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Summary 

Broadband wireless communications has been well recognized as one of the most pot-

ential strategies to integrate various high-data-rate and quality communication applic-

ations such as high-speed wireless internet, broadcasting and mobile communication 

services under a common system infrastructure. However, along with these potential 

benefits, the primary challenges in broadband wireless communications are channel 

impairments which include interference, multi-path fading propagation and imperfect 

synchronization. To mitigate such detrimental effects to the receiver performance, this 

thesis proposes several algorithms for estimating and compensating these channel im-

pairments in early and recent broadband wireless systems.  

As one of the early solutions to broadband wireless communications, the frequen-

cy hopping spread spectrum (FHSS) technique has been deployed to achieve high rob-

ustness against intentional interferences or jammers. However, the anti-jamming feat-

ure of the FHSS systems may be significantly neutralized by a follower partial-band 

jammer. To defeat this effective jammer, this thesis proposes a maximum likelihood 

(ML)-based joint follower jamming rejection and symbol detection algorithm for slow 

FH M-ary frequency shift keying (MFSK) systems over quasi-static flat Rayleigh fad-

ing channels.  

Recently, considered as a very promising candidate for broadband wireless comm-

unications, the orthogonal frequency division multiplexing (OFDM) scheme has been 

extensively employed in various broadband wireless systems to provide high spectral 

efficiency and robustness against multi-path fading channels. However, the inherent 

drawback of OFDM-based systems is their susceptibility to synchronization errors su-

ch as the carrier and sampling frequency offsets. To estimate the channel impulse res-

ponse (CIR) and synchronization errors in uncoded single-input single-output (SISO) 



 vii

OFDM-based systems, this thesis proposes a pilot-aided joint channel estimation and 

synchronization approach with the aid of the standard recursive least squares (RLS) 

algorithm.   

For further improvement in the OFDM receiver performance, the integration of 

the multiple-input multiple-output (MIMO) architectures and OFDM technique has 

been widely considered as a potential strategy to enhance data rate, capacity and qual-

ity of broadband wireless OFDM systems. However, the primary challenge in MIMO-

based systems is the increasing complexity in channel estimation as the number of an-

tennas increases. To perform joint multiantenna channel estimation and synchronizati-

on in MIMO scenarios, this thesis develops a vector recursive least squares (RLS)-

based scheme for uncoded burst-mode MIMO-OFDM systems over multipath Raylei-

gh fading channels.  

Dealing with channel estimation and synchronization in coded OFDM transmissi-

ons, this thesis introduces a turbo joint channel estimation, synchronization and deco-

ding scheme for convolutionally coded burst-mode MIMO-OFDM systems. To benef-

it from the spectacular performance of turbo processing, the proposed turbo scheme 

employs the iterative extrinsic a posteriori probability (APP) exchange in the turbo 

principle to jointly perform channel estimation, synchronization and decoding in an 

iterative and semi-blind fashion.      
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Chapter 1 

Introduction  

Broadband wireless communications has been well recognized as a potential strategy 

to integrate various high-data-rate and quality communication applications such as 

high-speed wireless internet, broadcasting and mobile communications services under 

a common system infrastructure. However, along with these potential benefits, the 

primary challenges in broadband wireless communications are the channel 

impairments which include interference, multi-path fading propagation and imperfect 

synchronization. Focusing on intentional interference, multipath fading channels, 

carrier and sampling frequency offsets, this thesis proposes several algorithms for 

mitigating these channel impairments in FH and OFDM systems. Before introducing 

the detailed developments of these proposed algorithms from Chapter 2 onwards, 

Chapter 1 provides a brief history of broadband wireless communications and an ove-

rview of these channel impairments. In addition, motivations, scopes and thesis con-

tributions are also presented in this chapter. 

1.1 Brief History of Broadband Wireless Communications 

In 1897, Guglielmo Marconi developed the world’s first wireless transmission to 

communicate from ship to shore by employing the Morse code [1]. However, due to a 

limited power of the transmitted signals, Marconi’s wireless systems were only able 

to provide a communication channel with low data rate and over short ranges. Later, 

in 1906, the invention of the vacuum tube liberated Marconi’s first wireless system 

from their low-data rate and on-and-off keying by amplifying the transmitted analog 

signals. Then, the use of the amplitude modulation (AM) for high-fidelity analog 
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transmissions such as voice and music became popular over the world in the 1920s. 

To alleviate the detrimental effect of noise in AM-based systems, frequency 

modulation (FM) radio was first developed by Armstrong in 1933. As a natural result 

of Second World War with electronic supremacy (a war with jamming and anti-

jamming strategies) [2], the first patent by G. Guanella on radar was probably 

considered as the spread spectrum (SS) principle in 1938. Since World War II, numer-

ous intensive researches on the SS principle have been carried out for military and 

civilian wireless communication applications. Based on a wide variety of practical ac-

hievements in the SS technology, a new era of wireless communication applications 

with high-data-rate transmissions using wide frequency bandwidth, the so-called broa-

dband wireless communications, started around the late 1970s. Specifically, the first 

proposal for CDMA cellular networks in the USA and Europe (1978-1980) evolved 

into the GSM and DAMPS standards. Till the mid 1990s, the 2G standard IS-95 beca-

me a full spread spectrum/CDMA platform. Today, in the presence of numerous broa-

dband wireless systems sharing a common radio channel, the primary challenges in 

increasing the data rate, quality and capacity of such systems are channel impairments 

and limited radio frequencies.  

Recently, orthogonal frequency division multiplexing (OFDM) technique, first 

proposed in 1968 [3], has been extensively employed in various broadband wireless 

systems to provide high spectral efficiency and robustness against multi-path fading 

channels. Furthermore, by exploiting significant diversity and capacity gain of the 

multiple-input multi-output (MIMO) architectures, the integration of MIMO and 

OFDM techniques [4] has been widely recognized as a very promising strategy to en-

hance data rate, capacity and quality of the existing broadband wireless systems as 

well as their next generations.  
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In this thesis, we focus on the channel impairment mitigation in the early and 

recent broadband wireless systems such as frequency hopping spread spectrum (FH-

SS) and OFDM-based ones, respectively. Specifically, we propose several schemes 

for channel impairment mitigation in frequency hopping M-ary frequency shift keying 

(FH-MFSK) and MIMO-OFDM systems. To give an overview of the major channel 

impairments in such systems, the next section will describe briefly intentional 

interferences in FH/MFSK systems as well as multi-path fading channels and synchr-

onization errors in OFDM-based systems.   

1.2 Channel Impairments  

1.2.1 Intentional interferences  

In frequency hopping (FH) systems, there are four main types of intentionally interfe-

ring (jamming) sources such as barrage noise, single tone, multiple tone and partial-

band jammers. Among these types of jammers, the most popular one is the barrage 

noise jammer which simply transmits a band-limited white Gaussian noise whose 

power spectrum covers the entire frequency range of a target FH receiver. Consequen-

tly, a barrage noise jammer usually induces the same effect as thermal noise, in turn 

enhancing the noise level at a target FH receiver [5].  

  Besides barrage noise jamming, the second type of intentional interference is sin-

gle-tone jamming. A single-tone jammer simply transmits an un-modulated carrier 

signal at a certain frequency in the currently used FH signal bandwidth. As a result, 

this type of jamming induces a quite insignificant effect on FH systems since the 

instantaneous FH frequency bandwidth is small and changes continuously. For FH 

systems, a more effective tone jamming strategy is the use of multi-tone jamming 

which transmits various un-modulated carrier signals in the entire FH frequency band-

width. 
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To obtain a more efficient jamming strategy in FH systems, partial-band jamming 

is usually employed. This jamming scheme transmits all its available power to a certa-

in portion of the entire FH signal bandwidth [6]. In fact, such jammers include extre-

mely effective ones which are called follower partial-band jammers [7] (smart or 

repeater jammers). A follower partial band jammer is able to determine the currently 

used frequency band of a target FH receiver and injects its interfering signals to that 

frequency band. To mitigate the detrimental effect of the jamming strategy, this thesis 

proposes a maximum likelihood (ML)-based algorithm to reject the follower jamming 

components in FH/MFSK receivers over quasi-static Rayleigh fading channels. 

1.2.2 Multi-path fading channels 

In wireless propagation channels, the multi-path phenomenon causes a significant 

degradation in the performance of wireless communication systems with coherent det-

ection. Specifically, under multi-path propagation, the transmitted signal arrives to a 

receiver via various propagation paths with different delays and attenuations. Conseq-

uently, the superposition of many impinging signals from various propagation paths 

yields a time-variant amplitude response on the received signal, the so-called fading 

phenomenon. Based on the central-limit theorem, the resulting received signal can be 

approximated as a complex Gaussian random variable whose envelop has a Rayleigh 

distribution, and this is thus termed Rayleigh fading [8]. For coherent detection, this 

channel state information is required for retrieval of the transmitted data.  

 Besides a time-variant amplitude response on the received signal due to multipath 

propagation, the time-varying characteristics of each signal path induce frequency 

spreading, the so-called Doppler spreading [9]. In particular, the Doppler spread dB  is 

the range of frequencies within which the time-averaged scattering function is non-

zero. An essential characteristic of dB  is to indicate the rate of channel variation in 
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time. Specifically, the larger dB , the faster channel characteristics change, thus 

inducing more frequency spreading. Based on the parameter dB , channels are 

characterized as fast-fading if the Doppler spread dB  is large compared with the 

signal bandwidth or as slow-fading if dB  is small compared to the signal bandwidth 

[9]. 

In addition, another important parameter of wireless channels is the coherence 

bandwidth cB , defined as the reciprocal of the time range over which the frequency-

averaged scattering function is non-zero. When the bandwidth of the transmitted 

signal is larger than the coherence bandwidth, the transmitted signal experiences 

different attenuations at different frequencies and in turn undergoes frequency-

selective fading. Furthermore, the multipath components can be resolved from the 

received signal, so that the multipath channel can be characterized in a complex linear 

time-varying system with the channel impulse response (CIR) given by [8] 

                                               ( )∑
−

=
−=

1

0
)()();(

L

l
ll ttth ττδατ ,                                    (1.1) 

where )(tlα  and )(tlτ  are the time-varying complex attenuation and delay of the l-th 

path, respectively. In burst mode transmissions where channel responses are usually 

assumed to vary insignificantly over one transmitted data burst, we can assume that 

the CIR is time-invariant, i.e., the so-called quasi-static fading channels. Unless stated 

otherwise, the remainder of this thesis assumes the transmitted signals experience 

quasi-static fading. 

1.2.3 Synchronization errors 

Unlike single carrier-based systems, multicarrier (MC)-based ones such as MC-

CDMA and OFDM systems are particularly vulnerable to synchronization errors due 
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to the fact that the frequency spacing among subcarriers of MC-based systems is typi-

cally very small. In practice, these synchronization errors include the symbol timing 

offset (STO), carrier frequency offset (CFO) and sampling frequency offset (SFO).  

Specifically, STO refers to the use of the incorrect position of the FFT window for a 

set of the received samples in the time domain. Traditionally, timing synchronization 

is performed by two phases. First, coarse synchronization is established by exploiting 

the auto-correlation properties of the preamble. Second, fine synchronization is 

attained by using cross-correlation of the received packet with a known training 

sequence [10]. After coarse and fine synchronization, residual STO can be absorbed 

in channel frequency response [11].  Besides the effect of STO, CFO quantifies the 

mismatch among the carrier frequencies of the RF impinging signals and receiver’s 

local oscillators.  In addition, even in the absence of the Doppler effect, the frequency 

discrepancy between oscillators used in the radio transmitters and receivers is usually 

unavoidable and therefore the CFO always exits. The presence of CFO destroys the 

orthogonality among subcarriers. This loss of orthogonality among subcarriers will 

incur inter-carrier interference (ICI), phase rotation and attenuation in the frequency 

domain. Likewise, SFO refers to the discrepancy between the sampling frequencies at 

transmitters and receivers. Similar to the CFO effect, SFO also induces the ICI in the 

frequency domain, and the phase rotation and attenuation in both time and frequency 

domains [12]. 

 

1.3 Motivations and Scopes 

As one of the early solutions to broadband wireless communications, frequency 

hopping spread spectrum (FHSS) technique has been deployed to achieve high rob-

ustness against intentional interferences or jammers. However, the anti-jamming feat-
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ure of FHSS systems may be significantly neutralized by a follower partial-band 

jammer [7]. Hence, follower jamming mitigation is required to maintain a reliable 

communication channel in such severely jamming scenarios. Addressing the issue, 

this thesis investigates the follower partial band jamming mitigation for slow FH M-

ary frequency shift keying (MFSK) systems over quasi-static Rayleigh fading cha-

nnels.  

Recently, considered as a very strong candidate for broadband wireless comm-

unications, orthogonal frequency division multiplexing (OFDM) scheme has been 

extensively employed in various broadband wireless systems to provide high spectral 

efficiency and robustness against multi-path fading. However, the inherent drawback 

of OFDM-based systems is their susceptibility to synchronization errors such as 

carrier and sampling frequency offsets. Therefore, compensation of these frequency 

offsets is of crucial importance in implementing such systems. In addition, so far, 

most studies on OFDM systems have considered channel estimation and 

synchronization separately [29]-[31]. Channel estimation is performed by assuming 

that perfect synchronization has been established [32]-[33], although channel 

estimation could be degraded by imperfect synchronization and vice versa. Since 

synchronization and channel estimation are mutually related, joint channel estimation 

and synchronization could provide better accuracy at the cost of higher complexity. 

Focusing on joint channel estimation and synchronization issues, this thesis considers 

the joint CIR, CFO and SFO estimation problem in uncoded single-input single-

output (SISO) OFDM systems over quasi-static Rayleigh multi-path fading channels.  

Known as a revolutionary concept for wireless transmissions, multiple-input 

multiple-output (MIMO) architectures [9] are able to offer a spectacular increase in 

the spectral efficiency of wireless communication channels by increasing the number 
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of transmit and receive antennas. As a result, the integration of the multiple-input 

multiple-output (MIMO) architectures and OFDM technique has been widely consid-

ered as a potential strategy to enhance data rate, capacity and quality of broadband 

wireless OFDM systems. However, MIMO-based transmissions lend themselves to a 

highly computational complexity in channel estimation. For joint multiantenna 

channel estimation and synchronization in MIMO-OFDM systems, some algorithms 

[45]-[46] have been proposed recently but the detrimental SFO effect has been omitte-

d in these studies. Taking into account the SFO effect, this thesis investigates the joint 

CIR, CFO and SFO estimation with the aid of the vector recursive least squares (RLS) 

algorithm [49] for uncoded burst-mode MIMO-OFDM systems over quasi-static mul-

tipath Rayleigh fading channels.  

For further improvement in the performance of coded MIMO-OFDM systems, 

turbo processing has been well recognized as a very strong solution to perform chan-

nel estimation and decoding in an iterative fashion [62]. In fact, the principle behind 

the astonishing performance of turbo processing is the iterative exchange of extrinsic 

a posteriori probabilities (APPs) among the constituent functional blocks in MIMO-

OFDM receivers. Based on the iterative APP exchange, the thesis considers the joint 

channel estimation, synchronization and decoding problem with the aid of the vector 

RLS algorithm in convolutionally coded MIMO-OFDM systems over quasi-static 

multipath Rayleigh fading channels.  

 

1.4 Thesis Contributions 

This thesis proposes several algorithms for mitigating major channel impairments 

such as jamming, multipath fading propagation and imperfect synchronization in early 

and recent broadband wireless communication systems. Specifically, a ML-based joi-
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nt follower jamming rejection and symbol detection scheme is developed for FH-

MFSK systems. For channel estimation and synchronization in uncoded OFDM trans-

missions, this thesis develops pilot-aided schemes for SISO and MIMO configuration-

s. Finally, in coded wireless OFDM transmissions, a turbo joint channel estimation, 

synchronization and decoding approach is developed for convolutionally coded MI-

MO-OFDM systems. The above proposed schemes are summarized as follows. 

As one of the most detrimental channel impairments in FHSS systems (early 

broadband wireless systems), follower partial-band jamming is able to significantly 

degrade the FH receiver performance. By exploiting the unknown spatial correlation 

of the jamming components between receiving antenna elements, a closed-form expr-

ession for the ML estimates of the jamming components is derived, leading to joint 

interference rejection and symbol detection being carried out in a unified ML frame-

work with a low computational complexity. Analysis and simulation results show that 

the proposed ML-based joint follower jamming rejection and symbol detection 

scheme is able to remove jamming and outperforms the conventional and sample 

matrix inversion (SMI)-based beamformers in the presence of a follower partial-band 

jammer. 

