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Summary

Rapid development of nano-fabrication technologies has enabled manipulations and

applications at the scaling regime between nano-meters to micro-meters. For these

many applications, such as ultra high density magnetic recording and Brownian

motors, the effect from thermal fluctuations thus becomes significant and there-

fore requires better understanding of its stochastic behaviors. In many complex

systems under considerations however, neither analytical nor numerical solutions

to the stochastic differential equations (Langevin equations) are both obvious and

efficient.

In this thesis, a systematic approach using the random walk Monte Carlo method

is proposed to solve the Langevin dynamics and the corresponding Fokker-Planck

equations. The theoretical basis for the Monte Carlo approach is first established

by examining the equivalence between the Monte Carlo method and the Langevin

equations. This equivalence can be verified via either comparing the coefficients for

the corresponding Fokker-Planck equations, or using the Central Limit theorem.

By applying the Monte Carlo analysis, non-equilibrium transport in Brownian

viii



Summary ix

ratchets can be simplified into random walks within a site chain with two ab-

sorbing boundaries. Analytical expressions for the probability current is obtained

by applying the evolutionary techniques in the Gambler’s ruin problem. A faster

numerical solver for the ratchets current is also proposed.

Extensions of the Monte Carlo model to multi-dimensional systems, especially the

micromagnetic model, are also discussed. A proper algorithm is implemented in

the Monte Carlo model to represent the precessional motion and damping motion

respectively. The Monte Carlo algorithm has comparable improvement In addition,

it has a distinct advantage to identify the role of the precessional motion in the

micromagentic models.
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Chapter 1
Introduction

Thermally activated dynamics pertains to the dynamical behavior of a system in a

finite temperature environment. These thermally activated dynamics, which gen-

erally involve randomness, have intrigued researchers in diverse fields, including

physics [1], chemistry [2], economics and finance research [3, 4]. This is typi-

cally due to the fact that the thermal associated stochastic processes, especially

the Brownian particle model, emerge naturally in these many fields. This thesis

will focus on the stochastic theories for modeling thermally activated dynamics,

establishing links between the different theoretical models and exploring their ap-

plications in actual physical systems.

1.1 Overview of Brownian Motion

The classic thermally activated dynamics is the Brownian motion, named after

the Scottish botanist R. Brown, who in 1827 first discovered and described the

Brownian motion related to the irregular movements of pollen particles suspended

in a solvent. We refer to Gouy [5], who systematically analyzed the characteristics

of the Brownian motion. Gouy’s result can be summarized as follows [1, 5]:

1
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• The motion is very irregular, composed of translations and rotations, and

the trajectory appears to have no tangent;

• Two particles appear to move independently, even when they approach one

another to within a distance less than their diameter.

• The smaller the particles, the more active the motion.

• The composition and density of the particles have no effect.

• The less viscous the fluid, the more active the motion.

• The higher the temperature, the more active the motion.

• The motion never ceases.

Many real physical phenomena can be recast to the Brownian motion model, i.e. a

“particle” moving randomly in an external potential. One of the most important

examples is the Kramers escape problem [6]. Kramers in 1940 proposed an analogy

between the chemical reaction process and the Brownian motion in a potential well

[7]. Like many other physical systems, the chemical reaction can be characterized

by the relaxation of the system in the presence of many local minima separated by

energy barriers – an often-used analogy for such complex state spaces is that of a

mountainous landscape, where the heights of the mountains represent the energy

with the two horizontal axis representing two of the many dimensions of the state

space. A typical example of Kramers’ analogy is shown in Fig. (1.1). Thermally

induced perturbations of the particle result in a finite probability of the particle’s

escape from a potential well. The transition rate, or the inverse of the switching

time, for the Brownian particle to transit from one energy minima to another via

overcoming the energy barrier, is thus a critical quantity. In chemical reactions,

the Kramers escape rate therefore describes the chemical reaction rate [7].

This escape problem is generic in many other natural phenomena as well. For

example, it can characterize the inter-state transitions which are critical in data

storage applications. In these applications, the binary data bits “0” and “1” are
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Figure 1.1: Typical example of the chemical potential for reaction.

represented by two stable magnetization states of the magnetic grains. Ideally,

the inter-state transitions should occur only when the intervening energy barrier

is removed in the presence of an applied field (‘writing field’). However, in the

presence of thermal fluctuations, there is a finite probability of escape over the en-

ergy barrier. This results in unwanted thermally induced magnetization switching

and destroys the stored information. This problem becomes particularly acute in

current data storage applications when small magnetic particles of a few nanome-

ters in dimensions are used [8] in order to maximize storage density. Thus, in this

specific case, a better understanding of the thermally activated micromagnetic dy-

namics will help us to make better predictions of the information degradation and

the lifetime of the stored data.

1.1.1 Mathematical Explanations

The archetypical Brownian motion was first theoretically explained by Einstein in

1905 [9]. Einstein based his explanation on the theory of kinetic thermodynam-

ics, which governs the collisions between the particle and neighboring molecules
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in the solvent. By the early 1900s, the theory of thermodynamics had been well-

established, elucidating the relationships between work, heat, energy, entropy, tem-

perature and other physical parameters. According to the equipartition law, the

state probability distribution of a classical system in thermodynamic equilibrium

obeys the Maxwell-Boltzmann distribution, with an energy fluctuation of 1
2
kBT

associated with each degree of freedom of the system [10].

We will give detailed discussions of Einstein’s treatment of Brownian motion later

in this section as well as in the next chapter. Although Einstein did the pioneering

theoretical investigations into Brownian motion, a “truly dynamical theory of the

Brownian motion” [5] is attributed to Langevin for his simpler and more fundamen-

tal model. Extending Newton’s second law of dynamics and assuming a systematic

force (viscous drag) and a rapidly fluctuating white force ξ(t), Langevin proposed

a class of stochastic equations which bear his name to model the stochastic dy-

namics of Brownian particles. For a simple one dimensional problem of mass m at

a position x, the Langevin dynamical equation reads:

mẍ = f(x)−mγẋ + ξ(t) (1.1)

where the force f(x) = −V ′(x) is the gradient of the potential V (x), γ is the

friction constant and ξ(t) is a mean zero Gaussian white noise term representing the

effects of thermal fluctuations, and has a δ-function self-correlation: 〈ξ(t)ξ(s)〉 =

2D · δ(t − s). This assumption is reasonable since collisions between different

molecules can to a good approximation be considered as independent of each other.

Many approaches can be used to calculate the prefactor D by considering the

statistical equilibrium constraints, e.g. the equipartition law. Here, we adopt

the simple approach by Einstein and Smoluchowski. They noted that statistical

equilibrium will yield a vanishing probability current, and hence the drift current

and diffusion current should be balanced. Based on this assumption, they derived

the Einstein-Smoluchowski equation that describes the time evolution behavior of
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the probability distribution function W (x, t):

d

dt
W (x, t) = ∇ ·

(
−F

γ
W + D∇W

)
, (1.2)

where F is the external force. With the equilibrium condition that dW/dt = 0 and

the Maxwell-Boltzmann distribution W (x, t)|t→∞ = W0 exp(−V (x)/kBT ), Ein-

stein obtained the well-known formula for the diffusion constant: D = γkBT/m.

Here kB is Boltzmann’s constant and T is the temperature in degrees Kelvin. This

Einstein-Smoluchowski equation was later justified by several important experi-

ments [5, 11].

1.2 Motivation and Objective

The one dimensional Langevin dynamical equation [Eq. (1.1)] and the associated

Einstein-Smoluc-howski equation [Eq. (1.2)] are specialized forms of the general

Langevin dynamical equation and the general Fokker-Planck equation [1, 12] re-

spectively. The Fokker-Planck equation is a powerful instrument in analyzing ther-

mally activated dynamics. It considers the time evolution behavior of the proba-

bility distribution function of the macroscopic variables. Ideally, the average value

of any microscopic variables, such as the mean velocity and mean displacement,

can be obtained once the Fokker-Planck equation is solved and the distribution

functions are obtained.

The Langevin dynamical equation, together with the Fokker-Planck equation, con-

stitutes the standard technique for analyzing the thermally activated dynamics.

For some simple cases, e.g. linear problems, stationary problems with only one

variable, analytical solutions exist. However, modern research frequently deals

with complex physical systems, which may include interactions, correlations and

high dimensional characteristics. The complexity increases further for driven sys-

tems which are far from equilibrium. For these complex systems, it is often not
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possible to arrive at an analytical solution. Instead, many numerical and com-

putational methods have been employed, e.g. eigenfunction expansion, numerical

integration, the variational method and the matrix continued-fraction method [See

Ref. [12] for a review]. However, most of these numerical methods have their own

limitations. For example, the numerical simulation with Eq. (1.1) is generally

applicable for most complex systems, but needs a large computing resource and

suffers from inefficiency.

Therefore, the main effort in this thesis concentrates on developing new solv-

ing techniques that could lead to both analytical and numerical solutions to the

Langevin equations as well as the Fokker-Planck equations. Specifically, we aim to

solve these equations via a Master equation scheme.

The Master equation is another branch of theoretical modeling that is frequently

used to model stochastic dynamics. In this thesis, we are particularly interested

in solving the Master equation numerically via a Monte-Carlo scheme. The Monte

Carlo model is concerned about the transition probability between the states, and

its formalism can be described by a general Master equation [12, 13]:

∂P (x, t)

∂t
= Ṗ (x, t) =

∫
[w(x′ → x)P (x′, t)− w(x → x′)P (x, t)]dx′, (1.3)

where P (x, t) is the system’s probability distribution function at a microscopic

state x, w(x → x′) is the transition rate from x to x′, and t is the time variable,

usually in discrete units of Monte Carlo steps.

The Monte Carlo scheme serves as a probabilistic description of the Brownian

motion, as compared to the dynamical description of the Langevin equation. It

is thus interesting to gain an insight into the linkage between the two stochastic

models.
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1.2.1 Langevin dynamics and Monte Carlo method

The two stochastic dynamical models, the Langevin dynamical equation and the

Monte Carlo method, are based on two different physical bases.

The Langevin dynamical equation, originated from Newton’s second law of dynam-

ics, is generally regarded as “the real basis of the theory of the Brownian motion”

[5]. Comparing to the Einstein-Smoluchowski (Fokker-Planck type of) explanation

of the Brownian motion, the Langevin equation provides a clear causality of the

Brownian particle’s movement. This enables the Langevin dynamical equation to

model both equilibrium and non-equilibrium systems.

The Langevin dynamical equation has been extensively applied to model dynamics

in different areas of research, such as chaos [14], chemical reaction [7] and microma-

gentism [1, 15]. Simulation on a thermal activated system by using the Langevin

equation, however, relies on the integration of the stochastic differential equation

of each particle via either Ito’s calculus or Stratonovich’s calculus [1]. To model

the continuous effect of thermal fluctuations, the time interval in the simulation

has to be small, thus significantly reducing the simulation efficiency. Hence, the

utilization of the Langevin equation is limited to the simulation of a small num-

ber of particles over a short period of time, e.g. a few nanoseconds in practical

micromagnetic media simulations [16].

Unlike the force-driven model such as Langevin dynamics, the Monte Carlo model is

more concerned about the transition probability of the Brownian particle between

the states of the system. Thus, the Monte Carlo method is a powerful and efficient

technique in sampling the properties of a system at equilibrium [13]. The efficiency

of the Monte Carlo method is particularly advantageous compared to the Langevin

method for complex systems involving many stochastic variables.

The Monte Carlo dynamical model is, however, limited by the lack of a real physical
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meaning for its time unit - Monte Carlo steps. This limitation has prevented Monte

Carlo techniques from being used in most dynamics studies. It also leads to the

belief that time does not play as significant a role in Monte Carlo methods, and

that Monte Carlo methods are primarily useful for studying systems at steady-state

equilibrium [17].

Although both Langevin and Monte Carlo models can be applied to model the

same physical system, the mathematical expressions of the two methods appear

at first glance to be very different, so that any theoretical link between the two is

far from apparent. Limoge and Bocquet [18] noticed that Monte Carlo could be

utilized to simulate the Poisson process, in which the relation between Monte Carlo

steps and the real time could be established. Kikuchi et al. [19] also indicated that

a random walk Monte Carlo model can be matched to a hydrodynamical Fokker-

Planck equation. The first attempt to quantify the Monte Carlo steps for a random

walk Monte Carlo method, as far as we know, was made by Nowak et al. [20]. In

their study, the time quantification factor was obtained via a comparison between

the derived mean square deviations of the magnetization component for both the

Monte Carlo method and the Langevin dynamics (known as Landau-Liftshitz-

Gilbert (LLG) equation in micromagnetic scheme). Other attempts to link the

Monte Carlo with time step with physical time were done by Ph. Martin [21] and

Park et al. [22] who examined the Monte Carlo dynamics in an Ising spin system.

1.2.2 Problem definition

Although the work done by Nowak et al. in deriving the time quantification factors

appears to be specific to the micromagnetic system being considered, it does suggest

that the Monte Carlo dynamical model can be linked to the Langevin dynamical

equation. The equivalence between the Monte Carlo model and the Langevin dy-

namics, if established, could benefit researchers on both sides in reaching a fuller
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understanding of stochastic dynamics. Furthermore, the Monte Carlo method is

generally more efficient. For instance, it has been reported that simulation with

the time-quantified Monte Carlo method is considerably more efficient than the

conventional method of modeling magnetization dynamics based on time-step in-

tegration of the stochastic LLG equation [16], which is the corresponding Langevin

equation for magnetization dynamics.

Another major motivation for time quantifying the Monte Carlo method is to

establish an analytical connection between the two stochastic simulation schemes,

the Monte Carlo and Langevin dynamics. Such an analytical connection provides

alternative techniques to both stochastic models. For example, solving stochastic

differential equations using advanced Monte Carlo techniques allows us to calculate

the long-time reversal and stability [23, 24], which is not possible with the Langevin

method. A well-designed hybrid algorithm, which combines the Langevin equation

with a Monte Carlo scheme, would have advantages of both dynamical models

such as having a firm physical basis (Langevin) and high simulation performance

(Monte Carlo).

Motivated by the prospect of the high-performance hybrid simulation algorithm,

the present research aims to:

• Uncover the hidden analytical links and prove the equivalence between the

two stochastic models;

• Develop systematic approaches to map the Monte Carlo models into Langevin

dynamics and analytically derive the time quantification factor of one Monte

Carlo step in the Monte Carlo scheme;

• Devise and verify time quantifiable Monte Carlo algorithms;

• Discuss several applications of time-quantified Monte Carlo methods.
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Theoretically, the use of the time-quantified Monte Carlo model could be advan-

tageous in most research fields where the Langevin equation is originally used. In

this thesis, we will discuss in detail the use of the time-quantified Monte Carlo

method in two particular physical models, the micromagnetism and the Brown-

ian ratchets problem. These two areas are chosen because of high academic and

practical interest in utilizing them in nanotechnology applications.

1.3 Organization of Thesis

In the second chapter we give a brief review of stochastic theories of Brownian

motion. The Langevin dynamical model, the Fokker-Planck equation and the

Monte Carlo methods will be discussed. In chapter three, we provide the theoret-

ical justification of using a Monte Carlo method instead of the Langevin dynam-

ical equation to study thermally activated dynamics. In chapter four, we apply

the time-quantified random walk Monte Carlo method to model the transport

in Brownian ratchets. Chapter five discusses another application of the random

walk Monte Carlo method, i.e. in studying thermally induced reversal of magnetic

nanoparticles.



Chapter 2
Review of Stochastic Descriptions

In this chapter we briefly review some stochastic models for the Brownian motion.

These are basic ideas and conceptions that provide the foundations for the other

chapters.

2.1 Brownian Motion and Langevin dynamics

2.1.1 Langevin dynamics for Brownian Motion

We first consider the Brownian motion of particles in its simplest form. Given

a small particle of mass m immersed in a fluid with a friction force acting on

the particle, the basic equation of motion of the particle under the influence of a

frictional force is given by the Stokes’ law:

v̇ = −γv (2.1)

where γ is the friction constant. Thus the solution of v(t) can be simply obtained:

v(t) = v(0)e−γt. (2.2)

The deterministic equation Eq. (2.1) is valid if the particle is large so that its

11
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velocity due to thermal fluctuations is negligible. It must be modified to account

for the collision effects of the environment if the particle mass is small. Inserting a

fluctuating (Langevin) force ξ(t) into Eq. (2.1), one obtains the equation of motion:

v̇ + γv = ξ(t). (2.3)

The properties of the Langevin force are expressed mathematically as:

〈ξ(t)〉 = 0 (2.4)

〈ξ(t)ξ(t′)〉 = 2Dδ(t− t′). (2.5)

The first moment requires the average of Langevin force should be zero, which

assumes that the Langevin force does not bias the particle to move in any particular

direction. The second moment implies that any two Langevin forces at different

times should be independent. The latter assumption is valid since the duration

time τ0 of a collision is much smaller than the relaxation time τ = 1/γ of the

velocity of the small particle. The value of D which determines the magnitude of

the Langevin force has been given by the Einstein relation in Chap. 1, i.e.

D = γkBT/m. (2.6)

2.1.2 Langevin Equation with Many Variables

The above basic form can be generalized to N variables {x} = x1, x2, . . . , xN and

M stochastic forces as:

ẋi = fi({x}, t) +
M∑
j

gij({x}, t) · ξj(t). (2.7)

Here ξj(t) are again Gaussian random variables with zero mean and with correlation

functions proportional to the δ function. When gij({x}, t) depend on {x} and t,

the equations are known as nonlinear Langevin equations [1, 12].
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2.1.3 Applications

We will now briefly present a few important applications of the Langevin dynamical

model to model real phenomena.

The Kramers Escape Problem

Kramers proposed an analogy between the chemical reaction and the transition of

Brownian particles in local chemical potential minima [6, 7]. This model differs

from the previous simple Brownian model in that a chemical potential is included:

mẍ + mγẋ + V ′(x) = mξ(t). (2.8)

where V (x) is the chemical potential for reaction and ξ(t) is the Gaussian white

noise defined as in Eq. (2.5).

Equation (2.8) is also known as the low friction Kramers equation. For large friction

constants we may neglect the second order time derivative in Eq. (2.8). We thus

obtain the overdamped Kramers Equation:

γẋ + V ′(x)/m = ξ(t). (2.9)

Dynamical Motion of Magnetic Moment

In micromagnetic theory, the magnetic moment of a nano-particle is represented

by a unit spin vector m that lies on the surface of a sphere. The motion of the

spin vector is driven by the torque due to an effective external magnetic force.

