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Abstract

This thesis focuses on segmentation and 3D reconstruction of cardiac arteries from

CT images of patients with TGA. The purpose of this work is to build 3D models

for surgical planning and simulation system. This thesis proposes different algo-

rithms to segment the great arteries and the coronary arteries according to different

characteristics of arteries. A two-phase level set algorithm segments the great arter-

ies. A geometric parametric model based algorithm segments the coronary arteries.

Then, marching cubes algorithm is applied to reconstruct 3D models based on the

segmentation results. The system was tested on three data sets — two TGA cases

and one normal case. The results of segmentation and reconstruction are analyzed

and discussed.
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Chapter 1

Introduction

1.1 Motivation

Transposition of the great arteries (TGA) is a malformation in which the two great

arteries, i.e., aorta and pulmonary trunk, connect to the wrong heart chambers

(Figure 1.1). The pulmonary trunk, which normally carries de-oxygenated blood

from the right ventricle to the lungs, now arises from the left ventricle. The aorta,

which normally carries oxygenated blood from the left ventricle to the rest of the

body, arises instead from the right ventricle. TGA is a heart defect present at birth.

Infants born with TGA cannot survive for a long time because they will not have

enough oxygen in the bloodstream to meet the body’s demands.

Transposition of the great arteries can be surgically repaired by a procedure

called arterial switch operation (ASO). In the surgery, aorta, pulmonary trunk, and

coronary arteries are moved to their normal positions to restore normal circulation

of the blood through the heart and the lungs. The surgery is a very complex and

difficult operation. It requires delicate surgical techniques because the arteries of

newborn babies are usually very thin. It requires detailed planning for each case

respectively because the anatomical structures of the cardiac vessels vary a lot

1



Figure 1.1: The anatomy of the normal heart and the heart with TGA (taken from
http://heart.health.ivillage.com/signssympotoms/bluebaby3.cfm).

2



among different patients.

At present, there is no computerized tools for ASO planning. The surgeons

develop the surgical plan based on CT images of the patient’s heart. The plans are

drawn by hand to show the surgical details. This planning method is not precise.

A computer-aided system can help the surgeons to perform surgery planning.

It can construct 3D cardiac model from patient’s CT images, and visualize it in

the computer monitor. It can simulate the surgical plans under the direction of the

surgeons. It can also show the expected surgical results and allow the surgeons to

evaluate the results to determine the best plan.

1.2 Thesis Objective

A computer system for the simulation and planning of ASO has to contain two

parts. The first part performs segmentation and 3D reconstruction from cardiac

CT images. The second part performs virtual surgical operations based on the

results provided by the first part.

The objective of this thesis project is to develop a system for segmenting and

reconstructing 3D models of the great arteries and coronary arteries from CT images.

The requirements of the system include the following:

1. The system should provide a correct segmentation result of the aorta, pul-

monary trunk and coronary arteries.

2. The system should provide a complete 3D mesh model of arteries. The relative

positions, orientation and sizes of arteries should be accurate enough for the

purpose of surgical simulation.

The contributions of this thesis are as follows. First, it implemented a set of

algorithms for segmenting and reconstructing 3D models of the great arteries and
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coronary arteries. Second, it discussed the limitations of the segmentation algo-

rithms and how to overcome them.

1.3 Thesis Organization

In order to develop algorithms to segment cardiac arteries, fundamental knowledge

about the heart anatomy is required. Anatomy of a healthy heart and a heart with

TGA will be discussed in Chapter 2, which includes a discussion of the structure of

the arteries and their appearance in cardiac CT images. Existing segmentation al-

gorithms, in particular vascular structure segmentation algorithm will be discussed

in Chapter 3. According to different characteristics of the arteries, different algo-

rithms are proposed to segment the great arteries and the coronary arteries (Chapter

4). Segmentation and reconstruction results of different patients (with and without

TGA) will be shown and analyzed in Chapter 4. Finally, conclusions of the whole

thesis are made in Chapter 5.
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Chapter 2

Anatomy of the Heart

2.1 Normal Heart

The heart is the organ that supplies blood and oxygen to all parts of the body.

Heart has four chambers. The upper chambers are called the left and right atria,

and the lower chambers are called the left and right ventricles (Figure 2.1). Blood

is pumped away from the heart through arteries and returns to the heart through

veins. There are three types of cardiac arteries, e.g., aorta, pulmonary trunk and

coronary arteries (Figure 2.1).

Aorta is the largest artery in the human body, originating from the left ventricle.

Aorta includes three parts. Ascending aorta is the section between the heart and

aortic arch. Aortic arch is the peak part that looks like an inverted “U”. Descending

aorta runs from the aortic arch down to the body. It is located behind the heart

chambers. So, it cannot be seen in Figure 2.1. Aortic valve is located at the junction

between the left ventricle and the aorta (Figure 2.2).

Pulmonary trunk arises from the right ventricle and ascends in front of the aorta.

It branches into the left and right pulmonary arteries. pulmonary trunk is short

and wide. Pulmonary valve is located at the junction between the right ventricle

5



Figure 2.1: The anatomy of normal heart (taken from [Mad97]).
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Figure 2.2: Superior view of the valves (taken from
http://www.besthealth.com/besthealth/bodyguide/reftext/html/cardio sys fin.html).

and the pulmonary trunk.

Coronary arteries originate from the beginning of the ascending aorta, imme-

diately above the aortic valve. The exact anatomy of the coronary artery varies

considerably from person to person.

In CT images, arteries and chambers are always highlighted in white color by

the contrast agent. The aortic arch appears as an ellipse in CT images (Figure

2.3(a)). Then it splits into the ascending aorta and descending aorta. Both of them

are more like circles (Figure 2.3(b)). The ascending aorta is located in the middle

of the heart. The descending aorta is located very close to the spine.

The top part of the pulmonary trunk is a T-shaped trunk. It appears as a

curved tube in the CT images (Figure 2.3(c)). The trunk is very short and wide.

Therefore, after only a few slices in the CT volume, the pulmonary trunk becomes

a circle (Figure 2.3(d)). At this time, the pulmonary artery should be located in

7



Figure 2.3: CT images of normal heart. (a)-(f): From top to bottom of the heart.
AA: ascending aorta, DA: descending aorta, PA: pulmonary trunk, CA: coronary
arteries, LA: left atrium, RA: right atrium, LV: left ventricle, and RV: right ventricle.
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front of the ascending aorta in normal case.

