

Modeling and Evaluation of Trusts in Multi-Agent Systems

GUO LEI

(B. ENG. XI’AN JIAO TONG UNIVERSITY)

A THESIS SUBMITTED

FOR THE DEGREE OF MASTER OF ENGINEERING

DEPARTMENT OF INDUSTRIAL & SYSTEMS ENGINEERING

NATIONAL UNIVERSITY OF SINGAPORE

2007

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarBank@NUS

https://core.ac.uk/display/48625206?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Acknowledgement

 i

ACKNOWLEDGEMENT

First of all, I would like to express my sincere appreciation to my supervisor,

Associate Professor Poh Kim Leng for his gracious guidance, a global view of

research, strong encouragement and detailed recommendations throughout the course

of this research. His patience, encouragement and support always gave me great

motivation and confidence in conquering the difficulties encountered in the study. His

kindness will always be gratefully remembered.

I would like to express my sincere thanks to the National University of Singapore and

the Department of Industrial & Systems Engineering for providing me with this great

opportunity and resource to conduct this research work.

Finally, I wish to express my deep gratitude to my parents, sister，brother and my

husband for their endless love and support. This thesis is dedicated to my parents.

Table of Contents

 ii

TABLE OF CONTENTS

ACKNOWLEDGEMENT...I

TABLE OF CONTENTS .. II

SUMMARY ...IV

LIST OF FIGURES ..VI

LIST OF TABLES ...VIII

1. INTRODUCTION... 1

1.1. BACKGROUND.. 1

1.2 MOTIVATIONS.. 2

1.3 METHODOLOGY ... 3

1.4 CONTRIBUTIONS .. 4

1.5 ORGANIZATION OF THE THESIS .. 5

2 LITERATURE REVIEW .. 6

2.1 TRUST .. 6

2.1.1 What Is Trust?... 6

2.1.2 Definition of Trust... 7

2.1.3 Characteristics of Trust .. 8

2.2 REPUTATION .. 9

2.3 TRUST MANAGEMENT APPROACH IN MULTI-AGENT SYSTEMS 11

2.3.1 Policy-based Trust Management Systems... 12

2.3.2 Reputation-based Trust Management Systems.................................... 14

2.3.3 Social Network-based Trust Management Systems............................. 19

2.4 TRUST PROPAGATION MECHANISMS IN TRUST GRAPH 23

2.5 RESEARCH GAPS.. 30

3 TRUST MODELING AND TRUST NETWORK CONSTRUCTION 32

3.1 TRUST MODELING.. 33

Table of Contents

 iii

3.1.1 Basic Notation... 33

3.1.2 Modeling ... 34

3.2 TRUST NETWORK CONSTRUCTION ... 38

3.2.1 Trust Transitivity ... 38

3.2.2 Trust Network Construction.. 39

4 TRUSTWORTHINESS EVALUATION.. 44

4.1 EVALUATION ... 44

4.1.1 Introduction... 44

4.1.2 The Proposed Approach.. 48

4.2 NUMERICAL EXAMPLE... 54

5 EXPERIMENTS AND RESULTS .. 58

5.1 EXPERIMENTAL SYSTEM .. 58

5.2 EXPERIMENTAL METHODOLOGY.. 64

5.3 RESULTS .. 66

5.3.1 Overall Performance of Bayesian-based Inference Approach 66

5.3.2 Comparison of with and without Combining Recommendations........ 70

5.3.3 The effects of dynamism.. 71

5.4 SUMMARY.. 77

6 CONCLUSIONS AND FUTURE WORK.. 78

6.1 SUMMARY OF CONTRIBUTIONS .. 78

6.2 RECOMMENDATIONS FOR FUTURE WORK .. 80

REFERENCES.. 82

APPENDIX-A PARALLELIZATION ... 91

APPENDIX-B BTM CORE CODE... 94

APPENDIX-C MTM CORE CODE ... 101

Summary

 iv

SUMMARY

In most real situations, agents are often required to work in the presence of other

agents, either artificial or human. These are examples of multi-agent systems (MAS).

In MAS, agents adopt cooperation strategy to increase their utilities and they have

incentives to tell the truth to other agents. However, when competition occurs, they

have incentives to lie. Thus, the decision on which agents to cooperate with is a

problem which has attracted a lot of attention. In order to overcome the uncertainties

in open MAS, researchers have introduced the concept of “trust” into these systems.

The trust evaluation becomes a popular research topic in the multi-agent systems.

Based on the existing trust evaluation mechanisms, we proposed a novel mechanism

to help agents evaluate the trust value of the target agent in the multi-agent systems.

We present an approach to help agents construct a trust network automatically in a

multi-agent system. Although this network is a virtual one, it can be used to estimate

the trust value of a target agent. After the construction of the trust network, we use the

Bayesian Inference Propagation approach with Leaky Noisy-Or model to solve the

trust graph. This is a novel way to solve the trust problem in the multi-agent systems.

This approach solves the trust estimation problem based on objective logic which

means that there is no subjective setting of weights. The whole trust estimation

process is automatic without the intervention of human beings. The experiments

carried out by our simulation work demonstrate that our model works better than the

models proposed by other authors. By using our model, the whole agents’ utility

Summary

 v

gained is higher than by using other models (MTM and without trust measure). In

addition, our model performs well in a wide range of provider population and it also

reconfirmed the fact that our model works well than the models we compared.

Moreover, we also demonstrate that more information resource can help the decision

maker make a more accurate decision. Last but not least, in the dynamic environment,

and the experiment results also demonstrate that our model performs better than the

models we compared with.

List of Figures

 vi

LIST OF FIGURES

FIGURE 2.1 REPUTATION TYPOLOGY... 10

FIGURE 2.2 TRUST MANAGEMENT TAXONOMY... 12

FIGURE 2.3 THE REINFORCING RELATIONSHIPS AMONG TRUST, REPUTATION AND

RECIPROCITY.. 22

FIGURE 2.4 THE RELATIONSHIP BETWEEN THE TRUST MANAGEMENT SYSTEMS AND

THE TRUST PROPAGATION MECHANISM... 23

FIGURE 2.5 TESTIMONY PROPAGATION THROUGH A TRUSTNET................................ 25

FIGURE 2.6 ILLUSTRATION OF A PARALLEL NETWORK BETWEEN TWO AGENTS A AND B

... 26

FIGURE 2.7 NICE TRUST GRAPH (WEIGHTS REPRESENT THE EXTENT OF TRUST THE

SOURCE HAS IN THE SINK) ... 28

FIGURE 2.8 TRANSFORMATION TRUST PATH ... 28

FIGURE 2.9 COMBINATION TRUST PATH.. 28

FIGURE 3.1 AGENT I’S FUNCTIONAL TRUST DATASET .. 42

FIGURE 3.2 AGENT I’S REFERRAL TRUST DATASET .. 42

FIGURE 3.3 AGENT J’S FUNCTIONAL TRUST DATASET .. 43

FIGURE 3.4 AGENT I’S PARTIAL ATRG WITH AGENT J.. 43

FIGURE 4.1 TRUST DERIVED BY PARALLEL COMBINATION OF TRUST PATHS............ 45

FIGURE 4.2 THE BAYESIAN INFERENCE OF PRIOR PROBABILITY................................ 52

FIGURE 4.3 CONVERGING CONNECTION BAYESIAN NETWORK. I=1,2…N. 52

FIGURE 4.4 TRUST NETWORK WITH TRUST VALUES... 55

FIGURE 4.5 PARALLEL NETWORK OF EXAMPLE TRUST NETWORK 55

FIGURE 4.6 REVISED PARALLEL NETWORK OF EXAMPLE TRUST NETWORK 55

FIGURE 4.7 TARGET AGENT AND ITS PARENTS IN THE PARALLELIZED TRUST NETWORK

... 56

FIGURE5.1 THE SPHERICAL WORLD AND AN EXAMPLE REFERRAL CHAIN FROM

CONSUMER C1 (THROUGH C2 AND C3) TO PROVIDER P VIA

ACQUAINTANCES .. 59

FIGURE 5.2 PERFORMANCE OF BTM, MTM AND NOTRUST MODEL 67

List of Figures

 vii

FIGURE 5.3 PERFORMANCE OF BTM WITH DIFFERENT PROVIDERS 70

FIGURE 5.4 THE TOTAL UTILITY GAINED BY USING DIRECT EXPERIENCE ONLY AND BY

BTM. ... 71

FIGURE 5.5 THE PERFORMANCE OF THE FOUR MODELS UNDER CONDITION 1 73

FIGURE 5.6 THE PERFORMANCE OF THE FOUR MODELS UNDER CONDITION 2. 75

FIGURE 5.7 THE PERFORMANCE OF THE FOUR MODELS UNDER CONDITION 3. 76

List of Tables

 viii

LIST OF TABLES

TABLE 4.1 THE PRIOR PROBABILITY OF THE TRUSTEE’S PARENTS ON EACH CHAIN 56

TABLE 5.1 PERFORMANCE LEVEL CONSTANTS... 63

TABLE 5.2 PROFILES OF PROVIDER AGENTS (PERFORMANCE CONSTANTS DEFINED IN

TABLE 5.1) ... 63

TABLE 5.3 EXPERIMENTAL VARIABLES.. 65

TABLE 5.4 THE PERFORMANCE OF BTM AND MTM IN THE FIRST 10 INTERACTIONS 68

1. Introduction

 1

1. INTRODUCTION

1.1. Background

Internet makes the geographical and social unrelated communication come true in a

twinkle. It enables a transition to peer-to-peer commerce without intermediaries and

central institutions. However, online communities are usually either goal or

interest-oriented and there is rarely any other kind of bond or real life relationship

among the members of communities before the members meet each other online

[Zacharia, 1999]. Without prior experience and knowledge about each other, peers are

under the risk of facing dishonest and malicious behaviors in the environment. Take

the peers as agents, this environment can be seen as a multi-agent system. Large

numbers of research have been done to manage the risk of deceit in the Multi-agent

Systems. One way to address this uncertainty problem is to develop strategies for

establishing trust and developing systems that can assist peers in assessing the level

of trust they should place on an eCommerce transaction [Xiong and Liu, 2004].

Traditional trust construction relies on the use of a Central Trusted Authority or

trusted third party to manage trust, such as access control list, role-based access

control, PKI, etc. [Kagal et al., 2002]. However, in an open Multi-agent system, there

are some specific requirements [Despotovic and Aberer, 2006]: (1) The environment

is open. The users in this environment are autonomous and independent to each other.

1. Introduction

 2

(2) The environment is decentralized. There is no central point in this system and the

users are free to trust others. (3) The environment is global. There is no jurisdictional

border in the environment. Thus, in the open Multi-agent System, the central trust

mechanism cannot satisfy the requirement of mobility and dynamics. These issues

have motivated substantial research on trust management in open Multi-agent

Systems. Trust management helps to maintain overall credibility level of the system

as well as to encourage honest and cooperative behavior.

1.2 Motivations

As traditional trust mechanisms have their disadvantages, this issue has motivated

substantial research on Trust Management in MAS. There has been an extensive

amount of research on online trust and reputation management [Marsh, 1994,

Abdul-Rahman et al., 2000; Sabater, et al., 2002; Yu and Singh, 2002]. Among these

research works, there are two ways to estimate the trustworthiness of a given agent,

which are probabilistic estimation and social network. However, in the real online

community, each agent not only relies on its own experience, but also on the

reputation among the whole systems. Thus, how to estimate a given agent’s

trustworthiness under the direct experience and reputation becomes a new problem

that needs to be solved.

1. Introduction

 3

1.3 Methodology

A Bayesian Network [Jensen, 1996, Charniak, 1991] is a graphical method of

representing relationships among different variables that together define a model of a

real-world situation. Formally, it is a Directed Acyclic Graph (DAG) with nodes

being the variables and each directed edge representing dependence between two of

them. Bayesian Networks are useful in inference from belief-structures and

observations [Charniak, 1991 and AI 1999]. Bayesian Networks not only can readily

handle incomplete data sets, but also offer a method of updating the belief or the

probability of occurrence of the particular event for the given causes. In Bayesian

Networks, the belief can be updated by network propagation method and each node

has the task of combining incoming evidence and outputting some aggregation of the

inputs.

The noisy-OR model is the most accepted and widely applied model to solve the

multi-causal interactions network and it leads to a very convenient and widely

applicable rule of combination. However, the noisy-OR model is based on two

assumptions: accountability and exception [Pearl, 1988]. Accountability states that an

event can be presumed false if all its parents are false. Exception requires that the

influence of each parent on the child be independent of other parents.

1. Introduction

 4

1.4 Contributions

The objective of this research is to develop a trustworthiness estimation system and

this dissertation proposes a novel approach among the trust management area.

In our trustworthiness estimation system, we solve the trust network by using

Bayesian propagation method and Noisy-or model is used as well. First, based on

historical interaction data, each agent constructs graphs to store two trust data which

are functional trust and referral trust. When the estimation starts, the agent will check

its functional trust data first, and after that, the agent will send requirement to its

acquaintances to ask for recommendations. Then, a Trust Network would be

constructed between the source agent and the target agent.

To solve the Trust Network, we firstly made some adjustment which is known as

parallelization. Secondly, we use Bayesian Propagation to evaluate each chain in the

parallelized Trust Network. Thirdly, the Noisy-or model is introduced to obtain the

trustworthiness value of the target agent.

One important contribution of this dissertation is in applying Bayesian propagation

method to solve the trustworthiness estimation problem. This application is the first

time for the Bayesian Network methods to solve the Trust Network problem. It not

only extends the application field of Bayesian Networks, but also solves the Trust

Network in a novel way.

1. Introduction

 5

Another contribution is the derivation of a computational model based on sociological

and biological understanding of trust management. Based on the strength of the

software development, the introduction of Bayesian Propagation method makes the

calculation of trustworthiness become easy and quick.

1.5 Organization of the Thesis

The next chapter presents a state-of-the-art survey of reputation-based trust

management. Chapter 3 describes the storage of the data set and the Trust Network

construction. Chapter 4 presents the process of trustworthiness evaluation. Chapter 5

proposes an experiment and the results. Chapter 6 briefly concludes this work and

points to directions for future research opportunities.

2. Literature Review

 6

2 LITERATURE REVIEW

2.1 Trust

In 1737, David Hume provides a clear description on the problem involving trust in

his Treatise on Human Nature. We rely on trust everyday: we trust that our parents

would support us, our friends would be kind to us, we trust that motorists on the road

would follow traffic rules; we trust that the goods we buy have the quality

commensurate with how much we pay for them, etc [Mui, 2002]. Trust is one of the

most important factors in our human society. With the development of the computer

technology in the past decades, trust construction in the virtual communities become

more and more important.