The dynamical equation describing the magnetic moment is usually given in the

Landau-Lifshitz-Gilbert form [1, 15]:

dm

dt
= − γ0Hk

1 + α2
m× [(heff + hth) + αm× (heff + hth)] (2.10)

where Hk, γ0 and α are anisotropy field magnitude constant, gyromagnetic constant

and damping constant respectively. heff is the effective external force and hth is
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Cooper pair

current resource current

Voltage

insulating barrier

superconductor superconductor

Cooper pair

Figure 2.1: Diagram of Josephson tunneling junction.

a Gaussian white noise in three dimensional space that represents the thermal

fluctuations on the magnetic moment.

Josephson Tunneling Junction

A Josephson tunneling junction, as shown in Fig. (2.1), consists of two super-

conductors which are separated by a thin oxide layer [25]. The phase difference

between the wave functions of the Cooper pairs in the two superconductors is

denoted by ϕ.

Without going into the details of the derivation, the equation of motion for ϕ is

given by:
(
~
2e

)2

Cϕ̈ +

(
~
2e

)2
1

R
ϕ̇ +

~
2e

Imax sin(ϕ) =
~
2e

I +
~
2e

L(t) (2.11)

where L(t) models a noise current, the correlation function of which is given by

〈L(t)L(t′)〉 = (2/RkBT )δ(t− t′).

Equation (2.11) indicates that the Josephson tunneling current can be analogous

to a Brownian particle moving in a periodic potential. We will discuss details of
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this model in Chap. 4.

Stock Price in Financial Markets

Five years prior to Einstein’s famous 1905 paper on Brownian Motion, in which

Einstein derived the equation governing Brownian motion and made an estimate

for the size of molecules, Louis Bachelier had worked out, in his Thesis, “Theorie

de la Speculation”, the distribution function for what is now known as the Wiener

stochastic process (random walks without bias [1]).

Bachelier’s work laid the foundation of modern mathematical finance, in which

the motion of stock price S (or other financial derivatives such as options) can be

described by a geometric Brownian motion model:

dSt

St

= µdt + σdWt (2.12)

where St is the spot price of the stock; µ is the expected return; σ is the volatility

(also known as the instability) of the stock; and Wt is a Wiener’s stochastic process.

In 1973, F. Black and M. Scholes [26] and, independently, Robert Merton [27] used

geometric Brownian motion to construct a theory for determining the price of stock

options. The resulting valuation formulas (a set of partial differential equations)

have become indispensable tools in today’s daily capital market practices.

2.2 Fokker-Planck Equation

The Langevin equations are very successfully adopted in describing thermally in-

duced stochastic dynamics. Their solutions however require advanced techniques,

i.e. the Fokker-Planck equations. The Fokker-Planck equation is an equation of

motion for the distribution function of fluctuating macroscopic variables. The

purpose of the Fokker-Planck equation is to convert the stochastic dynamical
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(Langevin) equation into partial differential equations which are in principle solv-

able. The Fokker-Planck equation was first introduced by Fokker and Planck to

describe the Brownian motion of particles. To become familiar with this equation,

we again start with the discussion of simple one dimensional Brownian motion.

2.2.1 Fokker-Planck Equation for One Variable

Kramers-Moyal Forward Expansion

We define the transition probability φ(x, t + τ |x′, t) to link the probability density

W (x, t + τ) at time t + τ (τ ≥ 0) and the probability W (x, t) at time t:

W (x, t + τ) =

∫ ∞

−∞
φ(x, t + τ |x′, t)W (x′, t)dx′. (2.13)

Introducing ∆ = x− x′ such that x = x′ + ∆, the integrand in Eq. (2.13) may be

expanded in a Taylor series around x according to

φ(x, t + τ |x′, t)W (x′, t) = φ(x + ∆−∆, t + τ |x−∆, t)W (x−∆, t)

=
∞∑

n=0

(−1)n

n!
∆n

(
∂

∂x

)n

φ(x + ∆, t + τ |x, t)W (x, t)

(2.14)

We remark
∫∞
−∞ φ(x + ∆, t + τ |x, t)d∆ = 1. Defining

D(n) = lim
τ→0

∫∞
−∞ ∆nφ(x + ∆, t + τ |x, t)d∆

τ
= lim

τ→0

〈∆n〉
τ

, (2.15)

we can thus rewrite Eq. (2.13) into

∂W (x, t)

∂t
=

∞∑
n=1

(
− ∂

∂x

)n

D(n)(x, t)W (x, t) (2.16)

where we have made Taylor expansion of W (x, t + τ) on t on the left side of

Eq. (2.13). Equation (2.16) is known as the Kramers-Moyal expansion.
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One-dimensional Fokker-Planck Equation

The theorem of Pawula [12, 28] guarantees that for a positive transition probability

φ, the expansion of Eq. (2.16) may stop either after the first term or after the second

term. Truncating at O(n3) we obtain the Fokker-Plank equation:

∂W (x, t)

∂t
=

[
− ∂

∂x
D(1)(x, t) +

1

2

∂2

∂x2
D(2)(x, t)

]
W (x, t) (2.17)

where the drift coefficient D(1) and the diffusion coefficient D(2) follow the definition

of Eq. (2.15).

2.2.2 Fokker-Planck Equation for N Variables

We consider a system consists of N variables: {x} = x1, x2, . . . , xN . Applying

the similar derivation techniques presented above, we obtain the Kramers-Moyal

expansion of W ({x}, t). Letting the expansion stop at n = 2, we obtain the

expression of the N dimensional Fokker-Planck Equation:

∂W ({x}, t)
∂t

=

[
− ∂

∂xi

Di(x, t) +
1

2

∂2

∂xixj

Dij(x, t)

]
W ({x}, t) (2.18)

where the drift vector Di and diffusion matrix Dij are defined as:

Di({x}, t) = lim
τ→0

1

τ
〈xi(t + τ)− xi(t)〉 (2.19)

Dij({x}, t) = Dij({x}, t)
= lim

τ→0

1

τ
〈[xi(t + τ)− xi(t)][xj(t + τ)− xj(t)]〉 . (2.20)

2.2.3 Fokker-Planck Equations for Langevin dynamics

In this section we give some well discussed example of Fokker-Planck equations

corresponding to some simple Langevin dynamical models.
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Fokker-Planck Equation for Equation (2.3)

Equation (2.3) is also known as the Ornstein-Uhlenbeck process [29]. By consid-

ering the boundary condition that the system relaxes to the Maxwell distribution

W (v) ∝ exp(−mv2/2kBT ) at equilibrium (∂W/∂t = 0), a simple derivation will

give the drift and diffusion coefficients of the Fokker-Planck equation:

∂W (v, t)

∂t
=

[
∂

∂v
(γv) +

1

2

∂2

∂v2
γkBT/m

]
W (v, t). (2.21)

Fokker-Planck Equation for Equations (2.8) and (2.9)

We rewrite Eq. (2.8) into a system of two first-order equations:

ẋ = v (2.22)

v̇ = −γv − V ′(x)/m + ξ(t). (2.23)

Using Eq. (2.18), the Fokker-Planck equation for Eq. (2.8) reads

∂W (x, v, t)

∂t
=

[
− ∂

∂x
v +

∂

∂v
[γv + V ′(x)/m] +

∂2

∂v2
γkBT/m

]
W (x, v, t). (2.24)

For the overdamped Langevin equation as Eq. (2.9), the Fokker-Planck equation

for the distribution function W (x, t) reads

∂W (x, t)

∂t
=

[
1

γm

∂

∂x
V ′(x) +

kBT

γm

∂2

∂x2

]
W (x, t). (2.25)

Fokker-Planck Equation for Nonlinear Langevin Equations

For one stochastic variable x, the general Langevin equation has the form:

ẋ = f(x, t) + g(x, t) · ξ(t) (2.26)

ξ(t) is assumed to be a Gaussian stochastic process with zero mean and normalized

δ correlation.
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Without giving the full derivation, we show that the Fokker-Planck equation cor-

responding to the general one-dimensional Langevin equation as Eq. (2.26) [12]:

∂W (x, t)

∂t
=

[
∂

∂x

(
f(x, t) +

∂g(x, t)

∂x
g(x, t)

)
+

∂2

∂x2
g2(x, t)

]
W (x, t) (2.27)

Note in addition to the deterministic drift f(x, t), D(1) contains additional noise

induced drift:

D
(1)
noise−ind =

∂g(x, t)

∂x
g(x, t) =

1

2

∂

∂x
D(2)(x, t). (2.28)

2.3 Monte Carlo scheme

The Fokker-Planck equation is not the only equation of motion for the distribution

function. In this section we introduce the Monte Carlo method, which in fact

serves as the numerical solution to the general Master equation. In particular, we

restrict our interest to Master equations for Markov processes.

2.3.1 Master equation

The Master equation and Monte Carlo methods concern about the probability

distribution function at each state and the transition rates between the states.

The general Master equation for a continuous variable reads

dW (x, t)

dt
=

∫ ∞

−∞
[µ(x′ → x)W (x′, t)− µ(x → x′)W (x, t)]dx′ (2.29)

where W (x, t) is the probability distribution function and µ(x → x′) is the transi-

tion from x to x′ which must satisfy µ(x → x′) ≥ 0 and
∫

x′ µ(x → x′) = 1.

For a discrete variable, the Master equation is similar

dW (x, t)

dt
=

∑

x′
µ(x′ → x)W (x′, t)− µ(x → x′)W (x, t). (2.30)
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Reorganizing Eq. (2.30) by adopting the matrix formula, we are able to rewrite the

Master equation into a simple form:

d~P (t)

dt
= T · ~P (t) (2.31)

where vector ~P (t) = {W (x, t)} is the state probability density vector and T =

{µ(x′ → x)− δx,x′} is the transition matrix.

Many physical problems in classical mechanics, quantum mechanics and problems

in other sciences, can be reduced to the form of a master equation, thereby per-

forming a great simplification of the problem.

Generalizing the Master equation, i.e. applying the Kramers-Moyal expansion, and

truncating the higher order terms will lead to the Fokker-Planck equation.

2.3.2 Random walk Monte Carlo

Random walk Monte Carlo methods, sometimes also known as the Markov chain

Monte Carlo methods, are a class of algorithms for sampling from probability dis-

tributions based on constructing a Markov chain that has the desired distribution

as its stationary distribution.

Some typical examples of random walk Monte Carlo methods include, the Metropo-

lis algorithm [13, 30], Gibbs sampling [31] and Slice sampling [32]. In this thesis,

we shall focus on the Metropolis algorithm which is utilized by generating a ran-

dom walk using a proposal density and a method for rejecting proposed moves. the

Metropolis algorithm has been widely used in computational physics for thermally

activated dynamics [13].

The principle of detailed balance (to be discussed in the next subsection) allows

almost infinite formalisms when implementing the Monte Carlo methods. We will

give detailed formalisms in the following chapters where applicable.



2.3 Monte Carlo scheme 21

2.3.3 The Principle of Detailed Balance

The principle of detailed balance is important in describing the properties of the

equilibrium state. A Markov process whose stationary distribution Weq(x) obeys

µ(x′ → x)Weq(x
′) = µ(x → x′)Weq(x) (2.32)

for all pairs of states x and x′ is said to obey detailed balance; the stationary

distribution is then often also called the equilibrium distribution.

Equation (2.32) provides a quick way to directly obtain the stationary distribution

from the transition rates {µ(x′ → x)}. For a random walk Monte Carlo algo-

rithm with a heat-bath accepting rate 1/(1 + exp(β∆H)), its resulting probability

distribution at equilibrium (from Eq. (2.32)) gives:

Weq(x) = W0 exp(−βH),

which converges to the Boltzmann form of the distribution function with any time-

independent appropriate Hamiltonian H.

For a system driven out of equilibrium, however, the principle of detailed balance

no longer holds. Neither does there exist a universal principle that could apply

for all non-equilibrium systems, such as the open atomic system. This definitely

raises concerns that whether the Markov chain Monte Carlo methods have a solid

basis in describing the non-equilibrium system. We shall come back to this point

in Chap. 4 in which we show that the Monte Carlo algorithm is at least applicable

in systems that are driven by Markov noises.



Chapter 3
Mapping the Monte Carlo Scheme to

Langevin Dynamics

In this chapter we present the equivalence between a heat-bath random walk Monte

Carlo model and the traditional overdamped Langevin dynamical equation. This

equivalence establishes the theoretical basis of using the Monte Carlo model to

analyze the time evolution of Brownian motion, such as the thermally induced

stochastic dynamics in real physical problems. Typical applications of Monte Carlo

models will be discussed in the following chapters for both one dimensional and

multi-dimensional problems.

3.1 Introduction

We aim to prove the “equivalence” between the two stochastic descriptions: Langevin

dynamics and Monte Carlo. One question may arise in a straightforward manner:

how do we define the equivalence?

22
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To simplify our description of the problem, we consider the simplest case: an over-

damped Brownian“particle” moving randomly in a one-dimensional steady poten-

tial environment V (x), where x is the position of the particle. The dynamics of the

particle can be described by the following two dynamical models (LD1 and MC1):

i) 1D Langevin Dynamical Equation, (LD1):

d

dt
x = f(x) + ξ(t), (3.1)

where f(x) ≡ −V ′(x) is the external force, and ξ(t) is a mean zero

white noise with:

〈ξ(t)〉 = 0; 〈ξ(t)ξ(s)〉 = 2D · δ(t). (3.2)

Here D ≡ kBT represents the magnitude of the white noise.

and

ii) 1D Random Walk Monte Carlo, (MC1):

The random walk on x takes a trial move of step size r: ∆x = r ∈
[−R,R] (R ¿ 1) with uniform trial probability. The trial move is

however subject to the heat-bath acceptance rate of A(∆V ) = 1/(1 +

exp(β∆V )). Here ∆V is the energy difference in the proposed transition

and β ≡ 1/kBT = D−1.

Applying the standard analysis on both stochastic models, i.e. the Maxwell-

Boltzmann treatment on the Langevin dynamical model and the detailed balance

analysis on the random walk Monte Carlo, we find that both models lead to an

identical probability distribution function at equilibrium (the Maxwell-Boltzmann

distribution). We naturally ask, are the two stochastic models still equivalent to

each other during the process of approaching the equilibrium?
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Strictly speaking, one may only agree that the equivalence is established when

the two stochastic dynamics mimic all possible trajectories during the relaxation

process. The accomplishment of this mission is very difficult and in fact of minor

interest, for two reasons: 1) such a comparison requires information for all possible

trajectories - which is far more fundamental and unsolvable than the problem that

is currently under consideration; and 2) in many applications, we are more inter-

ested in the mean effect than being concerned with specific trajectories. Although

the latter may be more fundamental, in many problems we are actually dealing

with macroscopic systems.

Alternatively, the time evolution probability distribution function W (x, t) can also

be considered as the direct criteria to identify the equivalence between the two

dynamical models. However, this criteria is also difficult to be utilized in practice

as well. In most stochastic processes, except for some simple cases such as Wiener’s

process or Ornstein-Uhlenbeck process [12], it is not possible to analytically solve

for the time evolution of the probability distribution, which provides all information

during the process.

Therefore, we have to look for other indirect approaches instead of the direct

criteria that have been discussed above. In fact, although the explicit expression

of W (x, t) is not achievable, we are still able to analyze its evolutionary behavior

dW (x, t). In the following chapters, we will present the proof of equivalence via

this method.

3.2 The Fokker-Planck Approach

Our first approach is a systematic way of using the Fokker-Planck equation to map

the Monte Carlo methods to the Langevin dynamical equation.

The Fokker-Planck equation is an equation of motion for the distribution function
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of fluctuating macroscopic variables, i.e. the position of a particle under thermal

fluctuation. By solving the Fokker-Planck equation one obtains distribution func-

tions from which the mean value of any macroscopic variables can be obtained by

integration. As discussed however, analytic solutions of the Fokker-Planck equation

can be obtained for very few simple cases, e.g. a linear drift vector and constant

diffusion tensor.

To link the Monte Carlo methods with the Langevin dynamics, we do not require

the explicit solution of the Fokker-Planck equation. In fact, the equation itself

could serve as the bridge to establish the link. Our approach to map Monte Carlo

methods to Langevin dynamics is as follows (as shown schematically in Figure 3.1):

STEP 1: derive the Fokker-Planck equation corresponding to the Langevin

dynamical equation;

STEP 2: derive the Fokker-Planck equation for the heat-bath random

walk Monte Carlo method;

STEP 3: perform termwise comparison between the two sets of Fokker-

Planck coefficients.

For illustration, we demonstrate a mapping between a 1D heat-bath random walk

Monte Carlo algorithm (MC1) to the 1D Langevin dynamical equation (LD1).

Both models have been discussed in Sect. 3.1.

The one dimensional Fokker-Planck equation has the form:

∂W (x, t)

∂t
= − ∂

∂x
(A(x)W ) +

1

2

∂2

∂x2
(B(x)W ) (3.3)

where A and B are so-called drift and diffusion coefficients, and are defined as

A ≡ lim
∆t→0

〈∆x〉
∆t

B ≡ lim
∆t→0

〈∆x2〉
∆t

. (3.4)
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Langevin Dynamics


Fokker-Planck Equations


Monte Carlo Methods


Figure 3.1: Schematics of the Fokker-Planck approach.

There are extensive studies [12] of the Langevin dynamical equation of Eq. (3.1).

Its corresponding Fokker-Planck coefficients can be derived via the standard way

easily:

ALD = f(x)

BLD = 2D. (3.5)

We next derive the Fokker-Planck equation for the heat-bath random walk Monte

Carlo algorithm (MC1). To calculate the Fokker-Planck coefficients AMC for the

Monte Carlo method, we require the ensemble mean of a small change of x in one

Monte Carlo step, i.e. AMC ≡ 〈
∆xMC

〉
.

Since the random walk on x takes a trial move of step size r ∈ [−R,R], we have

the probability of the displacement to be of size r:

p(r) = 1/2R.

Based on the heat-bath Metropolis Monte Carlo scheme, the acceptance rate for
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this trial move is given by:

A(∆V ) = 1/[1 + exp(β∆V )] ≈ 1

2

[
1− 1

2
β

(
∂V

∂x
∆x

)]

=
1

2

[
1 +

1

2
βf(x)r

]
(3.6)

where ∆V is the energy change in the proposed trial move and f(x) = −V ′(x).

We hence obtain the 〈∆x〉:

AMC = 〈∆x〉 =

∫ R

−R

rdr · p(r)A(∆V )

=
1

12
βf(x) ·R2. (3.7)

Similarly, one can calculate the diffusion coefficient BMC in a same manner:

BMC =
〈
∆x2

〉
=

∫ R

−R

r2dr · p(r)A(∆V )

=
1

6
R2. (3.8)

From Eqs. (3.5), (3.7) and (3.8), we obtain two sets of Fokker-Planck equations that

corresponding to Langevin (LD1) and Monte Carlo (MC1) models respectively:

Langevin:
∂W (x, t)

∂t
= − ∂

∂x
(f(x)W ) +

1

2

∂2

∂x2
(2DW ) (3.9)

Monte Carlo:
∂W (x, t)

∂τ
= − ∂

∂x
(

1

12
βR2f(x)W ) +

1

2

∂2

∂x2
(
1

6
R2W ). (3.10)

Variable τ in Eq. (3.10) is the time quantity that is calibrated in Monte Carlo steps.

