
METAHEURISTICS FOR NP-HARD

COMBINATORIAL OPTIMIZATION PROBLEMS

Dinh Trung Hoang

(B.Sc, National Uni. of Vietnam)

A THESIS SUBMITTED

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

NATIONAL UNIVERSITY OF SINGAPORE

2008

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarBank@NUS

https://core.ac.uk/display/48625002?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

iii

ACKNOWLEDGEMENTS

I would like to extend my gratitude and deepest appreciation to Dr. A. A. Ma-

mun for his inspiration, excellent guidance, endless support and encourage-

ment during the work. He has always made himself available for discussion

whenever I encountered problems with the project. His erudite knowledge

and deepest insights have been the most inspiration and made this research

work a rewarding experience. I owe an immense dept of gratitude to him

for having given me the curiosity about metaheuristics. Without his kindest

help, this thesis and many others would have been impossible.

Thanks also go to the faculties in Electrical & Computer Engineering Depart-

ment in National University of Singapore, for their constant encouragement

and valuable advice.

Acknowledgement is extended to National University of Singapore for award-

ing me the research scholarship and providing me the research facilities and

challenging environment during my study time.

I sincerely acknowledge all the help from all members in Mechatronics & Au-

tomation lab, the National University of Singapore, in particular, my friends

Dr. Tang K.Z., Mr. Trung, Mr. Zhu Zhen, Ms. Liu Jin, and Mr. Guan Feng for

their kind assistance and friendship.

Last but not least, I would thank my family members for their support, un-

derstanding, patience and love during this process of my pursuit of a PhD.,

especially to my pretty and cunning sister Hang, my silly but handsome

brother Hieu for all of their constant support for and sharing with me in

whatever problems or happiness I faced or had since day one. During when

struggling for preparing the oral defence, I was receiving strong support from

iii

iv

my beloved Mummy who had come to Singapore twice just to help me any

single thing and attended my oral defence. I am very appreciated all of what

she has done to me. Also I would thank to my girlfriend Ngoc Kim for her

ongoing strong and eternal love gave to me while I was stressful with indus-

trial work at TECH and still trying finalizing the last version of the thesis.

This acknowledgement would not complete if the great sacrifice of my Dad

for his children’s further study was not recalled. This thesis, thereupon, is

dedicated to them for their infinite stability margin.

iv

v

METAHEURISTICS FOR NP-HARD COMBINATORIAL OPTIMIZATION

PROBLEMS

Dinh Trung Hoang

National University of Singapore 2008

Abstract

Combinatorial Optimization problems (COPs) are highly theoretical and of

practical importance. Unfortunately, most of interesting COPs are proved to

be intractable. Therefore, approximation approaches to those problems have

received much intention since 1970s. During the past decades, a new kind of

approximation algorithms, nowadays termed as metaheuristic, has emerged,

providing a framework for solving many COPs by exploring the search space

efficiently and exploiting the search history effectively.

Among approximation algorithms, metaheuristic algorithms are widely

recognized as one of the most practical approaches for combinatorial opti-

mization problems. Some noticeable representatives of metaheuristics are

Simulated Annealing (SA), Tabu Search (TS), Evolutionary Computation (EC),

Ant Colony Optimization (ACO) and so on. For many combinatorial opti-

mization problems the established metaheuristic algorithms are considered

to be the state-of-the-art methods. In this report, we present two parts of

work. One is on Ant Colony Optimization; the other is on decomposition-

based hybrid metaheuristics.

In particular, we propose a model of Ant algorithms that extends Graph-

based Ant System (abbreviated as GBAS) model [106]. GBAS is the first and

v

vi

most simple model which is used to study theoretical aspects related to con-

vergence properties of ACO metaheuristics. All proposed to-date models for

studying the convergence properties of ACO have not considered a widely-

used technique which is to balance the exploration and exploitation process

in almost all Ant-based algorithms. This technique is well-known in the re-

search field of ACO and is called pseudo-random proportional rule or trade-off

technique. To study the effectiveness of this technique in Ant-based algo-

rithms from convergence perspective, an extended model of GBAS is pro-

posed in one part of this report. Not only hold convergence properties as

proved in GBAS, our model is also able to elucidate the practical role of this

technique in Ant-based algorithms.

Inspired by findings from this extended model, we suggest and experi-

ment with a time-dependent approach. This approach aims at practically im-

proving performance of Ant-based algorithms through a adaptively-adjusting

rule for the trade-off technique. To judge the effectiveness of this time-dependent

approach, we integrate it into state-of-the-art Ant-based algorithms - which

are Ant Colony System (ACS), Max-Min Ant System, Best-Worst Ant System-

in two different scenarios: i) use local search procedures and ii) do not use

local search procedure in any algorithm. By testing on some medium-scale

benchmark instances of Traveling Salesman Problem, we show experimen-

tally that the performance of the Ant-based algorithms employing the adap-

tively linear adjusting rule has been improved in comparison to that of the

original Ant-based algorithms.

A field of research on hybridization of metaheuristics with basic tech-

niques in Artificial Intelligence and/or Operations Research has emerged re-

vi

vii

cently and rapidly received attention of metaheuristics community. These

hybrid metaheuristics aim at efficiently and effectively tackling large-scale

real-world instances of COPs. Some findings in literature have suggested

that the combination of classical artificial intelligence and operations research

techniques with metaheuristics can be very beneficial for dealing with large-

scale instances of some COPs. In the part of this report on hybrid meta-

heuristics, we present runtime analysis of a scheme of hybridization between

metaheuristics and clustering (or decomposition) methods. In particular, we

prove that decomposition-based search method formed by combining a de-

composition technique with a problem-solving algorithm runs faster than

methods that do not utilize decomposition techniques. The speedup gained,

however, is bounded and the bounds can be computed in advance. The

finding of such bounds has shed some light on theoretically elucidating the

runtime efficiency of decomposition-based search algorithms over the non-

decomposition-based ones. This is the first work using an unified but problem-

and algorithm-independent framework to evaluate the effectiveness and ef-

ficiency of decomposition-based search algorithms in term of running time

through the comparison to running time of alternative non-decomposition-

based search algorithms.