For channel estimation and synchronization in recent broadband wireless commu-

nication systems, this thesis proposes pilot-aided schemes for the joint CIR, CFO and 

SFO estimation in burst-mode uncoded OFDM systems with SISO and MIMO confi-

gurations. In addition, we also present a simple ICI reduction technique in the time 

domain and a ML coarse estimation of CFO and SFO to further enhance the perfor-

mance of these proposed schemes. Numerous analysis and simulation results show 

that the proposed schemes provide a near-optimum receiver performance in quasi-

static Rayleigh multi-path fading channels over large ranges of CFO and SFO values.  
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For channel estimation and synchronization in coded transmissions, a turbo joint 

channel estimation, synchronization and decoding scheme is developed for convoluti-

onnally coded MIMO-OFDM systems over quasi-static Rayleigh multi-path fading 

channels. By exploiting the iterative extrinsic a posteriori probability (APP) exchange 

in the turbo principle, joint channel estimation and synchronization is performed in a 

doubly iterative and semi-blind fashion with the aid of the vector RLS algorithm. The 

spectacular benefits of iteratively exchanging the extrinsic soft information in the 

turbo receiver enable joint estimation of CIR, CFO and SFO and provide low mean-

squared-error (MSE) estimates and a near-ideal receiver performance.  

1.5 Thesis Organization 

The thesis consists of six chapters. This chapter introduced an overview of broadband 

wireless communications and its major channel impairments. The motivations, scope 

and thesis contributions were also presented in this chapter. Chapter 2 will provide the 

literature of existing algorithms for anti-jamming in FH/MFSK systems and the 

proposed ML-based jamming rejection and symbol detection for such systems. The 

detailed development of the pilot-aided joint channel estimation and synchronization 

approach for uncoded SISO-OFDM systems will be presented in Chapter 3. Chapter 4 

will introduce the vector RLS-based joint CIR, CFO and SFO estimation scheme in 

uncoded MIMO-OFDM systems. For channel impairment mitigation in coded OFDM 

transmissions, a turbo joint channel estimation, synchronization and decoding scheme 

will be developed in Chapter 5. Finally, Chapter 6 will summarize the research work 

in this thesis and provide some suggestions for future work.       



Chapter 2: Jamming Mitigation in Frequency Hopping Systems 

 11

Chapter 2 

Jamming Mitigation in Frequency 
Hopping Systems 
 

As one of the early solutions for broadband wireless communications, frequency 

hopping spread spectrum (FHSS) technique has been deployed to achieve high rob-

ustness against intentional interferences or jammers. However, the anti-jamming feat-

ure of FHSS systems may be significantly neutralized by partial-band jamming. 

Focusing on anti-jamming issues, this chapter presents the literature of existing 

algorithms for partial-band jamming mitigation in FH systems. In addition, a signal 

model of received FH signals is formulated in the presence of a follower partial-band 

jammer. Based on the signal model, a ML-based joint jamming rejection and symbol 

detection scheme is derived. Finally, analysis and simulation results are presented to 

validate the anti-jamming performance of the proposed scheme. 

2.1 Introduction 

The use of frequency-hopping spread-spectrum (FHSS) techniques for highly secure 

data transmission has been employed intensively in civilian and military wireless 

communications. However, in a severely jammed propagation channel, the received 

jamming signal, whose power is comparable with or much greater than the signal 

power, will very likely induce an unacceptable degradation to the FH detection 

performance [8].  In such circumstances, the use of an anti-jamming approach is 

crucial to alleviate these detrimental effects so as to maintain a reliable 

communication channel in the presence of intentional interferers. Specifically, the 
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performance of FHSS systems can be severely degraded in the presence of an 

intermittent jammer, such as a pulsed noise or a partial band jammer [8], that is 

present for only a fraction of the time. The detrimental effect caused by intermittent 

jamming may be compensated by appropriate channel coding. Unfortunately, even 

with channel coding, the performance of FHSS systems may still be significantly 

degraded in the presence of a follower partial-band jammer that has the capability to 

determine the frequency slot of the spread-spectrum bandwidth currently being used 

during some initial observation interval, and then injects the jamming signal in that 

frequency slot [7]. Fast hopping may be used to protect against such interference by 

prohibiting a follower jammer from having sufficient time to determine the desired 

signal’s frequency slot and transmit an interfering signal. However, there is a penalty 

incurred in subdividing a signal into several FH elements. This is due to the fact that 

the energy from these separate elements has to be combined noncoherently. In 

addition, in FH systems, the transmitters and receivers contain clocks that must be 

synchronized. That is, the transmitters and receivers must hop at the same rate at the 

same time. The faster the hopping rate, the higher the jam-ming resistance, and the 

more accurate the clocks must be. This means that a highly accurate clock is required 

to allow a very fast hop rate for the purpose of defeating a follower jammer. It has 

been shown in [13] that under certain environments, the required accuracies can be 

achieved only with atomic clocks. As a result, some systems may still have limitations 

that do not allow for fast hopping [14]. 

Investigations on FHSS systems in the presence of partial-band jamming have been 

carried out in [6], [15]-[20] while studies on follower jamming mitigation have been 

well documented in [14], [21]-[22], [71]. Specifically, in [14], a countermeasure to a 

follower partial-band Gaussian noise jammer was proposed for FHSS communicatio-
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ns. The proposed scheme makes use of randomized decisions by the transmitter and 

the receiver to lure the jammer so that system performance can be improved. Of 

course, this implies that both the transmitter and receiver have to require a higher 

level of synchronization. In [21], the spatial dimension provided by an antenna array 

was exploited to achieve a better rejection of the follower jammer based on the 

classical sample matrix inversion (SMI) algorithm. However, this algorithm requires 

identical antenna gains for all receive antenna elements at the direction of arrival 

(DOA) of the jammer and does not work properly over flat fading channels. Similarly, 

while a variety of broadband source tracking algorithms [23]-[25] are available, they 

may not function properly under a flat fading scenario. 

In this chapter, we formulate a signal model that takes into consideration the effect 

of a follower jammer explicitly, and then propose a maximum likelihood (ML)-based 

joint interference cancellation and symbol detection scheme for slow FH/MFSK sys-

tems over quasi-static flat fading channels. The scheme is based on a two-element 

array where, at each element, N samples are extracted from the received signals withi-

n each transmitted symbol interval. By exploiting the unknown spatial correlation of 

the jamming components between the two antenna elements, a closed-form expressi-

on for the ML estimates of the jamming components is derived, leading to interferen-

ce rejection and symbol detection being carried out in a unified ML framework. 

Note that in present broadband wireless communication systems such as GSM and 

Bluetooth based systems as well as other potential future ones using FH techniques, 

there is always the threat of Denial-of-Service (DoS) attack by intentional interferers 

[26]-[27]. Specifically, the former is very vulnerable to jamming attack [26]. Under 

severely jamming scenarios where the jamming power is much greater than the signal 

power and the channel suffers from quasi-static flat fading, the proposed ML-based 
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interference rejection structure and algorithm would provide a basis for the formulati-

on of an appropriate solution to maintain a reliable communication channel.  

The rest of this chapter is organized as follows. Section 2.2 describes the system 

model. The derivation of the proposed interference rejection scheme is presented in 

Section 2.3. The performance of the proposed scheme is analyzed in section 2.4, 

where an approximate expression for SER is derived. Simulation results and relevant 

discussions are given in Section 2.5. Finally, Section 2.6 summarizes this chapter. 

2.2 System Model 

Consider a MFSK modulated slow FH system. To suppress the detrimental effects of 

a follower partial band jammer, we explore the use of a simple two-element receiving 

array, where the received signal from each element is down converted and sampled at 

N times the symbol rate. The samples collected from the two antenna elements over 

one symbol duration will be used to estimate the desired information symbol by using 

a ML-based detection scheme, which will be described in more details in Section 2.3.   

Without loss of generality, consider the detection of the symbol in a hop over the 

interval 0 < t < Ts, where Ts is the symbol duration. The complex envelop of the trans-

mitted signal can be expressed by  

( )tfdfj diets 02)( += π ,                                                  (2.1) 

where fi is the hopping frequency, d0 ∈ [0, 1, …, M − 1]  represents the information 

symbol, and fd  stands for the frequency spacing between two adjacent MFSK tones. 

Note that, unlike conventional MFSK systems, the proposed scheme does not require 

the MFSK tones to be orthogonal.  

As described in [5], a follower jammer first measures the hopping frequency and the 

spectrum of the desired hop and then injects the available transmitting power discrim-
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inately to the currently used frequency slot. Without perfect knowledge of the desired 

signal but knowing the hopping frequency of the desired signal, such a jammer will 

most likely transmit a signal that is different, perhaps noise like, from the desired 

signal and that will cover the entire band of the latter. The complex envelop of a 

follower partial-band jamming signal can thus be represented as                    

( )tBfj
J

JietntJ 22)()( += π ,                                            (2.2)   

where nJ(t) is a baseband equivalent band-limited signal with bandwidth BJ and can be 

modeled as a zero mean band-limited Gaussian random process. The exponential term 

in (2.2) indicates that this baseband signal is up converted to cover the bandwidth 

occupied by all M data tones in the frequency slot currently occupied by the desired 

signal in all the hops. 

Assuming that the desired signal and the follower jamming signal experience a 

quasi-static flat Rayleigh fading channel, the received signal at the p-th antenna elem-

ent will be given by 

                       2,1),()()()( =++= ptwtJtstr pppp βα ,                                (2.3) 

where wp(t) is the complex white Gaussian receiver noise, and the complex coefficie-

nts αp and βp account for the overall effects of phase shifts, fading and antenna 

response for the desired signal and the jamming signal at the pth antenna element, 

respectively. Under a quasi-static flat fading channel, these fading coefficients can be 

assumed to be constant over one hop duration, equivalently a coherent interval.  

Note that unlike the signal models in [6], [17], [21] which are derived for multiple 

partial-band and follower jamming signals coming from different directions, the sign-

al model used in this chapter is more applicable for a single follower partial-band jam-

mer with known timing in a slow flat fading scenario.   

At the pth antenna element, the received signal is sampled at N times the symbol 
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rate. Using Equations (2.1), (2.2) and (2.3), the n-th sample is 

            ( ) npnpnpnp wJdjr ,0, )(exp ++= βωα ,                                  (2.4) 

where  

                                               ( )( )sN
n

Npnp Trr += 2
1

,                  

                                   ( )( ) sN
n

Ndin Tfdfd ++= 2
1

00 2)( πω ,                                  (2.5) 

                                       ( )( )sN
n

Nn TJJ += 2
1 ,  

and                                ( )( )sN
n

Npnp Tww += 2
1

, ,  for n = 0, 1, …, N-1. It is noted that 

N must be greater than one. In addition, the sampling rate could be much greater than 

tone spacing. This depends on the number of collected samples per MFSK symbol 

duration for processing. 

Based on (2.4), the signal-to-jamming power ratio (SJR) and signal-to-noise power 

ratio (SNR) are SJR JS PP=  and SNR= NS PP , respectively, with 

[ ] ⎟
⎠
⎞⎜

⎝
⎛=⎟

⎠
⎞⎜

⎝
⎛=

22
0 )(exp pnpS EdjEP αωα , ( )22

npJ JEEP ⎟
⎠
⎞⎜

⎝
⎛= β and ⎟

⎠
⎞⎜

⎝
⎛=

2
,npN wEP . 

For convenience, Equation (2.4) can be written in vector form for the N samples 

from the two antenna elements as follows:  

  1011 )( wvsr ++= dα ,                                            (2.6)  

and 

                                                2022 )( wvsr ++= ζα d ,                                       (2.7)  

where 

                                         [ ]TNpppp rrr 1,1,0, ,...,, −=r , p = 1, 2,                                                                            

                              ( ) ( ) ( )[ ]TN djdjdjd )(exp,...,)(exp,)(exp)( 0101000 −= ωωωs ,        (2.8) 

                                         [ ]TNJJJ 1101 ,...,, −= βv ,    
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    12 ββξ = ,  

and                                [ ]TNpppp www 1,1,0, ,...,, −=w , p = 1, 2.  

As the hopping frequency and spectrum of the desired signal need to be found, a 

follower jammer will not transmit any jamming signal during the initial measurement 

phase, and will be activated only after some delay following the beginning of each 

frequency hop [7], [21]. As a result, it would be reasonable to assume that the desired 

signal’s channel gains, αp (p = 1, 2), have been estimated and known to the receiver 

prior to the onset of the follower jamming signal. This is because the ML-based 

channel estimation, described in Appendix A, can be easily performed blindly within 

a very short interval at the beginning of a hop. In the presence of the desired signal’s 

channel knowledge, the main problem in jamming rejection and symbol detection is 

thus to estimate the data symbol d0 from received signal vectors rp (p = 1, 2) in the 

presence of unknown jamming components ξ  and v as well as independent receiver 

noise wp (p = 1, 2).  

As described in Appendix B, using the available channel estimates of the desired 

signal 2,1,ˆ =ppα , a simple beamforming structure with weighting vector 

[ ]T12 ˆˆ  αα −=g  can be employed to place a null toward the desired signal. Deploying 

the technique in [21], the onset of the jamming signal can be detected by determining 

the time when a significant increase in the output signal power has occurred. Based on 

the detected jammed or unjammed status of the system, an appropriate algorithm can 

be employed for subsequent jamming rejection and symbol detection. In particular, 

the unjammed symbols are detected by using the conventional ML technique, while 

the jammed symbols can be detected by the proposed approach which will be descri-

bed in details in Section 2.3. 
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2.3 ML-Based Joint Jamming Rejection and Symbol Detection  

In this section, a ML-based joint interference rejection and detection scheme is formu-

lated to effectively suppress the received jamming components. Noting that the jam-

ming components from the two antenna elements are spatially correlated through 

some unknown coefficients ξ , the vector of jamming components v and ξ  will be 

treated as deterministic quantities to be estimated by the ML technique. This approach 

is different from the conventional one, where the jamming components are simply 

regarded as receiver noise.  

Since MFSK modulation is employed, the desired symbol d0 is given by only one of 

the alphabet {0, 1, … , M−1}. A joint ML estimation of d0, ξ  and v can thus be 

expressed as 

                              { }2
22

2
11

,,
0 )()(minargˆ,ˆ,ˆ vsrvsrv

v
ξααξ

ξ
−−+−−= ddd

d
,            (2.9) 

where { }1,...,1,0 −∈ Md  is the candidate symbol to be searched in the ML cost funct-

ion. 

For convenience, let us define  

   )()( dd ppp srz α−= , for p = 1, 2,                                  (2.10) 

so that the cost function in (2.9) becomes 

2
2

2
1 )()()( vzvz ξ−+−=Γ ddd .                              (2.11) 

Differentiating the cost function Γ(d) with respect to v and ξ , respectively, and 

setting the results to zero, we obtain 

                                                       2
2

*
1

1

)()(

ξ

ξ

+

+
=

dd zzv ,                                            (2.12) 

and 
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2
2 )(

v

zv dH
=ξ .                                                  (2.13) 

Substituting (2.12) into (2.11) yields   

                                                         2

2
12

1

)()(
)(

ξ

ξ

+

−
=Γ

dd
d

zz
,                                   (2.14) 

and by substituting (2.12) into (2.13), we get 

 0)()()( *2 =−+ dadbda ξξ ,                                     (2.15) 

where   

)()()( 12 ddda H zz= ,                                           (2.16) 

and 

2
2

2
1 )()()( dddb zz −= .                                    (2.17) 

As a result, the closed-form expressions for the ML estimates of ξ  which are the 

solutions to (2.15) can be determined by  

                                                     
)(2

)(4)()(
)(

22

1 da
dadbdb

d
+−−

=ξ ,                       (2.18)  

and 

                                                     
)(2

)(4)()(
)(

22

2 da
dadbdb

d
++−

=ξ .                       (2.19) 

In accordance with (2.9), (2.14), (2.18) and (2.19), an ML estimate of the transmitt-

ed symbol d0 is therefore 

                                                    { }1...,1,0);(),(minargˆ
210 −=ΓΓ= Mdddd

d
,             (2.20)  

where 

    2

2
12

)(1

)()()(
)(

d

ddd
d

i

i
i

ξ

ξ

+

−
=Γ

zz
, for i = 1, 2.                 (2.21) 
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Equations (2.18) and (2.19) indicate that there are two possible estimates of ξ  for a 

fixed value of d. Consequently, in accordance with (2.20), it seems that we have to 

calculate the two cost functions Γ1(d) and Γ2(d) corresponding to a fixed d for the 

purpose of estimating the desired symbol. Fortunately, as shown in Appendix C, Γ2(d) 

is always smaller than Γ1(d) for a fixed value of d. Therefore, it is sufficient to just 

compute the cost function Γ2(d) corresponding to )(2 dξ  in (2.19). As a result, the 

decision rule of (2.20) can be simplified to be given by 

{ }1...,1,0);(minargˆ
20 −=Γ= Mddd

d
.                           (2.22) 

The detailed procedure for implementing the proposed ML-based interference reje-

ction and detection algorithm can be summarized as follows: 

1. initialize the candidate symbol d = 0; 

2. calculate both z1(d) and z2(d) based on (2.5), (2.8), (2.10) as well as 

knowledge of α1 and α2  (by using blind ML estimation in Appendix A); 

3. compute both a(d) and b(d) using (2.16) and (2.17); 

4. calculate )(2 dξ using (2.19); 

5. compute Γ2(d) based on (2.21); 

6. if d = M −1, go to Step 7; otherwise d = d+1 and return to Step 2;  

7. obtain the ML estimate of the transmitted symbol 0d̂  based on (2.22). 

