
GENERIC FAULT TOLERANT SOFTWARE ARCHITECTURE:

MODELING, CUSTOMIZATION AND VERIFICATION

YUAN LING

(B.Sc. Wuhan University, China)

(M.En. Wuhan University, China)

A THESIS SUBMITTED

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

DEPARTMENT OF COMPUTER SCIENCE

NATIONAL UNIVERSITY OF SINGAPORE

2007

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarBank@NUS

https://core.ac.uk/display/48625081?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Acknowledgement

I would like to express my deep and sincere gratitude to my supervisor, Professor

Jin Song DONG. His wide knowledge and logical way of thinking have been of

great value for me. His understanding, encouraging and constructive comments

have provided a good basis for the thesis and other works.

I wish to express my warm and sincere thanks to co-supervisor Dr. Jing Sun. His

valuable advice and friendly help have been very helpful for my works. I also owe

thanks to my lab-mates and friends for their help, discussions and friendship.

I would like to thank the numerous anonymous referees who have reviewed parts

of this work prior to publication in journals and conference proceedings and whose

valuable comments have contributed to the clarification of many of the ideas pre-

sented in this thesis.

This study received financial support from the National University of Singapore.

The School of Computing also provided the finance for me to present paper in the

conference overseas. For all this, I am very grateful.

I owe my loving thanks to my family members for their love, encouragement and

financial support in my years of study. They have lost a lot due to my research

abroad. Without their encouragement and understanding, it would have been

impossible for me to finish this work.

Contents

1 Introduction 1

1.1 Motivation and Goals . 1

1.2 Thesis Outline and Overview . 5

2 Background 9

2.1 Object-Z . 10

2.2 XML-based Variant Configuration Language (XVCL) 11

2.3 Prototype Verification System (PVS) 13

2.4 ProofLite Technique . 15

3 Generic Fault Tolerant Software Architecture – GFTSA 17

3.1 Introduction . 18

3.2 Software Architecture Style of GFTSA 20

i

CONTENTS ii

3.2.1 Object . 21

3.2.2 Connector . 22

3.2.3 SharedResource . 23

3.2.4 CoordinatingComponent . 23

3.3 Fault Tolerant Techniques of GFTSA 24

3.3.1 The idealized fault tolerant component 25

3.3.2 The coordinated error recovery mechanism 26

3.4 Summary . 27

4 Formal Modeling of GFTSA 29

4.1 Introduction . 30

4.2 Object-Z Model of GFTSA . 31

4.2.1 Global Types . 32

4.2.2 Fault Tolerant Component - Object 33

4.2.3 Connector . 36

4.2.4 CoordinatingComponent . 37

4.2.5 SharedResource . 38

4.2.6 Fault Tolerant System - FTSystem 40

CONTENTS iii

4.3 Reasoning about GFTSA . 42

4.4 Conclusion . 48

5 Customization of GFTSA 51

5.1 Introduction . 52

5.2 Template based on Object-Z model of GFTSA 54

5.2.1 The x-frame for the fault-tolerant component-Object 57

5.2.2 The x-frame for Connector 58

5.2.3 The x-frame for CoordinatingComponent 59

5.2.4 The x-frame for SharedResource 60

5.2.5 The x-frame for Fault Tolerant System-ftsystem 61

5.3 A Case Study-Sales Control System (SCS) 62

5.3.1 Sales Control System (SCS) 62

5.3.2 Generation of Formal Model of SCS 64

5.3.3 Reasoning about SCS . 68

5.4 Conclusion . 73

6 Mechanical Verification of GFTSA 75

6.1 Introduction . 76

CONTENTS iv

6.2 PVS Model of GFTSA . 78

6.2.1 Generic Type . 80

6.2.2 CoordinatingComponent . 81

6.2.3 Fault-Tolerant Component-Object 82

6.2.4 Connector . 85

6.2.5 SharedResource . 85

6.2.6 Fault-Tolerant System-ftsystem 87

6.3 Mechanical Verification of GFTSA using PVS 89

6.3.1 A Global Exception raised in a Fault-tolerant Component . 89

6.3.2 Two Global Exceptions raised Concurrently in Fault-tolerant

Components . 92

6.3.3 A Local Exception raised in a Fault-tolerant Component . . 94

6.3.4 Fault-tolerant System recover From non-critical Fault-tolerant

component Failure . 96

6.4 Template based on PVS Model of GFTSA 98

6.4.1 The x-frame for global constants 99

6.4.2 The x-frame for connector 99

6.4.3 The x-frame for coordinatingcomponent 100

CONTENTS v

6.4.4 The x-frame for sharedresource 101

6.4.5 The x-frame for object . 102

6.4.6 The x-frame for ftsystem 104

6.5 Conclusion . 105

7 Mechanical Verification of developed Safety Critical Distributed

Systems guided by GFTSA 107

7.1 Introduction . 108

7.2 Case Study-LDAS (Line Direction Agreement System) 110

7.2.1 Line Direction Agreement System(LDAS) 110

7.2.2 The Generation of LDAS Formal Model 112

7.2.3 Mechanical Verification of LDAS 118

7.3 Template based on PVS model of GFTSA and Proof Scripts 123

7.3.1 The x-frames in the Template for the Specification 125

7.3.2 The x-frame in the Template for the Proof Scripts 126

7.4 Case Study-EPS (Electronic Power System) 130

7.4.1 Electronic Power System(EPS) 130

7.4.2 Generation of PVS Specification and Proof Scripts 132

CONTENTS vi

7.4.3 Mechanical Verification of EPS 136

7.5 Conclusion . 138

8 Conclusion and Future Work 141

8.1 Conclusion . 142

8.2 Future Work . 146

Summary

Distributed system often gives rise to complex concurrent and interacting activities.

The distributed systems with high reliability requirements make the development

of such systems more complicated. This thesis demonstrates a series of modeling,

customization and verification of generic fault tolerant software architecture for

guiding the development of distributed systems with high reliability requirements.

In this thesis, we first propose a novel heterogeneous software architecture, namely

Generic Fault Tolerant Software Architecture (GFTSA), which incorporates fault

tolerant techniques in the early system design phase. The proposed GFTSA com-

bines several widely used basic software architecture styles to guide the develop-

ment of distributed systems involving the cooperative & competitive concurrency.

The fault tolerant techniques incorporated in GFTSA can deal with not only the

exception the influence of which is limited within a single component, but also the

exception which can affect the control flows of more than one component within a

system.

Second, we formally model the GFTSA by using the Object-Z language, and for-

mally reason about the fault tolerant properties of GFTSA. The formalisms of

a software architecture can provide precise, explicit, common idioms & pattern s

to the system designers. The formal language Object-Z based on set theory and

predicate logic can capture the static and dynamic system properties in a highly

structured way. Based on the reasoning rules of Object-Z, we can derive the fault

tolerant properties from the GFTSA model to verify that GFTSA can preserve the

CONTENTS viii

fault tolerant properties.

Third, we build a template based on the Object-Z model of GFTSA by using the

XML-based Variant Configuration Language (XVCL) technique. This template can

be reused in the development of distributed systems with high reliability require-

ments. By customizing this template, we can auto-generate the Object-Z models

for the developed systems. A case study of Sales Control System (SCS), a specific

mission critical distributed system, is presented to demonstrate the customization

process. Following the reasoning rules of Object-Z, we can formally reason about

the fault tolerant properties of SCS based on the generated Object-Z model from

the template.

Fourth, we embed the formal GFTSA model in the Prototype Verification System

(PVS) environment to achieve mechanical verification support for reasoning about

the fault tolerant properties. In addition, we build a template based on the PVS

model of GFTSA by using the XVCL technique. By customizing this template,

we can auto-generate the PVS models for the developed safety critical distributed

systems guided by GFTSA. Based on the generated PVS models, we can mechan-

ically verify the fault tolerant properties of the developed systems by using the

theorem prover of PVS. A case study of Line Direction Agreement System (LDAS)

is presented to illustrate the customization process and mechanical verification.

Finally, we propose a template approach for the auto-generation of specifications

and proof obligations at the customized system level from the GFTSA. By cus-

tomizing this template, we can generate not only the formal models of safety critical

CONTENTS ix

distributed systems, but also the proof scripts for the fault tolerant properties of

such systems. Based on the generated formal models and proof scripts, we are able

to mechanically verify the fault tolerant properties in batch mode of PVS by using

ProofLite technique. A case study of Electronic Power System (EPS) is presented

to demonstrate the customization process and mechanical verification.

Part of the work in this thesis has been published in the journal IEEE Transactions

on Reliability [88], and international conference APSEC’06 [87].

CONTENTS x

List of Figures

3.1 The generic fault tolerant software architecture. 21

5.1 The customization process. 57

5.2 The Sales Control System. 63

5.3 The x-frame Adaption Relationship of SCS. 64

5.4 GFTSA Architecture View of SCS. 66

7.1 The LDAS System. 111

7.2 The x-frame Adaption Relationship of LDAS. 112

7.3 GFTSA architecture view of LDAS sub-system. 113

7.4 Mechanical Verification Process. 125

7.5 Relation between Template and GFTSA. 126

7.6 The Model Topology of EPS. 131

7.7 The x-frame Adaption Relationship of EPS. 133

xi

LIST OF FIGURES xii

7.8 GFTSA Architecture View of EPS sub-System. 136

Chapter 1

Introduction

1.1 Motivation and Goals

A distributed system can be viewed as a system composed of a set of concurrently

interacting activities at different locations that cooperate with each other to per-

form a joint task [13]. Distributed systems are becoming increasingly widespread in

business and scientific computing environments, which often give rise to complex

concurrent and interacting activities. In practice, different kinds of concurrency

might co-exists in a distributed system, which thus make the task of developing

distributed systems complicated. Due to no small measure to their complexity, dis-

tributed systems are prone to faults and errors. For the distributed systems with

high requirements for reliability [38], fault tolerant techniques are necessary, which

can provide a practical way to improve the dependability of such systems [40, 83].

The concern of the fault tolerance makes the development of distributed systems

1

1.1. MOTIVATION AND GOALS 2

more complicated [15]. Software architecture is identified as a critical design

methodology which can ease the complexity of the development of distributed

systems, as software architecture can provide a generic framework to guide the

development of distributed systems[23, 70, 10]. How to incorporate fault tolerant

techniques with functional aspects in the software architecture level is a new re-

search area that has recently gained considerable attention. Existing work in this

area mostly emphasizes the creation of fault tolerance mechanisms[60, 63]; descrip-

tions of software architectures with respect to their reliability properties[33, 52];

and the evolution of component-based software architectures by adding or chang-

ing components to guarantee reliability properties[18, 26, 27]. In this thesis, we

propose a novel heterogenous software architecture, namely Generic Fault Toler-

ant Software Architecture (GFTSA), which incorporates fault tolerant techniques

in the early system design phase. GFTSA can provide a generic framework to

guide the development of distributed systems involving not only different kinds of

concurrency, but also high reliability requirements.

Good understanding and precise representation of software architecture can lead to

reliable system implementations based on this architecture[9, 34]. The well-defined

semantics & syntax make formal modeling techniques suitable for precisely speci-

fying, and formally verifying architecture designs[45, 47, 69, 43, 44, 19, 42]. The

formal language Z[76, 77] has been used to formalize several software architecture

styles[1, 70]. Z is a formal specification language based on set theory and predicate

logic, which can capture the static and dynamic properties of software architec-

1.1. MOTIVATION AND GOALS 3

ture. Object-Z[21, 20, 74] is an extension of the Z formal specification language to

accommodate object orientation. Compared to formal language Z, Object-Z can

improve the clarity of large specifications through enhanced structuring, and help

the system designers to reuse the GFTSA model via inheritance & instantiation

mechanisms. In order to provide common idioms & patterns of GFTSA to the

system designers, we investigate to formally model GFTSA by using the Object-Z

language. Based on the Object-Z model of GFTSA, we propose to formally rea-

son about the fault tolerant properties of GFTSA following the reasoning rules of

Object-Z[72].

GFTSA is proposed to guide the development of distributed system with high

reliability requirements. How the GFTSA model can be reused in the development

of specific distributed systems is the next issue we need to tackle. The GFTSA

model can be customized into the formal models of specific systems by using the

inheritance & instantiation mechanisms of Object-Z. In this thesis, we propose

to make such customization process more efficient and systematic. The XML-

based Variant Configuration Language (XVCL) [36, 75, 35] is a meta-programming

technique developed to facilitate building flexible, adaptable, and reusable software

artifacts. Following the mechanisms of XVCL, we propose to build a template for

the customization of GFTSA as generic, adaptable fragments based on the Object-Z

model of GFTSA. By customizing this built template, we can generate the Object-Z

models of specific systems automatically. Based on the reasoning rules of Object-Z,

we also can formally reason about the fault tolerant properties of such systems.

1.1. MOTIVATION AND GOALS 4

Object-Z, a highly expressive formal language, can capture the properties of mod-

els in an explicit and compact way. Even though Object-Z is a good modeling

techniques that can provide precise analysis and documentation, Object-Z lacks of

tool support for mechanical verification, therefore, the formal reasoning about the

GFTSA model and specific system models customized from GFTSA are all manual-

based, which are laborious and error-prone. In this thesis, we investigate to embed

the GFTSA model in Prototype Verification System (PVS)[56, 55] to make the ver-

ification more systematic, since the theorem prover of PVS can provide mechanical

proof support for the verification. The Prototype Verification System (PVS) is a

proof system developed at SRI. PVS has a powerful interactive theorem prover

and its automation suffices to prove many results automatically, which has been

applied successfully to large and difficult application in both academic and indus-

trial settings[31, 64]. We also propose to build a template based on the PVS model

of GFTSA by using XVCL technique. When developing distributed systems with

high reliability requirements guided by GFTSA, we can mechanically verify the

fault tolerant properties of developed systems based on the generated PVS models

from this built template.

The theorem prover of PVS can help us mechanically verify the properties of mod-

els, which offers a collection of powerful primitive proof commands that are applied

interactively under user guidance. The primitive proof commands input by user to

verify one specific property can constitute the proof script for this property. In the

batch mode of PVS, we can apply the proof script directly to the theorem prover of

1.2. THESIS OUTLINE AND OVERVIEW 5

PVS to verify one specific property, which does not require inputting each primi-

tive proof command interactively. By customizing the generic proof scripts, we can

get the proof scripts for the developed distributed systems, and apply them to the

theorem prover of PVS to verify the fault tolerant properties of developed systems

in batch mode. Since ProofLite [53] technique can provide user-friendly interface

of batch mode execution and interactive proof scripting notation to the system

designers, we investigate to use it in our template approach. As the proof scripting

notation supported by ProofLite enables a semi-literate proving style where speci-

fication and proof scripts reside in the same context, we investigate to extend the

built template based on the PVS model of GFTSA to involve not only generic PVS

specification, but also generic proof scripts for the generic fault tolerant properties

by using the XVCL and ProofLite techniques. By customizing this template, we

can generate both PVS models, and proof scripts for the developed systems. Based

on the generated PVS specification and proof scripts, we can mechanically verify

the fault tolerant properties of developed systems in batch mode of PVS supported

by ProofLite technique.

1.2 Thesis Outline and Overview

The thesis is structured into 8 chapters. Chapter 2 is devoted to an overview of

the formal language Object-Z, the XVCL technique for customization process, the

PVS and ProofLite techniques for mechanical verification.

1.2. THESIS OUTLINE AND OVERVIEW 6

In chapter 3, we propose a novel heterogeneous software architecture, namely

Generic Fault Tolerant Software Architecture (GFTSA). We describe the software

architecture style and fault tolerant techniques involved in GFTSA.

In chapter 4, we formally model GFTSA by using the Object-Z language. Based

on the Object-Z model of GFTSA, we formally reason about the fault tolerant

properties of GFTSA, following the reasoning rules of Object-Z.

In chapter 5, we build a template based on the Object-Z model of GFTSA by

using the XVCL technique. This template can be reused in the high level model

design of distributed systems with high reliability requirements via customization

process. A case study of Sales Control System (SCS) is presented to illustrate the

customization process.

In chapter 6, we embed the formal GFTSA model in the PVS environment to

achieve mechanical verification support for reasoning about the fault tolerant prop-

erties. Several significant fault tolerant properties of GFTSA are mechanically ver-

ified by using the theorem prover of PVS. In addition, we build a template based

on the PVS model of GFTSA by using the XVCL technique. This template can be

reused in generating the PVS models of developed distributed systems guided by

GFTSA. The fault tolerant properties of developed systems can be mechanically

verified based on the generated PVS models.

In chapter 7, we present two case studies to illustrate the mechanical verification

of safety critical distributed systems. A case study of Line Direction Agreement

System (LDAS) is presented to demonstrate that we can generate the PVS model

of LDAS from the template based on the PVS model of GFTSA. Based on this

generated model, we can mechanical verify the fault tolerant properties of LDAS

by using the theorem prover of PVS. By summarizing the proof scripts for the fault

tolerant properties of safety critical distributed systems, we extend the template

based on the PVS model of GFTSA to involve the generic proof scripts. By cus-

tomizing this template, we can generate not only PVS specification, but also proof

scripts for the fault tolerant properties of developed systems guided by GFTSA.

Based on the generated PVS models and proof scripts, we can mechanically verify

the fault tolerant properties of developed systems in batch mode of PVS. Another

case study of Electronic Power System (EPS) is presented to demonstrate the cus-

tomization process and mechanical verification in batch mode of PVS.

Chapter 8 gives the conclusion of the thesis and future work.

1.2. THESIS OUTLINE AND OVERVIEW 8

Chapter 2

Background

This chapter sets the context for the later chapters, giving notations and brief

technical outlines of Object-Z, XVCL, PVS and ProofLite.

9

2.1. OBJECT-Z 10

2.1 Object-Z

Z[76, 77, 29] is a formal specification language based on set theory and predicate

logic. Object-Z[20, 74] is an extension of the Z formal specification language to

accommodate object orientation. The main reason for this extension is to improve

the clarity of large specifications through enhanced structuring. The essential ex-

tension to Z given by Object-Z is the class construct which groups the definition

of a state schema and the definitions of its associated operations. A class is a tem-

plate for objects of that class: for each such object, its states are instances of the

state schema of the class and its individual state transitions conform to individual

operations of the class. An object is said to be an instance of a class and to evolve

according to the definitions of its class. Syntactically, a class definition is a named

box. In this box, the constituents of the class are defined and related. The main

constituents are: a visible list, a state schema, an initial state schema and opera-

tion schemas. We consider a simple example queue to illustrate the basic features

of Object-Z. The essential behavior of this system is to receive a new message or

send a message, which needs to preserve the FIFO property.

Queue[Item]
¹(Init, Join,Leave) [visibility list]

items : seq Item [state schema]

Init
items = 〈 〉 [initial state]

2.2. XML-BASED VARIANT CONFIGURATION LANGUAGE (XVCL) 11

Join
∆(items)
item? : Item

items ′ = items a 〈item?〉

Leave
∆(items)

[operation schema]
item! : Item

items 6= 〈 〉
items = 〈item!〉aitems ′

The Queue[Item] class schema is generic with the parameter Item representing the

type of items in the queue. The visible list specifies the interface between objects

of class schema, and their environment. The state variable items is declared in

the state schema, which would be changed by the operations of class. The Init

schema defines the initial state of the state variable. The Join, and Leave operation

schemas specify that one item? joins the queue, and one item! leaves the queue,

besides the state transformations of variable items.

2.2 XML-based Variant Configuration Language

(XVCL)

XVCL[36, 35, 75, 89] is a meta programming technique developed to facilitate

building flexible, adaptable, and reusable software artifacts. When developing an

XVCL solution, we partition a problem description(e.g. a software specification,

or a software program) into generic, adaptable meta-components called x-frames.

Each x-frame contains a fragment of problem description, called Textual Content.

The Textual Content is written in a base language, which can be any language,

2.2. XML-BASED VARIANT CONFIGURATION LANGUAGE (XVCL) 12

such as Z specification language, or Java programming language.

XVCL can be seen as a meta-language whose commands direct adaption of x-

frames. Textual Content in x-frames is instrumented with XVCL commands for

change. The XVCL commands mark the anticipated variation points in x-frames,

injecting flexibility into their Textual Contents. The x-frame adaption process

includes x-frame composition and customization. The 〈 value-of expr=“?@var?”/〉

command marks the variant point as expression var , which can be customized by

a 〈set〉 command in the ancestor x-frame. The XVCL command 〈break〉 command

marks a place in the x-frame at which the x-frame can be customized by an 〈insert〉

command declared in the ancestor x-frames.

X-frames related by 〈adapt〉 commands form an x-framework. The specification

x-frame, SPC for short, specifies what variant requirements you need in a specific

system. The SPC specifies how to adapt the x-framework in order to accom-

modate required variants. The SPC becomes a root of an x-framework. Dur-

ing x-framework processing, the XVCL processor interprets the XVCL commands

contained in the SPC, traverses an x-framework, performs adaption by executing

XVCL commands embedded in x-frames, and emits code components for a specific

system.

XVCL is an adaption domain-independent language, method and tool. XVCL per-

forms best in immature, poorly understood and evolving domains and in domains

where frequent changes occur in both large and small granularity levels.

2.3. PROTOTYPE VERIFICATION SYSTEM (PVS) 13

2.3 Prototype Verification System (PVS)

PVS[57, 59, 68, 58] is an integrated environment for formal specification and for-

mal verification. It has been developed at SRI International Computer Science

Laboratory for more than 25 years and used intensively for many practical com-

plex systems. The distinguishing feature of PVS is its integration of an expressive

specification language and powerful theorem-proving capabilities. The specification

language of PVS augments higher-order logic with a sophisticated type system con-

taining predicate subtypes and dependent types. In order to support modularity

and reuse, the specifications are logically organized into parameterized theories.

The theories are linked by import and export lists.

A theory consists of a sequence of declarations, which provide names for types, con-

stants, variables, and formulas. Type declarations are used to introduce new type

names to the context by using one of the keywords TYPE, and TYPE+. Variable

declarations introduce new variables and associate a type with them. Constant dec-

larations introduce new constants, specify their type and optionally provide values.

Since the specification language of PVS is higher order logic based, the constant

can refer to functions and relations, as well as the usual (0-ary) constants. Formula

declaration introduces axioms, assumptions, lemmas, and obligations. The expres-

sion that makes up the body of the formula is a boolean expression. The identifier

associated with the declaration may be referred during proofs. The specification

language offers the usual set of expression constructs, including logical and arith-

metic operators, quantifiers, lambda abstractions, function application, tuples, and

2.3. PROTOTYPE VERIFICATION SYSTEM (PVS) 14

a polymorphic IF-THEN-ELSE. Expressions may appear in the body of a formula

or constant declarations, or as an actual parameter of a theory instance. The type-

checker tool of PVS can check the syntactic consistency of the specification, such

as undeclared names and ambiguous types.

The theorem prover of PVS maintains a proof tree. Each node of the proof tree can

be considered as a proof goal. Each proof goal is a sequent consisting of a sequence

of formulas called antecedents and a sequence of formulas called consequents. The

intuitive interpretation of a sequent is that the conjunction of the antecedents

implies the disjunction of the consequents. The proof tree starts off with a root node

of the form ` A, where A is the theorem to be proved. PVS proof steps build a proof

tree by adding subtrees to leaf nodes as directed by the proof commands, which are

prompted by the users. Once a sequent is recognized as true, that branch of the

proof tree is terminated. All the branches of the proof tree have been terminated

means that the theorem is proved successfully. A PVS proof command provides

the means to construct proof trees when applied to a sequent. The execution of

PVS proof commands can either generate further branches, or complete a branch

and move the control over to the next branch in the proof tree. These commands

can be used to introduce lemmas, expand definitions, apply decision procedures,

eliminate quantifiers, and so on. For example, the primitive proof command flatten

can deal with propositional by simplifying disjunctive in a formula, and the assert

command can carry out quantifier rules, induction, simplification by using decision

procedures for equality and linear arithmetic.