Moreover, in that part of this report, we also address concerns over a dis-

advantage of decomposition-based methods, which relates to the failure of

achieving optimal solutions in some scenarios. Those scenarios are simul-

taneously dependent on both problem-solving methods and structure of in-

stances of optimization problems. Our finding suggests that given an inex-

act decomposition-based method for solving an optimization problem there

vii

viii

probably exist some instances of the problem for which the method fails to

include any optimal solutions in the search space. This means no optimal

solution can be found using such a method no matter how much time any

algorithmic instance of the method is given to run.

To illustrate, we propose a simple inexact decomposition-based method to

solve the Euclidean Traveling Salesman Problem (abbreviated as ETSP) and

derive a sufficient condition on structure of ETSP instances such that if an in-

stance of ETSP satisfies that condition, all of its optimal solutions will be con-

tained into the search space generated by the proposed method; otherwise

no optimal solution appears in that search space. However, the sufficient

condition is applicable for a restricted number of subproblems, thus to make

that condition more robust and applicable to large scale instances we extend

it with additional assumptions on the structure of those large scale instances.

The experimental results show that performance of a decomposition-based

algorithm using ACS and derived from the sufficient condition is better than

that of ACS on the same tests consisted of large scale clustered ETSP.

viii

TABLE OF CONTENTS ix

TABLE OF CONTENTS

Acknowledgements . iii

Table of Contents . ix

List of Tables . xiii

List of Figures . xvi

1 Introduction 1

1.1 Background and Motivation . 1

1.1.1 Combinatorial Optimization . 2

1.1.1.1 The Optimization Problem 2

1.1.1.2 Combinatorial Optimization 3

1.1.2 On the Computational Complexity of Algorithms and No Free

Lunch Theorem . 4

1.1.2.1 Computational Complexity of Algorithms and P vs NP 4

1.1.2.2 The No Free Lunch Theorem - a priory equivalence of

search algorithms . 5

1.1.3 Exact versus approximate approaches 7

1.1.4 Motivation . 9

1.2 Aims and Scope . 16

2 Literature Review 22

2.1 Metaheuristics - concepts, classification and characteristics 23

2.1.1 What is a Metaheuristic ? . 23

2.1.2 Classification of Metaheuristics 26

2.1.3 Diversification and Intensification in Metaheuristics 33

2.2 Some state-of-the-art metaheuristics . 38

2.2.1 Population-based Approaches 39

2.2.1.1 Evolutionary Computation 39

2.2.1.2 Scatter Search and Path Relinking 41

2.2.1.2.1 Scatter Search 42

2.2.1.2.2 Path Relinking 44

2.2.1.3 Estimation of Distribution Algorithms - EDAs 47

2.2.1.4 Ant Colony Optimization - ACO 48

2.2.2 Trajectory Approaches . 51

2.2.2.1 Local Search Methods 51

2.2.2.1.1 Greedy Randomized Adaptive Search Pro-

cedure - GRASP 54

ix

TABLE OF CONTENTS x

2.2.2.1.2 Variable Neighborhood Search - VNS 56

2.2.2.2 Simulated Annealing - SA 59

2.2.2.3 Tabu Search - TS . 61

2.3 Improving Performance of Metaheuristics 62

2.3.1 Hybridization . 62

2.3.1.1 Memetic Approaches 63

2.3.2 Exploiting Problem Structure . 67

2.3.2.1 Find Useful Search Neighborhoods using Landscape

Theory . 68

2.3.2.2 Construct and Characterize Search Neighborhoods us-

ing Group Theory . 70

2.4 Summary of Chapter . 72

3 Ant Colony Optimization 74

3.1 Background . 74

3.1.1 Problem Representation . 75

3.1.2 Behavior of Artificial Ants . 78

3.1.3 ACO framework . 80

3.2 An Extended Version of Graph-based Ant System, its Applicability

and Convergence . 83

3.2.1 Introduction . 83

3.2.2 A Generalized GBAS Framework 87

3.2.2.1 Graph-Based Ant Systems - GBAS 88

3.2.2.2 Extension of GBAS - EGBAS 91

3.2.3 Convergence of EGBAS . 93

3.2.3.1 Convergence of EGBAS 97

3.2.4 Discussion . 103

3.3 Dynamically Updating the Exploiting Parameter in Improving Perfor-

mance of Ant-based Algorithms . 104

3.3.1 Ant Colony Optimization for Traveling Salesman Problem . . . 106

3.3.1.1 Traveling Salesman Problem 106

3.3.1.2 ACO algorithms for TSP 106

3.3.2 Issues in Governing the Dynamical Updating in the Trade-Off

Technique . 110

3.3.2.1 The Updating Function 110

3.3.3 Experimental Settings and Analysis of Results 111

3.3.3.1 Without local search . 112

3.3.3.2 With local search . 115

x

TABLE OF CONTENTS xi

3.3.3.3 Discussion . 119

3.4 Chapter Summary . 121

4 Decomposition-based Search Approach 123

4.1 Background and Introduction . 123

4.1.1 Overview of chapter . 126

4.1.2 Dantzig-Wolfe Decomposition Principle in Mathematical Pro-

gram . 129

4.1.2.1 Partial Optimization Metaheuristic Under Special In-

tensification Conditions 133

4.1.2.2 Decomposition-based method’s advantage of less stor-

age space requirement 134

4.2 Runtime efficiency of decomposition-based methods and their non-

decomposition-based counterparts . 135

4.2.1 Introduction and Notations . 135

4.2.2 Speedup of the SDEB approach 140

4.2.2.1 Runtime efficiency of SDEB vs its PUND implemen-

tations . 140

4.2.2.2 Difference between our findings and Amdahl’s law . 148

4.2.2.3 Discussion . 148

4.2.2.4 SDEB in relationship with POPMUSIC and Dantzig-

Wolf Principe - How many subproblems need to be

solved? . 152

4.3 On the Optimality of Solutions to Euclidean TSP using a simple SDEB

Method . 155

4.3.1 The Optimal Solutions in Solution Space - a Sufficient Condi-

tion on Structure of ETSP . 156

4.4 A hybrid SDEB method with ACO for large ETSP 160

4.4.1 Experimental Results . 163

4.4.1.1 Large scale TSP instances for testing 163

4.4.1.2 Performance comparison between SDEB-ACS and ACS164

4.4.1.3 Memory storage requirement: 164

4.4.1.4 Experimental results: 164

