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SSUUMMMMAARRYY  

  

So far, little research has been done on submerged large dome structures. This 

prompted the present study on the optimal design of submerged domes for minimum 

weight as well as for maximum buckling capacity.  

 The first part of the thesis presents the membrane analysis and minimum 

weight design of submerged spherical domes. By adopting a uniform strength design 

as governed by the Tresca yield condition, an analytical expression in the form of a 

power series for the thickness variation of a submerged spherical dome was derived. 

Further, based on a family of uniform strength designs associated with a given depth 

of water and base radius of the dome, the optimal subtended angle α2  and the 

optimal dome height for the minimum weight design of submerged spherical domes 

were determined.  

Extending the research on spherical domes, membrane analysis and optimal 

design of submerged general shaped domes were treated. By adopting a constant 

strength design, equations governing the meridional curve and thickness variation of 

submerged domes were derived with allowance for hydrostatic pressure, selfweight 

and skin cover load. The set of nonlinear differential equations, which correspond to a 

two-point boundary problem, was solved by the shooting-optimization method. A 

notable advantage of the equations derived in this part is the parameterization of the 
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equations using the arc length s as measured from the apex of the dome. Such 

parameterization allows the entire shape of the submerged dome to be determined in a 

single integration process whereas previous methods that made used of the Cartesian 

coordinates gave problems when vertical or infinite slope was encountered in the 

meridian curve.  For the special case of a weightless dome without skin cover load, 

the thickness of the dome was found to be constant when subjected to hydrostatic 

pressure only. The shape of the dome was also found to agree well with the shape 

currently reported in the literature. Further, parametric studies of dome shapes under 

different water depths and selfweight also led to a better understanding of the optimal 

shape of submerged domes. Numerical examples indicated that the airspace enclosed 

by the optimal dome reduces in the presence of large hydrostatic pressure. The 

reduced airspace is accompanied by a significant increase in the dome thickness, 

which in turn results in an increased overall weight of the dome. 

In the second part of the thesis, the optimal design of domes against buckling is 

focused. Although buckling of shells under compressive loading is of practical 

significance in the design of these structures, most of the studies thus far have focused 

on spherical domes using a thin shell theory. This study presents the formulation and 

solution technique to predict the critical buckling pressure of moderately thick 

rotational shells generated by any meridional shape under external pressure. The 

effect of transverse shear deformation is included by using Mindlin shell theory so 

that the critical buckling pressure will not be excessively overestimated when the shell 

is relatively thick.  

The critical buckling pressure of moderately thick shells under uniform pressure, 

formulated as an eigenvalue problem, is derived using the well accepted Ritz method. 
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One feature of the proposed method is the high accuracy of the solutions by using an 

adequate number of terms in the Ritz functions. The formulation is also capable of 

handling different support conditions. This is made possible by raising the boundary 

equations to the appropriate power so that the geometric boundary conditions are 

satisfied a priori. The validity of the developed Ritz method as well as the 

convergence and accuracy of the buckling solutions are demonstrated using examples 

of spherical domes (a special case of generic dome structures) where closed-form 

solutions exist. Based on comparison and convergence studies, the Ritz method is 

found to be an efficient and accurate numerical method for the buckling of dome 

structures. New solutions for the buckling pressure of moderately thick spherical and 

parabolic shells of various dimensions and boundary conditions are presented and, 

although these results are limited by the material properties assumed, they are 

nonetheless useful for the preliminary design of shell structures.  

Upon establishment of the validity of method and its ability to furnish accurate 

results for the buckling of dome structures under uniform pressure, the research was 

extended to submerged domes. In addition to hydrostatic pressure, loads acting on the 

dome include the selfweight. New solutions for the buckling pressure of moderately 

thick spherical and parabolic shells of various dimensions and boundary conditions 

are presented. Further, based on a family of spherical and parabolic domes associated 

with a given dome height submerged under a given water depth, we determine the 

Pareto optimal design for maximum enclosed airspace and minimum weight dome 

design.  

This thesis should serve as a useful reference source for vast optimal dome design 

data for researchers and engineers who are working on analysis and design of shell 

structures. 
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D water depth 

sE , Eθ ,  Young’s moduli in the direction of the meridian and parallel circle, 

respectively  

ζsG  shear modulus in the ζ−s  plane 

H dome height 

h  dome thickness 

2κ  Mindlin’s shear correction factor 

L dome base radius  

l  curve length of one-half of the meridian  

rsN , zsN  horizontal and vertical components of the meridian forces sN  

sN , φN  membrane force in the meridian direction 

θN  membrane force in the circumference direction 

hp , cp , ap   hydrostatic pressure, skin cover load and self-weight 

sp , np  loads normal and tangential to the middle surface 

R radius of spherical domes 

0r  the distance of one point on the shell to the axis of rotation 

1r , 2r  principal radii of curvature of the dome 



Nomenclature 
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s arc length along the meridian as measured from the apex of the 

dome 

U  elastic strain energy functional  

W work done functional 

W0 dome weight 

u , w   middle-surface displacement along the meridional and normal 

directions, respectively 

z vertical coordinate 

α  subtended angle 

aγ   specific weight of dome material 

ζγ s   transverse shear strain associated with rotation of the shell in the 

meridian direction 

wγ  specific weight of water 

sε , θε  normal strain in the direction of the meridional and circumference 

direction, respectively 

λ   buckling pressure parameter 

sν , θν  Poisson’s ratios 

ξ  normalized thickness 

Π  total potential energy functional 

0σ   the allowable compressive stress  

φσ , θσ  the meridian and circumferential stress 

φ  meridian angle 

ψ  rotation of the middle-surface in the meridional direction 
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CHAPTER 1 

 

  

IINNTTRROODDUUCCTTIIOONN  

 

 

 

Shell structures have been widely used since ancient times as one of the most common 

types of structural form. One of the earliest applications of the shell as a structural 

form is represented by beautiful domes that have been constructed as roofs for temples, 

mosques, monuments and other buildings. A small dome was even discovered inside 

the Bent Pyramid which was built during the Fourth Egyptian Dynasty in about 2900 

B.C. (Cowan, 1977). However, domes were not widely used until the Roman Empire. A 

good example of the dome construction during the Roman Empire is the Pantheon 

dome, which had the longest span (43 m) prior to the 19th century and is still in use 

today as a church. The Hagia Sophia of Constantinople (now Istanbul) was built 

approximately 1500 years ago, St Peter’s Cathedral in Rome was designed by 

Michelangelo in about 1590. In the modern shell applications, many domes were 

constructed all over the world for different purposes such as the Millennium Dome (in 

England) for exhibition purposes and the Georgia Dome (in USA) for sporting events.
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Fig 1.1  Pantheon domes  

(Source: 1897 Encyclopaedia Britannica) 

 

 

 

 

 

Fig 1.2  Hagia Sophia of Constantinople  

(Source: 1911 Encyclopaedia Britannica) 
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1.1  Submerged dome ideas 

As the population and urban development expand in coastal cities, city planners and 

engineers resort to land reclamation and construction on and under the sea to create 

additional space so as to ease the pressure on existing land use. In recent times, we 

have seen very large floating structures being constructed on the coast of densely 

populated cities. For example, Japanese engineers have constructed a floating steel 

arch bridge that spans 410m across the Yumemai channel in Osaka (Watanabe and 

Utsunomiya, 2003), floating oil storage facilities at Shirashima and Kamigoto, a 

floating amusement facility at Onomichi and floating emergency rescue bases in Osaka 

Bay, Ise Bay and Tokyo Bay. Based on the knowledge gained from the Mega-Float 

which measures 1000m x 60m x 3m test model for a floating runway (Yoshida, 2003), 

the Japanese are considering the construction of a floating runway of 3.6km x 500m x 

20m in the expansion programme for the Haneda International Airport. Other countries 

having floating structures include Norway with its famous floating Bergsøysund bridge 

and Nordhordland bridge (Watanabe and Utsunomiya, 2003), Hong Kong with its 

floating restaurant <http://www.jumbo.com.hk/eng/main.php>, Saudi Arabia with its 

floating desalination plant (Abdul Azis et al., 2002), North Korea with its floating 

hotel, Canada with its floating heliport and piers, Brazil with its floating pulp plant and 

Singapore with its floating performance platform.  

Many submerged tunnels have been constructed to join two parts of cities across a 

river or to connect two countries over a channel (for example the Channel Tunnel 

Crossing between France and England and the Oresund Link between Sweden and 

Denmark). These tunnels enhance greater connectivity, and help to redistribute the 

population concentrations and generate more economic activities. Research studies on 
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seeking optimal shapes of these submerged tunnels in the form of funicular arches 

have been carried out by Gavin and Reilly (2000), Wang and Wang (2002), Fung 

(2003), Wang and Ler (2003) and Chai and Kunnath (2003). 

Offshore activities are also increasing as mankind seeks to tap the riches of the seas 

and oceans. In addition to drilling for oil and natural gas in deep water, there has been 

recent interest among engineers to mine methane hydrate (Komai 2003;  Ichikawa and 

Yonezawa 2003) scattered over the seabed for a cleaner source of fuel. This 21st 

century will also likely see the construction of floating and underwater cities, for 

example, the Hydropolis project which is an underwater complex featuring a luxurious 

hotel with 220 underwater suites in Dubai, the United Arab Emirates 

<http://www.hydropolis.com/project/>. For submerged cities, a dome complex may be 

used to create the living environment suitable for sustaining human activities for a long 

time  (see Fig. 1.6). This vision prompted the author to study the optimal design of  

submerged domes. Before tackling the aforementioned problem herein, a literature 

survey on design of rotational shells is presented. 

 

 

Fig. 1.3  Yumemai floating bridge 

(Source: http://www.tokyo-wankou.com/) 
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Fig. 1.4  Mega-Float in Tokyo Bay 

(Photo courtesy of Prof E. Watanabe - Kyoto University) 

 

 

 

Fig. 1.5  Floating oil storage facility 

(Photo courtesy of Dr Namba - Shipbuilding Research Centre of Japan) 
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Fig. 1.6  Author’s impression of a submerged dome complex 
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1.2  Rotational shells 

In thin shell structures used in engineering practice, rotational shells or domes have the 

widest application because of their elegance and strength. Large span vaults of 

revolution, chiefly as the roofs of sacred buildings, were built in ancient times without 

any strength calculations being used. Of course, the domes of stone or brick 

constructed those days were many times thicker than the thin shells of buildings, 

aircraft and naval structures built over the past forty years based on suitable analytic 

methods. 

       The classical thin shell theory was firstly developed by Aron (1874). However, in 

1888, Love (1888) noticed Aron’s inaccuracies and proposed a shell theory that is 

analogous to the plate theory proposed by Kirchhoff (1876). Galerkin (1942) also 

played an important part in the development of the theory of thin shell by his work. 

Goldenweizer (1946) and Mushtari (1949) gave the basis for a general principle for 

simplification of the equations of theory of shells.   

       The above general thin shell theory of shells was preceded by the momentless or 

membrane theory. Membrane theory was firstly used in 1833 by Lame and Claperon 

(1833). In this work, Lamé and Claperon (1833) considered the symmetrical loading of 

shells of revolution. Beltrami (1881) and Lecornu (1938) established the general form 

of the equations of membrane theory. Sokolovskii (1938) made a significant 

contribution by reducing the equations of the problem to canonical sform and revealed 

a number of their characteristic properties. Moreover, Vlasov (1939) Sokolovskii 

(1938) investigated the shell of revolution under arbitrary loads. So far, a brief mention 

of thin shell theory and membrane theory for thin shell structures is given. In this next 

part, a literature review on buckling analysis of the rotational shells will be presented. 
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1.3 Buckling of rotational shells 

Shell structures are efficient three-dimensional entities that are capable of resisting 

high compressive stresses with essentially little or no bending deformation. Their 

inherent efficiency, coupled with elegant shapes and geometry, often results in 

thicknesses that are small compared to their span length. Owing to their relatively 

small thickness when compared to the length dimensions, the design strength of these 

structures is commonly governed by their buckling capacities. Buckling is a 

phenomenon in which a structure undergoes visibly large transverse deflection in one 

of the possible instability modes.  Buckling of a structural component may affect the 

strength or stiffness of the whole structure and even triggers unexpected global failure 

of the structure. Therefore, it is important to know the buckling capacities of structures 

in order to avoid premature failure.  

       The first notable buckling analysis of shell structures was carried out by Zoelly in 

1915 for spherical caps under uniform external pressure. While earlier investigations 

mainly centered on the provision of analytical solutions, later approaches relied more 

on numerical techniques as facilitated by the advent of modern computers. Bushnell 

(1976, 1984) developed a general-purpose computer program for the analysis of shells 

of revolution based on the finite-difference method. At about the same time, Cohen 

(1981) developed a computer code FASOR, based on a numerical integration method 

called the field method, for the analysis of stiffened, laminated axisymmetric shells.  

By using the Kalnins and Lestingi (1967) method of multi-segment integration, 

Uddin (1987) solved the governing differential equations for axisymmetric buckling of 

spherical shells. In Uddin’s (1987) paper, numerical results were presented for 

spherical shells with various subtended angles and these results were in good 

agreement with those obtained by Huang (1964), Budiansky (1959), Thurston (1961) 



Chapter 1: Introduction 

 9

and Dumir (1984). Chao et al. (1988) presented a semi-analytical solution for 

axisymmetric buckling of thick, orthotropic, complete spherical shells and 

hemispherical shells with various boundary conditions. Their solutions were derived 

from the Ritz method with the displacement functions approximated by Legendre 

polynomials. Muc (1992) presented the buckling analysis of axisymmetric composite 

shells of revolution such as spherical caps, torispheres and hemispheres. Its first part is 

devoted to linear buckling analysis in order to determine the appropriate divisors for 

buckling pressures. Uddin and Haque (1994) also investigated the buckling behavior of 

semi-ellipsoidal shells, where the critical buckling pressure was found to increase with 

increasing ratio of minor axis to major axis lengths of the ellipsoidal shell, and the 

critical pressure was found to increase with increasing thickness-to-radius ratios.  

       Other notable contributions on this subject were made by Ross and his colleagues. 

In 1981, Ross and Mackney (1983) presented a constant meridional curvature element 

for the buckling of hemi-ellipsoidal domes under uniform external pressure. In this  

study, only linear variations were assumed for the meridional and circumferential 

displacements along the meridian of these elements. Ross (1990) presented a varying 

meridional curvature element to extend this study. Furthermore, Ross (1996) extended 

this work to a cubic and a quadratic variation being assumed for the meridional and the 

circumferential displacements along the meridian of these elements. In this study, 

comparisons were made between experiment and theory for both buckling and 

vibration of hemi-ellipsoidal shell domes, which varied from very flat oblate vessels to 

very long prolate vessels. In general, agreement between experiment and theory was 

good for the hemi-spherical dome and the prolate vessels, but not very good for the flat 

oblate vessels. Ross et al. (2001) conducted many experiments on buckling, post-

buckling and plastic collapse of spherical shells subjected to external pressure.  Ross et 



Chapter 1: Introduction 

 10

al. (2003) reported on a theoretical and an experimental investigation into six GRP 

hemi-ellipsoidal dome shells, which were tested to destruction under external 

hydrostatic pressure.  

       As another attempt, Redekop (2005) developed a new method to predict the 

buckling characteristics of an orthotropic shell of revolution with an arbitrary meridian 

subjected to a normal pressure. The solution was given within the context of the 

linearized Sanders–Budiansky shell buckling theory and makes use of the differential 

quadrature method. Dumir et al. (2005) investigated the axisymmetric buckling 

analysis of moderately thick laminated shallow annular spherical cap under transverse 

load. Buckling under central ring load and uniformly distributed transverse load, 

applied statically or as a step function load, was presented. 

       Recently, applying the boundary element formulation, Baiz  and Aliabadi (2007) 

presented the buckling analysis of shear deformable shallow shells. The boundary 

element formulation is presented as an eigenvalue problem, to provide direct 

evaluation of critical load factors and buckling modes.  

      However, their studies were confined to the treatment of spherical shells, and their 

formulations were based on either classical thin shell theory or shallow shell theory. A 

literature survey conducted as part of this study indicated that previous treatments of 

moderately thick rotational shells had all assumed the specific shape of spherical 

shells, limiting their general applications. The methodology developed herein for 

buckling analysis is applicable to rotational shells of any meridional shape. 
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1.4 Optimal design of domes against buckling 

Over the past four decades, structural optimization has widened considerably, but 

optimization to enhance the elastic buckling resistance of structures remains an active 

area of research. Structural optimization for problems with buckling constraints is 

complicated because calculation of buckling loads is generally an involved process that 

requires the solution of two boundary value problems (static analysis and eigenvalue 

solution) at each optimization step. While earlier investigations mainly centered on the 

provision of analytical solutions, later approaches have relied more on numerical 

techniques as facilitated by the advent of modern computers.  Buckling of general 

rotational shells depends on many variables, such as the geometric properties of the 

shell, the material properties and the type of the applied loads. The various parameters 

change the buckling behavior of shells, making it difficult to achieve a general optimal 

design. Many techniques have been used for optimal design of shells under stability 

constraints.  A detailed survey of these problems was given by Krużelecki and 

Życzkowski (1985) and Życzkowski (1992). The monograph by Gajewski and 

Życzkowski (1988) was devoted to structural optimization under stability constraints.  

The largest number of papers is concerned with optimization of cylindrical shells. 

A lateral pressured cylindrical shell was considered by Hyman (1971), Sun and Hansen 

(1988), Sun (1989),  Levy and Spillers (1989) and Gajewski (1990). More complex 

optimization problems are presented in shells with a double curvature. In this case, a 

single loading already causes a combined state of stress. Parametrical optimization of 

barrel shaped shells under stability constraints was presented by Blachut (1987), 

Krużelecki and Trzeciak (2000). As another attempt, the monograph by Hinton et al. 

(2003) was devoted to the buckling analysis and optimization of plates and shells. 
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Research on optimization of shell structures has been extended to multi-objective 

optimization. Multi-objective optimizations of cylindrical shells under torsional, axial, 

external and internal pressure have been carried out by Sun and Hansen (1988) and 

Tennyson and Hanse (1983). Walker et al. (1995) studied the Pareto optimal design of 

a symmetrically laminated shell with the objectives defined as the maximization of the 

axial and torsional  buckling loads. 

So far, little work has been done on the multi-objective optimization of submerged 

domes against buckling. Prompted by this fact, we focus our study on the Pareto 

optimal designs of submerged domes with allowance for selfweight. 

 

1.5  Objectives and scope of study 

This thesis investigates the optimal designs of submerged dome structures. First we 

consider the least weight design of rotationally symmetric shells. In particular, we 

consider 

• Submerged spherical domes of uniform strength design governed by the  

Tresca  yield condition -  Based on a family of uniform strength designs associated 

with a given depth of water and the dome’s base radius, the optimal subtended angle, 

the optimal dome height and optimal thickness variation for the minimum weight 

design of submerged spherical domes are determined. 

• Submerged general domes adopting constant strength design - Based on a 

family of constant strength designs associated with a given water depth and dome 

height, the optimal dome shape and the optimal thickness variation for minimum 

weight are determined. 
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In the second part of the thesis, we focus our attention on the optimal design of 

rotational shells against buckling. For this research study, we first formulate the 

buckling problem and derive the governing eigenvalue equation using the Ritz method. 

The Ritz computer code for the buckling analysis is developed which can readily 

handle any support edge condition. The buckling analysis and problems considered are 

given below. 

• Buckling analysis of moderately thick domes  under uniform pressure using 

the Ritz method - The Ritz method was applied to determine the critical uniform 

buckling pressures of moderately thick, rotational orthotropic shells that include 

spherical, parabolic shells. 

• Buckling analysis of moderately thick submerged domes using the Ritz method 

- The Ritz method was applied to determine buckling load of submerged domes or the 

maximum water depth that a rotational shell can  sustain before buckling occurs. Next 

we solve the optimal design problem of submerged domes against buckling as well as 

for minimum weight and maximum enclosed airspace. 

• Optimal design of submerged domes – The Pareto optimal design of 

submerged domes for minimum weight as well as maximum enclosed airspace 

whereby the dome will not buckle under the hydrostatic pressure and its own weight is 

investigated. 

Results of the present study are useful in providing a basic knowledge for 

constructing a submerged dome that will be used to create a living environment under 

the sea. Moreover, the study may contribute to a better understanding of the buckling 

behaviour of shell structures under rotationally axisymmetric loads and hydrostatic 

pressure. 
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The thesis focuses on identifying the optimal design of submerged spherical and 

general dome structures. It is recognized that there are many criteria in designing a 

submerged dome structure such as strength, buckling, vibration, wave, current and 

blast effect. The current study only investigates the first two criteria, namely strength 

and buckling criteria. Moreover, during the analysis, since the bending stress in thin 

shell structures is negligibly small, we consider only domes under membrane stress 

conditions. Future studies may be carried out to investigate the other criteria for 

optimal design and also to investigate the bending of submerged domes under wave 

and current loads. 

