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SUMMARY 
 

 

In most real situations, agents are often required to work in the presence of other 

agents, either artificial or human. These are examples of multi-agent systems (MAS). 

In MAS, agents adopt cooperation strategy to increase their utilities and they have 

incentives to tell the truth to other agents. However, when competition occurs, they 

have incentives to lie. Thus, the decision on which agents to cooperate with is a 

problem which has attracted a lot of attention. In order to overcome the uncertainties 

in open MAS, researchers have introduced the concept of “trust” into these systems. 

The trust evaluation becomes a popular research topic in the multi-agent systems. 

 
Based on the existing trust evaluation mechanisms, we proposed a novel mechanism 

to help agents evaluate the trust value of the target agent in the multi-agent systems. 

We present an approach to help agents construct a trust network automatically in a 

multi-agent system. Although this network is a virtual one, it can be used to estimate 

the trust value of a target agent. After the construction of the trust network, we use the 

Bayesian Inference Propagation approach with Leaky Noisy-Or model to solve the 

trust graph. This is a novel way to solve the trust problem in the multi-agent systems. 

This approach solves the trust estimation problem based on objective logic which 

means that there is no subjective setting of weights. The whole trust estimation 

process is automatic without the intervention of human beings. The experiments 

carried out by our simulation work demonstrate that our model works better than the 

models proposed by other authors. By using our model, the whole agents’ utility 
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gained is higher than by using other models (MTM and without trust measure). In 

addition, our model performs well in a wide range of provider population and it also 

reconfirmed the fact that our model works well than the models we compared. 

Moreover, we also demonstrate that more information resource can help the decision 

maker make a more accurate decision. Last but not least, in the dynamic environment, 

and the experiment results also demonstrate that our model performs better than the 

models we compared with.  
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1. INTRODUCTION 
 

1.1. Background 

 
 
Internet makes the geographical and social unrelated communication come true in a 

twinkle. It enables a transition to peer-to-peer commerce without intermediaries and 

central institutions. However, online communities are usually either goal or 

interest-oriented and there is rarely any other kind of bond or real life relationship 

among the members of communities before the members meet each other online 

[Zacharia, 1999]. Without prior experience and knowledge about each other, peers are 

under the risk of facing dishonest and malicious behaviors in the environment. Take 

the peers as agents, this environment can be seen as a multi-agent system. Large 

numbers of research have been done to manage the risk of deceit in the Multi-agent 

Systems. One way to address this uncertainty problem is to develop strategies for 

establishing trust and developing systems that can assist peers in assessing the level 

of trust they should place on an eCommerce transaction [Xiong and Liu, 2004].  

 

Traditional trust construction relies on the use of a Central Trusted Authority or 

trusted third party to manage trust, such as access control list, role-based access 

control, PKI, etc. [Kagal et al., 2002]. However, in an open Multi-agent system, there 

are some specific requirements [Despotovic and Aberer, 2006]: (1) The environment 

is open. The users in this environment are autonomous and independent to each other. 



1. Introduction 

 2

(2) The environment is decentralized. There is no central point in this system and the 

users are free to trust others. (3) The environment is global. There is no jurisdictional 

border in the environment. Thus, in the open Multi-agent System, the central trust 

mechanism cannot satisfy the requirement of mobility and dynamics. These issues 

have motivated substantial research on trust management in open Multi-agent 

Systems. Trust management helps to maintain overall credibility level of the system 

as well as to encourage honest and cooperative behavior. 

 

1.2 Motivations 

 

As traditional trust mechanisms have their disadvantages, this issue has motivated 

substantial research on Trust Management in MAS. There has been an extensive 

amount of research on online trust and reputation management [Marsh, 1994, 

Abdul-Rahman et al., 2000; Sabater, et al., 2002; Yu and Singh, 2002]. Among these 

research works, there are two ways to estimate the trustworthiness of a given agent, 

which are probabilistic estimation and social network. However, in the real online 

community, each agent not only relies on its own experience, but also on the 

reputation among the whole systems. Thus, how to estimate a given agent’s 

trustworthiness under the direct experience and reputation becomes a new problem 

that needs to be solved.  
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1.3 Methodology 

 

A Bayesian Network [Jensen, 1996, Charniak, 1991] is a graphical method of 

representing relationships among different variables that together define a model of a 

real-world situation. Formally, it is a Directed Acyclic Graph (DAG) with nodes 

being the variables and each directed edge representing dependence between two of 

them. Bayesian Networks are useful in inference from belief-structures and 

observations [Charniak, 1991 and AI 1999]. Bayesian Networks not only can readily 

handle incomplete data sets, but also offer a method of updating the belief or the 

probability of occurrence of the particular event for the given causes. In Bayesian 

Networks, the belief can be updated by network propagation method and each node 

has the task of combining incoming evidence and outputting some aggregation of the 

inputs. 

 

The noisy-OR model is the most accepted and widely applied model to solve the 

multi-causal interactions network and it leads to a very convenient and widely 

applicable rule of combination. However, the noisy-OR model is based on two 

assumptions: accountability and exception [Pearl, 1988]. Accountability states that an 

event can be presumed false if all its parents are false. Exception requires that the 

influence of each parent on the child be independent of other parents. 
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1.4 Contributions  

 

The objective of this research is to develop a trustworthiness estimation system and 

this dissertation proposes a novel approach among the trust management area. 

 

In our trustworthiness estimation system, we solve the trust network by using 

Bayesian propagation method and Noisy-or model is used as well. First, based on 

historical interaction data, each agent constructs graphs to store two trust data which 

are functional trust and referral trust. When the estimation starts, the agent will check 

its functional trust data first, and after that, the agent will send requirement to its 

acquaintances to ask for recommendations. Then, a Trust Network would be 

constructed between the source agent and the target agent.  

 

To solve the Trust Network, we firstly made some adjustment which is known as 

parallelization. Secondly, we use Bayesian Propagation to evaluate each chain in the 

parallelized Trust Network. Thirdly, the Noisy-or model is introduced to obtain the 

trustworthiness value of the target agent. 

 

One important contribution of this dissertation is in applying Bayesian propagation 

method to solve the trustworthiness estimation problem. This application is the first 

time for the Bayesian Network methods to solve the Trust Network problem. It not 

only extends the application field of Bayesian Networks, but also solves the Trust 

Network in a novel way.  
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Another contribution is the derivation of a computational model based on sociological 

and biological understanding of trust management. Based on the strength of the 

software development, the introduction of Bayesian Propagation method makes the 

calculation of trustworthiness become easy and quick. 

 

1.5 Organization of the Thesis 

 

The next chapter presents a state-of-the-art survey of reputation-based trust 

management. Chapter 3 describes the storage of the data set and the Trust Network 

construction. Chapter 4 presents the process of trustworthiness evaluation. Chapter 5 

proposes an experiment and the results. Chapter 6 briefly concludes this work and 

points to directions for future research opportunities. 
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2 LITERATURE REVIEW 
 

2.1 Trust  

 

In 1737, David Hume provides a clear description on the problem involving trust in 

his Treatise on Human Nature. We rely on trust everyday: we trust that our parents 

would support us, our friends would be kind to us, we trust that motorists on the road 

would follow traffic rules; we trust that the goods we buy have the quality 

commensurate with how much we pay for them, etc [Mui, 2002]. Trust is one of the 

most important factors in our human society. With the development of the computer 

technology in the past decades, trust construction in the virtual communities become 

more and more important.  

 

2.1.1 What Is Trust? 
 

In most real situations, agents are often required to work in the presence of other 

agents, which are either artificial or human. These are examples of multi-agent 

systems (MAS). In MAS, when agents adopt cooperation strategy to increase their 

utilities, they have incentives to tell the truth to other agents. Meanwhile, when 

competition occurs, they have incentives to lie. Thus, which agents to cooperate with 

is a problem which has attracted a lot of attention. In order to overcome the 

uncertainties in open MAS, researchers have introduced the concept “trust” into these 

systems. 
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As a research group leaded by Castelfranchi stated, trust is at the same time: a mental 

attitude towards another agent, a decision to rely on another and a behavior [Falcone 

et al., 2004]. 

• Trust as a mental attitude is most common in daily life, and is based on 

evaluation of past behavior, and on the expectation of future behavior. 

• Trust as a decision (the act of entrusting a task) puts a part of the trusting 

agent’s welfare on the line and thus involves risk: however satisfactory the 

transaction history with another agent might be, it is never guaranteed that 

this will continue in the future. 

• Trust as a behavior emphasizes the actions of trusting agents and the relation 

between them. The relation generally intensifies as time progresses. 

 

Trust as a mental attitude gives us an important clue of how to determine the 

trustworthiness of others: we need to analyze past interactions with the agent. Not 

surprisingly, this is exactly what the majority of trust algorithms do. 

 

2.1.2 Definition of Trust 
 

Although a lot of work has been done on the topic of trust, the definition of trust is 

still not very clear and different authors have given various definitions for the term 

trust. The properties of trust must be verified as well. In this thesis, when we need to 

calculate the value of trust, we use the definition proposed by [Marsh, 1994] which is 
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commonly accepted in the literature. “Trust, is a particular level of the subjective 

probability with which an agent will perform a particular action, both before he can 

monitor such action (or independently of his capacity to monitor it) and in a context 

in which it affects his own action”. 

 

Meanwhile, when the trust is used to make a decision, the definition proposed by 

[McKnight and Chervany, 1996] would be more easier to understand although the 

meaning is the same as the definition we introduced before: “Trust is the extent to 

which one party is willing to depend on something or somebody in a given situation 

with a feeling of relative security, even though negative consequences are possible.”  

 

 

2.1.3 Characteristics of Trust 
 

Despite different contexts, trust can be broadly categorized by the relationships 

between two involved agents [Falcone and Shehory, 2002]. 

• Trust between a user and her agents: although an agent behaves on its user’s 

behalf, an agent might not act as its user expects. How much a user trusts her 

agent determines how she delegates her tasks to the agent. 

• Trust in service provider: It measures whether a service provider can provide 

trustworthy services. 

• Trust in references: References refer to the agents that make recommendations 

or share their trust values. It measures whether an agent can provide reliable 
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recommendations. 

• Trust in groups: It is the trust that one agent has in a group of other agents. By 

modeling trust in different groups, an agent can decide to join a group that can 

bring it most benefit. 

 

Among various trust relationships, there are three characteristics for trust. 

[Abdul-Rahman and Hailes, 2000, Montaner. et al., 2002, Sabater and Sierra, 2001]. 

• Context-specific: Trust depends on some context. That is to say, trust a person 

to be a good doctor but do not trust her as a good driver. 

• Multi-faceted: Even in the same context, there is a need to develop 

differentiated trust in different aspects of the capability of a given agent. For 

instance, a customer might evaluate a restaurant from several aspects, such as 

the quality of food, the price, and the service. For each aspect, a customer can 

derive a trust different from other aspects. 

• Dynamic: Trust increases or decreases with further experience (direct 

interaction). It also decays with time.  

   

2.2 Reputation 

 

A reputation is an expectation about an agent’s behavior based on information about 

or observations of its past behaviors [Abdul-Rahman, 2000]. It refers to a perception 

that an agent has of another’s intentions and norms.  
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Similar to trust, reputation is a context-dependent quantity. An individual may enjoy a 

very high reputation for his/her experience in one domain, while having a low 

reputation in another.  

 

In the meanwhile, reputation can be viewed as a global or personalized quantity. For 

social network researchers [Katz, 1953; Freeman, 1979; Marsden, et al., 1982; 

Krackhardt, et al., 1993], reputation is a quantity derived from the underlying social 

network. An agent’s reputation is globally visible to all agents in a social network. 

Personalized reputation has been studied by [Zacharia, 1999; Sabater, et al., 2001; Yu 

et al, 2001], among others. As argued by [Mui, et al., 2002], an agent is likely to have 

different reputations (Figure 2.1) in the eyes of others, relative to the embedded social 

network.  

 

 

Figure 2.1  Reputation Typology  

 

 

Reputation 

Individual Group 

Direct Indirect 

Interaction-derived Observed reputation

Prior-derived Group-derived Propagated 
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It is assumed that reputation is context dependent, shaded boxes indicate notions that 

are likely to be modeled as social (or global) reputation as opposed to being 

personalized to the inquiring agent. 

Here we pick out the reputation we used in this dissertation to give some 

interpretation. 

• Observed reputation: Agent A’s observed reputation can be obtained from the 

other agent’s feedback of the direct interaction with agent A. 

• Prior-derived reputation: In the simplest inference, agents bring with them 

prior beliefs about strangers. As in human societies, each of us has different 

prior beliefs about the trustworthiness of strangers we meet. 

• Propagated Reputation: In a Multi-agent System, an agent might be a 

stranger to the evaluating agent, and the evaluating agent can attempt to 

estimate the stranger’s reputation based on information gathered from others 

in the environment. As [Abdul-Rahman and Hailes, 2000] have suggested, 

this mechanism is similar to the “word-of-mouth” propagation of 

information for humans. Reputation information can be passed from agent to 

agent.  

