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SUMMARY 

Rapidly increasing competition between port container terminals, especially between 

geographically close ones, has forced them to improve their efficiency. Since berths and 

quay cranes are the interface between sea side and land side in any port container 

terminal, their operations significantly influence the efficiency of port container terminals. 

This research focused on optimizing berth allocation and quay crane scheduling in port 

container terminals to enhance their efficiency. In this research, analytical models, 

approximation algorithms, genetic algorithms were proposed to ameliorate berth and 

quay crane operations. 

 

A quay crane scheduling with non-crossing constraints problem was first investigated in 

this thesis. A mixed integer programming model was provided for this problem that is 

NP-complete in nature. Therefore, there exists no polynomial time algorithm for its exact 

solution unless P=NP. An approximation algorithm and a genetic algorithm were then 

developed to obtain its near optimal solutions. In addition, worst-case analysis for the 

approximation algorithm was performed and computational experiments were conducted 

to examine the proposed model and solution algorithms. The results showed that both the 

approximation algorithm and the genetic algorithm were effective and efficient in solving 

the problem. 

 

A quay crane scheduling with safety distance and non-crossing constraints problem was 

then addressed. A mixed integer programming model was built for this problem which 



 viii

was proved to be NP-complete. For obtaining its near optimal solutions, an 

approximation algorithm based on a dynamic programming and a genetic algorithm were 

proposed. Worst-case analysis for the approximation algorithm and computational 

experiments for examining the proposed model and solution algorithms were performed. 

The results showed that both the approximation algorithm and the genetic algorithm were 

effective and efficient in solving the problem. 

 

In the third part of this thesis, a quay crane scheduling with handling priority and non-

crossing constraints problem was studied. This problem was formulated as a mixed 

integer programming model and was proved to be NP-complete. An approximation 

algorithm was proposed to obtain its near optimal solution. Moreover, worst-case 

analysis for the approximation algorithm was performed and computational experiments 

were conducted. The results showed that the approximation algorithm was effective and 

efficient in solving the problem. 

 

Finally, an integrated discrete berth allocation and quay crane scheduling problem was 

discussed. A mixed integer programming model including two parts was proposed for 

this problem which was proved to be NP-complete. A genetic algorithm containing an 

approximation algorithm for quay crane scheduling was designed for obtaining its near 

optimal solutions. The computational results showed that the proposed genetic algorithm 

was effective and efficient in solving the problem. 

 



 ix

This research considered quay crane scheduling with non-crossing, safety distance, and 

handling priority, which may contribute to the theory of parallel machine scheduling. The 

proposed scheduling methods in this research may improve the efficiency of berth and 

quay crane operations in port container terminals. Furthermore, results of this research 

should enhance our understanding of combined optimization of berth allocation and quay 

crane scheduling. This knowledge may further increase the overall efficiency of port 

operations when comparing to optimizing berth allocation or quay crane scheduling 

individually. 
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CHAPTER 1 INTRODUCTION 

The proportion of cargo transported by containers has steadily increased due to the 

advantages of container transport such as less product packaging, less damaging, higher 

productivity, and easier transshipment between different modes (Vis and de Koster, 

2003). In container transport, port container terminals play a very important role as they 

are the interface between sea container transport and land container transport. However, 

the competition between port container terminals has considerably increased, caused by 

huge growth rates on major maritime container routes (Günther and Kim, 2006). To 

succeed in the fierce competition, a crucial competitive advantage is the high efficiency 

of operations in port container terminals (Steenken et al., 2004). Therefore, many studies 

on port operations have been conducted to enhance the efficiency of port container 

terminals. The rest of the chapter provides an overview of port operations, literature 

review on berth allocation, literature review on quay crane scheduling, the research 

objectives, and ends with the organization of the thesis. 

 

1.1 OVERVIEW OF PORT OPERATIONS 

When a container ship is moored in its allocated berth, the assigned quay cranes start to 

unload containers from the container ship. The typical operation flow of unloading a 

container is described as follows. A quay crane unloads a container from the container 

ship to a container truck. The container truck then transports the container to the assigned 

location in the yard. A yard crane finally loads the container from the container truck to 

the designated slot. The process of loading a container to a container ship is reversed. 
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Thus, port operations generally consist of berth allocation, quay crane scheduling, ship 

stowage planning, container truck scheduling, yard storage planning, and yard crane 

scheduling. 

 

Berth allocation and quay crane scheduling significantly influence the efficiency of port 

operations since berths and quay cranes are the interface between sea side and land side 

in any port container terminal. Singapore Container Terminal is one of the busiest 

container terminals in terms of container throughput in the world. However, in order to 

succeed in the intense competition, Port of Singapore Authority attempts to optimize their 

berth and quay crane operations. Therefore, the emphasis of this thesis is on berth 

allocation and quay crane scheduling problems to enhance the efficiency of port container 

terminals. 

 

1.1.1 Overview of Berth Allocation 

Berth allocation is to determine the berthing time and position of every container ship 

considering some factors including the length and draft of each container ship, the arrival 

time of each container ship, the number of containers to be unloaded and loaded, and the 

storage location of outbound containers to be loaded onto the corresponding container 

ship. As shown in Figure 1.1, the entire wharf in a port container terminal is partitioned 

into several berths and a container ship is moored within the allocated berth in practice. 

This leads to the discrete berth allocation problem (Imai et al., 2005). However, 

sometimes container ships are allowed to be moored across the berth boundary to 
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enhance the efficiency of berth usage which leads to the continuous berth allocation 

problem (Imai et al., 2005). 

 

Figure 1.1 An Illustration of Berth Allocation 

 

1.1.2 Overview of Quay Crane Scheduling 

As illustrated in Figure 1.2, a container ship is typically divided longitudinally into ship 

bays that consist of holds and decks. Holds are about eight containers deep and containers 

can also be stacked (about six high) on decks. Quay cranes are operated on the same 

tracks and thus cannot cross over each other. Furthermore, only one quay crane can work 

on a ship bay at any time and a quay crane usually moves to the next assigned ship bay 

until it completes the current one. The average processing time of a ship bay is about 

three hours and the travel time of a quay crane between two ship bays is about one 

minute. 

 

In practice, there are requirements of maintaining safety distance between any two quay 

cranes in operation. For example, as a rule two adjacent operating quay cranes must be 

apart from each other by one ship bay. Moreover, different ship bay has different 

Berth 3 Berth 1 

Land side 

Berth 2

Ship 5 Ship 2 Ship 7 

Sea side 
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handling priority. For instance, according to a survey of port container terminals in China, 

in practice some port operators prefer to assign a high handling priority to a ship bay with 

long processing time. 

1 2 ……3

Ship bay Container ship

B-1 B

The front of the 
container ship

The tail of the 
container ship

1 2 …… KQuay 
crane

Land side

Sea side K: The number of quay cranes
B: The number of ship bays

Safety 
distance

 
Figure 1.2 An Illustration of Quay Crane Scheduling 

 

Quay crane scheduling is to determine a handling sequence of ship bays for quay cranes 

assigned to a container ship in fulfilling pre-specified objectives and satisfying various 

constraints such as non-crossing, safety distance, and handling priority of every ship bay. 

Table 1.1 illustrates a feasible quay crane schedule for the instance in which a container 

ship with ten ship bays is handled by two quay cranes and the safety distance between the 

two quay cranes is one ship bay. The handling priority of Ship Bay 3 is higher than Ship 

Bay 2, and the handling priority of Ship Bay 4 is higher than Ship Bay 10. The handling 
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sequence of ship bays for every quay crane, the processing time of each ship bay, and the 

time schedule for handling every ship bay are shown in Table 1.1. 

Table 1.1 An Illustration of a Quay Crane Schedule 
Quay Crane 1 Quay Crane 2 

Operation 
Sequence 

Ship Bay 
Number 

Processing 
Time of a 
Ship Bay 

(min) 

Completion 
Time of the 
Quay Crane 

(min) 

Operation 
Sequence 

Ship Bay 
Number 

Processing 
Time of a 
Ship Bay 

(min) 

Completion 
Time of the 
Quay Crane 

(min)
1 1 98 98 1 3 81 81 
2 2 119 217 2 5 103 184 
3 4 76 293 3 8 214 398 
4 6 137 430 4 10 93 491 
5 7 65 495     
6 9 81 576     

 

1.2 LITERATURE REVIEW ON BERTH ALLOCATION 

1.2.1 Discrete Berth Allocation Problem 

A discrete berth allocation problem was addressed by Lai and Shih (1992). They 

employed a discrete event simulation model to analyze four berth allocation policies 

based on the data from a major port container terminal in Hong Kong. The three policies 

proposed by Lai and Shih (1992) were dominated by first-come-first-served rule. The 

simulation results showed that compared with the current berth allocation policy, the 

three proposed policies improved the operational efficiency. In fact, the first-come-first-

served rule is questionable as it cannot maximize the efficiency of port container 

terminals. It is possible that the efficiency of port container terminals may be further 

enhanced if the first-come-first-served rule is not considered. 

 

Imai et al. (1997) assumed that the berth allocation was made for container ships already 

arrived before a given planning horizon that was a static berth allocation problem. Imai et 
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al. (1997) did not take into account the first-come-first-served rule which may cause the 

dissatisfaction of container ships with the order of service. Thus, their model had two 

objectives: the minimization of total service time (waiting time plus handling time) of 

every container ship, and the minimization of the dissatisfaction of container ships with 

the order of service. A weighting method was developed by Imai et al. (1997) to identify 

a set of non-inferior solutions for the problem. Nevertheless, the assumption of static 

berth allocation may not always hold in practice. It is possible that some container ships 

may arrive at a port container terminal after the beginning time of the planning horizon. 

 

Imai et al. (2001) assumed that some container ships arrived at the port container terminal 

after the beginning time of the planning horizon that was a dynamic berth allocation 

problem. Their objective was to minimize total service time of every container ship. A 

sub-gradient optimization procedure based on the Lagrangian relaxation of the original 

problem was proposed by Imai et al. (2001) to obtain near optimal solutions. Nishimura 

et al. (2001) extended the dynamic berth allocation problem proposed by Imai et al. (2001) 

with considerations of water depth, berth length, container ship draft, and container ship 

length. A genetic algorithm was developed by Nishimura et al. (2001) to obtain near 

optimal solutions. Computational experiments showed that compared with the sub-

gradient optimization procedure based on Lagrangian relaxation (Imai et al., 2001), the 

genetic algorithm was effective. Finally, Nishimura et al. (2001) used actual data from 

Kobe port during one month of February 1996 to test the proposed genetic algorithm and 

the results showed that the genetic algorithm seemed adaptable to real world applications. 

Imai et al. (2003) augmented the dynamic berth allocation problem proposed in 2001 by 
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considering service priority of every container ship. Imai et al. (2003) first attempted to 

adopt a sub-gradient optimization procedure based on Lagrangian relaxation to solve the 

problem, but enormous computational effort was expected. Then, they employed a 

genetic algorithm to obtain near optimal solutions. Computational experiments were 

conducted by Imai et al. (2003) to show the importance of considering service priority of 

every container ship. In reality, the handling time of a container ship at a berth is related 

to its quay crane schedule, but the above mentioned research work did not take into 

account the relationship between berth allocation and quay crane scheduling. Hence, the 

incorporation of quay crane scheduling into berth allocation should be further 

investigated. 

 

1.2.2 Continuous Berth Allocation Problem 

Another continuous berth allocation problem was discussed by Lim (1998). His objective 

was to find the exact location of each container ship in the berth and to minimize the 

maximum amount of space used in the berth at any time. Lim (1998) showed that the 

problem is NP-complete, transformed the problem to a restricted form of the two-

dimensional packing problem, and used a graph theoretical representation to capture the 

problem. A heuristic was proposed by Lim (1998) for the problem and experimental 

results showed that the heuristic performed well on historical test data from the Port of 

Singapore Authority for six months. However, Lim (1998) implied that container ships 

could be berthed immediately when they arrived at a port container terminal, but this may 

not always be possible. When the port container terminal is busy, it is likely that some 

container ships may have to wait for available berths. 



CHAPTER 1: INTRODUCTION 

 8

 

Li et al. (1998) studied a static berth allocation problem which was to minimize the 

makespan of the schedule (the latest completion time among all container ships). Li et al. 

(1998) assumed that a larger container ship required a longer processing time, preemption 

of container ships was not allowed, and the processing time of a container ship was 

independent of the other container ships processed at the same time. Li et al. (1998) 

considered three cases: the first case assumed that the physical position of any container 

ship could not be changed during the processing of the container ship; the second case 

assumed that the physical position of the container ships could be changed at any time; 

and the third case assumed that the berth was only partially available for an initial time 

period for the non-fixed position case. Since these three cases were all strongly NP-hard, 

they developed generalized First-Fit-Decreasing heuristics to approximately solve them 

and performed worst-case analysis for the proposed algorithms. Computational 

experiments showed that the heuristics developed by Li et al. (1998) were effective in 

producing a near optimal solution. Guan et al. (2002) addressed a similar static berth 

allocation problem to Li et al. (1998), but with a different objective of minimizing the 

total weighted completion time of container ships. Guan et al. (2002) showed that the 

proposed problem was NP-hard, designed a heuristic for the problem, and performed 

worst-case analysis for the heuristic. Moreover, Guan and Cheung (2004) extended the 

static berth allocation problem proposed by Guan et al. (2002) to a dynamic berth 

allocation problem. Their objective was to minimize total weighted service time of every 

container ship. Guan and Cheung (2004) developed a tree search procedure for obtaining 

the optimal solution and proposed a composite heuristic for solving large size problems. 
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Li et al. (1998), Guan et al. (2002), and Guan and Cheung (2004) all assumed that a 

larger container ship required a longer processing time, but this assumption may not 

always hold in practice. It is probable that some large container ships may not have much 

unloading and loading work in a port container terminal. 

 

Park and Kim (2002) investigated a dynamic berth allocation problem which was to 

minimize the penalty costs resulting from delays in the departures of container ships and 

the additional handling costs resulting from non-optimal locations of container ships in a 

wharf. Park and Kim (2002) developed a sub-gradient optimization technique. 

Furthermore, Kim and Moon (2003) proposed a simulated annealing algorithm for the 

same problem as Park and Kim (2002). However, it may be difficult to define the best 

berthing location of each container ship, the additional handling cost resulting from non-

optimal location of each container ship, and the penalty cost resulting from delay in the 

departure of each container ship in practice. Hence, the aforementioned research may not 

be applied in port container terminals easily. 

 

Imai et al. (2005) addressed a dynamic berth allocation problem which assumed that the 

handling time of a container ship depended on its berthing location. Their objective was 

to minimize the total service time of all container ships. Imai et al. (2005) developed a 

heuristic algorithm with two stages for the proposed problem. Nonetheless, minimization 

of the total service time may be for container ships rather than for port container 

terminals. Thus, if the emphasis is on the efficiency of port container terminals, 

minimization of the makespan may be better than minimization of the total service time. 
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Moorthy and Teo (2006) studied a dynamic berth allocation problem which considered 

uncertainties of the arrival time and processing time of container ships. Their objective 

was to minimize the expected delays and the connectivity cost. Moorthy and Teo (2006) 

proposed a sequence pair based simulated annealing algorithm to solve the problem. 

However, it may be difficult to define the connectivity cost in reality. 

 

1.3 LITERATURE REVIEW ON QUAY CRANE SCHEDULING 

A static and a dynamic quay crane scheduling problem for multiple container ships were 

studied by Daganzo (1989). The objective was to serve all these container ships, while 

minimizing their aggregate cost of delay. Exact and approximate solution methods were 

presented in Daganzo (1989). Furthermore, Peterkofsky and Daganzo (1990) developed a 

branch and bound solution method for the static quay crane scheduling problem. 

Nevertheless, both papers did not consider the non-crossing constraints between quay 

cranes, which means the quay cranes may unrealistically cross over each other. 

 

Liu et al. (2006) augmented the dynamic quay crane scheduling problem proposed by 

Daganzo (1989) by taking into account the non-crossing and safety distance constraints. 

Their objective was to minimize the maximum relative tardiness of multiple container 

ships. Liu et al. (2006) applied a heuristic decomposition approach to solve the problem. 

However, they did not consider the handling priority of every ship bay, which means the 

quay crane schedule obtained from their method may not always fulfill the operational 

requirements. 
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Lim et al. (2004a) discussed a quay crane scheduling problem for single container ship. 

Lim et al. (2004a) assumed that containers from a given area on a container ship were a 

job and there was a profit value when a job was assigned to a quay crane. Their objective 

was to find a crane-to-job matching which maximized the total profit. Dynamic 

programming algorithms, a probabilistic tabu search, and a squeaky wheel optimization 

heuristic were proposed by Lim et al. (2004a) for solving the problem. Nonetheless, it 

may be difficult to define a profit value associated with a crane-to-job assignment in 

practice, and hence this research may not be applied in port container terminals easily. 

 

Kim and Park (2004) addressed a quay crane scheduling problem for single container 

ship. Kim and Park (2004) defined a task as an unloading or loading operation for a 

collection of adjacent slots on single container ship. Their objective was to minimize the 

weighted sum of the makespan of handling the container ship (that was the latest 

completion time among all tasks) and the total completion time of all quay cranes. Kim 

and Park (2004) proposed a branch and bound method and a heuristic algorithm called 

‘greedy randomized adaptive search procedure’ for the solution. Moreover, Moccia et al. 

(2006) reformulated the same problem as Kim and Park (2004) and developed a branch-

and-cut algorithm to solve small size instances exactly. Nonetheless, both papers did not 

discuss computational complexity of the studied problem to justify why heuristic 

algorithms were necessary. 
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Ng and Mak (2006) discussed a quay crane scheduling problem for single container ship. 

Their objective was to minimize the makespan of handling the container ship (that was 

the latest completion time among all ship bays). A heuristic was proposed by Ng and 

Mak (2006) for solving this problem. Zhu and Lim (2006) provided a different 

mathematical model, a branch-and-bound algorithm, and a simulated annealing algorithm 

for the same problem as Ng and Mak (2006). Moreover, Lim et al. (2004b) devised a 

highly optimized backtracking scheme and a simulated annealing algorithm with a 

stochastic neighborhood, and Lim et al. (2004c) proposed a dynamic programming 

algorithm and approximation algorithms for solving the same problem as Zhu and Lim 

(2006). However, the aforementioned research work did not consider the safety distance 

constraints between quay cranes, which means the quay crane schedule obtained from 

their methods may not always be feasible in practice. 