2.1.1 What Is Trust?

In most real situations, agents are often required to work in the presence of other

agents, which are either artificial or human. These are examples of multi-agent

systems (MAS). In MAS, when agents adopt cooperation strategy to increase their

utilities, they have incentives to tell the truth to other agents. Meanwhile, when

competition occurs, they have incentives to lie. Thus, which agents to cooperate with

is a problem which has attracted a lot of attention. In order to overcome the

uncertainties in open MAS, researchers have introduced the concept “trust” into these

systems.

2. Literature Review

 7

As a research group leaded by Castelfranchi stated, trust is at the same time: a mental

attitude towards another agent, a decision to rely on another and a behavior [Falcone

et al., 2004].

• Trust as a mental attitude is most common in daily life, and is based on

evaluation of past behavior, and on the expectation of future behavior.

• Trust as a decision (the act of entrusting a task) puts a part of the trusting

agent’s welfare on the line and thus involves risk: however satisfactory the

transaction history with another agent might be, it is never guaranteed that

this will continue in the future.

• Trust as a behavior emphasizes the actions of trusting agents and the relation

between them. The relation generally intensifies as time progresses.

Trust as a mental attitude gives us an important clue of how to determine the

trustworthiness of others: we need to analyze past interactions with the agent. Not

surprisingly, this is exactly what the majority of trust algorithms do.

2.1.2 Definition of Trust

Although a lot of work has been done on the topic of trust, the definition of trust is

still not very clear and different authors have given various definitions for the term

trust. The properties of trust must be verified as well. In this thesis, when we need to

calculate the value of trust, we use the definition proposed by [Marsh, 1994] which is

2. Literature Review

 8

commonly accepted in the literature. “Trust, is a particular level of the subjective

probability with which an agent will perform a particular action, both before he can

monitor such action (or independently of his capacity to monitor it) and in a context

in which it affects his own action”.

Meanwhile, when the trust is used to make a decision, the definition proposed by

[McKnight and Chervany, 1996] would be more easier to understand although the

meaning is the same as the definition we introduced before: “Trust is the extent to

which one party is willing to depend on something or somebody in a given situation

with a feeling of relative security, even though negative consequences are possible.”

2.1.3 Characteristics of Trust

Despite different contexts, trust can be broadly categorized by the relationships

between two involved agents [Falcone and Shehory, 2002].

• Trust between a user and her agents: although an agent behaves on its user’s

behalf, an agent might not act as its user expects. How much a user trusts her

agent determines how she delegates her tasks to the agent.

• Trust in service provider: It measures whether a service provider can provide

trustworthy services.

• Trust in references: References refer to the agents that make recommendations

or share their trust values. It measures whether an agent can provide reliable

2. Literature Review

 9

recommendations.

• Trust in groups: It is the trust that one agent has in a group of other agents. By

modeling trust in different groups, an agent can decide to join a group that can

bring it most benefit.

Among various trust relationships, there are three characteristics for trust.

[Abdul-Rahman and Hailes, 2000, Montaner. et al., 2002, Sabater and Sierra, 2001].

• Context-specific: Trust depends on some context. That is to say, trust a person

to be a good doctor but do not trust her as a good driver.

• Multi-faceted: Even in the same context, there is a need to develop

differentiated trust in different aspects of the capability of a given agent. For

instance, a customer might evaluate a restaurant from several aspects, such as

the quality of food, the price, and the service. For each aspect, a customer can

derive a trust different from other aspects.

• Dynamic: Trust increases or decreases with further experience (direct

interaction). It also decays with time.

2.2 Reputation

A reputation is an expectation about an agent’s behavior based on information about

or observations of its past behaviors [Abdul-Rahman, 2000]. It refers to a perception

that an agent has of another’s intentions and norms.

2. Literature Review

 10

Similar to trust, reputation is a context-dependent quantity. An individual may enjoy a

very high reputation for his/her experience in one domain, while having a low

reputation in another.

In the meanwhile, reputation can be viewed as a global or personalized quantity. For

social network researchers [Katz, 1953; Freeman, 1979; Marsden, et al., 1982;

Krackhardt, et al., 1993], reputation is a quantity derived from the underlying social

network. An agent’s reputation is globally visible to all agents in a social network.

Personalized reputation has been studied by [Zacharia, 1999; Sabater, et al., 2001; Yu

et al, 2001], among others. As argued by [Mui, et al., 2002], an agent is likely to have

different reputations (Figure 2.1) in the eyes of others, relative to the embedded social

network.

Figure 2.1 Reputation Typology

Reputation

Individual Group

Direct Indirect

Interaction-derived Observed reputation

Prior-derived Group-derived Propagated

2. Literature Review

 11

It is assumed that reputation is context dependent, shaded boxes indicate notions that

are likely to be modeled as social (or global) reputation as opposed to being

personalized to the inquiring agent.

Here we pick out the reputation we used in this dissertation to give some

interpretation.

• Observed reputation: Agent A’s observed reputation can be obtained from the

other agent’s feedback of the direct interaction with agent A.

• Prior-derived reputation: In the simplest inference, agents bring with them

prior beliefs about strangers. As in human societies, each of us has different

prior beliefs about the trustworthiness of strangers we meet.

• Propagated Reputation: In a Multi-agent System, an agent might be a

stranger to the evaluating agent, and the evaluating agent can attempt to

estimate the stranger’s reputation based on information gathered from others

in the environment. As [Abdul-Rahman and Hailes, 2000] have suggested,

this mechanism is similar to the “word-of-mouth” propagation of

information for humans. Reputation information can be passed from agent to

agent.

2.3 Trust Management Approach in Multi-agent Systems

Trust management in Multi-agent Systems is used to detect malicious behaviors and

to promote honest and cooperative interactions. Based on the approach adopted to

2. Literature Review

 12

establish and evaluate trust relationship between agents, trust management in

Multi-agent systems can be classified into 3 categories [Suryanarayana, et al., 2004],

which are credential and policy-based trust management, reputation-based trust

management and social network-based trust management as shown in Figure 2.2.

Figure 2.2 Trust Management Taxonomy

2.3.1 Policy-based Trust Management Systems

The research on policy-based trust focuses on problems in exchanging credentials,

and generally assumes that trust is established simply by knowing a sufficient amount

of credentials pertaining to a specific party. [Donovan and Yolanda, 2006] have

pointed out that a credential may be as simple as a signature uniquely identifying an

entity, or as complex and non-specific as a set of entities in the Semantic Web, where

relationships between entities are explicitly described. The recursive problem of

trusting the credentials is frequently solved by using a trusted third party to serve as

an authority for issuing and verifying credentials.

Trust Management

Policy-based
Trust Systems

Reputation-based
Trust Systems

Social Network-based
Trust Systems

2. Literature Review

 13

Establishing trust under the policy-based trust systems suffers from a problem that a

credential may incur a loss of privacy or control of information. [Yu et al., 2001; Yu

and Winslett, 2003] have focused on the trade-off between privacy and earning trust.

Based on their work, [Winslett et al., 2002] have proposed an architecture named

TrustBuilder which provides mechanisms for addressing this trade-off. Another

system is PeerTrust [Nejdl et al., 2004], a more recent policy and trust negotiation

language that facilitates the automatic negotiation of a credential exchange. Others

working in this area have contributed ideas on client-server credential exchange

[Winsborough et al., 2000] and protecting privacy through generalizing or

categorizing credentials [Seigneur and Jensen, 2004].

Several standards for representation of credentials and policies have been proposed to

facilitate the exchange of credentials. WS-Trust [WS-Trust, 2005], an extension of

WS-Security, specifies how trust is gained through proofs of identity, authorization,

and performance. Cassandra [Becker and Sewell, 2004] is a system using a policy

specification language that enforces how trust may be earned through the exchange of

credentials. [Leithead et al., 2004] have presented another idea by using ontologies to

flexibly represent trust negotiation policies.

Using credentials-based trust systems, one problem that should be solved is the

credentials are also subject to trust decisions (i.e., can you believe a given credential

to be true?). A typical solution in this case is to employ a common trusted third party

to issue and verify credentials. However, it can be undesirable to have a single

2. Literature Review

 14

authority responsible for deciding who and when someone is trusted. This problem is

broadly described as trust management. [Blaze et al., 1996] have presented a system

called PolicyMaker. PolicyMaker is a trust management system that facilitates the

development of security features including privacy and authenticity for different

kinds of network applications. Following PolicyMaker, a system called KeyNote is

presented by [Blaze et al., 1999], which provides a standard policy language which is

independent of the programming language used. KeyNote provides more application

features than PolicyMaker, and the authors compare their idea of trust management

with other existing systems at the time.

The policy-based access control trust mechanisms do not incorporate the need of the

requesting agent to establish trust in the resource-owner; therefore, they by

themselves do not provide a complete generic trust management solution for all

decentralized applications.

2.3.2 Reputation-based Trust Management Systems

Reputation is a measure that is derived from direct or indirect knowledge on earlier

interactions of agents, and it is used to access the level of trust an agent puts into

another agent. Reputation-based trust management is a mechanism to use personal

experience or the experiences of others, possibly combined, to make a trust decision

about an entity. Reputation management avoids a hard security approach by

distributing reputation information, and allowing an individual to make trust

2. Literature Review

 15

decisions instead of a single, centralized trust management system. The trust value

assigned to a trust relationship is a function of the combination of the peer’s global

reputation and the evaluating peer’s perception of that peer.

[Abdul-Rahman and Hailes, 1997] have advocated an approach based on combing in

a distributed trust model with a recommendation protocol. They focus on providing a

system in which individuals are empowered to make trust decisions rather than

automating the process. The main contribution of this work is to describe a system

where it can be acknowledged that malicious entities coexist with the innocent,

achieved through a decentralized trust decision process. In this model, a trust

relationship is always between exactly two entities, is non-symmetrical, and is

conditionally transitive. Decentralization allows each peer to manage its own trust. In

the meanwhile, trust is context dependent. Trust in a peer varies depending on the

categories. In a large decentralized system, it may be impossible for a peer to have

knowledge about all other peers. Therefore, in order to cope with uncertainty arising

due to interaction with unknown peers, a peer has to rely on recommendations from

known peers about these unknown peers.

[Abdul-Rahman and Hailes, 2000] have proposed that when one peer trusts another, it

constitutes a direct trust relationship. But if a peer trusts another peer to give

recommendations about another peer’s trustworthiness, then there is a recommender

trust relationship between the two. Trust relationship exists only within each peer’s

own database and hence there is no global centralized map of trust relationships.

2. Literature Review

 16

Corresponding to the two types of trust relationships, two types of data structures are

maintained by each peer: one for direct trust experiences and another for

recommender trust experiences. Recommender trust experiences are utilized for

computing trust only when there is no direct trust experience with a particular peer.

[Aberer and Despotovic, 2001] have presented the P-Grid trust management approach

which focuses on an efficient data management technique to construct a scalable trust

model for decentralized applications. The global trust model described is based on

binary trust. Peers perform transactions and if a peer cheats in a transaction, it

becomes untrustworthy from a global perspective. This information in the form of a

complaint about dishonest behavior can be sent to other peers. Complaints are the

only behavior data used in this trust model. Reputation of a peer is based on the

global knowledge on complaints. While it is easy for a peer to have access to all

information about its own interactions with other peers, in a decentralized scenario, it

is very difficult for it to access all the complaints about other agents. P-Grid [Aberer,

2001] is an efficient data storage model to store trust data. Trust is computed by using

P-Grid as storage for complaints. A peer can file a complaint about another peer and

send it to other peers using insert messages. When a peer wants to evaluate the

trustworthiness of another peer, it searches for complaints on it and identifies peers

that store those complaints. Since these peers can be malicious, their trustworthiness

needs to be determined. In order to limit this process and to prevent the entire

network from being explored, if similar trust information about a specific peer is

achieved from a sufficient number of peers, no further checks are carried out.

2. Literature Review

 17

[Damiani, di Vimercati et al., 2002] have introduced the XREP approach which

primarily focuses on P2P file-sharing applications. In this system, each peer not only

evaluates resources accessed from peers, but also models the reputations of peers in

the system. A distributed polling algorithm is used to allow these reputation values to

be shared among peers, so that a peer requesting a resource can assess the reliability

of the resource offered by a peer before using it. Each peer named as a “servant” in

the application plays the role of both server and client by providing and accessing

resources respectively. XREP is a distributed protocol that allows the reputation

values to be maintained and shared among the servants. It consists of the following

phases: resource searching, resource selection and vote polling, vote evaluation, best

servant check, and resource downloading.

[Lee, Sherwood et al., 2003] have proposed NICE, a platform for implementing

distributed cooperative applications. NICE provides three main services: resource

advertisement and location, secure bartering and trading of resources, and distributed

trust evaluation. The objective of the trust inference model is to: a) identify

cooperative users so that they can form robust cooperative groups, and b) prevent

malicious peers and clusters to critically affect the working of the cooperative groups.

NICE uses two trust mechanisms to protect the integrity of the cooperative groups:

trust-based pricing and trust-based trading limits. In trust-based pricing, resources are

priced according to mutually perceived trust. In trust-based trading limits, instead of

varying the price of the resource, the amount of the resources bartered is varied. This

ensures that when transacting with a less trusted peer, a peer can set a bound on the

2. Literature Review

 18

amount of resources it loses. The trust inference algorithm can also be expressed

using a directed graph called the trust graph. In such a trust graph, each vertex

corresponds to a peer in the system. A directed edge from peer A to peer B exists if

and only if B holds a cookie signed by A which implies that at least one transaction

occurred between them. The value of this edge signifies the extent of trust that A has

in B and depends on the set of A’s cookies held by B. If, however, A and B were

never involved in a transaction and A wants to compute B’s trust, it can infer a trust

value for B by using directed paths that end at B. Two trust inference mechanisms

based on such a trust graph are described in NICE approach. One is the strongest path

mechanism and the other is the weighted sum of strongest disjoint paths mechanism.

[Dragovic, Kotsovinos et al., 2003] have proposed Xeno Trust which is a distributed

trust and reputation management architecture used in the XenoServer Open Platform.

There are two levels of trust in XenoTrust: authoritative trust and reputation-based

trust. Here we only focus on the reputation-based trust. The reputation-based trust in

this system is built through interaction between peers based on individual experiences.

In order to accommodate newcomers to the system who have no initial experience

with other partners, exchanging of reputation information between partners is

advocated. All the information gathered about each participant’s reputation is

aggregated in XenoTrust. This information is updated as new reputation information

is received from peers.

2. Literature Review

 19

2.3.3 Social Network-based Trust Management Systems

Social network-based trust management systems utilize social relationships between

agents when computing trust and reputation values. In particular, these systems form

conclusions about agents through analyzing a social network that represents the

relationships within a community. The key feature of the social network-based trust

management approach is that in any case, no matter how the system is solved, it is

clear that one needs to explore the entire trust multi-graph in order to assess the

trustworthiness of a single agent.

[Yu and Singh, 2000] were one of the first to explore the effect of social relationships

of agents belonging to an online community on reputation in decentralized scenarios.