Figure 2.3(e) and (f) show the relative positions of the four chambers. According

to the positions of the chambers and the arteries, it can be seen that the pulmonary

artery connects with the right ventricle, and the ascending aorta connects with the

left ventricle. The valves between the arteries and the ventricles are located at their

boundaries. They contain three radial lines that correspond to the valve leaflets

(Figure 2.3(e)).

Coronary arteries are located near the root of the ascending aorta. They look

like elongated tubes in CT images (Figure 2.3(d)). They are very thin. The diam-

eters are usually smaller than the gaps between two slices. Therefore, the coronary

arteries do not always show up in CT images.

2.2 Transposition of the Great Arteries

In the case of transportation of great arteries (TGA), the aorta and pulmonary trunk

are connected to the wrong ventricles. Figure 2.4 shows the CT images of a TGA

case. The aortic arch still appears as an ellipse (Figure 2.4(a)). Then, it branches

into the ascending aorta and the descending aorta (Figure 2.4(b)). The pulmonary

trunk is located near the ascending aorta (Figure 2.4(c,d)). Coronary arteries are

located at the root of the ascending aorta as in the normal case (Figure 2.4(d)).

According to the positions of the arteries and the ventricles (Figure 2.4(d,e)), it

can be observed that the ascending aorta connects to the right ventricle and the

pulmonary aorta connects to the left ventricle. This is different from the normal

case.

Another distinguishing characteristic of TGA is the difference in the relative

positions of the aorta and the pulmonary trunk. Normally, the pulmonary trunk

lies in front of the ascending aorta (Figure 2.3(d)). But in TGA case, the pulmonary

9



Figure 2.4: CT images of a patient with TGA. (a)-(e): From top to bottom of
the heart. AA: ascending aorta, DA: descending aorta, PA: pulmonary trunk, CA:
coronary arteries , LA: left atrium, RA: right atrium, LV: left ventricle, and RV:
right ventricle.

trunk is located behind the aorta (Figure 2.4(d)).
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Chapter 3

Literature Review

There are several types of general segmentation algorithms, such as threshold-

ing [Cas96, Dav97, KIF85], watershed [GW02, HEMK98, SSV+97], region growing

[ESS+04, PT01, RG01], classification [SLC+05, dBvGB+03, KRFC05, HSD73] and

clustering [IGR+04, WL90, GL00]. They can work well with simple biomedical im-

ages with homogeneous regions. On the other hand, complex medical images such

as CT images usually have many inhomogeneous regions. Take CT image of vascu-

lar structure as an example. Pixels inside the vasculature do not necessarily have

the same intensity. There is always some noise that appears as pixels with low in-

tensities. In these cases, general segmentation algorithms may fail. Therefore, more

sophisticated algorithms have been developed. This chapter reviews algorithms

developed for segmenting vasculature and the heart.

3.1 Vasculature Segmentation Algorithms

Vasculatures are objects in the human body. They have tree structures with

branches. Each branch often has a tubular shape. Vascular structures include

blood vessels, coronary artery, neurovascular structures, airway tree (pulmonary

11



(a) (b) (c)

Figure 3.1: Tracked centerlines of retinal blood vessels (taken from [CPFT98]).

tree) and nerve channels. Due to the geometric and topological features of vascular

structure, specific segmentation algorithms have been designed, such as centerline

detection, snake, level set and geometric parametric model.

3.1.1 Centerline Detection

The main idea of the centerline detection approach is to find the centerlines of

the entire vascular structure. One centerline detection method is the ridge-based

algorithm [CPFT98, FMGW04]. It regards a gray-scale image as a 3D elevation map

where intensity ridges approximate the skeleton of the vasculature. Ridge points,

which are local peaks in intensity, are first detected. Then, the whole vascular

structure is extracted by connecting neighboring ridge points (Figure 3.1).

Through centerline extraction, topological information of the vascular structure

is obtained. It does not require special initialization. But, due to sensitivity to

noise, it is difficult for centerline detection methods to extract all the small vessels.

12



3.1.2 Snake

Snake, also called active contour model, was first proposed by Kass, Witkin, and

Terzopoulos [KWT87]. Snake is a contour represented by connected points. It

behaves like a rubber band and can be deformed to match any shape under the

influence of internal force, image force and external force. These three kinds of

forces are defined so that the snake will conform to an object boundary or other

features in the image. The internal energy is associated with elasticity and rigidity

of the snake. The image energy specifies the image feature, such as edges, used to

attract the snake. The external energy is not often used, and it can be spring energy,

repulsion and so on. When the sum of these three kinds of energy is minimized, the

snake should approach the desired image features.

Snake is a good model which can be used in many applications. Snake will

fit the contour of any shape as long as the forces are well designed and balanced.

It can connect disjoint edges by finding an optimal compromise between different

forces. Moreover, it guarantees a smooth and closed boundary of the desired object.

However, it has some intrinsic shortcomings. For instance, it can be very sensitive

to initialization and noise, and it cannot fit well to concave features (Figure 3.2)

[XP00].

To overcome these shortcomings, Xu and Prince proposed the gradient vector

flow (GVF) method [XP00]. GVF field is a vector field derived from the diffusion

of the gradient vectors of a gray-level or binary edge map computed from the input

image. GVF replaces the usual image forces, and it can attract the snake to fit the

concave part of the object in the image (Figure 3.2). Although GVF is less sensitive

to initialization than traditional snake, it still requires a good initialization. It can

also be distracted by noise.

Another variation is the dual snakes [GN94]. In this case, two snakes are used.

13



One is an interior snake lying within the regions of the desired object. The other

is an exterior snake outside the desired regions. The two snakes are coupled using

spring energy that causes them to be attracted to each other as well as the boundary

of the desired object. Dual snake model incorporates the information from two

snakes approaching the desired boundary from both sides. It reduces sensitivity to

initialization. It also provides good performance in the case of non-convex shapes.

Snake can also be extended to three dimensions, known as active surface. In 3D,

a surface is usually represented by a set of corrected control points, i.e. a surface

mesh. Internal force, image force and external force are defined in a similar way as

2D snake. The computation of active surface algorithm is more complex than 2D

snake. The number of control points are usually dramatically larger than that in

2D case. The structure of a surface mesh is more complex than a sequence of points

in 2D case.

