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SUMMARY

The Economic Lot Scheduling Problem (ELSP) has occupied researchers for

more than fifty years. Scheduling production of multiple products on a single

machine under capacity constraints is one of the classic problems in operations

research.

As far as we know, no one has presented a procedure to determine the

optimal lot sizes and production sequence for the general ELSP. Many policies

have been proposed to reduce the complexity of the problem. This disserta-

tion uses the Extended Basic Period (EBP) and Power-of-Two (PoT) policy

for this problem and develops several algorithms under this policy.

The problem is formulated as a nonlinear integer programming problem.

The optimal solution is found by treating one of the variables as a parameter

and solving the problem by a series of integer linear programming problems.

It is the first algorithm that can find the optimal solution under the EBP and

PoT policy, although it takes a long time to determine the optimal solution.

A heuristic based on insights drawn from the algorithm is developed. The

heuristic yields solutions almost as good as the optimal solutions and reduces

the running time dramatically. A genetic algorithm is also developed for this

problem. This algorithm produces solutions better than those obtained by

earlier genetic algorithms in the literature without the PoT restriction and it

is very fast. It finds the optimal solutions under this policy for all the bench-

mark problems. In addition, it finds the optimal solutions under this policy

for about 95% of all the randomly generated problems.



We also consider the Multiple-machine ELSP (MELSP). The MELSP sched-

ules many products on multiple machines. It is assumed that the machines are

identical and the products cannot be split on different machines. A genetic

algorithm under the Common Cycle (CC) policy is presented with an integer

encoding scheme. The solution dominates a previous heuristic under the CC

policy for this problem and the running time does not vary much when the

machines are heavily loaded, which is not guaranteed by the previous heuristic.

Based on an earlier study in the literature, the solution under the CC pol-

icy is quite close to the lower bound of the general version of this problem.

However, we observe that the earlier study only tested the CC policy when

there are either 5 or 10 machines. From our computational results, we see that

the CC policy is not as good when there are less machines. A less restrictive

policy, the EBP and PoT policy, is used for solving this problem. Again, a

genetic algorithm is used and it is found that the solutions are a lot better

than the genetic algorithm under the CC policy, especially when the number

of machines is small. Probably due to the difficulty of finding a good encoding

scheme, no one has applied genetic algorithms for solving the MELSP before.

We find that the genetic algorithm works well for solving the MELSP with a

good encoding scheme.



List of Figures

2.1 A 2-product example under the CC policy . . . . . . . . . . . 9

2.2 Schedule of production in S & G’s procedure . . . . . . . . . . 13

3.1 An explanation of K, ji and Sk . . . . . . . . . . . . . . . . . 21

3.2 Graph of function f(W ) . . . . . . . . . . . . . . . . . . . . . 23

3.3 Junction points on a curve . . . . . . . . . . . . . . . . . . . . 26

3.4 Trimmed interval . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.5 Case 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.6 Case 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.7 Case 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.1 Chromosome for ELSP under the EBP and PoT policy . . . . 48

4.2 Two-position crossover for ELSP under the EBP and PoT policy 54

5.1 Chromosome for MELSP under the CC policy . . . . . . . . . 63

5.2 Uniform crossover for MELSP under the CC policy . . . . . . 68

5.3 Chromosome for MELSP under the EBP and PoT policy . . . 70

5.4 A simple example for MELSP . . . . . . . . . . . . . . . . . . 70

5.5 Uniform crossover under the EBP and PoT policy . . . . . . . 77

5.6 Computational results for utilization 0.6 . . . . . . . . . . . . 80

viii



ix

5.7 Computational results for utilization 0.7 . . . . . . . . . . . . 80

5.8 Computational results for utilization 0.8 . . . . . . . . . . . . 81

5.9 Computational results for utilization 0.85 . . . . . . . . . . . . 81

5.10 Computational results for utilization 0.9 . . . . . . . . . . . . 82

5.11 Computational results for utilization 0.95 . . . . . . . . . . . . 82

5.12 Running time for utilization 0.6 . . . . . . . . . . . . . . . . . 83

5.13 Running time for utilization 0.7 . . . . . . . . . . . . . . . . . 83

5.14 Running time for utilization 0.8 . . . . . . . . . . . . . . . . . 84

5.15 Running time for utilization 0.85 . . . . . . . . . . . . . . . . 84

5.16 Running time for utilization 0.9 . . . . . . . . . . . . . . . . . 85

5.17 Running time for utilization 0.95 . . . . . . . . . . . . . . . . 85

F.1 Convergence of GA for ELSP . . . . . . . . . . . . . . . . . . 114

F.2 Convergence of GACC . . . . . . . . . . . . . . . . . . . . . . 115

F.3 Convergence of GAEBP . . . . . . . . . . . . . . . . . . . . . 115



List of Tables

3.1 A 2-product example . . . . . . . . . . . . . . . . . . . . . . . 22

3.2 Ranges of parameters for ELSP . . . . . . . . . . . . . . . . . 39

3.3 Comparison for the algorithms under the EBP and PoT policy 39

3.4 Computational results for high utilization problems . . . . . . 40

4.1 Computational results for six benchmark ELSP problems . . . 56

4.2 Computational results for high utilization problems with GA . 57

4.3 Multipliers and production positions for high utilization prob-

lems with GA . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.4 Computational results for randomly generated problems . . . . 59

5.1 Ranges of parameters for MELSP . . . . . . . . . . . . . . . . 79

B.1 Bomberger’s problem . . . . . . . . . . . . . . . . . . . . . . . 103

C.1 Benchmark problem 2 . . . . . . . . . . . . . . . . . . . . . . 104

C.2 Benchmark problem 3 . . . . . . . . . . . . . . . . . . . . . . 105

C.3 Benchmark problem 4 . . . . . . . . . . . . . . . . . . . . . . 105

C.4 Benchmark problem 5 . . . . . . . . . . . . . . . . . . . . . . 106

C.5 Benchmark problem 6 . . . . . . . . . . . . . . . . . . . . . . 106

x



NOMENCLATURE

BP Basic Period.

CC Common Cycle.

EBP Extended Basic Period.

EH Efficient Search.

ELS Equal Lot Sizes.

ELSP Economic Lot Scheduling Problem.

GA Genetic Algorithm.

GACC Genetic Algorithm under the Common Cycle policy.

GAEBP Genetic Algorithm under the Extended Basic Period and

Power-of-Two policy.

HH Haessler’s Heuristic.

IS Independent Solution.

LB Lower Bound.

MELSP Multiple-machine Economic Lot Scheduling Problem.

OPT Optimal solution under the Extended Basic Period and Power-of-Two

policy.

PoT Power-of-Two.

SS Small Step search algorithm.

ZIP Zero Inventory Production.

I Number of products.

Ti Cycle time for product i.

Ci Average cost per unit time for product i.

Ai Setup cost for product i.

hi Inventory holding cost per unit time per unit for product i.



ri Demand rate for product i.

pi Production rate for product i.

ρi ri/pi, production density for product i.

ρ Sum of ρi for ELSP.

Hi hiri(1− ρi)/2, the holding cost factor for product i.

C Total average cost per unit time for all products.

T ∗
i Optimal cycle time of the Independent Solution for product i.

C∗
i Optimal cost of the Independent Solution for product i.

si Setup time for product i.

ni Multiplier for product i.

ji Production position for product i.

Li Lower bound of ni.

Ui Upper bound of ni.

W Basic period.

n Multiplier vector (n1, . . . , nI).

j Production position vector (j1, . . . , jI).

K Number of basic periods in a common cycle.

T Common cycle time of all products.

T ∗ Optimal common cycle time.

Sk Set of products in the kth basic period.

ti log2 ni.

µi Lower bound of ti.

νi Upper bound of ti.

xi,ti,ji
0-1 Decision variable, 1 if the multiplier of product i is 2ti

and the production position is ji.



xiii

yi,ti 0-1 Decision variable, 1 if the multiplier of product i is 2ti .

PoT (·) Formulation of the ELSP under the EBP and PoT policy.

PoT (W ) Formulation of PoT (·) given W .

f(W ) Optimal objective value of PoT (W ).

g(W ) Optimal objective value of PoT (W ) relaxing capacity constraints.

WLB Lower bound of W .

WUB Upper bound of W .

wj jth junction point of g(W ).

Ip pth interval of the curve of g(W ) divided by junction points.

wp Left point of Ip.

wp Right point of Ip.
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Chapter 1

Introduction

1.1 Economic Lot Scheduling Problem

The Economic Lot Scheduling Problem (ELSP) has received attentions from

researchers for more than fifty years as many companies produce several differ-

ent products but own only one or a few production lines. Thus, it is important

for the company to schedule the cycle times and the production sequence so

that the demand of all products can be satisfied at the minimal cost.

In the literature, the ELSP is defined as a problem to schedule several

products on a single machine over an infinite planning horizon. There are a

setup cost and a setup time associated with producing each product and the

objective is to determine the lot sizes and the production sequence so as to

minimize the holding and setup cost per unit time. It can be characterized as

follows:

• Only one product can be produced at a time on the single machine.

1
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• A setup cost and a setup time associated with producing each product

are known and constant.

• The setup cost and setup time depend only on the product.

• The demand rate and production rate for each product are known and

constant over an infinite planning horizon and all demand must be met

without backlogging.

• Holding costs are directly proportional to inventory levels.

Essentially, the ELSP arises from the desire to produce the products with a

cyclical production pattern based on economic manufacturing quantity calcu-

lations for individual products. However, when two or more products compete

for the machine’s capacity, a compromising schedule needs to be developed

so that the total production cost is minimized while the cyclical patterns of

production are still maintained.

1.2 Multiple-Machine Economic Lot Schedul-

ing Problem

The ELSP deals with the production that involves only a single machine.

However, many real problems have two or more machines. Thus, it is of great

importance to solve the Multiple-machine ELSP (MELSP). The MELSP has to

determine the allocation of products to different machines, the lot sizes of the

products on different machines and the production schedules of the products
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on all the machines to minimize the total average inventory and setup costs

for all the machines. In this dissertation, we discuss the MELSP with identical

machines and it can be described as follows:

• Only one product can be produced at a time on a machine.

• There are a setup cost and a setup time associated with producing each

product.

• The setup cost and setup time depend only on the product.

• The demand rate and production rate for each product are known and

constant over an infinite planning horizon and all demands must be met

without backlogging.

• Holding costs are directly proportional to inventory levels.

• The machines are identical with respect to the production costs and the

production rates for each product.

• The production of a product cannot be split on different machines.

1.3 Contributions of Dissertation

The main contributions of the dissertation can be outlined as follows:

• Formulate and find the optimal solution of the ELSP under the Extended

Basic Period (EBP) and Power-of-Two (PoT) policy. The EBP and PoT

policy is a good policy for solving the ELSP. However, up to our knowl-

edge, no one has characterized an optimal solution procedure under this
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policy.

• Develop a good and fast heuristic method for the ELSP under the EBP

and PoT policy based on insights drawn from the optimal solution pro-

cedure.

• Propose a Genetic Algorithm (GA) for the ELSP under the EBP and

PoT policy, which is a lot faster than the previous methods while finding

the optimal solutions for almost all the problems tested.

• Solve the MELSP under the Common Cycle (CC) policy with a GA,

which is shown empirically to be better than an existing algorithm in

the literature.

• Propose a GA for the MELSP under the EBP and PoT policy, which

performs better than the GA under the CC policy. It is also shown that

the EBP and PoT policy improves the solution quality significantly com-

pared with the CC policy when the number of machines is small.

1.4 Organization of Dissertation

The dissertation consists of six chapters. A brief description of the next chap-

ters is listed below:



5

• Chapter 2 reviews some of the related works done on the ELSP and the

MELSP.

• Chapter 3 discusses the EBP and PoT policy in detail. It formulates

the problem with a mathematical program and introduces a paramet-

ric search algorithm to solve the problem optimally. Based on insights

drawn from the search algorithm, a heuristic is presented to solve the

problem in shorter time. Computational results are also reported for the

optimal and heuristic algorithms.

• Chapter 4 tests the application of GA to the ELSP where the EBP and

PoT policy is used. In designing the GA, an encoding scheme that is lean,

efficient and natural to the problem structure is applied. The heuristic

is shown to be able to find the optimal solution under the EBP and PoT

policy for most tested problems.

• Chapter 5 focuses on the MELSP. First, a GA is developed to solve the

problem under the CC policy, which is shown to be better than a previ-

ous heuristic. Next, a GA under the EBP and PoT policy is proposed

and shown to be better in performance.

• Chapter 6 concludes this dissertation and gives some advice on future

research.



Chapter 2

Literature Review

The ELSP is a classic scheduling problem to determine the lot sizes and pro-

duction sequence for several products on a single machine. The tradeoff be-

tween holding inventory for the product and frequent production setups on a

single machine makes it necessary to determine good lot sizes for all the prod-

ucts. The MELSP is an extension of the ELSP, which schedules on multiple

machines.

2.1 ELSP

Most papers on this problem make two assumptions. Firstly, the lot sizes

of each product are assumed to be equal, which is called the Equal Lot Size

(ELS) assumption. Secondly, the production of each product starts and only

starts when its inventory is zero, which is called the Zero Inventory Production

(ZIP) assumption. These two assumptions are also used in this dissertation.

