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Summary

Target tracking has been widely used in different fields such as surveillance, automated

guidance systems, and robotics in general. The most commonly used framework for

tracking is that of Bayesian sequential estimation. This framework is probabilistic in

nature, and thus facilitates the modelling of uncertainties due to inaccurate models,

sensor errors, environmental noise, etc. However, the application of the Bayesian

sequential estimation framework to real world tracking problems is plagued by the

difficulties associated with nonlinear and non-Gaussian situation. Realistic models for

target dynamics and measurement processes are often nonlinear and non-Gaussian

in type, so that no closed-form analytic expression can be obtained for tracking re-

cursions. For general nonlinear and non-Gaussian models, particle filter has become

a practical and popular numerical technique to approximate the Bayesian tracking

recursions. This is due to its efficiency, simplicity, flexibility, ease of implementation,

and modeling success over a wide range of challenging applications.

The purpose of this thesis is to develop effective particle filter based methods for

target tracking application. The research work consists of four parts: i) particle filter

based maneuvering target tracking algorithms, ii) particle filter based multiple target

tracking algorithms, iii) particle filter based multiple maneuvering target tracking

algorithms, and iv) the experiment of target tracking system based on multi-sensor

fusion on a mobile robot platform.

The first part of the research work focuses on the single maneuvering target

tracking algorithm. To estimate the maneuvering movement at different time steps,

ii



most of the traditional algorithms adopt the multiple possible model hypothesis. In

this work, only one general model is utilized in the whole tracking process. Two

different methods based on particle filter are proposed to track the wide variations in

maneuvering movements.

The first method copes with the maneuvering target tracking problem using

Markov chain Monte Carlo (MCMC) sampling based particle filter method, in which

the particles are moved towards the posterior distribution of target state via MCMC

sampling. However, the traditional MCMC sampling needs a lot of iterations to con-

verge to the target posterior distribution, which is very slow and not suitable for

real-time tracking. In order to speed up the convergence rate, a new method named

adaptive MCMC based particle filter method, which is a combination of the adaptive

Metropolis (AM) method and the importance sampling method, is proposed to track

targets in real-time. Furthermore, a new method named interacting MCMC particle

filter is proposed to avoid sample impoverishment induced by the maneuvering target

movements, in which the importance sampling is replaced with interacting MCMC

sampling. The sampling method is named interacting MCMC sampling since it in-

corporates the interaction of the particles in contrast with the traditional MCMC

sampling method. The interacting MCMC sampling speeds up convergence rate ef-

fectively compared with the traditional MCMC sampling method.

The second method deals with the maneuvering target tracking problem based on

the assumption that the maneuvering effect can be modeled by (part of) a white or

colored noise process sufficiently well. The proposed method focuses on the identi-

fication of the equivalent process noise: the process noise is modeled as a dynamic

system and a sampling based algorithm is proposed in the particle filter framework

to identify the process noise.

In the second part of the research work, the multiple target tracking algo-

rithms are discussed. State estimation and data association are two important aspects

in multiple target tracking. Two algorithms based on particle filter are proposed to
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track multiple targets. The first algorithm uses the particle filter based multiple scan

joint probabilistic data association filter (MS-JPDA filter), which examines the joint

association hypothesis in a multi-scan sliding window and calculates the posterior

marginal probability based on the multi-scan joint association hypothesis. The sec-

ond algorithm, named multi-scan mixture particle filter, utilizes particle filter in the

multiple target tracking and avoids the data association process. The posterior dis-

tribution of the target state is a multi-mode distribution and each mode corresponds

to either the target or the clutter. In order to distinguish the targets from the clut-

ters, multiple scan information is incorporated. Moreover, when new targets appear

during tracking, new particles are sampled from the likelihood model (according to

the most recent measurements) to detect the new modes appeared at each time step.

In the third part of the research work, a new algorithm is proposed to cope

with the multiple maneuvering target tracking problem. The proposed algorithm is

a combination of the process noise identification method for modeling highly ma-

neuvering target, and the multi-scan JPDA algorithm for solving data association

problem. The process noise identification process is effective in estimating both the

maneuvering movement and the random acceleration of the target, avoiding the use

of complicated multiple model approaches. The multi-scan JPDA is effective in main-

taining the tracks of multiple targets using multiple scan information. The proposed

algorithm is illustrated with an example involving tracking of two highly maneuvering,

at times closely spaced and crossed, targets.

The fourth part of the research work is to build a target tracking system

based on multi-sensor fusion, which is implemented on a mobile robot. A particle

filter based tracker is developed in this work, which fuses color and sonar cues in a

novel way. More specifically, color is introduced as the main visual cue and is fused

with sonar localization cues. The generic objective is to track a randomly moving

object via the pan-tilt camera and sonar sensors installed in the mobile robot. When

moving randomly, the object’s position and velocity vary quickly and are hard to
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track. This leads to serious sample impoverishment in particle filter and then the

tracking algorithm fails. An improved particle filter with a new resampling algorithm

is proposed to tackle this issue. Experiments are carried out to verify the proposed

algorithm. The experimental results show that the robot is capable of continuously

tracking a human’s random movement at walking rate.

Successful results of target tracking should have a number of potential practical

applications such as:

1. Improved human/computer interfaces: robot navigation system that can track

the person while avoiding obstacles in certain environment.

2. Target detection and tracking is one of the important and fundamental tech-

nologies to develop real-world computer vision systems, e.g., visual surveillance

systems and intelligent transport systems (ITSs).

3. Multiple maneuvering target tracking algorithm is important for the aircrafts

tracking and monitoring system.
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Chapter 1

Introduction

Target tracking has been widely used in different fields such as surveillance, auto-

mated guidance systems, and robotics in general. Typical examples include radar

based tracking of aircrafts, sonar based tracking of sea animals or submarines, video

based identification and tracking of people for surveillance or security purposes, laser

based localization via mobile robot, and many more. The most commonly used

framework for tracking is that of Bayesian sequential estimation. This framework is

probabilistic in nature, and thus facilitates the modeling of uncertainties due to inac-

curate models, sensor errors, environmental noise, etc. The general recursions update

the posterior distribution of the target state, also known as the filtering distribu-

tion, through two stages: a prediction step that propagates the posterior distribution

at the previous time step through the target dynamics to form the one step ahead

prediction distribution, and a filtering step that incorporates the new data through

Bayes rule to form the new filtering distribution. In theory the framework requires

only the definition of a model for the target dynamics, a likelihood model for the

sensor measurements, and an initial distribution for the target state.

The application of the Bayesian sequential estimation framework to real world

tracking is plagued by the nonlinear and non-Gaussian nature of the problems. Real-

istic models for the target dynamics and measurement processes are often nonlinear
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and non-Gaussian, so that no closed-form analytic expression can be obtained for

the tracking recursions. In fact, closed-form expressions are available only in a small

number of cases. The most well-known of these arises when both the dynamic and

likelihood models are linear and Gaussian, leading to the celebrated Kalman filter

(KF) [1]. Since closed-form expressions are generally not available for nonlinear or

non-Gaussian models, approximate methods are required.

For general nonlinear and non-Gaussian models, particle filtering [2, 3], also known

as sequential Monte Carlo (SMC) [4, 5, 6], or CONDENSATION [7], has become

a practical and popular numerical technique to approximate the Bayesian tracking

recursions. This is due to its efficiency, simplicity, flexibility, ease of implementation,

and modeling success over a wide range of challenging applications.

The target tracking process can be described as the task of estimating the state

(states) of an target (targets) of interest both at the current time (filtering) and at

any point in the future (prediction). The state estimation is conducted in two types of

uncertainties: target model uncertainty and measurement uncertainty. Target model

uncertainty exists because most of the targets do not follow predefined trajectories

and their models are subject to random perturbations or maneuvers. The second type

of uncertainty, measurement uncertainty, exists since the measured values from the

targets are inaccurate (noisy), and the origins of the measurements are not perfectly

certain. The measurements can be from the targets of interest, due to false alarms

or clutters, or from other targets. In addition, the number of targets may not be

necessarily known. In practice, the first type of uncertainty is mainly considered in

maneuvering target tracking processes and the second type is considered in multiple

target tracking processes.

This thesis investigates the particle filter based target tracking algorithms, includ-

ing single maneuvering target tracking algorithm, multiple target tracking algorithm

and multiple maneuvering target tracking algorithm. Finally, an experiment, where

a mobile robot tracks a randomly moving object based on information from multiple

2



1.1 Bayesian Inference Theory

sensors, is carried out to verify the proposed algorithm.

This chapter is organized as follows. Firstly, the Bayesian inference theory is in-

troduced in Section 1.1. Then, considering that particle filter algorithm is used as the

main method to solve the tracking problem in this thesis, the basic theory of particle

filter and three variant algorithms of the standard particle filter are introduced in Sec-

tion 1.2. A brief introduction on maneuvering target tracking algorithm and multiple

target tracking algorithm is given to provide an outline of historical development and

present status in these areas respectively in Sections 1.3 and 1.4. The objectives and

organization of the thesis are presented in Sections 1.5 and 1.6 respectively.

1.1 Bayesian Inference Theory

Consider the dynamic system model representation:

xk+1 = f(xk, vk), (1.1)

zk = h(xk, nk). (1.2)

Equation (1.1) is the state equation, where xk ∈ Rn is the state vector at time k, f :

Rn×Rm −→ Rn is the system transition function and, vk is a noise term whose known

distribution is independent of time. Equation (1.2) is the observation equation, where

zk ∈ Rp is the observation vector at time k, h : Rn × Rr −→ Rp is the measurement

function and, nk is a noise term whose known distribution is independent of both the

system noise and time. Let z1:k denote (z1, ..., zk), the available information at time

k, and assume posterior distribution for x1. The initial state of the system is known

so that p(x1|z0) = p(x1).

The posterior distributions, p(xk|z1:k)(k ≥ 1), and the associated expectation

of some general function g(x) are then estimated. The posterior distributions are

estimated in two stages: prediction and update. In the prediction step, the posterior
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1.1 Bayesian Inference Theory

distribution, p(xk−1|z1:k−1), at time k− 1 is propagated to the following time step, k,

via the transition density p(xk|xk−1) as:

p(xk|z1:k−1) =

∫
p(xk|xk−1)p(xk−1|z1:k−1)dxk−1. (1.3)

The update operation uses the latest measurement to modify the posterior distribu-

tion. This is achieved using the Bayesian theory, which is the mechanism to update

the knowledge about the target state in light of extra information. The update equa-

tion is shown in (1.4):

p(xk|z1:k) =
p(zk|xk)p(xk|z1:k−1)

p(zk|z1:k−1)
, (1.4)

where,

p(zk|z1:k−1) =

∫
p(zk|xk)p(xk|z1:k−1)dxk. (1.5)

The associated expectation is computed as:

E(g(xk)) =

∫
g(xk)p(xk|z1:k)dxk. (1.6)

The recurrence relations (1.3) and (1.4) form the basis for the optimal Bayesian

solution. This recursive propagation of the posterior density is only a conceptual

solution in that in general it cannot be determined analytically. Solutions do exist in

a restrictive set of cases, including the Kalman filter and grid-based filters. Kalman

filter assumes that the state function f and observation function h are linear and,

vk and nk are additive Guassian noises of known variance. Grid-based filters provide

optimal recursion of the filtered density if the state space is discrete and composed

of a finite number of states.

However, considerations of realism imply that the linear and Gaussian assumptions

are not always hold good in many applications.

There exist several approximate methods. The extended Kalman filter (EKF) [1]

linearizes models with weak nonlinearities around the current state estimate, so that
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the Kalman filter recursions can still be applied. However, the performance of the

EKF degrades rapidly as the nonlinearities become more severe. To alleviate this

problem the unscented KF (UKF) [8, 9] maintains the second-order statistics of the

target distribution by recursively propagating a set of carefully selected sigma points.

This method requires no liberalization, and generally yields more robust estimates.

One of the first attempts to deal with models with non-Gaussian state or observation

noise is the Gaussian sum filter (GSF) [10] that works by approximating the non-

Gaussian target distribution with a mixture of Gaussians. It suffers, however, from the

same shortcoming as the EKF in that linear approximations are required. It also leads

to a combinatorial growth in the number of mixture components over time, calling

for ad-hoc strategies to prune the number of components to a manageable level. An

alternative method, the approximate grid method, for non-Gaussian models that does

not require any linear approximations has been proposed in [11]. It approximates the

non-Gaussian state numerically with a fixed grid, and applies numerical integration for

the prediction step and Bayes rule for the filtering step. However, the computational

cost of the numerical integration grows exponentially with the dimension of the state-

space, and the method becomes impractical for dimensions larger than four.

1.2 Particle Filter Algorithm

1.2.1 Basic Particle Filter Algorithm

Particle filtering is a sequential Monte Carlo methodology where the basic idea is

the recursive computation of relevant probability distributions using the concepts

of importance sampling and approximation of probability distributions with discrete

random measures. The earliest applications of sequential Monte Carlo methods were

in the area of growing polymers [12, 13], and later they expanded to other fields

including physics and engineering. Sequential Monte Carlo methods found limited use

in the past, except for the last decade, primarily due to their very high computational
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complexity and the lack of adequate computing resources then. The fast advances of

computers in the last several years and the outstanding potential of particle filters

have made them recently a very active area of research.

The sequential Monte Carlo approach is known variously as bootstrap filtering

[2], the condensation algorithm [7], interacting particle approximations [14, 15], and

survival of the fittest [16]. It is a technique for implementing a recursive Bayesian

filter by Monte Carlo simulations. The key idea is to represent the required posterior

density function by a set of random samples with associated weights and to compute

estimates based on these samples and weights. As the number of samples becomes

very large, the Monte Carlo characterization becomes an equivalent representation to

the usual functional description of the posterior probability density function, and the

particle filter approaches the optimal Bayesian estimate.

Particle filter uses sequential Monte Carlo methods for on-line learning within a

Bayesian framework. Bayesian inference theory provides the framework to estimate

the posterior distribution of the dynamic system and then Monte Carlo simulation

methods are used to approximate the posterior distribution through sampled parti-

cles. In high-dimensional problems, the posterior probability distribution function

is meaningfully nonzero only within a very small region [17]. The idea of biasing

toward “importance” regions of the sample space then becomes essential for Monte

Carlo simulation. In practice, a known easy to sample proposal distribution, known

as importance sampling, is resorted to. Moreover, in order to process the new observa-

tion information as it arrives, sequential importance sampling is used to represent the

importance weights in a recursive form. The Monte Carlo simulation method, impor-

tance sampling method, and sequential importance sampling method are respectively

introduced in Sections 1.2.1.1, 1.2.1.2 and 1.2.1.3. A common problem with the Se-

quential Importance Sampling particle filter is the degeneracy phenomenon, where

after a few iterations, all but one particle will have negligible weights. The degener-

acy problem is introduced in Section 1.2.1.4, and two approaches used to reduce the

6
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effect of degeneracy are introduced in Sections 1.2.1.5 and 1.2.1.6 respectively.

1.2.1.1 Monte Carlo Simulation

The basic idea of Monte Carlo simulation is that the posterior distribution p(x0:k|z1:k)

is approximated by a set of particles with associated weights {(xi
0:k, w

i
k), i = 1, ..., NP},

where NP is the number of particles,

p(x0:k|z1:k) ≈
NP∑
i=1

wi
kδ(x0:k − xi

0:k). (1.7)

where δ is the Dirac’s delta function. The expectation of the general function g(x) is

approximated as:

E(g(x0:k)) =
NP∑
i=1

g(xi
0:k)w

i
k, (1.8)

where, xi
0:k is the random sample drawn from the posterior distribution, p(x0:k|z1:k),

and wi
k is its associated weight.

1.2.1.2 Importance Sampling

Unfortunately it is often not possible to sample directly from the posterior distri-

bution. This could be circumvented by drawing samples from a known proposal

distribution q(x0:k|z1:k), which is easy to sample. The expectation of the general

function g(x) is represented in (1.9):

E(g(x0:k)) =
∫

g(x0:k)
p(x0:k|z1:k)
q(x0:k|z1:k)

q(x0:k|z1:k)dx0:k. (1.9)

The un-normalized importance weights w̃k(x0:k) are defined in (1.10).

w̃k(x0:k) =
p(x0:k|z1:k)

q(x0:k|z1:k)
(1.10)

Substituting (1.9) in (1.10),

E(g(x0:k)) =

∫
[g(x0:k)w̃k(x0:k)]q(x0:k|z1:k)dx0:k. (1.11)

7
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Using the Monte Carlo approximation:

E(g(x0:k)) =
1

NP

PNP
i=1 g(xi

0:k)w̃k(xi
0:k)

1
NP

PNP
i=1 w̃k(xi

0:k)

=
∑NP

i=1 g(xi
0:k)wk(x

i
0:k)

, (1.12)

where, {xi
0:k, i = 1, · · · , NP} are independent random samples from q(x0:k|z1:k) and,

{wk(x
i
0:k), i = 1, · · · , NP} are the normalized importance weights.

wk(x
i
0:k) =

w̃k(x
i
0:k)∑NP

i=1 w̃k(xi
0:k)

(1.13)

From this point onwards, w̃k(x
i
0:k) is simplified as w̃i

k, and wk(x
i
0:k) as wi

k.

1.2.1.3 Sequential Importance Sampling

For many problems, an estimate is required every time when new observation data

arrives, for which a recursive filter is a convenient solution. The importance weight

is represented in a recursive form. The received data is processed sequentially rather

than in batch, so that it is neither necessary to store the complete data set nor to

reprocess the existing data if new measurements become available.

To derive the weight update equation, the proposal distribution q(x0:k|z1:k) is

factorized in (1.14),

q(x0:k|z1:k) = q(xk|x0:k−1, z1:k)q(x0:k−1|z1:k−1) . (1.14)

The posterior distribution is then expressed in a form as in (1.15).

p(x0:k|z1:k) = p(zk|xk)p(xk|xk−1)

p(zk|z1:k−1)
p(x0:k−1|z1:k−1)

∝ p(zk|xk)p(xk|xk−1)p(x0:k−1|z1:k−1)
(1.15)

By substituting (1.14) and (1.15) into (1.10), the normalized importance weight is

derived in a sequential form,

wi
k ∝ p(zk|xi

k)p(xi
k|xi

k−1)p(xi
0:k−1|z1:k−1)

q(xi
k|xi

0:k−1, z1:k)q(xi
0:k−1|z1:k−1)

= wi
k−1

p(zk|xi
k)p(xi

k|xi
k−1)

q(xi
k|xi

0:k−1, z1:k)
. (1.16)
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If q(xk|x0:k−1, z1:k) = q(xk|xk−1, zk), then the importance weight is only dependent on

xk−1 and zk. This is particularly useful when only a filtered estimate of p(xk|z1:k) is

required at each time step. From this point onwards it is assumed so, except when

explicitly stated otherwise. In such scenarios, only xk needs to be stored; therefore,

the path x0:k−1 and the history of observations z1:k−1 can be discarded. The modified

normalized importance weight is then:

wi
k ∝ wi

k−1

p(zk|xi
k)p(xi

k|xi
k−1)

q(xi
k|xi

k−1, zk)
, (1.17)

and the posterior density p(xk|z1:k) can be approximated as,

p(xk|z1:k) ≈
NP∑
i=1

wi
kδ(xk − xi

k). (1.18)

It can be shown that as NP → ∞, the approximation (1.18) approaches the true

posterior density p(xk|z1:k).

The SIS algorithm thus consists of recursive propagation of the weights and sup-

port points as each measurement is received sequentially. A pseudo-code description

of this algorithm is given by Algorithm 1.1.

Algorithm 1.1: SIS Particle Filter

[{xi
k, w

i
k}NP

i=1] = SIS[{xi
k−1, w

i
k−1}NP

i=1, zk]

• FOR i = 1 : NP

– Draw xi
k from the distribution q(xk|xi

k−1, zk)

– Assign the particle a weight, wi
k, according to (1.17)

• END FOR

1.2.1.4 Degeneracy Problem

A common problem with the SIS particle filter is the degeneracy phenomenon, where

after a few iterations, all but one particle will have negligible weights. It has been
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shown in [4] that the variance of the importance weights can only increase over time,

and thus, it is impossible to avoid the degeneracy phenomenon. This degeneracy

implies that a large computational effort is devoted to updating particles whose con-

tribution to the approximation is almost zero. A suitable measure of degeneracy of

the algorithm is the effective sample size introduced in [18] and [6] and defined as,

Neff =
NP

1 + V ar(w∗i
k )

, (1.19)

where,

w∗i
k =

p(xi
k|z1:k)

q(xi
k|xi

k−1, zk)
, (1.20)

is referred to as the true weight, which cannot be evaluated exactly. An estimate

N̂eff of Neff can be obtained by,

N̂eff =
1∑NP

i=1(w
i
k)

2
, (1.21)

where wi
k is the normalized weight. Notice that Neff ≤ NP , and small Neff indicates

severe degeneracy. Clearly, the degeneracy problem is an undesirable effect in particle

filters. The brute force approach to reduce its effect is to use a very large NP . This

is often impractical; therefore, we rely on two other methods:

a) good choice of importance density, and,

b) use of resampling.

These are described in Sections 1.2.1.5 and 1.2.1.6 respectively.

1.2.1.5 Good Choice of Importance Density

The first method involves choosing the importance density q(xk|xi
k−1, zk) to minimize

V ar(w∗i
k ) so that Neff is maximized. The optimal importance density function that

minimizes the variance of the true weights conditioned on and has been shown [4] to

be:

q(xk|xi
k−1, zk)opt = p(xk|xi

k−1, zk)

=
p(zk|xk, x

i
k−1)p(xk|xi

k−1)

p(zk|xi
k−1)

. (1.22)

10
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Substitution of (1.22) into (1.17) yields,

wi
k ∝ wi

k−1p(zk|xi
k−1)

= wi
k−1

∫
p(zk|x′k)p(x′k|xi

k−1)dx′k (1.23)

The choice of importance density (1.22) is optimal since for a given xi
k−1, wi

k takes

the same value, whatever sample is drawn from q(xk|xi
k−1, zk)opt. Hence, conditional

on xi
k−1, V ar(w∗i

k ) = 0. This is the variance of different wi
k resulting from different

sampled xi
k.

This optimal importance density (1.22) suffers from two major drawbacks. It

requires the ability to sample from p(xk|xi
k−1, zk) and to evaluate the integral over

the new state. In general, it may not be straightforward to carry out either. There

are two cases where the use of the optimal importance density is possible.

The first case is when xk is a member of a finite set. In such cases, the integral in

(1.23) becomes a sum, and sampling from p(xk|xi
k−1, zk) is possible. An example of an

application, when xk is a member of a finite set, is a Jump-Markov linear system for

tracking maneuvering targets [19]. The discrete model state (defining the maneuver

index) is tracked using a particle filter, and (conditioned on the maneuver index) the

continuous base state is tracked using a Kalman filter.

Analytic evaluation is possible for a second class of models for which p(xk|xi
k−1, zk)

is Gaussian [4, 20]. This can occur if the dynamics are nonlinear and the measure-

ments are linear.

For many other models, such analytic evaluations are not possible. However, it is

possible to construct suboptimal approximations to the optimal importance density

by using local linearization techniques [4]. Such linearizations use an importance

density that is a Gaussian approximation to p(xk|xk−1, zk). Another approach is to

estimate a Gaussian approximation to p(xk|xk−1, zk) using the unscented transform

[21].

11
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In practice, it is often convenient to choose the importance density to be the prior.

q(xk|xi
k−1, zk) = p(xk|xi

k−1) (1.24)

Substitution of (1.24) into (1.17) yields,

wi
k ∝ wi

k−1p(zk|xi
k). (1.25)

This would seem to be the most common choice of importance density since it is

intuitive and simple to implement. However, there are a plethora of other densities

that can be used, and the choice is the crucial design step in the design of a particle

filter.

