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Summary

Averaging 22 nucleotides in length, microRNAs (miRNAs) are endogenous, post-transcriptional

regulators of gene expression. They bind to target messenger RNA transcripts in a sequence spe-

cific manner, inducing mRNA degradation, translational repression or endonucleolytic cleavage.

Given the fact that only a fraction of the several thousand known miRNAs have well-characterized

functions, computational approaches remain an important means of studying miRNA targets. The

accurate prediction of a comprehensive set of mRNAs regulated by animal miRNAs remains an

open problem. In particular, the prediction of targets that do not possess evolutionarily conserved

complementarity to their miRNA regulators is not adequately addressed by current tools.

I describe a novel animal miRNA target prediction algorithm, MicroTar, which is based on

miRNA–target complementarity and thermodynamic data. The algorithm uses predicted free en-

ergies of unbound mRNA and putative mRNA–miRNA heterodimers, implicitly addressing the

accessibility of the mRNA 3′ untranslated region. MicroTar does not rely on evolutionary con-

servation to discern functional targets and is able to predict both conserved and non-conserved

targets. Parallelization makes feasible the use of full-molecule energy computations, rather than

the intramolecular-bond-free approximations that are currently used. In addition, a statistical

method is applied for determining the significance of target predictions. The algorithm is vali-

dated on sets of experimentally-verified targets in three different species; MicroTar achieves better

sensitivity than a widely-used target prediction tool in all three cases.
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Chapter 1

Introduction

Averaging 22 nucleotides in length, microRNAs (miRNAs) are endogenous, small RNA regula-

tors of gene expression at the post-transcriptional level. They bind to target messenger RNAs in

a sequence-specific manner, inducing mRNA degradation, translational repression or endonucle-

olytic cleavage. The first miRNA, lin-4, was discovered in 1993 in the nematode Caenorhabditis

elegans, in genetic screens for mutants with disrupted developmental timing [1]. miRNAs, how-

ever, languished as something of a worm-specific oddity until the discovery—some seven years

later—of let-7, a second C. elegans miRNA [2], but one that had readily identifiable homologues

in the emerging Drosophila and human genomes. There has since been an explosion of interest in

the field, and the identification of hundreds of miRNAs in organisms as disparate as plants, verte-

brates, arthropods, nematodes, and viruses [3] has established miRNAs as pervasive regulators of

gene expression (Figure 1.1). miRNAs have been implicated in a diverse array of processes, rang-

ing from organism development to cell differentiation, metabolism, apoptosis, and cancer; they

are predicted to regulate a significant fraction of protein-coding genes [4], and have a widespread

impact on mammalian mRNA evolution [5].

1.1 Animal miRNA Biogenesis: An Overview

1.1.1 Transcription

MicroRNA genes are found in diverse genomic locations (Figure 1.2). Roughly four-fifths occur

in gene deserts—regions devoid of protein-coding genes. A fifth overlap with other transcripts,

most commonly with introns of pre-mRNAs, but occasionally also with exons and 3′ untranslated

1



CHAPTER 1. INTRODUCTION 2

Metazoa

Anopheles gambiae: 38

Apis mellifera: 54
Bombyx mori: 21
Drosophila melanogaster: 78
Drosophila pseudoobscura: 73
Caenorhabditis briggsae: 95
Caenorhabditis elegans: 132

Schmidtea mediterranea: 63
Xenopus laevis: 7
Xenopus tropicalis: 177

Gallus gallus: 149
Canis familiaris: 6
Monodelphis domestica: 107

Ateles geoffroyi: 45
Lagothrix lagotricha: 48

Saguinus labiatus: 42
Macaca mulatta: 71
Macaca nemestrina: 75
Gorilla gorilla: 86
Homo sapiens: 475
Pan paniscus: 89
Pan troglodytes: 83
Pongo pygmaeus: 84

Lemur catta: 16
Cricetulus griseus: 1
Mus musculus: 377
Rattus norvegicus: 234
Bos taurus: 117
Ovis aries: 4

Sus scrofa: 54
Danio rerio: 337
Fugu rubripes: 131
Tetraodon nigroviridis: 132

Chlamydomonas reinhardtii: 15
Protistae

Viridiplantae Arabidopsis thaliana: 184
Brassica napus: 5
Glycine max: 22
Medicago truncatula: 30
Physcomitrella patens: 77
Populus trichocarpa: 215
Saccharum officinarum: 16
Sorghum bicolor: 72
Zea mays: 96

Viruses

Epstein Barr virus: 23
Herpes Simplex Virus 1: 2
Human cytomegalovirus: 11
Human immunodeficiency virus 1: 2
Kaposi sarcoma-associated herpesvirus: 13
Mareks disease virus: 8
Mareks disease virus type 2: 17
Mouse gammaherpesvirus 68: 9
Rhesus lymphocryptovirus: 16
Rhesus monkey rhadinovirus: 7
Simian virus 40: 1

Figure 1.1: Phylogeny and species-level count of known miRNAs; data from miRBase r9.2, May 2007 [3].
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Figure 1.2: Genomic distribution of known miRNA genes; data from miRBase r9.2, May 2007 [3].

regions (UTRs). Intergenic miRNAs frequently occur in clusters with upstream promoters; these

are transcribed as a single polycistronic primary transcript (pri-miRNA). miRNAs that overlap with

other transcripts are thought to share regulatory elements and a primary transcript with their host

genes. Figure 1.3 presents an overview of the entire miRNA biogenesis pathway.

Mounting evidence indicates that Pol II is the principal RNA polymerase for miRNA gene tran-

scription: chromatin immunoprecipitation experiments have demonstrated Pol II to be physically

associated with miRNA promoters; pri-miRNAs possess a 5′ 7-methyl guanosine cap and a 3′

polyadenine tail, both hallmarks of Pol II transcription [7]. However, recent results from chro-

matin immunoprecipitation and cell-free transcription assays implicate Pol III in the transcription

of miRNAs interspersed among repetitive Alu elements, and possibly upto a quarter of all human

miRNAs [8].

1.1.2 Maturation

The pri-miRNA transcript is cleaved by Drosha, a nuclear RNAse III endonuclease, giving rise to

∼70-nucleotide hairpin-shaped miRNA precursors (pre-miRNAs). Drosha works in concert with

a cofactor, the DiGeorge syndrome critical region gene 8 (DGCR8) protein in humans (known

as Pasha in D. melanogaster and C. elegans), as part of the Microprocessor complex. In the only

model of Microprocessor substrate recognition proposed to date, DGCR8 functions as a molecu-

lar anchor that measures distance, for the cut by Drosha, from the base of the hairpin stem at

the junction of single- and double-stranded RNA. How Drosha recognizes its substrates, possibly

through structural features, is less clearly understood [9].