It models an electronic community as a social network. Agents can have reputations

for providing good services and referrals. In such a system, agents assist users

working with them in two ways. First, they help to decide whether or how to respond

to requests received from other agents in the system. And second, they help to

evaluate the services and referrals provided by other agents in order to enable the user

to contact the referrals provided by the most reliable agent. In this approach, agent

evaluates the target agent not only by its direct observation, but also the referrals

given by its neighbors. When a user poses a query to its corresponding agent, the

agent uses the social network to identify a set of potential neighboring agents whom it

believes has the expertise to answer the query. The query is then forwarded to this set

of neighbors. A query sent to a peer contains three things: the question, the requestor

agent’s ID and address, and a number specifying the upper bound on the number of

2. Literature Review

 20

referrals requested. When a query is received by a agent, it decides whether the query

suits the user and if it should be shown to the user. The agent answers only if it is

confident that its expertise matches the query. The agent may also respond with

referrals to other trusted users whom it believes has the necessary expertise to answer

the query. Thus, a response may include an answer to the query, or a referral, or both,

or neither.

[Sabater and Sierra, 2001] have proposed a similar concept to TrustNet [Schillo, Funk

et al., 2000] and the social dimension of agents and their opinions in the reputation

model. Regret adopts the stance that the overall reputation of an agent is an

aggregation of different pieces of information instead of relying only on the

corresponding social network as a TrustNet. Regret is based on three dimensions of

reputation: individual, social and ontological. It combines these three dimensions to

yield a single value of reputation. When a member agent depends only on its direct

interaction with other members in the society to evaluate reputation, the agent uses

the individual dimension. If the agent also uses information about another peer

provided by other members of the society, it uses the social dimension. The social

dimension relies on group relations. In particular, since a peer inherits the reputation

of the group it belongs to, the group and relational information can be used to attain

an initial understanding about the behavior of the agent when direct information is

unavailable. Thus, there are three sources of information that help agent “A” decide

the reputation of agent “B”, which are individual dimension between A and B,

witness reputation from the information A’s group has about B, neighborhood

2. Literature Review

 21

reputation from the information A’s group has about B’s group. Regret believes

reputation to be multi-faceted. To combine the different types of reputation and obtain

new types of reputation is defined by the ontological dimension.

[Pujol, Sanguesa et al., 2002] have introduced NodeRanking, like TrustNet and

Regret, which utilizes social community aspects of agents to determine their

reputation. The goal behind reputation systems in NodeRanking is to remove

dependence upon the feedback received from other users, and instead explore other

ways to determine reputation. NodeRanking views the system as a social network

where each member has a position in the community. The location of a given member

of a community in the network can be used to infer properties about the agent’s

degree of expertise or reputation. Members who are experts are well-known and can

be easily identified as highly connected nodes in the social network graph. This

information can be used by agents directly instead of having to resort to explicit

ratings issued by each agent.

[Mui, 2002] has presented a computational model of trust and reputation. In this

model, the author considered Reciprocity which is an important strategy in the real

world society. The relationship of trust, reputation and reciprocity can be seen in

Figure 2.3.

The direction of the arrow indicates the direction of influence among the variables.

The dashed line indicates a mechanism not discussed.

2. Literature Review

 22

Figure 2.3 The Reinforcing Relationships among Trust, Reputation and Reciprocity

For an agent ai in the embedded social network A, the relationships of trust,

reputation and reciprocity are as follows:

• Increase in agent ai’s reputation in its embedded social network A should also

increase the trust from the other agent for ai.

• Increase in agent aj’s trust of ai should also increase the likelihood that aj will

reciprocate positively to ai’s action.

• Increase in ai’s reciprocating actions to other agents in its embedded social

network A should also increase ai’s reputation in A.

The reputation in this work is defined as the perception that an agent creates through

past actions about its intentions and norms and it is the perception that suggests an

agent’s intentions and norms in the embedded social network that connects two agents.

Trust is termed as a subjective expectation an agent has about another’s future

behavior based on the history of their encounters. When there are only two agents

considered, the reputation can be estimated by using Beta distribution and the level of

reciprocity is used to measure the confidence on the parameter estimation. When

there are numbers of chains between two agents, the reputation can be obtained by

using combination methods, which are additive and multiplicative.

Reputation

Trust Reciprocity Net benefit

2. Literature Review

 23

2.4 Trust Propagation Mechanisms in Trust Graph

We have reviewed the works that have been done on trust management. One of the

problems is how to inference the reputation in Trust Graph. The problem can be seen

in the reputation-based trust management and social network-based trust management

systems. The relationship between these problems is shown in Figure 2.4.

Figure 2.4 The Relationship between the Trust Management Systems and the Trust
Propagation Mechanism

[Zacharia, 1999] has introduced a method to propagate the trust value in the highly

connected communities. When a user submits a query for the Histos reputation value

of another user, the systems will perform the following computation:

• Use a Breadth First Search algorithm to find all the directed paths connecting

the two agents.

• Keep the chains whose length are less than or equal to N. And the

chronologically q most recent ratings are only cared about.

After constructing the Trust Graph, the reputation propagation can be calculated as

follows: Let)(nW jk denote the rating of user jA for user)(nAk at a distance n from

Reputation-based
Trust management

Social Network based
Trust management

Trust
Propagation
Mechanism

2. Literature Review

 24

user 0A , and)(nRk denote the personalized reputation of user)(nAk from the

perspective of user 0A . At each level n away from user 0A , the users)(nAk have a

reputation value given by:

() ((1) ())) / (1)

, () 0.5

() deg(()) ()

k j jk j
j j

jk

k k jk

R n D R n W n R n

jk such that W n

m n A n W n

= • − • −

∀ ≥

= =

∑ ∑

Where))(deg(nAk is the number of connected paths from 0A to)(nAk and D is the

range of reputation values.

[Esfandiari and Chandrasekharan, 2001] have proposed that when considering the

weakly transitive of trust, the propagation can be calculated as:

.int)(

),(),(),(11

ctoafrompathainagentsermediatethebeingbwith

cbTbaTcaT

i

nprop ×⋅⋅⋅×=

[Yu and Singh, 2002] have analyzed the reputation management by using

Dempster-Shafer Theory. TrustNet is used to systematically incorporate the

testimonies of the various witnesses regarding a particular party. Suppose Ar wishes

to evaluate the trustworthiness of Vg. After a series of l referrals, a testimony about

agent Vg is returned from agent Aj. Given a series of referrals },...,,{ 21 nrrr , the

requester Ar constructs a TrustNet by incorporating each referral >=< jii AAr , into

TrustNet. Ar adds ri to R if and only if AAj ∉ and depthLimitAdepth i ≤)(. The

testimonies propagation through a TrustNet is shown in Figure 2.5. Suppose agent Ar

wants to evaluate the trustworthiness of agent Vg, and },...,,{ 21 Lwww are a group of

2. Literature Review

 25

witnesses towards agent Vg. The testimonies from witnesses can be incorporated into

the rating of a given agent as follows: Let
iAτ and

iAπ be the belief functions

corresponding to agent Ai’s local and total beliefs, respectively.

Agent Ar could update its local belief value of agent Vg as follows:

Lr wwA ττπ ⊕⋅⋅⋅⊕=
1

Figure 2.5 Testimony Propagation through a TrustNet

[Mui, 2002] has proposed mechanisms for inferring reputation. When the

acquaintances are in the parallel networks as in Figure 2.6, the reputation can be

inferred as follows:

Seller Vg

Agent W1 Agent W2 Agent WL

Agent Ar

QoS QoS QoS

τw1
τw2 τwL

2. Literature Review

 26

Figure 2.6 Illustration of a Parallel Network between Two Agents a and b

There are k chains between two agents of interest, where each chain consists of at

least one link. For each chain in the parallel network, the total weight can be tallied

by using additive method or multiplicative method. The form of a multiplicative

estimate for chain i’s weight (wi) can be: kiwhereww
il

j
iji ≤≤=∏

=

0
1

, where li refers

to the total number of edges in chain i and wij refers to the jth segment of the ith

chain. ijw can be calculated as follows:
⎪⎩

⎪
⎨
⎧

<
=

Otherwise

mmif
m
m

w ij
ij

ij

1
 , where mij is the

number of encounters between agents i and j, m represents the minimum number of

encounters necessary to achieve the desired level of confidence and error. Once the

weights of all chains of the parallel network between the two end nodes are calculated,

the estimate across the whole parallel network can be sensibly expressed as a

weighted sum across all the chains: ∑
=

=
k

i
iabab wirR

1
)(, where rab(i) is a’s estimate of

b’s reputation using path i and iw is the normalized weight of path i (summing iw over

all i yields 1). Rab can be interpreted as the overall perception that a garnered about b

using all paths connecting the two. Along each chain, the Bayesian estimate rating

Chain 1

Chain 2

Chain k

a b

2. Literature Review

 27

method can be used to infer the reputation of second degree indirect neighbors

scheme: () () () (1 ())(1 ())ik ij jk ij jkc c c c cρ ρ ρ ρ ρ= + − − . ()ij cρ is the probability that i

approves of another j’s opinion for an object in the context c. This logic is based on

the fact that i would approve of k’s opinion given the intermiediate agent j is the sum

of the following 2 probabilities: i approves of j and j approves of k; i disapproves of j

and j disapproves of k. However, when one chain is long enough, the trust value

would be too limited because the reputation of second degree indirect neighbors is

obtained by the summation of the both approval and disapproval. There exists another

situation which is the generalized network of acquaintances. In this network, there are

complex relations between the nodes in the network. To infer reputation in the

generalized network, the author proposed one important step, which is Graph

Parallelization. After the parallelization, the network can be solved as before.

[Lee, Sherwood et al., 2003] have introduced NICE trust inference model. The trust

inference algorithm is expressed using a directed graph called the trust graph (see

Figure 2.7). Two trust inference mechanisms based on such a trust graph are

described in the NICE approach. These are the strongest path mechanism and the

weighted sum of strongest disjoint paths mechanism. In the strongest path mechanism,

the strength of a path can be computed either as the minimum valued edge along the

path or the product of all edges along the path, and thus, agent A can infer agent B’s

trust by using the minimum trust value on the strongest path between A and B. In the

weighted sum of strongest disjoint paths, agent A can compute a trust value for B by

computing the weighted sum of the strength of all the strongest disjoint paths.

2. Literature Review

 28

Figure 2.7 NICE Trust Graph (Weights Represent the Extent of Trust the Source
Has in the Sink)

[Wang and Singh, 2006] have presented a trust propagation method which is based on

the concatenation operator and aggregation operator. Given a trust network, these two

operators can be used in the path algebra to merge the trust. The combination can be

shown in details below.

Figure 2.8 Transformation Trust Path

Figure 2.9 Combination Trust Path

This approach is based on the following two cases. Case 1: As shown in Figure 2.8,

agent A has a trust M1 in agent B’s references and B has a trust M2 in agent C. Then

C

A

E

B

D
0.8

0.9

0.7
0.8

0.6

0.5

C B A
M2 M1

Ag

B A

M2 M1

2. Literature Review

 29

A’s trust in C due to the reference from B is 21 MMM ⊗= . Here ⊗ is the

concatenation operator. Case 2: In Figure 2.9, agents A and B have trust M1 and M2,

respectively, in Ag. Then the combined trust of A and B in Ag is captured via the

aggregation operator⊕ , as in 21 MM ⊕ . For a given trust network, the beliefs can be

combined as follows: For any agent AAi ∈ , suppose{ }mBBB ,...,, 21 are the neighbors

of Ai. Suppose the trust ratings that Ai assigns to B1, B2,…, Bm are M1,M2,…Mm.

Suppose that all the neighbors have already obtained their trust ratings in Ag, and let

these be mMMM ′′′ ,...,, 21 . Then we obtain the trust of Ai in Ag, M, by:

)()()(2211 mm MMMMMMM ′⊗⊕⋅⋅⋅⊕′⊗⊕′⊗=

If the neighbor has not obtained the trust in Ag, the algorithm can be run recursively to

obtain the trust from merging and combining the trust from the neighbor’s neighbors,

since all the leaves in the trust network are the witnesses who have their trust values

in Ag computed from their direct interactions with Ag. So the trust ratings can be

merged in a bottom up fashion, from the leaves of the trust network up to its root Ar.

[Jøsang, et al., 2006a] analyzed the trust network by using subjective logic. In order

to solve the trust network, they introduce the network simplification, rather than

normalization which was used by a lot of research work on the trust network analysis

before. Simplification of a trust network consists of only including certain arcs in

order to allow the trust network between the source trustor and the target trustee to be

formally expressed as a canonical expression. DSPG (directed series-parallel graphs)

is the type of network which needs no normalization because a DSPG does not have

loops and internal dependencies. To evaluate the trust between source and sink, the

2. Literature Review

 30

first step is to determine all possible paths from a given source to a given target. In

this step, the authors proposed an algorithm written in Seudo-code and the transitive

trust graphs can be stored and represented on a computer in the form of a list of

directed trust arcs with additional attributes. The second step is to select a subset of

those paths for creating a DSPG. The definition of the canonical expression says that

an expression of a trust graph in structured notation where every arc only appears

once is called canonical. Thus, to create the DSPG, all the expressions except the

non-canonical ones are used. However, among all the DSPGs, only one will be

selected for deriving the trust measure. The optimal DSPG is the one that results in

the highest confidence level of the derived trust value. This principle focuses on

maximizing certainty in the trust value, and not on others such as deriving the

strongest positive or negative trust value. Here there is a trade-off between the time it

takes to find the optimal DSPG, and how close to the optimal DSPG a simplified

graph can be. In order to solve this, the author introduced an exhaustive method that

is guaranteed to find the optimal DSPG and a heuristic method that will find a DSPG

close to, or equal to the optimal DSPG. After DSPG’s construction and optimization,

the subjective logic can be used to derive the trust value.

2.5 Research Gaps

Trust work in multi-agent systems has been introduced in this chapter. The overviews

of trust, trust management and the trust propagation mechanisms in trust network

have been figured out. As the trust and reputation have been used in virtual

2. Literature Review

 31

communities, how to acquire the trust value in this artificial environment is a

challenge for the researchers. However, none of the work has solving the trust

network by using artificial intelligence techniques. The works have been done either

based on normalization or on simplification. To infer messages in a network, one of

the most efficient methods is Bayesian Inference method. Thus, in this dissertation,

we will solve the trust inference problem in trust network by using Bayesian

Inference method. In the next Chapters 3 and 4, we will propose the modeling of trust

and evaluation trustworthiness in trust network. In Chapter 5, we will propose a

simulation experiment and provide the results.

3. Trust Modeling and Trust Network Construction

 32

3 TRUST MODELING AND TRUST NETWORK
CONSTRUCTION

Trust is often built over time by accumulating personal experience with others. This

experience is used to predict how they will perform in a yet- to- be observed situation.