It is often the case that a good importance density is not available. For example,

if the prior p(xk|xk−1) is used as the importance density and is a much broader distri-

bution than the likelihood p(zk|xk), then only a few particles will have high weights.

Methods exist for moving the particles to be in the right place. The use of bridging

densities [5] and progressive correction [22] introduce intermediate distributions be-

tween the prior and likelihood. The particles are then re-weighted according to these

intermediate distributions and resampled, which “herds” the particles into the right

part of the state space.

Another approach known as partitioned sampling [23] is useful if the likelihood is

very peaked but can be factorized into a number of broader distributions. Typically,

this occurs because each of the partitioned distributions are functions of some (not

all) of the states. By treating each of these partitioned distributions in turn and

resampling on the basis of each such partitioned distribution, the particles are again

herded toward the peaked likelihood.

1.2.1.6 Resampling

The second method by which the effects of degeneracy can be reduced is to use

resampling whenever a significant degeneracy is observed (i.e., when Neff falls below

12
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some threshold NT ). The basic idea of resampling is to eliminate particles that have

small weights and to concentrate on particles with large weights. The resampling step

involves generating a new set {x∗ik }NP
i=1 by resampling (with replacement) NP times

from an approximate discrete representation of p(xk|z1:k) given by,

p(xk|z1:k) ≈
NP∑
i=1

wi
kδ(xk − xi

k), (1.26)

so that Pr(x∗ik = xj
k) = wj

k. The resulting samples are in fact independent and

identically distributed (i.i.d.) samples from the discrete density (1.26); therefore, the

weights are now reset to wi
k = 1/NP . It is possible to implement this resampling

procedure in operations by sampling NP ordered uniforms using an algorithm based

on order statistics [24, 25]. Note that other efficient (in terms of reduced MC varia-

tion) resampling schemes, such as stratified sampling and residual sampling [6], may

be applied as alternatives to this algorithm. Systematic resampling [26] is the scheme

which is simple to implement, taking NP times, and minimizing the MC variation.

Its operation is described in Algorithm 1.2, where U(a, b) is the uniform distribution

on the interval (a, b) (inclusive of the limits). For each resampled particle x∗jk , this

resampling algorithm also stores the index of its parent, which is denoted by ij. A

generic particle filter is then described by Algorithm 1.3.

Algorithm 1.2: Resampling Algorithm

[{x∗jk , wj
k, i

j}NP
j=1] = RESAMPLE[{xi

k, w
i
k}NP

i=1]

• Initialize the CDF: c1 = 0

• FOR i = 2 : NP

– Construct CDF: ci = ci−1 + wi
k

• END FOR

• Start at the bottom of the CDF: i=1
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• Draw a starting point: µ1 ∼ U(0, NP−1)

• FOR j = 1 : NP

– Move along the CDF: µj = µ1 + NP−1(j − 1)

– WHILE µj > ci

∗ i=i+1

– END WHILE

– Assign sample: x∗jk = xi
k

– Assign weight: wj
k = NP−1

– Assign parent: ij = i

• END FOR

Algorithm 1.3: Genetic Particle Filter

[{xi
k, w

i
k}NP

i=1] = PF [{xi
k−1, w

i
k−1}NP

i=1, zk]

• FOR i = 1 : NP

– Draw xi
k ∼ q(xk|xi

k−1, zk)

– Assign the particle a weight, wi
k, according to (1.17)

• END FOR

• Calculate the total weight: t = SUM [{wi
k}NP

i=1]

• FOR i = 1 : NP

– Normalize: wi
k = t−1wi

k

• END FOR

• Calculate N̂eff using (1.21)
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• IF N̂eff < NT

– Resample using Algorithm 1.2:

[{xi
k, w

i
k,−}NP

i=1] = RESAMPLE[{xi
k, w

i
k}NP

i=1]

• END IF

Although the resampling step reduces the effects of the degeneracy, it introduces

other practical problems. First, it limits the opportunity to parallelize since all the

particles must be combined. Second, the particles that have high weights are sta-

tistically selected many times. This leads to a loss of diversity among the particles

as the resultant sample will contain many repeated points. This problem, which is

known as sample impoverishment, is severe in the case of small process noise. In fact,

for the case of very small process noise, all particles will collapse to a single point

within a few iterations. Third, since the diversity of the paths of the particles is

reduced, any smoothed estimates based on the particles’ paths degenerate. Schemes

exist to counteract this effect. One approach considers the states for the particles to

be predetermined by the forward filter and then obtains the smoothed estimates by

recalculating the particles’ weights via a recursion from the final to the first time step

[27]. Another approach is to use MCMC [28].

There have been some systematic techniques proposed recently to solve the prob-

lem of sample impoverishment. One such technique is the resample-move algorithm

[29], which draws conceptually on the same technologies of importance sampling-

resampling and MCMC sampling, and avoids sample impoverishment. It does so in a

rigorous manner that ensures the particles asymptotically approximate samples from

the posterior and, therefore, is the method of choice of the authors. An alternative

solution to the same problem is regularization [5]. This approach is frequently found

to improve performance, despite a less rigorous derivation and is included here in

preference to the resample-move algorithm since its use is so widespread.
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1.2.2 Variant Algorithms of the Standard Particle Filter

The particle filtering algorithm presented in Section 1.2.1 forms the basis for most

particle filters that have been developed so far. The various versions of particle filters

proposed in the literature can be regarded as special cases of this general SIS algo-

rithm. These special cases can be derived from the SIS algorithm by an appropriate

choice of importance sampling density and/or modification of the resampling step.

Three variant particle filters are listed below and the detailed descriptions on them

can be found in [30].

i) sampling importance resampling (SIR) filter [2];

ii) auxiliary sampling importance resampling (ASIR) filter [31];

iii) regularized particle filter (RPF) [5].

1.3 Maneuvering Target Tracking Algorithms

In the history of development of maneuvering target tracking techniques, single model

based adaptive Kalman filtering came into existence first [32, 33, 34]. Aidala [32]

proposed the adaptive Kalman filtering method based on single motion model of the

moving target in 1973. In the proposed method, the target maneuvering is estimated

by adjusting the Kalman gain.

Decision-based techniques, which detect the manoeuvre and then cope with it

effectively, appeared next. Examples of this approach include the input estimation

(IE) techniques [35, 36], the variable dimension (VD) filter [37], the two-stage Kalman

estimator [38] etc. In addition to basic filtering computation, these techniques require

additional effort to detect the target maneuvers.

The decision based techniques are followed by multiple-model algorithms, which

describe the motion of a target using multiple sub-filters. The generalized pseudo-

Bayesian (GPB) method [39], the interacting multiple model (IMM) method [40, 41],

and the adaptive interacting multiple model (AIMM) method [42] are included in
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this kind of approach. Using the multiple model based methods which use more than

one model to describe the motion of the target, performance is enhanced. Among

them, interact multiple model algorithm (IMM) is the most common one. The main

feature of the IMM algorithm is its ability to estimate the state of a dynamic system

with several behavior modes which can “switch” from one to another. In particular,

the IMM estimator can be a self-adjusting variable-bandwidth filter, which makes it

natural for tracking maneuvering targets.

The above methods solve the target tracking problem using linear tracking filters,

mainly Kalman filter. In these methods target maneuvers are often described by

linear models. However, the linear solution may not always be good especially in the

condition when the state or measurement equation is nonlinear and the noises are

non-Gaussian, for example, when the filter update is slow or the target maneuver is

large. More recently, nonlinear filtering techniques have been gaining more attention

and the particle filter algorithm is the most common one among them.

Particle filter, which uses sequential Monte Carlo methods for on-line learning

within a Bayesian framework, can be applied to any state-space models. Particle

filter is more suitable than Kalman filter and EKF when dealing with non-linear and

non-Gaussian estimation problems.

The application of particle filter in maneuvering target tracking has been paid

attention only in recent years [43, 44, 45, 46, 47, 5, 48, 49]. The simplest method is

to implement the maneuvering target tracking problem in a particle filter framework.

Karlsson [43] and Ikoma [44] applied optimal recursive Bayesian filters directly to the

nonlinear target model.

Recently, several approaches, which use multiple models to describe the changing

maneuvering model, have been proposed in the particle filter framework. One of the

methods is based on the auxiliary particle filter. In [45], Karlsson used an auxiliary

particle filter to track a highly maneuvering target. In this method, each particle

is split deterministically into a number of possible maneuver hypotheses with each
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hypothesis corresponding to a specific model.

Other methods focus on how to switch between different motion models. In [46],

Bayesian switching structure is chosen as the principle which determines switching

between different models. A set of models are utilized to cope with the unknown

maneuver. Moreover, to deal with non-Gaussian noise, Cauchy distribution is used

as the system noise distribution. In [47] and [5], the maneuvering target tracking

system is treated as a jump Markov linear system. MCMC process is used as the

selection scheme to choose the motion model from a set of candidate models at some

specific time step.

However, in the above approaches [45, 46, 47, 5], the possible motion models and

transition probability matrices are assumed as known. In practice, the dynamics

is hard to break up into several different motion models and the model transition

probabilities are difficult to obtain. A general model is needed to cope with the wide

variety of motions exhibited by the maneuvering target.

1.4 Multiple Target Tracking Algorithms

In the process of multiple target tracking, two distinct problems have to be solved

jointly: data association and state estimation. Data association is a key problem in

multiple targets tracking and determines which measurement corresponds to which

target. A large number of strategies are available to solve the data association prob-

lem. These can be broadly categorized as either single frame assignment methods, or

multi-frame assignment methods.

In the multi-frame data association methods, the measurements from one or more

frames are associated with established tracks by solving an optimization problem with

global constraints [50, 51].

In this thesis, the focus is put on the single frame methods. The multiple hy-

pothesis tracking (MHT) [52] was proposed by Read in 1979. The MHT attempts to
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keep track of all the possible association hypotheses over time. This is an NP-hard

problem, since the number of association hypotheses grows exponentially over time.

Thus methods are required to reduce the computational complexity.

Compared with MHT, the nearest neighbor (NN) algorithm [53] is computation-

ally simple and easily to implement. In NN algorithm, each target is associated with

the closest measurement in the target space. However, such a simple procedure prunes

away many feasible hypotheses.

In this respect the joint probabilistic data association (JPDA) filter [53, 54] is more

appealing. At each time step infeasible hypotheses are pruned away using a gating

procedure. A filtering estimate is then computed for each of the remaining hypotheses,

and combined in proportion to the corresponding posterior hypothesis probabilities.

The main shortcoming of the JPDA filter is that, to maintain tractability, the final

estimate collapses to a single Gaussian, thus discarding pertinent information. Subse-

quent work addressed this shortcoming by proposing strategies to reduce the number

of mixture components in the original mixture to a tractable level [55, 56]. Still, many

feasible hypotheses may be discarded by the pruning mechanisms.

The probabilistic multiple hypotheses tracker (PMHT) [57, 58] assumes the associ-

ation variables to be independent from the pruning work, which leads to an incomplete

data problem that can be efficiently solved using the expectation maximization (EM)

algorithm [59]. However, the PMHT is a batch strategy, and thus not suitable for on-

line applications. The standard version of the PMHT is also generally outperformed

by the JPDA filter. Some of the reasons for this, and a number of possible solutions,

are discussed in [60].

Even though methods to solve the data association problem do not usually rely

on linear and Gaussian models, this assumption is often made to simplify hypothesis

evaluation for target originated measurements. For example, nonlinear models can

be accommodated by suitable linearization using EKF. As for EKF, however, the

performance of the algorithms degrades as the nonlinearities become more severe.
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In recent years, particle filter has been introduced to estimate non-linear non-

Gaussian dynamic processes for multiple target tracking. A stochastic simulation

Bayesian method is reported in [61] for multiple target tracking. In this method,

random samples are used to represent the posterior distribution of the target state.

However, only one target is considered in the example outlined. More recently, particle

filter has been applied with great success to different fields of multiple target tracking

including computer vision [23, 62], mobile robot localization [63, 64] and air traffic

control [65, 66]. The various methods adopted fall into the following five categories.

The first category introduces MCMC strategies to calculate the association prob-

abilities. In [65] the distribution of the association hypotheses is calculated using

a Gibbs sampler [67] at each time step. The method is similar in spirit to the one

described in [68] which uses the MCMC techniques [69] to compute the correspon-

dences between image points within the context of stereo reconstruction. The main

problem with these MCMC strategies is that they are iterative in nature and take an

unknown number of iterations to converge. They are thus not entirely suitable for

online applications.

The second category treats the association variables as state variables. In [70], the

association variables are sampled from an optimally designed importance distribution.

The method is intuitively appealing since the association hypotheses are treated in

a similar fashion to the target state, so that the resulting algorithm is non-iterative.

It is, however, restricted to jump Markov linear systems (JMLS) [19]. An extension

of this strategy based on the auxiliary particle filter (APF) [31] and the UKF, which

is applicable to general jump Markov systems (JMS), is presented in [71]. Another

similar approach is described in [72]. Samples for the association hypotheses are

generated from an efficient proposal distribution based on the notion of a soft-gating

of the measurements.

The third category combines the JPDAF with particle techniques to accommodate

general nonlinear and non-Gaussian models [63, 73, 74, 43]. The data association
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problem is addressed directly in the context of particle filtering.

The fourth category relates to multiple target tracking problems based on raw

measurements [75, 76]. These, so-called, track before detect (TBD) strategies con-

struct a generative model for the raw measurements in terms of a multi-target state

hypothesis, thus avoiding an explicit data association step. However, such measure-

ments are not always readily available in practical systems, and may lead to a larger

computational complexity.

The above four categories of methods use particles whose dimension is the sum

of those of the individual state spaces corresponding to each target. They all suffer

from the curse of dimensionality problem since with the increase in the number of

targets, the size of the joint state-space increases exponentially. If care is not taken in

the design of proposal distributions an exponentially increasing number of particles

may be required to cover the support of the multi-target distribution and maintain a

given level of accuracy.

The fifth category avoids the dimension problem through exploring the particle

filter’ ability to track multiple targets in a single-target state space. As pointed out in

[77], particle filters may perform poorly when the posterior distribution of the target

state is multiple-mode due to ambiguities and multiple targets in single-target state

space. To circumvent this problem, a mixture particle filter method is introduced in

[77], where each mode is modeled with an individual particle filter that forms part of

the mixture. The filters in the mixture interact only through the computation of the

importance weights. By distributing the resampling step to individual filters, the well

known problem of sample impoverishment is avoided, which is largely responsible for

losing track.
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1.5 Objectives of the Thesis

1.5 Objectives of the Thesis

In general, the objective of this thesis is to develop constructive and systematic target

tracking algorithms in particle filter framework.

The first objective is to develop particle filter based methods for single maneu-

vering target tracking application. Two methods, MCMC based particle filter and

process noise estimation based particle filter, are proposed to tackle the maneuvering

target tracking problem.

The first method copes with the maneuvering target tracking problem by mov-

ing the particles towards the target posterior distribution via MCMC sampling. The

target’s state variables, such as the position and velocity, vary quickly and are not

restricted to a fixed dynamic model when it performs maneuvering movements. New

features of posterior distribution of the target state are encountered during the track-

ing process. In the MCMC based particle filter methods, the particles are moved

towards the target posterior distribution to adapt to the new features formed dur-

ing the tracking process. However, the traditional MCMC sampling needs a lot of

iterations to converge to the target posterior distribution, which is very slow and

not suitable for real-time tracking problem. In order to speed the convergence rate,

a new method named adaptive MCMC based particle filter method, which is the

combination of the adaptive Metropolis (AM) method and the importance sampling

method, is proposed to tackle the real-time tracking problem. Furthermore, another

novel method named interacting MCMC particle filter is proposed to avoid the sam-

ple impoverishment problem induced by the maneuvering movement, in which the

importance sampling is replaced with interacting MCMC sampling. The sampling

method is named interacting MCMC sampling since it incorporates the interaction

of the particles in contrast with the traditional MCMC sampling method. The in-

teracting MCMC sampling also speeds up the convergence rate effectively compared

with the traditional MCMC sampling method.

The second method deals with the maneuvering target tracking problem based

22



1.5 Objectives of the Thesis

on the assumption that the maneuvering effect can be modeled by (part of) a white

or colored noise process sufficiently well. This fundamental assumption converts the

problem of maneuvering target tracking to that of state estimation in the presence of

non-stationary process noise with unknown statistics. The proposed method focuses

on the estimation of the equivalent process noise: the process noise is modeled as

a dynamic system and a sampling based algorithm is proposed in the particle filter

framework to deal with process noise estimation problem.

The second objective of this thesis is to cope with the multiple target tracking

problem using improved particle filter algorithms. Two algorithms are proposed to

solve the multiple target tracking problem. The first, which is referred as the particle

filter based multi-scan JPDA filter, is an extension of the single scan JPDA methods

proposed in [63, 73, 78]. In the proposed approach, the distributions of interest are

the marginal filtering distributions for each of the targets, which is approximated with

particles. The multi-scan JPDA filter examines the joint association hypothesis in

a multi-scan sliding window and calculates the posterior marginal probability based

on the multi-scan joint association hypothesis. Compared with the single scan JPDA

methods, the multi-scan JPDA method uses richer information, which results in better

estimated probabilities.

The second method, named as multi-scan mixture particle filter method, applies

the particle filter method directly in the multiple target tracking process and avoids

the data association problem. The proposed algorithm can track varying number of

targets in a cluttered environment. The posterior distribution of the target state is a

multiple-mode distribution and each mode either corresponds to a target or a clutter.

In order to distinguish the targets from the clutters, multiple scan information is

incorporated. Moreover, to tackle with the appearance of new targets, new particles

are sampled from the likelihood model (according to the most recent measurements)

to detect the new modes appeared at each time step. The proposed algorithm is

capable of initiating tracks, maintaining the states of the targets, and detecting the
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appearance and disappearance of the targets.

The third objective of the thesis is to propose a new algorithm to tackle the mul-

tiple maneuvering target tracking problem. The proposed algorithm is a combination

of the process noise identification method for modeling a highly maneuvering target,

and the multi-scan JPDA algorithm for solving data association problem, in particle

filter framework.

The fourth objective of the thesis is to build a target tracking system based on

multi-sensor fusion implemented on a mobile platform, the Magellan robot. The

issues associated with the integration of different subsystems (controllers and sensors),

are also studied. The robot is capable of continuously tracking a human’s random

movement at walking rate.

The algorithms proposed have a number of possible potential applications such

as:

1) Improved human/computer interfaces: robot navigation system that can track the

person while avoiding obstacles in outside environment.

2) Target detection and tracking: real-world computer vision system that can assist

in visual surveillance and intelligent vehicle monitoring.

3) Aircrafts tracking and monitoring: aircraft traffic control system that can track

aircrafts.

1.6 Organization of the Thesis

The thesis is organized as described in the following:

In Chapter 2, two algorithms for single maneuvering target tracking are proposed

in the classical particle filter framework. The first algorithm copes with the maneu-

vering target tracking problem by moving the particles towards the target posterior

distribution area via MCMC sampling. Two improved MCMC sampling methods,

the adaptive MCMC sampling method and interacting MCMC sampling method, are
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utilized to speed up the convergence rate.

The second algorithm deals with the maneuvering target tracking problem based

on the assumption that the maneuvering effect can be modeled by (part of) a white or

colored noise process sufficiently well. The proposed method focuses on the estimation

of the equivalent process noise using particle filter algorithm.

In Chapter 3, two methods are proposed for multiple target tracking: the particle

filter based multi-scan JPDA filter and multi-scan mixture particle filter. The particle

filter based multi-scan JPDA filter is an extension of the single scan JPDA algorithms,

which addresses the data association problem in multi-scan sliding window. The

multi-scan mixture particle filter applies the particle filter method directly to the

multiple target tracking process and avoids the data association problem.

In Chapter 4, a new algorithm, which is a combination of the process noise iden-

tification method for modeling highly maneuvering target, and the multi-scan JPDA

algorithm for solving data association problem, is proposed to deal with the multiple

maneuvering target tracking problem.

Chapter 5 is about a target tracking system based on multi-sensor fusion imple-

mented on a Magellan mobile robot. The improved particle filter using a new adaptive

resampling method is utilized effectively in tracking a randomly moving object.

Finally, conclusions and proposals for further research are made in Chapter 6.
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Chapter 2

Particle Filter Based Maneuvering

Target Tracking

Recently, nonlinear filtering techniques have been gaining momentum in maneuvering

target tracking and particle filter is the most popular one among them. The popularity

stems from its simplicity, flexibility and ease of implementation, especially the ability

to deal with non-linear and/or non-Gaussian estimation problems.

The particle filter methods applied in the maneuvering target tracking can be

divided into two categories: single model based methods and multiple model based

methods. For the single model based methods, Karlsson [43] and Ikoma [44] applied

optimal recursive Bayesian filters directly to the nonlinear target model.

More recently, several kinds of approaches, which use multiple models to describe

the maneuvering models, have been proposed in the particle filter framework [45, 46,

47, 5]. A common assumption made in the multiple-model approaches is that the

possible motion models and transition probability matrices are known. In practice,

the dynamics is hard to break up into several different motion models and the model

transition probabilities are difficult to obtain. A general model is needed to cope with

the wide variety of motions exhibited by maneuvering targets.

In this thesis, a single dynamic model is adopted during the tracking process. Two
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methods, MCMC based particle filter and process noise estimation based particle

filter, are proposed to tackle the maneuvering target tracking problem.

In the first method the wide variation of the maneuvering movement is tracked

by moving the particles towards the target posterior distribution area via MCMC

sampling. The target’s state variables, such as position and velocity, vary and are

not restricted to a fixed dynamic model when the target performs maneuvering move-

ments. New features of the target posterior distribution emerge during the tracking

process. In the proposed method, the particles are moved towards the target pos-

terior distribution area to adapt to the new features emerged during tracking. The

MCMC moves also ensure the particles asymptotically approximate samples from the

posterior distribution.

However, the traditional MCMC sampling needs a lot of iterations to converge

to the target posterior distribution, which is very slow and not suitable for real-time

tracking. In order to speed up the convergence rate, a new method named adap-

tive MCMC based particle filter method, which is a combination of the adaptive

Metropolis (AM) method and the importance sampling method, is proposed. Fur-

thermore, another new method named interacting MCMC particle filter is proposed

to avoid sample impoverishment induced by maneuvering movement, in which the

importance sampling is replaced with interacting MCMC sampling. The sampling

method is named interacting MCMC sampling since it incorporates the interaction of

particles in contrast with the traditional MCMC sampling method. The interacting

MCMC sampling also speeds up the convergence rate effectively compared with the

traditional MCMC sampling method.

The second method deals with the maneuvering target tracking problem based

on the assumption that the maneuver effect can be modeled by (part of) a white

or colored noise process sufficiently well. This fundamental assumption converts the

problem of maneuvering target tracking to that of state estimation in presence of

non-stationary process noise with unknown statistics. This method focuses on the
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2.1 MCMC Based Particle Filter Algorithm

estimation of equivalent process noise: the process noise is modeled as a dynamic

system and a sampling based algorithm is proposed in the particle filter framework

to deal with the process noise estimation problem.

This chapter is organized as follows. The MCMC based particle filter method is

introduced in Section 2.1, and the process noise estimation based method is presented

in Section 2.2. The conclusions are drawn in Section 2.3.

2.1 MCMC Based Particle Filter Algorithm

The target’s state variables, such as position and velocity, vary and are not re-

stricted to a fixed dynamic model when the target performs maneuvering movements.