4.4.1.4.1 For clustered Euclidean TSPs: 165

4.4.1.4.2 For benchmark Euclidean TSPs: 165

4.4.1.5 Discussions . 166

4.5 A One-Level Partitioning-based Implementation for 2D Protein Fold-

ing Problem . 167

xi

TABLE OF CONTENTS xii

4.5.1 The HP Model . 168

4.5.2 Algorithm Design . 169

4.5.2.0.1 Mutation on the Relative Encoding 169

4.5.3 Fitness function . 171

4.5.3.1 Computing number of H-H Contacts 171

4.5.3.1.1 Choosing fitness function 172

4.5.3.2 Results . 173

4.5.3.2.1 Algorithm Settings 175

4.5.3.2.2 Empirical results 175

4.5.4 Discussion . 178

4.6 Summary . 179

5 Conclusions and Future Works 181

5.1 Summary of Contributions of the Thesis 181

5.1.1 Ant Colony Optimization . 181

5.1.2 Decomposition-based Search Algorithms 183

5.2 Future Works . 185

5.2.1 Ant Colony Optimization . 185

5.2.2 Decomposition-based Algorithms 187

Appendices 188

A Author’s Publications 189

B Proof of Theorem (3.2.2) 190

C Restatement of lemmas and corollaries used to prove GBAS’s convergence 192

D List of Abbreviations 194

Bibliography 195

xii

LIST OF ALGORITHMS xiii

LIST OF ALGORITHMS

1 Evolutionary Computation (EC) . 40

2 Basic Scatter Search - SS . 44

3 Path Relinking - PR . 47

4 Estimation of Distribution Algorithms (EDAs) 48

5 The basic local search algorithm - iterative improvement. 53

6 Greedy randomized adaptive search procedures - GRASP 54

7 Basic scheme of variable neighborhood search - VNS 56

8 Variable Neighborhood Descent - VND 58

9 Reduced VNS - RVNS . 59

10 Simulated Annealing (SA) . 60

11 Tabu Search (TS) . 61

12 A general framework of Local-Search-Based Memetic Algorithms -

LA-based MAs . 65

13 Subroutines LS-Recombine() and LS-Mutate() in LA-based MAs 66

14 Ant Colony Optimization (ACO) Framework 80

15 Ant Colony Optimization for Traveling Salesman Problem 106

16 POPMUSIC metaheuristic . 134

xiii

LIST OF TABLES xiv

LIST OF TABLES

3.1 Computational results of MMAS and MMAS-BNL. There are 25 runs
done, and no local search is used in both algorithms. For MMAS-
BNL, ξ = 0.1, θ = 3, and q0(0) = 0.9. The number attached with a
problem name implies the number of cities of that problem. The best
results are bolded. 113

3.2 Computational results of ACS and ACS-BNL. There are 15 runs done,
and no local search is used in both algorithms. For MMAS-BNL, ξ =

0.1, θ = 3, and q0(0) = 0.9. The number attached with a problem
name implies the number of cities of that problem. The best results
are bolded. 114

3.3 MMAS variants with 2-opt for symmetric TSP. The runs of MMAS-
BL were stopped after n · 100 iterations. The average solutions were
computed for 10 trials. In MMAS-BL, m = 10, q0(0) = 0.9, ρ = 0.99,
ξ = 0.1, and θ = 3. The best results are bolded. The number attached
with a problem name implies the number of cities of that problem.
The best results are bolded. 116

3.4 Parameter and configuration of the local search procedure in BWAS . 117
3.5 Compare performance between the BWAS algorithm with its vari-

ant utilizing the trade-off technique. In BWAS-BL, ξ = 0.1, θ = 3,
and q0(0) = 0.9. The optimal value of the corresponding instance
is given in the parenthesis. The best results are bolded. Error =
bestvalue−optimalvalue

optimalvalue ∗ 100%. 118
3.6 Parameter and configuration of the local search procedure in ACS . . 118
3.7 Compare performance between the ACS algorithm with its variant

ACS-BL utilizing the trade-off technique. In ACS and ACS-BL, ξ =

0.1, θ = 3, and q0(0) = 0.98. The optimal value of the correspond-
ing instance is given in the parenthesis. The best results are bolded.
Error =

bestvalue−optimalvalue
optimalvalue ∗ 100% . 119

4.1 A comparison of SDEB-ACS and ACS is based on clustered in-
stances of 1000-5000 cities randomly generated. Each trial was
stopped after 5000 iterations. Averages are over 15 trials. Re-
sults in bold are the best in the table. (*) is the proportion of
run-time of ACS to SDEB-ACS’s; k is the number of clusters.
Entries in the results are in Euclidean distance. 166

4.2 A comparison of SDEB-ACS and ACS is based on large bench-
mark instances. Averages are over 15 trials. Each trial were
stopped after 5000 iterations. Results in bold are the best in the
table. (*) is the proportion of run-time of ACS to SDEB-ACS’s;
k is the number of clusters. 166

4.3 Found results for these sequences in literature. The bolded values of
E* are the surely minimum energies for the given protein sequences,
the other values have been the best known so far. 174

xiv

LIST OF TABLES xv

4.4 Results with different fitness functions for both GA approaches on
sequence 1. sq is the best solution quality over all runs, nopt is the
number of runs the algorithm finds sq, nruns is the total number of
runs, % suc. is the percentage of runs in which solution quality sq
was achieved. There are 100 generations for each trial and scheme
(A) of the population replacement is used. GAreduced is GA using our
proposed technique. 176

4.5 Results with different fitness functions for both GA approaches on
sequence 4. sq is the best solution quality over all runs, nopt is the
number of runs the algorithm finds sq, nruns is the total number of
runs, % suc. is the percentage of runs in which solution quality sq
was achieved. There are 150 generations for each trial and scheme
(A) of the population replacement is used. GAreduced is GA using our
proposed technique. 177

4.6 Compare performance between GAreduced and GAnot−reduced The fitness
function 2 is used in both implementations. There are 150 generations
for sequences whose length is less than 40, and 300 generations for
the rest. 177

xv

LIST OF FIGURES xvi

LIST OF FIGURES

2.1 The basic scheme of a model-based search algorithm. 31
2.2 A model-based search algorithm with auxiliary memory. 32
2.3 Schematic description of Estimation of Distribution Algorithm. 33

