+

Go
= 1. Therefore, G(s) has three poles located in the desired
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region since P+

G
= N+

Go
+ P+

Go
= 3. It means the modified Nyquist plot of G(s)

should have its clockwise encirclement with respect to the point (−1/KP , 0), equal

to 2 − P+

G
= −1, that is one net anti-clockwise encirclement, for two assigned

poles to dominate all others. Figure 4.5 shows the modified Nyquist plot of G(s),

from which −1/KP ∈ (−0.0756,−0.0094) is determined to have one anti-clockwise

encirclement. The positiveness of KD and KI requires KP > 36.5005. Therefore,

we have the joint solution as KP ∈ (36.5005, 106.3830). If KP = 100 is chosen, the

PID controller is

C(s) = 100 +
108.3971

s
+ 52.4730s.

The zeros of the closed-loop system are at s = −0.9529 ± 1.0760j, which are not

near the dominant poles. Figure 4.6 shows the step response of the closed-loop

system.
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Figure 4.4. Modified nyquist plot of Go for Example 4.4
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Figure 4.5. Modified nyquist plot of G for Example 4.4
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Figure 4.6. Closed-loop step response for Example 4.4
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Example 4.5. Consider a highly oscillatory process

G(s) =
1

s2 + s + 5
e−0.1s.

If the overshoot is to be not larger than 10% and the 2%-settling time to be less

than 15 s, the dominant poles are ρ1,2 = −0.2751±0.3754j. Equation (4.5) becomes





KI = 0.3937KP + 1.8773,

KD = 1.8173KP + 7.7760.

We have

G(s) =
(s2 + 0.5502s + 0.2166) e−0.1s

0.5502 [s(s2 + s + 5) + 7.776s2e−0.1s + 1.877e−0.1s]
,

Go(s) =
7.776s2 + 1.877

s(s2 + s + 5)
e−0.1s.

Take m = 3. We have ma = 0.8253 and all three poles of Go(s) outside the desired

region and P+

Go
= 3. Figure 4.7 is the modified Nyquist plot of Go(s) and there is

one anti-clockwise encirclement of the point (−1, 0), that is, N+

Go
= −1. Therefore,

G(s) has two poles located in the desired region since P+

G
= N+

Go
+ P+

Go
= 2. It

means the modified Nyquist plot of G(s) should have its clockwise encirclement

with respect to the point (−1/KP , 0), equal to 2 − P+

G
= 0, that is zero net

encirclement, for two assigned poles to dominate all others. Figure 4.8 shows the

modified Nyquist plot of G(s), from which −1/KP ∈ (−∞,−0.2851) is determined

to have zero clockwise encirclement. A positive KP could always make KD and KI

positive. Therefore, we have the joint solution as KP ∈ (0, 3.5075). If KP = 1 is

chosen, the PID controller is

C(s) = 1 +
2.2709

s
+ 9.5933s.

The zeros of the closed-loop system are at s = −0.0521 ± 0.4837j, which are not

near the dominant poles. Figure 4.9 shows the step response of the closed-loop

system.
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Figure 4.7. Modified nyquist plot of Go for Example 4.5
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Figure 4.8. Modified nyquist plot of G for Example 4.5
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Figure 4.9. Closed-loop step response for Example 4.5

4.5 Extension to MIMO Systems

Many industrial systems are multivariable in nature. Therefore, it is of great

interest and value to extend the guaranteed dominant pole placement method

to the multivarible PID controller design. The multivariable systems should be

decoupled first and the proposed methods can then be applied to the elements of

the decoupled loop. Same as the SISO case, the Root-locus method is applied to

the systems without time delay and the Nyquist plot method is applied to the time-

delay systems. Because of the coupling, the multivariable controller first designed

is not yet a PID controller and some model reduction techniques are used to obtain

the multivariable PID controller.

Let G(s) = [gij(s)] be the m × m multivarible system, C(s) = [cij(s)] be the

multivarible controller directly designed, the multivariable PID controller be Ĉ(s).

Our goal is to get Ĉ(s) for the control system.