2.4. PROOFLITE TECHNIQUE 15

2.4 ProofLite Technique

ProofLite1, a PVS tool, extends the theorem prover interface with a batch proving

utility and a proof scripting notation. ProofLite enables a semi-literate proving

style where specification and proof scripts reside in the same file. ProofLite can

provide a user-friendly interface to a PVS batch execution by including the com-

mand line utility proveit that executes the theorem prover in batch mode on a .pvs

file and rerun all its proofs. The proof scripting notation provided by ProofLite is

written in specially formatted comments that resides in regular .pvs files. Below

is a simple example, thms.pvs, to illustrate the command line utility proveit and

proof scripting notation.

thms: THEORY

BEGIN

a, b: VAR real

th1: LEMMA a*a >=0

%|- th1: PROOF (grind) QED

th2: LEMMA a <= b IMPLIES a*abs(a) <= b*abs(b)

%|- th2: PROOF

%|- (then

%|- (skip)

%|- (spread (case " a >= 0")

1The ProofLite is electronically available from http://research.nianet.org/~munoz/

ProofLite.

2.4. PROOFLITE TECHNIQUE 16

..........

%|- (assert)))))

%|- QED

END thms

In this thms theory, th1 and th2 are two LEMMAS which need to be proved.

Following each LEMMA, there is a proof script for this LEMMA written by the

ProofLite proof scripting notation. Each line of proof script is preceded by the

special comment %| −. The ProofLite utility proveit thms automatically installs

proof scripts into their respective formulas when processing the thms.pvs file, writes

the output into thms.out to show the result of proof.

Chapter 3

Generic Fault Tolerant Software

Architecture – GFTSA

In this chapter, we propose a novel heterogeneous software architecture, namely

Generic Fault Tolerant Software Architecture (GFTSA).

17

3.1. INTRODUCTION 18

3.1 Introduction

Different from non-distributed systems, distributed systems may involves differ-

ent concurrent and interacting activities, which thus require a generic supporting

framework for controlling & coordinating those concurrent activities[61]. Two kinds

of concurrency are mostly discussed in this context: competitive, and cooperative.

Competitive concurrency indicates that concurrent activities compete for some

common resources, but without explicit cooperation. Cooperative concurrency

means that concurrent activities cooperate & communicate with each other[30].

Software architecture can provide a generic framework to guide the development

of distributed systems [10]. Software architecture styles, such as pipe-and-filter[2],

can only guide the development of distributed systems with cooperative concur-

rency. Some other basic software architecture styles, such as repository style[3], can

only guide the development of distributed systems with competitive concurrency.

However, many distributed systems involve both cooperative, and competitive con-

currency. We propose a novel heterogeneous software architecture, namely Generic

Fault Tolerant Software Architecture (GFTSA), which combines several widely

used basic architecture styles to guide the development of distributed systems in-

volving both cooperative and competitive concurrency.

Due to no small measure to the complexity of distributed systems involving com-

petitive & cooperative concurrency, distributed systems are prone to fault and

errors. For the distributed systems with high reliability requirements, fault tol-

3.1. INTRODUCTION 19

erant techniques are necessary, which can provide a practical way to satisfy the

reliability requirements of such systems [62, 40, 83]. When faults occur and cause

exceptions in the distributed systems, their consequences may not always be lim-

ited to one system component [5]. Therefore, the fault tolerant techniques, which

are used to deal with the exceptions occurred in the distributed systems, may re-

quire stepping outside the boundaries of a computer system. The fault tolerant

techniques, namely idealized fault tolerant component [4, 41] and coordinated error

recovery mechanism[11, 24, 84, 61], are incorporated in GFTSA to facilitate the

recovery from exceptions that affect both the computer system, and its distributed

environment.

How to integrate fault tolerant techniques with functional aspects in the software

architecture level is a new research area that has recently gained considerable at-

tention. Existing work in this area mostly emphasizes the creation of fault toler-

ant mechanisms[32, 60, 63]; descriptions of software architectures with respect to

their reliability properties[66, 78, 33, 52]; and the evolution of component-based

software architectures by adding or changing components to guarantee reliability

properties[18, 25, 26, 27]. For our proposed software architecture, we incorporate

fault tolerant techniques in GFTSA in the early system design phase.

The remainder of the chapter is organized as follows. Section 2 gives the illustration

of software architecture style involved in GFTSA, and the overall literal description

of GFTSA. Section 3 presents the fault tolerant techniques incorporated in GFTSA,

and illustrates how these fault tolerant techniques deal with the exceptions occurred

3.2. SOFTWARE ARCHITECTURE STYLE OF GFTSA 20

in the distributed environment. Section 4 concludes the chapter.

3.2 Software Architecture Style of GFTSA

The software architecture is the structure of the system, which comprises software

components, the externally visible properties of those components, and the rela-

tionships between them. In order to provide a generic framework to guide the de-

velopment of distributed systems involving cooperative & competitive concurrency,

we propose a novel heterogenous software architecture, namely Generic Fault Tol-

erant Software Architecture (GFTSA). GFTSA can help develop the distributed

system with the ability to tolerate faults, namely FTS (Fault Tolerant System),

which is composed of a set of Objects, a set of Connectors, a set of SharedResources,

and a CoordinatingComponent, as shown in Figure 3.1.

An architecture style defines a family of systems in terms of a pattern of structural

organization. This provide a vocabulary of components and connector types, and

a set of constraints on how they can be combined. The software architecture

style involved in GFTSA demonstrates how the component & connectors in the

FTS cooperate and compete with each together. In the following, we illustrate

the significant style of Object, connector, and SharedResource, which incorporates

several widely used software architecture styles.

3.2. SOFTWARE ARCHITECTURE STYLE OF GFTSA 21

Access Shared
Resource

Object
(exception
handling)

Coordinating
Component

Connector
Object

(exception
handling)

Object
(exception
handling)

Connector

Object
(exception
handling)

Connector Connector

Shared
Resource

Access Access

AccessAccess

Exception Exception

Exception

Exception

Exception

Figure 3.1: The generic fault tolerant software architecture.

3.2.1 Object

The Object involved in the FTS needs to implement independently task, and ex-

ecute concurrently with other different Objects. In the object-oriented organiza-

tion [28], data and their associated operations are encapsulated into an abstract Ob-

ject. This object-oriented organization makes the Object hide the implementation

details, which allows the Objects to be changed without affecting its others. There-

fore, we design the style of Object similar to the object-oriented organization, which

can accommodate the distributed environment. Derived from the object-oriented

organization, Object can encapsulate data representations, and their associated

primitive operations within a single component.

Accordingly, our proposed GFTSA can guide the development of distributed sys-

3.2. SOFTWARE ARCHITECTURE STYLE OF GFTSA 22

tems with cooperative concurrency, since the Objects can execute in parallel with

other Objects. But the communication style of object-oriented organization is not

so suitable for the distributed environment. For an Object to interact with other

Objects, it must know the identity of other Objects.

3.2.2 Connector

Since the Objects need to execute concurrently in the distributed systems, we pro-

pose to design a communication pattern for the Object to accommodate the dis-

tributed environment. Referring to pipe-and-filter architecture [2], filters must be

the independent entities, and they do not need to know the identity of upstream

or downstream filters. They may specify input format and guarantee what appears

on output, but they may not know which components appears at the ends of those

pipes. Such pipe-and-filter style can support concurrent execution. Considering

the cooperative concurrency occurred in the distributed systems, the Objects also

do not need to know the identity of Objects which communicate with. Therefore,

we design Connectors in our proposed architecture to help the interaction among

Objects.

Similar to the pipe communication pattern in the pipe-and-filter architecture, the

Connectors in GFTSA connect the out port of one Object to the in port of another

Object. The cooperative concurrency is modelled by the Objects interacting with

each other via the Connectors to cater for common goals.

3.2. SOFTWARE ARCHITECTURE STYLE OF GFTSA 23

3.2.3 SharedResource

In the distributed systems, the share resource, such as database recording the in-

formation, the entities occupied by several components, and etc, are widespread.

Therefore, we need to consider how these SharedResources can be accessed by dif-

ferent Objects to preserve the consistent states. Referring to the repository style [3],

there are two distinct components: a central data structure which represents the

current state, and a collection of independent components which operate on the

data-store. Derived from this style, we can design the Objects as the independent

components, and the SharedResources as the central data structure.

Since the SharedResource can be accessed by different Objects, we need to apply a

methodology to maintain the consist state of SharedResource, which implies that

the SharedResource need to guarantee the transaction semantics [24, 46]. The

transaction semantics indicates that at a given time, each SharedResource can only

be accessed by one Object. That Objects compete for SharedResource models the

competitive concurrency.

3.2.4 CoordinatingComponent

As GFTSA is proposed to guide the development of distributed systems with

high reliability requirements. GFTSA must preserve the ability to deal with

the exceptions occurring in the distributed environment. Different from the non-

distributed systems, the exceptions occurred in the distributed can affect not only

3.3. FAULT TOLERANT TECHNIQUES OF GFTSA 24

the components which raise such exceptions, but also the components which inter-

act with these components. Therefore, we need to design an independent compo-

nent, namely CoordinatingComponent, to help deal with these exceptions.

The CoordinatingComponent is designed to help resolve the multiple exceptions

raised by different Objects in the distributed system. The CoordinatingComponent

can communicate with Objects and SharedResources involved in the distributed

system via transferring messages.

As shown in Figure 3.1, GFTSA provides a software architecture which involves

three kinds of components, namely Object, SharedResource, and CoordinatingCom-

ponent. The Object component can execute primitive task independently, and inter-

act with other Objects via connectors. The SharedResource component represents

the resources which can be occupied by several Objects. The CoordinatingCompo-

nent in particular can help deal with the exceptions occurring in the distributed

environment.

3.3 Fault Tolerant Techniques of GFTSA

If exceptions occur in the FTS, fault tolerant techniques need to deal with the

exceptions to satisfy the reliability requirements. Our proposed GFTSA incor-

porates fault tolerant techniques in the early system design phase, which can be

reused in the development of distributed systems with high reliability requirements.

Since the exceptions in the distributed environment are different from the ones in

3.3. FAULT TOLERANT TECHNIQUES OF GFTSA 25

the non-distributed environment, the consequence of which may step outside the

boundaries of a computer system, the fault tolerant techniques involved in GFTSA

need to concern such characteristics of the exceptions.

3.3.1 The idealized fault tolerant component

The concern of fault tolerant properties in the designing of distributed systems

makes the development of such system more complicated. To ease such complexity,

we adopt the concept of idealized fault tolerant component [5, 8] in the Objects. By

incorporating such concept, the Object can include both normal and abnormal

processes to the interacting components within one single component, which could

minimize the impact on system complexity.

In the Object, the normal process is responsible for the execution of task, and the

abnormal process is responsible for dealing with the exceptions. The exception

context involved in the Object can be used in the abnormal process when facing

exceptions. The exception context has a set of exception handlers[16, 62], one of

which is called when its corresponding exception is raised. During the execution of

an Object, a checkpoint[12, 39] is used to record the latest normal execution state

of the Object. After calling the corresponding exception handler in the exception

context to deal with exceptions, the Object can either go to a normal state, or roll

back to the normal execution state recorded by the checkpoint. This solution is

scalable as it only requires extending the behavior of existing objects rather than

adding new objects to deal with exceptions.

3.3. FAULT TOLERANT TECHNIQUES OF GFTSA 26

3.3.2 The coordinated error recovery mechanism

Because of the interactive and concurrent characteristic of distributed systems, the

exceptions occurring in one component of such systems can affect not only the com-

ponent raises the exception, but also the other components interacting with this

component. The Object using the idealized fault tolerant component technique can-

not handle such situation. We incorporate coordinated error recovery mechanism

in GFTSA to handle the exceptions which affect more than one component.

In order to distinguish the exceptions which affect the control flow of more than

one Object within the distributed system, from the exceptions whose influence is

limited within a single Object, we classify the exceptions raised in the Object into

two types: local exceptions, and global exceptions. The influence of a local

exception is limited within a single Object. Global exceptions, on the other hand,

affect the control flows of more than one Object within a distributed system. Once

a local exception is raised in one Object, the Object can call the corresponding

exception handler in its own exception context to cope with the exception. If this

exception cannot be handled successfully, a global exception is signalled, which can

be transferred to the CoordinatingComponent. If a global exception is originally

raised in an Object, this global exception is also passed to the CoordinatingCompo-

nent. The CoordinatingComponent broadcasts the global exception to the related

Objects & SharedResources within the distributed system. These components need

to replace the normal process with the abnormal process.

Different from non-distributed computing environment, we also need to consider

3.4. SUMMARY 27

how to deal with concurrently raised global exceptions in the distributed system.

In the coordinated error recovery mechanism, when several global exceptions are

raised in different Objects concurrently, these global exceptions are passed to the

CoordinatingComponent concurrently. The CoordinatingComponent uses excep-

tion graph[85, 86] mechanism to resolve these concurrently raised exceptions into a

unique global exception, namely universal exception, which covers all the raised

exceptions. When the CoordinatingComponent obtains the universal exception, it

propagates this exception to all the related Objects & SharedResources involved in

the distributed system. Furthermore, the Objects call the corresponding exception

handlers in their own exception contexts to deal with the exception. The state of

each SharedResource needs to be restored to its prior normal state.

3.4 Summary

In this chapter, we proposed a novel heterogeneous software architecture, namely

Generic Fault Tolerant Software Architecture (GFTSA), to guide the development

of distributed systems with high reliability requirements. Several widely used soft-

ware architecture styles are combined in GFTSA to provide a generic framework to

the development of distributed systems involving cooperative & competitive con-

currency. These architecture styles include object-oriented organization, pipe-and-

filter architecture, and repository style. The styles of components and connectors

involved in GFTSA are all derived from these architecture styles. This chapter

presents the proposed GFTSA in a box-and-line fashion, accompanied with the

3.4. SUMMARY 28

literal illustration of basic features of components and connectors of GFTSA.

GFTSA incorporates fault tolerant techniques in the early system design phase to

satisfy the reliability requirements of distributed systems. Considering the charac-

teristics of exceptions occurred in the distributed environment, we mainly incorpo-

rate two kinds of fault tolerant techniques in GFTSA. The fault tolerant technique

idealized fault tolerant component can make Object of GFTSA have the ability to

deal with the local exceptions raised by itself or the resolved universal exception

passed by CoordinatingComponent. The fault tolerant technique coordinated error

recovery mechanism can help deal with a raised global exception or concurrently

multiple raised global exceptions in the distributed system. These fault tolerant

techniques can be reused in the development of distributed systems with high re-

liability requirements guided by GFTSA.

Chapter 4

Formal Modeling of GFTSA

This chapter presents the formal model of GFTSA in the Object-Z language.

29

4.1. INTRODUCTION 30

4.1 Introduction

GFTSA is proposed to provide a generic framework to guide the development of

distributed systems with reliability requirements. Good understanding and precise

representation of software architecture can lead to reliable system implementation

based on this architecture[22, 51]. The well-defined semantics & syntax make

formal modeling techniques suitable for precisely specifying, and formally verifying

architecture designs[45, 47, 69].

Z [77] is a formal language based on set theory and predicate logic, which can help

describe internal state transitions, and interface communications of a system by the

state and operation schema definitions. Many researchers [1, 71] have used Z to

formalize the state and computations of software architectures. Object-Z [20, 74]

is an extension of Z to accommodate the object-orientated style. Compared to

formal language Z, Object-Z can improve the clarity of large specifications through

enhanced structuring, and help the system designers to reuse the formal model

of GFTSA via inheritance & instantiation mechanisms. Timed Communicated

Object-Z (TCOZ) [48, 49, 50] is essentially a blending of Object-Z with Timed

CSP [67]. The essence of this blending is the identification of Object-Z opera-

tion specification with terminating CSP processes. TCOZ also could be a good

candidate for architecture description, which has been applied in the design and

verification of a generic Computer Aided Dispatch (CAD) system [79, 80]. Com-

pared to Object-Z, TCOZ is over expressed for our proposed architecture, but it

could be useful if our architecture is further extended to involve time.

4.2. OBJECT-Z MODEL OF GFTSA 31

In this chapter, we formally model GFTSA by using the Object-Z language [88].

Following the semantics of Object-Z, the software architecture style and fault tol-

erant techniques involved in GFTSA can be specified precisely to provide explicit

features to the system designers. Since GFTSA is proposed to guide the develop-

ment of distributed systems with high reliability requirements, the crucial prop-

erties that GFTSA need to preserve are the fault tolerant properties. The fault

tolerant properties indicate that when exceptions occur, GFTSA has the ability to

deal with these exceptions and make the system recover to normal process. Based

on the Object-Z model of GFTSA, we can formally reason about the fault tolerant

properties of GFTSA by using the reasoning rules of Object-Z[72, 73].

The remainder of the chapter is organized as follows. Section 2 presents the formal

model of GFTSA represented by the Object-Z language. Section 3 presents several

significant fault tolerant properties of GFTSA, and demonstrates that GFTSA can

preserve these properties by formal reasoning. Section 4 concludes the chapter.

4.2 Object-Z Model of GFTSA

The formal model of GFTSA can provide precise and explicit patterns & idioms to

the system designers by formally specifying the architecture style and fault tolerant

techniques involved in GFTSA. The components and connectors of GFTSA, shown

in Figure 3.1, are all represented as class schemas, which group the state and

operation schemas. The formal model of GFTSA is composed of Global Types,

4.2. OBJECT-Z MODEL OF GFTSA 32

Object, Connector, CoordinatingComponent, ShareResource, and FTSystem class

schemas, according to the structure of GFTSA.

4.2.1 Global Types

The global types declared below can provide notations to the Object, Connector,

CoordinatingComponent, SharedResource, and FTSystem class schemas, which can

be used to associate type to the constants and variables declared in these class

schemas. The comments in the bracket can indicate the meaning of each type.

[PORT] [port names used by Object to communicate]
[MSG] [set of messages to be transmitted]
[OBSTATE] [set of states that Object can be in]
[SRSTATE] [set of states that SharedResource can be in]
[EH] [set of exception handlers to deal with the exceptions]

RESULT ::= tolerate | stop [the result]
SIG == {0, 1} [the signal]

NORMAL : POBSTATE
[set of normal states that Object can be in]

LE : POBSTATE [set of local exceptions that Object can raise]
GE : POBSTATE [set of global exceptions that Object can raise]
Fail : OBSTATE [fail state that Object can be in]

NORMAL ∩ LE = ∅ ∧ NORMAL ∩GE = ∅ ∧ LE ∩GE = ∅
Fail 6∈ NORMAL ∪ LE ∪GE
OBSTATE = NORMAL ∪ LE ∪GE ∪ {Fail}

The NORMAL, LE, GE, and Fail declared in the axiomatic definition above are

four different states that the Object can be in. The predicate part of the axiomatic

definition specifies that the state of Object can be in such four states, and only be

in such four states.

4.2. OBJECT-Z MODEL OF GFTSA 33

4.2.2 Fault Tolerant Component - Object

The Object class schema describes the features of Object in GFTSA, involving not

only the normal execution process but also the fault tolerant process of Object.

Since the behavior that the Object receives and sends messages is similar to the

pattern of Queue system, illustrated in Section 2.1, the Object class schema can

Object
¹(inter state, Init,GlobalExceptPropagate,

UniExceptReceive,UniExceptHandle, SRRequest ,FromSR,ToSR)
Queue[↓ SharedResource][sr qlist/items , ans sr?/item?, to sr !/item!,

FromSR/Join,ToSR/Leave]

n states : PNORMAL
l excepts : PLE
g excepts : PGE
in ports , out ports : PPORT
comp msgs : PMSG
coop msg : PORT → MSG
transition : NORMAL× (PORT ×MSG)

→ OBSTATE × (PORT ×MSG)
except context : LE ∪GE 7→ EH
except handle : EH → OBSTATE

in ports ∩ out ports = ∅ ∧
n states ∩ l excepts ∩ g excepts = ∅
comp msgs ∩ ran coop msg = ∅
dom(dom transition)) ⊆ n states
dom(ran(dom transition)) ⊆ in ports ∧
dom(ran(ran transition)) ⊆ out ports
ran(ran(dom transition)) ⊆ ran coop msg ∧
ran(ran(ran transition)) ⊆ ran coop msg
dom except context ⊆ l excepts ∪ g excepts

inter state : OBSTATE
checkpoint : NORMAL
ue rec : SIG

inter state ∈ n states ∪ l excepts
∪g excepts ∪ {Fail}

checkpoint ∈ n states

Init
inter state ∈ n states
checkpoint = inter state
ue rec = 0

4.2. OBJECT-Z MODEL OF GFTSA 34

Transition
∆(inter state, checkpoint)

inter state ∈ n states
checkpoint ′ = inter state

∃ p1, p2 : PORT ; m1,m2 : MSG |
inter state, (p1,m1)) ∈ dom transition

• (inter state ′, (p2,m2)) = transition(inter state, (p1,m1))

LocalExceptHandle
∆(inter state)

inter state ∈ l excepts
except handle(except context(inter state)) ∈ n states ⇒
inter state ′ = except handle(except context(inter state))
except handle(except context(inter state)) = Fail ⇒
inter state ′ ∈ g excepts

GlobalExceptPropagate
exception! : GE

inter state ∈ g excepts
ue rec = 0
exception! = inter state

UniExceptReceive
∆(inter state, ue rec)
uni exception? : GE

inter state ′ = uni exception?
ue rec′ = 1

UniExceptHandle
∆(inter state, ue rec, sr qlist)

inter state ∈ g excepts ∧ ue rec = 1
except handle(except context(inter state)) ∈ n states ⇒
inter state ′ = except handle(except context(inter state))
except handle(except context(inter state)) = Fail ⇒
inter state ′ = Fail
ue rec′ = 0 ∧ sr qlist ′ = 〈 〉
SRRequest
req ob! :↓ Object
req sr ! :↓ SharedResource
sr? :↓ SharedResource

inter state ∈ n states
comp msg 6= { }
req ob! = self ∧ req sr ! = sr?

FromSR
ans ob? :↓ Object

inter state ∈ n states
ans ob? = self

ToSR
msg ! : MSG

inter state ∈ n states
msg ! ∈ comp msgs

4.2. OBJECT-Z MODEL OF GFTSA 35

inherit the Queue[Item] class schema by using instantiation and rename mecha-

nisms of Object-Z. The generic type Item of Queue[Item] is instantiated with class

schema type SharedResource. The items , item?, and item! are all be renamed

according to the specific requirements.

Firstly, we give a brief illustration to the constants declared in the local axiomatic

definition of Object class schema. The declared constants n states, l excepts,

and g excepts represent three different sets of states that an Object can be in: a

set of normal states, a set of local exception states, and a set of global exception

states. To model the idea that the IO-ports are directional, we partition ports

into a set of in ports, and a set of out ports. The declared constant comp msgs

represents a set of messages that an Object can transmit to the SharedResources.

We associate a message with a port in the coop msg, which indicates that the mes-

sage can be received or sent out from the associated port. The transition function

specifies that when an Object receives a message at its in port, the state of the

Object can be changed while sending out a message from its out port at the same

time. The except context function models that any exception occurred in the

Object has a corresponding exception handler. The function exception handle is

used to check whether the exception handler deals with the exception successfully.

The predicate part of the axiomatic definition imposes several constraints on the

declared constants.

The state schema in the Object class schema declares four variables: inter state,

checkpoint, ue rec, and sr qlist. The state of Object can be changed by changing

4.2. OBJECT-Z MODEL OF GFTSA 36

these variables. The inter state denotes the current state of the Object, the check-

point records the normal execution state of Object, the ue rec indicates whether

the Object has received a universal exception from the CoordinatingComponent,

and the sr qlist records the identity of SharedResources, which are available for the

Object.

The Transition operation schema denotes the state transitions of the Object accord-

ing to the transition function. The LocalExceptHandle operation specifies how

the Object deals with local exception. The operation GlobalExceptPropagate,

UniExceptReceive, and UniExceptHandle denote how the Object implements

the coordinated error recovery mechanism.

The communication protocol among Objects and SharedResource need to guarantee

the transaction semantics. When an Object wants to access a SharedResource,

it needs to send an access request to this SharedResouce, which is specified in the

operation schema SRRequest. The FromSR operation describes that the Object

receives an answer from an available SharedResource. The ToSR operation de-

notes that the Object sends out the message, called msg!, to the assured available

SharedResource.

4.2.3 Connector

The Connector class schema describes that a connector of GFTSA is responsible

for connecting the send port of an Object to the receive port of another Object to

4.2. OBJECT-Z MODEL OF GFTSA 37

transfer the message represented by msg. No operation occurs on the connectors.