3.1 Functional relationship through the map Ω between walks spaceW
and solutions space S. {w1,w2} ∈ Ω−1(s1). 89

4.1 A graph whose node-arc incidence matrix is decomposable. 130
4.2 There are at least two chosen edges, one from a sub-tour, the other

from the other one; such that the vertices of two bridges A1B1 and
A2B2 are from their four vertices A1, A2, B1, B2 only. Here a, c, f , e are
lengths of edges accordingly. 158

4.3 There is no existence of any two chosen edges, one from a sub-tour,
another from the other one; such that the vertices of two bridges come
from their four vertices. Here, A1A2, A3A4 are chosen edges of cluster
A and B1B2 is a certain chosen edge of cluster B. Lowercase letters
stand for the lengths of according edges. Since A1 links to B1, so B2
must links to A3 (cannot be A2 due to the assumption), then A4 defi-
nitely links to another node, name B3 and so on 159

4.4 Cluster A has two bridges which link A to cluster B with the length of
a and x, respectively. Here, bridges AB and BC are replaced by AC to
get a better solution. 162

4.5 Cluster A has at least four bridges linking to other clusters. Bridges
BA and CA are replaced by BC to obtain a better solution. The nodes’
order of the previous tour can be ..BAF..CAE..B. After being replaced,
this order will become ..BC..FAE..B. 162

4.6 HP sequences embedded in the square lattice (the left figure) and
the triangular lattice (the right figure). The black squares stand for
residues H, while the white for amino acids P. The dot lines show the
formed H-H contacts. 169

4.7 In (b) a one-point mutation of the structure in (a) at the fifth gene.
An ‘R’ was mutated to an ‘F’ producing a lever effect of 90 degrees
counterclockwise. In (c) an ‘R’ was mutated to an ‘L’ producing a
lever effect of 180 degrees counterclockwise. The dot lines in (b) and
(c) represent the “mutated” contacts. 170

xvi

1

Chapter 1

Introduction
1.1 Background and Motivation

Combinatorial Optimization is a branch in applied mathematics, computer

science and Operations Research. Most of problems studied in the early

days of combinatorial optimization came from operations research, indus-

trial management, logistics, engineering, computer science and military ap-

plications. But problems of this kind arise almost everywhere, and therefore

combinatorial optimization has found successful applications in fields like

archeology, biology, chemistry, economics, geography, linguistics, physics,

sociology, and others. Combinatorial Optimization problems (COPs) are the

main objectives of study in areas such as Computational Complexity Theory,

Algorithmic Theory, and Artificial Intelligence. In fact, COPs are not only of

academic interest but also of industrial interest. For example, a factory needs

to determine the optimum order in which to manipulate resources. This is

actually a variant of Production Scheduling Problem which is an instance of

COPs. Another instance of COPs is the Protein Folding Problem (PFP) that

appears in areas like Bioinformatics, Computational Chemistry, and in the

pharmaceutical industry when one wants to know the spatial structure of a

protein. Some of the related applications of COPs are Circuit Layout Design,

Statistical Physics, Network Design, Transportation Science, and Computa-

tional Molecular Biology [104]. Due to the practical importance of COPs,

numerous algorithms have been developed to solve them. These algorithms

are classified as either exact or approximate algorithms based on how opti-

1

1.1 Background and Motivation 2

mal the solution found by the algorithm is . Exact algorithms are provably

guaranteed to obtain optimal solutions to any instances of COPs in a given

period of time [150]. Since most COPs are showed to be NP-hard, there is no

deterministic polynomial time exact algorithm for those intractable COPs un-

less P = NP. Thus, the approximate algorithms, which provide an acceptable

compromise between the quality of solutions and the runtime, have received

much attention in the last few decades. This study focuses on a particular

class of approximation algorithms, named metaheuristics, for solving COPs.

An introduction of formal definitions of COPs can be found in the next sec-

tion.

1.1.1 Combinatorial Optimization

1.1.1.1 The Optimization Problem

Optimization problems are generally formulated as follows:

Definition 1.1.1. Optimization problem

minimize f (x)

subject to x ∈ F.
(1.1.1)

We call f the objective function, F the feasible region that satisfies all the

given constraints, and a solution x ∈ F a feasible solution. An element x∗ ∈ F

such that

f (x∗) < f (x) for all x ∈ F

is called an optimal solution to the problem. A problem which has F , ∅ is said

to be compatible otherwise it is incompatible. A problem which has solution is

said to be solvable. A solvable problem is necessarily compatible [151]. The

2

1.1 Background and Motivation 3

subsequent subsection will give more formal definitions for combinatorial

optimization problems.

1.1.1.2 Combinatorial Optimization

If F has combinatorial features, for example combination or permutation, then

the problem as in definition (1.1.1) is called a combinatorial optimization prob-

lem. One of the most general and formal definitions in of combinatorial opti-

mization problem literature is given as follows.

Definition 1.1.2. Given a finite number of objects, say I, and an “objective” func-

tion

f : I→ S

(where S is an ordered set) which associates with every object a ‘cost’, ‘value’, ‘weight’,

‘distance’ or the like. Find an element of I whose cost is minimum or maximum with

respect to some criterion.

There are numerous combinatorial optimization problems found in liter-

ature, for which computing exact optimal solutions is practically computa-

tionally intractable; e.g., those known as NP-hard [83], or polynomial-time

but not practical. Those combinatorial optimization problems will be of in-

terest to metaheuristics or decomposition-based methods.

It appears that many of the combinatorial optimization problems occur-

ring in practice can be put in the following form which is more specific than

the COPs definition (1.1.2).

Definition 1.1.3. Let F be a finite set and I a set of subsets of F called the set of

feasible solutions. Let c : F → R be a linear objective function. Find a feasible set

3

1.1 Background and Motivation 4

I∗ ∈ I such that
∑

e∈I∗
c(e) = max


∑

e∈I

c(e) |I ∈ I


Problem (1.1.3) is called a linear objective combinatorial optimization [124].