Cropping by Drosha defines one end of the mature miRNA sequence; further processing re-

quires a Ran-GTP mediated export of the pre-miRNA to the cytoplasm by the nuclear transport

factor Exportin-5. In the cytoplasm a second RNAse III, Dicer, further dices the pre-miRNA into



CHAPTER 1. INTRODUCTION 4

Transcription

miRNA gene

Pol II/III

Cap (A)n

Cropping Drosha–DGCR8

pri-miRNA

Exportin-5–RanGTP

Export
Nucleus

Cytoplasm

pre-miRNA
(~70-nt stem-loop 
with 2-nt 3´ overhang)

NPC

pre-miRNA

Dicing Dicer

miRNA duplex 
(~22-nt)

Strand selection Dicer

mature miRNA in miRISC 
(~22-nt)

miRNP

Figure 1.3: An overview of miRNA biogenesis; adapted from [6]. Following transcription by Pol II or III, the
primary miRNA is cropped by the Drosha–DGCR8 Microprocessor complex, giving rise to a hairpin-shaped
miRNA precursor. The pre-miRNA is exported to the cytoplasm by Exportin-5–RanGTP, where it is further
cleaved by Dicer to release a ∼22-nt miRNA duplex. Finally, one of the strands is preferentially incorporated
into the miRISC effector complex, which acts on cognate mRNAs in a sequence-specific manner. NPC, nuclear
pore complex; miRISC, miRNA-induced silencing complex.
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a ∼22-nucleotide RNA duplex. Following strand unravelling by a Helicase, one of the strands—

generally the one with the less stable 5′ end—is incorporated into an effector complex called the

miRNP or the miRNA-induced silencing complex (miRISC). The other strand, called the miRNA*

is thought to be degraded, and is typically found at much lower frequencies in libraries of cloned

miRNAs [10]. RISC comprises, at its core, a member of the Argonaute (Ago) protein family,

whose members all contain a central PAZ domain (named after the family member proteins Piwi,

Argonaute and Zwille), and a carboxy terminal PIWI domain [11].

1.1.3 Target Recognition

While mechanisms of target recognition by miRISC are not well understood, loss-of-function mu-

tation studies have demonstrated the core of miRNA sequence specificity to be a heptameric seed

sequence at its 5′ end, which is complementary to one or more target sites in its cognate mRNA

[4]. Experimentally verified target sites have, thus far, only been found in the 3′-UTRs of mRNAs;

in vitro tests show target sites in 5′-UTRs and coding regions to be effective downregulators of

gene expression [12, 13], but their endogenous occurrence remains undetermined.

1.1.4 Mechanisms of miRNA Action

The extent of complementarity between an miRNA and its target determines the mode of post-

transcriptional regulation. A small number of animal miRNAs with sufficient complementarity to

their targets induce mRNA endonucleolytic cleavage: slicing between nucleotides 10 & 11 from the

5′ end of the miRNA, as in canonical siRNA-mediated RNA silencing [14]. However, most miRNAs

are only partially complementary to their cognate mRNAs, and cause transcript destabilization

by other mechanisms such as decapping and deadenylation [15, 16] or translational repression

[17, 18].

1.1.5 Expression Patterns

miRNA expression varies considerably in different tissues and at various stages of development,

which suggests tissue- or organ-specific functions for miRNAs [19, 20], and potentially critical

roles in development to stabilize pathways and increase phenotypic reproducibility [21]. Aberrant

miRNA expression is associated with a variety of cancers, and miRNA expression profiles have been

used to diagnose and classify cancers [22, 23].



CHAPTER 1. INTRODUCTION 6

Program Interface Reference(s)

miRanda Web access to predictions, downloadable software [27]
http://www.microrna.org/

PicTar Web access to predictions [28, 29]
http://pictar.bio.nyu.edu/

TargetScan Web access to predictions [30]
http://www.targetscan.org/

RNAHybrid Web submission, Web API, downloadable software [31]
http://bibiserv.techfak.uni-bielefeld.de/rnahybrid/

MicroInspector Web submission [32]
http://mirna.imbb.forth.gr/microinspector/

DIANA-microT Web submission [33]
http://www.diana.pcbi.upenn.edu/

Targetboost Web access to predictions [34]
https://demo1.interagon.com/targetboost/

[Stark et al.] Article supplementary data [35]

[Robins et al.] Article supplementary data [36]

Table 1.1: A list of current miRNA target prediction tools, with access details. Note that only RNAHybrid
and miRanda provide source code for download.

1.2 miRNA Target Prediction

Functions have only been experimentally assigned to a small fraction of the few thousand known

miRNAs [24]. Of the experimental strategies available to investigate miRNA function, stringent ge-

netic tests that link miRNA loss-of-function mutants to misregulated targets, and point mutations

in miRNA binding sites to specific phenotypes are impractical on a genomic scale in any animal

species [25]. Tissue-culture assays using reporter gene constructs fused to target sequences are

an easier alternative, but their reliance on ectopic miRNA expression harbours the danger of mea-

suring what may be a nonphysiological interaction between two molecules with complementary

surfaces [26].

Computational approaches are thus likely to remain an important means of studying miRNA

targets for the forseeable future, not least as a means of directing wet-lab experiments. These pre-

dictions are no doubt hampered by the fact that animal miRNAs—in contrast to plant miRNAs—

tend to be only partially complementary to their target mRNAs. This fact, compounded by the

small size of these molecules, precludes the use of standard sequence comparison methods.

http://www.microrna.org/
http://pictar.bio.nyu.edu/
http://www.targetscan.org/
http://bibiserv.techfak.uni-bielefeld.de/rnahybrid/
http://mirna.imbb.forth.gr/microinspector/
http://www.diana.pcbi.upenn.edu/
https://demo1.interagon.com/targetboost/
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1.2.1 Current Approaches

Several algorithms have been developed to predict miRNA targets in animal species; these are

listed in Table 1.1. A common strategy in several of these programs is to rank target 3′-UTR

complementarity by some combination of duplex free energy and/or pairing requirements at the

5′ end (seed region) of the miRNA [25]. For instance, TargetScan [30] combines requirements

for conserved perfect Watson-Crick pairing at positions 2–8 of the miRNA with estimates of the

free energy of isolated miRNA–target site interactions, ignoring initiation free energy. While in

vitro tests have shown sites containing G:U base-pairs to be functional but impaired [4], recent in

vivo experiments have demonstrated them to be efficiently downregulated [26]. Taken together

with the presence of a G:U base-pair in the seed region of a functional let-7 binding site in the

lin-41 3′-UTR [37], these results make a case for the inclusion of seeds with G:U wobbles in target

prediction algorithms.

The PicTar [28, 29] algorithm defines seeds as heptamers with Watson-Crick or G:U pairings

at positions 1–7 or 2–8 from the miRNA 5′ end. It combines seed searches with RNA duplex free

energy filters, evolutionary conservation requirements, and a probabilistic scoring mechanism to

predict targets that are under combinatorial control by co-expressed miRNAs. However, it makes

use of RNAHybrid [31], an algorithm that approximates RNA duplex free energies by discarding

intramolecular hybridizations in order to achieve linear time complexity.