3.1.3 Level Set

Level set method was proposed by Osher and Sethian [OS88]. It represents the

interface (2D contour or 3D surface) in one higher dimension. Consider, for example,

the 2D contours Γ in Figure 3.3(a). A level set function φ(x, y, t) (the dark surface

in Figure 3.3(b)) is defined in 3D. Typically, φ is the signed distance function to the

contour. It keeps all possible states of Γ. The intersection of φ(x, y, t) and the x-y

plane gives the contour Γ. Therefore, at any time t, Γ can be obtained by solving

the equation φ(x, y, t) = 0. The level set function φ(x, y, t) moves up and down the

φ-axis under some predefined forces that give the propagation velocity of Γ.

Level set is used in many applications [MS96, QK01, Set96]. A simple 2D ex-

ample is shown in Figure 3.4 [Set96]. Starting from a small circle within the vessel,

the contour expands to fit the boundaries of the blood vessels. The idea of level

14



(a) (b) (c)

(d) (e) (f)

Figure 3.2: Comparison between traditional snake and GVF. (a) Convergence of a
traditional snake, (b) traditional potential forces, (c) close-up of the concave part,
(d) Convergence of a GVF snake, (e) GVF external forces, and (f) close-up of the
concave part of GVF (taken from [XP98]).
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(a)

(b)

Figure 3.3: Level set function. (a) 2D contours. (b) The level set surface (dark).
The zero level set (light) gives the 2D contours (taken from [Leo]).

set can be easily extended to 3D case to extract surfaces of the desired objects

[KQ03, LWK+05, NYT04].

The primary advantage of level set method is that the level set function remains

a single function even when the zero level set changes topology, breaks, merges,

or forms sharp corners when it evolves over time. Therefore, level set is useful

for segmenting objects with complex topology such as blood vessels. However,

traditional level set method does not contain geometrical constraints. So, the zero

level set may leak into undesired regions.

To overcome the leakage problem, a level set model with a soft shape prior,

called shape driven flow, is applied to segment 2D/3D vessels [NYT04] (Figure 3.5).

Moreover, by including both intensity and shape information, this algorithm can

overcome leakages near areas where image information is ambiguous.
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(a) (b) (c) (d)

Figure 3.4: The evolution of the zero level set curve (taken from [Set96]). (a)
The initial contour, (b, c) intermediate contours during evolution, and (d) the final
contour of the blood vessel.

3.1.4 Geometric Parametric Model-based Approach

Vasculatures are tube-like objects. Consequently, the cross-section of each vessel

can be approximated by an ellipse. Geometric parametric mode-based approach

aligns a parametric elliptic model with vessel cross-section in every 2D slice of a 3D

volumetric image to obtain a best fit [BP98, FIC04, PHS+94]. Each branch of the

blood vessel is represented by a medial axis curve together with an elliptical surface

that represents the vessel surface (Figure 3.6(a)). The location of the axis and the

parameters of the ellipse are determined to match the model with the input image.

In [FIC04], two-stage deformation is applied to match the image. The first

stage called axis deformation determines the position of each elliptical model for

each vessel according to the medial axis (Figure 3.6(c)). The second stage performs

surface deformation to determine the parameters of the elliptical model, such as

semidiameter and orientation (Figure 3.6(d, e)).

Geometric parametric model-based approach is applicable to the segmentation of

healthy vasculature. It does not have leakage problem because it always preserve the

17



(a)

(b)

(c) (d) (e)

Figure 3.5: Level set segmentation using shape driven flow (taken from [NYT04]).
(a) 2D result without shape prior. Contour leaks into several non-vessel regions.
(b) 2D result with shape prior has a less severe leakage problem. (c) 3D results
without shape prior. The leakage connects the vessel to the background. (d) 3D
result with shape prior has no leakage problem. (e) Final segmentation result from
a different viewpoint.
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(a)

(b) (c)

(d) (e)

Figure 3.6: Geometric parametric segmentation of blood vessels (taken from
[FIC04]). (a) Medial axis of a branch and its elliptical circumference. (b) The
initial contours of the cross-sections of blood vessels. (c) Contours after axis defor-
mation. (c) Contours after surface deformation. (d) Final contours after axis and
surface deformation.
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shape of each cross-section of the vasculature. However, it has some intrinsic prob-

lems. A vasculature might not have an elliptical cross-section when it is unhealthy.

Under such circumstance, geometric parametric model may not be appropriate.

3.2 Heart Segmentation Algorithms

Segmentation and reconstruction of the heart from medical images is crucial for

surgical simulation. There is not a lot of research in heart segmentation. Exist-

ing algorithms for heart segmentation can be classified into three categories, i.e.,

intensity-based, deformable model-based and heart model-based algorithms.

The first class is mainly intensity-based, using general segmentation algorithms.

In [RCR05], the 3D heart was segmented by region growing starting from selected

seed points in the thresholded CT images, followed by morphological operations to

break connections between different parts. The result is shown in Figure 3.7. One of

the disadvantages of this algorithm is that the surface of the segmented 3D model

is not smooth. It is because the algorithm is voxel-based. It does not have any

constraints on the surface. And it involves much human intervention to set the seed

points and the thresholds.

The second class of algorithms carries out segmentation with deformable mod-

els. Makowski et al. applied two-phase active contour to segment chambers and

arteries from 2D MRI images [MST+81]. Bajaj et al. used level set algorithm to

segment heart from high resolution CT images [BGY+06]. The algorithm starts

from multiple seed points and segmented various anatomical parts simultaneously.

Both algorithms handle only 2D segmentation. In 3D case, the deformable model-

based algorithms become much more complicated. Forces are computed in 3D. The

3D calculation is more time-consuming. Sometimes, the equation cannot be easily

extended from 2D case. Therefore, 3D deformation becomes much more difficult to
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Figure 3.7: Intensity-based 3D segmentation of the heart (taken from [RCR05]).

handle than 2D case.

The third class of algorithms segments with a predefined heart model. It uses reg-

istration techniques to align the model to the input images. Philips Research Group

proposed a segmentation algorithm with an annotated heart model [EPW+06]. The

algorithm first detects the approximate position of the whole heart in CT images

using generalized Hough transformation [Bal81]. Then the heart model (Figure

3.8(a)) is registered to the image, optimizing its position in space with respect to a

rigid transformation (Figure 3.8(b)). After that, various anatomical regions of the

heart, e.g., chambers and great arteries, are simultaneously registered to the image

using piecewise affine transformation (Figure 3.8(c)). Finally, accurate boundary

delineation is achieved using a mesh-deformation method (Figure 3.8(d)).

