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SUMMARY 

This thesis explored two novel ways to encounter the inherent mass transfer barriers 

of conventional sandwich configuration for primary hepatocytes culture combining 

principles and technologies from tissue engineering, chemistry and bioreactor 

engineering.  

Sandwiching hepatocytes between two layers of extra-cellular matrix support creates 

an intra-sandwich environment which differs from the extra-sandwich environment 

defined by culture medium. When the intra-sandwich environment was characterized, 

an albumin accumulation intra-sandwich environment in a conventional static 

hepatocytes sandwich culture was identified. This indicated that the mass transfer in 

the conventional sandwich configuration is limited. Further studies explored the effect 

of the mass transfer limitation to hepatocytes’ functions in sandwich culture. Albumin 

accumulation in the intra-sandwich environment resulted in reduced hepatocytes 

functions in static culture.  

To increase the mass transfer efficacy (indicated by effectively removal of albumin 

out of intra-sandwich environment), hepatocytes were cultured in a perfusion 

sandwich configuration by flowing culture medium at different flow rates above the 

upper extra-cellular matrix support on porous membrane in a flat plate sandwich 

perfusion culture bioreactor. It was found that albumin removal from the intra-

sandwich environment cannot be effectively achieved by varying the perfusion rates 

without adversely affecting the hepatocytes functions. Based on the observation, we 

have designed a novel bioreactor with a separate drainage channel directly connected 

to the intra-sandwich environment, facilitating the removal of the metabolites and 
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supply of nutrients directly. The mass transfer efficacy can be effectively regulated by 

varying the drainage rates via the drainage channel without changing the perfusion 

rates, as indicated by the phenomena that intra-sandwich albumin level was 

effectively regulated by direct control of the drainage rates. Using the separate 

drainage system, an optimal level of the drainage rates and mass transfer efficacy can 

be maintained, which improved hepatocytes functions over the no-drainage controls.  

Apart from the using of flow environment to improve mass transfer efficacy, we also 

focused on the conventional sandwich configuration itself and tried to improve the 

mass transfer efficacy by replacing the natural ECMs such as collagen, the main cause 

of mass transfer limitation, with the synthetic polymers with controllable physical and 

chemical properties.  After trying with various functional polymers, an ideal synthetic 

sandwich configuration was identified by overlaying a novel 3D monolayer developed 

on galactosylated PET film with RGD conjugated polyethylene terephthalate (RGD-

PET) membranes, which also possessed better mass transfer properties over ECM 

such as collagen. We proved that this configuration had the similar polarity genesis 

process as conventional sandwich configurations: reorganization of F-actin in cell-cell 

contact regions after 12h of sandwich culture; localization of bile canaliculi 

transporter (MRP2) into bile channel after 24h of sandwich culture; regaining of 

active bile secretion ability during the first several days of sandwich culture. 

Moreover, enhanced cell-cell interaction and improved hepatocytes functions over 14 

days of culture were observed in the synthetic sandwich configuration, most likely 

due to the high mass transfer efficacy of this system.  
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Chapter 1 Introduction 

1.1 Liver tissue engineering 

1.1.1 Overview of tissue engineering 

The field of tissue engineering, by integrating principles of engineering and life sciences, 

exploits living cells in a variety of ways to restore, maintain, or enhance tissues and 

organs [1]. Generally, the application of tissue engineering can be divided as therapeutic 

application, in which the tissue is either grown in a patient or outside the patient [2,3] and 

diagnostic applications, in which the tissue and culture models are engineered in vitro and 

used for testing drug metabolism, uptake, toxicity and, pathogenicity, etc [4-6].  

In both applications, cultured cells need to be coaxed to grow on bioactive degradable 

matrix under properly engineered environment that provide the physical and chemical 

cues to induce the regeneration functions needed, such as guiding cells’ differentiation 

ability and assembly process into three-dimensional (3D) tissues [7]. Current progress in 

tissue engineering is mainly limited in this step; those challenges include finding reliable 

sources of compatible cells [8-10], engineering of proper cell culture matrix 

(Biomaterials) [11-14], and the creating of novel bioreactors [15-18], which mimic the 

environment of the body and that are amenable to scale-up. With fast development of 

these areas recently, it is possible that laboratory-grown tissue replacements and cell 

models will become a common medical therapy during the early decades of the 21st 

century.  However, we need to be aware of the problems such like whether tissue 
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engineers can preserve the product so that it has a long shelf-life? Is it possible to permit 

the fine control of tissue architecture for the engineered tissues to become clinically 

useful without tissue rejection? All of these questions are pending solving. 

1.1.2 Applications of liver tissue engineering 

Liver, the largest organ in the body, serves vital roles in the body’s metabolization and 

detoxification function, while liver diseases present a large portion of healthcare problem 

worldwide with high incidents of cirrhosis, liver cancer and liver failure [19,20]. 

Although dramatic advances in surgical techniques and immuno-suppression have 

permitted the use of liver transplantation in the management of liver disease, the patients 

need cannot be met due to persistent donor shortage. To meet the needs, liver tissue 

engineers made their efforts in both therapeutic and diagnosis approaches, namely, 

extracorporeal bio-artificial liver devices and tissue-engineered constructs as therapeutic 

approaches and hepatic drug testing for diagnosis uses:  

1): Bio-artificial Liver Assistant Devices.  The generated interest of bio-artificial liver 

device (BALD) is to develop a system in which patient plasma is circulated extra-

corporeally through a bioreactor that houses metabolically active liver cells (hepatocytes) 

sandwiched between artificial plates or capillaries to support a failing liver in the same 

way that dialysis supports the failing kidney [21]. It requires keeping a large amount of 

functional cells inside the engineered devices to fulfill the liver functions outside of 

human body [22-25]. Those devices include hollow fiber devices, flat plate systems, 

perfusion beds, and suspension reactors, which have shown encouraging results but have 

been difficult to implement in the clinical setting. The most common bio-artificial liver 

device design incorporates hepatocytes in hollow fiber cartridges. Hollow fiber 
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membranes provide a scaffold for cell attachment and immuno-isolation, and are well 

characterized in a clinical setting, but may not provide adequate nutrient transport or the 

proper environmental cues for long-term hepatocytes stabilization. Flat plate or 

monolayer bioreactors have been showed to be able to offer better control of hepatocytes 

microenvironment, but not ideal for scale up [26,27]. There are also many other designs, 

which use perfusion environment or scaffolds to promote three-dimensional architecture 

and minimize transport barriers. However, it may be difficult to provide uniform 

perfusion of the packing matrix; and cells can be exposed to damaging shear forces 

[27,28]. Encapsulated suspended cells or spheroid aggregates have been incorporated in 

perfusion systems that would be simple to scale up, but are limited in their ability to 

stabilize cells [27,29].  

Although many devices include a combination of convective and diffusion transport flow 

environment, mass transfer limitations of key nutrients to and from the cellular 

compartment still exist due to diffusion resistance [30]. Barriers to diffusive transport, in 

those cases, include membranes, collagen gels, and nonviable cells. Apart from culture 

system consideration, one of the main challenges in BLAD design is to provide a proper 

microenvironment for primary hepatocytes to maintain liver-specific function, which is 

absent in many current device designs [31]. One of the essential requirements for BLAD 

is to recapture the in vivo liver structure in vitro. In attempts to improve the hepatocytes 

microenvironment, investigators have used micro-carriers; gel entrapment, both intra-

luminal and in the extra-capillary space; multi-compartment interwoven fibers; and multi-

coaxial configurations [27]. However, much more efforts are needed in the design and 
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optimization of culture models that are able to stabilize hepatocytes with cell–cell 

interactions, cell–matrix interactions, and chemical cues. 

2): Tissue engineering constructs. Although the approach remains largely experimental 

and must overcome a number of significant hurdles before it will become a viable clinical 

modality, tissue engineering of implantable cellular constructs become more and more 

attractive as an emerging strategy for liver disease. Similar to cell transplantation, 

hepatocytes are transplanted to perform liver functions; however, due to anchorage 

dependent property of hepatocytes, it needs to be immobilized on scaffolds, encapsulated 

in aggregates, or cultured ex vivo to form liver “organoids” and surgically transplanted 

[32]. Most of proposed constructs need to utilize scaffolds of various chemical 

compositions, both synthetic and biological compositions including biodegradable 

polyesters, polysaccharides etc [33-35] and hyaluronic acid, collagen etc [36-38] 

respectively. It has been reported that scaffold architecture and chemistry play essential 

roles in hepatocytes survival, morphogenesis, and function. Many studies showed an 

advantage of three dimensional scaffold architectures over the two-dimensional; and 

functionality of implantable cellular constructs may be improved by incorporating cell 

culture strategies that promote three-dimensional conformations and maintain 

hepatocytes polarity [39]. Some proposed constructs use the encapsulation schemes; and 

hepatocytes have been encapsulated in fibers, alginate and alginate–polylysine 

composites to promote cell aggregation and liver-specific function as well as provide 

immuno-isolation [40-42]. Encapsulation strategies for many different cell types, 

including highly metabolic hepatocytes, face a classic dilemma between restricting 

transport of immuno-modulators while maximizing transport of nutrients and desired cell 
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products. Also, spherical hepatocytes aggregates, heterospheroids of hepatocytes and 

nonparenchymal cells, and cocultures formed on in vitro templates have been proposed as 

tissue organoids for implantation [43-45]. While still in laboratory trying, hepatocytes 

have been implanted in many sites including the peritoneal cavity and mesentery, as well 

as the spleen, liver, pancreas, and subcutaneous tissues [46, 47]. 

Despite significant progress made in vitro, tissue engineering liver construct faces many 

challenges, mainly limited by cell sourcing, immune rejection, and long-term viability 

maintenance with additional issues such like transport limitations, the instability of the 

hepatocytes phenotype when isolated from the hepatic microenvironment and the ability 

for tissue structures to reorganize over time. Accordingly, fundamental research in tissue 

engineering has been in the metabolic requirements of hepatocytes during seeding and in 

early stages of implantation, design of biomaterials to improve angiogenesis, effects of 

hepatocytes microenvironment on phenotypic stability (by manipulating soluble signals, 

cell–substrate interactions, and cell–cell interactions), and morphogenesis of hepatocytes 

structures in pure cultures[48,49]. Most importantly, none of the current proposed 

constructs incorporates in their designs excretory function corresponding to the biliary 

system, although studies indicate that morphogenesis can be achieved in vitro. In the 

future, advances in developmental biology will likely complement “brute force” 

strategies to replicate the exquisite micro-architecture of the liver and its myriad 

functions. For example, soluble (fibroblast growth factor) and unidentified insoluble 

factors have been identified in differentiation of the endoderm along the hepatic lineage 

as well as in branching morphogenesis of the primitive kidney [50]. 
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3): Hepatic-drug testing: The liver is the most important organ concerning the 

biotransformation of xenobiotics. It plays a major role in the conversion of lipophilic into 

hydrophilic compounds which can be readily excreted. The metabolism of chemicals 

usually involves two enzymatic steps commonly referred to as phase I and phase II [51, 

52]. Phase I metabolism is ensured mostly by cytochrome P450 (CYP) monooxygenases 

such as EROD (ethoxyresorufin-O-deethylase, CYP 1A2) and ECOD (ethoxycoumarin-

O-deethylase, CYP 2B6). The oxidized metabolite is further conjugated in phase II by 

UGTs (UDP-glucuronosyltransferases), STs (sulfotransferases), and GSTs (glutathione-

S-transferases). The different enzymes necessary for the biotransformation are easy to 

induce by a high or long substrate supply or an inducing agent. Therefore, the metabolism 

and consequently the influence of drugs can be essentially affected. 

Because of the important roles of liver, in vitro liver preparations are increasingly used 

for the study of hepatotoxicity of chemicals. In recent years, various in vitro models were 

developed with their actual advantages and limitations defined. The sandwich 

configuration, liver slices, and 2D hepatocytes culture system, appear to be the most 

common in vitro systems used, as liver-specific functions and responsiveness to inducers 

are retained either for a few days or several weeks depending on culture conditions [53]. 