Since the feasibility of a schedule is of prime concern, policies have been taken

to guarantee feasibility from the outset, by imposing some constraints on the

6
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cycle times. The following notations are used in this chapter:

I = Number of products;

Ai = Setup cost for product i;

si = Setup time for product i;

ri = Demand rate for product i;

pi = Production rate for product i;

ρi = ri/pi, utilization for product i;

hi = Inventory holding cost for product i;

ni = Multiplier for product i, ni ∈ {1, 2, 4, . . . };
ki = Production frequency for product i in a cycle;

K = Number of basic periods in a cycle;

ji = Production position for product i;

W = Basic period;

The problem of ELSP is to determine the cycle time for product i, denoted

by Ti, with the objective of minimizing the total average setup cost and in-

ventory holding cost while satisfying the demands. The average cost per unit

time when product i is produced in a cycle of length Ti is given by:

Ci = Ai/Ti + hiri(1− ρi)Ti/2,

where Ai/Ti is the average setup cost over a cycle and hiri(1− ρi)Ti/2 is the

average inventory holding cost over a cycle. We let Hi = hiri(1 − ρi)/2 and

rewrite the expression of Ci as follows:
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Ci = Ai/Ti + HiTi.

Thus, ELSP needs to find Ti’s to minimize the total average costs:

min C =
I∑

i=1

Ci.

It is not difficult to see that the minimum of C can be derived from the fol-

lowing equations:

∂C/∂Ti = −Ai/T
∗2
i + Hi = 0, i = 1, 2, . . . , I.

The min-cost cycle is given by:

T ∗
i =

√
Ai/Hi, i = 1, 2, . . . , I,

with the corresponding minimum cost

C∗
i = 2

√
AiHi, i = 1, 2, . . . , I.

T ∗
i is called the Independent Solution (IS), which is optimal when the restric-

tion on feasibility is ignored. However, following the IS, two products may be

required to produce at the same time on the machine, which is not possible

physically. The ELSP is proved to be NP-hard (Hsu, 1983; Gallego and Dong,

1997) and so far no one has characterized an optimal policy for solving the
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general ELSP. The most common approach is to make assumptions on the

cycle times and solve the restricted version of this problem.

One of the most popular policies is the CC policy (Hanssmann, 1962),

which assumes that all products have a common cycle time. That is, T1 =

T2 = · · · = TI = T . With this assumption, the schedule is feasible as long as

the following condition is met:

I∑
i=1

(si + ρiTi) ≤ T. (2.1)

Inventory level 

Time 

Product 1 

Product 2 

Figure 2.1 A 2-product example under the CC policy

Figure 2.1 shows a 2-product example. Normally, the ELSP assumes that

the production begins and only begins when a product has zero inventory, so

the amount of product i produced in one cycle is riTi and the production time

for product i is riTi/pi ( or ρiTi). In each cycle, it is required to produce each

product once, so the feasibility constraint is that the sum of setup time and

production time for all the products should be less than or equal to T , which

is inequality (2.1).
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The problem under the CC policy can be formulated as follows:

min C =
I∑

i=1

(
Ai

T
+ HiT

)

subject to
I∑

i=1

(si + ρiT ) ≤ T. (2.2)

Ignoring constraint (2.2), the min-cost T is found by letting:

∂C/∂T = −
∑I

i=1 Ai

T 2
+

I∑
i=1

Hi = 0,

which is

T ∗ =

√∑I
i=1 Ai∑I
i=1 Hi

.

Observing inequality (2.2), the optimal solution under the CC policy is

T ∗ = max

{√∑I
i=1 Ai∑I
i=1 Hi

,

∑I
i=1 si

1−∑I
i=1 ρi

}
.

It is assumed that
∑I

i=1 ρi < 1 for the ELSP. Although it is easy to solve the

ELSP under the CC policy, in general this policy will not give the optimal

solution to the original problem. Actually, as pointed out by Maxwell (1964),

this policy can only be defended on the basis of convenience in analysis and

implementation. Jones and Inman (1989) showed that the solution under the

CC policy can be near optimal under certain conditions. However, in prac-

tice to get good quality solutions, more flexible policies are required to be used.
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It is interesting to note that the CC policy has been used frequently for

solving the extension problems of the ELSP. Galvin (1987) applied the CC

policy in the second part of a model dealing with a sequence-dependent setup

problem. Gupta (1992) presented an analysis on the ELSP under the CC

policy when backlogging is allowed. Hahm and Yano (1995) introduced the

economic lot delivery scheduling problem under the CC policy of which an op-

timal polynomial time algorithm was given by Jensen and Khouja (2004), and

this was further improved by Clausen and Ju (2006) with an efficient hybrid

algorithm. On the other hand, Khoury et al. (2001) considered the 2-product

ELSP with insufficient capacity under the CC policy and presented a mathe-

matical model with a solution procedure. Lately, Lin et al. (2006) determined

a near optimal cycle time for the ELSP with deteriorating products under the

CC policy.

A more flexible policy, the BP policy, was proposed by Bomberger (1966),

which allows different cycle times for different products. It is assumed that

Ti = niW , where W is a basic period of all products and ni’s are positive inte-

gers. We denote ni’s by n = (n1, . . . , nI) in this dissertation. To guarantee

the feasibility of a schedule, it is required that W is long enough to accom-

modate the production of all products. Bomberger (1966) solved the problem

by a dynamic programming approach for a given W . It is not easy to find the

optimal W and n simultaneously. Under the BP policy, the problem can be

formulated as follows:

min
I∑

i=1

(
Ai

niW
+ HiniW

)
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subject to

I∑
i=1

(si + ρiniW ) ≤ W, (2.3)

W > 0, ni ≥ 1 and integer.

After the BP policy was introduced, the use of W and n becomes very popular

in representing the solution of the problem. However, the feasibility condi-

tion (2.3) is quite stringent. Maxwell and Singh (1983) discussed its implica-

tion and restriction imposed on the cycle times. To circumvent this restriction,

most researchers relax the condition and propose heuristic methods to solve

the problem. These heuristic methods are discussed in the next paragraph.

A heuristic proposed by Madigan (1968) is to use the optimal cycle time

T ∗
i and the optimal cost C∗

i = Ai/T
∗
i +HiT

∗
i of the IS solution as the reference

point. Given the cost Ci under the CC policy for product i, its multiplier is

revised if the difference Ci − C∗
i is found to be rather significant. Also, each

time a multiplier is changed, a check on feasibility is made. However, no guide

on changing the multipliers is given in Madigan (1968). Another heuristic is

proposed by Stankard and Gupta (1969) who divided the set of products in

K + 1 groups G, G1, . . . , GK in which G has cycle time W and any other

Gi has cycle time K ×W in a round robin pairing with G, as shown in Fig-

ure 2.2. In other words, the heuristic restricts the multiplier of each product

to be either 1 or K. Doll and Whybark (1973) suggested an iterative proce-

dure for the simultaneous determination of the individual multipliers n and

W , which eliminates the restriction on the multipliers. But the procedure does

not guarantee to find a feasible solution. Goyal (1973) also presented an iter-
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ative procedure for the simultaneous determination of n and W . However, it

was found later by Schweitzer and Silver (1983) that the mathematical model

is ill-posed.

GG
1

GG
2

GG
3 … … 

GG
K

GG
1

(rotation cycle) 

Figure 2.2 Schedule of production in S & G’s procedure

The determination of n and W simultaneously under the BP policy is fi-

nally solved by Grznar and Riggle (1997). Subsequently Khouja et al. (1998)

proposed an effective GA, which is found to be able to solve the high utiliza-

tion problems very well. As for the extension problem, Soman et al. (2004)

applied the BP policy to the ELSP with shelf life considerations.

Elmaghraby (1978) made an excellent review of all the early methods for

the ELSP and presented a dynamic programming method for the problem

under a less restrictive policy than the BP policy. This policy considers two

consecutive basic periods at the same time. The products with even multipli-

ers are divided into two sets of products B1 and B2, which are produced in the

two basic periods respectively. Under this policy, the feasibility conditions can

be expressed as two inequalities (2.4) and (2.5). It is not difficult to see that

this policy is more flexible than the BP policy. Fujita (1978) then applied the

policy to solve the problem using the marginal analysis method. This policy is

known as the EBP policy. It reserves the capacity for the product with an odd
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multiplier in each basic period, but only reserves the capacity for the product

with an even multiplier in one of each two basic periods. Lopez and Kingsman

(1991) summarized the theory and practice for ELSP.

∑

ni odd

(si + ρiniW ) +
∑

ni even, i∈B1

(si + ρiniW ) ≤ W (2.4)

∑

ni odd

(si + ρiniW ) +
∑

ni even, i∈B2

(si + ρiniW ) ≤ W (2.5)

Haessler (1979) extended the EBP policy further and presented the follow-

ing necessary conditions for the solution to be feasible. Currently, the EBP

policy refers to this more general policy extended by Haessler (1979), but not

the original version of the EBP policy presented by Elmaghraby (1978). The

EBP policy is a policy that assumes the cycle time is a multiple of the basic

period without the capacity constraints used by Bomberger (1966). The diffi-

culty of solving the ELSP under the EBP policy is how to ensure the feasibility

of a production schedule.

K∑
j=1

xij = ki for all i, (2.6)

xij = xij+ni
for all i provided ni 6= K, for j = 1 . . . K − ni, (2.7)

∑
i

xij(si + niρiW ) ≤ W for all j. (2.8)
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In the above expressions, xij is 1 if product i is produced in the jth basic

period and 0 otherwise. K stands for the least common multiple of all ni’s and

ki = K/ni, which is the number of times product i is produced in a complete

cycle of K basic periods. Conditions (2.6), (2.7) and (2.8) are necessary con-

ditions for a feasible solution if ni = 1 for at least one product. Haessler (1979)

also assumed that all the multipliers are powers of two. The error of rounding

off the multipliers to powers of two is small. Roundy (1989) showed that the

cost increase cannot exceed 6% by rounding off the intervals to powers of two

for ELSP with necessary capacity constraints.

The EBP policy does not require the basic period to be long enough to

accommodate the production of all products. Instead, it pools the machine

time of consecutive periods to stagger out the production. It is very difficult

to solve the problem optimally under the EBP policy. Several heuristics have

been developed under this policy (Park and Yun, 1984; Boctor, 1987; Geng

and Vickson, 1988; Larraneta and Onieva, 1988). Recently, a GA is presented

by Chatfield (2007) and it is shown that GA performs particularly well for

high utilization problems. Also, Yao and Huang (2005) solved the problem

with deteriorating items using GA.

All the policies mentioned so far assume ELS. On the other hand, Dobson

(1987) presented a formulation allowing the lot sizes for a given product to

vary over the cycle. Together with the procedure designed by Zipkin (1991),

the two algorithms comprise a simple, plausible heuristic for the ELSP as a

whole. Dobson’s approach is similar to that of Roger (1958), Maxwell (1964)

and Delporte and Thomas (1977). This problem is also tackled by several
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meta-heuristics (Moon et al., 2002; Raza and Akgunduz, 2005; Raza et al.,

2006). The time-varying lot sizes policy is less restrictive than the policies as-

suming ELS. However, it often creates solutions with very long cycles in order

to make room for setups (Chatfield, 2007). In this dissertation, we focus on

discussing policies with ELS assumption.

So far, no one has characterized an optimal strategy for solving the general

ELSP without imposing any requirements. However, there are papers dis-

cussing how to solve the general ELSP with two products. Vemuganti (1978)

had shown that, given the number of setups for the two products over some

time interval, a feasible schedule exists if a certain mixed integer linear pro-

gram has a feasible solution. Boctor (1982) presented necessary and sufficient

conditions for feasibility for the general ELSP when there are only two prod-

ucts and showed that the cycle lengths have to be integer multiples of some

basic cycle time when there are more than two products. Lee and Danusapu-

tro (1989) proposed an algorithm for the two-product problem.

Vast literatures have been devoted to the ELSP with deterministic de-

mands. There are also a number of works done on the stochastic ELSP

(SELSP), which considers the production of multiple products on a single ma-

chine under random demands (Karmarkar, 1987; Leachman and Gascon, 1988;

Leachman et al., 1991; Bourland and Yano, 1994; Markowitz et al., 1995; Fed-

ergruen and Katalan, 1996; Pena and Zipkin, 1997; Federgruen, 1998; Wagner

and Smits, 2004).
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Another important extension of the ELSP is the lot scheduling problem

with sequence-dependent setups, where the explicit costs associated with the

setup and the lost productive time of the setup depend on the production

sequence. Maxwell (1964) was the first to formulate and discuss the problem,

followed by Geoffrion and Graves (1976), Singh and Foster (1987) and Driscoll

and Emmons (1977). Subsequently, Dobson (1992) formulated the problem

and provided a heuristic solution procedure. Recently, a search heuristic is

presented by Wagner and Davis (2002).

2.2 MELSP

This problem can be described as a problem to determine the product as-

signment, economic lot sizes and production sequences on multiple machines.

Similar to the single-machine problem, the objective of the MELSP is to min-

imize the total average setup and inventory holding costs for all the machines.

Maybe due to the problem complexity, there is very little literature on

the MELSP, although it is an important problem as most real problems have

more than one machine. Maxwell and Singh (1986) were the first to address

the MELSP by proposing some conditions for developing effective heuristic

methods. Carreno (1990) introduced a local search heuristic under the CC

policy with the assumption that the production of a product cannot be split

among the machines. Bollapragada and Rao (1999) investigated the noniden-

tical multiple-machine problem under the CC policy where the production of

a product is allowed to be split among the machines.



Chapter 3

ELSP

3.1 The EBP and PoT Policy

The CC policy and the BP policy were introduced before the EBP policy in

the literature. It is obvious that the CC policy is too restrictive as it assumes

that all the products have the same cycle time. The BP policy allows the

products to have different cycle times, but it cannot provide good solutions if

the capacity is tight. A worst case analysis is performed for the CC policy and

the BP policy in Appendix E.1, which shows that the solutions under these

two policies can be arbitrarily bad compared to the solution under the EBP

and PoT policy. However, to our knowledge, so far no one has presented an

optimal solution for the problem under the EBP and PoT policy. A search

algorithm that finds the optimal solution and a heuristic search algorithm for

ELSP under the EBP and PoT policy are presented in this section. The policy

is defined as:

• EBP: Ti = niW , ni and W must satisfy

18
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∑
i∈Sk

(si + ρiniW ) ≤ W

where Sk represents the set of products produced in the basic period k.