1.1.2 On the Computational Complexity of Algorithms and

No Free Lunch Theorem

1.1.2.1 Computational Complexity of Algorithms and P vs NP

When designing an algorithm, one is generally interested in improving its

efficiency as much as possible, where the efficiency of an algorithm is typi-

cally measured in terms of its computation time1. Efficiency is such a critical

factor in design of algorithms, especially it is used as a metric for classify-

ing COPs: a problem is regarded as well-solved if an algorithm is available to

solve efficiently all its instances. It is also a meaningful and accepted naming

convention [71] to call an algorithm “efficient” if it runs in time polynomially

in the size of the instance. There is no algorithm proved to solve Traveling

Salesman Problem efficiently. The same holds for a large set of other relevant

problems: notwithstanding the great efforts of research community, there is

1Obviously, the actual computation time of an algorithm absolutely de-

pends on the speed and on the hardware and software architectures of the

computer on which it runs. A measurement which is machine independent

can be modeled based on the number of basic operations needed by some ab-

stract computation model, for instance, a Turing machine [159]. However, in

the framework of this thesis, an informal understanding of this concept will

suffice.

4

1.1 Background and Motivation 5

still a class of hard problems for which no efficient algorithm is available. It has

been theoretically proved that if an efficient algorithm were available to solve

any element of this class of problems, there would exist efficient algorithms

to solve the remaining elements of this class. This is the fact due to an inter-

esting property that this class holds. That property says that each member of

the class is reducible to the others through a polynomial-time mapping; i.e.,

each instance of any problem belonging to the class can be transformed into

a corresponding instance of any of the other problems in polynomial time.

As a result, either all problems of the class are efficiently solvable, or none of

them is. To date, there is no formal claim of neither of the two alternatives.

Using the concepts in terms of Turing machine [7, 159], we call NP a class

of problems that can be solved in polynomial time by a nondeterministic ma-

chine. A subset of NP which is noted as P is defined as the class of problems

that can be solved in polynomial time by a deterministic machine. Obviously,

P ⊂ NP. However, the question whether P = NP remains as one of the most

challenging problems for theorists for decades.

1.1.2.2 The No Free Lunch Theorem - a priory equivalence of search algo-

rithms

A corpus of important theoretical findings on optimization algorithms are

under a suggestive name of No Free Lunch theorems (abbreviated as NFL)

[205, 206]. These results concern the problem of optimization from a rather

abstract point of view. In the original form, they do not refer to any of the

combinatorial optimization problems or to any specific search algorithm. In-

deed, NFL theorems are proved for abstract models of optimization process,

5

1.1 Background and Motivation 6

and only some theoretical results have recently been proposed, bridging the

gap between the abstract framework of NFL theorems and the actual prac-

tice in combinatorial optimization or explaining them in the view of compu-

tational complexity theory [22, 117, 204].

A NFL theorem for an abstract model of a search process in the original

form informally states as follows:

...all algorithms that search for an extremum of a cost function

perform exactly the same, when averaged over all possible cost

functions. If algorithm A outperforms algorithm B on some cost

functions, then loosely speaking there must exist exactly as many

other functions where B outperforms A... [205].

From the statement, it implies that no search algorithm outperforms others

on all optimization problems. Another NFL theorem for performance of a

search algorithm on different class of optimization problems says that

...for any algorithm, any elevated performance over one class

of problems is offset by performance over another class... [206]

However, Igel & Toussaint [117] claimed that NFL theorems should not hold

on the classes of combinatorial optimization that are of practical relevance.

Although these notable and interesting findings, unfortunately, they failed

to show practical examples of classes of COPs for which NFL does not hold.

There are still instances of COPs, such as Traveling Salesman Problem, Timetabling,

Quadratic Assignment, for which the question whether NFL theorems hold

is still remaining open.

6

1.1 Background and Motivation 7

1.1.3 Exact versus approximate approaches

Numerous algorithms have been devised for solving COPs. These algorithms

can be classified as either approximate or exact2.

Exact algorithms are guaranteed to obtain optimal solutions to any in-

stance of problems within a computation time that is long enough. However,

due to the fact that many problems of interest are NP-hard, for examples Min-

imum Flow Shop Scheduling, Minimum Bin Packing, Minimum Dynamic

Storage Allocation, Traveling Salesman Problem so on (for a very complete

list of NP problems, see [7]), no deterministic polynomial-time algorithm has

so far been known to solve them efficiently unless P = NP. In consequence,

for many problems of interest, the applicability of exact algorithms is only

to the extent of small- and medium-scale instances. Whereas, approximate

methods are not guaranteed to find optimal solutions but practically they are

able to obtain good solutions or near-optimal solutions in a relatively short

period of time.

An approximation method, also called a heuristic method or simply a heuristic,

is a well-defined set of steps for quickly identifying a high-quality solution

for a given problem, where a solution is a set of values for problem unknowns

and “quality” is defined by a stated evaluation metric or criterion. Solutions

are usually assumed to be feasible, i.e. it meets all problem constraints. The

purpose of heuristic methods is to identify problem solutions where time is

2The classification of algorithms into exact, heuristics, and metaheuristics

that we adopt in this thesis is simplistic. A more well-defined taxonomy of

algorithms could be given ([160]), however, the classification adopted in this

thesis satisfactorily serves the purpose of this thesis.

7

1.1 Background and Motivation 8

more important than solution quality, or the knowledge of quality.

Some heuristic methods are associated with problems for which an opti-

mal or exact solution exists but is difficult to be computed by an exact algo-

rithm. Heuristics are often used to identify “good” approximate solutions to

such problems because of its shorter running time than if an exact algorithm

is used. Heuristics can also be embedded within exact algorithms to expedite

the optimization process.

Heuristics can be straightforward or more complex. Straightforward al-

gorithms tend to have well-defined termination rules, as with greedy and

local-neighborhood-search methods, which stop at a local optimum. More

complex algorithms may not have standard termination rules and typically

search for improved solutions until an arbitrary stopping point is reached.