To overcome the effects of cross-coupled interactions, a decoupler, D(s) =

[dij(s)], is designed first. Using the method proposed in Wang (2003), we have

dji(s) =
Gij(s)

Gii(s)
dii(s), (4.11)
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and Q(s) = G(s)D(s) becomes

Q(s) = diag {qii(s)} = diag

{ |G(s)|
Gii(s)

dii(s)

}
,

where Gij(s) is cofactor corresponding to gij(s) in G(s). When elements in Q(s) are

complicated with time-delay or irrational, we apply the model reduction techniques

based on step tests (Wang and Zhang, 2001) to obtain rational and proper estimates

of Q(s), which is denoted as Q̂(s). Thereby, the MIMO system is divided into m

SISO systems, qii(s) or q̂ii(s). The methods proposed in Section 3 and 4 can be

applied to design the controller for qii(s) q̂ii(s). After we have designed the PID

controller,

kii(s) = KPii +
KIii

s
+ KDiis, i = 1, ..., m,

for qii(s) or q̂ii(s), the multivariable controller C(s),

cij(s) = dij(s)kjj(s), (4.12)

is obtained. The model reduction techniques in Wang et al. (2001) are used to

change the elements of C(s) into PID forms and yield the multivariable PID con-

troller Ĉ(s).

The design procedure for MIMO systems is summarized as follows.

Step 1. Work out D(s) for G(s) to get Q(S) and derive Q̂(s) if elements in

Q(s) are complicated with time-delay or irrational;

Step 2. Design kii for each qii(s) or q̂ii(s) using the Root-locus or Nyquist plot

method;

Step 3. Construct C(s) with kii and derive Ĉ(s) based on C(s).

We now provide examples to illustrate the design procedure in detail.

Example 4.6. Consider a multivariable process,

G(s) =




1
s+1

1
s+2

1
s+3

1
s+1.5


 .

By choosing d11(s) = d22(s) = 1, the decoupler is designed as

D(s) =


 1 − s+1

s+2

− s+1.5
s+3

1


 ,
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according to (4.11), so we have

Q(s) =




2.5s+4.5
(s+1)(s+2)(s+3)

0

0 2.5s+4.5
(s+1.5)(s+2)(s+3)


 .

There is no need to derive Q̂(s) since elements in Q(s) are delay free and rational.

For q22(s), if the desired damping ratio is ξ = 0.6 and the desired 2%-settling

time is Ts = 7.13, the dominant poles are p1,2 = 0.5610± 0.7480j. We take m = 3

and use the Root-locus method. KP11 = 1 is chosen. The PID controller is obtained

as

k11(s) = 1 +
1.5595

s
+ 0.5159s.

For q22(s), if the desired damping ratio is ξ = 0.6 and the desired 2%-settling

time is Ts = 7.13, the dominant poles are p1,2 = 0.5610 ± 0.7480j. We also take

m = 3 and use the Root-locus method. KP22 = 1 is chosen. The PID controller is

obtained as

k22(s) = 1 +
2.0703

s
+ 0.9231s.

C(s) is calculated according to (4.12),

C(s) =


k11(s)d11(s) k22(s)d12(s)

k11(s)d21(s) k22(s)d22(s)




=


 1 + 1.5595

s
+ 0.5159s − s+1

s+2

(
1 + 2.0703

s
+ 0.9231s

)

− s+1.5
s+3

(
1 + 1.5595

s
+ 0.5159s

)
1 + 2.0703

s
+ 0.9231s


 .

Both c12(s) and c21(s) resulted are high-order controllers. Using the method in

Wang et al. (2001), their PID-type estimates are obtained and we have

Ĉ(s) =


 1 + 1.5595

s
+ 0.5159s −1.0029− 1.0352

s
− 0.4668s

−0.7562− 0.7798
s

− 0.3404s 1 + 2.0703
s

+ 0.9231s


 .

The multivariable PID control system is constructed using Ĉ(s). The step

responses of the resultant multivariable PID control system are shown in Figure

4.10, in solid lines. Step responses of the control system using the high-order

controller C(s) are also given in dashed lines for comparison. The performance is

satisfactory.
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Figure 4.10. Step Response for Example 4.6 (Solid line, Ĉ(s); dashed line, C(s))

Example 4.7. Consider the Vinate and luyben plant,

G(s) =




−0.2e−s

7s+1
1.3e−0.3s

7s+1

−2.8e−1.8s

9.5s+1
4.3e−0.35s

9.2s+1


 .

By choosing d11(s) = 1 and d22(s) = e−0.7s, the decoupler is designed as

D(s) =


 1 6.5

2.8(9.2s+1)e−1.45s

4.3(9.5s+1)
e−0.7s


 ,

according to (4.11). We have,

Q(s) = G(s)D(s)

=



−0.2e−s

7s+1
+ 3.64(9.2s+1)e−1.75s

4.3(9.5s+1)(7s+1)
0

0 −7.84e−1.8s

9.5s+1
+ 4.3e−1.05s

9.2s+1


 .