Maintenance of phase I and phase II xenobiotic metabolizing enzyme activities have been 

proved in those systems; and those systems allows various chemical investigations to be 

performed, including determination of kinetic parameters, metabolic profile, interspecies 

comparison, inhibition and induction effects, and drug-drug interactions [54,55]. In vitro 

liver cell models also have various applications in toxicology: screening of cytotoxic and 

genotoxic compounds, evaluation of chemoprotective agents, and determination of 
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characteristic liver lesions and associated biochemical mechanisms induced by toxic 

compounds. Extrapolation of the results to the in vivo situation remains a matter of debate.  

Recently, hepatic transport processes have been recognized as important determinants of 

drug disposition. Therefore, it is not surprising that characterization of the hepatic 

transport and biliary excretion properties of potential drug candidates is an important part 

of the drug development process [56]. Such information also is useful in understanding 

alterations in the hepatobiliary disposition of compounds due to drug interactions or 

disease states. Basolateral transport systems are responsible for translocating molecules 

across the sinusoidal membrane, whereas active canalicular transport systems are 

responsible for the biliary excretion of drugs and metabolites [57]. Several transport 

proteins involved in basolateral transport have been identified including the Na+-

taurocholate co-transporting polypeptide, organic anion transporting polypeptides, 

multidrug resistance–associated proteins and organic anion and cation transporters. 

Canalicular transport is mediated predominantly via P-glycoprotein, MRP2, the bile salt 

export pump and the breast cancer resistance protein. The development of in vitro 

techniques to examine hepatic drug transport processes in human liver will provide 

important insights regarding hepatobiliary drug disposition in humans. Elucidating the 

mechanisms involved in hepatic drug transport, defining patient-specific factors that 

affect transporter function, and characterizing how xenobiotic interactions may alter these 

processes, are fundamental to our knowledge of how the liver disposes of endogenous 

and exogenous compounds and are prerequisites to exploiting these processes to achieve 

desirable clinical outcomes. 
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1.1.3 Liver physiology and general requirement of engineered in vitro 

models 

As stated in the above section, these therapies share a general requirement for adequate 

cell culture environment and stability of liver-specific functions. The success of cellular 

therapies ultimately depends on the stability of the hepatocytes phenotype and its 

regulation by micro-environmental cues. 

Primary hepatocytes are anchorage 

dependent and notoriously difficult to 

maintain in vitro. Freshly isolated cells 

rapidly lose adult liver morphology and 

differentiated functions when cultured in 

suspension. For years, investigators have 

developed culture models based on 

features of liver architecture to 

recapitulate the complex hepatocytes 

microenvironment.  

The in vivo microenvironment may 

provide a point of reference in engineering culture environments for hepatocytes in vitro. 

Hepatocytes in vivo, are exposed to a variety of microenvironmental cues which are in 

contact with different polarized domains of the plasma membrane associated with distinct 

functions [61] (Figure 1): the sinusoidal (basal) region specialized for the exchange of 

metabolites is in contact with loose ECM and sinusoidal plasma flow in the space of 

Disse; the intercellular (lateral) domain whose tight junctions constitute the canaliculo-

Figure 1 Celluar architecture of the liver [19]. Liver 
epithelial cells called hepatocytes are arranged in cords between 
the capillaries (sinusoids) of the liver. Oxygenated blood enters the 
liver from the heart via the hepatic artery and from the gut via the 
hepatic portal vein, mixes in the sinusoids, and drains via the 
hepatic central vein back to the heart. Sinusoidal cells including 
endothelial cells, Kupffer cells, and stellate cells line the sinusoids, 
thus separating hepatocytes from blood. Picture use with  author’s 
permission.      
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sinusoidal barrier are the sites in which hepatocytes form tight cell-cell adhesions with 

each other; the canalicular (apical) surface of hepatocytes highly specialized for the 

secretion of bile acid and detoxification products faces a lumen which delivers bile to the 

bile ductules. All of these factors, together with their interactions with non-parenchymal 

cells and the exposure to acinar gradients of nutrients and xenobiotics, may work 

cooperatively in vivo to supply a microenvironment which allows hepatocytes to maintain 

their polarized morphology and functions, but ceases to operate when hepatocytes are 

separated from their native environment.  

Based on the understanding of basic liver micro-environment, the successful in vitro 

models need to recapitulate the features of complex hepatocytes microenvironment [31] 

to achieve: 1): Stabilization and maintenance of various liver specific functions. 2): Re-

establishment of liver functional structures such like polarized structures with active bile 

excretion ability. To reach these aims, there are a few features that must be incorporated 

or considered in the development of in vitro culture models.  

1): Cell-matrix interactions, The matrix used for liver engineering includes natural ECMs 

(such like collagen, MatrigelTM, Biomatrix, laminin, fibronectin) and synthetic ECMs 

[such like poly-lactic-co-glycolic acid (PLGA) and micro-carriers].The major function of 

the matrix is to induce three-dimensional states in cells, essential for achieving ideal 

cellular phenotype and functions. It has been shown that alterations in both the 

composition and topology of the ECM have been shown to affect hepatocytes function 

[62-64]. For examples, collagen enhanced hepatocytes differentiation over fibronectin, 

while MatrigelTM, containing primarily laminin, collagen type IV, heparan sulfate 

proteoglycan and entactin , maintained higher levels of mRNAs encoding albumin and 
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several P450 enzymes compared with gelled collagen [65]. Noteworthy, the sandwich 

configuration, which mimics the matrix configuration in the Space of Disse by entrapping 

cells between two layers of collagen gel, enhanced and maintained albumin secretion for 

up to 6 weeks in culture, better than cells in a single layer of collagen gel [66, 67].  

2): Cell-cell interactions. Cell-cell interactions, including homotypics interaction between 

same cell type and hetertypic interactions between two different cell types, are crucial to 

the function of several organ systems. By restoration of homotypic cell–cell interactions, 

the hepatocytes spheroids and aggregates formed on non-adherent substrates have been 

reported to promote the formation of bile canaliculi, gap junctions, tight junctions, and 

help in stabilizing the primary hepatocytes phenotype [68]. A common feature for 

hetertypic cell interaction is the interaction of parenchymal cells with nonparenchymal 

neighbors resulting in the modulation of migration, cell growth and differentiation. Co-

culture of parenchymal cells with nonparenchymal have been shown, to varying degrees, 

to induce phenotypic stability of hepatocytes for up to months in culture. These 

heterotypic interactions are thought to present a highly conserved signal that greatly 

augments liver-specific functions. 

3): Soluble factors, such as hormones and chemical supplements [71,72]. Normally, the 

soluble signals have a rapid turnover to activate transduction processes that induce a 

specific physiologic process such like growth or expression of tissue specific genes.  The 

effect of a soluble factor is entirely dependent, both qualitatively and quantitatively, on 

the matrix chemistry associated with the cell. Most of those soluble factors can be used to 

help stabilize hepatocytes morphology and regulate functions.  
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4): Flow environment. A positive effect of flow environment has been proposed in in 

vitro hepatocyte culture. Hepatocytes have been cultured in suspension, perfused 

scaffolds and flat plate bioreactors [73]. These have not only increased hepatocytes 

viability by efficient oxygenation and mass transfer of nutrients and waste products, but 

have also been reported to enhance cell function and tissue morphogenesis. 

1.1.4 In vitro culture models for liver tissue engineering 

Based on the general requirement of in vitro models in liver tissue engineering, for years, 

investigators have developed culture models based on features of liver architecture to 

recapitulate the complex hepatocytes microenvironment, ranging from simple monolayer 

culture to spheroids culture, to sandwich culture and co-culture system and more 

sophisticated 3-D cultures [74-76].  

Hepatocytes cultured as a 2D monolayer attached tightly to either plastic or ECM 

proteins such as collagen I and laminin, showed deteriorating spreading morphology with 

relatively low liver-specific function and nearly no native in vivo liver-like polarized 

structure;  

Improved spheroid culture configuration is developed based on the observation that self-

assembled spherical aggregates of isolated primary hepatocytes have been obtained on 

numerous moderately-adhesive substrata comprised of natural matrices such as 

proteoglycan fraction from liver reticulin fibers, agarose, rigid extracellular matrix at low 

concentration like Matrigel, laminin, fibronectin or collagen type I,  and artificially 

synthetic matrices such as positively charged  or galactosylated substrata [77-80]. 

Hepatocytes spheroids with naturally formed 3D architecture showed associated cell-cell/ 
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cell-matrix connectivity and ideal liver-specific functions, membrane polarities and liver 

ultra-structures. However, the usefulness of 3D hepatocytes spheroids in applications is 

limited due to the poor mass transport of nutrients, oxygen, xenobiotics and metabolites 

into and from the core of these large cellular aggregates [81]. Cell loss is also a critical 

issue in forming and maintaining these spheroids in applications due to the poor adhesion 

of spheroids on the substratum [82]. 

Many groups have shown that hepatocytes can survive for long periods and maintain 

specific functions when they are cocultured with other cell types, such as 

nonparenchymal liver cells (NPCs) [69]. It was previously reported that formation of 

multicellular spheroids consisting of hepatocytes and NPC in a hierarchical co-culture, in 

which both cell-types were separated by a collagen layer, was very effective for the 

maintenance of liver functions, such as albumin secretion, urea synthesis and induction of 

tyrosine aminotransferase [83]. However, due to the system complexity and the lacking 

of valid mechanisms regarding cell-cell interaction and various soluble factors involved, 

these approaches, still have a long way to reach the practical uses. Also, the native liver-

like structure, such as polarized structure, is hard to form due to the uncontrollable 

seeding methods.  

Sandwich culture, has been recognized as one of the most promising models currently 

available to impact both in the studies of liver physiology/toxicology and developments 

of technologies related to cell transplantation and hepatocytes bioreactors [84]. Primary 

hepatocytes culture in sandwich configuration, formed by overlay of second layer of 

ECMs support on monolayer cells cultured on single surface, captured the essential 

characteristics of liver disse, induced the re-establishment of polarity structure with the 
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maintenance of myriad of enhanced liver specific functions for at least several weeks [85]. 

These results were first obtained using type I collagen, and more recently similar results 

have been reported using an overlay of matrix extracted from Engelbreth-Holm-Swarm 

(EHS) tumor grown in mice. In current sandwich culture practice, hepatocytes 

maintained on collagen-coated matrix are overlaid with a second layer of collagen matrix 

after one day of monolayer culture [86]. Further application of such conventional 

sandwich was mainly limited by complex compositions of natural ECMs that have not 

been clearly identified, batch-to-batch variations of natural ECMs and the transport 

barriers caused by the introduction of top ECM layer, which can slow down the exchange 

of nutrients, products, and chemical signals with the bulk of the medium.  

1.2 Primary hepatocytes in sandwich culture  

1.2.1 Potential applications of sandwich culture in liver tissue 

engineering 

In terms of application values for these in vitro models, sandwich configuration is an 

ideal model with the stable functional maintenance and re-establishment of polarity 

structure of primary hepatocytes cultured in between; and has proved its values in studies 

of hepatic tissue physiology and toxicology: to characterize the dynamics of induction 

and functional properties of liver-specific cytochrome P450 systems and to examine the 

temporal aspects of the cytokine-induced response, as well as bile excretion ability which 

are important in hepatic drug deposition and drug-drug interaction.   

Current BLAD devices suffer from the limited excretory functions to sustain themselves 

when exposed to toxins in patients’ blood.  Hepatocytes in BLAD normally cannot last 

for 1 day when exposed to patients’ blood due to inefficient secretion of toxins out of cell 
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body via several of transporters inside and formation of bile canaliculi outside. With high 

excretory function and polarity re-establishing, we hypothesis that sandwich 

configuration can serve as a potential culture configuration to be incorporated in next 

generation of BLAD applications. Therefore, the author mainly focused on the sandwich 

models for hepatocytes culture.  