3.3 Summary

Medical image segmentation is still a big challenge. Different anatomical parts have

different characteristics in different imaging modalities. No segmentation algorithm

can handle all kinds of segmentation problems. Each one has its own pros and cons.
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(a) (b) (c)

(d) (e)

Figure 3.8: Model-based 3D heart segmentation (taken from [EPW+06]). (a) 3D
heart model. (b)-(e) Segmentation results of each stage of the method.

The vasculature and heart segmentation algorithms discussed above are all sensi-

tive to noise to different degrees. Heart model-based algorithm is the least sensitive.

When the model is available, model-based algorithm should produce the best re-

sult as it uses knowledge in segmentation. Snake and level set are more flexible for

segmenting larger vessels and chambers. Snake is more sensitive to initialization

than level set. Level set can handle topological changes, but snake cannot. For thin

vasculature with complex topological structure, the image forces are too weak to

guide the propagation of the active contour and the front of level set. In this case,
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it is better to use centerline detection and geometric parametric models. Through

centerline detection, topological information of the vascular structure is easy to ob-

tain. But it is still very difficult for it to extract all the tiny vessels. Geometric

parametric model-based approach does not have leakage problem because it always

preserve the shape of each cross-section of the vasculature. However, this approach

may have difficulties in segmenting diseased vasculature because the cross-sectional

shape may not be preserved.
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Chapter 4

Segmentation and Reconstruction

of Arteries

4.1 Project Description

4.1.1 Description of Input Data

The input data of this project are chest CT images of newborn babies. The size of

the CT images is 512× 512 ((Figure 4.1)), and the inter-slice thickness is 0.625mm

(Table 4.1). Each data set consists of about a hundred slices from the aortic arch

to the bottom of chambers.

Data Set 1 and Data Set 2 seem to be incomplete: some parts of the great arteries

are missing. This could be due to the babies’ movement during CT scanning. Data

Set 3 is complete.

As discussed in Chapter 2, the key to distinguishing CT images of TGA patients

from normal patients is to identify the relative positions of the ascending aorta and

the pulmonary trunk. In the CT images of the first and third patients (Figure 4.2(a)

and (c)), the ascending aorta is located in front of the pulmonary trunk for TGA
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Figure 4.1: Sample CT image.

Table 4.1: Resolution of three data sets.

Data Set x−/y−Resolution Pixel size Actual size Thickness TGA Sample

(mm/pixel) (mm) (mm)

No. 1 0.215 512×512 110.08 × 110.08 0.625 Yes Figure 4.2(a)

No. 2 0.215 512×512 110.08 × 110.08 0.625 No Figure 4.2(b)

No. 3 0.369 512×512 188.928 × 188.928 0.625 Yes Figure 4.2(c)

cases. In the CT images of the second case (Figure 4.2(b)), the aorta is located

behind the pulmonary trunk. It is the normal case.

4.1.2 Description of Problem

The objective of this project is to develop a system which can segment and recon-

struct 3D artery models from CT images. Aorta is segmented aortic root to the

aortic valve. Pulmonary trunk is segmented from pulmonary root to the pulmonary

valve. Coronary arteries are also segmented out if they appear in the data set. The

spine is also required as a reference to the orientation and posture of the patient.
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(a) (b) (c)

Figure 4.2: Sample images of three data sets. (a) Data Set 1. (b) Data Set 2. (c)
Data Set 3.

After segmentation, surface models of the arteries and the spine are constructed

for the purpose of visualization. The models are constructed according to the reso-

lution and thickness of CT images.

4.2 Overview of Algorithm

According to different characteristics of arteries which are discussed in Chapter 2,

different semi-automatic 3D segmentation algorithms are used in this system. For

the aorta and the pulmonary trunk, 3D level set is used (Section 4.3). The coronary

arteries appear very thin and unclear. Their edges are vague. It is difficult to apply

level set to segment them. Therefore, an alternative algorithm based on geometric

models is used to segment coronary arteries (Section 4.4). The spine is segmented

for visualizing the patient’s orientation. The accuracy of the segmentation result is

not as important as that of the great arteries. Therefore, multi-seed region growing,

which is much simpler and more efficient than level set, is applied to segment the

spine (Section 4.5).

After segmentation, 3D surface models of the arteries and the spine are con-
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structed using marching cubes algorithm. The segmentation and reconstruction of

aorta, pulmonary trunk, coronary arteries and spine may proceed in any order.

4.3 Segmentation of Great Arteries

4.3.1 Overview

Two-phase 3D level set algorithm is used to segment the aorta and the pulmonary

trunk. The first phase is to get an approximate surface of the great artery by using

gradient map of CT images. The gradient information is not enough to obtain

an accurate segmentation result due to the inhomogeneity of the images. Detailed

reason and analysis will be covered later. A second phase is applied to expand the

surface a little using region-based information to obtain more accurate surface.

4.3.2 Level Set with Gradient Map

The main idea of level set algorithm is discussed in Section 3.1.3. Level set function

φ(x, y, z) is applied in 4D. The rate of change ∂φ/∂t of φ is related to the gradient

∇φ as follows:

∂φ

∂t
+ F |∇φ| = 0. (4.1)

Usually the force F is formulated as F = FP + FG. The term FP , referred to

as the propagation term, controls the propagation of the front, and stops the front

in the vicinity of the desired boundaries. Usually the term is computed from the

input images.

The term FG depends on the geometry of the front. It aims at smoothing out

the high curvature regions of the front. The great arteries usually appear elliptical

in CT images. Their outer surfaces should be smooth. High intensity noise in the
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CT images may attract the front wrongly. It will result in rough surface. The

curvature is usually relatively high where it is rough. To avoid that, FG is inversely

proportional to the curvature κ(x). In regions of high curvature, it will decrease the

speed of the front. Therefore, the front in the high curvature regions will propagate

slower than that in the low curvature regions. As the front moves in the normal

direction, the high curvature regions tend to be smoothed out.

In this algorithm, the level set function is rewritten as follows:

FP = a vI(x)

FG = −b vI(x) κ(x)

F = FP + FG = vI(x) [a − b κ(x)]

∂φ

∂t
+ vI(x) [a − b κ(x)] |∇φ| = 0, (4.2)

where a and b are nonnegative scalar constants, weighting the relative influence of

each term on the movement of the front. vI(x) is defined as a speed function based

on the gradient map of the input images. As required, the front should stop near

the artery boundaries. The value of the speed function should decay to zero when

the front is approaching the boundaries.