However, when assessing our trust in someone with whom we have no direct personal

experience, we often ask others about their experiences with this individual. This

collective opinion of others regarding an individual is known as the individual’s

reputation and it is the reputation of a trustee that we use to assess its trustworthiness,

if we have no personal experience.

Given the importance of trust and reputation in open multi-agent systems, the

computational trust and reputation model should be developed meeting requirements

for the domain to which they apply. In our case, the requirements can be summarized

as follows [Patel, el al., 2005]:

• The model must provide a trust metric that represents a level of trust in an

agent. Such a metric allows comparisons between agents so that one agent can

be inferred as more trustworthy than another. The model must be able to

provide a trust metric given the presence or absence of personal experience.

• The model must reflect an individual’s confidence in its level of trust for

another agent. This is necessary so that an agent can determine the degree of

influence the trust metric has on its decision about whether or not to interact

with another individual. Generally speaking, higher confidence means a

greater impact on the decision-making process, and lower confidence means

3. Trust Modeling and Trust Network Construction

 33

lower impact.

To meet the above requirements, we have modeled trust and reputation by using

TRAVOS model.

3.1 Trust Modeling

As we have described before, trust and reputation are context based. Thus, in the

following discussion, we model the trust and reputation only in one particular context.

The model equips an agent with three ways of assessing the trustworthiness of

another agent on one context. These are from direct interaction, witnesses’ reputation

and both.

Owing to the characteristic of open MAS, we have made an assumption about the

agents and their environment [Huynh et al, 2006].

Assumption 3.1: Agents are willing to share their experiences with others (as

witness).

3.1.1 Basic Notation

In this section, we will give some notations which are used to represent the trust

problem.

3. Trust Modeling and Trust Network Construction

 34

Let 1 2{ , ,..., }na a aΑ = be the set of all agents. Over time, distinct pair of

agents{ , } ,i ja a A i j⊆ ≠ , may interact with each other and in one time slot, there

might be more than one pair of agents interacting. S represents the truster or trust

source; T represents the trustee or trust target. In an environment, each agent can be

the truster or the trustee.

In order to distinguish the trust on one agent’s recommendation and ability to fulfill

some function, we give the following two definitions which were mentioned by

[Josang et al., 2006b].

Definition 3.1: Functional trust is a type of trust one agent puts on the target agent

based on the latter’s competence to supply some particular service.

Definition 3.2: Referral trust is a type of trust one agent puts on the target agent

based on the ability to give recommendation.

Let ,i ja afτ and ,i ja arτ represent the functional trust and referral trust of

ia to ja respectively.

3.1.2 Modeling

Functional Trust Modeling

3. Trust Modeling and Trust Network Construction

 35

This work is very similar to the trust modeling which has been done by [Patel et al.,

2005]. Let jiji aa
t ≠Ο ,, denotes the outcome of an interaction between

agents i and j at time t. We represent a contract outcome with a binary variable for

simplicity: ,

1

0i j

j
a a

contract fulfilled by a

otherwise
⎧

Ο = ⎨
⎩

During the time period [0t , 1t], the history of interaction between agents ia and ja is

recorded as a tuple,),(101010 :
,

:
,

:
,

tt
aa

tt
aa

tt
aa jijiji

nm=ℜ where the value of 10 :
,
tt
aa ji

m is the number of

successful interaction of ia and ja , and 10:
,
tt
aa ji

n is the number of unsuccessful

interaction between ia and ja .

ji aaB , is the expected value of
ji aa ,Ο given complete information about ja ’s decision

processes and all environment factors that affect its capabilities.

0 1:
, , ,[], [0,1]

i j i j i j

t t
a a a a a aB E where B= Ο ∈ .

The functional trust can be evaluated by using the method proposed by [Patel et al.,

2005].

][10:
,,,
tt
aaaaaa jijiji

BEf Ο=τ

The expected value of a continuous random variable depends on the probability

density function used to model the probability that the variable will have a certain

value. In Bayesian analysis, the beta family of pdfs is commonly used as a priori

3. Trust Modeling and Trust Network Construction

 36

distribution for random variables that take on continuous values in the interval [0,1].

According to the work by [Patel et al., 2005], the functional trust can be calculated as

follows:

βα
αβατ
+

==],[, BEf
ji aa

where 0 1 0 1: :
, ,1 1

i j i j

t t t t
a a a am and nα β= + = + , 10: tt is the time period of an assessment.

Referral Trust Modeling

The functional trust is not equal to referral trust because a good customer might not

be a good recommender. The referral trust is the trust that the truster places on the

trustee who can recommend a third agent who can supply function service or have

ability to recommend others. The referral trust can be estimated by using the

information supplied by witnesses to the truster. At each time slot, there is not only an

exchange of functional trust, but also the referral trust. For instance, an agent A can

send requirements to some agents (B, C, D) and ask them to evaluate agent E.

Owing to the assumption that all the agents report their information accurately and

truthfully, agent A can compare the announcement to the outcome which A interacted

with E. There are three results: (1) the witness agent says that it does not know agent

E (2) the witness agent’s evaluation is the same as the interaction outcome (3) the

witness agent’s evaluation is not the same as the interaction outcome. We classify

these three situations into two, which are: type 1, the evaluation is the same as the

interaction outcome and type 2, otherwise. To some extent, the interaction between

the truster and the witness could be seen to be the same as the interaction between the

3. Trust Modeling and Trust Network Construction

 37

truster and the trustee, so the referral trust can be estimated by using the same method

which is used to evaluate functional trust.

jiT t
aa ji

≠,, denotes the outcome of an detection between agents ia and ja at time t.

We represent detection with a binary variable for simplicity.

,

1 '

0i j

j
a a

a s report is the same as the fact
T

otherwise
⎧

= ⎨
⎩

During time period [0t , 1t], the history of interaction between agents ia and ja is

recorded as a tuple,),(101010 :
,

:
,

:
,

tt
aa

tt
aa

tt
aa jijiji

hgR = where the value of 10 :
,
tt
aa ji

g is the number of

successful interaction of ia and ja , and 10:
,
tt
aa ji

h is the number of unsuccessful

interactions between ia and ja .

ji aaD , is the expected value of
ji aaT , given complete information about ja ’s decision

processes and all environment factors that affect its capabilities.

]1,0[],[,
:
,,

10

1
∈=

jijij aa
tt
aaaa DwhereTED .

][10:
,,,
tt
aaaaaa jijiji

TDEr =τ

βα
αβατ

′+′
′

=′′=],[, DEr
ji aa

where 11 1010

1

:
,

:
, +=′+=′ tt

aa
tt
aa jij

handg βα , 10: tt is the time period of an

assessment.

3. Trust Modeling and Trust Network Construction

 38

3.2 Trust Network Construction

3.2.1 Trust Transitivity

Trust Transitivity in our work has the same meaning as proposed by [Jøsang et al.,

2006b]. It means, for example, that if Alice trusts Bob who trusts Eric, then Alice will

also trust Eric. However, trust is not always transitive in real life. For example the

fact that Alice trusts Bob to look after her child, and Bob trusts Eric to fix his car,

does not imply that Alice trusts Eric for looking after her child, or for fixing her car.

However, under certain semantic constraints [Jøsang and Pope, 2005], trust can be

transitive, and a trust system can be used to derive trust.

Separating trust into referral trust and functional trust makes trust transitivity become

true. An actual example is that Alice needs to have her car serviced, so she asks Bob

for his advice about where to find a good car mechanic in town. Bob does not actually

know any car mechanics himself, but he knows Claire and he believes that Claire

knows a good car mechanic. As it happens, Claire is happy to recommend the car

mechanic named Eric. As a result of transitivity, Alice is able to derive trust in Eric.

As already mentioned, trust in the ability to recommend represents referral trust, and

is precisely what allows trust to become transitive. At the same time, referral trust

always assumes the existence of a functional trust scope at the end of the transitive

path, which in this example is about being a good car mechanic. The “referral”

variant of a trust scope can be considered to be recursive, so that any transitive trust

3. Trust Modeling and Trust Network Construction

 39

chain, with arbitrary length, can be expressed using only one trust scope with two

variants. This principle is captured by the following criterion.

Definition 3.3: Functional Trust Derivation Criterion: Derivation of functional trust

through referral trust requires that the last trust arc represents functional trust, and all

previous trust arcs represent referral trust.

3.2.2 Trust Network Construction

Related definition and question description

Definition 3.4: Agents Trust Relation Graph (ATRG): ATRG is a directed graph,

which denotes the trust relations among agents. ATRG= (V, E), where: V is the set of

agents in the graph and E=V×V denotes the trust relation among agents and

21,vvT denotes the trust value that agent v1 has on agent v2.

Definition 3.5: Agents Functional Trust Sub-Graph (AFTSG): AFTSG is a directed

graph, which denotes the functional trust information contained in agent i.

),(''
ff EVAFTSG = , where: VVf ⊆

' , which denotes agents that have functional trust

relation with agent i; '''
fff VVE ×= denotes the functional trust relation among the

agents of '
fV and f

vvT '
2

'
1,

denotes the functional trust value that agent '
1v has on

agent '
2v .

3. Trust Modeling and Trust Network Construction

 40

Definition 3.6: Agents Referral Trust Sub-Graph (ARTSG): ARTSG is a directed

graph, which denotes the referral trust information contained in agent i.

),(''
rr EVAFTSG = , where: VVr ⊆

' , which denotes agents that have referral trust

relation with agent i; '''
rrr VVE ×= denotes the referral trust relation among the agents

of '
rV and r

vv
T '

2
'
1,

denotes the referral trust value that agent '
1v has on agent '

2v .

Definition 3.7: Trust Path (TP): Trust path from agent i to agent j can be defined as

an agent sequence },1,...,1,{ jjii −+ where i has referral trust with i+1, i+1has

referral trust with i+2,…, j-1 has functional trust with j. The TP indicates that agent i

can get the functional trust of agent j after a series of trust delegation.

Each agent has two sub-graphs which are AFTSG and ARTSG. AFTSG is used to store

the functional trust and ARTSG is used to store the referral trust which the graph

owner has with other agents. The ATRG describes the global trust information when

one agent needs to evaluate another. In real multi-agent systems, no ATRG exists, and

each agent only stores the trust information related to itself. Each time, different

target agents and source agents may accomplish their evaluation process with

different ATRGs.

When agent i needs to decide whether to cooperate with agent j, the following

procedure can be used to find out the ATRG.

3. Trust Modeling and Trust Network Construction

 41

• First agent i will check the AFTSG in its own database. If there is a

record in its AFTSG, i can make a decision right away. The agent also has

another choice which is to use recommendation to evaluate the target agent

and this can be accomplished by the following steps. This situation occurs

when there is no record with j in its AFTSG, or the source agent has to

evaluate the target agent.

• Agent i should send the inquiry to the agents in the ARTSG. Each agent

in i’s ARTSG will check its AFTSG to see whether there is an interaction

record. If they have, they will report the functional trust value to i,

otherwise, they will send inquiry to the agents in their ARTSG. Each agent

does this till all the agents which have functional trust of agent j are found

out.

• An ATRG is constructed including all the agents who supply information

to the inquiry process.

Construction of ATRG

In open multi-agent systems, each agent can only communicate with a few other

agents called acquaintances to exchange the trust information they have. To evaluate

the target agent’s trustworthiness, the source agent has to construct the ATRG to

obtain the outcome. The following example can explain this process well.

When agent i needs to evaluate agent j’s functional trust. It first searches among its

own functional trust dataset and finds out whether there is a record of j’s functional

3. Trust Modeling and Trust Network Construction

 42

trust. At the same time, i sends inquiries to its acquaintances and asks them to supply

the information about agent j. If the acquaintances have functional trust records of j,

they will send it to agent i, otherwise, they will ask their acquaintances to do the same

thing. Untill all the agents who know j’s functional trust are found out, the ATRG is

accomplished.

Agent i’s functional trust dataset and referral trust dataset are shown in Figure 3.1 and

Figure 3.2.

Figure 3.1 Agent i’s functional trust dataset

Figure 3.2 Agent i’s referral trust dataset

In agent i’s functional trust dataset, there is no interaction record with agent j. Thus,

agent i should send request to its acquaintances. The acquaintances will check their

functional trust dataset first and if there are records, they will report to agent i,

i

A B C

i

a b c

3. Trust Modeling and Trust Network Construction

 43

otherwise, they will send requirements to their acquaintances. We assume that the

functional trust records of agent j are shown in Figure 3.3, and agents A and C have

referral trust interaction with agents k, l respectively. Thus, we can get the partial

ATRG of agents i and j, which is shown in Figure 3.4.

Figure 3.3 Agent j’s functional trust dataset

Figure 3.4 Agent i’s partial ATRG with agent j

After finishing the construction of the ATRG, an intact ATRG can be seen and through

each path, the trust information is transferred to another agent. However, every arc in

the Trust Graph has the same trust scope and the transitive trust propagation is

possible with two variants of a single trust scope.

In the following chapter, we will propose an approach to evaluate the trust value in

the trust network we have constructed.

A

i
C

j

k

l

j

k l m

4. Trustworthiness Evaluation

 44

4 TRUSTWORTHINESS EVALUATION

As stated in Chapter 3, we have constructed an ATRG step by step. After obtaining the

Trust Graph, we still cannot know the trustworthiness of the target agent yet. In order

to analyze the trustworthiness of target agent, one of the most important processes is

to solve the Trust Graph and get a comparable value of trust which can help the agent

to make a decision.

In this Chapter, we will propose a novel approach to solve the Trust Graph and in the

following Chapter, an experiment will be presented.

4.1 Evaluation

After constructing the Trust Graph, the most important procedure is to solve the Trust

Graph and show a readable value to the decision maker. The novel approach we

proposed is based on the Bayesian inference method.

4.1.1 Introduction

In our model, the trust value is only in the range of [0, 1] and there is no negative

trust value. So the higher the trust value is, the more trust the source has on the target.

From the Trust Graph we have constructed in Chapter 3, we can see that there is at

least one chain to link the source agent and the target agent. As we know, it is

4. Trustworthiness Evaluation

 45

common to collect advice from several sources in order to be better informed while

making decisions. However, having a lot of information from different sources and

how to combine them, say, how to get the conclusion which reflects the fact is a

problem that needs to be solved. By using the Parallel Trust Combination [Jøsang et

al., 2006b], we can conclude that parallel combination of positive trust has the effect

of strengthening the derived trust. The combination is shown in Figure 4.1.

Figure 4.1 Trust Derived by Parallel Combination of Trust Paths

When receiving conflicting recommended trust, the subjective logic is used to

combine these recommendations to derive the trust in the target agent.

Another way to solve the Trust Network is normalization. In a Trust Network, for

each chain from source agent to target agent, the link has its weight. The final derived

trust value can be obtained by normalization [Mui, 2002].

4. Trustworthiness Evaluation

 46

In our work, we use the Bayesian inference method to combine the information and

derive the trust value.