1.2.2 Polarity genesis of hepatocytes in sandwich culture 

To hepatocytes monolayer on ECMs, the overlay of ECMs establishes a sandwich 

configuration resembling that found in the liver (i.e., where hepatocytes are generally 

bounded by ECM at each of their opposite basolateral membrane domains). It was 

reported that hepatocytes remained as a monolayer but underwent major changes at the 

intracellular level that culminated in the formation of a 2-dimensional, multicellular 

network with a functional bile canalicular network reminiscent of the liver plate [85].  

Recent studies indicate that the configuration of ECM has a dramatic and reversible 

effect on the organization and expression of cytoskeletal proteins in cultured primary 

hepatocytes [87]. Microtubules in hepatocytes cultured on a single collagen gel were 

organized into long parallel arrays extending out to the cell periphery, while those in 

sandwiched hepatocytes were organized into a dense meshwork. F-actin in hepatocytes 

cultured in a double collagen gel was concentrated under the plasma membrane in 

regions of contact with neighboring cells, similar to what was observed in in vivo 

distribution. In contrast, hepatocytes cultured on a single gel exhibited random F-actin 

distribution with stress fibers on the ventral surface in contact with the substrate.  
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It has been demonstrated that a contiguous network of bile canaliculi was formed 

throughout the entire sandwich culture [67]. After overlay, bile canalicular formation 

initiates as punctate lumina between adjacent hepatocytes. These sites propagate along 

the cell borders and eventually fuse into a complete network. Normal bile canalicular 

function and integrity as evidenced by carboxy-fluorescein retention were observed 

within 3-4 days after overlay [88], while without the collagen overlay, canalicular 

formation is more variable in rate and extent, and eventually ceases when cells begin to 

detach and die (5 to 7 days after seeding). Noteworthy, hepatocytes on a type I collagen 

substrate and overlaid with EHS matrix form a similar bile canalicular network. The 

formation of bile canaliculi occurs in concert with changes in the distribution of 

microtubules and microfilaments [67], with a marked accumulation of these cytoskeletal 

proteins occurred at sites of canaliculi generation. The roles of cytoskeleton in bile 

canaliculi have been investigated in many cases using disrupting reagents. Microtubule-

disrupting agents (colchicine, nocodazole) prevent the normal accumulation of actin at 

the cell margins and inhibit canaliculi formation. Microfilament-perturbing agents 

(cytochalasin D, phalloidin) have little effect on the initiation of canalicular development 

or on the distribution of microtubules, but prevent the normal elongation and proliferation 

of the nascent canaliculi into a network. Once bile canalicular structures are nearly 

complete, actin microfilaments appear to be primarily associated with them, whereas 

microtubules become more uniformly distributed throughout the cell. Treatment with 

microtubule-disrupting agents at that time do affect the integrity of preformed canaliculi, 

but microfilament-perturbing agents cause a marked dilation of the lumen. 

Staining of collagen sandwiched hepatocytes with antibodies specific to several 
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basolateral and apical markers (glucose transporter, Na+, KtATPase, aminopeptidase N, 

dipeptidylpeptidase IV) as well as the cell-cell adhesion cadherin reveal a distribution 

identical to liver, which suggests that this culture configuration preserves the polarized 

phenotype of normal hepatocytes. In the liver, the efficiency of passive diffusion of 

xenobiotics across the canalicular membrane is poor; instead, several active transporters 

exist on this membrane that efflux a variety of endogenous and exogenous materials from 

the cell into the bile canaliculus (BC). Two canalicular active transporters have been 

demonstrated to function well in sandwich configuration and contribute to the efflux of 

xenobiotics, the multidrug resistance-associated protein (Mrp2) and P-glycoprotein (P-gp) 

[89,90]. Mrp2 is a major transporter of bilirubin, glucuronide- and glutathione-conjugates, 

and other organic anions from liver into bile, while the P-gp facilitates the excretion of 

exogenous organic cations and a wide variety of drugs, such as alkaloids and 

anthracyclines into bile. Improved hepatocytes repolarization may improve the functional 

activity of these canalicular transporters which in turn facilitate the efficient excretion of 

waste products into a bile canalicular network which is structurally separate from the 

cells. In a review on new perspectives in generating epithelial cell polarity, A model has 

been proposed in which cell-matrix and cell-cell adhesion generate membrane asymmetry 

which orientate the apico-basal axis of polarity relative to the external cues [91]. 

Expression of connexin 32 was also reported with comparing of hepatocytes cultured on 

a single collagen gel with similar cultures overlaid with EHS matrix [92]. In the recent 

studies, canalicular localization of ‘y-glutamyltranspeptidase, Mg2+_ATPase, and actin 

have also been reported [89]  
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1.2.3 Functional maintenance of hepatocytes in sandwich culture 

Isolated hepatocytes placed in a type I collagen sandwich exhibit a gradual increase in the 

expression of liver-specific function during the first week in culture; conversely, the same 

cells placed on a single ECM-coated surface progressively stop expressing these 

functions and loose viability [84]. Beyond the first week, the expression of liver-specific 

functions in the type I collagen sandwich is stable over several weeks. The effect of 

collagen overlay is best illustrated when a week-old culture of hepatocytes on a simple 

collagen gel that have already lost much of their normal phenotype can be “rescued” by 

addition of a collagen overlay to produce a stable, functional culture [85], suggesting that 

there is a sensitive dynamic relationship between the ECM configuration and the 

intracellular events that determine hepatocytes morphology and liver-specific function. 

Although the collagen overlay causes several changes in hepatocytes morphology and 

function that occur over different time scales, these various changes have not yet been 

causally related.  

After isolation, when hepatocytes are placed in culture, induction of albumin synthesis 

that parallels an increase in albumin mRNA levels occurs during the first 7 days post-

overlay [93]. Nuclear run-off assays showed that higher transcriptional activity was 

responsible for the higher level of albumin mRNA in hepatocytes cultured in the 

sandwich system compared to the single gel system. In addition, a concomitant increase 

in the size of polyribosomes associated with albumin mRNA was found. Furthermore, the 

secretion kinetics of synthesized albumin was assessed with pulse-chase experiments. In 

hepatocytes 1 day post-isolation, the transit time of secretion was roughly the same as in 

liver, suggesting that impaired transport or internal degradation were not responsible for 
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the low initial rate of albumin secretion of cultured hepatocytes. These results suggest 

that the collagen overlay mediated its enhancing effect on albumin secretion primarily via 

an increase in albumin mRNA levels. This increase most likely resulted from an increase 

in the rate of transcription of the albumin gene. Apart form albumin synthesis, urea 

production and phase I and phase II metabolites have also been reported to have a 

tremendously increase in the sandwich configurations [94].  

1.2.4 Inherent mass transfer barrier in sandwich configuration 

Hepatocytes sandwich culture involves culturing cells between two layers of extra-

cellular matrix support on solid surfaces. The cells are generally seeded onto a collagen-

coated polystyrene or glass surfaces and sandwiched by another layer of the collagen on 

porous membranes so as to allow nutrient access from the culture medium above the 

sandwich assembly. The two layers of support divide the sandwich culture assembly into 

two environments, the extra-sandwich and the intra-sandwich environments. The former 

is the well-controlled environment defined by the culture medium, and the latter is the 

cell-containing environment between the two layers of support. The barrier will impede 

the mass transfer between the two environments, resulting in the uneven distribution of 

nutrients and metabolites in both environments, most obviously, the accumulation of 

metabolites, especially macromolecules with low diffusion coefficients such as albumin.  

Albumin, a globular protein with a MW of 69,000, is synthesized in the liver and 

catabolized by all metabolically active tissues. It can be a useful indicator of liver 

functions and serve as a carrier protein for many organic substances such as unconjugated 

bilirubin, and bile acids etc [95, 96]. As the most abundant molecules with a relatively 
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lower diffusion coefficient, albumin can also be a good model molecule to indicate the 

mass transport properties of metabolites in sandwich culture. Previous studies reported 

that free diffusion coefficients of albumin are in the order of 10-11 m2 ·S-1 [97]. But in gels, 

diffusion coefficient of albumin is much lower than in free solution, due to the effect of 

hydrodynamic and steric factors. The diffusion coefficients of albumin through the 

collagen membrane and other gel matrix have been observed, ranging from 10-15 to 10-12 

m2 ·S-1 [98,99]. A similar phenomenon was also observed that significantly more 

bilirubin-glucuronides were kept in the intra-sandwich environment than in the medium 

in 96h convectional sandwich culture of both human and rat hepatocytes.  

 

1.3 Roles of flow environment in facilitation of the mass transfer efficacy 

1.3.1 Bioreactor in tissue engineering applications 

Major obstacles to the generation of functional tissues and their widespread clinical use 

are related to a limited understanding and ability in designing specific physicochemical 

culture parameters on tissue development. By enabling reproducible and controlled 

changes of specific environmental factors, bioreactor systems provide both the 

technological means to reveal fundamental mechanisms of cell response in artificial 

environment, and the potential to improve the quality of engineered tissues.  

Bioreactors are generally defined as devices in which biological and/or biochemical 

processes develop under closely monitored and tightly controlled environmental and 

operating conditions (e.g. pH, temperature, pressure, nutrient supply and waste removal). 

In tissue engineering approaches, the role of bioreactors in processes is key for the ex 
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vivo engineering of 3D tissues based on cells and scaffolds, including cell seeding on 

ECM support, nutrition of cells in the resulting constructs, and mechanical stimulation of 

the developing tissues, particularly with the ability to control over environmental 

conditions such as flow environment, mechanical force to optimize the culture 

environment.   

1.3.2 Enhancement of mass transfer efficacy by flow environment in 

bioreactors 

It has long been known that the supply of oxygen and soluble nutrients and secretion of 

big metabolites become critically limited for many in vitro culture models such as 

spheroid culture and sandwich culture. The consequence of such a limitation is 

exemplified by early studies showing that cellular spheroids larger than 1 mm in diameter 

generally contain a hypoxic, necrotic center, surrounded by a rim of viable cells [100]. 

Similar observations were reported for different cell types cultured on 3D scaffolds under 

static conditions. For example, glycosaminoglycan (GAG) deposition by chondrocytes 

cultured on poly(glycolic acid) meshes was poor in the central part of the constructs (400 

mm from the outer surface), and deposition of mineralized matrix by stromal osteoblasts 

cultured into poly(DL-lacticco-glycolic acid) foams reached a maximum penetration 

depth of 240 mm from the top surface [101]. Since engineered constructs should be at 

least a few mm in size to serve as grafts for tissue replacement, mass-transfer limitations 

represent one of the greatest challenges to be addressed. 

External mass-transfer limitations can be reduced by culturing constructs in a stirred flask. 

As one of the most basic bioreactors, the stirred flask induces mixing of oxygen and 
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nutrients throughout the medium and reduces the concentration boundary layer at the 

construct surface. Culture of bovine chondrocytes on poly(glycolic acid) non-woven 

meshes in a stirred flask induced an increase in both the synthesis of GAG and the 

fractions of GAG accumulated within the central construct regions [102]. However,  this 

approach will probably cause the turbulent eddies generated within the stirred-flask 

bioreactor. A dynamic laminar flow generated by a rotating fluid environment is an 

alternative and efficient way to reduce diffusion limitations of nutrients and wastes while 

producing low levels of shear. The good efficacy of rotating wall vessel (RWV) 

bioreactors for the generation of tissue equivalents has been demonstrated using 

chondrocytes, cardiac cells and various tumor cells [103]. After a few weeks of 

cultivation in the RWVs, cartilaginous constructs had biochemical and biomechanical 

properties superior to those of static or stirred-flask cultures, comparable to those of 

native cartilage, whereas cardiac tissue constructs consisted of elongated cells that 

contracted spontaneously and synchronously [104]. Prostate and melanoma cancer-

derived cells cultured in RWV bioreactors had 3D structures that reflected the cellular 

architecture and heterogeneous composition of the tumor site in vivo. On the basis of 

these studies, it was proposed that the RWV bioreactor would support the engineering of 

tissues and organoids as in vitro model systems of tissue development and function [105]. 