 

Park and Kim (2003) proposed an integer programming model for scheduling berth and 

quay cranes. A two-phase solution procedure was developed for solving the problem. In 

the first phase, the berthing position and time of each container ship as well as the 

number of quay cranes assigned to each container ship at each time segment were 

determined by using a sub-gradient optimization technique. The second phase determined 

which quay crane was assigned to which container ship at each time segment by using a 

dynamic programming technique. Park and Kim (2003) assumed that the handling time 

of a container ship was inversely proportional to the number of quay cranes assigned to 

the container ship, but this assumption may not be true. Due to the non-crossing and 

safety distance constraints between quay cranes, the relationship between the handling 
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time of a container ship and the number of quay cranes assigned to the container ship 

may be nonlinear. 

 

In sum, the three vital influential factors in practical quay crane scheduling, which are 

non-crossing, safety distance, and handling priority of each ship bay, were not 

investigated sufficiently in the existing studies on quay crane scheduling. In reality, the 

handling time of a container ship at a berth is related to its quay crane schedule. However, 

few studies on integrated berth allocation and quay crane scheduling were conducted. 

 

1.4 RESEARCH OBJECTIVES 

The main objectives of this thesis were to: 

1. Formulate the quay crane scheduling with non-crossing constraints problem; 

discuss computational complexity of the proposed problem; propose an 

approximation algorithm for the problem and perform worst-case analysis for the 

proposed approximation algorithm; develop a genetic algorithm to obtain near 

optimal solutions for the problem; conduct computational experiments to examine 

the proposed mathematical model and solution methods. 

2. Formulate the quay crane scheduling with safety distance and non-crossing 

constraints problem; discuss computational complexity of the proposed problem; 

propose an approximation algorithm for the problem and perform worst-case 

analysis for the proposed approximation algorithm; develop a genetic algorithm to 

obtain near optimal solutions for the problem; conduct computational experiments 

to examine the proposed mathematical model and solution methods. 
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3. Formulate the quay crane scheduling with handling priority and non-crossing 

constraints problem; discuss computational complexity of the proposed problem; 

propose an approximation algorithm for the problem and perform worst-case 

analysis for the proposed approximation algorithm; conduct computational 

experiments to examine the proposed mathematical model and solution method. 

4. Formulate the integrated discrete berth allocation and quay crane scheduling 

problem; discuss computational complexity of the proposed problem; develop a 

genetic algorithm to obtain near optimal solutions for the problem; conduct 

computational experiments to examine the proposed mathematical model and 

solution method. 

 

Although continuous berth allocation can enhance the efficiency of berth usage, the 

incorporation of quay crane scheduling into continuous berth allocation is beyond the 

scope of this thesis. This is due to the fact that most of port container terminals adopt 

discrete berth allocation for safety and convenience. 

 

This thesis considers quay crane scheduling with non-crossing, safety distance, and 

handling priority, which may contribute to the theory of parallel machine scheduling. The 

proposed scheduling methods in this thesis may improve the efficiency of berth and quay 

crane operations in port container terminals. Furthermore, results of this thesis should 

enhance our understanding of combined optimization of berth allocation and quay crane 

scheduling. This knowledge may further increase the overall efficiency of port operations 

when comparing to optimizing berth allocation or quay crane scheduling individually. 
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1.5 ORGANIZATION OF THE THESIS 

This thesis consists of six chapters. 

 

Chapter 1 is the introductory chapter which provides an overview of port operations, 

literature review on berth allocation, literature review on quay crane scheduling, the 

research objectives, and ends with the organization of the thesis. 

 

Chapter 2 provides a mixed integer programming model for the quay crane scheduling 

with non-crossing constraints problem that is NP-complete in nature. Therefore, there 

exists no polynomial time algorithm for its exact solution unless P=NP. An 

approximation algorithm and a genetic algorithm are then developed to obtain its near 

optimal solutions. In addition, worst-case analysis for the approximation algorithm is 

performed and computational experiments are conducted to examine the proposed model 

and solution algorithms. 

 

Chapter 3 presents a mixed integer programming model for the quay crane scheduling 

with safety distance and non-crossing constraints problem which is proved to be NP-

complete. For obtaining its near optimal solutions, an approximation algorithm based on 

a dynamic programming and a genetic algorithm are proposed. Worst-case analysis for 

the approximation algorithm and computational experiments for examining the proposed 

model and solution algorithms are performed. 
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Chapter 4 provides a mixed integer programming model for the quay crane scheduling 

with handling priority and non-crossing constraints problem that is proved to be NP-

complete. An approximation algorithm is proposed to obtain its near optimal solution. 

Moreover, worst-case analysis for the approximation algorithm is performed and 

computational experiments are conducted. 

 

Chapter 5 presents a mixed integer programming model including two parts for the 

integrated discrete berth allocation and quay crane scheduling problem which is proved to 

be NP-complete. A genetic algorithm containing an approximation algorithm for quay 

crane scheduling is designed for obtaining its near optimal solutions and computational 

experiments for examining the genetic algorithm are performed. 

 

Chapter 6 provides a conclusion of this thesis. The recommendations for future research 

and the contributions of this thesis are also presented. 
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CHAPTER 2 QUAY CRANE SCHEDULING WITH NON-

CROSSING CONSTRAINTS 

As shown in previous discussions, quay cranes are operated on the same tracks and thus 

they cannot cross over each other. To consider this vital influential factor, this chapter 

addresses the Quay Crane Scheduling with Non-Crossing constraints Problem 

(QCSNCP). 

 

2.1 MODEL FORMULATION 

This chapter proposes a mixed integer programming model for QCSNCP. According to 

the configuration of container ships, one single container ship is divided into ship bays. 

Figure 1.2 shows that both quay cranes and ship bays are arranged in an increasing order 

from the front to the tail of the container ship. The following assumptions are imposed in 

formulating the QCSNCP: 

1. Quay cranes are operated on the same tracks and thus cannot cross over each other. 

2. Only one quay crane can work on a ship bay at a time until it completes the ship bay. 

3. Compared with the processing time of a ship bay by a quay crane, the travel time of a 

quay crane between two ship bays is small and hence it is not considered. 

 

In order to formulate the QCSNCP, the following parameters and decision variables are 

introduced: 

Parameters: 
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K  the number of quay cranes; 

B  the number of ship bays; 

bp  the processing time of ship bay b  by a quay crane (1 b B≤ ≤ ); 

M  a sufficiently large positive number (constant); 

Decision variables: 

,b kX  1, if ship bay b  is handled by quay crane k ; 0, otherwise (1 ,  1b B k K≤ ≤ ≤ ≤ ); 

,b bY ′  1, if ship bay b  finishes no later than ship bay b′  starts; 0, otherwise 

(1 ,  ,  b b B b b′ ′≤ ≤ ≠ ); 

bC  the completion time of ship bay b  (1 b B≤ ≤ ). 

 

The QCSNCP can be formulated as follows: 

Minimize: 

max  bb
C           (2.1) 

Subject to: 

0   1b bC p b B− ≥ ∀ ≤ ≤         (2.2) 

,
1

1   1
K

b k
k

X b B
=

= ∀ ≤ ≤∑         (2.3) 

,( ) 0   1 ,  ,  b b b b bC C p Y M b b B b b′ ′ ′ ′ ′− − + > ∀ ≤ ≤ ≠      (2.4) 

,( ) (1 ) 0   1 ,  ,  b b b b bC C p Y M b b B b b′ ′ ′ ′ ′− − − − ≤ ∀ ≤ ≤ ≠     (2.5) 

, , , ,
1 1

( ) 1   1
K K

b b b b b k b k
k k

M Y Y kX k X b b B′ ′ ′ ′
′= =

′ ′+ ≥ − + ∀ ≤ < ≤∑ ∑     (2.6) 

, ,,  0 or 1   1 ,  ,  ,  1b k b bX Y b b B b b k K′ ′ ′= ∀ ≤ ≤ ≠ ∀ ≤ ≤     (2.7) 
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The objective function (2.1) minimizes the makespan of handling one single container 

ship, which is the latest completion time among all ship bays. Constraints (2.2) define the 

property of the decision variable bC . Constraints (2.3) ensure that every ship bay must be 

performed only by one quay crane. Constraints (2.4) and (2.5) define the properties of 

decision variables ,b bY ′ : Constraints (2.4) indicate that , 1b bY ′ =  if b b bC C p′ ′≤ − , which 

means , 1b bY ′ =  when ship bay b  finishes no later than ship bay b′  starts; Constraints (2.5) 

indicate that , 0b bY ′ =  if b b bC C p′ ′> − , which means , 0b bY ′ =  when ship bay b  finishes 

after ship bay b′  starts. Finally, crossing between quay cranes can be avoided by 

imposing Constraints (2.6). Suppose that ship bays b  and b′  are performed 

simultaneously and b b′< , and this means that , , 0b b b bY Y′ ′+ = . Note that both quay cranes 

and ship bays are arranged in an increasing order from the front to the tail of the 

container ship. Thus, if quay crane k  handles ship bay b  and quay crane k ′  handles ship 

bay b′ , then 1k k′+ ≤ . For example, Ship Bay 3 and Ship Bay 8 are performed 

simultaneously, and thus 3,8 8,3 0Y Y+ = . If Ship Bay 3 is assigned to Quay Crane 4 and 

Ship Bay 8 is assigned to Quay Crane 2, Constraint (2.6) 0 4 2 1 3≥ − + =  does not satisfy. 

This means that Constraint (2.6) does not allow the aforementioned quay crane schedule 

to avoid the crossing between quay cranes. 

 

2.2 PROOF OF NP-COMPLETENESS 

This chapter discusses computational complexity of the QCSNCP to justify why heuristic 

algorithms are adopted. As well known, if a problem is proved to be NP-complete, then 
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there exists no polynomial time algorithm for its exact solution unless P=NP. Hence 

heuristic algorithms are needed to obtain near optimal solutions for the problem. In this 

chapter, the proposed QCSNCP is proved to be NP-complete. 

 

With respect to computational complexity, the decision version of a problem is as hard as 

the corresponding optimization version; the decision version of a problem has a natural 

and formal counterpart, which is a suitable object to be studied in a mathematically 

precise theory of computation. Consequently the theory of NP-completeness is designed 

to be applied only to the decision version (Garey and Johnson, 1979). The optimization 

version of the QCSNCP is presented in Section 2.1, and its decision version is defined as 

follows: 

Parameter: 

Z +  the set of positive integer. 

Instance: There are B  ship bays and K  quay cranes. The processing time of ship bay b  

by a quay crane is bp Z +∈  (1 b B≤ ≤ ). There is a given number C Z +∈ . 

Question: Is there a quay crane schedule for these K  quay cranes handling these B  ship 

bays such that no crossing between quay cranes exists and the makespan of the quay 

crane schedule C≤ ? 

 

The decision version of the QCSNCP is proved to be NP-complete as the following four 

steps: 

Theorem 2.1: QCSNCP is NP-complete. 

Proof: 
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Step 1: Showing that the QCSNCP is in NP. 

If a quay crane schedule for the QCSNCP is given, its feasibility can be checked in 

polynomial time. Checking whether the quay crane schedule satisfies the non-crossing 

constraints can be done in 2( )O B  time. Checking whether the makespan of the quay 

crane schedule C≤  can be done in ( )O B  time. Therefore, the QCSNCP is in NP. 

 

Step 2: Selecting a known NP-complete problem. 

PARTITION is a known NP-complete problem (Garey and Johnson, 1979). The decision 

version of the PARTITION is defined as follows: 

Instance: There are B  elements in a finite set 1 2{ , , , }BS s s s= ⋅⋅⋅ . For each element bs S∈ , 

bs Z +∈ and the sum of all elements 
b

b
s S

s D
∈

=∑ . 

Question: Can the set S  be partitioned into two disjoint subsets 1S  and 2S  such that 

1 2

/ 2
b b

b b
s S s S

s s D
∈ ∈

= =∑ ∑ ? 

 

A numerical example of the PARTITION is provided as follows. There is a finite set 

{95,71,136,114,192,75,123}S =  and the sum of all elements 806
b

b
s S

s D
∈

= =∑ . The 

answer to Question is Yes because the set S  can be partitioned into two disjoint subsets 

1 {95,123,71,114}S =  and 2 {75,136,192}S =  such that 
1 2

/ 2 403
b b

b b
s S s S

s s D
∈ ∈

= = =∑ ∑ . 

 

Step 3: Constructing a transformation from the PARTITION to the QCSNCP. 
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The PARTITION is transformed to the QCSNCP as follows. A QCSNCP instance 

corresponding to an arbitrary PARTITION instance has K  quay cranes and B K+  ship 

bays; the given number C  is set as D ; the following Equations (2.8)-(2.10) indicate the 

processing time of each ship bay which means the processing time of Ship Bay 1 and 

Ship Bay 2B +  is set as / 2D , the processing time of Ship Bay 2 to Ship Bay 1B +  is set 

as 1s  to Bs  respectively, and the processing time of Ship Bay 3B +  to Ship Bay B K+  is 

set as D . Figure 2.1 illustrates this transformation. It shows K  quay cranes, B K+  ship 

bays and the processing time of each ship bay. 

1 2 / 2Bp p D+= =          (2.8) 

1    1b bp s b B+ = ∀ ≤ ≤          (2.9) 

   3bp D B b B K= ∀ + ≤ ≤ +         (2.10) 

 

Figure 2.1 The Illustration of the Transformation from the PARTITION to the QCSNCP 

 

Then, it must be proved that the set S  can be partitioned into two disjoint subsets 1S  and 

2S  such that 
1 2

/ 2
b b

b b
s S s S

s s D
∈ ∈

= =∑ ∑  if and only if all the B K+  ship bays can be 

completed by K  quay cranes in D  time without crossing between quay cranes. 

 

… … Processing time of each bay 

Bay number 1 2 3 … B B+1 B+2 B+3 B+4 … B+K 

2
D 1s 2s 1Bs − Bs

2
D D D D

1 2 3 4 … KQuay crane 
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First, suppose that the set S  can be partitioned into two disjoint subsets 1S  and 2S  such 

that 
1 2

/ 2
b b

b b
s S s S

s s D
∈ ∈

= =∑ ∑ . Then K  quay cranes can be scheduled without crossing as 

follows: Quay Crane 1 handles all the Ship Bays 1b + , where 1bs S∈  and then Ship Bay 

1; Quay Crane 2 handles Ship Bay 2B + , and then all the Ship Bays 1b + , where 2bs S∈ ; 

Quay Cranes 3  to Quay Crane K  handle Ship Bay 3B +  to Ship Bay B K+ , 

respectively. Obviously, there is no crossing in this schedule and the latest completion 

time among all ship bays is D . Hence, if the set S  can be partitioned into two disjoint 

subsets 1S  and 2S  such that 
1 2

/ 2
b b

b b
s S s S

s s D
∈ ∈

= =∑ ∑ , all the B K+  ship bays can be 

completed by K  quay cranes in D  time without crossing between quay cranes. 

 

Conversely, suppose all the B K+  ship bays can be completed by K  quay cranes in D  

time without crossing between quay cranes, then all the K  quay cranes are fully utilized 

as the sum of the processing time of all the ship bays is KD . Thus, the completion time 

of each quay crane must be D . Furthermore, there is no crossing in the above mentioned 

quay crane schedule. According to it, the sum of the processing time of all the ship bays 

except Ship Bay 1 handled by Quay Crane 1 must be / 2D  and the sum of the processing 

time of all the ship bays except Ship Bay 2B +  handled by Quay Crane 2 must be / 2D  

as well, which means that the set S  can be partitioned into two disjoint subsets 1S  and 

2S  such that 
1 2

/ 2
b b

b b
s S s S

s s D
∈ ∈

= =∑ ∑ . Hence, if all the B K+  ship bays can be completed 

by K  quay cranes in D  time without crossing between quay cranes, the set S  can be 

partitioned into two disjoint subsets 1S  and 2S  such that 
1 2

/ 2
b b

b b
s S s S

s s D
∈ ∈

= =∑ ∑ . 
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Step 4: Proving that the above mentioned transformation is a polynomial 

transformation. 

The above mentioned transformation can be done in ( )O B K+  time. 

 

Therefore, PARTITION QCSNCP∝ , and the Theorem 2.1 is proved. 

 

2.3 AN APPROXIMATION ALGORITHM 

As proved in the previous section, QCSNCP is NP-complete, and thus there exists no 

polynomial time algorithm for the exact solution to QCSNCP unless P=NP. This section 

proposes an approximation algorithm to obtain its near optimal solution which is 

elaborated as follows: 

Parameters: 

AT  the average working time of a quay crane; 

k  quay crane number (1 k K≤ ≤ ); 

1 2,b b  ship bay number ( 1 21 b b B≤ ≤ ≤ ). 

Step 0: Set 1 21,  =1k b b= = . 

Step 1: Calculate 
1

/
B

b
b

AT p K
=

= ∑ . 

Step 2: If 
2

1

b

b
b b

p AT
=

≤∑ , then 2 2 1b b= + and repeat Step 2; if 
2

1

b

b
b b

p AT
=

>∑ , then go to Step 

3. 
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Step 3: If 
2 2

1 1

1b b

b b
b b b b

p AT p AT
−

= =

− > −∑ ∑  and 
2

1

1

/( 1)
b

b
b b

p AT AT K
−

=

− < −∑ , then assign Ship 

Bay 1b  to Ship Bay 2 1b −  to Quay Crane k , set 1 2 ,  1b b k k= = + , and go to Step 4; 

otherwise, assign Ship Bay 1b  to Ship Bay 2b  to Quay Crane k , set 

1 2 2 21,  1,  1b b b b k k= + = + = + , and go to Step 4. 

Step 4: If 1k K≤ − , then go to Step 2; if k K= , then assign Ship Bay 1b  to Ship Bay B  

to Quay Crane K  and go to End. 