The first-order time-delay model Q̂(s) is obtained by using the method proposed

in Wang et al. (2001),

Q̂(s) =




0.08677e−1.86s

s+0.1342
0

0 −1.459e−2.27s

s+0.105


 .
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For q̂11(s), if the desired damping ratio is ξ = 0.7 and the desired 2%-settling

time Ts = 47.48, the dominant poles are p1,2 = −0.0842± 0.0859j. We take m = 3

and use the Nyquist plot method. KP11 = 0.85 is chosen and the PID controller is

obtained as

k11(s) = 0.8500 +
0.1803

s
+ 1.8096s.

For q̂22(s), if the desired damping ratio is ξ = 0.7 and the desired 2%-settling

time Ts = 60.00, the dominant poles are p1,2 = −0.0668±−0.0681j. We also take

m = 3 and use the Nyquist plot method. KP22 = −0.04 is chosen and the PID

controller is obtained as

k22(s) = −0.0400− 0.0067

s
− 0.1031s.

C(s) is calculated according to (4.12),

C(s) =


k11(s)d11(s) k22(s)d12(s)

k11(s)d21(s) k22(s)d22(s)




=


 0.8500 + 0.1803

s
+ 1.8096s 6.5

(−0.0400− 0.0067
s

− 0.1031s
)

2.8(9.2s+1)e−1.45s

4.3(9.5s+1)

(
0.8500 + 0.1803

s
+ 1.8096s

)
e−0.7s

(−0.0400− 0.0067
s

− 0.1031s
)


 .

Both c21(s) and c22(s) resulted are high-order controllers. Using the method in

Wang et al. (2001), their PID-type estimates are obtained and we have

Ĉ(s) =


0.8500 + 0.1803

s
+ 1.8096s −0.2600− 0.0435

s
− 0.6701s

0.5197 + 0.1174
s

+ 1.3221s −0.0354− 0.0067
s

− 0.0767s


 .

The multivariable PID control system is constructed using Ĉ(s). The step

responses of the resultant multivariable PID control system are shown in Figure

4.11, in solid lines. Step responses of the control system using the high-order

controller C(s) are also given in dashed lines for comparison. The performance is

satisfactory.



Chapter 4. Guaranteed Dominant Pole Placement with PID Controllers 64

0 50 100 150 200 250 300
−0.5

0

0.5

1

1.5

y 1(t
)

0 50 100 150 200 250 300
−0.5

0

0.5

1

1.5

t

y 2(t
)

Figure 4.11. Step Response for Example 4.7 (Solid line, Ĉ(s); dash line, C(s))

Example 4.8. Consider the well-known Wood/Berry process,

G(s) =




12.8e−s

16.7s+1
−18.9e−3s

21.0s+1

6.6e−7s

10.9s+1
−19.4e−3s

14.4.5s+1


 .

By choosing d11(s) = d22(s) = 1, the decoupler is designed as

D(s) =


 1 (315.63s+18.90)e−2s

268.80s+12.80

(95.04s+6.60)e−4s

211.46s+19.40
1


 ,

according to (4.11). We have,

Q(s) = G(s)D(s)

=




12.8e−s

16.7s+1
+ −18.9e−3s

21.0s+1
· (95.04s+6.60)e−4s

211.46s+19.40
0

0 6.6e−7s

10.9s+1
· (315.63s+18.90)e−2s

268.80s+12.80
+ −19.4e−3s

14.4.5s+1


 .

The first-order time-delay model Q̂(s) is obtained as,

Q̂(s) =




6.374e−1.065s

5.414s+1
0

0 −9.691e−3.12s

7.942s+1


 .

For q̂11(s), if the desired damping ratio is ξ = 0.7 and the desired 2%-settling

time Ts = 32.35, the dominant poles are p1,2 = −0.1236± 0.1261j. We take m = 3
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and use the Nyquist plot method. KP11 = 0.2 is chosen and the PID controller is

obtained as

k11(s) = 0.200 +
0.0416

s
+ 0.5470s.

For q̂22(s), if the desired damping ratio is ξ = 0.7 and the desired 2%-settling

time Ts = 59.14, the dominant poles are p1,2 = 0.0676 ± 0.0690j. We take m = 3

and use the Nyquist plot method. KP22 = −0.08 is chosen and the PID controller

is obtained as

k22(s) = −0.0800− 0.0110

s
− 0.4143s.