New features of posterior distribution of the target state emerge during the tracking

process. The standard particle filter can not cope with the new features of the poste-

rior distribution since it provides no opportunity to generate new values for unknown

quantities after their initial generation. Consequently, as the posterior distribution

drifts away from these initial values, the particle base may degenerate to contain few

distinct values of these variables. As a result, most of the particles are assigned with

low weights and eliminated by the resampling process. This leads to serious sample

impoverishment and then the tracking process fails.

There have been some systematic techniques proposed recently to solve the prob-

lem of sample impoverishment. One such technique is the regularized particle fil-

ter [79], which resamples from a continues approximation of the posterior density

p(xk|z1:k), whereas the standard particle filter resamples from the discrete approx-

imation of the posterior density. This approach is found to improve performance,

which has a less rigorous derivation. An alternative solution to the same problem

is the resample-move algorithm [29]. This technique uses periodic MCMC steps to

diversify particles in an importance sampling-based particle filter. It does this in a

rigorous manner that ensures the particles to asymptotically approximate samples
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from the posterior distribution. However, the traditional MCMC sampling needs a

lot of iterations to converge to the target posterior distribution, which is very slow

and not suitable for real-time tracking.

In this work, the adaptive MCMC sampling method is utilized to speed up the

convergence rate. The adaptive Metropolis (AM) method [80] is one of the adaptive

MCMC methods. In the AM method, the proposal distribution is a Gaussian distri-

bution centered at the current state and the covariance is calculated using all of the

previous states. In the proposed method which is named adaptive MCMC based par-

ticle filter, the AM method is combined with the importance sampling method in the

particle filter framework. The proposed algorithm reduces the number of iterations

at each time step making it suitable for real-time target tracking.

Similar to the resample-move method, the adaptive MCMC based particle filter

method diversifies the particles after resampling, which reduces sample impoverish-

ment, though it can not avoid it effectively. The introduction of MCMC to improve

importance sampling suggests that MCMC alone could be used to obtain a particle

filter that can effectively handle sample impoverishment [81].

A new method, named interacting MCMC particle filter, is proposed to handle

sample impoverishment in this work. The particles are sampled from the target

posterior distribution via direct interacting MCMC sampling method, which avoids

sample impoverishment effectively.

The interacting MCMC particle filter also accelerates the MCMC convergence

rate. The objective of MCMC move is to herd the particles to the area with high

posterior distribution density. In the standard MCMC based particle filter method,

each particle is propagated independently, however, neglecting the information from

other particles. It is easier and faster to reach the high posterior density area if

more information is incorporated. Inspired by the particle swarm algorithm, which

locates optimal regions of complex search spaces through the interaction of individuals

in a population of particles, the proposed algorithm propagates each particle based
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on both its historical information and the information from other particles. The

proposed algorithm is named interacting MCMC particle filter since it incorporates

the interaction of the particles in contrast with the traditional MCMC based particle

filter. It is well known that all numerical integration approaches perform better

when correlation among the components is low. In particular, MCMC algorithm

converges rapidly. In the interacting MCMC particle filter method, at each time

step the introduction of the interaction of particles reduces the correlation among a

particle’s history states, which speeds up the convergence rate.

The rest of the sections are organized as follows: The basic theory of Markov

chain Monte Carlo is briefly introduced in Section 2.1.1. The adaptive MCMC based

particle filter and the interacting MCMC particle filter are presented in Section 2.1.2

and Section 2.1.3 respectively.

2.1.1 Basic Theory of Markov Chain Monte Carlo Process

MCMC methods define a Markov Chain over the space of configurations X, such that

the stationary distribution of the chain is equal to a target distribution π(X). The

Metropolis-Hastings (MH) algorithm [82] is one way to simulate the target distribu-

tion π(X) from such a chain. The pseudocode for the MH algorithm in this context

is as follows [69].

Algorithm 2.1: Metropolis-Hastings Algorithm

Start with an arbitrary initial configuration X0, then iterate for τ = 0, · · · , B + M ,

where B + M is the number of iterations at each time step.

1. Propose a new assignment X ′ by sampling from the proposal density function

Q(X ′; Xτ ).

2. Sample ρ ∼ U(0, 1), where U(0, 1) is a uniform distribution in the interval (0, 1).
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3. Calculate the acceptance ratio,

a =
π(X ′)
π(Xτ )

Q(Xτ ; X
′)

Q(X ′; Xτ )
. (2.1)

4. If ρ ≤ min{1, a}, then accept move:

Xτ+1 = X ′, (2.2)

else reject move:

Xτ+1 = Xτ . (2.3)

It is a standard practice to discard a number of initial “burn-in” samples, say B

of them, to allow the MH algorithm to converge to a stationary distribution. In

the proposed algorithm, the target distribution π(X) is chosen as the approximate

posterior distribution p̂(xk|z1:k) and at each time step k, the MH algorithm is used

to generate a set of samples from p̂(xk|z1:k).

2.1.2 Adaptive MCMC Based Particle Filter Algorithm

The slow convergence rate is a major problem associated with the traditional MCMC

algorithms. Many adaptive MCMC methods have been proposed to speed up the

convergence rate, and the adaptive Metropolis (AM) method [80] is one among them.

In the proposed adaptive MCMC based particle filter algorithm, the AM method is

combined with the importance sampling in a particle filter framework, which reduces

the number of iterations at each time step making it suitable for real-time target

tracking.

2.1.2.1 Adaptive Metropolis Method

The adaptive Metropolis (AM) method allows the transition kernel to adapt whenever

new features of posterior distribution are encountered during the tracking process.
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The definition of the AM algorithm is based on the classical random walk Metropolis

algorithm. The proposal distribution Q(·|x0, · · · , xτ−1) employed in the AM algorithm

is a Gaussian distribution with the mean xτ at the current point and covariance

Cτ = Cτ (x0, · · · , xτ−1).

The crucial thing regarding the adaptation is how the covariance of the proposal

distribution depends on the history of the chain. In the AM algorithm this is achieved

by setting Cτ = sdCov(x0, · · · , xτ−1)+ sdεId after the initial “burn-in” time, where sd

is the scaling parameter that depends only on the dimension d of the state, and ε > 0

is a constant which may be assigned with very small value compared to the size of

S. As a basic choice for the scaling parameter the value of sd = (2.42/d) is adopted.

Such a choice optimizes the mixing properties of the Metropolis search in the case of

Gaussian targets and Gaussian proposals [83].

To begin with, an arbitrary strictly positive definite initial covariance C0 is se-

lected, which of course is chosen according to the best priori knowledge. An index

τ0 > 0 is selected for the length of an initial period and Cτ is define as,

Cτ =





C0, τ ≤ τ0

sdCov(x0, · · · , xτ−1) + sdεId, τ > τ0 .
(2.4)

Recalling the definition of the empirical covariance matrix determined by points

x0, · · · , xt ∈ Rd:

Cov(x0, · · · , xt) =
1

t
(

t∑
i=0

xix
T
i − (t + 1)x̄tx̄

T
t ), (2.5)

where x̄t = 1
t+1

∑t
i=0 xi and the elements xi ∈ Rd are considered as column vectors.

For τ ≥ τ0 + 1, as per the equation (2.4) the covariance matrix Cτ satisfies the

recursion formula,

Cτ+1 =
τ − 1

τ
Cτ +

sd

τ
(τ x̄τ−1x̄

T
τ−1 − (τ + 1)x̄τ x̄

T
τ + xτx

T
τ + εId). (2.6)

This allows to calculate Cτ without too much computational cost since the mean x̄τ

also satisfies an obvious recursion formula. The pseudocode for the AM algorithm in
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this context is as follows:

Algorithm 2.2: Adaptive Metropolis Algorithm

Start with an arbitrary initial configuration X0, then iterate for τ = 0, · · · , B + M .

(1) Sample ε ∼ Nm(0, Cτ ), the normal distribution. Move the particles:

X ′ = Xτ + ε. (2.7)

(2) Sample ρ ∼ U(0, 1), where U(0, 1) is a uniform distribution in the interval (0, 1).

(3) Calculate the acceptance ratio,

a =
π(X ′)
π(Xτ )

Q(Xτ ; X
′)

Q(X ′; Xτ )
. (2.8)

(4) If ρ ≤ min{1, a}, then accept move:

Xτ+1 = X ′, (2.9)

else reject move:

Xτ+1 = Xτ . (2.10)

(5) Adaptation step: update the covariance of the proposal distribution depending

on the history of the chain.

Cτ+1 =
τ − 1

τ
Cτ +

sd

τ
(τX̄τ−1(X̄τ−1)

T − (τ + 1)X̄τ (X̄τ )
T + Xτ (Xτ )

T + εId), (2.11)

where,

X̄τ =
1

τ + 1

τ∑
j=0

Xj. (2.12)

2.1.2.2 Adaptive MCMC Based Particle Filter Algorithm

In the proposed adaptive MCMC based particle filter algorithm, at each time step,

NP particles are propagated based on the dynamic model to obtain the predicted

particles. Each predicted particle is evaluated according to the likelihood function and
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is assigned with a weight. The predicted particles are resampled according to their

corresponding weights to obtain the resampled particles. The resampled particles are

then diversified through iterations of adaptive MCMC sampling procedure. The steps

of the proposed algorithm are listed in the following:

Algorithm 2.3: Adaptive MCMC Based Particle Filter Algorithm

(i) Initialization: Sample xi
0 from the initial posterior distribution p(x0) and set

the weights wi
0 to 1

NP
, i = 1, ..., NP

(ii) Prediction: Each particle is passed through the system model to obtain the

predicted particles:

x̂i
k = f(xi

k−1, v
i
k−1), (2.13)

where vi
k−1 is a sample drawn from the probability density function of the system

noise pv(v).

(iii) Update: Once the observation data, zk, is measured, evaluate the importance

weight of each predicted particle as per (2.14) and obtain the normalized weight for

each particle as per (2.15).

w̃i
k = wi

k−1p(zk|x̂i
k) (2.14)

wi
k =

w̃i
k∑N

i=1 w̃i
k

(2.15)

Thus define a discrete distribution {wi
k : i = 1, · · · , NP} over {x̂i

k : i = 1, · · · , NP},
with importance weight wi

k associated with element x̂i
k at time k. The estimate of

the posterior distribution, p̂(xk|z1:k), can be represented as,

p̂(xk|z1:k) =
NP∑
i=1

wi
kδ(x− x̂i

k). (2.16)

(v) Resampling the particles: Resample the discrete distribution {wi
k : i =

1, · · · , NP} NP times to generate particles {xj
k : j = 1, · · · , NP}, so that for any

j, Pr{xj
k = x̂i

k} = wi
k. Set the weights wi

k to 1
NP

, i = 1, ..., NP .

34



2.1 MCMC Based Particle Filter Algorithm

(vi) Adaptive MCMC diversification: For each resampled particle {xi
k, i =

1, · · · , NP}, repeat the following steps ((1) ∼ (7)) B + M times, where B is the

length of burn-in period and M is the number of MCMC iterations.

(1): Initializing, set

τ = 0, (2.17)

χi
k,0 = xi

k, (2.18)

Ci
k,0 = Id. (2.19)

(2): MH algorithm, sample ε ∼ Nm(0, C i
k,τ ). Move the particles:

χ′ = χi
k,τ + ε. (2.20)

(3): Sample ρ ∼ U(0, 1), where U(0, 1) is a uniform distribution in the interval

(0, 1).

(4): Calculate the acceptance ratio,

a =
p̂(χ′|Z1:k)

p̂(χi
k,τ |Z1:k)

Q(χi
k,τ ; χ

′)

Q(χ′; χi
k,τ )

. (2.21)

(5): If ρ ≤ min{1, a}, then accept move:

χi
k,τ+1 = χ′, (2.22)

else reject move:

χi
k,τ+1 = χi

k,τ . (2.23)

(6): Adaptation step: update the covariance of the proposal distribution depend-

ing on the history of the chain.

Ci
k,τ+1 =

τ − 1

τ
Ci

k,τ +
sd

τ
[τ χ̄i

k,τ−1(χ̄
i
k,τ−1)

T − (τ + 1)χ̄i
k,τ (χ̄

i
k,τ )

T + χi
k,τ (χ

i
k,τ )

T + εId].

(2.24)
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Where,

χ̄i
k,τ =

1

τ + 1

τ∑
j=0

χi
k,j. (2.25)

(7): At the end of B +M iterations, obtain the diversified particles as per (2.26).

xi
k = χi

k,B+M (2.26)

Finally, move to the prediction stage (ii).

2.1.2.3 Simulation Results and Analysis

The conventional MCMC based particle filter (resample-move algorithm) and the

adaptive MCMC based particle filter are compared in the following two examples: a)

a robot equipped with sonar tracks a maneuvering target and, b) a radar tracks an

aircraft performing coordinated turn. In the first example, the dynamic model of the

maneuvering target is represented as:

Xk = ΦXk−1 + Γ[ak−1 + mk−1(s, t)], (2.27)

where Xk = [px, vx, py, vy]Tk is the state vector; px and vx are respectively the position

and velocity of the moving object along the Cartesian frame x axis; and, py, vy along

the y axis. mk−1(s, t) is the maneuver-induced acceleration. s and t are the start and

end times of the maneuver. ak−1 accounts for the random acceleration of the target,

which is generated from a zero mean Gaussian distribution. Φ is the transition matrix.

Φ =




1 4T 0 0

0 1 0 0

0 0 1 4T

0 0 0 1




(2.28)

where 4T is time interval. Γ is a unity matrix.

The robot installed with sonar sensors is positioned at the origin of the plane.

The measurement equation is as follows:

Zk = h(Xk) + nk, (2.29)
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where Zk = [z1, z2]k is the observation vector. z1 is the distance between the robot and

moving object and z2 is the bearing angle. The measurement noise nk = [nz1 , nz2 ]k is

a zero mean Guassian white noise process with variance R : E[nk nj] = Rδkj, where,

R =


 σ2

z1
0

0 σ2
z2


 . (2.30)

(2.29) is expanded as:

z1,k =
√

(pxk − xR)2 + (pyk − yR)2 + nz1,k, (2.31)

z2,k = tan−1(
pyk − yR

pxk − xR

) + nz2,k, (2.32)

Equation (2.31) describes the changing distance between the robot and moving ob-

ject. (xR, yR) is the position of the robot in Cartesian coordinates. Equation (2.32)

describes the object’s changing bearing angle.

In this example, the target considered executes a 3 leg maneuvering sequence.

The target starts at location [0.5 1] in Cartesian coordinates in meters with initial

velocity [3 1] (in m/s). Its trajectory is: a straight line with constant velocity between

0 and 20 s, a sharp left turn ([−40 40] in m/s2) occurs at 20 s, a straight line with

constant velocity between between 20 and 30 s, a sharp right turn ([24 −24] in m/s2)

occurs at 30 s, and finally a straight line with constant velocity between 30 and 100 s.

It is assumed that the dynamic model of the maneuvering target (2.27) is unknown

and a simple motion model (2.33) is adopted in the two algorithms that are being

compared. The simulation parameters are listed in Table 2.1.

Xk = ΦXk−1 + vk−1 (2.33)

The tracking trajectory of one successful realization performed by the two algo-

rithms are shown respectively in Fig.2.1 and Fig.2.2. One hundred (100) Monte Carlo

simulations are carried out. The simulation comparison between the two algorithms

is presented in the form of the position Root Mean Square Error (RMSE) in Table 2.2.

The adaptive MCMC based particle filter gained superior tracking performance than
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Table 2.1: Simulation parameters
Simulation Parameter Value
Number of particles 200

Sampling internal (4T ) 0.1 s
The variance matrix Q of process noise diag{1 1 1 1}

The variance matrix R of observation noise diag{0.1 0.01}
The bound of the uniform distribution (d) {1 1 1 1}T

Signal-to-noise ratio (SNR) 9.5 dB

Table 2.2: Performance comparison
RMSE MCMC

Iteration
Number

Tracking
Loss Rate
(%)

MCMC based PF 0.4691 5 50
Adaptive MCMC based PF 0.2759 5 10

the conventional MCMC based particle filter with the same MCMC iteration number.

Also the RMSEs at each time step of the two algorithms are presented respectively

in Fig.2.3 and Fig.2.4. The definition of RMSEs can be found in [45].

The tracking loss rate is defined as the ratio of the failed simulation number to

the total simulation number carried out, which is used to evaluate the robustness of

the algorithm. The tracking loss rate is listed in Table 2.2. The adaptive MCMC

based particle filter (with tracking loss rate 10%) is more robust than the conventional

MCMC based particle filter (with tracking loss rate 50%). Fig.2.5 ∼ Fig.2.8 show a

failure tracking process performed by the conventional MCMC based particle filter

algorithm. When sample impoverishment began at time step 38 (Fig. 2.8, all the

particles were assigned with zero weights), the x and y tracking trajectories started

to diverge at time step 38 (Fig. 2.6 and Fig. 2.7). The tracking failure is due to

sample impoverishment and reducing the sample impoverishment can improve the

robustness of the algorithm effectively.
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Figure 2.1: Tracking trajectory (MCMC based particle filter)
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Figure 2.2: Tracking trajectory (adaptive MCMC based particle filter)
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Figure 2.3: RMSE at each time step (MCMC based particle filter)
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Figure 2.4: RMSE at each time step (adaptive MCMC based particle filter)
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Figure 2.5: Failure tracking trajectory (MCMC based particle filter)
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Figure 2.6: Failure tracking trajectory: position x (MCMC based particle filter)
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Figure 2.7: Failure tracking trajectory: position y (MCMC based particle filter)
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Figure 2.8: Failure tracking process: average weight (MCMC based particle filter)
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The example above is basically designed for tracking systems in which the fil-

ters are uncoupled such that, for instance, tracking in the x and y directions are

independent. In reality, typical target maneuvers, such as an aircraft performing

a coordinated turn, produces motion that is highly correlated across the tracking

directions.

In the second example, a track-while-scan (TWS) radar tracks an aircraft per-

forming coordinated turn. The coordinated turn model considered is:

pxk+1 = pxk +
sinωT

ω
vxk − 1− cosωT

ω
vyk, (2.34)

pyk+1 = pyk +
1− cosωT

ω
vxk +

sinωT

ω
vyk, (2.35)

vxk+1 = vxkcosωT − vyksinωT, (2.36)

vyk+1 = vxksinωT + vykcosωT, (2.37)

where ω denotes the turn rate in radians per second. The measurement equations of

the TWS radar are similar with those of the first example.

In this example, an aircraft executing a 3 leg maneuvering coordinate turn is

considered: constant velocity, 3 × g turn, −3 × g turn, and finally moving with a

constant velocity. The initial velocity is about 75m/s. No multiple dynamic models

and transition probability matrix are assumed.

The tracking trajectory of the maneuvering aircraft performed by the two algo-

rithms are shown respectively in Fig.2.9 and Fig.2.10. One hundred (100) Monte Carlo

simulations are carried out. The simulation comparison between the two algorithms

is presented in Table 2.3. Also the RMSE at each time step of the two algorithms are

presented respectively in Fig.2.11 and Fig.2.12. The adaptive MCMC based particle

filter gained superior tracking performance than the MCMC based particle filter both

in accuracy and robustness (Table 2.3).
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Figure 2.9: Tracking trajectory via MCMC based particle filter using 5 MCMC iter-
ations
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Figure 2.10: Tracking trajectory via adaptive MCMC based particle filter using 5
MCMC iterations
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Figure 2.11: RMSE at each time step via MCMC based particle filter using 5 MCMC
iterations
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Figure 2.12: RMSE at each time step via adaptive MCMC based particle filter using
5 MCMC iterations
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Table 2.3: Performance comparison
RMSE MCMC

Iteration
Number

Tracking
Loss Rate
(%)

MCMC based PF 20.8755 5 37
Adaptive MCMC based PF 16.9720 5 4

2.1.3 Interacting MCMC Particle Filter

Similar to resample-move method, the adaptive MCMC based particle filter diversifies

particles after resampling, which reduces sample impoverishment but could not avoid

it absolutely. The introduction of MCMC to improve importance sampling suggests

that MCMC alone could be used to obtain a particle filter that can effectively handle

the sample impoverishment problem [81]. However, for the traditional MCMC move,

it is very slow to converge to the target posterior distribution. Though the AM

algorithm can speed up the convergence rate, it is still slow for real-time tracking,

which warrants the need for a faster and more effective method.

A new method, named interacting MCMC particle filter, is proposed to move the

particles towards the target posterior distribution quickly. The objective of general

MCMC move is to search the target posterior distribution via particles’ moves. In

the MCMC based particle filter method [29], each particle is propagated based on its

previous states. During the MCMC move iterations, the trajectory of each particle

is developed independently, which means that the searching is carried out by each

individual particle, neglecting the information from other particles. It is reasonable

that incorporating the neighborhood particles’ information accelerates the search. For

example, when several people search for a piece of gold in a wide area concurrently,

each person looks for the gold depending on not only his previous experience but also

the information from his partners (where the gold may appear most probably), and

adjust the search strategy accordingly. The particle swarm algorithm finds optimal
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regions of complex search spaces through the interaction of individuals in a popu-

lation of particles. In the proposed algorithm, during the MCMC iterations, each

particle is propagated based on not only the past information but the information

from other particles as well. The proposed algorithm is named as interacting MCMC

particle filter since it incorporates the interaction of the particles in contrast with the

traditional MCMC based particle filter.

It is well known that all numerical integration approaches perform better when

correlation among the components is low. In particular, MCMC algorithm converges

rapidly. In the interacting MCMC particle filter method, at each time step the in-

troduction of the interaction of particles reduces the correlation among one particle’s

history states, which speeds up the MCMC convergence rate.

The basic theory of particle swarm algorithm is introduced in Section 2.1.3.1,

and the proposed interacting MCMC particle filter algorithm is presented in Section

2.1.3.2. Finally, the simulation results and analysis are presented in Section 2.1.3.3.

2.1.3.1 Particle Swarm Algorithm

Particle swarm adaptation has been shown to successfully optimize a wide range of

functions [84], [85], [86]. The algorithm, which is based on a metaphor of social

interaction, searches a space by adjusting the trajectories of individual vectors, called

“particles” as they are conceptualized as moving points in multidimensional space.

Each particle is drawn stochastically toward the position of its own previous best

performance, pBi, and the position of the best previous performance of its neighbors,

gB, where i denotes the ith particle. The algorithm in pseudocode follows [87].

Algorithm 2.4: Particle Swarm Algorithm

(1) Initialize population.

(2) Do,

for i = 1 to Population Size,

Vi = Vi + ϕ1(pBi − Si) + ϕ2(gB − Si), (2.38)
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Si = Si + Vi, (2.39)

Next i,

Until termination criterion is met.

Si represents the state vector of the ith particle, and Vi denotes the velocity of

Si. The variables ϕ1 and ϕ2 are random positive numbers, drawn from a uniform

distribution and defined by an upper limit ϕmax, whose value is chosen as 2 in this

work.

2.1.3.2 Interacting MCMC Particle Filter Algorithm

Here a different Monte Carlo approximation of the target posterior distribution, in

terms of unweighted samples, is proposed based on the interacting MCMC sampling

method. In particular, the posterior distribution p(xk−1|z1:k−1) at time k − 1 is rep-

resented as a set of NP unweighted samples p(xk−1|z1:k−1) ≈ {xi
k−1}NP

i=1. According

to the Bayesian theory, the posterior filtering distribution at time step k, p(xk|z1:k),

can be represented as:

p(xk|z1:k) ≈ cp(zk|xk)

∫
p(xk|xk−1)p(xk−1|z1:k−1)dxk−1. (2.40)

Instead of importance sampling, interacting MCMC is used to sample from (2.40) at

each time step. The sampling procedure results in an unweighted particle approxi-

mation for the posterior distribution p(xk|z1:k) ≈ {xi
k}NP

i=1.