The computational burden of the proposed algorithm is mainly due to Steps 2, 3 and 

5, since only these three steps involve vector operations. The numbers of real addition 

and real multiplication used in these steps are shown in Table 2.1. It is easy to see that 

the computational complexity of the proposed algorithm is O(NM) in terms of the 

number of real additions and multiplications needed.  

Note that the proposed algorithm and structure is based on the use of two receive 
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antennas to remove unknown but spatially correlated jamming. With a single antenna, 

it will not be possible to remove the jamming, which is in the same frequency band as 

the signal. The use of more than two antennas will lead to better performance if there 

is only a single jammer. However, the cost may be significantly larger in terms of the 

space needed and the additional receiving electronics, especially in a mobile applicat-

ion where space and power supply is restricted.  

 

2.4 Performance analysis 

In the section, an approximate expression for the symbol error rate (SER) of the 

proposed ML-based joint jamming rejection and symbol detection scheme is derived. 

For the sake of simplicity, we consider only BFSK signaling over a jamming domina-

nt channel, noting that the case for M-ary signaling can be similarly analyzed.  

Taking the two possible BFSK symbols to be equiprobable, using the decision rule 

of (2.22), and assuming, without loss of generality, that the transmitted symbol value 

is 00 =d , the SER can be easily shown to be  

                                                     { })1()0(Pr ffPe >= ,                                          (2.23) 

where the two conditional cost functions )0(f  and ( )1f  are given by 

                                                   1,0,)()( 02 0
==Γ= = mmdmf d .                            (2.24) 

Similarly, the resulting input signal vectors now become 

Table 2.1:  Computational complexity of the proposed algorithm. 

Step Number of real 
addition 

Number of real 
multiplication 

2 8NM 8NM 

3 8NM -3M  8NM 

5 6NM+M 6NM+3M 
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                                                     111 )0( wvsr ++= α ,                                        (2.25) 

and 

                                                     222 )0( wvsr ++= ξα .                                        (2.26) 

Using (2.10), (2.21), (2.24), (2.25) and (2.26), the conditional cost function )0(f  

can be determined by 

                                         
( )

2
2

2
122

)0(1

)0(
)0(

+

+

+

+−+
=

ξ

ξξ wvwv
f ,                             (2.27) 

where            

                                               022 0
)0()0( =

+ =≡ ddξξ   
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22
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ξ
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After some manipulation and simplification, we have 

                                    
2

)0( 0
2

1
2

2 χξ −+++
=

wvwv
f ,                               (2.29) 

where ( ) [ ] [ ]
2

12
22

1
2

20 4 wvwvwvwv ++++−+= Hξξχ . 

Under a severely jammed channel, where the power of the jamming signal is much 

greater than that of receiver noise pw (p = 1, 2), the high order terms with respect to 

receiver noise pw (p = 1, 2) can be omitted in a power series expansion of 0χ .  As a 

result, 0χ  can be approximated by using just the zeroth and first order terms with 

respect to 1w  and 2w . The conditional cost function )0(f  can therefore be approxim-

ated by 
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( ) { } { }
2

Re2Re21
)0(

 morder  terfirst  

12

morder  terzeroth  
222

1
2

2 vwvwvwvwv HH
f

−−+−+++
≈

ξξξ
.      (2.30)              

Similarly, substituting (2.10), (2.21), (2.25) and (2.26) into (2.24) yields the 

conditional cost function )1(f as      

                                
2

)1( 1
2

11
2

22 χξ −+++++
=

wvswvs
f ,                       (2.31) 

where ( ) [ ] [ ]
2

1122
22

11
2

221 4 wvswvswvswvs +++++++−++= Hξξχ  

and [ ])1()0( sss −= pp α  with p =1, 2. 

Using a power series expansion of 1χ and carrying out the same analysis as for 0χ , 

it can be shown that )1(f  can be approximated by 
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where                        ( ) [ ] [ ]
2

12
22

1
2

20 4 vsvsvsvs ++++−+= Hq ξξ ,         

                  ( )( ) ( )[ ] [ ]vsvsvsvsvsvsq +++++−++= 122
2

2
2

111 84 Hξξξ , 

and            ( )( ) ( )[ ] [ ]vsvsvsvsvsvsq ξξξ +++++−++= 211
2

1
2

222 84 H .                               

By substituting (2.30) and (2.32) into (2.23), the SER is thus determined approxim-

ately by 

                                                  { }0Pr >Δ≈eP ,                       (2.33) 
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Note that the quantity Δ  includes the linear combination of the real and imaginary 

parts of the independent Gaussian receiver noise samples npw , . As a result, Δ  is also 

Gaussian distributed and its mean Δμ  and variance 2
Δσ  can therefore be computed by  

                                              0
2

1
2

2 q++−+−=Δ vsvs ξμ ,                           (2.34) 

and 
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qq

ξσσ ,             (2.35) 

where 2σ  is the variance of the real and imaginary parts of the zero-mean white Gau-

ssian receiver noise samples npw , . 

In accordance with (2.33), (2.34) and (2.35), the SER can be computed 

approximately by   

                                                 
⎟⎟
⎟
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2

exp
2
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2

π
. It is noted that (2.36) is a conditional error 

probability, given channel gains of jamming and desired signals.  

2.5 Simulation Results and Discussions 

Numerical simulations have been conducted to validate the performance of the 

proposed interference suppression scheme for a slow FH system. In this system, each 

hop has 4 MFSK symbols, the symbol rate is 200000 symbols per second, and the hop 

rate is 50000 hops per second. The frequency spacing is 100 kHz. The ratio of the 

unjammed interval to the hop duration, UR , is given by 0.025 for all except the last 

result (Figure 2.5). Channel gains of jamming and desired signals are complex 
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Gaussian random variables with variance values of 1. The jammer’s bandwidth is 

equal to the bandwidth occupied by the all M data tones in each hop. 

Figure 2.1 shows the SER of the proposed scheme versus the signal-to-noise ratio 

(SNR) when the signal-to-jamming ratio (SJR) is -25dB and -40dB. BFSK modulati-

on is used and the number of samples per symbol is N = 4. For comparison, the results 

of using the conventional beamformer [28] and the SMI-based beamformer are also 

plotted. As can be seen, the performance of the proposed scheme differs only slightly 

for the various SJRs used, which is highly desirable in military communications. 

Also, unlike the conventional beamformer, no error floor exists for the proposed 

scheme. This is because the latter regards the jamming components as deterministic 

quantities to be estimated while the conventional beamformer simply treats the jamm-

ing components as receiver noise. Furthermore, the proposed scheme is able to offer a 

better performance than the other methods since it is a ML-based approach.     

However, in the unlikely event that pp βα = , as when both signal and jammer are 

from the same direction or there is no distinction between the signal and the jammer 

in terms of channel gains, all the algorithms will fail.  In fact, since there is no distinc-

tion between the signal and the jammer in terms of transmission characteristics and 

the jamming signal is unknown, it will not be possible for any statistical signal proce-

ssing algorithm to reject the jamming signal. Similarly, when two jammers are present 

and both are unknown, it will not be possible for the proposed scheme, the SMI meth-

od and other similar techniques to work properly. This is because the array is a two-

element one and the presence of two jammers will give rise to an under-determined 

system where the number of unknown parameters is more than number of the degrees  

of freedom that the system has. 

Figure 2.2 illustrates the performance of the proposed detection scheme under vari-
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ous modulation levels.  The SJR is -10 dB and the number of samples per symbol is 

4=N . As observed, the performance of the proposed scheme degrades as the 

modulation level increases.   

Figure 2.3 investigates the performance of the proposed scheme as the number of 

samples per symbol is changed. BFSK modulation is used and SJR is -10 dB. It can 

be seen that the proposed scheme has a better performance as the number of samples 

per symbol is increased. The average conditional error probabilities of the proposed 

scheme are also plotted in Figure 2.3. The validity of the performance analysis for the 

proposed scheme is also demonstrated in Figure 2.3 from noting that the SER values 

from simulation are remarkably close to the corresponding analytical curve. 
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Figure 2.1:  Performance of the proposed approach under various SJRs with BFSK 

modulation and N = 4.
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 Figure 2.3:  Performance of the proposed scheme under various numbers of samples per 

symbol and the tightness of the theoretical and simulated SER values for BFSK signaling. 
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Figure 2.2:  Performance of the proposed scheme under various modulation levels and 

N=4 samples/symbol.
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The results from Figures 2.1, 2.2 and 2.3 have been obtained by assuming perfect 

channel estimation. To investigate the effect of imperfect channel estimation, Figure 

2.4 shows the performance of the proposed scheme with imperfect knowledge of the 

desired signal’s channel gains, blindly estimated by using the ML technique (as desc-

ribed in Appendix A) within the unjammed interval of a hop. Obviously, at SJR=-

10dB and using just 4 received samples in a very short unjammed interval of a hop to 

estimate the channel gains, the resulting SER performance in the case of imperfect 

channel estimation is very close to that in the case of perfect channel estimation.   

Figure 2.5 investigates the timing of the jamming signal on the system performance.  

The values of UR  used for the three sets of results are 0.025, 0.25 and 0.5, and the 

results are obtained as follows. The dotted curves are obtained from using 10 samples 

of the received signals at the beginning of each hop in the ML approach (as described 
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Figure 2.4:  Performance of the proposed scheme when the desired signal’s channel gains 

are blindly estimated by using the ML technique in Appendix A within the unjammed 
interval of a hop. 
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in Appendix A) to estimate the desired signal’s channel response. Then, a simple bea-

mforming structure is employed to place a null toward the desired signal (as described 

in Appendix B). Using the technique in [21], the onset of jamming can then be detect-

ed by determining the time when a significant increase in the signal power at the 

beamformer’s output has occurred. 

Based on the detected jammed or unjammed status of the system, detection of the 

jammed symbols are carried out by the proposed approach, while that for the unjamm-

ed symbols are performed by using the conventional ML technique. The curves in 

Figure 2.5 denote the overall SER results, including the SER performance in both the 

jammed and unjammed portions of each hop.   

As described, the dotted curves in Figure 2.5 are obtained with imperfect channel 

estimates. On the other hand, the solid curves are based on using the exact channel 

response of the desired signal. The minor performance degradation between the two  
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sets of curves again indicates that the new algorithm does not require very accurate 

channel information.   

The effect of the timing of jamming signal can be studied in more detail by 

comparing the three sets of results in Figure 2.5, each for a different value of UR . 

Note that the lower the value of UR , the more jammed the hop will be. As can be 

seen, while an increase in the jamming duration will worsen the SER performance, 

the use of the new algorithm has the effect that such deterioration becomes rather 

insignificant. 

Finally, Figure 2.6 examines the issue of jamming timing estimation. Specifically, 

the result is obtained from using the blind ML channel estimation algorithm given in 

Appendix A to estimate the channel gains of the desired signal, followed by impleme-

nting the beamformer in Appendix B to reject the desired signal based on these 

estimated gains, and then using the algorithm in [21] to detect the onset of jamming.   
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The two curves in the figure show how the mean jamming timing estimate error, 

normalized with respect to the hop duration, changes as a function of SNR when 4 

and 10 samples are used in the blind ML channel estimation procedure.  As can be 

seen, using 10 received samples will give a more accurate timing estimation.  Howev-

er, this difference is rather insignificant, especially when the SNR is large. The reason 

is that we can obtain highly accurate timing estimation with a small number of used 

samples under high SNR regimes. Also, even with a small number of samples, 

accurate timing estimate can be quite readily performed under low SNR regimes. 

It should also be noted that other mitigation techniques, such as channel coding 

and interleaving, could also be used for the anti-jamming purpose. In fact, channel 

coding and interleaving are effective to intermittent jamming, such as a pulsed noise 

or a partial band jammer. However, even with channel coding and interleaving, the 

performance of FHSS systems will still deteriorate significantly in the presence of a 

follower jammer which is on most of the time. On the other hand, the proposed 

algorithm is able to suppress such a jammer. On the issue of complexity, the proposed 

algorithm operates only at the receiver and, as discussed in Section 2.3, the 

implementation complexity is low. Comparatively, channel coding and interleaving 

techniques need to be used at both the transmitter and receiver, while interleaving will 

increase delay.  Nevertheless, to further enhance performance, an appropriate channel 

coding and interleaving scheme may be used on top of the proposed algorithm. 

2.6 Chapter Summary 

In this chapter, a novel maximum likelihood (ML)-based joint interference cancellati-

on and symbol detection scheme was proposed for slow FH/MFSK systems in the 

presence of a follower partial-band jammer over quasi-static flat Rayleigh fading 
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channels. Based on unknown spatial correlation of jamming components from two 

antenna elements, a ML cost function was formulated to jointly perform symbol 

detection and interference rejection in an integrated ML operation. Based on a derived 

closed-form expression for the ML estimates of received jamming components, the 

proposed scheme possesses a low computational complexity. It is robust against 

imperfect channel estimates, and has a much better SER performance than the conve-

ntional beamformer and the SMI method in the presence of a follower partial-band 

jammer. 
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Chapter 3 

Channel Estimation and Synchronization for 

SISO-OFDM Systems 

Dealing with multipath fading and imperfect synchronization issues in recent broad-

band wireless communication systems, Chapter 3 focuses on the joint estimation and 

tracking of channel impulse response, carrier and sampling frequency offsets in 

uncoded SISO-OFDM systems. In particular, this chapter first provides the literature 

of existing approaches for channel estimation and synchronization in uncoded SISO-

OFDM systems. Then, a standard RLS-based joint estimation of CIR, CFO and SFO 

scheme is proposed for burst mode SISO-OFDM systems over quasi-static multipath 

fading channels. To further widen the allowable ranges of CFO and SFO values, a ML 

coarse CFO and SFO estimation is introduced to provide properly initial guesses of 

CFO and SFO for the iterative joint CIR, CFO and SFO estimation. Finally, 

simulation results are presented to show a near-optimum BER performance of the 

proposed scheme.    

3.1 Introduction 

Orthogonal frequency division multiplexing (OFDM) technique has been employed 

intensively in various broadband communications systems to exploit its robustness 

and high spectral efficiency in frequency-selective fading channels. However, along 

with these potential benefits of multicarrier-based transmissions, the inherent drawba-

ck is their vulnerability to synchronization errors such as CFO and SFO. So far, most 

studies on OFDM systems have considered channel estimation and synchronization 
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separately [29]-[31]. Channel estimation is performed by assuming that perfect 

synchronization has been established [32]-[33], although channel estimation could be 

degraded by imperfect synchronization and vice versa. Since synchronization and 

channel estimation are mutually related, joint channel estimation and synchronization 

could provide better accuracy at the cost of higher complexity. A few joint channel 

estimation and synchronization techniques have been recently proposed in [34]-[37]. 

However, the SFO is assumed to be zero in [34]-[35], while the CFO is excluded in 

[36]. In [37], both CFO and SFO are considered in a joint synchronization and 

channel estimation scheme performed in the time domain (TD) to reduce the number 

of channel coefficients to be estimated. The TD joint estimation of channel distortion, 

CFO and SFO parameters requires the TD version of the recovered signals for 

adaptive computation, and hence, needs an IFFT block, which is equivalent to an 

OFDM modulator [37]. To reduce complexity, it is desired to avoid this IFFT by 

performing the joint estimation of CFO, SFO and channel response in the frequency 

domain (FD). In addition, the TD joint estimation approach [37] may result in 

significant instability in terms of considerable ripple/fluctuation in the mean squared 

error (MSE) of CFO and SFO estimates due to the possibility of error propagation 

under decision-directed operation mode [37]. To avoid such instability in CFO and 

SFO estimation, a pilot-aided estimation approach using FD observations would be an 

appropriate candidate. However, CFO and SFO introduce rotations in the time 

domain, which in turn yield large inter-carrier interference (ICI) in the frequency 

domain, and hence greatly degrade the FD estimation performance. Therefore, ICI 

reduction is required before performing a pilot-aided estimation of CIR, CFO and 

SFO with FD observations. 

In this chapter, we propose a pilot-aided joint channel estimation and synchroniza- 
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tion scheme that eliminates the need for an IFFT block [37] without sacrificing 

performance and convergence speed. To achieve fast convergence and high perform-

ance, we develop a cost function of the SFO, CFO and CIR coefficients based on the 

received signal samples and pilot tones in the frequency domain. An accompanying 

recursive least square (RLS) estimation and tracking algorithm is then formulated. 