C(s) is calculated according to (4.12),

C(s) =


k11(s)d11(s) k22(s)d12(s)

k11(s)d21(s) k22(s)d22(s)




=


 0.2 + 0.0416

s
+ 0.547s (315.63s+18.9)e−2s

268.8s+12.8

(−0.08− 0.011
s
− 0.4143s

)

(95.04s+6.6)e−4s

211.46s+19.4

(
0.2 + 0.0416

s
+ 0.547s

) −0.08− 0.011
s
− 0.4143s


 .

Both c12(s) and c21(s) resulted are high-order controllers. Using the method in

Wang et al. (2001), their PID-type estimates are obtained and we have

Ĉ(s) =


0.2000 + 0.0416

s
+ 0.5470s −0.0682− 0.0162

s
− 0.3707s

0.1103 + 0.0142
s

− 0.0200s −0.0800− 0.0110
s

− 0.4143s


 .

The multivariable PID control system is constructed using Ĉ(s). The step

responses of the resultant multivariable PID control system are shown in Figure

4.12, in solid lines. Step responses of the control system using the high-order

controller C(s) are also given in dashed lines for comparison. The performance is

satisfactory.
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Figure 4.12. Step Response for Example 4.8 (Solid line, Ĉ(s); dash line, C(s))

4.6 Conclusion

Two simple yet effective methods have been presented for guaranteed dominant

pole placement by PID, based on Root locus and Nyquist plot respectively. Each

method is demonstrated with examples. The extension to MIMO systems is also

provided. Obviously, the methods are not limited to PID controllers. They can be

extended to other controllers where one controller parameter is used as the variable

gain and all other parameters are solved in terms of this gain to meet the fixed

pole requirements.



Chapter 5

Internet-based Control Systems

Design with PID Controllers

5.1 Introduction

As has been discussed in Chapter 1, internet-based control systems use the internet

for remote control and monitoring of plants. They are easy-to-access and not lim-

ited to any geographical location. Internet-based control systems have found their

applications in many areas, such as telerobots, manufacturing industry, and virtual

laboratories(Yang, 2006; Srivastava and Kim, 2003; Sung et al., 2001; Overstreet

and Tzes, 1999; Yang and Alty, 2002). In 2001 Oboe developed a telerobotics

system which allows the internet users to command a robot in real time with

both visual and force feedback(Oboe, 2001). At Integrated Manufacturing Lab of

UC Berkeley, a World-Wide-Web design to fabrication tool called Cybercut was

developed. To facilitate engineering education, many universities have started vir-

tual laboratories for their students to perform experiments outside campus. As

the internet technology develops and matures, internet-based control systems are

expected to be more popular in the future.

Many researchers have been working on internet-based control systems during

the past few years. Because random time delays caused by the internet undermine

the stability of the closed-loop control systems, intensive research was done on

67
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stability analysis and methods to tackle instability and uncertainty. Many control

methodologies were proposed in the literature(Tipsuwan and Chow, 2003; Guan

and Yang, 2006). However, due to the difficult nature of this problem, few encour-

aging and simple result has found so far. Adopting a different approach to solve

the stability issue is necessary.

Research has also been done on how the sampling time selection affects the

control performance (Yu et al., 2004; Lian et al., 2002). It is found that when the

sampling time becomes smaller in a distributed networked control system, although

the performance improves in the beginning, it deteriorates eventually. That is

because a small sampling time also means a heavy load on the network and the

heavy load would cause long time delays or data transfer failures. Nevertheless,

nobody has worked out how the control performance is affected by the sampling

time. In other words, the question about what values the sampling time should

take given a specific requirement on the control performance remans open.

Furthermore, although most of the design methods proposed so far ensure sys-

tem stability, they are unable to meet certain requirements on control performance,

such as overshoot and settling time of step response. To meet the control perfor-

mance requirements is constrained by the limit of load on the internet. The load

on the internet, represented by the sampling time of the control system, should

be kept as small as possible. Therefore, there is a need to work out a way which

meets the control performance requirements subject to load minimization on the

internet.

This chapter proposes such a load minimization design method for the internet-

based control systems with dynamic performance specifications. It resolves the

stability problems with a dual-rate configuration. As illustrated in Figure 1, the

dual-rate control system (Yang and Yang, 2007) is a two-level control architecture,

the lower level of which guarantees that the plant is under control even when

the network communication is lost for a long time. The higher level of the control

architecture implements the global control function. The two levels run at different

sampling times. The lower level runs at a small sampling time (higher frequency) to
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stabilize the plant, while the higher level at a big sampling time (lower frequency)

to reduce the communication load and increase the possibility of receiving data on

time. With the local system stable and the inputs of the remote controller bounded,

the overall control system would remain stable. The PID controller is used for the

remote control loop for simplicity and ease of tuning. The requirements on control

performances, such as overshoot and settling time of step response, are represented

a pair of conjugate poles. With the dominant pole placement method we work

out the upper bounds of the remote control system’s sampling time and design the

remote PID controller. The novelty of this method is focused on guaranteeing both

control performance and stability of Internet-based control systems and minimizing

the data transmission load over the Internet simultaneously by maximizing the

remote controller sampling time.

