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Summary

In many fields of application, the differential equations are singularly perturbed.

Usually, the exact solution of a non-trivial problem involving a singularly per-

turbed differential equation is unknown. Approaches for such problems are largely

confined to analytical and numerical studies of solutions to these problems. In

this thesis we construct numerical methods based on analytical theories for solving

singularly perturbed Black-Scholes equation, which has non-smooth solutions with

singularities related to interior and boundary layers.

A problem for the Black-Scholes equation that arises in financial mathematics, by

a transformation of variables, is leaded to the Cauchy problem for a singularly

perturbed parabolic equation with variables x, t and a perturbation parameter ε,

ε ∈ (0, 1]. This problem has several singularities such as: the unbounded domain;

the piecewise smooth initial function (its first order derivative in x has a discontinu-

ity of the first kind at the point x = 0); an interior (moving in time) layer generated

by the piecewise smooth initial function for small values of the parameter ε; etc.

x



Summary xi

In this thesis, we construct the singularity splitting method for grid approximation

of the solution and its first order derivative of the singularly perturbed Black-

Scholes equation in a finite domain including the interior layer. On a uniform mesh,

using the method of additive splitting of a singularity of the interior layer type

(briefly, the singularity splitting method), a special difference scheme is constructed

that allows us to approximate ε-uniformly both the solution of the boundary value

problem and its first order derivative in x with convergence orders close to 1 and

0.5, respectively.

In order to construct adequate grid approximations for the singularity of the inte-

rior layer type, we consider a singularly perturbed boundary value problem with

a piecewise smooth initial condition. Moreover, the singularity of the boundary

layer is stronger than that of the interior layer, which makes it difficult to con-

struct and study special numerical methods suitable for the adequate description

of the singularity of the interior layer type. Using the method of special meshes

that condense in a neighbourhood of the boundary layer and the method of addi-

tive splitting of the singularity of the interior layer type, a special finite difference

scheme is designed that make it possible to approximate ε-uniformly the solution of

the boundary value problem on the whole domain, its first order derivative in x on

the whole domain except the discontinuity point (outside a neighbourhood of the

boundary layer), and also the normalized derivative (the first order spatial deriva-

tive multiplied by the parameter ε) in a finite neighbourhood of the boundary

layer.

In Chapter 1, a brief overview of several popular analytical and numerical meth-

ods for solving singularly perturbed differential equations are presented. Merits

and drawbacks of various methods are also discussed. After summarized survey

on methods for financial derivatives, the need of alternative parameter-uniform

numerical method in financial derivatives computing is clarified.



Summary xii

Chapter 2 presents deduction of the dimensionless singularly perturbed Black-

Scholes equation and formulation of the initial boundary value problem. A priori

analysis of the singularly perturbed Black-Scholes equation with different controlled

smoothness initial functions on condition of Dirichlet problem and Cauchy problem

are also given.

In Chapter 3, an ε-uniform method, singularity splitting method is constructed the-

oretically for resolving the singularity due to the discontinuity of the first derivative

of the initial condition for the singularly perturbed Black-Scholes equation. Exper-

imental results for both solutions and derivatives from the classical finite difference

method and singularity splitting method are presented. Conclusion is drawn that

the additive splitting method is ε-uniformly convergent for both solutions and

derivatives of the singularly perturbed Black-Scholes equation with interior layer

arise from the discontinuity of the first derivative of the initial condition whereas

the classical finite difference method does not.

In Chapter 4, boundary value problem in bounded domains for parabolic equations

coming from the Black-Scholes equation with a discontinuous initial condition is

studied. The use of a non-uniform boundary layer resolving mesh and the singu-

larity splitting method are combined together to solve the problem. Numerical

solutions and their derivatives are computed to evaluate the effectiveness of the

method for problems with both interior and boundary layers.

Finally, we discuss conclusions of our research in Chapter 5.
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Chapter 1
Introduction

1.1 Partial Differential Equations

Differential equations are mathematical models that express the behaviors of phys-

ical systems in science and engineering. In mathematics, a differential equation is

an equation in which the derivatives of a function appear as variables. Many of the

fundamental laws of physics, chemistry, biology and economics can be formulated

as differential equations, including the laws of Finance.

A partial differential equation (PDE) is a differential equation involving functions

and their derivatives of more than one single independent variable while an ordinary

differential equation (ODE) is a differential equation involving one function and its

derivatives. Partial differential equations are used to formulate and solve problems

that involve unknown functions of several variables, such as the propagation of

sound or heat, electrostatics, fluid flow, elasticity, or more generally any process

that is distributed in space, or distributed in space and time. Very different physical

problems may have identical mathematical formulations. Mathematical theory is

1



1.1 Partial Differential Equations 2

often a useful connection between diverse fields.

The analysis and solution of partial differential equation is a difficult subject.

A basic problem is that of determining whether the differential equations have

solutions. Closely related questions of interest are: under what conditions do

solutions exist, are there multiple solutions and if so which solutions are meaningful

to the problem being solved and which are auxiliary mathematical solutions. Most

of these issues are the concern of professional mathematicians. Engineers and

scientists would be interested in simply finding solutions to the equations.

Generally, analytical methods and numerical methods are used to solve a PDE.

Analytical methods are concerned with obtaining exact or approximate solutions

or with establishing their qualitative properties by some theoretical considerations.

Analytical methods produce, when possible, exact analytical solutions in the form

of general mathematical expressions. Solutions of differential equations will give

expressions for functions. While numerical methods on the other hand produce

approximate solutions in the form of discrete values or numbers. Finding exact

solutions to higher-order algebraic equations will not, in general, be a feasible task

and numerical methods must be employed to find approximate solutions instead.

The analytical solution of some partial differential equations in certain conditions,

are much more difficult to get the analytical solutions, for example, the differential

equations governing the behavior of an inviscid gas, the Euler equations, have

been known to scientists for centuries, but the exact solutions of these equations

available today are only valid for very simple physical situations. Also the Black-

Scholes equation with a linear complementarity involving a differential operator and

a constraint on the value of the option which governs the American option does

not admit an analytical solution. Therefore scientists require numerical methods.

Mostly, scientists use both analytical and numerical methods to analyze problems.
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In many fields of application, the PDE and ODE are singularly perturbed. Indeed,

it is feature of the equations that explains theoretically the physical phenomenon

of boundary layers. Typical examples of the problems are presented by singularly

perturbed equations which have a small parameter ε, the singular perturbation

parameter, effecting the higher derivatives. These problems arise frequently in

many practical applications such as fluid mechanics, chemical reactions, control

theory, and finance.

A brief review of the derivation and some basic definitions in singular perturbation

phenomena will be given in the following sections.

1.2 Derivation of Singularly Perturbed Problems

The first formulations of singularly perturbed differential equations modeling fluid

motion near boundaries were performed by Prandtl (1905). A general descrip-

tion of various phenomena of practical problems which are modeled by singularly

perturbed equations was originally given by Friedrichs (1955).

The fundamental mathematical problem with singular perturbation phenomenon

is a singular perturbation problem. In singular perturbation problems the co-

efficient of the highest derivative in the differential equation is multiplied by a

small parameter, called the singular perturbation parameter ε. For example, in

Convection-Diffusion problems, singular perturbation phenomenon arise when the

small parameter ε multiplies the Laplace operator 4. Singular perturbation phe-

nomena also emerge in other equations, such as in Momentum Conservation laws,

in Prandtl equations, in Burger’s equation and in Black-Scholes equation, etc. We

give a briefly introduction of the derivation of the singularly perturbed differential

equation with Navier-Stokes equations.
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The principal governing equations of fluid dynamics are: the continuity equation,

the momentum equation and the energy equation. These are the mathematical

statements of the fundamental physical principles: the conservation of mass, mo-

mentum, and energy. Based on these principles, fluid and gas dynamics can be

described by the Navier-Stokes equations. In two dimensions these comprise the

systems of four nonlinear partial differential equations

∂ρ

∂t
+

∂ρu

∂x
+

∂ρv

∂y
= 0,

∂

∂t
(ρu) +

∂

∂x
(ρu2 + p) +

∂

∂y
(ρvu)− µ

(∂τxx

∂x
+

∂τxy

∂y

)
= 0,

∂

∂t
(ρv) +

∂

∂x
(ρuv) +

∂

∂y
(ρv2 + p)− µ

(∂τyx

∂x
+

∂τyy

∂y

)
= 0,

∂

∂t
(ρe) +

∂

∂x

(
ρu(e +

p

ρ
)
)

+
∂

∂y

(
ρv(e +

p

ρ
)
)
− µ

( ∂

∂x
(uτxx + vτxy)

+
∂

∂y
(uτyx + vτyy)

)
− k

(∂2T

∂x2
+

∂2T

∂y2

)
= 0.

For the four dependent variables (ρ, u, v, e), where ρ is the density of the mate-

rial(fluid or gas), u and v are the components of its velocity, and e is the internal

energy. The variables T and p in the system can be expressed in terms of these

variables using the definition of the internal energy e = CvT + 1
2
(u2 + v2) where Cv

is the specific heat and the equation of state p = p(ρ, T ) for the material, which

expresses the pressure p as a function of the density ρ and the temperature T (For

example, p = ρRT for a perfect gas). The components τxx, τxy, τyx, τyy of the vis-

cous stress tensor τ are expressed in terms of the rate of change in space of the

velocities by the relations

τxx =
4

3

∂u

∂x
− 2

3

∂v

∂y
, τyy = −2

3

∂u

∂x
+

4

3

∂v

∂y
, τyx = τxy =

∂v

∂x
+

∂u

∂y
.

For complete physical definiteness of solutions for the system of equations, bound-

ary and initial conditions must be prescribed. In a viscous fluid, the components
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of the velocity on walls are equal to zero. The singularly perturbed nature of these

equations becomes apparent when the magnitude of the convective terms is much

larger than that of the diffusion terms, that is when the magnitude of the terms

involving first order derivatives is much larger than that of the terms involving

second derivatives. In specific situations, and with appropriate scaling of the vari-

ables, this is equivalent to the condition that the corresponding value of the scaled

coefficients µ and k have magnitudes that are much smaller than unity (The scaled

coefficient µ is 1/Re, where Re is the Reynolds number and scaled coefficient k

is 1
Pr

, where Pr is the Prandtl number). It is precisely this situation, which is

referred to as a singularly perturbed system of differential equations and the small

coefficients are called the singular perturbation parameters.

A robust numerical method is considered in [20] for the Prandtl problem of laminar

flow of an incompressible fluid past semi-infinite plate. The Prandtl boundary

layer equations are an essential simplification of the Navier-Stokes equations. The

solution of the Prandtl problem retains singularities of the solution of the Navier-

Stokes equations. It is shown by numerical experiments that the numerical method

for the Prandtl problem that is constructed on the basis of the condensing mesh

technique converges ε-uniformly where ε = Re−1. A technique for experimental

studying of the rate of ε-uniform convergence is given in [20]. A similar technique

is used also for the numerical investigation of the difference scheme constructed in

the present work.

A distinctive feature of the singularly perturbed equations is that their solutions

and (or) the solution derivatives have intrinsic narrow zones (boundary and interior

layers) of large variations in which they jump from one stable state to another or

to prescribed boundary values. In physics, for example, this happens in viscous gas

flows in the zones near the boundary layers where the viscous flow jumps from the

boundary values prescribed by the condition of adhesion to the inviscid flow or in



1.3 Basic Approaches for Singularly Perturbed Problems 6

the zones near the shock wave where the flow jumps from a subsonic to supersonic

state. In chemical reactions the rapid transition from one state to another is typical

for solution process. In finance, the value of a call option at and before the expire

time is typical for derivatives process.

Usually the solution, the approximation solution or the initial condition of a sin-

gular perturbed problem has a singular component, called singular function. Some

singular functions are typical for singular perturbation problems: the exponential

function, power function, logarithmic functions and singular functions with inte-

rior critical points, etc. Properties of some typical singular functions for singularly

perturbed problems is discussed in [50] and [20].

There are a variety of physical processes in which boundary and interior layers in

the solution may arise for certain parameter ranges. The primary objective in sin-

gular perturbation analysis of such problems is to develop asymptotic approxima-

tions to the true solution that are uniformly valid with respect to the perturbation

parameter. Some examples of such perturbation problems are boundary layers in

viscous fluid flow and concentration or thermal layers in mass and heat transfer

problems.

Various analytical and numerical methods has been proposed during the years for

singularly perturbed problem. We survey some of them in next section.

1.3 Basic Approaches for Singularly Perturbed

Problems

The exact solution of a non-trivial problem involving a singularly perturbed dif-

ferential equation is usually unknown. Approaches for such problems are largely
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confined to analytical and numerical studies of solutions to these problems.

1.3.1 Analytical Methods

The basic idea of the analytical methods is to find the approximate solution of

the differential equation with the absolute error bounded uniformly to Mεk for

some M and k independent of ε. The theoretical background is to find appropriate

coordinate transformation or layer-resolving grids through analyzing the solution

derivatives to eliminate the singularities and to study the limit solutions derived

from the exact solution by letting the parameter ε approach zero.

The most popular analytical methods are known as multivariable asymptotic ex-

pansions, matched asymptotic expansions and expansions with differential inequal-

ities.

The fundamental idea of the multivariable asymptotic method is that the solution

to a singularly perturbed problem is sought as an additive composite function

of the slow variable x and the fast variables τj = τj(x, ε) which, in the case of

a singular layer, is found as a combination of two power series in ε referred to

as inner u1(x, ε) and outer u0(x, ε) expansions. The most general foundation for

the asymptotic studies of singular perturbed equations was made by Tikhonov

[83, 84]. In 1983, Nipp gave an extension of Tikhonov’s theorems to planar case.

Detailed descriptions of the analytical methods of asymptotic expansions were

showed in [86, 87, 33, 61]. This scheme for finding solutions is readily generalized

to multipoint and multiscale expansions. However, this method is suitable for the

problems whose reduced problems’ solutions are known and smooth. Even for

the problem presented in the monograph of Chang and Howes [16], the method

demonstrates difficulties in spite of the fact that the solution of the reduced problem
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is a constant.

For the matched asymptotic expansions method, a solution is found as a combina-

tion of some separate expansions with individual coordinate scaling considered only

at suitable subdomains. The scales are chosen in a way that the different expan-

sions are valid at the intersection of the respective subdomain. Andrei Camyshev,

Andrei Kolyshkin and Inta Volodko [2] used the method and got good results for

analyzing rapidly changing unsteady laminar flows. One of the difficulties is the

matching procedure limitations.

In the methods of expansion via differential inequalities the asymptotic solution is

located and estimated with the aid of inequality techniques developed by Nagumo

[60] and others. The asymptotic solution is chosen by means of a shooting tech-

nique in terms of its values on the boundary of the existence interval. This is

the most general approach allowing one to obtain uniformly many new asymptotic

expansions as well as those which have been obtained by other methods.

1.3.2 Numerical Methods

The singularly perturbed problems can also be solved numerically using the finite

difference methods and finite element methods. The main idea of these methods

is to adjust approximation of equations or specifying layer-resolving coordinate

transformation or constructing layer-resolving algorithms to get the uniform con-

vergence and eliminate the singularities.

The difficulty with standard numerical methods which employ uniform meshes is

a lack of robustness with respect to the perturbation parameter ε. Since the layer

contract as ε becomes smaller, the mesh needs to be refined substantially to capture

the dynamics within the diminishing layer.
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There are fitted operator techniques, fitted grids techniques, finite element meth-

ods and methods of Layer-Damping transformations. The motivation for contriv-

ing the numerical schemes for singularly perturbed equations with fitted operator

techniques was proposed by Allen and Southwell [1], and was justified by Il’in [32].

The methods rely on a simulation of differential equations by special algebraic

equations which take into account the singular nature of the solutions.

The finite element methods applied to generate finite difference schemes for sin-

gularly perturbed problems are generally based on Galerkin and Petrov-Galerkin

finite element methods. The adjustment of these methods to singular perturbed

problems relies on the use of a set of special trial functions satisfying some singu-

larly perturbed equations with simple coefficients (constants or linear functions)

or on the use of special elements which are refined in the zone of layers. Fi-

nite element methods were applied for the numerical solutions of some singularly

perturbed problems by Szymczak and Babuska [82], Lube and Weiss [53] and O’

Riordan, Hargty and Stynes [62].

For the fitted grids techniques, that was introduced by Bakhvalov [5], the require-

ment of the ε uniform convergence is achieved with a suitable mesh. The mesh

is commonly chosen in such a way that the error of an approximation or of a

numerical solution is ε uniformly bounded or the variation of the solution in the

neighboring points is estimated by Mh, where h is a maximal stepsize. The appli-

cation of such grid allows one to interpolate the numerical solution ε uniformly to

the whole domain including layers.

A more detailed discussion about fitted operator method and fitted mesh method

is given in the next section.
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1.3.3 Finite Difference Methods

Early finite difference methods for problems involving singularly perturbed differ-

ential equations used standard finite difference operator on a uniform mesh and

refined the mesh more and more to capture the boundary or interior layers as

the singular perturbation parameter decreased in magnitude. The methods were

inefficient to obtain accurate solutions, and hence, they are not ε-uniform.

Two approaches have generally be taken to construct ε-uniform finite difference

methods, i.e., fitted operator methods and fitted mesh methods.

The fitted operator methods involve replacing the standard finite difference op-

erator by a finite difference operator, called the fitted operator, that reflects the

singularly perturbed nature of the differential operator. For example, for the linear

problem, such methods can be constructed by choosing their coefficients so that

some or all of the exponential functions in the null space of the difference operator,

or part of it, are also in the null space of the finite difference operator. The cor-

responding numerical methods are obtained by applying the operator to obtain a

system of finite differential equations on a standard mesh. Allen et al. [1] first sug-

gested using such methods to solve the problem of the flow of a viscous fluid past

a cylinder. The first successful mathematical analysis of ε-uniform finite difference

methods was given in [32] for a linear two point boundary value problem. Further

development of these kind of methods were performed by Lorenz [52], Berger, Han,

Kellog [8] and others. An comprehensive discussion of ε-uniform fitted operator

methods is given in Doolan et al. [19], [55], Farrell et al. [20] and Tobiska [66].

The fitted mesh methods use a mesh that is adapted to the singular perturbation.

A standard finite difference operator is applied on the fitted mesh to obtain a

system of finite difference equations, which is then solved in the usual way to obtain
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approximate solutions. It is often sufficient to construct a piecewise uniform mesh

which is first introduced by Shishkin [71] to obtain approximate solutions. The

piecewise uniform mesh is a union of a finite number of uniform meshes having

different mesh parameters. This is the simplest adapting mesh method. Miller

et al. [56] presented the first numerical results using the fitted mesh method.

Further application and development of the fitted mesh methods can be found in

[20, 37, 85, 38, 49, 21].

In practice, fitted mesh methods are frequently used whenever possible because of

their simpler implementation. Moreover, the fitted mesh methods can be easily

generalized to multidimensional and nonlinear problems. In this thesis, we use the

fitted mesh methods to compute the solutions and the first derivatives of singular

perturbed problems with appearing of the interior and boundary layers.

1.4 Norms and Notation

A maximum or minimum principle is a useful tool for deriving a priori bounds

on the solutions of the differential equations and their derivatives. The one is

referred to Protter and Weinberger [63] for a comprehensive discussion of these

comparison principles. In this thesis, the ε-uniform error estimates are obtained

using the maximum principle [68]. The key step in obtaining these estimates is

the establishment of suitable bounds on the derivatives of the smooth and singular

components of the solution. The error estimates obtained in this thesis are valid

at each point of the mesh or domain.

The choice of the maximum norm as the measurement of error is due to the need

to measure the error in the very small domains in which the boundary or interior

layers occurs. Other norms, such as the root mean square, involve averages of the
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error which smooth out rapid changes in the solutions and therefore may fail to

capture the local behavior of the error in these layers. Further discussion about

the choice of an appropriate norm may be found in Farrell et al. [20], Hegarty et

al. [27].

We define the parameter-uniform or ε-uniform methods as methods generated nu-

merical solutions that converge uniformly for all values of the parameter ε, instead

of for a given single value of the singularly perturbation parameter ε, in the range

(0, 1] and that require a parameter-uniform amount of computational work to com-

pute each numerical solution. If the method is ε-uniform, the difference between

the exact solution uε and the numerical solution zN
ε satisfies an estimate of the

following form: for some positive integer N0, all integers N ≥ N0 and all ε ∈ (0, 1],

we have

‖ z̄N
ε − uε ‖Ω̄ ≤ CN−p,

where C, N0 and p are positive constants independent of ε and N . Here z̄N
ε denotes

the piecewise linear interpolant on the whole domain Ω̄ of the mesh function zN
ε

defined on the mesh Ω̄N and ‖ . ‖Ω̄ denotes the maximum norm on the whole

domain Ω̄.

We call such numerical method the robust method that approximates ε-uniformly

the solution of the problem and its first derivative; a strong definition of the robust

method see in Chapter 4.
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1.5 Mathematical Methods for Financial Deriva-

tives

Finance plays an important role now in modern society, either in banking or in cor-

porations. Modeling of instruments in financial market by mathematical methods

has been a rapidly growing research area for both mathematicians and financiers.

There are two divisions for financial markets: stocks and derivatives. Financial

derivatives are a significant aspect of our economy. Options are one of the most

common derivative securities in financial markets.

There have been many approaches developed for financial derivatives. It is well

known that many important derivatives lack a closed-form analytical solution and

their estimation has to be performed by approximation procedures. For this pur-

pose, a number of analytical approximation methods have been suggested in the

literature, especially for pricing American options, such as the quadratic approxi-

mation approach [54, 7], compound option approximation [24, 13], the method of

interpolation between bounds [35, 12], and the analytical methods of lines [15]).

Analytical approximations usually cannot be made arbitrarily accurate. Alter-

natively, numerical methods are most widely used for valuation of a wide va-

riety of derivative securities. In the financial literature, three major numerical

approaches have been developed: binomial tree model [18, 64], Finite difference

method [10, 11, 67], and Monte Carlo simulation [9]. Generally speaking, both

the binomial tree method and the Monte Carlo simulation approximate the un-

derlying stochastic process directly, while the Finite difference scheme and analyt-

ical approximation are used to solve the Black-Scholes equation with appropriate

boundary conditions that characterize various options pricing problems.

Some detailed review and comparison of the alternative option valuation techniques
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are available in [25, 12]. The first numerical method for the Black-Scholes equation

was the lattice technique introduced by J.C. Cox [18] and Hull and White [31]. This

approach is equivalent to an explicit time-steping scheme. Several researchers have

reported numerical methods for the Black-Scholes equation based on traditional

finite difference methods and the constant coefficient heat equations [6, 17].

The best known analysis of convergence for standard finite difference methods

involves the concepts of consistency and stability [34]. It is well known that most

finite difference methods are stable and accurate, and hence their solutions converge

to the exact solutions as the mesh number N →∞.

However, for the dimensionless formulation of the Black-Scholes equation for the

value of a European call option for some values of parameters, most current fi-

nite difference and finite element methods can not fulfill the same stability and

monotone properties with the exact solution of the original differential equation.

Experimentally, the convergence behaviors do not behave uniformly well regard-

less of the value of the singular perturbation parameter [58]. The classical finite

different and finite element methods are not parameter-uniform [57]. So methods

with new attributes are required.

Recently, some asymptotic and numerical methods were designed for the singularly

perturbed Black-Scholes equation with appearing of different layers in solutions.

For example, Lin and Shishkin proposed a specific numerical technique to evaluate

error bounds for the remainder term in the asymptotic expansion of the solution

of the singularly perturbed Black-Scholes equation with a weak transient layer in

solution [48]. This approach is based on using the computed numerical solutions

of a robust difference scheme for the Black-Scholes equation in a bounded domain;

error bounds for solutions of this robust scheme are independent of the singular

perturbation parameters. Miller and Shishkin studied the Black-Scholes equation
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in dimensionless variables with both boundary and initial parabolic layers appear

in the solution [58]. They proved that the errors in the maximum norm of an up-

wind finite difference method on uniform meshes are unsatisfactorily large, while

the errors in the maximum norm of the same upwind finite difference method on

piecewise-uniform meshes, appropriately fitted to the initial layer in some neigh-

bourhood of the layer, don’t depend on the value of the singular perturbation

parameter ε. They considered the problem with smooth initial conditions instead

of the piecewise-smooth initial conditions.

We will design a singularity splitting scheme based on the method of additive

splitting of the singularity of the transient layer type for the singularly perturbed

Black-Scholes equation of a European call option which contains singularity of

interior layer type due to the piecewise-smooth initial conditions. Our key idea

is: to represent the solution of the singularly perturbed problem with interior

layer as sum of functions, which come from the singular part and regular part of

the solution. We compute the solution of the singular function analytically and

the solution of the regular function numerically. This allows us to approximate

parameter-uniformly both the solution of the problem and its first order derivative

in x.

We will also extend the singularity splitting method to singularly perturbed bound-

ary value problems with piecewise smooth initial conditions with appearing of var-

ious intensity of singularities, e.g. the singularity of the boundary layer is stronger

than that of the interior layer, which makes it difficult to construct and study

special numerical methods suitable for the adequate description of the singularity

of the interior layer type. Special technique is constructed that make it possible to

approximate ε-uniformly the solution of the boundary value problem on the whole

domain, its first order derivative in x on the whole domain except the discontinuity
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point, however, outside a neighbourhood of the boundary layer, and also the nor-

malized derivative (the first order spatial derivative multiplied by the parameter ε)

in a finite neighbourhood of the boundary layer. Numerical experiments illustrates

the efficiency of the constructed scheme.

1.6 Scope of the Thesis

The scope of this thesis is as follow:

1, We transform the Black-Scholes equation of a European call option with ap-

propriately specified final and boundary conditions to an initial boundary value

problem in the dimensionless form. There are singularities in this problem: the

unbounded domain, the no-smooth initial condition and the wide ranges of val-

ues of the free parameters. For certain ranges of values of these parameters, the

solution of the problem may have an initial layer and may cause serious errors in

current numerical approximations.

2, We prove that it is impossible to construct a parameter-uniform numerical

method using a standard finite difference operator on a rectangular mesh for the the

singularly perturbed Black-Scholes equation with interior layer type which coming

from the discontinuity of the first derivative of the initial condition. We construct

a parameter-uniform numerical method theoretically which we call the method of

splitting of singularity (or briefly, the singularity splitting method) for the prob-

lem. Numerical experiments prove that the solution and its first order derivative

obtained by using this method converged ε-uniformly.

3, Moreover, we extend the the singularity splitting method to a singularly per-

turbed boundary value problem whose solution has two types of layers, the bounary
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layer and the interior layer which coming from the piecewise smooth initial con-

dition. The singularity of the boundary layer is stronger than that of the interior

layer, which makes it difficult to construct and study special numerical meth-

ods suitable for the adequate description of the singularity of the interior layer

type. Using the method of special meshes that condense in a neighbourhood of

the boundary layer and the method of additive splitting of the singularity of the

interior layer type, a special finite difference scheme is designed that make it pos-

sible to approximate ε-uniformly the solution of the boundary value problem on

the whole domain, its first order derivative in x on the whole domain except the

discontinuity point (outside a neighbourhood of the boundary layer), and also the

normalized derivative (the first order spatial derivative multiplied by the parameter

ε) in a finite neighbourhood of the boundary layer.

In all, what we are mainly concerned with here are the construction of the ε-

uniform technique, the singularity splitting method theoretically for the singularly

perturbed Black-Scholes equation of a European call option with nonsmooth initial

condition (with appearing of interior layer in solution) and it is application in

problems with boundary layers in solution. Experimental results are provided to

support the constructed scheme. The results here could be useful in real financial

market. Moreover, the methods discussed here may have theoretical value to other

singular perturbation problems that arise in mathematics and its applications.