Since the number of CIR coefficients that need to be estimated is smaller than when 

the channel transfer function is used, the algorithm has low complexity. Through 

formulating and analyzing the ICI introduced by rotation due to CFO and SFO, a TD 

CFO and SFO compensation scheme is introduced to eliminate the ICI in FD. In addi-

tion, a simple maximum-likelihood (ML) scheme based on the preamble is developed 

for coarse estimation of initial CFO and SFO values to be used in the suppression of 

dominant ICI effects and in fine RLS estimation and tracking.   

The rest of the chapter is organized as follows. Section 3.2 describes the system 

model and analyzes the effects of CFO, SFO and channel distortion. Based on these 

results, an ICI reduction technique is introduced in Section 3.3 along with an analysis 

of the residual ICI to illustrate the feasibility of joint channel estimation and synchro-

nization in the frequency domain. Section 3.4 presents the derivations and developme-

nt of the RLS-based joint channel estimation and synchronization algorithm. Section 

3.5 derives the ML scheme based on the preamble for the coarse estimation of the 

initial CFO and SFO. Simulation results for various conditions and schemes in both 

AWGN and Rayleigh multipath fading channels along with Cramer-Rao lower bound-

s (CRLB) are presented and discussed in Section 3.6. Finally, Section 3.7 summarizes 

this chapter. 
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3.2 System Model 

Figure 3.1 shows a simplified block diagram of an OFDM transmitter using M-ary 

modulation (e.g., M-QAM). The serial-to-parallel converter (S/P) groups the input bit 

stream into a sequence of Q-bit tuples, {dm,k}, where ]1,...,1,0,[ ,,, −== Qqd qkmkmd  

and 2logQ M=  bits, and maps each Q-bit tuple, dm,k, to a complex-valued symbol, 

A∈)(kX m  where A is the M-ary modulation signaling set, and m, k denote the 

OFDM symbol and subcarrier indices, respectively. Each OFDM symbol consists of 

K<N information bearing sub-carriers, where N is FFT size. After cyclic prefix (CP) 

insertion and D/A converter, the transmitted baseband signal can be represented as              
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where T is the sampling period at the output of IFFT, gN denotes the number of CP 

samples, TNNT gs )( += and TNT gg =  are the OFDM symbol length after CP 

insertion and CP length, respectively. u(t) is the unit step function, and 

( ) ( ) ( )sTtututU −−= .  

In burst-mode transmissions, the OFDM signal is assumed to be transmitted over a 

time-invariant multi-path fading channel within one burst duration. Specifically, the 

quasi-static channel response can be represented by               

                                                 ( ) ( )∑
−

=
−=

1

0

~L

l
llhh ττδτ ,                                              (3.2) 

where lh~  are the complex path gains and L is the total number of resolvable (effecti-

ve) paths.  

Frequency differences between oscillators used in the radio transmitter and 

receivers, and channel-induced Doppler shifts cause a net carrier frequency offset 
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(CFO) of Δf in the received signal where  f  is the operating radio carrier frequency. In 

the presence of the net CFO Δf , the received signal can be determined by 

                                   ( ) )(~)(
1

0

2 twtshetr
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l
ll

ftj +−= ∑
−

=

Δ τπ .                                   (3.3)  

At the receiver, the received signal is sampled at rate 1/T’. Since T’≠T, the receiv-

ed samples are also affected by SFO. After sampling the received signal )(tr  at time 

instant Tntn ′=  (due to SFO) and CP removal, the n-th received sample of the m-th 

OFDM symbol in the time-domain is determined by  
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where 1,...,1,0 −= Nn  and )( ggm NNmNN ++= . The complex-valued Gaussian 

noise sample, nmw , , has zero mean and variance of 2σ . ∑
−
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−
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kj
lehkH

π

 is the 

channel response at the k-th sub-carrier and T
Lhhh ]      [ 110 −=h is the corresponding 

effective channel impulse response (CIR) that incorporates path-delay induced phase 

rotation at receiver side.  To completely remove the inter-symbol interference (ISI), 

the CP must be longer than the channel spread, L. The SFO and CFO terms are 

represented in terms of the transmit sampling period T as ,T T T T Tη ′= Δ Δ = −  and 

( )( )/fNT f f NTfε = Δ = Δ , respectively, and εηεη )1( += . In practice, both relative 

frequency differences, ΔT/T, and Δf/f, are within the allowable tolerance, which is 

typically 10ppm (10E-6) or less. However, since the radio carrier frequency, f, is 

normally much higher than the sampling freque-ncy 1/T, the factor NTf can make the 

CFO term ε  large while the SFO term satisfies η <<1. 
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Based on (3.4), the signal to noise ratio (SNR) in the time domain is  

                                                 
N

S
P
PSNR = ,                                                           (3.5) 
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Assumed that the coefficients of CIR, { }110 ,..., −Lhhh , are independent zero-mean 

complex random variables, after some manipulations, the SNR can be obtained as 

                                      { }
1

2 2 2 2

0
( )

L

m l
l

SNR KE X k E h N σ
−

=

⎧ ⎫
= ⎨ ⎬

⎩ ⎭
∑ .                       (3.6) 

Unlike traditional FD channel estimation, the CIR { }110 ,..., −Lhhh  in the proposed 

esti-mation approach is obtained based on the observation of the received sub-carriers 

in the frequency domain. After FFT, the received FD sample is 
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 Figure 3.1: Burst-mode OFDM transmitter. 
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coefficient, ηεηε += ii , 
)(

)sin()(sinc
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. It 

is noted that the frequency-domain expression of the received samples in [12, Eq. 37] 

is an approximation of (3.7). In the first summation in (3.7), the term i=k corresponds 

to the sub-carrier of interest, while the other terms with i≠k represent ICI. As can be 

observed from the above expression for ki,ρ , the term, ηεηε += ii , needs to be 

removed in order to suppress ICI. Obviously, in an ideal case with zero SFO and 

CFO, εi=0, 1, =kiρ for i=k and 0, =kiρ (ICI does not exist) for i≠k. Therefore, 

( ) ( ) ( ) ( )m m mY k X k H k W k= +  and we have perfect orthogonality among sub-carriers 

preserved at the receiver. Thus, to mitigate ICI, the effect of CFO and SFO on FD 

sub-carriers needs to be compensated.    

3.3 ICI Reduction by TD CFO-SFO Compensation 

As shown in (3.4) and (3.7), the SFO and CFO introduce rotation in the time domain 

and both attenuation and ICI in the frequency domain. Attenuation can be compensa-

ted in a symbol-by-symbol manner. However, removing ICI requires knowledge of all 

the detected symbols in the frequency domain. Hence, ideally, it is better to remove 

the rotation in the time domain to prevent ICI in the frequency domain.  Based on the 

derivations to obtain (3.7), it is noted that only the common factor N
n

j
e

ηπε2

 and 

individual coefficients N
knj

e
ηπ2

 embedded in the summation at (3.4) result in the ICI 

in (3.7). The common factor can be removed from the received time-domain sample. 

However, the correction of the individual coefficients requires knowledge of the 

detected symbols in the frequency domain, and this is not available.  Fortunately, the 
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common factor has a major influence in ki,ρ  due to the large CFO term, ε, while the 

effect of the individual coefficient is minor in ki,ρ  since the SFO term satisfies η<<1 

in practice. As a result, to suppress the common factor, the received time-domain 

sample in (3.4) can be multiplied by N
n

j
c

e
ηπε2

−
 prior to FFT as  

shown in Figure 3.2, where                                                                
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N
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= ,                                            (3.8) 

ccc εηεη )1( += , and cε  and cη  are the estimated CFO and SFO1, respectively.  

After FFT, the resulting FD sub-carrier is 
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After some manipulation, this can be shown to be  
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Hence, after the TD CFO-SFO compensation, the resulting ICI coefficient becomes                       
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1 Estimation of CFO and SFO will be discussed in Section 3.4. 
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As shown in (3.11), there exists residual ICI due to the term, ηi , even with the use of  

the TD CFO-SFO compensation with perfect estimates of CFO and SFO ( cε ε=  and  

cη η= ). Fortunately, for practical SFO values, the residual ICI is negligible since ηi  

is quite insignificant in contributing to the ICI coefficient, ki,ρ , after the TD CFO-

SFO compensation. 

The residual ICI can be quantified by the ICI-to-signal ratio (ISR) defined as  
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After some manipulation, we arrive at 
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Figure 3.2: Burst-mode OFDM Receiver using joint CIR/CFO/SFO estimation and tracking. 
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Figure 3.3 shows the “ISR versus SFO (η) and CFO (ε)” plots based on (3.13) for the 

two cases with and without TD CFO-SFO compensation. Without TD CFO-SFO 

compensation, the solid-line plots in Figure 3.3 indicate that the contributions of SFO 

and CFO to residual ICI can be approximately represented by log(ISR)≈alog(cη+ε)+b 

where a = 2, b = 0.7, and c = 10. In other words, both η and ε contribute to the ICI 

and η has a dominant effect as compared to ε by about c times. However, as mention-

ed earlier, T Tη = Δ  and ( )( )/f f NTfε = Δ . Hence, in practice, even if the frequen-

cy differences, ΔT/T, and Δf/f, can be kept within the same allowable tolerance of 

typically 10ppm (10E-6) or less, the factor NTf  is usually larger than 10 and the CFO 

term, ε, can introduce unacceptably large ICI. With the TD CFO-SFO compensation, 

 

the dotted-line plots in Figure 3.3 show that the effect of CFO is totally eliminated 

when εε =c  and ηη =c , and the contribution of SFO to residual ICI due to the 

irreducible term, ηi , in ki,ρ  of (3.11) can be approximately represented by 
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Figure 3.3: ISR versus CFO and SFO. 
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log(ISR)≈alog(cη)+b. Furthermore, from Figure 3.3, for a typical SFO ( T Tη = Δ ) in 

the range of 1-10ppm, the residual ICI is negligible with ISR<-70dB. The ICI will also 

affect the receiver performance, especially when its power becomes comparable to 

that of AWGN. It is obvious that CFO and SFO need to be estimated not only for 

compensating the CFO-SFO induced attenuation in FD but also for mitigating ICI.  

3.4 Joint CIR, CFO and SFO Estimation 

Based on the observation of the received sub-carriers in FD (after FFT), the proposed 

pilot-aided algorithm attempts to estimate CIR, CFO and SFO. To exploit the use of 

the standard RLS approach [8], we define the LS cost function corresponding to the 

use of i pilot tones over OFDM symbols (each OFDM symbol has 4 pilot tones) in a 

burst as follows,   
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index i denotes the number of pilot tones used for the RLS estimation from the first 

iteration to the i-th iteration (the current iteration). In fact, each pilot tone corresponds 

to one iteration of the RLS estimation. ( )pm kX
p

 is the value of the p-th pilot tone (at 

sub-carrier pk  of the th
pm  OFDM symbol) used at the p-th iteration (a past iteration) 
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in the RLS-based estimation. It is noted that all tones are employed as pilot ones in 

the preamble of a burst. 

To make use of the standard RLS approach [8] for estimating the unknown CIR, 

CFO, SFO, the non-linear estimation error, pie , , needs to be linearized about the 

existing estimates by using the following first-order Taylor’s series approximation: 
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Subsequently, we can formulate the standard RLS-based joint CIR, CFO, SFO estima-

tion algorithm as follows. 

Initialization: Select 1ω̂  using the ML CFO-SFO estimation (to be described in 

Section 3.5) and 22
1

1 +
−= LIP γ , where γ  is the regularization parameter, I2L+2 is 

the (2L+2)×(2L+2) identity matrix. 

Iterative Procedure:                                      

1) Update the parameters at the i-th iteration 
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 with λ  denoting the forgetting factor.         
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2) Update estimates at the i-th iteration 

                                     iiii e Kωω += −1ˆˆ .                                                  (3.20) 

It is noted that the use of the RLS-based algorithm gives the joint estimation techniq-

ue rapid acquisition and low steady-state error. In burst-mode OFDM transmissions, 

rapid acquisition will enable the estimation technique to function properly with redu-

ced or short preamble length while maintaining a certain minimum error in the estim-

ation.  

In the OFDM receiver (Figure 3.2), the CIR, CFO, SFO estimates are updated on a 

symbol-by-symbol basis for the ML sub-carrier detector, while the tracking block 

updates the CIR, CFO and SFO estimates in an iteration-by-iteration manner. More-

over, since the number of CIR coefficients is much smaller than the FFT size, a 

simplified FFT with reduced complexity can be employed to generate channel transfer 
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function for both the ML sub-carrier detector in the demodulator and reconstruction of 

the transmitted signal in the tracking block. 

Like other iterative estimation techniques, the RLS-based estimation approach also 

requires appropriate initial guesses of estimated parameters to achieve its proper con-

vergence. For this reason, a simple ML estimator is proposed to obtain coarse estima-

tes of CFO and SFO to be used as initial guesses for estimated parameters in the RLS-

based iterative estimation. 

3.5 ML CFO and SFO Estimator 

Due to the possibility of multiple local minima caused by the non-linearity of the cost 

function, the initial guesses of estimated parameters for adaptive estimation must fall 

in a specific vicinity of their actual values. Consequently, large initial errors between 

the initial guesses and true values would cause the instability of the RLS-based 

iterative computation. To alleviate such deterioration, we propose a simple ML 

estimator to obtain coarse estimates of the initial CFO and SFO values after 

acquisition phase by using the two long training symbols in the preamble.  

To obtain a simple ML coarse estimation of CFO and SFO values, it is desirable to  

decompose the received signal components into two parts. In particular, the first part 

should only depend on CFO and SFO while the second part, comprising the remaining 

unknown components (such as CIR, AWGN and ICI), is approximately uncorrelated 

and Gaussian-distributed. Based on the FD observations corresponding to two long 

identical training symbols in the preamble, a simple ML coarse CFO and SFO estima-

tion can be obtained by introducing the following term 
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where gs NNN += , m1 and (m1+1) denote the time indices of the first and second 

long training symbols in the preamble, respectively. The FD error sample, ( )kE , can 

be expressed by   
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The ICI parts are herein absorbed in )(kWm  with 1 1,  and ( 1)m m m= + , and assumed 

to be Gaussian distributed [31]. For the sake of simplicity, the FD error sample, ( )kE , 

can be approximated to be Gaussian-distributed and uncorrelated with the first part in 

the righ-hand side of (3.21). This assumption is supported by the measured Gaussian-

shape histograms of the real and imaginary parts of ( )kE  and its measured auto-

correlation that is approximately a delta function as shown in Figure 3.4.     

As a result, based on the use of the FD received sub-carriers corresponding to 

two long training symbols, we define the following ML cost function, 
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where pI  is the set of sub-carrier indices of pilot tones in the preamble. 

Hence, without using CIR knowledge, the coarse estimates of CFO and SFO can be 

simply obtained by                 
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Based on (3.23), the coarse estimates of CFO and SFO can be obtained by using a 

two-dimensional search over their practical ranges with given step sizes. The above 

coarse CFO and SFO estimates are then used as initial guesses of CFO and SFO for 
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the RLS-based joint CIR, CFO and SFO estimation & tracking (in Section 3.4) while 

the initial guesses of CIR are obtained by using the RLS scheme and the preamble.  

 

 

3.6 Simulation Results and Discussions 

Computer simulation has been conducted to evaluate the performance of the proposed 

joint channel estimation and synchronization scheme. We set the OFDM system para-

meters based on the IEEE 802.11a uncoded systems [38]. Signal constellations of 
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Figure 3.4: Probability density and auto-correlation functions of the FD error sample, E(k). 
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QPSK, 16-QAM and 64-QAM are employed for OFDM symbols of 48 data sub-

carriers and 4 equally spaced pilot tones of the same power. A burst format of two 

long identical training symbols and 225 data OFDM symbols is used in the simulati-

on. In the joint estimation implementation, to ensure the convergence of acquisition 

phase for iterative computation of a coarse CIR estimate, the elements of gradient 

vector corresponding to CFO and SFO parameters are set to zeros in the first long 

training symbol, and residual CFO values are obtained by correlation-based acqui-

sition phase during the short training symbols in preamble. As an example, we consid-

er an exponentially decaying Rayleigh fading channel with L=5 and a RMS delay 

spread of 25ns. In the TD CFO-SFO compensator, the terms cε and cη are updated on 

a symbol-by-symbol basis by using the existing CFO and SFO estimates, respectively. 

For the coarse CFO and SFO estimation, the step size for searching ML CFO estimate 

is 0.0001. Due to the actual value of SFO very close to zero, the coarse SFO estimate 

can be set to zero.  

Figure 3.5 shows the simulated mean squared errors2 (MSE) of the CIR, CFO and 

SFO estimates and their corresponding CRLB’s3. It is observed that a forgetting factor 

smaller than 0.99 results in instability. In addition, the numerical results demonstrate 

that the proposed estimation algorithm achieves the best performance in term of MSE 

values with forgetting factor λ=1 and regularization parameter γ = 10. The CRLBs 

are derived based on an assumption that all 52 data tones (of each OFDM symbol) are 

used for pilot-aided estimation. For the joint CIR, CFO and SFO estimation in Section 

3.6, we only employ 4 pilot tones out of 52 data tones in each OFDM symbol for 

estimation. As a result, MSE performance gap is large as shown in Figure 3.5.  