Robins et al. [36] incorporate mRNA secondary structure computed from 3′-UTRs in their

target prediction algorithm, but require perfect Watson-Crick complementarity in the seed site.

Furthermore, the use of isolated 3′-UTRs is likely to produce structures very different from the

structure of 3′-UTRs in folds that use complete mRNA sequences.

While most of the tools listed in Table 1.1 are accessible as web services, only miRanda [27]

and RNAHybrid are available as downloadable software that can be modified, extended and run

on custom datasets. Most listed algorithms also rely on target conservation across two or more

species as a filter. Although this is often necessary to increase the signal-to-noise ratio in genome-

wide scans, it results in the unavoidable omission of biologically relevant unconserved targets, as

well as those of species-specific miRNAs.

1.2.2 MicroTar: A Novel Approach

This dissertation presents a novel miRNA target prediction algorithm, MicroTar, that does not rely

on evolutionary conservation, and is thus not limited to the prediction of conserved targets.
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Prediction strategies include the use of partial complementarity of miRNAs to their target mes-

sages, the predicted free energies of mRNAs & miRNA–mRNA duplexes, and extreme value statis-

tics. Harnessing the power of parallel computing obviates the need for introducing approximations

that discard intramolecular base pairs in estimates of miRNA–mRNA duplex free energy; this has

the added advantage of implicitly incorporating the accessibility of 3′-UTRs in the algorithm. The

following chapter provides a detailed description of the MicroTar algorithm, and the energy cal-

culations and parallelism it employs.



Chapter 2

Materials and Methods

2.1 The MicroTar Algorithm

The MicroTar algorithm is based on the following assumptions:

• miRNA target specificity is determined by a heptameric seed sequence (beginning at the first

or second position from the 5′ end of the miRNA) that is complementary to sites in mRNA

3′-UTRs

• targets are functional if miRNA–mRNA duplex formation is energetically favourable

Beginning with a set of fasta-formatted query (miRNA) sequences and target (mRNA) sequences,

the MicroTar algorithm schedules a query–target computation to run on an idle node. Each such

computation involves predicting the minimum free energy of the each mRNA molecule, searching

for seed sites, and performing a constrained fold where each seed match is, in turn, bound in the

miRNA–mRNA heterodimer; the output is a list of putative duplexes more stable than free mRNA.

This result is subsequently subjected to a statistical analysis to determine the significance of each

miRNA–mRNA match. Figure 2.1 presents a schematic overview of the algorithm.

2.1.1 Overview

Parallelism

MicroTar employs coarse-grained parallelism by scheduling seed search/energy computations for

pairs of miRNA–mRNA sequences to be run on nodes as they become available. This balances the

9
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Seed Search
Watson-Crick or 

G–U pairs

G2
Constrained fold, 

duplex MFE

G1
Unbound mRNA 

MFE

Predicted 
miRNA Target

G2 < G1

MPI Scheduler
Master node

Energy Computation
Slave nodes

Single miRNA & 
mRNA

Input Sequences
q miRNAs, t mRNAs

Statistical Analysis
Extreme value modelling

Figure 2.1: Beginning with a set of fasta-formatted query (miRNA) sequences and target (mRNA) sequences,
the MicroTar algorithm schedules energy computations on slave nodes as they become available. Each slave
node predicts the minimum free energy of the each mRNA molecule, searches for seed sites, and performs a
constrained fold where each seed match is, in turn, bound in the miRNA–mRNA heterodimer; the output is a
list of putative duplexes more stable than free mRNA. The results are subsequently subjected to a statistical
analysis to determine the significance of each miRNA–mRNA match.
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speedup from parallelization with the increased communications overhead that would result from

finer-grained parallel programming.

Secondary Structure Prediction

The secondary structure and minimum free energy (G1) of the complete unbound mRNA molecule

are predicted using the fold routine from the RNAlib library of the ViennaRNA package [38]. This

is an implementation of the Zuker & Stiegler dynamic programming algorithm [39], described in

Section 2.2 below.

Seed Search

Loss-of-function mutation studies have demonstrated the core of miRNA sequence specificity to be

a heptameric seed sequence [4], which the algorithm defines as nucleotides 1–7 or 2–8 at the 5′

end of the miRNA. MicroTar searches each mRNA 3′-UTR (or complete mRNA in the absence of

annotations) for sites with Watson-Crick or G–U wobble complementarity to this seed sequence;

these hits are called seed matches.

Constrained Fold

The mRNA is now folded with each seed match bound, in turn, to its corresponding miRNA seed

sequence. This uses the cofold [40] routine from the RNAlib library, also calculating the free

energy of the duplex, G2.

Output

The output is a list of all seed matches, along with predicted energies of the unbound mRNA (G1),

putative mRNA–miRNA heterodimers (G2), the estimated energy of duplex formation

g = G2 −G1, (2.1)

and optionally, images of the secondary structure of each mRNA before and after miRNA binding

(for instance, Figure 2.2).



CHAPTER 2. MATERIALS AND METHODS 12

Figure 2.2: Sample output of the C. elegans cog-1 [GenBank:NM 001027093] mRNA secondary structure
before and after binding with the lsy-6 miRNA. Note the changes in global structure, which cannot be ap-
proximated using only 3′-UTRs.

2.1.2 Functional Targets

Seed matches are considered to be functional targets if the relevant miRNA–mRNA heterodimer

is more energetically stable than free mRNA, i.e., g < 0. It is then possible to estimate the

significance of the prediction using extreme value statistics, much in the fashion of Rehmsmeier et

al. [31] outlined below.

2.1.3 Statistical Analysis of Predicted Targets

Negative normalized free energy

The occurrence of favourable hybridizations of short miRNAs with long mRNAs can frequently be

attributed to chance: the longer the mRNA, the more likely the incidence. In order to eliminate

the effect of sequence length on our measure of free energy [41, 31], we define the negative

normalized free energy

gn = − g

log(mn)
(2.2)

where g is defined in equation 2.1, m is the length of the target sequence searched, and n is the

length of the miRNA seed.
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Extreme Value Statistics

Extreme value distributions (EVDs) are limiting distributions that describe the minimum or max-

imum of independent random variables [42]. If we consider the miRNA–mRNA duplex energy

estimation to be essentially an optimization procedure that produces a minimum, the negative

normalized free energy described above is a corresponding maximum, and can be described by an

EVD having a distribution function of the form

P [G ≤ t] = D(t) = exp
(
− exp

(
a− t

b

))
. (2.3)

A transformation then converts this distribution function into a straight line:

log (− log (D)) =
a− t

b
=

(
−1

b

)
t +

a

b
. (2.4)

By scanning for targets of random miRNA sequences in the mRNA sequences in the dataset, or

those of real miRNAs in shuffled mRNAs, we obtain a set of negative normalized free energies,

which we expect will follow an EVD. We then transform the distribution function of the empirical

EVD into a straight line, as in Equation 2.4, and estimate the parameters of the EVD by a linear

least squares fit to the line y = mx + c, obtaining

b = − 1
m

(2.5)

and

a = cb. (2.6)

We can now compute, for each predicted miRNA–mRNA duplex, a p-value, the probability that the

same or a more favourable free energy is observed due to chance:

P [Z ≥ gn] = 1− exp
(
− exp

(
a− gn

b

))
(2.7)

where a and b are estimated EVD parameters, and gn is the negative normalized free energy from

Equation 2.2 [31].
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2.1.4 Technical details

MicroTar has been written using the C programming language, and makes use of the RNAlib

library from the Vienna RNA package [38]. Great care has been taken to make the system suit-

able for datasets of varying sizes. Sequences are loaded into memory only as required, allowing

the handling of virtually any number of sequences. Functions from v2.0 of the Message Passing

Interface (MPI) standard [43, 44] are used for parallelization.