In the predicate part of axiomatic definition, the declaration send ob, receive ob :↓

Object means that send ob, and receive ob refer to the Object class schema, or any

of its subclass schemas which are in the inheritance hierarchy rooted at the Object

class.

Connector

send port , receive port : PORT

∃ send ob, receive ob :↓
FTComponent ; msg : MSG |
send ob 6= receive ob ∧

send port ∈ send ob.out ports ∧
receive port ∈ receive ob.in ports

• msg = send ob.coop msg(send port) ∧
receive ob.coop msg(receive port) = msg

4.2.4 CoordinatingComponent

The CoordinatingComponent class schema describes how the CoordinatingCom-

ponent of GFTSA implements the coordinated error recovery mechanism when a

global exception is raised, or multiple global exceptions are raised concurrently.

Since the behavior of the CoordinatingComponent that it receives and sends excep-

tions is similar to the pattern of Queue system, the CoordinatingComponent class

schema inherits the Queue[Item] class schema by instantiating Item with the type

GE, and renaming items, item?, and item!.

4.2. OBJECT-Z MODEL OF GFTSA 38

CoordinatingComponent
¹(Init,ExceptRec,ExceptGraph)
Queue[GE][exceptions/items , exception?/item?,ExceptRec/Join]

except graph : seq1 GE → GE

ExceptGraph
∆(exceptions)
uni exception! : GE

exceptions 6= 〈 〉
uni exception! = except graph(exceptions)
exceptions ′ = 〈 〉

The constant declared in the axiomatic definition, except graph, is a function

to resolve multiple concurrently raised exceptions into a universal exception,

namely uni exception, which can cover all the raised exceptions. The variable

exceptions represents the sequence of received exceptions from Objects. The oper-

ations ExceptRec, and ExceptGraph are responsible for receiving exception? from

Objects, resolving these received exceptions by the except graph, and sending out

the resolved exception uni exception! to the Object and SharedResource.

4.2.5 SharedResource

The SharedResource class schema models how the SharedResource of GFTSA can

guarantee the transaction semantics when receiving messages from Objects, and

preserve consistent state when facing exceptions. Since the behavior that the Share-

dResource receives and sends messages is similar to the pattern of Queue system,

the SharedResource class schema also inherits the Queue[Item] schema by using

the instantiation & rename mechanisms of Object-Z.

4.2. OBJECT-Z MODEL OF GFTSA 39

In the axiomatic definition, the declared constant states represents a set of states

that the SharedResource can be in, and function trans is used to model the state

SharedResource
¹(Init,ObList ,Available,Trans,Except)
Queue[↓ Object][ob qlist/items , req ob?/item?,
ans ob!/item!,ObList/Join,Available/Leave]

states : P SRSTATE
trans : SRSTATE ×MSG → SRSTATE

dom(dom trans) = ran trans ⊆ states

semaphore : SIG
sr state : SRSTATE
checkpoint : SRSTATE

sr state ∈ states ∧ checkpoint ∈ states

Init
semaphore = 0
checkpoint = sr state

ObList
req sr? :↓ SharedResource

req sr? = self

Available
∆(semaphore)
ans sr ! :↓ SharedResource

semaphore = 0 ∧ ans sr ! = self
semaphore ′ = 1

Trans
∆(semaphore,
sr state, checkpoint)
to sr? :↓ SharedResource
msg? : MSG

semaphore = 1 ∧
to sr? = self

sr state ′ =
trans(sr state,msg?)

checkpoint ′ = sr state ′

semaphore ′ = 0

Except
∆(semaphore,

ob qlist , sr state)
uni exception? : GE

semaphore ′ = 0
ob qlist ′ = 〈 〉
sr state ′ = checkpoint

transition of the SharedResource when it receives a message from an Object. The

state variables semaphore, ob qlist, sr state, and checkpoint represent the sig-

nal to show whether the SharedResource is accessed by an Object, the request

list of Objects, the current state of SharedResource, and the recorded prior nor-

4.2. OBJECT-Z MODEL OF GFTSA 40

mal state of SharedResource respectively. The ObList operation specifies that the

SharedResource receives an access request from an Object. The Available opera-

tion models that the SharedResource sends out a signal to the Object, when the

SharedResource is available. The Trans operation specifies the state transitions of

SharedResource according to the trans function when receiving msg? from an Ob-

ject. The Except operation describes that the state of SharedResource needs to roll

back to the normal state recorded in the checkpoint when facing a uni exception?.

4.2.6 Fault Tolerant System - FTSystem

The FTSystem class schema describes how the components & connectors in GFTSA,

which constitute a FTS (Fault Tolerant System), are synchronized. In the local

axiomatic definition, the declared constant critical represents the set of Objects

whose Fail state can cause the whole FTS to stop, and Result Control is a func-

tion to check the execution result of FTS. If the state of any critical Object is not

in the Fail state, the execution result of FTS is tolerate, which means that the FTS

can recover from the exceptions; otherwise the whole FTS has to stop execution.

The instances of components & connectors in the FTS are all declared in the state

schema. The secondary variable ob fail records a set of Objects in the Fail state.

The SystemRecover operation models that the states of all Objects in the FTS

should be initialized, when the execution result of FTS is tolerate. The Transition

operation expression is the conjunction of Transition operations of all Objects in

4.2. OBJECT-Z MODEL OF GFTSA 41

FTSystem

critical : P ↓ Object
Result Control : P ↓ Object → RESULT

∀ fobs : P ↓ Object • ∃ fob : fobs •
fob ∈ critical ⇒ Result Control(fobs) = stop

∀ fobs : P ↓ Object • ∀ fob : fobs •
fob 6∈ critical ⇒ Result Control(fobs) = tolerate

obs : P ↓ Object
cs : P ↓ connector
coco :↓ CoordinatingComponent
srs : P ↓ SharedResource
∆
ob fail : P ↓ Object

∀ ob1, ob2 : obs • ob1 6= ob2

∀ ob : obs ; pt : PORT | pt ∈ ob.out ports •
∃1 c : cs • pt = c.send port

∀ ob : obs ; pt : PORT | pt ∈ ob.in ports •
∃1 c : cs • pt = c.receive port

∀ ob : obs | ob.inter state = Fail •
ob ∈ ob fail

Init
∀ ob : obs • ob.Init
coco.Init
∀ sr : srs • sr .Init

SystemRecover
Result Control(ob fail) = tolerate
∀ ob : obs • ob.Init

Transition =̂ ∧ob : obs • ob.Transition

ExceptPropagate =̂ ∧ob : obs •
ob.GlobalExceptPropagate ‖ coco.ExceptRec

ExceptGraph =̂ coco.ExceptGraph ‖
(∧ob : obs • ob.UEReceive ∧ ∧sr : srs • sr .Except)

ObReqSR =̂ ∧ob : obs • ob.SRReq ‖ ∧(sr : srs • sr .ObList)

SRAnsOb =̂ ∧sr : srs • sr .Available ‖ (∧ob : obs • ob.FromSR)

ObAccSR =̂ ∧ob : obs • ob.ToSR ‖ (∧sr : srs • sr .Trans)

the FTS. The operation ExceptPropagate specifies that, when global exceptions

4.3. REASONING ABOUT GFTSA 42

are raised in the Objects, these Objects need to pass the exceptions to the Coordi-

natingComponent by the parallel operator ‖ to compose two operations together.

The ExceptGraph operation specifies that the CoordinatingComponent sends the

resolved exception uni exception! to all the Objects & SharedResources. The op-

erations ObReqSR, SRAnsOb, and ObAccSR are used to model how the Objects

compete for the SharedResources.

4.3 Reasoning about GFTSA

The formal model of GFTSA specifies the software architecture style and fault

tolerant techniques involved in GFTSA in a precise and compact way by using the

Object-Z language. Since GFTSA is used to help design distributed systems with

high reliability requirements, GFTSA needs to preserve fault tolerant properties to

satisfy such requirements. In this section, we reason about [65] GFTSA to demon-

strate that GFTSA can preserve fault tolerant properties. The process of reasoning

needs to use reasoning rules of Object-Z[72, 73] to prove that fault tolerant proper-

ties can be derived from the Object-Z model of GFTSA. The following items show

that GFTSA can preserve significant fault tolerant properties, which are expressed

as theorems.

1. When a global exception is raised by an Object in the FTS, all of the Objects,

and SharedResources in the FTS can deal with this exception. This property

can be formally expressed as follows.

4.3. REASONING ABOUT GFTSA 43

Theorem

FTS :: ∃ ob : obs | ob.inter state ∈ ob.g excepts `
∀ ob : obs ; sr : srs • ob.ue rec′ = 1 ∧

sr .sr state ′ = sr .checkpoint

As an intermediate step, it is useful to think of the proof strategy infor-

mally. When a global exception is raised in an Object, the Object can use

GlobalExceptPropagate operation to send this global exception out to the

CoordinatingComponent, and the CoordinatingComponent can use the Ex-

ceptRec operation to receive this global exception. Two operations are com-

bined in the ExceptPropagate operation expression declared in the FTSystem

class schema. Because the sequence exceptions is not empty, the Except-

Graph operation in the CoordinatingComponent class schema sends out the

uni exception!. The UEReceive operation in the Object, and the operation

Except in the SharedResource can receive the uni exception?, which is ex-

pressed in the ExceptGraph operation declared in the FTSystem class schema.

When an Object receives the uni exception?, the value of ue rec is changed to

1. When a SharedResource receives the uni exception?, its sr state rolls back

to the normal state recorded in the checkpoint. These transformations assure

that the Objects, and SharedResources are informed about the exception. In

the following, a formal proof based on this strategy is constructed.

4.3. REASONING ABOUT GFTSA 44

Proof

FTSystem :: ∃ ob : obs | ob.inter state
∈ ob.g excepts ` ob.GlobalExceptPropagate

FTSystem :: ob : obs | obs ∈ P ↓ Object `
ob ∈↓ Object

Object :: GlobalExceptionPropagate `
exception! = inter state

FTSystem ` ExceptPropagate

FTSystem ` coco.ExceptRec
FTSystem ` coco ∈↓ CoordinatingComponent

CoordinatingComponent ` exceptions ′ =
exceptions a 〈exception?〉

CoordinatingComponent :: ExceptGrahp |
exceptions 6= 〈 〉 `

uni exception! = except graph(exceptions)
FTSystem ` ExceptGraph

FTSystem :: ob : obs ` ob.UEReceive
FTSystem :: sr : srs ` sr .Except
Object :: UEReceive ` ue rec′ = 1
SharedResource :: Except `

sr state ′ = checkpoint

FTSystem :: ob : obs ; sr : srs ` ob.ue rec′ = 1
∧ sr .sr state ′ = sr .checkpoint

2. If an Object in the FTS raises a local exception, the other Objects except

this one in the FTS are not influenced, and still in their normal states. This

property can be formally expressed as follows.

Theorem

FTS :: ∃ ob : obs | ob.inter state ∈ ob.l excepts `
∀ other ob : obs | other ob 6= ob •

other ob.inter state ∈ other ob.n state

4.3. REASONING ABOUT GFTSA 45

The proof strategy is described first. When a local exception is raised by

an Object, the LocalExceptHandle operation in the Object class is executed

to handle this exception. If this local exception is handled successfully, the

state of Object recovers to a normal state. Otherwise, the state of Object is

changed to a global exception state. There is no communication between this

Object and other Objects. The other Objects except this one are still in their

normal states, which cannot be influenced by the raised local exception. In

the following, a formal proof based on this strategy is constructed.

Proof

FTSystem :: ∃ ob : obs | ob.inter state ∈
ob.l excepts ` ob.LocalExceptionHandle

FTSystem :: ∃ ob : obs | obs ∈ P
↓ Object ` ob ∈↓ Object

Object :: ExceptionHandle `
inter state ′ ∈ n states

∨ inter state ′ ∈ g excepts

FTSystem ` ob.inter state ′ ∈ ob.n states ∨
ob.inter state ′ ∈ ob.g excepts

FTSystem :: other ob : obs | other ob 6= ob `
other ob.inter state 6= ob.inter state ′

FTSystem :: ∀ other ob : obs | other ob 6= ob
` other ob.inter state ∈ other ob.n state

3. When two global exceptions are raised concurrently by two different Objects in

the FTS, all the Objects in the FTS need to be informed about the universal

global exception. This property can be formally expressed as follows.

Theorem

FTSystem :: ob1, ob2 : obs |
ob1.inter state = ob1.g excepts

∧ ob2.inter state = ob2.g excepts ∧ ob1 6= ob2 `
∀ ob : obs • ob.ue rec′ = 1

4.3. REASONING ABOUT GFTSA 46

When two global exceptions are raised concurrently in the FTS, each Ob-

ject can use GlobalExceptPropagate operation to send its global exception out

to the CoordinatingComponent, and the CoordinatingComponent can use the

ExceptRec operation to receive these two global exceptions. The GlobalExcept-

Propagate, and ExceptRec operations are combined in the ExceptPropagate

operation expression declared in the FTSystem class schema. Because the se-

quence exceptions is not empty, the ExceptGraph operation can use the func-

tion except graph to get the uni exception, which covers the two global excep-

tions. After that, the uni exception! is sent out to all the Objects in the FTS.

The UEReceive operation in the Object class can receive this uni exception?.

The operations ExceptGraph, and UEReceive are combined in the Except-

Graph operation expression declared in the FTSystem class schema. When

an Object receives the uni exception?, the value of ue rec is changed to 1,

which means that the Object is informed about the exceptions. In the fol-

lowing, a formal proof based on this strategy is constructed.

Proof

FTSystem :: ob1 : obs | ob1.inter state =
ob1.g excepts ` ob1.GlobalExceptPropagate

FTSystem :: ob1 : obs | obs ∈ P ↓ Object
` ob1 ∈↓ Object

FTSystem :: ob2 : obs | ob2.inter state =
ob2.g excepts ` ob2.GlobalExceptPropagate

4.3. REASONING ABOUT GFTSA 47

FTSystem :: ob2 : obs | obs ∈ P ↓ Object `
ob2 ∈↓ Object

Object :: GlobalExceptionPropagate `
exception! = inter state

FTSystem :: ob1 : obs | ob1.inter state =
ob1.g excepts ` exception! = ob1.inter state

FTSystem :: ob2 : obs | ob2.inter state =
ob2.g excepts ` exception! = ob2.inter state

FTSystem ` ExceptPropagate

FTSystem :: ob1 : obs | ob1.inter state =
ob1.g excepts ` exception! = ob1.inter state

FTSystem :: ob2 : obs | ob2.inter state =
ob2.g excepts ` exception! = ob2.inter state

CoordinatingComponent ` ExceptRec

CoordinatingComponent :: ExceptRec `
exceptions ′ = exceptions a 〈

ob1.inter state, ob2.inter state〉
CoordinatingComponent :: exceptions ′ 6= 〈 〉 `

ExceptGraph

CoordinatingComponent :: ExceptGraph
` uni exception! = except graph(exceptions ′)

FTSystem ` ExceptGraph

Object ` UEReceive

FTSystem :: ob : obs | obs ∈ P ↓ Object `
ob ∈↓ Object

Object :: UEReceive ` ue rec′ = 1

FTSystem :: ob : obs ` ob.ue rec′ = 1

4. When a non-critical Object fails, the FTS can tolerate this fault, which means

that the states of all Objects in the FTS can recover to their normal states.

This property can be formally expressed as follows.

Theorem

FTSystem :: ∃ ob : obs | ob.inter state = Fail ∧
ob 6∈ critical `

∀ ob : obs • ob.inter state ′ ∈ ob.n states

First, we give the informal proof description. When the state of an Object is

4.4. CONCLUSION 48

Fail, if this Object is not in the state critical declared in the FTSystem class

schema, we can gain the execution result, namely tolerate, by using function

Result Control. Because the execution result is tolerate, the SystemRecover

operation is used to reset the states of all Objects to the initial states, which

means that all the Objects recover to normal states. A formal proof based on

the previous description is shown in the following.

Proof

FTSystem :: ∃ ob : obs | ob.inter state = Fail ∧
ob 6∈ critical ` ob fail = {ob} ∧

ob 6∈ critical
FTSystem :: ob fail = {ob} ∧

ob 6∈ critical `
Result Control(ob fail) = tolerate

FTSystem ` Result Control(ob fail) = tolerate
FTSystem :: Result Control(ob fail) = tolerate

` SystemRecover

FTSystem ` SystemRecover
FTSystem :: SystemRecover ` ∀ ob : obs • ob.Init

FTSystem :: ob : obs ` ob.Init
FTSystem :: ob : obs ; obs : P ↓ Object ` ob ∈↓ Object
Object :: Init ` inter state ∈ n states

FTSystem :: ob : obs ` ob.inter state ′ ∈ ob.n states

4.4 Conclusion

In this chapter, we formally model the proposed GFTSA, a novel heterogenous

software architecture, by using the Object-Z language. The Object-Z model of

GFTSA can provide explicit & common idioms to the system designers. Since

Object-Z is the class construct which groups the definition of a state schema and

4.4. CONCLUSION 49

the definitions of its associated operation schemas, we represent the components

and connectors in GFTSA as corresponding class schemas. In each class schema,

we formally model the static and dynamic features of component or connector.

As GFTSA is proposed to guide the development of distributed systems with high

reliability requirements, we incorporate the idealized fault tolerant component and

coordinated error recovery mechanism in the architecture. To model the ideal-

ized fault tolerant component, the Object class schema declares abnormal states

& exception handler functions in the axiomatic definition, and exception handler

operations, which are all used to indicate how Object deals with exceptions. The

CoordinatingComponent class schema models the coordinated error recovery mech-

anism. The SharedResource class schema also specifies the exception handler op-

eration and how to guarantee the transaction semantics.

Based on the Object-Z model of GFTSA, we formally reason about several sig-

nificant fault tolerant properties to verify that GFTSA can satisfy the reliability

requirements. The formal reasoning process involves that we can derive the fault

tolerant properties, expressed as theorems, from the Object-Z model of GFTSA.

Chapter 5

Customization of GFTSA

This chapter investigates to build a template based on the Object-Z model of

GFTSA. By customizing this built template, we can auto-generate the Object-Z

models of developed distributed systems guided by GFTSA.

51

5.1. INTRODUCTION 52

5.1 Introduction

The Object-Z model of GFTSA can provide precise and common idioms & patterns

to the system designers. How the Object-Z model of GFTSA can be customized in

the development of distributed systems is the next issue we need to tackle. Since

the inheritance & instantiation mechanisms of Object-Z can help the customiza-

tion, each class schema in the Object-Z model of GFTSA can be inherited by the

corresponding class schema of developed systems.

Besides inheriting corresponding class schema in the Object-Z model of GFTSA,

each class schema of developed systems also needs to be specified according to

system requirements. The specifications could involve defining visible list, declar-

ing new constants and predicates in the axiomatic definition, defining the initial

state schema or new operation schemas, and etc, which could not be supported

by the inheritance & instantiation mechanisms of Object-Z. In order to make the

customization process more efficient, we investigate to build a template based on

the class schemas in the Object-Z model of GFTSA. The class schemas in the

template involve not only inheriting and instantiating corresponding class schemas

in the Object-Z model of GFTSA, but also other specifications which cannot be

supported by the inheritance & instantiation mechanisms of Object-Z. By cus-

tomizing the class schemas in the built template, we can generate the Object-Z

models of developed systems. The customization process could be small or large

change to the class schemas in the template. Since the granularity of customization

is flexible, in order to make the customization process automatic, we investigate

5.1. INTRODUCTION 53

to apply XML-based Variant Configuration Language (XVCL) technique to the

customization process.

XML-based Variant Configuration Language (XVCL)[36, 75, 35, 89] is a meta-

programming technique developed to facilitate building flexible, adaptable, and

reusable software artifacts. When developing an XVCL solution, we partition

a problem description(e.g. a software specification, or a software program) into

generic, adaptable meta-components called x-frames. Following the mechanisms of

XVCL, we build our proposed template as primitive x-frames. The Textual Con-

tent of x-frames is written as the combination of Object-Z specification and XVCL

commands. XVCL commands mark the anticipated variation points in x-frames,

injecting flexibility into their Textual Contents. When developing a distributed

system with high reliability requirements, we firstly compose x-frames for the de-

veloped system by adapting the x-frames in the template. Based on the composed

x-frames, we can auto-generate the Object-Z model of the developed system by

running the XVCL processor. A case study of Sales Control System (SCS) [87] is

presented to illustrate the customization process. Following the reasoning rules of

Object-Z, we can formally verify that the generated Object-Z model of SCS can

preserve the fault tolerant properties.

The remainder of the chapter is organized as follows. Section 2 presents a template

for customization, which is built based on the Object-Z model of GFTSA by using

the XVCL technique. Section 3 presents a case study of SCS to illustrate how to

generate the Object-Z model of SCS automatically from the built template, and

5.2. TEMPLATE BASED ON OBJECT-Z MODEL OF GFTSA 54

formally reason about the fault tolerant properties of SCS based on the generated

model by following the reasoning rules of Object-Z. Section 4 concludes the chapter.

5.2 Template based on Object-Z model of GFTSA

GFTSA is proposed to guide the development of distributed systems with high

reliability requirements. By using the inheritance & instantiation mechanisms of

Object-Z, the Object-Z model of GFTSA can be customized into the models of de-

veloped distributed systems. During the customization process, besides inheriting

and instantiating corresponding class schemas in the Object-Z model of GFTSA,

the class schemas in the model of developed systems also need to be specified ac-

cording to system requirements. These specifications cannot be supported by the

reuse mechanisms of Object-Z. The following class schemas inherit and instanti-

ate corresponding class schema in the Object-Z model of GFTSA. The items in

quotation marks of these class schemas can be instantiated according to system

requirements. The comments in the brackets clarify the meaning of these items.

“objectname”
[customized Object class name]

¹(inter state, Init,GEPropagate,UEReceive,
UEHandle, SRReq ,FromSR,ToSR)

Object ′′rename”
[operation schema rename option]

“newfunction”
[inserted new function declaration]

5.2. TEMPLATE BASED ON OBJECT-Z MODEL OF GFTSA 55

“newvar”
[inserted new constant variable declaration]

n states = {“nstates”} [set of normal state name]
l excepts = {′′lexcepts”} [set of local exception name]
g excepts = {“gexcepts”} [set of global exception name]
in ports = {“inports”} [set of input port name]
out ports = {“outports”} [set of output port name]
comp msgs = {“compmsgs”} [messages to SharedResource]
coop msg = {“coopmsg”} [messages to other Objects]
“newvarpredicate” [predicate of new constant variable]
“transition” [concrete description of transition function]
except context = {“exceptcontext”} [except context predicate]
except handle = {“excepthandle”} [except handle predicate]

Init
inter state = “inistate” [initial state of Object]

“newop” [inserted new operation schema]

“connectorname”
[customized Connector class name]

Connector

send port = “s port” [sending port name]
receive port = “r port” [receiving port name]

CC
¹(Init,ExceptRec,ExceptGraph)

CoordinatingComponent

“egraph” [description of except graph function]

“srname”
[customized SharedResource class name]

¹(Init,ObList ,Available,Trans,Except)

SharedResource

states = {“states”} [set of normal state name]
trans = {“trans”} [concrete description of trans function]

5.2. TEMPLATE BASED ON OBJECT-Z MODEL OF GFTSA 56

“systemname”
[customized FTSystem class name]

FTSystem

“in component” : “component” [component instance]

obs = {“obsnames”} [customized Object instance set]
cs = {“csnames”} [customized Connector instance set]
coco = “coconame” [customized CC instance]
srs = {“srnames”} [customized SharedResource instance set]

By instantiating the items in quotation marks of the class schemas shown above,

we can generate the Object-Z models of develop distributed systems. In order to

make this process more automatic, we investigate to build these class schemas as a

template. Since the granularity of those items in quotation marks is flexible, XML-

based Variant Configuration Language (XVCL) [36, 35, 75, 89] can be applied to

help us build the template. XVCL is a meta-programming technique developed to

facilitate building flexible, adaptable, and reusable software artifacts. All of small

or large variation points can be represented as meta-expressions, which can be in-

stantiated during the customization process according to the specific requirements.