 

1.6  Layout of thesis 

The background information on shell structures, literature review on buckling of shells 

of revolutions, the objectives and scope of study have been presented in this chapter. 

In Chapter 2, the membrane analysis and minimum weight of the submerged 

spherical domes are investigated. In addition to the hydrostatic pressure, loads acting 

on the dome include the selfweight and a skin cover load. Based on a family of 

uniform strength designs associated with a given depth of water and the dome’s base 

radius, we determine the optimal subtended angle α2  (and the optimal dome height) 

for the minimum weight design of submerged spherical domes.  

In Chapter 3, membrane analysis and optimal design of submerged domes is 

considered. In addition to hydrostatic pressure, the domes are also subjected to 

selfweight and skin cover load, which are invariably present in this type of structure. 

Based on a family of constant strength designs associated with a given water depth and 

dome height, the optimal dome shape for minimum weight is determined.  
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By adopting Mindlin shell theory, the energy functionals and governing equations 

are derived in Chapter 4 for the elastic buckling analysis of moderately thick rotational 

shells under any rotational symmetric loading. Moreover, detailed formulations of the 

Ritz method for the buckling analysis are also presented. 

Chapters 5 and 6 present buckling analyses of domes of various shapes (such as 

spherical and parabolic domes) and under different loading conditions. In Chapter 5, 

the buckling problem of rotational shells under uniform pressure is treated whilst 

Chapter 6 considers the buckling problem of submerged rotational shells. The validity, 

convergence and accuracy of the Ritz solutions are demonstrated using spherical shells 

(a special case of rotational shells), where closed-form solutions exist for some cases. 

A parametric study is conducted to study the buckling behaviour of spherical and 

parabolic domes with respect to the base-radius-to-height ratios, thickness-to-height 

ratios and different support conditions. The buckling solutions are presented for the 

first time for these shells.   

In Chapter 7, the optimal design of the submerged rotational shells (such as 

spherical and parabolic domes)  against buckling is investigated. Based on a family of 

spherical and parabolic domes associated with a given dome height, we investigated 

the  Pareto optimal dome shape for minimum weight as well as maximum enclosed 

airspace whereby the dome will not buckle under the hydrostatic pressure and its own 

weight. 

 Chapter 8 summarizes the findings of this research study and presents some 

recommendations for future studies. 
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            CHAPTER 2   

 

 

UUNNIIFFOORRMM  SSTTRREENNGGTTHH  DDEESSIIGGNNSS  OOFF    

SSUUBBMMEERRGGEEDD  SSPPHHEERRIICCAALL  DDOOMMEESS  

 

 

 

This chapter is concerned with the membrane analysis and minimum weight design of 

submerged spherical domes. In addition to hydrostatic pressure, loads acting on the 

dome include the selfweight and a skin cover load. By adopting a uniform strength 

design as governed by the Tresca yield condition, the variation of the shell thickness of 

spherical domes can be accurately defined by a power series. Based on a family of 

uniform strength designs associated with a given depth of water and the dome’s base 

radius, we determine the optimal subtended angle α2  (and the optimal dome height) 

for the minimum weight design of submerged spherical domes.  
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2.1 Introduction 

In 1958, Ziegler (1958)  investigated the uniform strength design of spherical cupolas 

under their own weight. Using the Tresca yield hexagon, he found that if the stress 

point is restricted to the sides AB and AC of the Tresca hexagon (see Fig. 2.5), the 

cupola uses less material than when the stress point is confined only to the Tresca side 

AB.  Issler (1964) considered membrane shell designs based on the Tresca hexagon as 

well as on the von Mises ellipse.  He treated shells under constant vertical dead load 

per unit projected area. Schumann and Wuthrich (1972) and Sayir and Schumann 

(1972) studied membrane shells without rotational symmetry. Prager and Rozvany 

(1980) investigated the optimal design of spherical cupolas of a given base radius. The 

cupolas are assumed to be constructed from a material with negligible tensile strength. 

The combined action of the weights of the cupola proper and a cover of uniform 

thickness was considered and the minimum weight design was examined. Nakamura et 

al. (1981) extended Prager and Rozvany’s (1980) work to include the weight of the 

roof cover, snow load, external and internal pressure. Moreover, Pesciullesi et al. 

(1997) obtained the shape of a uniform strength shell subjected to selfweight by 

solving the eigenvalue problem associated with the integral equilibrium equations. So 

far, the aforementioned studies on spherical domes do not include hydrostatic pressure. 

This prompted us to study the membrane and minimum weight design of spherical 

domes under hydrostatic pressure. 
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2.2       Membrane Theory 

2.2.1 Basic assumptions of classical thin shell theory 

In formulating the classical thin shell theory, the following assumptions are made 

(Love 1888) 

• The shell thickness h is negligibly small in comparison with the smallest 

radius R of curvature of the middle surface. According to Novozhilov (1943), the 

thickness to radius ratio 20/1/ ≤Rh  should be satisfied for the shell to qualify as a 

thin shell.  

• Strains and displacements that arise within the shell are small. This implies 

that the products of deformation quantities occurring in the development of the theory 

may be neglected, ensuring that the system is described by a set of geometrically linear 

equations. This also makes it possible to formulate the equilibrium conditions of the 

deformed middle surface with reference to the original position of the middle surface 

prior to deformation. 

• Straight line that are normal to the middle surface prior to deformation remain 

straight and normal to the middle surface during deformation, and experience no 

change in length. It implies that the direct strain in the direction normal to the middle 

surface, and the shearing strains in planes perpendicular to the middle surface and due 

to transverse shear forces, are all zero. This assumption is valid for thin shells. 

However, when the shell is thick, it is necessary to incorporate the effect of transverse 

shear deformation. 

• The normal stresses zσ  transverse to the middle surface are small, and can be 

neglected. 
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2.2.2 Geometrical properties of rotational shells  

Consider a surface of revolution generated by rotation of a plane curve about an axis in 

its plane as shown in Fig. 2.1. A point on the shell can be located by theθ -φ - r  

coordinate system where 0r  is the distance of one point on the shell to the axis of 

rotation, and 

 

φsin20 rr =  (2.1) 

 

O

A
B D

C
θ

r1
r2

r

φ

φd

Shell axis

Parallel

Meridian

θd

 

Fig. 2.1  Rotational shells (Domes) 

 

Referring to Fig. 2.2, s is the arc length along the meridian as measured from the 

apex of the dome, 1r  is the radius of curvature of the meridian. The principal radius r2 

generates the middle surface of the dome in the direction perpendicular to the tangent 

on the meridian. Referring again to Fig. 2.2, for the line element ds of the meridian, we 

have 
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φdrds 1=   (2.2a) 

φcos0 dsdr =  (2.2b) 

 φsindsdz =  (2.2c) 

φ
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Fig. 2.2  Meridian of a dome 

 

2.2.3 Membrane analysis 

For membrane theory to be valid in the analysis, the following conditions must be 

satisfied: 

• The middle surface of the shell is continuously curved and the curvatures are 

slowly varying. 

• The thickness of the shell is small and constant or varies continuously. 

• Surface loadings are distributed continuously.  

• The boundary forces and reactions of the boundary constraints are oriented 

tangentially to the middle surface. 
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• The components of the state of displacement determined from the respective 

equation are finite. 
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Fig. 2.3 Shell element  

 

In general, the shell element is bounded by two meridional lines and two 

circumferential  lines, each pair of aforementioned curves is close together as shown in 

Fig. 2.3. The conditions of its equilibrium will furnish three equations, which are 

necessary for solving the three unknown stress resultants, namely, the meridian force 

φN ,  the hoop force  θN  and  the shear force  φθN . These three equilibrium equations 

are given by Kraus (1967) 

 

( )
0cos 111 =+−

∂

∂
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∂

∂
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( )
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By noting the relationship between s and φ , i..e. φdrds 1=  , the equilibrium 

equations may also be expressed as 
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In the case of axisymmetry loads, the stresses are independent of θ . Therefore, 

we have two equations to evaluate the two unknown stress-resultants φN  and  θN  
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2.3 Problem definition and basic equations 

2.3.1 Problem definition 

Consider a submerged, spherical dome of radius R, subtended angle 2α and specific 

weight aγ  as shown in Fig. 2.4. 

 

L

φ

L

Oφ

α

H

h(  )

R

D

 

 

Fig. 2.4  Submerged spherical dome 
 

 

From geometrical considerations, the base radius αsinRL =  and the dome 

height ( ) ( ) ααα sin/cos1cos1 −=−= LRH . The dome is subjected to hydrostatic 

pressure, its own selfweight and skin cover load. The loads are assumed to be 

transmitted through the dome structure to the supporting ring foundation via membrane 

forces only. By adopting a uniform strength design governed by the Tresca yield 

condition (see Fig 2.5), the problem at hand is to seek the variation of the dome 

thickness h. From a family of such uniform strength designs associated with a 
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prescribed value of base radius L, we determine the optimal value of α (and hence the 

optimal shape) which gives the minimum weight of the submerged dome.  

σ

σθ

σφ

A B

C

D E

F

σ0

0

σ0 σ0  

Fig. 2.5  Tresca yield condition 

2.3.2 Basic equations 

Consider a uniform strength design of a spherical shell under hydrostatic pressure, 

selfweight and skin cover load. Assuming the dome to carry the load to the foundation 

via membrane forces, we seek the variation of the shell thickness h with respect to the 

meridian angle.  

dF
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αφd
φ
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a a

φN Nφ
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F

 

Fig. 2.6  Free body diagram of dome above horizontal plane a-a 
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Referring to Fig. 2.6, the vertical resultant force F on a free body of the spherical 

dome above the horizontal plane a-a (defined at angle φ ) is given by  

 

φπ φ
2sin2 RNF =  (2.11) 

 

where hN φφ σ−=  is the meridian force per unit length and φσ  the meridian stress.  

The incremental vertical force dF corresponding to the incremental angle φd  is 

given by 

  

φφπ dRfdF sin2 2=  (2.12) 

 

where f  is the vertical force acting on an elemental strip of the dome (see Fig. 2.6) 

and is given by 

 

( ) hpRRDpppf acwachv γφφαγ ++−+=++= coscoscos      (2.13) 

 

where hvp , cp , and ap  are the vertical components of the hydrostatic pressure, the 

skin cover load, and the selfweight, respectively, aγ  is the specific weight of the dome 

material, wγ  the specific weight of water and  D the depth of water. 

By taking total differential of Eq. (2.11) and noting that the meridian force is 

hN φφ σ−= ,  Eq. (2.12) can be re-written as 

 

 ( ) fRhh / =+− φσφσ φφ cos2sin  (2.14) 
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where the prime denotes differentiation with respect to φ . By substituting f given in 

Eq. (2.13) into Eq. (2.14), one obtains 

 

( ) ( )[ ]RRRDphhh wca φαφγγφσφσ φφ coscoscoscos2sin/ −+++=+−  (2.15) 

 

 

Consider the fully stressed state of the dome material without tensile strength, i.e. 

the stress point lying on side AC of the Tresca hexagon. The meridian and 

circumferential stresses at this stress state are 

 

0σσ φ −= ; φθ σσ ≥≥0  (2.16) 

 

where 0σ  is the allowable compressive stress and θσ  the circumferential stress. 

By applying Eq. (2.16) to Eq. (2.15) and dividing by ( )00hσ , one obtains 

 

( ) ( )φαφγφφ coscoscoscos2sin RRDRRpRhh wc
/ −+++−=  (2.17) 

 

where the non-dimensional terms with over-bars are given by  
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0σ
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D = and 
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c γ
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Note that Eq. (2.17) contains the non-dimensional pressure cp  which can be 

eliminated as follows. The condition of equilibrium in the normal direction furnishes 

(Ugural, 1999) 

 

nRpNN −=+ θφ  (2.19) 

 

where np  is the normal load component per unit area of the middle surface and is 

positive when acting inwards. The normal load consists of components from the 

hydrostatic pressure, dome selfweight and skin cover load and is given by 

 

( ) ( )φαγφγ coscoscos RRDphp wcan −+++=   (2.20) 

 

From Eqs. (2.16), (2.18), (2.19) and (2.20), the ratio of the circumferential stress 

to the meridian stress is given by 

 

( ) ( )
1

coscoscos
−

−+++
==

h
RRDRRph wc φαγφ

σ
σ

β
φ

θ   (2.21) 

 

where 10 ≤≤ β  in order to ensure that the stress state condition (2.16) is satisfied. 

In axisymmetric domes of revolution, the stresses φσ  and θσ  at the apex ( )0=φ  

must approach the same limit, i.e.  
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1=−=− φθ σσ ,  at the apex φ = 0 where 1=h             (2.22) 

 

By imposing the above limiting condition, Eq. (2.20) can be written as 

 

( )[ ]RRDRRp wc −++−= αγ cos12                        (2.23) 

 

and by substituting  cp  given in Eq. (2.22) into Eq. (2.17), we have 

 

( ) ( )( ) ( ) 02cos1cos1coscos2sin 22 =−+−−−++−+ RRRDRRhh ww
/ φγφαγφφ  (2.24) 

 

Equation (2.24) is the governing differential equation for determining the 

thickness variation of the submerged spherical dome of uniform strength. 

Note that for the special case of zero hydrostatic pressure (i.e. 0=wγ ), Eq. (2.24) 

reduces to 

 

( ) 02cos2sin =−+−+ RRhh / φφ             (2.25) 

 

which corresponds to the expression derived by Prager and Rozvany (1980). 
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2.4 Results and discussions 

2.4.1 Analytical solution using power series method 

In order to solve the foregoing first-order ordinary differential equation (2.24), we 

represent the function ( )φh  in the form of a power series: 

 

( ) ∑
=

=+++++=
n

i

i
i

n
n cccccch

0

226
3

4
2

2
10 ... φφφφφφ            (2.26) 

 

The differentiation of the normalized dome thickness ( )φh  with respect to the 

meridian angle φ  gives  

 

( ) ( ) 12

1

125
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/ 22....642 −
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− ∑=++++= i
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i

n
n cincccch φφφφφφ  (2.27) 

 

In order to facilitate the analytical solution, trigonometric functions of Eq. (2.24) 

are also expressed in the form of power series, i.e. 

 

...+−+−=
!7!5!3

sin
753 φφφφφ ;     (2.28a) 

...+−+−=
!6!4!2

1cos
642 φφφφ  (2.28b) 

 

By substituting the power series given in Eqs. (2.26) to (2.28) into Eq. (2.24) and 

then comparing the coefficients, one obtains the following recursive formula for the 

coefficients ic  
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with 10 =c . With these known coefficients ic , the variation of normalized dome 

thickness ( )φh  is fully described by Eq. (2.26). For given values of 0σ ,  pc, aγ , wγ , R, 

D and α , and noting that ( )0hpp acc γ= , we can use Eq. (2.23) to calculate the 

thickness of the dome at the apex 0h , as 
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          (2.30) 

 

2.4.2 Accuracy of Analytical Solution for Dome Thickness 

The analytical solution for the normalized shell thickness is furnished by Eqs. (2.26) 

and (2.29). In order to check the correctness of the analytical solutions, we can solve 

the problem independently by integrating numerically the first-order ordinary 

differential equation (2.24) using the Runge-Kutta method (Kreyszig 1993). For this 

test, a dome with dimensions R = 500cm, D = 4000cm,  2.5  =α radians and material 

properties 2
0 kgf/cm  75  =σ , 3kgf/cm  0.0024  =aγ , and the skin cover load  

2kgf/cm 0.5=cp  are assumed. The analytical solution is computed using exponents of 

n = 5, 7 and 9 while a very small step size of  rad0001.0=Δφ  is used for the fourth-

order Runge-Kutta method to ensure a high accuracy. 
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 Fig. 2.7  Thickness variation obtained by series and numerical methods 

 

The variations of normalized shell thickness h with respect to the meridian 

angleφ , obtained from both the analytical and numerical methods, are shown in Fig. 

2.7. It can be seen that the thickness of the submerged dome is characterized by a fairly 

rapid increase in the large meridian angle range (e.g. 2>φ  radians). The shell 

thickness at 5.2=φ  radians is almost twice as thick as the shell at the apex. A 

comparison between the analytical and numerical solutions also indicates that the 

analytical solution agrees well with the numerical solution for all three exponents in 

the small meridian angle range i.e. 20 <≤ φ  radians. A slight divergence of the 

analytical solution is noted in the large meridian angle range. However, an increasing 

order of the exponent gives rise to a better agreement with the numerical solution. For 

this example, an exponent of n = 9 gives an approximate solution that is sufficiently 

close to the numerical solution. This test establishes the correctness of the analytical 

solutions and for practical applications, it will be assumed that a power series with 9 

terms is sufficient for estimating the shell thickness. This number of terms will thus be 

used for all calculations following. 
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2.4.3 Critical Value of Subtended Angle  

In order to satisfy the stress state condition (2.16), we have to ensure that the condition  

10 ≤≤ β  is observed for the entire range αφ ≤≤0 . This implies that for a given water 

depth D  and base radius L  (or dome radius R ), there is a critical subtended angle crα  

(or a critical dome height ( )crcr RH αcos1−=  = ( ) crcrL αα sin/cos1− ). The crα  value 

is evaluated by setting 0=β , crαφ =  and crαα =  in Eq. (2.24). This results in the 

transcendental equation: 

 

( ) 0cos1cos
0

2 =++⎟
⎠

⎞
⎜
⎝

⎛
− ∑

=

DRRpcR wcrc

n

i

i
cricr γααα             (2.31) 

from which crα  is to be evaluated. 
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Fig. 2.8  Variation of  crα  with respect to water depth D  
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As an example in finding crα , consider a spherical dome of R = 500 cm under 

various water depths D ranging from 625 cm to 4000 cm. The assumed material 

properties are 2
0 kgf/cm  75  =σ , 3kgf/cm  0.0024  =aγ  and the skin cover load is 

taken as  2kgf/cm 0.5=cp . By solving Eq. (2.31), we obtain the variation of crα with 

respect to the non-dimensional water depth D as shown in Fig. 2.8. For a given water 

depth D , the subtended angle α  of the dome has a critical value crαα =  to ensure 

that there is no tensile stress region in the entire dome structure. Domes shapes with  

crαα >  in shaded region of Fig. 2.8 have the tensile stress region in the lower base of 

domes. For example, if the dome is submerged in a water depth of 04.0=D , the 

maximum subtended angle that the dome can have is 877.1=crα  radians. Beyond this 

crα value in the shaded area, a tensile stress region will appear in the lower base of the 

dome. It can be seen that as crα  increases with water depth D, the dome is restricted to 

a flatter profile.   

 

2.4.4 Effect of water depth on thickness variation   

It is clear that the thickness variation of the submerged domes depends on the water 

depth, the selfweight and the skin cover load. In this section, we study the effect of the 

water depth D  on the thickness variation when the dome shape is defined by a given 

subtended angleα .  Figure 2.9 shows the normalized thickness 0/ hhh =  variations of 

submerged hemispherical domes with R = 500 cm and  2/πα =  radians for various 

values of D . It can be seen that the normalized thickness at the base of the dome is 

relatively sensitive to the water depth. A larger normalized thickness ratio at the base is 

associated with a shallow water depth.  
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Fig. 2.9  Thickness variations of submerged domes for various water depths 

 

2.4.5 Minimum weight design   

For a given water depth D and a base radius L, there is a family of uniform strength 

designed domes. Each dome is associated with a subtended angle α  (or dome height 

( ) αα sin/cos1−= LH ) as shown in Fig. 2.10. However, there is a minimum weight 

solution within this family of solutions that we want to seek because of its practical 

importance. This optimal solution is associated with the optimal subtended angle optα . 

For a given base radius, the non-dimensional optimal height 0/σγ aoptopt HH =  of the 

submerged dome is related to optα  by 

 

)cos1(
sin opt

opt
opt

LH α
α

−=                       (2.32) 
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Fig. 2.10  Family of uniform strength designed domes  

for a given base radius L 

 

The objective function of this optimization problem is defined by the selfweight 

of the dome. The selfweight 0W  can be calculated directly by integrating the product of 

h  and the surface area of the dome, i.e. 

 

 ∫=
α

φφπγ
0

0 .sin2. RdRhW a            (2.33) 

 

or in normalized form as 

 

 φφ
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0 ∫==             (2.34) 
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Fig. 2.11  Variations of  weight 0W  with  respect to subtended angle α   
for 02.0,01.0=L and 0.04 

 

The variations of 0W  with respect to the subtended angle α  are shown in Fig. 