 

2.3 Trust Management Approach in Multi-agent Systems 

 

Trust management in Multi-agent Systems is used to detect malicious behaviors and 

to promote honest and cooperative interactions. Based on the approach adopted to 
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establish and evaluate trust relationship between agents, trust management in 

Multi-agent systems can be classified into 3 categories [Suryanarayana, et al., 2004], 

which are credential and policy-based trust management, reputation-based trust 

management and social network-based trust management as shown in Figure 2.2. 

 

 

Figure 2.2  Trust Management Taxonomy 

 

 

2.3.1 Policy-based Trust Management Systems  
 

The research on policy-based trust focuses on problems in exchanging credentials, 

and generally assumes that trust is established simply by knowing a sufficient amount 

of credentials pertaining to a specific party. [Donovan and Yolanda, 2006] have 

pointed out that a credential may be as simple as a signature uniquely identifying an 

entity, or as complex and non-specific as a set of entities in the Semantic Web, where 

relationships between entities are explicitly described. The recursive problem of 

trusting the credentials is frequently solved by using a trusted third party to serve as 

an authority for issuing and verifying credentials. 

 

Trust Management 

Policy-based 
Trust Systems 

Reputation-based
Trust Systems 

Social Network-based 
Trust Systems 
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Establishing trust under the policy-based trust systems suffers from a problem that a 

credential may incur a loss of privacy or control of information. [Yu et al., 2001; Yu 

and Winslett, 2003] have focused on the trade-off between privacy and earning trust. 

Based on their work, [Winslett et al., 2002] have proposed an architecture named 

TrustBuilder which provides mechanisms for addressing this trade-off. Another 

system is PeerTrust [Nejdl et al., 2004], a more recent policy and trust negotiation 

language that facilitates the automatic negotiation of a credential exchange. Others 

working in this area have contributed ideas on client-server credential exchange 

[Winsborough et al., 2000] and protecting privacy through generalizing or 

categorizing credentials [Seigneur and Jensen, 2004].  

 

Several standards for representation of credentials and policies have been proposed to 

facilitate the exchange of credentials. WS-Trust [WS-Trust, 2005], an extension of 

WS-Security, specifies how trust is gained through proofs of identity, authorization, 

and performance. Cassandra [Becker and Sewell, 2004] is a system using a policy 

specification language that enforces how trust may be earned through the exchange of 

credentials. [Leithead et al., 2004] have presented another idea by using ontologies to 

flexibly represent trust negotiation policies. 

 

Using credentials-based trust systems, one problem that should be solved is the 

credentials are also subject to trust decisions (i.e., can you believe a given credential 

to be true?). A typical solution in this case is to employ a common trusted third party 

to issue and verify credentials. However, it can be undesirable to have a single 
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authority responsible for deciding who and when someone is trusted. This problem is 

broadly described as trust management. [Blaze et al., 1996] have presented a system 

called PolicyMaker. PolicyMaker is a trust management system that facilitates the 

development of security features including privacy and authenticity for different 

kinds of network applications. Following PolicyMaker, a system called KeyNote is 

presented by [Blaze et al., 1999], which provides a standard policy language which is 

independent of the programming language used. KeyNote provides more application 

features than PolicyMaker, and the authors compare their idea of trust management 

with other existing systems at the time. 

 

The policy-based access control trust mechanisms do not incorporate the need of the 

requesting agent to establish trust in the resource-owner; therefore, they by 

themselves do not provide a complete generic trust management solution for all 

decentralized applications. 

 

2.3.2 Reputation-based Trust Management Systems 
 

Reputation is a measure that is derived from direct or indirect knowledge on earlier 

interactions of agents, and it is used to access the level of trust an agent puts into 

another agent. Reputation-based trust management is a mechanism to use personal 

experience or the experiences of others, possibly combined, to make a trust decision 

about an entity. Reputation management avoids a hard security approach by 

distributing reputation information, and allowing an individual to make trust 
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decisions instead of a single, centralized trust management system. The trust value 

assigned to a trust relationship is a function of the combination of the peer’s global 

reputation and the evaluating peer’s perception of that peer. 

 

[Abdul-Rahman and Hailes, 1997] have advocated an approach based on combing in 

a distributed trust model with a recommendation protocol. They focus on providing a 

system in which individuals are empowered to make trust decisions rather than 

automating the process. The main contribution of this work is to describe a system 

where it can be acknowledged that malicious entities coexist with the innocent, 

achieved through a decentralized trust decision process. In this model, a trust 

relationship is always between exactly two entities, is non-symmetrical, and is 

conditionally transitive. Decentralization allows each peer to manage its own trust. In 

the meanwhile, trust is context dependent. Trust in a peer varies depending on the 

categories. In a large decentralized system, it may be impossible for a peer to have 

knowledge about all other peers. Therefore, in order to cope with uncertainty arising 

due to interaction with unknown peers, a peer has to rely on recommendations from 

known peers about these unknown peers.  

 

[Abdul-Rahman and Hailes, 2000] have proposed that when one peer trusts another, it 

constitutes a direct trust relationship. But if a peer trusts another peer to give 

recommendations about another peer’s trustworthiness, then there is a recommender 

trust relationship between the two. Trust relationship exists only within each peer’s 

own database and hence there is no global centralized map of trust relationships. 
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Corresponding to the two types of trust relationships, two types of data structures are 

maintained by each peer: one for direct trust experiences and another for 

recommender trust experiences. Recommender trust experiences are utilized for 

computing trust only when there is no direct trust experience with a particular peer.  

[Aberer and Despotovic, 2001] have presented the P-Grid trust management approach 

which focuses on an efficient data management technique to construct a scalable trust 

model for decentralized applications. The global trust model described is based on 

binary trust. Peers perform transactions and if a peer cheats in a transaction, it 

becomes untrustworthy from a global perspective. This information in the form of a 

complaint about dishonest behavior can be sent to other peers. Complaints are the 

only behavior data used in this trust model. Reputation of a peer is based on the 

global knowledge on complaints. While it is easy for a peer to have access to all 

information about its own interactions with other peers, in a decentralized scenario, it 

is very difficult for it to access all the complaints about other agents. P-Grid [Aberer, 

2001] is an efficient data storage model to store trust data. Trust is computed by using 

P-Grid as storage for complaints. A peer can file a complaint about another peer and 

send it to other peers using insert messages. When a peer wants to evaluate the 

trustworthiness of another peer, it searches for complaints on it and identifies peers 

that store those complaints. Since these peers can be malicious, their trustworthiness 

needs to be determined. In order to limit this process and to prevent the entire 

network from being explored, if similar trust information about a specific peer is 

achieved from a sufficient number of peers, no further checks are carried out. 
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[Damiani, di Vimercati et al., 2002] have introduced the XREP approach which 

primarily focuses on P2P file-sharing applications. In this system, each peer not only 

evaluates resources accessed from peers, but also models the reputations of peers in 

the system. A distributed polling algorithm is used to allow these reputation values to 

be shared among peers, so that a peer requesting a resource can assess the reliability 

of the resource offered by a peer before using it. Each peer named as a “servant” in 

the application plays the role of both server and client by providing and accessing 

resources respectively. XREP is a distributed protocol that allows the reputation 

values to be maintained and shared among the servants. It consists of the following 

phases: resource searching, resource selection and vote polling, vote evaluation, best 

servant check, and resource downloading.  

 

[Lee, Sherwood et al., 2003] have proposed NICE, a platform for implementing 

distributed cooperative applications. NICE provides three main services: resource 

advertisement and location, secure bartering and trading of resources, and distributed 

trust evaluation. The objective of the trust inference model is to: a) identify 

cooperative users so that they can form robust cooperative groups, and b) prevent 

malicious peers and clusters to critically affect the working of the cooperative groups. 

NICE uses two trust mechanisms to protect the integrity of the cooperative groups: 

trust-based pricing and trust-based trading limits. In trust-based pricing, resources are 

priced according to mutually perceived trust. In trust-based trading limits, instead of 

varying the price of the resource, the amount of the resources bartered is varied. This 

ensures that when transacting with a less trusted peer, a peer can set a bound on the 
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amount of resources it loses. The trust inference algorithm can also be expressed 

using a directed graph called the trust graph. In such a trust graph, each vertex 

corresponds to a peer in the system. A directed edge from peer A to peer B exists if 

and only if B holds a cookie signed by A which implies that at least one transaction 

occurred between them. The value of this edge signifies the extent of trust that A has 

in B and depends on the set of A’s cookies held by B. If, however, A and B were 

never involved in a transaction and A wants to compute B’s trust, it can infer a trust 

value for B by using directed paths that end at B. Two trust inference mechanisms 

based on such a trust graph are described in NICE approach. One is the strongest path 

mechanism and the other is the weighted sum of strongest disjoint paths mechanism. 

 

[Dragovic, Kotsovinos et al., 2003] have proposed Xeno Trust which is a distributed 

trust and reputation management architecture used in the XenoServer Open Platform. 

There are two levels of trust in XenoTrust: authoritative trust and reputation-based 

trust. Here we only focus on the reputation-based trust. The reputation-based trust in 

this system is built through interaction between peers based on individual experiences. 

In order to accommodate newcomers to the system who have no initial experience 

with other partners, exchanging of reputation information between partners is 

advocated. All the information gathered about each participant’s reputation is 

aggregated in XenoTrust. This information is updated as new reputation information 

is received from peers. 
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2.3.3 Social Network-based Trust Management Systems 
 

Social network-based trust management systems utilize social relationships between 

agents when computing trust and reputation values. In particular, these systems form 

conclusions about agents through analyzing a social network that represents the 

relationships within a community. The key feature of the social network-based trust 

management approach is that in any case, no matter how the system is solved, it is 

clear that one needs to explore the entire trust multi-graph in order to assess the 

trustworthiness of a single agent. 

 

[Yu and Singh, 2000] were one of the first to explore the effect of social relationships 

of agents belonging to an online community on reputation in decentralized scenarios. 

It models an electronic community as a social network. Agents can have reputations 

for providing good services and referrals. In such a system, agents assist users 

working with them in two ways. First, they help to decide whether or how to respond 

to requests received from other agents in the system. And second, they help to 

evaluate the services and referrals provided by other agents in order to enable the user 

to contact the referrals provided by the most reliable agent. In this approach, agent 

evaluates the target agent not only by its direct observation, but also the referrals 

given by its neighbors. When a user poses a query to its corresponding agent, the 

agent uses the social network to identify a set of potential neighboring agents whom it 

believes has the expertise to answer the query. The query is then forwarded to this set 

of neighbors. A query sent to a peer contains three things: the question, the requestor 

agent’s ID and address, and a number specifying the upper bound on the number of 



2. Literature Review 

 20

referrals requested. When a query is received by a agent, it decides whether the query 

suits the user and if it should be shown to the user. The agent answers only if it is 

confident that its expertise matches the query. The agent may also respond with 

referrals to other trusted users whom it believes has the necessary expertise to answer 

the query. Thus, a response may include an answer to the query, or a referral, or both, 

or neither. 

 

[Sabater and Sierra, 2001] have proposed a similar concept to TrustNet [Schillo, Funk 

et al., 2000] and the social dimension of agents and their opinions in the reputation 

model. Regret adopts the stance that the overall reputation of an agent is an 

aggregation of different pieces of information instead of relying only on the 

corresponding social network as a TrustNet. Regret is based on three dimensions of 

reputation: individual, social and ontological. It combines these three dimensions to 

yield a single value of reputation. When a member agent depends only on its direct 

interaction with other members in the society to evaluate reputation, the agent uses 

the individual dimension. If the agent also uses information about another peer 

provided by other members of the society, it uses the social dimension. The social 

dimension relies on group relations. In particular, since a peer inherits the reputation 

of the group it belongs to, the group and relational information can be used to attain 

an initial understanding about the behavior of the agent when direct information is 

unavailable. Thus, there are three sources of information that help agent “A” decide 

the reputation of agent “B”, which are individual dimension between A and B, 

witness reputation from the information A’s group has about B, neighborhood 
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reputation from the information A’s group has about B’s group. Regret believes 

reputation to be multi-faceted. To combine the different types of reputation and obtain 

new types of reputation is defined by the ontological dimension. 

 

[Pujol, Sanguesa et al., 2002] have introduced NodeRanking, like TrustNet and 

Regret, which utilizes social community aspects of agents to determine their 

reputation. The goal behind reputation systems in NodeRanking is to remove 

dependence upon the feedback received from other users, and instead explore other 

ways to determine reputation. NodeRanking views the system as a social network 

where each member has a position in the community. The location of a given member 

of a community in the network can be used to infer properties about the agent’s 

degree of expertise or reputation. Members who are experts are well-known and can 

be easily identified as highly connected nodes in the social network graph. This 

information can be used by agents directly instead of having to resort to explicit 

ratings issued by each agent.  

 

[Mui, 2002] has presented a computational model of trust and reputation. In this 

model, the author considered Reciprocity which is an important strategy in the real 

world society. The relationship of trust, reputation and reciprocity can be seen in 

Figure 2.3.  

 

The direction of the arrow indicates the direction of influence among the variables. 

The dashed line indicates a mechanism not discussed. 
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Figure 2.3  The Reinforcing Relationships among Trust, Reputation and Reciprocity 

 

For an agent ai in the embedded social network A, the relationships of trust, 

reputation and reciprocity are as follows:  

• Increase in agent ai’s reputation in its embedded social network A should also 

increase the trust from the other agent for ai. 