2.2 RNA Folding: The Zuker-Stiegler Algorithm

This dynamic programming algorithm for computing minimum free energy (MFE) structures for

RNA molecules was proposed by Zuker and Stiegler in a seminal 1981 paper [39] and has become

a de facto standard. While it has undergone several refinements over the years, including the use

of more accurate thermodynamic parameters [45], the core algorithm, as in Zuker and Stiegler’s

description [39, 46] reproduced below, remains essentially unchanged.

2.2.1 Definitions

Consider an RNA molecule S with its nucleotides numbered 1 . . . N from the 5′ end. Si denotes

the ith nucleotide for 1 ≤ i ≤ N , and Sij denotes nucleotides from Si to Sj , both inclusive.

Now imagine the N nucleotides laid out equally spaced on a semicircle (Figure 2.3). In this

graph representation, the N nucleotides are vertices, the N − 1 arcs between the bases are exterior

edges representing phosphodiester bonds, and base pairing is denoted by line segments, or chords

(interior edges) between vertices. A chord is admissible if it connects complementary bases: G–

C, A–U or G–U. An admissible structure is then defined to be one whose graph contains only

admissible, non-interesecting chords that are never in contact. The no-contact condition ensures

that no nucleotide is paired more than once; non-intersection of chords constrains admissible

structures to those that are free of pseudoknots1.

A description of the free energy of the structure, or equivalently, of its graph, completes the

picture. A face is defined as a planar region of the graph that is bound on all sides. The energy of

the structure is then associated with the faces of its graph. A hairpin loop is represented by a face

with a single interior edge. A helix consists of interior edges separated by a single exterior edge

on either side. A bulge loop has interior edges separated by a single exterior edge on one side,

1An RNA structure in which one of the bases inside a hairpin loop pairs with a base outside the hairpin.
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Figure 2.3: Illustrative representations of RNA secondary structure. Left: conventional representation; right:
abstract graph representation with edges and vertices. BF: bifurcation loop, BU: bulge loop, H: hairpin loop,
I: interior loop, S: stack.

but more than one exterior edge on the other. Interior loops have more than one exterior edge on

either side.

2.2.2 Recursion

The mathematical technique underlying the MFE determination is to compute two potentially

different energies for each subsequence Sij of the RNA sequence. For all pairs i, j satisfying

1 ≤ i < j ≤ N , let W (i, j) be the MFE of all possible admissible structures formed from the

subsequence Sij . Additionally, let V (i, j) be the MFE of all possible admissible stuctures formed

from Sij in which Si and Sj are paired with each other. If Si and Sj cannot pair, then V (i, j) →

∞. We note that W (i, j) ≤ V (i, j) for all i, j. The numbers V (i, j) and W (i, j) are computed

recursively: first for all 5-mers, followed by successively larger subsequences of S.

Boundary conditions for W and V are W (i, j) = V (i, j)→∞, if j−i < 4. Define the energy of

exterior loops to be zero, and–for simplicity—also assign zero energies to multiloops. Recursions

for W and V depend on the energy rules for loops. Let Eh(i, j) be the energy of the hairpin closed

by the base pair i ·j; Es(i, j) be the energy of the stacked pair i ·j and i+1 ·j−1; and Ebi(i, j, i′, j′)

the energy of the bulge or interior loop closed by i · j with i′ · j′ accessible from i · j. Then, for
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1 ≤ i < j ≤ N ,

W (i, j) =min {W (i + i, j), W (i, j − 1), V (i, j), min
i≤k<j

W (i, k) + W (k + 1, j)} (2.8)

V (i, j) =min {Eh(i, j), Es(i, j) + V (i + 1, j − 1), Vbi(i, j), Vm(i, j)} (2.9)

where Vbi(i, j) = min
i<i′<j′<j

i′−i+j−j′<2

{Ebi(i, j, i′, j′) + V (i′, j′)} (2.10)

and Vm(i, j) = min
i<k<j−1

{W (i + 1, k) + W (k + 1, j − 1)}. (2.11)

The recursion continues until reaching W (1, n) which is the minimum folding energy. Finally,

computation of the MFE structure—which is equivalent to identifying the interior edges of the

associated graph—is achieved by a straightforward traceback through matrices W and V.



Chapter 3

Results and Discussion

3.1 Parallel Speedup

In general, the speedup achieved by parallelization of an algorithm is defined as

Sn =
T1

Tn
, (3.1)

where n is the number of processors, T1 is the serial execution time, and Tn is the parallel execu-

tion time. While it may seem trivial for speedup to increase with the number of processors used, in

practice, the speedup achieved depends on the fraction of program code that can be parallelized

and, in distributed memory MPI implementations, the overhead due to communication between

processes, relative to the total computation time.

MicroTar employs a coarse-grained parallelization technique: the scheduling of computations

for miRNA–mRNA sequence pairs on processors as they become available. This provides for a rea-

sonable amount of computation in parallel, while minimizing communications overhead between

processors to achieve a credible amount of speedup (Figure 3.1).

3.2 Validation

On a test using three sets of experimentally verified miRNA targets in C. elegans, D. melanogaster,

and M. musculus, from v3.0 of TarBase [24], MicroTar showed better sensitivity than the widely

used PicTar [28, 29] algorithm (Table 3.1). miRNA sequences were retrieved from miRBase v9.0

[3]; mRNA sequences from RefSeq entries associated with the corresponding gene entry in the

17
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Figure 3.1: Parallel speedup for three MicroTar sample runs on hiv-miR-H1 vs. three human mRNAs:
ENST00000383119, ENST00000383326 and ENST00000379236 (in descending order of length), each repli-
cated 20 times for target sequence input; average of 2 repetitions. Note that longer sequences achieve mean-
ingful speedup over a slightly greater range of processors, before communications overhead begins to swamp
benefits from parallelization.
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Program Species Predicted Targets Verified Targets Sensitivity
(TP) (TP + FN) TP/(TP + FN)

D. melanogaster 39 63 0.62

MicroTar C. elegans 8 13 0.62

M. musculus 24 43 0.56

D. melanogaster 35 63 0.56

PicTar C. elegans 7 13 0.54

M. musculus 15 43 0.35

Table 3.1: A comparison of MicroTar and PicTar prediction results on three datasets of experimentally verified
miRNA targets; MicroTar achieves better sensitivity in all three cases.