In the proposed interacting MCMC particle filter algorithm, at each time step,

the particles are propagated based on the dynamic model to obtain the predicted par-

ticles. The predicted particles are then chosen as the starting points in the following

interacting MCMC sampling procedure. During the interacting MCMC iterations,

the proposal function based on the particle swarm algorithm is used to generate a set

of samples from the target posterior distribution. The algorithm steps are listed in

the following:
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Algorithm 2.5: Interacting MCMC Particle Filter Algorithm

(i) Initialization: Sample xi
0 from the prior distribution p(x0) and set the weights

wi
0 to 1

NP
, i = 1, ..., NP .

(ii) Prediction: Each particle is passed through the system model to obtain the

predicted particles:

x̂i
k = f(xi

k−1, v
i
k−1), (2.41)

where vi
k−1 is a sample drawn from the probability density function of the system

noise pv(v).

(iii) Update: Once the observation data, zk, is measured, evaluate the importance

weight of each predicted particle in (2.42) and obtain the normalized weight for each

particle as in (2.43).

w̃i
k = wi

k−1p(zk|x̂i
k) (2.42)

wi
k =

w̃i
k∑N

i=1 w̃i
k

(2.43)

Thus define a discrete distribution {wi
k : i = 1, · · · , NP} over {x̂i

k : i = 1, · · · , NP},
with probability mass wi

k associated with element x̂i
k at time step k. The approximate

posterior distribution, p̂(xk|z1:k), can be estimated as,

p̂(xk|z1:k) =
NP∑
i=1

wi
kδ(x− x̂i

k). (2.44)

(iv) Interacting MCMC move: For each predicted particle x̂i
k, i = 1, · · · , NP ,

repeat the following steps B + M times (B is the length of burn-in period and M is

the number of MCMC iterations) :

(1) Initialization, set,

τ = 0, (2.45)

χi
k,0 = x̂i

k, (2.46)

V i
k,0 = 0, (2.47)

ξi
k,0 = wi

k, (2.48)
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where τ denotes the τth MCMC iteration.

(2) Search among the weights {ξi
k,τ , i = 1, · · · , NP} to obtain the largest weight,

and identify the particle corresponding to the largest wight, gBk,τ . For each specific

particle χi
k,τ , search among its history weights, {ξi

k,λ, λ = 0, · · · , τ} and obtain the

particle with the largest weight, pBi
k,τ .

(3) For each particle χi
k,τ , calculate its velocity V i

k,τ+1 (2.49), and then propagate it

to the next position (2.50),

V i
k,τ+1 = V i

k,τ + ϕ1 × (gBk,τ − χi
k,τ ) + ϕ2 × (pBi

k,τ − χi
k,τ ), (2.49)

χ̂i
k,τ+1 = χi

k,τ + V i
k,τ+1. (2.50)

(4) Sample ρ ∼ U(0, 1), where U(0, 1) is a uniform distribution in the interval (0, 1).

(5) Calculate the acceptance ratio,

a =
p̂(χ̂i

k,τ+1|z1:k)

p̂(χi
k,τ |z1:k)

Q(χi
k,τ ; χ̂

i
k,τ+1)

Q(χ̂i
k,τ+1; χ

i
k,τ )

. (2.51)

(6) If ρ ≤ min{1, a}, then accept move:

χi
k,τ+1 = χ̂i

k,τ+1, (2.52)

else reject move:

χi
k,τ+1 = χi

k,τ . (2.53)

(7) Calculate the weight of each particle:

ξi
k,τ+1 = p(zk|χi

k,τ+1). (2.54)

(8) τ = τ + 1, then move to step (2).

Finally, obtain the resampled particles,

xi
k = χi

k,B+M , i = 1, · · · , NP, (2.55)

and set the weights wi
k to 1

NP
, i = 1, ..., NP .

Move to the prediction stage (ii).
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2.1.3.3 Simulation Results and Analysis

In this section, the interacting MCMC particle filter algorithm is used to track the

maneuvering target as in Section 2.1.2.3. The direct MCMC based particle filter

algorithm and the direct adaptive MCMC based particle filter algorithm, which re-

place the importance sampling with MCMC sampling and adaptive MCMC sampling

respectively, are also carried out for comparison.

In the first example of tracking ground maneuvering target, the trajectory tracking

in one simulation round performed by the three algorithms are shown respectively in

Fig.2.13 ∼ Fig.2.15. Large position diversions exist in the trajectories tracked by

the direct MCMC based particle filter algorithm and direct adaptive MCMC based

particle filter algorithm (Fig. 2.13 and Fig. 2.14). The interacting MCMC particle

filter gained smooth tracking trajectory (Fig.2.15). One hundred (100) Monte Carlo

simulations are carried out. The simulation comparison between the three algorithms

is presented in Table 2.4. The interacting MCMC particle filter has rather smaller

RMSE value (0.38) than the other two algorithms with the same MCMC iteration

number. This shows that the interacting MCMC sampling converged much faster than

the other two algorithms. Also the RMSE at each time step of the three algorithms

are presented respectively in Fig.2.16 ∼ Fig.2.18. The tracking loss rate is listed in

Table 2.4, and all the three algorithms have zero percent tracking loss rate. The

reason is that the direct MCMC sampling methods draw the particles directly from

the posterior distribution without using the resampling step, which results in sample

impoverishment. As a result, sample impoverishment is avoided and the robustness

of the proposed algorithm is improved.

In the second example of tracking an aircraft performing coordinated turn, both

the direct MCMC based particle filter and the direct adaptive MCMC based particle

filter failed in tracking due to large position diversions. The tracking trajectory of one

realization performed by the interacting MCMC particle filter algorithm is shown in

Fig.2.19. One hundred (100) Monte Carlo simulations are carried out using interacting
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Table 2.4: Performance comparison
RMSE MCMC

Iteration
Number

Tracking
Loss Rate
(%)

Direct MCMC based PF 3.95 5 0
Direct Adaptive MCMC based PF 1.81 5 0
Interacting MCMC PF 0.38 5 0

MCMC particle filter. The associated RMSE is 27.2044 and the RMSE at each time

step is shown in Fig. 2.20.

Finally, a performance comparison between all the MCMC based particle filters

(proposed in Section 2.1.2 and Section 2.1.3) for the first simulation example is given

in Table 2.5. It can be seen that the adaptive MCMC based particle filter and the

interacting particle filter are the two best ones among the algorithms. The former is

more accurate and the latter is more robust with similar accuracy level.
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Figure 2.13: Tracking trajectory via direct MCMC based particle filter
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Figure 2.14: Tracking trajectory via direct adaptive MCMC based particle filter
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Figure 2.15: Tracking trajectory via interacting MCMC particle filter
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Figure 2.16: RMSE at each time step via direct MCMC based particle filter
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Figure 2.17: RMSE at each time step via direct adaptive MCMC based particle filter
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Figure 2.18: RMSE at each time step via interacting MCMC particle filter
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Figure 2.19: Tracking trajectory via interacting MCMC particle filter
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Figure 2.20: RMSE at each time step via interacting MCMC particle filter

Table 2.5: Performance comparison
RMSE MCMC

Iteration
Number

Tracking
Loss Rate
(%)

MCMC based PF 0.4691 5 50
Adaptive MCMC based PF 0.2759 5 10
Direct MCMC based PF 3.95 5 0
Direct Adaptive MCMC based PF 1.81 5 0
Interacting MCMC PF 0.38 5 0
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2.2 Process Noise Estimation based Particle Filter

2.2.1 Introduction

A process noise estimation based particle filter algorithm is proposed to cope with

the maneuvering target tracking problem in this section.

An accurate dynamic model is essential for robust tracking and for achieving real-

time performance. When the tracking object deviates significantly from the learned

dynamics, for example performing maneuvering movement, the estimation methods

based on single fixed motion model fails. Several multiple model methods are used to

deal with such tracking problems, such as interacting multiple model (IMM) methods

[88, 89, 90, 91], variable dimension filter methods [92, 93] and neural fuzzy network

methods [94]. In these approaches, the target maneuvers or uncertain dynamics

are often described by multiple linearized models. The possible motion models and

transition probability matrices are assumed known in these methods. In practice,

the dynamics is hard to break up into several different motion models and the model

transition probabilities are difficult to obtain. A general model is needed to cope with

the wide variety of motions exhibited by a maneuvering target.

Equivalent-noise approach [95, 96, 97] is an approach, which uses one general

model in maneuvering target tracking. It is assumed that the maneuver effect can be

modeled by (part of) a white or colored noise process sufficiently well. The statistics

of the equivalent noise are non-stationary in general. This fundamental assumption

converts the problem of maneuvering target tracking to that of state estimation in the

presence of non-stationary process noise. Numerous techniques have been developed

for such state estimation problems in stochastic systems research over the past several

decades, in particular, from late 1960′s to early 1980′s, and adaptive Kalman filter

[32, 33, 98, 34] is the most popular one among them. However, almost all of the

approaches are limited to linear systems.

57



2.2 Process Noise Estimation based Particle Filter

In this work, the equivalent-noise approach is extended to the nonlinear and non-

Gaussian system. Kalman filter is not appropriate since it is based on the linear

system assumption and the linear solution is of limited power. Particle filter methods

are chosen as the estimation methods for their simplicity, flexibility and ease of imple-

mentation, and especially for their ability to deal with nonlinear and non-Gaussian

estimation problem, which is a challenging one in maneuvering target tracking appli-

cations.

In standard particle filter algorithm, it is assumed that the process noise distri-

bution is stationary and known. However, the noise statistics are often unknown or

at least not known perfectly. In this case, the standard particle filter may yield poor

results or even diverge if it uses erroneous noise statistics. It is important to identify

the noise statistics. In this thesis, the terminology “noise statistics” is used to refer

to the process noise distribution.

In the literature, only a few works utilize the process noise identification prob-

lem in particle filter. In [99], several different known models for the process noise

are considered for suitability in tracking a target which may perform a rate-limited

turn. In [100], the authors assume that the process noise is distributed as additive

Gaussian distribution with fixed unknown covariance matrices. These fixed unknown

covariance matrices are marginalized out and then the sequential processing is carried

out on the state variables. In [101], the process noise is modeled as a first-order auto-

regressive (AR) system excited by a zero mean Gaussian process. The closed-form

representation of the system is rendered tractable and solved iteratively by dynami-

cally sampling the state space. More recently, Gaussian approximation methods are

used to deal with non-Gaussian noises. The posterior distribution of the target state

is approximated by single Gaussians [102] and weighted Gaussian mixtures [103]. In

[102], the underlining assumption is that the predictive and filtering distributions are

approximated as Gaussians. When dealing with a nonlinear system with process noise
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whose distribution may vary widely, the posterior distribution may not be approxi-

mated properly by only Gaussians. In [103], the posterior distribution of the target

state is not restricted to single Gaussian assumption and the method can deal with

multi-model posterior distribution more effectively than [102]. With non-Gaussian

noise approximated by Gaussian mixtures, the non-Gaussian noise models are ap-

proximated by banks of Gaussian noise models. The noise is assumed in additive

form and a number of Gaussian models are required to implement the algorithm,

which seems very complex.

The novelty of the proposed method is that the posterior distribution of process

noise is not parametrically given and/or a priori fixed, but dynamically approximated

using the particle filter algorithm. The process noise is modeled as a dynamic system

and the state vector of the noise system is chosen as the noise vector. At the beginning

of each time step, a set of process noise samples are drawn from a uniform distribution,

which is noninformative and assumed as the prior distribution of the process noise

system. The process noise samples are evaluated by the likelihood function including

current measurements and are assigned with corresponding weights. The posterior

distribution of the process noise system is approximated by the process noise samples

and their associated weights. A new set of process noise samples are then generated

from the approximate posterior distribution of process noise at the resampling stage.

A standard particle filter for state estimation is then run using the new distributed

process noise samples.

The proposed algorithm resembles the auxiliary particle filter [31] since both ex-

tend the trajectories of the particles based on the information from current obser-

vations. When the process noise is large, the performance of the auxiliary particle

filter degrades [30]. In comparison, the proposed algorithm is robust to process noise

variation.

The equivalent-noise approach is briefly introduced in Section 2.2.2 and, in Section

2.2.3 the basic theory and procedure of particle filter for state estimation are provided.
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The proposed algorithm is introduced in Section 2.2.4. In Section 2.2.5 the proposed

algorithm is compared with the IMM algorithm, which is the most popular algorithm

in maneuvering target tracking.

2.2.2 Equivalent-noise Approach

Equivalent-noise approach is a popular approach in maneuvering target tracking.

Almost all types of target motion can be described by the following state-space model,

xk = f(xk−1, uk−1, v
∗
k−1), (2.56)

where x is the state, u is the maneuver acceleration, and v∗ is the process noise. In

the equivalent-noise approach, the basic assumption is that the maneuver effect can

be modeled by (part of) a white or colored noise process sufficiently well. In other

words, it is assumed that the above equation that describes target motions can be

simplified to,

xk = f(xk−1; vk−1), (2.57)

with an adequate accuracy, where v is equivalent noise that quantifies the error of

this model in describing the target motions, in particular, maneuvers. Of course,

the statistics of this noise v, non-stationary in general, are not known. Valid or not,

this fundamental assumption converts the problem of maneuvering target tracking to

that of state estimation in the presence of non-stationary process noise with unknown

statistics.

Numerous techniques have been developed for such state estimation problems in

stochastic systems research over the past several decades, in particular, from late

1960′s to early 1980′s. Almost all of them are limited to linear systems, assuming

that the system dynamics can be described by,

xk = Fxk−1 + Γvk−1, (2.58)

with noise v of unknown statistics. Traditionally, the state estimation using a linear
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system of observations in white noise is considered as an essential part of what is

known as adaptive Kalman filtering.

In this work, the equivalent-noise approach is extended to the nonlinear and non-

Gaussian system. Kalman filter is not appropriate since it is based on the linear

system assumption and the linear solution is of limited power. Particle filter methods

are chosen as the estimation methods for their simplicity, flexibility and ease of imple-

mentation, and especially for their ability to deal with nonlinear and non-Gaussian

estimation problem, which is a challenging one in maneuvering target tracking appli-

cations.

2.2.3 Basic Theory of Particle Filter

The objective of tracking is to recursively estimate xk from a sequence of measure-

ments up to time step k, z1:k = {z1, z2, · · · , zk}. The observation model is described

as,

zk = h(xk, nk), (2.59)

where h is a possibly nonlinear function. nk is the observation noise with zero mean

Gaussian distribution. From the Bayesian perspective, the tracking problem is to

recursively calculate the posterior distribution p(xk|z1:k).

In this work, particle filter is considered to solve the state estimation problem due

to its ability to tackle the non-linear and non-Gaussian systems. The posterior distri-

bution p(xk|z1:k) is approximated by a set of particles with associated weights. The

detailed introduction to particle filter algorithm can be found in [30]. The procedures

of standard particle filter are listed in the following:

Algorithm 2.6: Standard Particle Filter

(i) Initialization: Sample initial particles {xi
0, i = 1, ..., NP} from the initial poste-

rior distribution p(x0) and set the weights wi
0 to 1

NP
, i = 1, ..., NP . NP is the number

of particles.

(ii) Prediction: Particles at time step k − 1, {xi
k−1, i = 1, ..., NP}, are passed
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through the system model (2.57) to obtain the predicted particles at time step k,

{x̂i
k, i = 1, ..., NP}:

x̂i
k = f(xi

k−1, v
i
k−1), (2.60)

where vi
k−1 is a sample drawn from the probability density function of the system

noise pv(v).

(iii) Update: Once the observation data, zk, is measured, evaluate the importance

weight of each predicted particle (2.61) and obtain the normalized weight for each

particle (2.62).

w̃i
k = p(zk|x̂i

k) (2.61)

wi
k =

w̃i
k∑NP

i=1 w̃i
k

(2.62)

Obtain x̃k, the estimate of the state at time step k as,

x̃k =
NP∑
i=1

wi
kx̂

i
k. (2.63)

(iv) Resample : Resample the discrete distribution {wi
k : i = 1, · · · , NP} NP times

to generate particles {xj
k : j = 1, · · · , NP}, so that for any j, Pr{xj

k = x̂i
k} = wi

k. Set

the weights wi
k to 1

NP
, i = 1, ..., NP , and move to Stage (ii).

In the above algorithm it is assumed that the process noise samples are drawn

from a known posterior distribution (Stage (ii)). When the process noise distribution

is unknown and varying due to the uncertain dynamics, an estimation procedure for

the process noise should be performed before propagating the particles (Stage (ii)).

2.2.4 Process Noise Identification

In this section, a novel method is proposed for process noise identification. The

process noise is modeled as a dynamic system. The noise vector vk−1 is chosen as the
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state of the noise system. The observation vector is zk, which is same as the dynamic

system (2.59). The observation equation is defined in (2.64),

zk = h(xk, nk)

= h[f(xk−1, vk−1), nk].
(2.64)

Since there is no information about the prior distribution of the process noise

system, the prior distribution is assumed as a uniform distribution U(−d, d). d is

the known process noise bound accounting for the maximin uncertain dynamics. At

each time step, a set of process noise samples {v̂j
k−1, j = 1, · · · , NP} are drawn from

the uniform distribution, where NP is the number of process noise samples, which is

equal to the number of particles.

According to particle filter algorithm, the process noise samples {v̂j
k−1, j = 1, · · · ,

NP} are assigned with corresponding intermediate weights {iwj
k, j = 1, · · · , NP},

which are obtained from the likelihood function (2.65).

iwj
k = p(zk|v̂j

k−1) (2.65)

The posterior distribution of the process noise is approximated by the process

noise samples and their associated weights:

p(vk−1|z1:k) ≈ ΣNP
j=1iw

j
k · δ(vk−1 − v̂j

k−1). (2.66)

To calculate the noise sample weight iwj
k, the likelihood function p(zk|v̂j

k−1) is

expanded based on the resampled state particles at time step k − 1, {xi
k−1, i =

1, · · · , NP}.
p(zk|v̂j

k−1) = ΣNP
i=1p(zk|xi

k−1, v̂
j
k−1)p(xi

k−1|v̂j
k−1). (2.67)

Since xi
k−1 and v̂j

k−1 are independent, p(xi
k−1|v̂j

k−1) = p(xi
k−1).

The ith resampled particle at time step k − 1, xi
k−1, satisfies Pr{xi

k−1 = x̂n
k−1} =

w
n(i)
k−1, where x̂n

k−1 is the particle before resampling at time step k − 1 and w
n(i)
k−1 is its

associated normalized weight. The probability of p(xi
k−1) is,

p(xi
k−1) = w

n(i)
k−1. (2.68)
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To calculate p(zk|xi
k−1, v̂

j
k−1), define µi,j

k as the intermediate particle,

µi,j
k = f(xi

k−1, v̂
j
k−1), (2.69)

and expand p(zk|xi
k−1, v̂

j
k−1) based on µi,j

k ,

p(zk|xi
k−1, v̂

j
k−1) = ΣNP

p=1Σ
NP
q=1p(zk|µp,q

k , xi
k−1, v̂

j
k−1)p(µp,q

k |xi
k−1, v̂

j
k−1). (2.70)

Since xi
k−1 and v̂j

k−1 are known, and µp,q
k is obtained from a purely deterministic

relationship in (2.69), we obtain,

p(µp,q
k |xi

k−1, v̂
j
k−1) =





1 p = i and q = j

0 p 6= i or q 6= j
, (2.71)

and,

p(zk|xi
k−1, v̂

j
k−1) = p(zk|µi,j

k ). (2.72)

Combining (2.68) and (2.72) with (2.67) results in,

p(zk|v̂j
k−1) =

NP∑
i=1

p(zk|µi,j
k )w

n(i)
k−1. (2.73)

At each time step, the predicted process noise samples are drawn from a uniform

distribution. Each predicted process noise sample v̂j
k−1 is evaluated and assigned its

corresponding weight iwj
k in (2.65). The weights {iwj

k : j = 1, . . . , NP} are then

normalized. The resampling procedure is then used to re-distribute the predicted

process noise samples: the discrete distribution {iwj
k : j = 1, · · · , NP} is resampled

NP times to generate samples {vi
k−1 : i = 1, · · · , NP}, so that for any i, Pr{vi

k−1 =

v̂j
k−1} = iwj

k. From the resampling process, the predicted process noise samples with

large weights are duplicated while the samples with small weights are eliminated.

The standard particle filter procedure for state estimation follows next. The pre-

dicted particles {x̂i
k, : i = 1, . . . , NP} are then obtained based on the new process

noise samples {vi
k−1 : i = 1, . . . , NP} through the dynamic model. The predicted

particles are updated and resampled as in the conventional particle filter algorithm.
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The complete algorithm including the process noise estimation and state estima-

tion parts is summarized below:

Algorithm 2.7: Process Noise Estimation based Particle Filter

(i) At time step k − 1, draw process noise samples {v̂j
k−1 : j = 1, . . . , NP} from a

uniform distribution U(−d, d).

(ii) Calculate the intermediate particles {µi,j
k : i = 1, · · · , NP ; j = 1, · · · , NP} ac-

cording to (2.69).

(iii) Calculate the process noise sample weights {iwj
k : j = 1, · · · , NP} as per (2.73)

and normalize each weight.

(iv) Resample the discrete distribution {iwj
k : j = 1, · · · , NP}, NP times to gen-

erate the new process noise samples {vi
k−1 : i = 1, · · · , NP}, so that for any i,

Pr{vi
k−1 = v̂j

k−1} = iwj
k. Set the weights iwj

k to 1
NP

, i = 1, ..., NP .

(v) Obtain the predicted particles at time step k from the new process noise samples

as per (2.60) (same as Stage (ii), Section 2.2.3).

(vi) Calculate the un-normalized and normalized particle weights based on (2.61)

and (2.62), and obtain the estimate of the state as per (2.63) (same as Stage (iii),

Section 2.2.3).

(vii) Generate new particles through resampling the discrete distribution of particle

weights (same as Stage (iv), Section 2.2.3). Then move to Stage (i).

Simplification of the Proposed Algorithm

In the proposed algorithm, at each iteration, NP ∗NP intermediate particles are cal-

culated through the permutation of particles and process noise samples in (2.69) and

evaluated as per (2.72). This increases the computation burden and the algorithm

runs slowly compared to the conventional particle filter and auxiliary particle filter,

which are based on NP particles. It is observed that at each time step, after resam-

pling the particles focus in some smaller area and a large portion of particles has the

same value. To simplify the algorithm, it is assumed that the particles are less variable
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compared with the process noise samples. In (2.69), particles {xi
k−1, i = 1, · · · , NP}

are replaced by the estimate of the state at time step k − 1, x̃k−1,

x̃k−1 =
NP∑
i=1

wi
k−1x

i
k−1. (2.74)

(2.69) is then reduced as:

µj
k = f(x̃k−1, v̂

j
k−1), (2.75)

and p(zk|v̂j
k−1) is expanded directly on µj

k,

p(zk|v̂j
k−1) = ΣNP

λ=1p(zk|µλ
k)p(µλ

k |v̂j
k−1). (2.76)

Similar to (2.71), we can obtain,

p(µλ
k |v̂j

k−1) =





1 λ = j

0 λ 6= j
, (2.77)

which leads to,

p(zk|v̂j
k−1) = p(zk|µj

k). (2.78)

In the simplified version of the proposed algorithm, the number of intermediate

particles is reduced to NP , which reduces the computation burden and increases the

computing speed. More importantly, the performance of the algorithm with the sim-

plification procedure is on par with that of the complex version without simplification,

which is verified through simulation.