Bayesian Probability Theory and Bayesian Networks

Bayesian probability theory is the statistical theory of making statements about

uncertain events θ. Initially events of interest are assigned a prior belief p(θ)

which reflects existing knowledge about the event and the problem area. Later, as

new information D becomes available, the subjective beliefs are updated using the

Bayes’ rule [Nurmi, 2005]:

)(
)()(

)(
Dp

pDp
Dp

normalizer
priorlikelihoodposterior

θθ
θ ==

×
= (4.1)

The likelihood term)(θDp measures the probability of seeing particular

realizations of the event θ, whereas the normalizer p(D) is used to ensure that the

values of)(Dp θ sum up to one and thus define a proper probability distribution.

After updating, the values of the posterior)(Dp θ are used as the new priors p(θ).

Bayesian Networks are directed acyclic graphs that model relationships between

variables using probability theory. In the causal interpretation, two (or more)

variables are connected through an edge only if there is a direct causal relationship

between the variables. Although we cannot see the whole Trust Network as a

Bayesian Network, we can see each parallel chain in the Trust Network as a Bayesian

Network and introduce the message passing algorithm to solve each chain.

4. Trustworthiness Evaluation

 47

This logic can work in the Trust Network, and we will explain this as follows.

1. The trust values that each agent have on others are modeled by using Beta

distribution. That is to say, the prior probabilities are assigned using Beta

Distribution; the resulting posterior beliefs are of Beta distribution.

2. The trust value agent A tells to agent C on agent B may not be the actual trust

value of agent B, it depends on agent A’s attitude and agent B’s action. Thus,

if we assume that agent A is reliable to agent C, the trust value will be the

conditional trust value agent B has given agent A speaks. To explain this in

another way, agent B can be seen as an information source, agent A tells to

agent C on reliability of agent B, is the conditional reliability of agent B given

agent A says. If you see the reliability as the trust value, we can model the

trust value agent A has on agent B as the conditional probability)(ABP .

3. Along the whole network, the target agent’s trust value can be obtained by the

Bayesian inference method. Belief updating by network propagation in

networks is calculating the posterior probability given some known evidence.

Although there is no casual relation between each agent, the trust value agent

A speaks out on agent B is the interaction history of the agent A with agent B.

It can be said as the trust value of agent B given the interaction history with

agent A when agent A is reliable, when i.e, it tells the truth.

4. Trustworthiness Evaluation

 48

4.1.2 The Proposed Approach

This approach is based on autonomous agent trust network construction process. After

constructing the Trust Graph, the agent can use the following procedure to derive the

trust value of the target agent.

However, in order to make our approach more flexible and to make it usable in other

Trust Networks rather than the Trust Graph constructed by us, we introduce a

procedure called parallelization. If the Trust Network’s structure is not the same as

our Trust Graph, the parallelization should be applied before using our trust

estimation mechanism.

Parallelization

In the Trust Network, the relation between the target agent and the source agent might

not be parallelized. In order to overcome the dependence, we choose to parallelize the

Trust Graph at first and the following algorithm can be used to fulfill this

requirement.

4. Trustworthiness Evaluation

 49

DEFINE PROCEDURE Parallelization TO BE

Define chain () as the dataset

Set node 1 as the current node

Set node n as the node which has the direct functional

connection with the target node

k=0

Flag=true

Do while Flag=true

 Do while (current node is not node n)

 If (have another node connect to current node) then

 If (this node does not exist in the Stack) then

 Push current node into Stack

 Move to next node which is connected to current

node

 End if

 Else

 If (Stack is empty) then

 Set Flag as false & exit the Parallelization process

 Else

 Pop one node from Stack and set current node as this

node

 End if

 End if

 Loop

 If the top node in the Stack is node n then

 k=k+1

 Store all the nodes in the Stack into chain(k)

 Pop one node from Stack

 Pop one node from Stack and set current node as this

node

 End if

Loop

4. Trustworthiness Evaluation

 50

In this program, node 1 represents the source node and node n represents target node.

k is the total number of chains of one Trust Network.

In the ATRG (parallelized or not), all the chains cannot be used for further calculation.

From [Zacharia, 1999], we only keep the length less than or equal to N and the

chronologically q most recent recommendations given from each witness. The two

thresholds can be set by the domain experts.

The reason behind this is that trust is weakened or diluted through transitivity. The

longer the trust chain is, the more unreliable the trust value derived from this chain. In

the meanwhile, the older the interaction occurs, the more questionable is the trust

value obtained from the interaction to estimate the recent trust value.

Regularizing the Numerical Structure

All the agents only have two states which are reliable and unreliable. The value on

each arc is the trust value of the child in the eyes of the parent, that is to say, the

child’s conditional probability of being reliable given its parent’s reliable

announcement. We assume the child’s conditional probability of being reliable given

its parent’s unreliable announcement is as follows:

1min(, ())
q

p witness is reliable
n

, where qn is the number of possible outcomes for

each witness, here it is 2 [Barber and Kim, 2001].

4. Trustworthiness Evaluation

 51

Mathematically, let ,i jV represent the trust value on the arc from

ia to ja and ,s tV represents the truster’s direct trust value on the trustee. To simplify the

formula, we use i and j to represent the agents instead of ia and ja . For all the

agents, 1 0(), ()i i reliable i i unreliable≡ = ≡ = . In this part, the source agent and target

agent is represented as s and t, while other agents can be represented as i and j. From

the Trust Network, we can get conditional probability as follows:

jiji VijPVijP ,
10

,
11 1)(;)(−== (4.2)

)(1)());(,
2
1min()(0100101 ijPijPiPijP −== (4.3)

⎩
⎨
⎧

=
otherwise

trusteeofvaluetrustdirecthastrusterV
P ts

1.0
,

0 (4.4)

The reasons for regularization like this have been given in the introduction part. We

still need to point out that when the agent does not tell the truth, say, does not tell the

true interaction history of another agent, the trust value will be the conditional trust

value given the speaking agent tells a lie.

Probability Propagation

Step 1: evaluating the nodes whose only child is the target node.

Along each chain, we use the following method to find out the marginal probability

of the tail agent. After obtaining the prior probability of one node, its parent node can

be removed from the chain. Thus, at the end of this step, all the nodes left are the

4. Trustworthiness Evaluation

 52

target node and its parents. Figure 4.2 is an example of Bayesian Network and the

node D’s prior probability can be calculated using the formulas below.

Figure 4.2 The Bayesian Inference of Prior Probability

We can calculate the marginal probability of node D in Fig 4.2 by using the following

formulas.

)()()(;)()()(;)()()(CPCDPDPBPBCPCPAPABPBP
cBA
∑∑∑ === (4.5)

Step 2: Evaluating the probability of the target node.

After finishing step 1, the Trust Network becomes a converging connection Bayesian

Network in which there is only one child node which is trustee and n parents nodes

which are the agents who have functional trust interaction with the trustee. As we

know, after the parallelization, each chain’s tail node becomes the parent of the

trustee. Each tail node carries the whole chain’s information and it is not its own. In

Figure 4.3, examples are listed.

Figure 4.3 Converging Connection Bayesian Network. i=1,2…n.

4. Trustworthiness Evaluation

 53

Let ()i iP P Y X= . From Neapolitan [Neapolitan, 1990], we can get the formula to

compute the trust value of the trustee within converging connection Bayesian

Network:

1 2 1 2

1 2

1 1 1

1 2 1 2
0 0 0

() ... (, ,...,) () (),..., ()n n

n

a aa a a a
n n

a a a
P Y P Y x x x P x P x P x

= = =

= ∑∑ ∑
 (4.6)

In order to find out),...(1 kXXYP , we introduce the leaky noisy-OR model to fix it.

The noisy-OR model is the most accepted and widely applied model to solve the

multi-causal interactions network and it leads to a very convenient and widely

applicable rule of combination. However, the noisy-OR model is based on two

assumptions: accountability and exception [Pearl, 1988]. Accountability states that an

event can be presumed false if all its parents are false. Exception requires that the

influence of each parent on the child is independent of other parents.

In our case, both of these two assumptions can work. On one hand, the leaky

noisy-OR model releases the accountability assumption and it introduces a leak

probability 0P which is the probability that the effect will be produced by the

unmodeled causes in absence of all the modeled causes. In other words, we can

say 0P is the prior probability of the effect before modeling the problem. Thus, in the

Trust Network, we assume the truster’s trust value on the trustee is 0P . On the other

hand, each chain’s information is independent to each other and it is only affected by

the agents on the chain.

4. Trustworthiness Evaluation

 54

According to Figure 4.3, we can use the following formula [Henrion, 1989] to solve

the problem.

∏
= −

−
−=

1: 0
021

0

1
1

)1(),...,,|(
ii xXi

i
n P

P
PXXXyP (4.7)

∏
= −

−
−−=

1: 0
021

1

1
1

)1(1),...,,|(
ii xXi

i
n P

P
PXXXyP (4.8)

Integrate formula 4.7 and 4.8 into formula 4.6, we can get:

1 2

1
1 2

1 1 1
1

1 2 0
0 0 0 : 0

1() ... () (),... ()[1 (1)]
1

n

n i i

aa a i
n

a a a i X x

PP y P x P x P x P
P= = = =

−
= − −

−∑∑ ∑ ∏ (4.9)

4.2 Numerical Example

In order to describe the whole evaluation process more specifically, we give the

following example in this section. The original Trust Network is shown in Figure 4.4.

There are six witnesses and four of them have functional trust of the trustee. The

truster has direct experience of the trustee as well.

(1) Parallelization

The parallelization Trust Network can be seen in Figure 4.5. In this example, suppose

we only keep the chains which include three or less than three witnesses. The agent 5

and agent 3’s interaction is too old and this link should be deleted. The revised

parallelization network is shown in Figure 4.6.

4. Trustworthiness Evaluation

 55

Figure 4.4 Trust Network with trust values

Figure 4.5 Parallel network of example Trust Network

Figure 4.6 Revised parallel network of example Trust Network

4. Trustworthiness Evaluation

 56

(2) Evaluation

Step 1: Evaluation of the target agent’s parents.

We solve the probability chain by chain and get the results presented in Table 4.1:

Table 4.1 The prior probability of the trustee’s parents on each chain

Chain 1 2 3 4 5

Probability 0.41 0.36 0.7 0.6 0.5

Step2: Evaluation of the target agent.

Figure 4.7 Target agent and its parents in the parallelized Trust Network

After obtaining the prior probability of the target agent’s parents, we get the Bayesian

Network as shown in Figure 4.6. In this step, we use formula (4.9) to get the final

result which is 0.8637.

Chain 1 Chain 2 Chain 3 Chain 4 Chain 5

T

4. Trustworthiness Evaluation

 57

From the example, we can see that although the trust value is only 0.3 from the direct

interaction between truster and trustee, the final trust value after evaluation is 0.8637.

The truster might trust the trustee this time. However, if the trustee cheats the truster

this time, the truster will adjust its records about the trustee and the witnesses, say,

records as unsuccessful. After a while, the deceitful agents will be isolated out and

isolated from the environment gradually.

In the following chapter, experiments and results will be given to illustrate our

mechanism’s performance.

5. Experiments and Results

 58

5 EXPERIMENTS AND RESULTS

In order to empirically evaluate the approach we have proposed, we designed a

test-bed that simulates the relationships and interactions between agents in which

trust models are used for selecting interaction partners (see Section 5.1). The

test-bed’s environment characterizes an open multi-agent system. The methodology

used for the evaluation is described in Section 5.2.

5.1 Experimental System

The test-bed environment we designed for evaluating our approach is a multi-agent

system consisting of agents providing service (called providers) and agents using

those services (called consumers). We assume that the performance of a provider (and

effectively its trustworthiness) in a particular services it provide (e.g. news service) is

generally independent from that in another services (e.g. weather service or banking

service). Therefore, without loss of generality, and in order to reduce the complexity

of the test-bed’s environment, it is assumed that there is only one type of service in

the test-bed. Hence, all the provider agents offer the same service. However, their

performance (i.e. the quality of the service) differs and determines the utility that a

consumer gains from each interaction (called UG).

The agents are situated randomly on a spherical world whose radius is 2.0 (see Figure

5.1). Each agent has a radius of operation (depicted by a dotted circle around an agent

5. Experiments and Results

 59

in Figure 5.1) that models the agent’s capability in interacting with others (e.g. the

available bandwidth or the agent’s infrastructure) and any agents situated in that range

are the agent’s acquaintances.

Figure 5.1 The spherical world and an example referral chain from consumer C1
(through C2 and C3) to provider P via acquaintances

For a provider, its radius of operation serves as the normal operational range in which

it can provide its service at its full capacity without loss of quality. For consumers

outside that provider’s normal operational range, the quality of service they receive

from it is gradually reduced. This simulates the phenomenon that each agent usually

has particular circumstances which affect service delivery. For example, two distant

agents may experience significant network latency during their interaction, or a seller

5. Experiments and Results

 60

agent in Singapore may charge another agent extra for shipping goods abroad and the

goods may arrive much later than usual.

Simulations are run in the test-bed in rounds (of agent interactions). Event that takes

place in the same round are considered simultaneous. The round number is used as

the time value for events. In each round, if a consumer agent needs to use the service

it can contact the environment to locate nearby provider agents (in terms of the

distance between the agents on the spherical world). The consumer agent will then

select one provider from the list to use its service. The selection process relies on the

agent’s trust model to decide which provider is likely to be the most reliable.

However, consumer agents without a trust model randomly select a provider from the

list.

On the other hand, each agent with a trust model would face the following problem:

Not all the providers’ trustworthiness located by the environment can be determined.

Thus, under some situations, a consumer faces two options:

1. Selecting the provider with the highest trust value in the set HasTrustValue,

which according to the trust model is likely to yield the highest UG.

2. Selecting a random provider from the set NoTrustValue, allowing it to learn

about the performance of an unknown provider.

When the set NoTrustValue is empty, the agent only chooses according to option 1

and vice versa.

5. Experiments and Results

 61

When the two sets are not empty, there is a dilemma strategy named

exploit-vs-explore that can be used to help the agent make a decision. Using this

strategy, an agent tends to explore its environment first and then gradually move its

stance towards exploitation when it learns more about the environment.

Having selected a provider, the consumer agent then uses the service of the selected

provider and gains some utility from the interaction (UG). The value of UG is in [-10,

10] (see Table 5.1) and depends on the level of performance of the provider in that

interaction. A provider can serve many users at a time. As in real situations, a

consumer agent, however, does not always use the service in every round. The

probability it needs and requests the service, called its activity level and denoted by

α, is selected randomly when the consumer is created. In other words, the activity

level of a consumer determines how frequently it uses the service.

In our test-bed, the only difference in each situation is the performance of the

provider agents. We consider five types of provider agents: best, good, ordinary, bad

and worst. Each of them has a mean level of performance, denoted by μp. Its actual

performance follows a normal distribution around this mean. The values of μp and

the associated standard deviation of these types of providers, denoted by σp, are

given in Table 5.2.