• Increase in agent aj’s trust of ai should also increase the likelihood that aj will 

reciprocate positively to ai’s action. 

• Increase in ai’s reciprocating actions to other agents in its embedded social 

network A should also increase ai’s reputation in A.  

The reputation in this work is defined as the perception that an agent creates through 

past actions about its intentions and norms and it is the perception that suggests an 

agent’s intentions and norms in the embedded social network that connects two agents. 

Trust is termed as a subjective expectation an agent has about another’s future 

behavior based on the history of their encounters. When there are only two agents 

considered, the reputation can be estimated by using Beta distribution and the level of 

reciprocity is used to measure the confidence on the parameter estimation. When 

there are numbers of chains between two agents, the reputation can be obtained by 

using combination methods, which are additive and multiplicative. 

 

Reputation 

Trust Reciprocity Net benefit 
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2.4 Trust Propagation Mechanisms in Trust Graph 

 

We have reviewed the works that have been done on trust management. One of the 

problems is how to inference the reputation in Trust Graph. The problem can be seen 

in the reputation-based trust management and social network-based trust management 

systems. The relationship between these problems is shown in Figure 2.4. 

 

 

Figure 2.4  The Relationship between the Trust Management Systems and the Trust 
Propagation Mechanism 

 

[Zacharia, 1999] has introduced a method to propagate the trust value in the highly 

connected communities. When a user submits a query for the Histos reputation value 

of another user, the systems will perform the following computation:  

• Use a Breadth First Search algorithm to find all the directed paths connecting 

the two agents. 

• Keep the chains whose length are less than or equal to N. And the 

chronologically q most recent ratings are only cared about. 

After constructing the Trust Graph, the reputation propagation can be calculated as 

follows: Let )(nW jk  denote the rating of user jA for user )(nAk at a distance n from 

Reputation-based 
Trust management 

Social Network based 
Trust management 

Trust 
Propagation 
Mechanism 
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user 0A , and )(nRk denote the personalized reputation of user )(nAk from the 

perspective of user 0A . At each level n away from user 0A , the users )(nAk have a 

reputation value given by: 

( ) ( ( 1) ( ))) / ( 1)

, ( ) 0.5

( ) deg( ( )) ( )

k j jk j
j j

jk

k k jk

R n D R n W n R n
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= • − • −

∀ ≥

= =
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Where ))(deg( nAk is the number of connected paths from 0A to )(nAk and D is the 

range of reputation values. 

 

[Esfandiari and Chandrasekharan, 2001] have proposed that when considering the 

weakly transitive of trust, the propagation can be calculated as:  

.int)(

),(),(),( 11

ctoafrompathainagentsermediatethebeingbwith

cbTbaTcaT

i

nprop ×⋅⋅⋅×=
 

 

[Yu and Singh, 2002] have analyzed the reputation management by using 

Dempster-Shafer Theory. TrustNet is used to systematically incorporate the 

testimonies of the various witnesses regarding a particular party. Suppose Ar wishes 

to evaluate the trustworthiness of Vg. After a series of l referrals, a testimony about 

agent Vg is returned from agent Aj. Given a series of referrals },...,,{ 21 nrrr , the 

requester Ar constructs a TrustNet by incorporating each referral >=< jii AAr , into 

TrustNet. Ar adds ri to R if and only if AAj ∉ and depthLimitAdepth i ≤)( . The 

testimonies propagation through a TrustNet is shown in Figure 2.5. Suppose agent Ar 

wants to evaluate the trustworthiness of agent Vg, and },...,,{ 21 Lwww are a group of 
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witnesses towards agent Vg. The testimonies from witnesses can be incorporated into 

the rating of a given agent as follows: Let
iAτ and

iAπ be the belief functions 

corresponding to agent Ai’s local and total beliefs, respectively. 

Agent Ar could update its local belief value of agent Vg as follows: 

Lr wwA ττπ ⊕⋅⋅⋅⊕=
1

  

 

 

Figure 2.5  Testimony Propagation through a TrustNet 

 

[Mui, 2002] has proposed mechanisms for inferring reputation. When the 

acquaintances are in the parallel networks as in Figure 2.6, the reputation can be 

inferred as follows: 

 

Seller Vg 

Agent W1 Agent W2 Agent WL 

Agent Ar

QoS QoS QoS 

τw1 
τw2 τwL 
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Figure 2.6  Illustration of a Parallel Network between Two Agents a and b 

 

There are k chains between two agents of interest, where each chain consists of at 

least one link. For each chain in the parallel network, the total weight can be tallied 

by using additive method or multiplicative method. The form of a multiplicative 

estimate for chain i’s weight (wi) can be: kiwhereww
il

j
iji ≤≤=∏

=

0
1

, where li refers 

to the total number of edges in chain i and wij refers to the jth segment of the ith 

chain. ijw  can be calculated as follows:
⎪⎩

⎪
⎨
⎧

<
=

Otherwise

mmif
m
m

w ij
ij

ij

1
 , where mij is the 

number of encounters between agents i and j, m represents the minimum number of 

encounters necessary to achieve the desired level of confidence and error. Once the 

weights of all chains of the parallel network between the two end nodes are calculated, 

the estimate across the whole parallel network can be sensibly expressed as a 

weighted sum across all the chains: ∑
=

=
k

i
iabab wirR

1
)( , where rab(i) is a’s estimate of 

b’s reputation using path i and iw is the normalized weight of path i (summing iw over 

all i yields 1). Rab can be interpreted as the overall perception that a garnered about b 

using all paths connecting the two. Along each chain, the Bayesian estimate rating 

Chain 1 

Chain 2 

Chain k 

a b 
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method can be used to infer the reputation of second degree indirect neighbors 

scheme: ( ) ( ) ( ) (1 ( ))(1 ( ))ik ij jk ij jkc c c c cρ ρ ρ ρ ρ= + − − . ( )ij cρ is the probability that i 

approves of another j’s opinion for an object in the context c. This logic is based on 

the fact that i would approve of k’s opinion given the intermiediate agent j is the sum 

of the following 2 probabilities: i approves of j and j approves of k; i disapproves of j 

and j disapproves of k. However, when one chain is long enough, the trust value 

would be too limited because the reputation of second degree indirect neighbors is 

obtained by the summation of the both approval and disapproval. There exists another 

situation which is the generalized network of acquaintances. In this network, there are 

complex relations between the nodes in the network. To infer reputation in the 

generalized network, the author proposed one important step, which is Graph 

Parallelization. After the parallelization, the network can be solved as before. 

 

[Lee, Sherwood et al., 2003] have introduced NICE trust inference model. The trust 

inference algorithm is expressed using a directed graph called the trust graph (see 

Figure 2.7). Two trust inference mechanisms based on such a trust graph are 

described in the NICE approach. These are the strongest path mechanism and the 

weighted sum of strongest disjoint paths mechanism. In the strongest path mechanism, 

the strength of a path can be computed either as the minimum valued edge along the 

path or the product of all edges along the path, and thus, agent A can infer agent B’s 

trust by using the minimum trust value on the strongest path between A and B. In the 

weighted sum of strongest disjoint paths, agent A can compute a trust value for B by 

computing the weighted sum of the strength of all the strongest disjoint paths. 
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Figure 2.7  NICE Trust Graph (Weights Represent the Extent of Trust the Source 
Has in the Sink) 

 

[Wang and Singh, 2006] have presented a trust propagation method which is based on 

the concatenation operator and aggregation operator. Given a trust network, these two 

operators can be used in the path algebra to merge the trust. The combination can be 

shown in details below.  

 

 

Figure 2.8  Transformation Trust Path 

 
 

 
Figure 2.9  Combination Trust Path 

                 

This approach is based on the following two cases. Case 1: As shown in Figure 2.8, 

agent A has a trust M1 in agent B’s references and B has a trust M2 in agent C. Then 
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A’s trust in C due to the reference from B is 21 MMM ⊗= . Here ⊗ is the 

concatenation operator. Case 2: In Figure 2.9, agents A and B have trust M1 and M2, 

respectively, in Ag. Then the combined trust of A and B in Ag is captured via the 

aggregation operator⊕ , as in 21 MM ⊕ . For a given trust network, the beliefs can be 

combined as follows: For any agent AAi ∈ , suppose{ }mBBB ,...,, 21 are the neighbors 

of Ai. Suppose the trust ratings that Ai assigns to B1, B2,…, Bm are M1,M2,…Mm. 

Suppose that all the neighbors have already obtained their trust ratings in Ag, and let 

these be mMMM ′′′ ,...,, 21 . Then we obtain the trust of Ai in Ag, M, by: 

)()()( 2211 mm MMMMMMM ′⊗⊕⋅⋅⋅⊕′⊗⊕′⊗=  

If the neighbor has not obtained the trust in Ag, the algorithm can be run recursively to 

obtain the trust from merging and combining the trust from the neighbor’s neighbors, 

since all the leaves in the trust network are the witnesses who have their trust values 

in Ag computed from their direct interactions with Ag. So the trust ratings can be 

merged in a bottom up fashion, from the leaves of the trust network up to its root Ar.  

 

[Jøsang, et al., 2006a] analyzed the trust network by using subjective logic. In order 

to solve the trust network, they introduce the network simplification, rather than 

normalization which was used by a lot of research work on the trust network analysis 

before. Simplification of a trust network consists of only including certain arcs in 

order to allow the trust network between the source trustor and the target trustee to be 

formally expressed as a canonical expression. DSPG (directed series-parallel graphs) 

is the type of network which needs no normalization because a DSPG does not have 

loops and internal dependencies. To evaluate the trust between source and sink, the 
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first step is to determine all possible paths from a given source to a given target. In 

this step, the authors proposed an algorithm written in Seudo-code and the transitive 

trust graphs can be stored and represented on a computer in the form of a list of 

directed trust arcs with additional attributes. The second step is to select a subset of 

those paths for creating a DSPG. The definition of the canonical expression says that 

an expression of a trust graph in structured notation where every arc only appears 

once is called canonical. Thus, to create the DSPG, all the expressions except the 

non-canonical ones are used. However, among all the DSPGs, only one will be 

selected for deriving the trust measure. The optimal DSPG is the one that results in 

the highest confidence level of the derived trust value. This principle focuses on 

maximizing certainty in the trust value, and not on others such as deriving the 

strongest positive or negative trust value. Here there is a trade-off between the time it 

takes to find the optimal DSPG, and how close to the optimal DSPG a simplified 

graph can be. In order to solve this, the author introduced an exhaustive method that 

is guaranteed to find the optimal DSPG and a heuristic method that will find a DSPG 

close to, or equal to the optimal DSPG. After DSPG’s construction and optimization, 

the subjective logic can be used to derive the trust value.  

 

2.5 Research Gaps 

 

Trust work in multi-agent systems has been introduced in this chapter. The overviews 

of trust, trust management and the trust propagation mechanisms in trust network 

have been figured out. As the trust and reputation have been used in virtual 
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communities, how to acquire the trust value in this artificial environment is a 

challenge for the researchers. However, none of the work has solving the trust 

network by using artificial intelligence techniques. The works have been done either 

based on normalization or on simplification. To infer messages in a network, one of 

the most efficient methods is Bayesian Inference method. Thus, in this dissertation, 

we will solve the trust inference problem in trust network by using Bayesian 

Inference method. In the next Chapters 3 and 4, we will propose the modeling of trust 

and evaluation trustworthiness in trust network. In Chapter 5, we will propose a 

simulation experiment and provide the results.  



3. Trust Modeling and Trust Network Construction 

 32

3 TRUST MODELING AND TRUST NETWORK 
CONSTRUCTION 

 

Trust is often built over time by accumulating personal experience with others. This 

experience is used to predict how they will perform in a yet- to- be observed situation. 

However, when assessing our trust in someone with whom we have no direct personal 

experience, we often ask others about their experiences with this individual. This 

collective opinion of others regarding an individual is known as the individual’s 

reputation and it is the reputation of a trustee that we use to assess its trustworthiness, 

if we have no personal experience.  

 

Given the importance of trust and reputation in open multi-agent systems, the 

computational trust and reputation model should be developed meeting requirements 

for the domain to which they apply. In our case, the requirements can be summarized 

as follows [Patel, el al., 2005]:  

• The model must provide a trust metric that represents a level of trust in an 

agent. Such a metric allows comparisons between agents so that one agent can 

be inferred as more trustworthy than another. The model must be able to 

provide a trust metric given the presence or absence of personal experience.  

• The model must reflect an individual’s confidence in its level of trust for 

another agent. This is necessary so that an agent can determine the degree of 

influence the trust metric has on its decision about whether or not to interact 

with another individual. Generally speaking, higher confidence means a 

greater impact on the decision-making process, and lower confidence means 
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lower impact. 

To meet the above requirements, we have modeled trust and reputation by using 

TRAVOS model. 

 

3.1 Trust Modeling 

 

As we have described before, trust and reputation are context based. Thus, in the 

following discussion, we model the trust and reputation only in one particular context. 

The model equips an agent with three ways of assessing the trustworthiness of 

another agent on one context. These are from direct interaction, witnesses’ reputation 

and both. 