• PoT: ni = 2ti , for some non-negative integer ti.

3.1.1 The Formulation

The problem under the EBP and PoT policy can be formulated as follows:

PoT(·):

min
I∑

i=1

νi∑
ti=µi

2ti∑
ji=1

(
Ai

2tiW
+ Hi2

tiW

)
xi,ti,ji

subject to

I∑
i=1

νi∑
ti=µi

(
si + ρi2

tiW
)
xi,ti,α(ti,k) ≤ W, k = 1, 2, . . . , K (3.1)

νi∑
ti=µi

2ti∑
ji=1

xi,ti,ji
= 1, i = 1, 2, . . . , I

xi,ti,ji
∈ {0, 1}, W > 0

where

α(ti, k) =
(
(k − 1) mod 2ti

)
+ 1

Here, the binary variables in x’s capture the production sequence where xi,ti,ji
=

1 only when ni = 2ti and the production position of product i is ji. Let
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j = (j1, . . . , jI) be the production positions. In other words, the cycle time

of product i is 2tiW and it is produced at the jith period of every 2ti basic

periods. W stands for the duration of the basic period. α(ti, k) is used to

ensure that period k captures the production time of product i. K constraints

are imposed in (3.1) to ensure that the production time in every basic period

is within the capacity of W . If W is given for PoT(·), the model is denoted

by PoT (W ). Note that PoT (W ) is a pure integer linear programming problem.

µi and νi are the lower bound and upper bound of ti. Given Li ≤ ni ≤ Ui

(See Appendix A), µi and νi are calculated as follows.

µi = dlog2 Lie

νi = blog2 Uic

where dze is the smallest integer that is bigger than or equal to z and bzc is

the biggest integer that is smaller than or equal to z.

K is the number of basic periods in one common cycle. Under the PoT

policy, the number of basic periods in a common cycle is equal to the maximum

of multipliers. For example, if there are three products and the multipliers of

those products are 1, 2 and 4, then the number of basic periods in a common

cycle is 4. Therefore, K = 2maxi{ti}. In the model, K = 2maxi{νi}, which is the

maximum of all the possible multipliers.

To ensure the feasibility of a production schedule, a capacity constraint is
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imposed in each basic period in a common cycle. Sk, the set of products pro-

duced in the kth basic period, can be expressed by the binary decision variables

xi,ti,ji
’s. Given a solution of xi,ti,ji

’s, the multiplier n and the production po-

sition j can be determined. Once the multipliers and production positions are

known, the production schedule can be constructed. For example, assume that

the 3-product problem has the multipliers 1, 2 and 4. If the production posi-

tions are 1, 2 and 3, then a possible production schedule is shown in Figure 3.1.

1 2 3 4 0

n1 = 1, j1 = 1 

n2 = 2, j2 = 2 

n3 = 4, j3 = 3 

1 1 1 12 3 2

K = 4 

S1 = {1}, S2 = {1, 2} 

S3 = {1, 3}, S4 = {1, 2} 

Figure 3.1 An explanation of K, ji and Sk

The feasibility constraints under the EBP policy are
∑

i∈Sk
(si + ρi2

tiW ) ≤
W, ∀ k. The set of products Sk is modeled by the decision variables xi,ti,α(ti,k),

where α(ti, k) = ((k − 1) mod 2ti) + 1. α(ti, k) is the production posi-

tion for product i if its multiplier is 2ti . For example, in Figure 3.1 in

the first basic period, α(ti, 1) = 1,∀ ti. So the constraint in period 1 is

∑I
i=1

∑νi

ti=µi
(si + ρi2

tiW )xi,ti,1 ≤ W . It is not difficult to see that a prod-

uct is produced in the first basic period only if the production position is 1.

The constraint ensures that there is enough capacity for all the products pro-

duced in the first basic period. The constraints to ensure feasibility for the

schedule in Figure 3.1 are:
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(s1 + ρ1W ) ≤ W,k = 1,

(s1 + ρ1W + s2 + 2ρ2W ) ≤ W,k = 2,

(s1 + ρ1W + s3 + 4ρ3W ) ≤ W,k = 3,

(s1 + ρ1W + s2 + 2ρ2W ) ≤ W,k = 4.

3.1.2 Discontinuity of the Problem

For brevity, we denote the optimal value or the minimum cost of PoT (W )

by f(W ). For a given value of W , f(W ) can be found by the linear integer

programming techniques. Nevertheless, it is not easy to determine the optimal

value of W because f(W ) is not continuous in general. This can be seen from

the following 2-product example.

Table 3.1 A 2-product example

Product A($) h($/unit/day) r(/day) p(/day) s(day) H($/day2)

1 18 1/30 400 4000 0.4 6

2 100 2/105 1500 5000 0.2 10

Table 3.1 gives the data of a 2-product case. The problem can be easily

solved. The graph of the optimal cost function f(W ) is plotted in solid curves

in Figure 3.2, where a discontinuity point occurs at W = 2. In the example,

the optimal multiplier vector n and function value are
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 f(W) 

W 
1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8

84

86

88

90

92

94

(2.00, 86.00)

(2.24, 88.52)

(1.92, 92.18)

Figure 3.2 Graph of function f(W )

n =





infeasible, when W < 0.5;

(2, 2), when 0.50 ≤ W < 1.92;

(1, 1), when 1.92 ≤ W < 2.00;

(1, 2), when 2.00 ≤ W < 2.24;

(1, 1), when W ≥ 2.24.

f(W ) =





(A1 + A2)/2W + 2(H1 + H2)W, when 0.50 ≤ W < 1.92;

(A1 + A2)/W + (H1 + H2)W, when 1.92 ≤ W < 2.00;

(A1 + A2/2)/W + (H1 + 2H2)W, when 2.00 ≤ W < 2.24;

(A1 + A2)/W + (H1 + H2)W, when W ≥ 2.24.

In general, it is possible to find the minimum W ∗ of f(W ) using a brute-
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force method such as a small-step search, which finds f(W ) by decreasing W

by a small value in each step. It has been observed that if a multiplier vector n

is feasible for a particular W ′, it is also feasible for all W > W ′ (Elmaghraby,

1978). This implies that if PoT (W ′) is infeasible, PoT (W ) is infeasible for all

W < W ′. Hence, we can make the search from high to low values of W and

stop the algorithm once PoT (W ) becomes infeasible.

3.1.3 A Lower Bound

Clearly, applying the small-step search over all possible values of W is inef-

ficient. Moreover, the accuracy of the solution depends on the step size. To

cut down the search range, a common technique is to employ the bounds.

A natural lower bound of f(W ) is provided by removing constraints (3.1)

from PoT (W ). This uncapacitated ELSP under the PoT policy was solved by

Yao and Elmaghraby (2001). Their model is equivalent to ours by removing

constraints (3.1) and setting yi,ti =
∑2ti

ji=1 xi,ti,ji
as shown by the objective

function (3.2) and constraints (3.3). Let g(W ) be the optimal value of this

uncapacitated model for a given W . It is clear that f(W ) is bounded below

by g(W ) for all W .

min
I∑

i=1

νi∑
ti=µi

(
Ai

2tiW
+ Hi2

tiW

)
yi,ti (3.2)

subject to
νi∑

ti=µi

yi,ti = 1, i = 1, 2, . . . , I (3.3)
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yi,ti ∈ {0, 1}, W > 0

We briefly introduce their methods as follows. First, the lower bound and the

upper bound of W are calculated. Let WLB be the lower bound and WUB be

the upper bound.

WLB = max
i=1,...,m

{si(1 + ρi)}.

WUB = T ∗ = max

{√∑I
i=1 Ai∑I
i=1 Hi

,

∑I
i=1 si

1−∑I
i=1 ρi

}
.

where T ∗ is the optimal cycle time under the CC policy.

The curve associated with g(W ) is a piece-wise convex curve, which is

the lower envelop of a finite number of convex curves. The junction points

are defined as the W values where g(W ) is achieved by two convex curves.

Five junction points are shown in Figure 3.3. In general, we assume that the

junction points in [WLB,WUB] are w1, w2, . . . , wn−1 for some positive inte-

ger n, where wj < wj+1, j = 1, . . . , n − 2. [WLB,WUB] is divided into n

intervals Ip = [wp, wp], p = 1, . . . , n, where w1 = WLB, wn = WUB and

wp = wp+1 = wp, p = 1, . . . , n − 1. By the convexity of g(W ) function

in Ip, the minimum in Ip can be located easily. Let ŵp be the value of W

corresponding to the minimum point in Ip. With these minimums, the global

minimum of g(W ) can be determined. Yao and Elmaghraby (2001) presented
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W

g(W) 

0 w1 w2 w3 w4 w5

Figure 3.3 Junction points on a curve

a search algorithm to find all the junction points of g(W ).

3.1.4 The Parametric Search Algorithm

In this section, we will present a divide-and-conquer procedure to search for

the minimum of f(W ) in [WLB,WUB]. We use a better lower bound than Yao

and Elmaghraby (2001) for W as follows:

WLB = max
i=1, ..., m

{
si

1− ρi

}
≥ max

i=1, ..., m
{si(1 + ρi)} .

To make the search more efficient, we make use of the lower bound for f(W )

provided by g(W ) and the upper bound provided by feasible solutions when-

ever they are found. We divide the search range [WLB,WUB] into intervals
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bounded by the junction points. The upper bound information is used to trim

away points whose lower bounds are worse than the upper bound value. The

lower bound information is used to identify good intervals to perform the small

step search intensively. In the algorithm we always engage the interval with

the smallest lower bound first. Within the engaged interval, a feasible solution

will be sought on the point with the smallest lower bound. This step may lead

to infeasibility, which means all values of W to the left of this point can be

trimmed. On the other hand, when a feasible solution can be found, its objec-

tive value can be used to update the upper bound to trim away values of W

whose lower bounds are worse than this value. After trimming, the small-step-

search algorithm is used to find the best solution within the interval. These

steps are repeated until all worthy intervals are explored. Upon completion,

the solution associated with the latest upper bound is then the optimal solu-

tion to our problem. This divide-and-conquer procedure is presented in the

next subsection.

The divide-and-conquer procedure

Let C(W,n) be the cost function over W and n . That is,

C(W,n) =
I∑

i=1

(
Ai

niW
+ HiniW

)

In the procedure, we let Cp = g(ŵp) be the minimum value of g(W ) in Ip and

C be the global upper bound of f(W ). As g(W ) is convex over an interval

which is bounded by the junction points, it is easy to trim away from it the

values of W whose g(W ) are worse than C. To elaborate, let the interval be
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w wl u 

C

W 

g(W) 

Figure 3.4 Trimmed interval

[w, w] and n be the optimal multiplier vector for g(W ) in [w, w]. Let l and u

(l ≤ u) be the solutions of W that solve

C(W,n) = C.

Then the trimmed interval is given by [max{w, l}, min{w, u}]. Figure 3.4

provides such an example graphically. The divide-and-conquer procedure is

described next, where np denotes the optimal multiplier vector of g(W ) in Ip

and each Ip is corresponding to one optimal multiplier vector only.

The divide-and-conquer procedure:

1. Determine WLB, WUB, and all junction points on the curve associ-

ated with g(W ). Suppose n − 1 is the number of junction points in

[WLB, WUB]. Let S = {1, . . . , n}. For p ∈ S, construct intervals Ip,

determine np, ŵp and Cp on g(W ). Let k = arg minp∈S Cp and set
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C = ∞.

2. If PoT (ŵk) is feasible, let w = ŵk and go to Step 3. If PoT (ŵk) is infea-

sible and PoT (wk) is feasible, let w = wk and go to Step 3. Otherwise

let S = S − {p : p ≤ k} and go to step 6.

3. Trim the interval Ik using C = min{f(w), C}.

4. Determine the minimum of f(W ) in Ik and let w∗
k be its minimum. Let

S = S − {k}. If PoT (wk) is infeasible, let S = S − {p : p < k}.

5. If f(w∗
k) < C, let C = f(w∗

k),W
∗ = w∗

k, and S = S − {p : Cp ≥ C}.

6. If S is empty, stop; otherwise, let k = arg minp∈S Cp. Go to step 2.

In step 4, we use the small-step search to determine the minimum of f(W )

in the interval Ik, and we call the whole procedure as the SS algorithm. Af-

ter the procedure terminates, the optimal solution is W ∗ and its correspond-

ing optimal cost is C. Under this divide-and-conquer procedure, we are able

to apply the time-consuming small-step search only to those intervals that

may contain an optimal solution. Based on our experiments, this procedure

greatly reduces the computational time compared with not using the divide-

and-conquer. However, the efficiency of the search algorithm depends heavily

on the computational time for the small-step search in each interval. Appar-

ently, the small-step search is not efficient. In the next section, we present a

much faster heuristic algorithm to be used in step 4, and we call the whole

algorithm as the Efficient Heuristic (EH) algorithm.
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The EH algorithm

The difference of the EH algorithm from the SS algorithm is that we use a

different search algorithm to find the minimum of f(W ) in the interval Ik.

Consider f(W ) in a small interval [w, w], in which g(W ) is convex.

If n is known to be the optimal multiplier vector for all W ∈ [w, w],

then f(W ) = C(W,n), and f(W ) is also convex over [w, w]. Therefore, the

minimum of f(W ) over [w, w] is given by

w′ = min {max{w, ŵ}, w} (3.4)

where

ŵ =

√∑I
i=1 Ai/ni∑I
i=1 Hini

ŵ is determined by solving

dC(W,n)

dW
= −

∑I
i=1 Ai/ni

W 2
+

I∑
i=1

Hini = 0

Equation (3.4) captures the three cases for the calculation of the minimum

point w
′
.

• If w ≤ ŵ ≤ w, w
′
= ŵ.