2.2.5 Simulation Results for Maneuvering Target Tracking

The simulation study using nearly coordinate turn model (2.34∼2.37) is performed.

The maneuvering target tracking is done by setting up a 2D flight path in x − y

plane, which is similar to the path considered in [104]. The target starts at location

[−310 310] in Cartesian coordinates in meters with initial velocity (in m/s) [10 −400].

The trajectory is considered: a straight line with constant velocity between 0 and 17

s, a coordinated turn (0.09 rad/s) between 17 and 34 s, a straight line with constant
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velocity between 34 and 51 s, a coordinated turn (0.09 rad/s) between 51 and 68 s,

and a straight line with constant velocity between 68 and 85 s.

In the particle filter based process noise identification method, one general model

(2.79) is adopted during the whole tracking process.

Xk = ΦXk−1 + Γvk−1, (2.79)

Φ =




1 ∆T ∆T 2/2 0 0 0

0 1 ∆T 0 0 0

0 0 1 0 0 0

0 0 0 1 ∆T ∆T 2/2

0 0 0 0 1 ∆T

0 0 0 0 0 1




, (2.80)

Γ = I6×6, (2.81)

where Φ is the transition matrix and ∆T is the sample interval. Xk = [px, vx, ax, py,

vy, ay]Tk is the state vector; px, vx and ax denote respectively the position, velocity and

acceleration of the moving object along the x axis of Cartesian frame; and, py, vy and

ay along the y axis. The equivalent process noise, vk−1 = [vpx, vvx, vax, vpy, vvy, vay]
T
k−1,

with unknown statistics is required to be identified. The bound of the process noise

(d), which accounts for the uncertain dynamics, is chosen as {20 m, 20 m/s, 10 m/s2,

20 m, 20 m/s, 10 m/s2}. The number of the process noise samples is equal to the

number of particles, which is set as 500. The algorithm is initialized with Gaussians

around the initial state of the true target.

A track-while-scan (TWS) radar is positioned at the origin of the plane. The

measurement equation is as follows:

Zk = h(Xk) + nk, (2.82)

where Zk = [z1, z2]k is the observation vector. z1 is the distance between the radar

and the target, and z2 is the bearing angle. The measurement noise nk = [nz1 , nz2 ]k
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is a zero mean Guassian white noise process with standard deviations of 20 m (σz1)

and 0.01 rad (σz2). The sampling interval is ∆T = 1s.

A comparative study is made using the traditional tracking method based on a

IMM-filter consisting of three extended Kalman filter (EKF) with different motion

models. The three motion models considered are nearly constant velocity model,

Wiener process acceleration model (nearly constant acceleration motion) and Wiener

process acceleration model (model with large acceleration increments). The details

regarding these models may be found in [104]. The initial model probabilities and

the mode switching probability matrix are set the same values as in [104].

The simulation results are obtained from 100 Monte Carlo runs. Fig. 2.21 and Fig.

2.22 show one realization respectively performed by the IMM filter and the proposed

method. The root mean-square error (RMSE) in position at each time step for the

two methods are respectively shown in Fig. 2.23 and Fig. 2.24. The performance

of the two methods are also compared via global RMSE (in position), tracking loss

rate and executing time, which are listed in Table. 2.6. To assess the computational

requirements of the two methods, the CPU time needed to execute one time step in

MATLAB 7.1 on a 3 GHz (Mobile) Pentium IV operating under Windows 2000 is

computed.

From the simulation results, it can be seen that the proposed method gains a

53% increase in accuracy (RMSE) and 6% increase in robustness (tracking loss rate)

compared to the IMM filter, with computing time per time step within the limits

of practically realisable systems. Moreover, the proposed method needs neither the

possible multiple motion models nor the transition probability matrices, which are

assumed as known in the IMM filter. As a result, the proposed method is a more

general method for maneuvering target tracking.
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Figure 2.21: True and estimate trajectories of the single maneuvering target using
IMM method
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Figure 2.22: True and estimate trajectories of the single maneuvering target using
particle filter based process noise identification method
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Figure 2.23: RMSE in position using IMM method
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Figure 2.24: RMSE in position using particle filter based process noise identification
method
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2.3 Conclusions

Table 2.6: Performance Comparison
RMSE (m) Executing Time

(s)
Tracking Loss
Rate

IMM Method 35.2695 0.0239 6%
Particle Filter Based
Process Noise Identification
Method

16.4747 0.4503 0

2.3 Conclusions

In this chapter, two methods, MCMC based particle filter and process noise estimation

based particle filter, are proposed to tackle the maneuvering target tracking problem.

In the MCMC based particle filter methods, the wide variation of the maneuvering

movement is tracked by moving the particles towards the target posterior distribution

area via MCMC sampling. In order to speed up the convergence rate, a new method

named adaptive MCMC based particle filter method, which is a combination of the

adaptive Metropolis (AM) method and the importance sampling method, is proposed.

Furthermore, another new method named interacting MCMC particle filter is pro-

posed to avoid sample impoverishment induced by maneuvering movement, in which

the importance sampling is replaced with interacting MCMC sampling. The sampling

method is named interacting MCMC sampling since it incorporates the interaction

of particles. The interacting MCMC sampling also speeds up the convergence rate

effectively compared with the traditional MCMC sampling method.

The process noise estimation based particle filter method is utilized to estimate

the process noise which is unknown and has a varying distribution. The proposed al-

gorithm is compared with the IMM algorithm on a synthetic problem of maneuvering

target tracking.
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Chapter 3

Particle Filter Based Multiple

Target Tracking

In recent years, particle filter has been introduced to estimate non-linear and non-

Gaussian dynamic process for multiple target tracking. Particle filter has been applied

with great success to different fields of multiple target tracking including computer

vision [23, 62], mobile robot localization [63, 64] and air traffic control [65, 66]. The

particle filter based multiple target tracking methods can be divided into five cate-

gories (introduced in Section 1.4).

In this section, two different algorithms based on particle filter are presented for

multiple target tracking. The first, which we refer to as the particle filter based multi-

scan joint probabilistic data association (MS-JPDA) filter, is an extension of the single

scan JPDA methods proposed in [63, 73, 78]. Similar to [78], each of the tracking

targets is assigned with a corresponding particle filter. The distribution of interest is

the marginal filtering distribution for each of the targets, which is approximated with

particles. In contrast to the single scan JPDA methods, the MS-JPDA filter examines

the joint association hypothesis in a multi-scan sliding window and calculates the

posterior marginal probability based on the multi-scan joint association hypothesis.

Compared with the single scan JPDA methods, the multi-scan JPDA method uses
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richer information, which results in better estimated probabilities.

The second method, named as multi-scan mixture particle filter, applies the par-

ticle filter method directly in the multiple target tracking process and avoids the data

association problem. The posterior distribution of the target state is a multi-mode

distribution and each mode corresponds to either the target or the clutter. In order to

distinguish the targets from the clutters, multiple scan information is incorporated.

Moreover, to deal with the new target appearance problem, new particles are sampled

from the likelihood model (according to the most recent measurements) to detect the

new modes appearing at each time step.

This chapter is organized as follows. The multi-scan JPDA filter is introduced

in Section 3.1 and the multi-scan mixture particle filter algorithm is introduced in

Section 3.2. The conclusions are drawn in Section 3.3.

3.1 Particle Filter Based Multi-scan JPDA Algo-

rithm

3.1.1 Multiple Target Tracking Model

The number of targets (M) to be tracked is assumed as fixed and known. Each target

is parameterized by a state xm,k, where m denotes the mth target and k denotes

time step k. The combined state, xk = (x1,k, · · · , xM,k), is the concatenation of the

individual target states. The individual targets are assumed to evolve independently

according to Markovian dynamic models pm(xm,k|xm,k−1). The observation vector

collected at time step k is denoted by {zj,k, j = 1, · · · , Nk}, where Nk is the number

of measurements at time step k. The Nk measurements include both the target

measurements and clutter measurements. NCk is defined as the number of clutter

measurements, and NTk as the number of target measurements (Nk = NCk + NTk).

The key question of data association is how to assign the individual measurements
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to the respective targets. In the JPDA framework, a joint association event λ is

defined based on the measurement to target association hypothesis. The elements of

the association vector λ = (λ1 · · ·λNk
) are given by,

λj =





0 IF measurement j

is due to clutter

m ∈ {1 · · ·M} IF measurement j

stems from target m.

(3.1)

The JPDA computes βjm, the posterior probability that the jth measurement is

associated with the mth target, by summing over the probabilities of the correspond-

ing joint association events, i.e.,

βjm = p(λj,k = m|z1:k) =
∑

{λk∈Λk : λj,k=m}
p(λk|z1:k), (3.2)

where Λk is the set of all valid joint measurement to target association events. λk

denotes a joint association event at time step k and λj,k denotes the jth association

variable of λk.

The posterior probability for the joint association event can be expressed by (3.3),

p(λk|z1:k) ∝ p(zk|λk, z1:k−1)p(λk|z1:k−1)

∝ p(zk|λk, z1:k−1)p(λk),
(3.3)

where the conditioning of λk on the measurements z1:k−1 has been eliminated and

p(λk), the joint association prior is assumed as uniform distribution. p(zk|λk, z1:k−1)

is expressed based on the likelihood function,

p(zk|λk, z1:k−1)

=
∏

j∈I0,k
pc(zj,k)

∏NTk

j=1 p(zj,k|xλj,k,k)

= (V )−NCk
∏NTk

j=1 p(zj,k|xλj,k,k),

(3.4)

where, the likelihood in the second product can be written as,

p(zj,k|xλj,k,k) =





1 IF λj,k = 0

p(zj,k|xλj,k,k) otherwise.
(3.5)
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Finally, we obtain,

p(λk|z1:k) ∝ p(λk)(V )−NCk ·
NTk∏
j=1

p(zj,k|xλj,k,k). (3.6)

3.1.2 Particle Filter Based JPDA filter

Instead of maintaining the filtering distribution for the joint state p(xk|z1:k) the JPDA

filter updates the marginal filtering distributions for each of the targets pm(xm,k|z1:k),

m = 1 · · ·M , through the Bayesian sequential estimation recursions [78]. According

to the Bayesian inference theory,

p(xk|z1:k) =
p(zk|xk)p(xk|z1:k−1)

p(zk|z1:k−1)
, (3.7)

which leads to (3.8).

pm(xm,k|z1:k) ∝ pm(zk|xm,k)pm(xm,k|z1:k−1) (3.8)

The likelihood for the mth target, pm(zk|xm,k), can be derived as per [78],

pm(zk|xm,k) = β0m +

Nk∑
j=1

βjmp(zj,k|xm,k), (3.9)

where βjm is the posterior probability that the jth measurement is associated with

the mth target, with β0m the posterior probability that the mth target is undetected.

The prediction probability pm(xm,k|z1:k−1) can be expanded based on xm,k−1,

pm(xm,k|z1:k−1) =
∫

[pm(xm,k|xm,k−1)×
pm(xm,k−1|z1:k−1)]dxm,k−1.

(3.10)

Thus with the definitions for the one step ahead prediction distribution in (3.10)

and the filtering distribution in (3.8), the JPDA filter fits within the Bayesian se-

quential estimation framework.

The original formulation of the JPDA filter in [53] and [54] assumes linear and

Gaussian forms for the dynamic and likelihood models, and a Gaussian approximation
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3.1 Particle Filter Based Multi-scan JPDA Algorithm

for the filtering distribution. In order to make the general JPDA framework applica-

ble to general nonlinear and non-Gaussian models, it can be implemented based on

particle filter techniques.

The marginal filtering distributions for each of the targets are represented with

particles, as is the case for the standard JPDA. More specifically, for the mth tar-

get, assume that a set of particles {wi
m,k−1, x

i
m,k−1}NP

i=1 is available, approximately

distributed according to the marginal filtering distribution at the previous time step

pm(xm,k−1|z1:k−1). NP is the number of particles. At the current time step the pre-

dicted particles for the target state are generated from a suitably constructed proposal

distribution, which may depend on the old state and the new measurements, i.e.,

x̂i
m,k ∼ qm(xm,k|xi

m,k−1, zk), i = 1 · · ·NP. (3.11)

Define x̃m,k as the pre-approximation of xm,k, the state of the mth target at time step

k. x̃m,k is estimated based on the predicted particles and their associated previous

weights at time step k − 1.

x̃m,k =
NP∑
i=1

wi
m,k−1x̂

i
m,k (3.12)

(3.12) can now be substituted into (3.6) to obtain p(λk|z1:k), from which approx-

imations for the marginal measurement to target association posterior probability,

βjm, can be computed according to (3.2). These approximations can, in turn, be

used in (3.9) to calculate the target likelihood. Finally, setting the new importance

weights to,

wi
m,k ∝ wi

m,k−1

pm(zk|x̂i
m,k)pm(x̂i

m,k|xi
m,k−1)

qm(x̂i
m,k|xi

m,k−1,zk)
,

∑NP
i=1 wi

m,k = 1,
(3.13)

leads to the sample set {wi
m,k, x̂

i
m,k}NP

i=1 being approximately distributed according to

the marginal filtering distribution at the current time step pm(xm,k|z1:k).

A summary of the particle filter based JPDA filter algorithm is presented in what
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3.1 Particle Filter Based Multi-scan JPDA Algorithm

follows. Assuming that the sample sets {wi
m,k−1, x

i
m,k−1}NP

i=1,m = 1 · · ·M , are approx-

imately distributed according to the corresponding marginal filtering distributions

at the previous time step pm(xm,k−1|z1:k−1),m = 1 · · ·M , the algorithm proceeds as

follows at the current time step.

Algorithm 3.1: Particle Filter Based JPDA Filter

1. For m = 1 · · ·M, i = 1 · · ·NP , generate predicted particles for the target states

x̂i
m,k ∼ qm(xm,k|xi

m,k−1, zk).

2. For m = 1 · · ·M , calculate x̃m,k, the pre-approximation of xm,k,

x̃m,k =
NP∑
i=1

wi
m,k−1x̂

i
m,k. (3.14)

3. Enumerate all the valid joint measurement to target association events to form

the set Λk.

4. For each λk ∈ Λk, compute the posterior probability of the joint association

event,

p(λk|z1:k) ∝ p(λk)(V )−NCk ·
NTk∏
j=1

p(zj,k|x̃λj,k,k). (3.15)

5. For m = 1 · · ·M, j = 1 · · ·Nk, compute the marginal association posterior prob-

ability βjm,

βjm = p(λm,k = j|z1:k) =
∑

{λk∈Λk : λm,k=j}
p(λk|z1:k). (3.16)

6. For m = 1 · · ·M, i = 1 · · ·NP , compute the target likelihood for each predicted

particle,

pm(zk|x̂i
m,k) = β0m +

Nk∑
j=1

βjmp(zj,k|x̂i
m,k). (3.17)

7. For m = 1 · · ·M, i = 1 · · ·NP , compute and normalize the particle weights,

wi
m,k ∝ wi

m,k−1

pm(zk|x̂i
m,k)pm(x̂i

m,k|xi
m,k−1)

qm(x̂i
m,k|xi

m,k−1,zk)
,

∑NP
i=1 wi

m,k = 1.
(3.18)

77



3.1 Particle Filter Based Multi-scan JPDA Algorithm

8. Resample the discrete distribution {wi
m,k : i = 1, · · · , NP}NP times to generate

particles {xj
m,k : j = 1, · · · , NP}, so that for any j, Pr{xj

m,k = x̂i
m,k} = wi

m,k.

Set the weights wi
m,k to 1

NP
, i = 1, ..., NP , and move to Stage 1.

The resulting sample sets {wi
m,k, x

i
m,k}NP

i=1,m = 1 · · ·M , are then approximately

distributed according to the corresponding marginal filtering distributions at the cur-

rent time step pm(xm,k|z1:k),m = 1 · · ·M .

3.1.3 Particle Filter Based Multi-scan JPDA Algorithm

The standard single scan JPDA algorithm updates a track with a weighted sum of

the measurements which could have reasonably originated from the target in track.

The only information the standard JPDA algorithm uses is the measurements on the

present scan and the state vectors.

If more scans of measurements are used, additional information is available re-

sulting in better computed probabilities. The best possible filter for a single target

in clutter (in the Bayesian point of view) is a weighted average of all combinations of

measurements form the initial to the present time [53]. The same idea holds true for

the multiple target case. If a tracking system could use all combinations of measure-

ments in a weighted average from the initiation of each track to the present scan, all

available information would be used to compute those weights and the best Bayesian

track could be produced. Use of all available information from the past to the present

is what the multiple hypothesis tracking (MHT) method tries to exploit. Most, if not

all, tracking system is unable to store all of the measurements from all the scans.

Therefore, a Bayesian tracking system can at best rely on a sliding window of scans.

This section extends single scan JPDA to multiple scan JPDA filter for a sliding

window of scans, both based on particle filter algorithm.

The multiple scan JPDA calculation examines multiple scan joint association

events. The measurement to target association event of multiple scan is defined

as λk−L+1:k, where L denotes the length of the multiple scan sliding window. λk−L+1:k
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is composed by the association vectors at each scan in the sliding window, λk−L+1:k =

(λk−L+1, λk−L+2, · · · , λk). The elements of the association vector at time step k,

λk = (λ1,k, · · · , λj,k, · · · , λNk,k) are given by,

λj,k =





0 IF measurement j

is due to clutter

m ∈ {1 · · ·M} IF measurement j

stems from target m.

(3.19)

The heart of the new algorithm is to find the posterior probability for the joint

association event of multiple scans. That is to calculate p(λk−L+1:k|z1:k) and it can

be written as,

p(λk−L+1:k|z1:k)

∝ p(zk · · · zk−L+1|λk−L+1:k, z1:k−L)p(λk−L+1:k|z1:k−L)

∝ p(zk · · · zk−L+1|λk−L+1:k, z1:k−L)p(λk−L+1:k),

(3.20)

where the conditioning of λk−L+1:k on the history of measurements before the sliding

window has been eliminated. The distribution of the measurements in the sliding

window based on a specific association event is given by,

p(zk · · · zk−L+1|λk−L+1:k, z1:k−L)

=
∏L

s=1[
∏Nk−L+s

j=1 p(zj,k−L+s|λk−L+1:k, z1:k−L)].
(3.21)

To reduce the notation, the index of the scan s in the sliding window is denoted by

ks = k − L + s. Then we obtain,

p(zk · · · zk−L+1|λk−L+1:k, z1:k−L)

=
∏L

s=1[
∏Nks

j=1 p(zj,ks|λk−L+1:k, z1:k−L)]

=
∏L

s=1[
∏

j∈I0,ks
pC(zj,ks) ·

∏NTks
j=1 p(zj,ks|xλj,ks ,ks)]

=
∏L

s=1[(V )−NCks ·∏NTks
j=1 p(zj,ks|xλj,ks ,ks)],

(3.22)

where,

p(zj,ks|xλj,ks ,ks) =





1 IF λj,ks = 0

p(zj,ks|xλj,ks ,ks) otherwise.
(3.23)
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The joint hypothesis association of multiple scan is obtained as,

p(λk−L+1:k|z1:k) ∝ p(λk−L+1:k)
∏L

s=1[(V )−NCks

·∏NTks
j=1 p(zj,ks|xλj,ks ,ks)].

(3.24)

Then the marginal measurement to target association posterior probabilities con-

sidering multiple scans can be computed according to (3.25).

βjm = p(λj,k = m|z1:k)

=
∑

{λk−L+1:k∈Λk−L+1:k : λj,k=m} p(λk−L+1:k|z1:k)
(3.25)

These approximations can, in turn, be used in (3.9) to approximate the target

likelihood. Finally, setting the new importance weights via (3.13), which leads to the

sample set {wi
m,k, x̂

i
m,k}NP

i=1 being approximately distributed according to the marginal

filtering distribution at the current time step pm(xm,k|z1:k).

A summary of the particle filter based multiple scan JPDA filter algorithm is

presented in what follows. Assuming that the sample sets {wi
m,k−1, x

i
m,k−1}NP

i=1,m =

1 · · ·M , are approximately distributed according to the corresponding marginal fil-

tering distributions at the previous time step pm(xm,k−1|z1:k−1),m = 1 · · ·M , the

algorithm proceeds as follows at the current time step.

Algorithm 3.2: Particle Filter Based Multi-scan JPDA Filter

1. For m = 1 · · ·M, i = 1 · · ·NP , generate predicted particles for the target states

x̂i
m,k ∼ qm(xm,k|xm,k−1, zk).

2. For m = 1 · · ·M , calculate x̃m,k, the pre-approximation of xm,k,

x̃m,k =
NP∑
i=1

wi
m,k−1x̂

i
m,k. (3.26)

3. Enumerate all the valid joint measurement to target association events in the

sliding window k − L + 1 : k to form the set Λk−L+1:k.
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4. For each λk−L+1:k ∈ Λk−L+1:k, compute the posterior probability of the joint

association event in multiple scan,

p(λk−L+1:k|z1:k) ∝ p(λk−L+1:k)
∏L

s=1[(V )−NCks

·∏NTks
j=1 p(zj,ks|xλj,ks ,ks)].

(3.27)

5. For m = 1 · · ·M, j = 1 · · ·Nk, compute the marginal association posterior prob-

ability,

βjm

= p(λj,k = m|z1:k)

=
∑

{λk−L+1:k∈Λk−L+1:k : λj,k=m} p(λk−L+1:k|z1:k).

(3.28)

6. For m = 1 · · ·M, i = 1 · · ·NP , compute the target likelihood,

pm(zk|x̂i
m,k) = β0m +

Nk∑
j=1

βjmp(zj,k|x̂i
m,k). (3.29)

7. For m = 1 · · ·M, i = 1 · · ·NP , compute and normalize the particle weights,

wi
m,k ∝ wi

m,k−1

pm(zk|x̂i
m,k)pm(x̂i

m,k|xi
m,k−1)

qm(x̂i
m,k|xi

m,k−1,zk)
,

∑NP
i=1 wi

m,k = 1.
(3.30)

8. Resample the discrete distribution {wi
m,k : i = 1, · · · , NP}NP times to generate

particles {xj
m,k : j = 1, · · · , NP}, so that for any j, Pr{xj

m,k = x̂i
m,k} = wi

m,k.

Set the weights wi
m,k to 1

NP
, i = 1, ..., NP , and move to Stage 1.

3.1.4 Simulation Results and Analysis

The simulation is carried out for tracking two slow-maneuvering targets in clutter.

The Wiener process acceleration model (2.79) is chosen as the motion model for the

two targets. The process noise vk−1 = [vpx, vvx, vax, vpy, vvy, vay]
T
k−1, is a zero mean

Guassian white noise process with standard deviations of 1 m (σvpx), 1 m/s (σvvx),

20 m/s2 (σvax), 1 m (σvpy), 1 m/s (σvvy) and 20 m/s2 (σvay).
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3.1 Particle Filter Based Multi-scan JPDA Algorithm

Target one starts at location [−310 310] in x− y Cartesian coordinates in meters

with the initial velocity (in m/s) [10 − 400]. Target two starts at location (in m)

[−310 −20310] with the initial velocity (in m/s) [10 400]. A track-while-scan (TWS)

radar is positioned at the origin of the plane, whose details are provided in Section

2.2.5.

The sampling interval is ∆T = 1s and it is assumed that the probability of

detection PD = 0.9 for the radar. For generating measurements in simulations, the

clutter is assumed uniformly distributed with density 1× 10−6/m2.

In the particle filter based multi-scan methods, each target model is assigned with

500 particles. The length of the multiple scan sliding window (L) is chosen as 3. The

algorithm is initialized with Gaussians around the initial states of the true targets.

The proposed method is compared with the standard JPDA filter and the particle

filter based single scan JPDA method on tracking multiple slow-maneuvering targets.