 

Owing to the characteristic of open MAS, we have made an assumption about the 

agents and their environment [Huynh et al, 2006]. 

Assumption 3.1: Agents are willing to share their experiences with others (as 

witness). 

 

3.1.1 Basic Notation 
 

In this section, we will give some notations which are used to represent the trust 

problem.  
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Let 1 2{ , ,..., }na a aΑ = be the set of all agents. Over time, distinct pair of 

agents{ , } ,i ja a A i j⊆ ≠ , may interact with each other and in one time slot, there 

might be more than one pair of agents interacting. S represents the truster or trust 

source; T represents the trustee or trust target. In an environment, each agent can be 

the truster or the trustee.  

 

In order to distinguish the trust on one agent’s recommendation and ability to fulfill 

some function, we give the following two definitions which were mentioned by 

[Josang et al., 2006b]. 

 

Definition 3.1: Functional trust is a type of trust one agent puts on the target agent 

based on the latter’s competence to supply some particular service. 

Definition 3.2: Referral trust is a type of trust one agent puts on the target agent 

based on the ability to give recommendation. 

Let ,i ja afτ and ,i ja arτ represent the functional trust and referral trust of 

ia to ja respectively.   

 

3.1.2 Modeling 
 

Functional Trust Modeling 
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This work is very similar to the trust modeling which has been done by [Patel et al., 

2005]. Let jiji aa
t ≠Ο ,, denotes the outcome of an interaction between 

agents i and j at time t. We represent a contract outcome with a binary variable for 

simplicity:  ,

1

0i j

j
a a

contract fulfilled by a

otherwise
⎧

Ο = ⎨
⎩

 

 

During the time period [ 0t , 1t ], the history of interaction between agents ia and ja  is 

recorded as a tuple, ),( 101010 :
,

:
,

:
,

tt
aa

tt
aa

tt
aa jijiji

nm=ℜ where the value of 10 :
,
tt
aa ji

m is the number of 

successful interaction of ia and ja , and 10:
,
tt
aa ji

n is the number of unsuccessful 

interaction between ia and ja .  

 

ji aaB ,  is the expected value of 
ji aa ,Ο given complete information about ja ’s decision 

processes and all environment factors that affect its capabilities. 

0 1:
, , ,[ ], [0,1]

i j i j i j

t t
a a a a a aB E where B= Ο ∈ . 

 

The functional trust can be evaluated by using the method proposed by [Patel et al., 

2005]. 

][ 10:
,,,
tt
aaaaaa jijiji

BEf Ο=τ  

 

The expected value of a continuous random variable depends on the probability 

density function used to model the probability that the variable will have a certain 

value. In Bayesian analysis, the beta family of pdfs is commonly used as a priori 
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distribution for random variables that take on continuous values in the interval [0,1]. 

According to the work by [Patel et al., 2005], the functional trust can be calculated as 

follows: 

βα
αβατ
+

== ],[, BEf
ji aa    

where 0 1 0 1: :
, ,1 1

i j i j

t t t t
a a a am and nα β= + = + , 10: tt is the time period of an assessment. 

 

Referral Trust Modeling 

 

The functional trust is not equal to referral trust because a good customer might not 

be a good recommender. The referral trust is the trust that the truster places on the 

trustee who can recommend a third agent who can supply function service or have 

ability to recommend others. The referral trust can be estimated by using the 

information supplied by witnesses to the truster. At each time slot, there is not only an 

exchange of functional trust, but also the referral trust. For instance, an agent A can 

send requirements to some agents (B, C, D) and ask them to evaluate agent E.  

Owing to the assumption that all the agents report their information accurately and 

truthfully, agent A can compare the announcement to the outcome which A interacted 

with E. There are three results: (1) the witness agent says that it does not know agent 

E (2) the witness agent’s evaluation is the same as the interaction outcome (3) the 

witness agent’s evaluation is not the same as the interaction outcome. We classify 

these three situations into two, which are: type 1, the evaluation is the same as the 

interaction outcome and type 2, otherwise. To some extent, the interaction between 

the truster and the witness could be seen to be the same as the interaction between the 
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truster and the trustee, so the referral trust can be estimated by using the same method 

which is used to evaluate functional trust. 

jiT t
aa ji

≠,,   denotes the outcome of an detection between agents ia and ja at time t. 

We represent detection with a binary variable for simplicity.  

,

1 '

0i j

j
a a

a s report is the same as the fact
T

otherwise
⎧

= ⎨
⎩

 

 

During time period [ 0t , 1t ], the history of interaction between agents ia and ja  is 

recorded as a tuple, ),( 101010 :
,

:
,

:
,

tt
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tt
aa

tt
aa jijiji

hgR = where the value of 10 :
,
tt
aa ji

g is the number of 

successful interaction of ia and ja , and 10:
,
tt
aa ji

h is the number of unsuccessful 

interactions between ia and ja .  

 

ji aaD , is the expected value of 
ji aaT , given complete information about ja ’s decision 

processes and all environment factors that affect its capabilities. 
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3.2 Trust Network Construction 

 

3.2.1 Trust Transitivity 
 

Trust Transitivity in our work has the same meaning as proposed by [Jøsang et al., 

2006b]. It means, for example, that if Alice trusts Bob who trusts Eric, then Alice will 

also trust Eric. However, trust is not always transitive in real life. For example the 

fact that Alice trusts Bob to look after her child, and Bob trusts Eric to fix his car, 

does not imply that Alice trusts Eric for looking after her child, or for fixing her car. 

However, under certain semantic constraints [Jøsang and Pope, 2005], trust can be 

transitive, and a trust system can be used to derive trust. 

 

Separating trust into referral trust and functional trust makes trust transitivity become 

true. An actual example is that Alice needs to have her car serviced, so she asks Bob 

for his advice about where to find a good car mechanic in town. Bob does not actually 

know any car mechanics himself, but he knows Claire and he believes that Claire 

knows a good car mechanic. As it happens, Claire is happy to recommend the car 

mechanic named Eric. As a result of transitivity, Alice is able to derive trust in Eric. 

As already mentioned, trust in the ability to recommend represents referral trust, and 

is precisely what allows trust to become transitive. At the same time, referral trust 

always assumes the existence of a functional trust scope at the end of the transitive 

path, which in this example is about being a good car mechanic. The “referral” 

variant of a trust scope can be considered to be recursive, so that any transitive trust 
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chain, with arbitrary length, can be expressed using only one trust scope with two 

variants. This principle is captured by the following criterion. 

 

Definition 3.3: Functional Trust Derivation Criterion: Derivation of functional trust 

through referral trust requires that the last trust arc represents functional trust, and all 

previous trust arcs represent referral trust. 

 

3.2.2 Trust Network Construction 
 
 

Related definition and question description 

Definition 3.4: Agents Trust Relation Graph (ATRG): ATRG is a directed graph, 

which denotes the trust relations among agents. ATRG= (V, E), where: V is the set of 

agents in the graph and E=V×V denotes the trust relation among agents and 

21,vvT denotes the trust value that agent v1 has on agent v2. 

 

Definition 3.5: Agents Functional Trust Sub-Graph (AFTSG): AFTSG is a directed 

graph, which denotes the functional trust information contained in agent i. 

),( ''
ff EVAFTSG = , where: VVf ⊆

' , which denotes agents that have functional trust 

relation with agent i; '''
fff VVE ×= denotes the functional trust relation among the 

agents of '
fV  and f

vvT '
2

'
1,

denotes the functional trust value that agent '
1v  has on 

agent '
2v . 
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Definition 3.6: Agents Referral Trust Sub-Graph (ARTSG): ARTSG is a directed 

graph, which denotes the referral trust information contained in agent i. 

),( ''
rr EVAFTSG = , where: VVr ⊆

' , which denotes agents that have referral trust 

relation with agent i; '''
rrr VVE ×= denotes the referral trust relation among the agents 

of '
rV  and r

vv
T '

2
'
1,

denotes the referral trust value that agent '
1v  has on agent '

2v . 

 

Definition 3.7: Trust Path (TP): Trust path from agent i to agent j can be defined as 

an agent sequence },1,...,1,{ jjii −+ where i has referral trust with i+1, i+1has 

referral trust with i+2,…, j-1 has functional trust with j. The TP indicates that agent i 

can get the functional trust of agent j after a series of trust delegation.  

 

Each agent has two sub-graphs which are AFTSG and ARTSG. AFTSG is used to store 

the functional trust and ARTSG is used to store the referral trust which the graph 

owner has with other agents. The ATRG describes the global trust information when 

one agent needs to evaluate another. In real multi-agent systems, no ATRG exists, and 

each agent only stores the trust information related to itself. Each time, different 

target agents and source agents may accomplish their evaluation process with 

different ATRGs. 

 

When agent i needs to decide whether to cooperate with agent j, the following 

procedure can be used to find out the ATRG. 
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• First agent i will check the AFTSG in its own database. If there is a 

record in its AFTSG, i can make a decision right away. The agent also has 

another choice which is to use recommendation to evaluate the target agent 

and this can be accomplished by the following steps. This situation occurs 

when there is no record with j in its AFTSG, or the source agent has to 

evaluate the target agent. 

• Agent i should send the inquiry to the agents in the ARTSG. Each agent 

in i’s ARTSG will check its AFTSG to see whether there is an interaction 

record. If they have, they will report the functional trust value to i, 

otherwise, they will send inquiry to the agents in their ARTSG. Each agent 

does this till all the agents which have functional trust of agent j are found 

out.  

• An ATRG is constructed including all the agents who supply information 

to the inquiry process. 

 

Construction of ATRG 

 

In open multi-agent systems, each agent can only communicate with a few other 

agents called acquaintances to exchange the trust information they have. To evaluate 

the target agent’s trustworthiness, the source agent has to construct the ATRG to 

obtain the outcome. The following example can explain this process well.  

 

When agent i needs to evaluate agent j’s functional trust. It first searches among its 

own functional trust dataset and finds out whether there is a record of j’s functional 
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trust. At the same time, i sends inquiries to its acquaintances and asks them to supply 

the information about agent j. If the acquaintances have functional trust records of j, 

they will send it to agent i, otherwise, they will ask their acquaintances to do the same 

thing. Untill all the agents who know j’s functional trust are found out, the ATRG is 

accomplished. 

 

Agent i’s functional trust dataset and referral trust dataset are shown in Figure 3.1 and 

Figure 3.2. 

 

 

Figure 3.1  Agent i’s functional trust dataset 

         

 

 

Figure 3.2  Agent i’s referral trust dataset 

 
 
 
In agent i’s functional trust dataset, there is no interaction record with agent j. Thus, 

agent i should send request to its acquaintances. The acquaintances will check their 

functional trust dataset first and if there are records, they will report to agent i, 

i

A B C

i

a b c
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otherwise, they will send requirements to their acquaintances. We assume that the 

functional trust records of agent j are shown in Figure 3.3, and agents A and C have 

referral trust interaction with agents k, l respectively. Thus, we can get the partial 

ATRG of agents i and j, which is shown in Figure 3.4. 

 

Figure 3.3  Agent j’s functional trust dataset 

 
 

 
 

Figure 3.4  Agent i’s partial ATRG with agent j 

 
 
 
After finishing the construction of the ATRG, an intact ATRG can be seen and through 

each path, the trust information is transferred to another agent. However, every arc in 

the Trust Graph has the same trust scope and the transitive trust propagation is 

possible with two variants of a single trust scope. 

 

In the following chapter, we will propose an approach to evaluate the trust value in 

the trust network we have constructed.  

A

i 
C
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4 TRUSTWORTHINESS EVALUATION 
 

As stated in Chapter 3, we have constructed an ATRG step by step. After obtaining the 

Trust Graph, we still cannot know the trustworthiness of the target agent yet. In order 

to analyze the trustworthiness of target agent, one of the most important processes is 

to solve the Trust Graph and get a comparable value of trust which can help the agent 

to make a decision.  

 

In this Chapter, we will propose a novel approach to solve the Trust Graph and in the 

following Chapter, an experiment will be presented.  

 

4.1 Evaluation 

 

After constructing the Trust Graph, the most important procedure is to solve the Trust 

Graph and show a readable value to the decision maker. The novel approach we 

proposed is based on the Bayesian inference method. 

 

4.1.1 Introduction 
 

In our model, the trust value is only in the range of [0, 1] and there is no negative 

trust value. So the higher the trust value is, the more trust the source has on the target. 

From the Trust Graph we have constructed in Chapter 3, we can see that there is at 

least one chain to link the source agent and the target agent. As we know, it is 
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common to collect advice from several sources in order to be better informed while 

making decisions. However, having a lot of information from different sources and 

how to combine them, say, how to get the conclusion which reflects the fact is a 

problem that needs to be solved. By using the Parallel Trust Combination [Jøsang et 

al., 2006b], we can conclude that parallel combination of positive trust has the effect 

of strengthening the derived trust. The combination is shown in Figure 4.1. 

 

 

Figure 4.1  Trust Derived by Parallel Combination of Trust Paths 

 
 
When receiving conflicting recommended trust, the subjective logic is used to 

combine these recommendations to derive the trust in the target agent.  

 

Another way to solve the Trust Network is normalization. In a Trust Network, for 

each chain from source agent to target agent, the link has its weight. The final derived 

trust value can be obtained by normalization [Mui, 2002].  
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In our work, we use the Bayesian inference method to combine the information and 

derive the trust value. 