Chapter 2
Singularly Perturbed Black-Scholes

Equation

In this chapter, we derive the dimensionless singularly perturbed parabolic Black-

Scholes Equation for the value of a European call option and assess the singularities

of the problem. We also investigate the dependence of the solution errors on the

smoothness of the initial functions for various boundary conditions, e.g. Dirichlet

problem and Cauchy problem.

2.1 Black-Scholes Equation for European Call Op-

tions

The value of a European option satisfies the Black-Scholes equation with appro-

priately special final and boundary conditions [88]. The Black-Scholes equation

18
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governing the call option C(S, t) is

∂C

∂t
+

1

2
σ2S2∂2C

∂S2
+ rS

∂C

∂S
− rC = 0, (S, t)∈IR+× [0, T ),

where S is the current value of the underlying asset and t is the time. S and t are

the independent variables. The value of the option also depends on σ the volatility

of the underlying asset; E, the exercise price; T, the expiry time and r, the interest

rate. The domain of the independent variables S, t is (0, ∞)× (0, T ].

To uniquely specify the problem, prescribed boundary conditions and initial con-

ditions must be presented. In financial problems, the boundary conditions are

usually specified as the solution at S = 0,

C(0, t) = 0

and the solution at +∞ is,

C(S, T ) ∼ S as S → +∞.

The Black-Scholes equation is a backward equation, meaning that the signs for the

t derivative and the second S derivative in the equation are the same when written

on the same side of the equals sign. Therefore a final condition has to be imposed.

This is usually the payoff function at expiry t = T ,

C(S, T ) = max (S − E, 0).

Typical ranges of values of T in years, r in percent per annum and σ in percent

per annum arising in practice are

1

12
≤ T ≤ 1,

0.01 ≤ r ≤ 0.2,

0.01 ≤ σ ≤ 0.5.
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2.2 Transformation of the Equation

Standard approaches (see, e.g. [5], [7]) to the reformulation of the problem lead to

new problems in which the free parameters of the problem appear in the coefficients

of the equation, the initial and boundary conditions or the definition of the solution

domain. Here we reformulate in such a way that the two independent parameters

appear only in the coefficients of the equation. This enables us to study the range

of problems of financial relevance in a systematic way.

The independent variables S, t are changed to the new independent variables x, τ

by the transformation

S = E ex, t = T − τr−1,

and the dependent variable C(S, t) to the new dependent variable v(x, τ) by the

transformation

C(S, t) = E v(x, τ).

We arrive at the following problem for the dimensionless equation:

L(2.2.1a) v(x, τ) ≡
{

∂2

∂x2
+ (k − 1)

∂

∂x
− k − k

∂

∂τ

}
v(x, τ) = 0, (2.2.1a)

(x, τ) ∈ IR× (0, τ ∗]

with the initial condition

v(x, 0) = ϕv(x), x ∈ IR, (2.2.1b)

where

ϕv(x) = max(ex − 1, 0), x ∈ IR,

and with the condition at infinity

v(x, τ) → 0 for x → −∞

v(x, τ) → ex for x → ∞

}
, τ ∈ (0, τ ∗]. (2.2.1c)
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Here k = r2σ−2, τ ∗ = rT .

The exact solution of the dimensionless Black-Scholes equation (2.2.1) satisfying

the given initial and boundary conditions is

v(x, τ) = e−
1
2
(k−1)x− 1

4k
(k+1)2τu(x, τ)

= ex+
(k−1)(k+1)2

4k
τN(d+)− e

1
4

(
(k−1)2− (k+1)2

k

)
N(d−),

where

d+ =
x√
2τ

+
1

2
(k + 1)

√
2τ ,

d− =
x√
2τ

+
1

2
(k − 1)

√
2τ ,

and N is the cumulative distribution function for the normal distribution with

mean 0 and the standard deviation 1, which is given by

N(d+) =
1√
2π

∫ d+

−∞
e−

1
2
s2

ds.

Under the condition T, r = O(1) and for σ taking any value from the half-open

interval (0,
√

2r), we have an initial-value problem for the singularly perturbed

parabolic equation

L(2.2.2) v(x, t) ≡
{

ε
∂2

∂x2
+ (1− ε)

∂

∂x
− 1− ∂

∂τ

}
v(x, τ) = 0, (2.2.2)

(x, τ)∈IR× (0, τ ∗]

with conditions (2.2.1b) and (2.2.1c); ε = σ2 2−1 r−1.

The range of values of ε corresponding to the above ranges of parameters T , r and

σ is

0.00025 ≤ ε ≤ 12.5,

which lies approximately in the interval [2−12, 24].
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Equation (2.2.2) is defined on the axis IR. This is a singularly perturbed convec-

tion-diffusion equation with the perturbation parameter ε, ε ∈ (0, 1]. The problem

(2.2.2), (2.2.1b), (2.2.1c) is a singularly perturbed problem which has different

types of singularities.

2.3 Singularities in the Continuous Problem

In order to obtain accurate numerical approximations of the solution and its deriva-

tives it is necessary to take account of the singularities of the problem. Each of

the following singularities is a potential source of numerical difficulties:

1, The domain of the exact solution is infinite in the space variable, so artificial

boundaries and boundary conditions may be required to define the numerical solu-

tions on a finite domain, depending on whether the method is explicit or implicit

in the time-like variable τ .

2,The initial function in condition (2.2.1b) has a discontinuity of the first kind

at x = 0 which may cause numerical errors and may propagate into the solution

domain.

3, The presence of large and (or) small parameters multiplying the coefficients of

the differential equation may give rise to boundary and (or) interior layers in the

solution and its derivatives, which, if not treated appropriately, will cause errors

in the numerical solution.

To study the effect of these singularities on the errors in the numerical approxima-

tions, it is necessary to isolate them from each other in order to deal with them

one at a time.
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2.4 On Considering the Dirichlet Problem

Here, we are focused on approximations to the solution of the singularly perturbed

problem with a nonsmooth initial condition, ignoring other types of singulari-

ties. We consider the Dirichlet problem for the singularly perturbed Black-Scholes

equation on the bounded domain G = {(x, t) : |x| < 1, t ∈ [0, 1]} with the initial

condition of controlled restricted smoothness; the initial function ϕ0(x), x ∈ [−1, 1]

belongs to a Hölder space Hα with α ∈ (0, 2].

2.4.1 Problem Formulation

Let it be required to study the applicability of classical numerical methods (see,

e.g., [68]) to the solution of problem (2.2.2), (2.2.1b), (2.2.1c). It is of interest

to evaluate the error component of a numerical solution which is generated by

nonsmooth initial data.

On a bounded domain G, where

G = G ∪ S, G = G(l) = {(x, t) : |x| < l, t ∈ (0, T ]} (2.4.1)

we consider the initial boundary value problem

L(2.4.2) u(x, t) ≡
{

ε
∂2

∂x2
+ (1− ε)

∂

∂x
− 1− ∂

∂t

}
u(x, t) = 0, (x, t) ∈ G,

(2.4.2)

u(x, t) = ϕ(x, t), (x, t) ∈ S.

On the set S0, which is the lower base of the boundary S (S = S0 ∪ Sl, Sl is

the lateral boundary, S0 = S0), the initial function ϕ0(x) = ϕ(x, t), (x, t) ∈ S0, is

of controlled bounded smoothness in a neighborhood of the point x = 0. Outside

this neighborhood the function ϕ(x, t) is sufficiently smooth on S0 and S
l
. At the
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corner points S∗ = S0∩S
l
, the function ϕ(x, t) is continuous. Other compatibility

conditions on the set S∗ are not assumed.

Let for simplicity

ϕ(x, t) = ϕ0(x), (x, t) ∈ S, (2.4.3)

where

ϕ0(x) = ϕ0(x; α) =
{ xα, x ∈ [0, l],

0, x < 0

}
, |x| ≤ l, α ∈ (0, 2].

The initial function ϕ0(x), x∈ [−l, l], belongs to a Hölder space Hα with α∈(0, 2].

2.4.2 Finite Difference Schemes

To solve problem (2.4.2), (2.4.1), we use the classical finite difference scheme on

uniform meshes [68]. On the set G, we introduce a uniform mesh as

Gh = ω1 × ω0, (2.4.4)

where ω1 and ω0 are uniform meshes on [−l, l] and [0, T ] with N1 + 1 and N0 + 1

numbers of mesh points, respectively. Problem (2.4.2), (2.4.1) is approximated by

the difference scheme [68]

Λ(2.4.5) z(x, t) ≡ {εδxx + (1− ε)δx − 1− δt } z(x, t) = 0, (x, t) ∈ Gh,

(2.4.5)

z(x, t) = ϕ(x, t), (x, t) ∈ Sh.

Here Gh = G ∩ Gh, Sh = S ∩ Gh; δxx z(x, t) and δx z(x, t), δt z(x, t) are the

second and first difference derivatives, δxx z(x, t) = h−1
[
δx z(x, t) − δx z(x, t)

]
,

δx z(x, t) = h−1
[
z(x + h, t) − z(x, t)

]
, δx z(x, t) = h−1

[
z(x, t) − z(x − h, t)

]
,

δt z(x, t) = h−1
t

[
z(x, t)−z(x, t−ht)

]
, h and ht are stepsizes in x and t, h = 2lN−1

1 ,

ht = TN−1
0 .
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The difference scheme (2.4.5), (2.4.4) is monotone [68] ε-uniformly.

Using the technique from [72, 75] one can prove that the solution of the finite dif-

ference scheme (2.4.5), (2.4.4) is convergent ε-uniformly to the solution of problem

(2.4.2), (2.4.1) when N1, N0 → ∞. However, the order of ε-uniform convergence,

as a rule, is too small and much less than its real values. By this argument, the

experimental technique from [20] allows one to derive realistic error bounds and

orders of ε-uniform convergence.

When studying discrete solutions of problem (2.4.5), (2.4.4), we will use the ex-

perimental technique from [20].

2.4.3 Numerical Results and Discussion

This section displays the numerical results for problem (2.4.2), (2.4.1) with param-

eters as l = 1.0, T = 1.0. We use meshes with N1 = N0 = N , N = 2i, i =

2, 3, . . . , 11 to make computations for ε = 2−j, j = 0, 1, . . . , 20, and for different

values of α ≤ 1, namely, for α = 1, α = 1/2, α = 1/4, α = 1/8.

To compute errors of discrete solutions and orders of convergence, we use the

formulae

EN
ε = ||z∗ε(x, t)− zN

ε (x, t)||
G

N
h

,

DN
ε = ||zN

ε (x, t)− z2N
ε (x, t)||

G
N
h

,

pN
ε = log2

DN
ε

D2N
ε

.

(2.4.6)

Here G
N

h is the mesh Gh(2.4.4) with N +1 nodes in x and t, zN
ε (x, t) is the solution

of scheme (2.4.5) on G
N

h , z∗ε(x, t) is the solution on the finest mesh G
N

h with

N = N∗ ≡ 2048; DN
ε is the double-mesh difference.
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Figure 2.1: Plot of the numerical results z for α = 1, N = 32 . (a): ε = 20; (b):

ε = 2−10; (c): ε = 2−20.
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Figure 2.2: Plot of the maximum errors z− z∗ for α = 1, N∗ = 2048, N = 32. (a):

ε = 20; (b): ε = 2−10; (c): ε = 2−20.
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Table 2.1: Computed maximum pointwise errors EN
ε for various values of ε and

N ; EN is the maximum error for each N (for α = 1).

Number of intervals N

ε 32 64 128 256 512 1024
20 0.1328-01 0.8553-02 0.5572-02 0.3564-02 0.2104-02 0.9567-03
2−1 0.9576-02 0.6084-02 0.3951-02 0.2525-02 0.1491-02 0.6783-03
2−2 0.6699-02 0.4274-02 0.2788-02 0.1787-02 0.1057-02 0.4818-03
2−3 0.8357-02 0.4367-02 0.2182-02 0.1262-02 0.7508-03 0.3436-03
2−4 0.1337-01 0.7214-02 0.3677-02 0.1765-02 0.7673-03 0.2577-03
2−5 0.1880-01 0.1060-01 0.5569-02 0.2724-02 0.1197-02 0.4044-03
2−6 0.2419-01 0.1426-01 0.7808-02 0.3933-02 0.1761-02 0.6011-03
...

...
...

...
...

...
...

2−14 0.4036-01 0.2785-01 0.1835-01 0.1134-01 0.6251-02 0.2598-02
...

...
...

...
...

...
...

2−20 0.4047-01 0.2796-01 0.1845-01 0.1143-01 0.6318-02 0.2637-02
EN 0.4047-01 0.2796-01 0.1845-01 0.1143-01 0.6318-02 0.2637-02

Numerical solutions for α = 1, N = 32, ε = 20, 2−10, 2−20 with the initial condition

(2.4.3) are given in Fig. 2.1. For small ε, i.e. ε = 2−10, 2−20, boundary layer

appears in the solution of the small region close to the left boundary; Interior layer

arises from the discontinuity of the first derivative of the initial function move in

the direction of the characteristic solution of problem (2.4.2), (2.4.1), (2.4.3). The

layers become more apparent with the decrease of ε.

Fig. 2.2 is the plots of maximum pointwise errors z − z∗ corresponding to the

solutions in Fig. 2.1 with same parameters. The errors appear obviously large in

the direction of the characteristic solution of problem (2.4.2), (2.4.1), (2.4.3).

Note that there is a sharp change of errors between the solutions at left boundary

and the solutions at the adjacent x-grid for all values of t. In considering the

boundary layer appearance in Fig. 2.1 (b) and (c), we extend l to 2.0 to avoid the

incompatibility.
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Table 2.2: Computed order of convergence pN
ε for various values of ε and N ; pN is

the minimum order for each N (for α = 1).

Number of intervals N

ε 32 64 128 256 512
20 0.6483 0.5916 0.5501 0.5260 0.5138
2−1 0.7036 0.6204 0.5653 0.5333 0.5173
2−2 0.7478 0.6545 0.5873 0.5457 0.5236
2−3 0.8703 0.9311 0.6383 0.5659 0.5348
2−4 0.8019 0.8875 0.9397 0.9687 0.9837
2−5 0.7149 0.8225 0.8992 0.9447 0.9712
2−6 0.6208 0.7388 0.8359 0.9049 0.9484
...

...
...

...
...

2−14 0.4089 0.4415 0.4638 0.4792 0.4925
...

...
...

...
...

2−20 0.4074 0.4402 0.4610 0.4739 0.4820
pN 0.4074 0.4402 0.4610 0.4739 0.4820

The values of the computed maximum pointwise errors EN
ε for problem (2.4.1)

on condition (2.4.2) and (2.4.3) for α = 1 and for various values of ε and N are

presented in Table. 2.1. By examining each row of the table, it is obvious that

EN
ε decrease monotonically as the number of mesh elements N increase. Consider

each column of the table in turn, the errors EN
ε are nonmonotone and increase to

a stabilized state as ε decrease. The value EN in the last lines of the tables is the

maximal value of errors EN
ε with respect to ε, corresponding to the value N. Note

that EN is the stabilized state with respect to the minimal ε for fixed value N .

These results validate that for α = 1 the solution is ε-uniformly convergent.

Table 2.2 gives the computed orders of convergence pN
ε and pN for α = 1 and

for various values of ε and N . It shows that the order of local (i.e. for fixed ε)

convergence rate depends on the value of ε nonmonotonically and pN > 0.45 for

N > 128. However the order of convergence is always less than 1.0.
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2.4.4 Conclusion

Summarizing the results of the numerical experiments, we come to the following

conclusions:

1. The solution converges ε-uniformly for α = 1. Moreover, the order of local (i.e.,

for fixed ε) convergence and solution errors depend on the value of ε nonmonoton-

ically.

2. For other values of α, the qualitative behavior of the solution error and the

convergence order are similar to the case for α = 1.

3. The order of ε-uniform convergence for decreasing α becomes worse and solution

errors grow.

4. It is not necessary to use condensing meshes for ε-uniform convergence of the

classical scheme in a neighborhood of the set where initial conditions are not suffi-

ciently smooth. However, the order of such convergence essentially depends on the

value α, which defines the class Hα.

2.5 On Considering the Cauchy Problem

In this section, we develop an approach to construct a discrete approximation of

a solution to problem (2.2.2), (2.2.1b), (2.2.1c) in the case of the Cauchy problem

with nonsmooth initial data, for simplicity, assuming that the initial function is

bounded.



2.5 On Considering the Cauchy Problem 31

2.5.1 Problem Formulation

Let it be required to study the applicability of classical numerical methods (see,

e.g., [68]) to the solution of problem (2.2.2), (2.2.1b), (2.2.1c). It is of interest

to evaluate the error component of a numerical solution which is generated by

nonsmooth initial data.

In an unbounded domain G, where

G = G
∞

, G = G ∪ S, G = IR× (0, T ], (2.5.7)

We consider the initial value problem1

L(2.5.8)u(x, t) ≡
{

ε
∂2

∂x2
+ (1− ε)

∂

∂x
− 1− ∂

∂t

}
u(x, t) = 0, (x, t) ∈ G, (2.5.8a)

u(x, t) = ϕ(2.5.8)(x), (x, t) ∈ S. (2.5.8b)

The initial function ϕ(x) is bounded on IR:

|ϕ(x)| ≤ M, x ∈ IR, (2.5.8c)

is smooth for |x| > 0 and belongs to a Hölder space Hα with α ∈ (0, 3].

Our primary interest is to find a solution of problem (2.5.8), (2.5.7) but in a

bounded subdomain G
l
, where

G
l

(2.5.9) = G l ∪ S l, G l = (−l, l)× (0, T ]. (2.5.9)

Also, on set (2.5.9) we consider the auxiliary initial boundary value problem

L(2.5.8) u(x, t) = 0, (x, t) ∈ G l, (2.5.10)

u(x, t) = ϕ(x, t), (x, t) ∈ S l.

1Here and below M (m) denote sufficiently large (small) positive constants independent of the
parameter ε and parameters of difference schemes. The notation L(j.k) (m(j.k), Gh(j.k)) means
that this operator (constant, grid) is introduced in formula (j.k).
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On the set S l
0 , which is the lower base of the boundary S l (S l = S l

0 ∪ S l
1 , S l

1 is

the lateral boundary, S l
0 = S

l

0), the initial function ϕ0(x) = ϕ(x, t), (x, t) ∈ S l
0 ,

satisfies the condition

ϕ0(x) = ϕ(2.5.8)(x), x ∈ S l
0 ,

ϕ(x, t) is sufficiently smooth on S
l

1. At the corner points S∗ = S l
0∩S

l

1, the function

ϕ(x, t) is continuous and satisfies compatibility conditions.

Let for simplicity

ϕ(x, t) = ϕ0(x), (x, t) ∈ S,

ϕ0(x) = ϕ0(x; α, β) =





β−2α (x + β)α (β − x)α, |x| ≤ β

0, β < |x| ≤ l





, |x| ≤ l,

where 0 < β < l, α ∈ (0, 3].

Our aim is, using classical approximations of differential equation (2.5.8a), to con-

struct a numerical method which allows us to find a solution of problem (2.5.8),

(2.5.7) on the set G
l

(2.5.9). For the constructed method it is required to study a

behaviour of the solution error depending on the perturbation parameter ε and

the parameter α which defines the smoothness of the initial function.

2.5.2 Finite Difference Schemes

To solve problem (2.5.8), (2.5.7), we use the classical finite difference scheme on

uniform meshes on G; we refer to such a scheme as formal. On the set G, we

introduce a uniform mesh

Gh(2.5.11) = G
∞
h = ω1 × ω0(2.5.11), (2.5.11)

where ω1 and ω0(2.5.11) are uniform meshes on IR and [0, T ] with step-sizes h and

ht, respectively; h = (N∗
1 )−1, ht = TN−1

0 , i.e., N∗
1 + 1 and N0 + 1 are the number
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of mesh points on a unit interval of the x-axis and the number of mesh points on

the segment [0, T ].

Problem (2.5.8), (2.5.7) is approximated by the difference scheme [68]

Λ(2.5.12) z(x, t) ≡ {
εδxx + (1− ε)δx − 1− δt

}
z(x, t) = 0, (x, t) ∈ Gh,

(2.5.12)

z(x, t) = ϕ(x), (x, t) ∈ Sh.

Here Gh = G∩Gh, Sh = S ∩Gh; δxx z(x, t) and δx z(x, t), δt z(x, t) are the second

and first (forward and backward) difference derivatives,

δxx z(x, t) = h−1
[
δx z(x, t)− δx z(x, t)

]
, δx z(x, t) = h−1 [z(x + h, t)− z(x, t)] ,

δx z(x, t) = h−1 [z(x, t)− z(x− h, t)] , δt z(x, t) = h−1
t [z(x, t)− z(x, t− ht)] .

We denote the solution of scheme (2.5.12), (2.5.11) by uh(x, t), (x, t) ∈ Gh(2.5.11).

The formal finite difference scheme (2.5.12), (2.5.11) is monotone ε-uniformly [68].

For problem (2.5.8), (2.5.7), we shall construct a grid approximation on finite

meshes (i.e. meshes with a finite number of mesh points) so that its solution

converges to the solution of the problem (2.5.8), (2.5.7) ε-uniformly on the set G
l

as the number of nodes of the finite mesh grows. We refer to such a scheme with

a finite number of nodes as constructive.

In the case of problem (2.5.10), (2.5.9), for its solving we use the classical scheme.

On the set G
l
we introduce a uniform mesh as

G
l

h = ω1 × ω0(2.5.13), (2.5.13)

where ω1 and ω0(2.5.13) are uniform meshes on [−l, l] and [0, T ] with N1+1 and N0+1

numbers of mesh points, respectively. Problem (2.5.10), (2.5.9) is approximated

by the difference scheme [68]
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Λ(2.5.12) z(x, t) = 0, (x, t) ∈ G l
h,

(2.5.14)

z(x, t) = ϕ(x, t), (x, t) ∈ S l
h.

2.5.3 Constructive Scheme

To derive a constructive scheme for problem (2.5.8), (2.5.7) we use an approach

proposed in [76].

To have an approximate solution on G
l
, we consider the equation in the larger

domain G
L
, where

G
L

(2.5.15) = GL ∪ SL; GL = (−L,L)× (0, T ], L > l, (2.5.15)

with the exact initial condition on SL
0 (SL = SL

0 ∪ SL
1 , SL

0 = S
L

0 , SL
1 is the lateral

boundary) and with some boundary condition that is an “extension” of the initial

condition onto SL
1 .

On G
L
, we construct a uniform mesh

G
L

h(2.5.16) = ω1 × ω0(2.5.16), (2.5.16)

where ω0(2.5.16) = ω0(2.5.11), ω1 is a mesh on [−L,L] with N1 + 1 mesh points. Let

uL
h (x, t), (x, t) ∈ G

L

h , be a solution of the difference scheme

Λ(2.5.12) z(x, t) = 0, (x, t) ∈ GL
h ,

z(x, t) = ϕ(x), (x, t) ∈ SL
0h,

z(x, t) = ϕ∗(2.5.17)(x, t), (x, t) ∈ SL
1h.

(2.5.17)

Here ϕ∗(2.5.17)(x, t), (x, t) ∈ SL
1 , is an “extension” of the function ϕ(2.5.8)(x), x = ±L,

on the set SL
1 . We assume the following condition to be fulfilled: |ϕ∗(2.5.17)(x, t)| ≤

M, (x, t) ∈ SL (see condition (2.5.8c)).



2.5 On Considering the Cauchy Problem 35

We suppose that

G
L

h(2.5.16) = G
L

(2.5.15)

⋂
Gh(2.5.11), (2.5.18)

that is, the step-sizes of the meshes G
L

h and Gh are the same, and G
L

h ⊂ Gh. The

value L is chosen to satisfy the condition

L = l + σ, (2.5.19a)

where σ = σ(N1); we set

σ = m ln N1 , (2.5.19b)

m is an arbitrary constant, N1 = N1(2.5.16).

Thus, the constructive scheme (2.5.17), (2.5.16), (2.5.19) is constructed.

By using the technique of majorant functions, it is possible to show that, under

condition (2.5.18), the following estimate is valid:

|u(x, t)− uL(x, t)| ≤ M N−1
1 ln N1, (x, t) ∈ G

l
,

and hence

|u(x, t)− uL
h (x, t)| ≤ max

G
L
h

T
G

l
|uL(x, t)− uL

h (x, t)|+ M N−1
1 ln N1, (x, t)∈ G

L

h ∩G
l
.

(2.5.20)

Here uL
h (x, t), (x, t) ∈ G

L

h is the solution of difference scheme (2.5.17), (2.5.16),

(2.5.19), uL(x, t), (x, t) ∈ G
L

is the solution of problem (2.5.10), (2.5.9) for l = L:

L(2.5.8) u(x, t) = 0, (x, t) ∈ GL, where G
L

= G
L

(2.5.15),

u(x, t) = ϕ∗(2.5.17)(x, t), (x, t) ∈ SL.
(2.5.21)

Using the technique from [72, 75] one can prove that the solution uL
h (x, t), (x, t) ∈

G
L

h of the finite difference scheme (2.5.17), (2.5.16), (2.5.19) is convergent on G
L

h

ε-uniformly to the solution uL(x, t) of problem (2.5.21), (2.5.15) as N1, N0 → ∞.

However, the order of ε-uniform convergence, as a rule, is too small and much less
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than its real values. By this argument, the experimental technique from [20] allows

one to derive realistic error bounds and orders of ε-uniform convergence.

When studying convergence of discrete solutions of problem (2.5.17), (2.5.16),

(2.5.19) to the solution of problem (2.5.8), (2.5.7) on G
l
, we will use the experi-

mental technique from [20].

2.5.4 Numerical Results and Discussion

We choose the main parameters in auxiliary problem (2.5.10), (2.5.9) as l = 2,

T = 1. Solving discrete problem (2.5.14), (2.5.13), we use meshes with N1 = N0 =

N , N = 2i, i = 2, 3, . . . , 11. We make computations for ε = 2−j, j = 0, 1, . . . , 20,

and for different values of α ≤ 3, namely, for α = 1/2, 1, 2, 3. To compute errors

of discrete solutions and orders of convergence, we use the formulae (2.4.6) with

G
N

h is the mesh G
l

h(2.5.13) with N + 1 nodes in x and t, zN
ε (x, t) is the solution

of scheme (2.5.14) on G
N

h , z∗ε(x, t) is the solution on the finest mesh G
N

h with

N = N∗ ≡ 2048; DN
ε is the double-mesh difference. As an example, we show

experimental results for α = 1.

The plots of the numerical solutions for problem (2.5.14), (2.5.13) with α = 1 are

presented on Fig. 2.3 for ε = 20, ε = 2−4, ε = 2−8, N = N0 = 16 respectively.

The values of the computed errors EN
ε and the maximum error EN for each N

for problem (2.5.8) for α = 1 and for various values of ε and N are presented in

Table. 2.3. Examining each row of the table we see that the computed maximum

pointwise error EN
ε decreases monotonically as the number of mesh elements N in-

creases. Consider each column of the table in turn, the computed maximum point-

wise error EN
ε is nonmonotone and increases to a stabilized state as ε decreases.

These results validate that for α = 1 the solution is ε-uniformly convergent.
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Figure 2.3: Plot of the numerical results z for α = 1, N = 32 . (a): ε = 20; (b):

ε = 2−4; (c): ε = 2−8.
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Table 2.3: Computed maximum pointwise errors EN
ε and EN for various values of

ε and N ; EN is the maximum error for each N (for α = 1, β = 2−1).