                                                 
2 normalized to the signal power. 
3 See Appendix D for derivations of the CRLB’s 
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As an ultimate performance metric, we investigate the bit error rate (BER) of the 

OFDM system using ML detection and the proposed estimation algorithm in various 
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scenarios. In the OFDM receiver, after FFT, the ML criterion is used to detect the 

transmitted FD data symbol )(kX m  as follows: 
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Figure 3.6 shows the BER-versus-SNR performance curves in both AWGN (for 

QPSK) and Rayleigh fading (for QPSK, 16-QAM and 64-QAM) channels. As 

reference, the ideal cases with perfect synchronization (SFO=CFO=0) and channel 

estimation are included. The analytical and simulation results for the ideal cases are 

in excellent agreement for both AWGN (Curves H and G in Figure 3.6 (a)) and 

Rayleigh multipath fading (Curves E and D in Figure 3.6 as well as Curves H and G  

in Figure 3.6 (b)) channels. To obtain an insight of the contribution of various compo-

nents of the proposed algorithm, we next consider the case with CFO (ε= 0.212) and 

SFO (η= 112E-6) in a Rayleigh multipath fading channel.  

Without ML CFO-SFO estimator, the performance (A in Figure 3.6(a)) is very bad 

with unacceptably high BER (about 0.5). This clearly indicates that bad guesses for 

initial values of SFO and CFO lead to wrong estimates, which in turn yield unaccept-

able detection error rate. Curve A in Figure 3.6(b) and Curves B in Figure 3.6 show 

that, without ICI reduction, the original ICI is high and becomes a dominant distur-

bance at high SNR. Hence, at high SNR, even with the use of the ML CFO-SFO 

estimator in the absence of ICI reduction, the large original ICI is the performance-

limiting factor that keeps the BER under QPSK, 16-QAM and 64-QAM constellations 

at around 1E-2, 1E-1 and 2E-1, respectively.  
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Figure 3.6: BER of the ML sub-carrier detector versus SNR with M-QAM constellations 
over a Rayleigh channel. (CFO=0.212 and SFO=112ppm) 
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With ML CFO-SFO estimation and ICI reduction, the proposed algorithm provides an 

excellent performance that approaches the performance in the ideal cases (with 

perfect channel estimation and synchronization) for both AWGN (Curve F in Figure 

3.6(a)) and Rayleigh multi-path fading (Curves C in Figure 3.6 and Curve F in Figure 

3.6(b)) channels.  It indicates the needs for ICI reduction with accurate ML CFO-SFO 

estimation. The small residual ICI only gives rise to small performance degradation 

under QPSK constellation at very high SNR around 50dB.  For this, we perform 

further investigations of SFO and CFO values at high SNR of 30dB and 50dB in the 

Rayleigh multi-path fading channel.  

Figure 3.7 shows the BER-versus-CFO (ε) curves. Of course, for the ideal case 

(with perfect channel estimation and synchronization), the reference BER, shown by 

Curves F (analytical results) and E (simulation results), is the same over the entire 

range of CFO values. Curve A confirms that, even with perfect estimates of CIR and 

SFO, the BER performance is dramatically degraded if CFO effect is neglected at the 

receiver.  Curves B and C show separate contributions of the ICI reduction and ML-

CFO-SFO estimation, respectively. They provide a similar performance improvement 

for small CFO values.  As CFO value increases, the ML-CFO-SFO estimation is more 

effective than the ICI reduction. With both features included, the proposed algorithm 

offers a performance (Curve D in Figure 3.7(a)) that is extremely close to that for the 

ideal case (with perfect channel estimation and synchronization), even in the presence 

of large CFO (ε=0.21) and SFO (η=1123ppm). The effects of residual ICI is indicated 

by a small increase in performance difference between Curves D an F at high 

SNR=50dB in Figure 3.7(b).  
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Figure 3.7: BER of the ML sub-carrier detector versus CFO with 4QAM in a Rayleigh 
channel. 
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Figure 3.8: BER of the ML sub-carrier detector versus SFO with 4QAM over a Rayleigh 
channel. 
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Figure 3.8 shows the BER-versus-SFO (η) curves for ε = 0.2123. Curves F (analytical 

results) and E (simulation results) for the ideal case (with perfect channel estimation 

and synchronization) are included as reference BER, which is unchanged over the 

entire range of SFO values.  Curves A and B also confirm that the ML CFO and SFO 

estimation is more effective than the ICI reduction. Furthermore, they show the domi-

nant effects of ε = 0.2123 as they remain unchanged for a wide range of SFO values 

extending up to 1,000ppm (1E-3). The proposed algorithm using both ML CFO-SFO 

estimation and ICI reduction provides a performance (Curve D) remarkably close to 

ideal one for high CFO, ε = 0.2123, and over a wide SFO range up to 1,000ppm at 

SNR of 30dB and 300ppm at SNR of 50dB as shown in Figure 3.8 (a) and (b), 

respectively4. The performance degradation at high SNR that is mainly due to the 

residual ICI as discussed in the previous section is confirmed by the increase in the 

BER difference between Curves D and F in Figure 3.8 (b) for η>100ppm. As 

mentioned, synchronization and channel estimation are mutually related, joint channel 

estimation and synchronization could provide better accuracy at the cost of higher 

complexity.  

3.7 Chapter Summary 

In this chapter, a low-complexity, high-performance pilot-aided joint synchronization 

and channel estimation scheme suitable for burst-mode OFDM systems was proposed. 

The proposed estimation and tracking algorithm exploits both frequency domain (FD) 

and time domain (TD) to achieve low complexity by operating with small number of 

parameters and avoiding the use of IFFT in [37]. A linear model of the estimation 

error is formulated to develop a RLS-based algorithm. Furthermore, a simple ML 

                                                 
4 It is noted the practical SFO values in IEEE 802.11a are only up to 40 ppm 
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SFO and CFO estimator was devised to provide initial guesses in the proposed RLS-

based algorithm, to enhance the detection performance, and to eliminate the dominant 

ICI induced by SFO and CFO. Accurate initial guesses in turn reduce the convergence 

time, and enhance the stability of the proposed RLS-based algorithm. Analytical and 

simulation results for various cases in both AWGN and Rayleigh multi-path fading 

channels confirm the effectiveness of the various features and quantify their contribut-

ions in the system performance. The proposed pilot-aided joint channel estimation and 

synchronization scheme provides a near-optimum receiver performance that is remar-

kably close to the ideal case of perfect channel estimation and synchronization in both 

AWGN and Rayleigh multipath fading channels for large ranges of CFO and SFO 

values.  
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Chapter 4 

Joint Estimation of Multi-antenna Channel 

Response and Frequency Offsets for  

MIMO-OFDM Systems 

Known as a revolutionary concept for wireless transmissions, multiple-input mul-

tiple-output (MIMO) architectures [9] are able to offer a spectacular increase in the 

spectral efficiency of wireless communication channels by increasing the number of 

transmit and receive antennas. However, MIMO-based transmissions lead to a highly 

computational complexity in channel estimation. Dealing with this issue, this chapter 

focuses on the joint multiantenna channel estimation and synchronization in uncoded 

MIMO-OFDM systems. 

4.1 Introduction 

In broadband wireless communications, it is common to deploy multiple-input multip-

le-output (MIMO) configurations to achieve significant diversity and capacity gains 

[40]. At the same time, orthogonal frequency division multiplexing (OFDM) techniq-

ues are extensively employed to attain high spectral efficiency and robustness against 

multi-path fading channels [4]. Hence, the integration of MIMO and OFDM techniq-

ues has been widely recognized as a very promising strategy to enhance data rate, 

capacity and quality for broadband wireless systems. However, along with these 

potential merits, the primary challenge in MIMO-based systems is an increase in the 

complexity in channel estimation as the number of antennas increases [41]. Furtherm-

ore, the inherent drawback of OFDM-based systems is their susceptibility to synchro-
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nization errors such as carrier frequency offset (CFO) and sampling frequency offset 

(SFO) [29], [31], [36] and [41]. Thus, the estimation of the multiantenna channel 

responses and frequency offsets is of crucial importance in physical layer implement-

ations in MIMO-OFDM systems. So far, most studies on the issue are focused on the 

multiantenna channel estimation and synchronization (CFO and SFO estimation) sep-

arately [29], [31], [42]-[44]. More specifically, the multiantenna channel estimation is 

performed by assuming that perfect synchronization (i.e., perfect compensation of 

CFO and SFO) has been established [42]-[44], even though channel estimation would 

be degraded by imperfect synchronization and vice versa. Since synchronization and 

channel estimation are mutually related, the joint multiantenna channel estimation and 

synchronization could provide better performance at the cost of higher complexity. 

For the estimation of CIR and CFO in MIMO-OFDM systems, a few techniques have 

been recently proposed [41], [45]-[46]. In [41], a pilot-aided approach is proposed for 

sequential estimation of carrier frequency offset and multiantenna channel response 

by inserting hopping pilots in each OFDM symbol. These hopping pilots enable esti-

mation of CFO and CIR to be performed separately in a sequential fashion. However, 

the bit error rate (BER) performance of the sequential estimation approach [41] is 

significantly worse than the ideal one of the case of perfect synchronization and 

channel estimation. This considerable BER degradation would be due to the mutual 

effect between channel estimation and synchronization that are performed in a seque-

ntial fashion. To avoid this mutual effect, studies on the joint estimation of the freque-

ncy offset and channel response in MIMO-OFDM systems have been addressed in 

[45]-[46]. However, only CFO is considered as a synchronization error parameter to 

be estimated in these approaches. 

  To the best of our knowledge, all existing algorithms for either joint or sequential  
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estimation of multiantenna channel responses and frequency offset in uncoded MI-

MO-OFDM systems have neglected the SFO effect in their studies. However, as 

demonstrated in [47], the detrimental effect of the SFO (even for a very small SFO) 

will likely lead to a significant degradation of the OFDM receiver performance even 

with the use of perfect CIR and CFO knowledge. Specifically, the SFO induces a 

sampling delay that drifts linearly in time over the OFDM symbol. Without any SFO 

compensation, this delay hampers OFDM receivers as soon as the product of the 

relative SFO and the number of sub-carriers becomes comparable to one [36]. Conse-

quently, OFDM receivers become more vulnerable to the SFO effect as the used FFT 

size increases. 

 Taking into account the SFO effect, this chapter presents a proposed pilot-aided 

scheme for the joint estimation of CIR, CFO and SFO in MIMO-OFDM systems with 

the aid of the vector RLS algorithm [49]. Specifically, unlike the standard RLS appro-

ach [8] that is applicable to an adaptive filter with a single output, the vector RLS 

algorithm [49] is employed to function as an adaptive filter with multiple outputs for 

the joint CIR, CFO and SFO estimation in multiantenna OFDM receivers. The analyt-

ical and simulation results show that the proposed pilot-aided estimation and tracking 

approach is able to offer fast convergence, high stability and a near-optimum BER 

performance. 

 The rest of the chapter is organized as follows. Section 4.2 describes the MIMO-

OFDM system model. Section 4.3 presents the proposed pilot-aided joint CIR, CFO 

and SFO estimation scheme. Analytical and simulated results with relevant discussi-

ons for various scenarios are presented in Section 4.4. Finally, Section 4.5 summarize-

s the chapter. 
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4.2 System Model 

Figure 4.1 shows a simplified block diagram of an MIMO-OFDM transmitter using  

tN  transmit antennas and M-ary modulation (e.g., M-QAM). The input bit stream is 

first multiplexed in space and time before being grouped by the serial-to-parallel con- 

verter (S/P) to yield tN  sequences of Q-bit tuples, { u
km,d }, where 

]1,...,1,0,[ ,,, −== Qqd u
qkm

u
kmd  with tNu ,...,1=  and 2logQ M=  bits. Then, each Q-

bit tuple, u
km,d , is mapped to a complex-valued symbol, A∈)(, kX mu ,  where A is the 

M-ary modulation signaling set, and u, m and k denote the indices of the transmit 

anten-nas, OFDM symbols and sub-carriers, respectively. Each OFDM symbol 

consists of K<N information bearing sub-carriers, where N is FFT size. After cyclic 

prefix (CP) insertion and digital-to-analogous converter (DAC), the transmitted 

baseband signal at the u-th transmit antenna can be represented as 

( )
∑ ∑
∞+

−∞=

−

−=

−−
−=

m

K

Kk
s

mTTt
NT

kj
muu mTtUekX

N
ts

sg
12

2

2

, )()(1)(
π

              (4.1) 

where T is the sampling period at the output of IFFT, gN denotes the number of CP 

samples, TNT gg = , TNNT gs )( +=  is the OFDM symbol length after CP insertion, 

u(t) is the unit step function, and ( ) ( ) ( )sTtututU −−= . 

In burst-mode transmissions, the OFDM signal is assumed to be transmitted over a 

time-invariant multi-path fading channel within one burst duration. Specifically, the 

quasi-static channel response between the u-th transmit antenna and the v-th receive 

antenna can be represented by               

                                                     ( ) ( )∑
−

=
−=

1

0
,,,

~L

l
llvuvu hh ττδτ ,                                  (4.2) 
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where lvuh ,,
~  is the path gains and L is the total number of resolvable (effective) paths.  

 

Frequency discrepancies between oscillators used in the radio transmitters and 

receivers, and channel-induced Doppler shifts cause a net carrier frequency offset 

(CFO) of Δf in the received signal where f is the operating radio carrier frequency. In 

practice, it would be reasonable to assume that all pairs of transmit-receive antennas 

experience a common CFO [29], [41]. Furthermore, the impinging signals at all recei-

ve antennas are sampled at rate 1/T’. Since T’≠T, the time alignment of received 

samples are also affected by sampling frequency offset (SFO), which is also common 

for all transmit-receive antenna pairs under the realistic assumption that collocated 

antennas’ DACs are driven by a common clock oscillator. In the presence of the net 

CFO Δf , the received signal at the v-th receive antenna element can be determined by 

                                ( ) )(~)(
1

1

0
,,

2 twtshetr v

N

u

L

l
lulvu

ftj
v

t
+−= ∑∑

=

−

=

Δ τπ .                       (4.3)  

After sampling the received signal )(trv  at time instant Tntn ′=  (due to the prese-

nce of SFO) and CP removal, the n-th received sample of the m-th OFDM symbol in 

the time-domain at the v-th receive antenna element is determined by       
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Figure 4.1: Burst-mode OFDM transmitter. 
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where 1,...,1,0 −= Nn  and ( )m g gN N m N N= + + . nmvw ,,  is the complex-valued 

Gau-ssian noise sample with a zero mean and a variance of 2σ .  

∑
−

=

−
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1
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,,, )(
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l

l
N

kj
lvuvu ehkH

π

 is the channel frequency response (CFR) at the k-th 

subcarrier for the pair of the u-th transmit antenna and the v-th receive antenna, and 

T
Lvuvuvuvu hhh ]      [ 1,,1,,0,,, −=h is the corresponding effective channel impulse 

response (CIR) that incorporates path-delay induced phase rotation at receiver side. 

To completely remove the inter-symbol interference (ISI), the CP length must be 

longer than the channel spread, L. The SFO and CFO terms are represented in terms 

of the transmit sampling period T as ,T T T T Tη ′= Δ Δ = − and 

( )( )/fNT f f NTfε = Δ = Δ ,  respectively, and ( )1ηε η ε= + . In practice, both relative 

frequency differences, ΔT/T, and Δf/f, are within the allowable tolerance, which is 

typically 10ppm (10E-6) or less. However, since the radio carrier frequency, f, is 

normally much higher than the sampling freque-ncy 1/T, the factor NTf can make the 

CFO term ε  large while the SFO term satisfies η<<1 [47]. 

Based on (4.4), the signal-to-noise ratio (SNR) at the v-th receive antenna in the time 

domain is  

                                                          
N

vS
v P

P
SNR ,= ,                                               (4.5) 
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Assume that the coefficients of CIR, { }1,,1,,0,, ,...,, −Lvuvuvu hhh , are independent zero-

mean complex random variables with common variances { }2
1

2
1

2
0 ,...,, −Lσσσ  for all 

pairs of transmit-receive antennas, and all receive antennas experience the same 

AWGN power. After some manipulation, it can be shown that the SNR values at all 

receive antennas are equal and given by  

                                                        22

1

0

2

σ

σ

N

EKN
SNR

L

l
lst ∑

−

== .                                   (4.6) 

where 
⎭⎬
⎫

⎩⎨
⎧=

2
, )(kXEE mus  is the average energy of M-QAM symbols. 