• If ŵ < w, w
′
= w.
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• If w < ŵ, w
′
= w.

If there are more than one optimal multiplier vector in [w, w], the mini-

mum of f(W ) can still be found easily given that there is an easy way to divide

[w, w] into subintervals such that within a subinterval the optimal multiplier

vector is the same. Unfortunately, there does not seem to exist an easy way to

divide the interval into the desired subintervals. Its difficulty lies in the fact

that a multiplier vector can be optimal at the two end points of an interval and

yet not optimal over the entire interval. This can be seen from the previous

2-product example showing discontinuity, in which n = (1, 1) is optimal at W

= 1.95 and 3.00, but not optimal at W = 2.00. However, it is perceived that

these oddities may not be common and even if they occur, failing to uncover

their corresponding values may not lead to a very bad solution. We there-

fore design a heuristic search algorithm based on assumption 1 which ignores

these oddities. In the assumption, n(w) denotes the optimal multiplier vec-

tor of f(W ) at w and n(w) denotes the optimal multiplier vector of f(W ) at w.

Assumption 1. If n(w) is optimal at w (i.e., C(w,n(w)) = C(w,n(w))),

then n(w) is optimal for all W ∈ [w, w].

Following assumption 1, the minimum of f(W ) over an interval [w, w] is

identified by equation (3.4) if the end points are found to have a common

optimal multiplier vector. On the other hand, if n(w) 6= n(w), we need to

find a way to divide the interval into subintervals such that the two end points

of each subinterval have a common optimal multiplier vector. To do this, we

first make the following observations which are not difficult to show.
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Observation 1: Let n1-curve and n2-curve be the curves corresponding to

C(W,n1) and C(W,n2), respectively, where n1 6= n2. Then the two curves

intersect exactly once (Grznar and Riggle, 1997) at wa(n
1,n2) where

wa(n
1,n2) =

√∑I
i=1 Ai/n1

i −
∑I

i=1 Ai/n2
i∑I

i=1 Hin2
i −

∑I
i=1 Hin1

i

. (3.5)

We can easily get wa(n
1,n2) shown as follows:

C(W,n1) =
I∑

i=1

(
Ai

n1
i W

+ Hin
1
i W

)

C(W,n2) =
I∑

i=1

(
Ai

n2
i W

+ Hin
2
i W

)

From the following equation, we can find the intersection point of the two

curves:

C(W,n1) = C(W,n2)

Observation 2: Let wb(x (w)) be the smallest value of W such that x (w) is

feasible to PoT (W ), where x (w) is the optimal solution of PoT (w). Then



33

wb(x (w)) = max
k:k=1,...,K

{ ∑I
i=1

∑νi

ti=µi
sixi,ti,α(ti,k)

1−∑I
i=1

∑νi

ti=µi
ρi2tixi,ti,α(ti,k)

}
(3.6)

This result can be deduced from the capacity constraints (3.1) easily, which

requires:

W ≥
∑I

i=1

∑νi

ti=µi
sixi,ti,α(ti,k)

1−∑I
i=1

∑νi

ti=µi
ρi2tixi,ti,α(ti,k)

, k = 1, . . . , K

Observation 3: Let n1 = n(w) 6= n(w) = n2, and f(w) is the optimal

objective value at w achieved by the optimal solution x (w). n1 and n2 are

associated with two different curves. We will have the following three cases.

1. wa(n
1,n2) > w. In this case, w < wb(x (w)) ≤ w (Figure 3.5). If curve

n1 and curve n2 intersect on the right of w, the discontinuous point of

curve n2 must be w or on the left of w and on the right of w. Otherwise

n1 cannot be the optimal multiplier vector at w.

2. wa(n
1,n2) < w. In this case, w < wb(x (w)) ≤ w (Figure 3.6). Simi-

larly, if curve n1 and curve n2 intersect on the left of w, the discontinuous

point of curve n2 must be on the right of w. Otherwise n1 cannot be

the optimal multiplier vector at w.

3. w ≤ wa(n
1,n2) ≤ w. This case is shown in Figure 3.7.
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Figure 3.5 Case 1
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Figure 3.6 Case 2

For an interval [w, w], when n1 = n(w) 6= n(w) = n2, we will divide the

interval into two subintervals [w,wc] and [wc, w] based on the three observa-

tions. Formally,

wc =





max{wa(n
1,n2), wb(x (w))}, if w ≤ wa(n

1,n2) ≤ w;

wb(x (w)), otherwise.

(3.7)



35

Waw wbww

f(W) 

Figure 3.7 Case 3

It is clear that after the division each subinterval will be a proper subset of

[w, w] except for the special cases when wc = w or wc = w. When wc = w, we

avoid it by shortening the interval to be [w, w − ε] where ε is a small positive

value. When wc = w, n(w) is also optimal at w and the optimal solution can

be determined by equation (3.4).

Our heuristic procedure to find the minimum point of f(W ) over [w, w] is

presented next where IntSearch is the main procedure while FeasProc and

InfeasProc are the two subprocedures.

IntSearch(w, w):

1. Solve PoT (w) and PoT (w). Let c = f(w) and w∗ = w.

2. If PoT (w) is feasible, call FeasProc(w, w);

otherwise, call InfeasProc(w, w).
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FeasProc(w, w):

1. If C(w,n(w)) = C(w,n(w)), determine the minimum w′ using equa-

tion (3.4) and n = n(w); if C(w′,n(w)) < c, let w∗ = w′ and c =

C(w′,n(w)). Exit the subprocedure.

2. Compute wc using equations (3.5), (3.6), and (3.7).

3. Consider the following cases:

(a) w < wc < w: solve PoT (wc);

call FeasProc(w,wc);

call FeasProc(wc, w).

(b) wc = w: solve PoT (w − ε);

call FeasProc(w, w − ε).

(c) wc = w: determine the minimum w′ using equation (3.4) and

n = n(w); if C(w′,n(w)) < c, let w∗ = w′ and c = C(w′,n(w)).

InfeasProc(w, w):

1. Compute wb using equation (3.6) and x (w).

2. Consider the following cases:

(a) wb < w: solve PoT (wb);

call InfeasProc(w,wb);

call FeasProc(wb, w).
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(b) wb = w: solve PoT (w − ε);

if PoT (w − ε) is feasible, call InfeasProc(w, w − ε).

In the procedure, c and w∗ represent the optimal cost in [w, w] and its

corresponding basic period value respectively. To start the procedure, it is as-

sumed that a feasible solution exists at w, i.e., PoT (w) is feasible. FeasProc

is used to search the interval [w, w] in which a feasible solution exists at w.

InfeasProc is used to search the interval [w, w] in which no feasible solution

exists at w.

The FeasProc first checks whether the optimal multiplier vector at w is

also optimal at w. If it is true, it determines the best solution on the curve

corresponding to n(w). Otherwise, we must have n(w) 6= n(w). The inter-

val is then divided by wc and three cases are discussed. In case (i) and case

(ii), wc = wb(x (w)). In case (iii), wc is the maximum of wa(n(w),n(w)) and

wb(x (w)). The InfeasProc first calculates the point wb(x (w)). As the func-

tion is not feasible at w, wb(x (w)) must be greater than w. If wb(x (w)) < w,

we divide the interval by wb(x (w)). If wb(x (w)) = w, we decrease w by ε,

solve PoT (w − ε) and repeat the InfeasProc in [w, w − ε]. It is not difficult

to see that both procedures will stop after a finite number of iterations.

3.2 Computational Results

To test the efficiency and quality of our SS and EH algorithms, we compare

them against Haessler’s heuristic (HH) algorithm (Haessler, 1979), which uses



38

the same policy as our algorithms. Haessler’s heuristic provides a good ref-

erence point. The procedure is not enumerative in nature, does not involve

ad hoc user intervention, and includes feasibility testing as part of the proce-

dure. Recently, Chatfield (2007) presented a genetic algorithm (GLS) under

the EBP policy without PoT restriction. As far as we know, the GLS is the

most effective method for the ELSP, especially for high utilization problems.

Therefore, a comparison is also made against the GLS on the high utilization

problems reported by Chatfield (2007). Our algorithms are coded in C++ and

the linear integer programming models are solved by ILOG CPLEX 10.0. All

the experiments are conducted on a Pentium 4-2.6 GHz personal computer

with a memory of 512 MB and run under the Windows XP operating system.

3.2.1 A Comparison under the EBP and PoT Policy

The comparison against the HH is made on five sets of randomly generated

examples, where ten examples are generated in each set. The holding cost is

based on an interest rate of 10% per year, and the number of working days

per year is 240. The parameters of each product are generated randomly from

a Uniform distribution with the ranges in Table 3.2. The load of the machine

is measured with the utilization factor defined by ρ =
∑I

i=1 ρi. The ρ’s of

the examples are 0.7, 0.8, 0.9, 0.95 and 0.98 respectively. The demand rate of

each example is scaled up to reach the five respective utilization levels. Ten

products are assumed in the tested problems as the maximum of the product

numbers in all the benchmark problems is ten.

We use the SS algorithm, in which the step size is set at 0.01 day to deter-
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Table 3.2 Ranges of parameters for ELSP

Parameters Dimension Low High

Production rate Units per day 1000 30000

Demand rate Units per day 10 400

Setup time Day 0.125 1

Setup cost Dollars 10 300

Unit cost Dollars per unit 0.005 1

Table 3.3 Comparison for the algorithms under the EBP and PoT
policy

Average Ratio Average Time (s)

Set ρ OPT/LB EH/OPT HH/OPT OPT EH HH

1 0.70 1.023 1.000 1.002 22.8 0.9 0.2

2 0.80 1.027 1.000 1.022 137.9 3.2 0.2

3 0.90 1.047 1.000 1.044 442.5 33.8 0.3

4 0.95 1.089 1.000 1.026 3420.6 168.5 0.2

5 0.98 1.127 1.000 1.062 22484.0 234.0 0.3

mine the optimal solution (OPT). The results are presented in Table 3.3. In

the table, the second column shows the ρ in each problem set. The next three

columns show the various ratios and the last three columns give the computer

times in seconds. The lower bound (LB) is determined by the method de-

scribed in Bomberger (1966). The average gap of the optimal solution to the

lower bound is the smallest for set 1 (2.3%) and the biggest for set 5 (12.7%).

From the table it is clear that the EH algorithm performs a lot better than the

HH algorithm and it is much faster than the exact algorithm. In fact, the EH
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algorithm finds the optimal solutions for 98% of all the randomly generated

problems; the errors are negligible when it fails to find an optimal solution.

3.2.2 A Comparison with Other Policies for High Uti-

lization Problems

When the utilization factor ρ increases, the ELSP becomes more difficult to

solve. Chatfield (2007) tested the GLS on four high utilization problems and it

is the best method for high utilization problems as far as we know. The GLS is

under the EBP policy without PoT restriction, which is a less restrictive policy

than ours. In Table 3.4, CC represents the optimal solution under the common

cycle policy, BP represents the optimal solution under the basic period policy

and EH is our heuristic under the EBP and PoT policy. It turns out that

EH finds the optimal solutions under the EBP and PoT policy for these four

problems. It is interesting to note that EH performs better than GLS even

though it operates under a more restrictive policy.

Table 3.4 Computational results for high utilization problems

Problem ρ LB CC BP EH SS GLS

1 0.88 7589 9880 8782 7697 7697 7697

2 0.92 7715 10086 9746 7947 7947 7947

3 0.95 8419 11950 12018 9098 9098 9140

4 0.98 15681 24458 24534 19004 19004 20500
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3.3 Conclusions

Despite the fact that the ELSP has been studied extensively, only a few exact

procedures are proposed for some simple policies. To the best of our knowledge,

no one has presented an exact procedure for the ELSP under the EBP and

PoT policy. In this chapter, we present an exact parametric search algorithm

to solve the model under a divide-and-conquer framework. Further, a much

faster heuristic is proposed which finds the optimal solutions for almost all the

randomly generated examples and when the solutions found are not optimal,

the errors are negligible.



Chapter 4

Genetic Algorithm for ELSP

4.1 Introduction to Genetic Algorithm

GA was invented by Holland (1975). Originally, Holland’s goal was to study

the phenomenon of adaptation as it occurs in nature to develop ways to im-

port the mechanisms of natural adaptation into computer systems. Holland

presented GA as an abstraction of biological evolution and gave a theoretical

framework for adaptation under GA.

GA has been used to solve combinatorial optimization problems in the last

thirty years. It searches in or out of the solution region to find the true or

approximate optimal solution for the problem. With an encoding scheme, a

solution is represented by a chromosome containing several genes. Normally,

it is not straightforward to find a good encoding scheme for a combinatorial

optimization problem. After the chromosome is defined, a population of chro-

mosomes is kept to improve the solution from one generation to another.

42
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To start a GA, an initial population is constructed. There are two ways to

construct the initial population. The first way is to randomly generate the so-

lutions in or out of the solution region. Another way is to generate good initial

solutions with some fast heuristic. These two methods can be combined to con-

struct the initial population. With the initial population, the mechanisms of

natural adaptation is followed to improve from one generation to another. The

defined crossover is used to generate new chromosomes from old chromosomes.

Similar to nature, random variations of the genetic material happen in

each generation, denoted by mutation. Mutation enables the creation of genes

which are lost in the current population and which cannot be gained if only

the existent material is combined. Each new offspring is assigned a small prob-

ability of mutation.

4.1.1 Encoding Scheme

For any search, the way in which the solutions are encoded is an important fac-

tor in the success of a GA. The most popular encodings are binary encodings,

integer encodings and real-valued encodings. Binary encodings use bit strings

to encode a solution. They can also be extended to gray encoding and Hillis’s

diploid binary encoding scheme (Holland, 1975; Goldberg, 1989). The binary

encodings have advantages, for example, simple, but they are unnatural and

unwieldy for many problems.