Obtaining very good solutions to large scale instances of COPs in a sig-

nificantly reduced amount of time is an advantage of heuristic algorithms

over exact algorithms. However, as a result of No Free Lunch theorem, no

heuristic algorithm is superior to another for all COPs. There are always well-

designed heuristic algorithms for a specific COP. But those well-designed

algorithms turn out to either be inapplicable to or have unsatisfactory per-

formance for other COPs. Thus, since the 1970’s, a new kind of approxi-

mation algorithms has emerged which aims at combining heuristic methods

into higher level frameworks in order to explore effectively and efficiently

a search space and be able to apply to many COPs with a little modifica-

tion of the frameworks. These algorithms are nowadays termed as meta-

heuristics. The class of metaheuristics includes - but is not restricted to - Ant

Colony Optimization (ACO) [62, 64–66], Evolutionary Computation (EC) [8,

8

1.1 Background and Motivation 9

100, 116, 140, 141, 143, 169, 183, 201], Tabu Search (TS) [53, 84, 90, 93, 96], POP-

MUSIC [196], Simulated Annealing (SA) [1, 75, 118, 123, 127, 176], and Artifi-

cial Immune System [48, 49, 198].

1.1.4 Motivation

Combinatorial optimization problems are intriguing because they are often

easy to state but very difficult to solve. Many of them arising in applica-

tions are NP-hard, that is, it is strongly believed that they cannot be solved

to optimality within polynomially bounded deterministic computation time.

Hence, to practically solve large instances one often has to use approximation

methods which return near-optimal solution in relatively short time.

There are key issues in the development of thesis that is needed to elu-

cidate. Those are concepts, that are often faced in practical applications, of

extremely large instances or too short runtime. Both terms “large” and “short”

for the size of instances and runtime, respectively, are quite relative and sub-

jective. There not exists a rigorous definition of the critical problem size so

as to classify problem instances. However, concept of such a critical instance

size can be derived based on how much difficult to solve the instance in terms

of metrics ”time” and ”optimality”. For an example of TSP, with the size less

than 700-city the instances are considered ”small”; above 10,000 ”very large”

while above 1500 ”large” 3.

A heuristic algorithm is usually dedicated to solving a specific optimiza-

3Take note that this is a rough classification which is based on the cur-

rent computational technology and size of benchmark testing instances from

TSPLIB

9

1.1 Background and Motivation 10

tion problem. The more well-designed the problem-specific algorithm, the

more effective it is to solve the problem. However, that well-designed algo-

rithm cannot effectively solve other optimization problems which share some

common features with the one that it is able to solve effectively. A trend is to

design a framework that is able to solve a class of optimization problems by

combining user given black-box procedures - usually heuristics themselves

- in a hopefully efficient way [19]. Such a framework has been referred to

as a metaheuristic. A metaheuristics is, as defined in [69], a set of algorithmic

concepts that can be used to define heuristic methods applicable to a wide

set of different problems. A thorough review about definitions and concepts

of metaheuristics is given in chapter 2.

Metaheuristics are generally applied to optimization problems to which

no problem-specific heuristic method is able to solve them satisfactorily or

not practical to implement. Most commonly used metaheuristics are targeted

at combinatorial optimization problems, but of course can handle any prob-

lem that can be recast in that form, such as boolean equations [171].

Among successful metaheuristics, the approach of Ant Colony Optimiza-

tion (ACO), which is a metaheuristic inspired by the behavior of real ants

in finding the shortest paths from their nets to a food source and used to

solve discrete optimization problems, will be studied in a part of this work.

Another approach to COPs which is to use decomposition or clustering tech-

niques to “embed” them into other problem-solving methods so as to derive

effective methods for solving large scale instances will also be studied as an-

other part of the work. The motivation for studying these both approaches is

explained in the following subsections.

10

1.1 Background and Motivation 11

Ant Colony Optimization

There have been extensive number of empirical studies on ACO ([61, 63,

79, 165, 188, 190]) since its earliest system called Ant System [61] was intro-

duced in Dorigo’s Ph.D thesis. The approach is then extended into a higher

level framework to be defined as a metaheuristic in [64]. However, works

on analyzing the model behaviors theoretically had not started until the first

impressive theoretical study by Gutjahr [106]. Since then, there have been

few theoretical works carried out mainly due to the natural complex of mod-

eling that metaheuristic for theoretical study purpose. Those works were

dedicated to analyzing one of the most interesting questions on whether this

metaheuristic will eventually converge or at least probabilistically converge

to optimal solutions. In the first model named Graph-based Ant System

(GBAS) for static COPs [106], strong constraints on structures of optimiza-

tion problems and on the way the model encodes solutions have limited the

extent of applicability of GBAS. Those constraints were then partially and/or

completely relaxed and examined in other extended models [107, 108] which

have stronger convergent properties than GBAS4. The last model proposed

in [108] completely relaxed the constraints embodied in GBAS and as proven

the relaxation did not change convergent properties of GBAS. However, as

pointed out in [189], since GBAS model (and its extended versions) has not

modeled ACO-based implementations closely enough, it is less accurate to

apply convergent results of GBAS to those implementations. By adopting

Gutjahr’s method of proofing, Stutzle & Dorigo [189] proved some conver-

gent properties for a class of ACO-based algorithms which are regarded as

4partially relaxed in [107] while completely in [108].

11

1.1 Background and Motivation 12

variants of Max-Min Ant System - one of most successful ACO-based imple-

mentations for some COPs ([190, 191]). Although having larger applicability

extent than Gutjahr’s findings, Stutzle & Dorigo’s finding still has a limita-

tion that is convergent properties for that class of ACO-based algorithms are

as weak as that for a random search [108].

Despite practically playing an important role in improving solution qual-

ity, a so-called trade-off technique that is commonly used in many implemented

ACO algorithms [44, 65, 81, 190] has not been studied in any theoretical mod-

els so far. In those Ant algorithms, the trade-off technique represents a strat-

egy of balancing between exploration and exploitation of search process. The

strategy uses a fixed positive value for a systematic parameter that is referred

to as exploiting parameter. Since that strategy has not been found in models of

previous theoretical works, results from those works will not be able to pre-

dict or explain the importance in practice of the technique. In addition, in

all variants of Ant System, the value of the exploiting parameter is always

kept constant in runtime. There is neither empirical nor theoretical study

carried out to investigate any affect on the performance of Ant algorithms if

one adaptively adjusts the value of the exploiting parameter.