To reduce the computational complexity in the multiantenna channel estimation, 

the proposed estimation approach attempts to estimate the CIR 

{ }1,,1,,0,, ,...,, −Lvuvuvu hhh  instead of CFR )(, kH vu  by using the observations of the 

received sub-carriers in the frequency domain (FD). After FFT, the received FD 

sample at the v-th receive anten-na is ∑
−

=

−
=

1

0

2

,,, )(
N

n
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j
nmvmv erkY

π

. Based on (4.4), we 

obtain the following 
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where )(
1

0

)(2

, )(sinc  1 kij
i
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−+≈= ∑ επεπ

ερ stands for the ICI 

coefficient, ηεηε += ii ,
)(

)sin()(sinc
x

xx
π
π

= , and ∑
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.  

It is noted that the frequency-domain expression of the received samples in [12, Eq. 

37] is an approximation of (4.7) in the case of SISO-OFDM. In the first summation in 
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(4.7), the term i=k corresponds to the sub-carrier of interest, while the other terms 

with i≠k represent ICI. As can be observed from the above expression for ki,ρ , the 

term, ηεηε += ii , needs to be removed in order to suppress ICI. Obviously, in an 

ideal case with zero SFO and CFO, εi=0, 1, =kiρ for i=k and 0, =kiρ (ICI does not 

exist) for i≠k. Therefore, ∑
=

+=
tN

u
mvvumumv kWkHkXkY

1
,,,, )()()()( and perfect 

orthogonality among sub-carriers is preserved at the receiver. Thus, to mitigate ICI, 

the contribution of CFO and SFO to received sub-carriers needs to be compensated. 

As a result, the estimates of CFO and SFO are required to compensate the detrimental 

effects of synchronization errors while the multiantenna channel estimates are require-

d for the subsequent MIMO symbol detection.  
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Figure 4.2: Burst-mode OFDM receiver with joint CIR/CFO/SFO estimation and tracking.
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4.3 Joint Estimation of CIR, CFO and SFO  

4.3.1 ICI Reduction at Multiple Receive Antennas 

Similar to the ICI reduction method for SISO-OFDM in [47], ICI reduction in MI-

MO-OFDM can be analyzed as follows. As can be observed in (4.4) and (4.7), SFO 

and CFO introduce phase rotation in the time domain and in turn both attenuation and 

ICI in the frequency domain. CFO-SFO-induced attenuation can be compensated in a 

symbol-by-symbol manner. However, cancellation of ICI requires knowledge of all 

the detected symbols in the frequency domain. Hence, ideally, it is better to 

compensate the phase rotation in the time domain to avoid ICI in the frequency 

domain. Based on the derivations to obtain (4.7), it is noted that only the common 

factor N
n

j
e

ηπε2

 and individual coefficients N
knj

e
ηπ2

 embedded in the summation at 

(4.4) result in the ICI in (4.7). The common factor can be removed from the received 

time-domain sample. However, the correction of the individual coefficients requires 

knowledge of the detected symbols in the frequency domain, and this is not available.  

Fortunately, the common factor has a major influence in ki,ρ due to the large CFO 

term, ε, while the effect of the individual coefficient is minor in ki,ρ since the SFO 

term satisfies η<<1 in practice.  As a result, to suppress the common factor, the 

received time-domain sample in (4.4) can be multiplied by N
n

j
c

e
ηπε2

−
 prior to FFT as 

shown in Figure 4.2, where                                                                

                                                         
cn

N
j

nmv
c

nmv err
ηε

π2

,,,,
−

= ,                                   (4.8) 

ccc εηεη )1( += , and cε  and cη  are the estimates of CFO and SFO1, respectively.  

                                                 
1 Estimation of CFO and SFO will be described in subsection 4.3.3. 
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After FFT, the resulting FD sub-carriers at the v-th receive antenna is 
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After some manipulation, (4.9) can be shown to be  
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where ( )
( )

∑
−

=

−+−
+=

1

0

212

,, )(
N

n

nk
N

jn
N

j
mmv

c
mv eeNnwkW

cc πεηπ

and 

[ ]
∑
−

=

−++−++
=

1

0

)1()1(2

,
1 N

n

kiin
N

jc
ki

cc

e
N

εηεηηπ

ρ . 

After the TD CFO-SFO compensation, the resulting ICI coefficient becomes                       

                                                
[ ]
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As shown in (4.11), there exists residual ICI due to the term, ηi , even with the use of 

the TD CFO-SFO compensation with perfect estimates of CFO and SFO ( cε ε=  and 

cη η= ). Fortunately, for practical SFO values, the residual ICI is negligible since ηi  

is quite insignificant in contributing to the ICI coefficient, ki,ρ , after the TD CFO-

SFO compensation. 

4.3.2 Brief Description of the Vector RLS Approach in [49] 

Unlike the standard RLS algorithm [8] for minimizing a summation of squared values 

of the error samples from a single output of an adaptive filter, the vector RLS approa-

ch [49] is employed to function as an adaptive filter with multiple outputs. Specificall-

y, the vector RLS approach can be implemented as follows. 



Chapter 4: Joint Estimation of Multiantenna Channel Response and Frequency Offsets   
                  for MIMO-OFDM Systems 

 68

Input parameters: The existing estimate of tap-weight vector 1ˆ −iω , the input signal 

matrix [ ])()1(
,     r

r
N

iiNi xxX = , the reference output vector 

[ ]TN
iiNi

r
r dd )()1(

,   ...  =d  and the existing matrix 1
1

−
−iP . 

Output parameters: The filter output 1,, ω̂i-
T

NiNi rr Xy = , the updated estimate of tap-

weight  vector iω̂ and the updated matrix 1−
iP .  

Iterative Procedure:                                      

1) Compute the gain matrix iK  at the i-th iteration:  

                              [ ] 1*
,

1
1,

*
,

1
1

−−
−

−
− +=

rrrr NNii
T

NiNiii IXPXXPK λ .                       (4.12) 

2) Filter at the i-th iteration: 

                 1,, ω̂i-
T

NiNi rr
Xy = .                                 (4.13) 

3) Compute error estimation at the i-th iteration   

                                                     
rrr NiNiNi ,,, yde −= .                                         (4.14)     

4) Update tap-weight vector at the i-th iteration   

                                                      
rNiiii ,1ˆˆ eKωω += − .                                        (4.15) 

5) Update matrix 1−
iP  at the i-th iteration   

                                               ( )1
1,

1
1

11 −
−

−
−

−− −= i
T

Niiii r
PXKPP λ .                      (4.16) 

4.3.3 Vector RLS-Based Joint Estimation of CIR, CFO and SFO 

Based on the use of the received samples and pilot tones in FD, a pilot-aided 

algorithm is devised to estimate and track the CIR, CFO and SFO in MIMO-OFDM 

systems. To exploit the vector RLS algorithm for this estimation and tracking task, we 
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introduce a LS cost function corresponding to the use of i pilot tones over OFDM 

symbols in a burst as follows:   
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where λ  is referred to the forgetting factor of the RLS algorithm, 
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 ip ,...,1=  denotes the index of the p-th pilot tone in the set of i pilot tones used for 

the vector RLS-based estimation from the first iteration to the i-th iteration. 

( )pmu kX
p,  is the value of the p-th pilot tone at sub-carrier pk  of the mp-th OFDM 

symbol from the u-th transmit antenna in the vector RLS-based estimation. It is noted 

that all tones are employed as pilots in the preamble of a burst. 

To exploit the vector RLS approach for estimating the unknown CIR, CFO and 

SFO, the non-linear estimation error vpie ,,  needs to be linearized about the existing 

estimates of CIR, CFO and SFO by using the following first-order Taylor’s series 

approximation: 

    ( )( ) ( )( )( ){ }11,1,,,, ˆˆˆ,ˆ,)( −−− −∇+−≈ iiipmu
T
vipmuvp

c
mvvpi kXfkXfkYe

ppp
ωωωω ,(4.18)  
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where [ ]T

rt NLNiiii 12,1,0, ˆ,...,ˆ,ˆˆ += ωωωω is the (2LNtNr+2)×1 weight vector that 

contains the CIR, CFO and SFO estimates at the i-th iteration of the vector RLS 

approach. More specifically, elements of iω̂  are assigned as follows: 

{ })(
,,)1(2)1(2,

ˆReˆ i
lvuvLNuLli h

t
=−+−+ω , 

 { })(
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Note that  
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rN,...,1=ρ and v≠ρ . 

Subsequently, we can formulate the following vector RLS-based joint CIR, CFO, 

SFO estimation algorithm as follows: 

Initialization: Select 1ω̂  using the ML CFO-SFO estimation (to be described in Sub-  

                       section  4.3.4) and 22
1

1 +
−=

trNLNIP γ , where γ  is the regularization   

                       parameter, 22 +tr NLNI  is the (2LNrNt+2)×(2LNrNt+2) identity matrix. 

Iterative Procedure:                                      

1) Update the parameters at the i-th iteration  

          ( )( ) ( )( )[ ]1,1,1, ˆ,ˆ, −− ∇∇= iimuNiimuNi kXfkXf
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ωωX ,                  (4.20) 

        ( ) 1*
,1,

*
,1

−
−− +=

rrrr Nii
T

NiNNiii XPXIXPK λ ,                                             (4.21) 

               with λ  denoting the forgetting factor.         
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( )( )( ) ( )( )( )[ ]TiimuNi
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mNiimui
c
mNi kXfkYkXfkY

iririir 1,,1,1,1, ˆ,)(ˆ,)( −− −−= ωωe ,(4.23) 

                     with tNu ,..,1=  

     2) Update estimates at the i-th iteration                                                              

                
rNiiii ,1ˆˆ eKωω += − ,                                                                             (4.24)  

In the MIMO-OFDM receiver (Figure 4.2), the CIR, CFO, SFO estimates are 

updated on a symbol-by-symbol basis for the MIMO-ML sub-carrier detector, while 

the tracking block updates the CIR, CFO and SFO estimates in an iteration-by-

iteration manner. Moreover, since the number of the CIR coefficients is much smaller 

than the FFT size, a simplified FFT with a reduced-complexity can be employed to 
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generate channel transfer function for both the MIMO-ML sub-carrier detector in the 

demodulator and reconstruction of the transmitted signal in the tracking block. 

Like other iterative estimation techniques, the vector RLS-based estimation appro-

ach also requires appropriate initial guesses of estimated parameters to achieve its 

proper convergence. For this reason, a ML estimator is introduced to obtain coarse 

estimates of CFO and SFO to be used as initial guesses for estimated parameters in 

the vector RLS-based iterative estimation. 

4.3.4 ML Coarse CFO and SFO Estimator at Multiantenna Receiver 

Due to the possibility of multiple local minima caused by the non-linearity of the cost 

function of CIR, CFO and SFO, the initial guesses of the estimated parameters for 

adaptive estimation must fall in a specific vicinity of their actual values. Consequentl-

y, the large initial errors between the initial guesses and the true values would cause 

instability of the vector RLS-based iterative computation. To alleviate such deteriorat-

ion, we extend the ML coarse estimator of CFO and SFO [47] in a SISO-OFDM rece-

iver to obtain coarse estimates of the initial CFO and SFO values in a MIMO-OFDM 

one. 

Let m1 and (m1+1) be the time indices of the first and second long training sym-  

bols in preamble of a burst, respectively. Based on the FD observations in these two 

identical training symbols at the v-th receive antenna, we define the following term  
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where rNv ,...,1= , gs NNN +=  and the FD error sample ( )kEv  can be expressed by   
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The ICI parts are herein absorbed in )(, kW mv  with 1 1,  and ( 1)m m m= + , and assumed 

to be Gaussian distributed [12], [31]. As a result, the FD error sample ( )kEv  can also 

be approximated to be uncorrelated, Gaussian-distributed. This assumption is well 

supported by the measured Gaussian-shape histograms of the real and imaginary parts 

of ( )kE  and its measured auto-correlation that is approximately a delta function as 

shown in Figure 4.3. 

Hence, based on the use of the FD received sub-carriers at rN  receive antennas corre-

sponding to two long training symbols, we define the following ML cost function 

                                       ( ) ( )
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++
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r s
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v ekYf
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2
12
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ηεηπ

ηε ,                  (4.26) 

where pI is the set of sub-carrier indices of pilot tones in preamble. 

As a result, in the absence of CIR knowledge, the coarse estimates of CFO and 

SFO can be obtained by                 
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The above coarse CFO and SFO estimates are then used as initial guesses of CFO and 

SFO for the vector RLS-based joint CIR, CFO and SFO estimation & tracking (in 

Section 4.3.3) while the coarse CIR estimates are obtained by using the RLS 

algorithm with the preamble and the available coarse CFO and SFO estimates.  
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(a)  Histograms (probability density functions) of the real and imaginary parts of E1(k)  

at the 1-st receive antenna 
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(b)  Histograms (probability density functions) of the real and imaginary parts of E2(k)  

at the 2-nd receive antenna 
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(c) auto-correlation function at the 1-st receive antenna and the 2-nd receive antenna. 

 Figure 4.3: Probability density and auto-correlation functions of the FD error samples. 
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4.4 Simulation results and discussions 

Computer simulation has been conducted to evaluate the performance of the proposed 

algorithm for the joint estimation of CIR, CFO and SFO in an OFDM system with 

various MIMO configurations. In the investigation, we set the OFDM-related parame-

ters based on the IEEE 802.11a standard [38]. Signal constellation of QPSK is emplo-

yed for OFDM symbols of 48 data subcarriers and 4 equally spaced pilot tones of the 

same power. For each transmit antenna, a burst format of two long identical training 

symbols and 225 data OFDM symbols is used in the simulation. For each transmit-

receive antenna pair, we consider an exponentially decaying Rayleigh fading channel 

with L=5 and a RMS delay spread of 25ns. For the coarse CFO estimation, the used 

step size for searching the ML CFO estimates is 0.0001.  

 Figure 4.4 shows the measured mean squared errors2 (MSE) of the CIR, CFO 

and SFO estimates and their corresponding Cramer-Rao lower bounds (CRLBs3). 

Unlike CRLBs in Chapter 3, the CRLB values herein are derived under an assumption 

that pilot-aided CIR, CFO and SFO estimation employ 4 pilot tones in each OFDM 

symbol. It is observed that a forgetting factor smaller than 0.995 results in instability. 

In addition, the numerical results demonstrate that the proposed estimation algorithm 

achieves fast convergence, high stability and the best MSE performance with 

forgetting factor λ=0.995 and regularization parameter γ = 10.     

                                                 
2 Normalized to the signal power. 
3 Derivation of these CRLBs is presented in Appendix E 
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Figure  4.4: Normalized MSEs and CRLBs of CIR, CFO and SFO estimates. 
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To further assess the performance of the pilot-aided joint estimation of CIR, 

CFO and SFO, we study the BER performance of the MIMO-ML data detector using 

the estimates of CIR, CFO and SFO from the proposed estimation algorithm in 

various scenarios. Figure 4.5 shows the BER-versus-SNR performance curves in 

Rayleigh fading channels under various single-input multiple-output (SIMO) configu-

rations. As reference, the ideal BER performances with perfect channel estimation 

and synchronization (SFO=CFO=0) are included. The analytical (theoretical BER of 

QPSK [51] and asymptotic union bounds [50]) and simulation BER results for the 

ideal cases are in excellent agreement under any SNR value for SISO case and 

dBSNR 5>  for SIMO cases (asymptotic union bounds [50] applicable to high SNRs).  
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Figure 4.5: BER performance of the SIMO-ML sub-carrier detector versus SNR 
with QPSK constellation over Rayleigh fading channel. 
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As observed in Figure 4.5, the proposed joint CIR, CFO and SFO estimation 

algorithm provides a near-optimum receiver performance that is very close to the 

ideal BER performance. 

Figure 4.6 shows the BER performance of the proposed approach versus SNR 

values under different MIMO configurations. Curve A shows unacceptable BER 

performance in the absence of coarse CFO and SFO estimator. These results illustrate 

that bad guesses of CFO and SFO lead to wrong convergence of the proposed 

estimation scheme in the presence of large residual CFO and SFO values. Also, 

without CFO and SFO compensation, the dominant effect of ICI keeps BER at around 

5E-2 under SNR > 10 dB (Curve B). With the aid of the coarse CFO-SFO estimator 

and the CFO-SFO compensators, the proposed estimation and tracking algorithm 

(Curves D and G) is able to provide a near-optimum BER performance that is very 

close to the ideal BER one. 
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Figure 4.6: BER performance of the MIMO-ML sub-carrier detector versus SNR  

with QPSK constellation over Rayleigh fading channel. 
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Figure 4.7: MSEs and CRLBs of CIR, CFO and SFO estimates by the proposed VRLS-based 

approach and the ML-based algorithm [31] under RMS delay spread of 150ns. 
 

To investigate the proposed VRLS-based tracking approach in a more critical 
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SNR values. As can be seen in Figure 4.7, the CFO and SFO estimates by the VRLS-

based approach are more accurate than those by the ML-based algorithm [31] that 

assumes perfect channel estimation has been established priori to the CFO and SFO 

estimation.  