Integer encodings are mainly used for combinatorial optimization prob-

lems. It is a natural way to represent the integer solutions. Binary encodings
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are not good for many combinatorial optimization problems, where an array

of integers is used to represent the solution.

The third popular encoding scheme is to use real encodings. It is natural

to use real numbers to form chromosomes for many applications. Holland’s

schema-counting argument showed that GA should perform better with binary

encodings. However, the performance depends very much on the problem and

the details of the GA being used. Currently there are no rigorous guidelines

for predicting which encoding will work best.

4.1.2 Selection

To choose the chromosomes to create offsprings for the next generation, a

selection scheme needs to be defined. A selection emphasizes the fitter chro-

mosomes in the hope that the offspring with higher fitness is generated. There

are many selection methods and no rigorous guidelines are present for which

method should be used for which problem. There are more technical compar-

isons of different selection methods (Goldberg and Deb, 1991; Hancock, 1994).

The fitness-proportional selection, rank selection, tournament selection and

elitism are the most popular selection methods.

Fitness-proportional selection relates the probability of selecting a chromo-

some to its fitness value. Specifically, two parents are selected from the current

generation with probabilities inversely proportional to their fitness values.

Rank selection can prevent too-quick convergence, which ranks the chromo-
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somes in the population according to fitness. The absolute differences in fitness

are obscured as the parent chromosomes are selected only based on their ranks.

Tournament selection runs a tournament among a few chromosomes chosen

at random from the population and selects the one with the best fitness for

crossover. If the tournament size is larger, weak individuals have a smaller

chance to be selected.

Most of the time, elitism is an addition to the selection method that forces

GA to retain some best solutions in the population. Many researchers have

found that elitism significantly improves GA’s performance.

4.1.3 Genetic Operators

Genetic operators include crossover and mutation. The crossover operator is

used to vary chromosomes from one generation to the next. After parent chro-

mosomes are selected, the child chromosomes are generated by crossover.

Crossover

Many crossover techniques exist for the chromosomes with fixed length. The

one-position crossover, the two-position crossover and the uniform crossover

are the three main crossover operators. The one-position crossover selects

one crossover point on the parent strings. All data beyond that point in the

chromosomes is swapped between the two parent chromosomes. Two-position

crossover selects two points in the chromosome strings. Everything between
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the two points are swapped between the two parent chromosomes, rendering

two child chromosomes. The uniform crossover swaps the bits in the two parent

strings with a fixed probability, typically 0.5, to generate child chromosomes.

Mutation

Mutation is used to maintain genetic diversity from one generation of a pop-

ulation of chromosomes to the next. The classic mutation operator randomly

selects a bit in the chromosome and changes it to an arbitrary value. The mu-

tation operators should be designed according to the encoding scheme used.

With the mutation, the population may generate lost genes in previous gen-

erations or even new genes.

4.2 The Formulation

The formulation PoT(.) in the previous chapter can be written as follows.

(P)

min
I∑

i=1

(
Ai

niW
+ HiniW

)

subject to
∑
i∈Sk

(si + niρiW ) ≤ W, k = 1, . . . , K (4.1)

Sk = {i : ji ≡ (k − 1) (mod ni) + 1}, k = 1, . . . , K (4.2)

W > 0, ni ∈ {1, 2, 4, . . . , ni}, ji ∈ {1, . . . , ni}, i = 1, . . . , I
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where K is the number of basic periods in a complete cycle, which is the dura-

tion that the production schedule repeats. It has been stated in the previous

chapter that K is equal to maxi{ni}. Sk is the set of products produced in

the kth basic period in a complete cycle. ni is the upper bound value of the

multiplier ni. Constraints (4.1) are sufficient and necessary conditions for the

ELSP under the EBP and PoT policy. The production positions ji’s and the

multipliers ni’s are used to determine the set of products Sk produced in each

basic period by equation (4.2).

4.3 Genetic Algorithm for ELSP

The idea of applying GA to the ELSP is not new. As mentioned earlier,

Khouja et al. (1998) proposed a GA under the BP policy. Khouja showed

that the GA is efficient for solving high utilization problems. Chatfield (2007)

also used GA to solve the ELSP, albeit under a more general policy, the EBP

policy (with no power-of-two restrictions). Chatfield utilizes a chromosome

which represents the solution as a string, consisting of a basic period, W , a set

of multipliers n , and a set of production positions j . Chatfield showed that

the GA performs very well for the benchmark problems and it can find better

solutions for the high utilization problems compared with the GA proposed

by Khouja et al. (1998).

We focus on the EBP and PoT policy and present a GA that performs

better than Haessler’s heuristic. It will be shown that the performance of
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Haessler’s heuristic is poor for high utilization problems. It will also be shown

that our results outperform those of Khouja et al. (1998) and Chatfield (2007).

4.3.1 Integer encoding scheme

A standard chromosome is an array of bits. For the ELSP, we use two arrays

of integer numbers to represent a solution, consisting of a set of power-of-two

multipliers n and a set of positions j as illustrated in Figure 4.1. A gene of

the chromosome represents both ni and ji for a product. This integer chromo-

some does not include W explicitly. Instead, we will analytically determine

its best value for given n and j . To relate the chromosome to a feasible pro-

duction schedule, we limit the ranges of its integers to be 1 ≤ ni < 1/ρi and

1 ≤ ji ≤ ni.

n1 nI...n2

j1 jI...j2

Figure 4.1 Chromosome for ELSP under the EBP and PoT policy

4.3.2 Feasibility

The chromosome can represent a feasible solution if the following inequalities

are satisfied:
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∑
i∈Sk

niρi < 1, k = 1, . . . , K (4.3)

Inequalities (4.3) are deduced from (4.1) in (P). Given
∑

i∈Sk
niρi < 1 for all

k, the production can be made feasible no matter what the values of the setup

times are as the basic period can be increased sufficiently large so that there

is enough time for the setups.

If inequalities (4.3) hold, the optimal basic period of (P) is given by:

W ∗ = max

{√∑I
i=1 Ai/ni∑I
i=1 Hini

, max
k=1,...,K

{ ∑
i∈Sk

si

1−∑
i∈Sk

niρi

}}
(4.4)

On the other hand, if
∑

i∈Sk
niρi ≥ 1 for some k, the chromosome cannot

represent a feasible solution. In this case, we attempt to repair the position

vector j to reduce the degree of infeasibility.

In the repair procedure, we fix the values of the multipliers and attempt

to find the production positions that may result in a feasible solution. Given

the length of the basic period, the problem can be viewed as a variation of a

bin-packing problem. Note that when we pack (produce) a product i in period

j ≤ ni, all bins (basic periods) k = j, ni + j, 2ni + j, . . . , K + j − ni will be

utilized. We use a lower bound WR of W calculated from a relaxed version

of (P) as the length of basic period for the repair procedure. In the relaxed

problem (R) displayed below, only one constraint is imposed, which is the sum
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of constraints (4.1) over k.

K∑

k=1

∑
i∈Sk

(ρiniW + si) ≤ KW =⇒
I∑

i=1

(
KρiW +

siK

ni

)
≤ KW

=⇒
I∑

i=1

(
ρiW +

si

ni

)
≤ W

(R)

min
I∑

i=1

(
Ai

niW
+ HiniW

)

subject to
I∑

i=1

(
ρiW +

si

ni

)
≤ W

W > 0, ni ∈ {1, 2, 4, . . . , ni}

Given n , the optimal W of (R) is

WR = max

{√∑I
i=1 Ai/ni∑I
i=1 Hini

,

∑I
i=1 si/ni

1−∑I
i=1 ρi

}
. (4.5)

To produce or pack the products in K different periods of length WR, we first

compute the sum of setup time and production time of each product which is

σi = si + ρiniWR for i = 1, . . . , I. Then, the products are ordered increas-

ingly by ni. For products with the same multiplier value, they are ordered

decreasingly by σi. Based on the list, we apply the first-fit heuristic to pack

the products one by one to the first basic period that can accommodate it.

We keep the multiplier vector n fixed. Hence each product is packed in K/ni

periods. In the packing, it may happen that none of the basic periods have

enough time to accommodate the production of some of the products. In this

case, these products are packed in the period that has the smallest
∑

i niρi.



51

As a result the length of the periods receiving the products will exceed WR.

The usage of the first-fit heuristic in the repair procedure, based on a lower

bound of the basic period WR, generates a good solution if it is able to pack

in all products. However, when the utilization is high, it is likely that WR is

not big enough to accommodate every product. In this case, it is more critical

to take care of the feasibility. Hence the list scheduling heuristic is employed

which uses different
∑

i niρi in different basic periods as the criteria to pack

in the products. In summary, the repair procedure attempts to increase the

chance of finding a feasible solution by assigning new values of j while fixing

n . It may also reduce the degree of infeasibility when a chromosome is not

made feasible. In the evolutionary process, both feasible and infeasible chro-

mosomes are kept in the population.

4.3.3 Fitness value

GA works with a finite population, which evolves from one generation to the

next, governed by the fitness of the chromosome. We relate the fitness f of a

chromosome to the objective value of the ELSP when its represented solution

is feasible or can be made feasible by a simple repair, whereas a penalty will

be imposed on the fitness value if the chromosome cannot be made feasible.

The detailed calculation of f is described as follows.

First if inequalities (4.3) are satisfied, the chromosome can represent a

feasible solution with the optimal basic period W ∗ given by (4.4). With W ∗

and n , f is calculated by (4.6), which is the objective function of the ELSP.
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f =
I∑

i=1

(Ai/niW
∗ + HiniW

∗) (4.6)

On the other hand, if inequalities (4.3) are not satisfied, the chromosome will

go through a fast repair procedure described earlier which assigns new values

to j to induce the feasibility. However, if the repaired chromosome is still

infeasible, the fitness value is given by:

f =
I∑

i=1

(Ai/niWR + HiniWR) + penalty (4.7)

We suggest the value of the penalty to be related to:

• The degree of infeasibility of the chromosome.

• The number of generations, denoted by g.

• The sum of densities or the utilization of the problem, denoted by ρ =

∑I
i=1 ρi.

We let penalty = t(n , j )P (g)Q(ρ), where

t(n , j ) =
K∑

k=1

(∑
i∈Sk

niρi − 1

)+

P (g) = g

Q(ρ) = 1/ρ

Thus our penalty is proportional to the degree of infeasibility, which is mea-

sured by:
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K∑

k=1

(∑
i∈Sk

niρi − 1

)+

On the other hand it is inversely proportional to the problem utilization ρ. In

other words, the scheme imposes higher penalty for lower utilization problems

while it is less severe for high utilization problems where infeasible solutions

may be required in the evolution to generate feasible offsprings. We also make

the penalty proportional to the number of generations in the GA so that in-

feasible solutions will be discarded towards the later part of the evolution.

4.3.4 Population initialization

Initially N solutions are randomly generated to form a population. For each

solution or chromosome, ni is randomly generated from {1, 2, . . . , ni} and ji

is randomly generated from {1, 2, . . . , ni}, both following the uniform distri-

bution. Here ni is chosen to be the maximal value that ni can assume, i.e.,

ni = 2blog2(1/ρi)c.

4.3.5 Selection and reproduction

During each successive generation, a portion of the best found solutions is

kept to the next generation so that the new offsprings have a better chance

to be generated from good solutions. In this GA, 10% of the best solutions

are kept and 90% are generated from the crossover and mutation. To per-

form the crossover, we select two different parents with probabilities inversely
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proportional to their fitness values. The selection probability is:

Prob(select the nth chromosome) =
1/fn∑N

i=1(1/fi)

where fn is the fitness value of chromosome n.

Parent 1 

Parent 2 

+

Offspring 1 

Offspring 2 

Figure 4.2 Two-position crossover for ELSP under the EBP and PoT
policy

The reproduction of two offsprings is obtained by a two-position crossover

on two parents as illustrated in Figure 4.2, where the two positions are gener-

ated randomly. The new offsprings share many characteristics of the parents.

In addition, each offspring is assigned a small probability of mutation so that

the solutions are more diversified. If a mutation takes place, the multiplier of

each product is either changed or not with equal probability. If the multiplier
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is changed, it is either doubled or halved with equal probability. In the case

that the multiplier cannot be halved as it has a value of 1, it will be increased

to 2.

When the mutation takes place and ni is decreased, it is possible that

ji > ni. If this happens, a new ji is randomly generated in {1, 2, . . . , ni} so

that the chromosome can be a meaningful representation. If ji ≤ ni, ji will

not be changed.

4.3.6 Values of parameters and the termination condi-

tion

The following values are used for the parameters:

• Population size: N = 100.

• Percentage of best solutions to be retained in the new generation: 10%.

• The termination condition is that either the best solution does not im-

prove for 1,000 generations or 10,000 generations have been generated.

• Mutation rate: 0.1.

4.4 Computational Results

Our GA is coded in C++ and run on the same computer as mentioned in the

previous chapter. For the GA, the computation time is roughly 2 seconds per
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1000 generations.

4.4.1 Benchmark Problems

Elmaghraby (1978) developed six benchmark problems (see Appendix C), the

first of which is the Bomberger problem. These problems assume 240 working

days in a year and the interest rate is 10% per year. We apply our GA to these

benchmark problems and compare it against other methods (see Table 4.1).

Our GA finds good solutions whose costs are less than 1.5% away from the LB.

Note that these solutions are, in fact, optimal EBP-PoT solutions and they

can be solved by the SS algorithm very fast. The solutions found by Chatfield

(2007) and Park and Yun (1984) are slightly better than those of our GA. This

is expected as they adopt a more general policy.