 

Bayesian Probability Theory and Bayesian Networks 

 

Bayesian probability theory is the statistical theory of making statements about 

uncertain events θ. Initially events of interest are assigned a prior belief p(θ) 

which reflects existing knowledge about the event and the problem area. Later, as 

new information D becomes available, the subjective beliefs are updated using the 

Bayes’ rule [Nurmi, 2005]: 

)(
)()(

)(
Dp

pDp
Dp

normalizer
priorlikelihoodposterior

θθ
θ ==

×
=                     (4.1) 

The likelihood term )( θDp  measures the probability of seeing particular 

realizations of the event θ, whereas the normalizer p(D) is used to ensure that the 

values of )( Dp θ sum up to one and thus define a proper probability distribution. 

After updating, the values of the posterior )( Dp θ  are used as the new priors p(θ).  

 

Bayesian Networks are directed acyclic graphs that model relationships between 

variables using probability theory.  In the causal interpretation, two (or more) 

variables are connected through an edge only if there is a direct causal relationship 

between the variables. Although we cannot see the whole Trust Network as a 

Bayesian Network, we can see each parallel chain in the Trust Network as a Bayesian 

Network and introduce the message passing algorithm to solve each chain. 
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This logic can work in the Trust Network, and we will explain this as follows.  

1. The trust values that each agent have on others are modeled by using Beta 

distribution. That is to say, the prior probabilities are assigned using Beta 

Distribution; the resulting posterior beliefs are of Beta distribution. 

2. The trust value agent A tells to agent C on agent B may not be the actual trust 

value of agent B, it depends on agent A’s attitude and agent B’s action. Thus, 

if we assume that agent A is reliable to agent C, the trust value will be the 

conditional trust value agent B has given agent A speaks. To explain this in 

another way, agent B can be seen as an information source, agent A tells to 

agent C on reliability of agent B, is the conditional reliability of agent B given 

agent A says. If you see the reliability as the trust value, we can model the 

trust value agent A has on agent B as the conditional probability )( ABP .  

3. Along the whole network, the target agent’s trust value can be obtained by the 

Bayesian inference method. Belief updating by network propagation in 

networks is calculating the posterior probability given some known evidence. 

Although there is no casual relation between each agent, the trust value agent 

A speaks out on agent B is the interaction history of the agent A with agent B. 

It can be said as the trust value of agent B given the interaction history with 

agent A when agent A is reliable, when i.e, it tells the truth.  
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4.1.2 The Proposed Approach 
 

This approach is based on autonomous agent trust network construction process. After 

constructing the Trust Graph, the agent can use the following procedure to derive the 

trust value of the target agent.  

 

However, in order to make our approach more flexible and to make it usable in other 

Trust Networks rather than the Trust Graph constructed by us, we introduce a 

procedure called parallelization. If the Trust Network’s structure is not the same as 

our Trust Graph, the parallelization should be applied before using our trust 

estimation mechanism.  

 

Parallelization 

 

In the Trust Network, the relation between the target agent and the source agent might 

not be parallelized. In order to overcome the dependence, we choose to parallelize the 

Trust Graph at first and the following algorithm can be used to fulfill this 

requirement.  
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DEFINE PROCEDURE Parallelization TO BE 

Define chain () as the dataset  

Set node 1 as the current node 

Set node n as the node which has the direct functional 

connection with the target node 

k=0    

Flag=true 

Do while Flag=true           

 Do while (current node is not node n) 

  If (have another node connect to current node) then 

      If (this node does not exist in the Stack) then 

           Push current node into Stack 

           Move to next node which is connected to current 

node 

       End if 

  Else 

    If (Stack is empty) then  

         Set Flag as false & exit the Parallelization process 

    Else  

         Pop one node from Stack and set current node as this 

node 

    End if  

  End if 

  Loop  

  If the top node in the Stack is node n then 

     k=k+1 

    Store all the nodes in the Stack into chain(k) 

    Pop one node from Stack 

     Pop one node from Stack and set current node as this 

node 

  End if          

Loop 
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In this program, node 1 represents the source node and node n represents target node. 

k is the total number of chains of one Trust Network. 

 

In the ATRG (parallelized or not), all the chains cannot be used for further calculation. 

From [Zacharia, 1999], we only keep the length less than or equal to N and the 

chronologically q most recent recommendations given from each witness. The two 

thresholds can be set by the domain experts. 

 

The reason behind this is that trust is weakened or diluted through transitivity. The 

longer the trust chain is, the more unreliable the trust value derived from this chain. In 

the meanwhile, the older the interaction occurs, the more questionable is the trust 

value obtained from the interaction to estimate the recent trust value. 

 

Regularizing the Numerical Structure 

 

All the agents only have two states which are reliable and unreliable. The value on 

each arc is the trust value of the child in the eyes of the parent, that is to say, the 

child’s conditional probability of being reliable given its parent’s reliable 

announcement. We assume the child’s conditional probability of being reliable given 

its parent’s unreliable announcement is as follows: 

1min( , ( ))
q

p witness is reliable
n

, where qn is the number of possible outcomes for 

each witness, here it is 2 [Barber and Kim, 2001]. 
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Mathematically, let ,i jV represent the trust value on the arc from 

ia to ja and ,s tV represents the truster’s direct trust value on the trustee. To simplify the 

formula, we use i and j to represent the agents instead of ia and ja . For all the 

agents, 1 0( ), ( )i i reliable i i unreliable≡ = ≡ = . In this part, the source agent and target 

agent is represented as s and t, while other agents can be represented as i and j. From 

the Trust Network, we can get conditional probability as follows: 

 

jiji VijPVijP ,
10

,
11 1)(;)( −==                                       (4.2)                

)(1)());(,
2
1min()( 0100101 ijPijPiPijP −==                           (4.3) 

⎩
⎨
⎧

=
otherwise

trusteeofvaluetrustdirecthastrusterV
P ts

1.0
,

0               (4.4) 

The reasons for regularization like this have been given in the introduction part. We 

still need to point out that when the agent does not tell the truth, say, does not tell the 

true interaction history of another agent, the trust value will be the conditional trust 

value given the speaking agent tells a lie. 

 

Probability Propagation 

 

Step 1: evaluating the nodes whose only child is the target node.  

Along each chain, we use the following method to find out the marginal probability 

of the tail agent. After obtaining the prior probability of one node, its parent node can 

be removed from the chain. Thus, at the end of this step, all the nodes left are the 
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target node and its parents. Figure 4.2 is an example of Bayesian Network and the 

node D’s prior probability can be calculated using the formulas below. 

 

Figure 4.2  The Bayesian Inference of Prior Probability 

 
 
We can calculate the marginal probability of node D in Fig 4.2 by using the following 

formulas. 

)()()(;)()()(;)()()( CPCDPDPBPBCPCPAPABPBP
cBA
∑∑∑ ===       (4.5) 

 

Step 2: Evaluating the probability of the target node. 

After finishing step 1, the Trust Network becomes a converging connection Bayesian 

Network in which there is only one child node which is trustee and n parents nodes 

which are the agents who have functional trust interaction with the trustee. As we 

know, after the parallelization, each chain’s tail node becomes the parent of the 

trustee. Each tail node carries the whole chain’s information and it is not its own. In 

Figure 4.3, examples are listed. 

 

Figure 4.3  Converging Connection Bayesian Network. i=1,2…n. 
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Let ( )i iP P Y X= . From Neapolitan [Neapolitan, 1990], we can get the formula to 

compute the trust value of the trustee within converging connection Bayesian 

Network: 

1 2 1 2

1 2

1 1 1

1 2 1 2
0 0 0

( ) ... ( , ,..., ) ( ) ( ),..., ( )n n

n

a aa a a a
n n

a a a
P Y P Y x x x P x P x P x

= = =

= ∑∑ ∑
               (4.6) 

In order to find out ),...( 1 kXXYP , we introduce the leaky noisy-OR model to fix it. 

The noisy-OR model is the most accepted and widely applied model to solve the 

multi-causal interactions network and it leads to a very convenient and widely 

applicable rule of combination. However, the noisy-OR model is based on two 

assumptions: accountability and exception [Pearl, 1988]. Accountability states that an 

event can be presumed false if all its parents are false. Exception requires that the 

influence of each parent on the child is independent of other parents.  

 

In our case, both of these two assumptions can work. On one hand, the leaky 

noisy-OR model releases the accountability assumption and it introduces a leak 

probability 0P which is the probability that the effect will be produced by the 

unmodeled causes in absence of all the modeled causes. In other words, we can 

say 0P is the prior probability of the effect before modeling the problem. Thus, in the 

Trust Network, we assume the truster’s trust value on the trustee is 0P .  On the other 

hand, each chain’s information is independent to each other and it is only affected by 

the agents on the chain. 
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According to Figure 4.3, we can use the following formula [Henrion, 1989] to solve 

the problem. 

∏
= −
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−=
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Integrate formula 4.7 and 4.8 into formula 4.6, we can get: 

1 2

1
1 2

1 1 1
1

1 2 0
0 0 0 : 0

1( ) ... ( ) ( ),... ( )[1 (1 ) ]
1

n

n i i

aa a i
n

a a a i X x

PP y P x P x P x P
P= = = =

−
= − −

−∑∑ ∑ ∏              (4.9) 

 

4.2 Numerical Example 

 
 
In order to describe the whole evaluation process more specifically, we give the 

following example in this section. The original Trust Network is shown in Figure 4.4. 

There are six witnesses and four of them have functional trust of the trustee. The 

truster has direct experience of the trustee as well. 

 

(1) Parallelization  

The parallelization Trust Network can be seen in Figure 4.5. In this example, suppose 

we only keep the chains which include three or less than three witnesses. The agent 5 

and agent 3’s interaction is too old and this link should be deleted. The revised 

parallelization network is shown in Figure 4.6. 
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Figure 4.4  Trust Network with trust values 

 
 

 

Figure 4.5  Parallel network of example Trust Network 

 
 

 

Figure 4.6  Revised parallel network of example Trust Network 
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(2) Evaluation 

 

Step 1: Evaluation of the target agent’s parents. 

We solve the probability chain by chain and get the results presented in Table 4.1: 

 

 

Table 4.1  The prior probability of the trustee’s parents on each chain 

 
Chain 1 2 3 4 5 

Probability 0.41 0.36 0.7 0.6 0.5 

 

Step2: Evaluation of the target agent. 

 

Figure 4.7  Target agent and its parents in the parallelized Trust Network 

 
 
After obtaining the prior probability of the target agent’s parents, we get the Bayesian 

Network as shown in Figure 4.6. In this step, we use formula (4.9) to get the final 

result which is 0.8637.  

Chain 1 Chain 2 Chain 3 Chain 4 Chain 5 

T 
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From the example, we can see that although the trust value is only 0.3 from the direct 

interaction between truster and trustee, the final trust value after evaluation is 0.8637. 

The truster might trust the trustee this time. However, if the trustee cheats the truster 

this time, the truster will adjust its records about the trustee and the witnesses, say, 

records as unsuccessful. After a while, the deceitful agents will be isolated out and 

isolated from the environment gradually. 

 

In the following chapter, experiments and results will be given to illustrate our 

mechanism’s performance. 
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5 EXPERIMENTS AND RESULTS 
 

In order to empirically evaluate the approach we have proposed, we designed a 

test-bed that simulates the relationships and interactions between agents in which 

trust models are used for selecting interaction partners (see Section 5.1). The 

test-bed’s environment characterizes an open multi-agent system. The methodology 

used for the evaluation is described in Section 5.2.  

 

5.1 Experimental System 

 

The test-bed environment we designed for evaluating our approach is a multi-agent 

system consisting of agents providing service (called providers) and agents using 

those services (called consumers). We assume that the performance of a provider (and 

effectively its trustworthiness) in a particular services it provide (e.g. news service) is 

generally independent from that in another services (e.g. weather service or banking 

service). Therefore, without loss of generality, and in order to reduce the complexity 

of the test-bed’s environment, it is assumed that there is only one type of service in 

the test-bed. Hence, all the provider agents offer the same service. However, their 

performance (i.e. the quality of the service) differs and determines the utility that a 

consumer gains from each interaction (called UG). 

 

The agents are situated randomly on a spherical world whose radius is 2.0 (see Figure 

5.1). Each agent has a radius of operation (depicted by a dotted circle around an agent 
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in Figure 5.1) that models the agent’s capability in interacting with others (e.g. the 

available bandwidth or the agent’s infrastructure) and any agents situated in that range 

are the agent’s acquaintances.  

 

 

Figure 5.1  The spherical world and an example referral chain from consumer C1 
(through C2 and C3) to provider P via acquaintances 

 

 
For a provider, its radius of operation serves as the normal operational range in which 

it can provide its service at its full capacity without loss of quality. For consumers 

outside that provider’s normal operational range, the quality of service they receive 

from it is gradually reduced. This simulates the phenomenon that each agent usually 

has particular circumstances which affect service delivery. For example, two distant 

agents may experience significant network latency during their interaction, or a seller 
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agent in Singapore may charge another agent extra for shipping goods abroad and the 

goods may arrive much later than usual. 