 

Figure 2.2 shows a numerical example of the approximation algorithm, which has two 

quay cranes and six ship bays. 

Step 0: Set 1 21,  =1k b b= = . 

Step 1: Calculate 
1

/ (112+187+90+241+71+132)/2=416.5
B

b
b

AT p K
=

= =∑ . 

Step 2: Since 
3

1
112+187+90=389<416.5b

b
p AT

=

= =∑  and 

4

1
112+187+90+241=630 416.5b

b
p AT

=

= > =∑ , go to Step 3. 

Step 3: Since 
4 3

1 1
630 416.5 213.5 27.5 416.5 389b b

b b
p AT p AT

= =

− = − = > = − = −∑ ∑ and 

3

1
27.5 416.5 /( 1)b

b
p AT AT K

=

− = < = −∑ , assign Ship Bay 1 to Ship Bay 3 to Quay 

Crane 1, set 1 2 4,  1 2b b k k= = = + = , and go to Step 4. 

Step 4: Since 2k K= = , assign Ship Bay 4 to Ship Bay 6 to Quay Crane 2 and go to End. 
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Figure 2.2 A Numerical Example of the Approximation Algorithm 

 

Worst-case analysis for the approximation algorithm is performed as follows: 

Parameters: 

kc  the completion time of quay crane k  (1 k K≤ ≤ ); 

Z  the objective function value of the solution obtained by the approximation 

algorithm; 

Z ∗  the objective function value of the optimal solution to the QCSNCP. 

Theorem 2.2: / 2Z Z ∗ ≤ . 

Proof:  

Note that Z = max  kk
c . Assume the completion time of Quay Crane l  (1 1l K≤ ≤ − ) is the 

latest and Ship Bay i  to Ship Bay i j+  are assigned to Quay Crane l , and thus 

1 1...l i i i j i jZ c p p p p+ + − += = + + + + . According to the approximation algorithm, 

1 1 1 1... ...i i i j i i i j i jp p p AT p p p p+ + − + + − ++ + + ≤ ≤ + + + + , and hence i jZ AT p +≤ + . From 

the objective function (2.1) and the property of bC  that is  1b bC p b B≥ ∀ ≤ ≤ , it is clear 

that  1bZ p b B∗ ≥ ∀ ≤ ≤ . Therefore, i jp Z ∗
+ ≤ . Obviously AT Z ∗≤ , and thus 

Processing time of each ship bay 

Ship bay number 

Quay crane 

1 2 3 4 5 6 

1 2

112 187 90 241 13271
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2i jZ AT p Z ∗
+≤ + ≤ . On the other hand, since in Step 3 

2

1

1

/( 1)
b

b
b b

p AT AT K
−

=

− < −∑ , the 

completion time of Quay Crane K  2 2Kc AT Z ∗< ≤ . Thus, the Theorem 2.2 is proved. 

 

As shown in Figure 2.3, the error bound of 2 is tight for the proposed approximation 

algorithm in terms of the instance which has K  quay cranes and 2K  ship bays (assume 

3K > ). The processing time of the leftmost K  ship bays is all 1K −  and the processing 

time of the rightmost K  ship bays is all 1. The optimal schedule is to assign two ship 

bays to each quay crane, one from the leftmost K  ship bays and the other from the 

rightmost K  ship bays. The optimal makespan is K . The approximation algorithm is to 

assign Ship Bay 1 to Ship Bay 1K −  to Quay Crane 1 to Quay Crane 1K −  respectively 

and to assign Ship Bay K  to Ship Bay 2K  to Quay Crane K . The makespan obtained 

by the approximation algorithm is 2 1K − . Therefore, / (2 1) / 2Z Z K K∗ = − →  as 

K →∞ . 

 

Figure 2.3 A Tight Instance for the Approximation Algorithm 

 

1 1 1K-1K-1 K-1

…1 K K+1 … 2K 
Bay number 

Processing time of each bay 
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2.4 COMPUTATIONAL EXPERIMENTS FOR THE APPROXIMATION 

ALGORITHM 

A series of computational experiments are conducted to examine the performance of the 

proposed model and approximation algorithm. The Approximation Algorithm (AA) is 

coded in C++ and executed in a Pentium IV 1.7GHz PC with 256MB RAM. 

 

There are twenty random instances generated in which the processing time of a ship bay 

is randomly generated from a uniform distribution of (30,300)U . In order to evaluate the 

performance of the proposed approximation algorithm in solving the instance, the lower 

bound corresponding to the instance can be calculated by relaxing the non-crossing 

constrains. The mathematical model of the relaxed problem is formulated as follows: 

Minimize: 

max  kk
c           (2.11) 

Subject to: 

,
1

1   1
K

b k
k

X b B
=

= ∀ ≤ ≤∑         (2.12) 

,
1

   1
B

k b k b
b

c X p k K
=

≥ ∀ ≤ ≤∑         (2.13) 

, 0 or 1   1 ,  1b kX b B k K= ∀ ≤ ≤ ∀ ≤ ≤       (2.14) 

The objective function (2.11) minimizes the makespan of handling one single container 

ship without considering the non-crossing constraints. Constraints (2.12) ensure that 

every ship bay must be performed only by one quay crane. Constraints (2.13) define the 

property of the decision variable kc . The mathematical model of the relaxed problem can 
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be exactly solved by CPLEX (a commercial software for integer programming). The 

objective function value of the optimal solution to the relaxed problem obtained from 

CPLEX is the lower bound to the original problem. 

 

As observed in Table 2.1, the gaps between solutions obtained from the proposed 

approximation algorithm and lower bounds are all small (for example the maximum gap 

among the twenty instances is 11.18%, the minimum gap is 1.59%, and the average gap 

is 7.08%), and all the computational time of these twenty instances is within one second. 

Therefore, the proposed approximation algorithm is concluded to be effective and 

efficient in solving the proposed QCSNCP. 

Table 2.1 The Results of Computational Experiments for the Approximation Algorithm 
Experiment 

No 
Size 

(bays×cranes) 
Lower Bound AA Gap a (%) 

1 16×3 953 990 3.88  
2 16×4 754 766 1.59  
3 17×3 960 1044 8.75  
4 17×4 667 714 7.05  
5 18×3 964 1024 6.22  
6 18×4 723 795 9.96  
7 19×3 906 941 3.86  
8 19×4 861 933 8.36  
9 20×3 915 998 9.07  

10 20×4 686 727 5.98  
11 21×3 1134 1181 4.14  
12 21×4 850 937 10.24  
13 22×3 1453 1487 2.34  
14 22×4 1011 1116 10.39  
15 23×3 1312 1441 9.83  
16 23×4 984 1080 9.76  
17 24×3 1372 1476 7.58  
18 24×4 1216 1352 11.18  
19 25×3 1484 1532 3.23  
20 25×4 1113 1204 8.18  

a Gap = (solution obtained from the proposed AA - lower bound)×100/lower bound 
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2.5 A GENETIC ALGORITHM 

This chapter employs a genetic algorithm (GA) to obtain near optimal solutions to the 

QCSNCP. GA is a search algorithm based on the mechanisms of natural selection and 

genetics. In general, there are three common genetic operators in a GA: selection, 

crossover, and mutation. The procedure of the proposed GA is illustrated in Figure 2.4 

and the details of the proposed GA are elaborated as follows. 
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Figure 2.4 The Flowchart of the Proposed GA 
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2.5.1 Chromosome Representation and Decoding Procedure 

Parameter: 

BΔ  the largest integer /B K≤ . 

In this chapter, the position of each quay crane is measured in terms of the ship bay 

number. For example, Quay Crane 1 is on Ship Bay 1. The initial position of Quay Crane 

k  in the proposed GA is on Ship Bay 1 ( 1)k B+ − Δ  ( 1 k K∀ ≤ ≤ ). 

 

A chromosome of the GA represents a sequence of ship bays. Figure 2.5 provides a 

sample chromosome, in which a gene is a ship bay number. Based on the sequence of 

ship bays represented by the chromosome, a quay crane schedule can be constructed 

using the following procedure. 

 

Figure 2.5 An Illustration of the Chromosome Representation 

 

Step 1: Based on the current position of each quay crane, determine which quay cranes 

can handle the first unassigned Ship Bay b  in the chromosome without crossing other 

quay cranes. If there is only one Quay Crane k  available, Ship Bay b  is assigned to 

Quay Crane k . Then, Ship Bay b  is deleted from the chromosome, the position of Quay 

Crane k  is set as Ship Bay b , the completion time of Quay Crane k  is set as 

7 2 3 8 6 4 1 9 5 Chromosome 

Gene: ship bay number 1-9 

1 2 3 4 5 6 7 8 9 Sequence 
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k k bc c p= + , and go to Step 5. If there are two quay cranes available that are Quay Crane 

k  and Quay Crane 1k + , go to Step 2. 

Step 2: Compare the completion time of the two available quay cranes to finish their 

assigned ship bays and assign this ship bay to the quay crane with earlier completion time. 

Suppose 1k kc c +< , and thus assign Ship Bay b  to Quay Crane k . Then, Ship Bay b  is 

deleted from the chromosome, the position of Quay Crane k  is set as Ship Bay b , the 

completion time of Quay Crane k  is set as k k bc c p= + , and go to Step 5. If their 

completion time is equal that is 1k kc c += , go to Step 3. 

Step 3: Compare the distance between this ship bay and these two available quay cranes 

and assign this ship bay to the quay crane with the shorter distance. Suppose Quay Crane 

k  with the shorter distance, and thus assign Ship Bay b  to Quay Crane k . Then, Ship 

Bay b  is deleted from the chromosome, the position of Quay Crane k  is set as Ship Bay 

b , the completion time of Quay Crane k  is set as k k bc c p= + , and go to Step 5. If their 

distance is equal, go to Step 4. 

Step 4: Assign this ship bay to the quay crane with the smaller number, and thus assign 

Ship Bay b  to Quay Crane k . Then, Ship Bay b  is deleted from the chromosome, the 

position of Quay Crane k  is set as Ship Bay b , the completion time of Quay Crane k  is 

set as k k bc c p= + , and go to Step 5. 

Step 5: If there are unassigned ship bays in the chromosome, go to Step 1; otherwise, go 

to End. 
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Figure 2.6 shows a numerical example of the above mentioned procedure for constructing 

a quay crane schedule from a chromosome. There are three quay cranes and twelve ship 

bays. The initial position of Quay Crane 1, Quay Crane 2, and Quay Crane 3 are on Ship 

Bay 1, Ship Bay 5, and Ship Bay 9 respectively. The initial completion time of three quay 

cranes is all 0. The first unassigned ship bay in the chromosome is Ship Bay 7, of which 

the processing time is 114. 

Step 1: Quay Crane 2 and Quay Crane 3 can handle Ship Bay 7 without crossing other 

quay cranes. Since there are two quay cranes available, go to Step 2. 

Step 2: Since the completion time of Quay Crane 2 and Quay Crane 3 is both 0, go to 

Step 3. 

Step 3: Since the distance between Ship Bay 7 and Quay Crane 2, Quay Crane 3 is both 1 

ship bay, go to Step 4. 

Step 4: Assign Ship Bay 7 to Quay Crane 2. Then, Ship Bay 7 is deleted from the 

chromosome, the position of Quay Crane 2 is on Ship Bay 7, the completion time of 

Quay Crane 2 is 114, and go to Step 5. 

Step 5: Since Ship Bay 12 is the first unassigned ship bay in the chromosome, go to Step 

1. 
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 Position of Quay Crane Completion Time of Quay Crane 
Quay Crane 1 1 0 
Quay Crane 2 5 0 
Quay Crane 3 9 0 

 

 Position of Quay Crane Completion Time of Quay Crane 
Quay Crane 1 1 0 
Quay Crane 2 7 114 
Quay Crane 3 9 0 

Figure 2.6 An Illustration of Constructing a Quay Crane Schedule from a Chromosome 

 

2.5.2 Fitness Evaluation and Selection 

Most of the quay crane schedules obtained from the above mentioned procedure do not 

violate the non-crossing constraints. However, every quay crane schedule must be 

checked whether it satisfies the non-crossing constraints as follows. According to a quay 

crane schedule constructed from a chromosome, Constraints (2.4) and Constraints (2.5), 

,  1 ,  b bY b b B′ ′∀ ≤ ≤  can be obtained and then the quay crane schedule can be checked 

whether it satisfies Constraints (2.6). If it satisfies Constraints (2.6), the fitness value of 

its corresponding chromosome is set to be the reciprocal of its objective function value, 

as shown in Equation (2.15); otherwise, the fitness value of its corresponding 

chromosome is zero. 

1 max  bb
Fitness C=          (2.15) 

 

12 5 3 6 1 10 8 11 2 4 9 Chromosome 

7 12 5 3 6 1 10 8 11 2 4 9 Chromosome 
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In this chapter, a roulette wheel approach is adopted as the selection procedure. It belongs 

to the fitness-proportional selection and can select a new population with respect to the 

probability distribution based on fitness values (Gen and Cheng, 1996). 

 

2.5.3 Crossover 

Generally, the above mentioned chromosome representation will yield illegal offspring 

by one-point, two-point or multipoint crossover in the sense of that some ship bays may 

be missed while some ship bays may be duplicated in the offspring. Therefore, this 

chapter adopts ‘order crossover’ (Gen and Cheng, 1996), in which repairing procedure is 

embedded to resolve the illegitimacy of offspring. ‘Order crossover’ works as follows: 

Step 1: Select a substring from one parent randomly. 

Step 2: Produce a proto-child by copying the substring into its corresponding positions. 

Step 3: Delete the ship bays which are already in the substring from the second parent. 

The resulted sequence of ship bays contains the ship bays that the proto-child needs. 

Step 4: Place the ship bays into the unfixed positions of the proto-child from left to right 

according to the order of the sequence to produce an offspring. 

 

The ‘order crossover’ is illustrated in Figure 2.7 that presents an example of producing 

two offspring from the same parents. 
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Figure 2.7 An Illustration of the Order Crossover 

 

2.5.4 Mutation 

Mutation forces the GA to search new areas, and helps the GA avoid premature 

convergence and find the global optimal solution. Generally, in the mutation all 

individuals in the population are checked bit by bit and the bit values are randomly 

reversed according to a pre-specified rate. However, in this chapter the mutation selects 

chromosomes randomly in terms of the probability of mutation and chooses two positions 

Offspring 2 2 9 1 6 7 8 5 3 4 

Selected substring 

Parent 2 5 9 1 6 2 8 7 34

2 3 5 6 7 8 9Parent 1 1 4

Offspring 1 7 4 5 1 2 8 9 6 3 

Selected substring 

Parent 1 1 2 3 4 5 7 8 9 6

Parent 2 9 1 2 8 7 4 6 5 3 
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of the selected chromosome at random then swaps the ship bays on these positions as 

illustrated in Figure 2.8. 

 

Figure 2.8 An Illustration of the Mutation 

 

2.6 COMPUTATIONAL EXPERIMENTS FOR THE GENETIC 

ALGORITHM 

A series of computational experiments are conducted to examine the performance of the 

proposed model and GA as well. The GA is coded in C++ and executed in a Pentium IV 

1.7GHz PC with 256MB RAM. As a comparison, CPLEX (a commercial software for 

exactly solving integer programming) is employed to exactly solve random instances 

with small sizes and executed in the same PC. 

 

2.6.1 Random Instances with Small Sizes 

Six random instances with small sizes are created, and the processing time of a ship bay 

is randomly generated from a uniform distribution of (30,180)U . Based on the 

preliminary tests, the population size, the probability of crossover, the probability of 

Select two positions at random 

8 7 2 6 4 9 5 13

Swap the relative ship bays 

7 2 8 6 4 9 5 31
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mutation, and the limit of generations of the GA are set as 150, 0.25, 0.1, and 100 

respectively in these computational experiments. As shown in Table 2.2, the 

computational time of CPLEX grows exponentially as the instance size increases since 

the QCSNCP is NP-complete. Moreover, it is obvious that the proposed GA can obtain 

the optimal solution in short time (for example, the computational time of these six 

instances is all around five seconds) when the instance size is small. 

Table 2.2 Results of Random Instances with Small Sizes 
Experiment 

No 
Size 

(bays×cranes) 
CPLEX GA 

Value CPU (sec) Value CPU (sec) 
1 6×2 341 10.87 341 5.41 
2 6×3 282 128.20 282 5.28 
3 7×2 436 437.39 436 5.33 
4 7×3 299 8014.58 299 5.53 
5 8×2 448 11889.95 448 5.79 
6 8×3 330 344951.97 330 5.48 

 

2.6.2 Random Instances with Large Sizes 

There are forty random instances with large sizes generated. The processing time of a 

ship bay is randomly generated from a uniform distribution of (30,180)U . According to 

the preliminary tests, the population size, the probability of crossover, the probability of 

mutation, and the limit of generations of the GA are set as 300, 0.25, 0.2, and 1000 

respectively in these computational experiments. 

 

In order to evaluate the performance of the proposed GA in solving the instance with 

large size, the lower bound corresponding to the instance can be obtained by the same 

method which is elaborated in Section 2.4 (Page 28-29). 
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As observed in Table 2.3, the gaps between solutions obtained from the proposed GA and 

lower bounds are all small (for example the maximum gap among the forty instances is 

2.66%, the minimum gap is 0, and the average gap is 0.41%), and all the computational 

time of these forty instances is short (for example the computational time of these forty 

instances is all around one hundred and twenty seconds). Based on these forty 

computational experiments, it is clear that near optimal solutions obtained from the 

proposed GA are of high quality. The performance of the proposed GA is thus 

satisfactory in solving large size instances. 

 

The obtained lower bound may come from an infeasible solution to the original problem, 

because it is the objective function value of the optimal solution to the relaxed problem. 

In Table 2.3, the gaps of twelve instances are zero, which means the lower bound is, by 

chance, equal to the objective function value of the optimal solution to the original 

problem in these twelve instances. Therefore, the proposed GA achieves the optimal 

solution to the original problem for these twelve instances. 