Number of intervals N

ε 32 64 128 256 512 1024
20 0.6296-01 0.3871-01 0.2406-01 0.1492-01 0.8651-02 0.3900-02
2−1 0.5798-01 0.3189-01 0.1857-01 0.1109-01 0.6305-02 0.2817-02
2−2 0.5057-01 0.2625-01 0.1458-01 0.8398-02 0.4669-02 0.2064-02
2−3 0.5955-01 0.3096-01 0.1557-01 0.7434-02 0.3560-02 0.1554-02
2−4 0.9319-01 0.5148-01 0.2668-01 0.1293-01 0.5652-02 0.1903-02
2−5 0.1242+00 0.7060-01 0.3740-01 0.1834-01 0.8063-02 0.2723-02
2−6 0.1452+00 0.8424-01 0.4510-01 0.2218-01 0.9744-02 0.3339-02
...

...
...

...
...

...
...

2−14 0.1715+00 0.1239+00 0.8486-01 0.5384-01 0.3025-01 0.1276-01
...

...
...

...
...

...
...

2−20 0.1718+00 0.1242+00 0.8517-01 0.5411-01 0.3046-01 0.1288-01
EN 0.1718+00 0.1242+00 0.8517-01 0.5411-01 0.3046-01 0.1288-01

Table 2.4: Computed order of convergence pN
ε and pN for various values of ε and

N ; pN is the minimum order for each N (for α = 1, β = 2−1).

Number of intervals N

ε 32 64 128 256 512
20 0.7690 0.7063 0.6289 0.5725 0.5389
2−1 0.9232 0.8266 0.7128 0.6243 0.5680
2−2 0.9781 0.9069 0.7997 0.6924 0.6113
2−3 0.9045 0.9244 0.9448 0.7710 0.6744
2−4 0.7775 0.8592 0.9195 0.9574 0.9782
2−5 0.7267 0.8131 0.8960 0.9447 0.9719
2−6 0.6806 0.7916 0.8893 0.9477 0.9521
...

...
...

...
...

2−14 0.6347 0.6237 0.4052 0.4337 0.4566
...

...
...

...
...

2−20 0.6345 0.6225 0.4028 0.4305 0.4504
pN 0.6345 0.6225 0.4028 0.4305 0.4504
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Table 2.4 gives the computed orders of convergence pN
ε and pN for α = 1 and

for various values of ε and N . We can see from Table 2.4 that the order of local

(i.e. for fixed ε) convergence rate depends on the value of ε nonmonotonically and

pN ≥ 0.40 for N ≥ 128.

2.5.5 Conclusion

Summarizing the results of the numerical experiments, we come to the following

conclusions:

1. The solution of difference scheme (2.5.14), (2.5.13) converges to the solution of

problem (2.5.10), (2.5.9) ε-uniformly for α = 1. Moreover, the order of local (i.e.,

for fixed ε) convergence and solution errors depend on the value of ε nonmonoton-

ically. For other values of α, the qualitative behaviour of the solution error and

the convergence order are similar to the case for α = 1. The order of ε-uniform

convergence for decreasing α becomes worse and solution errors grow.

2. In the case of constructive difference scheme (2.5.17), (2.5.16), (2.5.19), which

approximates the solution of problem (2.5.8), (2.5.7) on G
l
, the behaviour of errors

of the problem solutions is similar to one for difference scheme (2.5.14), (2.5.13).

3. To have the ε-uniform convergence on G
l
for the constructed schemes, it is not

necessary to use meshes condensing in a neighbourhood of the set where initial

conditions are not sufficiently smooth. However, the order of such convergence

essentially depends on the value α, which defines the class Hα.



Chapter 3
Approximation of the Solution and Its

Derivative for the Singularly Perturbed

Black-Scholes Equation

A problem for the Black-Scholes equation that arises in financial mathematics, by

a transformation of variables, is leaded to the Cauchy problem for a singularly

perturbed parabolic equation with variables x, t and a perturbation parameter ε,

ε ∈ (0, 1]. This problem has several singularities such as: the unbounded domain;

the piecewise smooth initial function (its first order derivative in x has a discontinu-

ity of the first kind at the point x = 0); an interior (moving in time) layer generated

by the piecewise smooth initial function for small values of the parameter ε; etc.

In this chapter, a grid approximation of the solution and its first order derivative

is studied in a finite domain including the interior layer. On a uniform mesh,

using the method of additive splitting of a singularity of the interior layer type, a

special difference scheme is constructed that allows us to approximate ε-uniformly

both the solution of the boundary value problem and its first order derivative in

40
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x with convergence orders close to 1 and 0.5, respectively. The efficiency of the

constructed scheme is illustrated by numerical experiments.

3.1 Introduction

The Black-Scholes equation with the value of European call option C = C(S, t′) is

[88],

∂C

∂t′
+

1

2
σ2 S2 ∂2C

∂S2
+ r S

∂C

∂S
− r C = 0, (S, t′) ∈ IR+ × [0, T ), (3.1.1a)

with the final condition

C(S, T ) = max(S − E, 0), S ∈ IR+, (3.1.1b)

and the boundary conditions at S = 0 and at infinity S = +∞

C(0, t′) = 0; C(S, t′) → S for S →∞, t′ ∈ [0, T ). (3.1.1c)

Here S and t′ are the current values of the underlying asset and time, σ, E, T and

r are the volatility, exercise price, expiry time and the interest rate, respectively.

For the problem (3.1.1), in addition to the solution itself, some of the partial

derivatives of the solution are of interest [88].

When studying this problem, a standard approach is a transformation of the equa-

tion by the changes of variables.

By the transformations

S = E ex, t′ = T − τ r−1, C = E v(x, τ) (3.1.1d)
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and introducing the notation k = 2 σ−2 r, τ ∗ = r T , we come to the following

problem for the dimensionless parabolic equation in the new variables x, τ :

L(3.1.2) v(x, τ) ≡
{

∂2

∂x2
+ (k − 1)

∂

∂x
− k − k

∂

∂τ

}
v(x, τ) = 0, (3.1.2)

(x, τ) ∈ IR× (0, τ ∗]

with the initial condition

v(x, 0) = ϕv(x), x ∈ IR, (3.1.3a)

where

ϕv(x) = max(ex − 1, 0), x ∈ IR,

and with the condition at infinity

v(x, τ) → 0 for x → −∞

v(x, τ) → ex for x → ∞

}
, τ ∈ (0, τ ∗]. (3.1.3b)

Under the condition T, r= O(1) and for σ taking an arbitrary value from the half-

open interval (0,
√

2r), we come to the Cauchy problem for the singularly perturbed

parabolic equation

L(3.1.4) v(x, t) ≡
{

ε
∂2

∂x2
+ (1− ε)

∂

∂x
− 1− ∂

∂τ

}
v(x, τ) = 0, (3.1.4)

(x, τ)∈IR× (0, τ ∗]

with conditions (3.1.3). Here ε = 2−1 σ2 r−1 is a dimensionless “perturbation”

parameter, ε ∈ (0, 1].

The initial function in condition (3.1.3a) is continuous; its first derivative in x has

a discontinuity of the first kind at the point x = 0

[
d

dx
ϕv(0)

]
= 1,



3.1 Introduction 43

where the jump of the derivative is defined by the relation

[
d

dx
ϕv(0)

]
= lim

x↘0

d

dx
ϕv(x)− lim

x↗0

d

dx
ϕv(x).

The initial function and the solution itself for this problem grow (exponentially)

without bound as x →∞. If the parameter ε = 1 then the problem (3.1.4), (3.1.3)

becomes the one of reaction-diffusion type, and for ε < 1, it is of convection-

diffusion type. For small values of the parameter ε, an interior (moving in time)

layer with the typical width of ε1/2 appears in a neighbourhood of the characteristic

(of the operator L1 ≡ (1− ε)
∂

∂x
− 1− ∂

∂τ
) passing through the point (0, 0).

Thus, the Cauchy problem (3.1.4), (3.1.3) is a singularly perturbed problem with

different types of singularities. In the present paper we are interested in approx-

imations to both the solution and its first order derivative in a finite subdomain

that contains the singularity of the interior layer type.

Boundary value problems in bounded domains for singularly perturbed parabolic

reaction-diffusion equations with a discontinuous initial condition have been con-

sidered in [28, 37, 70, 71, 73, 74]. To construct schemes that converge ε-uniformly,

the method of condensing meshes (in a neighbourhood of boundary layers), and

also either the fitted operator method [28, 70, 71, 73] or the method of additive

splitting of a singularity [37, 74] (in a neighbourhood of the points at which the

initial function is discontinuous) were applied.

In [70, 71, 73, 74], approximations to the normalized derivatives ε (∂/∂x) u(x, t),

i.e., the first order spatial derivative multiplied by the parameter ε, were considered.

For this purpose, the method of additive splitting of the singularity generated by

the discontinuity of the initial function was used; however, the approximation of

the derivative (∂/∂x) u(x, t) itself was not considered.
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A boundary value problem on a segment for singularly perturbed parabolic convection-

diffusion equations with a piecewise smooth initial condition has been considered

in [77, 78]. In [78], by using the method of special meshes that condense in a

neighbourhood of the boundary layer and the method of the additive splitting of

a singularity of the interior layer type, special difference schemes are constructed

that make it possible to approximate ε-uniformly the solution of the problem on

the entire set under consideration, the normalized derivative on the entire set ex-

cept for the discontinuity point (0, 0), and the first spatial derivative on the same

set but outside a small neighbourhood of the boundary layer.

In the present chapter, instead of the Cauchy problem (3.1.4), (3.1.3), we consider

a singularly perturbed boundary value problem for equation (3.1.4) with a non-

smooth initial condition similar to (3.1.3), namely, the problem (3.2.2), (3.2.1) (see

the formulation of this problem in Section 3.2). The technique from [78] is used for

studying the problem (3.2.2), (3.2.1). Note that in a problem of the type (3.2.2),

(3.2.1) considered in a finite domain, except for the interior layer, an additional

singularity appears, namely, a boundary layer with the typical width of ε. The

singularity of the boundary layer is more strong than that of the interior layer,

which makes it difficult to construct special numerical methods suitable for the

adequate description of the singularity of the interior-layer type. In contrast to

[78], here conditions are defined that allow us to investigate each singularity of the

problem separately. For the boundary value problem (3.2.2), (3.2.1), we construct a

finite difference scheme that approximates the solution and its first order derivative

in x. To construct ε-uniform approximations for the solution and its first derivative

in a finite subdomain including only the interior layer singularity, it suffices to use

a uniform mesh and the method of the additive splitting of the singularity of the

interior layer type. The efficiency of the scheme constructed in this paper is verified

with numerical experiments.
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The numerical method constructed for problem (3.2.2), (3.2.1), after the transfor-

mation to the original variables S, t′ and the function C (see the change (3.1.1d)),

allows us to approximate the solution of problem (3.1.1) and its first derivative

(∂/∂ S) C(S, t′) in a finite neighbourhood of the point (E, T ) (the point of disconti-

nuity of the derivative in condition (3.1.1b)), including the interior layer (appearing

for small values of the dimensionless quantity σ2 r−1). Errors in the approximation

of the solution and derivative (for (S, t′) 6= (E, T )) are independent of the value

σ2 r−1; these errors (in the maximum norm) are defined only by the number of

nodes in the mesh used for the numerical solution of the discrete problem.

3.2 Problem Formulation

On the set G with the boundary S,

G = G ∪ S, G = D × (0, T ], D = {x : x ∈ (−d, d)}, (3.2.1)

we consider the Dirichlet problem for the singularly perturbed parabolic convection-

diffusion equation 1

L(3.2.2a) u(x, t) = f(x, t), (x, t) ∈ G, (3.2.2a)

u(x, t) = ϕ(x, t), (x, t) ∈ S. (3.2.2b)

Here L(3.2.2a) ≡ ε a
∂2

∂x2
+ b

∂

∂x
− c− q

∂

∂t
,

a, b, q > 0, c ≥ 0, the right-hand side f(x, t) is a sufficiently smooth function on G;

the parameter ε takes arbitrary values in the half-open interval (0, 1]. The bound-

ary function ϕ(x, t) is sufficiently smooth on the sets S
−
0 , S

+

0 , S
L

and continuous

1 The notation L(j.k) (m(j.k), M(j.k), Gh(j.k))) means that these operators (constants, meshes)

are introduced in formula (j.k).
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on S; the first order derivative in x of the function ϕ(x, t) has a discontinuity of

the first kind on the set S(∗) = {(0, 0)}, i.e.,

[
∂

∂x
ϕ(x, t)

]
6= 0, (x, t) ∈ S(∗). (3.2.2c)

Here
S −

0 = {(x, t) : x ∈ [−d, 0), t = 0},

S +
0 = {(x, t) : x ∈ (0, d], t = 0}, S0 = S

−
0

⋃
S

+

0 ,

S0 and SL are the lower and lateral parts of the boundary S, S L = Γ × (0, T ],

Γ = D \D.

The solution of problem (3.2.2) is a function u ∈ C(G)
⋂

C 2,1(G) satisfying the

differential equation on G and the boundary conditions on S.

For simplicity, we assume that compatibility conditions that ensure the smoothness

of the solution for fixed values of ε [40] are fulfilled on the set S∗ = S0

⋂
S

L
. Let

G
δ

be the δ-neighbourhood of the set S∗, i.e.,

G
δ

= {(x, t) : r
(
(x, t), S∗

) ≤ δ},

where r
(
(x, t), S∗

)
is the distance from the point (x, t) to the set S∗. We suppose

that the following inclusion holds on the set G
δ
:

u ∈ C l+α,(l+α)/2(G
δ
), l ≥ 2, α ∈ (0, 1). (3.2.3)

It follows from [40] that, under the condition (3.2.3), the solution of the problem

(for sufficiently smooth functions f(x, t) on G and ϕ(x, t) on S
−
0 , S

+

0 , S
L
) is smooth

on the set

G
∗

= G \ S (∗), (3.2.4)

i.e., u ∈ C l+α,(l+α)/2(G
∗
). The derivative (∂/∂x)u(x, t) is continuous on G

∗
,

bounded on G
∗

for fixed values of ε and has a discontinuity on the set S
(∗)
(3.2.2c).
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Under the condition

a = c = p = 1, b = 1− ε, f(x, t) = 0, (x, t) ∈ G

the equation (3.2.2a) becomes the equation (3.1.4).

We are interested in an approximation of the solution u(x, t), (x, t) ∈ G, and of the

derivative (∂/∂x)u(x, t), (x, t) ∈ G
∗
. Let us describe the behaviour of the solution

and derivatives more precisely.

Let S L = S l
⋃

S r, S l and S r be the left and right parts of the boundary S L, and

let

S γ = {(x, t) : x = γ(t), (x, t) ∈ G}, γ(t) = −b q−1 t, t ≥ 0

be the characteristic of the reduced equation passing through the point (0, 0).

When the parameter ε tends to zero, boundary and interior layers with the typical

length scales ε and ε1/2, respectively, appear in a neighbourhood of the sets S l and

Sγ; as opposed to the boundary layer, the interior layer is weak (the first order

derivative in x of the interior-layer function is bounded ε-uniformly).

For simplicity, we assume that the characteristic S γ does not meet the boundary S l.

The derivative (∂/∂x)u(x, t) (denoted by p(x, t)) in a neighbourhood of the set S l

grows without bound as ε → 0. It is convenient to consider the quantity P (x, t) =

ε (∂/∂x)u(x, t), i.e., the normalized first derivative in x, in the m-neighbourhood of

the set S l, instead of the derivative (∂/∂x)u(x, t), because this quantity is bounded

ε-uniformly. Outside a neighbourhood of the set S l, the derivative (∂/∂x)u(x, t)

is bounded ε-uniformly. The quantity P (x, t) will be called the diffusion flux (or

briefly, the flux). Outside of a neighbourhood of the set S l, the derivative p(x, t)

is bounded ε-uniformly on G
∗
. For small values of the parameter ε, the derivative

p(x, t) is more “informative” (on the set where it is bounded) than the flux P (x, t).
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It is well known (see, e.g., [20]) that even in the case of singularly perturbed prob-

lems with sufficiently smooth data, solutions of classical finite difference schemes

do not converge ε-uniformly; for small values of the parameter ε, errors in the

discrete solutions are commensurable with the actual solutions of the differential

problem. The diffusion fluxes obtained on the basis of such schemes also do not

converge ε-uniformly. It will be shown in Section 3.3 that for a boundary value

problem whose solution is regular, classical difference schemes do not allow one to

obtain ε-uniformly convergent approximations of the derivative in x.

Due to this it would be interesting to construct a difference scheme that allows

us to approximate ε-uniformly both the solution on the whole domain G and

diffusion fluxes in this domain excluding the discontinuity point S(∗). Also, it

will be interesting to determine conditions under which the boundary layer does

not appear, and for such a problem, to find the ε-uniform approximation of the

derivative in x on the set G
∗
.

Definition. Let

G
∗
0 = G

∗
0 (m) = G

∗ ∩ {x ≥ −d + m} (3.2.5)

be the set G
∗

excluding an m-neighbourhood 2 of the set S
l
(the m-neighbourhood

of the boundary layer). If the interpolants constructed using the solution of some

finite difference scheme converge on G ε-uniformly, we say that the discrete solution
(
the difference scheme) converges on G uniformly with respect to the parameter ε

(or, briefly, ε-uniformly) in C(G)
)
. If, moreover, the interpolants of the diffusion

fluxes (the first order derivatives in x) converge ε-uniformly on G
(
ε-uniformly

on G
∗
0

)
, we say that the difference scheme converges ε-uniformly in C 1(n)(G

∗
)

(
ε-uniformly in C 1(G

∗
0 )

)
.

2 Throughout this chapter, M, Mi (or m) denote sufficiently large (small) positive constants

that do not depend on ε and on the discretization parameters.
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Thus, it is attractive to find numerical methods that converge ε-uniformly in C 1(n)(G
∗
)∩

C 1(G
∗
0 ), where G

∗
0 = G

∗
0 (m), moreover, it is required that the value m could be

chosen sufficiently small.

Our aim is to construct a difference scheme for problem (3.2.2), (3.2.1) that

converges ε-uniformly in C 1(n)(G
∗
) ∩ C 1(G

∗
0 ), and also to determine conditions

under which the boundary layer does not appear, and in this case to construct a

difference scheme that converges ε-uniformly in C 1(G
∗
).

In that case when the method converges ε-uniformly in C 1(n)(G
∗
) ∩ C 1(G

∗
0 ), we

say that this method is robust.

Some preliminary results related to this problem are given in [42, 43]. To investigate

the problem, a technique similar to that developed in [78] is used. In the present

chapter, in contrast to [78], the main attention is given to the study of a singularity

of the interior-layer type, because the boundary layer does not arise in the original

problem (3.1.1).

3.3 Difficulties on Approximation of the Deriva-

tive in x

Let us discuss difficulties arising in the approximation of derivatives for the reg-

ular components of the problem solution, i.e., when the solution of a singularly

perturbed problem is regular (not containing the singular component) and suffi-

ciently smooth. In this case the solution of a classical finite difference scheme on a

uniform mesh converges to the exact solution ε-uniformly. However, its difference

derivatives are no longer convergent ε-uniformly; the error in the derivative of the

solution of the grid problem can have the order of the derivative of the solution
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itself for the differential problem.

Consider the stationary problem

L(3.3.1) u(x) ≡
{

ε
d2

dx2
+

d

dx

}
u(x) = f(x), x ∈ D, (3.3.1a)

u(x) = ϕ(x), x ∈ Γ.

Here

D = [0, 1]. (3.3.1b)

Let u(x) = x2, x ∈ D, be a solution of problem (3.3.1); this solution has no singular

component.

To solve problem (3.3.1), we apply the classical difference scheme [68]. On the

segment D, we introduce the uniform mesh

Dh = Dh(3.3.2) (3.3.2)

with the step-size h = N−1. On the mesh Dh, we consider the difference scheme

Λ(3.3.3) z(x) ≡ {ε δx x + δx} z(x) = f(x), x ∈ Dh, (3.3.3)

z(x) = ϕ(x), x ∈ Γh.

The solution of problem (3.3.3), (3.3.2) has the explicit form

z(xi) = x2
i + N−1

{
1− xi − [(1 + ε−1 N−1)−i − (1 + ε−1 N−1)−N ] ×

× [1− (1 + ε−1 N−1)−N ]−1
}
, xi = iN−1 ∈ Dh, i ≤ N.

Thus, the function z(x), x ∈ Dh, converges to u(x), x ∈ D, ε-uniformly with the

estimate

| u(x)− z(x) |≤ N−1, x ∈ Dh.
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For the first discrete derivative

δx z(xi) = 2 xi + N−1 (ε + N−1)−1 (1 + ε−1 N−1)−i × [1− (1 + ε−1 N−1)−N ]−1,

xi = iN−1 ∈ Dh, i ≤ N − 1

we have the error

∣∣∣∣
d

dx
u(xi)− δx z(xi)

∣∣∣∣ = N−1 (ε + N−1)−1 (1 + ε−1 N−1)−i ×

× [1− (1 + ε−1 N−1)−N ]−1, xi ∈ Dh, xi < 1;

max
Dh, x<1

∣∣∣∣
d

dx
u(x)− δx z(x)

∣∣∣∣ ≥ mN−1 (ε + N−1)−1.

Thus, the discrete derivative does not converge ε-uniformly: when ε ≤ N−1, the

error in this discrete derivative is of the order of the derivative itself.

If the solution of the boundary value problem (3.2.2), (3.2.1) is regular, moreover,

the regular component is of the order of unity in a neighbourhood of the boundary

layer, then the error in the approximation of the derivative (∂/∂x)u(x, t), in gen-

eral, grows unboundedly under the condition (ε+N−1)−1N−1
0 →∞ as N, N0 →∞,

where N + 1 and N0 + 1 are the number of nodes with respect to x and t in the

uniform mesh on G.

3.4 A Priori Estimates of the Solution and Deriva-

tives

3.4.1 Preliminaries

In this section, we obtain some bounds on the solution of the boundary value

problem (3.2.2), (3.2.1) and its derivatives. To drive these bounds, we use the
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technique developed in [78] for singularly perturbed parabolic equations with a

piecewise smooth initial function, and also the technique developed for singularly

perturbed convection-diffusion problems with sufficiently smooth data (see, e.g.,

[57, 66, 72, 78], and the bibliography therein). We assume that the functions

f(x, t) and ϕ(x, t) are sufficiently smooth on the sets G and S
L
, S

+

0 and S
−
0 ,

respectively, moreover, compatibility conditions are fulfilled on the set S∗ that

ensure the sufficient smoothness of the solution of the problem in a neighbourhood

of the lateral boundary of the set G. When derive the estimates, it is convenient

to consider the problem solution in neighbourhoods of the boundary and interior

layers and also outside these neighbourhoods.

Deriving the estimates, we assume that the following condition holds:

The data of the boundary value problem (3.2.2), (3.2.1) satisfy the con-

dition

f ∈ C l1, l1(G), ϕ ∈
{

C l1(S
−
0 )

⋃
C l1(S

+

0 )
⋃

C l1(S
L
)
} ⋂

C(S), (3.4.1a)

the condition (3.2.3) holds for the solution of this problem, where

l1 = l + α, l ≥ 2 K − 1, K ≥ 2, α ∈ (0, 1). (3.4.1b)

Also, we assume that the following condition is fulfilled

∂k

∂xk
ϕ(x, t),

∂k0

∂tk0
ϕ(x, t) = 0, (x, t) ∈ S∗, k + k0 ≤ l, (3.4.2)

∂k+k0

∂xk ∂tk0
f(x, t) = 0, (x, t) ∈ S∗, k, k0 ≤ l − 1,

where l = l(3.4.1). This condition is sufficient for the inclusion (3.2.3).
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We represent the set G as the sum of overlapping sets

G =
⋃

jG
j
, j = 1, 2, 3, (3.4.3a)

where

G 1 = G 1(m1) = {(x, t) : |x− γ(t)| < m1, t ∈ (0, T ]}, (3.4.3b)

G 2 = G 2(m2) = {(x, t) : x ∈ (−d,−d + m2), t ∈ (0, T ]},

G 3 = G 3(m3) = G \ {
G1(m3)

⋃
G2(m3)

}
.

Here m1, m2, m3 are sufficiently arbitrary constants satisfying the condition m3 <

m1, m2, the sets G 1 and G 2 are neighbourhoods of the interior and boundary

layers, respectively. Let G
1 ⋂

G
2

= ∅.

The solution of problem (3.2.2), (3.2.1) considered on the set G
j

will be also

denoted by the u j(x, t), j = 1, 2, 3.

3.4.2 The Estimate of the Problem Solution on the Set G
3

Lemma 3.4.1 Let conditions (3.4.1), (3.4.2) be satisfied. Then the solution of

the boundary value problem satisfies the estimate

∣∣∣∣
∂k+k0

∂xk∂tk0
u3(x, t)

∣∣∣∣ ≤ M, (x, t) ∈ G
3
, k + 2k0 ≤ K, (3.4.4)

where K = K(3.4.1).

Proof. By virtue of the maximum principle (see, e.g., [40, 72, 57, 66, 63], and

also the bibliography therein), the solution of problem (3.2.2), (3.2.1) satisfies the

estimate

|u(x, t) | ≤ M, (x, t) ∈ G.
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Write the set G
3

as the sum of sets

G
3

= G
3l ⋃

G
3r

,

where G
3l

and G
3r

are sets that are located from the left and right of the charac-

teristic Sγ. Let us find the estimate of derivatives of the function u3(x, t) on the

set G
3l
. We have S 3l

⋂
S ⊂ S0, moreover, S 3l

⋂
SL = ∅.

On the set G
3l
, we pass to new variables ξ = ε−1 x, τ = ε−1 t. In the new variables,

we have the function ũ3(ξ, τ), (ξ, τ) ∈ G̃
3l

, where ũ3(ξ(x), τ(t)) = u(x, t) and G̃
3l

is the image of the set G
3l
. This function ũ3(ξ, τ) is the solution of the regular

parabolic equation
{

a
∂2

∂ξ2
+ b

∂

∂ξ
− c− q

∂

∂τ

}
ũ3(ξ, τ) = F̃ (ξ, τ), (ξ, τ) ∈ G̃ 3l,

that satisfies the condition

ũ 3(ξ, τ) = ϕ̃(ξ, τ), (ξ, τ) ∈ S̃ 3 l, τ = 0.

Here S̃ 3 l is the boundary of the set G̃ 3 l, F̃ (ξ, τ) = ε f̃(ξ, τ), f̃(ξ, τ) and ϕ̃(ξ, τ)

are functions f(x, t) and ϕ(x, t) which are written in the variables ξ, τ .

Using interior a priori estimates and estimates up to smooth parts of the boundary

(see, e.g., [4, 40]), we find the estimate
∣∣∣∣

∂k+k0

∂ξk∂τ k0
ũ 3(ξ, τ)

∣∣∣∣ ≤ M, (ξ, τ) ∈ G̃
3 l

, k + 2k0 ≤ K, (3.4.5a)

where K ≤ l, l = l(3.4.1). Note that the constants m1, m2, m3, in (3.4.3) can be

chosen sufficiently arbitrary. Returning to the variables x, t, we obtain
∣∣∣∣

∂k+k0

∂xk∂tk0
u 3(x, t)

∣∣∣∣ ≤ Mε−k−k0 , (x, t) ∈ G
3 l

, k + 2k0 ≤ K. (3.4.5b)

Let us make more precise estimate (3.4.5b). Note that by virtue of condition

(3.4.1), it is possible apply the differentiation operator ∂k+k0/∂xk∂tk0 , k+2k0 ≤ K
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to the boundary value problem (3.2.2), (3.2.1) considered on the set G
3l
. Deriva-

tives with respect to t of the problem solution on the set S3l
0 are computed ac-

cording to the differential equation (3.2.2a). For example, the mixed derivative

(∂k+1/∂xk ∂t) u 3(x, t) is defined by the relation

∂k+1

∂xk∂t
u 3(x, t) = q−1

{
ε a

∂2

∂x2
+ b

∂

∂x
− c

} ∂k

∂xk
ϕ(x, t)− q−1 ∂k

∂xk
f(x, t),

(x, t) ∈ S 3 l
0 ,

where S 3 l = S 3 l
0

⋃
S 3 l

L , S 3 l
0 and S 3 l

L are the lower and lateral parts of the boundary

S 3 l; G
3 l

= G 3 l
⋃

S 3 l.