We can now compare the Fokker-Planck factors corresponding to the Langevin

equation in Eq. (3.9) with those of the heat-bath Metropolis Monte Carlo method

in Eq. (3.10). Performing a termwise comparison and omitting O(R4) and higher

order terms, we found that there is a one-to-one mapping between all terms in

the Fokker Planck coefficients of both the Monte Carlo method and the Langevin

equation if:
1

12
βR2 ·∆τMC = ∆tLD (3.11)
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where D ≡ β−1 is noted during the comparison.

Equation (3.11) is the requirement for the equivalence between the two stochastic

models. One subsequent result from Eq. (3.11) is that we can obtain the time

quantification factor for the heat-bath random walk Monte Carlo method:

1 MCS =
∆tLD

∆τMC

=
1

12
βR2. (3.12)

To summarize, our above discussion leads to two non-trivial findings: 1) there is

an equivalence between the 1D overdamped Langevin dynamical equation and the

1D random walk Monte Carlo method at the small R → 0 limit; and 2) the time

quantity of one Monte Carlo step for the random walk Monte Carlo method can

be obtained from the established equivalence. We should emphasize that such a

time quantification factor is not fixed, but depends on the trial move distribution

and the acceptance rate we choose in the Monte Carlo algorithm. We shall extend

the discussion in the following sections.

We remark that the idea of using the Fokker-Planck equation to link the Monte

Carlo with the Langevin dynamics is general. One can apply the same procedure to

acquire the equivalence between some other stochastic models, i.e. more complex

multi-dimensional system or non-equilibrium systems. Some examples and their

applications will be discussed in the following chapters.

3.3 Proof From the Central Limit Theorem

In the last section we showed that by using the Fokker-Planck equation as the

bridge, we could establish the equivalence between the random walk Monte Carlo

algorithm and the overdamped Langevin dynamics. Naturally, we will ask why

the two models yield the same dynamical process even though they have distinctly

different theoretical basis. In addition, while it is not hard to write down the
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corresponding Fokker-Planck equations for Langevin dynamical equations and/or

Monte Carlo methods, it is certainly non-trivial to construct a Monte Carlo model

for an existing Fokker-Planck equation. This difficulty poses a serious obstacle

in applying Monte Carlo analysis for more complex systems, e.g. micromagnetic

studies and/or biophysics. From this point of view, a microscopic understanding

of the equivalence between the two stochastic models is of practical interest.

We consider an overdamped Brownian particle in a potential V (x), whose dynami-

cal behavior can be described by the two stochastic models as given in Sect. 3.1. We

consider the probability distribution of the displacement ∆x after a time interval

of ∆t from the initial point.

For the random walk Monte Carlo method, the mean µ and variance σ2 in one

Monte Carlo step can be obtained easily, i.e.,

µ =

∫ R

−R

rdr · p(r)A(∆V ) =
1

12
βf(x0)R

2

σ2 =

∫ R

−R

(r − µ)2dr · p(r)A(∆V ) = −µ2 +
1

6
R2 (3.13)

=
1

6
R2 + O(R4).

We note that in the limit of infinitesimal R (R ¿ 1), the change of f(x) within a

few Monte Carlo steps is negligible. Hence, according to the Central Limit theorem,

after a large number n Monte Carlo steps, the spread of the displacement from x0

approximates the normal distribution:

P (∆xMC) = N(nµ, nσ2) = f(x0) · n 1

12
βR2 + η

√
2n

1

12
R2, (3.14)

where η ∼N(0, 1) follows the standard Gaussian distribution. We note that the

integration form (Ito’s interpretation [33]) of the overdamped Langevin equation

of Eq. (3.1) also results in a normal distribution of the displacement ∆x after a
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time interval ∆t:

P (∆xLD) = f(x0)∆t +

∫ ∆t

0

ξ(t)dt

= f(x0)∆t + η
√

2D∆t. (3.15)

Comparing Eq. (3.14) and Eq. (3.15), we obtain a term-by-term equivalence be-

tween ∆xMC and ∆xLD if

1 MCS = ∆t/n =
1

12
βR2. (3.16)

We find not surprisingly that the time quantification factor in Eq. (3.16) is identical

to the one in Eq. (3.12) which we obtained from the Fokker-Planck approach.

The proof from the Central Limit Theorem explains the nature of the Monte Carlo

dynamics. In the small R limit, several random walk steps reproduce a normally

distributed displacement, which can be mapped to the displacement from a small

time interval in the Langevin dynamics. In other words, both models are applicable

to describe the low frequency dynamics (which is of the general interest) due to

the central limit effect.

It will be beneficial for us to review some properties of the Central Limit The-

orem now for some implications of our proof. The Central Limit Theorem can

be presented as follows [34]: Let X1, X2, X3, ... be a sequence of random vari-

ables which are identical and independently distributed. Assume that both the

expected value µ and the standard deviation σ exist and are finite. Consider the

sum Sn = X1 + ... + Xn. The expected value of Sn is nµ and its standard error

is σ
√

n. Furthermore, the distribution of Sn approaches the normal distribution

N(nµ, nσ2) as n →∞.

We notice that the Central Limit Theorem does not require a particular probability

distribution for the random variables. We are therefore justified to choose an

arbitrary trial move step and an arbitrary acceptance rate for the Monte Carlo
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Figure 3.2: Schematics of the double potential profile.

method, as long as the mean and the standard deviation for the chosen parameters

exist and are finite. This implies freedom to make improvements to the Monte

Carlo model according to our needs for analysis, while preserving the equivalence

to the physical Langevin model. We shall come back to this point later in this

chapter.

3.4 Example: Double Well System

We now want to discuss some numerical verifications of the equivalence between

the two stochastic models.

One of the simplest problems is the thermally activated dynamics in a bi-valley

(double well) potential with infinite high walls on both sides, Fig. 3.2. We assume

a potential profile as:

V (x) = −x2(1− x2). (3.17)
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Figure 3.3: Time evolution behavior of the normalized probability distribution

function in (a) linear scale and (b) logarithmic scale. Simulation parameters are:

V (x) = −x2(1 − x2), ∆tLD = 0.0001s in Langevin simulation and R = 0.01 in

Monte Carlo simulation. Thermal condition β = 12 is used in both simulations.

All results are averaged from a few thousand simulation runs. Error bars are

smaller than the symbol size.

3.4.1 Time Dependent Probability Distribution

To verify the equivalence established in Eq. (3.11), we simulate the time dependent

behaviors, e.g. the probability distribution function W (x, t), of both Langevin

dynamics and random walk Monte Carlo. Letting the time interval ∆tLD = 0.0001

(second) we ensure the accuracy of our Langevin simulations based on Eq. (3.1).

In the heat-bath random walk Monte Carlo simulations, we choose a sufficiently

small walk size of R = 0.01.

We assume that the Brownian particle starts at position x0 = −0.8 and moves

randomly. In Fig. 3.3 we plot the simulated normalized probability distribution

with respect to position x after time t = 4s, 16s and 36s in both linear scale and

logarithmic scale. We found that the Monte Carlo results converge with those

from Langevin simulations to a very high accuracy. The convergence numerically
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Figure 3.4: The mean first passage time with respect to the thermal condition

β = (kBT )−1. Error bars are smaller than the symbol size.

verifies the equivalence between the Langevin dynamics and Monte Carlo method.

We emphasize that the observed equivalence occurs during the whole relaxation

process.

3.4.2 The Mean First Passage Time

In another test, we consider the mean first passage time for escape from an energy

valley. The determination of mean first passage time, the inverse of which results in

the Kramer’s escape rate from the energy valley, has essential practical significance,

e.g. in predicting the thermal stability of stored data in data storage devices [15].

In the present example, the mean first passage time is defined as the mean time

elapsed for the particle to reach the peak point of the energy barrier (x = 0 for the

potential profile as Eq. (3.17)).

Again, in Fig. (3.4) we observe a close match among results from Langevin simu-

lation and the Monte Carlo simulation.
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3.5 Comments and Remarks

In this Section, we discuss the various extensions and applications to the equiva-

lence established in Eq. (3.11) between the Langevin dynamical equation and the

Monte Carlo method.

3.5.1 Monte Carlo Method with Metropolis Rate

The Monte Carlo algorithm which adopts the Metropolis acceptance rate A(∆V ) =

min[1, exp(β∆V )] can also reproduce the Maxwell-Boltzmann distribution at equi-

librium by noting the detailed balance condition. We confirm that the Metropolis

Monte Carlo can be mapped to the Langevin dynamics as Eq. (3.1) as well. Using

the derivation techniques in Ref. [35], we can calculate the mean µ and variance

σ2:

µ =
1

6
βf(x0)R

2

σ2 =
1

3
R2 +

1

8
βf(x0)R

3 + O(R4). (3.18)

Truncating the µ and σ2 to the order of O(R3) and following the same derivation

process in Sec. 3.3, we achieve the equivalence formula for Metropolis Monte Carlo

and Langevin dynamics:

1 MCSMetropolis =
1

6
βR2. (3.19)

Previous studies [13] have proved that both Glauber(heat-bath) and Metropolis

dynamics obey ergodicity and detailed balance. However, numerical simulations

have revealed different dynamical process for these two Monte Carlo dynamics

[36]. Our above derivation shows that both Glauber and Metropolis dynamics can

converge to the Langevin dynamics under the assumption of infinitesimal R → 0.

Monte Carlo simulation with Metropolis rate is also able to reproduce the time-

evolution distribution as in Fig. (3.3). However, a quick examination on statistical
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Figure 3.5: Comparison of the normalized probability density (partly) between

Monte Carlo simulation and Langevin results. V (x) = x2(x2−1), x0 = −0.8, t = 4

s. Inset: the whole distribution density graph.

error shows that Metropolis Monte Carlo is less favored than the heat-bath Monte

Carlo. To truncate the mean µ and variance σ2 (Eq. (3.18)) to the order of R2, we

require:
1

8
βf(x0)R

3/
1

3
R2 =

3

8
βf(x0)R ¿ 1 (3.20)

which leads to

R ¿
(

3

4
βf(x0)

)−1

. (3.21)

Comparing to the high order requirement for the heat-bath rate [c.f. Eq. (3.13)]:

µ2/
1

6
R2 ¿ 1

⇒ R2 ¿
(

1

2
βf(x0)

)−2

, (3.22)

the use of Metropolis acceptance rate in the time quantified Monte Carlo method

requires the step size R being about an order smaller than the step size used in the
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heat-bath rate. This is thus generally undesirable. This can be seen in Fig. (3.5)

where we observe large discrepancy for the random walk Monte Carlo algorithm

using the Metropolis rate with R = 0.05, 0.10, 0.20, while very good convergence

can be found for MC algorithm using heat-bath rate with R = 0.20.

3.5.2 Random Walk for High Frequency Dynamics

According to the Central Limit Theorem, the trial move in the Monte Carlo model

is not limited to be uniformly distributed, but can adopt any type of distribution,

subject to the requirement of finite mean and variance. This provides flexibility in

choosing the appropriate trial move distribution in order to improve the simula-

tion efficiency. At low frequency, the Central Limit Theorem guarantees that the

random walk Monte Carlo converges to Langevin dynamics with Gaussian white

noise.

The Monte Carlo model however, from this point of view, is particularly useful in

some high-frequency analysis, e.g. high-frequency finance [4], in which the distribu-

tion of change in a small period of time is not Gaussian distributed (c.f. Gaussian

type of white noise in Langevin dynamics). Such discussion is however beyond our

exploration but still worthy to be remarked.

3.5.3 Interacting Systems

We confirm that the time quantification also works under inter-variable coupling

condition. A rigorous proof can be obtained by comparing the Fokker-Planck co-

efficients for both Monte Carlo and Langevin dynamics, see Ref. [37] for examples

on interacting spin array dynamics, as well as the Brownian dynamics with hydro-

dynamic interaction [19].
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3.5.4 Monte Carlo Algorithm for Nonequilibrium Dynam-

ics

The Monte Carlo algorithm is also applicable in reproducing some non-standard

stochastic differential equations as Eq. (3.1). Consider an Langevin equation of

more general form:

ẋ = −V ′(x, z(t)) + ξ(t)

where z(t) is a time dependent function with characteristic time τc, hence forcing

the system in a non-equilibrium condition. We are however always able to have a

sufficiently small random walk size R → 0 so that 1 MCS ¿ τc. In this limit the

Central Limit Theorem proves the validity of the time quantification of the Monte

Carlo.

3.5.5 Time Quantification of the Master Equation

The Monte Carlo method with fixed (discrete) trial move step size R provides a

numerical solution to the Master equation

dP (σ, t)

dt
=

∑

σ′
[w(σ′ → σ)P (σ′, t)− w(σ → σ′)P (σ, t)] (3.23)

under the assumption that only transitions between adjacent (nearest neighbor)

states are allowed. σ and σ′ in Eq. (3.23) are adjacent states of the configuration,

P (σ, t) is the probability density the system is in state σ at time t, and w(σ′ → σ) is

the heat-bath transition rate from state σ′ to σ. Without much effort one may find

the time quantification factor for Eq. (3.23) [38] by comparing with the Langevin

model LD1:

1 MCS =
1

2
βR2. (3.24)

It is worthy to remark that Kampen [39] made an similar observation by deriving

the diffusion equation for a master equation, which is used to describe jumps
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between adjacent energy minima in a periodical potential.

3.5.6 Special Comments for Low Damping Dynamics

The random-walk Monte Carlo algorithm is well-suited to represent energy dissi-

pative dynamical motion, but not energy conservative dynamics. For a dynamical

equation under low friction condition: e.g.

mẍ + mγẋ + V ′(x) = mΓ(t) (3.25)

where Γ(t) represents the stochastic thermal fluctuation, a hybrid algorithm which

combines Monte Carlo random move with a deterministic move is required to

describe the whole dynamics in Eq. (3.25):

(i) a Monte Carlo random move for v̇ = −γv + Γ(t), (v ≡ ẋ); and

(ii) a deterministic move for ∆x = v∆t; ∆v = −V ′(x)∆t.

Combination of the two types of moves could give the desired Fokker-Planck equa-

tion that is equivalent to the one corresponding to Eq. (3.25). A typical example

will be presented in Chap. 5 where we develop a hybrid algorithm for low damping

Langevin equation in stochastic micromagnetics.

3.5.7 Simulation Efficiency

Though Monte Carlo methods are usually considered to be more efficient than the

direct Langevin integration, in our simulation we do not observe significant differ-

ence in efficiency between the Monte Carlo simulation and the Langevin simulation.

This can be understood that the Monte Carlo simulation shall mimic all trajecto-

ries that provided by the Langevin dynamics, due to the microscopic equivalence.

According to our experience in micromagnetic studies, the Monte Carlo simulations

are usually 3–5 times faster than the Langevin simulations, probably because the
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fact that Monte Carlo simulations significantly reduce the computational efforts in

cross products.

The microscopic equivalence between the Langevin model and the Monte Carlo

method however sheds light on applying advanced Monte Carlo techniques to speed

up the simulation. This topic is not covered in the present thesis but deserved

certainly further research efforts.



Chapter 4
Brownian Motion in One-Dimensional

Random Potentials

In Chap. 3 we have shown the equivalence between a heat-bath random walk Monte

Carlo model and the overdamped Langevin dynamical equation. This enables us

to use the Monte Carlo model to analyze the stochastic processes, such as the

thermally induced stochastic dynamics in real physical problems.

In this and the next Chapters, we shall devote to two applications of the random

walk Monte Carlo method. Our main focus in this chapter is the transport problem

for an overdamped Brownian particle in a one dimensional periodical potential.

Many practical problems can be mapped to this model. Hence characterizing the

Brownian particle’s transport in such a system is of practical interest.

40
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4.1 Introduction to Brownian Ratchets

4.1.1 Overview

The problem of Brownian motion in a periodical potential arises from several fields

of science. Restricting ourselves to the one-dimensional case, we deal with parti-

cles which are impacted about by Langevin forces (thermal fluctuations) and move

in a one-dimensional periodic potential. Typical examples of Brownian motion in

aperiodical potential may include but not be limited to the Josephson tunneling

junction (two superconductors separated by a thin oxide layer) [25, 40, 41], supe-

rionic conductors [42, 43], a pendulum in a viscous fluid, and rotation of dipoles in

a constant field [44, 45]. Additionally, the periodic potentials can also be classified

into symmetric profiles (Fig. 4.1a) and asymmetric profiles (Fig. 4.1b). Symmetric

periodic potentials, especially the sinusoidal potential model, are widely adopted

in real physical problems such as a Josephson tunneling junction and pendulum

problems.

Our research interests, however, focus on the transport phenomena of Brownian

particles in asymmetric periodic potentials (usually termed as ratchet potentials).

Affected by the thermal fluctuations, the Brownian particle in the valley spreads

according to its probability distribution on both directions. According to the

second law of thermodynamics, we should observe no directed transport (or no

net probability current) of Brownian particles in unbiased periodic potentials in

thermal equilibrium, regardless of the profile of the periodic potential.

For asymmetric system in non-equilibrium condition however, a net probability

current can be possible. For instance, an oscillating driving force applied on Brow-

nian particles in asymmetric periodic potentials can cause directed transport, i.e.

imbalanced current [46, 47, 48, 49, 50]. The keen scientific interest in the transport

property of Brownian ratchets is attributed to their role in biological systems, e.g.
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Figure 4.1: Schematic diagram of L-periodic potential profiles for (a) a symmetric

(sinusoidal) periodic potential: V (x) = sin(2πx/L); and (b) asymmetric periodic

potential (ratchets): V (x) = sin(2πx/L) + 0.25 sin(4πx/L).

the astonishing energy-motion conversion of ATP hydrolysis [51]. and the poten-

tial of using ion pumps to power the uphill transport of ions [52, 53, 54]. Here we

introduce several type of Brownian ratchets:

The flashing ratchets

“On-Off” ratchets, the simplest form of flashing ratchets, switches be-

tween the “On” state potential and “Off” state potential. As shown

in Fig. (4.2), when the potential is off, a particle moves to the left and

right with appropriate probabilities. After some time, the potential is

turned on and the particle is trapped at the bottom of a well - more

likely the well to the right than the well to the left of where the particle

started. Hence, this leads to a directed probability current towards to

the right.

Bier and Astumian further investigated a 3-state fluctuating potential
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Figure 4.2: Schematic diagram of an On-Off ratchet. A right direction favored

in transport is possible even when a small force is applied to the left in this case.

Figure drawn from Ref. [48]

and found that current reversal is possible by varying the system con-

figurations [55]. This suggests a possible application for construction

of a device for the separation of small particles [56, 57].