 

The lower bound is the objective function value of the optimal solution to the relaxed 

problem, which does not consider the non-crossing constraints between quay cranes. The 

proposed GA obtains the near optimal solution to the original problem. As shown in 

Table 2.3, the larger gaps are observed for smaller container ships with fewer ship bays 

handled by more quay cranes. The reason for it can be that the non-crossing constraints 

between quay cranes more significantly affect scheduling more quay cranes for smaller 

container ships with fewer ship bays. 
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According to the computational experiments with small and large sizes, the proposed GA 

is concluded to be effective and efficient in solving the proposed QCSNCP. 

Table 2.3 Results of Random Instances with Large Sizes 
Experiment 

No 
Size 

(bays×cranes) 
Lower Bound GA Gap a (%) 

Value CPU (sec) 
1 16×3 650 653 105.91 0.46 
2 16×4 488 501 110.29 2.66 
3 17×3 617 621 122.79 0.65 
4 17×4 463 469 106.60 1.30 
5 18×3 599 602 109.72 0.50 
6 18×4 450 454 107.63 0.89 
7 19×3 740 741 108.35 0.14 
8 19×4 555 559 109.79 0.72 
9 20×3 672 674 109.98 0.30 

10 20×4 504 511 111.73 1.39 
11 21×3 793 793 107.03 0 
12 21×4 595 597 107.83 0.34 
13 22×3 796 796 108.33 0 
14 22×4 597 599 109.70 0.34 
15 23×3 794 794 112.56 0 
16 23×4 595 603 111.68 1.34 
17 24×3 786 786 117.46 0 
18 24×4 590 591 111.31 0.17 
19 25×3 942 943 109.91 0.11 
20 25×4 707 712 112.45 0.71 
21 26×3 819 820 111.03 0.12 
22 26×4 615 617 115.07 0.33 
23 27×3 985 986 115.78 0.10 
24 27×4 739 742 123.96 0.41 
25 28×3 908 908 125.01 0 
26 28×4 681 683 125.15 0.29 
27 29×3 1065 1065 122.36 0 
28 29×4 799 802 129.11 0.38 
29 30×3 996 996 117.48 0 
30 30×4 747 749 118.79 0.27 
31 31×3 1141 1141 119.19 0 
32 31×4 856 861 120.97 0.58 
33 32×3 1041 1041 116.93 0 
34 32×4 781 783 117.28 0.26 
35 33×3 1213 1213 122.07 0 
36 33×4 910 917 122.93 0.77 
37 34×3 1009 1009 126.84 0 
38 34×4 757 761 126.72 0.53 
39 35×3 1288 1288 122.49 0 
40 35×4 966 968 122.35 0.21 

a Gap = (solution obtained from the proposed GA - lower bound)×100/lower bound 
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2.7 SUMMARY 

This chapter provides a mixed integer programming model for the proposed QCSNCP, 

proves that the QCSNCP is NP-complete, and proposes an approximation algorithm and 

a genetic algorithm to obtain near optimal solutions for the QCSNCP. Worst-case 

analysis for the AA is performed and computational experiments are conducted to 

examine the proposed model, AA and GA. The results show that both the proposed AA 

and GA are effective and efficient in solving the QCSNCP. 
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CHAPTER 3 QUAY CRANE SCHEDULING WITH SAFETY 

DISTANCE AND NON-CROSSING CONSTRAINTS 

As discussed in Chapter 1, there are requirements of maintaining safety distance between 

any two quay cranes in operation. Based on Chapter 2, this chapter studies the Quay 

Crane Scheduling with Safety Distance and non-crossing constraints Problem (QCSSDP). 

 

3.1 MODEL FORMULATION 

This chapter proposes a mixed integer programming model for the QCSSDP. According 

to the configuration of container ships, one single container ship is divided into ship bays. 

Figure 1.2 shows that both quay cranes and ship bays are arranged in an increasing order 

from the front to the tail of the container ship. The following assumptions are imposed in 

formulating the QCSSDP: 

1. Quay cranes are operated on the same tracks and thus cannot cross over each other. 

2. There are requirements of maintaining safety distance between any two quay cranes 

in operation. 

3. Only one quay crane can work on a ship bay at a time until it completes the ship bay. 

4. Compared with the processing time of a ship bay by a quay crane, the travel time of a 

quay crane between two ship bays is small and hence it is not considered. 

 

In order to formulate the QCSSDP, the following parameters and decision variables are 

introduced: 

Parameters: 
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K  the number of quay cranes; 

B  the number of ship bays; 

bp  the processing time of ship bay b  by a quay crane (1 b B≤ ≤ ); 

,k ksd ′  the required safety distance between quay crane k  and quay crane k ′  

(1 ,  k k K′≤ ≤ ); 

M  a sufficiently large positive constant number; 

Decision variables: 

, ,b k iX  1, if ship bay b  is handled as the i th ship bay by quay crane k ; 0, otherwise 

(1 ,1 ,1b B k K i B≤ ≤ ≤ ≤ ≤ ≤ ); 

,b bY ′  1, if ship bay b  finishes no later than ship bay b′  starts; 0, otherwise 

(1 ,  ,  b b B b b′ ′≤ ≤ ≠ ); 

bC  the completion time of ship bay b  (1 b B≤ ≤ ). 

 

The QCSSDP can be formulated as follows: 

Minimize: 

max  bb
C           (3.1) 

Subject to: 

, ,
1 1

1   1
K B

b k i
k i

X b B
= =

= ∀ ≤ ≤∑∑         (3.2) 

, ,
1

1   1 , 1
B

b k i
b

X k K i B
=

≤ ∀ ≤ ≤ ∀ ≤ ≤∑        (3.3) 

, , , ,
1 1 1

   1 , 1
B K i

b b b k i b k i
b k i

C p X X b B i B′ ′ ′
′ ′= = =

≥ ∀ ≤ ≤ ∀ ≤ ≤∑∑∑      (3.4) 
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,( ) 0   1 ,  ,  b b b b bC C p Y M b b B b b′ ′ ′ ′ ′− − + > ∀ ≤ ≤ ≠      (3.5) 

,( ) (1 ) 0   1 ,  ,  b b b b bC C p Y M b b B b b′ ′ ′ ′ ′− − − − ≤ ∀ ≤ ≤ ≠     (3.6) 

, , , , , ,
1 1 1 1

( ) 1   1
K B K B

b b b b b k i b k i
k i k i

M Y Y kX k X b b B′ ′ ′ ′ ′
′ ′= = = =

′ ′+ ≥ − + ∀ ≤ < ≤∑∑ ∑∑    (3.7) 

, , , ,
1 1 1 1

, ,
,

( ) 1    1K B K B

b k i b k i
k i k i

b b b b
kX k X

M Y Y b sd b b b B
′ ′ ′

′ ′= = = =

′ ′
′

′ ′+ ≥ + + − ∀ ≤ < ≤
∑∑ ∑∑

   (3.8) 

, , ,, 0 or 1   1 ,  , , 1 , 1b k i b bX Y b b B b b k K i B′ ′ ′= ∀ ≤ ≤ ≠ ∀ ≤ ≤ ∀ ≤ ≤    (3.9) 

The objective function (3.1) minimizes the makespan of handling one single container 

ship, which is the latest completion time among all ship bays. Constraints (3.2) ensure 

that every ship bay must be handled only by one quay crane. Constraints (3.3) enforce 

that every quay crane handles up to one ship bay at any time. Constraints (3.4) define the 

properties of decision variables bC . Constraints (3.5) and (3.6) define the properties of 

decision variables ,b bY ′ : Constraints (3.5) indicate that , 1b bY ′ =  if b b bC C p′ ′≤ − , which 

means , 1b bY ′ =  when ship bay b  finishes no later than ship bay b′  starts; Constraints (3.6) 

indicate that , 0b bY ′ =  if b b bC C p′ ′> − , which means , 0b bY ′ =  when ship bay b  finishes 

after ship bay b′  starts. The crossing between quay cranes can be avoided by imposing 

Constraints (3.7). Suppose that ship bays b  and b′  are performed simultaneously and 

b b′< , then this means that , , 0b b b bY Y′ ′+ = . Note that both quay cranes and ship bays are 

arranged in an increasing order from the front to the tail of the container ship. Thus, if 

quay crane k  handles ship bay b  and quay crane k ′  handles ship bay b′ , then 1k k′+ ≤ . 

Constraints (3.8) guarantee the safety distance between any two quay cranes in operation. 

Suppose that ship bay b  is handled by quay crane k  and at the same time ship bay b′  is 

handled by quay crane k′ , then this means that 
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, , , , , ,
1 1 1 1

0,  ,  and 
K B K B

b b b b b k i b k i
k i k i

Y Y kX k k X k′ ′ ′ ′ ′
′ ′= = = =

′ ′+ = = =∑∑ ∑∑ . Therefore, the distance between 

quay crane k  and quay crane k ′ , which is 1b b′ − − , must be no less than the required 

safety distance ,k ksd ′ . 

 

3.2 PROOF OF NP-COMPLETENESS 

This chapter discusses computational complexity of the QCSSDP to justify why heuristic 

algorithms are adopted. The optimization version of the QCSSDP is presented in Section 

3.1 and the decision version is defined as follows: 

Parameter: 

Z +  the set of positive integer. 

Instance: There are B  ship bays and K  quay cranes. The processing time of ship bay b  

by a quay crane is bp Z +∈  (1 b B≤ ≤ ). There is a given number C Z +∈ . 

Question: Is there a quay crane schedule for these K  quay cranes handling these B  ship 

bays such that the safety distance and non-crossing constraints are satisfied and the 

makespan of the quay crane schedule C≤ ? 

 

The decision version of the QCSSDP is proved to be NP-complete as the following four 

steps: 

Theorem 3.1: QCSSDP is NP-complete. 

Proof: 

Step 1: Showing that the QCSSDP is in NP. 
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If a quay crane schedule for the QCSSDP is given, its feasibility can be checked in 

polynomial time. Checking whether the quay crane schedule satisfies the safety distance 

constraints can be done in 2( )O B  time. Checking whether the quay crane schedule 

satisfies the non-crossing constraints can be done in 2( )O B  time. Checking whether the 

makespan of the quay crane schedule C≤  can be done in ( )O B  time. Therefore, the 

QCSSDP is in NP. 

 

Step 2: Selecting a known NP-complete problem. 

PARTITION is a known NP-complete problem (Garey and Johnson, 1979). The decision 

version of the PARTITION is defined in Section 2.2 (Page 21). 

 

Step 3: Constructing a transformation from the PARTITION to the QCSSDP. 

The PARTITION is transformed to the QCSSDP as follows. A QCSSDP instance 

corresponding to an arbitrary PARTITION instance has 2  quay cranes and 4B +  ship 

bays; the given number C  is set as D ; the safety distance between the two quay cranes is 

one ship bay; the following Equations (3.10)-(3.12) indicate the processing time of each 

ship bay which means the processing time of Ship Bay 1 and Ship Bay 4B +  is set as 
2
D , 

the processing time of Ship Bay 2 and Ship Bay 3B +  is set as 0, and the processing time 

of Ship Bay 3 to Ship Bay 2B +  is set as 1s  to Bs  respectively. Figure 3.1 illustrates this 

transformation, which shows 2  quay cranes, 4B +  ship bays, and the processing time of 

each ship bay. 

1 4 2B
Dp p += =          (3.10) 
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2 3 0Bp p += =           (3.11) 

2    1b bp s b B+ = ∀ ≤ ≤          (3.12) 

 

Figure 3.1 The Illustration of the Transformation from the PARTITION to the QCSSDP 

 

Then, it must be proved that the set S  can be partitioned into two disjoint subsets 1S  and 

2S  such that 
1 2

2
b b

b b
s S s S

Ds s
∈ ∈

= =∑ ∑  if and only if all the 4B +  ship bays can be completed 

by 2  quay cranes in D  time with satisfying the safety distance and non-crossing 

constraints. 

 

First, suppose that the set S  can be partitioned into two disjoint subsets 1S  and 2S  such 

that 
1 2

2
b b

b b
s S s S

Ds s
∈ ∈

= =∑ ∑ . Then 2  quay cranes can be scheduled with satisfying the safety 

distance and non-crossing constraints as follows: Quay Crane 1 handles all the Ship Bays 

2b + , where 1bs S∈  and then Ship Bay 1; Quay Crane 2 handles Ship Bay 4B +  and 

then all the Ship Bays 2b + , where 2bs S∈ . Obviously, the safety distance and non-

crossing constraints are satisfied in this schedule and the latest completion time among all 

ship bays is D . Hence, if the set S  can be partitioned into two disjoint subsets 1S  and 2S  

… Processing time of each ship bay 

Ship bay number 

Quay crane 

1 2 3 4 … B+1 B+2 B+3 B+4 

1 2

2
D 0 1s

2
D2s 1Bs − Bs 0
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such that 
1 2

2
b b

b b
s S s S

Ds s
∈ ∈

= =∑ ∑ , all the 4B +  ship bays can be completed by 2  quay cranes 

in D  time with satisfying the safety distance and non-crossing constraints. 

 

Conversely, suppose all the 4B +  ship bays can be completed by 2  quay cranes in D  

time with satisfying the safety distance and non-crossing constraints, then both the 2  

quay cranes are fully utilized as the total processing time of all ship bays is 2D . Thus, 

the completion time of each quay crane must be D . Furthermore, the safety distance and 

non-crossing constraints are satisfied in the above mentioned quay crane schedule. 

According to this quay crane schedule, the total processing time of all ship bays except 

Ship Bay 1 handled by Quay Crane 1 must be 
2
D  and the total processing time of all ship 

bays except Ship Bay 4B +  handled by Quay Crane 2 must be 
2
D  as well, which means 

that the set S  can be partitioned into two disjoint subsets 1S  and 2S  such that 

1 2
2

b b

b b
s S s S

Ds s
∈ ∈

= =∑ ∑ . Hence, if all the 4B +  ship bays can be completed by 2  quay cranes 

in D  time with satisfying the safety distance and non-crossing constraints, the set S  can 

be partitioned into two disjoint subsets 1S  and 2S  such that 
1 2

2
b b

b b
s S s S

Ds s
∈ ∈

= =∑ ∑ . 

 

Step 4: Proving that the above mentioned transformation is a polynomial 

transformation. 

The above mentioned transformation can be done in ( )O B  time. 
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Therefore, PARTITION QCSSDP∝ , and the Theorem 3.1 is proved. 

 

3.3 AN APPROXIMATION ALGORITHM 

As proved in the previous section, QCSSDP is NP-complete, and thus there exists no 

polynomial time algorithm for the exact solution to the QCSSDP unless P=NP. This 

section proposes an approximation algorithm to obtain its near optimal solution which is 

elaborated as follows. 

 

Approximation Algorithm: assign adjacent ship bays, 1 11,  2,  ...,  1,  k k k kb b b b− −+ + − , to 

quay crane k  ( 1 k K∀ ≤ ≤ ). Note that 0 0b =  and Kb B= . A dynamic programming 

algorithm is then proposed to determine the best partition points, 1 2 2 1,  ,  ..., ,  K Kb b b b− − , 

which minimizes the latest completion time among all ship bays. 

Parameters: 

kc  the completion time of quay crane k  (1 k K≤ ≤ ); 

[ ,  ]MC k b  the minimum latest completion time when ship bays 

1,  2,  ..., 1,  b b−  are assigned to quay cranes 1,  2,  ..., 1,  k k−  in 

the above mentioned adjacent manner; 

2

1

1 2[ ,  ]
b

b
b b

TP b b p
=

= ∑  the total processing time of ship bays 1 1 2 2,  1,  ..., 1,  b b b b+ − . 

Dynamic programming equations for determining the best partition points, 

1 2 2 1,  ,  ..., ,  K Kb b b b− − , are as follows: 

[1,  ] [1,  ]   1MC b TP b b B= ∀ ≤ ≤        (3.13) 
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1
1 11 1

[ ,  ] min max{ [ 1,  ],  [ 1,  ]} 2 ,
k

k kk b b
MC k b MC k b TP b b k K k b B

−
− −− ≤ ≤ −

= − + ∀ ≤ ≤ ∀ ≤ ≤  (3.14) 

Based on the best partition points, quay crane k  handles the assigned ship bays according 

to the sequence of 1 11,  2,  ...,  1,  k k k kb b b b− −+ + −  ( 1 k K∀ ≤ ≤ ). The obtained quay crane 

schedule obviously satisfies the non-crossing constraints. Then, check whether the 

obtained quay crane schedule satisfies the safety distance constraints. The possible 

scenario of violating the safety distance constraints is described as follows. Assume the 

safety distance between two adjacent quay cranes in operation is one ship bay. When 

quay crane k  has already completed ship bays 1 11,  2,  ...,  1k k kb b b− −+ + −  and is ready to 

handle ship bay kb , quay crane 1k +  is still handling ship bay 1kb + . Consequently, quay 

crane k  can start to handle ship bay kb  until quay crane 1k +  finishes ship bay 1kb +  

which means quay crane k  has to wait due to the safety distance constraint. Therefore, if 

the obtained quay crane schedule does not satisfy the safety distance constraints, the 

completion time of the corresponding quay cranes must be adjusted to include waiting 

time. Otherwise, the completion time of every quay crane is equal to the total processing 

time of its assigned ship bays. 

 

Figure 3.2 shows a numerical example of the approximation algorithm in which there are 

two quay cranes and four ship bays. Assume the safety distance between the two quay 

cranes is one ship bay. According to Equation (3.13), [1,  1] [1,  1] 196MC TP= = , 

[1,  2] [1,  2] 302MC TP= = , [1,  3] [1,  3] 392MC TP= = , and [1,  4] [1,  4] 460MC TP= = . 
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According to Equation (3.14), 

[2,  4] min  {max{ [1,  1],  [2,  4]},  max{ [1,  2],  [3,  4]},  
max{ [1,  3],  [4,  4]}} min  {max{196,  264},  max{302,  158},  max{392,  68}}

min  {264,  302,  392} 264.

MC MC TP MC TP
MC TP

=
=

= =
 

Therefore, Ship Bay 1 is assigned to Quay Crane 1, and Ship Bay 2, 3, and 4 are assigned 

to Quay Crane 2. Based on the best partition points, Quay Crane 1 handles Ship Bay 1 

and Quay Crane 2 handles the assigned ship bays according to the sequence of 2, 3, and 4. 