Note that the sets S3l
L1 and S3l

L2 which are the left and right parts of the boundary

S3l
L where S3l

L = S3l
L1

⋃
S3l

L2, are output and characteristic boundaries respectively.

Characteristics of the reduced differential equation leave the set G 3l through the

output boundary S3l
L1.

The derivatives
∂k+k0

∂xk∂tk0
u 3(x, t), k + 2k0 ≤ K are bounded ε-uniformly on S3l

0 ,

however by virtue of the estimate (3.4.5b), these derivatives are not bounded

ε-uniformly on S3l
L . The derivatives

∂k+k0

∂xk∂tk0
u 3(x, t) on the set G3l satisfy the

parabolic equation whose right hand side is also bounded ε-uniformly. Thus, the

function

u 3
K1

(x, t) =
∂k+k0

∂xk∂tk0
u 3(x, t), (x, t) ∈ G

3 l
, k + 2k0 = K1, K1 ≤ K,

can be written as the sum of the functions

u 3
K1

(x, t) = U 3
K1

(x, t) + V 3
K1

(x, t), (x, t) ∈ G
3 l

,

where U 3
K1

(x, t) and V 3
K1

(x, t) are the regular and singular components of the func-

tion u 3
K1

(x, t). The function V 3
K1

(x, t) is the solution of a homogeneous equation

with the homogeneous initial condition. The function U 3
K1

(x, t) on the set S 3 l
0 co-

incides with u 3
K1

(x, t) which is sufficiently smooth on S 3 l
0 and ε-uniformly bounded

that implies ε-uniform boundedness of the function U 3
K1

(x, t) on G
3 l

.
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The function V 3
K1

(x, t) on the set S 3 l
L satisfies an estimate that is similar to (3.4.5b).

Applying the majorant functions technique (see [4, 40, 57]), we verify that the func-

tion V 3
K1

(x, t) decreases exponentially as the value ε−1/2 r
(
(x, t), S 3 l

L

)
increases,

where r
(
(x, t), S 3 l

L

)
is the distance from the point (x, t) to the set S 3 l

L . Thus, the

function u 3
K1

(x, t) is bounded ε-uniformly on the set G
3 l

outside sufficiently small

neighbourhood of the set S 3 l
L .

By virtue of arbitrary choice of the values m1, m2, m3 in (3.4.3), choosing the values

m1,m2,m3, it is possible to change sizes of the set G
3l
, G

3l
= G

3l
(m1,m2,m3). We

estimate the function u3(x, t) on some set G
3l

outside a sufficiently small neighbour-

hood of the set S3l
L , i.e., we obtain an estimate on the whole set G

3l
(m′

1,m
′
2,m

′
3),

where, in general, mi 6= m′
i; G

3l
(m′

1,m
′
2,m

′
3) ⊂ G

3l
(m1,m2,m3). Since the choice

of the values mi is arbitrary, we thus obtain an estimate on the set of our interest

G
3l
. Thus, we obtain estimate (1.4.4) for the function u3(x, t) on the set G

3l
.

Let us find an estimate for derivatives of the function u3(x, t) on the set

G
3 r

.

Here G
3 r

= G 3 r
⋃

S 3 r; S 3 r = S 3 r
0

⋃
S 3 r

L , S 3 r
0 and S 3 r

L are the lower and lat-

eral parts of the boundary S 3 r. We have S 3 r
⋂

S = S 3 r
0

⋃
S 3 r

L2 where S 3 r
L =

S 3 r
L1

⋃
S 3 r

L2 , S 3 r
L1 and S 3 r

L2 are the left and right parts of the boundary S 3 r
L . The

sets S 3 r
L1 and S 3 r

L2 are characteristic and input parts of the boundary S 3 r
L ; charac-

teristics of the reduced differential equation enter in the set G 3r through the input

boundary S3r
L2.

Decompose the function u3(x, t), (x, t) ∈ G
3 r

as the sum

u3(x, t) = U(x, t) + V (x, t), (x, t) ∈ G
3 r

, (3.4.6a)

where U(x, t) and V (x, t) are the regular and singular parts of the solution. The

function U(x, t), (x, t) ∈ G
3 r

, is the restriction to G
3 r

of the function U0(x, t),
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(x, t) ∈ G
0
, U(x, t) = U0(x, t), (x, t) ∈ G

3 r
. The function U0(x, t), (x, t) ∈ G

0
, is

the solution of the boundary value problem

L0U0(x, t) = f 0(x, t), (x, t) ∈ G0, (3.4.7)

U0(x, t) = ϕ0(x, t), (x, t) ∈ S0.

Here G
0

is the half-strip (x ≤ d) that is a continuation of G
3 r

beyond the side

S 3 r
L1 ; the data of problem (3.4.7) are smooth continuations of the data of problem

(3.2.2), (3.2.1) considered on the set G
3 r

; such continuations preserve properties

(3.4.1) on the set G
0
. The functions f 0(x, t), (x, t) ∈ G and ϕ0(x, t), (x, t) ∈ S0

are considered to be equal to zero outside the m1-neighbourhood of the set G;

L0 = L(3.2.2a). The function V (x, t), (x, t) ∈ G
3 r

is the solution of the problem

L(3.2.2a) V (x, t) = 0, (x, t) ∈ G 3 r, (3.4.8)

V (x, t) = ϕ(x, t)− U(x, t), (x, t) ∈ S3 r,

the function V (x, t) is equal to zero on the set S 3 r
0

⋃
S 3 r

L2 .

Write the function U(x, t) as the sum of the functions

U(x, t) = U 0(x, t) + εU1(x, t) + · · ·+ εn Un(x, t) + vU(x, t), (3.4.6b)

(x, t) ∈ G
3 r

,

corresponding to the representation of the function U 0(x, t) in the form

U0(x, t) = U0
0 (x, t) + εU0

1 (x, t) + · · ·+ εnU0
n(x, t) + v0

U(x, t), (x, t) ∈ G
0
, (3.4.9a)

which is the solution of the boundary value problem (3.4.7). Here v0
U(x, t) is the

remainder term and

U(x, t) = U0(x, t), . . . , vU(x, t) = v0
U(x, t), (x, t) ∈ G

3 r
.
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In (3.4.9a) the functions U0
0 (x, t), U0

i (x, t), i = 1, . . . , n are solutions of the problems

L0
(3.4.9)U

0
0 (x, t) = f 0(x, t), (x, t) ∈ G0, (3.4.9b)

U0
0 (x, t) = ϕ0(x, t), (x, t) ∈ S0;

L0
(3.4.9)U

0
i (x, t) = −a

∂2

∂x2
U0

i−1(x, t), (x, t) ∈ G0,

U0
i (x, t) = 0, (x, t) ∈ S0, i = 1, . . . , n.

Here L0
(3.4.9) is the operator L0

(3.4.7) for ε = 0

L0
(3.4.9) ≡ b

∂

∂x
− c− q

∂

∂t
, (x, t) ∈ G0.

By virtue of condition (3.4.2), apart from the compatibility conditions on the set

S∗, ensuring the smoothness of the solution u(x, t) of problem (3.2.2), (3.2.1) on

G outside a neighbourhood of the set S(∗), the problem data satisfy additional

conditions on the set S 0
∗ = S 0

0

⋂
S0L that ensure the sufficient smoothness of the

functions U0
0 (x, t), U0

i (x, t), i = 1, . . . , n and v0
U(x, t) on G

0
.

For n = K(3.4.1)− 1 the inclusion U ∈ C l2, l2(G
0
) holds, where l2 = K, l = 2 K − 1.

Condition (3.4.1b) then gives V ∈ C l2,l2(G
3r

).

The functions U 0
i (x, t) in (3.4.9a) and their derivatives

∂k+k0

∂xk∂tk0
U0

i (x, t), k+2k0 ≤
K are bounded ε-uniformly. For the remainder term v0

U(x, t) we obtain the esti-

mate
∣∣v 0

U(x, t)
∣∣ ≤ M εK , (x, t) ∈ G

0
.

Taking into account derivatives of the function v 0
U(x, t), we find the estimate for

the function U(x, t), (x, t) ∈ G
3r

∣∣∣∣
∂k+k0

∂xk∂tk0
U(x, t)

∣∣∣∣ ≤ M, (x, t) ∈ G
3 r

, k + k0 ≤ K, (3.4.10)

where K = K(3.4.1). For the function V (x, t) on the boundary S3r
L1, an estimate is

fulfilled which is similar to (3.4.5b), moreover, the function V (x, t) and its deriva-

tives decrease exponentially as the value ε−1/2 r
(
(x, t), S3 r

L1

)
increases. Thus, the
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function u3(x, t) and its derivatives are bounded ε-uniformly on the set G
3 r

out-

side sufficiently small neighbourhood of the boundary S3r
L1. By virtue of appropriate

choice of the values m1, m2, m3, we obtain the estimate (3.4.4) for the function

u3(x, t) on the set G
3 r

.

The proof of the lemma is complete.

3.4.3 The Estimate of the Problem Solution on the Set G
2

We represent the solution on the set G
2

as the decomposition into two functions

u(x, t) = U(x, t) + V (x, t), (x, t) ∈ G
2
, (3.4.11)

where U(x, t) and V (x, t) are the regular and singular components of the solution.

The function U(x, t) is the restriction of the function U 0(x, t), (x, t) ∈ G
0

to the

set G
2
. Here, U 0(x, t) is a solution of problem

L(3.2.2) U 0(x, t) = f 0(x, t), (x, t) ∈ G 0,

U 0(x, t) = ϕ 0(x, t), (x, t) ∈ S 0. (3.4.12)

The domain G 0 is an extension of G beyond the boundary S l. The right hand side

of equation (3.4.12) is a smooth continuation of the function f(x, t). The function

ϕ 0(x, t) is smooth on each piecewise smooth part of the set S 0, and it coincides

with ϕ(x, t) on the set S0

⋃
Sr. The functions f 0(x, t) and ϕ 0(x, t) outside a m-

neighbourhood of the set G are assumed to be equal to zero. The function V (x, t),

(x, t) ∈ G is a solution of problem

L(3.2.2) V (x, t) = 0, (x, t) ∈ G,

V (x, t) = ϕ(x, t)− U 0(x, t), (x, t) ∈ S
⋂

S L, V (x, t) = 0, (x, t) ∈ S \ S L.
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Lemma 3.4.2 Let conditions (3.4.1), (3.4.2) be satisfied. Then for the functions

U(x, t) and V (x, t) on the set G
2
, the following estimates are valid:

∣∣∣∣
∂k+k0

∂xk∂tk0
U(x, t)

∣∣∣∣ ≤ M, (3.4.13a)

∣∣∣∣
∂k+k0

∂xk∂tk0
V (x, t)

∣∣∣∣ ≤ M ε−k exp
(
−mε−1 r

(
(x, t), S

l))
, (3.4.13b)

(x, t) ∈ G
2
, k + 2 k0 ≤ K,

where r
(
(x, t), S

l)
is the distance from the point (x, t) to the set S

l
, m is an

arbitrary constant from the interval (0, m0), m0 = a−1 b, K = K(3.4.1).

Proof. Let us estimate the function U(x, t), (x, t) ∈ G
2
.

Consider the function U 0(x, t) on the set G
(3) ⊂ G

0
where

G
(3)

= G (3)
⋃

S (3), G (3) = G 0
⋂{

(x, t) : −d−m4 < x < γ(t)−m1, t ∈ (0, T ]
}
;

m1 = m1
(3.4.3), m4 is a sufficiently arbitrary constant. For the data of prob-

lem (3.4.12), conditions similar to those given in Lemma 3.4.1 for problem (3.2.2),

(3.2.1) are fulfilled.

Similar to the estimation of derivatives for the function u 3(x, t) on the set G
3 l

,

we find the estimate of the derivatives U0(x, t) on G
(3)

∣∣∣∣
∂k+k0

∂xk∂tk0
U 0(x, t)

∣∣∣∣ ≤ M, (x, t) ∈ G
(3)

, k + 2 k0 ≤ K.

From this estimate, it follows that estimate (3.4.13a) holds.

Applying the majorant functions technique, we find

|V (x, t)| ≤ M exp
(
−mε−1 r

(
(x, t), S

l))
, (x, t) ∈ G,

where m = m(3.4.13b). The function V (x, t) is sufficiently smooth on G, moreover,

its derivatives with respect to t are bounded ε-uniformly, and they decrease ex-

ponentially as the value ε−1 r
(
(x, t), S

l)
increases. Taking into account estimates
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for the function V (x, t) that are derived in the variables ξ = ε−1 x, τ = ε−1 t, we

find the estimate
∣∣∣∣

∂k+k0

∂xk∂tk0
V (x, t)

∣∣∣∣ ≤ Mε−k exp
(
−mε−1 r

(
(x, t), S

l))
, (x, t) ∈ G, k+2 k0 ≤ K.

From this estimate, it follows that estimate (3.4.13b) holds, and the proof of the

lemma is complete.

3.4.4 The Estimate of the Problem Solution on the Set G
1

Before to formulate a lemma about estimates for the solution of the problem (3.2.2)

on the set G
1
, we make some auxiliary constructs. We shall consider the problem

in new variables in which characteristics of the reduced differential equation are

parallel to the t-axis.

On the set G
1
, we introduce the new variables

ũ(ξ, t) = u
(
x(ξ, t), t

)
exp(α t), (ξ, t) ∈ G̃

1

, ξ = x−γ(t), (x, t) ∈ G
1
. (3.4.14)

Here γ(t) = −b q−1 t, α = c q−1, and G̃ 1 is the image of the set G 1. In the new

variables, problem (3.2.2) considered on the set G
1

is transformed into a problem

for the singularly perturbed heat equation

L(3.4.15a)ũ(ξ, t) ≡
{

ε a
∂2

∂ξ2
− q

∂

∂t

}
ũ(ξ, t) = f̃(ξ, t), (ξ, t) ∈ G̃ 1, (3.4.15a)

ũ(ξ, t) =





ũ 3(ξ, t), (ξ, t) ∈ S̃ 1 \S̃,

ϕ̃(ξ, t), (ξ, t) ∈ S̃ 1
⋂

S̃.

Here, the function ũ(ξ, t), (ξ, t) ∈ G̃
1

, is the solution of the problem; S̃ 1 = G̃
1

\G̃ 1,

and ṽ(ξ, t) is the image of the function v(x, t),

ṽ(ξ, t) = v
(
x(ξ, t), t

)
exp(α t), (3.4.15b)
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where v(x, t) is one of the functions u(x, t), f(x, t), (x, t) ∈ G
1
, ϕ(x, t), (x, t) ∈

S 1
⋂ {t = 0}, and u 3(x, t), (x, t) ∈ G

1 ⋂
G

3
, where u 3(x, t) = u(x, t), (x, t) ∈ G

3
.

We represent the solution of boundary value problem (3.4.15) ũ(ξ, t) as the sum

of functions

ũ(ξ, t) = Ũ 1(ξ, t) + W̃ 1(ξ, t), (ξ, t) ∈ G̃
1

, (3.4.16a)

where Ũ 1(ξ, t) and W̃ 1(ξ, t) are the regular (sufficiently smooth) and singular com-

ponents of the solution, respectively.

The function W̃ 1(ξ, t) is the solution of the Cauchy problem

L(3.4.15) W̃ 1(ξ, t) = 0, (ξ, t) ∈ IR× (0, T ], (3.4.17)

W̃ 1(ξ, t) = Φ̃ 1
W (ξ), ξ ∈ IR, t = 0.

Here

Φ̃ 1
W (ξ) = 2−1

[
∂

∂ξ
ϕ̃(0, 0)

]
|ξ|, ξ ∈ IR,

and

[
∂

∂ξ
ϕ̃(0, 0)

]
is the jump of the derivative

∂

∂ξ
ϕ̃(ξ, t),

[
∂

∂ξ
ϕ̃(0, 0)

]
=

∂

∂ξ
ϕ̃(+0, 0)− ∂

∂ξ
ϕ̃(−0, 0).

The function Ũ 1(ξ, t) is the solution of the problem

L(3.4.15) Ũ 1(ξ, t) = f̃(ξ, t), (ξ, t) ∈ G̃ 1,

Ũ 1(ξ, t) =





ũ 3(ξ, t)− W̃ 1(ξ, t) (ξ, t) ∈ S̃ 1, t > 0,

ϕ̃(ξ, t)− Φ̃ 1
W (ξ, t) (ξ, t) ∈ S̃ 1, t = 0.

Thus, the function u(x, t), (x, t) ∈ G
1

can be represented as the sum of the func-

tions corresponding to representation (3.4.16a)

u(x, t) = U1(x, t) + W 1(x, t), (x, t) ∈ G
1
, (3.4.18)
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where, U 1(x, t) and W 1(x, t) are the regular and singular components of the solu-

tion u(x, t).

Lemma 3.4.3 Let conditions (3.4.1) be satisfied. Then the components in repre-

sentation (3.4.18) satisfy the estimates

∣∣∣∣
∂k+k0

∂xk∂tk0
U1(x, t)

∣∣∣∣ ≤ M
[
1 + ε(2−k−k0)/2 t (2−k−k0)/2 + ε (2−k)/2 t (2−k−2k0)/2

]
,

(x, t) ∈ G
1
, (3.4.19)

∣∣∣∣
∂k+k0

∂xk∂tk0
W 1(x, t)

∣∣∣∣ ≤ M
[
1 + ε (1−k−k0)/2 t (1−k−k0)/2 + ε (1−k)/2 t (1−k−2k0)/2

]×

× exp(−mε−1/2 |x− γ(t)| ), (x, t) ∈ G
∗
, k + 2k0 ≤ K,

where K = K(3.4.1), m is an arbitrary constant.

Proof. Write the solution of boundary value problem (3.4.15) as the sum of the

functions

ũ(ξ, t) = Ũ(ξ, t) + W̃ (ξ, t), (ξ, t) ∈ G̃
1

, (3.4.20a)

where Ũ(ξ, t) and W̃ (ξ, t) are the regular (”sufficiently“ smooth) and singular parts

of the solution. The function W̃ (ξ, t) is the solution of the Cauchy problem

L(3.4.15)W̃ (ξ, t) = 0, (ξ, t) ∈ G̃∞, W̃ (ξ, t) = Φ̃W (ξ), ξ ∈ IR, t = 0. (3.4.21)

Here, G̃∞ = IR× (0, T ],

Φ̃W (ξ) = 2−1

K−1∑

k=1

(k!)−1

[
∂k

∂ξk
ϕ̃(0, 0)

] 



ξk, ξ ≥ 0

−ξk, ξ < 0



 , ξ ∈ IR;

and

[
∂k

∂ξk
ϕ̃(0, 0)

]
is the jump of the derivative

∂ k

∂ξk
ϕ̃(ξ, t),

[
∂k

∂ξk
ϕ̃(0, 0)

]
=

∂k

∂ξk
ϕ̃(+0, 0)− ∂k

∂ξk
ϕ̃(−0, 0).
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The function Ũ(ξ, t) is the solution of the problem

L(3.4.15)Ũ(ξ, t) = f̃(ξ, t), (ξ, t) ∈ G̃ 1,

Ũ(ξ, t) =





ũ 3(ξ, t)− W̃ (ξ, t), (ξ, t) ∈ S̃ 1, t > 0,

ϕ̃(ξ, t)− Φ̃W (ξ), (ξ, t) ∈ S̃ 1, t = 0.

According to the construction, the function Ũ(ξ, t) is sufficiently smooth on the

boundary S̃ 1, and it satisfies compatibility conditions on the set of corner points.

The function Ũ(ξ, t) has ε-uniformly bounded derivatives with respect to ξ up to

the Kth order and ε-uniformly bounded derivatives with respect to t up to the

K/2th order. For Ũ(ξ, t), we have the estimate

∣∣∣∣
∂k+k0

∂ξk∂tk0
Ũ(ξ, t)

∣∣∣∣ ≤ M, (ξ, t) ∈ G̃
1

, k + 2k0 ≤ K, (3.4.22)

which is established with account for the smoothness of the problem data from

[4, 40] by the way similar to the estimation of the function u3(x, t) on G
3l
.

Represent the function W̃ (ξ, t) in the form

W̃ (ξ, t) =
K−1∑

k=1

W̃k(ξ, t), (ξ, t) ∈ G̃
∞

, (3.4.20b)

here W̃k(ξ, t) is a solution of problem (3.4.21) with Φ̃W (ξ) defined by

Φ̃k(ξ) = 2−1 (k!)−1

[
∂k

∂ξk
ϕ̃(0, 0)

] 



ξk, ξ ≥ 0

−ξk, ξ < 0



 , ξ ∈ IR, k = 1, 2, ..., K − 1.

The functions W̃k(ξ, t) can be found explicitly. For example, for W̃1(ξ, t) we have

the representation

W̃1(ξ, t) = W̃ 1
(3.4.16a)(ξ, t) ≡ 2−1

[
∂

∂ξ
ϕ̃(0, 0)

]
w̃1(ξ, t), (3.4.20c)
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w̃1(ξ, t) = ξ v(2−1 ε−1/2a−1/2 q1/2 ξ t−1/2) +

+2 π−1/2 ε1/2 a1/2 q−1/2 t1/2 exp(−4−1 ε−1 a−1 q ξ2 t−1), (ξ, t) ∈ G̃
∞

,

v(ξ) = erf(ξ) = 2 π−1/2

∫ ξ

0

exp(−α2) dα, ξ ∈ IR.

Note that the first-order derivative with respect to ξ of the function W̃1(ξ, t) is

bounded on G̃
∞

and has a discontinuity at the point (0, 0).

Represent the function u(x, t), (x, t) ∈ G
1

as the sum of the form (3.4.18)

u(x, t) = U 1(x, t) + W 1(x, t), (x, t) ∈ G
1
,

where U 1(x, t) and W 1(x, t) are defined by the relations

U 1(x, t) = U(x, t) +
K−1∑

k=2

Wk(x, t), (x, t) ∈ G
1
, (3.4.23a)

W 1(x, t) = W1(x, t), (x, t) ∈ G.

Here the functions U(x, t), Wk(x, t) correspond to the components in representa-

tions (3.4.20a), (3.4.20b).

The function W 1(x, t) in (3.4.18) is defined by the relation

W1(x, t) = W 1
(3.4.18)(x, t) = W̃ 1

(3.4.16a)

(
ξ(x, t), t

)
exp(−α t) = (3.4.23b)

= W 1
(3.4.23b)(x, t) ≡

≡ 2−1

[
∂

∂x
ϕ(0, 0)

] {(
x− γ(t)

)
v
(
2−1 ε−1/2 a−1/2 q1/2

(
x− γ(t)

)
t−1/2

)
+

+2 π−1/2 ε1/2 a1/2 q−1/2 t1/2 exp
(
− 4−1 ε−1 a−1 q

(
x− γ(t)

)2
t−1

)}
exp(−α t),

(x, t) ∈ IR× [0, T ], α = α(3.4.14).

Taking into account estimate (3.4.22) and the explicit form of the functions W̃k(ξ, t),
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k = 1, . . . , K − 1, we find the following estimates on the components in represen-

tation (3.4.18) written in the variables ξ, t:
∣∣∣∣

∂k+k0

∂ξk∂tk0
Ũ1(ξ, t)

∣∣∣∣ ≤ M
[
1 + ε (2−k)/2 t(2−k−2 k0)/2

]
, (ξ, t) ∈ G̃

1

,

∣∣∣∣
∂k+k0

∂ξk∂tk0
W̃ 1(ξ, t)

∣∣∣∣ ≤ M
[
1 + ε (1−k)/2 t(1−k−2 k0)/2

]
exp(−mε−1/2 |ξ| ),

(ξ, t) ∈ G̃
∗
, k + 2k0 ≤ K.

By virtue of these estimates, we come to the estimates (3.4.19).

The lemma is proved.

3.4.5 Theorem of Estimates on the Solution of the Bound-

ary Value Problem

The following theorem is a corollary of Lemmas 3.4.1–3.4.3.

Theorem 3.4.1 Let conditions (3.4.1), (3.4.2) be satisfied. Then the solution of

the boundary value problem and its components in representations (3.4.11), (3.4.18)

satisfy the estimates (3.4.4), (3.4.13), and (3.4.19).

Remark 3.4.1 Let us give the condition under which the boundary layer does

not arise.

Let us define the set

G4 = G4(m) =
{
(x, t); x > γ(t)− γ (T )− d + m

}
, G

4
= G 4

⋃
S 4, (3.4.24a)

where m < d + γ (T ). Introduce the set

G
5

= G 5
⋃

S 5, G 5 = G 5(m) = G \G
4
(m). (3.4.24b)
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Let the functions f(x, t) and ϕ(x, t) satisfy the conditions

f(x, t) = 0, (x, t) ∈ G
5
, (3.4.25)

ϕ(x, t) = 0, (x, t) ∈ S
⋂

G
5
.

Then the boundary layer is absent, i.e., the singular component is absent in the

representation (3.4.11):

V (x, t) = 0, (x, t) ∈ G
2
, (3.4.26)

and u(x, t) = U(x, t) on the set G
2
. For the solution u(x, t), the estimate (3.4.13a)

takes place, moreover,
∣∣∣∣

∂k+k0

∂xk∂tk0
u(x, t)

∣∣∣∣ ≤ M εK1 , (x, t) ∈ G
2
, k + 2k0 ≤ K, (3.4.27)

where G
2

= G
2

(3.4.3)(m
2), the constant m2 can be chosen sufficiently small, K =

K(3.4.1), and the constant K1 in (3.4.27) can be chosen sufficiently large.

Emphasize that condition (3.4.25) is only sufficient for the relation (3.4.26). The

boundary layer in representation (3.4.11) can be absent also in that case when the

condition (3.4.25) is violated.

Remark 3.4.2 Consider the approximation of the solution of problem (3.2.2),

(3.2.1) on the set G
1

for small values of the parameter ε. The function ϕ(x, t) at

t = 0 can be approximated by a sufficiently smooth function ϕλ(x, t) satisfying the

condition

∣∣ϕ(x, t)− ϕλ(x, t)
∣∣ ≤ M λ,

∣∣∣∣
∂k

∂xk
ϕλ(x, t)

∣∣∣∣ ≤ M
[
1 + λ1−k

]
, (x, t) ∈ S0, k ≤ K,

moreover, ϕλ(x, t) = ϕ(x, t) for
∣∣x

∣∣ ≥ mλ. Here λ is a sufficiently small parameter

that determines the proximity of the functions ϕ(x, t) and ϕλ(x, t). Let uλ(x, t),

(x, t) ∈ G is a solution of problem (3.2.2), (3.2.1) with ϕ(x, t) equal to ϕλ(x, t).
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Denote uλ
0(x, t) a solution of the problem for the reduced equation from (3.2.2):

L(3.4.28) uλ
0(x, t) ≡

{
b

∂

∂x
− c− p

∂

∂t

}
uλ

0(x, t) = f(x, t), (3.4.28)

(x, t) ∈ G \ {S0

⋃
Sr},

uλ
0(x, t) = ϕλ(x, t), (x, t) ∈ S0

⋃
Sr.