2.11 for a given water depth D = 1500 cm for various base radii L  = 0.01, 0.02 and 

0.04.   The variation of  0W  is rather small over a wide range of α , especially when 

the base radius of the dome is small. The insensitivity of the dome weight for 

radians25.1radian1 ≤≤ α (which contains the optimal of subtended angle) is good 

news for engineers as it means that there is some flexibility when designing the dome 

shape without compromising too much on the optimum weight. It can be seen that the 

optimal subtended angle optα  is about 1.1 radians. 

Using the thickness variation h  , as given by Eq. (2.26), one can obtain the 

optimal value of the subtended angle optα  for a minimum value of  0W  by a simple 

minimization technique such as the Golden Section Search technique (Kreyszig 1993). 

Figure 2.12 shows the values of optα   and Womin with  D = 5000 cm  for a wide range 
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of  practical base radii L  (i.e. 0.01 ≤≤ L  0.055). It can be seen that optα  varies in a 

narrow range of 1.04 radians ≤≤ optα  1.14 radians.  
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Fig. 2.12  Variations of minimum weight 0W  and optα  with respect to base radius L  

 

The relationship between the optimal dome height and water depth is also of 

interest in the minimum weight design of submerged domes. Figure 2.13 shows the 

variations of the optimal dome height to base radius ratio LH opt /  with respect to the 

water depth to base radius ratio LD / . It can be seen that the optimal shape of the 

spherical dome gets flatter with increasing water depth, but the optimal height to base 

radius ratio varies within a small range ( 61.0/58.0 ≤≤ LH opt ) for a wide range of 

practical water depths ( 30/5 ≤≤ LD ). For very deep water, the optimal height of the 

dome is approximately 3/1/ =LH opt  or 3/πα =opt  radians. 
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Fig. 2.13  Variation of optimal dome height LH opt /  with respect to water depth LD /  
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2.5 Concluding Remarks  

In this chapter, we have derived an analytical expression in the form of a power series 

for the thickness variation of a submerged spherical dome in a uniform strength design 

as governed by the Tresca yield condition. Numerical examples show that the sum of 

the first 9 terms in the power series is sufficiently accurately for practical applications. 

Further, the optimal subtended angle αopt (and the optimal dome height optH ) for the 

minimum weight design of these domes have been determined. For very deep water, it 

was found that the optimal height of the dome is approximately 3/1/ =LH opt  or 

3/πα =opt  radians. 

Although the present chapter considers only spherical domes, the next chapter 

will treat non-spherical domes where the aim is to determine the optimal thickness 

variation as well as the shape of fully stressed submerged domes for minimum weight. 
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            CHAPTER 3   

 

 

CCOONNSSTTAANNTT  SSTTRREENNGGTTHH  DDEESSIIGGNNSS  OOFF    

  SSUUBBMMEERRGGEEDD  GGEENNEERRAALL  DDOOMMEESS  

 

 

 

 

This chapter is concerned with the membrane analysis and optimal design of constant 

strength submerged domes. In addition to hydrostatic pressure, the domes are also 

subjected to selfweight and skin cover load, which are invariably present in this type of 

structure. Using membrane theory for thin shells and by adopting a fully stressed 

design, equations governing the meridional curve of submerged domes are derived 

with allowance for selfweight and skin cover load. The set of nonlinear differential 

equations, which correspond to a two-point boundary problem, is solved by the 

shooting-optimization method. Based on a family of fully stressed (constant strength) 

designs associated with a given water depth and dome height, the optimal dome shape 

for minimum weight is determined. 
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3.1 Introduction 
 
 
In 1959, Timoshenko and Woinowsky-Krieger (1959) presented the optimal shape for 

domes under hydrostatic pressure only. Royles et al. (1980) pointed out that the 

optimal shape of submerged domes is similar to the shape of a sea urchin, which is a 

member of marine invertebrates in the phylum Echinodemata. Figure 3.1 shows the 

calcareous shell of a sea urchin after its spines have been removed. Due to their 

similarity, the optimal shape of fully stressed submerged domes under hydrostatic load 

has been referred to as an Echinodome by Royles et al. (1980). So far, little work has 

been done on the optimization of fully stressed submerged domes with allowance for 

selfweight. Prompted by this fact, we focus our study on the membrane analysis and 

the optimal shape of fully stressed domes under selfweight, hydrostatic pressure upon 

submergence in water and skin cover load arising from attachments on the domes. 

 

 
 

Fig. 3.1  Calcareous shell of a sea urchin 
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3.2 Problem definition and basic equations 

3.2.1 Problem definition 

Consider a shell of revolution of height H and submerged under water at a depth D. 

Figure 3.2 shows the geometry of the submerged dome as defined by its meridian. 

Referring to the figure, 0r  is the distance from a point on the meridian to the vertical 

axis z, which is pointed in the gravity direction, and 1r  is the radius of curvature of the 

meridian. The principal radius r2 generates the middle surface of the dome in the 

direction perpendicular to the tangent on the meridian. Only dome shapes involving 

positive values of 1r  and 2r  are considered. A second coordinate system, defined by the 

arc length s along the meridian angle φ ,  is also shown in Fig 3.2. 
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Fig. 3.2  Coordinate systems and parameters defining the shape of submerged dome 
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By adopting a fully stressed design, the problem at hand is to determine the 

thickness variation of the submerged dome under hydrostatic, selfweight and skin 

cover load. The optimal shape of submerged domes for least weight condition is sought 

as part of the solution.  

 

3.2.2  Governing equations for membrane analysis of submerged domes  

Consider a dome subjected to three types of loads: (i) hydrostatic pressure 

( )zHDp wh +−= γ , (ii) selfweight hp aa γ=  where h is thickness that varies with 

respect to the angle φ  and (iii) skin cover load cp . The positive direction of these 

loads and their distributions are shown in Fig. 3.3. Note that the skin cover load cp  in 

Fig 3.3(c) is defined as force per unit surface area and is assumed to be constant in this 

chapter. However, the skin cover load is indicated as varying in Fig. 3.3c due to the 

projection of the skin cover load on the horizontal plane. In deriving the governing 

equations for submerged domes, resolution of the forces normal and tangential to the 

middle surface is appropriate. In this case, net components of the load’s normal np  and 

tangential sp  to the middle surface are given by 

 

( ) ( )zHDphp wcan +−++= γφγ cos  (3.1) 

( ) φγ sincas php +=  (3.2) 

 

respectively where aγ  is the specific weight of the dome material and wγ  is the 

specific weight of water. 
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      (a)  Hydrostatic pressure       (b)   Selfweight               (c)  Skin cover load 

Fig. 3.3  Load components on submerged domes 

 

By considering equilibrium of forces in the shell of revolution in the normal φ -

direction, one obtains the well known equation  

 

np
r
N

r
N

−=+
21

θφ  (3.3) 

 

where hN φφ σ=  and hN θθ σ=  are the membrane forces in the meridional and 

circumferential directions, respectively. Note that unlike typical analyses, which 

involve the determination of membrane forces for a defined geometry of the dome, the 

task at hand corresponds to the inverse of the problem where the geometry of the dome 

is to be determined for prescribed stresses in the two principal directions.   

To this end, consider the special case of a fully compressed dome where the 

meridian and circumferential stresses take on the same stress value 

 

0σσσ θφ −==  (3.4) 
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in which 0σ  is the allowable compressive stress. It is thus implicitly assumed that 

buckling of the dome will not occur and that the stress condition defined by Eq. (3.4) 

can be achieved under the load combination. 

By substituting Eq. (3.4) and Eq. (3.1) into Eq. (3.3), one obtains the condition for 

curvature variation of the dome i.e. 

 

( ) ( )
20

022

1

cos1
hr

hzHDrrph
r

wca

σ
σγφγ −+−++

=  (3.5) 

 

In order to facilitate the solution of Eq. (3.5), the following geometrical relations 

for the shell of revolution are required 

 

φd
dsr =1  (3.6a) 

φsin20 rr =  (3.6b) 

φcos0 dsdr =  (3.6c) 

 φsindsdz =  (3.6d) 

 

For generality, the following non-dimensional terms (denoted with over-bars) are 

introduced for the geometric and stress parameters 

 

H
DD = , 

H
LL = ,  (3.7a-b) 

H
r

r 0
0 = , 

H
hh = , (3.7c-d) 
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H
ll = , 

H
zz =  , 

l
ss = , (3.7e-g) 

0σ
c

c
p

p = , 
0σ

γ
α

Hw= , 
0σ

γ
β

Ha=  (3.7g-i) 

  

where l is the curve length for one-half of the meridian and s is the arc length along the 

meridian as measured from the apex of the dome (see Fig. 3.2). Using the geometrical 

relations of Eq. (3.6) and definitions in Eq. (3.7), the following differential equation 

governing the shape of the meridian in normalized form can be obtained 

 

( )[ ]
rh

lhzDrrph
sd

d c φαφβφ sin)1(cos0 −+−++
=  (3.8) 

 

In this case, the shape of the meridian, which is defined by the angular change of 

the middle surface with respect to the arc length, depends on all three load 

components.  

Although Eq. (3.8) involves only a first-order differential equation, it must be 

solved in combination with the equilibrium condition of the shell in the meridian 

direction. To this end, the equation for equilibrium of forces in the s-direction, which is 

well known, is given by 

 

( ) 00 cos rpNNr
ds
d

ss −=− φθ  (3.9) 

 

By substituting Eqs. (3.2), (3.4), (3.6) and  (3.7) into Eq. (3.9), one obtains the 

variation of the meridian thickness in normalized form as 
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( ) φβ sinlph
sd
hd

c+=  (3.10) 

 

Thus Eqs. (3.8) and (3.10) correspond to the equilibrium condition for the shell of 

revolution subjected to hydrostatic pressure, selfweight and skin cover load. The two 

equations may be solved in conjunction with the following normalized geometrical 

relations 

 

φcos0 l
sd
rd

=  (3.11) 

φsinl
sd
zd

=  (3.12) 

 

which are obtained from Eqs. 3.6(c) and (d) using the definitions in Eq. (3.7). Note that 

the shape of the fully stressed submerged dome is characterized in terms of the 

Cartesian coordinates i.e. normalized 0r  and z , and is parameterized in terms of the 

normalized arc length s , which is measured from the apex. An auxiliary result that 

forms a part of the solution includes the variation of the subtended angle φ  and the 

variation of the dome thickness with respect to the normalized arc length s . 
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3.2.3 Boundary conditions for membrane actions in fully stressed submerged 

domes 

Because substantial forces are developed in the dome due to the combined effects of 

hydrostatic pressure, dome selfweight and skin cover load, an adequate foundation 

must be provided for the dome in order to ensure its integrity. Typically, domes are 

supported by a ring foundation at the base of the dome, where the loads are assumed to 

be transmitted to the ring foundation via membrane actions only. However, for the 

membrane theory to be valid for the aforementioned problem, the forces acting on the 

dome must be in equilibrium with the forces acting on the ring foundation, and the 

resulting deformation of the dome and ring foundation must be compatible at their 

boundary. In order to eliminate bending in the dome, which is pre-requisite for the 

membrane theory used here, the circumferential lengthening of the dome at the base 

must be equal to that of the supporting ring foundation (due to the horizontal 

component Nrs of meridian force Ns, see Fig. 3.4).  

φ
NNzs
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Fig. 3.4  Horizontal and vertical components of the meridian force Ns  

acting on the ring foundation 
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The stress in the supporting ring is given by Novozhilov (1970) 

 

b
k

s

k

rs
k

LNrN
φσ cos0

Ω
−=

Ω
=  (3.13) 

 

where kΩ  is the cross-sectional area of the support ring, bφ  is the subtended angle at 

the dome base, L is the radius of the support ring, approximately equal to the radius at 

the dome base. The hoop stress at the dome base is equal to  

 

b
b h

Nθσ =  (3.14) 

 

where bh  is the thickness at the dome base. By equating the hoop strain of the dome 

base to the extensional strain of the supporting ring, one obtains 

 

b
b

kk

s

Eh
N

E
LN θφ

Ω
=− cos  (3.15) 

 

where E  denotes the Young’s modulus of the dome and kE denotes the Young’s 

modulus of the supporting ring and the Poisson ratio has been assumed to be equal to 

zero for both materials for simplicity. Therefore, the required cross-sectional area of 

the ring foundation may be calculated by the formula of Novozhilov (1970) 

 

bb
s

k
k Lh
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E φΩ

θ

cos−=  (3.16) 



Chapter 3: Constant Strength Designs of Submerged General Domes 

 50

Since the dome is assumed to be fully stressed, the circumferential stress and the 

meridian stress are equal to 0σ  and will have the same sign. Since the required area of 

the cross-section of the support ring has to be positive, Eq. (3.16) implies that in order 

for the dome to be in a fully stressed membrane state 

 

0cos <bφ  (3.17) 

 

The inequality in Eq. (3.17) means that the subtended base angle bφ  of a fully 

stressed submerged dome has to be larger than 2π , or conversely, a dome with a 

subtended base angle bφ  of less than 2/π  cannot be under a fully compressive stress 

state. Note that this condition is independent of the hydrostatic pressure, dome 

selfweight or imposed skin cover load. 

 

 

3.3 Results and Discussions 

In this section, numerical solutions for the dome thickness and shape are determined 

for two load cases. The first load case corresponds to purely hydrostatic pressure 

whereas the second load case consists of hydrostatic pressure, selfweight and skin 

cover load. 

 

3.3.1 Weightless constant strength submerged domes 

The thickness of the fully stressed dome can be represented as a function of elevation z 

by substituting the geometrical relation φsindsdz =   into Eq. (3.10). This leads to  
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cph
zd
hd

+= β  (3.18) 

 

For the case of hydrostatic pressure only, the selfweight and skin cover load are 

zero leading to 0== cpβ . Therefore, Eq. (3.18) reduces to 

 

0=
zd
hd  ⇒

D
h

hh c
c == = constant (3.19) 

 

Equation (3.19) implies that, for a fully stressed condition, a momentless dome 

has a constant thickness when subjected to hydrostatic pressure only.  

In order to obtain the shape of such a submerged dome, one needs only to solve Eqs. 

(3.8), (3.11) and (3.12) since the thickness was determined to be constant. Therefore, 

the governing equations for this problem are  

 

[ ]
rh

lhzDr
sd

d

c

c φαφ sin)1(0 −+−
=  (3-20 a) 

φcos0 l
sd
rd

=  (3-20 b) 

φsinl
sd
zd

=  (3.20 c) 

 

For a given water depth D , specific weight of water wγ , dome height H, constant 

thickness ch , and an allowable compressive stress 0σ  (note that 0σγα Hw= ), there 

is a unique shape for the fully stressed submerged dome (Timoshenko and Woinowsky-

Krieger, 1959 and Royles et al., 1980). In order to determine this dome shape, the 

foregoing equations 3.20(a-c) are solved together with these boundary conditions that 
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( ) 00 =φ  (3.21a) 

( ) 000 =r  (3.21b) 

( ) ( ) 11,00 == zz  (3.21c) 

 

The set of nonlinear differential equations and boundary conditions i.e. Eqs. 

(3.20)-(3.21) constitute a two-point boundary value problem that can be solved using 

the shooting-optimization method as proposed by Wang and Kitipornchai (1992). In 

this method, the two-point boundary value problem is first converted into a set of 

initial value problems and the differential equations integrated forward by using the 

fourth-order Runge-Kutta algorithm (Kreyszig 1993). The only terminal boundary 

condition ( ) 11 =z  to be satisfied can be taken care of by minimizing the objective 

function Φ  with respect to the curved length l , where Φ  is defined by 

 

( ) 11min −= z
l

Φ  (3.22) 

  

However, this optimization problem must be subjected to the inequality constraint 

 

( ) 21 πφ ≥  (3.23) 

 

where ( )1z  and ( ) bφφ =1  are obtained from forward integration of the system of first 

order differential equations Eqs. 3.20(a-c). Note that the subtended angle at the base 

needs to satisfy the inequality 2/πφ ≥b , as noted earlier, in order to ensure that the 

deformation of the dome at the base is compatible with the circumferential lengthening 
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of the ring foundation. The foregoing optimization problem can be solved using the 

generalized reduced gradient code GRG2 (Ladson et al. 1978). In this chapter, the 

accuracy of the solution is ensured by taking a very small step size 001.0=sΔ  in the 

forward integration in the Runge-Kutta algorithm (Kreyszig 1993) 
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Fig. 3.5  Coordinate system for the Runge-Kutta forward integration 

 
 

As an example, consider a dome of height 1000=H cm and submerged at 

different water depths of 2000=D cm, 2500 cm, 3000 cm and 3062 cm. The 

following values are assumed in the calculation: 10=ch cm, 310.1 −=wγ kgf/cm3 and 

=0σ 75 kgf/cm2. These values give rise to =α 0.004. Using the shooting optimization 

method, the shape of the submerged dome at different depths is plotted in the 

normalized coordinates  r  and  z  in Fig. 3.6. The final results indicated that the 

normalized curve length are l  = 1.7240, 1.5355, 1.5071, 1.5732 for these depths. It can 

be seen from Fig. 3.6 that the submerged dome changes from a shape that is relatively 
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flat for shallow water to one that is highly curved for deep water. Note that the 

maximum water depth for this dome is 062.3=D  and is associated with the limiting 

πφ =b  at its base. This limiting dome shape is often referred to as the Echinodome 

shape, which is easily understood by its remarkable resemblance to the shape of the sea 

urchin in Fig. 3.1 with the submerged dome shape at 3062.3=D  in Fig. 3.6. Also 

note that for the case of 2=D  the slope of the meridian is nearly vertical at the base 

of the dome with the angle bφ  slightly greater than 2/π . 
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Fig. 3.6  Weightless fully stressed submerged dome shapes  

under various water depths 

 

Although the above problem has been solved and well documented (see for 

example Timoshenko and Woinowsky-Krieger, 1959 and Royles et al., 1980), it should 

be pointed out that our present formulation and solution technique have the following 

advantage.  Owing to the complicated shape of the dome, Timoshenko and 

Woinowsky-Krieger (1959),  Royles et al. (1980) and Sofoluwe et al. (1981) divided 

their calculations into three segments  when integrating the dome shape in the x (or z) 

direction. The three segments, which depend on the value of the angle φ , were 
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necessary in order to avoid an infinite slope being encountered in the numerical 

solution. In the method proposed in this chapter, the entire shape of the dome can be 

determined without dividing the meridian into different segments since the integration 

is carried out using the arc length coordinate s and there is no difficulty in the solution 

for infinite slope. Although not explicitly shown in this chapter, the numerical solution 

for the shape of a submerged dome under hydrostatic pressure alone compares well 

with that presented by Timoshenko and Woinowsky-Krieger (1959) and Sofoluwe et 

al. (1981). 

 

3.3.2 Constant strength of submerged general domes 

For the second load case, the fully stressed dome is subjected to hydrostatic pressure, 

selfweight and a skin cover load. Unlike the case of hydrostatic pressure only, the 

dome thickness, which is defined by Eq. (3.10), cannot be uncoupled from the other 

three nonlinear equations. Consequently, one has to solve a set of four nonlinear 

ordinary differential equations as given by Eqs. (3.8), (3.10), (3.11) and  (3.12) 

 

( )[ ]
rh

lhzDrrph
sd

d c φαφβφ sin)1(cos −+−++
=  (3.24a) 

( ) φβ sinlph
sd
hd

c+=          (3.24b)  

φcos0 l
sd
rd

=          (3.24c) 

φsinl
sd
zd

=         (3.24d) 

where zrh ,,, 0φ  and l  are the unknowns. This system of ordinary differential 

equations is solved in conjunction with these boundary conditions: 



Chapter 3: Constant Strength Designs of Submerged General Domes 

 56

 

( ) 00 =φ        (3.25a)  

( ) 00 hh =       (3.25b) 

( ) 00 =r       (3.25c) 

( ) ( ) 11,00 == zz       (3.25d) 

 

where  0h   is the non-dimensional thickness at the apex of the dome. It should be noted 

that for this problem, the thickness is no longer constant but varying along the 

meridional curve. 

Although the number of equations to be solved increases by one for the case of 

combined hydrostatic pressure, selfweight and skin cover load, these equations can 

also be treated as a two-point boundary value problem and solved using the same 

numerical technique described above for hydrostatic pressure only. The terminal 

boundary condition is satisfied by minimizing the objective function with respect to 

the curved length  l  

 

( ) 11min −= z
l

Φ  (3.26)  

 

and the optimization problem is subjected to the inequality constraint given in (3.23). 

The values ( )1z  and ( )1φ  are obtained from forward integration of the system of first 

order differential equations Eq. 3.24(a-d). Since the shape of submerged domes 

subjected to combined hydrostatic pressure, selfweight and skin cover load has not 

been hitherto investigated, it is instructive to examine the influence of pertinent 

parameters on the shape of submerged domes.  
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3.3.2.1   Influence of water depth on dome shapes 

Studies on submerged arches (Gavin and Reilly, 2000 and Chai and Kunnath, 2003) 

indicated that the shape of a momentless arch changes for a changing water depth. For 

deep water, the large hydrostatic pressure results in a funicular shape that tends to be 

circular, resulting in a small span length of the arch. On the other hand, shallow water 

results in a funicular shape that tends to be parabolic, resulting in a relatively long 

span. Although the observation was made on the basis of 2D structures, a shape change 

under different water depth is nonetheless expected of submerged domes.  