Since agents can freely join and leave an open Multi-agent system, the agent

population can be very dynamic. Moreover, since agents are owned and controlled by

5. Experiments and Results

 62

various stakeholders, the performance of an agent may not be consistent over time.

Therefore, in order to simulate such dynamism, we introduce the following factors in

our test-bed:

• The population of the agents: In an open multi-agent system, agents can come

and leave the system at anytime. This is simulated by removing a number of

randomly selected agents from the test-bed and adding the new ones into it.

The numbers of agents added and removed after each round vary, but have an

upper limit of some predefined percentage of the whole population. Since

providers are usually more established than consumers, the characteristics of

the newly added agents are set randomly but they are uniformly distributed

over the initial agent populations.

• The location of the agents: During their life cycle, agents break the old

relationships and make the new ones. In our test-bed, this type of change is

described by the change in an agent’s location on the spherical world. When a

consumer changes its location, it will have a new set of acquaintances

according to its r0. In addition, the location of an agent in the test-bed also

reflects its individual situation covering things such as its knowledge about

other local agents and the service delivery between providers and consumers.

Therefore, changing an agent’s location will change its relationships with

others, as well as its individual situation.

• The behavior of the providers: In many environments, provider performance

may alter over time. A provider may even change its behavior completely. In

our test-bed, the average performance of a provider can be changed by an

5. Experiments and Results

 63

amount of Δμ randomly selected in [-M, +M], and this happens in each

round with the probability of Pμc.

Table 5.1 Performance level constants

Performance Level Utility gained

PL_PERFECT +10

PL_GOOD +5

PL_ ORDINARY 0

PL_BAD -5

PL_WORST -10

Table 5.2 Profiles of provider agents (performance constants defined in Table 5.1)

Profile Range of μp σp

Best [PL_GOOD, PL_PERFECT] 1.0

Good [PL_ ORDINARY, PL_GOOD] 2.0

Ordinary [PL_BAD, PL_ ORDINARY] 2.0

Bad [PL_WORST, PL_BAD] 2.0

Worst [PL_WORST, PL_BAD] 1.0

5. Experiments and Results

 64

The changes on the test-bed’s environment are applied only after each round of

interaction has finished. The nature and degree of dynamism are specified in each

experiment.

5.2 Experimental Methodology

In each experiment, the test-bed is populated with provider and consumer agents.

Each consumer agent is equipped with a specific trust model, which helps it select a

provider when it needs to use a service. Since the only difference among consumer

agents is the trust model that they use, the utility gained by each agent through

simulation will reflect the performance of its trust model in selecting reliable

providers for interactions. Therefore, the test-bed records the total utility gained

(TUG) of the whole consumer environment along with the trust model used. In order

to obtain an accurate result for performance comparisons between trust models, each

model will be employed by a large number of consumer agents (Nc). In addition, the

total utility gained of the whole environment will change over time with different

trust model. The result of an experiment is presented in a graph with the y-axis,

ploting the TUG of the whole environment and the x-axis ploting the interaction by

time.

The experimental variables are presented in Table 5.3 and their values will be used in

all cases unless otherwise specified. Although a ‘typical’ provider population may

differ in various applications, the space of possibilities is vast and exploring it

5. Experiments and Results

 65

completely would be impossible. Therefore, we choose provider populations which

we believe are more common than others for our experiments. Here, we consider a

typical provider population to consist of even providers. That is to say, the number of

providers with different performance is the same.

As discussed in Section 4.1, the calculation of the trust value of the target agent is

accomplished by using Noisy-OR model. In this model, one of the important

parameters is the leaky probability P0. In our experiment, P0 can be seen as the source

of agent’s prior trust value on the target agent without any information. As we know,

we have different first impressions to different people. The P0 is the first expression

without any rational thinking. Thus, P0 is created randomly from (0, 0.2].

Table 5.3 Experimental variables

Simulation Variable Symbol Value

Number of simulation rounds N 300

Total number of provider agents Np 200

Best providers Npb 40

Good providers Npg 40

Ordinary providers Npo 40

Bad providers Npd 40

Worst providers Npw 40

Number of consumer agents in each group Nc 200

Range of consumer activity level α [0.25, 1.00]

5. Experiments and Results

 66

5.3 Results

Having presented the test-bed and the proposed methodology in this section, we will

evaluate the experiments. In particular, we concentrate on the benefit of using our

approach for selecting interaction partners with different provider populations and the

comparison of our approach with the computational model proposed by [Mui, 2002]

as well as without trust model (Section 5.3.1). In addition, we also compare the

estimation with combining recommendations to without combining recommendations

(Section 5.3.2). Moreover, we test our model under the dynamic environment as well

(Section 5.3.3).

5.3.1 Overall Performance of Bayesian-based Inference Approach

In order to evaluate the overall performance of our approach, we compare it with the

computational model proposed by [Mui, 2002] (whose operation is described in

Section 2.4) and a group of agents with no trust model. Hence, there are three groups

of consumer agents: Bayesian-based Inference Approach (BTM), Mui-Proposed

Approach (MTM) and NoTrust. Through out the whole chapter, we call the approach

proposed by us as BTM, and the approach proposed by Mui as MTM.

The first thing to test is whether BTM helps consumer agents select profitable

providers from the population and, by so doing, helps them gain better utility than

5. Experiments and Results

 67

without BTM. In this section, the test-bed’s environment is static. The NoTrust group

selects providers randomly without any trust evaluation. To compare each model, we

use the total utility which can be calculated as follows: each agent in the environment

has its utility gained from the interaction. In one time slot, the summation of all the

agents’ utility gained in the whole environment can be seen as the total utility gained

(TUG) in that time slot.

Figure 5.2 Performance of BTM, MTM and NoTrust Model

Figure 5.2 shows that the NoTrust group that selects providers randomly without any

trust evaluation, performs consistently the lowest (as we would expect). On the other

hand, both the BTM and MTM prove to be beneficial to consumer agents, helping

them to obtain significantly higher utility. This shows that the tested trust models can

5. Experiments and Results

 68

learn about the provider population, and allow their agents to select profitable

providers for interaction.

In addition, from Figure 5.2, we can also see that the total utility gained by using

BTM is higher than using MTM, i.e., the BTM outperforms MTM. We can get the

same result from Table 5.4. In Table 5.4, we can also see that in the first few

interactions, BTM can learn about the providers quicker than MTM as the BTM

group achieves its superiority from the first interaction quicker than MTM. The total

utility gained by BTM in each interaction after interaction 3 is higher than what MTM

gained. Although there is fluctuation in the first 6 interactions in BTM, the fluctuation

occurs in MTM during the first 10 interactions. This situation illustrated that BTM

can reach stable situation quicker than MTM.

Table 5.4 The Performance of BTM and MTM in the first 10 interactions

Interaction 1 2 3 4 5 6 7 8 9 10

BTM -10 -40 55 50 75 60 80 155 175 195

MTM -90 -30 30 25 40 55 45 55 60 35

The performance difference of BTM and MTM is that BTM is accounted by the way

to calculate the trust value along each chain, while MTM uses the Bayesian estimate

rating propagation, which is given by

5. Experiments and Results

 69

)1)(1()(jkijjkijik c ρρρρρ −−+= . As we have explained before, the requirement of

this method is too strict to get the final trust value of the source agent to the target

agent along one chain. Thus, the agents using MTM obtain the lower total utility than

using BTM. In the meantime, the MTM uses using the weighted sum to figure out the

last trust value, but the approach may introduce rating noise by giving different

weights to different trust chains in the Trust Network. In contrast, BTM introduces

Bayesian inference propagating approach to solve the Trust Network, and the trust

value along each chain is calculated by the approach used to solve Bayesian

Networks. It avoids the risk of repeatedly using the trust value of each agent in one

chain. In addition, the BTM leaves the weighted sum/ multiple method out drastically.

Thus, there is no rating noise caused by giving weights to each chain.

We repeated the same experiment but with the provider population consisting of

providers of only one profile (e.g. best, good, ordinary, bad, and worst) to see how

different types of providers may affect the BTM performance. These experiments aim

to test the stability and consistency of BTM. From Figure 5.3, we can see that the

total utility gained with 100% best providers and 100% worst providers are

symmetrical and the only difference is that one is positive and the other is negative.

Similar observations are also obtained for the good and bad providers. This

demonstrates that our model is very stable and consistent when solving the trust

evaluation problem and also our model can work well in a wide range of provider

population.

5. Experiments and Results

 70

Figure 5.3 Performance of BTM with different providers

5.3.2 Comparison of with and without Combining Recommendations

We argued that the witnesses’ recommendation is crucial in the trust evaluation

process. However, many of the authors only take into consideration of the direct

interaction when it is available. Unless there is no direct interaction, they will use

recommendations. In BTM, we not only consider the direct interaction (direct

experience), but also the recommendations from witnesses. As we know, only one

information resource may not reflect the real situation of the target. Thus, whether the

direct interaction is available or not, we take into consideration of all the information

about the target agent. Figure 5.4 shows that the total utility gained by only using

direct experience and by using all the information. From Figure 5.4, we can see that

BTM outperforms the model that only uses the direct experience. The experiment

5. Experiments and Results

 71

demonstrates that the witnesses’ recommendations make the estimation more accurate

than without the recommendations. In some real situations, the agent has to pay for

the information. Thus, there is a tradeoff between the charge and the income.

Figure 5.4 The Total Utility Gained by using direct experience only and by BTM.

5.3.3 The effects of dynamism

The environment of a realistic open multi-agent system is always changing because of

its openness. Hence, a trust model designed for open multi-agent systems should be

able to function properly in such a dynamic environment. This section concentrates

5. Experiments and Results

 72

on testing the hypothesis that our model still maintains its properties in a changing

environment.

Similarly to the experiments in Section 5.3.1, we compare the performance of BTM,

MTM, Direct Experience Only and NoTrust in the same changing environment. The

higher the total utility gained, the better the trust model works. We run the

experiments with the following conditions:

1. The provider population changes at a maximum of 5% for every 50 rounds.

2. A provider switches into a different (performance) profile randomly for every

50 rounds.

3. A provider moves to a new location in the spherical world at a randomly

selected direction and distance for every 50 rounds.

In the following parts, we will give some details of the experiments and the results.

Provider population changes

The experiment carried out under this condition aims to simulate the situation that the

agent may come in and go out of the environment freely. In this experiment, we make

the total number of agents in the environment unchanged. We simulate this situation

through the following method: in every 50 rounds, we pick out 10 agents and add in

10 agents as the newcomers. The trust value of the newcomer is set randomly.

5. Experiments and Results

 73

The results are shown in Figure 5.5. From the figure, we can see that BTM gained

more utilities than other models. It demonstrates that our model can work well in the

open multi-agent environment. Although we keep the total number of agents constant,

this assumption will not affect our model’s performance when the total number of

agents changes.

Figure 5.5 The performance of the four models under condition 1

Providers switch into a different performance profile

5. Experiments and Results

 74

The experiment here is to simulate the situation that a provider’s performance would

change or be different in some rounds. We change some providers’ performance in

every 50 rounds. If we take nttt ,..., 21 as the time points that the provider’s

performance is changed, in each time point the providers picked out to change their

performance are not the same. This will make the experiment more similar to the

actual situation.

The results are shown in Figure 5.6. From the results, we can see that BTM dominates

other models. At the same time, the TUG gained by the model with direct experience

only is higher than what MTM gained; this demonstrates that our approach is more

efficient than MTM. Although using the direct experience only, our model still works

well in the dynamic environment where the providers change their performance.

5. Experiments and Results

 75

Figure 5.6 The performance of the four models under condition 2.

Providers move to a new location

The experiment aims to simulate the situation that the agent breaks the old

relationship and constructs the new ones in some rounds. We change some providers’

location in every 50 rounds. If we take nttt ,..., 21 as the time points the provider’s

location is changed, in each time point the providers picked out to change their

location are not the same. This will make the experiment more similar to the actual

situation.

The results are shown in Figure 5.7. From the results, we can see that BTM gained

more utility than other models. We can obtain the same results as before. The TUG

5. Experiments and Results

 76

gained by the model with direct experience only is higher than what MTM gained;

this demonstrates that our approach is more efficient than MTM. Although only using

the direct experience, our model still works well in the dynamic environment where

the providers change their performance.

Figure 5.7 The performance of the four models under condition 3.

In summary, dynamism, as it introduces noise to the environments, adversely affects

the performance of BTM and MTM in all the experiments reported here. Specifically,

and as what we would expect, their performance is lower than that in the static

environment. Nevertheless, although having lower levels of performance than in a

static environment, the BTM still outperforms other models.

5. Experiments and Results

 77

5.4 Summary

From the simulation results, we can see that the trust estimation approach we

proposed works well in a wide range of providers. In the meantime, our approach

outperforms to the approach proposed by Mui, as well as the mechanisms without

trust evaluation mechanism. In addition, we demonstrate that the use of the direct

experience only is not good enough to evaluate the trust value. However, combing in

the direct experience and the witnesses’ recommendation is a better way to evaluate

the target agent’s trust value and it gained more in the long run. Moreover, our model

performs better in the dynamic environment than other models and this conclusion is

confirmed by the fact that in our approach that uses direct experience only, the gained

utilities are higher than that of MTM and NoTrust.

6. Conclusions and Future Work

 78

6 Conclusions and Future Work

This chapter concludes this thesis with a summary of the accomplishments and the

future work.

6.1 Summary of Contributions

To fill the research gap of the trust estimation we found in the open multi-agent

system, we present a new approach to estimate the trust value for the multi-agent

systems. This work aims to introduce the trust evaluation problem into the artificial

intelligence area and solve the problem by using the methodology in the Bayesian

Network area.

We present an approach to help agents construct a trust network automatically in a

multi-agent system. Although this network is a virtual one, it can be used to estimate

the trust value of the target agent.

The second part is to solve the trust network constructed by our methodology. In this

part, we use the Bayesian Inference Propagation approach with Leaky Noisy-OR

model to solve the trust network. This is a novel way to solve the trust problem in the

multi-agent systems. This approach solves the trust estimation problem based on

objective logic, which means that there is no subjective weight setting. The whole

trust estimation process becomes automatic without the intervention of human beings.

6. Conclusions and Future Work

 79

Lastly, we demonstrate the advantage of our approach by carrying two groups of

experiments in the simulation. Experiments in group one are in the static environment

and experiments in group two are under dynamic environment. From the experiments,

we find out that our model works better than the model proposed by other authors as

by using our model, the whole agents’ utility gained is higher than by using other

models (MTM and without trust measure). In addition, we run the experiment in

different provider situations. The results tell us that our model performs well in a

wide range of provider population and it also reconfirmed the fact that our model

works better than the models we compared. Moreover, in order to demonstrate that

more information resources can help the decision maker make a more accurate

decision, we develop another experiment which compares the performance of our

model and the model that only uses direct experience unless the direct experience is

not available. The results of the experiment confirm our proposed viewpoint, which is

that combining the recommendation and the direct experience works better than using

direct experience. In addition, we test our approach in the dynamic environment and

the results illustrate that our approach gains more TUG than MTM and without trust

measure under three different dynamic environments.