Under the assumptions of Theorem 3.4.1, we have the following estimates for the

functions uλ(x, t) and uλ
0(x, t):

∣∣u(x, t)− uλ(x, t)
∣∣ ≤ M λ, (x, t) ∈ G, (3.4.29)

∣∣∣uλ(x, t)− uλ
0(x, t)

∣∣∣ ≤ M λ−1 ε, (x, t) ∈ G
1
,

∣∣∣∣
∂k+k0

∂xk∂tk0
uλ

0(x, t)

∣∣∣∣ ≤ M
[
1 + λ1−k−k0

]
, (x, t) ∈ G, k + 2k0 ≤ K,

where K = K(3.4.1).

3.5 Classical Grid Approximations of the Prob-

lem on Uniform and Piecewise Uniform Meshes

In this section, we construct a scheme that makes it possible to approximate the

solution of boundary value problem (3.2.2), (3.2.1) ε-uniformly. When the con-

vergence of the schemes is investigated, we apply the technique developed for

monotone schemes in the case of regular and singularly perturbed boundary value

problems (see, e.g., [57, 66, 68] and the bibliography therein).
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3.5.1 Difference Scheme Based on Classical Approximation

On the set G(3.2.1), define the rectangular mesh

Gh = Dh × ω0 = ω × ω0, (3.5.1)

where ω and ω0 are meshes on the segments [−d, d] and [0, T ], respectively; the

mesh ω has an arbitrary distribution of nodes satisfying only the condition h ≤
MN−1, where h = maxi h

i, hi = xi+1 − xi, xi, xi+1 ∈ ω; the mesh ω0 is uniform

with the step-size h0 = TN−1
0 . Here N + 1 and N0 + 1 are the numbers of nodes

in the meshes ω and ω0, respectively.

We approximate the boundary value problem (3.2.2) by the difference scheme

Λ(3.5.2) z(x, t) = f(x, t), (x, t) ∈ Gh, (3.5.2)

z(x, t) = ϕ(x, t), (x, t) ∈ Sh.

Here

Λ(3.5.2) ≡ ε a δx ex + b δx − c− q δt,

δxbxz(x, t) = zxbx(x, t) = 2(hi + hi−1)−1[δxz(x, t)− δxz(x, t)], (x, t) = (xi, t) ∈ Gh,

is the second difference derivative on a nonuniform mesh, δxz(x, t) and δxz(x, t),

δt z(x, t) are the first (forward and backward) difference derivatives,

δxz(x, t) =
(
hi

)−1 (
z(xi+1, t)− z(xi, t)

)
,

δxz(x, t) =
(
hi−1

)−1 (
z(xi, t)− z(xi−1, t)

)
,

δt z(x, t) = h−1
0

(
z(xi, t)− z(xi, t− h0)

)
.

Difference scheme (3.5.2), (3.5.1) is ε–uniformly monotone, and it satisfies the

discrete maximum principle (see [57, 68]). Due to this, to justify the convergency

of discrete solutions, we can apply the majorant functions technique [68].
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The following version of the comparison theorem [68] holds.

Theorem 3.5.1 Let the functions z1(x, t), z2(x, t), (x, t) ∈ Gh satisfy the condi-

tions

Λ z1(x, t) < Λ z2(x, t), (x, t) ∈ Gh, z1(x, t) > z2(x, t), (x, t) ∈ Sh.

Then z1(x, t) > z2(x, t), (x, t) ∈ Gh.

Now we show results on the convergence of difference scheme (3.5.2), (3.5.1). Under

the investigation of the scheme, we assume that the following condition is fulfilled:

The solution of problem (3.2.2) and its components (3.5.3)

in representations (3.4.11), (3.4.18)

satisfy the estimates (3.4.4), (3.4.13), (3.4.19) for K ≥ 2.

Sufficient conditions for (3.5.3) are established in Theorem 3.4.1.

Lemma 3.5.1 Let condition (3.5.3) be satisfied for K = 4. Then the solution of

scheme (3.5.2) on the uniform grid

Gh = ω × ω0 (3.5.4)

converges for fixed values of the parameter ε

|u(x, t)− z(x, t)| ≤ M
[
(ε + N−1)−1 N−1 + N−1/2 + N

−1/2
0

]
, (x, t) ∈ Gh. (3.5.5)

Under the additional condition (3.4.25) (the boundary layer is absent) the scheme

(3.5.2), (3.5.4) converges ε-uniformly

|u(x, t)− z(x, t)| ≤ M
[
N−1/2 + N

−1/2
0

]
, (x, t) ∈ Gh. (3.5.6)
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Proof. Estimation of errors for solutions of the difference scheme is realized by the

standard way [68]. With using a priori estimates of the boundary value problem,

we estimate ψ(x, t) where

Λ wh(x, t) = (Λ− L) u(x, t) ≡ ψ(x, t), (x, t) ∈ Gh;

the ψ(x, t) is an error of the approximation for the operator L by the difference

operator Λ on the solution of the boundary value problem,

wh(x, t) = u(x, t)− z(x, t), (x, t) ∈ Gh,

is an error of the discrete solution.

Here we use a function w(x, t) as the majorant function for the error wh(x, t); the

function w(x, t) on the set Gh is chosen satisfying the condition:

Λw(x, t) ≤ −M

{
ε min

[
max
x∈D

∣∣∣ ∂2

∂x2
u(x, t)

∣∣∣, N−2 max
x∈D

∣∣∣ ∂4

∂x4
u(x, t)

∣∣∣
]
+

+ min

[
max
x∈D

∣∣∣ ∂

∂x
u(x, t)

∣∣∣, N−1 max
x∈D

∣∣∣ ∂2

∂x2
u(x, t)

∣∣∣
]
+

min

[
max
x∈D

∣∣∣ ∂

∂t
u(x, t)

∣∣∣, N−1
0 max

x∈D

∣∣∣ ∂2

∂t2
u(x, t)

∣∣∣
]}

, (x, t) ∈ Gh.

The function w(x, t) is constructed with regard estimates for derivatives of the

solution of the boundary value problem (3.2.2), (3.2.1)

w(x, t) =
4∑

j=1

wj(x, t), (x, t) ∈ Gh.

Here
w1(x, t) = M

[
N−1 + N−1

0

]
t,

w2(x, t) = M ε−1/2 N−1 t1/2,

w3(x, t) = M (ε + N−1)−1 N−1 exp
(−mε−1(x + d)

)
,

w4(x, t) =





M0 ε1/2 t1/2, t ≤ t0,

M0 ε1/2 t
1/2
0 + M1 ε1/2 t0 (t

−1/2
0 − t−1/2), t > t0,
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where t0 = (ε1/2 + N−1)−2 N−2 + N−1
0 , m = m(3.4.13), the constants M , M0, M1

are chosen sufficiently large so that to satisfy assumptions of Theorem 3.5.1. Note

that the functions w1(x, t) and w3(x, t) majorize errors related to the approxi-

mation of the components U1
(3.4.18)(x, t), U(3.4.11)(x, t), u3

(3.4.4)(x, t) and V(3.4.11)(x, t)

respectively, and the functions w2(x, t) and w4(x, t) majorize errors related to the

approximation of the derivatives, respectively, ∂/∂x and ∂2/∂2x, ∂/∂t of the com-

ponent W 1
(3.4.18)(x, t).

Using a priori estimates (3.4.4), (3.4.13), (3.4.19) for the solution of problem (3.2.2)

and using the comparison theorem 3.5.1, we find the estimate

|u(x, t)− z(x, t)| ≤ (3.5.7)

≤ M
[
(ε + N−1)−1 N−1 + (ε1/2 + N−1)−1 N−1 + N−1

0 + ε1/2 N
−1/2
0

]
, (x, t) ∈ Gh.

Thus, the difference scheme (3.5.2), (3.5.4) converges for fixed values of the pa-

rameter ε.

Taking into account the estimates (3.4.4), (3.4.19), (3.4.29) where λ = (ε + N−1 +

N−1
0 )1/2, in the case of scheme (3.5.2), (3.5.4) we obtain the estimate

|u(x, t)− z(x, t)| ≤ M
[
(ε + N−1)−1 N−1 + ε1/2 + N−1/2 + N

−1/2
0

]
, (3.5.8)

(x, t) ∈ Gh.

From this estimate and estimate(3.5.7) it follows that estimate (3.5.5) holds.

Under condition (3.4.25), we have (3.4.26). In this case, using the estimates (3.4.4),

(3.4.13), (3.4.19), we obtain the estimates that are similar to those (3.5.7), (3.5.8):

|u(x, t)− z(x, t)| ≤ M
[
(ε1/2 + N−1)−1 N−1 + N−1

0 + ε1/2 N
−1/2
0

]
, (x, t) ∈ Gh,

|u(x, t)− z(x, t)| ≤ M
[
ε1/2 + N−1/2 + N

−1/2
0

]
, (x, t) ∈ Gh.

From these estimates it follows that estimate (3.5.6) holds.
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The lemma is proved.

Lemma 3.5.2 Let condition (3.5.3) be satisfied for K = 4. Then under the

condition [
∂

∂x
ϕ(x, t)

]
= 0, (x, t) ∈ S (∗), (3.5.9)

for the solution of difference scheme (3.5.2), (3.5.4), the following estimate holds:

|u(x, t)− z(x, t)| ≤ M
[
(ε + N−1)−1 N−1 + N−1

0

]
, (x, t) ∈ Gh. (3.5.10)

Under the additional condition (3.4.25), we have the estimate

|u(x, t)− z(x, t)| ≤ M
[
N−1 + N−1

0

]
, (x, t) ∈ Gh. (3.5.11)

Proof. In the case of condition (3.5.9), we have

W 1(x, t) = 0, (x, t) ∈ G
1
, (3.5.12)

and under the additional condition (3.4.25), we have (3.4.26).

Taking into account a priori estimates of the problem solution and its components

in representations (3.4.11), (3.4.18) (see estimates (3.4.19) and (3.4.13)), and using

the comparison theorem 3.5.1, we obtain the estimates (3.5.10) and (3.5.11) in the

case of conditions (3.5.17) and (3.5.12) respectively, that completes the proof.

The following theorem results from Lemmas 3.5.1 and 3.5.2.

Theorem 3.5.2 Let condition (3.5.3) be satisfied for K = 4. Then the solution

of the scheme (3.5.2), (3.5.4) satisfies the estimate (3.5.5), and in the case of

conditions (3.5.9), (3.4.25) it satisfies the estimates (3.5.10), (3.5.6) and (3.5.11)

respectively.
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3.5.2 Solution of the Problem with Boundary Layer

We now consider the case when the solution of the problem has a boundary layer.

On the set G, we construct the mesh condensing in a neighbourhood of the bound-

ary layer (similar to that constructed in [20, 57, 72, 78]):

Gh = Dh × ω0 = ω ∗ × ω0, (3.5.13a)

where ω0 = ω0(3.5.1), ω ∗ = ω ∗(σ) is a piecewise uniform mesh on [−d, d], and σ is a

parameter depending on ε and N . We choose the value σ satisfying the condition

σ = σ(ε, N) = min [ β, 2 m−1 ε ln N ], (3.5.13b)

where β is an arbitrary number in the half-open interval (0, d] and m = m(3.4.13).

The segment [−d, d] is divided into two parts: [−d, −d + σ] and [−d + σ, d]; on

each part, the step-size is constant and is equal to h(1) = 2 d σ β−1 N−1 on the

segment [−d,−d + σ] and to h(2) = 2 d (2 d − σ) (2 d − β)−1 N−1 on the segment

[−d + σ, d], σ ≤ d. The piecewise uniform mesh is constructed.

The following theorem holds.

Theorem 3.5.3 Let condition (3.5.3) be satisfied for K = 4. Then the solution

of the scheme (3.5.2), (3.5.13) converges ε-uniformly; the discrete solution satisfies

the estimate

|u(x, t)− z(x, t)| ≤ M
[
N−1/2 + N

−1/2
0

]
, (x, t) ∈ Gh. (3.5.14)

Under the additional condition (3.5.9), the following estimate holds:

|u(x, t)− z(x, t)| ≤ M
[
N−1 ln N + N−1

0

]
, (x, t) ∈ Gh. (3.5.15)

The proof of this theorem is similar to the proof of Theorem 3.5.2. The estimate

(3.5.14) is found similar to the derivation of estimate (3.5.6). In the case of con-

dition (3.5.9), we have W 1
(3.4.18)(x, t) = 0. The estimate of the error generated



3.5 Classical Grid Approximations of the Problem on Uniform and
Piecewise Uniform Meshes 75

by the components U1
(3.4.18)(x, t), U(3.4.11)(x, t), u3

(3.4.4)(x, t) is performed similar to

estimate (3.5.11). To estimate the error generated by the component V(3.4.11)(x, t),

the technique from [20, 57] is used.

3.5.3 Solution of the Problem without Interior and Bound-

ary Layers

Consider the boundary value problem in that case when the conditions (3.4.26),

(3.5.9) are satisfied (i.e., the interior and boundary layers are absent).

Theorem 3.5.4 Let condition (3.5.3) be satisfied for K = 6, and also the con-

ditions (3.4.26), (3.5.9). Then in the case of the difference scheme (3.5.2) on the

uniform mesh (3.5.4), the following estimates are satisfied for the flux and for the

discrete derivative:

| P (x, t)− P h(x, t) |≤ M [ N−1/2 + N
−1/2
0 ], (x, t) ∈ Gh, x 6= d; (3.5.16a)

| p(x, t)− ph(x, t) |≤ (3.5.16b)

≤ M [ N−1/2 + N
−1/2
0 ] [(ε + N−1)−1(1 + 2 a−1 b d ε−1 N−1)−i + 1],

(x, t) ∈ Gh, x = xi 6= d;

| p(x, t)− ph(x, t) |≤ M [ N−1/2 + N
−1/2
0 ], (3.5.17)

(x, t) ∈ Gh, x ∈ [−d + β0, d).

Here β0 > 0 is an arbitrary sufficiently small constant, and M(3.5.17) = M(β0),

xi = −d + i h, i ≥ 0, h = 2 dN−1.
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Proof. On the uniform mesh (3.5.4), the discrete derivative ph(x, t) is the solution

of the equation

Λ(3.5.2) ph(x, t) = δx f(x, t), (x, t) ∈ Gh, x ≤ d− 2 h.

On the set S0h, it holds that

ph(x, t) = δx ϕ(x, t), (x, t) ∈ S0h, x 6= d;

moreover, by virtue of (3.5.9), we have
∣∣∣∣

∂

∂x
ϕ(x, t)− δx ϕ(x, t)

∣∣∣∣ ≤ M N−1, (x, t) ∈ S0h, x 6= d.

In the case of the additional condition (3.4.26), and taking into account estimate

(3.5.11), we find estimate for ph(x, t) on the lateral boundary of the grid domain:

|p(x, t)− ph(x, t)| ≤





M [N−1 + N−1
0 ], (x, t) ∈ Gh, x = d− h,

M (ε + N−1)−1 [N−1 + N−1
0 ], (x, t) ∈ S l

h.
(3.5.18)

Thus, the difference scheme

Λ(3.5.2) ph(x, t) = δx f(x, t), (x, t) ∈ Gh, x ≤ d− 2 h, (3.5.19)

ph(x, t) =





δx z(x, t), (x, t) ∈ Gh

⋂
Sl,

δx z(x, t), (x, t) ∈ Gh, x = d− h,

δx ϕ(x, t), (x, t) ∈ S0h, x 6= d,

where z(x, t), (x, t) ∈ Gh is the solution of difference scheme (3.5.2), (3.5.4), in the

case of conditions (3.4.26), (3.5.9), approximates the boundary value problem

L(3.2.2) p(x, t) =
∂

∂x
f(x, t), (x, t) ∈ G, (3.5.20)

p(x, t) =





∂

∂x
u(x, t), (x, t) ∈ Sl,

∂

∂x
u(x, t), (x, t) ∈ G, x = d− h,

∂

∂x
ϕ(x, t), (x, t) ∈ S0, x ≤ d− h.
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The estimate (3.5.16) is found similar to the derivation of estimate (3.5.6).

Let

wph(x, t) = p(x, t)− ph(x, t), (x, t) ∈ Gh, x 6= d

be the error of the grid derivative. Represent the function wph(x, t) as the sum of

the functions

wph(x, t) = wR
ph(x, t) + wS

ph(x, t),

where wR
ph(x, t) and wS

ph(x, t) are the regular and singular parts of the error of

the derivative. The function wR
ph(x, t) corresponds to the boundary value problem

(3.5.20) and such difference scheme (3.5.19) for which the following condition is

fulfilled on the boundary Sl:

ph(x, t) = p(x, t), (x, t) ∈ Sl
h,

that corresponds to the condition

wR
ph(x, t) = 0, (x, t) ∈ Sl

h.

The function wS
ph(x, t) corresponds to the boundary value problem and the differ-

ence scheme of the form (3.5.19) and (3.5.20) with homogeneous equations and

homogeneous boundary conditions on the lower and right parts of the boundary.

For the function wR
ph(x, t), we obtain the estimate which is similar to estimate

(3.5.6):

|wR
ph(x, t)| ≤ M

[
N−1/2 + N

−1/2
0

]
, (x, t) ∈ Gh, x 6= d. (3.5.21)

For the function wS
ph(x, t), taking into account estimate (3.5.18) on Sl

h, and using

the grid majorant function

w(x, t) = M
[
N−1/2 + N

−1/2
0

]
(ε + N−1)−1 (1 + 2 a−1 b d ε−1 N−1)−i, (3.5.22a)

(x, t) ∈ Gh, x = i h,
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we obtain the estimate

|wS
ph(x, t)| ≤ w(x, t), (x, t) ∈ Gh, x 6= d. (3.5.22b)

The estimate (3.5.16b) follows from estimates (3.5.21) and (3.5.22).

Note that

w(3.5.22a)(x, t) ≤ M, (x, t) ∈ Gh, x ≥ −d + β0.

From this inequality and estimate (3.5.16b), it follows that the estimate (3.5.17)

holds.

The theorem is proved.

Remark 3.5.1 Let the assumptions of Theorem 3.5.4 be fulfilled, where the con-

dition (3.4.26) is changed to (3.4.25). In this case, the solution of the boundary

value problem satisfies estimate (3.4.27). The solution of the difference scheme

(3.5.2), (3.5.4) satisfies the estimate

| z(x, t) |≤ M (ε + N−1)K1 , (x, t) ∈ G
2

h ,

where G
2

h = G
2 ⋂

Gh, K1 is an arbitrary constant, M = M(K1). Under the

condition (3.4.25), for the singular component wS
ph(x, t) we obtain the estimate

|wS
ph(x, t)| ≤ M

[
N−1/2 + N

−1/2
0

]
(ε + N−1)K2 , (x, t) ∈ Gh, x 6= d,

where the constant K2 can be chosen sufficiently large. Similar to the derivation

of estimate (3.5.16b), we obtain the following estimate for the discrete derivative

p(x, t):

∣∣∣p(x, t)− ph(x, t)
∣∣∣ ≤ M

[
N−1/2 + N

−1/2
0

]
, (x, t) ∈ Gh, x 6= d, (3.5.23)

which is stronger than (3.5.17). Thus, in the case of scheme (3.5.2), (3.5.4), the

conditions (3.4.25) and (3.5.9)are sufficient for the ε-uniform convergence of the

derivative ph(x, t) on the whole set Gh, x 6= d.
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3.5.4 Approximation of the Solution and Derivatives

We consider the approximation of the functions u(x, t), p(x, t), P (x, t), (x, t) ∈ G,

using the interpolants constructed on the basis of the functions z(x, t), ph(x, t), P h(x, t).

Let z(x, t), (x, t) ∈ Gh, be a solution of some scheme. For the function z(x, t),

we construct its extension z(x, t) to G; z(x, t) is a bilinear interpolant on the

elementary rectangles generated by the lines that pass through the nodes of the

mesh Gh in parallel to the coordinate axes. Further, we construct the interpolant

ph(x, t), (x, t) ∈ G, for the discrete derivative ph(x, t), (x, t) ∈ Gh, x 6= d. At

the interior points of the elementary rectangles, we assume ph(x, t) = ph
z (x, t) =

(∂/∂x) z(x, t); the function ph(x, t) is continuous on the upper and on the lower

sides of the rectangles, and it is defined according to continuity on the left sides of

the elementary rectangles. But if the rectangles are adjacent, by their right sides,

to the set S
r (

where S r is the right side of the boundary S L, S L = S l
⋃

S r
)
, then

we also define according to continuity the function ph(x, t) on these sides. Hence,

we have constructed the function ph(x, t), (x, t) ∈ G. The interpolant ph(x, t), in

general, has discontinuities on the lines that are parallel to the t-axis and pass

through the nodes of the mesh Gh. We define the interpolant of the diffusion flux

by the relation

P
h
(x, t) = P

h

z (x, t) = ε ph(x, t), (x, t) ∈ G.

Definition. In that case when the interpolants constructed on the basis of the

solution of the difference scheme approximate ε-uniformly the solution of the dif-

ferential problem, its diffusion flux and the derivative with respect to x on the set

G, and also on the set G outside a β0-neighbourhood of the set Sl, we say that the

difference scheme approximates the solution of the differential problem, its diffu-

sion flux and the derivative with respect to x respectively on the set G, and also on
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the set G outside the β0-neighbourhood of the set Sl ε-uniformly. We also briefly

say that the difference scheme approximates the solution, the derivative and the

diffusion flux ε-uniformly.

Theorem 3.5.5 Let the assumptions of Theorem 3.5.4 be fulfilled. Then, the dif-

ference scheme (3.5.2), (3.5.4) approximates the solution of problem (3.2.2), (3.2.1),

its derivative and the diffusion flux ε-uniformly with the estimates

| u(x, t)− z(x, t) |≤ M [ N−1 + N−1
0 ], (x, t) ∈ G, (3.5.24a)

| p(x, t)− ph(x, t) |≤ M [ N−1/2 + N
−1/2
0 ], (3.5.24b)

(x, t) ∈ G, x ≥ −d + β0;

| P (x, t)− P
h
(x, t) |≤ M [ N−1/2 + N

−1/2
0 ], (x, t) ∈ G, (3.5.24c)

where β0 = β0(3.5.17), M(3.5.24b) = M(β0).

Under the assumptions of Theorem 3.5.5, the grid solution, its derivative and the

diffusion flux satisfy the estimates (3.5.11), (3.5.16), (3.5.17). The statement of

this theorem follows from these estimates and a priori estimates of the boundary

value problem (see estimates of Theorem 3.4.1 that correspond to the assumptions

of Theorem 3.5.5). Here we used the triangle inequality; for example,

max
G
|u(x, t)− z(x, t)| ≤ max

G
|u(x, t)− uh(x, t)|+ max

Gh

|uh(x, t)− z(x, t)|,

where uh(x, t) = u(x, t), (x, t) ∈ Gh, uh(x, t), (x, t) ∈ G is an interpolant that is

constructed using uh(x, t) = u(x, t).

Remark 3.5.2 Let the assumptions of Theorem 3.5.4 be fulfilled, where the con-

dition (3.4.26) is changed to (3.4.25). Then, in the case of scheme (3.5.2), (3.5.4),

the interpolant ph satisfies the estimate

| p(x, t)− ph(x, t) |≤ M [ N−1/2 + N
−1/2
0 ], (x, t) ∈ G.
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3.6 Decomposition Scheme for the Solution and

Derivatives

To construct a difference scheme that approximates the first order derivative p(x, t) =

(∂/∂x)u(x, t) on the set G
∗
, we use the method of the additive splitting of a sin-

gularity such as the interior layer function [78] (or briefly, the singularity splitting

method).

3.6.1 Construction of the Singularity Splitting Method

We represent the solution of problem (3.2.2), (3.2.1) as the sum of functions

u(x, t) = u1(x, t) + u2(x, t), (x, t) ∈ G. (3.6.1a)

Here u1(x, t) and u2(x, t) are components of the solution of boundary value problem

(3.2.2), (3.2.1), including singularities of the boundary and interior layers types,

respectively. We call the functions u1(x, t) and u2(x, t) the components containing

the boundary and interior layers, respectively. We represent the function u2(x, t)

as the sum of functions

u2(x, t) = u1
2(x, t) + u2

2(x, t), (x, t) ∈ G, (3.6.1b)

where u1
2(x, t) and u2

2(x, t) are the regular and singular parts of the component

u2(x, t), containing the interior layer;

u2
2(x, t) = W 1

(3.4.23b)(x, t), (x, t) ∈ G.
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The functions u1(x, t), u1
2(x, t) are solutions of the following problems

L(3.2.2a) u1
2(x, t) = f2(x, t), (x, t) ∈ G, (3.6.1c)

u1
2(x, t) = ϕ2(x, t), (x, t) ∈ S;

L(3.2.2a) u1(x, t) = f1(x, t), (x, t) ∈ G, (3.6.1d)

u1(x, t) = ϕ1(x, t), (x, t) ∈ S.

The functions fi(x, t), ϕi(x, t), i = 1, 2 are defined by the relations

f2(x, t) = f(x, t) η (x, t), (3.6.1e)

f1(x, t) = f(x, t)− f2(x, t), (x, t) ∈ G;

ϕ2(x, t) = (ϕ(x, t)− u2
2(x, t)) η (x, t),

ϕ1(x, t) = ϕ(x, t)− ϕ2(x, t)− u2
2(x, t), (x, t) ∈ S.

Here η (x, t), (x, t) ∈ G is a sufficiently smooth function, that vanishes in a neigh-

bourhood of the boundary layer

η (x, t) = 0, (x, t) ∈ G
5

(3.4.24)(2
−1 m1)

η (x, t) = 1, (x, t) ∈ G
4

(3.4.24)(m1)





, 0 ≤ η(x, t) ≤ 1, (x, t) ∈ G,

where m1 is an arbitrary number in the interval
(
0, 2−1

(
d + γ(T )

))
.

Remark 3.6.1 The data of problem (3.6.1c) on the set G
5

satisfy the condition

similar to (3.4.25)
(
f2(x, t) = 0, ϕ2(x, t) = 0, (x, t) ∈ G

5)
, moreover, for t =

0, the first order derivative in x of the function ϕ2(x, t) is continuous. For the

singular components of the solution to problem (3.6.1c) in representations similar

to (3.4.11), (3.4.18), conditions of the type (3.4.26), (3.5.12) are satisfied. For

this problem, a difference scheme, similar to (3.5.2), on the uniform mesh (3.5.4)

ensures the ε-uniform convergence in C1(G).
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Figure 3.1: Illustration of sets G
5

(3.4.24)(2
−1 m1) and G

4

(3.4.24)(m1).

An illustration of sets G
5

(3.4.24)(2
−1 m1) and G

4

(3.4.24)(m1) is shown on Fig 3.1.

The data of problem (3.6.1d) are sufficiently smooth, moreover, the functions

f1(x, t) and ϕ1(x, t) vanish on the set G
4
(m1).

For this problem, a difference scheme, similar to (3.5.2), on the piecewise uniform

mesh (3.5.13) gives the ε-uniform convergence in C1(n)(G).

To solve problem (3.6.1d), we use the difference scheme

Λ(3.5.2)z1(x, t) = f1(x, t), (x, t) ∈ Gh, (3.6.2a)

z1(x, t) = ϕ1(x, t), (x, t) ∈ Sh,

where Gh is the piecewise uniform mesh (3.5.13).

To solve problem (3.6.1c), we use the difference scheme

Λ(3.5.2)z
1
2(x, t) = f2(x, t), (x, t) ∈ Gh, (3.6.2b)

z1
2(x, t) = ϕ2(x, t), (x, t) ∈ Sh,
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where Gh is the uniform mesh (3.5.4).