Entrez Gene database. Prediction results are summarized in Figure 3.2, which shows a density

plot of free energies of the most stable predicted miRNA–target duplex for each gene-miRNA pair

in the three species. It should be emphasized that unverified predicted interactions ought to be

viewed as a guide for further experiments and not as false positives. A detailed listing of predicted

targets may be found in Appendix B.

3.3 Duplex energy estimation

At the core of the MicroTar algorithm lies a novel approach to the estimation of miRNA–mRNA

duplex energy. Interactions are viewed in a global context by predicting folds for the entire mRNA,

rather than just its 3′-UTR or seed match. By allowing intramolecular hybridizations, the algorithm

implicitly incorporates the accessibility of the 3′-UTR; seed matches in highly inaccessible UTRs

are expected to disrupt UTR secondary structure in putative duplexes. Large disruptions in base

pairing cannot be compensated for by bond formation during miRNA–mRNA hybridization. This

results in a putative duplex with free energy G2 far greater than that of the unbound mRNA, G1,

and the match is rejected.

Furthermore, parallelization makes feasible the use of full-molecule energy computations, re-

moving the need to introduce approximations that discard intramolecular base pairs in estimates

of miRNAmRNA duplex free energy, as is currently done in miRNA target prediction algorithms.

3.4 Significance of predictions

In order to estimate the significance of these predictions, p-values were calculated for the low-

est energy duplex for each miRNA–transcript pair, as derived in Equation 2.7. Parameters were
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Figure 3.2: A density plot of free energies of the most stable predicted miRNA–target duplex for each gene-
miRNA pair in (a) M. musculus, (b) C. elegans, and (c) D. melanogaster, with genes along the x-axis and
miRNAs along the y-axis. A more negative free energy indicates a more stable duplex, relative to its unbound
mRNA. Darker colours indicate lower free energies, as shown by the scale in the top-right corner of each
sub-figure. White squares indicate no predicted interaction.
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estimated separately for each species from a distribution computed with miRNAs shuffled using

the shuffleseq utility from the EMBOSS package [47]), while ensuring a sufficient number of

random sequences for approximately 4000 seed matches in each species. Figure 3.3 shows these

p-values in a density plot for each miRNA–target pair, as in Figure 3.2.
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Figure 3.3: A density plot of p-values lower than 0.1, of the most stable predicted miRNA–target duplex for
each gene-miRNA pair in (a) M. musculus, (b) C. elegans, and (c) D. melanogaster, with genes along the x-axis
and miRNAs along the y-axis. A lower p-value indicates a lower probability of the energy of the duplex (or
more favourable energies) occurring due to chance alone. Darker colours indicate lower p-values, as shown
by the scale in the top-right corner of each sub-figure. White squares indicate no predicted interaction, or a
p-value greater than the cutoff value of 0.1.



Chapter 4

Conclusions

Given the fact that only a fraction of the several thousand known miRNAs have well-characterized

functions, computational approaches are likely to remain an important means of studying miRNA

targets for the forseeable future. These are especially useful as a means of directing experimental

investigations of miRNA function, which remain impractical on a genomic scale in any animal

species.

MicroTar is a novel miRNA target prediction algorithm that does not rely on evolutionary

conservation to filter predicted targets and is able to address the problem of the prediction of

targets that are not conserved across different genomes. Parallel computing makes feasible the

use of complex energy prediction algorithms on a large scale, and by using estimates of miRNA–

mRNA duplex free energy that allow intramolecular pairings, MicroTar implicitly incorporates the

accessibility of 3′-UTRs. In tests on datasets of experimentally verified miRNA targets in C. elegans,

D. melanogaster and M. musculus, MicroTar displays greater sensitivity than the widely used PicTar

[28, 29] target prediction algorithm.

The limited state of knowledge of miRNA function to date—which necessitates the use of com-

putational methods—is somewhat paradoxically what makes it difficult to assess the performance

of miRNA target prediction tools. In the interim, therefore, unverified miRNA targets should be

treated not as false positives, but as a guide for further experimentation. With burgeoning interest

in the field, miRNA target prediction algorithms are certain to improve in the forseeable future, as

physiological details of miRNA–target interaction begin to emerge.

23
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Abstract
Background: The accurate prediction of a comprehensive set of messenger RNAs (targets)
regulated by animal microRNAs (miRNAs) remains an open problem. In particular, the prediction
of targets that do not possess evolutionarily conserved complementarity to their miRNA
regulators is not adequately addressed by current tools.

Results: We have developed MicroTar, an animal miRNA target prediction tool based on miRNA-
target complementarity and thermodynamic data. The algorithm uses predicted free energies of
unbound mRNA and putative mRNA-miRNA heterodimers, implicitly addressing the accessibility
of the mRNA 3' untranslated region. MicroTar does not rely on evolutionary conservation to
discern functional targets, and is able to predict both conserved and non-conserved targets.
MicroTar source code and predictions are accessible at http://tiger.dbs.nus.edu.sg/microtar/, where
both serial and parallel versions of the program can be downloaded under an open-source licence.

Conclusion: MicroTar achieves better sensitivity than previously reported predictions when
tested on three distinct datasets of experimentally-verified miRNA-target interactions in C. elegans,
Drosophila, and mouse.

Background
MicroRNAs (miRNAs) are a class of endogenous, small
regulatory RNA averaging 22 nucleotides in length that
mediate the post-transcriptional regulation of messenger
RNAs. They bind to target messages in a sequence-specific
manner, and induce translational repression or endonu-
cleolytic cleavage. The first two miRNAs, lin-4 and let-7
were discovered some seven years apart in the worm C.
elegans, in genetic screens for mutants with disrupted
developmental timing [1,2]. There has since been an
explosion of interest in the field, and the identification of

hundreds of miRNAs in metazoans as disparate as verte-
brates, arthropods, nematodes, and viruses [3] has estab-
lished miRNAs as pervasive regulators of gene expression.
For recent reviews, see [4-6].

Functions have only been experimentally assigned to a
small fraction of the few thousand known miRNAs [7]. Of
the experimental strategies available to investigate miRNA
function, stringent genetic tests that link miRNA loss-of-
function mutants to misregulated targets, and point muta-
tions in miRNA binding sites to specific phenotypes are
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impractical on a genomic scale in any animal species [8].
Tissue-culture assays using reporter gene constructs fused
to target sequences are an easier alternative, but their reli-
ance on ectopic miRNA expression harbours the danger of
measuring what may be a nonphysiological interaction
between two molecules with complementary surfaces [9].
Computational approaches are thus likely to remain an
important means of studying miRNA targets for the for-
seeable future, not least as a means of directing wet-lab
experiments. These predictions are no doubt hampered by
the fact that animal miRNAs – in contrast to plant miR-
NAs – tend to be only partially complementary to their
target mRNAs. This fact, compounded by the small size of
these molecules, precludes the use of standard sequence
comparison methods.