5.2 Problem Formulation

Consider an internet-based control system as shown in Figure 5.1. It is a discrete-

time control system by nature. The dual-rate scheme is used here, which basically

means the local control loop has a smaller sampling time than the remote loop. The

local controller stabilizes the plant and also meets the performance requirements

on the local control system. The PID controller, located over the other side of the

internet, remotely regulates the output according to the desired reference. The

control input from the remote controller comes to the local control system via the

internet. The feedback signal from the local control system is sent to the remote

controller by the internet.

The transmission vis the internet brings time delay inevitably. Suppose the

time delay of feedback via the internet is Tb and time delay of feedforward is Tf .

We can replace the internet block with two blocks of time delays, e−Tb and e−Tf .

Both Tb and Tf are random variables, which is considered as the prime cause of

instability and difficulty in control. However, in reality, the ranges of the time
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PID

R Y

          Local Control System 

Figure 5.1. Control scheme

delays are approximately known. It means

0 < Tb ≤ T b, 0 < Tf ≤ T f .

where, T b and T f are upper bounds for the time delay of feedback and feedforward

respectively.

To access the performance of a discrete-time system is difficult since there is no

handy formula or method which could be used. We need to transform the original

discrete-time system into continuous-time through some approximations so that

the second-order model and dominant pole placement method can be used.

Denote the sampling time of the local loop by Tl and that of the remote loop by

Tr. Approximate the Zero-Order-Hold as a time delay of half the sampling time,

and transform the internet-based control system into a conventional continuous-

time system. The two ZOHs shown in Figure 5.1 are essentially another two blocks

of time delays, e−0.5Tl and e−0.5Tr . For the sake of simplicity, the continuous-time

block diagram, is redrawn in Figure 5.2.

The remote sampling time is used as a measurement of load on the internet.

Load minimization for the internet is to maximize the remote sampling time. The

overshoot and settling time of step response are chosen as the index of dynamic

performance. Our problem at hand is to design the local controller and remote
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Figure 5.2. Block diagram

PID controller so as to minimize the load on the internet subject to these dynamic

performance specifications.

5.3 Proposed Method

As the type of controller to use for a given plant in the local control system is not

limited and a fast sampling time is possible, there are many methods to design the

local controller. Throughout this paper, the plant would not be studied directly for

simplicity. It is assumed that the local control system is already stable and fulfills

the control specifications. The model of the local control system can be obtained

from the step response method, or model reduction methods like the one presented

in Liu et al. (2007). Thereby, we have a new and simpler block diagram as shown

in Figure 5.3, in which Gl(s) is the transfer function of the local control system.

From the dead time, overshoot and settling time of the step response, the local

system is modelled as first or second order with time delay. If the step response of

Gl(s) has certain overshoot, it is approximated as a second-order transfer function:

Gl(s) =
1

as2 + bs + c
e−sL.
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Figure 5.3. Simplified block diagram

If there is no overshoot, it would be approximated as first-order:

Gl(s) =
1

Ts + 1
e−sL.

We use the method presented in Wang et al. (1999) in tuning of the remote PID or

PI controller. The reason is that it cancels out the denominator of Gl(s) with the

nominator of Cr(s) and transfers our problem to a simple one-variable one. Write

the transfer function of Cr(s) as

Cr(s) = k
as2 + bs + c

s
, (5.1)

if Gl(s) is second-order, or

Cr(s) = k
Ts + 1

s
, (5.2)

if Gl(s) is first-order. In both cases the open-loop transfer function becomes

Q(s) = Gl(s)Cr(s)e
−(Tf+Tb+0.5Tr)s =

k

s
e−(Tf+Tb+L+0.5Tr)s.

The only variable left to determine for the controller is k. k affects both the

stability and performance of the closed-loop system.