In this section, the shape of a fully stressed submerged dome is investigated for 

three water depths, namely D = 2000 cm, 2500 cm and 3000 cm. The height of the 

dome is taken as H = 1000 cm and the thickness of the dome is taken as 0h  = 10 cm at 

the apex. The specific weight of water is taken as 310.1 −=wγ kgf/cm3 while the 

specific weight of the dome material is taken as 0024.0=aγ  kgf/cm3.  The uniform 

skin cover load is assumed to be cp = 0.1 kgf/cm2, which is significant compared to the 

weight of the dome. The dome material is assumed to be uniformly compressed to an 

allowable stress of =0σ 75 kgf/cm2. The shape of the meridian as obtained using the 

shooting optimization technique is plotted in Fig. 3.7 using the normalized Cartesian 

coordinates  0r  and  z .  The same step size of 001.0=Δs  is used in this example. 
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Fig. 3.7  Submerged dome shapes under selfweight and skin cover load  

for various water depths 

 

It can be seen from Fig. 3.7 that the meridional shape of the dome changes under 

different water depths. Although the general shape of the dome under combined 

hydrostatic pressure, selfweight and skin cover load is similar to that under hydrostatic 

pressure alone, the base horizontal coordinate is smaller in the case of combined 

loading. For example, for the same normalized water depth of =D 3, the base 

horizontal coordinate is br = 0.6636   for the combined loading in Fig. 3.7, which is 

considerably larger than the base horizontal coordinate of br = 0.4291 for hydrostatic 

pressure alone. The expansion in the base horizontal coordinate indicates the 

importance of including the effect of selfweight and skin cover load for determining 

the membrane (momentless) shape of the dome. It is also of interest to compare the 

dome shapes under different water depths but in combination with selfweight and skin 
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cover load. For the combined loads shown in Fig. 3.7, the base horizontal coordinate of 

the meridian reduces from br = 0.8461 to br = 0.6636 at the base as the water depth 

increases from  =D 2.5 to 3=D . In contrast, the dome exhibits a more significant 

reduction in the base horizontal coordinate when subjected to hydrostatic pressure 

alone. For the same increment of water depths from =D 2.5 to 3=D , the horizontal 

coordinate at the base reduces from br =0.7990 to br =0.4291 as shown in Fig. 3.6. For 

the combined loads of hydrostatic pressure, selfweight and skin cover load, the change 

in the base horizontal coordinate is 21.6% as compared to 44.9% for the case of 

hydrostatic pressure alone. This comparison indicates that water depth exerts a lesser 

influence on the shape of fully stressed domes in the presence of selfweight and skin 

cover load. It can also be seen that the dome in Fig. 3.7 approaches an Echinodome-

like shape with increasing water depth. 

Although not explicitly  shown in Fig. 3.7, the thickness of the dome increase 

from the apex to the base. The thickness variation with respect to z , which is governed 

by Eq. (3.15), depends only on selftweight, skin cover load and dome height, but does 

not depend on hydrostatic pressure. 

 

3.3.2.2 Effect of selfweight on dome shapes 

In the application of submerged domes, various materials may be used for their 

construction. Since the weight of these materials is expected to have an influence on 

the membrane shape of the dome, the influence of selfweight is examined through a 

numerical example using the normalized selfweight parameter β  which is defined as 

0/σγβ Ha= . 
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Fig. 3.8  Fully stressed submerged dome shapes with different selfweight parameter β  

 
 

Consider a fully stressed dome of height H = 1000 cm having an apex thickness 

h0 = 10 cm submerged at the water depth D = 3000 cm. The allowable compressive 

stress of the dome material is assumed to be =0σ 75 kgf/cm2. Three values are 

selected for the selfweight parameter for comparison, namely 0=β which 

corresponds to a weightless condition, 1.0=β  and 5.0=β . Note that the skin cover 

load skin is not included in this example i.e. cp = 0 kgf/cm2 so that the effect of 

selfweight on the dome shapes can be readily observed. The resulting dome shapes are 

plotted in Fig. 3.8, which indicates that the dome is characterized by a slight reduction 

in curvature of the meridian for increasing selfweight. In particular, the dome base 

radius increases with increased selfweight, which means that the dome shape deviates 

from that of the Echinodome shape as the selfweight parameter β  increases. It is also 

evident from Fig. 3.8 there is a cross-over point where the coordinates of the meridian 

remains relatively constant despite the changing values of β . For this example, the 
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cross-over point occurs in the vicinity of  =0r 0.673 and  =z 0.690.  

 

3.3.2.3 Optimization of Submerged Domes  

In characterizing the shape of fully stressed submerged domes, it is important to note 

that, for a given water depth and dome height, the shape of the domes is not unique but 

rather consists of a family of curves each of which is associated with a different value 

of the subtended base angle bφ  and dome apex thickness ho. Since each shape in the 

family of curves gives rise to a different overall weight of the dome, the variation of 

the dome weight with respect to base angle bφ  is important especially when the 

optimal shape of the dome is to be determined. To this end, the weight of the 

submerged dome is numerically integrated using the following expression in 

dimensionless form 

 

sdrhl
H

WW
a

∫==
1

0
032πγ

 (3.27) 
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Fig. 3.9  Variation of submerged dome weight respect to subtended base angle bφ  

 

As an example, consider a dome height of H = 1000 cm, selfweight of 

0024.0=aγ  kgf/cm3, skin cover load of cp = 0.5 kgf/cm2 and an allowable stress of 

=0σ 75 kgf/cm2. The overall normalized weight of the dome is calculated for three 

normalized water depths of  =D 5, 10 and 15 and is plotted against the subtended base 

angle bφ  in Fig. 3.9. Note that, in order to ensure compatible deformation between the 

ring foundation and the base of the dome, the subtended angle at the base must satisfy  

2/πφ ≥b  as discussed earlier. The feasible solution space for the overall dome weight 

therefore lies to the right of the vertical line 2/πφ =b   in Fig. 3.9. It can be seen from 

the figure that the normalized dome weight decreases monotonically with increasing 

values of the subtended base angle bφ . Thus the problem of determining the optimal 

shape, which is defined by the minimum weight of the submerged dome, is equivalent 

to the problem of maximizing the subtended base angle bφ . Note that even though the 
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size of the dome decreases with increasing water depth, as seen earlier in Fig. 3.7, the 

overall weight of the dome actually increases with increased water depth. The increase 

in overall dome weight is due to the increased thickness of the dome.  

For a given water depth and dome height, the minimization of dome weight under the 

combined hydrostatic pressure, selfweight and skin cover load may be stated 

mathematically as  

 

( )1max
,0

φφΦ == blh
 (3.28) 

 

and subjected to the inequality constraints 

 

( ) 21 πφ ≥  (3.29) 

( ) 71011 −≤−z  (3.30) 

 

The inequality in Eq. (3.29) is equivalent to Eq. (3.17) which is to ensure 

compatible deformations between the dome at the base and the ring foundation. The 

inequality condition in Eq. (3.30) ensures the satisfaction of the terminal boundary 

condition ( ) 11 =z . It should be noted that the decision variables in the optimization 

problem are the apex thickness 0h  and the dome’s curve length l . The variation of the 

thickness is determined once these two decision variables are known. 
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Fig. 3.10  Optimal shapes of submerged domes with respect to water depths 

 

As an example of the optimal shape of submerged domes, the following 

parameters are assumed: dome height H = 1000 cm, selfweight =aγ 0.0024 kgf/cm3, 

skin cover load cp = 0.5 kgf/cm2 and allowable stress =0σ 75 kgf/cm2. The optimal 

shape of the dome is shown in Fig. 3.10 for three normalized water depths of =D 2, 5 

and 15. It can be seen that the water depth affects the lower half of the dome i.e. 

5.0≥z  more so than the upper half of the dome. The optimal shape of the submerged 

dome is also characterized by an increased curvature in the lower half of the dome for 

increased water depth. The increased curvature for domes submerged in deep water is 

accompanied by a reduced base radius. The increased water depth, however, has a 

diminishing influence of the optimal shape of the dome. For example, for a change of 

water depth from =D 2 to 5 (2.5-folded increase), the base radius reduces from =br   

0.4764 to 0.2808, which represents a 41.1% reduction. On the other hand, for the 

change in water depth from =D 5 to 15 (threefold increase), the base radius reduces 
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from br =0.2808 to 0.1698, which represents a smaller reduction of 39.5%. For 

completeness in the presentation of results, Table 3.1 shows the optimal value of the 

base angle optbφ , apex dome thickness opth0 , and curve length optl  where the subscript 

opt is used to denote the optimal value. It can be seen that the optimal dome thickness 

is significantly increased for a large water depth. For the normalized water depth of 

=D 15, the normalized dome thickness at the apex is opth0  = 0.004364 as compared to 

the thickness of opth0 = 0.000361 for the water depth of =D 2. The increase in 

thickness is 12.1 times that of the thickness associated with  =D 2. The increased 

dome thickness however is accompanied by a slight reduction in the curve length of 

the dome. Although the variations of dome thickness may be different for different 

water depths, the thicker shells needed for fully stressed domes in deep water 

nonetheless results in an increase in the overall weight of the dome.  

 
Table 3.1  Optimal values of base angle optbφ , apex thickness opth0 ,  

and curved length optl  
 

Water depth 
D  

Subtended base 
angle optbφ  

Apex thickness 
opth0  

Curve length 
optl  

2 1.6942 0.000361 1.2446 
5 2.1044 0.001225 1.2775 
15 2.4610 0.004364 1.3603 

 



Chapter 3: Constant Strength Designs of Submerged General Domes 

 66

 

3.4 Concluding remarks 

Motivated by recent studies of funicular arches in submarine applications, this chapter 

extends the analysis to submerged domes where pure membrane actions are assumed. 

Equations governing the geometry of fully stressed submerged domes under combined 

hydrostatic pressure, selfweight and skin cover load are derived. These equations 

describe the curvature and thickness variation of the dome as well as the Cartesian 

coordinates of its meridian. For the special case of a weightless dome without skin 

cover load, the thickness of the dome was found to be constant when subjected to 

hydrostatic pressure only. The shape of the dome was also found to agree well with the 

shape currently reported in the literature.    

Although the set of governing equations for submerged domes is highly nonlinear, 

the shooting optimization technique currently available in the literature was found to 

be well suited for solving this problem. A notable advantage of the equations derived in 

this chapter is the parameterization of the equations using the arc length s as measured 

from the apex of the dome. Such parameterization allows the entire shape of the 

submerged dome to be determined in a single integration process whereas previous 

methods cannot determine the Cartesian coordinates of the dome once vertical or 

infinite slope is encountered in the meridian. Parametric studies of dome shapes under 

different water depths and selfweight also led to an investigation of the optimal shape 

of submerged domes. Numerical examples indicated that the airspace enclosed by the 

optimal dome reduces in the presence of large hydrostatic pressure. The reduced 

airspace is accompanied by a significant increase in the dome thickness, which in turn 

results in an increased overall weight of the dome 

.



 

 67

 

 

CHAPTER 4 

 

  

EENNEERRGGYY  FFUUNNCCTTIIOONNAALLSS  AANNDD  RRIITTZZ  MMEETTHHOODD  

FFOORR  BBUUCCKKLLIINNGG  AANNAALLYYSSIISS    OOFF  DDOOMMEESS  

  

This chapter is concerned with the elastic, axisymmetric buckling analysis of 

moderately thick domes under rotational loads. The domes have orthotropic properties 

which include the isotropic case as a specialized case. In order to capture the effect of 

transverse shear deformation, which is significant for moderately thick domes, Mindlin 

shell theory is used. Based on Mindlin shell theory, the energy functional is derived 

first. By using the Ritz method, the total potential energy functionals are minimized 

with respect to the parameterized admissible displacement functions to yield a system 

of homogenous equations. These equations forms the governing eigenvalue equation. 

With the aid of the commercial software package Mathematica (Wolfram, 1999), a 

computer code was written to solve the eigenvalue equation for the critical buckling 

pressure. 
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4.1. Introduction 

 

The literature survey as reported in Chapter 1 provided the previous treatments of 

moderately thick domes. Most of these studies considered spherical domes and 

adopted shallow shell theory. The buckling formulation and analysis developed in this 

chapter are, however, applicable to domes of any meridional shape. Since the critical 

buckling pressure for moderately thick domes may be sensitive to the transverse shear 

deformation which depresses the buckling capacity, the effect of transverse shear 

deformation is included in the energy formulation. 

The buckling analysis is carried out using the well accepted Ritz method, 

primarily for its simplicity and ease of implementation. The automation of the Ritz 

method for any boundary condition is achieved by approximating the shell 

displacement components as the product of one-dimensional polynomial functions 

with the boundary equations raised to appropriate powers so that the geometric 

boundary conditions are satisfied at the outset. By taking an appropriate number of 

Ritz function terms in the solution, the critical buckling pressure of rotational shells 

can be obtained accurately. This convergence characteristic of the solutions is 

demonstrated by comparing the results of spherical shells with existing solutions. 

Using a computer code developed in this study, new buckling solutions for moderately 

thick spherical and parabolic domes of various dimensions and boundary conditions 

are presented. These solutions are deemed useful to engineers engaged in the design of 

dome structures. 
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4.2 Governing Eigenvalue Equation 

4.2.1 Geometrical properties of domes 

In order to define the dome geometry, two principal radii of curvature: 1r  and 2r  have 

to be specified. The radius 1r  is the principal radius of curvature of the meridian 

whereas the principal radius r2 generates the middle surface of the dome in the 

direction perpendicular to the tangent on the meridian.  The principal radii of 

curvature, 1r  and 2r , which subsequently appear in the governing equations of shell 

buckling, may be determined from the generating curve ( )zfr =0  using the following 

well known relations (Dym, 1974) 
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Although the preceding equations are expressed in terms of the vertical 

coordinate, z, the deformation of rotational shells is often expressed in terms of the 

coordinate s, which is the arc length measured from the apex of the dome (see Fig. 

4.1). In order to facilitate the transformation of functions associated with the problem, 

which include strains, one observes the following geometric relation between ds and 

dz, as indicated in Fig. 4.1, 
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Fig. 4.1  Coordinate systems and parameters defining the shape of  dome structures 

 

Thus, for any function g(z), one may express its derivatives in either the z or s 

coordinates by the following transformation equation: 
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4.2.2 Mindlin Shell Theory 

Generally, shell analyses are based on the classical thin shell theory (Aron 1874, Love 

1888), in which the effect of transverse shear deformation is normally neglected. 

However, when dealing with moderately thick shells, the classical thin shell theory 

under-predicts the deflections and over-predicts the buckling loads and natural 

frequencies due to the effect of transverse shear deformations. As we are dealing with 

moderately thick shells, it is necessary to adopt a more refined shell theory such as 

Mindlin shell theory that will allow for the effects of transverse shear deformation. 

4.2.2.1 Assumptions 

In Mindlin shell theory, the following assumptions are made (Mindlin 1951, Reddy 

2004): 

• The transverse normal is inextensible. 

• Normals to the reference surface of the shell before the deformation remain 

straight but not necessarily normal after the deformation. 

• The shell deflections are small so that strains may be treated as infinitesimal. 

• The transverse normal stress is negligible so that the plane stress assumptions 

can be invoked. 

• The normals during bending undergo constant rotations about the middle 

surface while maintaining the straightness and thereby admitting a constant shear strain 

through the shell thickness. The constant rotations of the normals to the middle surface 

now become unknown independent variables and are denoted by ( )zψ . 

The first four assumptions are the same as their classical thin shell counterparts. 

The last assumption that allows the constant rotation of normal is the main difference 

between Mindlin shell theory and the classical thin shell theory. The allowance of 
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constant rotation implies that transverse shear strain is constant through the thickness 

of the shell. This, however, contradicts the fact that the actual transverse shear strain 

distribution is parabolic through the thickness. As the constant strain (stress) violates 

the statical requirement of vanishing shear stress at the surface of the shell, a shear 

correction factor 2κ was proposed by Mindlin (1951) to compensate for the error. He 

pointed out that for an isotropic plate, the shear correction factor 2κ  depends on 

Poisson’s ratio v and it may vary from 76.02 =κ  for v = 0.3 to 91.02 =κ  for v = 0.5. 

On the other hand, by comparing the constitutive Mindlin shear force with the one 

proposed by Reissner (1945), who assumed a parabolic shear stress distribution at the 

outset of his plate theory formulation, the implicit shear correction factor becomes 

6/52 =κ .  This value of the shear correction factor has been commonly used for the 

analyses of Mindlin plates and shells (see for example, Liew et al. 2004 and Hou et al. 

2005) and 6/52 =κ  will also be used in this study. 

 

4.2.2.2 Displacement Components 

Based on Mindlin shell theory, the displacement components of an arbitrary point at a 

distance ζ  from the shell mid-surface are given by (Chao et al. 1988) 

 

 ( ) ( ) ( )zzuzu ζψζ +=,~           (4.6a) 

( ) ( )zwzw =ζ,~   (4.6b) 

 

where u is the meridional displacement, w is the radial displacement of the middle 

surface and ψ  is the rotation of the middle-surface in the meridional direction. It 

should be apparent that Eq. (4.6a) assumes that the meridional displacement varies 
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linearly across the thickness of the shell. Note that by setting  ( )
z
wz

∂
∂

=
~

ψ , one recovers 

the displacement fields of classical thin shell theory. 

 

4.2.3 Strain-Displacement Relations 

According to Kraus (1967), the strain-displacement relations for small deformation of 

linearly elastic axisymmetric rotational shells are given by: 
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where θε  is the normal strain in the direction of the parallel circles, sε  is the normal 

strain in the meridional direction, and ζγ s  is the transverse shear strain associated with 

rotation of the shell in the meridian direction. 

By invoking Eq. (4.2), the kinematic equations of Eqs. (4.7a-c) may be re-written as: 
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4.2.4 Stress-Strain Relations 

In order to accommodate a more general orthotropic shell, the stress-strain relation is 

assumed to follow the orthotropic Hooke’s law in the form given by (Chao et al. 1988) 
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where θσ  is the normal stress in the direction of the parallel circles, sσ  is the normal 

stress in the meridional direction, and ζτ s  is the transverse shear stress, and 
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sQQ ν1112 =  and   ςκ sGQ 2
44 =    (4.10b) 

 

where sE , Eθ , sν  and θν  are the Young’s moduli and Poisson’s ratios in the direction 

of the meridian and parallel circle, respectively, and ζsG  is the shear modulus in the 

ζ−s  plane. The parameter 2κ is a shear correction factor introduced to compensate 

for the error inherent in the assumption of a constant shear strain (stress) in Mindlin 

shell theory. The commonly accepted value of 2κ = 5/6 is adopted for the correction 

factor in this chapter.  
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4.2.5 Derivation of Energy Functionals 

For an assumed kinematically admissible displacement field for the middle surface, the 

elastic strain energy functional U of the rotational shell is defined as (Chao et al. 1988) 

 

( )dVU
V ssss∫ ++= ζζθθ γτεσεσ

2
1  (4.11) 

 

In view of the stress and strain relations Eq. (4.9), one obtains  
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where the incremental volume dV is given by  
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In view of Eqs. (4.8) and (4.12b) and after integrating Eq. (4.12) from θ  = 0 through 

to π2 , and using the following parameters: 
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one obtains the following expression for the elastic strain energy of the rotational shell 
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In applying the Ritz method, the work done by the external forces in moving from 

one configuration to another configuration must be included in the estimation of the 

total potential energy. To that end, the work done by the buckling pressure, according 

to Kawai (1974) and Chao et al. (1998), is given by 
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where θN , sN  and sNθ  are taken as the initial membrane forces due to the critical 

buckling pressure (see Fig. 4.2).  Note that by virtue of axisymmetry displacements in 

the assumed buckling mode of the dome, the in-plane shear force θsN  vanishes i.e.  
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0=θsN        (4.16) 
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Fig. 4.2  Membrane forces in an axisymmetrically loaded domes 

 

Furthermore, the initial membrane forces due to the critical buckling pressures 

can be defined in the form of:  

 

θθ pnN = , ss pnN = , (4.17) 

 

where  p depends on the external loading conditions, and sn , θn  are parameters 

dependent on the geometry of the rotational shell, and  
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By substituting Eqs. (4.16), (4.17) and (4.18a-f) into Eq. (4.15), one obtains the 

following functional for the work done by the buckling pressure 
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For convenience, the coordinates and length parameters are normalized by a 

reference length H, which is the height, or by h , which is the thickness of the shell, 

and the critical pressure and material properties are normalized by an effective 

Young’s modulus E , which according to Tsai and Pagano (1968) may be taken as 

( ) ( ) θEEE s 8/58/3 +=   for orthotropic composites, i.e. 
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By adopting the foregoing non-dimensional terms, the total potential energy 

functional Π  of the rotational shell may be written in normalized form as 

 

WU +=Π  (4.21) 
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where non-zero terms ijA  are related to the material properties by: 

 

( )
E
E

r

r
E

vvQ

r

rA s θθ

ζξ

ζξ

ζξ

ζξ

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

+

+
=

−

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

+

+
=

2

111

2

1
11

1

1
1

1

1
 (4.24a) 

E
E

A s θν
=12  (4.24b) 

( )
E
E

r

r
E

vvQ

r

rA ss

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

+

+
=

−

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

+

+
=

1

222

1

2
22

1

1
1

1

1

ζξ

ζξ

ζξ

ζξ
θ   (4.24c) 



Chapter 4: Energy Functionals and Ritz method for Buckling Analysis of Domes 

 80

( )
E

vvG

r

rA ss θζκ
ζξ

ζξ
−

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

+

+
=

1

1

1 2

2

1
44        (4.24d) 

 

The total potential energy, as expressed in terms of unknown normalized 

displacement and rotation components u , w  and ψ  in Eqs. (4.22) to (4.24), is in a 

suitable form for buckling analysis where its stationary condition is sought to yield the 

critical buckling pressure. 