There are three different formulae for the speed function vI(x).

vI(x) = (1 + |∇I(x)|)−1 (4.3)

vI(x) = exp (−γ|∇I(x)|) (4.4)

vI(x) = (1 + exp (−|∇I(x)| − β

α
))−1, (4.5)

where |∇I| is the gradient magnitude of input image I. I should be Gaussian

smoothed to remove noise.

In comparison, the advantage of exponential function (Equation 4.4) over inverse

proportion function (Equation 4.3) is that exponential function decays more quickly.

Equation 4.5 uses sigmoid function. α, β are two parameters required by sigmoid
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function to define the nonlinear transformation. The sigmoid function enlarges the

speed difference of the front between in regions of low gradient magnitude and

regions of high gradient magnitude. The speed of convergence of sigmoid function

is adjustable and controlled by α, β.

Ideally, the speed function should have non-zero value in the homogeneous re-

gions of the great arteries. The front can propagate inside the great arteries. The

speed function should decay rapidly to zero near their boundaries. Otherwise, the

front will not stop at the boundaries if the speed is nonzero. According to the three

formulae of vI(x), the value cannot equal to zero unless the gradient magnitude is

infinite, which is obviously impossible in real applications. Therefore, a threshold

is needed.

v′
I(x) =







vI(x) if vI(x) > Γ,

0 otherwise.
(4.6)

The threshold Γ should be large enough. Otherwise, the front will leak out because

the speed function still has nonzero values somewhere at the boundaries. On the

other hand, if Γ is too large, the front will stop before it arrives at the actual

boundaries. It is observed that areas inside the great arteries appear inhomogeneous

in CT images. Regions around the arteries also have different intensities. Therefore,

the gradient magnitudes of the voxels on the boundaries vary quite a lot. In this

case, it is very hard to select a perfect value for the threshold Γ.

As discussed before, one of the main disadvantages of level set is its tendency

to leak out. Thus, threshold Γ should be set to a stricter value to avoid leaking. It

should be larger than the speed values of all the voxels at the boundaries. Setting

Γ in this way causes problem that the front may stop before it gets to the actual

boundaries. Figure 4.3(b) shows the speed functions v′
I(x) after thresholding. Pixels

on the line (Figure 4.3(a)) are chosen as sample points to show the change of the

speed when the front propagates along this line. The high gradient magnitude
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indicates the positions of boundary points. However, due to the value of threshold

Γ, v′
I(x) decays to zero before it gets to the boundary points.

In comparison, the curve of sigmoid function is more smooth than the others.

Additionally, the parameters α and β of sigmoid function can control the non-zero

range. It is more flexible than the other functions. Therefore, it is chosen as the

speed function in the segmentation algorithm.

The values of α, β are found in the following way suggested by ITK’s docu-

mentation [ITK]. Let K1 be the minimum gradient magnitude on the contour of

the great arteries. Let K2 be the average value of the gradient magnitude in the

middle of great arteries. The two values indicate the dynamic range that needs to

be mapped to the interval [0, 1] in the speed function. Therefore, the suggested

value for β is (K1 + K2)/2, and the value for α is (K2 − K1)/6 which is negative.

The algorithm requires the user to specify the initial surface for level set. It is a

sphere inside the desired artery. Sample segmentation results of the aorta and the

pulmonary trunk are shown in Figure 4.4. The results indicate that level set guided

by gradient map cannot get the accurate surface of the desired arteries. It gets

stunk at a few pixels away. Therefore, it is necessary to apply another algorithm to

get more accurate result.

4.3.3 Masking

The aim of masking is to pre-process original CT images as the input for the sec-

ond phase according to the segmentation result of the first phase. The purpose

of masking is to restrict the computational field of level set algorithm and avoid

negative influence of irrelevant tissues in the CT images. The main idea is to mask

out regions far away from the desired arteries in the input CT images.

Masking includes two steps. The first is to expand the surface obtained in the
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Figure 4.3: Comparisons of the speed functions. (a) Sample pixels chosen along the
black line. (b) Comparison among speed functions and gradient magnitudes along
the black line.
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(a) (b)

Figure 4.4: Segmentation results of level set in the first phase.

first phase by a predefined amount dm. This is achieved by computing the minimal

distances of the voxels to the surface. The expanded volume consists of all the

voxels with distances d ≤ dm. The second step is to remove the regions outside the

expanded volume. Note that dm must be large enough to include all the parts of

the great arteries.

Figure 4.5(a) shows the segmentation result of the first phase. Figure 4.5(b) is

obtained with dm = 10 pixels.

4.3.4 Level Set with Region Based Information

The objective of this step is to move the level set front a little further to let it

stop at the desired boundaries. The algorithm is based on the paper of Dindoyal

et al. [DLD+05]. The idea is to model the foreground (e.g., great arteries) and the

background of the image and try to minimize the energy of separating these two

regions. The level set function is as follows:

∂φ

∂t
+ [λ1(I − µo)

2 − λ2(I − µi)
2] exp (ωκ)|∇φ| = 0. (4.7)
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(a) (b)

Figure 4.5: Result of masking. (a) Segmentation result of the first-phase level set
algorithm. (b) Masked image.

In Equation 4.7, I is the voxel intensity. µi and µo are average intensities inside

and outside the region defined by the level set front. µi and µo should be estimated

iteratively. λ1 and λ2 are empirically determined weighting coefficients. Since the

appropriate λ1 and λ2 could potentially vary significantly between data sets, the

input images are normalized by mapping intensities between 0 and 1 linearly.

The region-based force [λ1(I − µo)
2 − λ2(I − µi)

2] mainly depends on the local

tissue type. It will also work in the absence of a strong edge field because it is not

based on input images’ gradient. The force is heavily penalized by curvature κ to

prevent leakage of the front.

Let us examine the region-based force using the image shown in Figure 4.6.

The white part has intensity 1 and the black part has intensity 0. Assume that

λ1 = λ2 = 1. When the front is inside the white region, µi = 1, 0 < µo < 1 and

the intensities of the pixels at the front equal to 1. At this time, the region-based

force is positive. The front will expand. When the front is outside the white region.

0 < µi < 1, µo = 0, and the intensities of the pixels at the front equal to 0. Now the
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(a) (b)

Figure 4.6: Image to examine the region-based force. (a) A binary image for seg-
mentation. (b) Zoom in view.

force is negative, and the front will shrink. Therefore, the front will stop between the

boundary with intensity equal to 1 (red contour in Figure 4.6(b)) and the boundary

with intensity equal to 0 (green contour in Figure 4.6(b)). In this project, level set

algorithm has not taken the subpixel problem into consideration. It will not stop

the front in the middle of the red and the green contours. The red contour will be

chosen as the boundary.