Further, we construct the special interpolants into which the singular component,

i.e., the function of the interior layer type, enters in the explicit form

uh
0(x, t) = z1(x, t) + uh

2(x, t), (3.6.2c)

uh
2(x, t) = z1

2(x, t) + u2
2(x, t), (x, t) ∈ G;

ph
0(x, t) = ph

z1
(x, t) + ph

2(x, t), (3.6.2d)

ph
2(x, t) = ph

z1
2
(x, t) +

∂

∂x
u2

2(x, t), (x, t) ∈ G
∗
;

P h
0 (x, t) = ε ph

0(x, t), (x, t) ∈ G
∗
, (3.6.2e)

where z1(x, t), ph
z 1

(x, t) and z2(x, t), ph
z 2

(x, t) are bilinear interpolants that are

constructed using the functions z1(x, t), (x, t) ∈ Gh(3.5.13) and z2(x, t), (x, t) ∈
Gh(3.5.4)

(
similarly to the construction of interpolants in Subsection 5.4

)
. The use

of the interpolants allows us to find the solution on the set G, its first derivative

in x and the diffusion flux on the set G
∗
.

The function uh
0 (x, t), (x, t) ∈ G, is called the solution of the difference scheme

{(3.6.2), (3.5.4), (3.5.13)}, and the functions ph
0 (x, t) and P h

0 (x, t), (x, t) ∈ G
∗
,

are called the derivative and the diffusion flux, respectively, corresponding to this

scheme. The scheme {(3.6.2), (3.5.4), (3.5.13)} is the scheme of the decomposition

method for the solution in the case of the additive splitting of a singularity of the

interior-layer type
(
briefly, we call this scheme by the scheme of the singularity

splitting method
)
.

If the condition (3.4.25) or the following (stronger) condition are fulfilled:

f(x, t) = 0, (x, t) ∈ G, (3.6.3)

ϕ(x, t) = 0, (x, t) ∈ S, x < 0,



3.6 Decomposition Scheme for the Solution and Derivatives 85

then the scheme is simplified if we take

u2
2(x, t) = W 1

(3.4.23b)(x, t) + 2−1
[ ∂

∂x
ϕ(0, 0)

] (
x− γ(t)

)
exp

(− α t
)
, (3.6.4)

(x, t) ∈ G, α = α(3.4.14), γ(t) = γ(3.4.14)(t);

u2
2(x, t) = 0 for x < 0, t = 0. In this case, the component u1(x, t) that contains

the boundary layer is absent in the representation (3.6.1a). Then the solution of

problem (3.2.2), (3.2.1) takes the form

u(x, t) = u2(x, t) = u1
2(x, t) + u2

2(3.6.4)(x, t), (x, t) ∈ G, (3.6.5a)

where u1
2(x, t) is the solution of the problem

L(3.2.2a) u1
2(x, t) = 0, (x, t) ∈ G (3.6.5b)

u1
2(x, t) = ϕ2(x, t), (x, t) ∈ S;

Here ϕ2(x, t) = ϕ(x, t)− u2
2(3.6.4)(x, t), (x, t) ∈ S.

To solve problem (3.6.5), we use the difference scheme

Λ(3.5.2) z1
2(x, t) = 0, (x, t) ∈ Gh, (3.6.6a)

z1
2(x, t) = ϕ2(x, t), (x, t) ∈ Sh,

where Gh is the uniform mesh (3.5.4).

Further, we construct the following special interpolants (similar to (3.6.2c))

uh
0 (x, t) = z1

2(x, t) + u2
2(3.6.4)(x, t), (x, t) ∈ G,

ph
0 (x, t) = ph

z1
2
(x, t) +

∂

∂x
u2

2(3.6.4)(x, t), (x, t) ∈ G
∗
,

P h
0 (x, t)=ε ph

0 (x, t), (x, t) ∈ G
∗
,

(3.6.6b)

where, z1
2(x, t) is a bilinear interpolant constructed using the function

z1
2(x, t) = z1

2(3.6.6a)(x, t).
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The scheme (3.6.6), (3.5.4) is the scheme of the singularity splitting method under

condition (3.4.25) or (3.6.3).

Note that condition (3.6.3) is satisfied in the case of problem (3.1.2), (3.1.3).

3.6.2 Error Estimates for the Constructed Scheme

In the case of schemes {(3.6.2), (3.5.4), (3.5.13)} and (3.6.6), (3.5.4), we give

estimates of errors for solutions and derivatives that follow from results of Theorem

3.5.5 and Remark 3.5.2.

In the case of scheme {(3.6.2), (3.5.4), (3.5.13)}, we have the estimates [20]

∣∣∣u(x, t)− uh
0 (x, t)

∣∣∣ ≤ M
[
N−1 ln N + N−1

0

]
, (x, t) ∈ G, (3.6.7a)

∣∣∣P (x, t)− P h
0 (x, t)

∣∣∣ ≤ M
[
N−1/2 + N

−1/2
0

]
, (x, t) ∈ G

∗
, (3.6.7b)

∣∣∣p(x, t)− ph
0 (x, t)

∣∣∣ ≤ M
[
N−1/2 + N

−1/2
0

]
, (x, t) ∈ G

∗
0 , (3.6.7c)

where G
∗
0 = G

∗
0(3.2.5)(m), m is an arbitrary sufficiently small constant, M(3.6.7c) =

M(m).

In the case of scheme (3.6.6), (3.5.4) under condition (3.4.25) or (3.6.3), the fol-

lowing estimates are valid:

∣∣∣u(x, t)− uh
0 (x, t)

∣∣∣ ≤ M
[
N−1 + N−1

0

]
, (x, t) ∈ G, (3.6.8)

∣∣∣p(x, t)− ph
0 (x, t)

∣∣∣ ≤ M
[
N−1/2 + N

−1/2
0

]
, (x, t) ∈ G

∗
.

Thus, scheme {(3.6.2), (3.5.4), (3.5.13)} converges ε-uniformly in C1(G
∗
0 ), and

scheme (3.6.6), (3.5.4) under condition (3.4.25) or (3.6.3) converges ε-uniformly

in C1(G
∗
).
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In the case of difference scheme {(3.6.2), (3.5.4), (3.5.13)}, the component u2(3.6.1a)(x, t)

that involves the interior layer, and its derivative in x satisfy the estimates

∣∣∣u2(x, t)− uh
2 (x, t)

∣∣∣ ≤ M
[
N−1 + N−1

0

]
, (x, t) ∈ G, (3.6.9)

∣∣∣p2(x, t)− ph
2 (x, t)

∣∣∣ ≤ M
[
N−1/2 + N

−1/2
0

]
, (x, t) ∈ G

∗
,

where p2(x, t) =
∂

∂x
u2(x, t), ph

2 (x, t) = ph
2(3.6.2d)(x, t). Thus, the component involv-

ing the interior layer converges ε-uniformly in C1(G
∗
).

We summarize above results in the following theorem.

Theorem 3.6.1 Let the assumptions of Theorem 3.5.4 be fulfilled. Then the dif-

ference scheme {(3.6.2), (3.5.4), (3.5.13)} (
the difference scheme (3.6.6), (3.5.4) un-

der condition (3.4.25) or (3.6.3)
)

approximates the solution of the problem (3.2.2),

(3.2.1), the derivative p(x, t) and the diffusion flux P (x, t)
(
the solution of the

problem (3.2.2), (3.2.1) and the derivative p(x, t)
)

ε-uniformly with the estimates

(3.6.7) and (3.6.9), respectively
(
with the estimates (3.6.8)

)
.

Note that the order of the ε-uniform convergence of schemes {(3.6.2), (3.5.4), (3.5.13)},
and (3.6.6), (3.5.4) under condition (3.4.25) or (3.6.3) is essentially better than it

is for the scheme (3.5.2), (3.5.13)
(
see the estimates (3.5.14), (3.6.7), (3.6.8)

)
.

3.6.3 Conclusion

In the case of problem (3.1.1), i.e., the Cauchy problem for the Black-Scholes

equation, the scheme of the singularity splitting method makes it possible to obtain

the approximation of the solution C(S, t′) in a finite neighbourhood of the point

(E, T ) containing the interior layer, and also of its derivative (∂/∂ S) C(S, t′) in

this neighbourhood excluding the point (E, T ), with errors independent of the
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dimensionless value σ2 r−1 for σ2 r−1 ≤ M . The interpolants approximating the

solution C(S, t′) and its derivative (∂/∂ S) C(S, t′) converge in the maximum norm

uniformly with respect to the value σ2 r−1 at a rate of convergence with the order

close to 1 and 0.5, respectively.

3.7 Numerical Experiments

3.7.1 Problem in Presence of Interior Layer

In this section, we present experimental results for the problem

L(3.7.1) u(x, t) ≡
{

ε
∂2

∂x2
+ (1− ε)

∂

∂x
− 1− ∂

∂t

}
u(x, t) = 0, (x, t) ∈ G, (3.7.1a)

u(x, t) = ϕ(x, t), (x, t) ∈ S,

that has the same singularity of the solution as problem (3.1.4), (3.1.3) in a neigh-

bourhood of the interior layer. Note that the problem (3.1.4), (3.1.3) is equivalent

to problem (3.1.1). Here

G = D × (0, T ], D = {x : x ∈ (−d, d)}, (3.7.1b)

T = 1, d = 2; ϕ(x, 0) =





0, −d < x ≤ 0,

x + mx2, 0 < x < d;

ϕ(−d, t) = 0,

ϕ(d, t) = e−t
(
md2 +

(
2mt(1− ε) + 1

)
d +

(
2mε + (1− ε)

)
t + m(1− ε)2t2

)
,

where m = 4−1.

The jump of the first order derivative of the function ϕ(3.7.1)(x, t) at the point (0, t)

is the same as for the function ϕ(3.1.3a)(x) for x = 0 and is equal to 1 for both

functions.
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−d d x

t

T

0

Interior layer

− (1 − ε) t

Figure 3.2: Problem (3.7.1) with appearance of interior layer.

Note that ϕ(x, t) = w(x, t) for (x, t) ∈ S, x ≥ 0, where

w(x, t) = e−t
(
mx2 +

(
2mt(1− ε) + 1

)
x +

(
2mε + (1− ε)

)
t + m(1− ε)2t2

)
,

(x, t) ∈ IR× [0, T ].

Here the function w(x, t) is the solution of the Cauchy problem

L(3.7.1) w(x, t) = 0, (x, t) ∈ IR× (0, T ], (3.7.2)

w(x, 0) = ϕw(x), x ∈ IR,

where ϕw(x) = x + mx2, x ∈ IR.

The choice of boundary conditions for x = −d, d ensures that compatibility con-

ditions are fulfilled for the data of problem (3.7.1) and prevents the appearance of

the boundary layer and of the interior layer in a neighborhood of the characteristic

passing through the point (d, 0).

Under the chosen data of the problem, the singularity of the solution generated

by the jump of the derivative of the initial function is not ”polluted” by other
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Figure 3.3: Plots of the solutions a1, b1 and the derivatives a2, b2; plots of a1, a2

and b1, b2 are generated by Schemes A and B, respectively, for ε = 2−10, N = 16

and N0 = 16.

singularities, that allows us to study numerically the efficiency of the constructed

difference scheme in a domain containing the interior layer and to compare this

scheme with the classical finite difference scheme.

The data of problem (3.7.1) satisfy condition (3.6.3)
(
and condition (3.4.25)

)
.

Thus, for the numerical solution of this problem, it is possible to apply the sim-

plified scheme (3.6.6), (3.5.4), i.e., the scheme of the singularity splitting method

under condition (3.6.3) or (3.4.25)
(
we denote it briefly by Scheme A

)
.



3.7 Numerical Experiments 91

In order to estimate the efficiency of the developed method, we compare solutions

generated using Scheme A in accuracy with discrete solutions of problem (3.7.1)

generated using the classical finite difference scheme (3.5.2), (3.5.4)
(
we denote it

briefly by Scheme B
)
.

The plots of the solutions a1, b1 and the derivatives a2, b2 computed using Scheme A
(
see a1, a2

)
and Scheme B

(
see b1, b2

)
are presented on Fig. 3.3 for ε = 2−10, N = 16

and N0 = 16.

3.7.2 Error Estimates of the Discrete Solutions

To analyze errors in the discrete solutions, a technique similar to that given in [20]

is used, however, it is modified with regard to the singularity splitting method.

Computations are made for values of ε = 2−j, j = 0, 1, . . . , 20 on grids with the

number of nodes N = N0 for N = 2i, i = 5, 6, . . . , 10. The numerical solution

uh, NF

0, ε (x, t), generated by Scheme A on the finest mesh G
NF

h with N = N0 = NF =

2048 for each value of ε is used as the exact solution of problem (3.7.1).

Errors in the numerical solutions in the maximum norm for each value of ε and N

are computed by the formula

EN
ε = EN

ε

(
uh, N

0, ε (·)) =
∥∥uh, NF

0, ε (x, t)− uh, N
0, ε (x, t)

∥∥
G

N
h

(3.7.3)

for Scheme A and by the formula

EN
ε = EN

ε

(
zN

ε (·)) =
∥∥uh, NF

0, ε (x, t)− zN
ε (x, t)

∥∥
G

N
h

(3.7.4)

for Scheme B. Here the function uh, N
0, ε (x, t) = uh, N

0(3.6.6), ε(x, t) in (3.7.3) and the

function zN
ε (x, t) in (3.7.4) are the numerical solutions obtained, respectively, by

Schemes A and B.
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Table 3.1: Errors EN
ε = EN

ε (uh, N
0, ε ) and EN = EN(uh, N

0, ε ) for the solutions generated

by Scheme A.

Number of intervals N

ε 32 64 128 256 512 1024
20 0.1320-02 0.6633-03 0.3328-03 0.1666-03 0.8338-04 0.4170-04
2−1 0.1140-02 0.5863-03 0.2972-03 0.1496-03 0.7507-04 0.3760-04
2−2 0.2782-02 0.1426-02 0.7219-03 0.3632-03 0.1822-03 0.9123-04
2−3 0.3904-02 0.2006-02 0.1017-02 0.5120-03 0.2569-03 0.1287-03
2−4 0.4614-02 0.2384-02 0.1214-02 0.6131-03 0.3082-03 0.1545-03
2−5 0.5034-02 0.2623-02 0.1345-02 0.6823-03 0.3440-03 0.1727-03
2−6 0.5288-02 0.2769-02 0.1429-02 0.7289-03 0.3688-03 0.1856-03
...

...
...

...
...

...
...

2−14 0.5557-02 0.2948-02 0.1544-02 0.8004-03 0.4116-03 0.2103-03
...

...
...

...
...

...
...

2−20 0.5558-02 0.2948-02 0.1544-02 0.8006-03 0.4117-03 0.2104-03
EN 0.5558-02 0.2948-02 0.1544-02 0.8006-03 0.4117-03 0.2104-03

Table 3.2: Errors EN
ε = EN

ε (zN
ε ) and EN = EN(zN

ε ) for the solutions generated by

Scheme B.

Number of intervals N

ε 32 64 128 256 512 1024
20 0.9868-02 0.5482-02 0.3296-02 0.2116-02 0.1419-02 0.9756-03
2−1 0.8081-02 0.4425-02 0.2560-02 0.1584-02 0.1036-02 0.7016-03
2−2 0.6600-02 0.3718-02 0.2093-02 0.1237-02 0.7772-03 0.5126-03
2−3 0.9033-02 0.4972-02 0.2627-02 0.1354-02 0.6878-03 0.3850-03
2−4 0.1242-01 0.7186-02 0.3933-02 0.2072-02 0.1065-02 0.5406-03
2−5 0.1515-01 0.9293-02 0.5348-02 0.2919-02 0.1535-02 0.7887-03
2−6 0.1706-01 0.1105-01 0.6736-02 0.3866-02 0.2107-02 0.1107-02
...

...
...

...
...

...
...

2−14 0.1963-01 0.1403-01 0.9948-02 0.7029-02 0.4956-02 0.3486-02
...

...
...

...
...

...
...

2−20 0.1964-01 0.1404-01 0.9960-02 0.7045-02 0.4978-02 0.3516-02
EN 0.1964-01 0.1404-01 0.9960-02 0.7045-02 0.4978-02 0.3516-02
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Tables 3.1 and 3.2 contain the values EN
ε of errors in the solutions generated by

Schemes A and B for various values of ε and N . The value EN in the last rows of

the tables is the maximal value of the errors EN
ε with respect to ε, corresponding

to the given value of N .

Tables 3.3 and 3.4, which are similar to tables 3.1 and 3.2, demonstrate errors in

the first derivatives computed by the formula

EN
ε = EN

ε

(
ph, N

0, ε (·)
)

=
∥∥ph, NF

0, ε (x, t)− ph, N
0, ε (x, t)

∥∥
G

N ∗
h

, (3.7.5)

G
N ∗
h = G

N

h \ S(∗), S(∗) = S
(∗)
(3.2.2c)

for Scheme A and by the formula

EN
ε = EN

ε

(
pN

z, ε(·)
)

=
∥∥ph, NF

0, ε (x, t)− pN
z, ε(x, t)

∥∥
G

N {∗}
h

, (3.7.6)

G
N {∗}
h = G

N

h \ S{∗}, S{∗} = {(x, 0) : x = xi−1, xi, xi+1; xi = 0}

for Scheme B. Here, pN
z, ε(x, t) in (3.7.6) is the first difference derivative

pN
z, ε(xi, tj) =

zN
ε (xi+1, tj)− zN

ε (xi, tj)

xi+1 − xi

, i = 0, . . . , N, j = 0, . . . , N0. (3.7.7)

The function ph, NF

0, ε (x, t) in formulae (3.7.5) and (3.7.6) and the function ph, N
0, ε (x, t)

in formula (3.7.5) are the special interpolants of the first order derivative of the

solution computed by formula (3.6.6), respectively, on the finest mesh G
NF

h and on

the mesh G
N

h for fixed value of ε.

Analyzing the values of errors for the solutions in Tables 3.1 and 3.2, and for

the first derivatives in Table 3.3, we observe the ε-uniform convergence, since, with

decreasing ε, the errors are stabilized for each value of N approximately for one and

the same values of ε, i.e., the errors are independent of the value of the parameter

ε, moreover, the values of EN (the last row) decrease as N increases. However,
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Table 3.3: Errors EN
ε = EN

ε (ph, N
0, ε ) and EN = EN(ph, N

0, ε ) for the first discrete

derivatives generated by Scheme A.

Number of intervals N

ε 32 64 128 256 512 1024
20 0.1562-01 0.7931-02 0.4073-02 0.2106-02 0.1100-02 0.5835-03
2−1 0.1562-01 0.7910-02 0.4016-02 0.2034-02 0.1048-02 0.5470-03
2−2 0.1620-01 0.8583-02 0.4431-02 0.2253-02 0.1136-02 0.5705-03
2−3 0.1701-01 0.9262-02 0.4858-02 0.2492-02 0.1263-02 0.6355-03
2−4 0.1754-01 0.9768-02 0.5198-02 0.2690-02 0.1370-02 0.6915-03
2−5 0.1788-01 0.1011-01 0.5446-02 0.2840-02 0.1454-02 0.7359-03
2−6 0.1806-01 0.1034-01 0.5616-02 0.2947-02 0.1515-02 0.7688-03
...

...
...

...
...

...
...

2−14 0.1831-01 0.1066-01 0.5915-02 0.3966-02 0.2697-02 0.1850-02
...

...
...

...
...

...
...

2−20 0.1831-01 0.1066-01 0.5920-02 0.3974-02 0.2708-02 0.1865-02
EN 0.1831-01 0.1066-01 0.5920-02 0.3974-02 0.2708-02 0.1865-02

in Table 3.4 the first derivative of the solution generated by Scheme B does not

converge at all; the values of EN practically do not change as N increases.

In Tables 3.5 and 3.6, the values of qN
ε are shown that are the convergence orders

for the solutions computed by Schemes A and B, respectively.

In analogous Table 3.7, one can see the convergence orders for the first discrete

derivatives generated by Scheme A for various values of ε and N . The value qN in

last rows of the tables is the minimal value of qN
ε with respect to ε, corresponding

to the given value of N . The convergence order for the discrete solutions is defined

by the formula

qN
ε = log2

EN
ε

E2N
ε

. (3.7.8)

The quantities EN
ε , E2N

ε are defined by formula (3.7.3) for Scheme A and by for-

mula (3.7.4) for Scheme B.
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Table 3.4: Errors EN
ε = EN

ε (pN
z, ε) and EN = EN(pN

z, ε) for the first discrete deriva-

tives generated by Scheme B.

Number of intervals N

ε 32 64 128 256 512 1024
20 0.1080+00 0.7864-01 0.6165-01 0.5118-01 0.4465-01 0.4000-01
2−1 0.1296+00 0.1013+00 0.7555-01 0.5941-01 0.5017-01 0.4405-01
2−2 0.1394+00 0.1219+00 0.9764-01 0.7388-01 0.5826-01 0.4964-01
2−3 0.1302+00 0.1315+00 0.1178+00 0.9572-01 0.7301-01 0.5768-01
2−4 0.1045+00 0.1228+00 0.1275+00 0.1157+00 0.9473-01 0.7256-01
2−5 0.7901-01 0.9761-01 0.1189+00 0.1254+00 0.1147+00 0.9424-01
2−6 0.8714-01 0.7835-01 0.9407-01 0.1170+00 0.1244+00 0.1141+00
...

...
...

...
...

...
...

2−14 0.9914-01 0.9833-01 0.9985-01 0.1005+00 0.1006+00 0.1002+00
...

...
...

...
...

...
...

2−20 0.9918-01 0.9839-01 0.1000+00 0.1008+00 0.1012+00 0.1014+00
EN 0.1394+00 0.1315+00 0.1275+00 0.1254+00 0.1244+00 0.1238+00

Table 3.5: Convergence orders qN
ε = qN

ε (uh, N
0, ε ) and qN = qN(uh, N

0, ε ) for the solutions

of Scheme A.

Number of intervals N

ε 32 64 128 256 512
20 0.9928 0.9950 0.9983 0.9986 0.9997
2−1 0.9593 0.9802 0.9903 0.9948 0.9975
2−2 0.9641 0.9821 0.9910 0.9952 0.9979
2−3 0.9606 0.9800 0.9901 0.9949 0.9972
2−4 0.9526 0.9736 0.9856 0.9923 0.9963
2−5 0.9405 0.9636 0.9791 0.9880 0.9941
2−6 0.9334 0.9544 0.9712 0.9829 0.9906
...

...
...

...
...

...
2−14 0.9146 0.9331 0.9479 0.9595 0.9688

...
...

...
...

...
...

2−20 0.9148 0.9331 0.9475 0.9595 0.9685
qN 0.9148 0.9331 0.9475 0.9595 0.9685
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Table 3.6: Convergence orders qN
ε = qN

ε (zN
ε ) and qN = qN(zN

ε ) for the solutions of

Scheme B.

Number of intervals N

ε 32 64 128 256 512
20 0.8481 0.7340 0.6394 0.5765 0.5405
2−1 0.8689 0.7895 0.6926 0.6125 0.5623
2−2 0.8279 0.8290 0.7587 0.6705 0.6005
2−3 0.8614 0.9204 0.9562 0.9772 0.8371
2−4 0.7894 0.8696 0.9246 0.9602 0.9782
2−5 0.7051 0.7971 0.8735 0.9272 0.9607
2−6 0.6266 0.7141 0.8011 0.8757 0.9285
...

...
...

...
...

...
2−14 0.4845 0.4960 0.5011 0.5041 0.5076

...
...

...
...

...
...

2−20 0.4843 0.4953 0.4995 0.5010 0.5016
qN 0.4843 0.4953 0.4995 0.5010 0.5016

Table 3.7: Convergence orders qN
ε = qN

ε (ph,N
0,ε ) and qN = qN(ph,N

0,ε ) for the first

discrete derivatives generated by Scheme A.

Number of intervals N

ε 32 64 128 256 512
20 0.9778 0.9614 0.9516 0.9370 0.9147
2−1 0.9816 0.9779 0.9814 0.9567 0.9380
2−2 0.9164 0.9538 0.9758 0.9879 0.9937
2−3 0.8770 0.9310 0.9631 0.9804 0.9909
2−4 0.8445 0.9101 0.9504 0.9734 0.9864
2−5 0.8226 0.8925 0.9393 0.9659 0.9824
2−6 0.8046 0.8806 0.9303 0.9599 0.9786
...

...
...

...
...

...
2−14 0.7804 0.8498 0.5767 0.5563 0.5438

...
...

...
...

...
...

2−20 0.7804 0.8485 0.5750 0.5534 0.5381
qN 0.7804 0.8485 0.5750 0.5534 0.5381
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The convergence order for the discrete derivatives is defined by formula (3.7.8)

where the quantities EN
ε , E2N

ε are defined by formula (3.7.5) for Scheme A and by

formula (3.7.6) for Scheme B.

Orders of the rate of ε-uniform convergence for the solutions generated by Schemes A

and B (see Tables 3.5 and 3.6) are close, respectively, to 1 and 0.5; for the first

derivative generated by Scheme A (see Table 3.7), the order of the rate of ε-uniform

convergence is close to 0.5.

3.7.3 Conclusion

Thus, it follows from our numerical experiments that the solution and its first order

derivative obtained by Scheme A, i.e., the scheme based on the method of the

additive splitting of a singularity, converge ε-uniformly at the rate of convergence

of the order close to 1 and 0.5, respectively. Whereas the convergence rate for the

solutions of the classical finite difference Scheme B yields to that for scheme A, and

the derivatives computed by Scheme B do not converge even for fixed values of the

parameter ε. The numerical experiments, consistent with the theoretical results,

illustrate the efficiency of the singularity splitting method for the approximation

of the interior layer generated by the discontinuity of the first order derivative
∂

∂x
ϕ(x, 0) in problem (3.7.1).

The numerical experiments showed that the special difference scheme constructed

in this paper, i.e., the scheme of the method of the additive splitting of a singularity

on uniform meshes, is effective both for small values of N and for its sufficiently

large values, for which results of the theoretical study become apparent.

In the case of the Cauchy problem for the Black-Scholes equation, the interpolants

constructed using solutions of the special difference scheme, which approximates
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the solution C(S, t′) of problem (3.1.1) and its derivative (∂/∂ S) C(S, t′) (for

(S, t′) 6= (E, T )) in a neighbourhood of the interior layer, converge at the rate of

σ2 r−1 – uniform convergence with orders close to 1 and 0.5, respectively.



Chapter 4
Parameter-Uniform Method for the

Singularly Perturbed Black–Scholes

Equation in Presence of Interior and

Boundary Layers

4.1 Introduction

We have introduced in former chapters that mathematical modeling in financial

mathematics leads to the Cauchy problem for the parabolic Black-Scholes equa-

tion [88] with respect to the value C = C(S, t′), i.e., a European call option, where

S and t′ are the current values of the underlying asset and time. Along with the so-

lution C = C(S, t′) itself, the first partial derivative (∂/∂S) C(S, t′) of the solution

is of interest. The change of variables leads to the Cauchy problem for the dimen-

sionless parabolic equation, i.e., the singularly perturbed parabolic equation with

the perturbation parameter ε = 2−1 σ2 r−1, ε ∈ (0, 1]; σ and r are the volatility and

the interest rate, respectively. For finite values of the parameter ε, the solution of
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the Cauchy problem has singularities of different types that are generated by the

unboundedness of the domain where the problem is defined, the discontinuity of

the first derivative of the initial function and its unbounded growth at infinity. For

small values of the parameter ε, an additional singularity arises, such as an interior

layer which moving in time. In this problem, primarily, we are interested in ap-

proximations to both the solution and its first order derivative in a neighbourhood

of the interior layer generated by the piecewise smooth initial function [46, 44].