Bioreactors that perfuse medium either through or around semi-permeable hollow fibers 

have been used successfully to maintain the function of highly metabolic cells (e.g. 

hepatocytes) by increasing the mass transport of nutrients and oxygen. This concept has 

been extended to engineered tissues by perfusing culture medium directly through the 

pores of the cell-seeded 3D scaffold, thereby reducing mass transfer limitations both at 
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the construct periphery and within its internal pores. Direct perfusion bioreactors have 

been shown to enhance growth (differentiation and mineralized matrix deposition by 

bone cells), proliferation of human oral keratinocytes and albumin synthesis rates by 

hepatocytes [106-110]. When incorporated into a bioreactor design, direct perfusion can 

thus be used as a valuable tool for enhancing cell survival, growth and function. However, 

the effects of direct perfusion can be highly dependent on the medium flow-rate and the 

maturation stage of the constructs. Therefore, optimizing a perfusion bioreactor for the 

engineering of a 3D tissue must address a careful balance between the mass transfer of 

nutrients to and waste products from cells, the retention of newly synthesized 

extracellular matrix components within the construct, and the fluid induced shear stresses 

within the scaffold pores.  

Currently, the optimal flow conditions of a bioreactor were determined through a trial-

and-error approach. Researches, by manipulating flow environment, aim to control the 

mass transfer behavior of aimed nutrients or metabolites from a diffusion dominated 

process to a convection dominated process.  

1.3.3 Current practices of bioreactors in liver tissue engineering 

A positive influence of the flow environment in hepatocytes culture has been widely 

accepted for improving mass transfer [111]. The effects of flow environment on 

hepatocytes functions and mass transfer behavior have been validated in various 

bioreactors such as flat-plate bioreactor and grooved bioreactor [112,113]. Previous 

studies of perfusion culture involving hollow fiber bioreactors have demonstrated that the 

transport of nutrients and metabolites across the hollow fiber membrane can be regulated 
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from the slow diffusion-dominated process to the fast convection-dominated process by 

manipulating the flow rates of the perfusate [114].  

In sandwich culture, perfusion bioreactors may assist the mass transfer across the barriers 

in a sandwich construct. The perfusion rates vary a lot in different bioreactor 

configurations, even all of them are in the lower range of flow rate compared with flow 

rates used in other tissue engineering. This is most likely because hepatocytes are highly 

shearing force- sensitive cells. High flow rates in a convection-dominated process might 

yield efficient mass transfer but might be detrimental to the functions of highly sensitive 

hepatocytes. Previous studies showed that shear stress could damage the cells under high 

flow conditions and excessive mass exchange could induce culture conditions as well as 

losing of metabolites essential for cell maintenance [113]. Therefore, it will be important 

to carefully control the flow conditions in perfusion sandwich culture such that both 

efficient mass transfer and minimal cell damage can be achieved to maintain hepatocytes 

functions.  

1.4 Synthetic polymer ECMs in liver tissue engineering 

Extracellular matrix (ECM) plays important roles in tissue engineering because cellular 

growth and differentiation, in the two-dimensional cell culture as well as in the three-

dimensional space of the developing organism, require ECM with which the cells can 

interact. Especially, the bioartificial liver assistant device or regeneration of the liver-

tissue substitutes for liver tissue engineering requires a suitable ECM for hepatocytes 

culture because hepatocytes are anchorage-dependent cells and are highly sensitive to the 

ECM milieu for the maintenance of their viability and differentiated functions [115-116].  
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The use of polymeric materials with proper surface modification as synthetic ECMs lead 

to novel approaches in tissue engineering applications with controllable matrix properties 

and cellular responses. With functional groups modified on, polymers substitute the 

natural ECM for many functions, which can organize cells into a three-dimensional 

architecture, providing mechanical integrity to the new tissue and a space for the 

diffusion of nutrients to and metabolites from the cell. A variety of synthetic polymeric 

substrata have been employed for hepatocytes culture (e.g. plastic surfaces or membranes 

coated with extracellular matrix proteins such as laminin, fibronectin or conjugated with 

cell adhesion peptides, such as Arg-Gly-Asp (RGD) and Tyr-Ile-Gly-Ser-Arg (YIGSR) or 

galactose [117-119].  

1.4.1 Galactose-carrying  synthetic ECMs 

Galactose-carrying synthetic ECMs derived from synthetic polymers and natural 

polymers bind hepatocytes through a receptor-mediated mechanism, resulting in 

enhanced hepatocytes functions. Attachment and functions of hepatocytes were affected 

by physico-chemical properties including ECM geometry as well as the type, density and 

orientation of galactose. Also, cellular environment, medium composition and dynamic 

culture system influenced liver-specific functions of hepatocytes beside ECMs. 

The first galactose-carrying ECMs is poly (acryl amide) containing covalently 

immobilized galactose groups among the synthetic polymers [120]. It was reported that 

rat hepatocytes were bound to a specific sugar in a Ca2+-dependent manner; and cell 

binding to these surfaces was specifically inhibited by asialo-orosomucoid. Rat hepatic 

lectins found on the hepatocytes cell surface mediated adhesion of isolated primary rat 
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hepatocytes to galactose derivatized poly acrylamide gels [121]. 

Galactose-derivatized polystyrene (PS), poly (N-p-vinylbenzyl-4-o-β-d-galactopyranosyl-

d-gluconamide)(PVLA), as a synthetic polymer, has been reported as an excellent 

synthetic ECM to guide hepatocytes adhesion through the unique ASGPR–galactose 

interaction, although ASGPR is a non-adhesion cell surface receptor [122]. The synthesis 

of PVLA is simple, protection of the hydroxyl groups of oligosaccharides is not required, 

and the yield of each step is high. In addition to galactose-specific molecular recognition 

between ASGPR of hepatocytes and highly concentrated galactose moieties along the 

polymer chains; the round morphology of hepatocytes on PVLA was found to trigger the 

formation of multi-cellular aggregates in the presence of epidermal growth factor (EGF), 

which is the first report of spheroid formation of hepatocytes through receptor-mediated 

mechanism, leading to enhanced cell functions [123].  

It has also been reported that hepatocytes cultured on galactose-modified star 

poly(ethylene oxide) hydrogels exhibited a sugar-specific adhesion to the modified gels, 

adhering to gels bearing galactose but not glucose [124]; and cell spreading was observed 

on low concentrations of immobilized ligands. Galactose ligands have been successfully 

immobilized on acrylic acid graft-copolymerized poly(ethylene terephthalate)(PET) film 

by plasma pretreatment [125]. Certain manner of hepatocytes’ behaviors also been 

characterized on the surface topology on lactose-carrying styrene (VLA) dishes using 

plasma glow discharge followed by the graft polymerization of VLA [126]. Hepatocytes 

cultured on the galactosylated surface exhibited good attachment and promoted spheroid 

formation of the attached cells; and the albumin as well as urea synthesis of hepatocytes 

cultured on the surface was higher than that on the collagen-modified PET substrates. 
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New approaches have been focused on coupling galactose ligands on silica surface to get 

of the actual contact mechanics and adhesion strength of hepatocytes during two-

dimensional cell spreading. 

1.4.2 RGD motif containing synthetic ECMs 

In 1987, the tripeptide RGD was identified to be the cell-adhesion sequence in fibronectin 

and other cell-adhesion proteins. This discovery enabled systematic engineering of 

surfaces that either promoted or rejected cell adhesion. RGD can bind to integrins and 

those that bind to RGD alone can regulate cellular functions antagonistically [117]. 

Hepatocytes anchor tightly to RGD modified substrata, and exhibit extended and spread 

cell morphology, with low levels of liver-specific functions likely due to hepatocytes de-

differentiation [127]; and RGD-integrin interactions have been shown to be strong 

enough to induce downstream signaling pathway to cause the redistribution of the 

cytoskeleton, formation of focal adhesion complex and enhancement of cell-cell 

interaction in many studies [128]. 

1.5 Project outline 

Current tissue engineering approaches for various medical solutions share a general 

requirement for adequate in-vitro models with stable liver-specific functions and 

functional structure features. Sandwich configuration, by culturing hepatocytes between 

two layers of ECM supports, is ideal for reestablishing cell polarity and maintaining 

various liver specific functions with high potential for various liver engineering 

applications. However, current sandwich configurations based on natural ECMs such as 

collagen type I and matrigel suffer from inherent mass transfers barrier imposed by the 



 27

two layers of extra-cellular matrices on semi-permeable support, which can slow down 

the exchange of nutrients, products, and chemical signals with the bulk of the medium.  

The two layers of support divide the sandwich culture assembly into two environments, 

the extra-sandwich and the intra-sandwich environments. The former is the well-

controlled environment defined by the culture medium; and the latter is the cell-

containing environment between the two layers of support. The barrier impedes the mass 

transfer between the two environments, resulting in the uneven distribution of nutrients 

and metabolites in both environments.  

This study is aimed to explore solutions to address the problem of mass transfer barriers 

in sandwich configuration by using two different approaches 1): Since a positive 

influence of the flow environment in hepatocytes culture has been widely accepted for 

improving mass transfer, it will be possible to manipulate the flow conditions in a 

perfusion sandwich culture bioreactor such that both efficient mass transfer and minimal 

cell damage are achieved. Using a current sandwich configuration with collagen coated 

ECMs support at both side, we try to reach a guideline regarding the choosing of the flow 

rates in perfusion sandwich culture; and with the aid of proper bioreactor design and flow 

control, to achieve high mass transfer efficacy in sandwich culture. 2):  Use of polymeric 

materials with proper surface modification as synthetic ECMs to replace the natural 

ECMs used in sandwich culture such as collagen type I, which generally process a lower 

diffusion coefficients compared with synthetic ECMs. By conjugating the PET surface 

with various functional groups such as galactose or RGD motif, we aim to develop a 

natural ECMs-free sandwich configuration with higher mass transfer efficacy, stable 

functional maintenance and expression of liver-specific functional structure.  

The solutions to inherent mass transfer barriers in sandwich culture and associated 
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process may represent novel approaches to improve the performance of hepatocytes 

sandwich culture for relevant applications.   
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Chapter 2 Materials and Methods 

All reagents were purchased from Sigma-Aldrich unless stated otherwise. 

2.1 Hepatocytes isolation and culture 

Hepatocytes were harvested from male Wistar rats weighing 250-300 g by a two-step 

in situ collagenase perfusion method [134]. Cell viability was determined to be at 

least 90% by Trypan Blue exclusion assay. The seeding density is about 0.2 million 

per 9 mm diameter attachment area. Hepatocytes were cultured by utilizing 

Hepatozyme SFM (Gibco Laboratories, Carlsbad, California), supplemented with 100 

µM dexamethasone and 100 µg/ml penicillin/streptomycin.                      

2.2 Fabricating PET film conjugated with galactose (PET-f-Gal)  

Poly acrylic acid (pAA) was grafted onto the PET film surface with a modified 

protocol for conjugating bioactive ligands [135]. Briefly, PET film was cut into 2cm x 

8cm strips and cleaned in ethanol. The air-dried PET strips were subject to argon 

plasma treatment which was carried out in SAMCO Basic Plasma Kit (SAMCO 

INTERNATIONAL INC.) operating at a radio frequency of 13.6MHz. Argon was 

introduced into the chamber in the SAMCO kit at a flow rate of 50ml/min with 

chamber pressure maintained at 20Pa. Plasma was generated at an electric power of 

40W for 1 min. After the plasma treatment, the PET strips were exposed to 

atmosphere for 10 minutes to promote the formation of surface peroxides and 

hydroperoxides, which were used for the subsequent UV-induced grafting of pAA. 