The initial surface is the surface obtained in the first phase (Figure 4.4). The

masked CT images are the input images. The front propagates in 3D under the

influence of the region-based force. Figure 4.7 shows the result after 78 iterations.

In comparison with Figure 4.4, now the front stays much closer to the real boundaries

of the aorta.
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(a) (b)

Figure 4.7: Segmentation results of the second phase level set.

Figure 4.8: Aortic valve and Pulmonary valve of Data Set 3.
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4.3.5 Experiment and Discussion

The segmentation algorithm of the great arteries was tested on the three data sets

described in Section 4.1.1. As required, aorta was segmented from aortic arch

to aortic valve, and pulmonary trunk was segmented from pulmonary root to the

pulmonary valve ((Figure 4.8)). Data Set 3 has a higher quality than Data Set 1

and 2. So, the segmentation algorithm was applied to more CT slices to obtain

more complete artery model, including the aortic arch and the pulmonary trunk.

There were three steps in the segmentation of an artery. First, the first-phase

level set algorithm was run on the input images with a manually specified initial

surface inside the desired artery. Secondly, the input images were masked according

to the result of the first phase. Thirdly, the second-phase level set algorithm was

applied to the masked images. These steps were repeated to segment the aorta and

pulmonary trunk in the three data sets.

The algorithms are implemented using Medicine Insight Segmentation and Reg-

istration Toolkit (ITK) [ITK]. It provides the data structure for reading, writing

and storing 2D and 3D images. It also provides a framework for the level set algo-

rithm. Users need to specify the computation of speed function, but do not need to

worry about solving partial differential equation.

The parameters of the algorithms were set as shown in Table 4.2. a and b are

weighting factors that balance the influences of propagation term and geometric

term. They are set to 3 and 0.5 so that the front can expand to the vicinity of

the boundaries and it also can remain smooth. α and β of the sigmoid function

were estimated from input images. The guideline for setting α and β is discussed

in Section 4.3.2. The threshold Γ of the speed function was set to 0.002 for all the

data sets so that the front can stop expanding when the speed is close to 0. Sigmoid

speed function is controlled by α and β. So it is less dependent on the value of Γ.

36



Table 4.2: Parameter configuration for algorithms. A: aorta, P: pulmonary trunk,
No.: number of iterations.

Data Set Arteries First Phase Masking Second Phase

a b α β Γ No. dm λ1 λ2 No.

1 A 3 0.5 -6 2 0.002 400 10 0.3 0.3 100

P 3 0.5 -5 1 0.002 800 10 0.3 0.3 100

2 A 3 0.5 -5.5 2 0.002 400 15 0.3 0.3 200

P 3 0.5 -5.5 2 0.002 400 15 0.3 0.3 200

3 A 3 0.5 -2 1 0.002 1500 20 0.3 0.3 500

P 3 0.5 -4 1 0.002 800 20 0.3 0.3 500

The expanding distance dm for masking should be larger than the maximal distance

between the surface obtained by the first phase and the real surface of the artery. λ1

and λ2 are the weighting parameters in the second phase. They are set to 0.3 so that

the front can expand slowly with a more precise result. The numbers of iterations

for both the phases depend on the volume of the artery and the propagation speed

of the front.

Figure 4.9, 4.10 and 4.11 show sample segmentation results of the data sets.

The boundaries in Data Set 3 are clearer and sharper than those in Data Set 1 and

2. Its gradient magnitude map is steeper at the boundaries. Therefore, the surface

obtained in the first phase ((Figure 4.11) is nearer to the actual boundaries than

those in other data sets (Figure 4.9 and 4.10).

Although the results of the first phase are not close enough to the actual bound-

aries, region-based level set algorithm in the second phase can compensate for the

shortcomings. As shown in Figure 4.12(b), segmentation results obtained in the

second phase are satisfactory expect for a few slices with high image noise (e.g.,
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Figure 4.9: Sample segmentation results of Data Set 1. First column: results of the
first phase. Second column: masked input images. Third column: results of the
second phase.
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Figure 4.10: Sample segmentation results of Data Set 2. First column: results of
the first phase. Second column: masked input images. Third column: results of the
second phase.
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Figure 4.11: Sample segmentation results of Data Set 3. First column: results of
the first phase. Second column: masked input images. Third column: results of the
second phase.

(a) (b)

Figure 4.12: Segmentation results of Data Set 2. (a) Result of Phase 1. (b) Result
of Phase 2.
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(a) (b)

Figure 4.13: One unsatisfactory segmentation result of Data Set 1. (a) Result of
Phase 1. (b) Result of Phase 2.

Figure 4.13).

Since Data Set 3 is of high quality, the aortic arch and pulmonary trunk are also

segmented to build complete cardiac artery models. In some slices, the boundaries

between the aortic arch and the other vessels are not clear, the pixels between them

have high intensities, which usually confuses the level set algorithm and results in

leakage. In that case, level set algorithms will definitely leak out to the undesired

area. So before segmentation, the CT images needs to be manually pre-processed

by putting black lines on unclear boundaries (Figure 4.14). Figure 4.15 shows the

segmentation results of the top parts of great arteries.

4.4 Segmentation of Coronary Arteries

Coronary arteries are very narrow. They show up in at most 4 to 5 slices. It

is quite difficult to reconstruct an accurate 3D model of coronary arteries. So

some estimation needs to be performed. Due to the shape of the coronary arteries,
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(a) (b)

Figure 4.14: Sample image after manual pre-processing. (a) Original CT image, (b)
image after separating vessels manually.

(a) (b)

Figure 4.15: Segmentation results of top parts of great arteries. (a) Ascending
aorta, descending aorta and pulmonary trunk. (b) Aortic arch.
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their centerlines are very important for identifying their positions and orientations.

Therefore, the first step is to determine the centerlines of the coronary arteries. The

second step fits geometric parametric models to the intersections and centerlines of

coronary arteries in the CT images, and obtains the outer surface of the coronary

arteries.

4.4.1 Centerline Detection

As discussed in Section 3.1.1, centerline detection algorithms are designed to find

the centerlines of the entire vasculature. They are all based on the assumption that

centerlines are the brightest lines along the blood vessels.