Decomposition-based Approach

When the size of input instances become very large, given the constraints

on hardware-related computational resources like CPU and memory, we will

soon realize that using a “straightforward” algorithm to solve that instance

is not practical in the sense that we do not have enough memory to store

12

1.1 Background and Motivation 13

the input data or if we use “swap memory” 5 to keep data then the over-

all performance of the algorithm will be degraded and that the computation

time of existing non-decomposition-based methods is too long for practical

interest. Decomposition-based methods naturally come to resolve the issue.

Rather than solving the instance as a whole that can bring us into the above

issues, decomposition-based methods will solve it partially by “breaking” it

into parts and solve each of those parts parallel or serially. A solution to the

original instance is then formed by combining solutions to those parts. De-

pending on the design of a decomposition-based method and characteristics

of underlying problems, the combination procedure can be done when all or

a few number of parts are completely solved. In principle, we can describe a

decomposition-based algorithm into four following steps:

a) Decompose (or partition or cluster) the large size instance into parts

that have smaller size than the original instance. Each part is therefore

considered as a subproblem

b) Solve each of these parts separately.

c) Ensemble solutions to these parts into a solution to the original instance.

d) If the solution to original instance is not satisfied with the objective,

one can come back to either step a) or step b) or even step c) to further

improve that solution.

5The memory is resulted by using empty space on hard disk to stimulate

the physical memory - RAM. Since the access time to hard disk is normally

much slower than to RAM, using swap memory will slow down overall per-

formance of the algorithm.

13

1.1 Background and Motivation 14

We can find that the first three steps are the basic steps of such a decomposition-

based algorithm.

Numerous works on decomposition-based methods can be found in liter-

ature ranging from exact approaches applied in mathematical programming (

[50, 103, 160]) to heuristic or metaheuristic approaches ([6, 121, 170, 195, 196]).

In exact decomposition-based approaches, one can predict that how much

memory would be saved if using decomposition-based method in compari-

son to using a straightforward one6. But a question that remains unanswered

is that how many subproblems such exact methods need to solve in order to

reach the optimal solution to the original instance [160]. That question basi-

cally relates to the question on convergence of iterative approaches to optimal

solutions. However, one can ask oneself that even if a decomposition-based

algorithm converges to optimal solutions to large scale instances, will the

number of solved subproblems or their total size affects the runtime of the

decomposition-based algorithm significantly? To evaluate whether the af-

fect is “positive” or “negative”, one needs to compare performance of that

decomposition-based algorithm with that of the straightforward algorithm

with an assumption that we have infinite (or sufficient enough) memory re-

source when running the straightforward one.

For inexact decomposition-based approaches, the same remaining unan-

swered question as in exact decomposition-based ones can be found, espe-

6Sometimes, we use “straightforward method” along with a

“decomposition-based method” to refer to an unique method that only uses

a problem-solving procedure which is the same as that in the decomposition-

based to solve the same problem.

14

1.1 Background and Motivation 15

cially for a recently developed metaheuristic named POPMUSIC [196]. More-

over, in the case that total size of all solved subproblems is equal to the

size of the original instance, one needs to answer another question on the

performance comparison between a large number of decomposition-based

heuristics7 or hybridized metaheuristics [6, 170, 178, 192, 195], whose number

of solved subproblems is known before the end of the execution of the (in-

exact) decomposition-based algorithms, and the straightforward heuristics

or metaheuristics. Approaches in previous works when analyzing runtime

performance of decomposition-based methods and comparing that perfor-

mance with straightforward ones are merely either empirical-based or very

problem-dependent and/or algorithm-dependent. There has so far been no

unified approach, which is both problem- and algorithm-independent and

relies on the general framework of decomposition-based methods, to carry

out that analysis and comparison.

Moreover, all inexact decomposition-based methods will return solutions

that are not proven to be optimal. The consequence of breaking a large struc-

ture (of the original instance) into smaller ones can lead to the situation that

the search space contains poor solutions causing the search process to find it

more difficult in reaching the (near-) optimal solutions.

For exact decomposition-based algorithms, that situation will cause the

problem-solving process to run longer due to spending more time solving

more number of subproblems before obtaining an optimal solution(s). For

7In decomposition-based hybrid approaches, hybridization is taking place

between a metaheuristic and a classical clustering technique from Artificial

Intelligence or Operation Research.

15

1.2 Aims and Scope 16

inexact ones, however, there are two distinct cases: i) the search space of in-

exact algorithms contains at least one optimal solution; ii) the search space

does not contain any optimal solution. The former case i) is similar to the

situation that might happen to the exact decomposition-based algorithms,

while the later case ii) is not. Factors posing the case ii) can be from special

structure of input instances and/or the “breaking” and assembling process.

And if that case takes place for an inexact decomposition-based algorithm,

no matter how long the algorithm spends solving an input instance, that al-

gorithm will never obtain any optimal solution. Hence, there is a necessity

to address the problem of how to improve solution quality of those inexact

methods in the way of increasing capability of reaching optimal solutions of

search process through guaranteeing those solutions in the search space.

1.2 Aims and Scope

The main aim of the first part of the study which focuses on Ant Colony Opti-

mization metaheuristic is to investigate convergent behaviors of an extended

model of GBAS. This model extends GBAS by incorporating the trade-off

technique that is widely used in practice into the original GBAS. To be able

to model that technique into the extended model, one systematic parame-

ter will additionally be introduced into GBAS. Fundamentally, that param-

eter is to model the exploiting parameter in ACO-based implementations,

hence we use the term “exploiting parameter” when referring to that sys-

tematic parameter. Following the theoretical study on convergence proper-

ties of ACO-based algorithms with the presence of trade-off technique is an

empirical study on affect of not keeping the value of the exploiting parameter

16

1.2 Aims and Scope 17

fixed over runtime. The empirical study is to examine as many ACO-based

algorithms as possible including the most successful ones by far.

The following specific goals will be expected to achieve in this part of the

study:

+ To investigate the convergence properties of this extended model under

the same strong constraints presented in original GBAS.

+ To examine whether or not the performance of Ant Colony Optimiza-

tion algorithms is improved under the introduction of a dynamically

pseudo-random proportional state transition rule.

To achieve the first goal, a strategy similar to that used for GBAS in [106]

will be adopted to investigate convergence properties of the extended model

of GBAS. However, due to the presence of the exploiting parameter in the

extended model, there must be some necessary modifications to the origi-

nal strategy. For achieving the second goal, an approach of using a func-

tion to dynamically update the value of the exploiting parameter will be in-

vestigated. The experimental results are to compare performance between

Ant-based algorithms with the dynamically linear updating rule and those

without that rule.