No. ρ LB GLS GA HH P&Y Fujita Elmaphraby

1 0.88 7589 7697 7697 7697 7697 7823 8383

2 0.66 4663 4727 4731 4731 4728 4862 4944

3 0.71 8742 8801 8801 8801 8801 9347 9526

4 0.58 21418 21566 21717a 21716 21486 21799 21903

5 0.41 4169 4174 4194 4194 4191 4191 4216

6 0.59 21218 21399 21519 21519 21327 21612 21622

aNote that a smaller value of 21716 for problem number 4 was reported in Haessler (1979)

which is due to difference in rounding. An optimal solution for this problem has 17.43 days

as its basic period and (8,2,8,2,4,2,16,2,1,4) as its multiplier vector.

Table 4.1 Computational results for six benchmark ELSP problems
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It is interesting to note that several algorithms, that perform well for the

low utilization problems, may perform very poorly for the high utilization

problems. In some cases, finding a good feasible solution can be difficult when

the utilization is very high.

4.4.2 High Utilization Problems

Our GA is tested on high utilization problems, developed by Khouja et al.

(1998). Table 4.2 shows that our GA outperforms other heuristics for high

utilization problems. In Table 4.3, the basic periods, multipliers and produc-

tion positions of our GA are reported.

Table 4.2 Computational results for high utilization problems with
GA

No. ρ LB Khouja GLS HH Our GA

1 0.88 7589 8782 7697 7697 7697

2 0.92 7714 9746 7947 7972 7947

3 0.95 8420 12018 9140 11962 9097

4 0.98 15683 24534 20500 22526 19004

Note that our GA again finds optimal EBP-PoT solutions for all the tested

problems. GLS is the algorithm proposed by Chatfield (2007) and HH is the

heuristic proposed by Haessler (1979). Although Chatfield (2007) adopts a

more general policy, the GA does not find a better solution than that of our

GA. That is, it is more difficult to search for the global optima within a larger
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Table 4.3 Multipliers and production positions for high utilization
problems with GA

No. ρ W n j

1 0.88 23.42 (8,2,2,1,2,4,8,1,2,2) (8,2,2,1,1,2,4,1,1,2)

2 0.92 23.18 (2,1,2,1,2,8,8,1,2,4) (1,1,2,1,2,8,4,1,1,2)

3 0.95 40.44 (2,1,2,1,2,4,4,1,2,2) (1,1,2,1,2,4,2,1,1,2)

4 0.98 101.32 (1,2,2,2,2,4,4,1,2,4) (1,1,1,2,2,4,4,1,1,2)

feasible region. In addition, our GA keeps both feasible and infeasible chromo-

somes in the population to make the search more diversified. To quickly find

a feasible solution, a repair procedure is used for the infeasible chromosomes,

which is important when most randomly generated solutions are infeasible for

the high utilization problems. It can be seen that HH does not perform well

for high utilization problems. HH first determines the basic period and mul-

tipliers that can give lower cost without considering the feasibility and then

uses a heuristic to determine production positions for the given basic period

and multipliers. The heuristic fails in finding feasible production positions for

high utilization problems in most cases so the resulting solution is not as good

as for low utilization problems.

4.4.3 Randomly Generated Problems

Under the EBP and PoT policy, we make a comparison between our GA and

HH for the 50 randomly generated problems used in the previous chapter. To

generate these examples, we first randomly generate 10 examples following the

uniform distribution based on the ranges given in Table 3.2 in the previous
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chapter. The demand rate of each example is then scaled up to reach the five

respective utilization levels. The inventory holding costs can be calculated

from the unit costs.

Table 4.4 Computational results for randomly generated problems

Average Values ($/day) Number of

Optimal EBP-PoT

ρ LB Optimal GA HH GA HH

EBP-PoT

0.70 33.58 34.35 34.35 34.42 10 6

0.80 35.63 36.59 36.59 37.40 10 4

0.90 37.57 39.30 39.31 41.10 9 2

0.95 43.04 46.87 46.92 48.07 9 3

0.98 80.22 90.55 90.89 95.66 9 1

As shown in Table 4.4, our GA finds optimal EBP-PoT solutions for most

of the tested problems and the solutions are significantly better than those

produced by HH. The convergence of the GA is shown in Appendix F.

4.5 Conclusions

In this chapter a GA is designed to solve the ELSP under the EBP and PoT

policy. By recognizing that W can be best determined from n and j , we use a

lean representation which confines the search to the best solution among the

solutions having the same n and j . This not only makes the search efficient
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by avoiding the inferior solutions sharing the same n and j but also it has cut

down the search space by one dimension which speeds up the search tremen-

dously. In the evolution, we allow infeasible solutions with proper penalties

to be included. This feature is found to be useful in diversifying the search as

well as finding good feasible solutions, especially for high utilization problems.

For infeasible chromosomes, we also make them go through a repair which en-

gages the help of a guided basic period plus the first-fit and the list-scheduling

heuristics to induce good feasible solutions or to reduce the degrees of infeasi-

bility. As a result, our computational experiment shows that our GA performs

well for high utilization problems. For low utilization problems, optimal EBP-

PoT solutions are normally close to optimal. Although heuristics with a more

general policy may find a slightly better solution, its implementation could be

significantly more difficult.



Chapter 5

MELSP

5.1 Problem Description

As mentioned in chapter 1, the problem assumes that all the machines are

identical and the products are not allowed to be split on different machines.

The CC policy for MELSP assumes that the products allocated to the same

machine have the same cycle time, but different machines can have different

cycle times. The EBP and PoT policy for MELSP is similar as in ELSP. Dif-

ferent machines are allowed to have different basic periods. The product cycle

time is equal to a multiple of the basic period of the machine that produces

the product.

Most notations in this section are the same as for ELSP, the followings are

the extra notations for MELSP.

M = Number of machines;

ρ̄ =
∑I

i=1 ρi/M , utilization of the problem;

61
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Tm = Cycle time for products on machine m;

Wm = Basic period on machine m;

ai = Machine number on which product i is produced;

Km = Number of basic periods in a cycle for machine m;

Smk = Set of products in the kth period in a cycle on machine m.

Under the CC policy, The cycle time of product i is equal to Tm if it is

produced on machine m. Under the EBP and PoT policy, the cycle time of

product i is equal to niWm if it is produced on machine m.

5.2 Genetic Algorithm for MELSP under the

CC Policy

In this section, a GA is presented for the MELSP under the CC policy. It

is assumed that the products produced on the same machine have a common

cycle time. Under this assumption, the problem is to determine in the optimal

way to allocate products on different machines so that the total cost is mini-

mized. Once the allocation is determined, it is not difficult to find the optimal

common cycle time for the products on each machine. With this observation,

we present an encoding scheme to represent the product allocation and use it

to search for the optimal solution.
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5.2.1 Encoding scheme

An array of integers a = (a1, a2, . . . , aI) in Figure 5.1 is used to represent

the allocation, where ai represents the machine number on which product i is

produced.

a1 a2 … aI

Figure 5.1 Chromosome for MELSP under the CC policy

We call a the chromosome in GA. Given a , the set of products on machine

m, denoted by Pm is determined. Formally, Pm = {i : ai = m},m = 1, . . . , M .

The cycle times Tm’s are not encoded explicitly in the chromosome.

5.2.2 Feasibility

A chromosome represents a feasible solution if and only if

∑
i∈Pm

ρi < 1, m = 1, . . . , M. (5.1)

In the case that inequalities (5.1) are not satisfied for any of the machines,

the chromosome does not represent a feasible solution. In GA, a number of

chromosomes are kept in the solution pool (population) to evolve until the

stopping criterion is met. Some of the genetic algorithms only keep the fea-

sible chromosomes in the population. In our GA, we keep both feasible and

infeasible chromosomes in the population as a big proportion of the possible
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encoded chromosomes are infeasible especially for high utilization problems.

With infeasible chromosomes, the search will be more diversified and is ob-

served to converge faster, especially for high utilization problems.

To make full use of the infeasible chromosomes, a repair procedure is ap-

plied on them first so that the GA can move faster to feasible solutions. If a

solution is not feasible,
∑

i∈Pm
ρi ≥ 1 for at least one machine. An intuitive

way to repair the infeasibility is to repack the products so that
∑

i∈Pm
ρi < 1

for all m. However, it is possible that the common cycle times of some of the

machines may be unreasonably large due to the setup times of their assigned

products. With this observation, we also consider setup times in repacking. As

cycle times are not explicitly encoded in the chromosome, in order to include

the setup times in repacking, we need to assume some common cycle time. It

is easy to see that, for any feasible solution, we must have

ρ <
M∑

m=1

∑
i∈Pm

(
si

Tm

+ ρi

)
≤ M.

We select only one cycle time value Tc for all the machines such that

I∑
i=1

(
si

Tc

+ ρi

)
=

ρ + M

2
.

where (ρ + M)/2 is the midpoint between ρ and M . That is,

Tc =
2
∑I

i=1 si

M − ρ
.
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Instead of using ρi to repack the products, we use ρ
′
i = ρi +si/Tc in repacking.

In the repair procedure, we will repair only those machines that are infeasible.

First, products on them are removed. These products are then repacked one

by one back into all the M machines. In the packing, the product with the

largest value of ρ
′
i is selected and assigned to the machine with the smallest

sum of ρ
′
i.

The repair procedure attempts to find a feasible product allocation consid-

ering both setup times and production densities. Note that it is still possible

that some machines remain infeasible, especially when the utilization is high.

Despite this, the repair procedure will decrease their degrees of infeasibility.

5.2.3 Fitness value

Let f =
∑M

m=1 fm be the fitness value of a chromosome, where fm is the fit-

ness value of machine m. Given a feasible chromosome (
∑

i∈Pm
ρi < 1, ∀ m),

the common cycle time on machine m is chosen to be T ∗
m which minimizes

∑
i∈Pm

(Ai/Tm + HiTm) subject to
∑

i∈Pm
(si + ρiTm) ≤ Tm. That is,

T ∗
m = max

{√∑
i∈Pm

Ai∑
i∈Pm

Hi

,

∑
i∈Pm

si

1−∑
i∈Pm

ρi

}
.

The average inventory and setup costs of machine m is

fm =
∑
i∈Pm

(
Ai

T ∗
m

+ HiT
∗
m

)
.
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We extend the definition to the infeasible chromosomes where penalty values

will be imposed if they remain infeasible after the repair procedure. To be

more specific, if machine m does not have enough capacity to produce its as-

signed products, the fitness value is penalized and it is given by

fm = 2

√∑
i∈Pm

Ai

∑
i∈Pm

Hi + penaltym.

Note that 2
√∑

i∈Pm
Ai

∑
i∈Pm

Hi is the minimum cost on machine m ignor-

ing the capacity constraints. We suggest the value of penaltym to be related to:

• The degree of infeasibility.

• The average utilization of the problem, denoted by ρ̄ = ρ/M .

• The number of generations, denoted by g.

We let penaltym = tmP (ρ̄)Q(g), where

tm =
∑
i∈Pm

ρi − 1, P (ρ̄) = 1/ρ̄, Q(g) = g.

tm is related to the degree of infeasibility on machine m. The bigger tm is, the

more the fitness value is penalized. The average utilization over all machines

is an important factor that affects the difficulty of solving the problem. The

bigger ρ̄ is, the less the fitness value is penalized so that more infeasible solu-

tions are kept in the population for the high utilization problem. The third

factor of the product g makes the infeasible solutions less likely to stay in the
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population after more generations have evolved.

5.2.4 Initialization

The initial population of N chromosomes are randomly generated from the

product set of I sets, {1, 2, . . . , M}× {1, 2, . . . , M}× · · · × {1, 2, . . . , M}. If

a generated chromosome happens to be infeasible, it will go through a repair

procedure first.

5.2.5 Selection

Selection plays an important role in GA. We use a binary tournament selection

to form a parent pool of a target size for reproduction. To form a pool, the

tournament selects two chromosomes randomly from the population and adds

the one with the smaller fitness value to the pool if it has not been added

earlier. Once a parent pool with a target size of N ′ is created, the reproduc-

tion will start which is done by repeatedly selecting two parents from the pool

randomly to form a new offspring. Also to maintain good quality solutions in

the subsequent generations, a percentage of the best solutions of the current

generation are kept to the next generation.

5.2.6 Crossover and mutation

A uniform crossover is used to produce an offspring from two parents in which

the genes of the new offspring are copied from the corresponding genes of the
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two parents with equal probability. An illustration of the crossover is given in

Figure 5.2.

+

Parent 1 

Parent 2 

Offspring 

Figure 5.2 Uniform crossover for MELSP under the CC policy

Each new offspring is assigned a small probability for the possible muta-

tion. If a mutation takes place, two of its genes will be randomly selected and

the values of the two genes are interchanged.

5.2.7 Values of parameters and the termination condi-

tion

The values used in the GA are: N = 50, N ′ = 30. The mutation rate is 0.1.

The GA terminates if the solution does not improve over 1,000 generations or

the total number of generations reaches 10,000. The percentage of the best

solutions to be kept to the next generation is 20%.
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5.3 Genetic Algorithm for MELSP under the

EBP and PoT Policy

The EBP and PoT policy assumes that each machine is associated with a basic

period Wm. The cycle times of the products on the machine are power-of-two

multiples of the basic period. Denote the multiplier of product i by ni. Un-

der this policy, a solution for the MELSP is specified by three decisions. The

first involves the allocation of the products to the M machines. The second

involves the determination of the basic periods for the M machines. The third

involves the choice of the product cycle times expressed as power-of-two mul-

tiples of the basic periods as well as the staggering or production positions of

the products.

5.3.1 Encoding scheme

We use three arrays of integers (a ,n , j ) as a chromosome to represent a so-

lution (see Figure 5.3). As before, a = (a1, a2, . . . , aI) defines the machine

numbers on which the products are produced. As before, the multiplier vector

n = (n1, n2, . . . , nI) and the production position vector j = (j1, j2, . . . , jI)

respectively define the product cycle times expressed as power-of-two multi-

ples of the basic periods and the production positions of the products.