Firstly it is necessary to study the stability of the overall closed-loop transfer

function with respect to k. An equivalent case is found when a pure integral process

with time delay is controlled by a simple P controller. That has been studied in
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(Lu, 2006) and the range of k is found to be

0 < k <
π

2 (Tf + Tb + L + 0.5Tr)
. (5.3)

We use the method of dominant pole placement to find a suitable k. Suppose the

requirements on the overshoot and settling time of step response are represented

by a pair of the poles, p1,2 = −ωζ±jω
√

1− ζ2, where ζ is the closed-loop damping

ratio. Substituting them into the closed-loop characteristic equation

1 + Q(p1) = 0

gives

k = ωe−ωζ(Tf+Tb+L+0.5Tr), (5.4)

where

ω =
cos−1ζ√

1− ζ2 (Tf + Tb + L + 0.5Tr)
.

Suppose these two poles, p1,2 = −ωζ± jω
√

1− ζ2, are dominant, the settling time

of step response is roughly (Astrom and Hagglund, 1995),

ts ≈ 4

ωζ
+ (Tf + L + 0.5Tr) .

With the value of ω in (5.4) the above equation becomes,

ts ≈ 4
√

1− ζ2 (Tf + Tb + L + 0.5Tr)

ζcos−1ζ
+ (Tf + L + 0.5Tr) .

Given a performance requirement on settling time,

ts ≤ ts,

the range of Tr should be

Tr ≤
ts − 4

√
1−ζ2

ζcos−1ζ
(Tb + Tf + L)− Tf − L

2
√

1−ζ2

ζcos−1ζ
+ 0.5

. (5.5)

Because Tf and Tb are random with certain ranges and it is impossible to find

the exact value, the most conservative upper bounds are chosen to recalculate the

stabilizing range of k ensuring stability, so (5.3) becomes

0 < k <
π

2
(
T f + T b + L + 0.5Tr

) . (5.6)
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Applying the upper bounds of Tf and Tb into (5.4) gives

k = ωe−ωζ(T f+T b+L+0.5Tr), (5.7)

where

ω =
cos−1ζ√

1− ζ2
(
T f + T b + L + 0.5Tr

) .

And (5.5) becomes

Tr ≤
ts − 4

√
1−ζ2

ζcos−1ζ

(
T b + T f + L

)− T f − L

2
√

1−ζ2

ζcos−1ζ
+ 0.5

. (5.8)

Experiences show satisfactory responses are obtained if closed-loop poles of

damping ratio ζ = 0.7071 are chosen. By (5.8) the range of Tr becomes

Tr ≤ ts − 6.1L− 5.1T b − 6.1T f

3.05
. (5.9)

And substituting ζ = 0.7071 into (5.7) yields

k =
0.5

T f + T b + L + 0.5Tr

. (5.10)

Since this value is within the range provided by (5.6), the resulted system is stable.

The largest allowable Tr based on (5.9) is taken to calculate k in (5.10) and design

the remote PID controller.

5.4 Simulation Example

Let us look at an example and demonstrate the use of our proposed method.

Example 5.1. Consider the local system Gl(s) and use the step response

method to determine its transfer function. It has a step response with a dead

time 2 seconds, overshoot 10% and settling time 7 s. The transfer function is

approximated

Gl(s) =
1

0.546s2 + 0.8737s + 1
e−2s.

Suppose the largest possible time delay caused by the internet is 1 second,which

means T b = T f = 1.
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By (5.1) the remote PID controller is

Cr(s) = k
0.546s2 + 0.8737s + 1

s
.

The next step to determine k according to the largest allowable settling time. If

the largest allowable settling time is 30 second, according to (5.9) the range of the

sampling time should be

Tr ≤ 2.23.

When the sampling time is taken to be 2.23 seconds and k is calculated based on

(5.10),

k = 0.0978.

so the controller is designed as

Cr(s) =
0.0534s2 + 0.0854s + 0.0978

s
.

The step response is shown in Figure 5.4. The obtained settling time is 30.25

seconds and the response is satisfactory.
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Figure 5.4. Step response in Example 5.1
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5.5 Real-Time Implementation

In order to show the applicability and effectiveness of the proposed method, read-

time experiments have been carried out in lab. The test was conducted on a

real-time Process Control Unit (PCU) in the Network and Control Laboratory at

Loughborough University, UK. Figure 5.5 shows the layout of the experimental

system, which includes the PCU and the remote control system. Inside the PCU,

there are the local control system and a water tank rig. The water tank rig consists

of a process tank, sump, pump, cooler and several drain valves. Based on the

measurements of the liquid level of the water tank and flow rate of the pump, the

objective is to control the liquid level or flow rate of the water tank by regulating

the flow rate of the pump. The local controller parameters and sampling interval

are chosen by the local operator through an operation interface. The remote control

system is connected to the PCU via the internet. More details on this experimental

system can be found in Yang and Yang (2007). We have conducted two experiments

separately, one on flow rate control and the other on liquid level control.