 

Simulations are run in the test-bed in rounds (of agent interactions). Event that takes 

place in the same round are considered simultaneous. The round number is used as 

the time value for events. In each round, if a consumer agent needs to use the service 

it can contact the environment to locate nearby provider agents (in terms of the 

distance between the agents on the spherical world). The consumer agent will then 

select one provider from the list to use its service. The selection process relies on the 

agent’s trust model to decide which provider is likely to be the most reliable. 

However, consumer agents without a trust model randomly select a provider from the 

list.  

 

On the other hand, each agent with a trust model would face the following problem: 

Not all the providers’ trustworthiness located by the environment can be determined. 

Thus, under some situations, a consumer faces two options: 

1. Selecting the provider with the highest trust value in the set HasTrustValue, 

which according to the trust model is likely to yield the highest UG. 

2. Selecting a random provider from the set NoTrustValue, allowing it to learn 

about the performance of an unknown provider. 

When the set NoTrustValue is empty, the agent only chooses according to option 1 

and vice versa.  
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When the two sets are not empty, there is a dilemma strategy named 

exploit-vs-explore that can be used to help the agent make a decision. Using this 

strategy, an agent tends to explore its environment first and then gradually move its 

stance towards exploitation when it learns more about the environment.  

 

Having selected a provider, the consumer agent then uses the service of the selected 

provider and gains some utility from the interaction (UG). The value of UG is in [-10, 

10] (see Table 5.1) and depends on the level of performance of the provider in that 

interaction. A provider can serve many users at a time. As in real situations, a 

consumer agent, however, does not always use the service in every round. The 

probability it needs and requests the service, called its activity level and denoted by 

α, is selected randomly when the consumer is created. In other words, the activity 

level of a consumer determines how frequently it uses the service. 

 

In our test-bed, the only difference in each situation is the performance of the 

provider agents. We consider five types of provider agents: best, good, ordinary, bad 

and worst. Each of them has a mean level of performance, denoted by μp. Its actual 

performance follows a normal distribution around this mean. The values of μp and 

the associated standard deviation of these types of providers, denoted by σp, are 

given in Table 5.2.  

 

Since agents can freely join and leave an open Multi-agent system, the agent 

population can be very dynamic. Moreover, since agents are owned and controlled by 
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various stakeholders, the performance of an agent may not be consistent over time. 

Therefore, in order to simulate such dynamism, we introduce the following factors in 

our test-bed: 

• The population of the agents: In an open multi-agent system, agents can come 

and leave the system at anytime. This is simulated by removing a number of 

randomly selected agents from the test-bed and adding the new ones into it. 

The numbers of agents added and removed after each round vary, but have an 

upper limit of some predefined percentage of the whole population. Since 

providers are usually more established than consumers, the characteristics of 

the newly added agents are set randomly but they are uniformly distributed 

over the initial agent populations. 

• The location of the agents: During their life cycle, agents break the old 

relationships and make the new ones. In our test-bed, this type of change is 

described by the change in an agent’s location on the spherical world. When a 

consumer changes its location, it will have a new set of acquaintances 

according to its r0. In addition, the location of an agent in the test-bed also 

reflects its individual situation covering things such as its knowledge about 

other local agents and the service delivery between providers and consumers. 

Therefore, changing an agent’s location will change its relationships with 

others, as well as its individual situation. 

• The behavior of the providers: In many environments, provider performance 

may alter over time. A provider may even change its behavior completely. In 

our test-bed, the average performance of a provider can be changed by an 
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amount of Δμ randomly selected in [-M, +M], and this happens in each 

round with the probability of Pμc. 

 

Table 5.1  Performance level constants 

 
Performance Level Utility gained 

PL_PERFECT +10 

PL_GOOD +5 

PL_ ORDINARY 0 

PL_BAD -5 

PL_WORST -10 

 

 
 

Table 5.2  Profiles of provider agents (performance constants defined in Table 5.1) 
 

Profile Range of μp σp 

Best [PL_GOOD, PL_PERFECT] 1.0 

Good [PL_ ORDINARY, PL_GOOD] 2.0 

Ordinary [PL_BAD, PL_ ORDINARY] 2.0 

Bad [PL_WORST, PL_BAD] 2.0 

Worst [PL_WORST, PL_BAD] 1.0 
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The changes on the test-bed’s environment are applied only after each round of 

interaction has finished. The nature and degree of dynamism are specified in each 

experiment. 

 

5.2 Experimental Methodology 

 

In each experiment, the test-bed is populated with provider and consumer agents. 

Each consumer agent is equipped with a specific trust model, which helps it select a 

provider when it needs to use a service. Since the only difference among consumer 

agents is the trust model that they use, the utility gained by each agent through 

simulation will reflect the performance of its trust model in selecting reliable 

providers for interactions. Therefore, the test-bed records the total utility gained 

(TUG) of the whole consumer environment along with the trust model used. In order 

to obtain an accurate result for performance comparisons between trust models, each 

model will be employed by a large number of consumer agents (Nc). In addition, the 

total utility gained of the whole environment will change over time with different 

trust model. The result of an experiment is presented in a graph with the y-axis, 

ploting the TUG of the whole environment and the x-axis ploting the interaction by 

time. 

 

The experimental variables are presented in Table 5.3 and their values will be used in 

all cases unless otherwise specified. Although a ‘typical’ provider population may 

differ in various applications, the space of possibilities is vast and exploring it 
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completely would be impossible. Therefore, we choose provider populations which 

we believe are more common than others for our experiments. Here, we consider a 

typical provider population to consist of even providers. That is to say, the number of 

providers with different performance is the same. 

 

As discussed in Section 4.1, the calculation of the trust value of the target agent is 

accomplished by using Noisy-OR model. In this model, one of the important 

parameters is the leaky probability P0. In our experiment, P0 can be seen as the source 

of agent’s prior trust value on the target agent without any information. As we know, 

we have different first impressions to different people. The P0 is the first expression 

without any rational thinking. Thus, P0 is created randomly from (0, 0.2].  

 

Table 5.3  Experimental variables 
 

Simulation Variable Symbol Value 

Number of simulation rounds N 300 

Total number of provider agents Np 200 

Best providers  Npb 40 

Good providers Npg 40 

Ordinary providers Npo 40 

Bad providers Npd 40 

Worst providers Npw 40 

Number of consumer agents in each group Nc 200 

Range of consumer activity level α [0.25, 1.00] 
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5.3 Results 

 

Having presented the test-bed and the proposed methodology in this section, we will 

evaluate the experiments. In particular, we concentrate on the benefit of using our 

approach for selecting interaction partners with different provider populations and the 

comparison of our approach with the computational model proposed by [Mui, 2002] 

as well as without trust model (Section 5.3.1). In addition, we also compare the 

estimation with combining recommendations to without combining recommendations 

(Section 5.3.2). Moreover, we test our model under the dynamic environment as well 

(Section 5.3.3). 

 

5.3.1 Overall Performance of Bayesian-based Inference Approach 
 

In order to evaluate the overall performance of our approach, we compare it with the 

computational model proposed by [Mui, 2002] (whose operation is described in 

Section 2.4) and a group of agents with no trust model. Hence, there are three groups 

of consumer agents: Bayesian-based Inference Approach (BTM), Mui-Proposed 

Approach (MTM) and NoTrust. Through out the whole chapter, we call the approach 

proposed by us as BTM, and the approach proposed by Mui as MTM.  

 

The first thing to test is whether BTM helps consumer agents select profitable 

providers from the population and, by so doing, helps them gain better utility than 
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without BTM. In this section, the test-bed’s environment is static. The NoTrust group 

selects providers randomly without any trust evaluation. To compare each model, we 

use the total utility which can be calculated as follows: each agent in the environment 

has its utility gained from the interaction. In one time slot, the summation of all the 

agents’ utility gained in the whole environment can be seen as the total utility gained 

(TUG) in that time slot.  

 

 

Figure 5.2  Performance of BTM, MTM and NoTrust Model 

 
  

Figure 5.2 shows that the NoTrust group that selects providers randomly without any 

trust evaluation, performs consistently the lowest (as we would expect). On the other 

hand, both the BTM and MTM prove to be beneficial to consumer agents, helping 

them to obtain significantly higher utility. This shows that the tested trust models can 
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learn about the provider population, and allow their agents to select profitable 

providers for interaction. 

 

In addition, from Figure 5.2, we can also see that the total utility gained by using 

BTM is higher than using MTM, i.e., the BTM outperforms MTM. We can get the 

same result from Table 5.4. In Table 5.4, we can also see that in the first few 

interactions, BTM can learn about the providers quicker than MTM as the BTM 

group achieves its superiority from the first interaction quicker than MTM. The total 

utility gained by BTM in each interaction after interaction 3 is higher than what MTM 

gained. Although there is fluctuation in the first 6 interactions in BTM, the fluctuation 

occurs in MTM during the first 10 interactions. This situation illustrated that BTM 

can reach stable situation quicker than MTM. 

  

Table 5.4  The Performance of BTM and MTM in the first 10 interactions 

 
Interaction 1 2 3 4 5 6 7 8 9 10 

BTM -10 -40 55 50 75 60 80 155 175 195

MTM -90 -30 30 25 40 55 45 55 60 35 

 

 

The performance difference of BTM and MTM is that BTM is accounted by the way 

to calculate the trust value along each chain, while MTM uses the Bayesian estimate 

rating propagation, which is given by 
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)1)(1()( jkijjkijik c ρρρρρ −−+= . As we have explained before, the requirement of 

this method is too strict to get the final trust value of the source agent to the target 

agent along one chain. Thus, the agents using MTM obtain the lower total utility than 

using BTM. In the meantime, the MTM uses using the weighted sum to figure out the 

last trust value, but the approach may introduce rating noise by giving different 

weights to different trust chains in the Trust Network. In contrast, BTM introduces 

Bayesian inference propagating approach to solve the Trust Network, and the trust 

value along each chain is calculated by the approach used to solve Bayesian 

Networks. It avoids the risk of repeatedly using the trust value of each agent in one 

chain. In addition, the BTM leaves the weighted sum/ multiple method out drastically. 

Thus, there is no rating noise caused by giving weights to each chain.  

 

We repeated the same experiment but with the provider population consisting of 

providers of only one profile (e.g. best, good, ordinary, bad, and worst) to see how 

different types of providers may affect the BTM performance. These experiments aim 

to test the stability and consistency of BTM. From Figure 5.3, we can see that the 

total utility gained with 100% best providers and 100% worst providers are 

symmetrical and the only difference is that one is positive and the other is negative. 

Similar observations are also obtained for the good and bad providers. This 

demonstrates that our model is very stable and consistent when solving the trust 

evaluation problem and also our model can work well in a wide range of provider 

population.  
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Figure 5.3  Performance of BTM with different providers 

 

5.3.2 Comparison of with and without Combining Recommendations  
                                                                 

We argued that the witnesses’ recommendation is crucial in the trust evaluation 

process. However, many of the authors only take into consideration of the direct 

interaction when it is available. Unless there is no direct interaction, they will use 

recommendations. In BTM, we not only consider the direct interaction (direct 

experience), but also the recommendations from witnesses. As we know, only one 

information resource may not reflect the real situation of the target. Thus, whether the 

direct interaction is available or not, we take into consideration of all the information 

about the target agent. Figure 5.4 shows that the total utility gained by only using 

direct experience and by using all the information. From Figure 5.4, we can see that 

BTM outperforms the model that only uses the direct experience. The experiment 
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demonstrates that the witnesses’ recommendations make the estimation more accurate 

than without the recommendations. In some real situations, the agent has to pay for 

the information. Thus, there is a tradeoff between the charge and the income.  

 

 

Figure 5.4  The Total Utility Gained by using direct experience only and by BTM. 

 
 
 
 
 

5.3.3 The effects of dynamism 
 
 
The environment of a realistic open multi-agent system is always changing because of 

its openness. Hence, a trust model designed for open multi-agent systems should be 

able to function properly in such a dynamic environment. This section concentrates 
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on testing the hypothesis that our model still maintains its properties in a changing 

environment.  

 

Similarly to the experiments in Section 5.3.1, we compare the performance of BTM, 

MTM, Direct Experience Only and NoTrust in the same changing environment. The 

higher the total utility gained, the better the trust model works. We run the 

experiments with the following conditions: 

1. The provider population changes at a maximum of 5% for every 50 rounds. 

2. A provider switches into a different (performance) profile randomly for every 

50 rounds. 

3. A provider moves to a new location in the spherical world at a randomly 

selected direction and distance for every 50 rounds. 

In the following parts, we will give some details of the experiments and the results. 

 

Provider population changes 

 

The experiment carried out under this condition aims to simulate the situation that the 

agent may come in and go out of the environment freely. In this experiment, we make 

the total number of agents in the environment unchanged. We simulate this situation 

through the following method: in every 50 rounds, we pick out 10 agents and add in 

10 agents as the newcomers. The trust value of the newcomer is set randomly.  
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The results are shown in Figure 5.5. From the figure, we can see that BTM gained 

more utilities than other models. It demonstrates that our model can work well in the 

open multi-agent environment. Although we keep the total number of agents constant, 

this assumption will not affect our model’s performance when the total number of 

agents changes. 