However, the obtained quay crane schedule does not satisfy the safety distance 

constraints. Hence, the completion time of Quay Crane 1 is 

1 196 waiting time 196 106 302c = + = + = , the completion time of Quay Crane 2 is 

2 106 90 68 264c = + + = , and the makespan of this quay crane schedule is 302. 

 

Figure 3.2 A Numerical Example of the Approximation Algorithm 

 

Assume the safety distance between two adjacent quay cranes in operation is one ship 

bay. Worst-case analysis for the approximation algorithm is performed as follows. 

Parameters: 

1Z  the objective function value of the solution to the QCSNCP obtained by the 

approximation algorithm proposed in Chapter 2; 

Ship bay number 

Quay crane 

Processing time of each ship bay 

1 2 3 4 

1 2

196 106 6890
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2Z  the objective function value of the solution to the QCSNCP obtained by the 

approximation algorithm proposed in Chapter 3; 

3Z  the objective function value of the solution to the QCSSDP obtained by the 

approximation algorithm proposed in Chapter 3; 

1Z ∗  the objective function value of the optimal solution to the QCSNCP; 

2Z ∗  the objective function value of the optimal solution to the QCSSDP. 

Theorem 3.2: 3 2/ 3Z Z ∗ ≤  

Proof: 

Both the approximation algorithm proposed in Chapter 2 and the approximation 

algorithm proposed in Chapter 3 assign ship bays to quay cranes in the aforementioned 

adjacent manner. According to the Theorem 2.2, 1 12Z Z ∗≤ . Since the approximation 

algorithm proposed in Chapter 3 optimizes the partition points, 1 2 2 1,  ,  ..., ,  K Kb b b b− − , 

2 1 12Z Z Z ∗≤ ≤ . With considering the safety distance constraints, the worst case is 

3 2 waiting timeZ Z= + . Since 1waiting time max bb
p Z ∗≤ ≤ , 3 13Z Z ∗≤ . Obviously, 

1 2Z Z∗ ∗≤ , and hence 3 23Z Z ∗≤ . The Theorem 3.2 is proved. 

 

3.4 COMPUTATIONAL EXPERIMENTS FOR THE APPROXIMATION 

ALGORITHM 

A series of computational experiments are conducted to examine the performance of the 

proposed approximation algorithm which is coded in C++ and executed in a Pentium IV 

1.7GHz PC with 256MB RAM. 
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There are twenty random instances generated in which the processing time of a ship bay 

is randomly generated from a uniform distribution of (30,300)U . Assume that the safety 

distance between two adjacent quay cranes in operation is one ship bay. 

 

In order to evaluate the performance of the proposed approximation algorithm in solving 

the instance, the lower bound corresponding to the instance can be calculated by relaxing 

the safety distance and non-crossing constraints. The mathematical model of the relaxed 

problem is formulated in Section 2.4 (Page 28-29) that can be exactly solved by CPLEX. 

The objective function value of the optimal solution to the relaxed problem obtained from 

CPLEX is the lower bound to the original problem. 

 

As observed in Table 3.1, the gaps between solutions obtained from the proposed 

approximation algorithm and lower bounds are all small (for example the maximum gap 

among the twenty instances is 12.50%, the minimum gap is 2.16%, and the average gap 

is 6.74%), and all the computational time of these twenty instances is within one second. 

Therefore, the proposed approximation algorithm is concluded to be effective and 

efficient in solving the proposed QCSSDP. 
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Table 3.1 The Results of Computational Experiments for the Approximation Algorithm 
Experiment 

No 
Size 

(bays×cranes)
Lower Bound AA Gap a (%) 

1 16×3 771 818 6.10 
2 16×4 600 675 12.50 
3 17×3 928 948 2.16 
4 17×4 787 862 9.53 
5 18×3 951 1030 8.31 
6 18×4 714 758 6.16 
7 19×3 1016 1071 5.41 
8 19×4 762 801 5.12 
9 20×3 1188 1292 8.75 

10 20×4 778 851 9.38 
11 21×3 882 932 5.67 
12 21×4 661 699 5.75 
13 22×3 1211 1248 3.06 
14 22×4 982 1075 9.47 
15 23×3 1022 1109 8.51 
16 23×4 910 942 3.52 
17 24×3 1257 1302 3.58 
18 24×4 943 998 5.83 
19 25×3 1292 1411 9.21 
20 25×4 969 1035 6.81 

a Gap = (solution obtained from the proposed AA - lower bound)×100/lower bound 
 

3.5 A GENETIC ALGORITHM 

This chapter employs a genetic algorithm (GA) to obtain near optimal solutions to the 

QCSSDP. The procedure of the proposed GA is illustrated in Figure 3.3 and the details of 

the proposed GA are elaborated as follows. 



CHAPTER 3: QUAY CRANE SCHEDULING WITH SAFETY DISTANCE AND NON-CROSSING  
CONSTRAINTS 

 56

 

Figure 3.3 The Flowchart of the Proposed GA 
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3.5.1 Chromosome Representation and Decoding Procedure 

The chromosome representation is the same as the one described in Section 2.5.1 (Page 

32). Based on the sequence of ship bays represented by the chromosome, a quay crane 

schedule can be constructed using the following procedure. 

Step 1: Based on the current position of each quay crane, determine which quay cranes 

can handle the first unassigned Ship Bay b  in the chromosome without crossing other 

quay cranes. If there is only one Quay Crane k  available, Ship Bay b  is assigned to 

Quay Crane k . Then, Ship Bay b  is deleted from the chromosome, the position of Quay 

Crane k  is set as Ship Bay b , the completion time of Quay Crane k  is set as 

k k bc c p= + , and go to Step 5. If there are two quay cranes available that are Quay Crane 

k  and Quay Crane 1k + , go to Step 2. 

Step 2: Compare the completion time of the two available quay cranes to finish their 

assigned ship bays and assign this ship bay to the quay crane with earlier completion time. 

Suppose 1k kc c +< , and thus assign Ship Bay b  to Quay Crane k . Then, Ship Bay b  is 

deleted from the chromosome and the position of Quay Crane k  is set as Ship Bay b . 

Check whether the safety distance between Quay Crane k  and Quay Crane 1k +  is 

satisfied. If it is satisfied, the completion time of Quay Crane k  is set as k k bc c p= +  and 

go to Step 5. If it is not satisfied, the completion time of Quay Crane k  is set as 

1k k bc c p+= +  and go to Step 5. If their completion time is equal that is 1k kc c += , go to 

Step 3. 

Step 3: Compare the distance between this ship bay and these two available quay cranes 

and assign this ship bay to the quay crane with the shorter distance. Suppose Quay Crane 
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k  with the shorter distance, and thus assign Ship Bay b  to Quay Crane k . Then, Ship 

Bay b  is deleted from the chromosome, the position of Quay Crane k  is set as Ship Bay 

b , the completion time of Quay Crane k  is set as k k bc c p= + , and go to Step 5. If their 

distance is equal, go to Step 4. 

Step 4: Assign this ship bay to the quay crane with the smaller number, and thus assign 

Ship Bay b  to Quay Crane k . Then, Ship Bay b  is deleted from the chromosome, the 

position of Quay Crane k  is set as Ship Bay b , the completion time of Quay Crane k  is 

set as k k bc c p= + , and go to Step 5. 

Step 5: If there are unassigned ship bays in the chromosome, go to Step 1; otherwise, go 

to End. 

 

Figure 3.4 illustrates a numerical example of the above mentioned procedure of 

constructing a quay crane schedule from a chromosome. There are three quay cranes and 

twelve ship bays. The current position of Quay Crane 1, Quay Crane 2, and Quay Crane 3 

are on Ship Bay 1, Ship Bay 5, and Ship Bay 8 respectively. The current completion time 

of Quay Crane 1, Quay Crane 2, and Quay Crane 3 is 163, 94, and 157 respectively. The 

first unassigned ship bay in the chromosome is Ship Bay 7, of which the processing time 

is 114. The safety distance between two adjacent quay cranes in operation is one ship bay. 

Step 1: Quay Crane 2 and Quay Crane 3 can handle Ship Bay 7 without crossing other 

quay cranes. Since there are two quay cranes available, go to Step 2. 

Step 2: Since 2 394 157c c= < = , assign Ship Bay 7 to Quay Crane 2. Then, Ship Bay 7 is 

deleted from the chromosome and the position of Quay Crane 2 is set as Ship Bay 7. 

Check whether the safety distance between Quay Crane 2 and Quay Crane 3 is satisfied. 
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Since the current position of Quay Crane 2 and Quay Crane 3 are on Ship Bay 7 and Ship 

Bay 8 respectively, the safety distance constraint is not satisfied. Therefore, the 

completion time of Quay Crane 2 is set as 2 3 7 157 114 271c c p= + = + = , and go to Step 5. 

Step 5: Since Ship Bay 12 is the first unassigned ship bay in the chromosome, go to Step 

1. 

 

 Position of Quay Crane Completion Time of Quay Crane 
Quay Crane 1 1 163 
Quay Crane 2 5 94 
Quay Crane 3 8 157 

 

 Position of Quay Crane Completion Time of Quay Crane 
Quay Crane 1 1 163 
Quay Crane 2 7 271 
Quay Crane 3 8 157 

Figure 3.4 An Illustration of Constructing a Quay Crane Schedule from a Chromosome 

 

3.5.2 Fitness Evaluation 

Most of the quay crane schedules obtained from the above mentioned procedure do not 

violate the safety distance and non-crossing constraints. However, every quay crane 

schedule must be checked whether it satisfies the safety distance and non-crossing 

constraints as follows. According to a quay crane schedule constructed from a 

chromosome, Constraints (3.5), and Constraints (3.6), , ,  1 ,  ,b bY b b B b b′ ′ ′∀ ≤ ≤ ≠  can be 

obtained and then the quay crane schedule can be checked whether it satisfies Constraints 

7 12 5 3 6 1 10 8 11 2 4 9Chromosome 

12 5 3 6 1 10 8 11 2 4 9Chromosome 
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(3.7) and Constraints (3.8). If it satisfies Constraints (3.7) and Constraints (3.8), the 

fitness value of its corresponding chromosome is set to be the reciprocal of its objective 

function value, as shown in Equation (3.15); otherwise, the fitness value of its 

corresponding chromosome is zero. 

1
max bb

Fitness
C

=          (3.15) 

 

3.5.3 Selection, Crossover and Mutation 

The roulette wheel selection, the order crossover, and the mutation are elaborated in 

Section 2.5.2 (Page 36), Section 2.5.3 (Page 36-37), and Section 2.5.4 (Page 37-38), 

respectively. 

 

3.6 COMPUTATIONAL EXPERIMENTS FOR THE GENETIC 

ALGORITHM 

A series of computational experiments are conducted to examine the performance of the 

proposed model and GA as well. The GA is coded in C++ and executed in a Pentium IV 

1.7GHz PC with 256MB RAM. As a comparison, CPLEX is employed to exactly solve 

random instances with small sizes and executed in the same PC. 
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3.6.1 Random Instances with Small Sizes 

Six random instances with small sizes are created, and the processing time of a ship bay 

is randomly generated from a uniform distribution of (30,300)U . Assume that the safety 

distance between two adjacent quay cranes in operation is one ship bay. Then, 

Constraints (3.8) are reduced to: 

, , , , , ,
1 1 1 1

( ) 2( )    1
K B K B

b b b b b k i b k i
k i k i

M Y Y b k X kX b b b B′ ′ ′ ′ ′
′ ′= = = =

′ ′ ′+ ≥ + − − ∀ ≤ < ≤∑∑ ∑∑   (3.16) 

The simplified mathematical model of the QCSSDP can be exactly solved by CPLEX 

when the instance size is small. 

 

Based on the preliminary tests, the population size, the probability of crossover, the 

probability of mutation, and the limit of generations of the GA are set as 150, 0.25, 0.1, 

and 100 respectively in these computational experiments. As shown in Table 3.2, the 

computational time of CPLEX grows exponentially as the instance size increases since 

the QCSSDP is NP-complete. Moreover, it is obvious that the proposed GA can obtain 

the optimal solution in short time (for example, the computational time of these six 

instances is all around five seconds) when the instance size is small. 

Table 3.2 Results of Random Instances with Small Sizes 
Experiment 

No 
Size 

(bays×cranes) 
CPLEX GA 

Value CPU (sec) Value CPU (sec) 
1 8×2 517 28.44 517 5.29 
2 8×3 381 105.86 381 5.54 
3 9×2 959 376.67 959 5.69 
4 9×3 704 1293.88 704 5.09 
5 10×2 753 3698.51 753 5.52 
6 10×3 586 14685.32 586 5.03 
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3.6.2 Random Instances with Large Sizes 

There are forty random instances with large sizes generated. The processing time of a 

ship bay is randomly generated from a uniform distribution of (30,300)U . Assume that 

the safety distance between two adjacent quay cranes in operation is one ship bay. 

According to the preliminary tests, the population size, the probability of crossover, the 

probability of mutation, and the limit of generations of the GA are set as 300, 0.25, 0.2, 

and 1,000 respectively in these computational experiments. 

 

In order to evaluate the performance of the proposed GA in solving the instance with 

large size, the lower bound corresponding to the instance can be calculated by relaxing 

the safety distance and non-crossing constraints. The mathematical model of the relaxed 

problem is formulated in Section 2.4 (Page 28-29) that can be exactly solved by CPLEX. 

The objective function value of the optimal solution to the relaxed problem obtained from 

CPLEX is the lower bound to the original problem. 

 

As observed in Table 3.3, the gaps between solutions obtained from the proposed GA and 

lower bounds are all small (for example the maximum gap among the forty instances is 

4.52%, the minimum gap is 0.15%, and the average gap is 1.56%), and all the 

computational time of these forty instances is short (for example the computational time 

of these forty instances is all around one hundred and ten seconds). Based on these forty 

computational experiments, it is clear that near optimal solutions obtained from the 

proposed GA are of high quality. The performance of the proposed GA is thus 

satisfactory in solving large size instances. According to the computational experiments 
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with small and large sizes, the proposed GA is concluded to be effective and efficient in 

solving the proposed QCSSDP. 

 

Furthermore, the lower bound is the objective function value of the optimal solution to 

the relaxed problem, which does not consider the safety distance and non-crossing 

constraints. The proposed GA obtains near optimal solution to the original problem. As 

shown in Table 3.3, the larger gaps between solutions obtained from the proposed GA 

and lower bounds are observed for smaller container ships with fewer ship bays handled 

by more quay cranes. The reason for it can be that the safety distance and non-crossing 

constraints more significantly affect scheduling more quay cranes for smaller container 

ships with fewer ship bays. 
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Table 3.3 Results of Random Instances with Large Sizes 
Experiment 

No 
Size 

(bays×cranes) 
Lower Bound GA Gap a (%) 

Value CPU (sec) 
1 11×3 590 603 102.71 2.20 
2 11×4 516 529 103.25 2.52 
3 12×3 755 773 102.14 2.38 
4 12×4 548 572 104.23 4.38 
5 13×3 819 854 103.11 4.27 
6 13×4 620 648 102.65 4.52 
7 14×3 687 693 105.38 0.87 
8 14×4 516 533 104.68 3.29 
9 15×3 699 718 105.21 2.72 

10 15×4 525 546 105.63 4.00 
11 16×3 960 972 102.01 1.25 
12 16×4 642 648 102.04 0.93 
13 17×3 743 752 104.65 1.21 
14 17×4 799 817 104.73 2.25 
15 18×3 1114 1122 103.92 0.72 
16 18×4 669 677 105.56 1.20 
17 19×3 1029 1037 104.88 0.78 
18 19×4 741 768 104.20 3.64 
19 20×3 1091 1100 106.19 0.82 
20 20×4 681 699 105.84 2.64 
21 21×3 1497 1501 119.59 0.27 
22 21×4 968 988 107.65 2.07 
23 22×3 1143 1162 106.40 1.66 
24 22×4 886 892 110.43 0.68 
25 23×3 1234 1238 109.03 0.32 
26 23×4 1002 1013 113.89 1.10 
27 24×3 1642 1648 109.28 0.37 
28 24×4 1049 1057 116.64 0.76 
29 25×3 1261 1268 108.61 0.56 
30 25×4 888 892 117.12 0.45 
31 26×3 1415 1424 109.69 0.64 
32 26×4 1115 1135 113.86 1.79 
33 27×3 1317 1321 111.12 0.30 
34 27×4 1017 1022 112.75 0.49 
35 28×3 1603 1610 111.37 0.44 
36 28×4 1196 1200 113.70 0.33 
37 29×3 1530 1542 112.50 0.78 
38 29×4 1147 1166 113.23 1.66 
39 30×3 1365 1367 112.23 0.15 
40 30×4 1193 1204 113.70 0.92 

a Gap = (solution obtained from the proposed GA - lower bound)×100/lower bound 
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3.7 SUMMARY 

This chapter provides a mixed integer programming model for the proposed QCSSDP, 

proves that the QCSSDP is NP-complete, and proposes an approximation algorithm and a 

genetic algorithm to obtain near optimal solutions for the QCSSDP. Worst-case analysis 

for the AA is performed and computational experiments are conducted to examine the 

proposed model, AA and GA. The results show that both the proposed AA and GA are 

effective and efficient in solving the QCSSDP. In addition, in practical quay crane 

scheduling, the number of quay cranes ranges from two to four, and the number of ship 

bays ranges from ten to twenty-five. Based on the computational experiments, the 

proposed AA and GA can be considered as appropriate approaches to scheduling quay 

cranes in port container terminals to enhance their efficiency. 
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CHAPTER 4 QUAY CRANE SCHEDULING WITH HANDLING 

PRIORITY AND NON-CROSSING CONSTRAINTS 

As discussed in Chapter 1, different ship bay has different handling priority in practice. 

Based on Chapter 2, this chapter investigates the Quay Crane Scheduling with Handling 

Priority and non-crossing constraints Problem (QCSHPP). 

 

4.1 MODEL FORMULATION 

This chapter proposes a mixed integer programming model for the QCSHPP. According 

to the configuration of container ships, one single container ship is divided into ship bays. 