Following the mechanism of XVCL, we build the template as generic, adaptable

fragments, called x-frames. Each x-frame is an XML file combining the Object-Z

specification and XVCL commands. The x-frames for the template is composed

according to the five class schemas above, namely object, connector, coco, sr, and

ftsystem. In these x-frames, each item in quotation marks is represented as a

variable. The XVCL commands, such as 〈 the value of expr=“?@var?”/〉, 〈 break〉,

and 〈 ifdef 〉, are used to mark this variable to help the adaption in the customization

5.2. TEMPLATE BASED ON OBJECT-Z MODEL OF GFTSA 57

process. As shown in Figure 5.1, we finish the first step for customization that is

building the template based on the Object-Z model of GFTSA by applying the

XVCL technique. In the following, the x-frames of the built template are briefly

presented to illustrate the features of the template to the designers.

Formal
Model

of GFTSA

Template
of GFTSA
in XVCL

X-frames
for Specific

System

Formal Model
of Specific

System

XVCL

XVCL

Adapt
Generate

AutomaticallyDesign of
Specific
System

Figure 5.1: The customization process.

5.2.1 The x-frame for the fault-tolerant component-Object

The object x-frame is built for the fault-tolerant component Objects of developed

distributed systems. This x-frame is composed according to the “objectname” class

schema.

<x-frame name="objectname" language="latex">

\begin{class}{<value-of expr="?@objectname?"/>}

....

\also Object <ifdef var="rename">

[<value-of expr="?@rename?"/>]\\

</ifdef> <ifndef var="rename">\\

5.2. TEMPLATE BASED ON OBJECT-Z MODEL OF GFTSA 58

</ifndef> <break name="newfunction"/>

\begin{axdef}

<ifdef var="newvar">

<value-of expr="?@newvar?"/>\\

</ifdef> \ST

n_states= \{<value-of expr="?@nstates?"/>\}\\

.....

\end{axdef}\\

\begin{init}

inter_state =<value-of expr="?@inistate?"/> \\

\end{init}\\

<break name="newop"/>

\end{class}

</x-frame>

In this x-frame, the items in quotation marks of “objectname” class schema are

marked by the XVCL commands, which are represented as variables in the 〈 〉.

These variables can be instantiated according to specific system requirements.

5.2.2 The x-frame for Connector

The connector x-frame is built for the Connectors of developed distributed systems.

We compose this x-frame according to the “connectorname” class schema.

<x-frame name="connector" language="latex">

5.2. TEMPLATE BASED ON OBJECT-Z MODEL OF GFTSA 59

\begin{class}{<value-of expr="?@connector_name?"/>}

\zproject (\Init, ExceptRec, ExceptGraph)\\

\also Connector\\

\begin{axdef}

send_port=<value-of expr="?@s_port?"/>\\

receive_port=<value-of expr="?@r_port?"/>\\

\end{axdef}

\end{class}

</x-frame>

The items in quotation marks of “connectorname” class schema are expressed as

variables in the XVCL command value-of. The s port and r port represent the

sending port name and receiving port name correspondingly, which are used by

Objects to communicate with each other.

5.2.3 The x-frame for CoordinatingComponent

The coordatingcomponent x-frame is built for the CoordinatingComponents of de-

veloped distributed systems. This x-frame is composed according to the “CC” class

schema.

<x-frame name="coco" language="latex">

\begin{class}{CC}

\also CoordinatingComponent\\

\begin{axdef}

5.2. TEMPLATE BASED ON OBJECT-Z MODEL OF GFTSA 60

<break name="egraph"/>

\end{axdef}

\end{class}

</x-frame>

The item e graph is expressed as variable in the XVCL commands break, which can

be instantiated via adaption by inserting the declaration of except graph function.

5.2.4 The x-frame for SharedResource

The sharedresource x-frame is built for the SharedResources of developed dis-

tributed systems. We compose this x-frame according to the “srname” class

schema.

<x-frame name="sr" anguage="latex">

\begin{class}{<value-of expr="?@srname?"/>}

\zproject (\Init, ObList, Available, Trans, Except)\\

\also SharedResource\\

\begin{axdef}

states=\{<value-of expr="?@states?"/>\}\\

trans=\{<value-of expr="?@trans?"/>\}\\

\end{axdef}

\end{class}

</x-frame>

5.2. TEMPLATE BASED ON OBJECT-Z MODEL OF GFTSA 61

The items in quotation marks of “srname” class schema are expressed as variables

in the XVCL command value-of. The states represents a set of normal state that

SharedResource can be in. The trans represents the trans function, which is used

to declare the state transition of SharedResource.

5.2.5 The x-frame for Fault Tolerant System-ftsystem

The ftsystem x-frame is built for the synchronization of components and connec-

tors of developed distributed system. This x-frame is composed according to the

“systemname” class schema.

<x-frame name="ftsystem" language="latex">

\begin{class}{<value-of expr="?@systemname?"/>}

\also System\\

\begin{anonschema}

<while using-items-in="in_component,component">

<value-of expr="?@in_component?"/>:

<value-of expr="?@component?"/>\\

</while> \ST

obs=\{<value-of expr="?@obsnames?"/>\}\\

cs=\{<value-of expr="?@csnames?"/>\}\\

coco=<value-of expr="?@coconame?"/>\\

srs=\{<value-of expr="?@srname?"/>\}\\

\end{anonschema}

\end{class}

5.3. A CASE STUDY-SALES CONTROL SYSTEM (SCS) 62

</x-frame>

The items in quotation marks of “systemname” class schema are expressed as

variables, which are marked by the XVCL command value-of. These variables can

be instantiated according to the specific system requirements.

5.3 A Case Study-Sales Control System (SCS)

GFTSA is proposed to provide a generic framework to guide the development of

distributed systems with high safety requirements. The Object-Z model of GFTSA

can provide explicit idioms & patterns to the system designers. A template is built

to help the customization from the Object-Z model of GFTSA to the models of

developed systems. In this section, a case study of Sales Control System (SCS) is

presented to demonstrate how GFTSA can guide the high level system design of

distributed systems with high safety requirements.

5.3.1 Sales Control System (SCS)

The distributed system Sales Control System (SCS) [7, 87] is designed to maintain

a database describing all the products to be sold so that many distributed sales

points can obtain the correct prices of the items selected by the customers, which

needs to satisfy a high reliable requirements. The SCS consists of a database, a set

of control points and a set of sales points. Figure 5.2 shows an example of SCS,

which is composed of two control points, a database and three sales points.

5.3. A CASE STUDY-SALES CONTROL SYSTEM (SCS) 63

Senior
Control

Junior
Control

Database

Sales
Point A

Sales
Point B

Sales
Point C

Figure 5.2: The Sales Control System.

A control point provides the interface that allows the human manager of the system

to update the product information in the database at run time. We assume that

such updating is regarded as a very critical activity and consequently, to guard

against fraud, the policy is that the senior control point needs to monitor and, if

necessary, to correct the updates made by the junior control point. Therefore, the

senior and junior control points cooperate with each other to update the database.

The database stores product information which can be accessed by control and sales

points. This competitive concurrency needs to guarantee the transaction semantics

of the database.

According to the box-and-line patterns of GFTSA shown in Figure 3.1, the SCS is

composed of five Objects, called SeniorControl, JuniorControl, SalesPointA, Sale-

sPointB, SalesPointC and a SharedResource, called Database. Two Connectors,

called SJC and JSC, are used to assist the communication between SeniorControl

and JuniorControl. A CoordinatingComponent, called CC, is also involved in the

SCS to implement coordinated error recovery mechanism.

5.3. A CASE STUDY-SALES CONTROL SYSTEM (SCS) 64

5.3.2 Generation of Formal Model of SCS

Based on the description of SCS, we investigate to develop the formal model of SCS

by customizing the built template. The five primitive x-frames in the template can

be customized via adaption. The adaption implies that a new x-frame for one com-

ponent in the developed system can be built based on the corresponding primitive

x-frame in the template by using XVCL command 〈 adapt 〉, and instantiating the

variation points.

Building x-frames for Formal Model of SCS

We build x-frames for the formal model of SCS based on the primitive x-frames

of the built template, as a step shown in the customization process of Figure 5.1.

Figure 5.3 describes x-frame adaption relationship between the SCS and the built

template.

object sr systemcococonnector

sc

jc

spa

spb

spc

sjc jsc database scscc

fscs
SPC

 SCS

template

adaption

Figure 5.3: The x-frame Adaption Relationship of SCS.

The sc, jc, spa, spb, and spc x-frames are built for SeniorControl, JuniorControl,

5.3. A CASE STUDY-SALES CONTROL SYSTEM (SCS) 65

SalesPointA, SalesPointB, and SalesPointC correspondingly. The sjc and jsc x-

frames are built for the connectors SJC and JSC correspondingly. The database

x-frame is built for the Database and the cc x-frame is built for the CC component.

The scs x-frame is built to describe how these components & connectors synchro-

nize. We use jsc as an example to illustrate how we can compose the x-frame for

the connector JSC.

<x-frame name="jsc" language="latex">

<set var="connector_name" value="JSC"/>

<set var="s_port" value="JSC_Out"/>

<set var="r_port" value="JSC_In"/>

<adapt x-frame="connector.xvcl"/>

</x-frame>

In this jsc x-frame, we adapt connector x-frame in the template of GFTSA, and

set values to the variables defined in the connector x-frame. The JSC is the name

of the connector, and also the name of the class schema for this connector, which is

set to the variable connector name. The JSC Out and JSC In are the names for

sending port and receiving port of the JSC connector, which are set to the variables

s port and r port. The composition of all other x-frames follow such mechanisms.

The fscs SPC is the root of x-framework for SCS, which adapts all of the ten

x-frames built for SCS. During x-framework processing, the XVCL processor inter-

prets the XVCL commands contained in the fscs SPC, traverses an x-framework,

performs adaption by executing XVCL commands embedded in x-frames, and emits

5.3. A CASE STUDY-SALES CONTROL SYSTEM (SCS) 66

the formal model of SCS to the fscs.tex file.

Formal Model of SCS

By running the XVCL processor, we can auto-generate the Object-Z model of SCS.

Figure 5.4 shows the model design of SCS in the box-and-line fashion guided by

the pattern of GFTSA.

Senior
Control

Junior
Control

Sales
PointA

Sales
PointB

Sales
PointC

SJC

Database

CC

JSC

Exception

Access

Exception

Access

Access

Exception Exception

Figure 5.4: GFTSA Architecture View of SCS.

We use a representative class schema JuniorControl to illustrate the features of the

Object-Z model of SCS. The JuniorControl class represents the Objects in the SCS

which describes how the JuniorControl point interacts with SeniorControl point to

update the product information stored in the Database, and how to deal with local

and global exceptions. The JuniorControl class schema inherits the Object class

schema. The local exception NetworkDisconnected defined in l excepts represents

that the network cannot work when the JuniorControl point is waiting for the

5.3. A CASE STUDY-SALES CONTROL SYSTEM (SCS) 67

authorization from the SeniorControl point. A Local ExceptHandle function is

defined to handle this exception. After the network can work, the JuniorControl

point needs to send the RequestUpdate to the SeniorControl point again.

The global exception InformationLost represents that the Database has lost some

product information. A Global ExceptHanle function is defined to handle this

exception. The JuniorControl point needs to recover the product information in

the Database. The Trans function defines not only the normal state transitions,

but also exceptional state transitions of the JuniorControl point.

JuniorControl
¹(inter state, Init,GlobalExceptPropagate,UniExceptReceive,

UniExceptHandle,SRRequest ,FromSR,ToSR)
Object

Local ExcepthHandle : OBSTATE → (PORT ×MSG)
Global ExceptHandle : OBSTATE → Handler

Local ExceptHandle(NetworkDisconnected) =
(JSC Out ,RequestUpdate)

Local ExceptHandle(InformationLost) =
DatabaseRecover

n states = {NormalProcess,AuthorizeRequest}
l excepts = {NetworkDisconnected}
g excepts = {InformationLost}
in ports = {SJC In}
out ports = {JSC Out}
comp msgs = {ProductUpdate}
coop msg = {(SJC In,UpdateApproved),

(JSC Out ,RequestUpdate)}

5.3. A CASE STUDY-SALES CONTROL SYSTEM (SCS) 68

Trans = {((NormalProcess, (NULL,NULL)),
(AuthorizeRequest , (JSC Out ,RequestUpdate))),

((AuthorizeRequest , (SJC In,UpdateApproved)),
(NormalProcess, (NULL,NULL))),
((AuthorizeRequest , (NULL,NetworkDisconnected)),
(NetworkDisconnected , (NULL,NULL))),
((NormalProcess, (NULL, InformationLost)),
(InformationLost , (NULL,NULL))),

except context = {(NetworkDisconnected ,Local ExceptHandle),
(InformationLost ,Global ExceptHandle)}

except handle = {(Local ExceptHandle,AuthorizeRequest),
(Global ExceptHandle,NormalProcess)}

Init

inter state = NormalProcess

5.3.3 Reasoning about SCS

By customizing our built template based on the Object-Z model of GFTSA, we

can auto-generate the formal model of SCS. Since the SCS has high safety require-

ments that when exceptions raised, the SCS can deal with these exceptions, the

formal model of SCS needs to preserve fault tolerant properties. We can formally

reason about the fault tolerant properties based on the Object-Z model of SCS.

The process of reasoning needs to derive fault tolerant properties from the gener-

ated model of SCS by using the reasoning rules of Object-Z [72]. The following

items show that SCS can preserve significant fault tolerant properties, which are

expressed as theorems.

5.3. A CASE STUDY-SALES CONTROL SYSTEM (SCS) 69

1. When the InformationLostA is raised in the SalesPointA, which represents

that the SalesPointA cannot get the product information from the Database,

the SCS can tolerate this exception. This property can be formally expressed

as follows.

Theorem

SCS :: spa.inter state = InformationLostA `
∀ scs : SCS ; ob : scs .obs •

ob.inter state ′ ∈ ob.n state

As an intermediate step, it is useful to informally think of proof strategy.

When a global exception, namely InformationLostA, is raised in the Sales-

PointA, the SalesPointA can use GlobalExceptPropagate operation to send

this global exception out to CC and CC can use ExceptRec operation to re-

ceive this global exception. Two operations are combined in the ExceptProp-

agate operation expression declared in SCS class schema. Since the sequence

exceptions is not empty, the ExceptGraph operation in the CC class sends

out the uni exception!. The UEReceive operation in each FTComponent of

SCS can receive this uni exception?, which is expressed in the ExceptGraph

operation declared in the SCS class schema. When each FTComponent of

SCS receives the uni exception?, the state is changed to normal state. These

transformations assure that FTComponents in the SCS can handle the global

exception. Formal proof based on this strategy is constructed in the following.

5.3. A CASE STUDY-SALES CONTROL SYSTEM (SCS) 70

Proof

SCS ` spa.inter state = InformationLostA
SCS ` spa ∈ SalesPointA
SalesPointA ` InformationLostA ∈ g excepts
SalesPointA :: inter state ∈ g excepts `

GlobalExceptPropagate

SCS ` spa.GlobalExceptionPropagate
SalesPointA :: GlobalExceptionPropagate `

exception! = inter state

SalesPointA ` exception! = InformationLostA
SCS ` ExceptPropagate

SCS ` coco.ExceptRec
SCS ` coco ∈ CC

CC :: ExceptRec ` exceptions ′ =
exceptions a 〈InformationLostA〉

CC :: exceptions ′ 6= 〈 〉 ` ExceptGraph

CC :: ExceptGraph `
uni exception! = except graph(exceptions ′)

= InformationLost
SCS ` ExceptGraph

SCS :: ob : obs ` ob.UEReceive
SCS :: obs : P ↓ FTComponent ` ob ∈↓ FTComponent
FTComponent :: UEReceive ` ue rec′ = 1 ∧

inter state ′ = uni exception?
= InformationLost

FTComponent :: ue rec = 1 ∧ inter state =
uni exception? ` UniExceptHandle
FTComponent :: UniExceptHandle ` inter state ′ =
except handle(except context(InformationLost))
SCS ` {jc, sc, spa, spb, spc} ∈ P ↓ FTComponent

SalesPointA :: UniExceptHandle ` inter state ′ =
except handle(except context
(InformationLost)) = NormalProcess

JuniorControl :: UniExceptHandle ` inter state ′ =
except handle(except context

5.3. A CASE STUDY-SALES CONTROL SYSTEM (SCS) 71

(InformationLost)) = NormalProcess
SeniorControl :: UniExceptHandle ` inter state ′ =

except handle(except context
(InformationLost)) = NormalProcess

SalesPointB :: UniExceptHandle ` inter state ′ =
except handle(except context
(InformationLost)) = NormalProcess

SalesPointC :: UniExceptHandle ` inter state ′ =
except handle(except context
(InformationLost)) = NormalProcess

SCS :: scs : SCS ; ob : scs .obs `
ob.inter state ′ ∈ ob.n state

2. When the InformationLostA is raised in the SalesPointA, and concurrently

the InformationLostB is raised in the SalesPointB, the SCS can also handle

these two concurrent global exceptions and recover system to normal state.

Theorem

SCS :: spa.inter state = InformationLostA ∧
spb.inter state = InformationLostB

` ∀ scs : SCS ; ob : scs .obs •
ob.inter state ′ ∈ ob.n state

When the InformationLostA raised in SalesPointA and the InformationLostB

raised in SalesPointB concurrently, each of them can use GlobalExceptProp-

agate operation to send the exception out to the CC and the CC can ex-

ecute the ExceptRec operation to receive these two global exceptions. The

GlobalExceptPropagate and ExceptRec operations are combined in the Except-

Propagate operation expression declared in the SCS class schema. Because

the sequence exceptions is not empty, the ExceptGraph operation in the CC

class schema can send out the uni exception! which covers Information-

LostA and InformationLostB. The UEReceive operation in each FTCompo-

5.3. A CASE STUDY-SALES CONTROL SYSTEM (SCS) 72

nent of SCS can receive this uni exception?. Two operations ExceptGraph

and UEReceive are combined in the ExceptGraph operation expression de-

clared in the SCS class schema. When each FTComponent in the SCS re-

ceives the uni exception?, the state is changed to normal state. Following is

the formal proof based on this strategy.

Proof

SCS ` spa.inter state = InformationLostA ∧
spb.inter state = InformationLostB

SCS ` spa ∈ SalesPointA ∧ spb ∈ SalesPointB

SalesPointA ` InformationLostA ∈ g excepts
SalesPointA :: inter state ∈ g excepts

` GlobalExceptPropagate
SalesPointB ` InformationLostB ∈ g excepts
SalesPointB :: inter state ∈ g excepts

` GlobalExceptPropagate

SCS ` spa.GlobalExceptionPropagate ∧
spb.GlobalExceptionPropagate

SalesPointA :: GlobalExceptionPropagate
` exception! = inter state

SalesPointB :: GlobalExceptionPropagate
` exception! = inter state

SalesPointA ` exception! = InformationLostA
SalesPointB ` exception! = InformationLostB
SCS ` ExceptPropagate

SCS ` coco.ExceptRec
SCS ` coco ∈ CC

CC :: ExceptRec ` exceptions ′ = exceptions
a〈InformationLostA,

InformationLostB〉
CC :: exceptions ′ 6= 〈 〉 ` ExceptGraph

CC :: ExceptGraph ` uni exception!
= except graph(exceptions ′)

= InformationLost
SCS ` ExceptGraph

SCS :: ob : obs ` ob.UEReceive
SCS :: obs : P ↓ FTComponent ` ob ∈↓ FTComponent

5.4. CONCLUSION 73

FTComponent :: UEReceive ` ue rec′ = 1 ∧
inter state ′ = uni exception?

= InformationLost
FTComponent :: ue rec = 1 ∧
inter state = uni exception? ` UniExceptHandle
FTComponent :: UniExceptHandle ` inter state ′ =

except handle
(except context(InformationLost))

SCS ` {jc, sc, spa, spb, spc} ∈ P ↓ FTComponent

SalesPointA :: UniExceptHandle ` inter state ′ =
except handle(except context
(InformationLost)) = NormalProcess

SalesPointB :: UniExceptHandle ` inter state ′ =
except handle(except context
(InformationLost)) = NormalProcess

SalesPointC :: UniExceptHandle ` inter state ′ =
except handle(except context
(InformationLost)) = NormalProcess

JuniorControl :: UniExceptHandle ` inter state ′ =
except handle(except context
(InformationLost)) = NormalProcess

SeniorControl :: UniExceptHandle ` inter state ′ =
except handle(except context
(InformationLost)) = NormalProcess

SCS :: scs : SCS ; ob : scs .obs `
ob.inter state ′ ∈ ob.n state

5.4 Conclusion

In this chapter, we investigate to build a template based on the Object-Z model

of GFTSA by using the XVCL technique, which can help auto-generate the formal

models of developed distributed systems guided by GFTSA via customization. Fol-

lowing the XVCL mechanism, the template is built as generic, adaptable x-frames,

which are written as the combination of Object-Z specification and XVCL com-

mands. When developing a distributed systems with high reliability requirements,

5.4. CONCLUSION 74

we can just compose x-frames for this system by adapting the x-frames in the built

template. By running the XVCL processor, we can generate the Object-Z model

of developed system from these composed x-frames automatically.

A case study of SCS is presented to illustrate the customization process. Guided

by the pattern of GFTSA, we can design the structure of SCS. According to the

built template, we compose specific x-frames for SCS by adapting corresponding x-

frame and instantiating the variables in the corresponding x-frame. A fscs SPC file

is built to compose all the specific x-frames together. By running XVCL processor

with fscs SPC, we can generate formal model of SCS automatically. In order

to demonstrate that the developed system guided by GFTSA preserves the fault

tolerant properties, we formally reason about the fault tolerant properties of SCS by

using the reasoning rules of Object-Z. The formal reasoning demonstrates that the

developed system guided by GFTSA can satisfy the high reliability requirements.

Chapter 6

Mechanical Verification of GFTSA

This chapter presents the mechanical verification of fault tolerant properties of

GFTSA by using the theorem prover of PVS, and a template which is built based

on the PVS model of GFTSA to help the mechanical verification of safety critical

distributed systems.

75

6.1. INTRODUCTION 76

6.1 Introduction

In order to provide a generic framework for the development of distributes systems

with high reliability requirements, we have proposed a Generic Fault Tolerant Soft-

ware Architecture (GFTSA). Since GFTSA incorporates fault tolerant techniques

to deal with the exceptions, GFTSA can preserve fault tolerant properties. Based

on the Object-Z model of GFTSA, we can formally reason about the fault tolerant

properties of GFTSA. These formal reasoning involves showing that the fault tol-

erant properties, expressed as theorems, can be derived from the Object-Z model

of GFTSA by using the reasoning rules of Object-Z. Though Object-Z model of

GFTSA can provide precise analysis and documentation to the users, since Object-

Z lacks of tool support for mechanical verification, the formal reasonings about

GFTSA we have done are all manual-based, which are laborious and error-prone.

Thus, we investigate to use prover to mechanically verify the fault tolerant prop-

erties of GFTSA. Prototype Verification System (PVS)[57, 59, 68, 58] is a good

candidate for us, because the theorem prover of PVS can provide mechanical proof

support for the verification.

The Prototype Verification System (PVS) is a proof system developed at SRI. PVS

has a powerful interactive theorem prover and its automation suffices to prove many

results automatically. PVS differs from most other interactive theorem provers in

the power of its basic steps which can be decision procedure for automatic rewriting,

induction, and other relatively large units of deduction. PVS differs from other

highly automated theorem provers in being directly controlled by the user. PVS

6.1. INTRODUCTION 77

has been applied successfully to large and difficult application in both academic

and industrial settings[31, 64].

As the theorem prover of PVS only supports the model in the PVS specification

language, we need to embed GFTSA model in PVS. One way we can do is that we

encode the whole set of Object-Z notations into PVS. However, it is tedious and

arduous to take all the Object-Z semantics into account and construct Object-Z

semantics in PVS properly. As our focus is the mechanical verification of GFTSA,

instead, we suppose to just embed the Object-Z model of GFTSA in PVS.

We can develop safety critical distributed systems guided by GFTSA. The de-

veloped systems guided by GFTSA also can preserve the fault tolerant properties.