For example, if we have two machines and four products and a chromo-

some has a1 = 1, a2 = 2, a3 = 1, a4 = 2, n1 = 1, n2 = 1, n3 = 2, n4 = 2, j1 =

1, j2 = 1, j3 = 1, j4 = 2, then the production schedule can be constructed as in

Figure 5.4. Similar to GACC, we do not encode the values of the basic periods
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a1 a2 aI…

n1 n2 nI…

j1 j2 jI…

Figure 5.3 Chromosome for MELSP under the EBP and PoT policy

in the chromosome explicitly.

1 3 1

1 2 

1 13

3 4 

machine 1 

2 42

1 2 

2 2 4

3 4 

machine 2 

Figure 5.4 A simple example for MELSP

As before, we let Pm denote the set of products allocated to machine

m. Let Km be the number of basic periods until the product schedule re-

peats on machine m. Given that all the multipliers are powers of two, Km

is equal to the maximum of ni, i ∈ Pm. For m = 1, . . . , M , let Smk be the

set of products produced on the kth basic period of machine m. Formally,

Pm = {i : ai = m}, m = 1, . . . , M ; Km = maxi∈Pm{ni}, m = 1, . . . , M ; and

Smk = {i ∈ Pm : ji = (k−1)( mod ni)+1}, m = 1, . . . , M and k = 1, . . . , Km.
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5.3.2 Feasibility

A chromosome is feasible only when each machine can produce its assigned

products according to the given multipliers and production positions. There-

fore, the feasibility is determined by the respective machine resource utiliza-

tions as well as the production frequencies and production positions. Ignoring

the constraints imposed by the production frequencies and positions, the nec-

essary conditions for a solution to be feasible are

∑
i∈Pm

ρi < 1, m = 1, . . . , M. (5.2)

These conditions state that the allocation of products to different machines

should ensure that no machine is over utilized. If
∑

i∈Pm
ρi ≥ 1 for some m,

the chromosome does not represent a feasible solution and it will be repaired

by a repair procedure which is similar to that described in GACC. To use it,

we need to select a common value for basic periods, denoted by Wc. In our

work, we select the value of Wc such that

I∑
i=1

(
si

niWc

+ ρi

)
=

ρ + M

2
.

That is,

Wc =
2
∑I

i=1 si/ni

M − ρ
.

The same repair procedure as in GACC is then applied except that ρ
′
i =

ρi + si/(niWc). If
∑

i∈Pm
ρi remains greater than or equal to 1 for some of the
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machines after the repair, the chromosome will be declared infeasible and a

penalty described later will be imposed on the fitness value.

For machine m, necessary and sufficient conditions for feasibility under

EBP and PoT are

∑
i∈Smk

niρi < 1, k = 1, . . . , Km. (5.3)

If conditions (5.3) hold for all k = 1, . . . , Km, then we can always find a basic

period that is long enough to produce all the products in Smk regardless of the

values of setup times. For example, in Figure 5.4, K1 = 2, S11 = {1, 3}, S12 =

{1}; K2 = 2, S21 = {2}, S22 = {2, 4}. If ρ1+2ρ3 < 1, then a feasible production

schedule can be constructed for machine 1. Similarly if ρ2 + 2ρ4 < 1, then a

feasible production schedule can be constructed for machine 2.

For the machines that satisfy (5.2), we check the necessary and sufficient

conditions (5.3). If conditions (5.3) fail for machine m, a repair procedure

described in the previous chapter will be applied. This procedure reassigns the

production positions of products on machine m so as to induce the feasibility.

To do this, we need to select a value of the basic period in the repair procedure.

Following the method in the previous chapter, the selected value of the basic

period

Wm = max

{√∑
i∈Pm

Ai/ni∑
i∈Pm

Hini

,

∑
i∈Pm

si/ni

1−∑
i∈Pm

ρi

}
(5.4)

is used to estimate the sum of setup time and processing time σi = si +
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ρiniWm, ∀ i ∈ Pm. To reassign the production positions, the products are

ordered increasingly by ni. For products with the same multiplier, they are

ordered decreasingly by σi. Based on the list, the first-fit heuristic is applied to

pack the products one by one to the first basic period that can accommodate

the product. The production schedule for product i is repeated each ni peri-

ods. Hence, each product is packed in Km/ni basic periods. In the packing,

it may happen that none of the basic periods have enough time to accommo-

date the production of some of the products. In this case, these products are

packed in the period that has the smallest sum of niρi. As a result the length

of the periods receiving the products will exceed Wm. In the end, this repair

procedure may give a feasible schedule on machine m or reduce the degree of

infeasibility of the schedule.

5.3.3 Fitness value

Similar to GACC, we define f =
∑M

m=1 fm as the fitness value of a chromo-

some, where fm is the fitness value of machine m. There are three cases for

the calculation of fm.

1. Conditions (5.3) hold for all k. This is a feasible solution. The opti-

mal basic period that minimizes
∑

i∈Pm
(Ai/(niWm) + HiniWm) subject

to (5.3) is given by

W ∗
m = max

{√∑
i∈Pm

Ai/ni∑
i∈Pm

Hini

, max
k=1,...,Km

{ ∑
i∈Smk

si

1−∑
i∈Smk

niρi

}}
.
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Thus, the fitness value of machine m is given by

fm =
∑
i∈Pm

(
Ai

niW ∗
m

+ HiniW
∗
m

)
.

2. Conditions (5.3) do not hold for some k and
∑

i∈Pm
ρi < 1. In this case,

a penalty will be imposed on the fitness value of machine m, and fm is

given by

fm =
∑
i∈Pm

(
Ai

niWm

+ HiniWm

)
+ Penaltym,1,

where Wm is given by (5.4). In this algorithm, we let

Penaltym,1 = tm,1P (ρ̄)Q(g),

where

tm,1 =
Km∑

k=1

( ∑
i∈Smk

niρi − 1

)+

, P (ρ̄) = 1/ρ̄, Q(g) = g.

3.
∑

i∈Pm
ρi ≥ 1. In this case, machine m does not have enough capacity

to produce the assigned products. Similar to GACC, the fitness value of

machine m is given by
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fm =
∑
i∈Pm

(
Ai

niŴm

+ HiniŴm

)
+ Penaltym,2, (5.5)

where

Ŵm =

√∑
i∈Pm

Ai/ni∑
i∈Pm

Hini

is the value that minimizes the total cost ignoring the capacity con-

straint. In this algorithm, we let

Penaltym,2 = tm,2P (ρ̄)Q(g),

where

tm,2 =

(∑
i∈Pm

ρi − 1

)
max
i∈Pm

{ni}, P (ρ̄) = 1/ρ̄, Q(g) = g.

5.3.4 Initialization

N chromosomes are generated in the initial population. 10% of the chromo-

somes are generated using the following procedure.

To generate a chromosome representation, the products are added one by

one to the machines. In each iteration, a product is selected randomly from

the remaining products and added to the first machine that can accommodate
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it. To check whether a product can be added to a machine, the sum of ρi for

all the products already assigned to the machine plus the current product is

calculated. If it is less than 1, the product is added to the machine. Otherwise,

the product is assigned to the next machine that can fit it. If the machine

happens to be the last machine, all the products will be assigned to the last

machine without checking the sum of ρi. After all the products have been

packed, a is known. Let n = j = (1, 1, . . . , 1). There is a great chance that

the generated solution is feasible and with the injection of highly likely initial

feasible solutions the algorithm often improves faster.

The other 90% of the initial chromosomes are randomly generated from

the appropriate ranges. That is, for each chromosome, a is randomly gener-

ated from the product set of I sets, {1, 2, . . . , M} × {1, 2, . . . , M} × · · · ×
{1, 2, . . . , M}, n is randomly generated from {1, 2, . . . , n1}×{1, 2, . . . , n2}×
· · ·×{1, 2, . . . , nI}, and j is randomly generated from {1, 2, . . . , n1}×{1, 2, . . . , n2}×
· · · × {1, 2, . . . , nI}, where ni is an upper bound of ni, which is chosen to be

the biggest integer that is less than 1/ρi.

5.3.5 Selection and crossover

The selection and crossover are similar to the ones used in GACC. In other

words, a target size of a parent pool is selected by a binary tournament for

reproduction. Also a uniform crossover (see Figure 5.5) is used to produce

new offsprings from randomly selected parents. And a percentage of the best

chromosomes is kept to the next generation.
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Parent 1 

Parent 2 

+

Offspring 

Figure 5.5 Uniform crossover under the EBP and PoT policy

5.3.6 Mutation

Each new offspring has a small probability of being mutated. When a muta-

tion takes place, the following two operators will be used randomly with equal

probability.

• MUT1: Each multiplier has a small probability of being changed. If a

change occurs, a multiplier will be either doubled or halved randomly

with equal probability. In the case that the multiplier is equal to 1,

it will be simply increased to 2. Once a multiplier is changed, it may

happen that ji > ni. In this case ji is replaced by a random number in

{1, 2, . . . , ni}.

• MUT2: Select a random number r from {2, 3, . . . , M}. Select any r ma-
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chines and for each of the selected machines, randomly choose a product

from the machine. These products are then rotated from one machine

to another among all the machines. For example, if three machines are

selected, the product on the first machine will be moved to the second

machine, the product on the second machine will be moved to the third

machine and the product on the third machine will be moved to the first

machine.

5.3.7 Values of the parameters and termination condi-

tion

The parameters used in GAEBP are summarized here. The population size is

N = 100. The percentage of best chromosomes kept to the next generation

is 20%. The size of the targeted parent pool is N ′ = 60. The mutation rate

is 0.1. In MUT1, each multiplier has a probability of 0.1 to be changed. The

termination condition is that either the best solution does not improve after

1,000 generations or 10,000 generations have been generated.

5.4 Computational Results

Three algorithms, Carreno’s heuristic, GACC and GAEBP, are compared on

randomly generated problems. The algorithms are coded in C++ and run on

an Intel Pentium CPU 3GHz personal computer with a memory of 0.99 GB.

The problems are generated for five different numbers of machines-2, 4, 6, 8

and 10. The number of products is five times of the number of machines. For
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each problem setting, ten tested problems are generated where their parame-

ters are randomly generated from the ranges given in Table 5.1. The settings

in the table are the same as those used by Carreno (1990).

Table 5.1 Ranges of parameters for MELSP

Parameter Mean Range

Production Rate (unit/day) 14000.00 5000.00

Setup Cost ($) 200.00 400.00

Setup Time (day) 0.28 0.44

Holding Cost ($/unit/year) 0.35 0.70

Demand Rate (unit/day) 2500.00 4800.00

We use GAP = (solution’s value - LB)/LB to measure the performance of

the heuristics, where LB is the lower bound of the problem used in Carreno

(1990). For easy of reference, a description of LB is included in Appendix D.

For each number of machines and utilization, the average GAP of 10 problems

is reported in Figures 5.6 - 5.11. The running time of these algorithms is re-

ported in Figures 5.12 - 5.17. The cap of running time for Carreno’s heuristic

is set at 50 seconds. The x-axis represents the number of machines and the

y-axis represents the running time in seconds. Convergence of GACC and

GAEBP is reported in Appendix F.

From the computational results, we find that solutions of GACC domi-

nate solutions of Carreno’s heuristic for all the different settings. For the high

utilization problems, GACC is a lot better than Carreno’s heuristic. This is
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Figure 5.6 Computational results for utilization 0.6

Figure 5.7 Computational results for utilization 0.7

mainly due to the difficulty of using Carreno’s heuristic to solve the high uti-

lization problems. The running time of GACC does not increase much when

the number of machines increases, but the running time of Carreno’s heuristic

increases dramatically when the utilization and machine number increase and

the cap of running time is reached for a number of them.
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Figure 5.8 Computational results for utilization 0.8

Figure 5.9 Computational results for utilization 0.85

GAEBP is slower than GACC, but the solution of GAEBP dominates

GACC for all the settings. For the problems with two machines, GAEBP is

much better than GACC for low utilization problems, but it is not difficult
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Figure 5.10 Computational results for utilization 0.9

Figure 5.11 Computational results for utilization 0.95

to see that the improvement of GAEBP over GACC decreases as the num-

ber of machines increases. In general, the more machines we have, the more

flexibility we have for cycle times under the CC policy. For the 10-machine

problems, the algorithms under the CC policy perform well. Their average

GAPs are around 1% or less for low utilization problems. This is because the
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restriction of the CC policy is alleviated by the flexibility of using different

cycle times on different machines. When there are ten machines, it is not dif-

ficult to find a good grouping so that the common cycle time of the machine

is close to the independent cycle times of all products produced in that ma-

chine. However, when there are a few machines, products with much different
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independent cycle times may have to be produced in the same machine. As

a result, the performance of the heuristics under the CC policy deteriorates

when the number of machines decreases. It is clearly seen that GAEBP per-

forms much better than the other two heuristics, especially when the number

of machines is small and the machine utilization is low.
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5.5 Conclusions

In this chapter, we discuss two different policies for the MELSP and propose

two genetic algorithms under the two policies. The first policy we use is the

CC policy, which assumes that the products produced on the same machine

have a common cycle time. It is shown empirically that GACC can find better

solutions than Carreno’s heuristic for all the different settings and compared

with the latter it requires less running time for the high utilization problems.

Among all the three algorithms, GAEBP performs best though it requires a

longer running time.

It is observed that the GAP of Carreno’s heuristic is bigger when the

number of machines is small. For the 2-machine problem, the average GAP

can be improved dramatically by using a GA under the EBP and PoT policy.

A genetic algorithm under this policy can find very good solutions for the

MELSP. From the computational experiment, we see that the solution quality

of GAEBP dominates GACC and Carreno’s heuristic for all different settings.

Particularly, it finds better solutions when the number of machines is small.



Chapter 6

Conclusions

6.1 Conclusions

In this dissertation, the ELSP under the EBP and PoT policy is discussed. A

search algorithm that finds the optimal solution, an efficient search algorithm

and a GA are presented for this problem. The MELSP is also discussed under

the CC policy and under the EBP and PoT policy. Two genetic algorithms

are presented for this problem under the two policies.