Figure 1.2 shows that both quay cranes and ship bays are arranged in an increasing order 

from the front to the tail of the container ship. The following assumptions are imposed in 

formulating the QCSHPP: 

1. Every ship bay has its own handling priority. 

2. Quay cranes are operated on the same tracks and thus cannot cross over each other. 

3. Only one quay crane can work on a ship bay at a time until it completes the ship bay. 

4. Compared with the processing time of a ship bay by a quay crane, the travel time of a 

quay crane between two ship bays is small and hence it is not considered. 

 

In order to formulate the QCSHPP, the following parameters and decision variables are 

introduced: 

Parameters: 

K  the number of quay cranes; 
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B  the number of ship bays; 

bp  the processing time of ship bay b  by a quay crane (1 b B≤ ≤ ); 

bα  the weight of ship bay b  (1 b B≤ ≤ ); 

M  a sufficiently large positive constant number; 

Decision variables: 

, ,b k iX  1, if ship bay b  is handled as the i th ship bay by quay crane k ; 0, otherwise 

(1 ,1 ,1b B k K i B≤ ≤ ≤ ≤ ≤ ≤ ); 

,b bY ′  1, if ship bay b  finishes no later than ship bay b′  starts; 0, otherwise 

(1 ,  ,b b B b b′ ′≤ ≤ ≠ ); 

bC  the completion time of ship bay b  (1 b B≤ ≤ ). 

 

The QCSHPP can be formulated as follows: 

Minimize: 

1

B

b b
b

Cα
=
∑           (4.1) 

Subject to: 

, ,
1 1

1   1
K B

b k i
k i

X b B
= =

= ∀ ≤ ≤∑∑         (4.2) 

, ,
1

1   1 , 1
B

b k i
b

X k K i B
=

≤ ∀ ≤ ≤ ∀ ≤ ≤∑        (4.3) 

, , , ,
1 1 1

   1 , 1
B K i

b b b k i b k i
b k i

C p X X b B i B′ ′ ′
′ ′= = =

≥ ∀ ≤ ≤ ∀ ≤ ≤∑∑∑      (4.4) 

,( ) 0   1 ,  ,b b b b bC C p Y M b b B b b′ ′ ′ ′ ′− − + > ∀ ≤ ≤ ≠      (4.5) 
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,( ) (1 ) 0   1 ,  ,b b b b bC C p Y M b b B b b′ ′ ′ ′ ′− − − − ≤ ∀ ≤ ≤ ≠     (4.6) 

, , , , , ,
1 1 1 1

( ) 1   1
K B K B

b b b b b k i b k i
k i k i

M Y Y kX k X b b B′ ′ ′ ′ ′
′ ′= = = =

′ ′+ ≥ − + ∀ ≤ < ≤∑∑ ∑∑    (4.7) 

, , ,, 0 or 1   1 ,  , , 1 , 1b k i b bX Y b b B b b k K i B′ ′ ′= ∀ ≤ ≤ ≠ ∀ ≤ ≤ ∀ ≤ ≤    (4.8) 

The objective function (4.1) minimizes the sum of the weighted completion time of every 

ship bay. Constraints (4.2) ensure that every ship bay must be handled only by one quay 

crane. Constraints (4.3) enforce that every quay crane handles up to one ship bay at a 

time. Constraints (4.4) define the properties of decision variables bC . Constraints (4.5) 

and (4.6) define the properties of decision variables ,b bY ′ : Constraints (4.5) indicate that 

, 1b bY ′ =  if b b bC C p′ ′≤ − , which means , 1b bY ′ =  when ship bay b  finishes no later than 

ship bay b′  starts; Constraints (4.6) indicate that , 0b bY ′ =  if b b bC C p′ ′> − , which means 

, 0b bY ′ =  when ship bay b  finishes after ship bay b′  starts. Finally, the crossing between 

quay cranes can be avoided by imposing Constraints (4.7). Suppose that ship bays b  and 

b′  are performed simultaneously and b b′< , then this means that , , 0b b b bY Y′ ′+ = . Note 

that both quay cranes and ship bays are arranged in an increasing order from the front to 

the tail of the container ship. Thus, if quay crane k  handles ship bay b  and quay crane 

k ′  handles ship bay b′ , then 1k k ′+ ≤ . 
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4.2 PROOF OF NP-COMPLETENESS 

This chapter discusses the computational complexity of QCSHPP to justify why the 

heuristic algorithms are adopted. The optimization version of the QCSHPP is presented 

in Section 4.1 and its decision version is defined as follows: 

Parameter: 

Z +  the set of positive integer. 

Instance: There are B  ship bays and K  quay cranes. The processing time of ship bay b  

by a quay crane is bp Z +∈  (1 b B≤ ≤ ). There is a given number E Z +∈ . 

Question: Is there a quay crane schedule for these K  quay cranes handling these B  ship 

bays such that the non-crossing constraints are satisfied and 
1

B

b b
b

C Eα
=

≤∑ ? 

 

The decision version of the QCSHPP is proved to be NP-complete as the following four 

steps: 

Theorem 4.1: QCSHPP is NP-complete. 

Proof: 

Step 1: Showing that the QCSHPP is in NP. 

If a quay crane schedule for the QCSHPP is given, its feasibility can be checked in 

polynomial time. Checking whether the quay crane schedule satisfies the non-crossing 

constraints can be done in 2( )O B  time. Checking whether 
1

B

b b
b

C Eα
=

≤∑  can be done in 

( )O B  time. Therefore, the QCSHPP is in NP. 
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Step 2: Selecting a known NP-complete problem. 

PARTITION is a known NP-complete problem (Garey and Johnson, 1979). The decision 

version of the PARTITION is defined in Section 2.2 (Page 21). 

 

Step 3: Constructing a transformation from the PARTITION to the QCSHPP. 

The PARTITION is transformed to the QCSHPP as follows. A QCSHPP instance 

corresponding to an arbitrary PARTITION instance has 2  quay cranes and 2B +  ship 

bays; the given number E  is set as 2

1

3
4b b

b b B
s s D′

′≤ ≤ ≤

+∑ ; the following Equations (4.9) and 

(4.10) indicate the processing time of each ship bay which means the processing time of 

Ship Bay 1 and Ship Bay 2B +  is set as 
2
D  and the processing time of Ship Bay 2 to 

Ship Bay 1B +  is set as 1s  to Bs  respectively. Figure 4.1 illustrates this transformation, 

which shows 2  quay cranes, 2B +  ship bays, and the processing time of each ship bay. 

Equations (4.11) denote the weight of every ship bay. 

1 2 2B
Dp p += =          (4.9) 

1    1b bp s b B+ = ∀ ≤ ≤          (4.10) 

   1 2b bp b Bα = ∀ ≤ ≤ +         (4.11) 
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Figure 4.1 The Illustration of the Transformation from the PARTITION to the QCSHPP 

 

Then, it must be proved that the set S  can be partitioned into two disjoint subsets 1S  and 

2S  such that 
1 2

2
b b

b b
s S s S

Ds s
∈ ∈

= =∑ ∑  if and only if all the 2B +  ship bays can be completed 

by 2  quay cranes with satisfying the non-crossing constraints and 
2

1

B

b b
b

C Eα
+

=

≤∑ . 

 

First, suppose that the set S  can be partitioned into two disjoint subsets 1S  and 2S  such 

that 
1 2

2
b b

b b
s S s S

Ds s
∈ ∈

= =∑ ∑ . Then 2  quay cranes can be scheduled with satisfying the non-

crossing constraints as follows: Quay Crane 1 handles all the Ship Bays 1b + , where 

1bs S∈  and then Ship Bay 1; Quay Crane 2 handles Ship Bay 2B +  and then all the Ship 

Bays 1b + , where 2bs S∈ . Let 
1

2
b

b
s S

De s
∈

= −∑ . Since 1 2b bp b Bα = ∀ ≤ ≤ + , the value of 

2

1

B

b b
b

Cα
+

=
∑  is not influenced by the ordering of the ship bays handled by the quay cranes 

and only depends on the choice of 1S  (Lenstra et al., 1977). Thus, the objective function 

value 
2

1

B

b b
b

Cα
+

=
∑  of this schedule can be expressed as Equation (4.12). 

… Processing time of each ship bay 

Ship bay number 

Quay crane 

2 3 … B B+1 B+2 

1 2 

2
D 1s

2
D2s 1Bs − Bs

1 
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1 2 1 2

2

1 1

2

1

2 2

1
2

2 2 2 2

            ( )( )
2 2

3            
4

            

b b b b

B

b b b b b b b b
b b b B s S s S s S s S

b b
b b B

b b
b b B

D D D DC s s s s s s

D Ds s e e D

s s D e

E e

α
+

′
′= ≤ ≤ ≤ ∈ ∈ ∈ ∈

′
′≤ ≤ ≤

′
′≤ ≤ ≤

⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= − + + + +⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠

= − + − +

= + +

= +

∑ ∑ ∑ ∑ ∑ ∑

∑

∑

 (4.12) 

As known 
1 2

2
b b

b b
s S s S

Ds s
∈ ∈

= =∑ ∑ , therefore 
1

0
2

b

b
s S

De s
∈

= − =∑  and 
2

1

B

b b
b

C Eα
+

=

=∑ . Hence, if 

the set S  can be partitioned into two disjoint subsets 1S  and 2S  such that 

1 2
2

b b

b b
s S s S

Ds s
∈ ∈

= =∑ ∑ , all the 2B +  ship bays can be completed by 2  quay cranes with 

satisfying the non-crossing constraints and 
2

1

B

b b
b

C Eα
+

=

≤∑ . 

 

Conversely, suppose all the 2B +  ship bays can be completed by 2  quay cranes with 

satisfying the non-crossing constraints and 
2

1

B

b b
b

C Eα
+

=

≤∑ . In terms of assigning Ship Bay 

1 and Ship Bay 2B + , there are four possible cases: both Ship Bay 1 and Ship Bay 2B +  

are assigned to Quay Crane 1 or Quay Crane 2; Ship Bay 1 is assigned to Quay Crane 2 

and Ship Bay 2B +  is assigned to Quay Crane 1; Ship Bay 1 is assigned to Quay Crane 1 

and Ship Bay 2B +  is assigned to Quay Crane 2. Due to the non-crossing constraints, 

2
2

1

 obtained from any quay crane schedule
B

b b
b

C E eα
+

=

≥ +∑ . As known there is at least one 

quay crane schedule with 
2

1

B

b b
b

C Eα
+

=

≤∑  and satisfying the non-crossing constraints, 
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therefore 0e =  which means 
1

2
b

b
s S

Ds
∈

=∑ . Hence, if all the 2B +  ship bays can be 

completed by 2  quay cranes with satisfying the non-crossing constraints and 

2

1

B

b b
b

C Eα
+

=

≤∑ , the set S  can be partitioned into two disjoint subsets 1S  and 2S  such that 

1 2
2

b b

b b
s S s S

Ds s
∈ ∈

= =∑ ∑ . 

 

Step 4: Proving that the above mentioned transformation is a polynomial 

transformation. 

The above mentioned transformation can be done in ( )O B  time. 

 

Therefore, PARTITION QCSHPP∝ , and the Theorem 4.1 is proved. 

 

4.3 AN APPROXIMATION ALGORITHM 

As proved in the previous section, QCSHPP is NP-complete, and thus there exists no 

polynomial time algorithm for the exact solution to the QCSHPP unless P=NP. This 

section proposes an Approximation Algorithm (AA) to obtain its near optimal solution 

which is elaborated as follows. 

 

Lemma 4.1: For a single quay crane, the sum of the weighted completion time of every 

ship bay is optimized if the ship bays are handled in a non-increasing order of b bpα . 

Proof:  
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For any sequencing of the ship bays, 1 1i i i ip pα α + +<  implies that interchanging the i th 

and 1i + st ship bays will reduce the sum of the weighted completion time of every ship 

bay by 1 1 0i i i ip pα α+ +− > . If starting with an optimal solution, there can be no profitable 

interchanges; and thus the ship bay with the highest ratio will necessarily be processed 

first, that with the second highest ratio next, and so forth in a non-increasing order of 

b bpα . Hence the Lemma 4.1 is proved (Smith, 1956). 

 

Approximation Algorithm: assign adjacent ship bays, 1 11,  2,  ...,  1,  k k k kb b b b− −+ + − , to 

quay crane k  ( 1 k K∀ ≤ ≤ ). Note that 0 0b =  and Kb B= . Then, quay crane k  handles 

the assigned ship bays in a non-increasing order of b bpα . Furthermore, a dynamic 

programming algorithm is proposed to determine the best partition points, 

1 2 2 1,  ,  ..., ,  K Kb b b b− − , which minimizes the sum of the weighted completion time of every 

ship bay. 

Parameters: 

[ ,  ]WC k b  the minimum sum of the weighted completion time of ship bays 

1,  2,  ..., 1,  b b−  when they are assigned to quay cranes 

1,  2,  ..., 1,  k k−  in the above mentioned adjacent manner; 

2

1

1 2[ ,  ]
b

b b
b b

TC b b Cα
=

= ∑  the sum of the weighted completion time of ship bays 

1 1 2 2,  1,  ..., 1,  b b b b+ −  when they are handled by a quay crane in a 

non-increasing order of b bpα . 
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Dynamic programming equations for determining the best partition points, 

1 2 2 1,  ,  ..., ,  K Kb b b b− − , are as follows: 

[1,  ] [1,  ]   1WC b TC b b B= ∀ ≤ ≤        (4.13) 

{ }
1

1 11 1
[ ,  ] min [ 1,  ] [ 1,  ]    2 ,  

k
k kk b b

WC k b WC k b TC b b k K k b B
−

− −− ≤ ≤ −
= − + + ∀ ≤ ≤ ∀ ≤ ≤  (4.14) 

 

Figure 4.2 shows a numerical example of the approximation algorithm in which there are 

two quay cranes and four ship bays. According to Equation (4.13) and note that the 

assigned ship bays are handled by the quay crane in a non-increasing order of b bpα , 

[1,  1] [1,  1] 348WC TC= = , [1,  2] [1,  2] 2372WC TC= = , [1,  3] [1,  3] 2750WC TC= = , and 

[1,  4] [1,  4] 4795WC TC= = . According to Equation (4.14), 

[2,  4] min  { [1,  1] [2,  4],  [1,  2] [3,  4],  [1,  3] [4,  4]}
min  {348 3404,  2372 828,  2750 625} min  {3752,  3200,  3375} 3200

WC WC TC WC TC WC TC= + + +
= + + + = =

 

Therefore, Quay Crane 1 handles Ship Bay 2 and then Ship Bay 1; Quay Crane 2 handles 

Ship Bay 4 and then Ship Bay 3. In this quay crane schedule, 
4

1
3200b b

b
Cα

=

=∑ . 

 

Figure 4.2 A Numerical Example of the Approximation Algorithm 

 

Ship bay number 

Quay crane 

Processing time of each ship bay 

The weight of each ship bay 

1 2 3 4 

1 2

116 184 12578

3 8 51
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The worst-case analysis for the proposed approximation algorithm is performed as 

follows. 

Parameters: 

Z  the objective function value of the solution to the QCSHPP obtained by the 

proposed approximation algorithm; 

1Z ∗  the objective function value of handling B  ship bays in a non-increasing order of 

b bpα  by a single quay crane; 

KZ ∗  the objective function value of the optimal solution to handling B  ship bays by 

K  quay cranes without considering the non-crossing constraints; 

Z ∗  the objective function value of the optimal solution to the QCSHPP. 

Lemma 4.2: 1( 1)K
K BZ Z Z

K B
∗ ∗ ∗+
≥ ≥

+
 

Proof: 

As proved in Eastman et al. (1964), 1( 1)K
K BZ Z

K B
∗ ∗+
≥

+
. The QCSHPP considers the non-

crossing constraints, therefore KZ Z∗ ∗≥ . The Lemma 4.2 is proved. 

 

Theorem 4.2: ( 1)K BZ Z
K B

∗ +
≤

+
 

Proof: 

When B  ship bays are handled by K  quay cranes using the proposed approximation 

algorithm, ship bay b  ( 1 b B∀ ≤ ≤ ) is completed no later than it is completed in the 

schedule of handling B  ship bays in a non-increasing order of b bpα  by a single quay 
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crane. Therefore, 1Z Z ∗≤ . A tight instance of 1Z Z ∗=  has 2  quay cranes and 3  ship bays. 

The processing time and weight of each ship bay are 

1 1 2 2 3 3100,  1;  120,  0;  270,  0.p p pα α α= = = = = =  In this case, 1 100Z Z ∗= = . Based on 

Lemma 4.2, 1( 1) ( 1)
K B K BZ Z Z

K B K B
∗ ∗+ +
≥ ≥

+ +
. Thus, the Theorem 4.2 is proved. 

 

4.4 COMPUTATIONAL EXPERIMENTS 

A series of computational experiments are conducted to examine the performance of the 

proposed model and approximation algorithm. The approximation algorithm is coded in 

C++ and executed in a Pentium IV 1.7GHz PC with 256MB RAM. 

 

There are forty random instances generated in which the processing time of a ship bay is 

randomly generated from a uniform distribution of (30,300)U  and the weight of a ship 

bay is randomly generated from a uniform distribution of (1,10)U . 

 

In order to evaluate the performance of the proposed approximation algorithm in solving 

the instance and according to Lemma 4.2, 1( 1)
K B Z

K B
∗+

+
 is adopted as the lower bound 

corresponding to the instance. 

 

As observed in Table 4.1, the gaps between solutions obtained from the proposed 

approximation algorithm and lower bounds are all small (for example the maximum gap 

among the forty instances is 16.45%, the minimum gap is 7.24%, and the average gap is 
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12.14%), and all the computational time of these forty instances is within one second. 

Therefore, the proposed approximation algorithm is concluded to be effective and 

efficient in solving the proposed QCSHPP. 