For the UV-treatment, quartz tubes with length of 12cm and diameter of 2.5cm were 
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fabricated at the Glassware workshop of the Department of Chemistry at NUS. The 

plasma-treated PET-strip was immersed in 30ml of the aqueous solution containing 

acrylic acid in the quartz tube. Argon was bubbled through the solution to thoroughly 

remove oxygen and capped under Argon. The quartz tube was placed in water bath 

with constant temperature of 28 oC and then subjected to UV irradiation for 30min 

using a 400W flood lamp in UV-F 400 unit (Panacol-Elosol GmbH). After grafting, 

the PET strip was taken out of the tube and washed exhaustively with DI water for 

24h to remove the residual homopolymer absorbed on the surface.     

pAA-g-PET strips were cut into circular disks with diameter of 15 mm in order to fit 

into the 24-well microplates. Galactose ligand were conjugated simultaneously using 

a ‘two steps’ EDC (1-Ethyl-3-[3-dimethylaminopropyl] carbodiimide Hydrochloride) 

chemistry. Briefly, at the first step, 100µl of MES buffer (50mM, pH of 5.5) 

containing 1.5mg EDC and 0.3mg sulfo-NHS were added to each 96-well containing 

the pAA-g-PET disk to activate the surface carboxylic groups by forming NHS esters. 

After 2h activation at room temperature, the MES solution was completely removed 

and replenished with 100µl phosphate buffer (0.1M, pH of 7.4) containing ligands and 

allowed to react with activated substratum by shaking at 300rpm in a thermomixer 

(Eppendorf) for 48h at 4 oC. PET-Gal was fabricated by reaction with AHG ligand 

respectively. After conjugation of the bioactive ligands, each sample was quenched 

with 0.5% ethanolamine solution for 15min to block non-specific interactions due to 

the un-reacted carboxylic groups with the hepatocytes.  

 

2.3 Fabricating PET track-etched membrane conjugated with 

Galacotose (PET-m-Gal) or RGD (PET-m-RGD) 

The PET track-etched membrane was cut into circular disk with diameter of 1.2cm to 
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fit into minusheet carriers. The membrane disk was pre-treated by oxidization with a 

solution of KMnO4 (60 g) in 1.2 N H2SO4 (1.5 l) at 60 oC during 1 h in order to 

enhance the amount of carboxyl chain-ends displayed on their surface, then rinsed at 

20 oC successively with 6 N HCl (2*10 min) and water (HPLC grade; 3*10 min). 

300µl of MES buffer (50mM, pH of 5.5) containing 10mg EDC and 2mg sulfo-NHS 

were added to each well containing the PET-COOH membrane to activate the 

carboxylic groups by forming NHS esters. After 2h activation at room temperature, 

the MES solution was completely removed and replenished with 300µl phosphate 

buffer (0.1M, pH of 7.4) containing ligands and allowed to react under shaking at 

300rpm in a thermomixer (Eppendorf) for 48h at 4 oC. PET-m-RGD or PET-m-Gal 

was fabricated by reaction with 0.2mg RGD or 1mg AHG respectively. After 

conjugation, each sample was blocked with 0.5% ethanolamine solution for 15min to 

quench non-specific interactions due to the un-reacted carboxylic groups. The 

microplates containing different substrata were sterilized by soaking with 70% 

ethanol for 3h and then rinsed 3 times with PBS for cell culture. 

2.4 Characterization of PET-RGD and PET-Gal substrata 

The graft density of carboxylic groups on the PET films and membranes was 

determined by a colorimetric method using Toluidine Blue O staining [136]. XPS was 

used to qualitatively verify the pAAc grafting and ligand conjugation onto the PET. 

Measurements were made on a VG ESCALAB Mk II spectrometer with a Mg Kα X-

ray source (1253.6 e V photons) at a constant retard ratio of 40.  

Gal ligands on PET film and membrane were hydrolyzed off the substrata using Acid 

Hydrolysis Station (C.A.T. GmbH & Co.) in 6N HCl at 110 oC for 24h under vacuum. 

The cooled hydrolyzed solution was filtered into a new vial and evaporated under 
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nitrogen. The hydrolyzed ligands from PET were re-suspended in 50µl DI-water and 

derivatized using ATTO-TAG™ CBQCA Amine-Derivatization Kit (Molecular 

Probes) for fluorescence detection after separation on a reverse phase C-18 column in 

HPLC (Agilent Technology). Optimized mobile phases are: A, Water + 0.1% TFA; B, 

Acetonitrile + 0.1% TFA. Standard curves were established against soluble Gal 

ligands.  

2.5 Collagen coating and sandwich culture configuration 

Forty µl of neutralized Type I Bovine dermal collagen (8 ml collagen, 1 ml 0.1 M 

NaOH, 1 ml 10xPBS, 6 ml 1xPBS) from Vitrogen, Angiotech BioMaterials Corp. 

(Palo Alto, CA) was spotted onto 12mm coverslips and 12 mm cellulose paper inserts 

(Millipore Corp., Billerica, MA) and were then transferred into a 37oC incubator for 

collagen gelation to occur overnight. Freshly isolated rat hepatocytes were seeded on 

the collagen-coated coverslips, and after 1 hour of incubation, it was immediately 

overlaid with collagen-coated cellulose paper which was stabilized using the O-rings 

on the minusheet carriers (Minucells and minutissue Vertriebs GmbH, Bad Abbach, 

Germany). After that, the entire configuration was transferred to a 24 well culture dish 

or perfusion chamber for cell culture.  

To form synthetic sandwich configuration, freshly isolated rat hepatocytes were 

seeded onto different substrata at the seeding density of 0.2 million per 9 mm 

diameter attachment area. Biaxially oriented poly (ethylene terephthalate) (PET) films 

of about 100 µm in thickness were purchased from Goodfellow Inc. of Cambridge, 

U.K. PET track-etched microporous membrane (CycloporeTM) were purchased from 

Whatman International Ltd (Maidstone, England). This membrane was characterized 

by a thickness of 22 µm, a pore density of 2.2*107 pores/cm2, and a mean pore 
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diameter of 1µm. The galactose ligand, 1-O-(6’-aminohexyl)-D-galactopyranoside 

(AHG, M.W. 279) was synthesized according to the method developed previously 

[137, 138] and verified by NMR spectrum. RGD peptide (GRGDS) was bought from 

Peptides International. Hepatocytes on the galactosylated PET film were incubated for 

3h for full attachment. When 3D monolayer was formed after one day of culture, 

another layer of RGD-conjugated PET membrane was overlaid and the sandwich 

construct were secured using the O-rings on the minusheet carriers. For conventional 

collagen coating, 40 µl of neutralized Type I Bovine dermal collagen (8 ml collagen, 1 

ml 0.1 M NaOH, 1 ml 10xPBS, 6 ml 1xPBS) from Vitrogen, Angiotech BioMaterials 

Corp. (Palo Alto, CA) was spotted onto 12 mm glass coverslips before being 

transferred into a 37 oC incubator overnight for collagen gelation to occur. 

Hepatocytes in the conventional sandwich culture were incubated for 1h for full 

attachment and then overlaid with un-gelled collagen after 24 h culture and gelation 

was allowed to occur at 37 oC for 3 h before fresh culture medium was added. 

Hepatocytes were cultured using William’s E culture medium supplemented with 

1mg/ml BSA, 10ng/ml of EGF, 0.5µg/ml of insulin, 5nM dexamethasone, 50ng/ml 

linoleic acid, 100units/ml penicillin, and 100µg/ml streptomycin.  

2.6 Bioreactor design and perfusion system  

The inner dimensions of the flat plate bioreactor, which has three chambers at the 

bottom part contain the entire sandwich configuration, are of 75×25×1 mm (L×W×H). 

The chambers inside this polycarbonate bioreactor have a diameter of 13mm and a 

depth of 3mm which can hold minusheet carriers with sandwich construct tightly. 

When minusheet carriers were put in, a close space of chamber will be formed 

between the bottom of the carriers and the bottom of chambers, which is separated 
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with the main flow environment at the top of sandwich construct by the minusheet 

carriers. To obtain optimal equilibrium of the pO2 and pCO2 in perfusion cultures, the 

medium was pumped through long, small-diameter, gas permeable silicone tubes, to 

allow continuous and optimal exchange of gases.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To realize the separate drainage, the intra-sandwich environment of sandwich 

configuration was linked to the close space of chambers by sixteen small pores (with 

1mm diameter) at the side of carrier. Channels were fabricated at the side of each 

chamber leading to the drainage pump. Two flow paths were established in this 

system: one is the flow path above the sandwich construct directly. Another is a 
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Syringe pump

pump
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Bottom reservoir

Main Flow
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Fig 2.1 Schematic representation of perfusion circuit and separate drainage model for 
perfusion sandwich culture. 
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branched flow path from the first flow path through intra-sandwich environment and 

the side pores of the sandwich carrier into the close room of the bioreactor chamber 

such that the intra-sandwich environment could be regulated directly through 

controlling the flow rates in this drainage flow path. The schematic drawing of 

separate drainage and perfusion culture model is shown in Figure 5.1.  By controlling 

the rates of the withdrawal, the cellular environment can be regulated. 

2.7 FITC-BSA transport behavior under different flow rates and 

diffusivity 

Measurement of the fluorescein isothiocyanate (FITC)-conjugated BSA behavior 

through the collagen-coated porous membrane at the top of sandwich construct at 

different flow rates of 0.1ml/min, 0.5ml/min, 1ml/min, 2ml/min and 5ml/min were 

based on the same principles as a donor-receptor environment model which was 

reported previously [139]. The donor environment was formed by clamping between 

the collagen-coated porous membrane and collagen-coated cover-glass using 

minusheet carriers. Donor environments were filled with 100 µl of 3.3 mg/ml FITC-

BSA in 1xPBS, while receptor environments were being continuously perfused by 

culture medium. The perfusion medium was collected at different time intervals. The 

concentrations of FITC-BSA were measured at an excitation and emission wavelength 

of 490 nm and 525 nm respectively against FITC-BSA standards by employing a 

microplate reader (Tecan Trading AG, Switzerland).  

Measurement of the diffusivity of fluorescein isothiocyanate (FITC)-conjugated BSA 

was based upon the same donor-receptor environment model and method as the 

aforementioned one, except that donor environments were filled with 100 µl with a 

concentration of 0.033 mg/ml FITC-BSA in 1xPBS. The amount of BSA used here is 
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approximately the same as the amount of albumin produced by cell cultured in this 

given sandwich configuration.  

2.8 FITC-dextran diffusivity measurements 

Measurement of the diffusivity of fluorescein isothiocyanate (FITC)-conjugated 

dextrans of 9.5 kDa, 70 kDa and 150 kDa through the PET membrane and collagen 

layer were based on the donor-receptor compartment model described above. Briefly, 

the membrane was clamped between the receptor and donor compartments using 

minusheet carriers. Donor compartments was filled with 20 µl of 0.2 wt % FITC-

dextran in 1xPBS, while receptor compartments were filled with 200 µl of 1xPBS. 

Samples were taken from the receptor compartment at each hour and replaced with 

fresh PBS. For the measurement of diffusivity of fluorescein isothiocyanate (FITC)-

conjugated dextrans through collagen, 20 µl of 0.2 wt % FITC-dextran in 1xPBS was 

maintained in glass coverslip and 40 µl of collagen was added at the top. The whole 

construct was maintained in minucell carriers and incubated for 4h to let collagen gel. 

Then 200 µl of 1xPBS was added on the receptor compartment and samples were 

taken from the receptor compartment at each hour and replaced with fresh PBS. The 

concentrations of FITC-dextran were measured at 490 nm excitation/525 nm emission 

against FITC-dextran standards using a microplate reader (Tecan Trading AG, 

Switzerland). 

2.9 Biliary excretion of fluorescein  

To visualize the fluorescein excretion, 3 µg/ml of fluorescein diacetate (Molecular 

Probes, Eugene, Oregon) in culture medium was incubated with the cultures at 37 oC 

for 45 mins [140]. The cultures were then rinsed and fixed before observing under a 
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confocal microscope (Fluoview 300, Olympus) using a 40x water lens.  

Imaging Process Software (Imaging Process Probe) was used to process the pictures 

and quantify the fluorescein localization in the inter-cellular sacs (Red color) between 

hepatocytes (outline in green). The biliary excretory function was indicated by the 

ratio of the area of fluorescein in intra-cellular sacs to the total area covered by cells.  