Here, a centerline detection algorithm based on graph theory is applied to the 3D

data. It requires the user to indicate two end points of the coronary arteries. They

do not have to be in the same CT slice. The main idea is to find the minimum-cost

path between the two end points.

First, a directed graph G is built from the 3D volume data. Each vertex in G

corresponds to a voxel in the 3D volume data. Let Vi be a voxel in the 3D data.

There are three categories of adjacent voxels of Vi (Figure 4.16):

1. 6 voxels share a face with Vi,

2. 12 voxels share an edge with Vi,

3. 8 voxels share a corner with Vi.

Vi is adjacent to these 26 voxels in 3D data. The distances between them are 1,
√

2,

and
√

3 respectively.

The cost c(i, j) of an edge (Vi, Vj) is defined as

c(i, j) = w1(1 − Ij) + w2d(i, j). (4.8)
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Figure 4.16: Distance between adjacent voxels in 3D space.

In this equation, the first part of the cost is related to intensity. Based on the

assumption that centerlines are the brightest lines along the coronary arteries, the

path should go through high intensity points that have higher possibility of be-

longing to the centerline. I is the normalized intensities of input images with a

maximum value of 1. The other part d(i, j) is the distance between Vi and Vj .

Sometimes, there is some noise with high intensity around the coronary arteries.

The path through this kind of noise vertexes may have low intensity cost. But it

usually has large distance cost because it deviates the coronary arteries’ centerline.

Distance constraint is set to reduce the influence of noise. The parameters w1 and

w2 are two constants set by the user. Given the end points, the algorithm uses

Dijkstra’s algorithm [CLRS01] to find the minimum cost path. Figure 4.17 shows

the centerline by projecting to one slice.
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Figure 4.17: Detected centerline in one slice.

4.4.2 Fitting Geometric Parametric Model

After getting the centerline, a geometric parametric model is fitted the surface of the

coronary arteries. Suppose that the centerline Lc is composed of a set P of points.

For each point pi(xi, yi, zi) in P , a sphere is placed at pi to fit the intersection of the

coronary arteries in input images. A sphere has 4 parameters, the coordinates of

the center (xc, yc, zc) and the radius r. The parameters of the sphere are estimated

by minimizing the cost function

C = a1Ci + a2Cr + a3Cd. (4.9)

The first part is intensity. The idea is to find an optimal sphere that can classify

the voxels into two groups with minimum intensity difference. The formula is written

as

Ci =
∑

d(p′,pi)≤r

|I(p′) − Ii| +
∑

r≤d(p′′,pi)≤2r

|I(p′′) − Io| (4.10)

d(p′, pi) =
√

(x′ − xi)2 + (y′ − yi)2 + (z′ − zi)2,

where Ii is the average intensity of voxels inside the coronary artery, and Io is the

average of those outside the coronary artery. The values of Ii and Io are computed
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before fitting. They are determined by examining sample voxels given by users

inside and outside the coronary arteries before segmentation. Define region inside

a sphere (xc, yc, zc, r) as the foreground and region outside the sphere (xc, yc, zc, r)

but within the sphere (xc, yc, zc, 2r) as the background. Voxels beyond these regions

are not taken into consideration. The first term in Equation 4.10 sums over the

intensity differences between Ii and foreground voxels. The second term sums over

the intensity differences between Io and background voxels.

The second part of the cost function is related to radius of sphere. As the

segmented coronary arteries are supposed to be as smooth as possible, the difference

in radius between two adjacent spheres should not be too large. The cost related to

radius is defined as

Cr = |r − r′|, (4.11)

where r′ is the radius of adjacent sphere.

The third part imposes constraints on the distance between the sphere’s center

and the centerline. The center of the sphere will be searched only in the vicinity of

each point on the centerline.

Cd = d(pc, pi), (4.12)

where pc is the center of the sphere. Its coordinates are (xc, yc, zc). pi is the point

on the centerline under investigation. Its coordinates are (xi, yi, zi).

The final form of cost function is the combination of these three parts with three

weights.

C = a1Ci + a2Cr + a3Cd

= a1[
∑

d(p′,pi)≤r

|I(p′) − Ii| +
∑

r≤d(p′′,pi)≤2r

|I(p′′) − Io|]

+ a2|r − r′| + a3d(pc, pi), (4.13)
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where a1, a2, and a3 are coefficients set by the user. For each point on the minimal

cost path, the fitting cost is minimized by determining the parameters pi(xc, yc, zc, r)

of the sphere. The space covered by these spheres are regarded as coronary arteries.

4.4.3 Experimental Result

Segmentation algorithm of coronary arteries is tested on Data Set 1 and Data Set 3.

CT images in Data Set 2 are a bit blur. It is very difficult to distinguish coronary

arteries from other tissues on the images. Therefore, Data Set 2 is not used in the

test.

The implementation of cost function optimization is based on the numerical

library vnl [vnl] which provides Nelder-Meade downhill simplex algorithm [NM64].

Coefficients a1, a2 and a3 are set to 1, 0.1 and 0.1 so that the algorithm can extract

the line in the center and avoid the influence of noise. Figure 4.18 shows the results

of coronary artery segmentation of Data Set 1 and Data Set 2. The images in the

first row show the centerline of coronary arteries by projecting to one slice. Detected

centerlines are more or less located in the middle of the coronary arteries. They are

almost not affected by noise. The images in the second row show the segmentation

results of some slices, in which the coronary arteries are the thickest. The results

are very close to the actual boundaries except for the end of the coronary arteries

because they are extremely thin and blur at the end.

The main problem with this algorithm is it could not produce a result with very

smooth boundaries. The first reason is CT images do not have high enough reso-

lution for coronary arteries. As discussed, coronary arteries are very thin and only

show up in three or four slices. The algorithm does not perform subpixel localiza-

tion. Therefore, algorithm possibly needs to segment with subpixel accuaracy. The

other reason is that constraining only on the radius of adjacent spheres is probably

47



(a) (b)

(c) (d)

Figure 4.18: Results of centerline detection and coronary arteries segmentation.
(a,b) Data Set 1. (c,d) Data Set 3.
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not enough to produce smooth boundaries.

4.5 Segmentation of Spine

The spine is segmented to show the orientation and posture of the patient in 3D

visualization. The segmentation algorithm should obtain a result with correct po-

sition and approximate shape, but not necessarily accurate. Therefore, 3D region

growing which is a general segmentation algorithm is applied to segment the spine.