Table 4.1 The Results of Computational Experiments 
Experiment 

No 
Size 

(bays×cranes) 
Lower Bound AA Gap1 (%) 

1 11×3 15126 16707 10.45 
2 12×3 22158 24878 12.28 
3 13×3 19218 21217 10.40 
4 14×3 17550 19052 8.56 
5 15×3 21502 23290 8.32 
6 16×3 29659 32991 11.23 
7 17×3 30215 32409 7.26 
8 18×3 32817 35193 7.24 
9 19×3 37686 41078 9.00 

10 20×3 40313 44077 9.34 
11 11×4 13657 15484 13.38 
12 12×4 16926 19115 12.93 
13 13×4 24183 26417 9.24 
14 14×4 29829 33004 10.64 
15 15×4 19398 22198 14.43 
16 16×4 25328 29125 14.99 
17 17×4 22295 25327 13.60 
18 18×4 25368 28638 12.89 
19 19×4 26914 30760 14.29 
20 20×4 31162 34594 11.01 
21 21×5 29312 34134 16.45 
22 22×5 31752 35969 13.28 
23 23×5 36756 42405 15.37 
24 24×5 47536 52616 10.69 
25 25×5 43101 48568 12.68 
26 26×5 70507 76101 7.93 
27 27×5 34727 39800 14.61 
28 28×5 61564 68031 10.50 
29 29×5 40510 46147 13.92 
30 30×5 48162 53071 10.19 
31 21×6 26738 30746 14.99 
32 22×6 33091 38101 15.14 
33 23×6 43494 49497 13.80 
34 24×6 34208 39138 14.41 
35 25×6 32213 37408 16.13 
36 26×6 42839 49118 14.66 
37 27×6 41107 46015 11.94 
38 28×6 45470 51469 13.19 
39 29×6 48933 56062 14.57 
40 30×6 59505 65260 9.67 

1Gap=(solution obtained from the proposed AA-lower bound)×100/lower bound 
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Furthermore, in practical quay crane scheduling, the number of quay cranes ranges from 

two to five, and the number of ship bays ranges from ten to twenty-five. The proposed 

approximation algorithm may be considered as a suitable approach in scheduling quay 

cranes in port container terminals taking into account handling priority of every ship bay 

and to enhance the efficiency of port operations. 

 

4.5 SUMMARY 

This chapter provides a mixed integer programming model for the proposed QCSHPP, 

proves that the QCSHPP is NP-complete, and proposes an approximation algorithm to 

obtain near optimal solution for the QCSHPP. In addition, the worst-case analysis for the 

approximation algorithm is performed and computational experiments are conducted to 

examine the proposed model and approximation algorithm. The results show that the 

proposed approximation algorithm is effective and efficient in solving the QCSHPP. 
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CHAPTER 5 INTEGRATED DISCRETE BERTH ALLOCATION 

AND QUAY CRANE SCHEDULING 

As discussed in Chapter 1, the handling time of a container ship at a berth is related to its 

quay crane schedule. To consider the relationship between berth allocation and quay 

crane scheduling, this chapter studies the Integrated discrete Berth Allocation and Quay 

Crane Scheduling Problem (IBAQCSP). 

 

5.1 MODEL FORMULATION 

This chapter proposes a mixed integer programming model which includes two parts for 

the IBAQCSP. The first part is a dynamic berth allocation model based on discrete 

locations. The handling time of every container ship at each berth in the first part is 

obtained from the second part which is a quay crane scheduling with non-crossing 

constraints model. The following assumptions are imposed in formulating the first part: 

1. Each berth can handle only one container ship at a time until the container ship is 

completed. 

2. There are no physical or technical restrictions such as container ship and berth length, 

and container ship draft and water depth. 

3. The handling time of a container ship at a berth depends on the quay crane schedule 

for the container ship. 

4. Container ships can arrive at a port container terminal during the planning horizon 

and every container ship cannot be handled before it arrives. 
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In order to formulate the first part, the following parameters and decision variables are 

introduced: 

Parameters: 

Q  the number of berths; 

S  the number of container ships; 

sa  the arrival time of container ship s  (1 s S≤ ≤ ); 

,s qH  the handling time of container ship s  at berth q  (1 s S≤ ≤ ,1 q Q≤ ≤ ); 

M  a sufficiently large positive number (constant); 

Decision variables: 

,s qx  1, if container ship s  is assigned to berth q ; 0, otherwise (1 s S≤ ≤ ,1 q Q≤ ≤ ); 

sy  the berthing time of container ship s  (1 s S≤ ≤ ); 

,s sz ′  1, if container ship s  finishes no later than container ship s′  starts; 0, otherwise 

(1 ,  ,  s s S s s′ ′≤ ≤ ≠ ); 

sc  the completion time of container ship s  (1 s S≤ ≤ ). 

The first part can be formulated as follows: 

Minimize: 

max  ss
c            (5.1) 

Subject to: 

,
1

1   1
Q

s q
q

x s S
=

= ∀ ≤ ≤∑         (5.2) 

, ,
1

   1
Q

s s s q s q
q

c y H x s S
=

= + ∀ ≤ ≤∑        (5.3) 
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, 0   1 ,  ,  s s s sc y z M s s S s s′ ′ ′ ′− + > ∀ ≤ ≤ ≠       (5.4) 

,(1 ) 0   1 ,  ,  s s s sc y z M s s S s s′ ′ ′ ′− − − ≤ ∀ ≤ ≤ ≠      (5.5) 

, , , ,( 1) ( 1) 1   1 ,  ,  ,  1s q s q s s s sM x x z z s s S s s q Q′ ′ ′ ′ ′⎡ ⎤− + − ≤ + − ∀ ≤ ≤ ≠ ∀ ≤ ≤⎣ ⎦   (5.6) 

   1s sy a s S≥ ∀ ≤ ≤          (5.7) 

, ,,  0 or 1   1 ,  ,  ,  1s q s sx z s s S s s q Q′ ′ ′= ∀ ≤ ≤ ≠ ∀ ≤ ≤      (5.8) 

The objective function (5.1) of the first part minimizes the makespan of handling all 

container ships, which is the latest completion time among all container ships. 

Constraints (5.2) ensure that every container ship must be allocated only to one berth. 

Constraints (5.3) define the property of the decision variable sc . Constraints (5.4) and 

(5.5) define the properties of decision variables ,s sz ′ : Constraints (5.4) indicate that 

, 1s sz ′ =  if s sc y ′≤ , which means , 1s sz ′ =  when container ship s  finishes no later than 

container ship s′  starts; Constraints (5.5) indicate that , 0s sz ′ =  if s sc y ′> , which means 

, 0s sz ′ =  when container ship s  finishes after container ship s′  starts. Constraints (5.6) 

guarantee that any two container ships do not conflict with each other in terms of the 

berthing time. Suppose that both container ship s  and container ship s′  are assigned to 

the same berth q , then , ,0 1s s s sz z′ ′≤ + −  which means , , 0s s s sz z′ ′+ ≠ . Therefore, if two 

container ships are allocated to the same berth, Constraints (5.6) assure that they are not 

handled simultaneously. Constraints (5.7) enforce that every container ship cannot berth 

before it arrives. 
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The handling time of container ship s  at berth q , ,s qH  can be obtained from the second 

part. The following assumptions are imposed in formulating the second part: 

1. The number of quay cranes at each berth is fixed. 

2. Quay cranes are operated on the same tracks and thus cannot cross over each other. 

3. Only one quay crane can work on a ship bay at a time until it completes the ship bay. 

4. Compared with the processing time of a ship bay by a quay crane, the travel time of a 

quay crane between two ship bays is small and hence it is not considered. 

 

In order to formulate the second part, the following parameters and decision variables are 

introduced: 

Parameters: 

qK  the number of quay cranes at berth q  (1 q Q≤ ≤ ); 

sB  the number of ship bays in container ship s  (1 s S≤ ≤ ); 

sbP  the processing time of ship bay b  in container ship s  by a quay crane 

(1 s sb B≤ ≤ ); 

Decision variables: 

,s qb kX  1, if ship bay b  in container ship s  is handled by quay crane k  at berth q ; 0, 

otherwise (1 s sb B≤ ≤ ,1 q qk K≤ ≤ ); 

,s sb bY ′  1, if ship bay b  in container ship s  finishes no later than ship bay b′  in 

container ship s  starts; 0, otherwise (1 ,  s s sb b B′≤ ≤ , s sb b′≠ ); 

sbC  the completion time of ship bay b  in container ship s  (1 s sb B≤ ≤ ). 

The second part can be formulated as follows: 
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Minimize: 

,s qH            (5.9) 

Subject to: 

,    1
ss q b s sH C b B≥ ∀ ≤ ≤         (5.10) 

   1
s sb b s sC P b B≥ ∀ ≤ ≤         (5.11) 

,
1

1   1
q

s q

q

K

b k s s
k

X b B
=

= ∀ ≤ ≤∑         (5.12) 

,( ) 0   1 ,  ,  
s s s s sb b b b b s s s s sC C P Y M b b B b b′ ′ ′ ′ ′− − + > ∀ ≤ ≤ ≠     (5.13) 

,( ) (1 ) 0   1 ,  ,  
s s s s sb b b b b s s s s sC C P Y M b b B b b′ ′ ′ ′ ′− − − − ≤ ∀ ≤ ≤ ≠     (5.14) 

, , , ,
1 1

( ) 1   1
q q

s s s s s q s q

q q

K K

b b b b q b k q b k s s s
k k

M Y Y k X k X b b B′ ′ ′ ′
′= =

′ ′+ ≥ − + ∀ ≤ < ≤∑ ∑    (5.15) 

, ,,  0 or 1   1 ,  ,  ,  1
s q s sb k b b s s s s s q qX Y b b B b b k K′ ′ ′= ∀ ≤ ≤ ≠ ∀ ≤ ≤     (5.16) 

The objective function (5.9) of the second part minimizes the handling time of container 

ship s  at berth q . Constraints (5.10) define ,s qH  as the latest completion time among all 

ship bays of container ship s  when it is handled at berth q . Constraints (5.11) define the 

property of the decision variable 
sbC . Constraints (5.12) ensure that every ship bay of 

container ship s  must be performed only by one quay crane at berth q . Constraints (5.13) 

and (5.14) define the properties of decision variables ,s sb bY ′ . Constraints (5.13) indicate 

that , 1
s sb bY ′ =  if 

s s sb b bC C P′ ′≤ − , which means , 1
s sb bY ′ =  when ship bay b  of container ship 

s  finishes no later than ship bay b′  of container ship s  starts. Constraints (5.14) indicate 

that , 0
s sb bY ′ =  if 

s s sb b bC C P′ ′> − , which means , 0
s sb bY ′ =  when ship bay b  of container ship 
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s  finishes after ship bay b′  of container ship s  starts. Finally, the crossing between quay 

cranes at berth q  can be avoided by imposing Constraints (5.15). Suppose that ship bays 

b  and b′  of container ship s  are performed simultaneously and s sb b′< , then this means 

that , , 0
s s s sb b b bY Y′ ′+ = . Note that both quay cranes at a berth and ship bays of a container 

ship are arranged in an increasing order from the front to the tail of the container ship 

(refer to Figure 1.2 in Page 4). Thus, if quay crane k  at berth q  handles ship bay b  of 

container ship s  and quay crane k′  at berth q  handles ship bay b′  of container ship s , 

then 1q qk k′+ ≤ . 

 

5.2 PROOF OF NP-COMPLETENESS 

This chapter discusses the computational complexity of IBAQCSP to justify why 

heuristic algorithms are adopted. As well known, if a problem is NP-complete, then there 

exists no polynomial time algorithm for its exact solution unless P=NP. Hence heuristic 

algorithms are needed to obtain near optimal solutions for the problem. In this chapter, 

the proposed IBAQCSP is proved to be NP-complete. 

 

Theorem 5.1: IBAQCSP is NP-complete. 

Proof: 

Restrict the number of berths 1Q = , the number of container ships 1S = , and the arrival 

time of the single container ship 0a = . Then, the resulting restricted IBAQCSP is 

identical to the Quay Crane Scheduling with Non-Crossing constraints Problem 
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(QCSNCP). The QCSNCP is proved to be NP-complete in Section 2.2. Hence the 

Theorem 5.1 is proved. 

 

5.3 A GENETIC ALGORITHM 

As proved in the previous section, IBAQCSP is NP-complete, and thus there exists no 

polynomial time algorithm for the exact solution to IBAQCSP unless P=NP. This section 

employs a Genetic Algorithm (GA) to obtain its near optimal solutions. The procedure of 

the proposed GA is illustrated in Figure 5.1 and the details of the proposed GA are 

elaborated as follows. 
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Start

Generate initial population

Calculate objective function value and 
transform it to fitness value

If current generation is final

Selection

Crossover

Mutation

No

End

Yes

 

Figure 5.1 The Flowchart of the Proposed GA 

 

5.3.1 Chromosome Representation and Decoding Procedure 

In this chapter, berths are numbered in an increasing order from the left to the right (as 

illustrated in Figure 1.1 in Page 3) and container ships are numbered according to their 

arrival time. If a container ship arrives earlier, its number is smaller. A chromosome of 



CHAPTER 5: INTEGRATED DISCRETE BERTH ALLOCATION AND QUAY CRANE  
SCHEDULING 

 88

the GA represents a sequence of container ships. Figure 5.2 provides a sample 

chromosome, in which a gene is a container ship number. Based on the sequence of 

container ships represented by the chromosome, a berth allocation can be constructed 

using the following procedure. 

 

Figure 5.2 An Illustration of the Chromosome Representation 

 

Step 1: Based on the current completion time of each berth to finish its already allocated 

container ships and the arrival time of the first unassigned container ship in the 

chromosome, determine which berths can handle this container ship immediately. If there 

is no idle berth when this container ship arrives, go to Step 2.1. Otherwise, go to Step 3.1. 

Step 2.1: If there is only one berth with the earliest completion time, this container ship 

has to wait and is allocated to this berth. Then, this container ship is deleted from the 

chromosome, the completion time of the assigned berth is updated, and go to Step 4. If 

there are two or more berths with the earliest completion time, go to Step 2.2. 

Step 2.2: If there is only one berth with the largest number of quay cranes, this container 

ship has to wait and is allocated to this berth. Then, this container ship is deleted from the 

chromosome, the completion time of the assigned berth is updated, and go to Step 4. If 

there are two or more berths with the largest number of quay cranes, go to Step 2.3. 

6 9 3 8 7 4 1 2 5 Chromosome 

Gene: container ship number 1-9 

1 2 3 4 5 6 7 8 9 Sequence 
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Step 2.3: This container ship has to wait and is allocated to the berth with the smallest 

number. Then, this container ship is deleted from the chromosome, the completion time 

of the assigned berth is updated, and go to Step 4. 

Step 3.1: If there is only one idle berth, this container ship is allocated to this berth. Then, 

this container ship is deleted from the chromosome, the completion time of the assigned 

berth is updated, and go to Step 4. If there are two or more idle berths, go to Step 3.2. 

Step 3.2: If there is only one idle berth with the largest number of quay cranes, this 

container ship is allocated to this berth. Then, this container ship is deleted from the 

chromosome, the completion time of the assigned berth is updated, and go to Step 4. If 

there are two or more idle berths with the largest number of quay cranes, go to Step 3.3. 

Step 3.3: This container ship is allocated to the idle berth with the smallest number. Then, 

this container ship is deleted from the chromosome, the completion time of the assigned 

berth is updated, and go to Step 4. 

Step 4: If there are unassigned container ships in the chromosome, go to Step 1; 

otherwise, go to End. 

Note that when updating the completion time of the assigned berth in the aforementioned 

procedure, the handling time of this container ship at the assigned berth is needed. This 

time is obtained from an approximation algorithm for the quay crane scheduling with 

non-crossing constraints problem which is elaborated later. 

 

Figure 5.3 shows a numerical example of the aforementioned procedure which is to 

construct a berth allocation from a chromosome. The number of quay cranes at each berth 

and the current completion time of each berth are indicated in Figure 5.3. The first 
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unassigned container ship in the chromosome is Container Ship 3 whose arrival time is 

714. 

Step 1: When Container Ship 3 arrives, Berth 1, Berth 2, and Berth 4 are idle. Therefore, 

go to Step 3.1. 

Step 3.1: Since there are three idle berths, go to Step 3.2. 

Step 3.2: Since the number of quay cranes at both Berth 2 and Berth 4 is 3, go to Step 3.3. 

Step 3.3: Container Ship 3 is allocated to Berth 2. Then, Container Ship 3 is deleted from 

the chromosome. The handling time of Container Ship 3 at Berth 2 is 595 (that is 

obtained from an approximation algorithm for the quay crane scheduling with non-

crossing constraints problem which is elaborated later). Thus, the completion time of 

Berth 2 = the arrival time of Container Ship 3 + the handling time of Container Ship 3 at 

Berth 2 = 714 + 595 = 1309. Go to Step 4. 

Step 4: Since Container Ship 5 is the first unassigned container ship in the chromosome, 

go to Step 1. 
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 The Number of Quay Cranes Completion Time of Berth 
Berth 1 2 689 
Berth 2 3 709 
Berth 3 4 1021 
Berth 4 3 615 

 

 The Number of Quay Cranes Completion Time of Berth 
Berth 1 2 689 
Berth 2 3 1309 
Berth 3 4 1021 
Berth 4 3 615 

Figure 5.3 An Illustration of Constructing a Berth Allocation from a Chromosome 

 

5.3.2 Fitness Evaluation and Selection 

Based on the aforementioned procedure, the makespan of a berth allocation can be 

obtained. As shown in Equation (5.17), the reciprocal of this makespan is set to be the 

fitness value of the chromosome from which the berth allocation is constructed. 

Fitness value 1 max  ss
c=         (5.17) 

 

In this chapter, a roulette wheel approach is adopted as the selection procedure. It belongs 

to the fitness-proportional selection and can select a new population with respect to the 

probability distribution based on fitness values (Gen and Cheng, 1996). 

 

5 2 4 7 11 10 8 1 6 12 9 Chromosome 

3 5 2 4 7 11 10 8 1 6 12 9 Chromosome 
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5.3.3 Crossover 

Generally, the aforementioned chromosome representation will yield illegal offspring by 

one-point, two-point or multipoint crossover in the sense of that some container ships 

may be missed while some container ships may be duplicated in the offspring. Therefore, 

this chapter adopts ‘order crossover’ (Gen and Cheng, 1996), in which repairing 

procedure is embedded to resolve the illegitimacy of offspring. ‘Order crossover’ works 

as follows: 

Step 1: Select a substring from one parent randomly. 