2.10 Immunofluorescence microscopy 

F-actin staining: the cells were fixed using 3.7% paraformaldehyde, blocked in 10% 

fetal calf serum (FCS) at room temperature for 1 h, permeabilized for 5mins in 0.1% 

Trion X-100 plus 1% bovine serum albumin (BSA), incubated with TRITC-phalloidin 

(1µg/ml) for 20mins and then washed three times before imaging. 

MRP2/CD147 double staining: Primary anti-CD147 mouse monoclonal antibody 

(mAb) was purchased from Serotec, Inc. (Raleigh, NC). Primary anti-MRP2 rabbit 

polyclonal antibody (pAb) was purchased from Sigma-Aldrich. 3.7% 

paraformaldehyde-fixed samples were blocked in 10% fetal calf serum (FCS) at room 

temperature for 1 h. Samples were incubated with the primary antibodies (1:10) 

overnight at 4 oC, before being rinsed with 1xPBS thrice, each lasting 5mins. Samples 

were then incubated with the secondary antibodies at room temperature for 1 h and 

rinsed with 1xPBS before being mounted with FluorSaveTM (Calbiochem, San Diego, 

CA). The samples were viewed with a confocal microscope (Fluoview 300, Olympus) 

using 60x water lens. 

2.11 Scanning electron microscopy 

3.7% paraformaldehyde-fixed samples were rinsed in 1xPBS and then post-fixed with 

osmium tetraoxide for 1 hour. Dehydration was accomplished using a graded series of 
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ethanol (25%, 50%, 75%, 95%, and 100%). The samples were then dried for 2 h in 

absolute alcohol, mounted onto a brass stub and sputter-coated with platinum (JFC-

1600, JEOL), before being viewed under a field emission scanning electron 

microscope (JSM-7400F, JEOL). 

2.12 Hepatocytes functional assays  

All functional data were normalized to 106 cells. Rat Albumin ELISA Quantitation 

Kit (Bethyl Laboratories Inc., Montgomery, Texas) was used for the measurement of 

daily albumin production; Hepatocytes were incubated in culture medium with 2 mM 

NH4Cl for 90 mins and Urea Nitrogen Kit (Stanbio Laboratory, Boerne, Texas) was 

used to measure the urea production; The 7-ethoxyresorufin-O-deethylation (EROD) 

assay was used to measure the deethylation activity of cytochrome P450 (CYP) 1A-

associated monooxygenase enzymes, which is initiated by incubating the cultures 

with 39.2 µM 7-ethoxyresorufin in culture medium at 37 ºC for 4 hours. The amount 

of resorufin converted by the enzymes was calculated by measuring the resorufin 

fluorescence in the incubation medium at 543 nm excitation/570 nm emission against 

resorufin standards using the microplate reader (Tecan Trading AG, Switzerland).  

2.13 Statistical analysis 

Statistical calculations were carried out by function of T-Test in Microsoft Excel. All 

values are presented as the mean +standard deviation unless otherwise noted. 

Probability values P<0.05 were considered significant. 
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Chapter 3 Enhancing mass transfer efficacy in 

conventional sandwich configuration by manipulating 

flow environment  

3.1 Limited mass transfer in conventional sandwich culture 

Conventional hepatocytes sandwich culture involves culturing cells between two 

layers of natural extra-cellular matrix support on solid surfaces [129]. The cells are 

generally seeded onto a collagen-coated polystyrene or glass surfaces and sandwiched 

by another layer of the collagen on porous membranes so as to allow nutrient access 

from the culture medium above the sandwich assembly [130]. Sandwiching cells 

between two layers of extra-cellular matrix support creates an intra-sandwich 

environment which differs from the extra-sandwich environment defined by culture 

medium. However, the two layers of extra-cellular matrix support on solid surfaces or 

membrane can act as mass transfer barriers between the intra-sandwich and extra-

sandwich environments causing metabolite accumulation and limited nutrient access 

in the intra-sandwich environment which in turn influences cellular behaviors. For 

example, when albumin, the most abundant molecules with a relatively lower 

diffusion coefficient, a good model molecule to indicate the mass transport properties 

of metabolites in culture, was examined, it was found that the albumin level in the 

intra-sandwich environment increased steadily over a period of 24h in static culture 

(Figure 3.1).  
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Previous studies reported that free diffusion coefficients of albumin were in the order 

of 10-11 m2 ·S-1 [97, 131]. In gels, diffusion coefficient of albumin is much lower than 

in free solution, due to the hydrodynamic effects and steric hindrances. The diffusion 

coefficients of albumin through the collagen membrane and other gel matrix have 

been observed, ranging from 10-15 to 10-12 m2 ·S-1 [98, 99]. Considering albumin is one 

of the most abundant molecules produced by hepatocytes in vitro, it is reasonable to 

speculate that albumin also accumulates in intra-sandwich environment of the 

sandwich construct.  

3.2 Effect of mass transfer efficacy on hepatocytes’ functions 

To investigate whether mass transfer limitation indicated by albumin accumulation in 

intra-sandwich environment influences hepatocytes functions, we examined how the 

membrane permeability on the upper side of the sandwich assembly would influence  
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Fig 3.1 Dynamic albumin accumulation in intra-sandwich environment in static 
hepatocytes sandwich culture. 
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Fig 3.2 Effect of different sandwich culture configurations on the intra-sandwich 
albumin environment (A), and hence their effect on the urea production (B) at 

different culture days. 
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the intra-sandwich albumin accumulation and its corresponding effects on hepatocytes 

functions. When the upper extra-cellular matrix support consists of two membranes, 

the albumin accumulation in the intra-sandwich environment is ~ 13.05µg/million 

cells in average in 6 days of culture (Figure 3.2A). When the upper extra-cellular 

matrix support consists of one membrane as in our standard sandwich culture, the 

albumin accumulation in the intra-sandwich environment drops to ~10.70µg/million 

cells in average. When the upper extra-cellular matrix support consists of a membrane 

punctured with the tip of 31G needle to increase permeability, the albumin 

accumulation in intra-sandwich environment drops to ~9.05µg/million cells in 

average. Hepatocytes function as measured by urea production increases as the intra-

sandwich albumin accumulation decreases (Figure 3.2B). It is clear that mass transfer 

efficacy affect functional maintenance of hepatocytes in sandwich configuration.  

3.3 Regulation of mass transfer efficacy by varying perfusion flow 

rates 

As a positive effect of enhanced mass transfer efficacy is demonstrated above, we 

tried to further improve mass transfer efficacy in a perfusion sandwich culture by 

flowing culture medium at different flow rates above the upper extra-cellular matrix 

support on porous membrane in a flat plate sandwich perfusion culture bioreactor. We 

investigated how different flow rates can influence the intra-sandwich albumin efflux 

from the intra-sandwich environment to the culture medium (Figure 3.3). We 

observed that relatively low flow rates of 0.1ml/min to 1ml/min resulted in a diffusion 
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dominated transport process of albumin across the upper membrane of the sandwich 

assembly while flow rates of 2ml/min and 5ml/min led to a convection-dominated 

transport process. Under relatively low flow rates (0.1ml/min-1ml/min), the diffusion-

dominated transport process of albumin across the upper layer of the sandwich 

construct indicated limited enhancement ability in mass transfer efficacy. While under 

high flow rates of 2ml/min-5ml/min, all the intra-sandwich albumin are rapidly 

washed out by a convection-dominated transport process but adversely affected 

hepatocytes functions. And there still have no control over the different extent of mass 

transfer efficacy wanted. When the hepatocytes functions as measured by albumin 

secretion and urea production were examined under different flow rates, hepatocytes 

maintained higher level of functions in the diffusion-dominated process than  
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Fig 3.3 The metabolites transport process across the top collagen coated membrane at 

different flow rates was simulated by a donor-receptor environment model using FITC-
BSA at different flow rates in a flat-bed perfusion sandwich bioreactor 
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Fig 3.4 Effect of different flow rates in flat-plate bioreactor for sandwich culture on the 
hepatocytes functions, indicated by Albumin production (A) and Urea synthesis (B) after 

four day of culture. 
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in the convection dominated process (Figure 3.4), likely due to the adverse effects that 

convective flow conditions have imposed onto hepatocytes. This is not surprising 

since hepatocytes in the in vivo liver plate are only exposed to plasma without direct 

contact with blood, allowing diffusion exchange of plasma proteins, nutrients, and 

metabolites through sinusoidal cells to realize its myriad functions. Shear stress can 

damage the cells under high flow conditions and excessive mass exchange can 

excessively remove good metabolites such as hepatocytes growth factors, a number of 

hormones, and triiodothyronines (T3) that might be essential for the maintenance of 

hepatocytes functions [132].  

 

 

 

 

 

 

 

 

 

Unfortunately, the intra-sandwich albumin accumulates significantly under the low 

flow rate (0.25ml/min) although it yields the optimal hepatocytes functions (Figure 
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Fig 3.5 The albumin level in intra-sandwich environment under flow rate of 

0.25ml/min with the simulation based on the permeability coefficients at different 
culture period (D). 
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3.5). The simulation results based on proposed diffusion model and permeability 

coefficients measured (2.95×10-8 cm2/s) at different flow rates also predict the similar 

intra-sandwich albumin accumulation. It is difficult to control the mass transfer 

efficacy across ECM layers tremendously by only varying perfusion flow rates in the 

range of diffusion dominated flow rates. The limited mass transfer ability indicated by 

intra-sandwich accumulation of albumin will still impact the hepatocytes functions 

adversely, if not effectively regulated. It is also impossible to control mass transfer 

efficacy in convection dominated flow rates, as all the albumin was washed out 

immediately and there still have no control over it.  

3.4 Regulation of mass transfer efficacy by a separate drainage 

To effectively regulate mass transfer efficacy as indicated by intra-sandwich albumin 

accumulation independently from varying perfusion flow rates, we have developed a 

novel bioreactor with a separate drainage channel directly connected to the intra-

sandwich environment. Two flow paths were established in this system: one is the 

flow path above the upper layer of the extra-cellular matrix on porous membrane with 

the flow rate of 0.25ml/min that yields the optimal hepatocytes functions. Another is a 

branched flow path from the first flow path through intra-sandwich environment and 

the side pores of the sandwich carrier into the extra-carrier space in the bioreactor 

chamber such that the intra-sandwich environment could be regulated directly through 

controlling the flow rates in this drainage flow path. The effects of different drainage 

rate on intra-sandwich albumin accumulation and its subsequent effect on hepatocytes                         
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Fig. 3.6 Effect of different drainage rates on the albumin level in intra-sandwich 
environment (A) and on the urea production (B) after four day of culture. 
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were investigated (Figure 3.6). The intra-sandwich albumin accumulation was 

reduced from 18.35µg/million cells (drainage rate of 1ml/day) to 6.50µg/million cells 

(drainage rate of 4ml/day), 2.22µg/million cells (drainage rate of 12ml/day) and 

1.80µg/million cells (drainage rate of 20ml/day) after 4 days of perfusion culture. 

With drainage rate of 4ml/day, urea production by hepatocytes is 20% higher than the 

no-drainage control after 4 days of perfusion culture; with drainage rate of 1ml/day, 

no obvious difference in urea production was observed between the drainage group 

and the no-drainage control. With drainage rates of 12ml/day and 20ml/day, the urea 

production were ~30% lower than the no-drainage control. Therefore, the mass 

transfer efficacy can be effectively regulated and there is an optimal drainage rate of 

~4ml/day that yields the best urea production after 4 days of perfusion culture. The 

intra-sandwich albumin accumulation at the end of the 4-day perfusion culture is 

reduced ~74% from the no-drainage control. 