In the present chapter, in order to construct adequate grid approximations for

the singularity of the interior layer type, we consider, instead of the Cauchy prob-

lem for the dimensionless Black-Scholes equation, a “simpler” singularly perturbed

boundary value problem with a piecewise smooth initial condition, i.e., the problem

(4.2.2), (4.2.1) (see its formulation in Section 2). In this boundary value problem

in a bounded domain, except the interior layer, an additional singularity appears,

namely, a boundary layer with the typical width of ε; the typical width of the inte-

rior layer is ε1/2. Moreover, the singularity of the boundary layer is stronger than

that of the interior layer, which makes it difficult to construct and study special

numerical methods suitable for the adequate description of the singularity of the

interior layer type. We are interested in approximation to both the solutions and

the first order discrete derivatives of the boundary value problem in the boundary

layer and outside the boundary layer.

Boundary value problems in bounded domains for parabolic equations with a dis-

continuous initial condition have been studied in [28, 70, 74]; however, an approx-

imation of the derivative itself was not considered. A boundary value problem on

an interval for singularly perturbed parabolic convection-diffusion equations with

a piecewise smooth initial condition has been considered in [78]; approximations

of the solution and the derivative were investigated. Here, in contrast to those

papers, a finite difference scheme based on the solution decomposition method is



4.2 Grid Approximation of the Boundary Value Problem 101

constructed that allows us to resolve each singularity of the problem separately

[47, 45, 79, 80].

4.2 Grid Approximation of the Boundary Value

Problem

4.2.1 Problem Formulation

On the set G with the boundary S

G = G
⋃

S, G = D × (0, T ], D = {x : x ∈ (d1, d2)}, (4.2.1)

we consider the Dirichlet problem for a singularly perturbed parabolic convection-

diffusion equation

L(4.2.2a) u(x, t) = f(x, t), (x, t) ∈ G, (4.2.2a)

u(x, t) = ϕ(x, t), (x, t) ∈ S. (4.2.2b)

Here L(4.2.2a) ≡ ε a
∂2

∂x2
+ b

∂

∂x
− c − q

∂

∂t
, ε ∈ (0, 1], a, b, q > 0, c ≥ 0.

The right hand side function f(x, t) is sufficiently smooth on G. The boundary

function ϕ(x, t) is sufficiently smooth function on the sets S
−
0 .

Here
S −

0 = {(x, t) : x ∈ [d1, 0), t = 0},

S +
0 = {(x, t) : x ∈ (0, d2], t = 0}, S0 = S

−
0

⋃
S

+

0 ,

S0 and SL are the lower and lateral parts of the boundary S, S L = Γ × (0, T ],

Γ = D\D. The first derivative in x of the function ϕ(x, t) has a jump discontinuity

at the point S(∗) = {(0, 0)}
[

∂

∂x
ϕ(x, t)

]
≡ lim

x1↘x

∂

∂x
ϕ(x1, t)− lim

x1↗x

∂

∂x
ϕ(x1, t) 6= 0, (x, t) ∈ S(∗). (4.2.2c)
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Our aim is for problem (4.2.2), (4.2.1) to construct a finite difference scheme that

approximates ε-uniformly both the solution of the problem and its first derivative.

4.2.2 Approximations of the Problem on Uniform Mesh

On the set G(4.2.1) we introduce the rectangular mesh

Gh = Dh × ω0 = ω × ω0, (4.2.3)

where ω is a mesh on [d1, d2] with an arbitrary distribution of nodes and ω0 is the

uniform mesh on [0, T ].

We approximate the boundary value problem (4.2.2) by the difference scheme

Λ(4.2.4) z(x, t) = f(x, t), (x, t) ∈ Gh, (4.2.4)

z(x, t) = ϕ(x, t), (x, t) ∈ Sh.

Here
Λ(4.2.4) ≡ ε a δx bx + b δx − c− q δt.

On the uniform mesh

Gh = ω × ω0, (4.2.5)

we obtain the estimate

|u(x, t)− z(x, t)| ≤ M
[
ε−1 N−1 + N−1/2 + N

−1/2
0

]
, (x, t) ∈ Gh, (4.2.6)

i.e. the scheme (4.2.4), (4.2.5) converges for fixed values of the parameter ε.
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4.2.3 Approximations of the Problem on Piecewise Uni-

form Mesh

On the set G we construct the piecewise uniform mesh condensing in a neighbor-

hood of the boundary layer

Gh = Dh × ω0 = ω ∗ × ω0, (4.2.7a)

where ω0 is uniform mesh on the segment [0, T ] with the step-size h0 = T N−1
0 .

Here N0 + 1 is the number of nodes in the mesh ω0. The mesh ω ∗ = ω ∗(σ) is a

piecewise-uniform mesh on [d1, d2], σ is a parameter depending on ε and N . We

choose the value σ satisfying the condition

σ = σ(ε, N) = min [ β, 2 m−1 ε ln N ], (4.2.7b)

where β is an arbitrary number in the half-interval (0, (d2−d1)/2], m is an arbitrary

constant from the interval (0, m0), m0 = a−1 b. The segment [d1, d2] is divided in

two parts: [d1, d1 +σ], [d1 +σ, d2]; in each part the step-size is constant and equal

to h(1) = (d2− d1) σ β−1 N−1 on the segment [d1, d1 + σ] and h(2) = (d2− d1) (d2−
d1 − σ) (d2 − d1 − β)−1 N−1 on the segment [d1 + σ, d2], σ ≤ (d2 − d1)/2.

On the piecewise uniform mesh (4.2.7) we have the estimate

| u(x, t)− z(x, t) |≤ M [ N−1/2 + N
−1/2
0 ], (x, t) ∈ G

s

h, (4.2.8)

i.e. the scheme (4.2.4), (4.2.7) converges ε-uniformly.
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Figure 4.1: Constructed piecewise uniform meshes for problem (4.2.2), (4.2.1) with

appearance of boundary and interior layers.

4.2.4 Decomposition Scheme Approximating the Deriva-

tive

We represent the solution of the boundary value problem (4.2.2), (4.2.1) as the

sum of functions

u(x, t) = u1(x, t) + u2(x, t), (x, t) ∈ G. (4.2.9)

Here u1(x, t) and u2(x, t) are components of the solution of the boundary value

problem (4.2.2), (4.2.1), including singularities of the boundary and interior layers

types respectively.

We represent the interior layer component u2(x, t) as the sum of functions

u2(x, t) = u1
2(x, t) + u2

2(x, t), (x, t) ∈ G, (4.2.10)

where u1
2(x, t) and u2

2(x, t) are the regular and singular parts of the function u2(x, t);

u2
2(x, t) = W (x, t), (x, t) ∈ G,
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W (x, t) = 2−1

[
∂

∂x
ϕ(0, 0)

]{(
x− γ(t)

)
v
(
2−1ε−1/2a−1/2 q1/2

(
x− γ(t)

)
t−1/2

)
+

+2 π−1/2 ε1/2 a1/2 q−1/2 t1/2 exp
(
− 4−1 ε−1 a−1 q

(
x− γ(t)

)2
t−1

)}
exp(−α t),

(x, t) ∈ IR× [0, T ]. v(ξ) = erf(ξ) = 2 π−1/2

∫ ξ

0

exp(−α2) dα, ξ ∈ IR.

The functions u1(x, t) and u1
2(x, t) are solutions of the following problems

L(4.2.2a) u1
2(x, t) = f2(x, t), (x, t) ∈ G, u1

2(x, t) = ϕ2(x, t), (x, t) ∈ S; (4.2.11)

L(4.2.2a) u1(x, t) = f1(x, t), (x, t) ∈ G, u1(x, t) = ϕ1(x, t), (x, t) ∈ S. (4.2.12)

The functions fi(x, t), ϕi(x, t), i = 1, 2, are defined by the relations

f2(x, t) = f(x, t) η (x, t), (4.2.13)

f1(x, t) = f(x, t)− f2(x, t), (x, t) ∈ G;

ϕ2(x, t) = (ϕ(x, t)− u2
2(x, t)) η (x, t), (4.2.14)

ϕ1(x, t) = ϕ(x, t)− ϕ2(x, t)− u2
2(x, t), (x, t) ∈ S.

Here η (x, t), (x, t) ∈ G, is a sufficiently smooth function that vanishes in a neigh-

bourhood of the boundary layer

η (x, t) = 0, (x, t) ∈ G
5

(4.2.16)(2
−1 m1)

η (x, t) = 1, (x, t) ∈ G
4

(4.2.15)(m1)





, 0 ≤ η(x, t) ≤ 1, (x, t) ∈ G,

where m1 ∈
(
0, 2−1 (−d1 + γ(T ))

)
;

G4 = G4(m) =
{
(x, t); x > γ(t)− γ (T ) + d1 + m

}
, G

4
= G 4

⋃
S 4, (4.2.15)

G
5

= G 5
⋃

S 5, G 5 = G 5(m) = G \G
4
(m); m < −d1 + γ (T ). (4.2.16)
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Figure 4.2: η function with N = 32, ε = 2−10, m(4.2.15) = 0.9.
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An appropriate selection of η function can prevent interaction between the bound-

ary and interior layers so that there is no overlapping between the two layers. The

plot of a constructed η function is shown in Fig. 4.2.

To solve problem (4.2.12), we use finite difference scheme on the piecewise uniform

mesh(4.2.7):

Λ(4.2.4)z1(x, t) = f1(x, t), (x, t) ∈ Gh(4.2.7), (4.2.17a)

z1(x, t) = ϕ1(x, t), (x, t) ∈ Sh.

To solve problem (4.2.11), we use the difference scheme on the uniform mesh (4.2.5):

Λ(4.2.4)z
1
2(x, t) = f2(x, t), (x, t) ∈ Gh(4.2.5), (4.2.17b)

z1
2(x, t) = ϕ2(x, t), (x, t) ∈ Sh.

Further, we construct the special interpolants into which the singular part u2
2(x, t),

i.e., the function of the interior layer type, enters in the explicit form as follows:

uh
0(x, t) = z1(x, t) + uh

2(x, t), (4.2.17c)

uh
2(x, t) = z1

2(x, t) + u2
2(x, t), (x, t) ∈ G;

ph
0(x, t) = ph

z1
(x, t) + ph

2(x, t), (4.2.17d)

ph
2(x, t) = ph

z1
2
(x, t) +

∂

∂x
u2

2(x, t), (x, t) ∈ G
∗
;

P h
0 (x, t) = ε ph

0(x, t), (x, t) ∈ G
∗
; G

∗
= G \ S (∗). (4.2.17e)

here z1(x, t), ph
z 1

(x, t) and z1
2(x, t), ph

z1
2
(x, t) are bilinear interpolants that are con-

structed using the functions z1(x, t), (x, t) ∈ Gh(4.2.7) and z1
2(x, t), (x, t) ∈ Gh(4.2.5).

The use of the interpolants allows us to find the solution on the set G, its first

derivative in x and the diffusion flux on the set G
∗
.

The function uh
0 (x, t), (x, t) ∈ G, is called the solution of the difference scheme

(4.2.17), (4.2.5), (4.2.7), and the functions ph
0 (x, t) and P h

0 (x, t) = ε ph
0 (x, t),
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(x, t) ∈ G
∗
, are called the derivative and the diffusion flux (the normalized deriva-

tive), respectively, corresponding to this scheme.

The scheme (4.2.17), (4.2.5), (4.2.7) is the solution decomposition scheme with the

additive splitting of a singularity of the interior-layer type. Briefly, we call this

scheme the singularity splitting scheme.

In the case of scheme (4.2.17), (4.2.5), (4.2.7), we have the estimates

∣∣∣u(x, t)− uh
0 (x, t)

∣∣∣ ≤ M
[
N−1 ln N + N−1+ν0

0

]
, (x, t) ∈ G; (4.2.18a)

∣∣∣P (x, t)− P h
0 (x, t)

∣∣∣ ≤ M
[
N−1/2 + N

−1/2
0

]
, (x, t) ∈ G

∗
; (4.2.18b)

∣∣∣p(x, t)− ph
0 (x, t)

∣∣∣ ≤ M
[
N−1/2 + N

−1/2
0

]
, (x, t) ∈ G

∗
0 , (4.2.18c)

where G
∗
0 = G

∗
0 (m) = G

∗ ∩ {x ≥ d1 + m}, m is an arbitrary sufficiently small

constant, and M(4.2.18c) = M(m). The interior layer component u2(4.2.9)(x, t) and

its derivative in x satisfy the estimates

∣∣u2(x, t)− uh
2 (x, t)

∣∣ ≤ M
[
N−1 + N−1+ν0

0

]
, (x, t) ∈ G, (4.2.19)

∣∣p2(x, t)− ph
2 (x, t)

∣∣ ≤ M
[
N−1/2 + N

−1/2
0

]
, (x, t) ∈ G

∗
,

where p2(x, t) =
∂

∂x
u2(x, t), ph

2 (x, t) = ph
2(4.2.17d)(x, t). In (4.2.18) and (4.2.19),

ν0 ∈ (0, 1).

Thus, the interior layer component converges ε-uniformly in C1(G
∗
).

4.3 Numerical Experiments

In this section, we present experimental results for the boundary value problem

(4.2.2) with singularities of interior layer and boundary layer types. In order to
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study the effect of these singularities on the errors in the numerical approximations,

we isolate them from each other and deal with them one at a time.

4.3.1 Problem in Presence of Boundary Layer

In this section, we consider a problem with singularity of boundary layer type. We

present the experimental results for the boundary value problem

L(4.3.1) u(x, t) ≡
{

ε
∂2

∂x2
+ (1− ε)

∂

∂x
− 1− ∂

∂t

}
u(x, t) = 0, (x, t) ∈ G, (4.3.1a)

u(x, t) = ϕ(x, t), (x, t) ∈ S,

Here

G = D × (0, T ], D = {x : x ∈ (d1, d2)}, (4.3.1b)

T = 1, d1 = −3, d2 = 1; ϕ(x, 0) = 0, d1 < x < d2;

ϕ(d1, t) = t, ϕ(d2, t) = 0.

Table 4.1: Errors EN
ε of z1(4.2.17b)(x, t) for the solution generated by Scheme B′.

Number of intervals N

ε 32 64 128 256 512 1024
20 0.1706-02 0.8546-03 0.4339-03 0.2209-03 0.1123-03 0.5689-04
2−1 0.7430-02 0.3723-02 0.1864-02 0.9333-03 0.4668-03 0.2334-03
2−2 0.1753-01 0.1126-01 0.5967-02 0.3061-02 0.1552-02 0.7811-03
2−3 0.1841-01 0.1276-01 0.8256-02 0.5254-02 0.3061-02 0.1868-02
2−4 0.2167-01 0.1499-01 0.9629-02 0.6082-02 0.3560-02 0.2047-02
2−5 0.2385-01 0.1643-01 0.1056-01 0.6592-02 0.3889-02 0.2230-02
2−6 0.2516-01 0.1726-01 0.1109-01 0.6877-02 0.4072-02 0.2333-02
...

...
...

...
...

...
...

2−14 0.2664-01 0.1818-01 0.1167-01 0.7185-02 0.4270-02 0.2442-02
...

...
...

...
...

...
...

2−20 0.2664-01 0.1818-01 0.1168-01 0.7186-02 0.4270-02 0.2443-02
EN 0.2664-01 0.1818-01 0.1168-01 0.7186-02 0.4270-02 0.2443-02
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Figure 4.3: Plots of the solutions and the derivatives for N = N0 = 32, ε =

2−10, σ = 0.0075 generated by Scheme B′ applied to Problem (4.3.1), (a0): Solution

in [−3, 1]; (a1): Zoom of the solution in [−3,−3 + σ]; (a2): Solution in [−3 + σ, 1],

(bi), i = 0, 1, 2 are the corresponding plots for derivatives.
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Table 4.2: Errors EN
ε of z1(4.2.17b)(x, t) for the first discrete derivatives generated

by Scheme B′.

Number of intervals N

ε 32 64 128 256 512 1024
20 0.5963-01 0.3073-01 0.1560-01 0.7856-02 0.4491-02 0.2821-02
2−1 0.1045+00 0.5805-01 0.3064-01 0.1575-01 0.7985-02 0.4020-02
2−2 0.1440+00 0.9767-01 0.5565-01 0.2981-01 0.1544-01 0.7858-02
2−3 0.1089+00 0.8439-01 0.5855-01 0.3744-01 0.2261-01 0.1403-01
2−4 0.1047+00 0.8201-01 0.5736-01 0.3688-01 0.2234-01 0.1301-01
2−5 0.1027+00 0.8092-01 0.5683-01 0.3664-01 0.2224-01 0.1296-01
2−6 0.1018+00 0.8043-01 0.5659-01 0.3653-01 0.2220-01 0.1294-01
...

...
...

...
...

...
...

2−14 0.1011+00 0.8001-01 0.5639-01 0.3645-01 0.2217-01 0.1293-01
...

...
...

...
...

...
...

2−20 0.1011+00 0.8001-01 0.5639-01 0.3645-01 0.2217-01 0.1293-01
EN 0.1011+00 0.8001-01 0.5639-01 0.3645-01 0.2217-01 0.1293-01

We solve problem (4.3.1) using the classical finite difference scheme (4.2.4) on piece-

wise uniform meshes (4.2.7)
(
we denote it briefly by Scheme B′

)
. The parameters

which we take for the following results are β4.2.7b = 2.0, m4.2.7b = 0.9.

An appropriate choice of β in the rectangle G is important to define the transition

parameter σ4.2.7b fitted to the boundary layer, which determines the point of tran-

sition from a fine to a coarse mesh. More detailed discussion about appropriate

selection of β is introduced in [20].

The plots of the solutions a0 and the derivatives b0 computed using Scheme B′

are presented on Fig. 4.3 for ε = 2−10, N = 32 and N0 = 32. The derivative

ph(x, t) = pN
z, ε(4.3.4)(x, t) in the boundary layer requires scaling, as for small values

of ε the derivative is excessively large within the layer region. The appropriate

scaling is εpN
z, ε(4.3.4)(x, t). The plot of εpN

z, ε(4.3.4)(x, t) is shown in b1.

Error analysis of the discrete solutions and derivatives are made for values of ε =
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Table 4.3: Convergence orders qN
ε of z1(4.2.17b)(x, t) for the solutions generated by

Scheme B′.

Number of intervals N

ε 32 64 128 256 512
20 0.9973 0.9779 0.9740 0.9760 0.9811
2−1 0.9969 0.9981 0.9980 0.9995 1.0000
2−2 0.6386 0.9161 0.9630 0.9799 0.9905
2−3 0.5289 0.6281 0.6520 0.7794 0.7125
2−4 0.5317 0.6385 0.6628 0.7727 0.7984
2−5 0.5377 0.6377 0.6798 0.7613 0.8024
2−6 0.5437 0.6382 0.6894 0.7560 0.8036
...

...
...

...
...

...
2−14 0.5512 0.6395 0.6997 0.7508 0.8062

...
...

...
...

...
...

2−20 0.5512 0.6383 0.7008 0.7510 0.8056
qN 0.5512 0.6383 0.7008 0.7510 0.8056

Table 4.4: Convergence orders qN
ε of z1(4.2.17b)(x, t) for the first discrete derivatives

generated by Scheme B′.

Number of intervals N

ε 32 64 128 256 512
20 0.9564 0.9781 0.9897 0.8068 0.6708
2−1 0.8481 0.9219 0.9601 0.9800 0.9901
2−2 0.5601 0.8115 0.9006 0.9491 0.9744
2−3 0.3679 0.5274 0.6451 0.7276 0.6884
2−4 0.3524 0.5158 0.6372 0.7232 0.7800
2−5 0.3439 0.5098 0.6332 0.7203 0.7791
2−6 0.3399 0.5072 0.6315 0.7185 0.7787
...

...
...

...
...

...
2−14 0.3375 0.5047 0.6295 0.7173 0.7779

...
...

...
...

...
...

2−20 0.3375 0.5047 0.6295 0.7173 0.7779
qN 0.3375 0.5047 0.6295 0.7173 0.7779
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2−j, j = 0, 1, . . . , 20 on grids with the number of nodes N = N0 for N = 2i,

i = 5, 6, . . . , 10. The numerical solution uh, NF

0, ε (x, t), generated by Scheme B′ on

the finest mesh G
NF

h with N = N0 = NF = 2048 for each value of ε is used as the

exact solution of problem (4.3.1).

Errors in the numerical solutions in the maximum norm for each value of ε and N

for Scheme B′ are computed by the formula

EN
ε = EN

ε

(
zN

ε (·)) =
∥∥zNF

ε (x, t)− zN
ε (x, t)

∥∥
G

N
h

(4.3.2)

Here the function zN
ε (x, t) = zN

ε (4.2.4)(x, t) and the function zN
ε (x, t) in (4.3.2) are

the numerical solution obtained by Schemes B′ and its bilinear interpolation re-

spectively.

Table 4.1 shows the values of EN
ε of errors in solution generated by Schemes B′

for different values of ε and N . The value EN in the last row of the table is the

maximal value of the errors EN
ε for some fixed value of ε to the given value of N .

Table 4.2 displays errors for the first discrete derivatives computed by the formula

EN
ε = EN

ε

(
pN

z, ε(·)
)

=
∥∥pNF

z, ε (x, t)− pN
z, ε(x, t)

∥∥
G

N
h

(4.3.3)

Here, pN
z, ε(x, t) in (4.3.3) is the first difference derivative

pN
z, ε(xi, tj) =

zN
ε (xi+1, tj)− zN

ε (xi, tj)

xi+1 − xi

, i = 0, . . . , N, j = 0, . . . , N0. (4.3.4)

The function z N
ε (x, t) is the solution obtained from formula (4.2.17b).

The results in Tables 4.1 and 4.2 suggest that the method is ε-uniform convergent

for the solution zN
ε (4.2.4)(x, t) and the first discrete derivative pN

z, ε(4.3.3)(x, t).

The convergence order qN
ε for the discrete solutions and derivatives are defined by

the formula

qN
ε = log2

EN
ε

E2N
ε

. (4.3.5)
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The quantities EN
ε , E2N

ε are defined by formula (4.3.2) for solutions and by for-

mula (4.3.3) for derivatives for Scheme B′.

The corresponding computed order of convergence for solutions and derivatives in

Tables 4.3 and 4.4 indicate that the ε-uniform order of convergence is at least 0.5

for all N ≤ 32.

4.3.2 Problem in Presence of Interior Layer

We have discussed in Chapter 3 the problem (3.7.1) in presence of interior layer in

the domain [−2, 2] on condition (3.4.25) or condition (3.6.3). Here, we consider the

boundary layer problem (4.2.2), (4.2.1) with the same singularity of interior layer

type as problem (3.7.1). We present the experimental results for the boundary

value problem

L(4.3.6) u(x, t) ≡
{

ε
∂2

∂x2
+ (1− ε)

∂

∂x
− 1− ∂

∂t

}
u(x, t) = 0, (x, t) ∈ G, (4.3.6a)

u(x, t) = ϕ(x, t), (x, t) ∈ S,

that has the same singularity of the solution as problem (3.1.4), (3.1.3) in a neigh-

bourhood of the interior layer. Note that the problem (4.3.6) is equivalent to

problem (3.7.1).

Here

G = D × (0, T ], D = {x : x ∈ (d1, d2)}, (4.3.6b)

T = 1, d1 = −3, d2 = 1; ϕ(x, 0) =





0, d1 < x ≤ 0,

x + mx2, 0 < x < d2;

ϕ(d1, t) = 0,

ϕ(d2, t) = e−t
(
md2

2 +
(
2mt(1− ε) + 1

)
d2 +

(
2mε + (1− ε)

)
t + m(1− ε)2t2

)
,
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where m = 4−1.

Jump of the derivative to the function ϕ(4.3.6)(x, t) in the point (0, t) is the same

as for the function ϕ(3.1.3a)(x) in x = 0 and equals to 1 for both functions.

Note that

ϕ(x, t) = w(x, t), (x, t) ∈ S, x ≥ 0.

Here

w(x, t) = e−t
(
mx2 +

(
2mt(1− ε) + 1

)
x +

(
2mε + (1− ε)

)
t + m(1− ε)2t2

)
,

(x, t) ∈ IR× [0, T ]

is the solution of the Cauchy problem

L(3.7.1) w(x, t) = 0, (x, t) ∈ IR× (0, T ], (4.3.7)

w(x, 0) = ϕw(x), x ∈ IR,

where ϕw(x) = x + mx2, x ∈ IR.

Choice of boundary conditions for x = d1, d2 ensures compatibility conditions for

data of problem (4.3.6) and prevents appearance of the boundary layer and the

interior layer that is going from the point (d2, 0).

We solve problem (4.3.6) with the scheme of the splitting singularity method

(3.6.3), (3.4.25) (Method A) as stated in chapter 4.

Fig. 4.4 shows plots of the solutions a1 and the derivatives a2 computed using

Scheme A for ε = 2−10, N = 16 and N0 = 16.

The maximum errors in the solutions and the first discrete derivatives are shown

in Tables 4.5 and 4.6 which are computed by formula (3.7.3) and (3.7.5) respec-

tively. The corresponding orders of convergence computed by formula (3.7.8) for

the solutions and the first discrete derivatives are shown in Tables 4.7 and 4.8.
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Figure 4.4: Plots of the solution and the derivative for ε = 2−10 generated by

Scheme A applied to Problem (4.3.6), (a1): Solution for N = N0 = 16 with 3-

node advanced interpolation in x-coordinate; (a2): First discrete derivative for

N = N0 = 16 with 3-node advanced interpolation in x-coordinate .

Table 4.5: Errors EN
ε(4.3.11) = EN

ε (uh, N
0, ε ) and EN = EN(uh, N

0, ε ) for the solutions

generated by Scheme A

Number of intervals N

ε 32 64 128 256 512 1024
20 0.1081-02 0.5445-03 0.2735-03 0.1370-03 0.6854-04 0.3428-04
2−1 0.8732-03 0.4312-03 0.2144-03 0.1069-03 0.5339-04 0.2668-04
2−2 0.2353-02 0.1210-02 0.6142-03 0.3094-03 0.1553-03 0.7781-04
2−3 0.3529-02 0.1850-02 0.9487-03 0.4806-03 0.2419-03 0.1214-03
2−4 0.4325-02 0.2295-02 0.1185-02 0.6025-03 0.3038-03 0.1525-03
2−5 0.4820-02 0.2577-02 0.1336-02 0.6804-03 0.3434-03 0.1725-03
2−6 0.5105-02 0.2743-02 0.1427-02 0.7288-03 0.3688-03 0.1856-03
...

...
...

...
...

...
...

2−14 0.5415-02 0.2939-02 0.1544-02 0.8002-03 0.4114-03 0.2102-03
...

...
...

...
...

...
...

2−20 0.5416-02 0.2940-02 0.1544-02 0.8006-03 0.4117-03 0.2104-03
EN 0.5416-02 0.2940-02 0.1544-02 0.8006-03 0.4117-03 0.2104-03
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Table 4.6: Errors EN
ε(4.3.12) = EN

ε (ph, N
0, ε ) and EN = EN(ph, N

0, ε ) for the first discrete

derivatives generated by Scheme A.

Number of intervals N

ε 32 64 128 256 512 1024
20 0.1641-01 0.8314-02 0.4187-02 0.2106-02 0.1100-02 0.5835-03
2−1 0.1563-01 0.7817-02 0.3974-02 0.2034-02 0.1048-02 0.5470-03
2−2 0.1646-01 0.8685-02 0.4474-02 0.2272-02 0.1145-02 0.5749-03
2−3 0.1768-01 0.9590-02 0.5022-02 0.2574-02 0.1304-02 0.6562-03
2−4 0.1845-01 0.1024-01 0.5443-02 0.2816-02 0.1434-02 0.7237-03
2−5 0.1892-01 0.1067-01 0.5743-02 0.2995-02 0.1533-02 0.7764-03
2−6 0.1920-01 0.1096-01 0.5948-02 0.3122-02 0.1605-02 0.8152-03
...