Several algorithms have been developed to predict miRNA
targets in animal species; these are listed in Table 1. A
common strategy in several of these programs is to rank
target 3' untranslated region (UTR) complementarity by
some combination of duplex free energy and/or pairing
requirements at the 5' end (seed region) of the miRNA [8].
For instance, TargetScan [10] combines requirements for
conserved perfect Watson-Crick pairing at positions 2–8
of the miRNA with estimates of the free energy of isolated
miRNA-target site interactions, ignoring initiation free
energy. While in vitro tests have shown sites containing
G:U base-pairs to be functional but impaired [11], recent
in vivo experiments have demonstrated them to be effi-
ciently downregulated [9]. Taken together with the pres-
ence of a G:U base-pair in the seed region of a functional
let-7 binding site in the lin-41 3'-UTR [12], these results
make a case for the inclusion of seeds with G:U wobbles
in target prediction algorithms.

The PicTar [13,14] algorithm defines seeds as heptamers
with Watson-Crick or G:U pairings at positions 1–7 or 2–
8 from the miRNA 5' end. It combines seed searches with

RNA duplex free energy filters, evolutionary conservation
requirements, and a probabilistic scoring mechanism to
predict targets that are under combinatorial control by co-
expressed miRNAs. However, it makes use of RNAHybrid
[15], an algorithm that approximates RNA duplex free
energies by discarding intramolecular hybridizations in
order to achieve linear time complexity.

Robins et al. [16] incorporate mRNA secondary structure
computed from 3'-UTRs in their target prediction algo-
rithm, but require perfect Watson-Crick complementarity
in the seed site. Furthermore, the use of isolated 3'-UTRs
is likely to produce structures very different from the struc-
ture of 3'-UTRs in folds that use complete mRNA
sequences.

While most of the tools listed in Table 1 are accessible as
web services, only miRanda [17] and RNAHybrid are
available as downloadable software that can be modified,
extended and run on custom datasets. Most listed algo-
rithms also rely on target conservation across two or more
species as a filter. While this is necessary to distinguish
functional targets from a vast array of candidates, it results
in the unavoidable omission of real targets that are not
thus conserved.

Here we present MicroTar, an miRNA target prediction
program that does not rely on evolutionary conservation.
Through the use of the partial complementarity of miR-
NAs to their target messages, and the predicted free energy
of complete mRNA molecules, we are able to address the
problem of the prediction of targets that are not conserved
across different genomes. Moreover, harnessing the power
of parallel computing obviates the need for introducing
approximations that discard intramolecular base pairs in
estimates of miRNA-mRNA duplex free energy; we thus
implicitly incorporate the accessibility of 3'-UTRs in the
algorithm. MicroTar source code – available under an

Table 1: miRNA target prediction tools. A list of current miRNA target prediction tools, with access details. Note that only 
RNAHybrid and miRanda provide source code for download.

Program Interface Reference(s)

miRanda Web access to predictions, downloadable software
http://www.microrna.org/

[17]

PicTar Web access to predictions
http://pictar.bio.nyu.edu/

[13,14]

TargetScan Web access to predictions
http://www.targetscan.org/

[10]

RNAHybrid Web submission, Web API, downloadable software
http://bibiserv.techfak.uni-bielefeld.de/rnahybrid/

[15]

MicroInspector Web submission
http://mirna.imbb.forth.gr/microinspector/

[25]

DIANA-microT Web submission
http://www.diana.pcbi.upenn.edu/

[26]

Targetboost Web access to predictions
https://demo1.interagon.com/targetboost/

[27]

[Stark et al.] Article supplementary data [28]
[Robins et al.] Article supplementary data [16]
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open-source licence – and predictions can be accessed at
the MicroTar website [18].

Implementation
Overview
The MicroTar algorithm is based on the following
assumptions:

• miRNA target specificity is determined by a heptameric
seed sequence (beginning at the first or second position
from the 5' end of the miRNA) that is complementary to
sites in mRNA 3'-UTRs

• targets are functional if miRNA-mRNA duplex forma-
tion is energetically favourable

Beginning with a set of fasta-formatted query (miRNA)
sequences and target (mRNA) sequences, the MicroTar
algorithm predicts the minimum free energy of the each
mRNA molecule, searches for seed sites, and performs a
constrained fold where each seed match is, in turn, bound
in the miRNA-mRNA heterodimer; the output is a list of
putative duplexes more stable than free mRNA, along
with images of bound and unbound mRNA secondary
structure. This result is subsequently subjected to a statis-
tical analysis to determine the significance of each
miRNA-mRNA match. Figure 1 presents a schematic over-
view of this algorithm.

Secondary structure prediction
The secondary structure and minimum free energy of the
complete unbound mRNA molecule are predicted using
the fold routine from the RNAlib library of the Vien-
naRNA package [19]. This is an implementation of the
Zuker & Stiegler dynamic programming algorithm [20].
We denote the predicted free energy of unbound mRNA as
G1.

Seed search
Loss-of-function mutation studies have demonstrated the
core of miRNA sequence specificity to be a heptameric
seed sequence [11], which we define as nucleotides 1–7 or
2–8 at the 5' end of the miRNA. MicroTar searches each
mRNA 3'-UTR (or complete mRNA in the absence of
annotations) for sites with Watson-Crick or G–U wobble
complementarity to this seed sequence; we refer to these
hits as seed matches.

Constrained fold
For each seed match above, the mRNA is again folded
under the constraint that the miRNA seed is bound to its
corresponding match. This uses the cofold [21] routine
from the RNAlib library. We denote the free energy of the
duplex as G2.

Output
The output is a list of all seed matches, along with pre-
dicted energies of the unbound mRNA (G1), putative
mRNA-miRNA heterodimers (G2), the estimated energy
of duplex formation (g = G2 - G1), and optionally, images
of the secondary structure of each mRNA before and after
miRNA binding (see e.g., Figure 2).

Functional targets
Seed matches are considered functional targets if the rele-
vant miRNA-mRNA heterodimer is more energetically sta-
ble than free mRNA, i.e., g < 0. We then estimate the
significance of the prediction using extreme value statis-
tics, much in the fashion of Rehmsmeier et al. [15]. This
procedure is outlined below.

Statistical analysis of predicted targets
Negative normalized free energy
The occurrence of favourable hybridizations of short miR-
NAs with long mRNAs can frequently be attributed to
chance: the longer the mRNA, the more likely the inci-
dence. In order to eliminate the effect of sequence length
on our measure of free energy [15,22], we define the neg-
ative normalized free energy

where m is the length of the target sequence searched, and
n is the length of the miRNA.