Ratchets driven by external force

An oscillating driving force applied on Brownian particles in asym-

metric periodic potentials can cause directed transport. The driving

force can be, for example a sinuous force, a periodical two state force,

a Markovian dichotomous noise (telegraph noise) or a Markovian col-

ored noise such as the Ornstein-Uhlenbeck process [12]. Many research

works have been focused on this type of ratchets, due to their potential

to build a controllable device for biological applications. For exam-

ple, as shown by Kula et al. asymmetry in the potential profile and

dichotomous fluctuations can result in current reversal [58].

Temperature ratchets
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In temperature ratchets, the thermal noise intensity is set to be os-

cillating. This is similar to the On-Off ratchets but physically it is

proposed to model the variation of some thermodynamical variables

such as pressure and volume [46].

4.1.2 Description of the Problem

One of the key questions in the study of Brownian ratchets is obtaining the ex-

pression for the current. This will be useful in, e.g. identifying the conditions for

current reversal. Thus, an analytical solution of the problem would be of much

interest and importance. In general, the stochastic transport in the ratchets is

modeled by Langevin equations of the form:

γẋ = −U ′(x, z(t)) + ξ(t), (4.1)

where ξ(t) is a mean zero Gaussian white noise term, i.e. 〈ξ(t)ξ(s)〉 = 2γkBT ·
δ(t − s), and z(t) is a Markov dichotomous process with correlation time τc. ξ(t)

represents the effects of thermal fluctuations, while z(t) models stochastic processes

such as impurities or defects jumping between metastable states [58]. The current

is calculated by solving the corresponding Fokker-Planck equation under periodic

boundary conditions. However, the explicit current expression can only be obtained

for a few simple cases [58, 59, 60], due to the complexity of dichotomous processes

induced dynamics. For non-trivial cases, the ratchet current can be calculated by

simulating the Langevin equation [61] or from numerical solutions of the Fokker-

Planck equations [55].

Numerical calculations are computationally intensive and do not yield as much

physical insights as analytical solutions. Our objective is thus to derive the ana-

lytical expression of the current for an arbitrary ratchet potential.
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4.2 Methods and Models

Unlike previous methods, we based derivation of the current in ratchets on the

Monte Carlo scheme, specifically the Gambler’s Ruin model.

In the Gambler’s Ruin problem, a player plays a series of games against an ad-

versary, winning (or losing) one dollar for every success (or failure), until one of

them is “ruined”. Given the probability of winning each game, the Gambler’s Ruin

problem considers the probability of ultimate ruin of one of the players, as well

as the number of games required [34]. In this Chapter, we show an intimate re-

lationship between this classic random walk problem and the thermally activated

dynamics in arbitrary potentials. The linkage between these two disparate top-

ics is made possible by recent advances in the time quantification of Monte Carlo

[20, 35, 62, 63]. In particular, the evolutionary techniques for the Gambler’s Ruin

problem can be utilized to analyze the transition probabilities and the mean first

passage time (MFPT) of the complex stochastic transport in Brownian ratchets.

Our analysis is presented in three main stages: i) First, we justify the theoretical

basis of using the Monte Carlo approach. This is done by establishing the time-

quantification factor between a Monte Carlo step (MCS) and real time in seconds;

ii) Second, we formulate the Brownian ratchet problem in the Monte Carlo frame-

work. Each periodic unit of the ratchet is first discretized into a finite site chain

with absorbing boundaries. The stochastic transport in the ratchets thus reduces

into random walks within the site chain. This is essentially the classic Gambler’s

Ruin problem, with some modifications to account for the dichotomous process;

and iii) Finally, by applying the evolutionary techniques in the Gambler’s Ruin

model, we analytically derive the expression of ratchets current for the thermal

equilibrium case, and the more complex case of dichotomous noise. By applying

the aforementioned time-quantification factor the current expression is verified by

means of numerical Langevin simulations.
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4.2.1 Random Walk Method with Discrete Step

To utilize the evolutionary techniques, i.e. difference equations, in the Gambler’s

Ruin model, We choose the heat-bath random walk Monte Carlo method with

discrete step as the base of our analysis. This leads to a slight difference between the

present model and the 1-D random walk model (MC1) we introduced in Sec. 3.1.

Hence the time quantification of the MCS for the present model has to be first

justified.

Following Sec. 3.3, time quantification of the MCS is most easily introduced by

considering an overdamped Brownian particle in a steady potential U(x, z(t)) =

V (x). The random walk on x takes a fixed length trial move: ∆x = −R,R

(R → 0) with equal trial probability in both directions but subject to the heat-

bath acceptance rate of A(∆V ) = 1/(1 + exp(β∆V )). Here ∆V is the energy

difference in the proposed transition and β ≡ 1/kBT . Expanding the heat-bath

acceptance rate, i.e.,

A(∆V ) = 1/[1 + exp(β∆V )] ≈ 1

2

[
1− 1

2
β

(
dV

dx
∆x

)]

=
1

2

[
1 +

1

2
βf(x)∆x

]

we obtain the mean µ and variance σ of ∆x in one MCS:

µ =
∑

∆x=±R

1

2
∆x · A(∆V ) =

1

4
βf(x)R2

σ2 =
∑

∆x=±R

1

2
∆x2 · A(∆V ) =

1

2
R2 + O(R4) (4.2)

where f(x) = −V ′(x) is the external force. Since R ¿ 1, the change of f(x)

within a few MCS is negligible. According to the Central Limit Theorem, after a

large number n MCS the spread of displacement from x0 approximates the normal

distribution:

P (∆xMC) = N(nµ, nσ2) = f(x0) · n1

4
βR2 + η

√
2n

1

4
R2, (4.3)
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where η ∼N(0, 1) follows the standard Gaussian distribution. We note that the

integration form (Ito’s interpretation) of the overdamped Langevin equation of

Eq. (4.1) also results in a normal distribution of the displacement ∆x after a time

interval ∆t:

P (∆xLD) =
1

γ
f(x0)∆t + η

√
2(kBT/γ)∆t. (4.4)

Comparing Eq. (4.3) and Eq. (4.4), we obtain a term-by-term equivalence between

∆xMC and ∆xLD if

1 MCS = ∆t/n = γβR2/4. (4.5)

Since the dichotomous process z(t) simply produces transitions between the two

potential profiles, the equivalence established in Eq. (4.5) is still valid in the pres-

ence of z(t), subject to the condition that 1 MCS ¿ τc. Such requirement can

always be fulfilled by choosing an infinitesimal R → 0. This equivalence justifies

the use of MC methods to analyze the ratchet current instead of the Langevin

equation.

4.2.2 Definition of Ratchets Current

Macroscopically, the transport in L-periodic ratchets can be characterized as a se-

ries of successive “L-transitions”. An L-transition is said to occur when a stochastic

particle which is initially at x reaches an equivalent site a period away in either

direction i.e. x + L or x− L, as shown in Fig. (4.3). Individually, an L-transition

can be analyzed as a classic random walk problem with absorbing boundaries. We

define the forward transition probability as the probability of being absorbed to

the right boundary g ≡ p(x → x + L), during the L-transition. Conversely, the

backward transition probability is defined as h ≡ p(x → x−L). Since the particle

will ultimately reach either of the absorbing boundaries after a sufficiently long

time, we have g + h = 1. The difference between g and h results in a non-zero
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Figure 4.3: Schematic diagram of a L-periodic ratchet potential.

current, and we thus have the steady current:

〈ẋ〉 := lim
t→∞

x(t)− x(0)

t
=

(g − h)L

τMFPT

, (4.6)

where τMFPT is the MFPT for the particle starting at position x to hit either bound-

ary at x + L or x− L. τMFPT is a critical factor in describing the transport in the

ratchets and has been studied for limited cases [60, 64].

Based on Eq. (4.6), we require the analytical solutions for g, h and τMFPT in order

to obtain the current expression.

4.3 Brownian Ratchets in Thermal Equilibrium

We start our analysis with a simple illustrative case – thermal equilibrium Brownian

ratchets without a driven noise, i.e. U(x, z(t)) = V (x). We first discretize the

ratchets of length 2L into 2N + 1 micro-sites, i.e. {S0, . . . , S2N} as illustrated in

Fig. (4.3). A particle starts at site Sm, and moves to adjacent micro-sites randomly,

e.g. with steady probability µm to site Sm−1 and with probability wm to site Sm+1

(see Fig. (4.4)). We define g(m) as the probability that the particle from site Sm
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Figure 4.4: Schematic diagram of the random walk algorithm.

reachs the end site S2N before it reaches the site S0. We further define τ(m) as the

MFPT (in MCS) for the particle to reach either end site S0 or S2N . At the next

MCS, the particle can either move to the left or right, or stay put. According to

the Gambler’s Ruin problem [34], we obtain the difference relations for g(m) and

τ(m):

g(m) = µm · g(m− 1) + wm · g(m + 1) + (1− µm − wm) · g(m) (4.7)

τ(m) = µm · τ(m− 1) + wm · τ(m + 1) + (1− µm − wm) · τ(m) + 1, (4.8)

which are analogous to those of the Gambler’s Ruin problem. The initial conditions

g(0) = 0, g(2N) = 1 and τ(0) = τ(2N) = 0 apply.

The solution to Eq. (4.7) can be obtained by the recurrence relation:

g(m + 1)− g(m) = (µm/wm)(g(m)− g(m− 1)).

Starting from the middle minima i.e. m = N , we can obtain the forward transition

probability g between the adjacent supersites:

g = g(N) =

∑N−1
i=0 k(i)∑2N−1
i=0 k(i)

=
1

1 + k(N)
, (4.9)

where k(0) ≡ 1, k(m) ≡ ∏m
i=1 µi/wi for m ≥ 1. In the last step we have used the

periodic condition: µj = µN+j and wj = wN+j, which leads to k(N+i) = k(N)·k(i).

The backward transition probability can be obtained immediately from h = (1−g).
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Similarly for Eq. (4.8), after some simplification we obtain, for m = N :

τMFPT = τ(N) = g ·
N∑

i=1

(
(wik(i))−1

N+i−1∑
j=i

k(j)

)
. (4.10)

Substituting the heat-bath rate definition 1
1+exp(β∆V )

for wi and µi into k(i), we

obtain: k(i) = (w0/wi)e
βVi = 2w0(e

βVi + eβVi+1), where Vi is the potential at the

ith site and V0 ≡ 0. Particularly, k(N) = exp(βVN) since w0 = wN . Thus, by

considering Eqs. (4.5) and (4.6), the current expression for ratchets in thermal

equilibrium converges to the well-discussed continuous form [12] as N →∞:

〈ẋ〉 =
(g − h)L

τMFPT

=
L · (1− eβV (L))

γβ
∫ L

0
dx e−βV (x)

∫ x+L

x
dy eβV (y)

. (4.11)

We shall also point out that for N = 2, our above discussion reduces to the

three-state discrete-time minimal Brownian ratchet model [65]. In particular, if

we replace the transition rates with µ′i = γ̃µi + γ/2 and w′
i = γ̃wi + γ/2 following

the definitions in Ref. [65], we achieve the same current expression via Eq. (4.6)

directly.

4.4 Brownian Ratchets Driven out of Equilib-

rium

We now generalize our analysis to a non-equilibrium case, i.e. with an additional

dichotomous noise z(t) applied to the ratchets potential. We consider a mean-zero

z(t), which takes two discrete values {1,−θ}(θ > 0) with correlation 〈z(t)z(s)〉 =

θ exp(−|t−s|/τc) [66]. For clarity, we denote “+” and “−” as representing the two

states z = 1 and z = −θ respectively. Similar to our previous analysis, we define

g(m; σ; σ′) as the probability for a particle at initial site Sm with z(0) = σ to reach

the absorbing site S2N after some time t with z(t) = σ′ before it reaches the other
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absorbing site S0. We also define τ(m; σ) as the MFPT for the particle starting at

Sm under z(0) = σ to reach any end sites.

g(m; σ; σ′) can be generalized from Eq. (4.7), i.e.

g(m; σ; σ′) =
∑
σ̃=±

v(σ̃|σ) · [wσ̃
mg(m + 1; σ̃; σ′) + µσ̃

mg(m− 1; σ̃; σ′)

+(1− wσ̃
m − µσ̃

m)g(m; σ̃; σ′)
]
, (4.12)

where v(σ̃|σ) is the transition probability for dichotomous state from σ to σ̃ in one

MCS [66]. wσ̃
m and µσ̃

m denote the spatial transition rates at dichotomous state

z = σ̃. Equation (4.12) can be rewritten into a 2 × 2 matrix difference equation.

After some algebra we obtain:

Gm+1 = W−1
m (λ · C + Wm + Um) ·Gm −W−1

m Um ·Gm−1, (4.13)

where λ ≡ v(−|+)
1−v(−|+)−v(+|−)

¿ 1, Wm = Diag{w+
m, w−

m}, Um = Diag{µ+
m, µ−m}, and

C =


 1 −1

−θ θ


 ; Gm =


 g(m; +; +) g(m; +;−)

g(m;−; +) g(m;−;−)


 .

The initial conditions are G0 = 0; G2N = Diag{1, 1} ≡ I. Again, setting the

starting position m = N , we obtain the forward transition probability matrix :

G = GN .

By giving the details of derivation in Appendix A, we give directly the explicit

solution to G, at N →∞:

G = Q(L) · [Q(2L)]−1. (4.14)
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Here Q(y) = {q(y; σ; σ′)} is a 2× 2 matrix with q(y; σ; σ′) having the definition:

σσ′

|σσ′|q(y; σ; σ′) = δσσ′

∫ y

0

dx · eβU(x,σ)

+
∞∑

n=2

(
γβ

(1 + θ)τc

)n−1




∑
σ1=σ′;σn=σ;
other σi=±

∫ xn=y

x0=0

∫ xn−1

x0

. . .

∫ x2

x0

dxn−1 . . . dx1

·
(

n∏
j=2

|σj|
∫ xj

xj−1

dx · eβ[U(x,σj)−U(xj ,σj)]

)
·
∫ x1

x0

dx · eβU(x,σ1)

]
. (4.15)

The backward transition probability matrix H can be calculated in a similar manner.

Similarly, the calculation of τ(m; σ) is based on the difference equation that gen-

eralized from Eq. (4.8):

τ(m; σ) =
∑
σ̃=±

v(σ̃|σ) · [wσ̃
mτ(m + 1; σ̃) + µσ̃

mτ(m− 1; σ̃)

+(1− wσ̃
m − µσ̃

m)τ(m; σ̃)
]
+ 1, (4.16)

which leads to the matrix difference equation:

Wm · Tm+1 = (λ · C + Wm + Um) · Tm − Um · Tm−1 − E, (4.17)

where Tm = (τ(m; +), τ(m;−))T , E = (1, 1)T and T0 = T2N = 0. The explicit

solution to the MFPT matrix T = TN , has the form:

T = G ·R(2L)−R(L) (4.18)

as N →∞, where the matrix R(y) = (r(y; +), r(y;−))T , with r(y; σ) given by:

r(y; σ)

γβ
=

∞∑
n=2

(
γβ

(1 + θ)τc

)n−2




∑
σn−1=σ;

other σi=±

∫ xn=y

x0=0

∫ xn−1

x0

. . .

∫ x2

x0

dxn−1 . . . dx1

|σ|
σσ1

·
n−1∏
j=1

|σj|
∫ xj+1

xj

dx · eβ[U(x,σj)−U(xj ,σj)]

]
.(4.19)

With the transition probabilities G, H and the MFPT T , the expression for the

steady state current can be derived. We note Z = G + H is the actual transition



4.4 Brownian Ratchets Driven out of Equilibrium 53

matrix for the probability distribution of dichotomous state over one L-transition.

Hence, the steady state (after n →∞ transitions) yields the following probabilities

of the dichotomous states at the start of the (n+1)th L-transition: Prob(z = 1) =

Z21/(Z12 + Z21) and Prob(z = −θ) = Z12/(Z12 + Z21). The effective forward

transition probability is then given by the weighted sum: geff =
∑

σ,σ′ Prob(z =

σ)g(N ; σ; σ′), and similarly for heff . Based on Eq. (4.6), this then leads to our main

result, i.e. the analytical expression of the ratchets current:

〈ẋ〉 =
G11 + G22 −H11 −H22 − 2(|G| − |H|)

(G21 + H21)T1 + (G12 + H12)T2

L. (4.20)

For verification, we performed a numerical simulation based on the Langevin equa-

tion of Eq. (4.1), and assuming a ratchet potential profile of:

U(x, z(t)) =




− 1

k̂
Lx̂− z(t) · Fx; x̂ ≤ k̂

1

1−k̂
Lx̂− z(t) · Fx; x̂ > k̂

, (4.21)

where x̂ = x− [x/L], and k̂ = 2/3 reflects the asymmetry of the potential [58].

In Table (4.1), the simulated and analytical results for the forward transition prob-

ability G are in agreement with each other within simulation errors. In Fig. (4.5),

we plotted the particle current from the Langevin simulation and found extremely

close agreement with the predictions of Eq. (4.20). We remark that recurring

Eqs. (4.13) and (4.17) is a very efficient approach to calculate the G, H and T to

arbitrary precision as N →∞.

Asymmetry in potential profile and dichotomous fluctuations can result in current

reversal [58]. The MC method enables us to obtain precisely the vanishing current

condition (see the inset of Fig. 4.5) which is of importance in rectifying particles

with only small differences in γ. Interestingly, since λ ∼= ∆t
(1+θ)τc

= γ
τc

βR2

4(1+θ)
, from

Eq. (4.15) we found (γ/τc) determines the current direction. In Figs. (4.5) and

(4.6), we observed two facts: 1) there is a threshold temperature βc, below which no

current reversal can occur regardless of γ and τc, and 2) the zero-current condition
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Table 4.1: A comparison between simulated forward transition probabilities matrix

G and our exact results. Simulation parameters are: L = 1.0, F = 0.6, θ = 0.42,

k̂ = 0.333, β = 2 and γ/τc = 2. The difference between the simulation results and

the exact analytical values from Eq. (4.14) was found to be within 1% and within

the simulation errors.