The simulation results are obtained from 100 Monte Carlo runs. Fig. 3.1 ∼ Fig. 3.3

show one realization respectively performed by the three methods. The RMSE in

position at each time step for the three methods are respectively shown in Fig. 3.4 ∼
Fig. 3.6. The performance of the three methods are also compared via global RMSE

(in position), executing time, tracking loss rate and swap rate, which are listed in

Table. 3.1.

Compared with the standard JPDA method (based on extended Kalman filter),

the particle filter based JPDA methods (single scan and multiple scan) are much more

accurate and robust, at the cost of longer computing time. This verifies that when

dealing with nonlinear problem (nonlinear observation equation) and large random

acceleration (large process noise), the performance of particle filter is better than

extended Kalman filter using local linearization. Compared to the particle filter

based single scan JPDA method, the particle filter based multi-scan JPDA method

provides better performance since the additional information of more scans improve

the association probabilities resulting in lower estimation errors (RMSE) and larger
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robustness (tracking loss rate).
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Figure 3.1: True and estimate trajectories of two targets using JPDA method

3.2 Multi-scan Mixture Particle Filter

As discussed in Section 1.4, most of the particle filter based multiple target tracking

methods (including the first four categories) use particles whose dimension is the

sum of those of the individual state space corresponding to each target. They suffer

from the curse of dimensionality problem since as the number of targets increases,

the size of the joint state-space increases exponentially. If care is not taken in the

design of proposal distributions an exponentially increasing number of particles may

be required to cover the support of the multi-target distribution and maintain a given

level of accuracy.

However, the fifth category based on mixture particle filter avoids the dimension

problem by exploring the particle filter’s ability to track multiple targets in a single-

target state space. The posterior distribution of the target state is a multi-mode
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Figure 3.2: True and estimate trajectories of two targets using particle filter based
single scan JPDA method
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Figure 3.3: True and estimate trajectories of two targets using particle filter based
multi-scan JPDA method
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Figure 3.4: RMSE in position using JPDA method
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Figure 3.5: RMSE in position using particle filter based single scan JPDA method
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Figure 3.6: RMSE in position using particle filter based multi-scan JPDA method

Table 3.1: Performance Comparison
RMSE (m) Executing

Time
(s)

Tracking
Loss
Rate

Swap
Rate

JPDA Method Target1: 59.5403, Target2:
74.8563

0.0758 24% 0

Particle Filter Based
Single Scan JPDA

Target1: 20.8201, Target2:
17.0738

1.2893 6% 0

Particle Filter Based
Multiple Scan JPDA

Target1: 10.0852, Target2:
10.3445

1.831 0 0
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distribution and each mode corresponds to either the target or the clutter. As pointed

out in [77], particle filters may perform poorly when the posterior distribution of the

target state is multi-mode in nature as a result of ambiguities and multiple targets

in single-target state space. To circumvent this problem, a mixture particle filter

method is introduced in [77], where each mode is modeled with an individual particle

filter that forms part of the mixture. The filters in the mixture interact only through

the computation of the importance weights. By distributing the resampling step to

individual filters, the well known problem of sample impoverishment is avoided, which

is largely responsible for loss of track.

However, for the algorithm reported in [77], it is difficult to handle the new target

appearance problem. In the initialization process of the algorithm, each mode is as-

signed with a particle filter and no new particle filters are incorporated to represent

the new modes occurred due to the appearance of new targets during the subsequent

tracking process. Moreover, the algorithm is utilized in a clutter-free environment.

Tracking in cluttered environment is tackled in [105], where a data association method

based on the assumption of the motion continuity is used to find the mode correspond-

ing to the true target. However, it is assumed that the number of targets is fixed and

known in [105], which cannot work when the number of targets varies.

In this thesis, a new algorithm named multi-scan mixture particle filter is proposed

to track varying number of targets in cluttered environment. In order to distinguish

the targets from the clutters, multiple scan information is incorporated. Moreover,

to track the newly appeared targets, a set of new particles are sampled from the

likelihood model (according to the most recent measurements) detecting the new

modes at each time step. When targets disappear, the modes corresponding to the

disappeared targets are assigned with small existence probabilities and are eliminated

via the decision process.

The rest of this section is organized as follows. The mixture particle filter algo-

rithm is introduced in Section 3.2.1. The proposed multi-scan mixture particle filter
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algorithm is presented in Section 3.2.2. Simulation results and analysis are provided

in Section 3.2.3.

3.2.1 Mixture Particle Filter

The mixture particle filter is utilized to deal with multiple target tracking problem

in [77]. The posterior distribution, p(xk|z1:k), is modeled as an M-component non-

parametric mixture model:

p(xk|z1:k) =
M∑

m=1

πm,kpm(xk|z1:k), (3.31)

where pm(xk|z1:k) is the filtering distribution for the mth component. The component

weight πm,k is computed from its previous weight and, the sum of the weights of the

particles belonging to the mth component,

πm,k =
πm,k−1W̃m,k∑M
n=1 πn,k−1W̃n,k

, (3.32)

where,

W̃m,k =
∑
i∈Im

w̃i
m, (3.33)

and, Im is the set of indices of the particles belonging to the mth component. w̃i
m is

the un-normalized importance weight of the ith particle in the mth component.

This means that the filtering recursion can be performed for each component

individually. Hence in mixture particle filter, each component is modeled with an

individual particle filter. The filters in the mixture interact only through the compu-

tation of the component weights. By distributing the resampling step to individual

filters, the multi-modal distribution is maintained during the propagation in time.

In [77], the mixture particle filter method is applied in a clutter-free environment.

At the end of the tracking process, all the final modes correspond to the targets.

However, it is difficult for the mixture particle filter to detect new targets that appear

during the tracking process.
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3.2.2 Multi-scan Mixture Particle Filter

3.2.2.1 Overview of the Proposed Algorithm

A flow diagram of the proposed tracking algorithm is shown in Fig 3.7. The tracking

process can be mainly divided into three parts: the initialization process, the normal

tracking process and the new mode detection process (Fig 3.7).

The initialization process is composed of Nini scans. Initially, NP particles are

sampled uniformly from the surveillance area. The importance weights of the parti-

cles are calculated at the end of the first scan and the particles are then resampled

according to their corresponding weights. The resampled particles are clustered to

different modes. Each mode is assigned with an individual particle filter. The exis-

tence probability of each mode, θm
k (m = 1, · · · ,M), is calculated. In the subsequent

scans in the initialization process, each mode is propagated based on the dynamic

model and θm
k (m = 1, · · · ,M) is calculated. At the end of the initialization process,

a decision is made based on θm
k (m = 1, · · · ,M, k = Nini): the mode with θm

k larger

than or equal to Ttarget is treated as target mode; the mode with θm
k less than or

equal to Tclutter is treated as clutter mode; while the mode with θm
k in the range

(Tclutter, Ttarget) is treated as tentative target mode. Ttarget and Tclutter are the thresh-

olds for the target and clutter detection respectively. The modes corresponding to the

clutters are eliminated, while the modes corresponding to the targets and tentative

targets are retained and propagated to the following scan.

In the subsequent normal tracking process, when the new measurements arrive

at time step k + 1, the modes from the previous scan (including target modes and

tentative target modes) are propagated according to the dynamic model to obtain

the predicted modes, and the existence probability of each predicted mode is calcu-

lated. The predicted modes and their associated existence probabilities are input to

a decision module (Fig. 3.8). After the decision process, the predicted modes are

classified into three kinds of modes: the target mode, the tentative target mode and
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clutter mode based on their associated existence probabilities.

In the new mode detection process, NP new particles are sampled from the likeli-

hood function including the current measurements. The new particles are resampled

according to their associated weights and the resampled particles are clustered to

obtain new modes, which are treated as tentative target modes and are returned for

the following time step iteration.

3.2.2.2 Calculation of the Existence Probability

The calculation of the existence probability for each mode is similar to the calcula-

tion of the component weight πm,k [77]. For each mode, its existence probability is

computed based on multi-scan information.

θm
k =

θm
k−1W̃m,k∑M

n=1 θn
k−1W̃n,k

(3.34)

W̃m,k =
∑
i∈Im

w̃i
m (3.35)

where Im is the set of indices of the particles belonging to the mth mode and w̃i
m is

the un-normalized importance weight of the ith particle in the mth mode.

3.2.2.3 Sampling from the Likelihood Function

The posterior distribution of the target state varies when tracking varying number of

targets. The number of modes of the posterior distribution may increase or decrease

due to the appearance or disappearance of targets. New features of the posterior

distribution are found during the tracking process. The standard particle filter based

on the traditional prior model sampling method can not cope with the new features,

since it provides no opportunity to generate new values for unknown quantities after

their initial generation. An additional procedure is needed to sample new particles

to adapt to the new features of the posterior distribution.
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Figure 3.7: Flow diagram of the proposed tracking algorithm
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3.2 Multi-scan Mixture Particle Filter

To adapt to the new features, samples are drawn according to the most recent

measurements. The key idea is to sample xi
k directly from the likelihood model,

q̄ = p(zk|xk). (3.36)

The method, which samples from the likelihood model, can be viewed as the logical

“inverse” of the prior model sampling method. Rather than forward-guessing and

then using the importance factors to adjust the likelihoods of hypothesis based on

measurements, the likelihood sampling method guesses “backwards” from the mea-

surements and adjusts the importance factors based on the belief p(xk−1|z1:k−1).

The importance weight of the sample xi
k that is sampled from q̄ can be written

as:

wi
k ∝ [p(zk|xk)]

−1p(zk|xi
k)p(xi

k|xi
k−1)p(xi

k−1|z1:k−1)

= p(xi
k|xi

k−1)p(xi
k−1|z1:k−1). (3.37)

Computing these importance weights is not trivial, since p(xk−1|z1:k−1) is represented

by a set of samples. The strategy here is to employ a two-staged approach that

first approximates p(xi
k|xi

k−1)p(xi
k−1|z1:k−1) and then use this approximate density to

calculate the desired importance weights. The following procedure implements this

importance sampler as shown in [5]:

(i) Generate a set of samples xi
k, first by sampling from p(xi

k−1|z1:k−1) and then sam-

pling from p(xi
k|xi

k−1). Obviously, these samples approximate p(xi
k|xi

k−1)p(xi
k−1|z1:k−1).

(ii) Transform the resulting samples set into a kd-tree [106, 107]. The tree generalizes

samples to arbitrary states, xi
k, in state space, which is necessary to calculate the

desired importance weights.

(iii) Lastly, sample xi
k from the proposal distribution p(zk|xi

k). Assign each sample

with an importance weight that is proportional to its probability under the previously

generated kd-tree.

Consequently, the likelihood sampling method possesses complimentary strengths

and weaknesses: while it is ideal for detecting the new features of the posterior
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3.2 Multi-scan Mixture Particle Filter

distribution, its performance is affected by high measurement noise.

3.2.3 Simulation Results and Analysis

The proposed multi-scan mixture particle filter algorithm is simulated to initiate

tracks, and track variable number of targets, handling the target appearance and

disappearance problems. In the process of initiating tracks, nothing is known about

the number of targets and their initial positions.

The target motion is modeled in Cartesian coordinates as,

Xk = ΦXk−1 + Γvk−1, (3.38)

Φ =




1 ∆T 0 0

0 1 0 0

0 0 1 ∆T

0 0 0 1




, (3.39)

Γ = I4×4, (3.40)

where Φ is the transition matrix and ∆T is the sample interval. Xk = [px, vx, py, vy]Tk

is the state vector; px and vx denote respectively the position and velocity of the

moving object along the x axis of Cartesian frame; and, py and vy along the y axis.

vk = [vpx, vvx, vpy, vvy]
T
k is the zero mean Guassian white noise process with covariance

Q : E[vk vT
j ] = Qδjk, where,

Q =




σ2
px 0 0 0

0 σ2
vx 0 0

0 0 σ2
py 0

0 0 0 σ2
vy




. (3.41)

A linear sensor is assumed with measurement equation,

Zk = HXk + nk, (3.42)

94



3.2 Multi-scan Mixture Particle Filter

where,

H =


 1 0 0 0

0 0 1 0


 . (3.43)

The measurement noise nk = [nz1 , vz2 ]
T
k is a zero mean Guassian white noise process

with variance R : E[nk nT
j ] = Rδkj, where,

R =


 σ2

z1
0

0 σ2
z2


 . (3.44)

A two-dimensional surveillance situation is considered. The area under surveil-

lance is 40 m long and 40 m wide. The false measurements satisfied a Poisson dis-

tribution with density 3 /m2. At the first time step of the simulation, one target

appeared at position (10 m, 5 m) with velocity (−2 m/s,−1 m/s), and another tar-

get appeared at position (−10 m, 5 m) with velocity (−2 m/s,−1 m/s). Both targets

maintained their velocities thereafter. At time step 25, the third target appeared at

position (−10 m,−5 m) with a constant velocity (2 m/s, 1 m/s). The third target

disappeared at time step 30. Each simulation consisted of 50 time steps.

3.2.3.1 Initiating Tracks

Initially, NP particles are sampled uniformly from the surveillance area (Fig. 3.9).

At the second scan, the particles are resampled according to their associated weights

and are clustered to different modes (Fig. 3.10). During the subsequent initialization

process, in each scan every mode is propagated based on the dynamic model and the

existence probability of every mode, θm
k ,m = 1, · · · ,M , is calculated. At the end of

the initialization process, the decision is made based on the existence probabilities of

the modes: the mode with θm
k larger than or equal to Ttarget is treated as target mode;

the mode with θm
k less than or equal to Tclutter is treated as clutter mode; while the

mode with θm
k in the range (Tclutter, Ttarget) is treated as tentative target mode. The

modes corresponding to the clutters are eliminated, while the modes corresponding
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3.2 Multi-scan Mixture Particle Filter

to the targets and tentative targets are retained and propagated to the subsequent

scan (Fig. 3.11).
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Figure 3.9: Initiating tracks (frame 1)

3.2.3.2 Detecting the Target Appearance

At time step 25, the third target appeared at position (−10 m,−5 m) with a constant

velocity (2 m/s, 1 m/s). NP new particles are sampled from the likelihood function

including the current measurements. The new particles are resampled according

to their associated weights and the resampled particles are clustered to obtain new

modes, which are treated as tentative target modes (Fig. 3.12). In the subsequent

scans, the existence probability of each mode is calculated based on the information

from the previous scans. At time step 28, the tentative target mode corresponding

to the third target is transferred to the true target, and the tentative target modes

corresponding to clutters are eliminated (Fig. 3.13).
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Figure 3.10: Initiating tracks (frame 2)
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Figure 3.11: Initiating tracks (frame 10)
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Figure 3.12: Detecting the target appearance (frame 25)
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Figure 3.13: Detecting the target appearance (frame 28)
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3.2.3.3 Detecting the Target Disappearance

The third target disappeared at the end of time step 44. In the subsequent scans, the

existence probability of the mode corresponding to the disappeared target is calcu-

lated based on the information from the previous scans. At time step 48, the mode

corresponding to the disappeared target is eliminated once its existence probability

falls below the threshold Tclutter (Fig. 3.14).
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Figure 3.14: Detecting the target disappearance (frame 48)

3.3 Conclusions

In this chapter, two different algorithms based on particle filter are presented for

multiple target tracking: the particle filter based multi-scan joint probabilistic data

association (MS-JPDA) filter and, the multi-scan mixture particle filter. In the MS-

JPDA filter, each of the tracking targets is assigned with a corresponding particle

filter. The distribution of interest is the marginal filtering distribution for each of
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the targets, which is approximated with particles. The MS-JPDA filter examines

the joint association hypothesis in a multi-scan sliding window and calculates the

posterior marginal probability based on the multi-scan joint association hypothesis.

Compared with the single scan JPDA methods, the multi-scan JPDA method uses

richer information, which results in better estimated probabilities.

The multi-scan mixture particle filter applies the particle filter method directly

in the multiple target tracking process and avoids the data association problem. The

posterior distribution of the target state is a multi-mode distribution and each mode

corresponds to either the target or the clutter. In order to distinguish the targets from

the clutters, multiple scan information is incorporated. Moreover, to deal with the

new target appearance problem, new particles are sampled from the likelihood model

(according to the most recent measurements) to detect the new modes appearing at

each time step.
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Chapter 4

Multiple Maneuvering Target

Tracking By Improved Particle

Filter Based on Multi-scan JPDA

4.1 Introduction

Target tracking is utilized widely in the area of weapon delivery systems, air defence,

ocean/battle field surveillance, air traffic control, and robotics. By far, the most

complicated case in target tracking is to track multiple maneuvering targets in heavy

clutter. This class of problem has received considerable attention in recent years.

Sequential Bayesian framework is the most commonly used framework for multiple

maneuvering target tracking applications in which the posterior distribution of the

target state is recursively estimated upon receipt of new observations in time. The im-

plementation of the sequential Bayesian framework to real world tracking applications

faces a few challenges. The state-space models are often nonlinear and non-Gaussian

so that no close-form analytic solutions can be obtained [108], [109]. Methods relying

on linear and Gaussian assumptions are susceptible to failure and collapse. Further-

more, a real world target may occasionally perform manoeuvring movements during
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its motion. A single fixed dynamical model for modeling the target motions is not

enough to represent this behavior. To address this issue multiple model approaches

are proposed to model highly maneuvering targets and the interacting multiple model

(IMM) algorithm [40], [41], [42] is the most popular one among them. Moreover, in

presence of clutter, some of the sensor measurements may not originate from the

target-of-interest. In this case one has to solve the problem of data association. An

effective approach in a Bayesian framework is that of probabilistic data association

(PDA) [53], [110] for a single target in clutter and that of joint probabilistic data

association (JPDA) [53], [111], [54] for multiple targets in clutter.

Recently, the IMM method, which is used to track highly maneuvering targets

and PDA/JPDA methods, which are used to solve data association problems, are

combined to tackle multiple maneuvering target tracking problems. In [112] the IMM

algorithm is combined with the PDA filter in a multiple sensor scenario proposing

a combined IMMPDA algorithm. In [113] multiple targets in clutter are considered

using JPDA filter which, unlike the PDA filter, accounts for the interference from

other targets. Various versions of IMMJPDA filters for multiple target tracking can be

found in [114], [104], [115], [116]. In [114], an IMMJPDA-Coupled filter is developed

for situations where the measurements of two targets are unresolved during periods

of close encounter. In [104], an IMMJPDA uncoupled fixed-lag smoothing algorithm

is developed with IMMJPDA uncoupled tracking as a special case. The fixed-lag

smoothing algorithm is developed by applying IMM approach and JPDA technique

to a state-augmented system. In [115], multi-scan information is incorporated in

JPDA to solve the data association problem during the multiple maneuvering target

tracking process. In [116], the JPDA and IMM algorithms are combined to tackle the

track coalescence problem during multiple target tracking process.
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Besides the IMMPDA/IMMJPDA algorithms, several different methods are pro-

posed to solve the multiple maneuvering target tracking problem. In [117], the proba-

bility hypothesis density (PHD) is applied to jointly detect and track multiple maneu-

vering targets. In [118], genetic algorithm is utilized to solve the multiple target data

association problem. In [119], a new MHT filter based on target existence probability

is introduced to track multiple maneuvering targets. The probability that a target

exists is estimated, and the estimate of the target kinematic state is subsequently

conditioned on target existence.

In the above methods, the data models are assumed Gaussian and weakly non-

linear, and the Kalman filter/extended Kalman filter (KF/EKF) is used to perform

target state estimation. However, the linear/linearized filter may not always be good

especially in conditions where the state or measurement equation is nonlinear and

the noises are non-Gaussian, for example, when the filter update is slow or the target

maneuver is large.

More recently, nonlinear filtering techniques have been gaining more attention.

The most common one among them is particle filter, a sampling based algorithm.

Particle filter, which uses sequential Monte Carlo methods for on-line learning within

a Bayesian framework, can be applied to any state-space models. Particle filter is

more suitable than Kalman filter and EKF when dealing with non-linear and non-

Gaussian estimation problems.

Moreover, in the above approaches multiple model methods are adopted to track

the highly maneuvering targets. The possible multiple motion models and transition

probability matrices are assumed as known. In practice, the dynamics is hard to

break up into several different motion models and the model transition probabilities

are difficult to obtain. A general model is needed to cope with the wide variety of

motions exhibited by a maneuvering target.

In this work the equivalent-noise approach [95], [96], [97] is adopted, which uses

one general model in maneuvering target tracking based on the assumption that
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the maneuver effect can be modeled by (part of) a white or colored noise process

sufficiently well. The statistics of the equivalent noise are non-stationary in general.

This fundamental assumption converts the problem of maneuvering target tracking

to that of state estimation in the presence of non-stationary process noise. Almost

all of the equivalent-noise approaches are limited to linear systems. In this work, the

equivalent-noise approach is extended to the nonlinear and non-Gaussian systems.

Particle filter methods are utilized to identify the non-stationary process noise.

The novelty of the proposed maneuvering target tracking method based on noise

identification is that the posterior distribution of the process noise is not parametri-

cally available and/or a priori fixed, but dynamically approximated using the particle

filter algorithm. The process noise is modeled as a dynamic system and the state

vector of the noise system is chosen as the noise vector. At the beginning of each

time step, a set of process noise samples are drawn from a uniform distribution,

which is noninformative and assumed as the prior distribution of the process noise

system. The process noise samples are evaluated by the likelihood function including

current measurements and are assigned with corresponding weights. The posterior

distribution of the process noise system is approximated by the process noise samples

and their associated weights. A new set of process noise samples are then generated

from the approximate posterior distribution of process noise at the resampling stage.

A standard particle filter for state estimation is then run using the new distributed

process noise samples.

To deal with the data association between the targets and the available observa-

tions from observers, the particle filter based multi-scan JPDA filter is adopted. In

the proposed approach, the distributions of interest are the marginal filtering distri-

butions for each of the targets, which is approximated with particles. The multi-scan

JPDA filter algorithm examines the joint association hypothesis in a multi-scan slid-

ing window and calculates the posterior marginal probability based on the multi-scan

joint association hypothesis. Compared with the single scan JPDA method, the

104



4.2 Multiple Maneuvering Target Tracking Algorithm

multi-scan JPDA method uses richer information, which results in better estimated

probabilities.

The proposed multiple maneuvering target tracking algorithm is a combination

of the process noise identification method for modeling highly maneuvering target

(introduced in Section 2.2), and the multi-scan JPDA algorithm for solving data

association problem (introduced in Section 3.1), in a particle filter framework. The

process noise identification process is effective in estimating both the maneuvering

movement and the random acceleration of the target, avoiding the use of complicated

multiple model approaches. The multi-scan JPDA is effective in maintaining the

tracks of multiple targets using multiple scan information. The proposed algorithm

is illustrated with an example involving tracking of two highly maneuvering, at times

closely spaced and crossed, targets.

The particle filter based process noise identification method for tracking highly

maneuvering target is introduced in Section 2.2. The data association method based

on multi-scan JPDA is discussed in Section 3.1. The proposed multiple maneuvering

target tracking algorithm, which is a combination of the above two algorithms, is

introduced in Section 4.2. The simulation results of tracking two highly maneuvering

targets are shown in Section 4.3. The conclusions are drawn in Section 4.4.

4.2 Multiple Maneuvering Target Tracking Algo-

rithm

The proposed multiple maneuvering target tracking algorithm is a combination of

the two methods proposed respectively in Section 2.2 and Section 3.1. The process

noise identification process is effective in estimating both the maneuvering movement

and the random acceleration of the target, while the multi-scan JPDA is effective

in maintaining the track of multiple targets using multiple scan information. In the

proposed multiple maneuvering target tracking algorithm, at the beginning of each
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time step, for each target model, the process noise identification method is used

to estimate the maneuvering movement with random acceleration using one general

model, then the particles of each target model are propagated to the next time step

based on the new distributed process noise samples to obtain the predicted particles.