Since the theorem prover of PVS only supports the mechanical verification of model

in PVS specification language, we need to get the PVS models of developed sys-

tems. Based on the PVS model of GFTSA, we can generate the PVS models of

safety critical distributed systems via customization. Following the customization

methodology which is used in the generation of Object-Z models of developed sys-

tems guided by GFTSA, we can build a template for the customization by using

the XVCL technique. The template is composed of primitive x-frames importing

the theories in the PVS model of GFTSA. By customizing this template, we can

generate the PVS models of developed systems automatically. Based on the gen-

erated PVS models, the theorem prover of PVS can mechanically verify the fault

tolerant properties of such models.

The remainder of the chapter is organized as follows. In section 2, we present

6.2. PVS MODEL OF GFTSA 78

the formal model of GFTSA in PVS specification language. Section 3 presents

the mechanical verification of fault tolerant properties of GFTSA. In section 4,

a template is built based on the PVS model of GFTSA. Section 5 concludes the

chapter.

6.2 PVS Model of GFTSA

The formal model of GFTSA in Object-Z can provide an explicit features of GFTSA

to the system designers in a compact and understandable way [88]. Since Object-Z

lacks of tool support for mechanical verification, in order to provide a mechanical

proof support for the verification of fault tolerant properties, we embed the GFTSA

model in the PVS environment to use the theorem prover of PVS.

The Object-Z model of GFTSA is composed of generic types and several class

schemas for components & connectors of GFTSA. The PVS specification language

supports modularity and reuse by means of parameterized theories. Therefore, the

class schemas for components & connectors of GFTSA can be built as theories. A

theory consists of a series of declarations, which provide names for types, constants,

variables, axioms, and formulas. We still use the Queue system as an example,

which has been used to illustrate the basic features of Object-Z in Section 2.1, to

explain the basic features of PVS specification language.

queue [Item: TYPE+] : THEORY

BEGIN

6.2. PVS MODEL OF GFTSA 79

i: VAR nat

items: TYPE=[#size: nat, elements: ARRAY[{i|i<size} -> Item]#]

itms: VAR items

item: VAR Item

e: Item

nonemptyqueue?(itms): bool=(size(itms)>0)

nitms: VAR (nonemptyqueue?)

empty: items=(#size:=0, elements:=(LAMBDA (j:{i|i<0}):e)#)

join(item, itms): items=(#size:=size(itms)+1, elements:=elements(itms)

WITH [(size(itms)):=item]#)

leave(item,nitms): items=(#size:=size(nitms)-1, elements:=(LAMBDA

(j:{i|i<size(nitms)-1}): elements(nitms)(j+1))#)

END queue

The queue theory is generic with the parameter Item. The Item is declared as

an uninterpreted and nonempty type. The items is declared as a record type. In

the type of items, the size and elements are two fields of this type. The i, itms,

item are all declared as variables associated with specific types. The e is declared

as a constant associated with Item type. The nonemptyqueue? is declared as a

predicate of itms, which also could be used as a type. Two join and leave operations

are declared to specify that one item joins and leaves the queue, associated with

the change of size and elements fields. The queue theory can be reused later to

specify object, coordinatingcomponent, and sharedresource theories.

Similar to the structure of Object-Z model of GFTSA, the PVS model of GFTSA

6.2. PVS MODEL OF GFTSA 80

also includes global type, object, connector, coordinatingcomponent, shareresource,

and ftsystem theories, which will be presented in the following sections. We can

use typecheck tool of PVS to check for semantic errors of such PVS model.

6.2.1 Generic Type

These declared types can be used to declare constants and variables in the following

object, connector, coordinatingcomponent, shareresource, and ftsystem theories.

generictype: THEORY

BEGIN

PORT: TYPE+

MSG: TYPE+

OBSTATE: TYPE+

SRSTATE: TYPE+

EH: TYPE+

RESULT: TYPE={tolerate, stop}

SIG: TYPE={0,1}

Fail: OBSTATE

OBID: TYPE+

SRID: TYPE+

CONID: TYPE+

CCID: TYPE+

END generictype

6.2. PVS MODEL OF GFTSA 81

The PORT is an uninterpreted and nonempty type to represent the ports used

by Objects to communicate with each other. The MSG is an uninterpreted and

nonempty type to represent the communicated messages. The OBSTATE and

SRSTATE represent the states of Objects and SharedResources correspondingly.

The EH represents the exception handler. The RESULT and SIG are two enu-

meration type declarations. The OBID, SRID, CONID, and CCID are declared to

represent the identifications of Object, SharedResource, Connector, and Coordinat-

ingComponent correspondingly. After giving these types, we do not need to define

these types in the following theories.

6.2.2 CoordinatingComponent

The coordinatingcomponent theory describes how the CoordinatingComponent in

GFTSA implements the coordinated error recovery mechanism when a global ex-

ception is raised in an Object or multiple global exceptions are raised concurrently

in different Objects. The coordinatingcomponent theory imports the generictype

theory, and the parameterized theory queue instantiated with type [OBSTATE].

coordinatingcomponent: THEORY

BEGIN

IMPORTING generictype, queue[OBSTATE]

except_graph: [items[OBSTATE] -> OBSTATE]

exception: OBSTATE

CC: TYPE=[#exceptions: items[OBSTATE], uni_exception:OBSTATE#]

6.2. PVS MODEL OF GFTSA 82

cc: VAR CC

emptycc:CC=(#exceptions:=empty, uni_exception:=e#)

ExceptRec(cc): CC=(#exceptions:=join(exception,exceptions(cc)),

uni_exception:=exception#)

ExceptGraph(cc):CC=

IF exceptions(ExceptRec(cc))/=empty THEN

(#exceptions:=empty, uni_exception:=

except_graph(exceptions(ExceptRec(cc)))#)

ELSE emptycc

ENDIF

END coordinatingcomponent

In the coordinatingcomponent theory, the except graph is declared as a function to

resolve several concurrently raised global exceptions into an universal exception,

namely uni exception. The ExceptRec function is declared to represent how the

coordinatingcomponent receives exception from Objects. The ExceptGraph function

is responsible for resolving these received exceptions by the except graph to the

uni exception.

6.2.3 Fault-Tolerant Component-Object

The object theory describes the stable activities, and error recovery activities of

Object component, which represents the fault-tolerant components in GFTSA. The

6.2. PVS MODEL OF GFTSA 83

object imports the generictype theory, the parameterized queue theory instantiated

with type [SRID], and coordinatingcomponent theory.

object: THEORY

BEGIN

IMPORTING generictype, queue[SRID], coordinatingcomponent

n_states: setof[OBSTATE]

l_excepts: setof[OBSTATE]

g_excepts: setof[OBSTATE]

......

transition: [[OBSTATE, [PORT -> MSG]] -> [OBSTATE, [PORT -> MSG]]]

except_context: [OBSTATE -> EH]

except_handle: [EH -> OBSTATE]

......

Transition(ob): Object=

IF member(inter_state(ob),n_states) THEN

(#inter_state:=PROJ_1(transition(inter_state(ob),

......

LocalExceptHandle(ob):Object=

IF member(inter_state(ob),l_excepts) THEN

.......

GlobalExceptPropagate(ob): OBSTATE=

IF member(inter_state(ob),g_excepts) AND ue_rec(ob)=0 THEN

inter_state(ob)

......

6.2. PVS MODEL OF GFTSA 84

UniExceptReceive(ob,ccp): Object=

IF uni_exception=except_graph(exceptions(ExceptRec(ccp))) THEN

......

UniExceptHandle(ob): Object=

IF member(inter_state(ob), g_excepts) AND ue_rec(ob)=1 THEN

......

END object

In the object theory, the declared constants n states, l excepts, and g excepts rep-

resent three different sets of states that an Object can be in: a set of normal states,

a set of local exception states, and a set of global exception states. The transition

function specifies the state change of an Object when receiving or sending the mes-

sages to other Objects. The except context function is declared to model that any

exception occurring in the Object has a corresponding exception handler. The func-

tion exception handle is used to check whether the exception handler deals with

the exception successfully. The Transition function denotes the state transitions

of an Object according to the transition function. The LocalExceptHandle function

specifies how the Objects deals with local exception. The GlobalExceptPropagate,

UniExceptReceive, and UniExceptHandle denote how the Object implements the

coordinated error recovery mechanism.

6.2. PVS MODEL OF GFTSA 85

6.2.4 Connector

The connector imports the generictype and object theories. The connector theory

describes that the Connector in GFTSA is responsible for connecting send port of

a send ob and receive port of another receive ob to transfer the message. These

properties are specified in two axioms.

connector : THEORY

BEGIN

IMPORTING generictype, object

send_port, receive_port: PORT

send_ob, receive_ob: VAR Object

connectorprd1:AXIOM

member(send_port, out_ports(Constant(send_ob))) AND

member(receive_port, in_ports(Constant(receive_ob)))

connectorprd2:AXIOM

EXISTS(msg: MSG): msg=coop_msg(Constant(send_ob))(send_port) AND

coop_msg(Constant(receive_ob))(receive_port)=msg

END connector

6.2.5 SharedResource

The sharedresource theory models how the SharedResource can guarantee the trans-

action semantics when receiving messages from Objects and preserve consistent

state when facing exceptions. The shareresource imports the generictype theory,

6.2. PVS MODEL OF GFTSA 86

the parameterized theory queue instantiated with type [SRID], object theory, and

coordinatingcomponent theory.

sharedresource: THEORY

BEGIN

IMPORTING generictype, queue[OBID], object, coordinatingcomponent

states: setof[SRSTATE]

trans: [[SRSTATE, MSG] -> SRSTATE]

SR: TYPE=[#semaphore: SIG, ob_qlist:(nonemptyqueue?[OBID]),

sr_state: SRSTATE, checkpoint: SRSTATE#]

......

ObList(sr): SR=

IF req_sr=srid THEN

(#semaphore:=0, ob_qlist:=join(req_ob,ob_qlist(sr)),

......

Available(sr): answer=

IF semaphore(sr)=0 AND ob_qlist(sr)/=empty THEN

(#semaphore:=1, ob_qlist:=leave(ans_ob, ob_qlist(sr)),ans_sr:=srid#)

......

Trans(sr): SR=

IF semaphore(sr)=1 AND to_sr=srid THEN

......

Except(sr,ccp): SR=

IF uni_exception=except_graph(exceptions(ExceptRec(ccp))) THEN

(#semaphore:=0, ob_qlist:=empty, sr_state:=checkpoint(sr),

6.2. PVS MODEL OF GFTSA 87

checkpoint:=checkpoint(sr)#)

ELSE sr

ENDIF

END sharedresource

Referring to the SharedResource class schema in the Object-Z model of GFTSA,

the constants states, trans declared in the axiom definition are also declared as con-

stants associated with specific types. These constants all have the same meaning as

illustrated in the SharedResource class schema. The variables declared in the state

schema of Object-Z model of GFTSA are declared as the fields in the SR record

type. The ObList function specifies that the SharedResource receives access request

from an Object. The Available function models that when the SharedResource is

available, how it sends out a signal to the Object. The Trans function specifies the

state transitions of SharedResource according to the trans function. The Except

function describes that the state of SharedResource need to roll back to the normal

state recorded in the checkpoint when facing exceptions.

6.2.6 Fault-Tolerant System-ftsystem

The ftsystem theory imports all the theories for the components & connector of

GFTSA. Several formulas, such as Propagate which can be used in the mechanical

verification of properties, all can be declared in this theory. The properties which

need to be verified are all declared as LEMMA in this theory, such as pred1 ft.

6.2. PVS MODEL OF GFTSA 88

ftsystem: THEORY

BEGIN

IMPORTING object, connector, coordinatingcomponent, sharedresource

......

Propagate: AXIOM

member(inter_state(obj),g_excepts) AND ue_rec(obj)=0 IMPLIES

GlobalExceptPropagate(obj)=inter_state(obj)

ExceptPropagate: AXIOM

exception=GlobalExceptPropagate(obj)

NonEmpty: AXIOM

exception=inter_state(obj) IMPLIES

exceptions(ExceptRec(ccp)) /=empty

......

pred1_ft: LEMMA

(EXISTS (obj:Object):

member(inter_state(obj),g_excepts) AND ue_rec(obj)=0)IMPLIES

(FORALL (obj:Object),(ccp: CC):

......

pred4_ft: LEMMA

(FORALL (fobs: setof[OBID]): disjoint?(fobs, critical)) IMPLIES

(FORALL (obj: Object),

(fobs: setof[OBID]):systemrecover(obj, fobs)=Init)

end ftsystem

6.3. MECHANICAL VERIFICATION OF GFTSA USING PVS 89

The Propagete AXIOM means that when a global exception raised in an Object, it

will send out this exception. The ExceptPropagate and NonEmpty AXIOMS specify

that, when CoordinatingComponent receives the global exception, the exception

list will be nonempty. The Lemmas pred1 ft to pred4 ft are four significant fault

tolerant properties that GFTSA can preserve, which can be mechanically verified

by the theorem prover of PVS. The mechanical verification of these properties will

be illustrated in the next section.

6.3 Mechanical Verification of GFTSA using PVS

Since GFTSA is used to help develop safety critical distributed systems, the verifi-

cation of GFTSA mainly involves showing that GFTSA can preserve fault tolerant

properties, which are expressed as LEMMA. For each LEMMA, we build a proof

tree by inputting proof commands until each branch of the tree is proved to be

true. In the following, several significant fault tolerant properties and their proof

scripts are presented to illustrate the mechanical verification of GFTSA by using

the theorem prover of PVS.

6.3.1 A Global Exception raised in a Fault-tolerant Com-

ponent

When a global exception is raised by an Object in the FTS, all of the Objects in

the FTS should be informed about the exception. During the proof of pred1 ft

6.3. MECHANICAL VERIFICATION OF GFTSA USING PVS 90

property, which is firstly shown in the consequent {1}, we can use primitive proof

commands in response to the Rule? prompt from PVS theorem prover to prove

this property interactively. These primitive proof commands could be flatten, prop,

and assert etc, which can help the proofs more automatically and systematically.

The proof script displayed below can show the basic features of the theorem prover

of PVS.

pred1_ft :

|-------

{1} (EXISTS (obj: Object):

member(inter_state(obj), g_excepts) AND ue_rec(obj) = 0)

IMPLIES

(FORALL (obj: Object), (ccp: CC):

inter_state(UniExceptReceive(obj, ccp)) =

except_graph(exceptions(ExceptRec(ccp))))

Rule?: (flatten) Applying disjunctive simplification to flatten

sequent, this simplifies to:

pred1_ft :

{-1} (EXISTS(obj: Object):

member(inter_state(obj), g_excepts) AND ue_rec(obj) = 0)

|-------

{1} (FORALL (obj: Object), (ccp: CC):

inter_state(UniExceptReceive(obj, ccp)) =

except_graph(exceptions(ExceptRec(ccp))))

6.3. MECHANICAL VERIFICATION OF GFTSA USING PVS 91

......

Rule?: (lemma "Propagate") Applying Propagate this

simplifies to:

pred1_ft :

{-1} FORALL (obj: Object):

member(inter_state(obj), g_excepts) AND ue_rec(obj) = 0 IMPLIES

GlobalExceptPropagate(obj) = inter_state(obj)

[-2] member(inter_state(obj!1), g_excepts) AND ue_rec(obj!1) = 0

|-------

[1] (FORALL (obj: Object), (ccp: CC):

inter_state(UniExceptReceive(obj, ccp)) =

except_graph(exceptions(ExceptRec(ccp))))

.......

Rule? : (prop) Applying propositional simplification, which is

trivially true. Q.E.D.

The (flatten) command eliminates the disjunctive connectives in the consequent

{1} of pred1 ft so as to flatten it out into the sequent. The next proof command

(skolem!) is used to replace the existentially quantified variable obj in the an-

tecedent {-1} with constant obj!1. The following proof step (lemma “Propagate”)

is used to bring in an instance of the “Propagate” as an antecedent sequent formula.

By prompting these PVS primitive proof commands, we can move on to complete

the verification of this property successfully.

6.3. MECHANICAL VERIFICATION OF GFTSA USING PVS 92

6.3.2 Two Global Exceptions raised Concurrently in Fault-

tolerant Components

When two global exceptions are raised concurrently by two different Objects in

the FTS, all the Objects in the FTS need to be informed about a universal global

exception. This pred2 ft property is firstly shown as the consequent {1} in the

theorem prover of PVS.

The proof script for this property starts with the application of (flatten) to the

given conjecture followed by (skolem!) command to replace the existentially

pred2_ft :

|-------

{1} (EXISTS (obj1, obj2: Object):

member(inter_state(obj1), g_excepts) AND

ue_rec(obj1) = 0 AND

member(inter_state(obj2), g_excepts) AND ue_rec(obj2) = 0)

IMPLIES

(FORALL (obj: Object), (ccp: CC):

ue_rec(UniExceptReceive(obj, ccp)) = 1)

Rule?: (flatten) Applying disjunctive simplification to flatten

.......

Rule?: (skolem!) Skolemizing, this simplifies to:

pred2_ft :

{-1}member(inter_state(obj1!1), g_excepts) AND

6.3. MECHANICAL VERIFICATION OF GFTSA USING PVS 93

ue_rec(obj1!1) = 0 AND

member(inter_state(obj2!1), g_excepts) AND ue_rec(obj2!1) = 0

|-------

[1] (FORALL (obj: Object), (ccp: CC):

ue_rec(UniExceptReceive(obj, ccp)) = 1)

.......

Rule?: (lemma "ExceptPropagate") Applying ExceptPropagate this

simplifies to:

pred2_ft :

{-1} FORALL (obj: Object): exception =GlobalExceptPropagate(obj)

[-2] GlobalExceptPropagate(obj2!1) =inter_state(obj2!1) [-3]

GlobalExceptPropagate(obj1!1) =inter_state(obj1!1)

|-------

[1] (FORALL (obj: Object), (ccp: CC):

ue_rec(UniExceptReceive(obj, ccp)) = 1)

Rule?: (instantiate -1 ("obj1!1"))

.......

Rule? : (prop) Applying propositional simplification, which is

trivially true. Q.E.D.

quantified variable. The following strategy in the proof script is to bring in the

declared LEMMAS to make the consequent in the sequent to be true. These

LEMMAS involve “Propagate”, ”ExceptPropagate”, “NonEmpty”, “CCReceive”,

“ExceptGraph”, and “UniExcept”, which have already been proved to be true. The

6.3. MECHANICAL VERIFICATION OF GFTSA USING PVS 94

strategy of these LEMMAS can be described as follows. When two global excep-

tions are raised concurrently in the FTS, each Object can use GlobalExceptProp-

agate function to Propagate its global exception to the CoordinatingComponent,

and the CoordinatingComponent can use the ExceptRec function to receive these

two global exceptions. Because the record exceptions is not empty, the Except-

Graph function can use the function except graph to get the uni exception. After

that, the uni exception is sent out to all the Objects in the FTS. The UEReceive

function in the Object can receive this uni exception. When an Object receives the

uni exception, the value of ue rec is changed to 1, which means that the Object is

informed about the exceptions.

6.3.3 A Local Exception raised in a Fault-tolerant Compo-

nent

If an Object in the FTS raises a local exception, the other Objects are not influenced

and convince to be in their stable states. This pred3 ft property is firstly shown as

the consequent {1} in the theorem prover of PVS.

pred3_ft :

|-------

{1} (EXISTS (obj: Object):

member(inter_state(obj), l_excepts) AND

Variable(other_obj!1, obj))

IMPLIES member(inter_state(other_obj!1), n_states)

6.3. MECHANICAL VERIFICATION OF GFTSA USING PVS 95

Rule?: (flatten) Applying disjunctive simplification to flatten

........

Rule?: (lemma "NonEquVar1") Applying NonEquVar1 this simplifies

.......

Rule?: (lemma "NonEquVar2") Applying NonEquVar2 this simplifies

to:

pred3_ft :

{-1} FORALL (obj1, obj2: Object):

obj1 /= obj2 IMPLIES inter_state(obj1) /= inter_state(obj2)

[-2] other_obj!1 /= obj!1 [-3]

member(inter_state(obj!1),l_excepts)

|-------

[1] member(inter_state(other_obj!1), n_states)

........

Rule?: (assert) Simplifying, rewriting, and recording with

decision procedures, Q.E.D.

The proof script for this property starts with the application of (flatten) to the

given conjecture followed by (skolem!) command to replace the existentially quan-

tified variable. After that, the LEMMAS “NonEquVar1”, “NonEquVar2”, “Lo-

calExcept1”, and “LocalExcept2” are brought in to the antecedent of the sequent.

The proof strategy of these LEMMAS can be described as follows. When a local

exception is raised in an Object, the other Objects will have different state from

this Object. Because the raised exception is a local exception, no exception will be

6.3. MECHANICAL VERIFICATION OF GFTSA USING PVS 96

sent out to the CoordinatingComponent. Therefore, the states of other Objects will

still be normal.

6.3.4 Fault-tolerant System recover From non-critical Fault-

tolerant component Failure

When a non-critical Object fails, the FTS can tolerate this fault, which means

that the states of all Objects in the FTS can recover to their normal states. This

pred4 ft property is firstly shown as the consequent {1} in the theorem prover of

PVS.

The proof script for this property starts with the application of (flatten) to the given

conjecture followed by (skolem!) command to replace the existentially quantified

variable. The following proof steps mainly bring in “syspred2”, and

pred4_ft :

|-------

{1}(FORALL (fobs: setof[OBID]): disjoint?(fobs, critical)) IMPLIES

(FORALL (obj: Object), (fobs: setof[OBID]):

systemrecover(obj, fobs) = Init)

Rule?: (flatten) Applying disjunctive simplification to flatten

sequent, this simplifies to:

pred4_ft :

{-1} (FORALL (fobs:setof[OBID]):disjoint?(fobs,critical))

|-------

6.3. MECHANICAL VERIFICATION OF GFTSA USING PVS 97

{1} (FORALL (obj: Object), (fobs: setof[OBID]):

systemrecover(obj, fobs) = Init)

Rule?: (skolem!) Skolemizing, this simplifies to:

.........

Rule?: (lemma "syspred2") Applying syspred2 this simplifies to:

pred4_ft : {-1} FORALL (fobs: setof[OBID]):

disjoint?(fobs, critical) IMPLIES Result_Control(fobs) = tolerate

[-2] disjoint?(fobs!1, critical)

|-------

[1] systemrecover(obj!1, fobs!1) = Init

Rule?: (instantiate -1("fobs!1"))

........

Rule?: (lemma "Recover") Applying Recover this simplifies to:

pred4_ft :

{-1} FORALL (fobs: setof[OBID], obj: Object):

Result_Control(fobs) = tolerate IMPLIES

systemrecover(obj, fobs) = Init

.......

Rule?: (prop) Applying propositional simplification, which is

trivially true.Q.E.D.

“Recover” to make the consequent in the sequent to be true. The proof strategy of

these LEMMAS can be described as follows. When the state of an Object is Fail,

if this Object is not in the state critical, we can gain the execution result, namely

6.4. TEMPLATE BASED ON PVS MODEL OF GFTSA 98

tolerate, by using function Result Control. Because the execution result is tolerate,

the SystemRecover function is used to reset the states of all Objects to the initial

states, which means that all the Objects recover to normal states.

6.4 Template based on PVS Model of GFTSA

GFTSA is proposed to guide the development of safety critical distributed systems.

The developed systems guided by GFTSA can preserve fault tolerant properties.

By using the theorem prover of PVS, we can mechanically verify the fault toler-

ant properties. As the theorem prover of PVS only supports the model in PVS

specification language, we need to generate the PVS models of developed systems.

Based on the Object-Z model of GFTSA, we have built a template to make the

generation of Object-Z models of distributed systems more efficient by using the

XVCL technique. Following the similar XVCL technique, we investigate to build a

template to help the generation of PVS models of developed systems based on the

PVS model of GFTSA.

This template is built as generic and adaptable x-frames, which are all written

as the combination of PVS specification and XVCL commands. In each primitive

x-frame, besides importing corresponding theories in the PVS model of GFTSA,

all of small or large variation points are represented as meta-expressions, which can

be instantiated during the customization process according to the specific require-

ments. In the following, we will present these primitive x-frames involved in the

6.4. TEMPLATE BASED ON PVS MODEL OF GFTSA 99

template, which are constants, connector, cc, sr, object, and system.