  

 

Figure 5.5  The performance of the four models under condition 1 

 
 
 
 
 
 
 
 

Providers switch into a different performance profile 
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The experiment here is to simulate the situation that a provider’s performance would 

change or be different in some rounds. We change some providers’ performance in 

every 50 rounds. If we take nttt ,..., 21  as the time points that the provider’s 

performance is changed, in each time point the providers picked out to change their 

performance are not the same. This will make the experiment more similar to the 

actual situation. 

 

The results are shown in Figure 5.6. From the results, we can see that BTM dominates 

other models. At the same time, the TUG gained by the model with direct experience 

only is higher than what MTM gained; this demonstrates that our approach is more 

efficient than MTM. Although using the direct experience only, our model still works 

well in the dynamic environment where the providers change their performance. 
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Figure 5.6  The performance of the four models under condition 2. 

 
 

Providers move to a new location 

 

The experiment aims to simulate the situation that the agent breaks the old 

relationship and constructs the new ones in some rounds. We change some providers’ 

location in every 50 rounds. If we take nttt ,..., 21  as the time points the provider’s 

location is changed, in each time point the providers picked out to change their 

location are not the same. This will make the experiment more similar to the actual 

situation. 

 

The results are shown in Figure 5.7. From the results, we can see that BTM gained 

more utility than other models. We can obtain the same results as before.  The TUG 
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gained by the model with direct experience only is higher than what MTM gained; 

this demonstrates that our approach is more efficient than MTM. Although only using 

the direct experience, our model still works well in the dynamic environment where 

the providers change their performance. 

 

 

Figure 5.7  The performance of the four models under condition 3. 

 
 
In summary, dynamism, as it introduces noise to the environments, adversely affects 

the performance of BTM and MTM in all the experiments reported here. Specifically, 

and as what we would expect, their performance is lower than that in the static 

environment. Nevertheless, although having lower levels of performance than in a 

static environment, the BTM still outperforms other models. 
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5.4 Summary 

From the simulation results, we can see that the trust estimation approach we 

proposed works well in a wide range of providers. In the meantime, our approach 

outperforms to the approach proposed by Mui, as well as the mechanisms without 

trust evaluation mechanism. In addition, we demonstrate that the use of the direct 

experience only is not good enough to evaluate the trust value. However, combing in 

the direct experience and the witnesses’ recommendation is a better way to evaluate 

the target agent’s trust value and it gained more in the long run. Moreover, our model 

performs better in the dynamic environment than other models and this conclusion is 

confirmed by the fact that in our approach that uses direct experience only, the gained 

utilities are higher than that of MTM and NoTrust. 
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6 Conclusions and Future Work  
 

This chapter concludes this thesis with a summary of the accomplishments and the 

future work. 

 

6.1 Summary of Contributions 

 
 
To fill the research gap of the trust estimation we found in the open multi-agent 

system, we present a new approach to estimate the trust value for the multi-agent 

systems. This work aims to introduce the trust evaluation problem into the artificial 

intelligence area and solve the problem by using the methodology in the Bayesian 

Network area.  

 

We present an approach to help agents construct a trust network automatically in a 

multi-agent system. Although this network is a virtual one, it can be used to estimate 

the trust value of the target agent.   

 

The second part is to solve the trust network constructed by our methodology. In this 

part, we use the Bayesian Inference Propagation approach with Leaky Noisy-OR 

model to solve the trust network. This is a novel way to solve the trust problem in the 

multi-agent systems. This approach solves the trust estimation problem based on 

objective logic, which means that there is no subjective weight setting. The whole 

trust estimation process becomes automatic without the intervention of human beings.  
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Lastly, we demonstrate the advantage of our approach by carrying two groups of 

experiments in the simulation. Experiments in group one are in the static environment 

and experiments in group two are under dynamic environment. From the experiments, 

we find out that our model works better than the model proposed by other authors as 

by using our model, the whole agents’ utility gained is higher than by using other 

models (MTM and without trust measure). In addition, we run the experiment in 

different provider situations. The results tell us that our model performs well in a 

wide range of provider population and it also reconfirmed the fact that our model 

works better than the models we compared. Moreover, in order to demonstrate that 

more information resources can help the decision maker make a more accurate 

decision, we develop another experiment which compares the performance of our 

model and the model that only uses direct experience unless the direct experience is 

not available. The results of the experiment confirm our proposed viewpoint, which is 

that combining the recommendation and the direct experience works better than using 

direct experience. In addition, we test our approach in the dynamic environment and 

the results illustrate that our approach gains more TUG than MTM and without trust 

measure under three different dynamic environments. 

 

By using the framework we proposed, the trust estimation problem can be solved in a 

new way which is based on Bayesian Propagation. Comparing to the existing 

methods, this approach can solve the trust problem in the virtual communities 
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automatically and the results are more reliable which could help agents in the 

environment obtain more earnings. 

 

6.2 Recommendations for Future Work 

 

From the simulation results, we find that our model works better. However, we need 

more studies on the trust modeling and trust evaluation can be done. 

 

There are several possible future works that can be done to improve our work: 

1) The assumption of the trust value given the witness tells a lie needs to be 

relaxed or to find a better way to solve this problem. 

2) In this work, all the trust values proposed are all falling into the confidence 

level. However, in some problems, witnesses’ information might be out of the 

confidence level and the chain will be broken, and it needs to be improved in 

the Trust Network construction part. 

3) The approach we proposed has a disadvantage, which is the increase of 

computation time as the complexity of the trust graph increases. The more of 

the quantity the chains, the more computation that needs to be done.  

 
In addition, we may also improve our work by modeling the trust value in the 

Bayesian Network. It is possible to construct a Bayesian Network to expect the trust 

value or the target agent’s intention in the future interaction. 
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In summary, this thesis presents an overview of trust estimation approaches and 

develops a trust network construction algorithm, as well as a mechanism to estimate 

the trust value in a trust network. More research and application of such approaches 

need to be followed in the future. 
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Appendix-A Parallelization 
 
 
Parallalization Procedure in C Sharp code 
        private Array parallalization(int source, int sink) 
        {           
            Stack myStack = new Stack();    
            ArrayList chain = new ArrayList();  
     int i, j;      
     int k = 0; 
     bool flag = true; 
     String Currentnode = source.ToString(); 
     i = source; 
     j = 0; 
     int jpre = i; 
     maxlength = System.Convert.ToInt16(textBox3.Text);  
            while (flag == true) 
            { 
                while ((j <= nodeia.GetUpperBound(1)) & 
(myStack.Count < (maxlength - 2)))   
                { 
                    if (j != jpre) 
                    { 
                        if (Convert.ToInt16(nodeia.GetValue(i, 
j)) != 0) 
                        { 
                            if (myStack.Contains(Currentnode)) 
                            { 
                                //Here is to prevent the cycle 
occurance 
                                j = j + 1; 
                            } 
                            else 
                            { 
                                myStack.Push(Currentnode); 
 
                                Currentnode = j.ToString(); 
                                if (Currentnode == 
sink.ToString()) 
                                { 
                                    goto a; 
                                } 
                                jpre = 0; 
                                i = j; 
                                j = 0; 
                            } 
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                        } 
                        else 
                        { 
                            j = j + 1; 
                        } 
                    } 
                    else 
                    { 
                        j = j + 1; 
                    } 
 
                } 
 
                //don't find the terminal chain, then back 
                if (myStack.Count > 0) 
                { 
                    jpre = Convert.ToInt16(Currentnode); 
                    i = Convert.ToInt16(myStack.Pop()); 
                    Currentnode = i.ToString(); 
                    j = jpre + 1; 
                } 
                else 
                { 
                    flag = false; 
                } 
                goto e; 
 
            //finaliza the chain   
            a: myStack.Push(Currentnode); 
                //copy all the nodes in stack into one chain() 
                Object[] myStandardArray = myStack.ToArray(); 
                MyStringBuilder.Remove(0, 
MyStringBuilder.Length); 
                for (j = myStandardArray.GetUpperBound(0); j > 
-1; j--) 
                { 
                    if (MyStringBuilder.Length == 0) 
                        MyStringBuilder.Append("Node" + 
myStandardArray.GetValue(j).ToString()); 
                    else 
                        MyStringBuilder.Append("+" + "Node" + 
myStandardArray.GetValue(j).ToString());                     
                } 
               
                chain.Add(MyStringBuilder.ToString()); 
                k = k + 1; 
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                //back two steps 
                jpre = Convert.ToInt16(myStack.Pop()); 
                i = Convert.ToInt16(myStack.Pop()); 
                Currentnode = i.ToString(); 
                j = jpre + 1; 
 
            e: ; 
            } 
            return chain.ToArray(); 
        }
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Appendix-B BTM Core Code 
 
 
private double calculatetrust(int source, Array sinkarray, 
int finalsink, Array degradevalueinmodel) 
{ 
            int n, i,chainlength; 
            double P0 = rand.Next(1, 2000) / 10000.0; 
//p0=0.0001~0.2  
            Array chain; 
            double trust = P0;                       
            trustchain.Clear();           
            for (n = 0; n < sinkarray.Length; n++) 
            { 
                if 
(System.Convert.ToInt16(sinkarray.GetValue(n)) == source) 
//source has direct functional relationship with finalsink 
                { 
                      trustchain.Add("sink=" + 
source.ToString() + ";final sink=" + finalsink.ToString() + 
";partial Trust value=" + nodefunctiontrust.GetValue(source, 
finalsink).ToString());                     
                } 
                else //source didn't have the direct functional 
relationship with finalsink 
                { 
                     chain = parallalization(source, 
System.Convert.ToInt16(sinkarray.GetValue(n))); 
                     chainlength = chain.Length; 
                     if (chainlength != 0)  
                     { 
                         for (i = 0; i < chainlength; i++) 
                         { 
                             
trustchain.Add(calculatetrustvalue(chain.GetValue(i).ToSt
ring(), finalsink));                             
                         } 
                     } 
                } 
            } 
            if (trustchain.ToArray().Length != 0) 
            { 
               trust = analyzetrustchain(trustchain.ToArray(), 
P0); 
            } 
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            if 
(System.Convert.ToDouble(degradevalueinmodel.GetValue(sou
rce, finalsink)) <= 0) 
            { 
                trust = trust * 
Math.Exp(System.Convert.ToDouble(degradevalueinmodel.GetV
alue(source, finalsink))); 
            } 
            else 
            { 
                trust = (1 + 
System.Convert.ToDouble(degradevalueinmodel.GetValue(sour
ce, finalsink)) / 100.0) * trust; 
                if (trust > 1) 
                {  
                    trust = 1;  
                } 
   
            } 
       return trust; 
} 
 
        ArrayList analyzetrustchain1 = new ArrayList(); //to 
store the sink node 
        ArrayList analyzetrustchain2 = new ArrayList(); //to 
store the final sink node 
        ArrayList analyzetrustchain3 = new ArrayList(); //to 
store the trust value  
        //analyze the array of trustchain 
        private double analyzetrustchain(Array mytrustchain, 
double myp0) 
        { 
            analyzetrustchain1.Clear(); 
            analyzetrustchain2.Clear(); 
            analyzetrustchain3.Clear(); 
            int i=mytrustchain.Length; 
            int j; 
            int n; 
            string analyzerstring; 
            Array aplit_result = 
Array.CreateInstance(typeof(double), 3); 
            
            for (j = 0; j < i; j++) 
            { 
                analyzerstring = 
mytrustchain.GetValue(j).ToString(); 
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                string[] split = 
analyzerstring.Split(";".ToCharArray(), 3); 
                for (n = 0; n < 3; n++) //need to separate 
considering the last node and the other nodes 
                { 
                    
aplit_result.SetValue(System.Convert.ToDouble(split.GetVa
lue(n).ToString().Substring(1 + 
split.GetValue(n).ToString().IndexOf("="))), n); 
                } 
                
analyzetrustchain1.Add(System.Convert.ToInt16(aplit_resul
t.GetValue(0))); 
                
analyzetrustchain2.Add(System.Convert.ToInt16(aplit_resul
t.GetValue(1))); 
                
analyzetrustchain3.Add(System.Convert.ToDouble(aplit_resu
lt.GetValue(2)));   
            } 
            Array myprY_Xi = 
Array.CreateInstance(typeof(double), 
analyzetrustchain1.ToArray().Length); 
            Array mypriorXi = 
Array.CreateInstance(typeof(double), 
analyzetrustchain1.ToArray().Length); 
            Array temp1 = analyzetrustchain1.ToArray(); 
            Array temp2 = analyzetrustchain2.ToArray(); 
            Array temp3 = analyzetrustchain3.ToArray(); 
            for (j = 0; j < analyzetrustchain1.ToArray().Length; 
j++) 
            {                 
                
myprY_Xi.SetValue(System.Convert.ToDouble(conditionalfunc
tiontrust.GetValue(System.Convert.ToInt16(temp1.GetValue(
j)), System.Convert.ToInt16(temp2.GetValue(j)))), j);   
                
mypriorXi.SetValue(System.Convert.ToDouble(temp3.GetValue
(j)), j);  
 
            } 
            return calculatefinaltrust(myp0, myprY_Xi, 
mypriorXi);   
        } 
 
 