 

 

4.3 Ritz method for buckling analysis 

4.3.1 Introduction 

In 1909, Walter Ritz published a paper that demonstrates his method for minimizing a 

functional, and determining the frequencies and mode shapes of structures. Since then, 

the Ritz method has been widely used because of its simplicity in implementation. 

Two years after Ritz’s paper (1909), Rayleigh (1911) published a book where he 

complained that Ritz had not recognized his similar work (Rayleigh, 1877). Therefore 

it is sometime referred to as the Rayleigh-Ritz method. However, Leissa (2005) 

investigated carefully the historical works of Rayleigh and Ritz and arrived at the 

conclusion that Rayleigh’s name should not be attached to the Ritz method.  

In the Ritz method, the displacement function, )(zℜ  is approximated by a finite 

linear combination of trial functions in the form 
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in which )(zpi  are the approximate functions which individually satisfy at least the 

geometric boundary conditions to ensure convergence to the correct solutions. The 

static boundary conditions need not be satisfied by these approximate functions. By 

minimizing the energy functional ∏  with respect to each of the unknown coefficients 

ci, a set of homogeneous equations is obtained as follows 

 

;0=
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    Ni ,......,2,1=  (4.26) 

 

For buckling and vibration problems, the above set of homogeneous equations is 

reduced to eigenvalue and eigenvector problems.  

The exact solution is obtained if infinite terms are adopted in Eq. (4.25). 

However, it is impractical to use an infinite number of terms and so the number of 

terms is usually truncated to N terms in applications. The choice of the approximate 

functions is very important in order to simplify the calculations and to guarantee 

convergence to the exact solution. Some of the commonly used trial functions in the 

Ritz method for plates and shells analysis are orthogonal characteristic beam 

polynomials (Bhat 1985), spline and B-spline functions (Mizusawa 1986; Vermeulen 

and Heppler 1998);  pb-2 Ritz formulation (Lim and Liew 1994, Liew et al. 1995 and 

Liew and Lim 1995); trigonometric functions (Lim et al. 2003) and two dimensional 

polynomial functions with appropriate basic functions (Liew 1990; Liew and Wang 

1992, 1993; Geannakakes 1995).  Among them, the latter trial functions can be 
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modified and used for the analysis of axisymmetric rotational shells with general shape 

and boundary conditions while the others may not be so convenient. Moreover, the 

computational accuracy may also be increased since the polynomial functions admit 

exact calculations of differentiation and integration of the functions (Liew et al. 1998). 

Therefore, in this study, mathematically complete, one-dimensional polynomial 

functions are adopted together with basic functions comprising boundary equations 

that are raised to appropriate powers in order to ensure the satisfaction of the geometric 

boundary conditions. 

 

4.3.2   Ritz formulation 

As noted earlier, buckling analysis of moderately thick shells of revolution when 

treated as an eigenvalue problem may be solved by the Ritz method where the method 

lends itself to yield reasonably accurate results. In using the Ritz method, 

kinematically admissible Ritz functions are assumed for the deflection and rotation 

components of the middle surface of the rotational shell. To that end, the normalized 

displacement and rotation components are approximated by polynomials as follows: 
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where N1, (N2 – N1) and  (N3 – N2) correspond to the number of the polynomial terms 

and ci the unknown coefficients for the displacements and rotation and the functions pi 

can be expressed in the following forms 
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ui zp η        for i = 1 to N1,            (4.28a) 

( )11 −−= Ni
wi zp η   for i = N1  to  N2,      (4.28b) 

( )12 −−= Ni
i zp ψη   for i = N2  to  N3.      (4.28c) 

 

The terms uη , wη  and ψη  are the product of the boundary equations raised to an 

appropriate power so that the selected Ritz functions satisfy the geometric boundary 

conditions. More specifically, uη , wη , and ψη  are given below for the following 

boundary conditions of domes. 

In view of equations (4.22), after integrating Eq. (4.13) over the shell thickness h , 

one obtains the following coefficients 
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In view of Eqs. (4. 29a-g) and (4.28a-c), the energy functional U  given by Eq. 

(4.22) may be written in matrix form as 
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where the terms in Eq. (4.30) can be expressed as     
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Similarly, the work done by the external forces (Eq. 4.23) can be expressed as 
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where the terms in Eq. (4.36) may be expressed as 
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The total potential energy functional given by Eqs. (4.21) (with (4.30) and (4.36)) 

is expressed in terms of displacements, the material stiffness, and external loads.  

Following the standard procedure for the Ritz method, the unknown coefficients ci are 

obtained by extremizing the total potential energy functional Π , i.e. 

 

30 ; 1,2,...,
i

i N
c

∂Π
= =

∂
          (4.40) 

 

which yields a set of homogeneous equations that can be conveniently expressed in a 

matrix form containing the unknown coefficients ci 

 

[ ]( ){ } { }0][ =+ cMK λ  (4.41) 

 

where [K] and [M] are (N3 x N3) square  matrices and {c} is a column vector consisting 

of the coefficients ci.  

The elastic buckling pressure parameter λ  is obtained by solving eigenvalue of 

the governing equation. With the aid of the commercial software package Mathematica 

(Wolfram, 1999), this eigenvalue problem is solved using built-in function 

Eigenvalues.  
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4.3.3  Boundary conditions 

Two edge supporting conditions are considered, namely the clamped support and  the 

simply supported as shown in Fig. 4.3. 

 

   (a)   Clamped   (b)   Simply supported  

  Fig. 4.3  Boundary conditions  

 

For a clamped edge, the boundary conditions are ( ) ( ) ( ) 0111 === ψwu . In view 

of these boundary conditions, the basis functions are given by 

 

 ( )zzu 1−=η  

 ( )1−= zwη  (4.42) 

( )zz 1−=ψη  

  

For a simply supported edge, the boundary conditions are ( ) ( ) 011 == wu  but 

( ) 01 ≠ψ . In view of these boundary conditions, the basis functions are given by 

  

( )zzu 1−=η  

( )1−= zwη  (4.43) 

z=ψη                   
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4.3.4 Mathematica for solving eigenvalue problem 

 Modern computer algebra systems especially Mathematica (Wolfram 1999)  are 

very powerful not only in symbolic computations, but in numerical computations as 

well. Among other things, Mathematica (Wolfram 1999)  allows its user to manipulate 

symbols, numbers, data, and graphics.  Such computing environments are already used 

quite extensively by researchers for a wide range of serious scientific calculations.  In 

1990, Beltzer (1990) gave a comprehensive review of symbolic computation packages 

and analytical applications in engineering analysis. Ioakimidis (1992a, 1992b, 1992c) 

has demonstrated the use of Mathematica(Wolfram 1999) in semi-analytical numerical 

structural applications, particularly those involving energy methods. 

A system such as Mathematica (Wolfram 1999) is ideally suited for many 

analytical applications in small engineering energy problems. The eigenvalue problem 

is solved using built-in function Eigenvalues in the software package Mathematica 

(Wolfram, 1999). In Mathematica, Eigenvalues function used the function DSYEVR 

in LAPACK<www.netlib.org/lapack/> routines to calculate the numerical eigen values 

and vectors of a real and symmetric matrice. The Mathematica code to obtain buckling 

strength of rotational shells is presented in the Appendix. 

 

 

 

 

 

 

 



Chapter 4: Energy Functionals and Ritz method for Buckling Analysis of Domes 

 90

4.4 Concluding remarks 

Although buckling of shells under compressive loading is of practical significance in 

the design of these structures, most of the studies thus far focused on rotational shells 

of spherical shape using a thin shell theory. An attempt is made in this chapter to 

formulate a methodology for predicting the critical buckling pressure of moderately 

thick rotational shells generated by any meridional shape under external uniform 

pressure. The effect of transverse shear deformation is included in the formulation 

using Mindlin shell theory so that the critical buckling pressure will not be excessively 

overestimated when the shell is relatively thick. 

The critical buckling pressure of thick shells under uniform pressure, formulated 

as an eigenvalue problem, is derived using the well accepted Ritz method. Numerical 

results, obtained from a computer program, were shown to be in close agreement with 

existing buckling solutions for isotropic and orthotropic spherical shells. One feature 

of the proposed method is that highly accurate solutions can be ensured by including 

an appropriate number of terms in the Ritz functions. The formulation is also capable 

of handling different support conditions, by raising the boundary equations to the 

appropriate power so that the geometric boundary conditions are satisfied a priori. 

New solutions for the buckling pressure of moderately thick spherical and parabolic 

shells of various dimensions and boundary conditions are presented and, although 

these results are limited by the material properties assumed in this chapter, they are 

nonetheless useful for preliminary design of shell structures. 
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CHAPTER 5 

 

 

 

BBUUCCKKLLIINNGG  OOFF  DDOOMMEESS  UUNNDDEERR  UUNNIIFFOORRMM  

PPRREESSSSUURREE  

 

 

 

 

This chapter is concerned with the elastic, axisymmetric buckling of moderately thick, 

orthotropic domes under a uniform external pressure. For the buckling analysis, we 

apply the Ritz method presented in Chapter 4. The validity of the developed Ritz 

method as well as the convergence and accuracy of the buckling solutions are 

demonstrated using examples of spherical domes (a special case of generic dome 

structures) where closed-form solutions exist. Upon establishment of the validity of the 

method and its ability to furnish accurate results, we generate extensive buckling 

solutions for moderately thick spherical and parabolic domes of various dimensions 

and boundary conditions. These new  results, presented in tabulated form, are deemed 

useful to engineers engaged in the design of shell structures. 
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5.1 Problem definition 

 

Consider a dome, also known as a synclastic shell of revolution, of height H, base 

radius L, and uniform thickness h. The dome is formed by rotating a curve defined by 

( )zfr =0  with ( ) 0/ 0 ==zdzdf , about the vertical z axis as shown in Fig. 5.1. The 

dome is subjected to a static uniform external pressure p, and is free of geometric and 

material imperfections. The problem at hand is to determine the critical pressure pcr for 

axisymmetric buckling of domes under the uniform external pressure p.  

 

z

L L

H

r

p

r =f(z)

0

0

 

Fig 5.1  Dome under uniform pressure 

 
5.2 Geometrical parameters 

To consider the aforementioned buckling problem, one needs to first evaluate the 

parameters for general energy functionals given by Eqs. (4.21), (4.22) and (4.23) in 

Chapter 4. From statical considerations, the membrane force sN  acting in the meridian 

direction is given by 
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In view of the following geometric relations for rotational shells 

 

φsin20 rr = ;  (5.2a) 

φφφ drdsdr coscos 10 ==                (5.2b) 

 

Eq. (5.1) may be expressed as 
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Similarly, from statical considerations, the membrane force θN  acting in the 

circumferential direction is given by 
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By comparing the definitions of Eq. (4.17) with Eqs. (5.1) and (5.4), one can 

deduce that 
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5.3.  Results and discussions 

5.3.1 Spherical domes 

For the spherical dome, the meridional curve is defined by (see Fig. 5.2) 

 

( ) 2
0 2 zRzzfr −==     (5.6) 

 

In view of the non-dimensional parameters in  Eq. (4.20), one can obtain 

 

2
0 2 zzRr −=     (5.7) 

where HRR /=   and Hzz /= . 
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                             (a)                                                                         (b) 

Fig 5.2  Spherical domes under uniform pressure 

 

By substituting Eqs. (5.5) and (5.7) into Eq.(4.1) and (4.20), one can obtain the 

geometrical properties of the spherical dome 

Rrr == 21  (5.8) 

2
Rnns −== θ  (5.9) 
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For a given spherical dome with a subtended angle α  (see Fig. 5.2a) and thickness 

to radius ratio h/R, the non-dimensional terms ξ,R  that appear in the energy 

functionals are defined as  

 

( )αcos1
1

−
==

H
RR  (5.10a) 

( )α
ξ

cos1
.

−
===

T
H
R

R
h

H
h  (5.10b) 

 

By substitution of the foregoing geometrical  parameters into the eigenvalue 

equation (4.41) in Chapter 4, and upon solving the equation, one obtains the critical 

buckling pressure parameter 
( )

hE
Hp scr θνν

λ
−

=
1

 of  spherical domes. Results for 

spherical domes with different thickness-to-radius ratios will be given in the next 

section. 

 

Convergence and comparison studies 

To study the convergence of the Ritz solutions with respect to the number of 

polynomial terms used to approximate the displacements, we consider hemispherical 

domes with radius-to-thickness ratios ranging from R/h = 10 to 1000 and with different 

boundary conditions, namely, clamped and simply supported. Tables 5.1 and 5.2 show 

the convergence studies of the critical buckling pressure parameter  λ . It can be seen 

that the Ritz solutions converge monotonically with increasing degrees of the 

polynomials for all radius-to-thickness ratios. In order to obtain accurate buckling 

solutions (within 0.05% error), the number of polynomial terms required for each 
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displacement function is 40. This number of terms will be assumed to suffice for 

generating accurate results for other spherical dome shapes in this chapter.  

For comparison purposes, numerical solutions for clamped domes obtained by 

Uddin (1987, 1993) who used the multi segment method of integration of Kalnins and 

Lestingi (1967) to solve the governing shell equations are included in Table 5.1. By 

comparing Uddin’s results with the present Ritz solutions, it can be seen that for the 

large radius-to-thickness ratios (e.g. R/h = 300), the converged results are found to be 

in good agreement. However, for relatively small radius-to-thickness ratios (i.e. thicker 

shells), the Ritz solutions are slightly lower than those presented by Uddin (1987). For 

example, for R/h = 25, the difference between the converged Ritz solution and that of 

Uddin (1987) is about 1.2% lower. This difference is due to neglect of the effect of 

transverse shear deformation in Uddin’s analysis. 
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Table 5.1 Convergence of critical buckling pressure parameter λ  
of a clamped hemispherical dome  

 
 

Radius over thickness ratio R/h λ x103 
10 25 100 300 1000 

3 222.41039 194.03803 188.27774 187.92796 187.88811
6 118.54395 55.67167 27.17262 25.13063 24.89573
9 112.83077 46.57039 14.33367 7.43311 6.39213
12 110.93703 45.69036 11.66922 5.23093 2.64581
15 109.84001 45.26218 11.27922 4.23114 1.77093
18 109.15098 44.95244 11.19395 3.88616 1.46390
21 108.69171 44.71732 11.16818 3.75452 1.31493
24 108.36999 44.53604 11.15321 3.70952 1.20982
27 108.13490 44.39430 11.14080 3.69693 1.16335
30 107.95671 44.28166 11.12910 3.69448 1.13873
33 107.81719 44.19041 11.11740 3.69317 1.12215
36 107.70465 44.11488 11.10527 3.69199 1.11328
39 107.61129 44.05082 11.09222 3.69081 1.10788

Number 
of 

terms 
 

40 107.58348 44.03143 11.08757 3.69039 1.10670
Uddin 1987) …….. 44.6469 11.0423 3.6364 ….. 

 
 

Table 5.2. Convergence of critical buckling pressure parameter λ  

of a simply supported hemispherical dome  

 

Radius over thickness ratio R/h λ x103 
10 25 100 300 1000 

3 159.45770 102.99050 88.55159 87.63990 87.53578
6 106.57882 46.48155 16.72819 9.38351 8.46736
9 105.95376 43.91228 11.96595 5.71284 2.42462
12 105.63408 43.55971 11.23972 4.10419 1.77645
15 105.38689 43.41658 11.03587 3.83347 1.38606
18 105.19826 43.31454 11.00392 3.72957 1.22685
21 105.05506 43.23428 11.00054 3.69173 1.15762
24 104.94536 43.16959 10.99926 3.67563 1.13439
27 104.85989 43.11685 10.99842 3.67253 1.11983
30 104.79192 43.07337 10.99769 3.67146 1.11122
33 104.73669 43.03703 10.99696 3.67090 1.10711
36 104.69077 43.00614 10.99616 3.67050 1.10441
39 104.65169 42.97931 10.99521 3.67014 1.10293

Number 
of terms 

 

40 104.63986 42.97107 10.99484 3.67002 1.10249
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Although a clamped spherical dome with a 90o meridian angle differs 

geometrically from that of a complete spherical shell, the critical buckling pressure of 

the clamped spherical shell is nonetheless of the same order of magnitude when 

compared to that of a complete shell with the same radius. For comparison of the 

results obtained from the various methods, it is convenient to express the critical 

buckling pressure of incomplete shells as a fraction of that of complete shells. To that 

end, it is instructive to note that the classical buckling pressure of complete isotropic 

spherical shells, first established by Zoelly (1915), is 

 

( )

2

2

2
3 1

cl
E hp

Rv
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 (5.11) 

 

Recall from the definition in Eq. (4.20) that, 
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=   (5.12)  

   

and in view of Eqs. (5.11) and (5.12), the solution for incomplete shells can be 

expressed as a fraction of the classical buckling pressure of a complete spherical shell 

by the following ratio 
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The ratio of critical buckling pressures in Eq. (5.13) will be used as the basis for 

comparison of available solutions in the literature. Table 5.3 shows the comparison of 

critical buckling pressures of the 900 clamped spherical domes with solutions by 

various researchers for a small radius-to-thickness ratio of R/h = 25. Among these 

researchers, only Uddin (1987) calculated the buckling pressure without adopting the 

shallowness assumptions of shell structures. It can seen from Table 5.3 that the present 

result, expressed as a ratio in Eq. (5.13), is less than that of Uddin (1987) due to the 

effect of transverse shear deformation. Note that the current formulation may be used 

to furnish the critical buckling pressure associated with the corresponding result based 

on classical thin shell theory by setting a large value for the shear correction factor, say 

2κ =1000. By doing so, the current formulation yields a ratio of pcr/pcl =1.120 which is 

relatively close to Uddin’s ratio of  pcr/pcl =1.127.  

 

 

Table 5.3  Comparison of critical buckling pressure ratio pcr/pcl of 
a  900 clamped spherical dome ( /R h  = 25) 

 
Present 
result 

(pcr/pcl) 

Uddin 
(1987) 

Huang 
(1964) 

Archer 
(1958) 

Dumir  
et al. 

(1984) 

Budiansky 
(1959) 

Thurston 
(1961) 

1.076 1.127 1.057 0.750 1.035 1.058 1.067 
 

It can be seen from Table 5.3 that the prediction of the critical buckling pressure of 

hemispherical domes with R/h = 25 varies among different researchers. The value 

varies from a low ratio of 0.75 by Archer (1958) to a high ratio of 1.067 by Thurston 

(1961). It should be noted that a shallow shell theory was assumed in the studies by 

Huang (1964), Archer (1958), Dumir et al. (1984), Budiansky (1959) and Thurston 

(1961). Their results are therefore expected to be lower than the results based on the 
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non-shallow shell theory, which is adopted herein. Also interestingly, their analyses, 

which neglect the effect of transverse shear deformation and employ shallow shell 

theory, yield critical buckling pressures that are comparable with the present result for 

moderately thick shells. The good prediction is, in part, because the shallow shell 

assumption lowers the critical buckling pressure whilst the neglect of transverse shear 

deformation raises the critical buckling pressure. These are compensating effects that 

have effectively canceled each other out for the considered shell problem.  