3.5 Maintenance of hepatocytes functions in perfusion sandwich 

culture with separate drainage 

We further characterized the hepatocytes functions in perfusion sandwich culture with 

optimized mass transfer efficacy (the flow rate of 0.25ml/min and drainage rate of 

4ml/day). Hepatocytes functions as measured by urea production and albumin 

secretion were better maintained for two weeks with up to ~15% higher levels in the 

perfusion sandwich culture with direct drainage than the no-drainage control. There is 



                                                                                                                                                                                    49 

also a significantly less drop in hepatocytes functions in the perfusion sandwich 

culture with direct drainage over the two week period than the no-drainage control 

(Figure 3.7). 
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Fig. 3.7 Hepatocytes functions shown by albumin production (A) and urea 
production (B) in culture period of two weeks under perfusion culture with 
optimized drainage rate. [*Student’s T-test (P<0.05) were performed between 
drainage and control groups; ** not significant] 
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Fig 3.8 Excretory function of hepatocytes indicated by FDA staining in the optimized 
drainage culture condition (B) after 2 (B1) 6 (B2) and 12 (B3) day of culture compared 

with control group which do not incorporate drainage (A1, A2and A3). 
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To test the functional structure features in the separate drainage bioreactor, excretory 

function of hepatocytes was evaluated by imaging and quantifying the fluorescein 

localization in the inter-cellular sacs between hepatocytes. The fluorescein in the 

inter-cellular sacs is derived from fluorescein diacetate (FDA) being metabolized and 

excreted by hepatocytes [133]. As is shown in Figure 3.8, more fluorescein (red color) 

was concentrated in the sacs between hepatocytes (outline in green) from 48 h to at 

least 12 days of perfusion culture with direct drainage than the no-drainage control. 

This is further supported by quantifying the ratio of the area of fluorescein to the total 

area covered by cells (Figure 3.9).  Therefore, hepatocytes in perfusion sandwich 

culture with direct drainage of up to ~74% of the intra-sandwich albumin can 

maintain a higher level of cellular functions and functional polarity than the no- 

drainage control for extended period of time. 
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 Fig 3.9 The excretory function quantified by the ratio of the area of fluorescein in 
intra-cellular sacs to the total area covered by cells 
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Therefore, the regulation of mass transfer efficacy in intra-sandwich environment can 

be somehow achieved in the novel separate drainage bioreactors and a higher level of 

cellular functions and functional polarity were observed with optimized mass transfer 

efficacy.  
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Chapter 4 Engineering Novel Synthetic Sandwich 

Configuration with High Mass Transfer Efficacy 

We know that in conventional sandwich configuration, the inherited mass transfer 

barriers are mainly caused by the introduction of natural ECMs such as collagen, 

which slow down the exchange of nutrients, products, and chemical signals with the 

bulk of the medium. We tried to overcome mass transfer barriers in sandwich culture 

by using precisely-controlled synthetic polymer scaffold with proper functional 

modification to replace the natural ECMs. To develop a novel synthetic sandwich 

configuration which has higher mass transfer efficacy, while maintains high 

differentiated functions and polarity as what is observed in conventional sandwich 

configuration.  This novel approach was inspired by our finding of a special 3D 

hepatocytes stage on galactose-conjugated PET film.  

4.1 Galactose-conjugated PET film as the bottom support of 

sandwich configuration 

4.1.1 Fabrication and characterization of PET film with Gal-ligands 

Acrylic acid was grafted onto the poly (ethylene terephthalate) (PET) film by argon-

plasma treatment and UV-induced copolymerization. The effectiveness of the grafting 

was demonstrated by XPS analysis (Figure 4.1). The XPS wide scan spectrum of the 

pristine PET film showed peaks corresponding to C 1s (binding energy, 285eV) and O 

1s (binding energy, 532eV), which revealed the presence of carbon and oxygen 

signals. 
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The spectrum of PET-pAAc film showed the same peaks as pristine PET film; 

however, the relative intensity ratio of oxygen to carbon peaks is higher in PET-pAAC 

film than in pristine PET film. The pAAc grafting density was quantified by TBO 

colorimetric assay. PET-pAAc substrata with carboxyl group densities from 8.2±2.3 to 

258.2±24.2nmol/cm2 could be obtained by varying the initial concentration of the 

acrylic acid monomer solution from 1%-5%. As reported previously, the difference in 

 

Fig 4.1 XPS wide scanning spectrums of PET(1), PET-g-AAc(2), PET-gal (3) which showed the 
successful grafting of acrylic acids and following immobilization of Gal ligands onto the PET film. 
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density of carboxylic groups and conjugated galactose ligands was not expected to 

lead to significant differences in hepatocytes 3D spheroids formation and functional 

maintenance when the densities went above certain value. 3.75% acrylic acid 

monomer solution was chosen to fabricate PET-pAAc with carboxyl group density of 

78.5±10.2 nmol/cm2 for the following ligands conjugation and cell culture work in 

order to achieve reasonably high ligand-conjugation density using the relatively 

inefficient two-step ‘EDC chemistry’.  

Gal ligand (AHG) were conjugated onto the PET-pAAc film, and successful 

conjugation of ligands was confirmed by XPS (Figure 4.1). In contrast to pristine PET 

and PET-pAAc, a new peak corresponding to N 1s (binding energy, 400eV) appeared 

in the spectra of the PET-Gal. To measure the amount of AHG conjugated onto the 

films, we removed the conjugated AHG from the film by acid hydrolysis, and 

quantify the hydrolyzed AHG by RP-HPLC with fluorescence detector after 

derivatizing the α-amine on the hydrolyzed AHG to fluorescent substances. The final 

density of AHG of PET-Gal is 5.92±0.74nmol/cm2. 

4.1.2 Dynamic process of hepatocytes self-assembly on galactosylated 

substratum 

Primary rat hepatocytes were seeded onto the 35-mm galactose-bottom Willco dish at 

a density of 105 cells/cm2 for live-imaging of spheroid formation. During hepatocytes 

self-assembly, dramatic changes occur in cell morphology and substratum coverage as 

shown by confocal transmission images (Figure 4.2) and SEM images (Figure 4.3). 

Hepatocytes on galactosylated substratum undergo 2 cycles of cell-aggregation to 

form mature spheroids. Single hepatocytes seeded on this galactosylated substratum 

form small aggregation of hepatocytes within 12 h with reduced area of coverage of 
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Post-seeding Small aggregations 

Islands Stretched monolayer  

Mature spheroid 

Fig 4.2 Dynamic morphogenesis of hepatocytes’ self assembly on Gal-PET film using the confocal 
transmission imaging 
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Fig 4.3 Dynamic morphogenesis of hepatocytes’ self assembly on PET film using SEM at different 
stages 

Post-seeding Small aggregations 

Islands Stretched monolayer  

Mature spheroid 
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the substratum. Migration of the cells facilitates the establishment of cell-cell contacts 

and contractions among small aggregates which gradually merged into larger ‘island-

like’ clusters after one day. The island-like clusters undergo further spreading to form 

monolayer within two days with the maximum substratum coverage.  Due to the 

strong cell-cell contraction, the cells at the edge of the pre-spheroid monolayer was 

stretched to fold into multilayer and finally compacted into mature and larger 3D 

spheroids after three days which will finally detached from the substratum. The total 

process exhibited five different stages with two cycle of spheroid formation. 

4.1.3 3D monolayer stages in galactosylated PET film 

To evaluate the application potential of this novel pre-spheroid 3D monolayer 

configuration, we compared the liver-specific functions such as synthetic, detoxifying 

and metabolic activities of hepatocytes in this transient stage cultured at Day 2 with 

conventional 2D monolayer at Day 2 as well as 3D spheroids at Day 3.  Figure 4.4 

shows that the albumin secretion and 7-ethoxyresorufin-O-deethylation cytochrome 

P450 activity induced by 3MC of hepatocytes in pre-spheroids 3D monolayer are 

significantly higher than that of the conventional 2D monolayer and comparable to 

that of 3D spheroids. Urea synthesis doesn’t show significant difference among these 

three configurations. SEM images with higher magnification were used to further 

show the details of cell morphology and cell-cell interactions among different culture 

configurations (Figure 4.5). 3D spheroids exhibit smooth surface without 

distinguishable cell-cell boundaries. Cells within the pre-spheroid 3D monolayer are 

tightly interacting with each other with protrusions extending from one cell to another, 

whereas cell-cell interaction in the conventional 2D monolayer were generally more 

loose with distinguishable cell-cell boundary .  
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4.2 Overlaying of 3D monolayer with functionalized PET membrane 

4.2.1 Permeability of selected PET membrane  

To have enhanced mass transfer efficacy in the synthetic sandwich configuration, high  
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Fig 4.4 Liver specific functions: Albumin synthesis, Urea production and EROD activity under 

different culture conditions, including 2D monolayer on collagen and 3D monolayer and 
spheroid. 
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permeable PET membrane was selected as the support at the top layer of 3D 

monolayer. We investigated the mass transfer efficacy across PET membrane and 

collagen layer using FITC-dextrans of various molecular weights of 9.5, 70, 150 kDa, 

representative of a range of molecules of different sizes in the culture medium (Table 

4.1). Two fold increase of mass transfer efficacy was observed with the PET 

membranes over the collagen layer normally used in conventional collagen sandwich. 

The diffusivities of the FITC-dextrans were inversely related to their molecular 

weights and diffusivity of the order of 10-8 cm2/s was displayed in both conditions,  

 

2D monolayer 3D monolayer 

Mature Spheroid 

Fig 4.5 SEM pictures of hepatocytes in various culture conditions, including 2D monolayer, 3D 
monolayer and mature spheroid 
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TABLE 4.1 Diffusivity of dextran of various molecular weights across the modified PET 

membrane and collagen layer.  

 

      Molecular Weights (kDa)       Diffusivity × 108 (cm2/s) [PET]      Diffusivity × 108 (cm2/s) [collagen]               

                     9.5                                    4.58±0.44                                 2.26±0.56                         

                     70                                     4.38±0.56                                 2.04±0.69                         

                     150                                   3.53±0.49                                 1.70±0.53                                                

 

 

Which is comparable to other porous membranes such as poly (ε-caprolactone) or 

collagen sheets. The results indicated that overlaying 3D monolayer using PET 

membrane can provide a better mass transfer environment for hepatocytes in 

sandwich than the conventional collagen sandwich.  

4.2.2 Fabrication and characterization of bioactive PET membrane  

TBO assay showed high density of carboxylic groups (39.31±1.6 nmol/cm2) present 

on the PET track-etched membrane from Whatman which was comparable to the 

poly-acrylic acid grafted PET film (78.5±10.2 nmol/cm2). Oxidation by KMnO4 and 

H2SO4 did not show significant effect to increase the carboxylic group’s density 

(41.32±2.1 nmol/cm2), which indicated that the PET track-etched membrane might 

have been oxidized by the manufacturer.  

RGD peptide (GRGDS) or Gal ligand (AHG) were conjugated onto the PET track-

etched membrane activated by EDC and sulfo-NHS. Successful conjugation of 

ligands was confirmed by XPS (Figure 4.6). To measure the amount of the GRGDS 

and/or AHG conjugated onto the films, we removed the conjugated GRGDS or AHG 
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from the PET membrane by acid hydrolysis, and quantified the hydrolyzed GRGDS 

and AHG by RP-HPLC with fluorescence detector after derivatizing the α-amine on 

the hydrolyzed GRGDS and AHG to fluorescent substances. The final density of the 

conjugated GRGDS and AHG on the PET track-etched membrane was 

0.63±0.14nmol/cm2 and 1.48±0.65nmol/cm2 which showed around 1.5% and 3.5 % 

surface functionality respectively. In comparison, relatively higher galactose density 

(5.92±0.74 nmol/cm2) and surface functionality (7.5%) were achieved in the PET-f-

Gal.   

4.3 Effect of Various functional overlay on hepatocytes 

The synthetic sandwich configurations were formed by overlaying an unstable 3D 

monolayer with the Gal-, RGD- or non modified PET membrane. We first compared 

the performance of these three synthetic sandwich configurations in terms of their 

ability in F-actin localization, functional maintenance and morphology stabilization. 