In the update process, each predicated particle of one target model is assigned with

a weight based on the multi-scan JPDA process. The steps involved in the proposed

multiple maneuvering target tracking algorithm are listed in the following:

Algorithm 4.1: Multiple Maneuvering Target Tracking

1. At time step k − 1, for m = 1 · · ·M ,

(a) Draw process noise samples {v̂j
m,k−1 : j = 1, . . . , NP} from a uniform

distribution U(−d, d).

(b) Calculate the intermediate particles {µj
m,k : j = 1, · · · , NP} according to

(4.1),

µj
m,k = f(˜̃xm,k−1, v̂

j
m,k−1). (4.1)

(c) Calculate the process noise sample weights {iwj
m,k : j = 1, · · · , NP} as per

(4.2) and normalize each weight.

iwj
m,k = p(zk|µj

m,k). (4.2)

(d) Resample the discrete distribution {iwj
m,k : j = 1, · · · , NP}, NP times to

generate the new process noise samples {vi
m,k−1 : i = 1, · · · , NP}, so that

for any i, Pr{vi
m,k−1 = v̂j

m,k−1} = iwj
m,k. Set the weights iwj

m,k to 1
NP

,

i = 1, ..., NP .

(e) Obtain the predicted particles {x̂i
m,k : i = 1, · · ·NP} at time step k from

the new process noise samples as per (4.3),

x̂i
m,k = f(xi

m,k−1, v
i
m,k−1). (4.3)
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2. At time step k, for m = 1 · · ·M , calculate x̃m,k, the pre-approximation of xm,k,

x̃m,k =
NP∑
i=1

iwi
m,kx̂

i
m,k. (4.4)

3. Enumerate all the valid joint measurement to target association events in the

sliding window k − L + 1 : k to form the set Λk−L+1:k.

4. For each λk−L+1:k ∈ Λk−L+1:k, compute the posterior probability of the joint

association event of multiple scan,

p(λk−L+1:k|z1:k) ∝ p(λk−L+1:k)
∏L

s=1[(V )−NCks

·∏NTks
j=1 p(zj,ks|xλj,ks ,ks)].

(4.5)

5. For m = 1 · · ·M, j = 1 · · ·Nk, compute the marginal association posterior prob-

ability,

βjm

= p(λj,k = m|z1:k)

=
∑

{λk−L+1:k∈Λk−L+1:k : λj,k=m} p(λk−L+1:k|z1:k).

(4.6)

6. For m = 1 · · ·M, i = 1 · · ·NP , compute the target likelihood,

pm(zk|x̂i
m,k) = β0m +

Nk∑
j=1

βjmp(zj,k|x̂i
m,k). (4.7)

7. For m = 1 · · ·M, i = 1 · · ·NP , compute and normalize the particle weights,

wi
m,k ∝ wi

m,k−1

pm(zk|x̂i
m,k)pm(x̂i

m,k|xi
m,k−1)

qm(x̂i
m,k|xi

m,k−1,zk)
,

∑NP
i=1 wi

m,k = 1.
(4.8)

8. Calculate ˜̃xm,k, the estimate of the true state xm,k,

˜̃xm,k =
NP∑
i=1

wi
m,kx̂

i
m,k. (4.9)

9. Resample the discrete distribution {wi
m,k : i = 1, · · · , NP}NP times to generate

particles {xj
m,k : j = 1, · · · , NP}, so that for any j, Pr{xj

m,k = x̂i
m,k} = wi

m,k.

Set the weights wi
m,k to 1

NP
, i = 1, ..., NP , and move to Stage 1.
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Discussion

In contrast to (3.26), in (4.4) the pre-approximation of the true state, x̃m,k, is cal-

culated based on the weights of the process noise samples, {iwi
m,k : i = 1, · · · , NP},

and the predicted particles, {x̂i
m,k : i = 1, · · · , NP}. In Section 3.1, the targets are

assumed to perform nearly constant movements and the process noise of each tar-

get is assumed with known posterior distribution and small variance. The value of

the ith predicted particle x̂i
m,k does not change much compared with the ith particle

xi
m,k−1 from the previous time step. The predicted particles {x̂i

m,k : i = 1, · · · , NP}
could be assumed approximately distributed according to {wi

m,k−1 : i = 1, · · · , NP},
which leads to (3.26). However, in Section 4.2, the targets perform highly maneu-

vering movements and the equivalent process noise of each target is with unknown

distribution. x̂i
m,k and xi

m,k−1 differ largely. From Stage 1d, it can be seen that the

new process noise samples, {vi
m,k−1 : i = 1, · · · , NP}, are distributed according to

{iwi
m,k : i = 1, · · · , NP} and the predicted particles {x̂i

m,k : i = 1, · · · , NP} are ob-

tained form the new process noise samples (4.3). In (4.3), {xi
m,k−1 : i = 1, · · · , NP}

are less variable compared to the new process noise samples. It could be assumed

that {x̂i
m,k : i = 1, · · · , NP} are approximately distributed according to {iwi

m,k : i =

1, · · · , NP}. It can be concluded that in tracking maneuvering target condition, x̃m,k

calculated via (4.4) is closer to the true state than that via (3.26).

4.3 Simulation Results and Analysis

We now consider tracking two highly maneuvering targets in clutter. The true tra-

jectories and velocities of the targets are respectively shown in Fig. 4.1 and Fig. 4.2

in x−y plane. The distance between the two targets as a function of time is shown in

Fig. 4.3. Target one starts at location [−310 310] in Cartesian coordinates in meters

with the initial velocity (in m/s) [10 − 400]. Its trajectory is same with the example

trajectory proposed in Section 2.2.5. Target two starts at location [−310 − 20310]
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in Cartesian coordinates in meters with the initial velocity (in m/s) [10 400]. Its

trajectory is: a straight line with constant velocity between 0 and 17 s, a coordinated

turn (0.09rad/s) between 17 and 34 s, and a straight line constant velocity between

34 and 100 s.

A track-while-scan (TWS) radar is positioned at the origin of the plane (refer to

Section 2.2.5).

The sampling interval is ∆T = 1s and it is assumed that the probability of

detection PD = 0.9 for the radar. For generating measurements in simulations, the

clutter is assumed uniformly distributed with density 1× 10−6/m2.

In the proposed method, each target model is assigned with 1000 particles. The

length of the multiple scan sliding window (L) is chosen as 3. The bound of the process

noise (d), which accounts for the uncertain dynamics, is chosen as {20 m, 20 m/s,

10 m/s2, 20 m, 20 m/s, 10 m/s2}. The algorithm is initialized with Gaussians around

the initial states of the true targets.

A comparison to one of the IMMJPDA methods [104], is made in this work. The

details regarding the IMMJPDA method may be found in [104].

The simulation results are obtained from 100 Monte Carlo runs. Fig. 4.4∼ Fig.

4.6 and Fig. 4.7 ∼ Fig. 4.9 show one realization respectively performed by the

IMMJPDA filter and the proposed method. The RMSE (respectively in position and

velocity) at each time step for the two methods are shown in Fig. 4.10 ∼ Fig. 4.13.

The performance of the two methods are also compared via global RMSE (in position

and velocity), executing time, tracking loss rate and swap rate, which are listed in

Table. 4.1. Moreover, for the proposed algorithm, the influence of particle number in

its performance is studied and simulations are carried out based on different sample

sizes. The results are listed in Table 4.2.

The simulation results show that the proposed algorithm is more accurate and

robust than the popular IMMJPDA method, though it takes longer computing time.

However, both the algorithms are implemented using Matlab. The computing time is
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considerably reduced when coded in C++. For the proposed method, it takes about

0.8 second for one time step in C++. In the scene of simulation, at the period of

30 s ∼ 50 s, the two targets are very near to each other, which easily results in track

swap. In the IMMJPDA method, the judgement of which measurements belong to

which target depends on the information from current scan. If the measurements

from two targets are very close, it is hard to distinguish the different targets based

on the measurements from single scan, which leads to track swap. In the proposed

method, the information from several previous scans is combined with the information

from current scan to calculate the association probabilities. The decision of which

measurements belong to which target based on the information from multiple scans

will be more accurate than single scan method, which reduces the swap rate effectively.

From Table 4.2, it can be seen that when the number of particles is increased, the

performance of the proposed algorithm also increases. But when the number of

particles exceeds some threshold (1000), the increase in the performance slows down.

−0.5 0 0.5 1 1.5 2 2.5 3 3.5

x 10
4

−2.5

−2

−1.5

−1

−0.5

0

0.5

1
x 10

4

X position (m)

Y
 p

o
si

tio
n

 (
m

)

 

 
Target 1
Target 2

Figure 4.1: True trajectories of maneuvering targets
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Figure 4.3: Distance between the targets
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Figure 4.4: True and estimate trajectories of two maneuvering targets using IM-
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Figure 4.5: True and estimate velocities in X coordinate of two maneuvering targets
using IMMJPDA method
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Figure 4.6: True and estimate velocities in Y coordinate of two maneuvering targets
using IMMJPDA method
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Figure 4.7: True and estimate trajectories of two maneuvering targets using the
proposed method
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Figure 4.8: True and estimate velocities in X coordinate of two maneuvering targets
using the proposed method
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Figure 4.9: True and estimate velocities in Y coordinate of two maneuvering targets
using the proposed method
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Figure 4.10: RMSE in position using IMMJPDA method
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Figure 4.11: RMSE in velocity using IMMJPDA method
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Figure 4.12: RMSE in position using the proposed method
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Figure 4.13: RMSE in velocity using the proposed method
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Table 4.1: Performance Comparison

RMSE in Position
(m)

RMSE in Velocity
(m/s)

Executing
Time (s)

Tracking
Loss
Rate

Swap
Rate

IMMJPDA
Method

Target1: 26.5050,
Target2: 23.8984

Target1: 28.2778,
Target2: 23.4672

0.7565 10% 15%

Proposed
Method

Target1: 16.3363,
Target2: 20.9777

Target1: 20.2826,
Target2: 19.8747

4.095 0 5%

Table 4.2: Influence of Particle Number in the Performance of the Proposed Algorithm
for Tracking Multiple Maneuvering Target

Number of Particles RMSE in Position (m) Executing
Time (s)

Tracking
Loss
Rate

200 NA NA 100%
500 Target1: 18.4532, Target2: 22.671 2.9375 37%
1000 Target1: 16.3363, Target2: 20.9777 4.095 0
2000 Target1: 16.1285, Target2: 20.3747 20.2346 0
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4.4 Conclusions

A new algorithm is proposed for the multiple maneuvering target tracking in par-

ticle filter framework. In order to track a highly maneuvering target, the particle

filter based process noise identification method is proposed to estimate the equivalent

process noise induced by both the maneuvering and random acceleration. The process

noise is modeled as a dynamic system and the state vector of the noise system is chosen

as the noise vector. The posterior distribution of the target noise state is dynamically

approximated using the particle filter algorithm. Compared with the multiple model

based methods for maneuvering target tracking, only one general model is adopted

in the proposed method. In order to tackle the data association problem in multi-

ple maneuvering target tracking, the particle filter based multi-scan JPDA filter is

adopted. The marginal filtering distributions for each of the targets is approximated

with particles. The proposed algorithm examines the joint association hypothesis in

a multi-scan sliding window and calculates the marginal posterior probability based

on the multi-scan joint association hypothesis. Compared with the single scan JPDA

method, the multi-scan JPDA method uses richer information, which results in better

estimated probabilities.
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Chapter 5

A Random Object Tracking

System Based on Multi-sensor

Fusion

5.1 Introduction

The multi-sensor object tracking system has been widely used in different fields such

as surveillance, automated guidance systems, and robotics in general. As robots are

being deployed in everyday human environments, they have to perform increasingly

interactive navigational tasks, such as leading, following, intercepting and avoiding

obstacles. Object tracking has become an ubiquitous elementary task in the mobile

robot application.

Recently particle filter methods have become popular tools to solve the tracking

problem. The popularity stems from their simplicity, flexibility and ease of imple-

mentation, especially the ability to deal with non-linear and non-Gaussian estimation

problem, which is a challenging one in multi-sensor object tracking applications. Par-

ticle filter uses sequential Monte Carlo methods for on-line learning within a Bayesian

framework and can be applied to any state-space models. It represents the required
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posterior distribution by a scatter of particles which propagate through state space.

The propagation and adaptation rules are chosen so that the combined weight of

particles in a particular region approximates the integral of the posterior distribution

over that region. A detailed introduction to particle filter is available in [30].

One important advantage of the particle filter framework is that it allows the

information from different measurement sources to be fused in a general framework.

In the literature, there are two main research applications of particle filter in sensor

fusion: a) for sensor management [71], [120], [121] and b) for object tracking based

on fused information [122], [123], [124], [125], [65]. In [122], the particle filter and

support vector machine methods together provide a means of solving the distributed

data fusion problem within a Bayesian framework. In [123], particle filter is used to

provide a framework for integrating visual cues and maintain multiple hypotheses of

target location in 3D space. In [124], particle filter is used to track manoeuvring

targets in environments with clutter noise. The observation system is based on the

assumption that the system is linear and Guassian. In [125] and [65], particle filter

combined with Gibbs sampler is applied to track multiple moving objects. The targets

are assumed to move at nearly constant velocities.

In this work, a particle filter based tracker that fuses color and sonar cues in a

novel way is presented. More specifically, color is utilized as the main visual cue and

is fused with sonar localization cues. The generic objective is to track a randomly

moving object via the pan-tilt camera and sonar sensors installed on a mobile robot.

When moving randomly, the object’s position and velocity vary quickly and are hard

to track. This leads to serious sample impoverishment in particle filter and then the

tracking algorithm fails. An improved particle filter with a new resampling algorithm

is proposed to tackle this issue.

The proposed algorithm is implemented on a mobile robot, which is equipped with

pan-tilt camera and sonar sensors. The mobile robot continuously follows the object

with the help of the pan-tilt camera by keeping the object at the center of the image.
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The robot is capable of continuously tracking a human’s random movement at walking

rate. Several similar experiments are reported in [126] ,[127] and [128], where the first

two deals with the mobile robot tracking problem, and the last one deals with the

sensor fusion problem. [126] investigates visual head tracking and person following

with a mobile robot. It is mainly concerned with human head tracking by using skin

color cues inside and around simple silhouette shapes in the context of face. Since an

existing color histogram is used to model the skin color, the algorithm is unable to deal

with other moving objects with different colors and shapes. However, the proposed

algorithm can be applied to different color objects since the reference color model

is constructed during the tracking process through the automatic object detection

module. [127] describes one solution for the problem of pursuit of objects moving on

a plane by using a mobile robot and an active vision system. This approach deals with

the interaction of different control systems using visual feedback and it is accomplished

by the implementation of a visual gaze holding process interacting cooperatively with

the control of the trajectory of a mobile robot. [127] focuses on system integration

and controller design while choosing simple α − β tracker assuming that the target

has uniform acceleration. However, our method uses the particle filter based tracker

to tackle the random movement of the object. [128] presents a particle filter based

visual tracker that fuses three cues in a novel way: color, motion and sound. The

generic importance sampling mechanism is introduced for data fusion and applied for

fusing color either with stereo sound (for teleconferencing) or with motion cues (for

surveillance) using a still camera. However, the pan-tilt camera used in our work will

be more effective if it is used for teleconferencing or for surveillance: the surveillance

area could be expanded via the camera’s panning and tilting movements, and the

object of interest could always be centered within the image frame in teleconferencing.

The rest of this chapter is organized as follows. The sensor fusion tracker based

on particle filter is introduced in section 5.2. In Section 5.3, the improved resampling

algorithm is introduced. Experimental results on a mobile robot are provided in
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Section 5.4 and conclusions are drawn in Section 5.5.

5.2 Sensor Fusion Tracker

A tracker that fuses color and sonar cues is presented in Fig. 5.1. The inputs of the

sensor fusion system are the color cues extracted from sequence of captured images

and the sonar localization cues, obtained by measuring the distance between the robot

and the moving object. The color localization cues are used to locate the moving

object within the image plane. The color cues are represented via the dichromatic

r-g-b-color space (r = R
R+G+B

, g = G
R+G+B

, b = B
R+G+B

), which is independent from

variations in luminance. R, G and B denote the primary colors Red, Green and

Blue. For each pixel in the image, its RGB values are read from the captured image

frame. The r − g − b color cues are remarkably persistent and robust to changes in

pose and illumination. They are, however, more prone to ambiguity, especially if the

scene contains other objects characterized by a color distribution similar to that of

the object of interest. The sonar localization cues are very discriminant and can be

used to compensate for the color cues.

Both the color cues and the sonar cues are verified by the reference model dur-

ing the tracking process. The reference model is associated with the moving object

and presents some characteristics of it (color), which are obtained from the initial

automatic detection module introduced in Section 5.2.1.

The outputs of the sensor fusion system are the estimates of the object’s center

position and size in the image plane, and its distance to the mobile robot.

In the particle filter framework, the outputs of the sensor fusion system are chosen

as the state vector, and the reference model variables are chosen as the observation

variables. A likelihood model is constructed for each of the color cues. These models

are assumed mutually independent, considering that any correlation that may exist

between the color and distance of an object is likely to be weak.
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Reference Model

Sensor
Fusion
System

Distance between
object and robot

Object size in
the image

The position of the
object center
in the image

Color
cues

Sonar
cues

Figure 5.1: Sensor fusion system

5.2.1 Moving Object Detection Module

In this section, we describe the procedures of detecting a moving object through a

sequence of images taken by a stationary pan-tilt camera, and then obtaining the

reference model associated with the moving object.

Initially, the pan-tilt camera is kept stationary. Sequence of images taken by the

camera are transformed to gray images and processed by image differencing method.

The absolute value substraction (pixel by pixel) of two gray images respectively at

time step k + 1 and k generates the image of differences. Noises are reduced via

median filter in the differences image. If there is no moving object in the scene, the

intensity of each pixel in the differences image remains nearly constant in consecutive

frames. From frame to frame, the pixel intensity sum of the differences image vary

around a range of values. In the experiments conducted, 100 differences images are

used to estimate the range of the pixel intensity sum. The upper limit of the pixel

intensity sum is chosen as the threshold to detect the moving object, which is defined

as Tmoving. When the object begins moving, the two images captured just before and

after the beginning of the motion, will have large difference in their pixel intensity

distributions. So the resulted differences image will have a large pixel intensity sum,
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which will exceed the threshold Tmoving, resulting in the detection of the motion of

the object.

A labelling method is used in the differences image to connect the components.

The classic labelling method is used, which makes only two passes through the image,

but requires a large global table to record the equivalences. The moving object is then

identified by selecting the largest component in the differences image. Then in the

corresponding color image, the average colors of the pixels within the moving object

region, (rf , gf , bf ), are obtained and are used to compose the reference model. The

initial state vector is then generated which comprises of the initial object center, the

initial height and width of the moving object in the image plane, and the distance

between the robot and the moving object. Since 16 sonar sensors constitute a 360

degree description of the robot’s surroundings, it is possible to assign one sonar sensor

to a specific point in the image plane (explained in Section 5.4.2). Once the initial

object in the image is detected, the sonar sensor corresponding to that is identified

and the distance to the object is measured. The camera then pans and tilts to center

the moving object within the image plane.

The image differencing method is not suitable when the camera begins to move.

The tracking process based on particle filter is then initiated as described in Section

5.2.2.

5.2.2 Particle Filter Based Sensor Fusion Tracker

In the particle filter based tracking system, the state vector is chosen as χk =

[∆x, ∆y, h, l, d]Tk , where ∆x and ∆y are the x and y components of the distance

between the center of the moving object, {cxobj, cyobj}, and the center of the im-

age, {cximg, cyimg}, both in the image coordinate frame. h and l are the height and

width of the rectangle bounding box of the object in the image plane. d is the distance

between the robot and the moving object. k denotes time step k and T denotes trans-

pose. The NP particles are defined as {Si
k = [∆xi, ∆yi, hi, li, di]Tk , i = 1, · · · , NP},
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and each particle is corresponding to a candidate region in the image, which centers

at (cxi
obj, cy

i
obj), with hi and li as its height and width respectively. (cxi

obj k, cy
i
obj k)

can be obtained via (5.1) and (5.2),

cxi
obj k = ∆xi

k + cximg, (5.1)

cyi
obj k = ∆yi

k + cyimg. (5.2)

The candidate image region corresponding to the ith particle is defined as the ith

particle-object.

At each time step, the particle filter outputs the estimated state vector [∆̃x, ∆̃y, h̃,

l̃, d̃]Tk based on all the particles {Si
k = [∆xi, ∆yi, hi, li, di]Tk , i = 1, · · · , NP} and their

associated weights {wi
k, i = 1, · · · , NP} as per (5.3) ∼ (5.7).

∆̃xk = ΣNP
i=1∆xi

kw
i
k (5.3)

∆̃yk = ΣNP
i=1∆yi

kw
i
k (5.4)

h̃k = ΣNP
i=1h

i
kw

i
k (5.5)

l̃k = ΣNP
i=1l

i
kw

i
k (5.6)

d̃k = ΣNP
i=1d

i
kw

i
k (5.7)

The estimate of the center of the moving object in image coordinate frame is:

c̃xobj k = ∆̃xk + cximg, (5.8)

c̃yobj k = ∆̃yk + cyimg. (5.9)

According to [127], the pan angle, ∆θx, and tilting angle, ∆θy, at time k by which

the camera pans and tilts to center the object within the image is:

∆θx k =
c̃xobj k − cximg

Sxf
=

∆̃xk

Sxf
, (5.10)

∆θy k =
c̃yobj k − cyimg

Syf
=

∆̃yk

Syf
, (5.11)

125



5.2 Sensor Fusion Tracker

where Sx and Sy are the scale factors for the x and y-axes respectively, and f is

the camera focal length. At each time step, the particle filter output state variables,

(5.3) and (5.4), are the inputs to the pan-tilt camera controller, and there by, the

vision system and pan-tilt camera control system are integrated effectively. The

observation vector is defined as zk = [rf , gf , bf , df ]
T
k , where [rf , gf , bf ]

T
k is obtained

from the reference model and df k = d̃k−1. The value of df k is chosen considering

that the distance between the moving object and the robot do not change much

between two consecutive frames.

The tracking process based on particle filter begins with the initialization stage.

Particles are drawn around the initial state vector [∆x, ∆y, h, l, d]T0 , which is obtained

through the moving object detection procedure.

In the prediction stage, the particles are propagated through the dynamic model

χk = Φχk−1 + νk, where Φ is the transition matrix representing dynamic character-

istics of the randomly moving object and νk = [ν∆x, ν∆y, νh, νl, νd]
T
k is the zero mean

Gaussian white noise process with covariance Q : E[νk νT
j ] = Qδjk, where,

Q =




σ2
∆x 0 0 0 0

0 σ2
∆y 0 0 0

0 0 σ2
h 0 0

0 0 0 σ2
l 0

0 0 0 0 σ2
d




. (5.12)

σ∆x is the standard deviation associated with the ∆x component of the state vector

χ, and the similar definitions hold for the other standard deviations.

In the update stage, the likelihood models, respectively for the color cues and sonar

distance cues, are constructed and the weight of each particle is obtained through the

product of these two likelihoods.

The color cues likelihood model is constructed by comparing the average colors of

the pixels within the particle-object region with the color reference model (from the

observation vector). The smaller the discrepancy between the particle-object color
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and reference color model, the higher the probability for the particle-object being a

“true” object.