Step 2: Produce a proto-child by copying the substring into its corresponding positions. 

Step 3: Delete the container ships which are already in the substring from the second 

parent. The resulted sequence of container ships contains the container ships that the 

proto-child needs. 

Step 4: Place the container ships into the unfixed positions of the proto-child from left to 

right according to the order of the sequence to produce an offspring. 

 

The ‘order crossover’ is illustrated in Figure 5.4 that presents an example of producing 

two offspring from the same parents. 
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Figure 5.4 An Illustration of the Order Crossover 

 

5.3.4 Mutation 

Mutation forces the GA to search new areas, and helps the GA avoid premature 

convergence and find the global optimal solution. Generally, in the mutation all 

individuals in the population are checked bit by bit and the bit values are randomly 

reversed according to a pre-specified rate. However, in this chapter the mutation selects 

chromosomes randomly in terms of the probability of mutation and chooses two positions 

Selected substring 

9 2 5 4 3 7 6 8 1 Parent 1 

Offspring 1 8 4 3 1 2 7 9 6 5 

Parent 2 5 9 1 2 4 7 8 3 6 

Offspring 2 2 9 1 4 7 8 5 3 6 

Selected substring 

Parent 2 5 9 1 4 2 7 8 36

Parent 1 2 9 5 4 3 7 8 16
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of the selected chromosome at random then swaps the container ships on these positions 

as illustrated in Figure 5.5. 

 

Figure 5.5 An Illustration of the Mutation 

 

5.3.5 An Approximation Algorithm for Quay Crane Scheduling 

As mentioned previously, when updating the completion time of the assigned berth in the 

procedure of constructing a berth allocation from a chromosome, the handling time of 

this container ship at the assigned berth is needed. In this chapter, this handling time is 

obtained from an approximation algorithm for the Quay Crane Scheduling with Non-

Crossing constraints Problem (QCSNCP) which is elaborated as follows. 

 

Approximation Algorithm: assume that container ship s  is allocated to berth q , the 

number of ship bays in container ship s  is B , and the number of quay cranes at berth q  

is K . The quay crane schedule for container ship s  at berth q  can be constructed as 

follows. Assign adjacent ship bays, 1 11,  2,  ...,  1,  k k k kb b b b− −+ + − , to quay crane k  

( 1 k K∀ ≤ ≤ ). Note that 0 0b =  and Kb B= . A dynamic programming algorithm is then 

Select two positions at random 

8 3 2 1 4 9 5 7 6

Swap the relative container ships 

3 2 8 1 4 9 5 6 7
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proposed to determine the best partition points, 1 2 2 1,  ,  ..., ,  K Kb b b b− − , which minimizes 

the latest completion time among all ship bays. 

Parameters: 

[ ,  ]MC k b  the minimum latest completion time when ship bays 

1,  2,  ..., 1,  b b−  are assigned to quay cranes 1,  2,  ..., 1,  k k−  in 

the above mentioned adjacent manner; 

2

1

1 2[ ,  ]
b

b
b b

TP b b P
=

= ∑  the total processing time of ship bays 1 1 2 2,  1,  ..., 1,  b b b b+ − . 

Dynamic programming equations for determining the best partition points, 

1 2 2 1,  ,  ..., ,  K Kb b b b− − , are as follows: 

[1,  ] [1,  ]   1MC b TP b b B= ∀ ≤ ≤        (5.18) 

1
1 11 1

[ ,  ] min max{ [ 1,  ],  [ 1,  ]} 2 ,
k

k kk b b
MC k b MC k b TP b b k K k b B

−
− −− ≤ ≤ −

= − + ∀ ≤ ≤ ∀ ≤ ≤  (5.19) 

The makespan of the quay crane schedule obtained from the approximation algorithm is 

[ ,  ]MC K B , which is the handling time of container ship s  at berth q . 

 

Figure 5.6 shows a numerical example of the approximation algorithm in which there are 

two quay cranes at a berth and four ship bays in a container ship. According to Equation 

(5.18), [1,  1] [1,  1] 187MC TP= = , [1,  2] [1,  2] 281MC TP= = , [1,  3] [1,  3] 387MC TP= = , 

and [1,  4] [1,  4] 461MC TP= = . According to Equation (5.19), 

[2,  4] min  {max{ [1,  1],  [2,  4]},  max{ [1,  2],  [3,  4]},  
max{ [1,  3],  [4,  4]}} min  {max{187,  274},  max{281,  180},  max{387,  74}}

min  {274,  281,  387} 274.

MC MC TP MC TP
MC TP

=
=

= =
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Therefore, Ship Bay 1 is assigned to Quay Crane 1, and Ship Bay 2, 3, and 4 are assigned 

to Quay Crane 2. The makespan of this quay crane schedule is [2,  4] 274MC = , which is 

the handling time of the container ship at the berth. 

 

Figure 5.6 A Numerical Example of the Approximation Algorithm 

 

Worst-case analysis for the approximation algorithm is performed as follows. 

Parameters: 

1Z  the objective function value of the solution to the QCSNCP obtained by the 

approximation algorithm proposed in Chapter 2; 

2Z  the objective function value of the solution to the QCSNCP obtained by the 

approximation algorithm proposed in Chapter 5; 

Z ∗  the objective function value of the optimal solution to the QCSNCP. 

Theorem 5.2: 2 / 2Z Z ∗ ≤  

Proof: 

Both the approximation algorithm proposed in Chapter 2 and the approximation 

algorithm proposed in Chapter 5 assign ship bays to quay cranes in the aforementioned 

adjacent manner. According to the Theorem 2.2, 1 2Z Z ∗≤ . Since the approximation 

Ship bay number 

Quay crane 

Processing time of each ship bay 

1 2 3 4 

1 2

187 7410694
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algorithm proposed in Chapter 5 optimizes the partition points, 1 2 2 1,  ,  ..., ,  K Kb b b b− − , 

2 1 2Z Z Z ∗≤ ≤ . The Theorem 5.2 is proved. 

 

5.4 COMPUTATIONAL EXPERIMENTS 

A series of computational experiments are conducted to examine the performance of the 

proposed GA. The GA is coded in C++ and executed in a Pentium IV 3.6GHz PC with 

2GB RAM. 

 

There are forty random instances systematically generated. Two port container terminals 

are examined whose configurations are summarized in Table 5.1. The planning horizon is 

one week and the number of container ships arriving at each port container terminal 

during one week is indicated in Table 5.2 and Table 5.3. The arrival time of every 

container ship, the number of ship bays in every container ship, and the processing time 

of each ship bay in every container ship are randomly generated from uniform 

distribution of (0,10080)U , (10,30)U , and (30,180)U , respectively. For each problem 

size, four instances are generated by using different random seeds. According to the 

preliminary tests, the population size, the probability of crossover, the probability of 

mutation, and the limit of generations of the GA are set as 500, 0.5, 0.3, and 2,000 

respectively in these computational experiments. 
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Table 5.1 The Configurations of Two Port Container Terminals 
Port container terminal 1 Port container terminal 2 

Berth number The number of quay 
cranes at each berth 

Berth number The number of quay 
cranes at each berth 

1 2 1 2 
2 3 2 4 
3 4 3 3 
4 3 4 4 
  5 3 
  6 5 

 

In order to evaluate the performance of the proposed GA, the lower bound corresponding 

to the instance can be obtained from the following equations. Equation (5.20) denotes the 

lower bound of the handling time of container ship s  at the berth with the largest number 

of quay cranes, slb . Equation (5.21) indicates the lower bound of the makespan of 

handling all container ships, LB . 

1

max  { the largest number of quay cranes, max{ }}   1
s

s s
s

s

B

s b bbb

lb P P s S
=

= ∀ ≤ ≤∑  (5.20) 

max  { }s ss
LB a lb= +          (5.21) 

 

As shown in Table 5.2, for port container terminal 1, the maximum gap between the near 

optimal solution obtained from the genetic algorithm and the lower bound among these 

twenty instances is 27.97%, the minimum gap is 0.18%, and the average gap is 12.41%. 

As shown in Table 5.3, for port container terminal 2, the maximum gap between the near 

optimal solution obtained from the genetic algorithm and the lower bound among these 

twenty instances is 26.16%, the minimum gap is 0.23%, and the average gap is 9.68%. 

As observed in Table 5.2 and Table 5.3, when the number of container ships arriving at a 

port container terminal during one week increases, the gap between the near optimal 

solution obtained from the genetic algorithm and the lower bound grows. However, it 
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does not always indicate that the gap between the near optimal solution and the optimal 

solution increases. This may be due to the following reasons. When calculating the lower 

bound, it is assumed that each container ship can be berthed immediately when it arrives 

at a port container terminal. However, it is possible that some container ships may have 

to wait for available berths when the number of container ships becomes larger. In this 

case, the gap between the optimal solution and the lower bound may become larger as 

well. Therefore, the gap between the near optimal solution and the optimal solution may 

still be small. As seen in Table 5.2 and Table 5.3, all the computational time of these 

forty instances is within seven seconds. Based on the aforementioned analysis, the 

proposed GA is concluded to be effective and efficient in solving the proposed IBAQCSP. 

 

In general, the number of berths ranges from two to six in port container terminals, the 

number of container ships arriving during one week ranges from twenty to sixty, the 

number of quay cranes at a berth ranges from two to four, and the number of ship bays in 

a container ship ranges from ten to twenty-five. Hence, the random instance in the 

computational experiments is very close to the reality. Based on the computational results, 

the proposed GA may be considered as an appropriate approach to scheduling berths and 

quay cranes in port container terminals to enhance their efficiency. 
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Table 5.2 Computational Results of Port Container Terminal 1 
Experiment 

No 
Size 

(ships×berths) 
Lower Bound GA Gap a (%) 

Value CPU (sec) 
1 25×4 10915 11235 3.27 2.93 
2 25×4 10404 11008 3.23 5.81 
3 25×4 10481 10815 3.22 3.19 
4 25×4 10763 10981 3.22 2.03 
5 30×4 10010 10705 3.73 6.94 
6 30×4 10321 10930 3.58 5.90 
7 30×4 10530 10549 3.61 0.18 
8 30×4 10920 11214 3.58 2.69 
9 35×4 10880 12430 3.95 14.25 

10 35×4 10492 11960 3.94 13.99 
11 35×4 10698 11723 3.98 9.58 
12 35×4 10746 12018 4.06 11.84 
13 40×4 10923 12992 4.42 18.94 
14 40×4 10858 12498 4.41 15.10 
15 40×4 10727 13032 4.44 21.49 
16 40×4 10775 13237 4.39 22.85 
17 45×4 10831 13169 4.86 21.59 
18 45×4 10803 13187 4.84 22.07 
19 45×4 10717 13715 4.86 27.97 
20 45×4 10926 12991 4.89 18.90 

a Gap = (solution obtained from the proposed GA - lower bound)×100/lower bound 
 

Table 5.3 Computational Results of Port Container Terminal 2 
Experiment 

No 
Size 

(ships×berths) 
Lower Bound GA Gap a (%) 

Value CPU (sec) 
1 40×6 10639 10900 4.39 2.45 
2 40×6 10534 10632 4.38 0.93 
3 40×6 10744 10769 4.41 0.23 
4 40×6 10686 10721 4.44 0.33 
5 45×6 10635 11372 4.84 6.93 
6 45×6 10583 11422 4.86 7.93 
7 45×6 10602 11219 4.88 5.82 
8 45×6 10698 11687 4.97 9.24 
9 50×6 10572 11119 5.34 5.17 

10 50×6 10731 11765 5.36 9.64 
11 50×6 10621 11596 5.33 9.18 
12 50×6 10652 10756 5.36 0.98 
13 55×6 10670 12322 5.88 15.48 
14 55×6 10667 12133 6.03 13.74 
15 55×6 10692 12571 5.88 17.57 
16 55×6 10702 11814 5.83 10.39 
17 60×6 10659 13447 6.36 26.16 
18 60×6 10642 12522 6.33 17.67 
19 60×6 10678 12201 6.39 14.26 
20 60×6 10638 12704 6.38 19.42 

a Gap = (solution obtained from the proposed GA - lower bound)×100/lower bound 
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5.5 SUMMARY 

This chapter provides a mixed integer programming model including two parts for the 

proposed IBAQCSP, proves that the IBAQCSP is NP-complete, and proposes a genetic 

algorithm containing an approximation algorithm for quay crane scheduling to obtain 

near optimal solution for the IBAQCSP. In addition, computational experiments are 

conducted to examine the proposed genetic algorithm. The results show that the proposed 

genetic algorithm is effective and efficient in solving the IBAQCSP. 
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CHAPTER 6 CONCLUSIONS 

6.1 CONCLUDING REMARKS 

The main purpose of this thesis was to enhance the efficiency of berth and quay crane 

operations in port container terminals. In the first part of this thesis, an innovative work 

on the Quay Crane Scheduling with Non-Crossing constraints Problem (QCSNCP) was 

discussed. This part provided a mixed integer programming model for the QCSNCP that 

was NP-complete in nature. Since there were no polynomial time algorithms for the exact 

solution to NP-complete problems unless P=NP, an approximation algorithm and a 

genetic algorithm were proposed to obtain its near optimal solutions. Furthermore, worst-

case analysis for the approximation algorithm was performed and computational 

experiments were conducted to examine the proposed model and solution algorithms. The 

computational results showed that the proposed approximation algorithm and genetic 

algorithm were effective and efficient in solving the QCSNCP. 

 

In the second part of this thesis, an original work on the Quay Crane Scheduling with 

Safety Distance and non-crossing constraints Problem (QCSSDP) was presented. A 

mixed integer programming model was provided for the QCSSDP which was proved to 

be NP-complete. An approximation algorithm and a genetic algorithm were proposed to 

obtain near optimal solutions for the QCSSDP. In addition, worst-case analysis for the 

approximation algorithm was performed, and computational experiments for the 

approximation algorithm and the genetic algorithm were conducted. The computational 
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results showed that both the approximation algorithm and the genetic algorithm were 

effective and efficient in solving the QCSSDP. 

 

In the third part of this thesis, a novel work on the Quay Crane Scheduling with Handling 

Priority and non-crossing constraints Problem (QCSHPP) was described. The QCSHPP 

was formulated as a mixed integer programming model and proved to be NP-complete. 

Thus, an approximation algorithm was designed for obtaining near optimal solution to the 

QCSHPP. Moreover, worst-case analysis for the approximation algorithm was performed 

and computational experiments were conducted. The computational results showed that 

the proposed approximation algorithm was effective and efficient in solving the QCSHPP. 

 

In the last part of this thesis, an original work on the Integrated discrete Berth Allocation 

and Quay Crane Scheduling Problem (IBAQCSP) was addressed. A mixed integer 

programming model including two parts was provided for the IBAQCSP which was 

proved to be NP-complete. A genetic algorithm containing an approximation algorithm 

for quay crane scheduling was then proposed to obtain near optimal solution to the 

IBAQCSP. Finally, computational experiments were performed to examine the 

performance of the proposed GA and the results showed that the proposed GA was 

effective and efficient in solving the IBAQCSP. 

 

6.2 RECOMMENDATIONS FOR FUTURE RESEARCH 

1. As the first attempt, the Quay Crane Scheduling with Handling Priority and non-

crossing constraints Problem (QCSHPP), and Integrated discrete Berth Allocation 
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and Quay Crane Scheduling Problem (IBAQCSP) did not consider the safety 

distance constraints. This implies that quay crane schedules obtained from these 

models may not always satisfy operational requirements in port container terminals. 

Therefore, the incorporation of the safety distance constraints into the QCSHPP and 

IBAQCSP may be explored in future research. 

 

2. Compared with the processing time of a ship bay by a quay crane, the travel time of a 

quay crane between two ship bays is small and hence it was not considered in this 

thesis. However, the travel time of quay cranes exists in reality. Further research may 

take this factor into account so that the attained quay crane scheduling model may be 

more adaptable in practice. 

 

3. The integrated discrete berth allocation and quay crane scheduling problem assumed 

that the number of quay cranes at each berth was fixed. In fact, quay cranes can be 

transferred among berths to increase operational efficiency. The incorporation of 

quay crane transfer into the current study may be a promising topic for future 

research. 

 

4. Compared to the discrete berth allocation, the continuous berth allocation can further 

enhance the efficiency of berth usage. It may be interesting to study the Integrated 

Continuous Berth Allocation and Quay Crane Scheduling Problem (ICBAQCSP) in 

the future. The berthing position, the berthing time, the number of assigned quay 

cranes, and the quay crane schedule for every container ship may be determined 
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simultaneously in the ICBAQCSP so that the efficiency of port operations may be 

further improved. 

 

6.3 RESEARCH CONTRIBUTIONS 

1. A comprehensive literature review on berth allocation and quay crane scheduling is 

provided and the details of practical berth and quay crane operations are elaborated 

in this thesis. It may serve as a reference for researchers who are interested in port 

operations. 

 

2. Traditional parallel machine scheduling problems do not consider the non-crossing 

and safety distance constraints. This thesis investigates the parallel quay crane 

scheduling problems with the non-crossing and safety distance constraints. It may 

contribute to the theory of parallel machine scheduling. 

 

3. This thesis proves that all the proposed problems are NP-complete. Theoretically 

speaking, there are no polynomial time algorithms for the exact solution to all these 

problems unless P=NP. Researchers who are interested in these problems may take 

these proofs as references and focus on developing heuristic algorithms for these 

problems. 

 

4. Computational experiments show that both the approximation algorithms and genetic 

algorithms proposed by this thesis are effective and efficient in scheduling berths and 
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quay cranes. Port container terminals may adopt these scheduling methods in 

practice to enhance their operational efficiency. 

 

5. The study on the IBAQCSP should enhance our understanding of combined 

optimization of berth allocation and quay crane scheduling. This knowledge may 

further increase the overall efficiency of port operations when comparing to 

optimizing berth allocation or quay crane scheduling individually. 

 

6. The proposed scheduling methods are coded into computer programs. These source 

codes may be employed as the key components of the future software for optimizing 

port operations. 
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