G Langevin simulation Exact values

+ − + −
+ 0.346(3) 0.234(2) 0.346387 0.233022

− 0.165(2) 0.300(3) 0.164366 0.300344

H Langevin simulation Exact values

+ − + −
+ 0.118(1) 0.303(3) 0.117946 0.302644

− 0.0724(7) 0.462(5) 0.072188 0.463101
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Figure 4.5: Temperature-driven reversal of ratchets current. Close agreement

between analytical MC prediction and Langevin dynamical (LD) simulation. The

simulation parameters are: R = 0.005, L = 1.0, F = 0.6, θ = 0.42, γ = 1 and

τc = 0.15, 0.25, 0.5 from top to bottom. Error bars are smaller than the symbol

size. Inset: extracted zero-current curve with respect to γ/τc.
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curve is monotonic in character, i.e. a decrease in the required γ/τc with increasing

β. A qualitative explanation may be obtained by considering the energy barrier

between the adjacent energy minima, ∆V +, ∆V −, when the ratchet is tilted by

the dichotomous noise z = 1 and z = −θ respectively. In the present application,

∆V + < ∆V −, and hence a positive current occurs in the limit of high β. While

at low β and large τc limit that τMFPT ¿ τc, a negative current will be formed if

[exp(−β∆V +)/θ] < exp(−β∆V −). Therefore, the bottom-left (top-right) corner

of the phase diagram of Fig. (4.6) corresponds to a negative (positive) current

region, thus implying a monotonic trend of the zero-current surface dividing the

two regions.

4.5 Generalizations and Conclusion

Note that the analytical ratchet current in Eq. (4.20) is derived without the as-

sumption of low temperature as in [60]. For the specific case of N = 2, our

discussion on ratchets transport in the presence of dichotomous process reduces to

the minimal Astumian game [67]. Additionally, the above Monte Carlo analysis

can reasonably be extended to ratchets driven by an n-state process or even an

Ornstein-Uhlenbeck (O-U) process [12] (an O-U process is equivalent to an infinite

n-state process from the Monte Carlo point of view). With some modifications, the

Monte Carlo analysis can also be applied to model the temperature (generalized

Smoluchowski-Feynman) ratchets [46].

To summarize, we presented a time-quantified MC method, based on and ex-

tended from the Gambler’s Ruin problem, to analyze the directed transport in

overdamped Brownian ratchets. By considering the transition probabilities and

the MFPT between the adjacent minima of the periodic ratchet, we derived the

analytical expression for the current in the presence of dichotomous noise, as well
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as the vanishing current condition. Generally, the Monte Carlo formalism offers

an alternative way to solve intractable stochastic dynamics and the correspond-

ing Fokker-Planck equations. Extensions to the classic Gambler’s Ruin or other

MC problems, e.g. inclusion of correlations [68] or multiple currencies [69], may

yield further insights into other areas of stochastic dynamics, e.g. turbulence or

high-dimensional thermally activated dynamics.



Chapter 5
Thermally Activated Dynamics of Several

Dimensions: A Micromagnetic Study

In this chapter we discuss methods for solving thermally activated dynamics in

higher dimensions. In particular, we focus our research in the area of micromag-

netics, which constitutes an important theoretical/computational method to com-

plement the rapid development of ultra-high density data storage devices.

It will be helpful for us to begin with an overview of the basics of the standard

micromagnetism. Subsequently, we will discuss a micromagnetic model which in-

corporates thermal activation, before introducing our time quantified Monte Carlo

method. With the Monte Carlo method, we analyze the damping effect on the

thermally induced magnetization reversal behavior.

58
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5.1 Background

5.1.1 Overview

Micromagnetism is the continuum theory of magnetic moments, which determines

the magnetization configuration of magnetic microstructures of a size range from

a few nanometers to a few micrometers. The length scale under consideration

is generally considered as intermediate level. On the one hand the size of the

microstructure is large enough such that the magnetostatic interaction induced

magnetic domains becomes indispensable. Thus, the effects of magnetic domain

formation and its structure have to be included in the physical model. On the other

hand effects which arise from the atomic structure of solids have to be considered

as well. This includes magnetocrystalline anisotropy which originates from the

specific orientation in which orbitals of neighboring atoms overlap in the crystal

lattice. In addition, another energy term under consideration is the quantum

exchange interaction between the spin momentum of electrons.

Nevertheless, the size of the microstructures is too large to be modeled by purely

quantum mechanical models with present computing power. Therefore, the accept-

able way is to classify quantum mechanics, i.e. ignore the atomic nature of matter,

and use classical physics in a continuous medium, i.e. assuming the magnetization

to be a continuous function of position.

5.1.2 Development of Micromagnetic Modeling

Micromagnetic modeling is concerned with obtaining the detailed magnetization

configurations usually at equilibrium, and to model the dynamics of magnetization

reversal in magnetic materials.

The basic principle of micromagnetism is the energy minimization, as proposed by
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Landau and Lifshitz in 1935 to explain the formation of magnetic domains [70].

They analyzed the competing effect between the exchange energy and the mag-

netostatic energy, and pointed out the domains are formed to minimize the total

energy, avoiding poles and forming flux-closure type structure. In 1948, Stoner and

Wohlfarth postulated the reversal mechanism of a single domain particle based on

the static method of energy minimization, which beautifully explains the magnetic

hysteresis phenomena. With these pioneering works, Brown in 1963 established

the rigorous theoretical base for the micromagnetic framework [15]. He derived the

conditions for the system at energy minimum by using perturbation techniques,

which is known as the Brown’s static equation for micromagnetics.

However, the dynamical process for the system to relax into equilibrium static

state remained unclear since a purely Larmor precessional motion of the magnetic

moment would not automatically lead to energy minimization. It was not until

1955 that Gilbert [71] proposed a phenomenological damping effect that applies

to the magnetic moment. The resulting Landau-Lifshitz-Gilbert (LLG) equation

is the most commonly recognized dynamical model for magnetic moments, and is

actually equivalent to an older form of Landau and Lifshitz equation.

There has been increasing interest in the field of micromagnetism among researchers

in recent years. One reason is the advent of new experimental imaging techniques

with resolutions at the order of tens of nanometers or less, and hence can provide

experimental confirmation of the micromagnetic theories. For example, electron

holography, a form of imaging, produces an optical hologram with resolution of

about 1 nanometer. Others like scanning electron microscopy with polarization

analysis, magnetic near-field microscopy, and the magnetic force microscopy can

also have resolutions on the order of tens of nanometers.

Another practical reason is the utilization of micromagnetic theory to model the
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magnetization process and domain structures. With the rapid advance of comput-

ing resources, micromagnetic modeling are being implemented for understanding

the magnetization process of magnetic nanostructures [72]. For example, stochastic

micromagnetic modeling has important practical implications, e.g. in predicting

the storage lifetime of hard-disk magnetic media [15, 73]. Numerical simulation

of magnetic nanostructures has become an indispensable tool that can comple-

ment experimental efforts in understanding the collective behaviors of magnetic

domains as well as developing new devices. Hence, theoretical modeling and sim-

ulation techniques need to keep pace with advances in experiments and practical

applications to remain effective.

5.1.3 Objective and Scope

A large number of scientific papers are focused on the following areas (i) to in-

corporate thermally activated magnetization reversal in the micromagnetic frame-

work and (ii) to simulate the influence of environmental conditions and complex

microstructures on the magnetization reversal and to expand the theory to new

techniques for the simulation of large-scale systems, such as magnetic storage de-

vices and sensors. Research activities also concentrate on (iii) the development of

efficient hybrid micromagnetic models.

The main objectives of our research are (i) to investigate the theory underlying

the stochastic behavior of magnetic nanoparticles under the influence of thermal

fluctuations, by utilizing both Monte Carlo and Langevin methods, and (ii) to apply

these methods for the specific application of coupled magnetic grains, which form

the basic units of magnetic storage media. For objective (i), we first consider the

simpler case of noninteracting grains, and derive the analytical time quantification

of the Monte Carlo method, by comparison with the Langevin method via the

Fokker-Planck equation. In this way, we can utilize the Monte Carlo method to
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model both the short- and long-term magnetization dynamics of the magnetic

grains. For objective (ii), we apply the Monte Carlo method to analyze the storage

lifetime of magnetic grains, and spin wave properties in interacting spin arrays.

5.2 The Stochastic Landau-Lifshitz-Gilbert Equa-

tion Revisited

Micromagnetic simulation based on the Landau-Lifshitz-Gilbert dynamical equa-

tion is now widely used to study the magnetic recording performance,[74, 75, 76,

77, 78] i.e. signal-to-noise [79], and bit transition parameter [80]. Magnetic media

constructed in the simulation usually consists of structured nanomagnets with grain

size of only a few nanometers. In present magnetic media, in order to maximize the

storage density, the grain size has been reduced to almost the superparamagnetic

limit, where thermal fluctuations become strong enough to destabilize the grain

magnetization and hence, the information stored. In addition, these fluctuations

may also adversely affect the accuracy of the writing process.

The problem of thermally induced magnetization behavior is very important from

both fundamental and application points of view. Langevin dynamics constitute a

general method to model a dynamical system subject to stochastic thermal fluctu-

ations. Specifically, for the case of magnetization dynamics, the Langevin equation

takes the form of the stochastic Landau-Lifshitz-Gilbert equation, which consists

of the usual LLG dynamical equation of motion, with an additional thermal field

representing the thermal fluctuations, following Brown [15].

Previous research works have been done to investigate the properties of the stochas-

tic LLG equation. Being the one who first proposed that the thermal fluctuations

be described by a white noise term, Brown [15] derived approximate eigenvalues



5.2 The Stochastic Landau-Lifshitz-Gilbert Equation Revisited 63

of the Fokker-Planck equation of thermally induced magnetic reversal for the sim-

plest case of isolated (i.e. noninteracting) uniaxial magnetic single domain particles

[15]. Aharoni [81, 82] and Scully [83] investigated the asymptotic relaxation time

of isolated uniaxial ferromagnetic particles with an applied field. Coffey and co-

workers [84] extended the theoretical study by deriving formulas for the nonaxially

symmetric case. They also investigated the different regimes, corresponding to

different values of the damping parameter α in the stochastic LLG equations. This

work represents an important basis for understanding the magnetization dynamics

in single-domain particles.

Unfortunately, the extension of this work to the important case of strongly coupled

spin systems such as those used in granular information storage media is nontrivial.

Furthermore, for a large array of grains, the number of degrees of freedom increases

exponentially with the number of grains, and realistic calculations would appear

to be impossible except by purely numerical or computational approaches.

5.2.1 The Dynamical Equation

In the micromagnetic theory, the motion of the spin vector (magnetic moment) is

driven by the torque of the effective magnetic fields Heff , which is defined as:

Heff = − 1

µ0

(
∂H
∂M

)
(5.1)

where H is the Hamiltonian of the system, M = Msŝ is the magnetization of the

particle. Here µ0 is the magnetic permeability, Ms is the saturation magnetization,

and ŝ represents the unit spin vector.

There are four important contributions to the Hamiltonian of a ferromagnetic body:

the exchange energy, the magnetocrystalline anisotropy energy, the magnetostatic

energy, and the Zeeman energy in an external field.

The Exchange Energy
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The Heisenberg Hamiltonian of the exchange interaction is usually writ-

ten in the form:

Hexch = −
∑
i,j=1

Jij ŝi · ŝj (5.2)

where Jij is the exchange integral, which is calculated from first princi-

ples quantum calculations. It decreases rapidly with increasing distance

between the atoms, and so the sum has to be taken only for nearest

neighbors and we can write J for Jij.

Magnetocrystalline anisotropy energy

Real magnetic materials are not isotropic, otherwise permanent mag-

nets in microphones and loudspeakers would lose their magnetization

after production. The most common type of anisotropy is the magne-

tocrystalline anisotropy, which is caused by the spin-orbit interaction

of the electrons.

The magnetocrystalline energy is usually small compared to the ex-

change energy. But the direction of the magnetization is determined

only by the anisotropy, because the exchange interaction just tries to

align the magnetic moments parallel, regardless of which direction.

In the simplest case, the anisotropy is uniaxial with a special axis known

as the easy direction. We assume k̂ as the unit vector of the easy

direction of anisotropy. The Hamiltonian component can be written

as:

Hani = KuV (ŝ · k̂)2, (5.3)

where Ku is the anisotropy constant and V is the total volume of the

magnetic particle.

Magnetostatic energy
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The Magnetostatic energy accounts for the magnetostatic interaction

between the magnetic dipoles. For an interacting spin array, the total

magnetostatic interaction energy is given by

Hstatic =
∑

i

∑
j

µ0

4πr3
{Mi ·Mj − 3(Mi · r̂)(Mj · r̂)} (5.4)

where r̂ is the unit vector pointing from the i-th dipole to the j-th

dipole. r is the distance between Mi and Mj. Unlike exchange cou-

pling, the magnetostatic interaction is a long-range behavior. There-

fore, the calculation of the magnetostatic energy should be carried out

over the whole volume of the system.

Zeeman energy

For the energy of a magnetic body in an external field we obtain

Hext = −µ0V M ·Hext. (5.5)

Due to the linearity of Maxwell’s equations, the superposition principle

allows a simple addition of this energy term.

Since we are interested in the dynamic properties and time evolution of the mag-

netization, we have to consider the precession of the magnetization in a magnetic

field. The precessional motion for the magnetization can be simply written in the

form:
dM

dt
= −γ0M×H. (5.6)

This equation describes the undamped precession of the magnetization vector

about the field direction. It is the well known Larmor precession with the Larmor

frequency ω = γ0H. From experiments it is known that changes in the magnetiza-

tion decay in finite time. As this damping cannot be derived rigorously from basic

principles, it is just added as a phenomenological term. In reality, it is caused by
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a complex interaction of the electron’s magnetic moment with the crystal lattice.

Gilbert [71] proposed a damping term of the form:

α

Ms

M× dM

dt
(5.7)

with the dimensionless damping parameter α.

Mathematically, the Gilbert equation:

dM

dt
= −γ0M×H +

α

Ms

M× dM

dt
(5.8)

is equivalent to the well known Landau-Lifshitz-Gilbert (LLG) equation in the

following form:

dM

dt
= − γ0

1 + α2
M×H− αγ0

(1 + α2)Ms

M×M×H. (5.9)

5.2.2 Thermal Activation

Thermal activation is introduced in the Landau-Lifshitz-Gilbert equation by a

stochastic thermal field, which is added to the effective field H. It accounts for

the effects of the interaction of the magnetization with the microscopic degrees

of freedom (eg. phonons, conducting electrons, nuclear spins, etc.), which cause

fluctuations of the magnetization distribution. This interaction is also responsible

for the damping effect, since fluctuations and dissipation are related manifestations

of one and the same interaction of the magnetization with its environment.

Since a large number of microscopic degrees of freedom contribute to this mecha-

nism, the thermal field Hth(t) is assumed to be a Gaussian random process with

the following statistical properties:

〈Hth,i(t)〉 = 0,

〈Hth,i(t)Hth,j(t
′)〉 = 2Dδijδ(t− t′). (5.10)



5.2 The Stochastic Landau-Lifshitz-Gilbert Equation Revisited 67

The average of the thermal field taken over different realizations vanishes in each

direction i ∈ {x, y, z} of space. The correlation term relates the strength of the

thermal fluctuations (the thermal field) to the dissipation due to the damping of

our system. The value of D is first calculated by W. F. Brown [15] to be:

D =
αkBT

µ0V γ0Ms

(5.11)

5.2.3 Variable Renormalization

To implement the stochastic Landau-Lifshitz-Gilbert equation for finite differential

simulation, we shall first simplify the equation with variable renormalization.

The reduced Landau-Lifshitz-Gilbert equation has the form:

dm

dt
= − γ0Hk

1 + α2
m× (heff + α ·m× heff) (5.12)

The physical meaning of all variables and its renormalization unit is given in Ta-

ble (5.1).
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ŝ i
·ŝ
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5.2.4 The Fokker-Planck Equation

There are many forms of the Fokker-Planck equation corresponding to the stochas-

tic Landau-Lifshitz-Gilbert equation (Eq. (5.12)). Let P (m, t) be the probabil-

ity distribution function of the stochastic Landau-Lifshitz-Gilbert equation. The

Fokker-Planck equation has the form of:

∂P

∂t
= − ∂

∂m
·
{[
− γ0Hk

1 + α2
m× h− αγ0Hk

(+α2
m×m× h

+
αγ0kBT

(1 + α2)µ0V Ms

m×
(

∂

∂m

)]
P

}
(5.13)

The formula of the Fokker-Planck equation will be different, if the probability

distribution function is defined by using the spherical coordinators {θ, φ}, i.e.

P (θ, φ, t). We will introduce this form of the Fokker-Planck equation in the latter

sections [see Eq. (5.14)].

5.3 The Time-quantified Monte Carlo Algorithm

Brown in 1963 proposed a micromagnetic model in the presence of thermal fluctu-

ations. In this model, the thermal activated dynamics are modeled in the Langevin

scheme, using the stochastic Landau-Lifshitz-Gilbert equation [15]. Langevin-

based micromagnetics has proved to be a highly useful computational method,

because of its ease of use and close correspondence to actual experimental data

in previous literatures [84]. However, it has certain limitations. For example, it

is practically infeasible to model the long-time dynamics of large scale arrays of

magnetic grains by using the stochastic LLG equation.

In contrast, the Monte Carlo schemes have distinct advantages in reducing the sim-

ulation efforts for large scale systems in many other scientific fields. The flexibility

of the Monte Carlo scheme is due to its abstract formalism which can be realized in
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an almost infinite number of ways. Hence it is natural to look for an implementa-

tion of the Monte Carlo scheme in studying the thermally induced magnetization

reversal.

Increasingly, Monte Carlo methods are being implemented in the stochastic micro-

magnetic modeling of magnetic nanostructures [72], e.g. in predicting the storage

lifetime of hard-disk magnetic media [73, 85]. However, Monte Carlo schemes have

the drawback of having its time calibrated in MC steps, instead of physical time

units. Thus, both the Monte Carlo and the Langevin approach are useful computa-

tional methods in micromagnetics, with complementary strengths and drawbacks.

Hence, it is very important to devise a general way of mapping one method to the

other, and vice versa.

Early efforts to link Monte Carlo to LLG were done by Nowak et al. [20]. They

focused on deriving a time quantification factor to relate one Monte Carlo step

(MCS) to the real physical time unit used in the LLG equation. Recently, we

also proposed another time-quantifiable Monte Carlo method which involves the

determination of a macroscopic density of states, and the use of the Master equation

for time evolution. This method is applicable in simulating extremely long time

magnetization reversal process [38]. The effect of precession on Nowak’s time-

quantification was investigated by Chubykalo et al. [16]. They concluded that

Nowak’s time quantification of Monte Carlo breaks down in the low damping case,

in the presence of an oblique external field, due to the influence of (athermal)

precessional motion.

In the rest of this chapter, we will first introduce our Monte Carlo method, which

is modified to include the precessional motion. We prove its validity in a simple

isolated single particle scheme, and in a more complex interacting spin array. We

shall discuss the application of our Monte Carlo method, e.g. investigation of the

effects of damping constant α in magnetization reversal and spin wave dynamics.