4.5 Chapter Summary 

For multi-antenna channel estimation and synchronization in MIMO scenarios, the 
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perform the joint estimation of CIR, CFO and SFO for burst-mode MIMO-OFDM 

systems over quasi-static Rayleigh multi-path fading channels. With the aid of a 

coarse CFO-SFO estimator and CFO-SFO compensators, the proposed vector RLS-

based estimation and tracking approach is able to attain fast convergence, high 

stability and low MSE values when compared with CRLB values. As a result, over 

large ranges of CFO and SFO values, the proposed vector RLS-based estimation 

approach provides a near-optimum BER performance that is remarkably close to the 

ideal one in the case of perfect channel estimation and synchronization. Finally, the 

proposed estimation and tracking approach is compatible with any space-time coded 

transmission.  
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Chapter 5 

Turbo Processing for Joint Channel Estimation, 

Synchronization and Decoding in  

MIMO-OFDM Systems 
As previously mentioned in Chapter 4, the integration of MIMO and OFDM techniqu-

es has offered spectacular benefits to broadband wireless communication transmissio-

ns. For further improvement in the performance of coded MIMO-OFDM systems, 

turbo processing has been well recognized as a very strong solution to perform chan-

nel estimation and decoding in an iterative fashion [62]. In fact, the principle behind 

the astonishing performance of turbo processing is the iterative exchange of extrinsic 

a posteriori probabilities (soft information) among constituent functional blocks in 

MIMO-OFDM receivers. Focusing on the issue, Chapter 5 introduces a turbo joint 

channel estimation, synchronization and decoding scheme for convolutionally coded 

MIMO-OFDM systems. Finally, various simulation results are presented to verify its 

expected performance. 

5.1 Introduction 

Feedback processing has been extensively employed in turbo engines as well as 

electronics circuits to give better performance. Similarly, the same concept can also 

be beneficially used in decoding, giving rise to the so-called turbo decoding. Indeed, 

the invention of the turbo codes [52] in 1993 has been widely recognized as one of the 

most revolutionary milestones in the world of encoding and decoding techniques. 

Specifically, such codes have a performance [52] that is extremely close to the 

Shannon limit, and also inspire the use of the extrinsic a posteriori probabilities (soft 
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information) for feedback processing. This turbo principle can be employed for a 

variety of signal processing tasks such as in detection, equalization, interference can-

cellation, synchronization as well as channel estimation. 

The use of the turbo principle for detection, equalization and interference cancellat-

ion has been intensively explored in the last decade [53]-[59]. Recently, some turbo 

algorithms have been proposed for channel estimation and synchronization in coded 

OFDM systems [60]-[66]. In particular, [63]-[66] exploit using soft estimates of the 

data tones to iteratively enhance the channel estimation in SISO-OFDM systems 

under the assumption that perfect synchronization has been established. Unlike these 

studies, [62] employs a semi-blind channel estimation scheme using hard estimates of 

data tones to successively improve the channel estimates in a MIMO-OFDM receiver 

with a turbo decoder. Taking both channel estimation and synchronization into 

account, [60]-[61] investigate turbo algorithms for estimating the channel impulse 

response (CIR) and carrier frequency offset (CFO) but without considering the 

sampling frequency offset (SFO) effect in single-input single-output OFDM systems. 

However, as demonstrated in [47], the detrimental effect of SFO (even for a very 

small SFO) will likely lead to a significant degradation to the OFDM receiver 

performance even when perfect CIR and CFO knowledge are available. Specifically, 

SFO induces a sampling delay that drifts linearly in time over an OFDM symbol. 

Without any SFO compensation, this delay hampers the OFDM receiver as soon as 

the product of the relative SFO and the number of subcarriers becomes comparable to 

one [36]. Consequently, OFDM receivers become more vulnerable to the SFO effect 

as the used FFT size increases. 

To the best of our knowledge, all existing turbo algorithms for either joint or sequ- 

ential estimation of the channel response and frequency offset in coded OFDM system 
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have not taken care of the SFO effect. In this chapter, we propose a turbo scheme for 

joint estimation of CIR, CFO and SFO in a convolutionally coded MIMO-OFDM 

system with the transmitter configuration based on that in [67]. In particular, with the 

aid of the vector RLS algorithm [49], the proposed turbo estimation scheme exploits 

the soft estimates of the data tones obtained by using the extrinsic APPs at the outputs 

of the soft-input soft-output decoder [68] to successively enhance the estimates of 

CIR, CFO and SFO and in turn the overall receiver performance.  

The major advantages of using the soft estimates of data tones are two-folds. First, 

they eliminate the need of pilot tones which have to be embedded among data tones in 

an OFDM symbol, thus enhancing the spectral efficiency of MIMO-OFDM systems. 

Second, the use of the soft estimates alleviates the detrimental effect of error propaga-

tion that usually occurs when the hard estimates are used in feedback processing, i.e, 

decision-directed modes. Finally, simulation results demonstrate that the proposed 

turbo joint channel estimation, synchronization and decoding scheme is able to provi-

de fast convergence and a near-ideal BER performance that is remarkably close to the 

performance in the case of perfect channel estimation and synchronization. 

5.2 System Model 

Figure 4.1 shows a simplified block diagram of a convolutionally coded MIMO-

OFDM transmitter with tN  transmit antennas and M-ary modulation (e.g., M-QAM). 

This receiver configuration is similar to the space-time bit-interleaved coded modula-

tion (STBICM) [67]. The input bit stream is first convolutionally encoded before 

being serial-to-parallel (S/P) converted to tN  sequences. These sequences are bit-

wise interleaved independently to yield the tN  bit streams u
id  with tNu ,...,1=  

before being converted to tN  sequences of Q-bit tuples, { u
km,d }, where 
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]1,...,1,0,[ ,,, −== Qqd u
qkm

u
kmd  with tNu ,...,1=  and 2logQ M=  bits.  Following 

this, each Q-bit tuple, u
km,d , is mapped to a complex-valued symbol, A∈)(, kX mu , 

where A is the M-ary modulation signaling set, and u, m  and k denote the indices of 

the transmit antennas, OFDM symbols and sub-carriers, respectively. Each OFDM 

symbol consists of K<N information bearing sub-carriers, where N is FFT size. After 

cyclic prefix (CP) insertion and digital-to-analogous converter (DAC), the transmitted 

baseband signal at the u-th transmit antenna can be written as  
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where T is the sampling period at the output of IFFT, gN  denotes the number of CP 

samples, TNT gg = , TNNT gs )( +=  is the OFDM symbol length after CP insertion, 

u(t) is the unit step function, and ( ) ( ) ( )sTtututU −−= . 

As previously described in Chapter 4, the quasi-static channel response 

between the u-th transmit antenna and the v-th receive antenna can be represented by               

                                             ( ) ( )∑
−

=
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0
,,,
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l
llvuvu hh ττδτ ,                                         (5.2) 

where lvuh ,,
~  and lτ  are the complex gain and delay of the l-th path, respectively. L is  

the total number of resolvable (effective) paths.  
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Figure 5.1: Burst-mode coded MIMO-OFDM transmitter. 
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In the presence of the net CFO fΔ  (as mentioned in Chapter 4), the received 

signal at the v-th receive antenna element can be determined by 

                                  ( ) )(~)(
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After sampling the received signal )(trv  at time instant Tntn ′=  (due to the 

presence of SFO) and CP removal, the n-th received sample of the m-th OFDM 

symbol in the time-domain at the v-th receive antenna element is given by  
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where 1,...,1,0 −= Nn  and ( )m g gN N m N N= + + . The complex-valued Gaussian 

noise sample, nmvw ,, , has zero mean and a variance of 2σ . 
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 is the channel frequency response (CFR) at the k-th sub-

carrier for the pair of the u-th transmit antenna and the v-th receive antenna, and 

T
Lvuvuvuvu hhh ]      [ 1,,1,,0,,, −=h is the corresponding effective channel impulse 

response (CIR).   

After FFT, the received FD sample at the v-th receive antenna is 

∑
−

=

−
=

1

0

2

,,, )(
N

n

nk
N

j
nmvmv erkY

π

. Based on (5.4), we obtain the following 
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ερ  stands for the ICI  
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coefficient, ηεηε += ii ,
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As discussed in Chapter 4, to mitigate ICI, the received time-domain sample in 

(5.4) can be multiplied by N
n

j
c

e
ηπε2

−
 prior to FFT as shown in Figure 5.2, where                                   
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ccc εηεη )1( += , and cε  and cη  are the estimates of CFO and SFO, respectively.  

After FFT, the resulting FD sub-carriers at the v-th receive antenna is 
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After some manipulation, (5.7) can be shown to be  
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Figure 5.2: Burst-mode MIMO-OFDM receiver using the proposed turbo joint channel 
estimation, synchronization and decoding scheme. 
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The vector representation of the FD received samples at all receive antennas 

corresponding to the subcarrier k can be expressed by  

                                    )(~)()()( ,

2

kkkek c
mm

c
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N
N

jc
m

km
WXHY += ρ

επ

,                    (5.9) 

where the (u,v)-th entry of H(k) is given by  [ ] )()( ,, kHk vuvu =H . Note that )(~ kc
mW   

includes both AWGN and ICI parts, [ ]TmNmm kXkXk t )()()( ,,1=X  and each of the  

complex elements in )(~ kc
mW has a variance of 0N . 

5.3 Turbo Processing  

In the section, we describe in details the proposed turbo joint channel estimation, 

synchronization and decoding scheme. To give an overall picture of the turbo process-

ing in the proposed receiver, Figure 5.3 shows an information-flow graph for illustrat-

ing how the extrinsic a posteriori probabilities (APPs) are iteratively exchanged amo-

ng the constituent functional blocks in the receiver.  

First, the initial estimates of CIR, CFO and SFO are obtained by using pilot tones 

in the preamble. These initial CIR, CFO, SFO estimates are fed into the MIMO-

demapper to generate the (initial) extrinsic APPs of the coded bits u
qkmd ,, . This is 

denoted by );( OdP  in the figure, where, for the sake of notational simplicity, the 

subscripts u, m, k and q in u
qkmd ,,  have been omitted in );( OdP  and the notation is 

based on [68]. Subsequently, after deinterleaving and P/S converter, the extrinsic 

APPs );( OdP  become );( IcP  to be used as input a priori probabilities of the soft-

input soft-output decoder [68]. Based on these );( IcP  values, this soft-input soft-

output module generates more reliable soft estimates of the coded bits );( OcP . After 

S/P converter and interleaving, the extrinsic APPs );( OcP  become );( IdP  to be used 
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as a priori probabilities of the MIMO-demapper (at the next iteration) and the soft 

mapper.  

Lastly, based on the more reliable soft estimates of the coded bits );( IdP , the 

resulting better soft estimates of data tones generated by the soft mapper are fed to the 

joint CIR, CFO and SFO estimator to generate better CIR, CFO and SFO estimates 

for the MIMO-demapper at the next iteration.   

 

Figure 5.3: Turbo processing for joint channel estimation, synchronization and decoding. 

Naturally, by using the better CIR, CFO and SFO estimates and more reliable soft 

estimates of the coded bits );( IdP , the MIMO-demapper will generate more reliable 

soft estimates of the coded bits u
qkmd ,,  in the next iteration of this turbo processing. In 

other words, the turbo processing procedure operates in an iterative fashion over a 

block of interleaved bits to successively produce better estimates of CIR, CFO and 

SFO, which in turn, give more reliable soft estimates of coded and transmitted infor-
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mation bits, which then produce better CIR, CFO and SFO estimates, and so on. The 

following describes the constituent functional blocks in the information-flow graph of 

Figure 5.3 in more details. 

5.3.1 MIMO- Demapper  

The goal of the MIMO-demapper is to compute the extrinsic a posteriori probabilities 

of coded bits to be used as input a priori probabilities for the soft-input soft-output 

decoder in [68].  Following the notation used in [68], the extrinsic APP of the coded  

bits at the output of MIMO-demapper can be defined as follows. 
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where { }1,0∈b , and the letters I and O denote, respectively, the input and output of 

the soft-input soft-output decoder as well as the MIMO-demapper. In particular, the 

term ( )ηε ˆ,ˆ),(ˆ),(,, kkbdP c
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qkm HY=  can be determined by using                                  
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where  )(
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b
qkmuX is the set of the vectors [ ]TmNmm kXkXk t )()()( ,,1=X that 

corresponds to bd u
qkm =,, ,  
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( ) ( ) ( )∑
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xXHxXYY )(ˆ,ˆ),(ˆ,)()()( ηε  with mX being the set 

of all possible values of the vector )(kmX ,  

( ) ∏∏ ===
u q

u
qkm

u
qkmm IddPkP ));(()( ,,,, xxX  due to the use of interleaving and 

)(,, xu
qkmd  denotes the value of the corresponding bit u

qkmd ,,  in the vector x. 

5.3.2 Soft-Input Soft-Output Decoder 

The purpose of soft-input soft-output module is to obtain more reliable soft estimates 

of the coded bits );( OcP  based on the a priori probabilities );( IcP  and knowledge of 

the trellis section used for convolutional encoding at transmitter. Detailed operations 

of );( OcP  is well documented in [68]. In addition, the soft-input soft-output decoding 

with turbo processing also generates more reliable soft estimates of transmitted infor-

mation bits after each iteration of turbo processing.    

5.3.3 Soft Mapper 

Based on the extrinsic APPs of the coded bits at the outputs of the soft-input soft-

output decoder, these soft estimates of data tones can be simply obtained by  

                                           [ ] ( )∑
∈

===
m

kPkEk mmm
Xx

xXxXX )()()(~ .                  (5.12) 

In turbo processing, the reliabilities of the soft estimates of the coded bits are success-

ively enhanced due to the spectacular benefits of the iterative extrinsic APP exchange-

s. As a result, soft estimates of the data tones will also become successively more 

reliable. Naturally, this gives better overall BER performance after each iteration. 
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5.3.4 Semi-Blind Joint CIR, CFO and SFO Estimation 

By using the received samples, pilot tones (only for initialization in the preamble 

duration) and soft estimates of the data tones in the frequency domain, a turbo joint 

channel estimation and synchronization scheme can be used with the aid of the vector 

RLS algorithm [49] to estimate and track the CIR, CFO and SFO in convolutionally 

coded MIMO-OFDM systems. To exploit the vector RLS algorithm [49] for this esti-

mation and tracking task, we introduce a least square (LS) cost function correspondin-

g to the use of i soft estimates of data tones and pilot tones (only for initialization 

during preamble duration) over OFDM symbols in a burst as follows:   
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OFDM symbol from the u-th transmit antenna in this adaptive estimation.  
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To exploit the vector RLS algorithm [49] for the joint estimation of unknown CIR, 

CFO and SFO, the non-linear estimation error vpie ,,  needs to be linearized about the 

existing estimates of CIR, CFO and SFO by using the following first-order Taylor’s 

series approximation: 
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where the (2LNtNr+2)×1 weight vector [ ]TNLNiiii rt 12,1,0, ˆ  ...  ˆ  ˆˆ += ωωωω contains the 

CIR, CFO and SFO estimates at time instant i of the vector RLS algorithm. More 

specifica-lly, elements of  iω̂  are assigned as follows:  
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Subsequently, the proposed vector RLS-based joint CIR, CFO and SFO estimation 

using soft estimates of data tones can be formulated as follows. 

Initialization: 22
1

1 +
−=

trNLNIP γ , where γ  is the regularization parameter. 

Iterative Procedure: At the i-th iteration with the forgetting factor λ , update                                    

  Parameters: 
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  Estimates:                         
rNiiii ,1ˆˆ eKωω += − ,                                            (5.20)  

5.3.5. Coarse CFO and SFO estimation 

Accurate yet simple coarse estimation of CFO and SFO can be based on the 

conjugate-delay correlation of the two identical and known training sequences in the 

pre-amble of the burst (as shown in Figure 5.3), i.e.,  based on (5.4), we can obtain the 

following approximation  
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where 1m and 112 += mm  denote the indices of the 1st and 2nd training sequences. 

Therefore, the combined CFO-SFO perturbation is 
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where { }[ ]*
,,,, 12 nmvnmv rrEΦ  is the angle of { }*

,,,, 12 nmvnmv rrE . Under the assumption of 

1<<η  (e.g., for a typical SFO values of around 50ppm or 5E-5 in practice), and the 

use of the two identical long training sequences in the pre-amble of a burst, the coarse 

(initial) CFO and SFO estimates can be determined separately by                                         
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.The above coarse 

CFO and SFO estimates are then used in the coarse CIR estimation that employs the 

vector RLS algorithm with the known ( )m kX ’s during the pre-amble. 