...
...

...
...

...
...

2−14 0.1954-01 0.1135E-01 0.6278-02 0.3958-02 0.2686-02 0.1835-02
...

...
...

...
...

...
...

2−20 0.1954-01 0.1135-01 0.6280-02 0.3974-02 0.2708-02 0.1865-02
EN 0.1954-01 0.1135-01 0.6280-02 0.3974-02 0.2708-02 0.1865-02

Table 4.7: Convergence orders qN
ε(4.3.15) = qN

ε (uh, N
0, ε ) and qN = qN(uh, N

0, ε ) for the

solutions of Scheme A

Number of intervals N

ε 32 64 128 256 512

20 0.9894 0.9934 0.9974 0.9992 0.9996
2−1 1.0180 1.0081 1.0040 1.0016 1.0008
2−2 0.9595 0.9782 0.9892 0.9944 0.9970
2−3 0.9317 0.9635 0.9811 0.9904 0.9946
2−4 0.9142 0.9536 0.9759 0.9878 0.9943
2−5 0.9033 0.9478 0.9735 0.9865 0.9933
2−6 0.8962 0.9428 0.9694 0.9827 0.9906
...

...
...

...
...

...
2−14 0.8816 0.9287 0.9482 0.9598 0.9688

...
...

...
...

...
...

2−20 0.8814 0.9291 0.9475 0.9595 0.9685

qN 0.8814 0.9291 0.9475 0.9595 0.9685
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Table 4.8: Convergence orders qN
ε(4.3.15) = qN

ε (ph,N
0,ε ) and qN = qN(ph,N

0,ε ) for the first

discrete derivatives generated by Scheme A.

Number of intervals N

ε 32 64 128 256 512
20 0.9810 0.9896 0.9914 0.9370 0.9147
2−1 0.9996 0.9760 0.9663 0.9567 0.9380
2−2 0.9224 0.9570 0.9776 0.9886 0.9940
2−3 0.8825 0.9333 0.9642 0.9811 0.9907
2−4 0.8494 0.9117 0.9508 0.9736 0.9866
2−5 0.8264 0.8937 0.9392 0.9662 0.9815
2−6 0.8089 0.8818 0.9299 0.9599 0.9773
...

...
...

...
...

...
2−14 0.7837 0.8543 0.6655 0.5593 0.5497

...
...

...
...

...
...

2−20 0.7837 0.8539 0.6602 0.5534 0.5381
qN 0.7837 0.8539 0.6602 0.5534 0.5381

It follows the conclusion that for problem (4.3.6), the Scheme A is ε-uniform con-

vergent for solutions and first discrete derivatives. The errors estimates data has

a perfect match with the data for problem (3.7.1) in Chapter 3.

4.3.3 Problem in Presence of Interior and Boundary Layers

We have shown theoretical and numerical results in former sections for problem

(4.2.2), (4.2.1) in presence of boundary and interior layer separately. In this section,

we present experimental results for this boundary value problem with appearance

of both interior and boundary layers.

We present experimental results for the boundary value problem (4.2.2), (4.2.1),
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where

L(4.3.8) u(x, t) = 0, (x, t) ∈ G, (4.3.8a)

u(x, t) = ϕ(x, t), (x, t) ∈ S.

Here L(4.3.8) = L(4.2.2) under the condition

a = c = p = 1, b = 1− ε; (4.3.8b)

G = D × (0, T ], D = {x : x ∈ (d1, d2)} (4.3.8c)

with

T = 1.0, d1 = −3.0, d2 = 1.0; ϕ(x, 0) =





0, d1 < x ≤ 0,

x + mx2, 0 < x < d2;

ϕ(d1, t) = t,

ϕ(d2, t) = e−t
(
md2

2 +
(
2mt(1− ε) + 1

)
d2 +

(
2mε + (1− ε)

)
t + m(1− ε)2t2

)

with m = 4−1.

Note that

ϕ(x, t) = w(x, t), (x, t) ∈ S, x ≥ 0.

Here

w(x, t) = e−t
(
mx2 +

(
2mt(1− ε) + 1

)
x +

(
2mε + (1− ε)

)
t + m(1− ε)2t2

)
,

(x, t) ∈ IR× [0, T ]

is the solution of the Cauchy problem

L(3.7.1) w(x, t) = 0, (x, t) ∈ IR× (0, T ], (4.3.9)

w(x, 0) = ϕw(x), x ∈ IR,

where ϕw(x) = x + mx2, x ∈ IR.
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the choice of boundary conditions for x = d2 ensures compatibility conditions for

data of problem (3.7.1) and prevents appearance of the boundary layer and the

interior layer that is going from the point (d2, 0).

We apply the scheme (4.2.9) on the piecewise uniform mesh (4.2.7)
(
we denote it

briefly by Scheme A′) to problem (4.3.8) which has solution in presence of both

interior and boundary layers.

Table 4.9: Errors EN
ε (uh

0(4.2.17c))for the solutions generated by Scheme A′ for x ∈
[−3,−3 + σ] (in the boundary layer)

Number of intervals N

ε 32 64 128 256 512 1024
20 0.1183-02 0.6584-03 0.3639-03 0.1948-03 0.1029-03 0.5349-04
2−1 0.5367-02 0.2680-02 0.1337-02 0.6677-03 0.3337-03 0.1668-03
2−2 0.1491-01 0.1005-01 0.5296-02 0.2724-02 0.1382-02 0.6961-03
2−3 0.1491-01 0.1137-01 0.7649-02 0.4884-02 0.2881-02 0.1775-02
2−4 0.1806-01 0.1334-01 0.8808-02 0.5699-02 0.3355-02 0.1940-02
2−5 0.2018-01 0.1470-01 0.9683-02 0.6203-02 0.3662-02 0.2121-02
2−6 0.2146-01 0.1551-01 0.1018-01 0.6484-02 0.3843-02 0.2222-02
...

...
...

...
...

...
...

2−14 0.2291-01 0.1642-01 0.1074-01 0.6787-02 0.4037-02 0.2330-02
...

...
...

...
...

...
...

2−20 0.2291-01 0.1642-01 0.1074-01 0.6788-02 0.4038-02 0.2331-02
EN 0.2291-01 0.1642-01 0.1074-01 0.6788-02 0.4038-02 0.2331-02

The plots of the solutions and derivatives computed by Scheme A′ for different

scaled layers , i.e. the interior and boundary layers are presented in Fig. 4.5.

For compare, the plots of the solutions and derivatives which are resulted from

the classical finite difference scheme (4.2.4) on piecewise uniform mesh (4.2.7) for

problem (3.7.1a) and (4.3.8b) are shown in Fig. 4.6.
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Figure 4.5: Plots of the solutions and the derivatives for N = N0 = 32, ε =

2−10, σ = 0.0075 generated by Scheme A′ applied to Problem (4.3.8), (a0): Solution

in [−3, 1]; (a1): Zoom of the solution in [−3,−3 + σ]; (a2): Solution in [−3 + σ, 1]

with 2-node advanced interpolation; (bi), i = 0, 1, 2 are the corresponding plots

for derivatives.
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Figure 4.6: Plots of the solutions and the derivatives for N = N0 = 32, ε =

2−10, σ = 0.0075 generated by scheme (4.2.9) on the piecewise uniform mesh (4.2.7)

applied to Problem (4.3.8), (a0): Solution in [−3, 1]; (a1): Zoom of the solution

in [−3,−3 + σ]; (a2): Solution in [−3 + σ, 1] with 2-node bilinear interpolation;

(bi), i = 0, 1, 2 are the corresponding plots for derivatives.
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Table 4.10: Errors EN
ε (uh

0(4.2.17c)) for the solutions generated by Scheme A′ for

x ∈ [−3 + σ, 1] (outside the boundary layer)

Number of intervals N

ε 32 64 128 256 512 1024
20 0.9425-03 0.4698-03 0.2348-03 0.1173-03 0.5864-04 0.2946-04
2−1 0.1166-02 0.6706-03 0.3580-03 0.1848-03 0.9383-04 0.4728-04
2−2 0.1561-02 0.8450-03 0.4579-03 0.2379-03 0.1212-03 0.6115-04
2−3 0.4049-02 0.2060-02 0.9938-03 0.4598-03 0.2072-03 0.8383-04
2−4 0.5541-02 0.3035-02 0.1565-02 0.7818-03 0.3820-03 0.1848-03
2−5 0.6548-02 0.3631-02 0.1913-02 0.9754-03 0.4870-03 0.2413-03
2−6 0.7134-02 0.3987-02 0.2107-02 0.1078-02 0.5425-03 0.2706-03
...

...
...

...
...

...
...

2−14 0.7786-02 0.4394-02 0.2330-02 0.1191-02 0.6025-03 0.3042-03
...

...
...

...
...

...
...

2−20 0.7789-02 0.4396-02 0.2331-02 0.1191-02 0.6028-03 0.3044-03
EN 0.7789-02 0.4396-02 0.2331-02 0.1191-02 0.6028-03 0.3044-03

To analyze errors in the discrete solutions, a technique similar to that given in [20]

is used. However, it is modified with regard to the singularity splitting method.

Computations are made for values of ε = 2−j, j = 0, 1, . . . , 20 on grids with the

number of nodes N = N0 for N = 2i, i = 5, 6, . . . , 10. The numerical solu-

tion uh, NF

0, ε (x, t), generated by scheme scheme (4.2.9) with piecewise uniform mesh

(4.2.7) on the finest mesh G
NF

h with N = N0 = NF = 2048 for each value of ε is

used as the exact solution of problem (4.3.8).

Errors for the numerical solutions in the boundary layer in the maximum norm for

each value of ε and N are computed by the formula

EN
ε = EN

ε

(
zN

ε (·)) =
∥∥uh, NF

0, ε (x, t)− zN
ε (x, t)

∥∥
G

N
h

(4.3.10)

Errors for the numerical solutions outside the boundary layer in the maximum

norm for each value of ε and N are computed by the formula

EN
ε = EN

ε

(
uh, N

0, ε (·)) =
∥∥uh, NF

0, ε (x, t)− uh, N
0, ε (x, t)

∥∥
G

N
h

(4.3.11)
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Table 4.11: Errors EN
ε (P h

0(4.2.17e)) for the scaled first discrete derivatives generated

by Scheme A′ for x ∈ [−3,−3 + σ] (in the boundary layer)

Number of intervals N

ε 32 64 128 256 512 1024
20 0.5629-01 0.2895-01 0.1468-01 0.7388-02 0.4465-02 0.2812-02
2−1 0.1010+00 0.5603-01 0.2956-01 0.1519-01 0.7699-02 0.3876-02
2−2 0.1411+00 0.9579-01 0.5456-01 0.2922-01 0.1513-01 0.7703-02
2−3 0.1057+00 0.8250-01 0.5747-01 0.3685-01 0.2229-01 0.1387-01
2−4 0.1015+00 0.8008-01 0.5625-01 0.3627-01 0.2202-01 0.1284-01
2−5 0.9955-01 0.7897-01 0.5570-01 0.3602-01 0.2191-01 0.1279-01
2−6 0.9865-01 0.7847-01 0.5546-01 0.3591-01 0.2187-01 0.1277-01
...

...
...

...
...

...
...

2−14 0.9786-01 0.7804-01 0.5525-01 0.3582-01 0.2183-01 0.1276-01
...

...
...

...
...

...
...

2−20 0.9786-01 0.7804-01 0.5525-01 0.3582-01 0.2183-01 0.1276-01
EN 0.9786-01 0.7804-01 0.5525-01 0.3582-01 0.2183-01 0.1276-01

Here the function uh, N
0, ε (x, t) = uh, N

0(4.2.17c), ε(x, t) in (4.3.11) and the function zN
ε (x, t)

in (4.3.10) are the numerical solutions obtained by scheme (4.2.17d), (4.2.7) in

the boundary layer and outside the boundary layer.

Tables 4.9 and 4.10 contain the value EN
ε of errors of the solutions in the boundary

layer and outside the boundary layer respectively, generated by schemes (4.2.17),

(4.2.7) for various values of ε and N . The value EN in the last rows of the tables is

the maximal value of the errors EN
ε with respect to ε, corresponding to the given

value of N .

Similar to tables 4.9 and 4.10, tables 4.11 and 4.12 demonstrate errors of the

first derivatives in the boundary layer and outside the boundary layer respectively,

generated by schemes (4.2.17), (4.2.7) for various values of ε and N . The first
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Table 4.12: Errors EN
ε (ph

0(4.2.17d)) for the first discrete derivatives generated by

Scheme A′ for x ∈ [−3 + σ, 1] (outside the boundary layer)

Number of intervals N

ε 32 64 128 256 512 1024
20 0.1581-01 0.7964-02 0.4081-02 0.2107-02 0.1101-02 0.5837-03
2−1 0.1563-01 0.7813-02 0.3981-02 0.2036-02 0.1049-02 0.5471-03
2−2 0.1696-01 0.8216-02 0.4221-02 0.2141-02 0.1079-02 0.5413-03
2−3 0.2619-01 0.1370-01 0.6788-02 0.3239-02 0.1510-02 0.6501-03
2−4 0.2904-01 0.1636-01 0.8709-02 0.4445-02 0.2212-02 0.1084-02
2−5 0.3030-01 0.1772-01 0.9795-02 0.5164-02 0.2642-02 0.1329-02
2−6 0.3088-01 0.1843-01 0.1041-01 0.5585-02 0.2901-02 0.1477-02
...

...
...

...
...

...
...

2−14 0.3144-01 0.1919-01 0.1113-01 0.6134-02 0.3930-02 0.2633-02
...

...
...

...
...

...
...

2−20 0.3144-01 0.1919-01 0.1113-01 0.6137-02 0.3946-02 0.2656-02
EN 0.3144-01 0.1919-01 0.1113-01 0.6137-02 0.3946-02 0.2656-02

derivatives in the boundary layer are computed by formula

EN
ε = EN

ε

(
ph, N

0, ε (·)
)

=
∥∥ph, NF

0, ε (x, t)− ph, N
0, ε (x, t)

∥∥
G

N ∗
h

, (4.3.12)

G
N ∗
h = G

N

h \ S(∗), S(∗) = S
(∗)
(4.2.2c)

and the first derivatives outside the boundary layer by the formula

EN
ε = EN

ε

(
pN

z, ε(·)
)

=
∥∥ph, NF

0, ε (x, t)− pN
z, ε(x, t)

∥∥
G

N {∗}
h

, (4.3.13)

G
N {∗}
h = G

N

h \ S{∗}, S{∗} = {(x, 0) : x = xi−1, xi, xi+1; xi = 0}

Here, pN
z, ε(x, t) in (4.3.13) is the first difference derivative

pN
z, ε(xi, tj) =

zN
ε (xi+1, tj)− zN

ε (xi, tj)

xi+1 − xi

, i = 0, . . . , N, j = 0, . . . , N0. (4.3.14)

The function ph, NF

0, ε (x, t) in formulae (4.3.12) and (4.3.13) and the function ph, N
0, ε (x, t)

in formula (4.3.12) are the special interpolants of the first order derivative of the
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Table 4.13: Convergence orders qN
ε (uh

0(4.2.17c)) for the solutions generated by Scheme

A′ for x ∈ [−3,−3 + σ] (in the boundary layer)

Number of intervals N

ε 32 64 128 256 512

20 0.8454 0.8554 0.9015 0.9208 0.9439
2−1 1.0019 1.0032 1.0017 1.0006 1.0004
2−2 0.5691 0.9242 0.9592 0.9790 0.9894
2−3 0.3910 0.5719 0.6472 0.7615 0.6988
2−4 0.4370 0.5989 0.6281 0.7644 0.7903
2−5 0.4571 0.6023 0.6425 0.7603 0.7879
2−6 0.4685 0.6075 0.6508 0.7547 0.7904
...

...
...

...
...

...
2−14 0.4805 0.6125 0.6621 0.7495 0.7930

...
...

...
...

...
...

2−20 0.4805 0.6125 0.6619 0.7493 0.7927

qN 0.4805 0.6125 0.6619 0.7493 0.7927

Table 4.14: Convergence orders qN
ε (uh

0(4.2.17c)) for the solutions generated by Scheme

A′ for x ∈ [−3 + σ, 1] (outside the boundary layer)

Number of intervals N

ε 32 64 128 256 512

20 1.0044 1.0006 1.0012 1.0002 0.9931
2−1 0.7980 0.9055 0.9540 0.9778 0.9888
2−2 0.8854 0.8839 0.9447 0.9730 0.9870
2−3 0.9749 1.0516 1.1119 1.1500 1.3055
2−4 0.8684 0.9555 1.0013 1.0332 1.0476
2−5 0.8507 0.9245 0.9718 1.0021 1.0131
2−6 0.8394 0.9201 0.9668 0.9907 1.0035
...

...
...

...
...

...
2−14 0.8253 0.9152 0.9682 0.9831 0.9859

...
...

...
...

...
...

2−20 0.8252 0.9152 0.9688 0.9824 0.9857

qN 0.8252 0.9152 0.9688 0.9824 0.9857
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Table 4.15: Convergence orders qN
ε (P h

0(4.2.17e)) for the scaled first discrete derivatives

generated by Scheme A′ for x ∈ [−3,−3 + σ] (in the boundary layer)

Number of intervals N

ε 32 64 128 256 512
20 0.9593 0.9797 0.9906 0.7265 0.6671
2−1 0.8501 0.9226 0.9605 0.9804 0.9901
2−2 0.5588 0.8120 0.9009 0.9495 0.9739
2−3 0.3575 0.5216 0.6411 0.7253 0.6844
2−4 0.3420 0.5096 0.6331 0.7200 0.7782
2−5 0.3341 0.5036 0.6289 0.7172 0.7766
2−6 0.3302 0.5007 0.6271 0.7154 0.7762
...

...
...

...
...

...
2−14 0.3265 0.4982 0.6252 0.7145 0.7747

...
...

...
...

...
...

2−20 0.3265 0.4982 0.6252 0.7145 0.7747
qN 0.3265 0.4982 0.6252 0.7145 0.7747

Table 4.16: Convergence orders qN
ε (ph

0(4.2.17d)) for the first discrete derivatives gen-

erated by Scheme A′ for x ∈ [−3 + σ, 1] (outside the boundary layer)

Number of intervals N

ε 32 64 128 256 512
20 0.9893 0.9646 0.9537 0.9364 0.9155
2−1 1.0004 0.9727 0.9674 0.9567 0.9391
2−2 1.0456 0.9609 0.9793 0.9886 0.9952
2−3 0.9348 1.0131 1.0674 1.1010 1.2158
2−4 0.8279 0.9096 0.9703 1.0068 1.0290
2−5 0.7739 0.8553 0.9236 0.9669 0.9913
2−6 0.7446 0.8241 0.8983 0.9450 0.9739
...

...
...

...
...

...
2−14 0.7122 0.7859 0.8596 0.6423 0.5778

...
...

...
...

...
...

2−20 0.7122 0.7859 0.8588 0.6371 0.5711
qN 0.7122 0.7859 0.8588 0.6371 0.5711
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solution computed by formula (4.2.17d), respectively, on the finest mesh G
NF

h and

on the mesh G
N

h for fixed value of ε.

The convergence order for the discrete solutions is defined by the formula

qN
ε = log2

EN
ε

E2N
ε

. (4.3.15)

The quantities EN
ε , E2N

ε are defined by formula (4.3.10) for solution in the boundary

layer and by formula (4.3.11) for solution outside the boundary layer.

Tables 4.13 and 4.14 are the corresponding orders of ε-uniform convergence for the

solutions in the boundary layer and outside boundary respectively. The orders of

the convergence rate to solutions goes to 0.8 for solution in the boundary layer and

1.0 for solution outside the boundary layer.

Similarly, Tables 4.15 and 4.16 display the orders of convergence for the first dis-

crete derivatives of the solutions in the boundary layer and outside the boundary

layer. The order of convergence goes to 0.8 and 0.5 respectively.

The error tables and orders of convergence for the solution and derivative in the

boundary layer and outside boundary layer have a prefect match with considering

the interior layer and boundary layer separately.
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4.4 Conclusion

In this chapter, we consider the boundary value problem in bounded domain with

appearing of interior and boundary layers with typical layer widths ε1/2 and ε

respectively. Using the method of piecewise uniform meshes that condense in

a neighbourhood of the boundary layer and the method of additive splitting of

the singularity of the interior layer type, a special finite difference scheme, i.e.

Scheme A′, is constructed that make it possible to approximate ε-uniformly the

solution of the boundary value problem on the whole domain, its first order deriva-

tive in x on the whole domain except the discontinuity point, however, outside

a neighbourhood of the boundary layer, and also the normalized derivative (the

first order spatial derivative multiplied by the parameter ε) in a finite neighbour-

hood of the boundary layer. Numerical experiments illustrates the efficiency of the

constructed scheme.



Chapter 5
Conclusions and Future Work

A problem for the Black-Scholes equation with the value of a European call option

that arises in financial mathematics, by transformation of variables, is reformu-

lated to the Cauchy problem for a singularly perturbed parabolic equation with

variables x, t and a perturbation parameter ε, ε ∈ (0, 1]. This problem has several

singularities such as: the unbounded domain; the piecewise smooth initial func-

tion (its first order derivative in x has a discontinuity of the first kind at the point

x = 0); an interior (moving in time) layer generated by the piecewise smooth initial

function for small values of the parameter ε; etc.

In order to study the effect of these singularities on the errors in the numerical

approximations, it is necessary to isolate them from each other in order to deal

with them one at a time. The specific objective of the study was to construct dif-

ference schemes to approximate ε-uniformly the solution and its first order discrete

derivative of the singularly perturbed Black-Scholes equation with the value of a

European call option with nonsmooth initial conditions on various problems with

appearing of different layers, i.e. interior layer and boundary layer.

130
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5.1 Conclusion and Remarks

We prove that it is impossible to construct a parameter-uniform numerical method

using a standard finite difference operator on a rectangular mesh for the the singu-

larly perturbed Black-Scholes equation with interior layer type which coming from

the discontinuity of the first derivative of the initial condition.

In Chapter 3, We construct a parameter-uniform numerical method theoretically

which we call the method of splitting of singularity (or briefly, the singularity split-

ting method) for the problem. Numerical experiments prove that the solution and

its first order derivative obtained by using this method converged ε-uniformly with

a rate of convergence order close to 1.0 and 0.5 respectively. In comparison, the

convergence rate of the solution obtained by the classical finite difference scheme

is only 0.5. Moreover, The derivative computed by the classical finite difference

scheme does not converge even for fixed values of the singular perturbation param-

eter ε.

We then finished the significant part of research related to financial mathematics,

i.e. an accurate approximation of the first derivative of solution in a neighbourhood

of a singularity appearing due to the discontinuity of the first derivative of the initial

condition. This part is the most difficult for mathematicians and financial analysts.

It is also significant step in applied mathematics, even for regular problems, when

no singular perturbations are involved. Numerical technique and results have no

analogy in existing experiments.

In Chapter 4, we considered the boundary value problem in bounded domains for

parabolic equations coming from the Black-Scholes equation with a discontinuous

initial condition. Thus, we have a boundary value problem with two different types

of singularities, the discontinuity of the initial condition and the presence of small
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parameter multiplying the coefficients of the differential equation. Moreover, The

singularity of the boundary layer is stronger than that of the interior layer, which

makes it difficult to construct and study special numerical methods suitable for

the adequate description of the singularity of the interior layer type. Using the

method of special meshes that condense in a neighbourhood of the boundary layer

and the method of additive splitting of the singularity of the interior layer type, a

special finite difference scheme is designed that make it possible to approximate ε-

uniformly the solution of the boundary value problem on the whole domain, its first

order derivative in x on the whole domain except the discontinuity point (outside a

neighbourhood of the boundary layer), and also the normalized derivative (the first

order spatial derivative multiplied by the parameter ε) in a finite neighbourhood

of the boundary layer.

About boundary layers only, this subject is more known (at least, for specialists in

singular perturbed problems). But having two types of singularities, our problem

became unpredictable and therefore interesting. This is a nontrivial extension that

can also be applied to heat conduction and other problems.

This is the first time that the Black-Scholes equation is considered in a singular

perturbation perspective. Construction and application of the singularity splitting

method which ε-uniformly approximates the solution and derivative of the singular

perturbed Black-Scholes equation are also novel.

This study is of considerable importance since it suggests that there are errors in

existing finite difference methods for the Black-Scholes equation. These errors may

results in predication of option prices that deviates significantly from actual prices.

Hopefully, our research will be of interest to other research areas beyond finance,

e.g. fluid dynamics, when similar singularities occur.
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5.2 Future Work

In this thesis, we focused on studying the one dimensional singularly perturbed

Black-Scholes equation with European call options. The reason for starting with

European options is because they are the simplest and their exact solution and

derivatives can be expressed in simple closed analytical forms. On the other hand,

in almost all other cases, the errors themselves must be approximated, which adds

a further layer of difficulty to the study of the behaviour of the error for the relevant

ranges of the free parameters.

It is known that an American option is determined by a linear complementarity

problem involving the Black-Scholes differential operator and a constraint on the

value of the option. Mathematically, it is a free boundary problem. So it is almost

impossible to obtain an analytical solution for such a problem, numerical solutions

are always sought in practice. So analyzing the parameter-uniform properties of

the Black-Scholes equation with American options are even more on urging.

Future research work can be focused on:

1, To employ the singularity splitting method to other options, e.g. American

options and Asian options;

2, To apply the method to high dimensional Black-Scholes equations with various

options;

3, To improve the order of ε-uniform convergence rate. One feasible technique is

to use defect-correction technique, which has proved to be useful for singularly

perturbed parabolic convection-diffusion equations [29];

4, To possibly exploit the method to other research fields, e.g. fluid flow and

electrodynamics.
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Abstract

Mathematical modeling in financial mathematics leads to the Cauchy problem for

the parabolic Black-Scholes equation with respect to the value of a European call

option. By changing of variables, the problem is a singularly perturbed equation

with the perturbation parameter ε, ε ∈ (0, 1]; For finite values of the parameter

ε, the solution of the Cauchy problem has different types of singularities: the un-

bounded domain; the piecewise smooth initial function and its unbounded growth

at infinity; an interior layer generated by the piecewise smooth initial function for

small values of the parameter ε; etc.

Primarily, we are interested in approximations to both the solution and its first

order derivative in a neighbourhood of the interior layer generated by the piecewise

smooth initial function. For this purpose, a new method which we call the method

of additive splitting of a singularity(or briefly, the singularity splitting method) of

the interior layer type is constructed. The numerical results verifies that using

singularity splitting method, we can approximate ε-uniformly both the solution of

the boundary value problem and its first order derivative in x with convergence

orders close to 1 and 0.5, respectively, whereas the classical finite difference method

does not.
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Moreover, in order to construct adequate grid approximations for the singularity

of the interior layer type, we consider the boundary value problem in bounded

domain with appearing of interior and boundary layers with typical layer widths

ε1/2 and ε respectively. The singularity of the boundary layer is stronger than

that of the interior layer, which makes it difficult to construct and study special

numerical methods suitable for the adequate description of the singularity of the

interior layer type. Using the method of piecewise uniform meshes that condense

in a neighbourhood of the boundary layer and the method of additive splitting

of the singularity of the interior layer type, a special finite difference scheme is

constructed that make it possible to approximate ε-uniformly the solution of the

boundary value problem on the whole domain, its first order derivative in x on the

whole domain except the discontinuity point, however, outside a neighbourhood

of the boundary layer, and also the normalized derivative (the first order spatial

derivative multiplied by the parameter ε) in a finite neighbourhood of the boundary

layer.

Numerical experiments illustrates the efficiency of the constructed schemes.

Keywords: Black-Scholes Equation, Singular Perturbation, Bound-
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