5.3 The Time-quantified Monte Carlo Algorithm 71

5.3.1 Isolated Single Particle

We consider an isolated single domain magnetic particle whose moment can be

represented by a Heisenberg spin with an easy axis anisotropy [15]. To describe

the dynamics of a Heisenberg spin, it is convenient to use the spherical coordinate

system. The Fokker-Planck equation in spherical coordinates θ and ϕ can be

written in the form of:

∂P

∂t
= − ∂

∂θ
(Aθ · P )− ∂

∂ϕ
(Aϕ · P ) +

1

2

∂2

∂θ∂ϕ
(Bθϕ · P )

+
1

2

∂2

∂θ2
(Bθθ · P ) +

1

2

∂2

∂ϕ2
(Bϕϕ · P ) . (5.14)

P = P (θ, ϕ, t) is the probability density of the moment orientation. A and B are

the so-called drift and diffusion coefficients respectively, defined as the ensemble

mean of an infinitesimal change of θ and ϕ with respect to time [12].

The reduced stochastic LLG dynamical equation can be written as:

dm

dt
= − γ0Hk

1 + α2
m× [(h + ht) + α ·m× (h + ht)] (5.15)

where m is the magnetic moment unit vector, α and γ0 are the damping and gyro-

magnetic constant respectively, h is the effective field normalized by the anisotropy

field Hk = 2Ku/µ0Ms, where Ku is the anisotropy constant, µ0 is the magnetic

permeability and Ms is the saturation magnetization. The thermal field ht is in-

troduced as a white noise term. The Fokker-Planck equation corresponding to the

LLG equation has been derived by Brown [15], and its factors are as follows:

ALLG
θ = −h′

∂E

∂θ
− g′

1

sin θ

∂E

∂ϕ
+ k′ cot θ

ALLG
ϕ = g′

1

sin θ

∂E

∂θ
− h′

1

sin2 θ

∂E

∂ϕ

BLLG
θθ = 2k′ (5.16)

BLLG
ϕϕ =

1

sin2 θ
2k′

BLLG
θϕ = 0
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Figure 5.1: Diagram of random walk step of length r and angle α to ~eθ which

define a spherical triangle ABC.

where in above equations, h′ = αγ0

µ0V Ms(1+α2)
, g′ = h′/α, k′ = h′/β, E is the total

energy [15, 20], V is the volume of the particle and β = (kBT )−1, kB is the

Boltzmann constant and T is the temperature in Kelvin.

We will now derive the Fokker-Planck equation corresponding to our Monte Carlo

method. For the MC method, we choose with probability q, to displace the mag-

netic moment within a small cone centered at the original magnetization direction,

and with probability (1−q) to perform a rejection-free precession about an effective

field. For the displacement about a cone, we pick a random vector lying within

a sphere of radius R to the original magnetic moment and then normalize the re-

sulting vector. The precessional step vector, i.e. the displacement of the magnetic

moment due to precession, is ∆m = −Φ ·m × h, where Φ ¿ 1 is a precessional

step size to be determined. The probability q is chosen to be 1/2, which yields a

near-optimal balance of efficiency and accuracy of our simulation.

To calculate the Fokker-Planck coefficient AMC
θ for the MC method, we obtain the

ensemble mean of a small change of θ in one Monte Carlo step. Contributions from

the random walk and the precessional step are AMC
θ = 〈∆θ〉rand /2 + ∆θprec/2,
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where the angle brackets denote the ensemble average.

We first calculate the 〈∆θ〉rand, where the angular displacement is defined by two

random variables r and angle α, as shown in Fig. 5.1. After some geometrical

analysis, we obtain:

∆θrand = − cos α · r +
1

2
cot θ sin2 α · r2 + O

(
r3

)
(5.17)

∆ϕrand =
1

sin θ
sin α · r +

1

2

cot θ

sin θ
sin 2α · r2 + O

(
r3

)
. (5.18)

Next, we require the probability for the displacement vector to be of size r (r < R)

and angle α with respect to ~eθ. This probability is given by Nowak et al. [20]

as p(r) = 3
√

R2 − r2/2πR3. Based on the heat-bath Metropolis MC scheme, the

acceptance rate is

A (∆E) = 1/ (1 + exp (β∆E))

≈ 1

2

(
1− 1

2
β

(
∂E

∂θ
∆θ +

∂E

∂ϕ
∆ϕ

))
(5.19)

where ∆E is the energy change in the random walk step. Thus, integrating over

the projected surface of Fig. 5.1, one obtains 〈∆θ〉rand:

〈∆θ〉rand =

∫ 2π

0

dα

∫ R

0

(rdr)∆θ · p(r) · A(∆E)

=
R2

20

(
cot θ − β

∂E

∂θ

)
+ O(R3). (5.20)

Next we calculate the other contribution from the precessional step ∆θprec:

∆θprec ∼= eθ · (−Φ ·m× h) = Φ · (eϕ · h)

= − 1

sin θ

Φ

2KuV

∂E

∂ϕ
. (5.21)

In the above derivation, we have used the vector identity a · (b× c) = (a× b) · c
and h = −(5mE)/2KuV . Using Eqs. (5.20) and (5.21), AMC

θ becomes,

AMC
θ =

R2

40

(
cot θ − β

∂E

∂θ

)
− 1

sin θ

Φ

4KuV

∂E

∂ϕ
+ O(R3). (5.22)
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The other FPE factors can be obtained with the same procedure.

AMC
ϕ = − 1

sin2 θ

R2

40
β

∂E

∂ϕ
+

1

sin θ

Φ

4KuV

∂E

∂θ
+ O(R3)

BMC
θθ =

R2

20
+

1

2

(
1

sin θ

Φ

2KuV

∂E

∂ϕ

)2

+ O(R4)

BMC
ϕϕ =

1

sin2 θ

R2

20
+

1

2

(
1

sin θ

Φ

2KuV

∂E

∂θ

)2

+ O(R4)

BMC
θϕ = −

(
1

sin θ

Φ

2KuV

)2
∂E

∂θ

∂E

∂ϕ
+ O(R3). (5.23)

We can now compare the Fokker-Planck equation factors corresponding to the

Langevin (LLG) equation in Eq. (5.16), with those of the Metropolis MC method

in Eqs. (5.22) and (5.23). Performing a term-wise comparison and omitting O(R3)

and higher order terms, we found that there is a one-to-one mapping between all

Fokker-Planck terms of MC and LLG if:

R2∆τMC =
40α

1 + α2

γ0

βµ0V Ms

∆tLLG (5.24)

Φ =
βKuV

10 · α R2. (5.25)

Note that Φ is on the order of R2, thus we are justified in neglecting O(Φ2) terms

in the above comparison between Eq. (5.16), and Eqs. (5.22) and (5.23). From

Eq. (5.24), we obtain the time quantification factor of our hybrid Metropolis Monte

Carlo method, while Eq. (5.25) determines the precessional step size Φ. After

taking into consideration the probability factor q, Eqs. (5.24) and (5.25) can be

reduced to Nowak’s results [20] in the high damping case.

To test the validity of Eqs. (5.24) and (5.25), we perform numerical calculations

of the switching process for a magnetic particle in which the easy axis is oriented

at π/4 to the applied field direction. All results are averaged from a few thousand

simulations. We consider the time evolution behavior of the mean magnetization

component along the easy axis, and found a close convergence between our time-

quantified MC method and the LLG equation (Fig. 5.2). In these calculations, we
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Figure 5.2: Time dependence of magnetization along easy axis, for an isolated

particle. KuV/kBT = 15, applied field h = 0.42 tilted at π/4 relative to easy axis.

Damping constant α = 0.5.

use R = 0.03 for MC, and ∆t = 0.001 for the LLG integration.

Note that our derivation of the FPE factors is applicable in a very general case. For

instance, we do not require the assumption of the system being in the vicinity of an

energy minimum [20]. The derivation also provides additional information, e.g., it

explains mathematically why the Metropolis MC random walk method of Ref. [20]

fails to include the energy conservative precessional motion. The FPE expression

for the pure Metropolis MC does not contain terms corresponding to the g′-factor

related terms of the LLG method [Eq. (5.16)], which are precisely the terms which

reflect the precessional part of the magnetization dynamics [1]. Thus, as shown

in Fig. 5.3, we have successfully implemented the representation of precessional

motion in our MC method. We investigate the influence of the damping constant

on the switching time, where the switching time is defined as the time required

for the magnetic moment to reach zero from the initial state. The precessional

step size Φ guarantees a precise description of the switching process even in the
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Figure 5.3: Switching time versus damping constant α. KuV/kBT = 15, applied

field h = 0.42 at a tilted angle of π/4 relative to easy axis. Error bars are smaller

than the size of the symbols. Note that Nowak’s method diverges from the LLG

equation at α < 2.

case of very low damping constant α, in which precessional motion dominates the

reversal process [79]. By contrast, the results obtained from the pure Metropolis

MC method of Nowak et al. diverges significantly from that of the LLG equation

at low α.

5.3.2 Interacting Spin Array

The validity of using the Time-quantified Monte Carlo method to simulate an

isolated single domain particle is first demonstrated by Nowak et al. [20] and later

rigorously proved in previous chapters by using the Fokker-Planck equation as a

bridge between the Monte Carlo and Langevin methods. In the case of interacting

spin arrays, the validity of the TQMC has not been analytically proved although

it has been numerically shown [62, 86]. It thus becomes a necessity to establish
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the proof for the case of interacting spin systems, since in practical applications

the discrete spins or moments (in the form of magnetic nanoparticles) are usually

closely packed together, and hence are strongly coupled to one another. It is also

important to show explicitly whether the analytical equivalence between the Time-

quantified Monte Carlo method and the stochastic LLG equation and the time

quantification factor, are dependent in any way on the nature (e.g. magnetostatic

or exchange) or strength of the coupling interactions.

In the following, we provide a rigorous proof for this case, based on the technique

presented earlier. The physical model under consideration is a spin array (which

represents an array of magnetic nanoparticles), whose spin configuration is rep-

resented as {s} = {· · · , ŝi, · · · }, where s = M/Ms is a normalized unit vector

representing the magnetic moment of the spin and i refers to the ith spin in the

vector list of length N . For a spin array, the corresponding the Landau-Lifshitz-

Gilbert (LLG) equation is:

d

dt
{s} = − γ0Hk

1 + α2
{s} × ({h}+ α · {s} × {h}, ) (5.26)

where α and γ0 are the damping constant and the gyromagnetic constant respec-

tively, {h} = 1
2KuV

∇{s}E is the effective field which is normalized with respect to

the anisotropy field Hk = 2Ku/µ0Ms, where Ku is the anisotropy constant and µ0

is the magnetic permeability. E = E({s}) is the total energy of the system which

consists of the typical contributions in a micromagnetic system, e.g., Zeeman term,

anisotropy term, magnetostatic term and exchange coupling term. The operator

{s} × {h} = {· · · , si × hi, · · · } is understood. As before, to represent the thermal

fluctuation, white noise-like stochastic thermal fields are added to the effective field

according to Brown [15].

Alternatively, a random walk Monte Carlo algorithm can also be used in simulating

the magnetization reversal dynamics [20]. At each Monte Carlo step, one of the

N spin sites is randomly selected to undergo a trial move, in which a random
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displacement lying within a sphere of radius R (R ¿ 1) is added into the original

magnetic moment and the resulting vector is then renormalized. The magnetic

moment changes according to a heat bath acceptance rate as A(∆E) = 1/(1 +

exp(β∆E)). Here ∆E is the energy change within the random walk step and

β = (kBT )−1, kB is the Boltzmann constant and T is the temperature in Kelvin.

Fokker-Planck Equations

To link the MC scheme with the stochastic LLG equation, we shall derive the

respective Fokker-Planck coefficients corresponding to the LLG equation and the

random walk MC [62]. The general Fokker-Planck equation for a spin array in

spherical coordinates is given as

d

dt
P ({θ}, {ϕ}, t) = −

∑
i

∂

∂θi

(Aθi
· P )−

∑
i

∂

∂ϕi

(Aϕi
· P ) +

1

2

∑
i,j

∂2

∂θi∂θj

(
Bθiθj

· P)

+
1

2

∑
i,j

∂2

∂ϕi∂ϕj

(
Bϕiϕj

· P)
+

1

2

∑
i,j

∂2

∂θi∂ϕj

(
(Bθiϕj

+ Bϕjθi
) · P)

(5.27)

where drift terms Ax and diffusion terms Bxy (x = {θi, ϕi}, y = {θj, ϕj}) are

defined as the ensemble mean of an infinitesimal change of x and y with respect

to time [12]. By giving the detailed derivation in the appendix, we obtained the

Fokker-Planck coefficients for LLG:

ALLG
θi

= −h′
∂E

∂θi

− g′
1

sin θi

∂E

∂ϕi

+ k′ cot θi

ALLG
ϕi

= g′
1

sin θi

∂E

∂θi

− h′
1

sin2 θi

∂E

∂ϕi

BLLG
θiθj

= 2k′ · δij (5.28)

BLLG
ϕiϕj

=
1

sin2 θi

2k′ · δij

BLLG
θiϕj

= BLLG
ϕjθi

= 0
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as well as for the TQMC method:

AMC
θi

= N−1R2

20

(
cot θi − β

∂E

∂θi

)

AMC
ϕi

= −N−1 1

sin2 θi

R2

20
β

∂E

∂ϕi

BMC
θiθj

= N−1R2

10
· δij (5.29)

BMC
ϕiϕj

= N−1 1

sin2 θi

R2

10
· δij

BMC
θiϕj

= BMC
ϕjθi

= 0

where in Eq. (5.28), h′ = αγ0

µ0V Ms(1+α2)
, g′ = h′/α, k′ = h′/β.

Mapping MC to LLG

In the high damping limit where the damping constant α is large, so that g′ =

h′/α → 0, a term-wise equivalence can be established between the FPE coefficients

in Eqs. (5.28) and (5.29), corresponding to the LLG and MC methods, if:

R2∆τMC =
20α

1 + α2

γ0

βµ0V Ms

∆tLLG. (5.30)

Eq. (5.30), in which ∆τMC is calibrated in MCS/site (one Monte Carlo step for

each site on the average), is the time quantification factor for the TQMC method

in interacting spin arrays. The time quantification factor is found to be the same

as the one in Ref. [20] for an isolated single particle case, and is thus consistent

with the previous numerical convergence observed in Refs. [62, 86].

For the low damping limit where precessional motion becomes significant, one may

wish to use the precessional (hybrid) Metropolis Monte Carlo algorithm [62]. We

confirm that, by using the same derivation techniques, one is able to prove the

validity of including the precessional move in the MC algorithm in simulating the

micromagnetic properties of an interacting spin array.



5.3 The Time-quantified Monte Carlo Algorithm 80

0 20 40 60 80
-1.0

-0.5

0.0

0.5

1.0

0 20 40 60 80
0.000

0.005

0.010

0.015

0.020

 

 

S
ta

tis
tic

al
 E

rr
or

Time ( 0Hk)
-1

10X10

20X20

 Monte Carlo
 LLG

 

 

M
ag

ne
tiz

at
io

n 
al

on
g 

ea
sy

 a
xi

s 
/ M

s

Time (
0
H

k
)-1

40X40

Figure 5.4: Time dependence of magnetization along the easy axis for an inter-

acting spin array. Periodic boundary conditions were used and KuV/kBT = 25,

applied field h = 0.5 at a tilted angle of π/4 relative to the easy axis. Damping

constant α = 1, exchange coupling strength J/Ku = 2 (Hamiltonian of an inter-

acting system with exchange coupling strength J can be found, i.e. in Ref. [86]).

R = 0.025 is used in the Monte Carlo simulation. Statistical error for the 10× 10

lattice Monte Carlo simulation is shown in the inset.
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Numerical Verifications

The equivalence between the MC method and LLG, which is expressed by Eq. (5.30),

provides the theoretical justification for the use of the Monte Carlo method as an

alternative to the LLG equation in micromagnetic studies. The equivalence which

has been established is very general because no explicit form of the Hamiltonian is

used in the derivation. This implies that the validity of the equivalence is indepen-

dent of many physical and simulation parameters. For illustration, we apply our

analytic results to 10× 10, 20× 20 and 40× 40 interacting spin array systems and

found that the convergence between MC and LLG are very good (Fig. 5.4). We

also test the validity of the TQMC method for a simple 10× 10 spin array which

is subject to a varying exchange coupling strength J . As shown in Fig. (5.5), the

time evolution behavior of the (asymmetric) magnetization reversal is simulated

for different values of J . We find good convergence between the simulated results

from both LLG and MC schemes, even when the switching mechanism of the spin

array changes from independent reversal (small J) to the nucleation-driven rever-

sal (large J). We also confirm that the mapping between the Monte Carlo and

LLG time steps as expressed in Eq. (5.30), is also independent of other simulation

and physical parameters, e.g. the chosen boundary condition (periodic / free), the

lattice size, and the nature of the coupling (magnetostatic / exchange).

Next, we show that the equivalence between the MC method and LLG enables the

MC method to be utilized in most of the situations where LLG applies, and beyond

the above time-evolution simulation. As an example, we consider the dispersion

relation for the primary spin wave mode of a one-dimensional spin chain. This ex-

ample is chosen because it tests the capability of the precessional TQMC method

to simulate both spatial and time correlation of the spin-wave dynamics. By com-

parison, conventional MC methods are more suited for equilibrium or steady-state

studies rather than time correlation dynamics.
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Figure 5.5: The time evolution behavior of the magnetization reversal in a spin

array system. The following simulation parameters are assumed: lattice size of

10×10, periodical boundary condition, thermal condition KuV/kBT = 25, damping

constant α = 1.0 and external field h = 0.5 applied at an angle θ = π/4 with respect

to the easy axes. The exchange coupling strength J is the adjustable variable. To

guarantee the simulation accuracy, the time interval ∆t for the LLG integration

changes with J as ∆t = 0.01/(1 + h + J/KuV ) [87], while the trial move step size

R in the MC simulation is chosen to reflect the ∆t in one MCS. Error bars are

smaller than the symbol size.
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The Hamiltonian of the spin chain system is set to be

H =
∑

i


−J

{i}∑
j<i

ŝi · ŝj −KuV (ŝi · k̂n)2 − µ0MsV · ŝi ·Hext


 (5.31)

where {i} represents the neighboring spins of the ith spin, J is the coupling strength,

Hext is the applied field and k̂n refers to the unit vector along the easy axis.

Magnetostatic coupling was not included in this test. The dispersion relation for

the one-dimensional spin wave mode has been theoretically studied [88] and is given

by:

ω(k) =
γ0Hk

1 + α2
[1 + hext + 4(J/2KuV ) sin2(ka/2)] (5.32)

where hext = Hext/Hk and a is the lattice constant. The calculations were done us-

ing the computational techniques of Refs. [89, 90]. Spins were initially aligned along

the z direction, in parallel with both the easy axes and applied fields. Stochastic

simulation was performed on this initial configuration for 100 (γ0Hk)
−1, in order

to achieve the quasi-equilibrium state. Space and time Fourier transforms were

then performed on the off-axis components. From the resulting spin wave spectra,

the peak frequency ω was determined for a range of wavevector k. The resulting

dispersion relation in Fig. (5.6) shows a very good convergence between the sim-

ulated results (calculated from both LLG and MC) and the theoretical prediction

of Eq. (5.32), as seen in Fig. 5.6.