 

Effects of radius-to-thickness ratio and transverse shear deformation 

 

As the critical buckling pressure may be sensitive to the amount of transverse shear 

deformation that occurs during buckling, the influence of shear deformation is 

examined in moderately thick shells by varying the radius-to-thickness ratio. The 

sensitivity study is made for isotropic hemispherical shells that are simply supported at 

their edges. Table 5.4 presents the critical buckling pressure normalized by the Young’s 

modulus i.e.  pcr/E for radius-to-thickness ratios R/h ranging from 10 to 1000. The 

assessment is made for hemispherical domes with simply-supported boundary 

conditions. Critical buckling pressures obtained using classical thin shell theory are 

also included in the table so as to observe the effect of transverse shear deformation on 

the buckling pressure.  
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Table 5.4   Effect of transverse shear deformation on the buckling pressures pcr/E 
of simply supported hemispherical domes 

 

R/h Thin shell theory 
(Muc 1992) Mindlin shell theory Difference 

(%) 

10 12104.5507 11507.0859 -5.1921 
25 1936.7281 1890.5567 -2.4422 
50 484.1820 480.5784 -0.7499 
100 121.0455 120.8434 -0.1673 
200 30.2614 30.2318 -0.0977 
300 13.4495 13.4441 -0.0400 
400 7.5653 7.5637 -0.0220 
500 4.8418 4.8412 -0.0119 
600 3.3624 3.3622 -0.0064 
700 2.4703 2.4705 0.0071 
800 1.8913 1.8917 0.0198 
900 1.4944 1.4951 0.0475 
1000 1.2105 1.2115 0.0901 

 

It can be seen from the results in Table 5.4 that, for a small shell thickness, as 

reflected by a large radius-to-thickness ratio e.g. R/h > 100, the buckling pressure pcr/E 

is close to the result obtained using thin shell theory (Muc 1992). However, for a large 

shell thickness e.g. R/h < 100, the buckling pressure pcr/E based on Mindlin shell theory 

is somewhat lower than their thin shell theory counterparts due to the shear 

deformation effect. At a radius-to-thickness ratio of R/h = 10, the difference between 

the Mindlin and thin shell theories is approximately 5%. 

 
 

Orthotropic Spherical Domes under uniform pressure p 

The versatility of the proposed method in this chapter will now be demonstrated using 

an orthotropic dome when subjected to uniform external pressure. According to an 

earlier study by Muc (1992), the critical buckling pressure of a simply supported 

orthotropic spherical shell is given by 
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We shall assess the accuracy of this formula by comparing it with our Ritz results. 

For the subsequent numerical calculations, the orthotropic dome is assumed to be made 

from a graphite/epoxy material with values of sE = 120 GPa, θE  = 4.8 GPa, ζsG  = 2.4 

GPa and θν s  = 0.25 taken from Chao et al (1988). Table 5.5 furnishes the results by 

the present Ritz results based on Mindlin shell theory and its comparison with the thin 

shell theory by Muc (1992). The results indicate that the normalized buckling pressure 

as obtained by Mindlin shell theory may be noticeably smaller than that of thin shell 

theory, depending on the thickness of the shell. In the case of thin shells (R/h > 200), 

both results are in good agreement, which is expected. However, the difference 

between the two theories increases in thick shells as characterized by R/h <200. In the 

case of R/h = 25, the difference in critical buckling pressure is as high as 8%. The 

tendency of Eq. (5.14) to over-estimate the critical buckling pressure of moderately 

thick shells is likely due to the neglecting of the transverse shear deformation. 

 

Table 5.5  Buckling pressures pcr/ E   of orthotropic hemispherical domes 

R/h Thin shell theory 
(Muc 1992) Mindlin shell theory Difference 

(%) 

25 924.917 855.6495 -8.0953 
100 57.8073 57.2088 -1.0461 
200 14.4518 14.4346 -0.1197 
300 6.42304 6.4159 -0.1118 
500 2.31229 2.3112 -0.0482 
1000 0.57807 0.5780 -0.0085 
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5.3.2 Parabolic  Domes 

For parabolic domes, the meridional curve is defined by (See Fig. 5.3) 

 

azr 40 =  (5.15) 

where ( )HLa 4/2= .  

  

 In view of the non-dimensional parameters in  Eq. (4.20), one can obtain 

 

zar 40 =  (5.16) 
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Fig 5.3  Parabolic domes under uniform pressure 

 

By substituting Eqs. (5.15) and (5.16) to Eq. (4.1) and (4.20), one can obtain the 

geometry properties of parabolic domes 

 

2

2
3

1
)(2

a
zaar +

=  (5.17) 

( )zaar += 22  (5.18) 
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( )zaans +−=  (5.19) 

( )
)1(

2
+

+
−=

aa
zaanθ  (5.20) 

 

By substituting of the foregoing geometrical  parameters into the eigenvalue 

equation (4.41) in Chapter 4, and upon solving the equation, one obtains the critical 

buckling pressure parameter 
( )

hE
Hp scr θνν

λ
−

=
1

 of  parabolic  domes. Results for 

parabolic domes with different height-to-base radius ratios and base radius-to-

thickness ratios will be given in the next section. 

 

Convergence study 

Table 5.6 shows the convergence of the critical buckling pressure for an isotropic 

parabolic dome of equal base radius and height, and clamped at the base. Results were 

generated for domes with base-radius-to-thickness ratio from L/h = 50 to 300. It can be 

seen from the table that the solutions from the Ritz method converge monotonically 

when the number of terms in the polynomials is increased. The convergence criterion 

for parabolic domes was also taken as 0.05%. It is of interest to note that the rate of 

convergence differs for different base-radius-to-thickness ratios. For the case of 

parabolic domes with a smaller L/h  ratio, the critical buckling pressure converges 

faster than that of large L/h ratios. Unlike the case for clamped hemispherical domes 

where 40 terms are needed in the power series, only 30 terms are needed to satisfy the 

convergence criterion of 0.05% in clamped parabolic domes. This number of terms is 

assumed to be sufficient for yielding accurate results in parabolic domes of different 

height-to-base-radius ratios, base-radius-to-thickness ratios and support conditions. 
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Table 5.6 Convergence of critical buckling pressure parameter λ of a clamped 

parabolic dome with normalized base radius  1=L  
 

Base radius over thickness ratio L/h 
λ x103 

10 25 100 300 1000 
3 306.24159 268.34711 260.36352 259.87675 259.82128
6 160.04376 65.69875 37.59424 35.75372 35.54293
9 151.57371 57.11352 15.62226 8.55188 7.69817
12 151.52923 56.52362 12.71975 5.10587 2.78505
15 151.52875 56.51417 12.27600 4.07852 1.62731
18 151.52852 56.51386 12.21165 3.80622 1.43103
21 151.52839 56.51366 12.20937 3.72199 1.16553
24 151.52831 56.51353 12.20936 3.70724 1.09714
27 151.52826 56.51343 12.20935 3.70623 1.06598

Number 
of 

terms 
 

30 151.52822 56.51336 12.20935 3.70617 1.04336
 
Table 5.7 Convergence of critical buckling pressure parameter λ of a simply supported 

parabolic dome with normalized base radius 1=L  
 

Base radius over thickness ratio L/h 
λ x103 

10 25 100 300 1000 
3 163.11313 117.33128 106.67237 106.00877 105.93304
6 110.63181 48.44707 15.19676 9.54045 8.85377
9 110.08303 43.41861 11.15899 4.92409 2.22540
12 110.06928 43.34664 10.31764 3.64115 1.47504
15 110.06330 43.34458 10.21054 3.39915 1.22387
18 110.05964 43.34344 10.20759 3.28913 1.02073
21 110.05722 43.34270 10.20750 3.26611 0.98596
24 110.05554 43.34218 10.20746 3.26337 0.96253
27 110.05432 43.34180 10.20743 3.26322 0.94995

Number 
of 

terms 
 

30 110.05340 43.34151 10.20740 3.26321 0.94706
 

 

The methodology is readily adaptable to parabolic domes of different height, thickness, 

material properties and support conditions. Tables 5.8 presents the critical buckling 

pressures for parabolic domes of isotropic properties for both clamped and simply 

supported edge conditions.  
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Orthotropic Parabolic  Domes under Uniform Pressure p 

For the case of orthotropic parabolic domes, the same material properties with Es = 120 

GPa, Eθ = 4.8 GPa, Gsξ = 2.4 GPa and  νsθ = 0.25 for a graphite/epoxy composite are 

assumed. Base radius-to-height ratios in the range of 3/3/1 ≤≤ HL  and base radius-

to-thickness ratios of 1000/10 ≤≤ hL are considered.  

The critical axisymmetric buckling pressure  crp  are presented in Table 5.9 for the 

domes with simply supported edge and fixed edge. It can be seen from this two tables 

that the critical buckling pressure crp  is sensitive to the edge support conditions. For 

instance, for a base radius-to-thickness ratio of L/h =1/100 and base radius-to-height 

ratio of L/H = 1 the critical buckling pressure increases from crp =  5.6758 for the 

simply-supported edge condition to 7.5879 for the fixed edge condition. This shows 

that the critical buckling pressure increases by 1.34 times from the case of simply 

supported domes to fixed edge domes in this particular dome dimensions. Similarly, 

large increases in the critical buckling pressure are observed for other base radius-to-

thickness and base radius-to-height ratios.  

   In order to check our results, we employ the finite element package SAP2000 

(Computers and Structures, Inc, 2007) to analyze the above parabolic dome example. 

The type of shell element used is the thick shell element and the mesh design adopted 

for the analysis is shown in Fig. 5.4. The critical buckling pressures furnished by 

SAP2000 are  crp = 5.60892 for simply supported dome and  crp = 7.7375 for fixed 

edge dome. These finite element results are in good agreement with our results (within 

2%), thereby confirming the correctness of our solutions.  
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Fig 5.4  SAP2000 model of parabolic dome (50x50 elements) 

 

Table 5.8  Buckling pressure parameter λ  of isotropic parabolic domes 

Base radius over thickness ratio L/h  
λ .103 10 25 100 1000 

1/3 882.07863 407.69691 105.74235 10.42014
1/2 437.41458 188.47243 46.71385 4.45216
1 110.05340 43.34151 10.20740 0.94706
2 17.56449 6.70454 1.56722 0.14638

Simply 
supported L/H 

3 4.52483 1.75368 0.41569 0.03946
1/3 1085.90030 498.99744 122.36784 12.11705
1/2 567.40922 238.32228 55.02010 4.98820
1 151.52822 56.51336 12.20935 1.04336
2 22.46878 8.30881 1.81417 0.15776

Clamped L/H 

3 5.29120 2.03606 0.46225 0.04177
 

Table 5.9 Buckling pressure parameter λ  of orthotropic parabolic domes 

 

Base radius over thickness ratio L/h  
λ .103 10 25 100 1000 

1/3 223.31297 154.46551 53.15067 5.48792
1/2 133.90936 81.35266 24.64222 2.39820
1 45.74201 22.25162 5.67579 0.51788
2 8.93617 3.75169 0.87637 0.07961

Simply 
supported L/H 

3 2.41126 0.99661 0.22899 0.02125
1/3 231.13316 189.75079 66.17285 6.18249
1/2 150.08675 107.14368 31.80184 2.73826
1 62.41928 32.28857 7.58789 0.59871
2 12.82840 5.34474 1.11203 0.08978

Clamped L/H 

3 3.39914 1.31463 0.27230 0.02323
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5.4 Concluding remarks 

The applicability of the Ritz method for various kinds of domes is demonstrated by 

solving the buckling problems of spherical and parabolic domes. The results are 

verified by comparing them with limited existing solutions. Based on these examples, 

it can be concluded that the developed Ritz method can be readily applied for the 

buckling analyses of arbitrarily shaped domes. In the next chapter, results for buckling 

of domes under hydrostatic pressure and selfweight will be presented. 
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CHAPTER 6 

 

 

 

BBUUCCKKLLIINNGG  OOFF  SSUUBBMMEERRGGEEDD  DDOOMMEESS    

 

 

This chapter is concerned with the elastic, axisymmetric buckling of submerged 

moderately thick domes. In addition to the water pressure, the domes are also subjected 

to selfweight, which is invariably present in this type of structure. Applying the Ritz 

method presented in Chapter 4, new buckling solutions for moderately thick spherical 

and parabolic domes with various dimensions and boundary conditions are presented. 

The validity of the method, convergence and accuracy of solutions are also 

demonstrated. 
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6.1 Problem definition 

 

Consider a dome of height H, base radius L, and uniform thickness h. The dome is 

formed by rotating a curve, defined by ( )zfr =0  with ( ) 00 =′f , about the vertical z 

axis as shown in Fig. 6.1. The dome is subjected to hydrostatic pressure 

( )zHDp wh +−= γ  where wγ  is the specific weight of water and its selfweight 

hp aa γ=  where h is thickness of the dome and aγ  the specific weight of dome 

material. 

 

L L

z

r0

γ hp= aa

H

γ (D-H+z)p =wh

L L

z

r0

H D

 

 (a) Hydrostatic pressure (b)  Selfweight 

Fig 6.1  Domes under  selfweight and hydrostatic pressure 

 

 
The dome is also assumed to be free of geometrical and material imperfections. 

For a given dome height H, the problem at hand is to determine the critical pressure 

pcr, for axisymmetric buckling of this submerged dome. This critical pressure will 
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provide information on the maximum height of water depth (or critical water depth) 

Dcr for which the dome can be constructed without premature buckling failure. 

 
6.2    Governing equations and Ritz method 

6.2.1 Geometrical and loading properties 

Consider a dome subjected to hydrostatic pressure ( ) zHDp wwh γγ +−=  and its 

selfweight hp aa γ= . The positive direction of these loads and their distributions are 

shown in Figs. 6.2 and 6.3.  

CLCL

z

L L

HD

CL

L

zz

γ (D-H)p = γ zp =w w1 2

γ (D-H+z)p =wh

 

 (a) Hydrostatic pressure (b)  Pressure p1  (c)  Pressure p2 

Fig. 6.2  Hydrostatic pressure components  

 

In the case of hydrostatic pressure (see Fig. 6.2a), we can separate the hydrostatic 

pressure ph into two components 1p  and 2p . The pressure 1p  is constant over the 

surface of the dome (see Fig. 6.2b) and is calculated by the product of the distance 

from the water level to the apex of the dome ( )HD − and the specific weight of the 

water wγ , i.e. 

( )HDp w −= γ1  (6.1) 
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According to Eqs. (5.3) and (5.4) in Chapter 5, we obtain the internal forces of the 

dome under uniform pressure 1p  as 

 

2
21

1
rpN s −=        (6.2) 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−=

1

1
121 r

N
prN s

θ       (6.3) 

 

Recall Eq. (4.17) 

 

   ss pnN =     

   θθ pnN =   (4.17) 

 

From Eqs.  (6.1), (6.2) and (6.3), one obtains  

 

)(11 HDpp wh −== γ  (6.4) 

2
2

1
rns −=    (6.5a) 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−=

1

1
21 1

r
n

rn s
θ  (6.5b) 

 

On the other hand, the pressure 2p  is linearly dependent on the distance z from 

the apex of the dome (see Fig. 6.2c). We can see that z only varies for 0 to the dome 

height H. Therefore, for a given dome height, the pressure 2p   does not depend on the 
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water depth D and is given by 

 

zp wγ=2  (6.6) 

 

From statical considerations, the membrane force sN  acting in the meridian 

direction is given by 

 

∫−=
φ

φφ
φ 0

0122
2

2 cos
sin
1 drrp

r
N s       (6.7) 

 

In view of the following geometric relations for rotational shells 

 

( )zfr =0  

φsin20 rr =                (6.8) 

φφφ drdsdr coscos 10 ==   

 

Eq. (6.7) may be expressed as 

 

( ) ( )dzzfzfz
r
rN

z

ws '
0

2
0

2
2 ∫−= γ                   (6.9) 

 

In view of Eq.(5.4), one obtains 

 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−=

1

2
22 r

N
zrN s

wγθ  (6.10) 
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Similar to the above case, one can obtain the loading parameters of rotational 

shells 

    

Hp wh γ=2  (6.11) 

( ) ( )dzzfzfz
Hr
r

n
z

s '
0

2
0

2
2 ∫−=    (6.12a) 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−=

1

2
22 r

n
H
zrn s

θ  (6.12b) 

 

In the case of selfweight (see Fig. 6.3), the internal membrane force is given by 

 

∫−=
φ

φ
φ 0

012
2 sin

1 drrp
r

N asa       (6.13) 

L L

z

r0

r=f(z)0

γ hp= aa

H

 

Fig. 6.3  Selfweight of the dome 

In view of the geometric relations for rotational shells given in Eq. (6.8), Eq. 

(6.13) may be expressed as 
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( ) dzzf
r
r

hN
z

asa ηγ ∫−=
0

2
0

2                   (6.14) 

where  ( ) 2
1

2

1
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥⎦
⎤

⎢⎣
⎡+=

dz
zdfη . In view of Eq. (5.4), one obtains 

 

( )
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⎠

⎞
⎜⎜
⎝

⎛
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1
2

'
r

NzfhrN sa
aa η

γθ  (6.15) 

 

In view of Eq. (4.17) , one can obtain the geometrical and loading parameters of 

the domes as 

 

hp aa γ=  (6.16) 

( ) dzzf
r
r

n
z

sa η∫−=
0

2
0

2    (6.17a) 

( )
⎟⎟
⎠

⎞
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⎝

⎛
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1
2

'
r

nzfrn sa
a ηθ  (6.17b) 

 

6.2.2 Energy functionals and Ritz method 

The elastic strain energy of the dome was derived in Eq.(4.22) as 
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Note that the work done by the hydrostatic pressure is the sum of  the work done 

by each load component 1p  and 2p . The work done by the hydrostatic pressure and 

selfweight is thus given by 

 

aWWWW ++= 21  (6.18) 

 

In view of Eq.(4.23), one obtains 
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where the non-dimensional terms are defined as 
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The total potential energy functional Π  of the dome under uniform pressure may 

be written as 

 

WU +=Π  (6.25) 

 

Following the standard procedure for the Ritz method in Chapter 4, the unknown 

coefficients ci are obtained by extremizing the total potential energy functional Π , i.e. 

 

3,...,2,1;0 Ni
ci

==
∂
Π∂         (6.26) 

 

which yields a set of homogeneous equations that can be conveniently expressed in a 

matrix form containing the unknown coefficients ci 

 

( ){ } { }0][][][][ 2211 =+++ cMMMK aaλλλ  (6.27) 

 

where [K] is stiffness matrix; [M1],  [M2] and [Ma] are work matrices by the pressure 

1p  ,  2p  and ap  and {c} is a column vector consisting of the coefficients ic . It is to be 
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noted that 2λ  and aλ  are known from the information given on the dome height H, 

dome thickness h, specific weight of water wγ  and specific weight of dome material 

aγ . Therefore, 1λ  becomes the unknown eigenvalue of the governing equation. The 

eigenvalue problem is solved using built-in function Eigenvalues in the software 

package Mathematica (Wolfram, 1999). Recall the critical buckling pressure 

parameter 1λ  is defined as (see Eq. 6.13c) 

  

 
( )( )

ξ
ννγ

λ θ

E
HD sw −−

=
1

1  (6.28) 

 

The critical water depth in which the submerged dome will buckle is given by 

  

 ( ) HED
sw

+
−

=
θννγ

ξλ
11  (6.29) 

 

In the subsequent sections, we present new buckling solutions for moderately 

thick spherical and parabolic domes with various dimensions and boundary conditions 

under their own selfweight and hydrostatic pressure. The validity of the method, 

convergence and accuracy of solutions are also demonstrated. 

 

6.3   Results and discussions 

As an example, consider a dome of height H=3000cm submerged at the water depth D.  

For the subsequent numerical calculations, the dome is assumed to be made from a 

material with values of sE = θE =30.104 kgf/cm2, θν s = 0.3 and  

3-3 kgf/cm  10 x 2.4  =aγ .  The specific weight of water is assumed in the calculation 

3101 −= xwγ kgf/cm3 . These values give rise to 
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With the given value of normalized thickness ξ , substituting Eqs. (6.30) and 

(6.31) to Eq.(6.16), one obtains the critical buckling parameter 1λ . Therefore, the 

critical buckling water depth can also obtained from Eq. (6.29) 

  

 ( ) HED
sw

+
−

=
θννγ

ξλ
11  (6.32) 

 

Note that, in case of aγ = 0, one obtains the critical buckling of domes under 

hydrostatic force only. 
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6.3.1 Spherical Domes 

Similarly to part 5.3.1 of chapter 5, for spherical domes, the meridional curve is 

defined by (see Fig. 6.4) 

 

2
0 2 zzRr −=     (6.33) 

where 
H
RR =    and 

H
zz =  
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Fig 6.4  Spherical dome under its own selfweight and hydrostatic pressure 

 

By substituting Eq. (6.30) to Eq.(4.1), one can obtain the geometric properties of 

spherical shells 

 

Rrr == 21  (6.34) 

 

In view of Eqs. (6.4) and (6.5), the parameters of the hydrostatic component 1p  

are given by 

211
Rnns −== θ  (6.35) 
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By substituting Eq. (6.34) to Eqs. (6.11) and (6.12), one obtains the parameters of 

hydrostatic component 2p   

 

   ( )
zR

zzRRns 612
23

2 −
−

−=  (6.36) 

   ( )
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2 −
−
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Similarly, by substituting Eq. (6.34) to Eqs. (6.16) and (6.17), the selfweight 

parameters is given by 

 

   
zR
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2

2

 (6.38) 

   
zR

zRzRn a −
+−

−=
2

3 22

θ  (6.39) 

 

By substituting all the above geometric parameters into the eigenvalue equation 

(6.27), one can obtain the buckling pressure parameters 1λ  and the critical water depth 

in which the submerged dome will buckle. 
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Convergence study 

Tables 6.1 and 6.2 show the convergence of the critical buckling pressure parameter 1λ  

for weightless hemispherical domes under hydrostatic forces by setting the specific 

weight of the dome material as aγ = 0.  