Extreme value statistics
Extreme value distributions (EVDs) are limiting distribu-
tions that describe the minimum or maximum of inde-
pendent random variables [23]. If we consider the
miRNA-mRNA duplex energy estimation to be essentially
an optimization procedure that produces a minimum, the
negative normalized free energy described above is a cor-
responding maximum, and can be described by an EVD
having a distribution function of the form

A transformation then converts this distribution function
into a straight line:

By scanning for targets of random miRNA sequences in
the mRNA sequences in the dataset, we obtain a set of neg-
ative normalized free energies, which we expect will fol-
low an EVD. We then transform the distribution function
of the empirical EVD into a straight line, as in Equation 3,
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MicroTar algorithmFigure 1
MicroTar algorithm. Beginning with a set of fasta-formatted query (miRNA) sequences and target (mRNA) sequences, the 
MicroTar algorithm predicts the minimum free energy of the each mRNA molecule, searches for seed sites, and performs a 
constrained fold where each seed match is, in turn, bound in the miRNA-mRNA heterodimer; the output is a list of putative 
duplexes more stable than free mRNA, along with images of bound and unbound mRNA secondary structure. This result is 
subsequently subjected to a statistical analysis to determine the significance of each miRNA-mRNA match.
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and estimate the parameters of the EVD by a linear least
squares fit to the line y = mx + c, obtaining

and

a = cb.  (5)

We can now compute, for each predicted miRNA-mRNA
duplex, a p-value, the probability that the same or a more
favourable free energy is observed due to chance:

where a and b are estimated EVD parameters, and gn is the
negative normalized free energy from Equation 1 [15].

Technical details
MicroTar has been written using the C programming lan-
guage, and makes use of the RNAlib library from the
Vienna RNA package [19]. Great care has been taken to
make the system suitable for datasets of varying sizes.
Sequences are loaded into memory only as required,
allowing the handling of virtually any number of
sequences. The parallel version uses functions from v2.0
of the Message Passing Interface (MPI).

b
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mRNA secondary structureFigure 2
mRNA secondary structure. Sample output of the C. elegans. cog-1 [GenBank:NM_001027093] mRNA secondary struc-
ture before and after binding with the lsy-6 miRNA. Note the changes in global structure, which cannot be approximated using 
only 3'-UTRs.
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MicroTar should compile and run under Linux and most
flavours of UNIX. It has been tested under Fedora Core 4
& 5 and CentOS 4.4 Linux distributions, on both 32 and
64 bit platforms.

Results and Discussion
Validation
We performed a test of MicroTar on three sets of experi-
mentally verified miRNA targets in C. elegans, Drosophila,

Energies of predicted miRNA targetsFigure 3
Energies of predicted miRNA targets. A density plot of free energies of the most stable predicted miRNA-target duplex 
for each gene-miRNA pair in (a) mouse, (b) C. elegans, and (c) Drosophila, with genes along the x-axis and miRNAs along the y-
axis. A more negative free energy indicates a more stable duplex, relative to its unbound mRNA. Darker colours indicate 
lower free energies, as shown by the scale in the top-right corner of each sub-figure. White squares indicate no predicted 
interaction.
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and mouse, from v3.0 of TarBase [7]. miRNA sequences
were retrieved from miRBase v9.0 [3]; mRNA sequences
from RefSeq entries associated with the corresponding
gene entry in the Entrez Gene database. In the absence of
3'-UTR annotations, the entire mRNA sequence was
scanned for seed matches by MicroTar. These results are
summarized in Figure 3, which shows a density plot of
free energies of the most stable predicted miRNA-target
duplex for each gene-miRNA pair in the three species.

Furthermore, we compared our predictions to the widely-
used PicTar algorithm, which was recently updated and
applied to miRNAs in C. elegans. This comparison is
shown in Table 2, where we note that MicroTar achieves
better sensitivity in all three cases. We emphasize that
unverified predicted interactions should be viewed as a
guide for further experiments and not as false positives.
Detailed lists of targets predicted are available as supple-
mentary data (see Additional File 1 – MicroTar target pre-
dictions compared to PicTar), and on the MicroTar
website [18].

Duplex energy estimation
At the core of the MicroTar algorithm lies a novel
approach to the estimation of miRNA-mRNA duplex
energy. Interactions are viewed in a global context by pre-
dicting folds for the entire mRNA, rather than just its 3'-
UTR or seed match. By allowing intramolecular hybridiza-
tions, we implicitly incorporate the accessibility of the 3'-
UTR; seed matches in highly inaccessible UTRs are
expected to disrupt UTR secondary structure in putative
duplexes. Large disruptions in base pairing cannot be
compensated for by bond formation during miRNA-
mRNA hybridization. This results in a putative duplex
with free energy G2 far greater than that of the unbound
mRNA, G1, and the match is rejected.

Significance of predictions
In order to estimate the significance of our predictions, we
calculated the p-value for the lowest energy duplex for
each miRNA-transcript pair, as derived in Equation 6. The
parameters were estimated separately for each species

from a distribution computed with random miRNAs. We
shuffled miRNAs using the shuffleseq utility from the
EMBOSS package [24], ensuring that there were a suffi-
cient number of random sequences for approximately
4000 seed matches in each species. Figure 4 shows these
p-values in a density plot for each miRNA-target pair, as in
Figure 3.

Conclusion
MicroTar does not rely on evolutionary conservation to
filter predicted targets and is able to address the problem
of the prediction of targets that are not conserved across
different genomes. Parallel computing makes feasible the
use of complex energy prediction algorithms on a large
scale, and by using estimates of miRNA-mRNA duplex
free energy that allow intramolecular pairings, MicroTar
implicitly incorporates the accessibility of 3'-UTRs. In tests
on three datasets of experimentally verified miRNA targets
in C. elegans, Drosophila and mouse, MicroTar displays
greater sensitivity than previously developed target predic-
tion programs.

Availability and Requirements
Project name: MicroTar

Project home page: http://tiger.dbs.nus.edu.sg/microtar/

Operating systems: Linux, UNIX

Programming language: C

Other requirements: GNU autoconf/automake

Licence: New BSD licence

Any restrictions to use by non-academics: None (check
ViennaRNA licence, however)

Authors' contributions
MTT and RT planned the project. RT acquired the data and
implemented the algorithm. Both authors prepared and
approved the final manuscript.

Table 2: MicroTar target predictions compared to PicTar. A comparison of MicroTar and PicTar prediction results on three datasets 
of experimentally verified miRNA targets; MicroTar achieves better sensitivity in all three cases.