The ELSP under the EBP and PoT policy is formulated as a nonlinear inte-

ger programming problem. We formulate the problem in such a way that once

one of the decision variables is treated as a parameter, the problem becomes

an integer linear program. For each value of the parameter, an integer linear

programming problem is solved optimally. After all the possible values of the

parameter have been searched, the global optimal solution is determined. This

algorithm is the first to find the optimal solution for the problem under this

policy.

87



88

Based on the insights drawn from the algorithm, an efficient search heuris-

tic is proposed. The heuristic focuses the search on the values of the parameter

that are likely to give the global optimal solution. Though we show that the

heuristic does not guarantee for a global optimal solution, it finds the optimal

solutions for 98% of all the problems tested and it is much faster than the

algorithm which is designed to find the optimal solutions.

We observe that the structure of the problem under the EBP and PoT

policy is suitable for GA. A GA is proposed for solving the problem, and it

is found that the GA can find optimal EBP-PoT solutions for most of the

problems tested. The running time of GA does not increase much when the

number of products increases or the utilization is high, which is not guaran-

teed by the previous two algorithms. In the literature, another GA (Chatfield,

2007) was presented under the EBP policy without the PoT restriction. It

is shown that our GA under the more restricted policy performs better for

several high utilization problems. This result shows that it is important to

find a policy that can effectively reduce the complexity of the problem so that

an efficient algorithm can be developed.

The MELSP schedules several products on multiple identical machines. We

investigate two policies for the MELSP, the CC policy and the EBP and PoT

policy. The CC policy reduces the complexity of the problem greatly. How-

ever, no one has found the optimal solution even under the CC policy. Carreno

(1990) proposed a local search heuristic to solve the MELSP under the CC

policy and it can find very good solutions for most of the problems tested.
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However, the local search heuristic requires a generalized assignment problem

to be solved in each iteration. When the problem becomes more complicated,

the heuristic does not guarantee to finish the iterations in a short time due to

the complexity of solving the assignment problem.

To overcome the disadvantage of the local search heuristic, a GA is pre-

sented for the MELSP under the CC policy. The problem is encoded with

integer encodings and the GA is tested for randomly generated problems. The

GA outperforms the local search heuristic for all the different settings tested.

In addition, the GA ensures that the running time is reasonable for all the

problems, which is not true for Carreno’s heuristic.

When we test the GA and the local search heuristic from Carreno (1990)

for the problems with only two machines, it is found that the solution errors

are quite high compared with when there are five or ten machines. It is not

difficult to see that this is due to the restriction of the CC policy. The re-

striction can only be alleviated when there are more machines. Therefore, we

develop a GA under the EBP and PoT policy. This policy is very flexible and

it is allowed that all the products to have different cycle times. Though it

increases the problem complexity, the solution quality is improved a lot. It

is found that the algorithm dominates the other two algorithms in terms of

solution quality. And the less machines we have, the more improvement can be

gained by using the EBP and PoT policy compared with using the CC policy.
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6.2 Future Research

The search algorithm to find the optimal solution presented for the ELSP in

this dissertation requires to search all the possible values of the parameter.

The search algorithm will be more effective if more properties can be found

for this problem under the EBP and PoT policy. One future direction is to find

useful properties for the problem to speed up the search algorithm. Another

direction is to extend the nonlinear integer programming model to solve the

other extensions of the ELSP. As long as the extra constraints are linear, the

model is tractable and can be very useful for analyzing the structure of the

ELSP with other extensions.

The MELSP is very difficult as the allocation problem is combined with

the scheduling problem. The CC policy reduces the complexity and the neces-

sary and sufficient conditions were presented by Carreno (1990) by a nonlinear

model under this policy. However, no algorithm can guarantee to find the op-

timal solution for the nonlinear programming problem. Future research can

focus on formulating the problem in a different way so that the mathematical

model is tractable and the optimal solution can be found by the linear pro-

gramming or integer linear programming techniques under certain policies.

In this dissertation, the genetic algorithms are used for both ELSP and

MELSP. It is found that the problem structures are suitable for GA. And there

are several applications for the ELSP with other meta-heuristics. The future

direction can focus on exploring the possibility of applying meta-heuristics to

solve the MELSP with more realistic considerations.
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Appendix A

Determination of Li and Ui for

ELSP

1. A choice of Ui.

For product i, si + ρiniW ≤ W. Hence, ni ≤ (W − si)/ρiW and we can

choose Ui to be Ui = b(W − si)/ρiW c.

2. A choice of Li.

For any feasible production schedule, the average machine utilization

rate cannot exceed one. Mathematically this means

I∑
i=1

(
si

niW
+ ρi

)
≤ 1

Therefore,

si0

ni0W
+ ρi0 +

∑

i6=i0

(
si

UiW
+ ρi

)
≤ 1
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This implies

ni0 ≥
si0

W −∑
i6=i0

(si/Ui + ρiW )− ρi0W

Hence we can choose Li to be

max

{
1,

⌈
si0

W −∑
i6=i0

(si/Ui + ρiW )− ρi0W

⌉}
.



Appendix B

Bomberger’s Stamping Problem

Bomberger’s stamping problem data are given in Table B.1. Costs are based

on 240 working days per year. Production is based on eight hours per day.

The interest rate is 10% per year.

Table B.1 Bomberger’s problem

Index Ai($) ci ($/unit) pi (units/day) ri (units/day) si (hours)

1 15 0.0065 30000 400 1

2 20 0.1775 8000 400 1

3 30 0.1275 9500 800 2

4 10 0.1 7500 1600 1

5 110 2.785 2000 80 4

6 50 0.2675 6000 80 2

7 310 1.5 2400 24 8

8 130 5.9 1300 340 4

9 200 0.9 2000 340 6

10 5 0.04 15000 400 1
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Appendix C

Other Benchmark Problems

Bomberger’s problem is the first benchmark problems used in Chapter 4. The

other five benchmark problems are listed as follows.

Table C.1 Benchmark problem 2

Index Ai($) ci ($/unit) pi (units/day) ri (units/day) si (hours)

1 50 0.0146 11000 750 2

2 50 0.2644 2000 40 3

3 10 0.2869 1400 500 8

4 260 0.225 7000 160 4

5 70 6.2663 700 50 1

6 160 0.6187 2500 100 2

7 30 0.375 5500 150 1

8 40 0.2333 3000 45 1

9 30 2.025 6000 210 6

10 20 0.09 540216 4500 2
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Table C.2 Benchmark problem 3

Index Ai($) ci ($/unit) pi (units/day) ri (units/day) si (hours)

1 70 0.016 25189 1500 6

2 15 0.522 3770 200 4

3 30 0.0855 3900 130 2

4 30 0.9 1950 240 3

5 50 3.697 5000 600 6

6 10 0.027 15000 3000 8

7 100 1.628 20000 750 2

8 200 6.1 2000 95 1

9 20 0.2 6100 100 4

10 150 0.075 15000 300 1

Table C.3 Benchmark problem 4

Index Ai($) ci ($/unit) pi (units/day) ri (units/day) si (hours)

1 185 0.2723 20000 200 6

2 300 0.269 37333 5600 8

3 85 0.183 4333 130 7

4 150 2.526 7496 425 1

5 140 0.5262 5498 320 3

6 360 3.414 4245 270 2

7 170 0.1941 2961 90 4

8 50 0.6186 4752 335 5

9 200 1.603 35503 2400 1

10 300 0.199 20000 950 2
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Table C.4 Benchmark problem 5

Index Ai($) ci ($/unit) pi (units/day) ri (units/day) si (hours)

1 50 0.1936 4500 90 5

2 20 0.1232 1539 50 1

3 60 0.2068 2401 40 6

4 45 0.2224 1200 30 8

5 5 0.748 2100 70 7

6 110 0.1056 18000 900 4

7 60 0.417 13714 2400 3

8 70 0.261 5600 70 2

9 90 0.167 6500 65 1

10 250 0.2956 5200 195 1

Table C.5 Benchmark problem 6

Index Ai($) ci ($/unit) pi (units/day) ri (units/day) si (hours)

1 140 0.95 25000 900 3

2 70 0.235 6000 720 3

3 20 0.065 24000 420 5

4 30 0.22 600 30 8

5 60 0.23 7000 210 6

6 100 0.75 3000 210 7

7 300 1.055 90000 4500 1

8 60 0.14 21000 2100 1

9 55 0.625 9000 900 2

10 350 2.955 40000 900 4



Appendix D

Lower Bound for MELSP

A lower bound can be obtained from the optimal value of the following convex

program (Carreno, 1990).

min
I∑

i=1

(
Ai

Ti

+ HiTi

)

subject to
I∑

i=1

(
ρi +

si

Ti

)
≤ M,

Ti > 0, ∀ i.

where Ti is the cycle time of product i. The optimal solution of the convex

program is given by:

t∗i =

√
Ai + λsi

Hi

, ∀ i.

The value of λ is 0 when
∑I

i=1

(
ρi + si√

Ai/Hi

)
≤ M . When

∑I
i=1

(
ρi + si√

Ai/Hi

)
>

M , λ and t∗i ’s satisfy the following system of equations:
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t∗i =

√
Ai + λsi

Hi

, ∀ i and

I∑
i=1

(
ρi +

si

t∗i

)
= M.

After λ and t∗i ’s are determined, the lower bound for MELSP is

min
I∑

i=1

(
Ai

t∗i
+ Hit

∗
i

)
.



Appendix E

Worst Case Analysis

E.1 ELSP

Common cycle policy

We construct a series of examples to show that the solution under the CC

policy can be arbitrarily bad compared to the optimal solution under the

EBP and PoT policy. For a given n from the set {1, 2, 4, . . .}, the example

parameters are as follows:

Number of products: n + 1;

Setup cost: Ai = 1, i = 1, . . . , n + 1;

Factor of holding cost: H1 = 1;

Hi = 1/n2, i = 2, . . . , n + 1;

Setup time: s1 = 1/n;

si = 1/2, i = 2, . . . , n + 1;

Production density: ρ1 = 1/n;

ρi = 1/3n, i = 2, . . . , n + 1.
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An optimal solution of the problem under the EBP and PoT policy is to

produce product 1 with cycle time 1 and produce product i (2 ≤ i ≤ n + 1)

with cycle time n. The cost of the optimal solution is:

CEBP = A1/T1 + H1T1 +
n+1∑
i=2

(Ai/Ti + HiTi) = 4

Under the CC policy, it is required that

T >
n+1∑
i=1

si > n/2

Therefore, the cost of a solution under the CC policy is

CCC > A1/T + H1T > H1T > n/2

and

lim
n→∞

CCC

CEBP

> lim
n→∞

n/2

4
= ∞

Basic period policy

The BP policy allows different products to have different cycle times. It is less

restrictive than the CC policy, but it is still not flexible enough as it requires

W to be big enough to accommodate the production of all the products. For

the constructed example in the previous section, it is required that

W >
n+1∑
i=1

si > n/2
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So the cost of a solution under the BP policy is

CBP =
n+1∑
i=1

(Ai/niW + HiniW ) > H1n1W ≥ H1W > n/2

and

lim
n→∞

CBP

CEBP

> lim
n→∞

n/2

4
= ∞

In the worst case, the solution under the BP policy is arbitrarily bad compared

to the solution under the EBP and PoT policy.

E.2 MELSP

Again, we construct a series of examples to show that the solution under the

CC policy can be arbitrarily bad compared to the optimal solution under the

EBP and PoT policy. For a given n from the set {1, 2, 4, . . .}, the example

parameters are as follows:

Number of machines: M ;

Number of products: nM + 1;

Setup cost: Ai = 1, i = 1, . . . , nM + 1;

Factor of holding cost: H1 = 1;

Hi = 1/n2, i = 2, . . . , nM + 1;

Setup time: s1 = 1/(M + 1)n;

si = 1/(M + 1)2, i = 2, . . . , nM + 1;
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Production density: ρi = M/(M + 1)n, i = 1, . . . , nM + 1;

An optimal solution under the EBP and PoT policy is to produce products

1, . . . , n + 1 on machine 1 and produce products (m− 1)n + 2, . . . , nm + 1

on machine m (2 ≤ m ≤ M). On the first machine, the cycle time of product

1 is 1 and the cycle time of product i (2 ≤ i ≤ n + 1) is n. On machine

m (2 ≤ m ≤ M), the cycle time of product i ((m− 1)n + 2 ≤ i ≤ mn + 1) is

n. The cost of this solution is:

CEBP =
nM+1∑

i=1

(Ai/Ti + HiTi) = 2 + nM(1/n + 1/n) = 2M + 2

The cost of the solution under the CC policy is analyzed as follows. Ma-

chine m (2 ≤ m ≤ M) can at most produce (M + 1)n/M − 1 products as

ρi = M/(M + 1)n (i ≥ 2), so at least n/M + M products should be produced

on machine 1, which is calculated by

1 + nM −
(

(M + 1)n

M
− 1

)
(M − 1) = nM − (nM − n

M
−M + 1) + 1

=
n

M
+ M

So the cycle time of product 1 is required to accommodate n/M + M − 1

products with setup time 1/(1 + M)2, which is

T1 >
( n

M
+ M − 1

)
/(M + 1)2
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so

CCC > H1T1 =
( n

M
+ M − 1

)
/(M + 1)2

and

lim
n→∞

CCC

CEBP

> lim
n→∞

(
n
M

+ M − 1
)
/(M + 1)2

2M + 2
= ∞



Appendix F

Convergence for Genetic

Algorithms for MELSP

The x-axis represents the number of generations and the y-axis represents the

fitness value of the best feasible solution found.
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Figure F.1 Convergence of GA for ELSP
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Figure F.2 Convergence of GACC
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Figure F.3 Convergence of GAEBP