F-actin localization in the cell-cell contact regions has been suggested to be a direct 

indicator of polarity initiation in the conventional collagen sandwich. Overlay of 3D 

monolayer with Gal- and RGD-PET membrane induced dramatic F-actin changes 

with the localization of F-actin in cell-cell contact areas after 12h of sandwich culture, 

while overlay of non-modified PET membrane seemed to have no positive effect on 

the polarity genesis (Figure 4.7). Functional improvement of sandwich over 3D 

monolayer was observed in the sandwich configurations with overlay of Gal- and 

RGD-PET membrane, and the highest urea production and P450 enzyme activity were 

maintained in the RGD-PET membrane (Figure 4.8). As the 3D monolayer tends to 

form the spheroid after 2 days of monolayer culture, we tested the ability of 

stabilization of monolayer stages of these three sandwich configurations. It was found 
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that 3D monolayer overlaid with Gal- and non modified PET membrane formed the 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 4.6 XPS C1s core-level spectra of (a) the pristine PET track-etched membrane; (b) the 
oxidized PET membrane; (c) the RGD conjugated PET membrane and (d) the galactosylated 

PET membrane. 
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multi-layer structures after one week of culture, while overlay with RGD can stabilize 

the 3D monolayer for at least one week (Figure 4.9).  These results suggests that 

RGD-PET membrane will be the ideal synthetic functional support for 3D monolayer 

and the sandwich configuration formed by overlay of RGD-PET membrane (RGD 

sandwich) have the best performance among the three configurations.  

 

 

Fig 4.7 Effect of overlay of 3D monolayer with Non-modified PET membrane (B), Gal-PET 
membrane (C) and RGD-PET membrane (D), compared with no overlay group (A). Scale 50um. 
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The synthetic sandwich configuration was formed by the overlay of a novel 3D 

monolayer formed in galactosylated PET film with Gal-, RGD- or Non-PET 
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Fig 4.8 Effect of overlay of 3D monolayer with different functionalized PET membrane on 
hepatocytes’ functions. 
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membranes. This unstable 3D monolayer stage before spheroid formation after 1 day 

 

 

 

 

 

 

 

 

 

 

The synthetic sandwich configuration was formed by the overlay of a novel 3D  

 

 

 

 

of culture on galactosylated substratum exhibited improved cellular structure and 

polarities, enhanced cell-cell interactions, better differentiated functionalities than 

hepatocytes monolayer on collagen coated surface.  

The overlay of different supports in PET membrane may act as 1): a physical force on 

the top of cells to prohibit 3D cells from forming spheroid and 2): functional chemical 

support for the induction of further structural changes and stabilization. As the non-

Fig 4.9 Morphology of hepatocytes under the sandwich configurations with Non-modified PET 
membrane (B), RGD-PET membrane (C) and Gal-PET membrane (D) overlay after one week of 

culture, compared with no overlay group (A). Scale 50um 
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modified overlay nearly did not induce any effect on 3D monolayer, we could deduce 

that the functional support played an essential role. In both sandwich configurations 

with functional supports at the top, hepatocytes were exposed to galactose or RGD 

ligand at the top and galactose at the bottom. The synergistic interplay between the 

effects of those two ligand-receptor interactions may be expected. RGD- sandwich 

configuration showed better performance in terms of function maintenance, polarity 

formation and morphology stabilization. It is known that the ligand-receptor 

interaction between galactose and ASGPR is relatively weak and a non-integrin 

pathway is involved [122]. In contrast, RGD-integrin interactions have been shown to 

have strong influence to induce downstream signaling pathway to cause the 

redistribution of the cytoskeleton, formation of focal adhesion complex, enhancement 

of cell-cell interaction in many studies [127].  

In addition, hepatocytes attached to RGD-conjugated substratum keep spreading 

morphology as monolayer, exhibiting similar characters as monolayer formed in 

collagen, while hepatocytes in galactosylated substratum tend to form spheroid after 

several days of culture. In this case, RGD overlay, by the integrin complex, helped to 

stabilize the 3D monolayer and induced a series of structural changes comparable 

with what is induced by collagen overlay through the intergrin complex. We observed 

a similar and comparable polarity formation process in the synthetic sandwich 

configuration as what was in the conventional collagen sandwich. Less stabilization 

effect was exposed to the hepatocytes in the sandwich group with Gal-PET membrane 

at the top.  
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4.4 Hepatocytes sandwiched between Gal-PET film at the bottom and 

RGD-PET membrane at the top 

4.4.1 Cell-cell interaction 

SEM micrographs of hepatocytes after 48h of sandwich culture were used to compare 

the effects of both sandwich configurations on cell morphology and cell-cell 

interactions. Hepatocytes cultured in the synthetic sandwich configuration formed a 

more tightly organized cell-cell interaction with featured cellular protrusions 

extending from one cell to another cell. In addition, cell boundaries have been merged 

to each other and cannot be clearly identified; whereas cells in the conventional 

collagen sandwich were more rounded and generally more loosely interacting with 

other cells (Figure 4.10). The results show that hepatocytes in synthetic sandwich 

configuration featured tighter cell-cell interactions over conventional collagen 

sandwich.  

 

 

 

 

 

 

 

 

 

Fig 4.10 SEM pictures of hepatocytes cultured in the synthetic sandwich configuration with Gal at the 
bottom and RGD at the top (b) and in the conventional collagen sandwich (a). 
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4.4.2 Polarity genesis 

As the building of cell polarity and functional activity of bile canaliculi can be 

represented by biliary excretion function of hepatocytes, we examined the kinetic 

changes of hepatocytes’ excretory function in both sandwich configurations using a 

non-fluorescent substrate, fluorescein diacetate (FDA), which enters the cell by 

passive diffusion where it is hydrolyzed by intracellular esterases into fluorescein 

before it is excreted by bile canaliculi transporters. There was nearly no fluorescein 

concentrated in sacs between hepatocytes in conventional collagen sandwich after 12h 

of sandwich culture; and the fluorescein secreted by bile canaliculi begin to appear 

after 24h of culture and fully developed between 48h and 72h. However, in synthetic 

sandwich configuration, fluorescein secreted by bile canaliculi can be observed after 

12h of sandwich culture; and the bile secretion increase with the time and higher level 

of fluorescein in sacs was developed between 48h and 72h of culture (Figure 4.11). 

This observation was further confirmed by quantifying the fluorescein localized in the 

inter-cellular sacs between hepatocytes and the absolute value was shown in bottom 

of each respectively pictures.  The results suggest that hepatocytes cultured in 

synthetic sandwich configuration exhibited a same extent of functional polarity as 

conventional collagen sandwich.   

4.4.3 Functional maintenance 

We examined and compared the liver-specific functions of hepatocytes cultured in 

both sandwich configurations. Albumin secretion, urea production and 7-

ethoxyresorufin-O-deethylation cytochrome P450 activity of hepatocytes cultured in 

synthetic sandwich configuration were significantly higher than those produce in the 

conventional collagen sandwich over 14 days of culture (Figure 4.12). 
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The greatest enhancement was within the first 4 to 6 days, which may be translated 

into a higher level of functions upon stabilization. The improvement in the functional 

maintenance may be due to the better cell-cell interaction and improved mass transfer 

efficacy across the two layers of ECMs support in synthetic sandwich configuration.  

Several system advantages have been demonstrated in the synthetic sandwich 

configuration over the conventional collagen, which may be related to the higher 

functional maintenance in synthetic sandwich configuration. When the cell-cell 

interaction was examined, a more tightly organized cell-cell interaction with featured 

cellular protrusions extending from one cell to another cell was observed in synthetic 

sandwich configuration over the conventional collagen sandwich. Cell-cell interaction 

has been shown to be essential for polarity formation and functional maintenance of 

hepatocytes, which may, from another point of view, demonstrate the ability of 

synthetic sandwich configuration in polarity formation and functional maintenance. 

 

A B

Fig 4.11 Excretory function of hepatocytes in the synthetic sandwich configuration (B) compared 
with the excretory function in conventional collagen sandwich (A) after different culture period 

after overlay. 
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This better cell-cell interaction may partly result from the initial tighter cell-cell 

interaction of 3D monolayer before overlay. One of the inherent limitation of the 

conventional sandwich culture is the mass transfer barrier caused by the introduction 

of natural ECMs such as collagen type I, which slows down the exchange of nutrients, 

products, and chemical signals with the bulk of the medium and have been suggested 

to result in the decrease of hepatocytes functions. While polymeric materials with 

proper properties can help to improve. Higher mass transfer ability across the PET 

membrane was observed over collagen; another advantage of this synthetic system is 

based on the uniform functional modification of PET substrates. In addition, we 

observed that a more homogeneous cell morphology and structure were maintained in 

synthetic sandwich over collagen sandwich, which can be greatly affected by the 

coating uniformity and the unspecific cell-biomaterial interaction.  With all those 

advantages including enhanced mass transfer efficacy, better cell-cell interaction and 
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Fig 4.12 Functional maintenance of hepatocytes in the synthetic sandwich configuration in 
comaperation of hepatocytes’ functions in conventional collagen sandwich in different 

culture days.
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higher initial functions before overlay, hepatocytes cultured in synthetic sandwich 

configuration exhibited improved albumin secretion, urea synthesis and P450 

activities over conventional collagen sandwich for at least 14 days of culture.  By 

regulating this 3D monolayer with proper chemical and physical overlay support 

(RGD- PET membrane), we formed the novel sandwich configuration with 

comparable performance to current collagen sandwich with similar polarity formation 

but better functional maintenance, which not only represents a novel sandwich culture 

configuration with improved hepatocytes performance for relevant applications in 

liver engineering, but also demonstrates the potentials of bio-synthetic matrix in tissue 

engineering applications.  
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Chapter 5 Conclusion and Future Work 

The author characterized inherent mass transfer barriers in conventional sandwich 

configuration (indicated by albumin-rich intra-sandwich environment) and explored 

solutions to address this problem using two different bioengineering approaches.  

As a positive influence of the flow environment in hepatocytes culture had been widely 

accepted for improving mass transfer, the effect of top flow conditions in sandwich 

configuration on mass transfer efficacy was tested in a flat-bed bioreactor. It was 

observed that mass transfer efficacy is hard to control in this way by varying the 

perfusion flow rates in perfusion culture without adversely affecting the hepatocytes 

functions. Thus, we designed a novel bioreactor with a separate drainage channel directly 

connected to the intra-sandwich environment to effectively regulate the intra-sandwich 

environment and allow exchange of nutrients and metabolites without changing the 

perfusion flow rates as is shown in Figure 2.1. An optimal level of the mass transfer 

efficacy can be maintained, which improved hepatocytes functions over the no-drainage 

controls for an extended period of time of up to 2 weeks.  

The improved sandwich configuration developed under this strategy is valuable in the 

development of next generation of bio-artificial liver assistant device with the 

incorporation of novel excretion and drainage functions of bile production and toxins. 

The wide adoption of this approach for other applications is limited by the complexity of 

this system, which requires not only a successful bioreactor design and optimization of 

various flow environments based on individual cases with the uses of various regulation 
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pumps, but also big incubator as well as comprehensive flow circuits.  

To the hepatic drug testing and high-throughput drug screening, obviously, we cannot use 

this complex system. This is the reason for us to focus on the simple strategies and try to 

improve the mass transfer efficacy by replacing the natural ECMs with the synthetic 

polymers of controllable physical and chemical properties. This simplifies the system 

complex and allows for scale up. After trying with functional polymers, we have created 

an ideal synthetic sandwich configuration by overlaying a novel 3D monolayer developed 

on galactosylated PET film with RGD conjugated polyethylene terephthalate membranes. 

This natural ECM-free sandwich configuration has been proved to possess higher mass 

transfer efficacy, improved functional maintenance and similar liver-specific functional 

structure compared with conventional sandwich configurations.  

 

The interesting preliminary results validated the promising application of this system into 

hepatic drug testing without the incorporation of complicated natural ECMs and 

perfusion culture with improved system performance. Although the current configuration 

can not regulate the mass transfer efficacy to different degrees, the potential of this 

synthetic sandwich cannot be underestimated. With the rapid development of 

biomaterials, we definitely can produce the ideal functional layer for sandwich 

configuration uses with various physical and chemical properties such as pore size, 

matrix stiffness and the intensity and kinds of various ligands.  This in turn, will 

tremendously enhances the performance of this synthetic sandwich configuration with 

controllable mass transfer efficacy.  
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