Table 6.3 and 6.4 show the convergence of the critical buckling pressure parameter  

1λ  of hemispherical domes under their own selfweight and hydrostatic pressure  with 

radius-to-thickness ratio from R/h = 10 to R/h = 300 with different boundary 

conditions: clamped, simply supported.  

The same as for the uniform pressure case, in order to obtain an accurate solution, 

the number of terms in the power series is increased until the difference in the result is 

less than or equal to 0.05%. It can be seen from the tabulated results that the critical 

buckling pressure parameter 1λ  achieves the required 0.05% accuracy when 40 terms 

were taken in the polynomial functions. This number of terms is assumed to be 

sufficient for accurate results of other spherical shells generated in this chapter. 
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Table 6.1  Convergence of critical buckling pressure parameter 1λ of clamped 

hemispherical domes under hydrostatic pressure only 
 

Radius over thickness ratio R/h 1λ x103 
10 25 100 300 

3 222.39639 194.00132 188.12904 187.48133 
6 118.52774 55.62063 26.93537 24.41495 
9 112.81965 46.53730 14.11276 6.62415 
12 110.92726 45.66285 11.46389 4.44392 
15 109.83091 45.23730 11.11006 3.42276 
18 109.14228 44.92945 11.04762 3.14028 
21 108.68325 44.69574 11.03112 3.03240 
24 108.36170 44.51550 11.02182 3.02392 
27 108.12673 44.37456 11.01425 3.02328 
30 107.94863 44.26252 11.00714 3.02328 
33 107.80918 44.17175 11.00002 3.02328 
36 107.69669 44.09661 10.99257 3.02328 
39 107.60338 44.03287 10.98448 3.02328 

Number 
of 

terms 
 

40 107.57558 44.01358 10.98157 3.02328 
 

 

 

Table 6.2  Convergence of critical buckling pressure parameter 1λ  of a simply 
supported hemispherical domes under hydrostatic pressure only 

 

Radius over thickness ratio R/h 1λ x103 
10 25 100 300 

3 159.42869 102.91870 88.26668 86.78558 
6 106.55644 46.41693 16.43394 8.50931 
9 105.93322 43.85519 11.68065 4.81828 
12 105.61462 43.50903 10.97080 3.21768 
15 105.36832 43.36872 10.79344 2.96056 
18 105.18038 43.26883 10.77757 2.86980 
21 105.03771 43.19032 10.77643 2.85274 
24 104.92840 43.12707 10.77605 2.85023 
27 104.84323 43.07552 10.77583 2.85018 
30 104.77550 43.03301 10.77566 2.85017 
33 104.72046 42.99749 10.77551 2.85017 
36 104.67470 42.96728 10.77537 2.85017 
39 104.63575 42.94105 10.77523 2.85016 

Number 
of 

terms 
 

40 104.62397 42.93300 10.77517 2.85016 
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Table 6.3  Convergence of critical buckling pressure parameter 1λ of a clamped 

spherical hemispherical under its own selfweight and hydrostatic pressure 
 

Radius over thickness ratio R/h 1λ x103 
10 25 100 300 

3 222.37027 193.97458 188.10213 187.45440 
6 118.50084 55.59072 26.90317 24.38265 
9 112.79475 46.51126 14.08138 6.58786 
12 110.90279 45.63755 11.43356 4.40858 
15 109.80665 45.21236 11.08176 3.38647 
18 109.11814 44.90478 11.02027 3.10635 
21 108.65919 44.67126 11.00410 2.99859 
24 108.33768 44.49116 10.99500 2.99022 
27 108.10275 44.35033 10.98760 2.98961 
30 107.92467 44.23838 10.98065 2.98960 
33 107.78525 44.14767 10.97368 2.98960 
36 107.67278 44.07258 10.96640 2.98960 
39 107.57948 44.00889 10.95849 2.98960 

Number 
of 

terms 
 

40 107.55168 43.98961 10.95564 2.98960 
 

 

 
Table 6.4  Convergence of critical buckling pressure parameter 1λ of a simply 

supported hemispherical domes under its own selfweight and hydrostatic pressure 
 
 

Radius over thickness ratio R/h 1λ x103 
10 25 100 300 

3 159.39456 102.88405 88.23202 86.75092 
6 106.52590 46.38259 16.39416 8.46966 
9 105.90364 43.82325 11.64241 4.77710 
12 105.58557 43.47845 10.93461 3.17736 
15 105.33969 43.33871 10.75953 2.92116 
18 105.15208 43.23924 10.74441 2.83112 
21 105.00965 43.16109 10.74334 2.81446 
24 104.90052 43.09812 10.74298 2.81209 
27 104.81549 43.04679 10.74278 2.81204 
30 104.74787 43.00448 10.74263 2.81204 
33 104.69291 42.96911 10.74249 2.81203 
36 104.64722 42.93903 10.74236 2.81203 
39 104.60833 42.91292 10.74223 2.81203 

Number 
of 

terms 
 

40 104.59657 42.90490 10.74218 2.81203 
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Figure 6.5 shows the variation of the critical water depth HDDcr /=  for which 

that the dome can be constructed without buckling failure. Results were generated for a 

spherical dome with a normalized base radius L = 1,2 and 3. It can be seen that, for a 

same value of normalized thickness ξ ,  the normalized critical water depth crD  of the 

dome has the smaller base radius L  much larger.  For example, for the same 

normalized thickness ξ = 0.01, the critical water depth crD =13.039 for the dome with 

a normalized base radius L =3, which is considerably larger than the critical water 

depth crD =1.19 of the dome with a normalized base radius L =1.  
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Fig 6.5  Variations of critical water depth HDDcr /= with respect to  

normalized thickness Hh /=ξ of a hemispherical dome 
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6.3.2    Parabolic  Domes 

Similar to part 5.3.2 of chapter 5, for parabolic domes, the meridional curve is defined 

by (see Fig. 6.6) 

 

zar 40 =  (6.40) 

where 
44

2

2

2 L
H
L

H
aa ===       

 

γ(D-H+z) γ hp= aa
z

r2

1r
φ

L L L

H

L

z

r=h(z)

D

0

 

Fig 6.6  Parabolic dome under its own selfweight and hydrostatic pressure 

Similarly the above spherical case, by substituting Eqs.(6.41) to Eqs (6.4), (6.5), 

(6.11), (6.12), (6.16) and (6.17), one can obtain the geometric properties of parabolic 

domes 

• Meridional and circumference radii 

( )
2

2
3

1
2

a
zaar +

=            (6.41) 

( )zaar += 22              (6.42) 

 

• Hydrostatic component 1p  

( )zaans +−=1  (6.43) 
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( )zaa

zaan
+

+
−=

)2(
1θ  (6.44) 

 

• Hydrostatic component 2p  

   ( )zaazns −−=
2
1

2  (6.45) 

   ( ) ( )⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

−−−=
za

zazzaazn
4

22θ  (6.46) 

 

• Selfweight parameters: 

   
( ) ( ) ( )( )

za
zaazaazazaa

nsa 3
2 32 ++++−+

−=  (6.47) 

   
( )( )( )

( )zaz
zazaazaa

n a +
−++−

−=
3

22 22

θ  (6.58) 

Tables 6.5 and 6.6 show the convergence of the critical buckling pressure parameter 

1λ  for weightless parabolic domes with 1=L  under hydrostatic forces by setting 

specific weight of the dome material as aγ = 0. Tables 6.7 and 6.8 show the 

convergence of the critical buckling pressure parameter 1λ  of parabolic domes with 

1=L  under their own selfweight and hydrostatic pressure  with height-to-thickness 

ratios from H/h = 10 to H/h = 300 with different boundary conditions: clamped, simply 

supported.  

The same for the uniform pressure case, in order to obtain an accurate solution, the 

number of polynomial terms is increased until the difference in the result is less than or 

equal to 0.05%. It can be seen from the tabulated results that the critical buckling 

pressure parameter 1λ  achieves the required 0.05% accuracy when 30 terms were 
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taken in the polynomial function. This number of terms is assumed to be sufficient for 

accurate results of other parabolic shells generated in this chapter. 

 
Table 6.5  Convergence of critical buckling pressure parameter 1λ of clamped 

parabolic domes with normalized base radius 1=L  under hydrostatic pressure only 
 

Height-over-thickness ratio H/h 
1λ x103 

10 25 100 300 
3 306.20544 268.25757 260.00589 258.80373 
6 160.01226 65.61563 37.26095 34.75325 
9 151.54276 57.03116 15.24487 7.40797 
12 151.49825 56.44285 12.35274 3.89063 
15 151.49777 56.43338 11.91667 2.90081 
18 151.49754 56.43308 11.85564 2.65044 
21 151.49741 56.43287 11.85336 2.57042 
24 151.49733 56.43274 11.85334 2.55510 
27 151.49727 56.43264 11.85333 2.55401 

Number 
of 

terms 
 

30 151.49724 56.43257 11.85333 2.55399 
 

 

 

Table 6.6  Convergence of critical buckling pressure parameter 1λ  of a simply 
supported parabolic domes with normalized base radius 1=L   

under hydrostatic pressure only 
 

Height-over-thickness ratio H/h 
1λ x103 

10 25 100 300 
3 163.07327 117.23260 106.27888 104.82850 
6 110.59318 48.35053 14.77523 8.28281 
9 110.04449 43.32113 10.75227 3.61208 
12 110.03074 43.24899 9.91127 2.36965 
15 110.02476 43.24692 9.80371 2.12465 
18 110.02109 43.24579 9.80068 2.01849 
21 110.01868 43.24504 9.80060 2.00114 
24 110.01699 43.24452 9.80055 1.99960 
27 110.01577 43.24414 9.80052 1.99952 

Number 
of 

terms 
 

30 110.01485 43.24386 9.80049 1.99951 
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Table 6.7  Convergence of critical buckling pressure parameter 1λ of a clamped 

parabolic domes with normalized base radius 1=L   
under its own selfweight and hydrostatic pressure 

 

Height-over-thickness ratio H/h 1λ x103 
10 25 100 300 

3 306.17307 268.22526 259.97358 258.77143 
6 159.98111 65.58308 37.22836 34.72065 
9 151.51145 56.99835 15.21022 7.37320 
12 151.46692 56.41022 12.31829 3.85500 
15 151.46644 56.40074 11.88241 2.86550 
18 151.46621 56.40044 11.82147 2.61528 
21 151.46608 56.40023 11.81918 2.53525 
24 151.46600 56.40010 11.81916 2.51992 
27 151.46595 56.40000 11.81916 2.51882 

Number 
of 

terms 
 

30 151.46591 56.39993 11.81915 2.51880 
 

 

Table 6.8  Convergence of critical buckling pressure parameter 1λ of a simply 
supported parabolic domes with normalized base radius 1=L  under its own 

selfweight and hydrostatic pressure 
 

Height-over-thickness ratio H/h 1λ x103 
10 25 100 300 

3 163.04084 117.20001 106.24627 104.79588 
6 110.55973 48.31640 14.73944 8.24706 
9 110.01104 43.28662 10.71679 3.57560 
12 109.99729 43.21445 9.87573 2.33351 
15 109.99131 43.21238 9.76814 2.08843 
18 109.98764 43.21125 9.76511 1.98229 
21 109.98522 43.21050 9.76502 1.96499 
24 109.98354 43.20998 9.76498 1.96345 
27 109.98232 43.20960 9.76494 1.96337 

Number 
of 

terms 
 

30 109.98139 43.20931 9.76492 1.96337 
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Figure 6.7 shows the variation of the critical water depth HDDcr /=  for which 

the dome can be constructed without buckling failure. Results were generated for 

parabolic domes with normalized base radius L = 1,2 and 3. It can be seen that, for a 

same value of the normalized thickness ξ ,  the normalized critical water depth crD of 

the dome has the smaller base radius L   much larger.  For example, for the same 

normalized thickness ξ = 0.01, the critical water depth crD =13.398 for the dome with 

normalized base radius L =3, which is considerably larger than the critical water depth 

crD =1.137 of the dome with a normalized base radius L =1.  
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Fig 6.7  Variation of critical water depth HDDcr /=  with respect to normalized 
thickness Hh /=ξ  of parabolic dome  
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6.4 Concluding remarks 

The applicability of the Ritz method for various kinds of domes is demonstrated by 

solving the buckling problems of spherical and parabolic domes under selfweight and 

hydrostatic pressure. Based on these examples, it can be concluded that the developed 

Ritz method can be readily applied for the buckling analyses of arbitrarily shaped 

rotational shells under their own selfweight and hydrostatic pressure. 
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CHAPTER 7 

 

 

 

OOPPTTIIMMAALL  DDEESSIIGGNNSS  OOFF  SSUUBBMMEERRGGEEDD  DDOOMMEESS    

AAGGAAIINNSSTT  BBUUCCKKLLIINNGG  

 

This chapter is concerned with the optimal design of moderately thick submerged 

domes. In addition to the water pressure, we also take into consideration the 

selfweight, which is a significant load for such long span structures. For a given dome 

height, based on a family of domes that is defined by the meridian curve ( )zfr =0  

with ( ) 00 =′f and submerged in a given water depth, we seek the dome design for 

minimum weight as well as maximum enclosed airspace whereby the dome will not 

buckle under the hydrostatic pressure and its own weight.  The performance index of 

the optimization is formulated as the weighted sum of individual objectives in order to 

obtain Pareto optimal solutions. The buckling analysis of the submerged dome is 

carried out using the Ritz method that was presented in Chapter 6.  

. 
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7.1 Problem definition 

Consider a dome of height H and uniform thickness h. The dome is formed by 

rotating a curve, defined by ( )zfr =0  with ( ) 00 =′f , about the vertical z axis as 

shown in Fig. 7.1. The dome is deployed under a water depth of D and thus it is 

subjected to a hydrostatic pressure ( )zHDp wh +−= γ  as shown in Fig. 7.1a where 

wγ  is the specific weight of water. The loading due to its selfweight is hp aa γ=  as 

shown in Fig. 7.1b where h is the thickness of the dome and aγ  the specific weight of 

the dome material. The dome is also assumed to be free of geometrical and material 

imperfections. 

 

γ hp= aa
z

r2

1r

L L L

H

L

z

r=f(z)

D

0

γ(D-H+z)

 

 (a)   Hydrostatic pressure (b)  Selfweight 

Fig 7.1  Dome under  selfweight and hydrostatic pressure 

 
For a given dome height H and  water depth Drc0, there is a family of domes 

defined by ( )zfr =0   (see Fig. 7.2) that will not buckle when deployed in a given 

water depth Dcr0. Based on this family of domes, we seek the dome with the 

maximum enclosed airspace aS  and minimum weight aW . The problem will be 

specialized for the optimization of a family of spherical domes (Fig. 7.2) and 

parabolic domes (Fig 7.3) and extensive results are presented in this chapter. 



Chapter 7: Optimal Designs of Submerged Domes Against Buckling 

 134

 

H

L L

D

z

r=f(z)0

 

Fig. 7.2  Family of spherical domes for a given dome height H 
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Fig 7.3  Family of parabolic domes for a given dome height H 
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7.2  Method of Optimization 

The weight aW  of a uniform thickness dome, defined by ( )zfr =0  with ( ) 00 =′f , 

can be calculated as follows 

 

( ) ( ) dzzfzfhW
H

aa
2

0

'12 += ∫πγ  (7.1) 

 

The enclosed airspace aS  of the dome is given by 

 

 ( )[ ] dzzfS
H

a ∫=
0

2π  (7.2) 

 

Although Eqs. (7.1) and (7.2) are valid for any function ( )zf , we first restrict our 

study to a family of spherical domes for which the meridional curves is defined by  

 

( ) 2
0 2 zRzzfr −==     (7.3) 

  

 In view of the non-dimensional parameters in Eq. (4.20), Eq. (7.3) may be 

expressed as 

 

2
0 2 zzRr −=     (7.4) 

where HRR /=   and Hzz /= . 
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By substituting Eq. (7.4) into Eq. (7.1) and in view of Eq. (4.20), one obtains the 

weight of a spherical dome as 

 

( )12
3 +== L

H
W

W ap
ap πξ  (7.5) 

 

Similarly, by substituting Eq. (7.5) into Eq. (7.2), one obtains the non-dimensional 

enclosed airspace of a spherical dome as 

 

 π⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+==

6
1

2

2

3

L
H
S

S ap
ap  (7.6) 

 

For a given dome height H, we can apply the Ritz method presented in Chapter 5 

and the Bisection method (Kreyszig 1993) to seek for a family of spherical domes that 

have the critical water depth 0crDD = . In view of Eqs. (7.1) to (7.6), it can be easily 

seen that, the spherical dome shape is defined by the dome height H and dome base 

radius L.  The dome weight and enclosed airspace increase with increasing base radius 

L for a given dome height. 

However, the objective function of this optimal design involves the maximum 

enclosed airspace and the minimum the material weight. In general, for a given dome 

height and water depth, these aforementioned objectives are in conflict with each 

other. We have a bi-criterion optimization problem to deal with.  

As the dome height is prescribed, the dome base radius L (which will be 

confined to HLH 3
3

≤≤  from practical considerations) is taken as the decision 

variable. The performance index is formulated as the weighted sum of individual 
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objectives in order to obtain Pareto optimal solutions for the bi-criterion optimization 

problem. 

One introduces 
a

a S
S 1' =  as the objective function for the enclosed space. Thus, 

seeking the maximum of enclosed space Sa is tantamount to seeking the minimum 

enclosed space parameter Sa’.  

In order to get a better result in the Pareto optimization, one restricts each 

criterion to be bounded in range [0,1] by using the following normalizations 

 

minmax

minˆ
aa

aa
a WW

WW
W

−
−

=  (7.7a) 

minmax

min

''
''

'ˆ
aa

aa
a SS

SS
S

−
−

=  (7.7b) 

 

where minaW , minaW ,  min'aS , max'aS  are the maximum and minimum values of the 

weight and enclosed airspace parameters of the dome in prescribed  range of L , i.e.   

3
3
1

≤≤ L  

 The performance index ( )LJ ;ˆ,ˆ βα  of the problem is given by 

 

( ) aa SWLJ 'ˆ)ˆ1(ˆˆ,ˆ ααα −+=  (7.8)  

  

where  1ˆ0 ≤≤ α  is the weighting factor of the material weight aŴ  and ( ) 1ˆ10 ≤−≤ α   

denotes the weighting factor of  the enclosed airspace parameter aS 'ˆ . 

The bi-criterion optimization problem can be mathematically stated as 
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[ ]aaLL
SWLJJ 'ˆ)ˆ1(ˆˆmin)],ˆ([min ααα −+==  (7.9a) 

subject to 3
3
1

≤≤ L   and 0crcr DD =  (7.9b) 

 

A simple minimum weight optimization problem is obtained by setting 1ˆ =α  for 

minimum weight whereas 0ˆ =α  corresponds to the optimization problem which 

maximizes the enclosed airspace. For 1ˆ0 << α , the base radius L  minimizing 

( )LJ ,α̂  gives the Pareto optimal solution. 

In the optimization stages, one applied the Golden Section Search technique 

(Kreyszig 1993) to determine the minimum value of the performance index J.  

 

7.3  Results and Discussions 

7.3.1 Spherical domes 

As an example, one considers a spherical dome of height H = 3000cm. For the 

subsequent numerical calculations, the dome is assumed to be made from a material 

with sE = θE  = 30x104 kgf/cm2, θν s  = 0.3 and  3-3 kgf/cm  10 x 2.4  =aγ .  The 

specific weight of water is assumed to be 3101 −= xwγ kgf/cm3 .  