5.4 Application – Analyzing the role of damping

The precessional motion delivers nontrivial effects to the thermally activated mag-

netization reversal behavior, especially in modeling the switching process of tilted

perpendicular recording media. The tilted perpendicular recording media [91, 92]

has recently been proposed as an alternative to perpendicular media, due to its
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Figure 5.6: Dispersion relation for the simulated spin wave mode. Simulation

parameters are: chain length N = 200, free boundary condition, thermal condition

KuV/kBT = 50, exchange coupling strength J/2KuV = 1 and damping constant

α = 0.1. Kittel’s model refers to the theoretical dispersion relation of Eq. (5.32).

higher thermal stability. In such a media, precessional dynamics plays a major

role because the applied external field is in the oblique orientation compared to

the easy axis of the magnetic grains.

Thus, it is essential to have a means of investigating the precessional contribution to

stochastic magnetization reversal. This precessional motion is closely intertwined

with the damping motion and thermal fluctuations. For instance, a change of the

damping parameter α not only affects the relative ratio between the precessional

and damping contributions, but also modifies the amplitude of the thermal fluctu-

ations in the magnetization [see Eqs. (5.11) and (5.12)]. In contrast, the TQMC

method models the precessional effect in only one parameters the precessional step

size Φ(α). From this point of view, the TQMC method provides a convenient

avenue to analyze the damping effect.
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5.4.1 Damping Effects in Single Particle

In the following, we apply the TQMC method with precessional motion on a specific

case of a non-interacting single domain particle with its easy axis’ direction lying

along the z axis. An oblique applied field h, normalized by Hk is added in the x-z

plane at an angle of φ with respect to the z axis. Thus, we can write down the

total energy of the system as:

E(θ)

2KuV
= −1

2
cos2 θ − h cos(φ− θ) (5.33)

where θ is the angle between the magnetic moment and the z-axis. To understand

the role of precession in inducing a magnetization reversal, we need to consider

the energy profile E versus θ based on Eq. (5.33), as shown in Fig. 5.7. Initially,

the moment of the particle is fluctuating stochastically about the minima A. The

random walk due to thermal fluctuations has a finite probability of increasing the

particle’s energy. By contrast, the precessional motion is an energy conserving

motion, which does not lead to any change in the energy of the particle. Thus,

the precessional motion will have a minimal contribution to the switching process

when the energy level is lower than the peak point B. After some time, the random

walk of the magnetic moment will cause the energy of the system to reach EB, the

energy level of B. The average time interval (which we term as τR, the random walk

delay time) for this to occur is a function of temperature, which determines the

size of the thermal fluctuations, and the energy barrier height. It is independent

of the precessional motion.

Note that the system does not necessarily undergo magnetization reversal, once

it has attained the energy EB. This is because in general the solution E(θ, φ) =

EB traces out a closed curve in the (θ, φ) space [say θ = f(φ), which is also the

trajectory of the precessional motion], where θ and φ are the axial and azimuthal

orientations of the moment. Switching only occurs when E = EB and θ = θB.
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Figure 5.7: Energy versus magnetization orientation θ. The parameters used are

easy axis orientation φ = π/4, and applied field h = −0.32.

We investigate the two extreme cases of: a) very low damping, and b) very high

damping. For the low damping condition, the magnetic moment precesses around

rapidly. Thus, all points along the path f(φ) are quickly accessed, including the

point B. Once point B is reached, the system is in an unstable equilibrium, and

rapidly transits or switches to the other minima C. Thus, in the low damping

limit, the switching time τL is predominantly due to the random walk delay time

τR required to raise the energy from the local minima EA to EB. In the high

damping limit, however, the precessional motion along f(φ) is so slow that before

the system has managed to reach point B, the random walk fluctuations have

caused the system to change to another (usually a relaxation to a lower) energy

level. Thus in this case, we require the random walk not just to bring the system

to energy EB but to reach the specific point B as well. This requires a longer time

interval, which we term as τH . In general, for an intermediate damping constant

between the two limits, the switching time τ will be τL < τ < τH .

We now numerically confirm the role of precession in switching, which has been
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qualitatively described above. First we define the switching time as the time for

the magnetic moment to reach zero along the easy axis. Fig. 5.8 shows switching

time in units of (γ0Hk)
−1 versus damping constant. For the simulation parameters,

KuV/kBT = 15 and R = 0.03. There is an optimum switching time at α = 0.3

and the switching time increases at both small and large damping constant. From

our qualitative discussion, the switching mechanism at small damping constant

is predominately due to precession, and at large damping constant switching is

mainly due to thermal fluctuations. To see the relative effects of precession and

thermal fluctuations more clearly, we plot the switching time in units of Monte

Carlo steps (Fig. 5.9). Note that Monte Carlo steps are not in units of real time

and their conversion into real time depends on α . Figure 5.9 shows saturation

in the switching times for small and large damping constant. This observation is

consistent with our qualitative argument. At small damping constant, switching is

due to the random walk delay time τR (measured in MC steps), which is indepen-

dent of the damping constant. At large damping values, there is little precession

and switching is due to the random walk delay τH which is also independent of

damping.

We also find that the damping constant only affects the switching time threshold,

but not the reversal behavior, since all switching curves show almost the same

gradient in Fig. 5.9 during reversal. This may be understood by the fact that

the reversal process is an energy relaxation to the minima C of Fig. 5.9 and is

independent of any precessional motion. Another feature of Fig. 5.9 is the pres-

ence of distinct magnetization oscillations, especially for curves corresponding to

low damping factors. These oscillations occur prior to the actual magnetization

reversal. This may be explained by the fact that the moment precesses about the

minima during the random walk delay required to excite it to the required energy

level EB. The magnetization oscillation thus can be observed if the simulation time
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is of the order of the precession period. A quick check of the time τp corresponding

to the first peak shows that it varies linearly with the damping constant. This

is in accordance to the fact that τp is inversely proportional to the precessional

frequency, while the latter itself is inversely proportional to the damping constant.

In summary, our calculations reveal an upper and lower limit to the reversal time

corresponding to high and low damping constants. We also observe distinct magne-

tization oscillations prior to the actual switching event, for the case of low damping

constants. These numerical findings are explained qualitatively, based on the en-

ergy profile of the system.

5.4.2 Damping Effects in Coupled Spin Array

The effect of the damping constant on the magnetization reversal in a coupled

spin array is more complex. It has been shown that the damping constant affects

both the rate of magnetization reversal [79, 93] and the reversal modes [78]. Nev-

ertheless, the underlying reasons for the influence of damping on magnetization

dynamics, e.g. the spin wave propagation, has not been elucidated completely.

In this section, we apply the TQMC method to study the effect of the damping

constant on the magnetization dynamics and magnetization reversal. We focus on

an interacting Heisenberg spin chain. A study on such a one-dimensional spin sys-

tem is a useful starting point in understanding the basic physics of magnetization

dynamics. It would also form a basis for further investigation into the magnetiza-

tion reversal processes in the more practically relevant two and three dimensional

systems [23, 94, 95]. We first study the spin wave spectra for the spin chain, and

the resulting dispersion relation as a function of the damping constant α. Next,

we study the reversal mechanism in the spin chain, and observe three distinct re-

versal modes at different α values. The existence of these modes is explained with

reference to the spatial correlation between spins, as shown by the k-distribution
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of the spin wave spectra.

Model and Method

We consider a one-dimensional chain of interacting magnetic moments (spins) of

length L. The Hamiltonian of the spin chain is defined as:

H = −
∑

i

(
J · ŝi · ŝi+1 + KuV (ŝi · k̂n)2 + µ0MsV ŝi ·H

)
(5.34)

where ŝi is the normalized vector representing the magnetic moment, H is the

applied field, and J , Ku and µ0 are the coupling strength, anisotropy constant

and permeability of the vacuum, respectively. We assume that all the magnetic

particles have the same volume V and easy axis orientation k̂n.

Spin Wave Dispersion

The magnetization reversal in an interacting spin system is a complex process due

to coupling between individual spins. It is thus useful to study the correlated dy-

namics of a linear spin array, represented by its spin wave spectra. The microscopic

equivalence between precessional TQMC and stochastic LLG dynamics [62] allows

the former to be used in modeling the spin wave behavior instead of the stochas-

tic LLG integration, as was done conventionally [89, 90]. The spin wave spectra

are obtained by using the Discrete Fourier Transform methods, described in Refs.

[89, 90].

The parameters used in the simulations are as follows: chain length L = 200 unless

otherwise stated, periodic boundary conditions, inverse temperature KuV/kBT =

50, and exchange coupling strength J/2KuV = 1. We verified that the spin wave

dispersion relation calculated using the TQMC method [37] matches the disper-

sion relation calculated using the linear spin wave model [88] in the previous sec-

tion. Here, we analyze the spin wave behavior at different damping conditions,
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Figure 5.10: Figures in the left column: spin wave frequency spectra of three

different wavevectors k, corresponding to the damping case of (a) α = 0.01; (b)

α = 0.1; (c) α = 0.5. Figures in the right column: Contour plot of the Fourier

transformed off-axes component |∆m(k, ω)| with respect to wavenumber k and

angular frequency ω. Damping constant (d) α = 0.01; (e) α = 0.1; (f) α = 0.5.
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corresponding to α = 0.01, 0.1 and 0.5, as shown in Figs. (5.10a), (5.10b) and

(5.10c), respectively. For each spin wave spectrum, we consider three represen-

tative wavevector k values, i.e. k = π/100a, π/2a, 4π/5a, where a is the lattice

spacing.

An important trend which can be observed by comparing Figs. (5.10a), (5.10b)

and (5.10c) is the increasing degradation of the spectra peaks at higher wavevector

k, with increasing damping constant α. For instance, at the high k value of 4π/5a

the distinct spectral peak obtained at a low α value, as shown in Figs. (5.10a) and

(5.10b), has almost disappeared at the high damping case of α = 0.5. By contrast,

the spectral peaks at low k values are less susceptible to noise with increasing α.

This trend is further confirmed via the comparison between the contour plots of

Figs (5.10d), (5.10e) and (5.10f) for low and high damping case. In the low damping

case, we observed a clear dispersion relation of the spin wave, which agrees closely

with the analytical curve predicted by the linear spin wave model. In the high

damping case, however, the spin wave spectrum is completely overwhelmed by

noise in the high k region.

This phenomenon may be quite readily understood from the viewpoint of the

TQMC, as compared to the Langevin scheme (LLG equation). We note that there

is an inverse relation between the precessional step size Φ(α) and the damping

constant α [see Eq. (5.25)]. Thus, increasing α has the effect of reducing the con-

tribution of the precessional step size relative to the random walk motion. Since

the ideal spin wave spectrum arises from the precessional motion, it thus becomes

increasingly overwhelmed by the noise generated by the stochastic random walk

at high α. This effect of noise is particularly significant when we are considering

short wavelengths, corresponding to high k approaching kmax = π/a. As a re-

sult, the damping effect increases the relative contribution of spin waves with long

wavelengths, as shown in Fig. (5.10c).
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α-dependence of Magnetization Reversal

Based on the information extracted from the above spin wave spectra, we proceed

to investigate the effect of damping on the magnetization reversal mechanism of

the spin array. For an interacting spin chain, there are two extreme reversal mecha-

nisms i.e. coherent rotation and nucleation [94, 96, 97, 98]. The former is favored in

short arrays in which the moments are strongly coupled together (i.e. small L and

large J). In coherent rotation, there is a collective and uniform rotation of all the

magnetic moments in the array, in order to minimize the exchange energy. As the

array length L increases, nucleation-driven reversal becomes energetically favor-

able, since the reduction of the anisotropy energy outweighs the exchange energy

cost. It also becomes entropically favored for long arrays to undergo nucleation,

since the number of possible nucleation sites increases as ∼ L.

Hinzke et al. had identified three distinct reversal modes of a spin chain as a

function of the chain length L [86]. For small chain lengths, coherent rotation

dominates the reversal process and the characteristic reversal time increases expo-

nentially with L. As L increases, the system adopts the solition-antisolition nucle-

ation process. In this mechanism, the reversal nucleates from a single site within

the array, before propagating across the entire array. This mode is characterized

by a 1/L dependence in the reversal time. As the system size L increases further,

the spin array is able to accommodate more than a single soliton-antisoliton pair,

allowing multiple nucleation sites to arise. In this multidroplet nucleation mecha-

nism, the number of nucleation sites is proportional to L, so that the characteristic

reversal time is independent of the chain length.

Our earlier analysis on spin waves has shown that the damping factor α plays a

major role in the precessional motion, which is driven by the torque (s× h). This

suggests that α may also have a strong effect on the magnetization reversal process.

We thus investigate the reversal mechanism adopted by a spin chain as a function of
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Figure 5.11: Characteristic reversal time versus the spin chain length L. The

simulation parameters are: periodic boundary conditions, thermal condition

KuV/kBT = 8, applied field h = 0.48 at an angle of π/6 to the easy axis, and

exchange coupling strength J/2KuV = 5. The damping constant takes the values

of α = ∞, 2.0, 1.0, 0.5, 0.25, corresponding to the curves from top to bottom. The

dotted line in the figure marks the critical chain length Lcr for different α, at which

the reversal mechanism changes from coherent rotation to nucleation.

both the array length L and damping parameter α. The characteristic reversal time

τ obtained via the TQMC method is plotted in Figure (5.11) for different L and α

values. We found that the L-dependence of τ shows three regions, corresponding to

the three reversal mechanisms as described by Hinzke [86]. However, the damping

strength α has a significant influence on the relative dominance of different reversal

regimes, and thus the boundaries between them.

To account for the above trend, we review the frequency spectra of Figs. (5.10a) to

(5.10f). At low α, the high-k contribution is greater and less susceptible to thermal

fluctuations. This suggests a greater probability of “fanning”-like reversal, leading

to a multidroplet nucleation where the magnetization rotation is correlated among
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only a few spins per nucleation site. For the high damping case, however, there is

a greater contribution from the low-k spectra, since the high-k spectra have been

virtually destroyed by noise. This suggests that long-range spatially correlated

dynamics, such as coherent-like rotation involving many spins is preferred. This

agrees with the observed shift in the critical chain length Lcr which marks the

boundary between soliton-antisoliton and coherent nucleation in Fig. (5.11). We

find that with decreasing α, there is a shift of Lcr to smaller chain length. In par-

ticular, for a fixed L = 16, we find a change in the reversal mode from multidroplet

to single nucleation, and finally to coherent rotation, as the damping factor is in-

creased from 0.25 to 2. Lastly, the results in Fig (5.11) corresponding to the high

damping conditions (α ≥ 2) agree qualitatively with those previously reported by

Hinzke [86], which apply at the asymptotic high damping limit.

5.5 Conclusion

It is crucial to have a fundamental understanding of thermally induced magnetiza-

tion reversal, especially in practical data storage applications, where the shrinking

magnetic grain size is approaching the superparamagnetic limit.

In this chapter, we proposed a modified time quantified Monte Carlo method which

exhibits much higher simulation efficiency than the traditional Langevin dynamical

integration. This Monte Carlo is based on and extended from the random-walk-

in-a-cone algorithm introduced by Nowak, with modification to account for the

energy conservative precessional motion. We examined its validity in the case of

an isolated single particle, as well as the interacting spin array.

We applied our time quantified Monte Carlo method to study the effects of the

damping constant in thermally induced magnetization reversal. We investigated
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the switching time for isolated single particle in a tilted external field. Our predic-

tion via Monte Carlo analysis about the upper limit and lower limit for the switch-

ing time is verified by the comparison between the Monte Carlo and Langevin

simulations. The damping effects in the spin wave phenomena for a interacting

spin chain system was also discussed. We observed a spreading distribution of the

spin wave modes with the increase of the damping constant. We also discussed the

reversal mechanism in the spin chain system as influenced by the damping effects.



Chapter 6
Conclusion and Future Work

In this chapter we provide a summary of our work done in the thesis. Our main

contributions are presented, followed by some suggestions for future work.

6.1 Summary

In this thesis, we studied the stochastic models of thermally activated dynamics.

Thermally activated dynamics, such as Brownian motion, is usually modeled by

either the Fokker-Planck equation or the Langevin dynamical equation. These two

models have a firm physical basis, but there is a paucity of numerical techniques

based on either model, for highly efficient modeling especially of high dimensional

systems. We thus proposed a novel time quantifiable random walk Monte Carlo

method, as an alternative method for modeling thermally activated dynamics.

We discovered that the Fokker-Planck equation can be used as a bridge to link

different stochastic descriptions, from which the exact equivalence can be achieved

between the random walk Monte Carlo algorithm and the overdamped Langevin

equation. Simulations of a double well system were performed, which numerically

verified the equivalence between the two stochastic models. Such equivalence thus
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provided the theoretical basis for using the Monte Carlo method to study various

stochastic dynamics, where the Langevin model usually applies. We further ex-

plained the origin of Gaussian white noise in the Monte Carlo algorithm via the

Central Limit Theorem, which may also serve as a link between the Monte Carlo

method and Langevin dynamics. To demonstrate the advantages of using Monte

Carlo method in analyzing the stochastic dynamics, we investigated several appli-

cations of the time quantified Monte Carlo method, such as in Brownian ratchets

and micromagnetism.

We studied the non-equilibrium noise-induced current in overdamped Brownian

ratchet systems. By utilizing the random walk Monte Carlo method with fixed

trial move step size, the difference equations for both transition probabilities and

the mean first passage time between adjacent energy minima were derived. We

considered the case of Brownian ratchet systems driven by Markov dichotomous

noise. By solving the difference equations, the first analytical current expression

for transport in Brownian ratchets was obtained. This Monte Carlo approach could

be further generalized to analyze ratchets driven by n-th state processes and the

continuous Ornstein-Uhlenbeck processes.

In the field of micromagnetics, we developed a hybrid algorithm that combined

on-sphere random walk steps with deterministic precessional steps. The proposed

algorithm was found to be equivalent, for both cases of isolated and interacting

spins, to the stochastic Landau-Lifshitz-Gilbert equation. In the latter case, es-

pecially, the hybrid method results in great improvements in simulation efficiency.

Comparison between our algorithm and previous (Nowak’s) Monte Carlo model

justifies our inclusion of the precessional walk to describe the energy-conserving

precessional motion. We obtained better convergence of our model in low damping

cases, while by contrast, previous Monte Carlo methods, e.g. by Nowak shows
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a large divergence. Our algorithm was also found to have advantages in inves-

tigating the effects of the damping constant on the magnetization dynamics as

compared to the Langevin description, because it clearly separates the damping

type of dynamics from all others variables.