6.4.1 The x-frame for global constants

The constants x-frame is built for the global constants which can be used in the

declared formulas of other theories. This theory imports the generictype theory in

the PVS model of GFTSA.

<x-frame name="constants" language="PVS">

constants: THEORY

BEGIN

IMPORTING generictype

<value-of expr="?@ports?"/> <value-of expr="?@gobstates?"/>

<value-of expr="?@msgs"/>

END constants

</x-frame>

In this x-frame, the ports represents the in port and out port used to transmit the

messages among Objects. The gobstates represents the states of Object. The msgs

represents the messages transmitted among Objects and SharedResource.

6.4.2 The x-frame for connector

The connector x-frame is built for the connector theories of specific safety critical

distributed systems. This theory imports the connector theory in the PVS model

6.4. TEMPLATE BASED ON PVS MODEL OF GFTSA 100

of GFTSA. The constants theory also is imported.

<x-frame name="connector" language="PVS">

<value-of expr="?@connectorname?"/>: THEORY

BEGIN

IMPORTING connector,constants

send_port: PORT=<value-of expr="?@s_port?"/>

receive_port: PORT=<value-of expr="?@r_port?"/> END

<value-of expr="?@connectorname?"/>

</x-frame>

In this x-frame, the s port represents the sending port of the Connector, and the

r port represents the receiving port of the Connector. The connectorname repre-

sents the Connector name of the specific system.

6.4.3 The x-frame for coordinatingcomponent

The cc x-frame is built for the coordinatingcomponent theory of specific safety

critical distributed system. This theory imports the coordinatingcomponent theory

in the PVS model of GFTSA. The constants theory also is imported.

<x-frame name="cc" language="PVS">

<value-of expr="?@ccname?"/>: THEORY

BEGIN

IMPORTING coordinatingcomponent,constants

6.4. TEMPLATE BASED ON PVS MODEL OF GFTSA 101

ge: VAR items[OBSTATE]

except: OBSTATE

except_graph(ge): OBSTATE= <break name="egraph"/>

END

<value-of expr="?@ccname?"/>

</x-frame>

In this x-frame, the egraph variable in the 〈 break〉 represents a function, which is

used to resolve the concurrently raised exceptions into a universal exception. The

ccname represents the CoordinatingComponent name of the developed system.

6.4.4 The x-frame for sharedresource

The sr x-frame can be adapted to build the sharedresource theory of specific safety

critical distributed system. This theory imports the sharedresource theory in the

PVS model of GFTSA. The constants theory is also imported.

<x-frame name="sr" language="PVS">

<value-of expr="?@srname?"/>: THEORY

BEGIN

IMPORTING sharedresource,constants

<value-of expr="?@srstates?"/>: SRSTATE

states: setof[SRSTATE]=

{x:SRSTATE|<value-of expr="?@srstatedeclare?"/>

<break name="srtransaxiom"/>

6.4. TEMPLATE BASED ON PVS MODEL OF GFTSA 102

END

<value-of expr="?@srname?"/>

</x-frame>

In this x-frame, the srstates represents the states that the SharedResource can be

in. The srstatedeclare represents the declaration of the states in the srstates. The

srtransaxiom represents the AXIOM declaration for the state transitions. The

srname represents the SharedResource name of specific system.

6.4.5 The x-frame for object

The object x-frame can be adapted to build the Objects theories of specific safety

critical distributed systems. This theory imports the object theory in the PVS

model of GFTSA. The constants theory is also imported.

<x-frame name="object" language="PVS">

<value-of expr="?@objectname?"/>:THEORY

BEGIN

IMPORTING object, states

Object: TYPE=[#inter_state:OBSTATE,checkpoint:

OBSTATE,ue_rec:SIG,sr_qlist:(nonemptyqueue?[SRID])#]

<value-of expr="?@excepthandlenames?"/>: TYPE=EH

state: VAR OBSTATE

<value-of expr="?@sobstates?"/>: OBSTATE

<break name="excepthandledeclare"/>

6.4. TEMPLATE BASED ON PVS MODEL OF GFTSA 103

n_states: setof[OBSTATE]=

{x:OBSTATE|<value-of expr="?@nstatesdeclare?"/>}

<ifdef var="lexceptsdeclare">

l_excepts: setof[OBSTATE]=

{x:OBSTATE|<value-of expr="?@lexceptsdeclare?"/>}

</ifdef>

g_excepts: setof[OBSTATE]=

{x:OBSTATE|<value-of expr="?@gexceptsdeclare?"/>}

<ifdef var="inportsdeclare">

in_ports: setof[PORT]=

{x:PORT|<value-of expr="?@inportsdeclare?"/>}

</ifdef>

<ifdef var="outportsdeclare">

out_ports: setof[PORT]=

{x:PORT|<value-of expr="?@outportsdeclare?"/>}

</ifdef>

<ifdef var="compmsgsdeclare">

comp_msgs: setof[MSG]=

{x:MSG|<value-of expr="?@compmsgsdeclare?"/>}

</ifdef>

<break name="coopmsgaxiom"/>

<break name="transitionaxiom"/>

<break name="exceptcontextaxiom"/>

<break name="excepthandleaxiom"/>

6.4. TEMPLATE BASED ON PVS MODEL OF GFTSA 104

obinistate: OBSTATE=<value-of expr="?@inistate?"/> \\

END <value-of expr="?@objectname?"/>

</x-frame>

In this primitive x-frame, the exceptionhandlenames represents the exception han-

dler function used in the Object. The sobstates represents the normal states that

the Object can be in. The nstatesdeclare represents the declaration of normal

states of Object. The lexceptdeclare and gexceptdeclare represent the local excep-

tional and global exceptional states that the Object can be in. The inportsdeclare,

outportsdeclare, compmsgsdeclare, and coopmsgsdeclare represent the declaration

of in port, out port, competitive messages and cooperative messages. The transi-

tionaxiom, exceptioncontextaxiom, excepthandleaxiom represent the AXIOM dec-

larations about the state transition, exception context function, and except handle

function correspondingly.

6.4.6 The x-frame for ftsystem

The system can be adapted to build the ftsystem theory of specific safety critical

distributed system. This theory imports the built theories for the components &

connectors involved in the specific system.

<x-frame name="ftsystem" language="PVS">

<value-of expr="?@systemname?"/>:THEORY

BEGIN

IMPORTING: <value-of expr="?@componentnames?"/>

6.5. CONCLUSION 105

ccp: VAR CC

<break name="lemmas"/>

<break name="predicates"/> END

<value-of expr="?@systemname?"/>

</x-frame>

In this x-frame, the componentnames represents the theories which need to be im-

ported in the ftsystem theory. The lemmas and predicates represents the transition

and fault tolerant properties of specific system, which are declared as LEMMAS.

By instantiating the variables defined in these x-frames according to specific re-

quirements, we can generate the PVS model of developed system guided by GFTSA.

In the next Chapter of Mechanical Verification of developed Safe Critical Dis-

tributed Systems guided by GFTSA, we will present case studies to illustrate the

customization from such built template.

6.5 Conclusion

In this chapter, we embed the GFTSA model in PVS to achieve mechanical ver-

ification support for reasoning about fault tolerant properties. The component &

connectors of GFTSA all are represented as theories, which constitute a theory

chain by importing. Based on the PVS model of GFTSA, we can mechanically ver-

ify the fault tolerant properties of GFTSA by virtue of the theorem prover of PVS.

When we verify a property in PVS, firstly we formalize this property as a LEMMA,

6.5. CONCLUSION 106

then we can input primitive proof commands to the theorem prover interactively

to verify this LEMMA until the proof result is true. The mechanical verification of

GFTSA can guarantee that GFTSA can preserve fault tolerant properties.

Since GFTSA is proposed to guide the development of safety critical distributed

systems, we investigate to build a template based on the PVS model of GFTSA.

This template can be used to help the generation of PVS models of developed

safety critical distributed systems guided by GFTSA.

Chapter 7

Mechanical Verification of

developed Safety Critical

Distributed Systems guided by

GFTSA

This chapter presents a template for the specification and proof scripts of devel-

oped safety critical distributed systems guided by GFTSA, and two case studies to

illustrate the mechanical verification of safety critical distributed systems.

107

7.1. INTRODUCTION 108

7.1 Introduction

The Generic Fault Tolerant Software Architecture (GFTSA) is proposed to guide

the development of safety critical distributed systems. In order to achieve mechani-

cal verification support for reasoning about the fault tolerant properties of GFTSA,

we have embedded the GFTSA model in the PVS theorem prover. Based on the

PVS model of GFTSA, we can mechanically verify the fault tolerant properties of

GFTSA by using the theorem prover of PVS. Since the developed safety critical

distributed systems guided by GFTSA need to preserve the fault tolerant proper-

ties, the theorem prover of PVS also can help such verification. As the theorem

prover of PVS only supports the models in the PVS specification language, we need

to get the PVS models of developed systems. A template has been built based on

the PVS model of GFTSA to generate the PVS models of developed systems. In

this chapter, we present a case study of Line Direction Agreement System (LDAS)

to illustrate how we can generate the PVS model of LDAS from the built template

via customization, and the mechanical verification of fault tolerant properties of

LDAS by using the theorem prover of PVS. During the mechanical verification of

LDAS, the theorem prover of PVS needs to be applied primitive proof commands

interactively under user guidance. In order to make such verification more efficient,

we investigate to use the batch mode of PVS in the verification.

The primitive proof commands input by user to verify one specific property can

constitute the proof script for this property. In the batch mode of PVS, we can

apply the proof script directly to the theorem prover of PVS to verify one specific

7.1. INTRODUCTION 109

property, which does not require inputting each primitive proof command interac-

tively. By customizing the generic proof scripts, we can generate the proof scripts

for the developed safety critical distributed systems, and apply them to the the-

orem prover to verify the fault tolerant properties of developed systems in batch

mode. The ProofLite [53] technique can provide user-friendly interface of batch

mode execution and interactive proof scripting notation to the system designers.

As the proof scripting notation supported by ProofLite enables a semi-literate

proving style where specification and proof scripts reside in the same context, we

investigate to extend our built template to involve generic fault tolerant properties

accompanying with generic proof scripts by using XVCL and Prooflite techniques.

By customizing this template, we can generate both PVS models, and proof scripts

for the developed systems. A case study of an Electric Power System (EPS) [14] is

presented to illustrate the customization process and mechanical verification.

The remainder of the chapter is organized as follows. In section 2, we present

a case study of LDAS to illustrate how we can generate the PVS model of LDAS

from the template based on the PVS model of GFTSA, and mechanically verify the

fault tolerant properties of LDAS by using the theorem prover of PVS. Section 3

presents the extension of the template based on PVS model of GFTSA, which

involves not only PVS specification, but also generic proof scripts for the fault

tolerant properties. Section 4 presents a case study of Electronic Power System

(EPS) to demonstrate that we can generate the specification and proof scripts

for fault tolerant properties of specific system by customizing the built template.

7.2. CASE STUDY-LDAS (LINE DIRECTION AGREEMENT SYSTEM) 110

Section 5 concludes the paper.

7.2 Case Study-LDAS (Line Direction Agreement

System)

In the Section 6.4, we have built a template based on the PVS model of GFTSA.

In this section, we use a case study of LDAS to demonstrate how the PVS model

of LDAS can be generated from this template. Based on the generated PVS model

of LDAS, we can mechanically verify the fault tolerant properties of LDAS.

7.2.1 Line Direction Agreement System(LDAS)

The Line Direction Agreement System (LDAS) [17], a safety critical distributed

system, is designed to control the line direction to prevent the head-on train crashes

on the line. Each station communicate with LDACS (Line Direction Agreement

Control System) to guarantee that, at a time, only one train runs on the line

connecting two stations. The operator in each station can command the station.

Figure 7.1 shows a part of LDAS, composed of three stations. The overall LDAS

can be much more complex comprising of several stations, and communication

paths.

In the system under consideration, StatonA and StationB communicate with LDACS

to control the direction of LineAB. Similarly, StationB and StationC communicate

7.2. CASE STUDY-LDAS (LINE DIRECTION AGREEMENT SYSTEM) 111

StationA StationB

YES
NO

CHANGE

LDACS

AskChangeA
OpenA
CloseA

AskChangeB
OpenB
CloseB

OperatorA

OperatorB

LineAB

StationC

AgreeA
DiagreeA
ChangeA

LineBC

YES
NO

CHANGE

OperatorCAgreeC
DiagreeC
ChangeC

AskChangeC
OpenC
CloseC

AgreeB
DiagreeB
ChangeB

Figure 7.1: The LDAS System.

with LDACS to control LineBC. We can consider StationA, OperatorA, LDACS,

StationB, and OperatorB to be a relatively independent sub-system that can be

analyzed in isolation, as it has the requirement for both cooperative & competitive

concurrency, even in isolation. The interaction pattern in the other sub-systems,

e.g., the system comprising of StationB and StationC follows the same regulation

as the above mentioned case.

According to the box-and-line patterns of GFTSA shown in Figure 3.1, the LDAS

sub-system is composed of five Objects, called StationA, OperatorA, LDACS, Sta-

tionB, OperatorB, and a SharedResource, called LineAB. Six connectors are used

to assist the communication among the Objects. A CoordinatingComponent called

CC is also involved in the LDAS to implement the coordinated error recovery mech-

anism.

7.2. CASE STUDY-LDAS (LINE DIRECTION AGREEMENT SYSTEM) 112

7.2.2 The Generation of LDAS Formal Model

In order to mechanically verify that LDAS can satisfy the high safety requirements

by using the theorem prover of PVS, we need to generate the PVS model of LDAS

from the built template, presented in the Section 6.4. The six primitive x-frames

in the template of GFTSA can be reused during the customization via adaptation.

Following the mechanisms of XVCL, the adaptation means that a new x-frame for

one component in the specific system is built based on the corresponding primitive

x-frame in the template by using XVCL command 〈 adapt 〉 and instantiating the

variation points.

object sr ftsystemccconnector

sa ob

sb oa

osa

line
lsa

ldascc

gldas
SPC adaption

constants

ldasconstant
osb

sal sbl

lsb

ldas
ldacs

Figure 7.2: The x-frame Adaption Relationship of LDAS.

We can build x-frames for the PVS model of LDAS based on the primitive x-frames

of template. Figure 7.2 describes x-frame adaptation relationship between the

LDAS, and the template. The ldasconstant is built to declare the global constants

which will be used by other theories involved in the PVS model of LDAS. The sa,

sb, ldacs, oa and ob x-frames are built for StationA, StationB, LDACS, OperatorA

and OperatorB correspondingly. The osa, sal , lsa, lsb, sbl, and osb x-frames are

built for six connectors in the LDAS. The ldascc x-frame is built for CC component

7.2. CASE STUDY-LDAS (LINE DIRECTION AGREEMENT SYSTEM) 113

and the line x-frame is built for LineAB component. The ldas x-frame is built to

describe how these components and connectors synchronize. By running XVCL

processor with gsa SPC file which adapts all of the 15 x-frames of LDAS, we can

generate PVS model of LDAS automatically. Figure 7.3 shows the model design of

LDAS in the box-and-line fashion guided by the pattern of GFTSA.

Station
B

Access

LineAB

Station
A

CC

Operator
A

Operator
B

Exception

Exception Exception

Exception

ExceptionException

Access

OSA SAL

LSA

LSB

SBL

OSB

LDACS

Figure 7.3: GFTSA architecture view of LDAS sub-system.

Several representative theories is presented to illustrate the features of PVS model

of LDAS.

The sa theory

The sa theory represents the Object component in the LDAS which describes how

the StationA interacts with other Object & SharedResource, and how to deal with

local & global exceptions.

7.2. CASE STUDY-LDAS (LINE DIRECTION AGREEMENT SYSTEM) 114

sa:THEORY

BEGIN

IMPORTING object, ldasconstant

Object: TYPE=[#inter_state:OBSTATE,checkpoint: OBSTATE,

ue_rec:SIG,sr_qlist:(nonemptyqueue?[SRID])#]

forward_recovery: TYPE=EH

state: VAR OBSTATE

APointClosed,AskedOpen,AskedClose,APointOpened: OBSTATE

forward_recovery(state): OBSTATE=APointClosed

n_states: setof[OBSTATE]={x:OBSTATE|x=APointClosed OR

x=AskedOpen OR x=AskedClose OR x=APointOpened}

l_excepts:setof[OBSTATE]={x:OBSTATE|x=input_exception}

g_excepts: setof[OBSTATE]={x:OBSTATE|x=bothopen_exception

OR x=bothclose_exception}

in_ports: setof[PORT]={x:PORT|x=LSA_In OR x=OSA_In}

out_ports: setof[PORT]={x:PORT|x=SAL_Out}

comp_msgs: setof[MSG]={x:MSG|x=APointOpen OR x=APointClose}

coop_msg1: AXIOM coop_msg(LSA_In)=AskChangeA

......

coop_msg9: AXIOM coop_msg(OSA_In)=CHANGE

transition1: AXIOM

transition(APointClosed,OSA_In,CHANGE)=(AskedOpen,SAL_Out,ChangeA)

.......

transition12:AXIOM

7.2. CASE STUDY-LDAS (LINE DIRECTION AGREEMENT SYSTEM) 115

transition(APointOpened,LSA_In,CloseA)=(input_exception,none,NONE)

except_context1: AXIOM

except_context(bothopen_exception)=forward_recovery

except_context2: AXIOM

except_context(bothclose_exception)=forward_recovery

except_handle: AXIOM

except_handle(forward_recovery)=APointOpened

obinistate: OBSTATE=APointClosed

END stationA

The sa theory imports object and ldasconstant theory. A forward recovery func-

tion is defined to handle exceptions. The APointClose, AskedOpen, AskedClose and

AskedOpen are four normal states. The input exception, bothopen exception and

output exception are three exceptional states. The local exception input exception

declared in l excepts represents that the StationA cannot handle the received mes-

sages. The global exception bothopen exception represents that both StationA and

StationB can open the gates. The global exception bothclose exception represents

that both StationA and StationB can close the gates. The messages associated

with the port of Object are declared in the AXIOM of coop msg. When receiv-

ing messages from other Objects, the state of StationA could be transformed from

one normal state to either another normal state or an exceptional state, which are

declared in the AXIOM declaration of transition. We use the forward recovery

to handle bothopen exception and bothclose exception, which are declared in the

AXIOM of except context. When we use the forwar recovery to handle the ex-

7.2. CASE STUDY-LDAS (LINE DIRECTION AGREEMENT SYSTEM) 116

ceptions, the state of StationA will be recovered to the APointOpened state, which

declared in the AXIOM of except handle.

The ldas Theory

How the component & connectors in the LDAS cooperate with each other is de-

scribed in the ldas theory.

ldas:THEORY

BEGIN

IMPORTING operatorA,operatorB,stationA,stationB,ldacs,

osa,sal,lsa,lsb,sbl,osb,coco,line

ccp: VAR CC

stationA_prop: LEMMA

FORALL (obj: stationA.Object):

member(inter_state(obj),stationA.g_excepts) AND ue_rec(obj)=0

IMPLIES

GlobalExceptPropagate(obj)=inter_state(obj)

.......

ldacs_UniExceptRec2:LEMMA

FORALL (obj: ldacs.Object),(ccp:CC):

ldacs.uni_exception=coco.except_graph(exceptions(ExceptRec(ccp)))

IMPLIES

inter_state(UniExceptReceive(obj,ccp))=ldacs.uni_exception AND

ue_rec(UniExceptReceive(obj,ccp))=1

7.2. CASE STUDY-LDAS (LINE DIRECTION AGREEMENT SYSTEM) 117

.......

ldas_ft1: LEMMA

(EXISTS (obj: stationA.Object):

inter_state(obj)=bothopen_exception AND ue_rec(obj)=0)

IMPLIES

(FORALL (obj: ldacs.Object):

member(inter_state(UniExceptHandle(obj)),ldacs.n_states))

ldas_ft2: LEMMA

(EXISTS (obj1: stationA.Object),(obj2:stationB.Object):

inter_state(obj1)=bothopen_exception AND ue_rec(obj1)=0 AND

inter_state(obj2)=bothclose_exception AND ue_rec(obj2)=0) IMPLIES

(FORALL (obj: ldacs.Object):

member(inter_state(UniExceptHandle(obj)),ldacs.n_states))

END ldas

The ldas theory imports all the theories for the components & connectors of LDAS.

Several significant properties of LDAS are declared as LEMMA. Several LEMMAS

are shown in the ldas theory as example. The StationA prop LEMMA represents

that when raising a global exception, the StationA needs to use GlobalExcept-

Propagate operation to send this exception to the CoordinatingComponent. The

ldacs UniExceptRec2 LEMMA represents that when the LDACS receives the re-

solved uni exception from the CoordinatingComponent, the inter state and ue rec

of LDACS will be changed to uni exception and 1. The ldas ft1 and ldas ft2 are

two signification fault tolerant properties that LDAS can preserve. By using the

7.2. CASE STUDY-LDAS (LINE DIRECTION AGREEMENT SYSTEM) 118

theorem prover of PVS, we can mechanically verify these properties successfully.

7.2.3 Mechanical Verification of LDAS

Based on the generated PVS model of LDAS, we can mechanically verify the fault

tolerant properties of LDAS by using the theorem prover of PVS. Two significant

fault tolerant properties ldas ft1 and ldas ft2 are presented as LEMMA in the ldas

theory. The proof scripts for these two properties are presented in the following.

Facing bothopen Exception

When the bothopen exception is raised in the StationA, the LDAS can tolerate

this exception which means that any other Object, such as LDACS, can handle this

exception and recover to normal execution process. This ldas ft1 property is firstly

shown as the consequent {1} in the theorem prover.

ldas_ft1 :

|-------

{1} (EXISTS (obj: stationA.Object):

inter_state(obj) = bothopen_exception AND ue_rec(obj) = 0)

IMPLIES

(FORALL (obj: ldacs.Object):

member(inter_state(UniExceptHandle(obj)), ldacs.n_states))

Rule?: (flatten) Applying disjunctive simplification to flatten

sequent, this simplifies to:

7.2. CASE STUDY-LDAS (LINE DIRECTION AGREEMENT SYSTEM) 119

ldas_ft1 :

{-1} (EXISTS(obj: stationA.Object):

inter_state(obj) = bothopen_exception AND ue_rec(obj) = 0)

|-------

{1} (FORALL (obj: ldacs.Object):

member(inter_state(UniExceptHandle(obj)), ldacs.n_states))

Rule?: (skolem!) Skolemizing, this simplifies to:

ldas_ft1 :

{-1} inter_state(obj!1) = bothopen_exception AND ue_rec(obj!1) =0

|-------

[1] (FORALL (obj: ldacs.Object):

member(inter_state(UniExceptHandle(obj)), ldacs.n_states))

Rule?: (lemma "stationA_member") Applying member this simplifies

.......

Rule? (instantiate -1 ("obj!1" "ccp!1"))

Instantiating the top quantifier in -1 with the terms:

(obj!1 ccp!1), this simplifies to:

ldas_ft1 :

{-1} inter_state(UniExceptReceive(obj!1, ccp!1))

=ldacs.uni_exception AND

ue_rec(UniExceptReceive(obj!1, ccp!1)) = 1

IMPLIES

inter_state(obj!1) = ldacs.uni_exception AND ue_rec(obj!1) = 1

[-2] inter_state(UniExceptReceive(obj!1, ccp!1)) =

7.2. CASE STUDY-LDAS (LINE DIRECTION AGREEMENT SYSTEM) 120

ldacs.uni_exception [-3] ue_rec(UniExceptReceive(obj!1, ccp!1)) =1

[-4] ldacs.uni_exception = bothopen_exception

|-------

[1] (FORALL (obj: ldacs.Object):

member(inter_state(UniExceptHandle(obj)), ldacs.n_states))

Rule? (assert) Simplifying, rewriting, and recording with decision

procedures, Q.E.D. Run time = 4.00 secs. Real time = 178.88 secs.

The proof script for this property starts with the application of (flatten) to the

given conjecture followed by (skolem) command to replace the existentially quan-

tified variable. After that, the LEMMAS “stationA member”, “stationA except”,

“open exceptRec”, “open exceptGraph1”, “open exceptGraph2”, “ldacs UniExcept

Rec1”, “ldacs UniExceptRec2”, “ldacs stateChange” are brought into the antecedent

of the sequent. The proof strategy of these LEMMAS can be described as follows.