The main idea of 3D region growing is to look for groups of voxels with similar

properties. It starts from one or more seed points that serve as the initial regions.

Then, it adds neighboring voxels one at a time into the regions if they have similar

properties with respect to predefined criteria.

The key problem in spine segmentation using region growing is to define proper

similarity criteria. Like the great arteries, the spine also has high intensity in CT

images (Figure 4.19(a) and (b)). Therefore, the easiest way is to apply thresholding

technique for segmentation. But in practice, it is very difficult to find a proper value

of the threshold that works for the whole data set. The lower bound of the intensity

the spine varies a lot among different slices. On the other hand, some tissues around

the spine have higher intensity than some parts inside. Therefore, if the threshold

is too low, undesired tissues will be included in the segmentation result. Otherwise,

the algorithm may not obtain the entire spine.

As illustrated in Figure 4.19(a) and (b), the boundaries between the spine and

other tissue are quite clear most of the time. That means the gradient information

will be useful for segmenting the spine. Figure 4.19(c) and (d) show the gradient

maps of Figure 4.19(a) and (b). Then, region growing algorithm starts from multiple

seed points that are specified by users, and looks for neighboring voxels which

have low gradient magnitudes (Figure 4.19(e,f)). Due to the thick boundaries in
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gradient map, the boundaries obtain by region growing may not coincide exactly

the actual boundaries. This situation is similar to that in the first phase of great

artery segmentation. As discussed before, segmentation result of the spine is not

required to be very accurate. Therefore, the boundaries are expanded by 2 to 3

voxels in the normal direction of boundaries obtained by region growing to obtain

a more realistic result (Figure 4.19(g,h)).

Figure 4.20 shows some results of spine segmentation of three data sets. They

are not necessarily accurate at each voxel. But, the positions are correct, and the

shape of the spine is correct.

4.6 Reconstruction

4.6.1 Marching Cubes Algorithm

The input and the output of the segmentation algorithms discussed above are both

volume data. In order to visualize the surface of the arteries, a surface model need

to be constructed.

Marching cubes [LC87] is a computer graphics algorithm for extracting a polyg-

onal mesh from volume data. It computes iso-surfaces from the discrete volume

data, and produces the triangle mesh by connecting the patches from all the cubes

on the iso-surface boundaries. The input data is the segmented volume data of the

aorta, the pulmonary trunk, the coronary arteries and the spine. The outputs are

is triangular mesh models. The mesh models represent the surfaces by vertexes and

triangles that connect the vertexes.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4.19: Intermediate results of spine segmentation. (a,b) Input CT images,
(c,d) gradient maps, (e,f) results obtained by region growing, and (g,h) results after
expansion.
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(a)

(b)

(c)

Figure 4.20: Segmentation results of the spine. (a) Data set 1. (b) Data Set 2. (c)
Data Set 3.
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Figure 4.21: Screenshots of 3D reconstruction of Data Set 1.

4.6.2 Experimental Result

Marching cubes algorithm was tested on the segmented volume data of each artery

and the spine respectively. It was implemented using ITK library [ITK]. The

surface model generated by marching cubes was then visualized in a 3D visualization

software after some smoothing.

Screenshots are taken to show the 3D visualization for each data set (Figure 4.21,

4.22, and 4.23). In the figures, the aorta and the coronary arteries are shaded red,

the pulmonary trunk blue, and the spine white. The spine helps to determine the

front and back of the patient. The spine includes two parts. The body of vertebra,

more or less cylindrical in shape, faces the front of the human body. The vertebral

arch is located behind the vertebral body. The sealed ends of the great arteries

indicate the approximate positions of the aortic valve and pulmonary valve. The

heart is located below the valves.
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Figure 4.22: Screenshots of 3D reconstruction of Data Set 2.

Figure 4.23: Screenshots of 3D reconstruction of Data Set 3.
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Recall that in TGA patients, the aorta is located in front of the pulmonary

trunk (Section 2.2). Thus, Data Set 1 (Figure 4.21) and Data Set 3 (Figure 4.23)

are cases of TGA, whereas Data Set 2 (Figure 4.22) is a normal case. In TGA cases,

the positions of ascending aorta and pulmonary trunk are switched.

Additionally, coronary arteries are also visualized except for Data Set 2. As

explained in Section 4.4, the coronary arteries in Data Set 2 cannot be seen in the

CT images. For Data Set 1 and 3, the positions and orientations of the coronary

arteries. However, the outer surfaces are not smooth enough. The possible reasons

have already been discussed in Section 4.4.

In 3D visualization, the structures of the cardiac arteries are much clearer than

those in 2D images. This will be helpful for surgery simulation. For example, it is

much easier to determine the positions to cut the great arteries in the 3D model

than 2D images.

55



Chapter 5

Conclusion and Future Work

In the literature of heart blood vessel segmentation algorithms, most of the algo-

rithms only handle 2D segmentation. Others segment the heart and arteries as

a whole in 3D. They do not provide separate segmentation’s results of different

arteries.

This Thesis describes segmentation and reconstruction algorithms of arteries

from CT images for surgical planning simulation system. First, a two-phase level

set algorithm segments the great arteries and a geometric parametric model based

algorithm is applied to obtain the coronary arteries. Spine is also segmented us-

ing region growing for visualization purpose. After that, marching cubes algorithm

generates the mesh models from the 3D segmentation results. The analysis of ex-

perimental results shows that the algorithms can obtain fairly accurate surface of

the great arteries, but the algorithm for coronary artery segmentation seems a bit

weak in getting complete and accurate structure of coronary arteries.

The contributions of this thesis are as follows. First, it implemented a set of

algorithms for segmenting and reconstructing 3D models of the great arteries and

coronary arteries. Second, it discussed the limitations of the segmentation algo-

rithms and how to overcome.
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For surgical simulation, it may be useful to segment and build the whole model

of the heart that includes all the arteries and veins. Such work is quite challenging,

because boundaries between arteries and veins sometimes are unclear or mixed

with each other. Level set cannot achieve very satisfactory results without further

knowledge, e.g., heart model. On the other hand, more sophisticated algorithms

should be employed to segment the coronary arteries. Intensity information, based

on which coronary arteries are segmented in this thesis, is not necessarily enough

to extract the artery boundaries accurately. Information from other domains, e.g.,

frequency domain, might also be useful.

So far we have tested algorithms on only three data sets. For further verification

of the performance of the algorithms, it would be useful to obtain more data sets

from the surgeons to test the algorithms.
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