Figure 5.5. Experimental system layout

Flow Rate Control: The first step is get the model of the local control system

using the step response method. A step change in the setpoint of the flow rate

has been introduced into the local flow rate control system. The step response is
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with 14.9% overshoot and 9.9 seconds settling time. The dead time is 0.5 second

in average. Therefore, the local close-loop control system is modelled as a second-

order object with a transfer function:

Gl(s) =
1

2.922s2 + 1.771s + 1
e−0.5s.

The largest possible time delay caused by the internet between the local and remote

controllers is 0.5 second, which means

T b = T f = 0.5.

By (5.1) the remote PID controller is

Cr(s) = k
2.922s2 + 1.771s + 1

s
.

If the largest allowable settling time is set as 15 seconds, when the dead time is

L = 0.5, the range of the remote sampling time according to (5.9) should be

Tr ≤ 2.082

When the remote sampling time is taken to be 2.082 seconds, the largest value

in order to minimize the data transmission load, and k is calculated based on (5.10)

k = 0.197.

The remote flow rate controller is designed as

Cr(s) = 0.348 +
0.197

s
+ 0.576s.

A step response of the remote controller has overshoot 12% and 11.4 seconds set-

tling time as shown in Figure 5.6. The unit of the flow rate is liter per minute

(L/min). The performance is satisfactory.

If the remote sampling time is taken to be 4 seconds, which is out of the range

of (0, 2.082], then k is calculated based on (5.10):

k = 0.143.
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Figure 5.6. Step response of flow rate control when Tr = 1s

The remote flow rate controller is designed as

Cr(s) = 0.253 +
0.143

s
+ 0.418s.

A step response of the remote controller has overshoot 14% and 15.2 seconds set-

tling time as shown in Figure 5.7. The performance is unsatisfactory as the settling

time is great than the desirable value 15 seconds.

Liquid Level Control: Similar experimental procedures have been carried out for

the liquid level control in the PCU. A step change in the setpoint of the liquid level

has been introduced into the local liquid level control system. The step response

has no overshoot and the settling time is 28.6 seconds. The dead time L is 1.5

seconds in average. Since there is no overshoot, the local close-loop control system

is modelled as a first-order object with a transfer function:

Gl(s) =
1

9.533s + 1
e−0.5s.

The largest possible time delay caused by the Internet between the local and remote

controllers is still kept at 0.5 second. It means

T b = T f = 0.5.
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Figure 5.7. Step response of flow rate control when Tr = 4s

By (5.2) the remote PID controller is

Cr(s) = k
9.533s + 1

s
.

If the largest allowable settling time is set as 30 seconds, when the dead time

L = 1.5s, the range of the sampling time according to (5.9) should be

Tr ≤ 5.

When the remote sampling time is taken to be 5 seconds, the largest value, and

k is calculated based on (5.10)

k = 0.1.

The remote liquid level controller is designed as

Cr(s) = 0.962 +
0.1

s
.

A step response of the remote controller has no overshoot and 29.5 seconds settling

time as shown in Figure 5.8. The unit of the liquid level is %. The performance is

satisfactory as the settling time is less than the desirable value 30 seconds.
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Figure 5.8. Step response of liquid level control when Tr = 4s

If the remote controller sampling time is taken to be 10 seconds, which is out

of the range of (0, 5], then k is calculated based on (5.10)

k = 0.067.

The remote liquid level controller is designed as

Cr(s) = 0.636 +
0.067

s
.

A step response of the remote controller has no overshoot and settling time 32.6s

as shown in Figure 5.9. The performance is unsatisfactory as the settling time is

great than the desirable value 30 seconds.
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Figure 5.9. Step response of liquid level control when Tr = 10s

5.6 Conclusion

In this chapter a method to meet performance requirements and minimize load

on the network for internet-based control systems is presented. The relationship

between the sampling time and settling time of the system step response is worked

out. The remote PID controller is tuned to fulfill the requirement on the set-

tling time of step response and maximize the sampling time. Good responses in

simulation examples and real-time implementation are obtained.



Chapter 6

Conclusion

6.1 Main Findings

PID control has been an active research area for more than half a century. Although

an abundant amount of study has been done and many tuning methods have been

proposed, there is still much room for improvement. In this thesis the following

new results are found on PID controller systems.