5.4 Simulation Results and Discussions 

Computer simulation has been conducted to evaluate the performance of the proposed 

turbo joint channel estimation, synchronization and decoding scheme for a convolu-

tionally coded MIMO-OFDM system. In the simulation, we set the OFDM-related 
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parameters similar to the IEEE standard 802.11a [38]. Signal constellation of QPSK is 

employed for OFDM symbols of 52 data tones. For convolutional encoding at trans-

mitter, the rate-1/2 non-recursive systematic code is employed. At the receiver, the 

soft-input soft-output decoding algorithm [68] is deployed to generate soft estimates 

of transmitted data bits as well as the extrinsic a posteriori probabilities of coded bits 

for turbo processing in the joint CIR, CFO and SFO estimation. For each transmit-

receive antenna pair, we consider an exponentially decaying Rayleigh fading channel 

with a channel length of 5 and a RMS delay spread of 25ns.  

Figure 5.4 shows the measured mean squared errors (MSE) of the CIR estimate 

and relevant Cramer-Rao lower bounds (CRLBs). The numerical results demonstrate 

that the proposed estimation algorithm has a fast convergence and the best MSE 

performance with forgetting factor 1=λ  and regularization parameter 10=γ . For 

comparison, the CRLB values of the CIR estimates obtained by using pilot-aided 

estimation with perfect information of 4 pilot tones (a pilot design in IEEE standard 

802.11a [38]) and of all (52) tones in each data OFDM symbol are also plotted in 

Figure 5.4. As can be seen in Figure 5.4, the numerical results show that the MSE 

values of the CIR estimates obtained by the proposed turbo estimation scheme using 

just 1 APP exchange iteration are even smaller than the lower bound (CRLB as 

derived in Appendix E) of the CIR estimates obtained by pilot-aided joint CIR, CFO 

and SFO estimation using 4 pilots in each OFDM symbol. The reason is that the turbo 

principle (the iterative extrinsic APP exchange) enables the joint CIR, CFO and SFO 

estimation to exploit efficiently the soft information of all (52) data tones in each 

OFDM symbol. In addition, numerical results show that the turbo estimation scheme 

converges to its best MSE performance after just 3 APP exchange iterations.  
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In the same manner, Figures 5.5 and 5.6 show the MSE results of the CFO and SFO 

estimates and relevant CRLBs. 

Figure 5.7 shows the BER performance of the proposed turbo principle-based 

scheme with various numbers of iterations of the turbo processing. For reference, the 

ideal BER performance (Curve E) in the case of perfect channel estimation and syn-

chronization (CFO=SFO=0) is also demonstrated in Figure 5.7. As can be seen, the 

proposed turbo scheme approaches the ideal BER performance by using just three 

iterations of turbo processing (Curve D). Also, without the turbo processing, the 

worst-case BER performance (Curve A) in the case of using only preamble for the 

vector RLS-based joint channel estimation and synchronization is plotted in Figure 

5.7. In particular, without the use of the turbo principle, the vector RLS-based joint 

channel estimation and synchronization using only pilot tones in preamble (Curve A) 

results in an unacceptable receiver performance (BER values around 0.5). The reason 
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Figure 5.4: MSE and CRLB of CIR estimates. 
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is that using only preamble for the vector RLS-based estimation of CIR, CFO and 

SFO is able to provide just coarse CIR, CFO and SFO estimates (for the subsequent 

tracking phase) that are not accurate enough for an acceptable performance of the ML 

symbol detection. As compared with the preamble-aided, vector RLS-based joint 

channel estimation and synchronization (Curve A), the turbo scheme provides a 

remarkable BER performance improvement even by using the turbo processing with 

only 1 iteration (Curve B). 

 To investigate the effect of CFO and SFO on the performance of the proposed 

turbo scheme, Figures 5.8 and 5.9 show the BER performance of the proposed turbo 

algorithm under various CFO and SFO values, respectively. For reference, the ideal 

BER performance in the case of perfect channel estimation and synchronization (i.e., 

zero CFO and SFO) is also plotted. As shown, the proposed turbo estimation scheme 

is highly robust against a wide range of SFO values.  
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Chapter 5: Turbo Processing for Joint Channel Estimation, Synchronization and  
                  Decoding in MIMO-OFDM Systems 

 98

 

  

 

 

4 5 6 7 8 9 10 11 12
10-6

10-5

10-4

10-3

10-2

10-1

100

SNR(dB)

B
E

R

A: Without turbo processing(preamble-based estimation)
B: After 1 iteration of turbo processing
C: After 2 iterations of turbo processing
D: After 3 iterations of turbo processing
E: Ideal BER (perfect channel estimation, CFO=SFO=0)

CFO = 0.005
SFO = 112 ppm
(N

t
,N

r
) = (2,2)

 
Figure 5.7: BER performance of the proposed turbo scheme. 
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Figure 5.8: BER performance of the proposed turbo joint channel estimation, 

synchronization and decoding scheme under various SFO values. 
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Figure 5.9: BER performance of the proposed turbo joint channel estimation, 
synchronization and decoding scheme under various CFO values. 
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5.5 Chapter Summary 

In this chapter, a turbo joint channel estimation, synchronization and decoding schem-

e was developed for convolutionally coded MIMO-OFDM systems over quasi-static 

Rayleigh multi-path fading channels. The astonishing benefits of iteratively exchangi-

ng the extrinsic a posteriori probabilities in the turbo principle enable the proposed 

turbo scheme to provide a near-ideal BER performance after just three exchange itera-

tions. Simulation results show that the joint CIR, CFO and SFO estimation using the 

iterative extrinsic APP exchange offers a fast convergent and low MSE performance 

over quasi-static Rayleigh multi-path fading channels. 
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Chapter 6 

Summary and Future Work 

Considered as one of the early broadband wireless communication techniques, the 

frequency hopping spread spectrum (FHSS) strategy has been employed to provide 

highly secure data transmissions. Later, the invention of the orthogonal frequency 

division multiplexing (OFDM) scheme has offered the high spectral efficiency and 

robustness against frequency-selective fading channels for broadband wireless comm-

unications. Recently, the revolutionary concept of multiple-input multiple-output 

(MIMO) architectures has provided a spectacular increase in the spectral efficiency 

for wireless communication channels. However, along with these potential benefits, 

the primary challenges in broadband wireless communications are the channel impair-

ments which include intentional interference, multi-path propagation and imperfect 

synchronization. To mitigate such detrimental effects to the receiver performance, this 

thesis proposed several algorithms for estimating and compensating these channel 

impairments in early and recent broadband wireless systems as presented in previous 

chapters. In this chapter, we summarize these algorithm contributions and suggest 

some possible aspects for future work. 

6.1 Summary of Thesis Contributions 

In Chapter 2, we presented the literature of the existing anti-jamming algorithms for 

FHSS systems. Then, a detailed investigation on the FH/MFSK systems in the presen-

ce of a follower partial-band jammer was carried out. Based on formulating a signal 

model of the FH/MFSK signal corrupted by a follower jamming signal, a maximum 

likelihood (ML)–based algorithm was proposed to perform the joint follower jamming 
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rejection and symbol detection in FH/MFSK systems over quasi-static flat Rayleigh 

fading channels. Finally, the performance of the ML-based scheme was verified by 

various analytical and simulation results, and compared with the existing approaches. 

In Chapter 3, we considered the performance of SISO-OFDM systems over quasi-

static Rayleigh multipath fading channels in the presence of the carrier and sampling 

frequency offsets. By exploiting the standard RLS algorithm, a pilot-aided joint chan-

nel estimation and synchronization approach was proposed for burst-mode SISO-

OFDM systems. In addition, Chapter 3 introduced a simple ICI reduction technique in 

the time domain and ML-based coarse estimation of CFO-SFO to further widen the 

allowable ranges of CFO and SFO values for the proposed approach. The simulation 

results showed that the proposed joint channel estimation and synchronization scheme 

is able to provide a near-optimum receiver performance over quasi-static Rayleigh 

multipath fading channels.  

In Chapter 4, we addressed the joint estimation of CIR, CFO and SFO in MIMO-

OFDM systems. Unlike the case of SISO-OFDM receivers where the standard RLS 

algorithm is employable, the joint estimation of CIR, CFO and SFO in MIMO scenar-

ios requires the use of an adaptive filtering algorithm which can function as an adapti-

ve filter with multiple outputs. To meet the requirement, the vector RLS-based joint 

channel estimation and synchronization scheme was proposed for MIMO-OFDM sys-

tems. The analytical and simulation results showed that the proposed scheme offers 

low MSE estimates and a near-optimum BER performance. 

In chapter 5, a turbo joint channel estimation, synchronization and decoding 

scheme was developed for convolutionally coded MIMO-OFDM systems over quasi-

static Rayleigh multi-path fading channels. By exploiting the soft information at the 

output of a soft-input soft-output decoder in a turbo manner, the joint CIR, CFO and 
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SFO estimation with the aid of the vector recursive least-squares (RLS) adaptive 

filtering algorithm is performed in a doubly iterative and semi-blind fashion. The 

astonishing benefits of iteratively exchanging the extrinsic APPs in the turbo principle 

enable the proposed turbo scheme to provide a low MSE and near-ideal BER perfor-

mance after just three iterations of the iterative extrinsic APP exchange.  

6.2 Suggestions of Future Work 

Based on the individual chapters in this thesis, some possible issues of future work are 

as follows. 

In Chapter 2, the ML-based jamming rejection scheme was proposed under an 

assumption that perfect timing synchronization of hopping sequences has been 

established at receivers. As a result, a possible future work would be to consider the 

anti-jamming issues in the presence of imperfect timing synchronization of hopping 

sequences. For instance, a joint jamming rejection, timing synchronization and 

symbol detection issue would be an interesting study.  

In Chapter 3, the proposed pilot-aided joint estimation and synchronization scheme 

is applicable to burst-mode SISO-OFDM transmissions such as wireless LAN system-

s, where CIR, CFO and SFO are assumed to be time-invariant within one burst 

duration. For mobile wireless communication applications, where these channel para-

meters are usually assumed to be unchanged within one OFDM symbol duration, joint 

channel estimation and synchronization issues in such scenarios are desirable for 

further study. 

For uncoded MIMO-OFDM transmissions, a vector RLS-based joint channel esti-

mation and synchronization scheme was proposed in Chapter 4. Hence, an optimal 
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pilot design for the joint CIR, CFO and SFO estimation in MIMO scenarios would be 

an interesting issue for further investigation. 

Unlike Chapters 3 and 4 with investigations in uncoded transmissions, Chapter 5 

deals with coded MIMO-OFDM systems. Specifically, a turbo joint channel estima-

tion, synchronization and decoding scheme was proposed for convolutionally coded 

MIMO-OFDM systems. As a result, an overall design of coded MIMO-OFDM syste-

ms using the turbo principle to optimize the receiver performance is a very interesting 

and practical research topic for future study.  

Finally, this thesis has suggested a variety of research issues in FH and OFDM 

systems for broadband wireless communications. After obtaining the experimental 

performance of the proposed approaches for OFDM systems via the ongoing FPGA 

hardware implementation, we will study the mentioned suggestions of future work 

and hope that more feasible and higher performance algorithms would be developed 

for channel impairment mitigation in broadband wireless OFDM transmissions.       
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Appendix A  

 Blind ML Estimation of the Desired Signal’s 

Channel Gains 

In the unjammed portion of the hop, a joint ML estimation of 0d , α1 and α2 can be 

obtained from  

       { }
1 2 0

2 2
 1 2 0 1 1 0 2 2 0 0, ,

ˆˆ ˆ, , arg min ( ) ( ) , 0,1,..., 1
d

d d d d M
α α

α α α α= − + − = −r s r s .   (A.1) 

Differentiating 2 2
1 1 0 2 2 0( ) ( )d dα α− + −r s r s  with respect to α1 and α2, respectively, 

and setting the results to zero, we have 

                                          0
2

0

( )

( )

H
p

p

d

d
α =

s r

s
, p =1, 2.                                                 (A.2) 

Substituting (A.2) into (A.1) then yields   

   
⎪⎭

⎪
⎬
⎫
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⎪
⎨
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−=−+−= 1,...,1,0,
)(

)()(
)(

)()(minargˆ
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2

2
0

020
2

2

2
0

010
10

0

Md
d

dd
d

ddd
HH

d s
srsr

s
srsr .   (A.3) 

Based on the estimate of transmitted symbol 0d̂ , the blind ML estimates of α1 and α2 

are thus  

                                                    0
2

0

ˆ( )
ˆ

ˆ( )

H
p

p

d

d
α =

s r

s
, p =1, 2.                                       (A.4) 
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Appendix B 

  Beamforming Structure for Nulling the 

Desired Signal 

Based on the estimates of the desired signal’s channel gains 2,1,ˆ =ppα , a simple 

beamforming structure with a weighting vector of [ ]T12 ˆˆ  αα −=g  can be employed 

to null a signal with these gains.  Specifically, the output from this beamforming is 

                                                   n
T

ny rg= ,                                               (B.1) 

where [ ]Tnnn rr ,2,1=r  has forms given by (2.4).  Thus, if the estimated channel 

gains 2,1,ˆ =ppα  are indeed closed to the actual channel gains 2,1, =ppα , the 

desired signal will be closed to being perfectly or completely rejected.   
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Appendix C 

 Proof of Inequality Γ2(d) < Γ1(d) 

Substituting (2.16) and (2.17) into (2.18) and (2.19) yields   

( )
)()(2

)()(4)()()()(
)(

12

2
12

22
1

2
2

2
1

2
2

1
dd

dddddd
d H
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zz
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=ξ ,           (C.1) 

and 

( )
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)()(4)()()()(
)(

12

2
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1

2
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2
1

2
2

2
dd

dddddd
d H

H

zz

zzzzzz +−+−
=ξ .          (C.2) 

Substituting (C.1) and (C.2) into the numerator of (2.21), respectively, we deduce 

               
( )

2
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)(1
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+=Γ

zzzz
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and 

                
( )

2
2

2
12

22
1

2
22

12
)(1

)()(4)()(
)()(

d

dddd
dd

H

ξ+

+−
−=Γ

zzzz
z .             (C.4) 

As can be observed from (C.3) and (C.4), it is obvious that Γ2(d) is always smaller 

than Γ1(d).        
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APPENDIX  D 

Derivation of Cramér- Rao Lower Bound for 

Join Estimation of CIR, CFO and SFO in 

Chapter 3 

The Cramér- Rao lower bounds [39] of the estimated parameters can be determined 

by 

                                                 ( ))()( 1 ωFω −= diagCRLB ,                                     (D.1) 

where the vector of true parameter values [ ]120 ,..., += Lωω  ω  with { }ll hRe=ω , 

{ }lLl hIm=+ω , ηωεω == +122 , LL   , for )1(,...,1,0 −= Ll , and F is the Fisher informati- 

on matrix.  

The (i,j)-th entry of the Fisher information matrix can be obtained by 

                                                   
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

∂∂
Λ∂

−=
ji

ji EF
ωω

2

, ,                                          (D.2) 

where Λ is the log-likelihood function of received signal samples used for estimation. 

It is assumed that the noise samples, )(nwm , are independent complex-valued zero-

mean Gaussian random variable with variance of 2σ . As a result, the log-likelihood 

function of received signal samples is given by                             

( ) ( )
22 2 22 11 1

o ,2
1 0 2

1 1 ( ) ( )
S

m m
k kM KN j N n j n j N

N N N
m n m

m n k K
r e X k H k e e

N
η

π π πε η η

σ

−− + +

= = =−

Λ = Λ − −∑∑ ∑ , (D.3) 

where Λo is a constant and SM is the number of OFDM symbol used for estimation.  

As a result, the elements of the Fisher information matrix, namely F, are obtained by 

taking expectation of the following second-order partial derivatives 
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Appendix E 

Derivation of Cramér- Rao Lower Bound for 

Join Estimation of CIR, CFO AND SFO in 

Chapter 4 

As shown in (4.5), the received subcarrier ik in frequency domain at the v-th receive 

antenna can be expressed by 

                        )()()()( ,
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u
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imv kWkHkXekY

t

ii
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δ

επ

.        (E.1) 

Note that ICI components in (E.1) can be assumed to be additive and Gaussian 

distributed and to be absorbed in )(, imv kW  [12], [31].  

By collecting K subcarriers in each receive antenna, the resulting rKN  sub-carriers 

from rN  receive antennas can be represented in the vector form as follow, 
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rrr NNN ),( ηε                               (E.2) 
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Based on (E.3), the Fisher information matrix [39] can be computed by      
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After some manipulation, the Fisher information matrix can be rewritten by 
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By applying a lemma for the inverse of partitioned matrices [48, Appendix A], the 

inverse of the Fisher information matrix can be determined by 

( ) ( )
( ) ( ) ⎥

⎥
⎦

⎤

⎢
⎢
⎣

⎡

−−−

−−−= −−−−−

−−−−−
−

1
12

1
112122

1
1121

1
12

1
112122

1
2212

1
21

1
221211

1
21

1
221211

2
1

2 MMMMMMMMMM

MMMMMMMMMMM wσ

,  (E.7) 

Therefore, the Crame Rao lower bound of estimated parameters ω , )CRLB(ω , can be 

determined by 

                                                      ( )1)( −= Mω diagCRLB .                                     (E.8)  
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