By using the framework we proposed, the trust estimation problem can be solved in a

new way which is based on Bayesian Propagation. Comparing to the existing

methods, this approach can solve the trust problem in the virtual communities

6. Conclusions and Future Work

 80

automatically and the results are more reliable which could help agents in the

environment obtain more earnings.

6.2 Recommendations for Future Work

From the simulation results, we find that our model works better. However, we need

more studies on the trust modeling and trust evaluation can be done.

There are several possible future works that can be done to improve our work:

1) The assumption of the trust value given the witness tells a lie needs to be

relaxed or to find a better way to solve this problem.

2) In this work, all the trust values proposed are all falling into the confidence

level. However, in some problems, witnesses’ information might be out of the

confidence level and the chain will be broken, and it needs to be improved in

the Trust Network construction part.

3) The approach we proposed has a disadvantage, which is the increase of

computation time as the complexity of the trust graph increases. The more of

the quantity the chains, the more computation that needs to be done.

In addition, we may also improve our work by modeling the trust value in the

Bayesian Network. It is possible to construct a Bayesian Network to expect the trust

value or the target agent’s intention in the future interaction.

6. Conclusions and Future Work

 81

In summary, this thesis presents an overview of trust estimation approaches and

develops a trust network construction algorithm, as well as a mechanism to estimate

the trust value in a trust network. More research and application of such approaches

need to be followed in the future.

References

 82

REFERENCES

Abdul-Rahman, A. and Hailes, S. (1997). A Distributed Trust Model. New Security

Paradigms Workshop, Langdale, Cumbria UK.

Abdul-Rahman, A., and Hailes, S., Supporting Trust in Virtual Communities, in:

Proceedings of the 33rd Hawaii International Conference on System Sciences

(IEEE Computer Society, 2000).

Aberer, K. (2001). P-Grid: A self-organizing access structure for P2P information

systems. 9th International Conference on Cooperative Information Systems,

Trento, Italy.

Aberer,K. and Despotovic, Z. (2001) Managing Trust in a Peer-to-Peer Information

System. Conference on Information and Knowledge Management, Atlanta,

Georgia.

Barber, K. B. and Kim, J., Belief Revision Process based on Trust: Agents Evaluating

Reputation of Information Sources, in: Lecture notes in computer science

2246 (Springer, 2001) 73-82.

Becker, M.Y. and Sewell, P., Cassandra: Distributed access control policies with

tunable expressiveness. In Proceedings of the 5th IEEE International

References

 83

Workshop on Policies for Distributed Systems and Networks, Pages 159,

2004.

Blaze, M., et al., Decentralized trust management. In Proceedings of IEEE

Symposium on Security and Privacy, pages 164-173, 1996.

Blaze, M., et al., The role of trust management in distributed system security. Lecture

Notes in Computer Science, 1603: 185-210, 1999.

Damiani, E., di Vimercati, S. D. C. et al. (2002) A Reputation-Based Approach for

Choosing Reliable Resources in Peer-to-Peer Networks. 9th ACM Conference

on Computer and Communication Security, Washington DC.2002.

Despotovic, Z., Aberer, K., P2P reputation management: Probabilistic estimation vs.

social networks. Computer Networks 50(2006), 485-500.

Dragovic, B., Kotsovinos, E., et al (2003) Xeno Trust: Event-based distributed trust

management. Second International Workshop on Trust and Privacy in Digital

Business, Prague, Czech Republic.

Esfandiari, B. and Chandrasekharan, S. (2001) On How Agents Make Friends:

Mechanisms for Trust Acquisition. 4th Workshop on Deception, Fraud and

Trust in Agent Societies, Montreal.

References

 84

Falcone R. and Shehory O., Trust Delegation and Autonomy: Foundations for Virtual

Societies”. AAMAS tutorial 12, July 16, 2002.

Falcone, R., et al., Why a cognitive trustier performs better: Simulating trust-based

contract nets. In Proceedings of AAMAS 2004.

Freeman, L.C., Centrality in Social Networks: I. Conceptual Clarification, Social

Networks, 1:215-239, 1979.

Guo, L., Poh, K.L., and Li, G.L., Trust Estimation within Trust Network for

Multi-agent Systems: A Bayesian Propagation Approach, Submitted to The

Joint iTrust and PST Conferences on Privacy, Trust Management and Security

(IFIPTM), 2007.

Henrion, M., Some Practical Issues in Constructing Belief Networks, Uncertainty in

Artificial Intelligence 3, Amsterdam: North-Holland, (1989).

Huynh, T. D., Jennings, N.R. and Shadbolt, N. R. “An intergrated trust and reputation

model for open multi-agent systems”, Auton Agent Multi-agent Sys (2006) 13:

119-154.

Jøsang, A. and Pope, S. “Semantic Constraints for Trust Transitivity”, In Proceedings

of the Asia-Pacific Conference of Conceptual Modeling (APCCM) (Volume

References

 85

43 of Conference in Research and Practice in Information Technology), S.

Hartmann and M. Stumptner, Eds., Newcastle, Australia, February, 2005.

Jøsang, A., Hayward, R., and Pope, S. Trust Network Analysis with Subjective Logic.

Australasian Computer Science Conference 2006.

Jøsang, A. et al. (2006) “Simplification and Analysis of Transitive Trust Networks”

Web Intelligence and Agent Systems Journal 4(2) 2006, pp.139-161.

Kagal, L. et al, Developing secure agent systems using delegation based trust

management. In Security of Mobile Multi-agent Systems (SEMAS 02) held at

Autonomous Agents and MultiAgent Systems (AAMAS 02), 2002.

Katz, L., New Status Index Derived from Sociometric Analysis. Psychometrika,

18:39-43, 1953.

Krackhardt, D., et al., KrackPlot: A Picture’s Worth a Thousand Words. Connections,

16:37-47, 1993.

Lee, S., Sherwood, R., et al. (2003) Cooperative peer groups in NICE. IEEE Infocom,

San Francisco, USA.2003.

References

 86

Leithead, T., et al., How to exploit ontologies for trust negotiation. In ISWC

Workshop on Trust, Security, and Reputation on the Semantic Web, Volume

127 of CEUR Workshop Proceedings, Hiroshima, Japan. Technical University

of Aachen (RWTH), 2004.

Marsden,P.V. and Lin, L., Social Structure and Network Analysis, Newbury Park,

CA: Sage, 1982.

Marsh, S. P., Formalising trust as a computational concept, Department of

Mathematics and Computer Science, University of Stirling, 1994.

McKnight, D. and Chervany, N. The meaning of trust. University of Minnesota,

Management Information Systems Research Center, Tech, Rep. MISRC

Working Paper Series 96-04, 1996.

Montaner M. and L’opez B., Opinion based filtering through trust. In Proceeding of

the 6th International Workshop on Cooperative Information Agents (CIA’02),

Madrid (Spain), September 18-20, 2002.

Mui, L. (2002) Computational models of Trust and Reputation: Agents, Evolutionary

Games, and Social Networks. Department of Electrical Engineering and

Computer Science, Massachusetts Institute of Technology. 2002.

References

 87

Neapolitan, R.E., Probabilistic reasoning in expert systems: theory and algorithms

(Wiley, New York, 1990).

Nejdl, W., et al., Peertrust: Automated trust negotiation for peers on the semantic web.

In Proceedings of Workshop on Secure Data Management in a Connected

World in conjunction with the 30th International Conference on Very Large

Data Bases, pages 118-132, 2004.

Nurmi, P., “Bayesian game theory in practice: A framework for online reputation

systems”, Department of Computer Science, Series of Publications C, Report

C-2005-10, University of Helsinki, Finland, 2005.

Patel, J., W.T.L. Teacy, N.R. Jennings, M. Luck, A Probabilistic Trust Model for

Handling Inaccurate Reputation Sources, in: 3rd Int. Conf. on Trust

Management (Roquencourt, France, 2005) 193-209.

Pearl .J, Probabilistic Reasoning in Intelligent Systems (Morgan Kaufmann, San

Francisco, California, 1988).

Pujol, J., Sanguesa, R., et al. Extracting reputation in multi-agent systems by means

of social network topology. 1st International Joint Conference on Autonomous

Agents and Multi-Agent Systems, Bologna, Italy. 2002.

References

 88

Sabater,J. and Sierra, C. REGRET: A Reputation Model for Gregarious Societies. 4th

Workshop on Deception, Fraud and Trust in Agent Societies, Montreal,

Canada. 2001.

Schillo, M., Funk, P., et al. Using trust for detecting deceitful agents in artificial

societies. Applied Artificial Intelligence Journal, Special Issue on Trust,

Deception and Fraud in Agent Societies. 2000.

Seigneru, J.M. and Jensen, C.D., Trust enhanced ubiquitous payment without too

much privacy loss. In SAC’04: Proceedings of the 2004 ACM symposium on

Applied computing, pages 1593-1599, New York, NY, USA. ACM Press.

2004.

Suryanarayana, G., et al, A survey of Trust Management and Resource Discovery

Technologies in Peer-to-Peer Applications, ISR Technical Report#

UCI-ISR-04-6, 2004.

Wang, Y.H. and Singh, M.P. Proceedings of the 21st National Conference on

Artificial Intelligence (AAAI) July 2006.

Winsborough, W., et al., Automated trust negotiation, Technical Report, North

Carolina State University at Raleigh, Raleigh, NC, USA, 2000.

References

 89

Winslett, M., et al., Negotiating trust on the web. IEEE Internet Computing, 6(6):

30-37, 2002.

WS-Trust. http://www.128.ibm.com/developerworks/library/specifications/ws-trust/.

Xiong, L. and Liu, L., PeerTrust: Supporting Reputation-Based Trust for Peer-to-Peer

Electronic Communities, IEEE Transactions on Knowledge and Data

Engineering, Vol.16, NO.7, July 2004.

Yu, T., Winslett, M., and Seamons, K. E., Interoperable strategies in automated trust

negotiation. In CCS’01: Proceedings of the 8th ACM conference on Computer

and Communications Security, pages 146-155, New York, NY, USA. ACM

Press, 2001.

Yu, B. and Singh, M. P. A Social Mechanism of Reputation Management in

Electronic Communities. Fourth International Workshop on Cooperative

Information Agents.2000.

Yu, B., Singh, M.P., Distributed Reputation Management for Electronic Commerce,

Computational Intelligence 18 (2002) 535-549.

References

 90

Yu, T. and Winslett, M., Policy migration for sensitive credentials in trust negotiation.

In WPES’03: Proceedings of the 2003 ACM workshop on Privacy in the

electronic society, Pages 9-20, New York, NY, USA. ACM Press, 2003.

Zacharia, G., Collaborative Reputation Mechanisms for Online Communities, Dept.

of Architecture. Program in Media Arts and Sciences, Massachusetts Institute

of Technology, 1999.

Appendix

 91

Appendix-A Parallelization

Parallalization Procedure in C Sharp code
 private Array parallalization(int source, int sink)
 {
 Stack myStack = new Stack();
 ArrayList chain = new ArrayList();
 int i, j;
 int k = 0;
 bool flag = true;
 String Currentnode = source.ToString();
 i = source;
 j = 0;
 int jpre = i;
 maxlength = System.Convert.ToInt16(textBox3.Text);
 while (flag == true)
 {
 while ((j <= nodeia.GetUpperBound(1)) &
(myStack.Count < (maxlength - 2)))
 {
 if (j != jpre)
 {
 if (Convert.ToInt16(nodeia.GetValue(i,
j)) != 0)
 {
 if (myStack.Contains(Currentnode))
 {
 //Here is to prevent the cycle
occurance
 j = j + 1;
 }
 else
 {
 myStack.Push(Currentnode);

 Currentnode = j.ToString();
 if (Currentnode ==
sink.ToString())
 {
 goto a;
 }
 jpre = 0;
 i = j;
 j = 0;
 }

Appendix

 92

 }
 else
 {
 j = j + 1;
 }
 }
 else
 {
 j = j + 1;
 }

 }

 //don't find the terminal chain, then back
 if (myStack.Count > 0)
 {
 jpre = Convert.ToInt16(Currentnode);
 i = Convert.ToInt16(myStack.Pop());
 Currentnode = i.ToString();
 j = jpre + 1;
 }
 else
 {
 flag = false;
 }
 goto e;

 //finaliza the chain
 a: myStack.Push(Currentnode);
 //copy all the nodes in stack into one chain()
 Object[] myStandardArray = myStack.ToArray();
 MyStringBuilder.Remove(0,
MyStringBuilder.Length);
 for (j = myStandardArray.GetUpperBound(0); j >
-1; j--)
 {
 if (MyStringBuilder.Length == 0)
 MyStringBuilder.Append("Node" +
myStandardArray.GetValue(j).ToString());
 else
 MyStringBuilder.Append("+" + "Node" +
myStandardArray.GetValue(j).ToString());
 }

 chain.Add(MyStringBuilder.ToString());
 k = k + 1;

Appendix

 93

 //back two steps
 jpre = Convert.ToInt16(myStack.Pop());
 i = Convert.ToInt16(myStack.Pop());
 Currentnode = i.ToString();
 j = jpre + 1;

 e: ;
 }
 return chain.ToArray();
 }

Appendix

 94

Appendix-B BTM Core Code

private double calculatetrust(int source, Array sinkarray,
int finalsink, Array degradevalueinmodel)
{
 int n, i,chainlength;
 double P0 = rand.Next(1, 2000) / 10000.0;
//p0=0.0001~0.2
 Array chain;
 double trust = P0;
 trustchain.Clear();
 for (n = 0; n < sinkarray.Length; n++)
 {
 if
(System.Convert.ToInt16(sinkarray.GetValue(n)) == source)
//source has direct functional relationship with finalsink
 {
 trustchain.Add("sink=" +
source.ToString() + ";final sink=" + finalsink.ToString() +
";partial Trust value=" + nodefunctiontrust.GetValue(source,
finalsink).ToString());
 }
 else //source didn't have the direct functional
relationship with finalsink
 {
 chain = parallalization(source,
System.Convert.ToInt16(sinkarray.GetValue(n)));
 chainlength = chain.Length;
 if (chainlength != 0)
 {
 for (i = 0; i < chainlength; i++)
 {

trustchain.Add(calculatetrustvalue(chain.GetValue(i).ToSt
ring(), finalsink));
 }
 }
 }
 }
 if (trustchain.ToArray().Length != 0)
 {
 trust = analyzetrustchain(trustchain.ToArray(),
P0);
 }