A. Relationship on Stabilizability of LTI Systems by P and PI Con-

trollers

The relationship on stabilizability of linear time-invariant (LTI) systems by

P and PI controllers is investigated. It is found that PI can stabilize all the

systems that P stabilizes but the converse is not true in general. It means PI

is no poorer than P in stabilization. PI can stabilize all the systems P stabilizes

but P cannot stabilize all the systems P stabilizes. The cases with the equivalence

of stabilizability by P and PI are established and they are in general low-order

systems with few zeros. The cases with non-equivalence are also identified and

presented.

B. Simple Tuning Methods for PID Controllers

Firstly, a framework for PID controller design is presented which leads to the

important popular setting, Ti = 4Td. This setting first appeared in the Ziegler

and Nichols tuning and has been widely adopted so far. The framework also

82
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provides some analytical PID tuning formulas with improved performance over

the ZN tuning. Secondly, a simple PID tuning method for dominant poles and

phase margin specification is proposed. Time domain specifications such as settling

time and percentage overshoot are represented by a pair of dominant poles, which

is combined with phase margin specification to achieve closed-loop stability and

robustness. A graphical way is developed to determine PID settings to meet these

specifications simultaneously.

C. Guaranteed Dominant Pole Placement with PID Controllers

Guaranteed dominant pole placement with PID controllers is achieved with

two simple and easy methods. They are based on Root-Locus and Nyquist plot

respectively. In the Root-Locus method the roots of the closed-loop characteristic

equation for all the positive values of KP are plotted and the range of KP such that

the roots other than the chosen dominant pair are all in the desired region is then

determined. In the Nyquist plot method the same idea is used but the Nyquist

contour is modified. If a solution exists, the parametrization of all the solutions

is explicitly given. The extension of these two methods to MIMO systems is also

discussed. Together with the model reduction techniques, the multivariable PID

controller is developed. Satisfactory performances are obtained in the examples.

D. Internet-based Control Systems Design with PID Controllers

A new design method for internet-based control systems in a the dual-rate

configuration to achieve load minimization and dynamic performance specifications

is proposed. It avoids the complexity of large scale system design by focusing on

individual control systems. In the dual-rate configuration, the plant under control

is first stabilized by a local controller with a high sampling rate. The remote

PID controller, which regulates the output according to the desirable reference,

adopts a low sampling rate to reduce load on the network. The upper bound of

the remote PID controller’s sampling time which meets the requirement on control

performance is derived and a simple tuning method for the remote PID controller

is presented.



Chapter 6. Conclusion 84

6.2 Suggestions for Further Work

The thesis has taken the full route from initial ideas, via theoretical developments,

to methodologies that can be applied to relevant engineering problems. Several new

results have been obtained but some topics remain open and are recommended for

future work.

A. Relationship on Stabilizability of LTI Systems with Time-Delay

by P and PI Controllers

Relationship on stabilizability of LTI systems by P and PI controllers are dis-

cussed in this thesis. The discussion includes all delay-free plants and time-delay

plants of first or second order, but the time-delay plants of higher order are left out

due to the time constraint. Nevertheless, it is meaningful and worthwhile to study

stabilizability of these plants by P and PI controllers, although several difficulties

are expected. To choose an effective analysis tool is one of the difficulties. When

the time-delay plants are of high order, their Nyquist plots are complicated but

can still used in the analysis. It may be related to the case by P and PI, but might

not be identical since a general PID may not be written as a PD cascaded with PI

one.

B. Simple Tuning Methods for PID Controllers

In the tuning method for dominant poles and phase margin, a graphical way

is used to find out the parameters of the PID controller. Two figures are plotted

to find out KI and the other two parameters are determined based on that. In

practice, figures plotting might be time-consuming and troublesome. Some other

simple ways to determine the parameters for the design can improve the proposed

method.

C. Guaranteed Dominant Pole Placement with PID Controllers for

MIMO Systems

The proposed guaranteed dominant pole placement with PID controllers is

mainly focused on SISO systems. Extension to MIMO systems of guaranteed

dominant pole placement with PID controllers is provided but the procedures are

not so simple or effective. The model reduction techniques are used several times
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and the poles might have changed in the end, although the performance does not

deteriorate much as demonstrated by the examples. Another effective and simple

method is needed to guarantee the assigned poles and solve this problem.

D. MIMO Internet-based Control Systems Design with PID Con-

trollers

In this thesis, internet-based control systems design with PID controllers is pro-

vided for SISO systems. The design, like the guaranteed dominant pole placement,

can also be extended to MIMO systems. For MIMO systems, the proposed method

may encounter problems, such as coupling and different time delays of elements

in the systems. One possible solution is to make the system decoupled and then

apply the proposed methods to each element in the decoupled loop.
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