The color cues likelihood model for the ith particle-object is represented as:

pi
color k = p(rf k, gf k, bf k|r̄i

k, ḡ
i
k, b̄

i
k), (5.13)

where (r̄i
k, ḡ

i
k, b̄

i
k) are the average colors of the pixels within the ith particle-object.

The size of the moving object changes largely during tracking process. To tackle

this issue, a small Gaussian color model is placed around each pixel of the particle-

object, and the size of the particle-object is tailored based on the color evaluation of

pixels. The color of the jth pixel of ith particle-object at time k is represented as

(ri,j
p k, g

i,j
p k, b

i,j
p k). A weight wi,j

p k is assigned to the jth pixel of the ith particle-object

as:

wi,j
p k = N(|rf k − ri,j

p k|; 0, σ2
r) ·N(|gf k − gi,j

p k|; 0, σ2
g) ·N(|bf k − bi,j

p k|; 0, σ2
b ),

(5.14)

where, N represents the Gaussian distribution and, σ2
r , σ

2
g and σ2

b represent respec-

tively the variances of the ri,j
p k, g

i,j
p k and bi,j

p k variables. Using the general variance

calculation method [129], σ2
r , σ

2
g and σ2

b are calculated based on the pixels within the

initial object region in the color image (Section 5.2.1).

From (5.14), it is observed that wi,j
p k is always positive and the smaller the dis-

crepancy between the candidate pixel color and reference color models, the larger the

wi,j
p k is. A threshold Tpixel is set to sort the pixels: the pixels with weights larger than

Tpixel are retained as “true” pixels and others are eliminated. The choice of Tpixel is a

compromise: too large a value would lead to the loss of “true” pixels while too small

a value would misunderstand “wrong” pixels as “true” pixels. In this experiment,

Tpixel is chosen experimentally and is set as 0.5. The remaining pixels with weights

larger than Tpixel are labeled and bounded by a rectangular box, with (hi
k, l

i
k) being

replaced by the size of the ith tailored particle-object.

The tailored particle-objects are sorted based on their sizes in comparison to the

estimated size (h̃k−1, l̃k−1) from the previous time step assuming that the object sizes
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do not change much between two consecutive frames.





ith particle-object is retained IF |hi
k − h̃k−1| < T∆h AND |lik − l̃k−1| < T∆l,

ith particle-object is eliminated Otherwise,

(5.15)

where T∆h and T∆l are the thresholds for the object size difference between two

consecutive frames. The values of of T∆h and T∆l are set experimentally (5.16).





T∆h = 0.1 ∗ h̃k−1

T∆l = 0.1 ∗ l̃k−1

(5.16)

The color cues likelihood model can then be represented as:

pi
color k =





1
M i

p k

∑M i
p k

j=1 wi,j
p k IF ith particle-object is retained,

0 IF ith particle-object is eliminated,
(5.17)

where, M i
p k is the number of remaining pixels of the retained ith particle-object at

time step k. The pi
color k of the eliminated particle-objects are set to zeros, which

reduces the number of particles effectively.

The sonar distance cues likelihood model is represented as:

pi
distance k = N(|df k − di

k|; 0, σ2
d), (5.18)

where df k is obtained from the observation vector, di
k is the distance between the

robot and the ith particle-object, and, σ2
d is the variance of the distance variable di

k.

The weight of the ith particle at time k is obtained through the product of the

two likelihoods based on the assumption that the two likelihood models are mutually

independent.

wi
k = pi

color k · pi
distance k (5.19)

The resulted weight of each particle is normalized as,

wi
k =

wi
k∑NP

i=1 wi
k

. (5.20)
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The state vector is estimated based on the particles and associated weights via

(5.3) ∼ (5.7).

The above initialization, prediction and update stages form a single iteration of

the recursive algorithm. However, after a few iterations, degeneracy problem occurs,

where all but one particle have negligible weights. It is shown in [130] that the variance

of the importance weights can only increase over time, and thus it is impossible to

avoid the degeneracy phenomenon. Resampling is a common method to reduce the

effects of degeneracy. It eliminates particles that have smaller weights and duplicates

particles with larger weights many times thus reducing the computation burden. The

following resampling stage is added to reduce the degeneracy problem:

Algorithm 5.1: Resampling Algorithm

[{Ŝj
k, w

j
k}NP

j=1] = RESAMPLING[{Si
k, w

i
k}NP

i=1]

• Calculate Meff , Meff = 1PNP
i=1(wi

k)2

• IF Meff < Tdegeneracy

– resample the discrete distribution {wi
k : i = 1, · · · , NP} NP times to

generate particles {Ŝj
k : j = 1, · · · , NP}, so that for any j, Pr{Ŝj

k = Si
k} =

wi
k.

– All the new particles are assigned with the same weight 1
NP

.

• ELSE

– Ŝi
k = Si

k, i = 1, · · · , NP

• END IF

• Move to the prediction stage.

Meff is the effective sample size, which is used to evaluate degeneracy with small Meff

indicating severe degeneracy. Whenever significant degeneracy is observed (when

Meff falls below the threshold Tdegeneracy), the resampling stage is used to reduce
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the effects of degeneracy. Tdegeneracy is used as an indication of the occurrence of

the degeneracy. Too large Tdegeneracy induces unnecessary resampling steps which will

reduce the number of distinctive particles and introduce extra Monte Carlo variation.

Too small Tdegeneracy will miss onset of degeneracy.

Although the resampling step reduces the effects of the degeneracy problem, it

introduces other practical problems. The particles that have high weights are sta-

tistically selected many times. This leads to loss of diversity among the particles

as the resultant samples will contain many repeated points which results in sample

impoverishment. Sample impoverishment leads to failure in tracking since less di-

verse particles are used to represent the uncertain dynamics of the moving object.

Especially when tracking a randomly moving object, whose position, velocity and

acceleration vary quickly, sample impoverishment becomes very serious (all particles

collapse to a single point within a few iterations) and then the tracking algorithm fails.

An improved particle filter with a new resampling algorithm is proposed to tackle this

issue. After the traditional resampling procedure, an adaptive diversing procedure is

added to draw new particles from the neighborhoods of the focused particles, which

enriches the diversity of particles.

5.3 Improved Resampling Algorithm

According to Bayesian theory, the prior distribution of parameters, on which there

is no information, could be considered as a uniform distribution. In the diversing

procedure, the new particles are assumed uniformly distributed in the neighborhoods

of the previous resampled particles and are sampled from U(χi:l
k −α ·σχl , χi:l

k +α ·σχl),

where σχl is the standard deviation of the lth state variable in the state vector. α

determines the size of the sampling region and is adapted to 1/Meff in (5.21),

α =
K

Meff

, (5.21)
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where K is a constant tuning parameter. It can be seen from (5.21) that the smaller

the Meff is, the larger the sampling area size will be. When the resampled particles

are more focused and in the subsequent diversing procedure the sampling region is

expanded to obtain more “diverse” particles. In this work, K is set to 1
10

NP . Clearly

the choice of K is a compromise: too large a value blurs the posterior distribution

and too small a value produces tight clusters of points around the original samples.

Fig. 5.2 shows sample impoverishment in the traditional resampling method, while

in the improved resampling method, as shown in Fig. 5.3, the particle distribution

area is expanded at each time step and sample impoverishment is eliminated.

The steps involved in the improved resampling algorithm is provided in what

follows. When the effective sample size Meff is less than Tdegeneracy, the particles

with smaller weights are eliminated and, those with larger weights are retained and

duplicated as in traditional resampling. All the resulting particles are assigned with

the same weight 1
NP

. In the subsequent diversing step, new particles are drawn

from the neighborhoods of the previously resampled particles based on a uniform

distribution.

The new resampling algorithm reduces sample impoverishment introduced by the

traditional resampling method effectively and it obtains good results in the application

of tracking a randomly moving object (Section 5.4).

k k+1

Before

resampling

After

resampling

Prediction

stage

Single predicted particle

Region of true particles

Figure 5.2: Traditional resampling method
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Figure 5.3: Improved resampling method

5.4 Experimental Results

5.4.1 Physical Structure of the Mobile Robot

The proposed system is implemented on a Magellan Pro robot. Magellan Pro mobile

robot is part of iRobot’s Research Robot indoor family, cylindrical in shape with a

height of 25.4 cm and diameter of 40.6 cm. It is designed with a dense IR and sonar

sensor coverage, thus offering a 360o-view of the robot’s surroundings. The robot

also has an on-board PC (Pentium II) with Red Hat Linux 6.2 and Mobility software

installed. In this project, a camera and video capture card are used to extend the

perceptual capabilities of the robot.

The visual system consists of the Hauppage frame grabber with a BT878 chip set

and the Sony EVI-D30 pan-tilt camera. The video interface is v4l, Video for Linux.

Communication with the robot is done using the BreezeCom BreezeNet PRO 1.1

wireless LAN device.
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5.4.2 3-D Geometry Relationship of the Mobile Robot Sys-

tem

Since the 16 sonar sensors constitute a 360 degree description of the robot’s surround-

ings, it is possible to assign one sonar sensor to a specific point in the image plane.

The sonar sensor corresponding to the ith particle-object in the image plane can then

be decided. In Fig. 5.4, the camera image plane is perpendicular to the top plane

of the robot. The projection of the image center R on the robot top plane coincides

with R′, the center of the robot top plane. The image point Pi is the center of the

ith particle-object. ∆xi is the x component of the distance between Pi and the image

plane center R. To find the relation between a two-dimensional (2-D) point in the

image plane with its corresponding 3-D point in space, a perspective model is used.

The perspective model consists of the image plane, the focus of projection O and the

optical axis Oa3, which goes through the image plane center R. |OR| is the focal

length. The 3-D point Po corresponding to image point Pi must lie on the projec-

tion line OPi. To simplify the derivation, the lines and points in the 3-D space are

projected on to the robot top plane. Points in the robot top plane, O′, P ′
i , R

′, P ′
o and

a′3 are respectively the projection points of the 3-D points O, Pi, R, Po and a3 (Fig.

5.4). Fig. 5.5 is the top view of the robot top plane with a1 and a2 as the vertical

and horizontal axes. In the robot top plane, the angles defined in clockwise direction

with respect to a1 are positive.

In Fig. 5.5, when the camera is in the original position, the image plane projection

(bold dash line) coincides with a2 and, O′a′3 coincides with a1. For instance, consider

the situation when the camera has panned by an angle A (the angle between a1

and O′a′3). The sonar sensor which faces the object with its central axis passing

through the center of the object, receives strong reflection signal and reports the

correct distance. On the 2-D robot top plane, the sonar with its central axis projection

(the line connecting the projection of sonar sensor center and R′) nearest to the

object’s center projection P ′
o, corresponds to the object. The corresponding sonar

133



5.4 Experimental Results

sensor is identified by comparing the angle (D′) (between the line R′P ′
o and axis

a1) with the 16 sonar sensor angles and finding the one with the minimum angle

difference. The sonar sensor angle is defined as the angle between the sonar central

axis projection and axis a1 (ie. the angle C in Fig. 5.5). Since the exact position

of the 3-D point Po is not known, its projection point P ′
o is not known. Angle D′ is

then approximately estimated. In Fig. 5.5, D′ = D + ∠R′P ′
oJ , where D is the angle

between line O′P ′
i and axis a1. In the triangle R′O′P ′

i , |O′R′| = f and |R′P ′
i | = |∆xi|,

which are far smaller in size compared to the distance |R′P ′
o|, and as a result |R′J | is

much smaller than |R′P ′
o| and |JP ′

o|. It is then reasonable to assume that ∠R′P ′
oJ ≈ 0,

and D′ ≈ D. In Fig.5.5, D = A + B, where B is the angle between line O′P ′
i and

axis O′a′3. B can be estimated via the pan angle ∆θi
x k for the ith particle-object as,

B = ∆θi
x k =

cxi
obj k − cximg

Sxf
=

∆xi
k

Sxf
. (5.22)

Figure 5.4: Geometry relationship in 3-D space
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Figure 5.5: Top view of the robot
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5.4.3 Logic Architecture of the Mobile Robot Tracking Sys-

tem

The logic architecture of the proposed system is shown in Fig. 5.6. Sequence of

images taken by the pan-tilt camera are input to the moving object detection module

to obtain the reference model and the initial state vector. The color cues extracted

from the raw images and, the distance cues from sonar sensors and the reference model

are input to the sensor fusion system. The outputs of the sensor fusion system, the

estimated x and y components of the distance between the object-center and the

image-center, and the estimated distance between the robot and the moving object,

are passed on to the camera controller and robot trajectory controller respectively.

The camera controller controls the pan-tilt camera to center the object in the image

plane. The trajectory controller commands the robot to follow the moving object,

maintaining the distance and orientation of the robot towards the target.

5.4.4 Experimental Results and Analysis

The experimental parameters are listed in Table 5.1.

The experiments, in which the mobile robot tracks a randomly moving person,

are carried out in a laboratory environment. The experimental results are shown in

Fig. 5.7 ∼ Fig. 5.10. The red crosses denote centers of particle-objects and the

blue dot denotes the estimated center of the object. The white rectangle denotes the

estimated size of the object. Fig. 5.7 shows the tracking result using the traditional

resampling method. In frames 1 to 4, particles are distributed around the center of

the image when the tracked objects (human legs) are in the middle of the image.

When the legs move to the left in frame 5, most of the particles could not follow

the object and are eliminated through traditional resampling method, which leads to

dramatic decrease in particle number (frame 6). In frame 7, only three particles are
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Table 5.1: Simulation parameters

Simulation Parameter Value
Number of particles: NP 30
Diameter of the robot’s top plane 40.6 cm
Maximum detecting range of sonar 3 m
Maximum panning angle (speed)
and tilting angle (speed) ±100 deg(80 deg/s),±25 deg(50 deg/s)
Focus length of camera: f 5.4 mm
Width and height of image sensor 4.8 mm and 3.6 mm
Width and height of image plane 160 pixel and 120 pixel
Scale factors: Sx and Sy 23.622 and 23.622
Frame grabber rate 25 frame/s
Time interval between two consecutive
frames after image processing: ∆T 1

20
s

Threshold Tmoving 3000
Threshold Tpixel 0.5

Threshold T∆h and T∆l 0.1 ∗ h̃k−1 and 0.1 ∗ l̃k−1

Variances of the ri,j
p k, g

i,j
p k and bi,j

p k

variables: σ2
r , σ2

g , σ2
b 0.01, 0.01, 0.01

Variance of the distance variable: σ2
d 0.1

Tuning parameter: K 1
10

NP
Variance matrix of process noise: Q diag{5 5 10 10 0.1}
Threshold Tdegeneracy 3
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Figure 5.6: Architecture of the robot tracking system

left. Tracking process fails in frame 8 due to sample impoverishment. Fig. 5.8 shows

the tracking result using the proposed resampling method. When the legs move to

the left (frames 1 and 2), most of the particles could not follow the object (frame 2).

The proposed resampling method utilized the adaptive diversing procedure to draw

new particles from the neighborhoods of the previously focused resampled particles

approximating the posterior distribution of the target state. In frame 3, the particle

number increases and particles focus on the tracked object region. Similarly, when

the legs move to the right quickly from frame 4 to frame 6, the particles follow the

object’s movement quickly and smoothly. Fig. 5.9 shows a sequence of interesting

images obtained when the mobile robot follows a person who performs the following

movements: crouches to pick up a box in the floor, stands up and walks towards

a desk, and puts the box on the desktop. The robot watches the movements and

approaches the person. In Fig. 5.9 the size of the tracked object varies largely from

frame to frame, while the blue dot is always on the tracked object as the pan-tilt

camera is able to lock the object successfully. In Fig. 5.10 after a full occlusion, the

tracker recovers fast.
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Figure 5.7: Tracking result using traditional resampling method

Figure 5.8: Tracking result using new resampling method
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Figure 5.9: Tracking result with random movement
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Figure 5.10: Tracking result with full occlusion

5.4.5 Upper Velocity Estimation

The above experiments are carried out when the person moves at normal walking

speed. When the object moves faster, tracking fails as the object falls out of the

camera’s field of view. Though the camera can pan and tilt to center the object, due to

the response time-limit of the camera, it is required that the moving object should be

present in two consecutive image frames even if the camera is stationary. The motion

of the object along a direction perpendicular to the optical axis of the camera is the

fastest way an object can leave out the camera’s field of view. To guarantee that the

object appears in two consecutive image frames, the object’s position difference along

the direction perpendicular to the optical axis of the camera during two consecutive

frames can not exceed the width of the camera’s field of view.

According to the general optics theory,

Hi

Ho

=
Di

Do

, (5.23)

where Hi and Ho respectively represent the sizes of the object in the image frame and
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the real object. Di denotes the distance from the image plane to the rear principle

plane of the lens. Do denotes the distance from the object plane to the front principle

plane of the lens. When Hi is chosen as the width of the image plane Wi, the

corresponding Ho will be the width of the field of view, WFOV , given some specified

distance Do.

WFOV =
Do

Di

Wi (5.24)

The upper velocity limit Vupper of a moving object that can be tracked is obtained

through (5.25),

Vupper =
WFOV

∆T
=

DoWi

Di∆T
=

0.5 m× 4.8 mm

3 cm× 1
20

s−1
= 1.6 m/s, (5.25)

where ∆T is the time interval between two consecutive frames after the image process-

ing. In the experiment, Do is the distance kept between the robot and the moving

object and is chosen approximately as 0.5 m. Since the exact value of Di is not known,

it is approximated to 3 cm. To increase the upper velocity limit of the moving ob-

ject, improvements in hardware, by increasing the computing power of the onboard

computer and by reducing the response time of the pan-tilt camera can be considered.

5.5 Conclusions

In this chapter, a real-time algorithm to track a randomly moving object based on

information received from multiple sensors is proposed in the particle filter framework.

A new resampling algorithm is proposed to tackle sample impoverishment. After the

traditional resampling procedure, an adaptive diversing procedure is added to draw

new particles from the neighborhoods of the focused particles, which enriches the

diversity of particles. The particle filter with the new resampling algorithm is able to

track a randomly moving object. A mobile robot real-time tracking system, composed

of vision, sensor fusion and control subsystems, is used to verify the effectiveness

of the proposed algorithm. The experimental results show the capabilities of the
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mobile robot to continuously and smoothly follow a randomly moving object (a human

subject) at a reasonable walking rate.
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Chapter 6

Summary and Proposals

This chapter consists of two major portions, namely, summary of the works in Section

6.1 and some proposals for future works in Section 6.2.

6.1 Summary of the Works

In this thesis, effective particle filter based methods have been developed for tar-

get tracking applications, which include single maneuvering target tracking, multiple

target tracking and multiple maneuvering target tracking. Furthermore, a real-time

target tracking system based on multi-sensor fusion is implemented on a mobile plat-

form, the Magellan robot.

Firstly, two different methods, MCMC based particle filter and process noise

estimation based particle filter, are proposed to tackle the maneuvering target tracking

problem.

In the MCMC based particle filter method, the maneuvering movements are

tracked through moving the particles towards the target posterior distribution via

Markov chain Monte Carlo (MCMC) sampling. Two new sampling methods are

adopted to speed up the MCMC convergence rate: the adaptive MCMC sampling

and the interacting MCMC sampling. The proposed adaptive MCMC based particle
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filter method, which is the combination of the adaptive Metropolis (AM) method and

the importance sampling method, tackles the real-time tracking problem effectively.

As for the interacting MCMC based particle filter method, the importance sampling is

replaced with interacting MCMC sampling, which avoids the sample impoverishment

while accelerating the MCMC convergence rate.

The second method deals with the maneuvering target tracking problem using the

equivalent-noise method, in which the maneuvering effect is modeled by (part of) a

white or colored noise process. The proposed method focuses on the identification of

the equivalent process noise: the process noise is modeled as a dynamic system and

a sampling based algorithm is proposed in the particle filter framework to deal with

process noise identification problem.

Secondly, two different algorithms are presented for multiple target tracking

problem. The first algorithm is named the particle filter based multi-scan joint prob-

abilistic data association (MS-JPDA) filter and is an extension of the single scan

JPDA methods. In contrast to the single scan JPDA methods, the proposed multi-

scan JPDA method examines the joint association hypothesis in a multi-scan sliding

window and calculates the posterior marginal probability based on the multi-scan

joint association hypothesis. The multi-scan JPDA method uses more scans of mea-

surements with more information, which results in better computed probabilities.

The second algorithm, named multi-scan mixture particle filter, applies the parti-

cle filter algorithm directly in the multiple target tracking process and avoids the data

association problem. The posterior distribution of target state is a multi-mode distri-

bution and each mode corresponds to either a target or clutter. In order to distinguish

the targets from the clutters, multi-scan information is incorporated. Moreover, to

deal with the new target appearance problem, a set of new particles are sampled from

the likelihood model (according to the most recent measurements) to detect the new

modes appeared at each time step.

Thirdly, a new algorithm is proposed to cope with the multiple maneuvering
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target tracking problem, which is the combination of the process noise identification

method for modeling highly maneuvering target, and the multi-scan JPDA algorithm

for solving data association problem, in a particle filter framework. The process noise

identification process is effective in estimating both the maneuvering movement and

the random acceleration of the target, avoiding the use of complicated multiple model

approaches. The multi-scan JPDA is effective in maintaining the tracks of multiple

targets using multiple scan information.

Finally, a target tracking system based on multi-sensor fusion is implemented

on a mobile robot. Experiments are carried out to verify the proposed adaptive

resampling algorithm. The experimental results show that the robot is capable of

continuously tracking a human’s random movement at walking rate.

6.2 Further Research

Implementation of multiple object tracking system based on multi-sensor fusion using

mobile robot is a natural extension of the work. Some research topics are proposed

for the implementation of the multiple object tracking system:

1. Data association method. The key problem in multiple target tracking is the

data association problem. The particle filter based multi-scan JPDA algorithm

(proposed in Section 3.1) can be adopted to solve the data association problem,

in which each of the tracking targets is assigned with a corresponding particle

filter. The distribution of interest is the marginal filtering distribution for each

of the targets, which is approximated with particles. Compared with the single

scan JPDA methods, the multi-scan JPDA method uses richer information,

which results in better estimated probabilities. However, for the multi-scan

JPDA filter, examining the joint association hypothesis in a multi-scan sliding

window and calculating the posterior marginal probability based on the multi-

scan joint association hypothesis are very complex and time-consuming work.
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A hypothesis reduction method should be utilized to speed up the algorithm to

keep up with the real-time tracking process.

2. State estimation method. The proposed particle filter method with the new

adaptive resampling algorithm (in Section 5.3) is considered to deal with the

problem of tracking multiple objects’ random movements.

3. Design of the control system. The hierarchical control system can be adopted to

establish tracking process using different degrees of freedom on the vision system

and the movement of the mobile robot. Since the inertia of the mobile robot is

greater than the camera inertia, this type of control simulates a control system

with different levels. The inmost level comprises pan-tilt camera, responsible for

tracking the target in real-time. This sub-system controls the camera’s position

to maintain the visual system fixed on the target. At the outmost level is the

mobile robot sub-system that provides the compensation for the orientation of

the vision system and also controls the orientation and distance to the target.

4. Integrated system implementation. The integrated system is based on the co-

operation between different control systems and sensor systems. It deals with

the interaction of different control systems using visual feedback and it can be

accomplished by the implementation of a visual gaze holding process interact-

ing cooperatively with the control of the trajectory of a mobile robot. These

two systems are integrated to follow a moving object at constant distance and

orientation with respect to the mobile robot. The orientation and the position

of the vision system running a gaze holding process give the feedback signals

to the control system that tracks the target in real-time. The visual fixation,

visual smooth pursuit, navigation using visual feedback and compensation for

system’s movements can be concerned in the future work.
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