Results for the single objective optimization are presented first. Figure 7.4 shows 

the variations of performance index J in the case of 1ˆ =α  and 0ˆ =α . In the case of 

1ˆ =α , one obtains ( ) aWLJ ˆ,ˆ =α , i.e. the performance index is the normalized dome 

weight aW~ . It is clear that the performance index J reaches the minimum value at the 

boundary value of 3/1=L , i.e. the minimum weight of the dome is obtained at the 

lowest value of the normalized base radius  L . 
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In the case of 0=α , one obtains ( ) a'ˆ ,ˆ SLJ =α , i.e. the performance index is the  

normalized enclosed airspace parameter a'S . It is clear that the performance index J 

reaches the minimum value at the boundary value of 3=L , i.e. the maximum 

enclosed airspace is obtained at the largest value of the normalized base radius  L  in 

the given  practical range 3
3
1

≤≤ L . 
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Fig. 7.4  Variations of performance index J of spherical domes  with respect to 
normalized base radius L   in case of 0ˆ =α  and 1ˆ =α . 
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Fig 7.5  Trade-off curve of normalized dome weight aŴ  and  

normalized enclosed airspace parameter a'Ŝ  of spherical domes 
 

Figure 7.5 shows the trade-off curve of normalized dome weight aŴ  and 

normalized enclosed airspace parameter a'Ŝ . The contributions these criteria are 

plotted against each other to give the trade-off between the weightings α̂ =1 and 

α̂ =0. 
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Fig 7.6  Variations of performance index J of spherical domes with respect to 

normalized base radius L  in case of α̂ = 0.25; 0.5 and 0.75 

 

Figure 7.6 shows the variations of the performance index J in the case of α =0.25; 

0.5 and 0.75. In the case of α̂  = 0.25, one obtains the minimum value of the 

performance index J at L =1.2. For  α̂ =0.5 and 0.75, the performance index reaches 

the minimum value at L =1.5 and L = 1.9. It can be seen that the Pareto optimal result 

is highly dependent on the weight coefficient α̂  which the design engineer has to 

decide in consultation with the client.  
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7.3.2 Parabolic domes 

Extending our research on optimal designs of submerged domes, we investigate the 

optimal design of parabolic domes for which the meridional curve is defined by 

 

azr 40 =  (7.10) 

where ( )HLa 4/2= . 

  

 In view of the non-dimensional parameters in Eq. (4.20), Eq. (7.10) may be 

expressed as 

 

zar 40 =  (7.11) 

where   
44

2

2

2 L
H
L

H
aa ===  and 

H
zz = . By substituting Eq. (7.11) into Eq. (7.1) and 

in view of Eq. (4.20), one obtains the weight of a parabolic dome as 

 

( )( )444
6

222
3 ++−+== LLLLL

H
W

W ap
ap

πξ  (7.12) 

 

Similarly, by substituting Eq. (7.5) into Eq. (7.2), one obtains the non-dimensional 

enclosed airspace of a parabolic dome as 
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2
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L
H
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S ap
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π
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As an example, one considers a parabolic dome of height H = 3000cm. For the 

subsequent numerical calculations, the dome is assumed to be made from a material 

with sE = θE  = 30x104 kgf/cm2, θν s  = 0.3 and  3-3 kgf/cm  10 x 2.4  =aγ .  The 

specific weight of water is assumed to be 3101 −= xwγ kgf/cm3 .  

 Results for the single objective optimization are presented first. Figure 7.7 shows 

the variations of performance index J in the case of 1ˆ =α  and 0ˆ =α . Similarly for 

the spherical domes,  the minimum weight of the dome is obtained at the lowest value 

of the normalized base radius  3/1=L  and the maximum enclosed airspace is 

obtained at the largest value of the normalized base radius 3=L  
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Fig. 7.7  Variations of performance index J of parabolic domes  with respect to 

normalized base radius L   in case of 0ˆ =α  and 1ˆ =α . 
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Fig 7.8  Trade-off curve of normalized dome weight aŴ  and 

normalized enclosed airspace parameter a'Ŝ  of parabolic domes 
 

Figure 7.8 shows the trade-off curve of normalized dome weight aŴ  and 

normalized enclosed airspace parameter a'Ŝ  The contributions these criteria are 

plotted against each other to give the trade-off between the weightings α̂ =1 and 

α̂ =0. 
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Fig 7.9  Variations of performance index J of parabolic domes with respect to 

normalized base radius L  in case of α̂ = 0.25; 0.5 and 0.75 

 

Figure 7.9 shows the variations of performance index J in the case of α =0.25; 0.5 

and 0.75. In the case of α̂  = 0.25, one obtains the minimum value of the performance 

index J at L =0.8. For  α̂ =0.5 and 0.75, the performance index reaches the minimum 

value at L =1.1 and L = 1.4. It can be seen that the Pareto optimal result is highly 

dependent on the weight coefficient α̂  which the design engineer has to decide in 

consultation with the client.  
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7.4 Concluding remarks 

This chapter is concerned with the Pareto optimization of a submerged moderately 

thick dome.  The performance index for the optimization problem is formulated as the 

weighted sum of the dome weight and the enclosed airspace of the dome. It can be 

seen that the Pareto optimal solutions are highly dependent on the weighting 

coefficient α  which has to be decided by the design engineer in consultation with the 

client. 
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   CHAPTER 8 

 

 

 

CCOONNCCLLUUSSIIOONNSS  AANNDD  RREECCOOMMMMEENNDDAATTIIOONNSS    

 

 

 

8.1 Summary and Conclusions 

 

This thesis was concerned with the optimal design of submerged domes where both 

strength and buckling criteria have been taken into consideration. Membrane analysis 

was carried out and minimum weight designs of submerged domes of uniform and 

constant strength were investigated with the view to provide better designs for the 

construction of submerged domes. The elastic buckling problem of moderately thick 

domes was also studied. By using the Ritz method, the buckling capacities of 

moderately thick domes under their own selfweight and hydrostatic pressure were 

obtained. Moreover, based on a family of spherical and parabolic domes submerged 

under a  given water depth, the optimal dome shapes for maximum enclosed airspace 

and minimum weight were determined. 
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The first part of the thesis presented the membrane analysis and minimum weight 

design of submerged spherical domes. An analytical expression, in the form of power 

series, for the thickness variation of a submerged spherical dome of uniform strength 

design as governed by the Tresca yield condition was presented. Numerical examples 

showed that 9 terms in the power series sufficed for accurate solutions. Further, the 

optimal subtended angle αopt and the optimal dome height optH  for the minimum 

weight design of spherical domes were determined. It was found that optα  varies 

within a narrow range of 1 radian ≤≤ optα  1.25 radians. The insensitivity of the dome 

weight over this range, which contains the optimal subtended angle, is a good feature 

for engineers as it means that there is some flexibility when designing the dome shape 

without compromising too much on the optimum weight. 

Next,  we extended the formulation to submerged domes of general shapes. The 

equations governing the geometry of constant strength domes under combined 

hydrostatic pressure, selfweight and skin cover load were derived. These equations 

described the curvature and thickness variation of the dome as well as the Cartesian 

coordinates of its meridian. The equations were purposely expressed in terms of the 

arc length s as measured from the apex of the dome instead of using the Cartesian 

coordinate system. This allowed the entire shape of the submerged dome to be 

determined in a single integration process even in the presence of vertical or infinite 

slope that may be encountered in the meridian curve. Based on parametric studies of 

dome shapes under different water depths and selfweight, one may understand better 

the optimal shape of submerged domes. 

In the second part of the thesis, the optimal design of domes against buckling was 

investigated. Although buckling of shells under compressive loading is of practical 
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significance in the design of these structures, most studies found in the open literature 

thus far have focused on spherical domes modelled by classical thin shell theory. In 

the present study, we developed the model and solution technique to predict the 

critical buckling pressure of moderately thick rotational shells generated by any 

meridional shape under external pressure. In order to capture the effect of transverse 

shear deformation, which is significant for moderately thick shells, Mindlin shell 

theory was used. Based on Mindlin shell theory, the energy functional was first 

derived and the Ritz method was used to derive the eigenvalue equation. The Ritz 

method was automated to handle any boundary conditions. This was made possible by 

adopting Ritz functions formed by taking the product of mathematically complete 

polynomial functions and boundary equations raised to appropriate powers; the latter 

ensured the satisfaction of the geometric boundary conditions at the outset. The 

desired accuracy of the results can be achieved by taking appropriate degree of 

polynomials for approximating the displacement functions. The presented buckling 

results were more accurate than those reported earlier (such as by Uddin 1989, and 

Muc 1992) since the  effect of transverse shear deformation was incorporated. 

Moreover, the Ritz method developed in the thesis was simple to understand and to 

code. The Ritz results should be useful benchmark data for analysts developing 

numerical techniques for shell analysis.  

Upon establishing the validity of the Ritz formulation and computer code and its 

ability to furnish accurate buckling results for dome structures under uniform 

pressure, we extended the work to submerged domes with allowance for the effect of 

selfweight. New solutions for the buckling pressure of moderately thick spherical and 

parabolic shells of various dimensions and boundary conditions were presented. 

Further, based on a family of spherical and parabolic domes associated with a given 
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dome height submerged under a water depth, we determined the Pareto optimal dome 

designs for the maximum enclosed airspace and minimum weight.  

The vast optimal dome design data presented in this thesis should serve as a rich 

reference source for researchers and engineers who are working on analysis and 

design of shell structures. 

 

8.2 Recommendations for Future Studies 

The analysis and design of submerged domes involves the consideration of many 

factors which expand the scope of this study for future research. Below are some 

recommendations for future studies. 

 

8.2.1 Domes with very large thickness  

In this thesis, we dealt with moderately thick domes. The Mindlin shell theory is 

adequate for the treatment of such shell structures. However, when the dome has a 

very large thickness for deep sea deployment, it is necessary to use three-dimensional 

elasticity theory to account for the thickness effect. Preliminary research along this 

line has been initiated by Kang and Leissa (2005).  

 

8.2.2 Non-axisymmetric domes  

This thesis only dealt with axisymmetric dome structures as axisymmetric domes are 

one of the most popular dome shapes. However, research should be extended to 

investigate other non-axisymmetric domes such as a dome with a projected 

rectangular or square plan area.  Least weight designs of such domes approximated by 

archgrids were investigated by Rozvany et al. (1982), Alwis and Wang (1985) and 
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Thevendran and Wang (1986).  However, the buckling capacities of such archgrids 

have yet to be studied. 

 

8.2.3  Vibration of submerged domes 

This thesis focused on identifying the optimal design of submerged spherical and 

general dome structures. During the analysis of submerged dome structures, we 

considered the buckling problem which is the most important criterion in designing 

thin shell structures. However, it is also important to consider the vibration behaviour 

of such shell structures so as to avoid the resonant frequencies which may be excited 

by wave induced vibrations.  In such problems, the computational method used by 

Kang and Leissa (2005) on the free vibration of domes can be applied to solve the 

vibrations of domes under hydrostatic pressure. 

 

8.2.4  Other design loads on submerged domes 

In this thesis, we considered selfweight, skin cover and the hydrostatic pressure as the 

design loads on submerged domes. Although, in deep water, the hydrostatic pressure 

is the largest load acting on submerged domes, other environmental loads such as 

wave and current loads as well as incidental loads such as blast loads must be taken 

into account. 
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AAPPPPEENNDDIIXX  

  

 This part details the use of Mathematica (Wolfram 1999) to obtain the buckling 

strength of rotational shells according to the Ritz method and the formulations 

presented in Chapter 4. 

•      Material properties 

 

νθs= 3ê10;
νsθ = 3ê10;
Eθ = 200104;
Es= 200104;
Gsz= Esê2êH1+ νsθL;  

•   Calculation of  the material parameters for the stiffness matrix [K] (Eq. 

4.24) 

 

Q11=
Eθ

Eb
;

Q22=
Es
Eb

;

Q12=
νφθ Eθ

Eb
;

Q44=
5
6

 
Gsz
Eb

 H1− νθsνsθL;
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A11@z_D = Q11IntegrateA
1+ ξ ζ

r1@zD

1+ ξ ζ

r2@zD

, 8ζ, −1ê2, 1ê2<E;

A12@z_D = Q12Integrate@1, 8ζ, −1ê2, 1ê2<D;

A22@z_D = Q22IntegrateA
1+ ξ ζ

r2@zD

1+ ξ ζ

r1@zD

, 8ζ, −1ê2, 1ê2<E;

A44@z_D = Q44IntegrateA
1+ ξ ζ

r2@zD

1+ ξ ζ

r1@zD

, 8ζ, −1ê2, 1ê2<E;

B12@z_D = Q12Integrate@ ζ, 8ζ, −1ê2, 1ê2<D;

D11@z_D = Q11IntegrateA
1+ ξ ζ

r1@zD

1+ ξ ζ

r2@zD

 ζ2, 8ζ, −1ê2, 1ê2<E;

 

 

D12@z_D = Q12IntegrateA ζ2, 8ζ, −1ê2, 1ê2<E;

D22@z_D = Q22IntegrateA
1+ ξ ζ

r2@zD

1+ ξ ζ

r1@zD

 ζ2, 8ζ, −1ê2, 1ê2<E;

 

• Geometrical properties of spherical dome 

 

f@z_D =
è!!!!!!!!!!!!!!!!!

2 z R− z2 ;
r0@z_D = f@zD;
r1@z_D = R;
r2@z_D = R;

η@z_D =
R

è!!!!!!!!!!!!!!!!!!!H2 R− zLz
;

ns1@z_D = −
R
2

;

nθ1@z_D = −
R
2

;
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• Geometrical properties of parabolic domes 

A=
L2

4
;

f@z_D = 2 
è!!!!!!!Az;

r0@z_D = f@zD;

r1@z_D =
2 HA HA+ zLL

3
2

A2
;

r2@z_D = 2 
è!!!!!!!!!!!!!!!!A HA+ zL;

η@z_D = $%%%%%%%%%%%%A + z
z

;

ns1@z_D = −
è!!!!!!!!!!!!!!!!!A HA +zL;

nθ1@z_D = −2è!!!!!!!!!!!!!!!!!A HA +zL i
k
jj A

2HA + zL + 1y
{
zz;

 

 

• Basic functions need to be defined for different boundary functions 

 Clamped edge (Eq. 4.42) 

 

ηu = Hz− 1L z;
ηw = Hz− 1L;
ηψ =Hz− 1L z;  

 Simply supported edge (Eq. 4.43) 

 

ηu = Hz− 1L z;
ηw = Hz− 1L;
ηψ = z;  
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• The mathematically complete polynomial functions are formed as a list. (Eq. 

4.28) 

  

TableApi = ηu zi−1, 8i, 1, N1<E;

TableApi = ηw zi−N1−1, 8i, N1+ 1, N2<E;

TableApi = ηψ zi−N2−1, 8i, N2+ 1, N3<E;  

 

• The matrix elements of the [K] matrix (Eqs. (4.31-35) 

 

TableAqi =
∂zr0@zD

η@zDr0@zD  pi , 8i, 1, N1<E;

TableAqi =
pi

r2@zD, 8i, N1+ 1, N2<E;

Table@qi = 0, 8i, N2+ 1, N3<D;
K1@z_D = Table@A11@zD qi qj r0@zD η@zD, 8i, 1, N3<, 8j, 1, i<D;  

 

Table@wi = 0, 8i, 1, N1<D;
Table@wi = 0, 8i, N1+ 1, N2<D;

TableAwi = ξ 
∂zr0@zD

η@zDr0@zD  pi, 8i, N2+ 1, N3<E;

K2@z_D = Table@D11@zD wi wj r0@zD η@zD, 8i, 1, N3<, 8j, 1, i<D;

 

 

TableAei =
∂zpi

η@zD , 8i, 1, N1<E;

TableAei =
pi

r1@zD, 8i, N1+ 1, N2<E;

Table@ei = 0, 8i, N2+ 1, N3<D;
K3@z_D = Table@A22@zDei ej r0@zD η@zD, 8i, 1, N3<, 8j, 1, i<D;
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Table@ri = 0, 8i, 1, N1<D;
Table@ri = 0, 8i, N1+ 1, N2<D;

TableAri = ξ 
∂zpi

η@zD , 8i, N2+ 1, N3<E;

K4@z_D = Table@D22@zD ri rj r0@zD η@zD, 8i, 1, N3<, 8j, 1, i<D;  

 

TableAti = −
pi

r1@zD , 8i, 1, N1<E;

TableAti =
∂zpi

η@zD , 8i, N1+ 1, N2<E;

TableAti = pi, 8i, N2+ 1, N3<E;

K5@z_D = TableAA44@zD ti tj r0@zD η@zD, 8i, 1, N3<, 8j, 1, i<E;  

K6a@z_D = Table@B12@zD qi wj r0@zD η@zD, 8i, 1, N3<, 8j, 1, i<D;
K6b@z_D = Table@B12@zD qj wi r0@zD η@zD, 8i, 1, N3<, 8j, 1, i<D;  

K7a@z_D = Table@ B12@zD ei rj r0@zD η@zD, 8i, 1, N3<, 8j, 1, i<D;
K7b@z_D = Table@B12@zD ej ri r0@zD η@zD, 8i, 1, N3<, 8j, 1, i<D;  

K8a@z_D = Table@A12@zD qi ej r0@zD η@zD, 8i, 1, N3<, 8j, 1, i<D;
K8b@z_D = Table@A12@zD qj ei r0@zD η@zD, 8i, 1, N3<, 8j, 1, i<D;  

K9a@z_D = Table@D12@zD wi rj r0@zD η@zD, 8i, 1, N3<, 8j, 1, i<D;
K9b@z_D = Table@D12@zD wj ri r0@zD η@zD, 8i, 1, N3<, 8j, 1, i<D;  

K10a@z_D = Table@B12@zD qi rj r0@zD η@zD, 8i, 1, N3<, 8j, 1, i<D;
K10b@z_D = Table@B12@zDqj ri r0@zD η@zD, 8i, 1, N3<, 8j, 1, i<D;  

K11a@z_D = Table@B12@zD wi ej r0@zD η@zD, 8i, 1, N3<, 8j, 1, i<D;
K11b@z_D = Table@B12@zD wj ei r0@zD η@zD, 8i, 1, N3<, 8j, 1, i<D;  

 
•  The matrix [K] can be obtained as follow (Eq. 4.30) 

K@z_D = K1@zD+ K2@zD + K3@zD + K4@zD + K5@zD + K6a@zD+ K6b@zD + K7a@zD + K7b@zD+

K8a@zD+ K8b@zD + K9a@zD + K9b@zD + K10a@zD + K10b@zD+ K11a@zD + K11b@zD;  
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• The elements of matrix [M] can be obtained as Eq. (4.37-39)  

TableAyi =
∂zr0@zD

η@zDr0@zD  pi , 8i, 1, N1<E;

TableAyi =
pi

r2@zD, 8i, N1+ 1, N2<E;

Table@yi = 0, 8i, N2+ 1, N3<D;
M1@z_D = Table@nθ1@zDyi yj r0@zD η@zD, 8i, 1, N3<, 8j, 1, i<D;  

TableAui =
∂zpi

η@zD , 8i, 1, N1<E;

TableAui =
pi

r1@zD, 8i, N1+ 1, N2<E;

Table@ui = 0, 8i, N2+ 1, N3<D;
M21@z_D = Table@ns1@zD ui uj r0@zD η@zD, 8i, 1, N3<, 8j, 1, i<D;  

TableAgi =
pi

r1@zD, 8i, 1, N1<E;

TableAgi = −
∂z pi

η@zD , 8i, N1+ 1, N2<E;

Table@gi = 0, 8i, N2+ 1, N3<D;
M31@z_D = Table@ns1@zDgi gj r0@zD η@zD, 8i, 1, N3<, 8j, 1, i<D;  

 

• The matrix [M] can be obtained as follow (Eq. 4.36) 

 M@z_D = M1@zD+ M2@zD + M3@zD;  

 

For elastic buckling, the aforementioned eigenvalue problems can be expressed in the 

standard form of a generalized eigenvalue problem and a standard eigenvalue routine, 

for e.g. EISPAC (Smith et al., 1974), can be used to solve the problem. However, it 

was found that the built-in function “Eigenvalues” in Mathematica (Wolfram, 1999) 

can be used instead of Gaussian elimination. The use of built-in function 

“Eigenvalues” is found to be faster than using the Gaussian elimination in the 

determination of the eigenvalues for this class of problems. Eigenvalues function in 
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Mathematica used the function DSYEVR in LAPACK<www.netlib.org/lapack/> 

routines to calculate the numerical eigen values and vectors of a real and symmetric 

matrice. 

 LAPACK, the Linear Algebra PACKage, is a software library for numerical 

computing written in Fortran 77. It provides routines for solving systems of 

simultaneous linear equations, least-squares solutions of linear systems of equations, 

eigenvalue problems, and singular value problems. 

 DSYEVR function computes selected eigenvalues and, optionally, eigenvectors 

of a real symmetric matrix A.  Eigenvalues and eigenvectors can be selected by 

specifying either a range of values or a range of indices for the desired eigenvalues. 

DSYEVR first reduces the matrix A to tri-diagonal form T with a call to DSYTRD.  

Then, DSYEVR calls DSTEMR to compute the eigen spectrum using Relatively 

Robust Representations (Parlett and Dhillon, 2000) 
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