Appendix 

 97

        //calculate the trust between the last second node and 
the final sink node 
        private double calculatefinaltrust(double p0, Array 
myprY_Xi, Array mypriorXi) 
        { 
            int i, j; 
            Array prY_Xi = myprY_Xi; 
            Array priorXi = mypriorXi; 
            int n = prY_Xi.Length; 
            int mm; 
            Array parentValues = 
Array.CreateInstance(typeof(double), n); 
            for (i = 0; i < n; i++) 
                parentValues.SetValue(0, i); 
             
            Double configurations = 
System.Convert.ToDouble(Math.Pow(2, n)); 
            Array CPT = Array.CreateInstance(typeof(double), 
System.Convert.ToInt64(configurations), 2); 
            Array priors = 
Array.CreateInstance(typeof(double), 1, 2); 
            Array currentProbs = 
Array.CreateInstance(typeof(double), 1, 2); 
            for (i = 0; i < 1; i++) 
                for (j = 0; j < 2; j++) 
                    priors.SetValue(0, i, j); 
 
            for (i = 0; i < configurations; i++) 
            { 
                CPT.SetValue((1 - p0), i, 0); 
                for (j = 0; j < n; j++) 
                { 
                    if 
(System.Convert.ToInt16(parentValues.GetValue(j)) == 1) 
                    { 
                        
CPT.SetValue((System.Convert.ToDouble(CPT.GetValue(i, 0)) 
* (1 - System.Convert.ToDouble(prY_Xi.GetValue(j))) / (1 - 
p0)), i, 0); 
                    } 
                } 
                CPT.SetValue((1 - 
System.Convert.ToDouble(CPT.GetValue(i, 0))), i, 1); 
                double prob_config = 1; //the probability of the 
current parent configuration 
                for (j = 0; j < n; j++) 
                { 
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                    if 
(System.Convert.ToDouble(parentValues.GetValue(j)) == 1) 
                    { 
                        prob_config = prob_config * 
System.Convert.ToDouble(prY_Xi.GetValue(j)); 
                    } 
                    else 
                    { 
                        prob_config = prob_config * (1 - 
System.Convert.ToDouble(prY_Xi.GetValue(j))); 
                    } 
                } 
                for (j = 0; j < 2; j++) 
                    
currentProbs.SetValue(System.Convert.ToDouble(CPT.GetValu
e(i, j)), 0, j); 
 
                for (j = 0; j < n; j++) 
                { 
                    if 
(System.Convert.ToDouble(parentValues.GetValue(j)) == 1) 
                    { 
                        
currentProbs.SetValue(System.Convert.ToDouble(currentProb
s.GetValue(0, 0)) * 
System.Convert.ToDouble(priorXi.GetValue(j)), 0, 0); 
                        
currentProbs.SetValue(System.Convert.ToDouble(currentProb
s.GetValue(0, 1)) * 
System.Convert.ToDouble(priorXi.GetValue(j)), 0, 1); 
 
                    } 
                    else 
                    { 
                        
currentProbs.SetValue(System.Convert.ToDouble(currentProb
s.GetValue(0, 0)) * (1 - 
System.Convert.ToDouble(priorXi.GetValue(j))), 0, 0); 
                        
currentProbs.SetValue(System.Convert.ToDouble(currentProb
s.GetValue(0, 1)) * (1 - 
System.Convert.ToDouble(priorXi.GetValue(j))), 0, 1); 
 
                    } 
                } 
                for (mm = 0; mm < 2; mm++) 
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priors.SetValue((System.Convert.ToDouble(priors.GetValue(
0, mm)) + System.Convert.ToDouble(currentProbs.GetValue(0, 
mm))), 0, mm); 
 
 
                j = n - 1; 
                
parentValues.SetValue((System.Convert.ToDouble(parentValu
es.GetValue(j)) + 1), j); 
                while ((j > 0) & 
(System.Convert.ToDouble(parentValues.GetValue(j)) > 1)) 
                { 
                    parentValues.SetValue(0, j); 
                    j = j - 1; 
                    
parentValues.SetValue((System.Convert.ToDouble(parentValu
es.GetValue(j)) + 1), j); 
                } 
            } 
            return System.Convert.ToDouble(priors.GetValue(0, 
1));  
        } 
 
 
        private string calculatetrustvalue(string onechain, 
int finalsink) 
        { 
            double partialtrust; 
            char[] tempy = onechain.ToCharArray(); 
            int nn = 0; 
            double mintemp; 
            foreach (char x in tempy) 
            { 
                if (x == 43) 
                    nn = nn + 1; 
            } 
            nn = nn + 1; 
            string[] split = onechain.Split("+".ToCharArray(), 
nn); 
            Array aplit_result = 
Array.CreateInstance(typeof(int), split.Length); 
            int n; 
            for (n = 0; n < split.Length; n++) //need to separate 
considering the last node and the other nodes 
            { 
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aplit_result.SetValue(System.Convert.ToInt16(split.GetVal
ue(n).ToString().Substring(4)), n); 
            } 
 
            if (split.Length==2) 
            { 
                
partialtrust=System.Convert.ToDouble(nodetrust.GetValue(S
ystem.Convert.ToInt16(aplit_result.GetValue(0)), 
System.Convert.ToInt16(aplit_result.GetValue(1))));   
            } 
            else 
            { 
                
partialtrust=System.Convert.ToDouble(nodetrust.GetValue(S
ystem.Convert.ToInt16(aplit_result.GetValue(0)), 
System.Convert.ToInt16(aplit_result.GetValue(1))));  
                for (n = 1; n < split.Length-1;n++ ) 
                { 
                    mintemp = Math.Min(0.5, partialtrust);                   
                    
partialtrust=System.Convert.ToDouble(conditionalreference
trust.GetValue(System.Convert.ToInt16(aplit_result.GetVal
ue(n)), System.Convert.ToInt16(aplit_result.GetValue(n + 
1))))*partialtrust+(1-partialtrust)*mintemp;                    
                    
                } 
   //next is to calculate the function trust between last 
second node to the finalsink node    
            } 
            if (aplit_result.Length == 2) 
            { 
                return "sink=" + 
aplit_result.GetValue(n-1).ToString() + ";final sink=" + 
finalsink.ToString() + ";partial Trust value=" + 
partialtrust.ToString(); 
            } 
            else 
            { 
                return "sink=" + 
aplit_result.GetValue(n).ToString() + ";final sink=" + 
finalsink.ToString() + ";partial Trust value=" + 
partialtrust.ToString(); 
            } 
 }
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Appendix-C MTM Core Code 
 

         
private double calculatetrustformodel4(int source, Array 
sinkarray, int finalsink, Array degradevalueinmodel) 
        { 
            int n, i, chainlength; 
            double P0 = rand.Next(1, 2000) / 10000.0; 
//p0=0.0001~0.2  
            Array chain; 
            double trust = P0; 
            trustchain.Clear(); 
             
            for (n = 0; n < sinkarray.Length; n++) 
            { 
                if 
(System.Convert.ToInt16(sinkarray.GetValue(n)) == source) 
//source has direct functional relationship with finalsink 
                { 
                    trustchain.Add("partial Trust value=" + 
nodefunctiontrust.GetValue(source, finalsink).ToString() + 
";weight=0.5"); //for model 4 
                } 
                else 
                { 
                    chain = parallalization(source, 
System.Convert.ToInt16(sinkarray.GetValue(n))); 
                    chainlength = chain.Length; 
                    if (chainlength != 0) 
                    { 
                        for (i = 0; i < chainlength; i++) 
                        { 
                            
trustchain.Add(calculatetrustvalue_inmodel4(chain.GetValu
e(i).ToString(), finalsink)); 
                        } 
                    } 
 
                } 
            } 
            if (trustchain.ToArray().Length != 0) 
            { 
                trust = 
analyzetrustchain_inmodel4(trustchain.ToArray()); 
            } 
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            if 
(System.Convert.ToDouble(degradevalueinmodel.GetValue(sou
rce, finalsink)) <= 0) 
            { 
                trust = trust * 
Math.Exp(System.Convert.ToDouble(degradevalueinmodel.GetV
alue(source, finalsink))); 
            } 
 
            else 
            { 
                trust = (1 + 
System.Convert.ToDouble(degradevalueinmodel.GetValue(sour
ce, finalsink)) / 100.0) * trust; 
                if (trust > 1) 
                { 
                    trust = 1; 
                } 
 
            } 
            return trust; 
        } 
 
        private double analyzetrustchain_inmodel4(Array 
mytrustchain) 
        { 
 
            int chainnumber = mytrustchain.Length; 
            double i = 0.0; //return value 
            double j = 0.0; //summarize all the weight 
            int n_model4 = 0; 
            ArrayList weight_model4 = new ArrayList(); 
            ArrayList trust_model4 = new ArrayList(); 
            for (n_model4 = 0; n_model4 < chainnumber; 
n_model4++) 
            { 
                //analyze the number 
                //"partial Trust value=" + 
nodefunctiontrust.GetValue(source, finalsink).ToString() + 
";weight=0.5" 
                
weight_model4.Add(System.Convert.ToDouble(mytrustchain.Ge
tValue(n_model4).ToString().Substring(1 + 
mytrustchain.GetValue(n_model4).ToString().LastIndexOf("=
")))); 
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trust_model4.Add(mytrustchain.GetValue(n_model4).ToString
().Substring(1 + 
mytrustchain.GetValue(n_model4).ToString().IndexOf("="), 
System.Convert.ToInt16(mytrustchain.GetValue(n_model4).To
String().IndexOf(";")) - 1 - 
System.Convert.ToInt16(mytrustchain.GetValue(n_model4).To
String().IndexOf("="))));                 
            } 
 
            Array weightarray = weight_model4.ToArray(); 
            Array trustarray_model4 = trust_model4.ToArray(); 
 
            for (n_model4 = 0; n_model4 < chainnumber; 
n_model4++) 
            { 
                j = j + 
System.Convert.ToDouble(weightarray.GetValue(n_model4)); 
                i = i + 
System.Convert.ToDouble(weightarray.GetValue(n_model4)) * 
System.Convert.ToDouble(trustarray_model4.GetValue(n_mode
l4)); 
            } 
            return i / j; 
 
        } 
 
        private string calculatetrustvalue_inmodel4(string 
onechain, int finalsink) 
        { 
            double partialtrust; 
            char[] tempy = onechain.ToCharArray(); 
            int nn = 0; 
            foreach (char x in tempy) 
            { 
                if (x == 43) 
                    nn = nn + 1; 
            } 
            nn = nn + 1; 
            string[] split = onechain.Split("+".ToCharArray(), 
nn); 
            Array aplit_result = 
Array.CreateInstance(typeof(int), split.Length); 
            int n; 
            for (n = 0; n < split.Length; n++) //need to separate 
considering the last node and the other nodes 
            { 
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aplit_result.SetValue(System.Convert.ToInt16(split.GetVal
ue(n).ToString().Substring(4)), n); 
            } 
            if (split.Length == 2) 
            {   partialtrust = 1 + 2 * 
System.Convert.ToDouble(nodetrust.GetValue(System.Convert
.ToInt16(aplit_result.GetValue(0)),  
System.Convert.ToInt16(aplit_result.GetValue(1)))) * 
System.Convert.ToDouble(conditionalfunctiontrust.GetValue
(System.Convert.ToInt16(aplit_result.GetValue(1)), 
finalsink)) - 
System.Convert.ToDouble(conditionalfunctiontrust.GetValue
(System.Convert.ToInt16(aplit_result.GetValue(1)), 
finalsink)) - 
System.Convert.ToDouble(nodetrust.GetValue(System.Convert
.ToInt16(aplit_result.GetValue(0)), 
System.Convert.ToInt16(aplit_result.GetValue(1)))); 
                return "partial Trust value=" + 
partialtrust.ToString() + ";weight=0.75"; 
            } 
            else 
            { 
                partialtrust = 1 + 2 * 
System.Convert.ToDouble(nodetrust.GetValue(System.Convert
.ToInt16(aplit_result.GetValue(0)), 
System.Convert.ToInt16(aplit_result.GetValue(1)))) * 
System.Convert.ToDouble(conditionalreferencetrust.GetValu
e(System.Convert.ToInt16(aplit_result.GetValue(1)), 
System.Convert.ToInt16(aplit_result.GetValue(2)))) - 
System.Convert.ToDouble(conditionalreferencetrust.GetValu
e(System.Convert.ToInt16(aplit_result.GetValue(1)), 
System.Convert.ToInt16(aplit_result.GetValue(2)))) - 
System.Convert.ToDouble(nodetrust.GetValue(System.Convert
.ToInt16(aplit_result.GetValue(0)), 
System.Convert.ToInt16(aplit_result.GetValue(1)))); 
                partialtrust = 1 + 2 * partialtrust * 
System.Convert.ToDouble(conditionalfunctiontrust.GetValue
(System.Convert.ToInt16(aplit_result.GetValue(2)), 
finalsink)) - 
System.Convert.ToDouble(conditionalfunctiontrust.GetValue
(System.Convert.ToInt16(aplit_result.GetValue(2)), 
finalsink)) - partialtrust; 
                return "partial Trust value=" + 
partialtrust.ToString() + ";weight=1"; 
            } 
        } 