Appendix

 95

 if
(System.Convert.ToDouble(degradevalueinmodel.GetValue(sou
rce, finalsink)) <= 0)
 {
 trust = trust *
Math.Exp(System.Convert.ToDouble(degradevalueinmodel.GetV
alue(source, finalsink)));
 }
 else
 {
 trust = (1 +
System.Convert.ToDouble(degradevalueinmodel.GetValue(sour
ce, finalsink)) / 100.0) * trust;
 if (trust > 1)
 {
 trust = 1;
 }

 }
 return trust;
}

 ArrayList analyzetrustchain1 = new ArrayList(); //to
store the sink node
 ArrayList analyzetrustchain2 = new ArrayList(); //to
store the final sink node
 ArrayList analyzetrustchain3 = new ArrayList(); //to
store the trust value
 //analyze the array of trustchain
 private double analyzetrustchain(Array mytrustchain,
double myp0)
 {
 analyzetrustchain1.Clear();
 analyzetrustchain2.Clear();
 analyzetrustchain3.Clear();
 int i=mytrustchain.Length;
 int j;
 int n;
 string analyzerstring;
 Array aplit_result =
Array.CreateInstance(typeof(double), 3);

 for (j = 0; j < i; j++)
 {
 analyzerstring =
mytrustchain.GetValue(j).ToString();

Appendix

 96

 string[] split =
analyzerstring.Split(";".ToCharArray(), 3);
 for (n = 0; n < 3; n++) //need to separate
considering the last node and the other nodes
 {

aplit_result.SetValue(System.Convert.ToDouble(split.GetVa
lue(n).ToString().Substring(1 +
split.GetValue(n).ToString().IndexOf("="))), n);
 }

analyzetrustchain1.Add(System.Convert.ToInt16(aplit_resul
t.GetValue(0)));

analyzetrustchain2.Add(System.Convert.ToInt16(aplit_resul
t.GetValue(1)));

analyzetrustchain3.Add(System.Convert.ToDouble(aplit_resu
lt.GetValue(2)));
 }
 Array myprY_Xi =
Array.CreateInstance(typeof(double),
analyzetrustchain1.ToArray().Length);
 Array mypriorXi =
Array.CreateInstance(typeof(double),
analyzetrustchain1.ToArray().Length);
 Array temp1 = analyzetrustchain1.ToArray();
 Array temp2 = analyzetrustchain2.ToArray();
 Array temp3 = analyzetrustchain3.ToArray();
 for (j = 0; j < analyzetrustchain1.ToArray().Length;
j++)
 {

myprY_Xi.SetValue(System.Convert.ToDouble(conditionalfunc
tiontrust.GetValue(System.Convert.ToInt16(temp1.GetValue(
j)), System.Convert.ToInt16(temp2.GetValue(j)))), j);

mypriorXi.SetValue(System.Convert.ToDouble(temp3.GetValue
(j)), j);

 }
 return calculatefinaltrust(myp0, myprY_Xi,
mypriorXi);
 }

Appendix

 97

 //calculate the trust between the last second node and
the final sink node
 private double calculatefinaltrust(double p0, Array
myprY_Xi, Array mypriorXi)
 {
 int i, j;
 Array prY_Xi = myprY_Xi;
 Array priorXi = mypriorXi;
 int n = prY_Xi.Length;
 int mm;
 Array parentValues =
Array.CreateInstance(typeof(double), n);
 for (i = 0; i < n; i++)
 parentValues.SetValue(0, i);

 Double configurations =
System.Convert.ToDouble(Math.Pow(2, n));
 Array CPT = Array.CreateInstance(typeof(double),
System.Convert.ToInt64(configurations), 2);
 Array priors =
Array.CreateInstance(typeof(double), 1, 2);
 Array currentProbs =
Array.CreateInstance(typeof(double), 1, 2);
 for (i = 0; i < 1; i++)
 for (j = 0; j < 2; j++)
 priors.SetValue(0, i, j);

 for (i = 0; i < configurations; i++)
 {
 CPT.SetValue((1 - p0), i, 0);
 for (j = 0; j < n; j++)
 {
 if
(System.Convert.ToInt16(parentValues.GetValue(j)) == 1)
 {

CPT.SetValue((System.Convert.ToDouble(CPT.GetValue(i, 0))
* (1 - System.Convert.ToDouble(prY_Xi.GetValue(j))) / (1 -
p0)), i, 0);
 }
 }
 CPT.SetValue((1 -
System.Convert.ToDouble(CPT.GetValue(i, 0))), i, 1);
 double prob_config = 1; //the probability of the
current parent configuration
 for (j = 0; j < n; j++)
 {

Appendix

 98

 if
(System.Convert.ToDouble(parentValues.GetValue(j)) == 1)
 {
 prob_config = prob_config *
System.Convert.ToDouble(prY_Xi.GetValue(j));
 }
 else
 {
 prob_config = prob_config * (1 -
System.Convert.ToDouble(prY_Xi.GetValue(j)));
 }
 }
 for (j = 0; j < 2; j++)

currentProbs.SetValue(System.Convert.ToDouble(CPT.GetValu
e(i, j)), 0, j);

 for (j = 0; j < n; j++)
 {
 if
(System.Convert.ToDouble(parentValues.GetValue(j)) == 1)
 {

currentProbs.SetValue(System.Convert.ToDouble(currentProb
s.GetValue(0, 0)) *
System.Convert.ToDouble(priorXi.GetValue(j)), 0, 0);

currentProbs.SetValue(System.Convert.ToDouble(currentProb
s.GetValue(0, 1)) *
System.Convert.ToDouble(priorXi.GetValue(j)), 0, 1);

 }
 else
 {

currentProbs.SetValue(System.Convert.ToDouble(currentProb
s.GetValue(0, 0)) * (1 -
System.Convert.ToDouble(priorXi.GetValue(j))), 0, 0);

currentProbs.SetValue(System.Convert.ToDouble(currentProb
s.GetValue(0, 1)) * (1 -
System.Convert.ToDouble(priorXi.GetValue(j))), 0, 1);

 }
 }
 for (mm = 0; mm < 2; mm++)

Appendix

 99

priors.SetValue((System.Convert.ToDouble(priors.GetValue(
0, mm)) + System.Convert.ToDouble(currentProbs.GetValue(0,
mm))), 0, mm);

 j = n - 1;

parentValues.SetValue((System.Convert.ToDouble(parentValu
es.GetValue(j)) + 1), j);
 while ((j > 0) &
(System.Convert.ToDouble(parentValues.GetValue(j)) > 1))
 {
 parentValues.SetValue(0, j);
 j = j - 1;

parentValues.SetValue((System.Convert.ToDouble(parentValu
es.GetValue(j)) + 1), j);
 }
 }
 return System.Convert.ToDouble(priors.GetValue(0,
1));
 }

 private string calculatetrustvalue(string onechain,
int finalsink)
 {
 double partialtrust;
 char[] tempy = onechain.ToCharArray();
 int nn = 0;
 double mintemp;
 foreach (char x in tempy)
 {
 if (x == 43)
 nn = nn + 1;
 }
 nn = nn + 1;
 string[] split = onechain.Split("+".ToCharArray(),
nn);
 Array aplit_result =
Array.CreateInstance(typeof(int), split.Length);
 int n;
 for (n = 0; n < split.Length; n++) //need to separate
considering the last node and the other nodes
 {

Appendix

 100

aplit_result.SetValue(System.Convert.ToInt16(split.GetVal
ue(n).ToString().Substring(4)), n);
 }

 if (split.Length==2)
 {

partialtrust=System.Convert.ToDouble(nodetrust.GetValue(S
ystem.Convert.ToInt16(aplit_result.GetValue(0)),
System.Convert.ToInt16(aplit_result.GetValue(1))));
 }
 else
 {

partialtrust=System.Convert.ToDouble(nodetrust.GetValue(S
ystem.Convert.ToInt16(aplit_result.GetValue(0)),
System.Convert.ToInt16(aplit_result.GetValue(1))));
 for (n = 1; n < split.Length-1;n++)
 {
 mintemp = Math.Min(0.5, partialtrust);

partialtrust=System.Convert.ToDouble(conditionalreference
trust.GetValue(System.Convert.ToInt16(aplit_result.GetVal
ue(n)), System.Convert.ToInt16(aplit_result.GetValue(n +
1))))*partialtrust+(1-partialtrust)*mintemp;

 }
 //next is to calculate the function trust between last
second node to the finalsink node
 }
 if (aplit_result.Length == 2)
 {
 return "sink=" +
aplit_result.GetValue(n-1).ToString() + ";final sink=" +
finalsink.ToString() + ";partial Trust value=" +
partialtrust.ToString();
 }
 else
 {
 return "sink=" +
aplit_result.GetValue(n).ToString() + ";final sink=" +
finalsink.ToString() + ";partial Trust value=" +
partialtrust.ToString();
 }
 }

Appendix

 101

Appendix-C MTM Core Code

private double calculatetrustformodel4(int source, Array
sinkarray, int finalsink, Array degradevalueinmodel)
 {
 int n, i, chainlength;
 double P0 = rand.Next(1, 2000) / 10000.0;
//p0=0.0001~0.2
 Array chain;
 double trust = P0;
 trustchain.Clear();

 for (n = 0; n < sinkarray.Length; n++)
 {
 if
(System.Convert.ToInt16(sinkarray.GetValue(n)) == source)
//source has direct functional relationship with finalsink
 {
 trustchain.Add("partial Trust value=" +
nodefunctiontrust.GetValue(source, finalsink).ToString() +
";weight=0.5"); //for model 4
 }
 else
 {
 chain = parallalization(source,
System.Convert.ToInt16(sinkarray.GetValue(n)));
 chainlength = chain.Length;
 if (chainlength != 0)
 {
 for (i = 0; i < chainlength; i++)
 {

trustchain.Add(calculatetrustvalue_inmodel4(chain.GetValu
e(i).ToString(), finalsink));
 }
 }

 }
 }
 if (trustchain.ToArray().Length != 0)
 {
 trust =
analyzetrustchain_inmodel4(trustchain.ToArray());
 }

Appendix

 102

 if
(System.Convert.ToDouble(degradevalueinmodel.GetValue(sou
rce, finalsink)) <= 0)
 {
 trust = trust *
Math.Exp(System.Convert.ToDouble(degradevalueinmodel.GetV
alue(source, finalsink)));
 }

 else
 {
 trust = (1 +
System.Convert.ToDouble(degradevalueinmodel.GetValue(sour
ce, finalsink)) / 100.0) * trust;
 if (trust > 1)
 {
 trust = 1;
 }

 }
 return trust;
 }

 private double analyzetrustchain_inmodel4(Array
mytrustchain)
 {

 int chainnumber = mytrustchain.Length;
 double i = 0.0; //return value
 double j = 0.0; //summarize all the weight
 int n_model4 = 0;
 ArrayList weight_model4 = new ArrayList();
 ArrayList trust_model4 = new ArrayList();
 for (n_model4 = 0; n_model4 < chainnumber;
n_model4++)
 {
 //analyze the number
 //"partial Trust value=" +
nodefunctiontrust.GetValue(source, finalsink).ToString() +
";weight=0.5"

weight_model4.Add(System.Convert.ToDouble(mytrustchain.Ge
tValue(n_model4).ToString().Substring(1 +
mytrustchain.GetValue(n_model4).ToString().LastIndexOf("=
"))));

Appendix

 103

trust_model4.Add(mytrustchain.GetValue(n_model4).ToString
().Substring(1 +
mytrustchain.GetValue(n_model4).ToString().IndexOf("="),
System.Convert.ToInt16(mytrustchain.GetValue(n_model4).To
String().IndexOf(";")) - 1 -
System.Convert.ToInt16(mytrustchain.GetValue(n_model4).To
String().IndexOf("="))));
 }

 Array weightarray = weight_model4.ToArray();
 Array trustarray_model4 = trust_model4.ToArray();

 for (n_model4 = 0; n_model4 < chainnumber;
n_model4++)
 {
 j = j +
System.Convert.ToDouble(weightarray.GetValue(n_model4));
 i = i +
System.Convert.ToDouble(weightarray.GetValue(n_model4)) *
System.Convert.ToDouble(trustarray_model4.GetValue(n_mode
l4));
 }
 return i / j;

 }

 private string calculatetrustvalue_inmodel4(string
onechain, int finalsink)
 {
 double partialtrust;
 char[] tempy = onechain.ToCharArray();
 int nn = 0;
 foreach (char x in tempy)
 {
 if (x == 43)
 nn = nn + 1;
 }
 nn = nn + 1;
 string[] split = onechain.Split("+".ToCharArray(),
nn);
 Array aplit_result =
Array.CreateInstance(typeof(int), split.Length);
 int n;
 for (n = 0; n < split.Length; n++) //need to separate
considering the last node and the other nodes
 {

Appendix

 104

aplit_result.SetValue(System.Convert.ToInt16(split.GetVal
ue(n).ToString().Substring(4)), n);
 }
 if (split.Length == 2)
 { partialtrust = 1 + 2 *
System.Convert.ToDouble(nodetrust.GetValue(System.Convert
.ToInt16(aplit_result.GetValue(0)),
System.Convert.ToInt16(aplit_result.GetValue(1)))) *
System.Convert.ToDouble(conditionalfunctiontrust.GetValue
(System.Convert.ToInt16(aplit_result.GetValue(1)),
finalsink)) -
System.Convert.ToDouble(conditionalfunctiontrust.GetValue
(System.Convert.ToInt16(aplit_result.GetValue(1)),
finalsink)) -
System.Convert.ToDouble(nodetrust.GetValue(System.Convert
.ToInt16(aplit_result.GetValue(0)),
System.Convert.ToInt16(aplit_result.GetValue(1))));
 return "partial Trust value=" +
partialtrust.ToString() + ";weight=0.75";
 }
 else
 {
 partialtrust = 1 + 2 *
System.Convert.ToDouble(nodetrust.GetValue(System.Convert
.ToInt16(aplit_result.GetValue(0)),
System.Convert.ToInt16(aplit_result.GetValue(1)))) *
System.Convert.ToDouble(conditionalreferencetrust.GetValu
e(System.Convert.ToInt16(aplit_result.GetValue(1)),
System.Convert.ToInt16(aplit_result.GetValue(2)))) -
System.Convert.ToDouble(conditionalreferencetrust.GetValu
e(System.Convert.ToInt16(aplit_result.GetValue(1)),
System.Convert.ToInt16(aplit_result.GetValue(2)))) -
System.Convert.ToDouble(nodetrust.GetValue(System.Convert
.ToInt16(aplit_result.GetValue(0)),
System.Convert.ToInt16(aplit_result.GetValue(1))));
 partialtrust = 1 + 2 * partialtrust *
System.Convert.ToDouble(conditionalfunctiontrust.GetValue
(System.Convert.ToInt16(aplit_result.GetValue(2)),
finalsink)) -
System.Convert.ToDouble(conditionalfunctiontrust.GetValue
(System.Convert.ToInt16(aplit_result.GetValue(2)),
finalsink)) - partialtrust;
 return "partial Trust value=" +
partialtrust.ToString() + ";weight=1";
 }
 }