Program Species Targets Predicted (TP) Targets in Dataset (TP + FN) Sensitivity TP/(TP + FN)

MicroTar D. melanogaster 39 63 0.62
C. elegans 8 13 0.62
M. musculus 24 43 0.56

PicTar D. melanogaster 35 63 0.56
C. elegans 7 13 0.54
M. musculus 15 43 0.35
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p-values of predicted miRNA targetsFigure 4
p-values of predicted miRNA targets. A density plot of p-values lower than 0.1, of the most stable predicted miRNA-tar-
get duplex for each gene-miRNA pair in (a) mouse, (b) C. elegans, and (c) Drosophila, with genes along the x-axis and miRNAs 
along the y-axis. A lower p-value indicates a lower probability of the energy of the duplex (or more favourable energies) occur-
ring due to chance alone. Darker colours indicate lower p-values, as shown by the scale in the top-right corner of each sub-fig-
ure. White squares indicate no predicted interaction, or a p-value greater than the cuto3 value of 0.1.
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Appendix B

MicroTar: miRNA Target Predictions

B.1 Caenorhabditis elegans

TarBase Id miRNA Gene NCBI GeneID Predicted by

PicTar MicroTar

9 lsy-6 cog-1 175149 Y Y

5 let-7 daf-12 181263 Y Y

8 let-7 die-1 174569 N Y

10 miR-273 die-1 174569 N N

4 let-7 family hbl-1 180848 Y Y

13 lin-4 hbl-1 180848 N N

11 let-7 let-60 178104 N Y

12 miR-84 let-60 178104 N N

1 lin-4 lin-14 181337 Y N

2 lin-4 lin-28 172626 Y Y

3 let-7 lin-41 172760 Y Y

6 let-7 pha-4 180357 N Y

14 miR-61 vav-1 181153 Y N

Targets Predicted: TP 7 8

Total Targets: TP+FN 13 13

Sensitivity: TP/(TP+FN) 0.538461538 0.615384615

B.2 Drosophila melanogaster

TarBase Id miRNA Gene NCBI GeneID Predicted by

PicTar MicroTar

5 bantam Mad 33529 N Y

37
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21 bantam W 40009 Y Y

64 iab-4 Ubx 42034 N N

1 let-7 ab 34560 Y Y

63 miR-1 Dl 42313 N Y

10 miR-1 tutl 46015 N Y

45 miR-11 BobA 50281 N Y

58 miR-11 grim 40014 N N

43 miR-11 HLHmdelta 43150 Y Y

44 miR-11 m4 43157 N N

42 miR-11 malpha 43153 N N

59 miR-11 skl 40016 N Y

12 miR-12 rt 39297 N Y

13 miR-124 Gli 34927 Y Y

56 miR-13 grim 40014 N N

55 miR-13 rpr 40015 Y Y

57 miR-13 skl 40016 Y N

62 miR-14 Ice 43514 N N

18 miR-2 grim 40014 N Y

20 miR-2 rpr 40015 Y Y

19 miR-2 skl 40016 Y Y

66 miR-278 ex 33218 N Y

8 miR-279 SP555 53471 Y Y

6 miR-287 CRMP 40675 N Y

41 miR-2a-1 HLHmdelta 43150 Y Y

40 miR-2a-1 malpha 43153 N N

60 miR-308 grim 40014 Y N

61 miR-308 skl 40016 Y Y

9 miR-310 imd 44339 Y Y

3 miR-312 CrebA 39682 Y Y

4 miR-34 Eip74EF 39962 Y Y

11 miR-34 Su(z)12 48071 Y Y

49 miR-4 bap 42537 Y Y

47 miR-4 BobA 50281 N N

34 miR-4 Brd 39620 Y Y

35 miR-4 HLHm5 43158 Y Y

30 miR-4 HLHmdelta 43150 Y N

31 miR-4 HLHmgamma 43151 N N

33 miR-4 m4 43157 N N

32 miR-4 malpha 43153 Y N

29 miR-4 Tom 39619 Y N

53 miR-6 grim 40014 N N

52 miR-6 rpr 40015 Y Y

54 miR-6 skl 40016 Y N
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51 miR-6 W 40009 N N

65 miR-7 aop 33392 Y Y

27 miR-7 BobA 50281 Y Y

24 miR-7 Brd 39620 Y Y

14 miR-7 fng 40314 N N

15 miR-7 h 38995 Y Y

16 miR-7 HLHm3 43156 Y Y

7 miR-7 HLHm5 43158 Y Y

46 miR-7 HLHmdelta 43150 N Y

23 miR-7 HLHmgamma 43151 Y Y

25 miR-7 m4 43157 N N

26 miR-7 Tom 39619 Y Y

50 miR-79 bap 42537 Y Y

48 miR-79 BobA 50281 N N

39 miR-79 HLHm5 43158 Y Y

36 miR-79 HLHmgamma 43151 N N

38 miR-79 m4 43157 N N

37 miR-79 malpha 43153 N N

2 miR-92b CrebA 39682 Y Y

Targets Predicted: TP 35 39

Total Targets: TP+FN 63 63

Sensitivity: TP/(TP+FN) 0.56 0.62

B.3 Mus musculus

TarBase Id miRNA Gene NCBI GeneID Predicted by

PicTar MicroTar

3 let-7b Mtpn 14489 Y Y

26 miR-1 Hand2 15111 N N

60 miR-1 Hdac4 208727 N N

27 miR-1 Tmsb4x 19241 N Y

45 miR-124 Mapk14 26416 Y N

1 miR-124 Mtpn 14489 Y Y

672 miR-125a Lin28 83557 Y Y

688 miR-125b Abtb1 80283 Y Y

687 miR-125b Apln 30878 N N

682 miR-125b Arid3a 13496 N Y

683 miR-125b Arid3b 56380 Y Y

684 miR-125b B230208H17Rik 227624 Y N

680 miR-125b Ddx19b 234733 N Y

681 miR-125b Dus1l 68730 Y N
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685 miR-125b Entpd4 67464 Y Y

692 miR-125b Jub 16475 N N

673 miR-125b Lin28 83557 Y N

693 miR-125b Map2k7 26400 N N

690 miR-125b Ppt2 54397 N Y

689 miR-125b Rhebl1 69159 N Y

691 miR-125b Tor2a 30933 N N

686 miR-125b Zfp385 29813 Y N

676 miR-127 Rtl1 353326 N Y

61 miR-133 Srf 20807 N Y

63 miR-134 Limk1 16885 N N

671 miR-136 Rtl1 353326 N Y

64 miR-181a Hoxa11 15396 Y Y

21 miR-196 Hoxa7 15404 N N

22 miR-196 Hoxb8 15416 N Y

23 miR-196 Hoxc8 15426 N N

24 miR-196 Hoxd8 15437 N Y

58 miR-221 Kit 16590 Y Y

59 miR-222 Kit 16590 Y Y

44 miR-375 Adipor2 68465 N Y

42 miR-375 C1qbp 12261 N Y

41 miR-375 Jak2 16452 N N

2 miR-375 Mtpn 14489 N N

43 miR-375 Usp1 230484 Y N

679 miR-431 Rtl1 353326 N Y

677 miR-433-3p Rtl1 353326 N N

678 miR-433-5p Rtl1 353326 N N

674 miR-434-3p Rtl1 353326 N Y

675 miR-434-5p Rtl1 353326 N Y

Targets Predicted: TP 15 24

Total Targets: TP+FN 43 43

Sensitivity: TP/(TP+FN) 0.348837209 0.558139535
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