When a global exception called bothopen exception is raised in the StationA, the

StationA can use GlobalExceptPropagate operation to send this global exception

out to CC and CC can use ExceptRec operation to receive this global exception.

Since the sequence exceptions is not empty, the ExceptGraph operation in the CC

class sends out the uni exception!. The UEReceive operation in each Object of

LDAS can receive this uni exception?. When each Object of LDAS receives the

uni exception?, the state is changed to normal state. These transformations assure

that Objects in the LDAS can handle the global exception.

7.2. CASE STUDY-LDAS (LINE DIRECTION AGREEMENT SYSTEM) 121

Facing bothopen and bothclose Exceptions Raised Concurrently

When the bothopen exception has been raised in the StationA and the bothclose exception

has been raised in the StationB concurrently, the LDAS can handle this situation

which means that each Object such as LDACS can be recovered to normal execu-

tion process. This ldas ft2 property is firstly shown as the consequent {1} in the

theorem prover of PVS.

ldas_ft2 :

|-------

{1} (EXISTS (obj1: stationA.Object), (obj2: stationB.Object):

inter_state(obj1) = bothopen_exception AND

ue_rec(obj1) = 0 AND

inter_state(obj2) = bothclose_exception AND ue_rec(obj2) = 0)

IMPLIES

(FORALL (obj: ldacs.Object):

member(inter_state(UniExceptHandle(obj)), ldacs.n_states))

Rule?: (flatten) Applying disjunctive simplification to flatten

sequent, this simplifies to:

......

Rule?: (lemma "stationA_except") Applying stationA_except this

simplifies to:

ldas_ft2 :

{-1} FORALL (obj: stationA.Object): exception =

GlobalExceptPropagate(obj)

7.2. CASE STUDY-LDAS (LINE DIRECTION AGREEMENT SYSTEM) 122

[-2] GlobalExceptPropagate(obj1!1) = bothopen_exception [-3]

inter_state(obj2!1) = bothclose_exception [-4] ue_rec(obj2!1)= 0

.....

ldas_ft2 :

{-1} member(inter_state(obj!1), ldacs.g_excepts)AND

member(except_handle(except_context(inter_state(obj!1))),

ldacs.n_states)

IMPLIES

inter_state(UniExceptHandle(obj!1)) =

except_handle(except_context(inter_state(obj!1)))

[-2] member(except_handle(except_context(inter_state(obj!1))),

ldacs.n_states)

[-3] except_handle(except_context(inter_state(obj!1))) = LockedAB

[-4] member(inter_state(obj!1), ldacs.g_excepts)

|-------

[1] member(inter_state(UniExceptHandle(obj!1)), ldacs.n_states)

Rerunning step: (assert) Simplifying, rewriting, and recording

with decision procedures, Q.E.D.

Run time = 0.38 secs. Real time = 0.98 secs.

The proof script for this property starts with the application of (flatten) to the

given conjecture followed by (skolem!) command to replace the existentially quan-

tified variable. After that, the LEMMAS “stationA member”, “stationA prop”,

“stationA except”, “open exceptRec”, “open exceptGraph1”, “open exceptGraph2”,

7.3. TEMPLATE BASED ON PVS MODEL OF GFTSA AND PROOF SCRIPTS 123

“ldacs UniExceptRec1”, “ldacs UniExceptRec2”, “ldacs stateChange”, “ldacs

member1”, “ldacs UniExceptHandle”, “ldacs member2”, “ldacs UniExceptHandle2”

are brought in to the antecedent of the sequent. The proof strategy of these LEM-

MAS can be described as follows. When the bothopen exception raised in StationA

and the bothclose exception raised in StationB concurrently, each of them can use

GlobalExceptPropagate operation to send the exception out to the CC and the

CC can execute the ExceptRec operation to receive these two global exceptions.

Because the sequence exceptions is not empty, the ExceptGraph operation in the

CC class schema can send out the uni exception! which covers bothopen exception

and bothclose exception. The UEReceive operation in the LDACS can receive this

uni exception?. When the LDACS in the LDAS receives the uni exception?, its

state is changed to normal state.

7.3 Template based on PVS model of GFTSA

and Proof Scripts

The case study of LDAS can demonstrate that the developed LDAS guided by

GFTSA can preserve the fault tolerant properties by using the theorem prover

of PVS. When considering the fault tolerant properties of distributed systems

with high reliability requirements, for example, SCS and LDAS, we can summa-

rize these properties as the generic ones that the systems can deal with a global

exception or multiple raised global exceptions. These generic properties can be

7.3. TEMPLATE BASED ON PVS MODEL OF GFTSA AND PROOF SCRIPTS 124

customized according to specific system. When mechanically verifying these prop-

erties, we interactively apply primitive proof commands to the theorem prover of

PVS. These primitive commands mainly involve “lemma name” preceded or fol-

lowed by “skolem!”, “instantiate”, “replace”, and “assert” commands. The “lemma

name” introduces an instance of the lemma named name as a new formula in the

sequent. The proof commands for one property can constitute the proof scripts for

such property. We investigate to summarize the generic proof script for the generic

fault tolerant properties. When mechanically verifying the fault tolerant properties

of developed system, we can customize the generic proof scripts and apply them

to the theorem prover of PVS directly. Therefore, we can verify the fault tolerant

properties of such system in the batch mode of PVS, and do not need to input

the proof scripts to the theorem prover one by one. ProofLite [53] technique can

provide user-friendly interface of batch mode execution and interactive proof script-

ing notation to the system designers. As the proof scripting notation supported

by ProofLite enables a semi-literate proving style where specification and proof

scripts reside in the same context, we investigate to extend the template based on

the PVS model of GFTSA to involve generic fault tolerant properties accompany-

ing with generic proof scripts by using XVCL and Prooflite techniques. Therefore,

we can build a template for the PVS specification and proof scripts of developed

systems guided by GFTSA, based on the PVS model of GFTSA and proof scripts

of generic fault tolerant properties. As shown in Figure 7.4, when developing a

safety critical distributed system guided by GFTSA, we can build x-frames for this

developed system by adapting the primitive x-frames in the template. Based on

7.3. TEMPLATE BASED ON PVS MODEL OF GFTSA AND PROOF SCRIPTS 125

these built x-frames, we can generate the PVS specification and proof scripts for

the developed system automatically by running the XVCL processer. Based on

the generated specification and proof scripts, we can mechanically verify the fault

tolerant properties of developed system in the batch mode of PVS supported by

ProofLite technique.

PVS
Model

of GFTSA
Template

(Specification)
(Proof Scripts)

X-frames
for Developed

System

Mechanical
Verification of

Developed
system

XVCL

XVCL

Adapt

Generate
Automatically

Developed
System

Guided by
GFTSA

ProofLite
Generic
Proof

Scripts

Figure 7.4: Mechanical Verification Process.

The primitive x-frames in the template is composed of the x-frames for the specifi-

cation, and the x-frame for the proof scripts. These x-frames are illustrated in the

following.

7.3.1 The x-frames in the Template for the Specification

When we develop safety critical distributed systems guided by GFTSA, the PVS

model of developed systems can be customized from the PVS model of GFTSA by

importing the corresponding theories of GFTSA. In order to make this customiza-

tion process more efficient, we investigate to use XVCL technique [35] to build

a template. Following the XVCL methodology, the template is built as generic

7.3. TEMPLATE BASED ON PVS MODEL OF GFTSA AND PROOF SCRIPTS 126

x-frames based on the theories of GFTSA accompanying with XVCL commands,

which mark the variation points. When developing specific systems, these varia-

tion points can be instantiated according to specific requirements. The x-frames

in the template are related with the corresponding theories of GFTSA, shown in

Figure 7.5. The x-frames involved in the template, namely constants, object, sr,

object

sr cc

connector

connector

GFTSA
Theories

constants

Template
x-frames object

sharedresourcegenerictype coordinatingcomponent

Figure 7.5: Relation between Template and GFTSA.

connector, and cc, are all written as the combination of PVS specification language

and XVCL commands. These x-frames is built for corresponding theories in the

PVS specification of developed systems, which already have been presented and

clarified in the Section 6.4.

7.3.2 The x-frame in the Template for the Proof Scripts

Based on the x-frames for the specification, shown in the Figure 7.5, we can gen-

erate the PVS model of developed system guided by GFTSA. Furthermore, in

order to provide the proof scripts for the fault tolerant properties of developed sys-

tems, we investigate to build the x-frame for the proof scripts by using the XVCL

and ProofLite techniques. This x-frame, namely ftsystem, replaces the ftsystem

x-frames presented in the Section 6.4 by involving proof scripts notation. This

7.3. TEMPLATE BASED ON PVS MODEL OF GFTSA AND PROOF SCRIPTS 127

x-frame is built for the ftsystem theory of developed systems, which imports all the

components & connectors theories of developed system to specify how these com-

ponents & connectors synchronize together and the fault tolerant properties of such

systems. By using the ProofLite technique, we can put the generic proof scripts

written as the combination of ProofLite scripting notation and XVCL commands

following the corresponding fault tolerant properties in the ftsystem x-frame.

The x-frame for ftsystem

In the ftsystem x-frame, we present two generic fault tolerant properties that a

safety critical distributed system needs to preserve: one is that when a global

exception raised in an Object, the system can tolerate this exception which means

that any other Object can handle this exception and recover to normal execution

process; the other is that when two global exceptions raised in different Objects

concurrently, the system can handle this situation which means that other Object

in the system can recover to normal execution process. The proof scripts written as

the proof scripting notation of ProofLite are put following these two properties. In

the proof scripts, since the proof command “lemma name” are used to introduce

the lemma named name to the sequent, we also add several named lemmas to

the x-frame for ftsystem theory to help the verification. These named lemmas

are generic with some parameters which can be instantiated according to specific

requirements of different safety critical distributed systems, shown in the AXIOM.

<x-frame name="ftsystem" language="PVS">

<value-of expr="?@systemname?"/>: THEORY

7.3. TEMPLATE BASED ON PVS MODEL OF GFTSA AND PROOF SCRIPTS 128

BEGIN

IMPORTING: <value-of expr="?@componentnames?"/>

.........

<value-of expr="?@racomname?"/>_member: AXIOM

member(<value-of expr="?@agname?"/>,racomname.g_excepts)

.......

<value-of expr="?@agftname?"/>: LEMMA

(EXISTS (obj: <value-of expr="?@racomname?"/>.Object):

inter_state(obj)=<value-of expr="?@agname?"/> AND ue_rec(obj)=0)

IMPLIES

(FORALL (obj: <value-of expr="?@recomname?"/>.Object):

.......

%|- <value-of expr="?@agftname?"/> : PROOF

%|- (then (flatten) (skolem!)

%|- (lemma "<value-of expr="?@racomname?"/>_member") (prop)

.......

%|- (lemma "<value-of expr="?@recomname?"/>_stateChange")

%|- (instantiate -1 ("obj!1" "ccp!1"))(assert))

%|- QED

<value-of expr="?@tgftname?"/> : LEMMA

(EXISTS (obj1:

<value-of expr="?@racomname1?"/>.Object),

(obj2:<value-of expr="?@racomname2?"/>.Object):

inter_state(obj1)=<value-of expr="?@tgname1?"/> AND ue_rec(obj1)=0 AND

7.3. TEMPLATE BASED ON PVS MODEL OF GFTSA AND PROOF SCRIPTS 129

inter_state(obj2)=<value-of expr="?@tgname2?"/> AND ue_rec(obj2)=0)

IMPLIES

(FORALL (obj: <value-of expr="?@trecomname?"/>.Object):

.......

%|- <value-of expr="?@tgftname?"/> : PROOF

%|- (then (flatten) (skolem!) (prop)

........

%|- (lemma "<value-of expr="?@trecomname?"/>_UniExceptHandle2")

%|- (instantiate -1 ("obj!1")) (assert))

%|- QED

<value-of expr="?@systemname?"/>

</x-frame>

In this x-frame, for the property that a global exception raised, shown in the first

LEMMA, the name of such property is expressed as variable agftname, the Object

raised the exception are expressed as variable racomname, the raised exception

are expressed as variable agname, and the other Object which can handle this

exception are expressed as recomname. In the proof script for this property, the

names of lemma used in the proof command “lemma name” are all generic with

these variables. For the property that two global exception raised concurrently,

shown in the second LEMMA, the name of such property is expressed as variable

tgftname, the two Objects are expressed as racomname1 and racomname2, two

raised exceptions are expressed as tgname1 and tgname2, and the other Object can

recover to the normal execution is expressed as trecomname. The proof command

7.4. CASE STUDY-EPS (ELECTRONIC POWER SYSTEM) 130

“lemma name” in the proof script for this property are all generic with these

variables.

By the support of XVCL and ProofLite techniques, we build a template involv-

ing the x-frames not only for the specification, but also for the proof scripts of

developed safety critical distributed systems. By adapting these x-frames, we can

auto-generate the PVS specification and proof scripts for the developed systems.

Based on the generated specification and proof scripts, we can mechanically verify

the fault tolerant properties of developed systems in batch mode of PVS.

7.4 Case Study-EPS (Electronic Power System)

In this section, we present a case study of an Electric Power System (EPS) to

illustrate how we can generate the PVS specification and proof scripts of EPS from

our built template. Based on the generated PVS specification and proof scripts,

we can mechanically verify the fault tolerant properties of EPS in batch mode of

PVS supported by ProofLite technique.

7.4.1 Electronic Power System(EPS)

As the primary source of power throughout the country, the electric power indus-

try is a key critical infrastructure application domain. Electric power is generated,

transmitted, and distributed by a complex system of power companies, utilities,

brokers, and merchants. We build model topology of EPS corresponding to the

7.4. CASE STUDY-EPS (ELECTRONIC POWER SYSTEM) 131

United States electric power grid information systems, as outlined in the NERC

operating manual [14]. The lower levels of the model topology are an abstraction

of the power grid in terms of power companies, generating stations, and substa-

tions. The higher levels of the model topology are control area, control region, and

interconnection, shown in Figure 7.6.

Substation Generating
Staion

Power
Company

Control
Area

Control
Region

Interconnection

Power
Company

Report
Supply

Calculate
Balance

Report
Balance

Calculate
Balance

Redistribute
Adjustment

Report
Balance

Calculate
Balance

Redistribute
Adjustment

Report
BalanceRedistribute

Adjustment Calculate
Balance

Substation…
Generating

Staion Substation… Generating
Staion

Control
Area

Power
Company

Control
Area

Control
Region

……

�����

…

… …

…

Report
Demand

Figure 7.6: The Model Topology of EPS.

The substation reports the demand for power to its parent power company. The

generating station controls and reports the supply of power being generated to its

parent power company. The power company accepts data from substation and

generating station, calculates the balance of power, reports the surplus or deficit

to its parent control area, then balances supply and demand with any interchange

adjustment accordingly. The control area accepts power balances from power com-

panies, calculates and reports the control area balance to its parent control re-

gion, then redistributed any adjustment accordingly. The control region accepts

power balances from its control areas, calculates and reports the control region bal-

7.4. CASE STUDY-EPS (ELECTRONIC POWER SYSTEM) 132

ance to its parent interconnection, then redistributes any adjustment accordingly.

The interconnection accepts power balances from its control regions, calculates its

interconnection balance and swaps power with other interconnections according

to demand, then redistributes power interchanges amongst its control regions ac-

cording to demand. The hierarchical relationship among substation, generating

station, power company, and control area can be applied to the hierarchical rela-

tionship among control area, control region, and interconnection. Therefore, we

focus our development of EPS on the concurrency among substation, generation

station, power company and control area. According to the box-and-line patterns of

GFTSA shown in Figure 3.1, the EPS is composed of four Objects, namely Substa-

tion, GeneratingStation, PowerCompany, and ControlArea, six Connectors, namely

SPC, PCS, PCA, CAP, PCG, and GPC, one CoordinatingComponent, namely CC,

and two SharedResources, namely PCDB and CADB.

7.4.2 Generation of PVS Specification and Proof Scripts

Referring to the Figure 7.4, when developing a safety critical distributed system

guided by GFTSA, we need to build x-frames for the developed system by adapt-

ing the corresponding x-frame in the template shown in Section 7.3. Figure 7.7

describes x-frame adaptation relationships between the x-frames of EPS and the

built template. The epsconstant is built to declare the global constants which

will be used by all the components & connectors theories in the EPS model. The

gsation, subsation, powercompany, and controlarea are built for GeneratingStation,

7.4. CASE STUDY-EPS (ELECTRONIC POWER SYSTEM) 133

Substation, PowerCompany, and ControlArea correspondingly. The gpc, pcg, pcs,

spc, pca, and cap x-frames are built for six connectors in the EPS. The epscc x-

frame is built for the CC component, and the pcdb and cadb x-frames are built for

the SharedResource PCDB and CADB correspondingly. The eps x-frame is built

to describe how these components & connectors synchronize and the proof scripts

for the fault tolerant properties of EPS.

objects sr ftsystemccconnector

gstation substation

power
company

control
area

gpc

pcdb
pca

epscc

gepsSPC

template

adaption

cadb

constants

epsconstant
pcg

spc pcs

cap

eps
EPS

Figure 7.7: The x-frame Adaption Relationship of EPS.

When building these x-frames for EPS, we just need to instantiate the variation

points defined in the x-frames of template according to the specific requirements of

EPS . For example, when building epscc x-frame for the CoordinatingComponent

of EPS, epscc needs to adapt cc x-frame and give values to the defined variables.

<x-frame name="epscc" language="PVS">

<adapt x-frame="cc.xvcl">

<set var="ccname" value="epscc"/>

<insert break="egraph"> <![CDATA[IF check(PCDBAttacked, ge) OR

check(CADBAttacked,ge) THEN DBAttacked

ELSE except

7.4. CASE STUDY-EPS (ELECTRONIC POWER SYSTEM) 134

ENDIF]]>

</insert>

</adapt> </x-frame>

In this epscc x-frame, the defined variable ccname in the cc x-frame, shown in

the Section 6.4.3, are given the value epscc. The function egraph is also defined

that when the CoordinatingComponent in the EPS receives PCDBATTACKED

or DBATTACKED exception, the resolved universal exception needs to be set as

DBATTACKED exception.

Referring to the adaption relationship, the eps x-frame is built via adapting the

ftsystem x-frame, shown in Figure 7.7. In the eps x-frame, we need to set values

to the variables defined in the ftsystem according to the specific fault tolerant

properties of EPS. The fault tolerant properties that EPS can handle involve eps ft1

and eps ft2 properties. The eps ft1 is that EPS can deal with a global exception,

namely PCDBAttacked, raised in the PowerCompany, and the eps ft2 is that EPS

can deal with two global exceptions, namely PCDBAttacked and CADBAttacked,

which are raised concurrently in the PowerCompany and ControlArea. According

to these two properties, we can build eps x-frame as follows.

<x-frame name="eps" language="PVS">

......

<set var="agftname" value="eps_ft1"/>

<set var="agname" value="PCDBAttacked"/>

<set var="racomname" value="powercompany"/>

<set var="recomname" value="substation"/>

7.4. CASE STUDY-EPS (ELECTRONIC POWER SYSTEM) 135

<set var="tgftname" value="eps_ft2"/>

<set var="racomname1" value="powercompany"/>

<set var="racomname2" value="controlarea"/>

<set var="tgname1" value="PCDBAttacked"/>

<set var="tgname2" value="CADBAttacked"/>

<set var="trecomname" value="substation"/>

<adapt x-frame="ftsystem.xvcl"/>

</x-frame>

In this eps x-frame, for the fault tolerant property eps ft1, the variable agname

for a raised global exception is set as PCDBAttacked, and the variable for the

Object raising the exception is set as powercompany. Following this methodology,

the variables defined in the ftsystem x-frames are all set values according to the

specific fault tolerant properties.

By running the XVCL processor with the geps SPC file which adapts all of the

15 x-frames of EPS, we can generate the PVS specification and proof scripts of

EPS automatically1. Figure 7.8 shows the model design of SCS in the box-and-line

fashion guided by the pattern of GFTSA.

1The PVS specification and proofs scripts of EPS is presented in http://www.comp.nus.edu.

sg/~yuanling/eps-pvs.pdf.

7.4. CASE STUDY-EPS (ELECTRONIC POWER SYSTEM) 136

PCDB

Substation

Generating
Staion

Power
Company

Control
Area

SPC

PCS

PCG

GPC

PCA

CAP

CADB

CC

Supply
Update

Demand
Update

Retrieve
Balance

Balance
Update

Retrieve
Balance

Figure 7.8: GFTSA Architecture View of EPS sub-System.

7.4.3 Mechanical Verification of EPS

Based on the generated PVS specification and proof scripts, we can mechanically

verify the fault tolerant properties of EPS in batch mode of PVS supported by

ProofLite technique. The generated eps theory is shown as follows, which involves

not only the eps ft1 and eps ft2 fault tolerant properties of EPS, but also the

corresponding proof scripts written as ProofLite proof scripting notation.

eps : THEORY

BEGIN

IMPORTING gpc, pcg, spc, pcs, pca, cap, epscc, pcdb, cadb,

gstation, substation, powercompany, controlarea

powercompany_member: AXIOM

member(PCDBAttacked, powercompany.g_excepts)

......

eps_ft1: LEMMA

(EXISTS (obj: powercompany.Object):

7.4. CASE STUDY-EPS (ELECTRONIC POWER SYSTEM) 137

inter_state(obj)=PCDBAttacked AND ue_rec(obj)=0) IMPLIES

(FORALL (obj: substation.Object):

member(inter_state(UniExceptHandle(obj)),substation.n_states))

%|- eps_ft1 : PROOF

%|- (then (flatten) (skolem!) (lemma "powercompany_member") (prop)

%|- (replace -2 (-2 -1) rl) (lemma "powercompany_prop")

.......

%|- (instantiate -1 ("obj!1" "ccp!1")) (assert) (prop) (hide -4)

%|- (lemma "substation_stateChange") (instantiate -1 ("obj!1" "ccp!1"))

%|- QED

eps_ft2: LEMMA

(EXISTS (obj1: powercompany.Object),(obj2:control.Object):

inter_state(obj1)=PCDBAttacked AND ue_rec(obj1)=0 AND

inter_state(obj2)=CADBAttacked AND ue_rec(obj2)=0) IMPLIES

(FORALL (obj: substation.Object):

member(inter_state(UniExceptHandle(obj)),substation.n_states))

%|- eps_ft2 : PROOF

%|- (then (flatten) (skolem!) (prop) (lemma "powercompany_member")

.......

%|- (lemma "substation_UniExceptHandle1") (replace -3 (-3 -1) rl)

%|- (lemma "substation_member2") (replace -2 (-2 -1) rl)

%|- (lemma "substation_UniExceptHandle2")

%|- QED

END epsft

7.5. CONCLUSION 138

ProofLite technique provides a user-friendly interface to the PVS batch mode exe-

cution. Based on the proof scripts written as the proof scripts notation of ProofLite

accompanying with fault tolerant properties, we can just use command proveit to

execute the theorem prover in batch mode. Therefore, by running the command

proveit eps, we can mechanically verify the fault tolerant properties of EPS in batch

mode, and the verification result will be output to the epsft.out file. After checking

out the verification results in the output file epsft.out, which are both true, we can

conclude that the developed EPS guided by GFTSA can preserve the fault tolerant

properties to satisfy high reliability requirements.

7.5 Conclusion

GFTSA is proposed to guide the development of safety critical distributed systems.

In this chapter, we present a case study of LDAS to illustrate how we can develop

specific safety critical distributed systems guided by GFTSA, generate the PVS

model of LDAS from the template based on PVS model of GFTSA, and mechan-

ically verify the fault tolerant properties of LDAS by using the theorem prover

of PVS. In order to make the mechanical verification for the developed systems

guided by GFTSA more systematic, we extend the template based on PVS model

of GFTSA to involve not only generic PVS specification, but also generic proof

scripts. This template is built as generic and adaptable x-frames, based on the

PVS model of GFTSA and generic proof scripts of fault tolerant properties. The

primitive x-frames in the template are written as the combination of PVS spec-

7.5. CONCLUSION 139

ification language, and ProofLite proof scripting notation, together with XVCL

commands. By customizing this template, we can not only generate the PVS

specification of developed systems, but also the proof scripts for the fault tolerant

properties of these systems.