6.2 Limitations and Future Work

Our work suggests a new approach in analyzing thermally activated stochastic dy-

namics. For example, the extensive analytical tools developed for solving difference

equations are now available for use in solving fixed-step-size random walk Monte

Carlo methods. Nevertheless, the Monte Carlo methods have their limitations.

Monte Carlo models are less well-suited for describing energy conservative motions

(e.g. precessional motions in the micromagnetism and underdamped Brownian

motions). For such motions, ad hoc methods have to be devised and combined

with the Monte Carlo random walk, resulting in a hybrid method. Furthermore,

promising as it is, the Monte Carlo algorithm does not lead to simulation efficiency

improvements of different orders, as compared to Langevin dynamics.

We suggest some possible new areas where our Monte Carlo analysis may be able

to contribute in future:

• Developing new time quantifiable Monte Carlo methods so as to improve the

simulation efficiency. The kinetic Monte Carlo algorithm ( also called N -fold

way Monte Carlo model) [24, 95, 99, 100] may be considered.

• Probing new research fields, especially problems including quantum effects

and quantum transportation [101, 102], where Monte Carlo analysis could

apply.

• The Master equation, which is equivalent to the Monte Carlo algorithm [23],



6.2 Limitations and Future Work 100

may provide an alternative way to solve a stochastic differential equation by

using matrix techniques.



Appendix A
Derivations for Current Expression in

Brownian Ratchets

In this appendix we provide detailed derivations of some of the main results pre-

sented in Chat. 4.

1. Derivation of Equations (4.9) and (4.10)

From the Chap. 4 we have:

g(m) = µm · g(m− 1) + wm · g(m + 1) + (1− µm − wm) · g(m) (A.1)

τ(m) = µm · τ(m− 1) + wm · τ(m + 1) + (1− µm − wm) · τ(m) + 1, (A.2)

with initial conditions: g(0) = 0, g(2N) = 1 and τ(0) = τ(2N) = 0. To solve

Eq. (A.1), we rearrange the formula:

g(m + 1)− g(m) = (µm/wm)[g(m)− g(m− 1)] = . . .

=

[
m∏

i=1

(µm/wm)

]
· (g(1)− g(0)) ≡ k(m) · (g(1)− g(0)).
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Hence we have:

g(m)− g(0) =
m−1∑
i=0

k(i) · (g(1)− g(0)). (A.3)

Substituting the initial conditions g(0) = 0, g(2N) = 1 into Eq. (A.3), we obtain:

g(m) =

(
m−1∑
i=1

k(i)

)
· g(1) =

(
m−1∑
i=1

k(i)

)
·
(

2N−1∑
i=1

k(i)

)−1

· g(2N)

=

∑m−1
i=0 k(i)∑2N−1
i=0 k(i)

.

The solution to Eq. (A.2) is similar. We have:

τ(m)− τ(0) =
m−1∑
i=0

k(i) · (τ(1)− τ(0))−
m−1∑
i=1

[
k(i) ·

i∑
j=1

(wjk(j))−1

]
. (A.4)

Hence we obtain the expression for τ(m) by considering the initial conditions:

τ(m) =

(
m−1∑
i=0

k(i)

)
· τ(1)−

m−1∑
i=1

[
k(i) ·

i∑
j=1

(wjk(j))−1

]

= g(m) ·
2N−1∑
i=1

[
k(i) ·

i∑
j=1

(wjk(j))−1

]
−

m−1∑
i=1

[
k(i) ·

i∑
j=1

(wjk(j))−1

]

Further simplification by noting the periodical conditions: wN+i = wN , µN+j = µN ,

will leads to Eq. (4.10) in the manuscript.

2. Derivation of Equations (4.13) and (4.17)

From Equation (11) in the manuscript, we have:

g(m; σ; σ′) =
∑

σ̃

v(σ̃|σ)·[wσ̃
mg(m + 1; σ̃; σ′) + µσ̃

mg(m− 1; σ̃; σ′) + (1− wσ̃
m − µσ̃

m)g(m; σ̃; σ′)
]
,

(A.5)

which could be rewritten into a 2× 2 matrix form:

MWm ·Xm+1 = [I −M(I −Wm − Um)] ·Xm −MUm ·Xm−1
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where Xm = {g(m; σ; σ′)}, M = {v(σ′|σ)}, Wm = Diag{wσ
m} and Um = Diag{µσ

m}.
M is the transition matrix of the dichotomous processes and is generally non-

singular. The above equation can be simplified into Eq. (12) in the manuscript

easily:

Xm+1 = W−1
m (λ · C + Wm + Um) ·Xm −W−1

m Um ·Xm−1, (A.6)

where λ ≡ v(−|+)
1−v(−|+)−v(+|−)

¿ 1 and

C =


 1 −1

−θ θ


 .

For Equation (15) in the manuscript, the derivation is similar:

Ym+1 = W−1
m (λ · C + Wm + Um) · Ym −W−1

m Um · Ym−1 −W−1
m E. (A.7)

3. Derivation of G and T

Setting the starting point m = N , we obtain the forward transition probability

matrix G = XN and the MFPT matrix T = YN . We first solve Eq. (A.6). Xm can

be reduced into a linear combination of X1 and X0 by recurring Eq. (A.6). Noting

the initial condition X0 = 0 and X2N = I, we are justified to define a 2× 2 matrix

Qm that:

Xm = Qm ·X1 (m ≥ 1)

with Q0 = 0, and Q1 = 1. From Eq. (A.6):

Qm+1 −Qm = W−1
m Um · (Qm −Qm−1) + λ ·W−1

m C ·Qm = . . .

= Km · (Q1 −Q0) + λ ·Km

(
m∑

i=1

K−1
i W−1

i C ·Qi

)

in which Ki = Diag{k+
i , k−i } where kσ

i ≡
∏i

j=1 µσ
j /w

σ
j . Hence by considering the
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initial conditions: X0 = 0 and X2N = I, we have

Qm =
m−1∑
i=0

Ki + λ ·
m−1∑
i=1

[(
m−1∑
j=i

Kj

)
K−1

i W−1
i C ·Qi

]
. (A.8)

Qm can be expressed as a polynomial function of λ:

Qm(λ) =
m−1∑

l=0

Dm
l · λl. (A.9)

We can therefore obtain the coefficients Dm
l from Eq. (A.8) easily:

Dm
0 =

m−1∑
i=0

Ki,

Dm
l =

m−1∑

i=l

[(
m−1∑
j=i

Kj

)
(WiKi)

−1C ·Di
l−1

]
. (A.10)

We note that since λ ¿ 1, the first few components in the polynomial function

actually dominate the value of Qm. Our experience shows that truncating at O(λ3)

could yield very good approximation to the exact Qm.

We hence obtain the expression of G, by noting the initial condition X2N =

Q2NX1 = I:

G = XN = QN ·X1 = QN ·Q−1
2N . (A.11)

Let N → ∞ one can write down the continuous expression of Q(y) and therefore

G from Eqs. (A.11), (A.9) and (A.10). We remark that some characteristics of

the correlation matrix C can simplify the derivation: for an diagonal matrix K =

{{k11, 0}, {0, k22}}, C ·K ·C will yield a simple result that C ·K ·C = (k11+θk22)C.

We next caclulate Ym appeared in Eq. (A.7). We define:

Ym = Qm · Y1 −Rm (m ≥ 1)

with initial conditions: R0 = 0 and R1 = 0.

Rm can also be expressed as a polynomial function of λ that similar to Qm:

Rm(λ) =
m−1∑

l=0

Jm
l · λl
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where Jm
l is similar to Dm

l :

Jm
0 =

m−1∑
i=1

[
(WiKi)

−1

m−1∑
j=i

Kj

]
· E

Jm
l =

m−1∑

i=l

[(
m−1∑
j=i

Kj

)
(WiKi)

−1C · J i
l−1

]
. (A.12)

Hence we obtain the MFPT matrix T by noting the initial conditions Y0 = Y2N = 0:

T = YN = QNY1 −RN = QNQ−1
2NR2N −RN = G ·R2N −RN .

Again let N → ∞ one can write down the continuous expression of R(y) and

therefore T .



Appendix B
Derivations of Fokker-Planck Coefficients

for Interacting Spin Array

FP coefficients for the LLG equation

Previous study of the thermal fluctuation on interacting spin array system proves

that the inter-particle coupling does not introduce correlations into thermal fluc-

tuations [103]. To the best of our knowledge, a detailed derivation of the Fokker-

Planck coefficients for an interacting particle system has not been presented. Hence

we include, as an appendix, a derivation of the FP coefficients for an interacting

particle system. We extend Brown’s derivation [15] for the Fokker-Planck coeffi-

cients of isolated single domain particles to obtain the Fokker-Planck coefficients

for the case of interacting particles.

The thermal field h(t) representing the thermal fluctuations, according to Brown

[15], has the properties of a white noise, i.e.

〈hp
i (t)〉 = 0,

〈
hp

i (0)hq
j(t)

〉
= 2D · δpqδijδ(t) (B.1)

where i, j = {1, 2, 3} denote the Cartesian coordinate components {x, y, z} and
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p, q = {1, . . . , N} refer to the pth and qth spin in the list. Hence, if:

Kp
i ≡

∫ t+∆t

t

hp
i (t

′)dt′, (B.2)

then

〈Kp
i 〉 = 0,

〈
Kp

i K
q
j

〉
= 2D · δpqδij∆t. (B.3)

Rewriting Eq. (5.26) in spherical coordinates, we obtain

Left side =
dsi

dt
=

∂si

∂θi

dθi

dt
+

∂si

∂ϕi

dϕi

dt
= ~eθ · θ̇i + ~eϕ · sin θiϕ̇i (B.4)

Right side =
γ0

µ0MsV (1 + α2)

(
si × ∂E

∂si

+ α · si ×
(
si × ∂E

∂si

))

=

(
−h′

∂E

∂θi

− g′
1

sin θi

∂E

∂ϕi

)
~eθ +

(
g′

∂E

∂θi

− h′
1

sin θi

∂E

∂ϕi

)
~eϕ(B.5)

in which the partial differential relationships such as ∂E
∂s

= ∂E
∂θ

∂θ
∂s

+ ∂E
∂ϕ

∂ϕ
∂s

= ∂E
∂θ

~eθ +

∂E
∂ϕ

1
sin θ

~eϕ have been used. With the inclusion of the thermal fluctuations, additional

terms will be added into the right side as − γ0Hk

1+α2 (si × h(t) + α · si × (si × h(t))).

By considering the relation between Cartesian and spherical base vectors:

~i = sin θ cos ϕ · ~er + cos θ cos ϕ · ~eθ − sin ϕ · ~eϕ

~j = sin θ sin ϕ · ~er + cos θ sin ϕ · ~eθ + cos ϕ · ~eϕ

~k = cos θ · ~er − sin θ · ~eθ (B.6)

and equating Eqs. (B.4) and (B.5), we thus obtain 2N simultaneous equations as:

dθi

dt
= h′H ′

θi
+ g′

1

sin θi

H ′
ϕi

dϕi

dt
= −g′

1

sin θi

H ′
θi

+ h′
1

sin2 θi

H ′
ϕi

(B.7)

where

H ′
θi

= −∂E

∂θi

+ Hθi
, H ′

ϕi
= − ∂E

∂ϕi

+ Hϕi
(B.8)
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Hθi
and Hϕi

are the contributions of h(t) to the generalized forces corresponding

to θi and ϕi :

(2KuV )−1Hθi
= hi

1(t) cos θi cos ϕi + hi
2(t) cos θi sin ϕi − hi

3(t) sin θi

(2KuV )−1Hϕi
= −hi

1(t) sin θi sin ϕi + hi
2(t) sin θi cos ϕi (B.9)

Eq. (B.7) can be expressed directly in a general form as:

ẋp
i = F p

i (x) +
3∑

k=1

Gp
ik(x)hp

k(t) (B.10)

where x represents the set of 2N variable {xp
i } (here i = {1, 2} denotes angular

coordinates {θ, ϕ} and p = {1, 2, . . . , N} refers to the pth spin in the list). To

evaluate the FP coefficients Axi
and Bxixj

, we need ∆xi only to terms of the order

∆t for Axi
and only to terms of order (∆t)1/2 for Bxixj

. Taking note of Eq. (B.2),

∆xi itself is of order (∆t)1/2. Expanding F p
i (x) and Gp

ik(x) in Taylor’s series at

initial state x0:

F p
i (x) = F p

i (x0) +
∑
q,j

F p,q
i,j ·∆xq

j +
1

2

∑

q,r,j,l

F p,qr
i,jl ·∆xq

j∆xr
l + · · ·

Gp
ik(x) = Gp

ik(x0) +
∑
q,j

Gp,q
ik,j ·∆xq

j +
1

2

∑

q,r,j,l

Gp,qr
ik,jl ·∆xq

j∆xr
l + · · · (B.11)

where, for example, F p,q
i,j = ∂F p

i /∂xq
j and Gp,q

ik,j = ∂Gp
ik/∂xq

j . Hence by integration

of Eq. (B.10) with respect to ∆t, and truncate the terms that has order higher

than ∆t, we have:

∆xp
i = F p

i ∆t +
∑

k

Gp
ik

∫ ∆t

0

hp
k(t1)dt1 +

∑

q,j,k

Gp,q
ik,j

∫ ∆t

0

∆xq
jh

p
k(t1)dt1 (B.12)

and in the last integral we may express ∆xq
j to the order of ∆t1/2, namely, as

∑
j Gq

jl

∫ ∆t1
0

hq
l (t2)dt2. Thus,

∆xp
i = F p

i ∆t +
∑

k

Gp
ik

∫ ∆t

0

hp
k(t1)dt1 +

∑

q,j,k,l

Gp,q
ik,jG

q
jl

∫ ∆t

0

dt1

∫ t1

0

hp
k(t1)h

q
l (t2)dt2

(B.13)
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the second term is of order ∆t1/2, the others of order ∆t; therefore, to the first

order in ∆t:

∆xp
i ∆xq

j =
∑

k,l

Gp
ikG

q
jl

∫ ∆t

0

dt1

∫ ∆t

0

hp
k(t1)h

q
l (t2)dt2. (B.14)

It is easily seen that the double integral in Eq. (B.13) is half that in Eq. (B.14).

We now evaluate the statistical average by considering Eq. (B.3) and dividing by

∆t:

Axp
i

= lim
∆t→0

〈∆xp
i 〉

∆t
= F p

i + D ·
∑

k

Gp,p
ik,jG

p
jk

Bxp
i xq

j
= lim

∆t→0

〈
∆xp

i ∆xq
j

〉

∆t
= 2D ·

∑

k

Gp
ikG

p
jk · δpqδij. (B.15)

In the present application,

F p
1 = −h′

∂E

∂θp

− g′
1

sin θp

∂E

∂ϕp

F p
2 = g′

1

sin θp

∂E

∂θp

− h′
1

sin2 θp

∂E

∂ϕp

(B.16)

and

(2KuV )−1Gp
11 = h′ cos θp cos ϕp − g′ sin ϕp

(2KuV )−1Gp
12 = h′ cos θp sin ϕp + g′ cos ϕp

(2KuV )−1Gp
13 = −h′ sin θp (B.17)

(2KuV )−1Gp
21 = −g′ cot θp cos ϕp − h′ csc θp sin ϕp

(2KuV )−1Gp
22 = −g′ cot θp sin ϕp + h′ csc θp cos ϕp

(2KuV )−1Gp
23 = g′.

Partial differentiation of Eqs. (B.17) with respect to θp and ϕp gives the formulas

for the twelve quantities Gp,p
ik,j (i, j = 1, 2; k = 1, 2, 3). Substitution of the values

of F p
i , Gp

ik and Gp,p
ik,j into Eqs. (B.15) gives the value of the FP coefficients for the
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LLG dynamical equation as follows:

ALLG
θi

= −h′
∂E

∂θi

− g′
1

sin θi

∂E

∂ϕi

+ k′ cot θi

ALLG
ϕi

= g′
1

sin θi

∂E

∂θi

− h′
1

sin2 θi

∂E

∂ϕi

BLLG
θiθj

= 2k′ · δij (B.18)

BLLG
ϕiϕj

=
1

sin2 θi

2k′ · δij

BLLG
θiϕj

= BLLG
ϕjθi

= 0

where k′ = D(h′2 +g′2)(2KuV )2 is to be determined since the value of D is still un-

known. Substituting Eqs. (B.18) into Eq. (5.27) and taking note that P ({θ}, {ϕ}, t)
should reduce to the Boltzmann distribution at statistical equilibrium (∂P/∂t = 0),

one thus obtains the value of k′: k′ = h′/β.

FP coefficients for TQMC

We next derive the FP Coefficients for the TQMC. The Monte Carlo algorithm

starts with a random selection of the spin site. We consider the ith spin in the list.

For a trial move with the displacement vector to be of size ri (ri < R) and angle

αi with respect to ~eθ, we have the corresponding change with respect to θi and ϕi

as [62]

∆θi = −ri cos αi +
r2
i

2
cot θi sin

2 αi + O
(
r3
i

)

∆ϕi = ri
1

sin θi

sin αi + r2
i

cot θi

sin θi

cos αi sin αi + O
(
r3
i

)
. (B.19)

The displacement probability of the size to be ri is given by Nowak et al. [20] as

p(ri) = 3
√

R2 − r2
i /2πR3 (B.20)
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and the acceptance probability for this trial move is given by the heat bath rate as

A (∆E) =
1

1 + exp (β∆E)

≈ 1

2

(
1− 1

2
β

(
∂E

∂θi

∆θi +
∂E

∂ϕi

∆ϕi

))
(B.21)

where ∆E is the energy change in the random walk step and β = (kBT )−1. Inte-

grating over the projected surfaces [see Fig. 5.1 for a clear diagram], we obtain a

series of the required means

〈∆θi〉 =

∫ 2π

0

dαi

∫ R

0

(ridri)∆θi · p(ri) · A(∆E) =
R2

20
(cot θi − β

∂E

∂θi

) + O(R3)

〈∆ϕi〉 = − 1

sin2 θi

R2

20
β

∂E

∂ϕi

+ O(R3)

〈
∆θ2

i

〉
=

R2

20
+ O(R4) (B.22)

〈
∆ϕ2

i

〉
=

1

sin2 θi

R2

20
+ O(R4)

〈∆θi∆ϕi〉 = O(R3).

Let subscript i (j) refers to the ith (jth) spin in the list and X, Y denote either

θ or ϕ. One easily finds that when i 6= j: 〈∆Xi∆Yj〉 |i6=j = 0. This is because

in the Monte Carlo algorithm, only 1 spin site is chosen at each Monte Carlo

step. Truncating the higher order terms in the above equations and including the

probability factor of (1/N) in choosing the ith spin from all N spins, we then obtain

the FP coefficients for the TQMC method as in Eqs. (5.29).
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