A case study of EPS is used to illustrate how we can generate the PVS specification

and proof scripts of EPS from the extension template. Based on the generated

specification and proof scripts, we can mechanically verify that EPS can preserve

fault tolerant properties in batch mode of PVS supported by ProofLite technique.

Chapter 8

Conclusion and Future Work

This chapter summarizes the main contributions of the thesis and discussion pos-

sible directions for further research.

141

8.1. CONCLUSION 142

8.1 Conclusion

Distributed systems are becoming increasingly widespread in business and scientific

computing environments, which often give rise to complex concurrent and inter-

acting activities. Due to no small measure to their complexity, distributed systems

are prone to faults and errors. For safety critical distributed systems, which have

high requirements for reliability, fault tolerant techniques are necessary to provide

a practical way to satisfy the reliability requirements. The concern of the fault tol-

erant properties makes the development of distributed systems more complicated.

In order to address this problem, this thesis investigates to propose a novel het-

erogenous software architecture to ease the complexity of the development of the

distributed systems with high reliability requirements.

One important contribution of this thesis is the building of a novel software ar-

chitecture, namely Generic Fault Tolerant Software Architecture (GFTSA), which

can provide a framework to guide the development of distributed systems with

high reliability requirements. On the one hand, the architecture style of GFTSA

combines several widely used basic architecture styles: object-oriented organiza-

tion, pipe-and-filter, and repository style, which can provide a framework to guide

the development of distributed systems involving both cooperative and competitive

concurrency. On the other hand, in order to satisfy the reliability requirements of

the distributed systems, GFTSA incorporates the fault tolerant techniques in the

early system design phase, which provides an efficient way for system designers to

reuse these techniques. Since interactive and concurrent properties of distributed

8.1. CONCLUSION 143

systems, the fault tolerant techniques incorporated in GFTSA needs to concern the

consequence of the exceptions not only to the component which raises the excep-

tion, but also to other components interact with this component. The exceptions

occurred in the distributed environment are classified into local exceptions and

global exception according to their influence to the interactive components. The

fault tolerant techniques incorporated in GFTSA involve idealized fault tolerant

component and coordinated error recovery mechanism, which can help deal with

the local exceptions and global exceptions raised in the distributed environment.

In order to provide explicit and precise idioms & patterns to the system designers,

another contribution of this thesis is to formally model the proposed GFTSA by

using the formal language Object-Z. Many researchers have used formal language

Z to formalize the state & computation of software architectures. Object-Z is an

extension of Z to accommodate the object-orientated style. Compared to formal

language Z, Object-Z can improve clarity of large specification through enhanced

structuring, which can be used to model the static and dynamic features of GFTSA

in a very explicit and understandable way. The components and connector in

GFTSA all are represented as class schemas, which can be reused to develop the

high level model of safety critical distributed systems by using the inheritance &

instantiation mechanisms of Object-Z.

How the software architecture can be reused via customization in the development

of specific systems is an interesting issue in the software architecture community.

Another contribution of this thesis is to build a template based on the Object-Z

8.1. CONCLUSION 144

model of GFTSA by using XVCL technique. This template is composed of generic

and adaptable x-frames, which are written as the combination of Object-Z formal

language and XVCL commands. This template can be customized to generate the

Object-Z model of distributed systems with high reliability requirements automat-

ically according to specific requirements. The customization process can be small

or large change to the template, which cannot be totally supported by the inheri-

tance & instantiation mechanisms of Object-Z, but can be supported by the XVCL

technique.

Since the main intention of GFTSA is to guide the development of distributed

systems with high reliability requirements, the significant properties that GFTSA

needs to preserve are the fault tolerant properties, which can satisfy the high reli-

ability requirements of such systems. Based on the Object-Z model of GFTSA, we

can formally reason about the fault tolerant properties of GFTSA manually by us-

ing the reasoning rules of Object-Z. Since Object-Z has no tool support for verifying

the models, the manual verification is laborious and error prone. Another interest-

ing contribution of this thesis is to embed the GFTSA model in PVS to achieve

mechanical verification support for reasoning about the fault tolerant properties.

The powerful theorem prover of PVS can prove many results systematically and

automatically. By using the theorem prover of PVS, we can mechanically verify

the fault tolerant properties of GFTSA successfully.

The developed distributed systems guided by GFTSA also need to preserve fault

tolerant properties to satisfy the reliability requirements. Since the theorem prover

8.1. CONCLUSION 145

of PVS can mechanically verify the fault tolerant properties of GFTSA successfully,

we investigate to apply the theorem prover of PVS in the verification of developed

systems. Another interesting contribution of this thesis is to present a template

approach for the auto-generation of specification and proof obligations at the cus-

tomized system level from GFTSA. This template is built as generic and adaptable

x-frames, which are written as the combination of PVS specification language, and

ProofLite notation, accompanying with XVCL commands. The x-frames involved

in the template are built based on the PVS model of GFTSA and generic proof

scripts. When developing a safety critical distributed system, by customizing this

template, we can generate not only the PVS model, but also the proof scripts for

the fault tolerant properties of this system. The customized proof scripts for the

fault tolerant properties can be applied directly to the theorem prover of PVS to

mechanically verify these properties in the batch mode of PVS. This batch model

of PVS supported by ProofLite technique can help us just use one command to

verify these fault tolerant properties. Therefore, we do not need to input proof

commands interactively to guide the theorem prover of PVS to verify properties.

Looking back to our whole thesis work, when we develop a specific safety critical

distributed system, there are two ways we can go. The one way is that firstly

we can generate the Object-Z model of specific system by adapting the template

based on the Object-Z model of GFTSA, secondly, in order to mechanically verify

the fault tolerant properties of developed system, we can generate the PVS model

and proof scripts of developed system by adapting the template based on the PVS

8.2. FUTURE WORK 146

model of GFTSA and generic proofs scripts, finally, we can mechanically verify

the fault tolerant properties of developed system in batch mode. Another way is

that we directly generate the PVS model and proof scripts of developed system

by adapting the template based on the PVS model of GFTSA and generic proof

scripts, and mechanically verify the fault tolerant properties of developed system

in batch mode. For the first way, the system designers can not only get the Objet-Z

model, but also the PVS model. The Object-Z model can provide precise analysis

and documentation, and the PVS model can support mechanical verification. But

the system designers need to be familiar with both Object-Z and PVS formal

languages, and take more effect to generate these two models. For the second way,

the system designers do not need to move to the Object-Z model, and generate the

PVS model and proof scripts of developed system directly. Since the PVS model

also can provide the formal specification of developed system, I recommend that

the system designers can directly go the second way to generate the PVS model

and proof scripts of developed system by adapting the template based on the PVS

model of GFTSA and generic proof scripts.

8.2 Future Work

In this thesis, we propose a novel heterogenous software architecture GFTSA to

guide the high level system design of distributed systems with high reliability re-

quirements. In order to satisfy reliability requirements of such systems, our pro-

posed GFTSA incorporated idealized fault tolerant component and coordinated er-

8.2. FUTURE WORK 147

ror recovery mechanism to deal with the exceptions occurred in the distributed envi-

ronment. These fault tolerant techniques only can handle specific set of exceptions,

some other exceptions, such as the inconsistent global states problem[54, 82], can-

not be handled successfully. One of our future works is to incorporate more powerful

fault tolerant techniques, such as selective checkpointing & rollback schemas [37]

in GFTSA to deal with these complicated exceptions.

In order to make the mechanical verification of developed systems guided by GFTSA

more efficient, we have built a template for the PVS specification and proof scripts

of fault tolerant properties for such systems. This template involves generic proof

scripts for two generic fault tolerant properties. In the future work, this template

can be further extended to involve more generic fault tolerant properties accompa-

nying with generic proof scripts.

GFTSA is proposed to guide the development of distributed systems with high

reliability requirements. Since Object-Z language is a good modeling techniques

that can provide explicit and precise structure and fault tolerant features of models

to the users, by customizing the built template based on the Object-Z model of

GFTSA, we can generate the Object-Z models of developed systems. However, our

generated formal models for developed systems are high level model design, how

these models can be transformed to the executive models is another further research

direction for us. FT-SR [81] is a programming language developed for designing

fault-tolerant distributed systems, which is the extensions to the concurrent pro-

gramming language SR [6]. The distinguishing feature of FT-SR is its flexibility of

8.2. FUTURE WORK 148

structuring systems according to any structuring paradigms. This feature makes us

choose programming language FT-SR to build the executive model of distributed

system with high reliability requirements. Our future work is to build the rules to

transform the Object-Z models to the executive models in FT-SR.

Bibliography

[1] G. D. Abowd, R. Allen, and D. Garlan. Formalizing style to understand

descriptions of software architecture. ACM Transactions on Software Engi-

neering and Methodology, 4(4):319–364, 1995.

[2] R. Allen and D. Garlan. A formal approach to software architectures. In

Proceedings of IFIP’92, 1992.

[3] V. Ambriola, P. Ciancarini, and C. Montangero. Software process enactment

in Oikos. In Proceedings of the Fourth ACM SIGSOFT, pages 183–192, Cali-

fornia, 1990.

[4] T. Anderson. Resilient Computing Systems. Collins Professional and Technical

Books, 1985.

[5] T. Anderson and R. Kerr. Recovery blocks in action:a system supporting high

reliability. In Proceedings of the 2nd International Conference on Software

Engineering, pages 447–457, San Francisco, 1976.

[6] G. R. Andrews and R. A. Olsson. The SR Programming Language: Concur-

rency in Practice. The Benjamin/Cummings Publishing Company, 1993.

149

BIBLIOGRAPHY 150

[7] C. Atkinson. Object-Oriented Reuse, Concurrency, and Distribution. Addison-

Wesley, 1991.

[8] A. Avizienis. The N-Version Approach to Fault Tolerant Software. IEEE

Transactions on Software Engineering, SE-11(2):1491–1501, 1985.

[9] L. M. Barroca and J. A. McDermid. Formal methods:use and relevance for

the development of safety-critical systems. Computer, 35(6):579–599, 1992.

[10] L. Bass, P. Clements, and R. Kazman. Software Architecture in Practice.

Addison- Wesley, 1998.

[11] R. Campbell and B. Randell. Error recovery in asynchronous system. IEEE

Transactions on Software Engineering, SE-12(8):881–826, 1986.

[12] K. M. Chandy and L. Lamport. Distributed snapshots: Determining global

states of distributed systems. ACM Trans. Computer System, 3(1):63–75,

1985.

[13] G. Coulouris, J. Dollimore, and T. Kindberg. Distributed systems: concepts

and design. Addison-Wesley, 2000.

[14] North American Eletric Reliability Council. NERC Operating Manual.

www.nerc.com/standards, January 1991.

[15] F. Cristian. Understanding fault-tolerant distributed systems. Communication

of the ACM, 34(2):56–78, February 1991.

BIBLIOGRAPHY 151

[16] F. Cristian. Exception handling and tolerance of software faults. Software

Fault Tolerance, pages 81–107, 1994.

[17] D.Bjφoner, C.W.George, B.Stig.Hansen, H.Laustrup, and S.Prehn. A railway

system, coordination’97, case study workshop example. Technical Report 93,

UNU/IIST, P.O.Box 3058,Macau, 1997.

[18] R. de Lemos. Describing evloving dependable systems using co-operative soft-

ware architecture. In Proceedings of the IEEE International Conference on

Software Maintenance, pages 320–329, 2001.

[19] J. S. Dong and S. Y. Liu. The semantics of extended SOFL. In Proceedings of

26th Annual International Software and Application Conference, pages 653–

658, August 2002.

[20] R. Duke and G. Rose. Formal Object Oriented Specification Using Object-Z.

Macmillan, 2000.

[21] R. Duke, G. Rose, and G. Smith. Object-Z: a specification language advocated

for the description of standards. Computer Standards and Interfaces, 17:511–

533, 1995.

[22] D. Garlan, R. Monroe, and D. Wile. ACME:an architecture description inter-

change language. In Proceedings of CASCON’97, November 1996.

[23] D. Garlan and D. Perry. Software architecture: Practice, potential and pitfalls.

In Proceedings of 16th Int. Conf. on Software Engineering, 1994.

BIBLIOGRAPHY 152

[24] J. Gary and A. Reuter. Transaction Processing: Concepts and Techniques.

Morgan Kaufmann, 1993.

[25] P. Guerra, C. Rubira, and R. de Lemos. An idealized fault-tolerant archi-

tectural component. In Proceeding of the 24th International Conference on

Software Engineering-Workshop on Architecting Dependable Systems, 2002.

[26] P. Guerra, C. Rubira, and R. de Lemos. A fault-tolerant software architecture

for component-based systems. Lecture Notes in Computer Science, 2677:129–

149, 2003.

[27] P. Guerra, C. Rubira, A. Romanovsky, and R. de Lemos. Integrating COTS

software components into dependable software architecture. In Proceeding of

the 6th ISORC. IEEE Computer Society Press, 2003.

[28] W. Harrison. Rpde: A framework for integrating tool fragments. IEEE Soft-

ware, SE-4(6), 1987.

[29] I. Hayes, editor. Specification Case Studies. International Series in Computer

Science. Prentice-Hall, 2nd edition, 1993.

[30] C.A.R. Hoare. Communicating sequential processes. CACM, vol.21(8):666–

677, 1978.

[31] J. Hooman. Correctness of real time systems by contruction. Formal Tech-

niques in Real-Time and Fault-Tolerant Systems, pages 19–40, 1994.

BIBLIOGRAPHY 153

[32] V. Issarny and J. P. Banatre. Architecture-based exception handling. In

Proceedings of the 34th Annual Hawaii International Conference on System

Sciences,IEEE, 2001.

[33] V. Issarny1 and A. Zarras. Software architecture and dependability. In Formal

Methods for Software Architectures, pages 259–285, November 2003.

[34] P. Jalote and R. H. Campbell. Atomic actions for software fault tolerance using

csp. IEEE Transactions on Software Engineering, SE-12(1):59–68, 1986.

[35] S. Jarzabek and S. B. Li. Eliminating redundancies with a “composition with

adaption” meta-programming technique. In European Software Engineering

Conference and ACM SIGSOFT Symposium on the Foundation of Software

Engineering,ACM Press, pages 237–246, September 2003.

[36] S. Jarzabek and H. Zhang. XML-based method and tool for handling variant

requirements in domain models. In 5th IEEE International Symposium on

Requirements Engineering, pages 166–173, August 2001.

[37] M. Kasbekar and C. Narayanan. Selective checkpointing and rollbacks in

multi-threaded object-oriented environment. IEEE Transactions on Reliabil-

ity, 48(4):325–337, 1999.

[38] H. Kopetz. Real-time Systems. Kluwer Academic Publishers, 1997.

[39] T. H. Lai and T. H. Yang. On distributed snapshots. Information Processding

Letters, 25:153–158, 1987.

BIBLIOGRAPHY 154

[40] J. C. Laprie. Dependability: Basic concepts and terminology. In Dependable

Computing and Fault-Tolerant Systems, volume 5. Springer-Verlag, 1992.

[41] P. A. Lee and T. Anderson. Fault Tolerance: Principles and Practice. Second

Edition,Prentice Hall, 1990.

[42] S. Y. Liu. A framework for developing dependable software systems using the

SOFL method. In First Workshop on Dependable Software (DSW2004), pages

131–140, Feb 2004.

[43] S. Y. Liu, M. Asuka, K. Komaya, and Y. Nakamura. An approach to specify-

ing and verifying safety-critical systems with practical formal method SOFL.

In Proceedings of Fourth IEEE International Conference on Engineering of

Complex Computer Systems, pages 100–114, August 1998.

[44] S. Y. Liu, A J. Offutt, C. Ho-Stuart, Y. Sun, and M. Ohba. SOFL: A formal

engineering methodology for industrial applications. IEEE Transactions on

Software Engineering, 24(1):24–25, 1998.

[45] D. Luckham and J. Vera. An event based architecture definition language.

IEEE Transactions on Software Engineering, vol 21, 1995.

[46] N. A. Lynch, M. Merrit, W. E. Wehil, and A. Fekete. Atomic Transactions.

Morgan Kaufmann, 1993.

[47] J. Magee, N. Dulay, S. Eisenbach, and J. Kramer. Specifying distributed

software architecture. In Proceedings of 5th European Software Engineering

Conference, 1994.

BIBLIOGRAPHY 155

[48] B. P. Mahony and J. S. Dong. Blending Object-Z and Timed CSP: An in-

troduction to TCOZ. In K. Futatsugi, R. Kemmerer, and K. Torii, editors,

The 20th International Conference on Software Engineering (ICSE’98), pages

95–104, Kyoto, Japan, April 1998. IEEE Computer Society Press.

[49] B. P. Mahony and J. S. Dong. Timed communicating Object-Z. IEEE Trans-

actions on Software Engineering, 26(2):150–177, 2000.

[50] B. P. Mahony and J. S. Dong. Deep semantic links of TCSP and Object-Z:

TCOZ approach. Formal Aspects of Computing journal, 13:142–160, 2002.

[51] N. Medvidovic and R. N. Taylor. A classification and comparison framework

for software architecture description languages. IEEE Transactions on Soft-

ware Engineering, SE-26(1):70–93, 2000.

[52] M. Moriconi, X.L. Qian, and R. A. Riemenschneider. Secure software architec-

tures. In Proceedings of the 1997 IEEE Symposium on Security and Privacy,

May 1997.

[53] C. Munoz. Batch proving and proof scripting in pvs.

http://research.nianet.org/munoz/ProofLite, 2005.

[54] R. H. B. Netzer and J. Xu. Necessary and sufficient conditions for consistent

global snapshots. IEEE Transactions on Parallel and Distributed Systems,

6(2):165–169, 1995.

BIBLIOGRAPHY 156

[55] S. Owre and J. M. Rushby. Formal verification for fault-tolerant architecture:

Prolegomena to the design of PVS. IEEE Transactions on Software Engineer-

ing, SE-21(2):107–125, 1995.

[56] S. Owre, J. M. Rushby, and N. Shankar. PVS: A Prototype Verification Sys-

tem. 11th International Conference on Automated Deduction, pages 748–752,

1992.

[57] S. Owre and N. Shankar. The formal semantics of PVS. Computer Science

laboratory, SRI International, Menlo Park, CA, 1997.

[58] S. Owre and N. Shankar. Writing PVS proof strategies. Design and Application

of Strategies/Tactics in Higher Order Logics, pages 1–15, 2003.

[59] S. Owre, N. Shankar, and J. M. Rushby. PVS System Guide. Computer

Science laboratory, SRI International, Menlo Park, CA, 1999.

[60] M. Rakic and N. Medvidovic. Increasing the confidence in off-the-shelf com-

ponents: A software connector-based approach. In Proceedings of the 2001

symposium on software reusability, pages 11–18, May 2001.

[61] B. Randell, A. Romanovsky, R. Stroud, J. Xu, J. Zorzo, and A. F. Coordi-

nated atomic actions: From concept to implementation. Special Issue of IEEE

Transactions on Computers, 1997.

[62] A. Romanovsky, J. Xu, and B. Randell. Exception handling in object-oriented

real-time distributed systems. In 1st IEEE international symposium on object-

oriented real-time distributed computing, 1998.

BIBLIOGRAPHY 157

[63] C. M. F. Rubira, R. de Lemos, G. R. M. Ferreira, and F. Castor Filho. Ex-

ception handling in the development of dependable component-based systems.

Software: Practice and Experience, 35(3):195–236.

[64] J. Rushby, F. von Henke, and S. Owre. An introduction to formal specificaiton

and verification using EHDM. Computer Science laboratory, SRI Interna-

tional, Menlo Park, CA, 1995.

[65] J. M. Rushby and F. von Henke. Formal verification of algorithms for critical

systems. IEEE Transactions on Software Engineering, SE-19(1):13–23, 1993.

[66] T. Saridakis and V. Issarny. Fault tolerant software architectures. In Technical

report, INRIA/IRISA, 1999.

[67] S. Schneider and J. Davies. A brief history of Timed CSP. Theoretical Com-

puter Science, 1995.

[68] N. Shankar, S. Owre, , and J. M. Rushby. PVS Prover Guide. Computer

Science laboratory, SRI International, Menlo Park, CA, 1999.

[69] M. Shaw and D. Garlan. Formulations and formalisms in software architecture.

In computer science today:recent trends and developments, Leture Notes in

Computer science, 1000, 1995.

[70] M. Shaw and D. Garlan. Software Architecture:Perspectives on an Emerging

Discipline. Prentice Hall, 1996.

BIBLIOGRAPHY 158

[71] M. Shaw and D. Garlan. Software Architecture:Perspectives on an Emerging

Discipline. Prentice-Hall,Englewood Cliffs,N.J., 1996.

[72] G. Smith. Extending ω for Object-Z. 9th International Conference of Z Users,

Lecture Notes in Computer Science, 967, 1995.

[73] G. Smith. Formal verification of object-z specifications. Technical Report

95-55, Software Verification Research Centre, University of Queensland, 1995.

[74] G. Smith. The Object-Z Specification Language. Kluwer Academic Publishers,

2000.

[75] M. S. Soe, H. Zhang, and S. Jarzabek. XVCL: A tutorial. In Proc. of 14th, Int.

Conf. on Software Engineering and Knowledge Engineering, SEKE’02,ACM

Press, pages 341–349, July 2002.

[76] J. Spivey. Understanding Z:A specification language and its formal seman-

tics,vol 3 of Cambridge Tracts in Theorectical Computer Science. Cambridge

University Press, 1988.

[77] J. M. Spivey. The Z notation: A Reference Manual. International Series in

Computer Science. Prentice-Hall, 1989.

[78] V. Stavridou and A. Riemenschneider. Provably dependable software archi-

tecture. In Proceedings of the Third ACM SIGPLAN International Software

Architecture Workshop, 1998.

BIBLIOGRAPHY 159

[79] J. Sun and J. S. Dong. Specifying and Reasoning about Generic Architecture

in TCOZ. In P. Strooper and P. Muenchaisri, editors, The 9th Asia-Pacific

Software Engineering Conference (APSEC’02), pages 405–414. IEEE Press,

December 2002.

[80] J. Sun, J. S. Dong, S. Jarzabek, and H. Wang. CAD system family archi-

tecture and verification: An integrated approach. IEE Proceedings Software,

153(3):102–112, 2006.

[81] V. T. Thomas. FT-SR: A programming language for constructing fault-

tolerant distributed systems. Ph.D. Dissertation, Department of Computer

Science, The University of Arizona, 1993.

[82] Y. M. Wang. Consistent global checkpoints that contain a given set of local

checkpoints. IEEE Transactions on Computers, 46(4):456–468, 1997.

[83] M. Xie, K.L. Poh, and Y.S. Dai. Computing System Reliability: Models and

Analysis. Springer, 2004.

[84] J. Xu, B. Randell, A. Romanovasky, C. Rubira, R. Stroud, and Z. Wu. Fault

tolerance in concurrent object-oriented software through coordinated error re-

covery. In Proc. 25th Int. Symp.on Fault-Tolerant Computing, pages 499–508,

Pasadena, June 1995.

[85] J. Xu, B. Randell, A. Romanovsky, R. Stroud, A. Zorzo, E. Canver, and F. von

Henke. Rigorous development of a safety critical system based on coordinated

BIBLIOGRAPHY 160

atomic actions. In 29th international symposium on fault-tolerant computing,

1999.

[86] J. Xu, A. Romanovsky, and R. Campbell. Exception handling and resolution

in distributed object systems. IEEE TPDS, 11(10), 2000.

[87] L. Yuan, J.S. Dong, and J. Sun. Modeling and customization of fault tolerant

architecture using Object-Z/XVCL. In Proc. Asia Pacific Software Engineer-

ing Conference’06(APSEC’06). IEEE Computer Society Press.

[88] L. Yuan, J.S. Dong, J. Sun, and H.A. Basit. Generic fault tolerant software

architecture reasoning and customization. IEEE Transactions on Reliability,

vol 55(3):421–435, 2006.

[89] H. Zhang, S. Jarzabek, and M. S. Soe. Xvcl approach to separating concerns in

product family asserts. In Proc. of Generative and Component-based Software

Enginering(GCSE 2001), pages 36–47, September 2001.