Firstly, theoretical findings of this part can contribute a part to fulfil the

generally emergent demand in analyzing performance of ACO-based algo-

rithms due to the fact that there are insufficient theoretical works in the field

dedicated to that demand. Particularly, those findings may contribute a bet-

ter theoretical understanding about the behavior of ACO algorithms with

the trade-off mechanism. It is necessary to gain insight into the practical

17

1.2 Aims and Scope 18

importance of this mechanism by theoretical results so as to possibly derive

fine-tuned values of systematic parameters in ACO-based algorithms. Re-

sults from the empirical study on dynamically updating rule specifically for

the exploiting parameter can set experimentally forth empirical relationship

between this parameter and others. Since tuning a set of values of systematic

parameters is naturally an art (for instances, see [18], Chapter 1 in [17]), it

is possibly beneficial to further extend this dynamically-updating approach

- which tunes values of one parameter - to a set of parameters. Thus one

contribution of this empirical study is to shed light on developing more com-

plicated methods of deterministically or probabilistically tuning systematic

parameters.

The study on ACO will limit itself in examining the convergence prop-

erties of the extended model of the original GBAS [106] in the event of the

trade-off technique introduced. Thus, to examine whether or not a GBAS-

extended model - which embodies this technique and relaxes strong con-

straints on structure of problems and solution encoding methods - converges

is out of the scope of this study. Also, the study on the empirical part is to

carry out investigation on the affect of dynamically updating rule using a

linear updating function, hence investigating on such affect using any non-

linear updating functions will not be in consideration.

The first aim of the second part of study on decomposition-based ap-

proaches is to examine runtime efficiency of these approaches in compari-

son to the non-decomposition-based ones as long as both of them use the

same problem-solving algorithms. Comparing the runtime of a method with

another is basically to examine the ratio of runtime of one method to that

18

1.2 Aims and Scope 19

of another. The strategy used to study that ratio is to evaluate its upper and

lower bounds. The tighter the bounds, the better the evaluation. As we know

that the “actual” amount of runtime of a certain implementation of any algo-

rithm greatly varies and depends on hardware and software platform, on

particular input instances, and on values of systematic parameters. To avoid

bringing such sharp contrasts into the performance analysis of algorithms,

we consider all input instances of a given size n together. With this consid-

eration, we express the runtime as a function of the input length of problem

instances so that the performance analysis does not involve these contrasts.

By modelling the runtime of such implementations as a function of the input

length of problem instances, we aim at answering following basic questions:

+ What is the bound(s) of the ratio of runtime of a decomposition-based

method to runtime of a straightforward method when both of them are

applied to the same instance?

+ How tight is the bound(s)?

+ How does the bound(s) change when the size of input instances is var-

ied asymptotically8?

Findings from analysis of runtime performance for decomposition-based

methods can contribute to better understanding on the pros and cons of

those methods in terms of runtime. If the bounds of the ratio show that

decomposition-based methods run faster than the straightforward ones, then

they also help to show the limitation quantity above that former methods

cannot run faster. Additional benefit of the analysis may be a guideline for

8i.e. The size approaches to infinity.

19

1.2 Aims and Scope 20

decomposition-based algorithms in which the number of subproblems being

solved is unknown until the end of the execution of those algorithms.

The guideline possibly shows the expected number of such subproblems

such that if dealing with more than that number of subproblems, a decomposition-

based algorithm is likely to run slower than its corresponding straightfor-

ward algorithm (refer to section 4.2.2.4 for details).

This analysis is to focus on aspects related to runtime efficiency of decomposition-

based methods in comparison to those straightforward methods. Thus, study

on comparing solution quality of the former with the later is not in the bound-

ary of this part of study. Also, we try to obtain bounds of that ratio as tight

as good for as many cases as possible, however, deriving a method to show

the tightest bounds for the most generic situation does not stay in the scope

of the analysis.

As mentioned in the previous subsection 1.1.4, there is a concern about the

quality of solutions of inexact decomposition-based methods due to the pos-

sible consequence of breaking the large structure of an instance into smaller

structures (of so-called subproblems). The second aim of this part of the

study is to address the concern over solution quality of inexact decomposition-

based methods. In particular, that concern was addressed for the case in

which the search space does not contain any optimal solution. The strategy is

to use a typical NP-hard COP named Euclidean Traveling Salesman Problem

(ETSP) with a simple decomposition-based method (able to solve ETSP) as

the objects of this illustrative study. Our approach to the underlying concern

is to point out constraints on structure of TSP instances such that if structure

of the instances satisfies the pointed constraints then the search space of the

20

1.2 Aims and Scope 21

decomposition-based method will definitely contain all optimal solutions.

The contribution of this part of the study on solution quality of inexact

decomposition-based methods is for the first time to propose a new view to

the problem of improving their solution quality through proving sufficient

conditions on structures of input instances such that those satisfied instances’

optimal solutions will be included in search space of a given decomposition-

based algorithm. One finding from this part is to highlight the point that

even using the same inexact decomposition-based algorithm for a certain op-

timization problem, the search space may contain optimal solutions for a set

of instances or may not for other set of instances. Equivalently, staying in

search space (of those solutions) may be independent of features of certain

decomposition-based methods while possibly dependent on structure of in-

stances.

The scope of this part of study is to demonstrate a new view on the prob-

lem that inexact decomposition-based methods may be faced. The problem

is related to the scenario that no optimal solution belongs to search space of

the methods. Thus exact decomposition-based methods are definitely not the

object of the study. Moreover, to serve the purpose of the demonstration, an

intuitive yet simple example which uses ETSP and a simple decomposition-

based algorithm to solve ETSP is employed for the study. Therefore, a thor-

ough analysis on more complex cases like for other optimization problems

with established decomposition-based algorithms goes beyond the scope of

this work. Although narrowing the scope of study on using such simple

example, we are still able to gain the aims of addressing the concern and

proposing a new view on resolving the concern.

21

22

Chapter 2

Literature Review
This thesis provides not only contributions to theoretical study as well as

practical applicability of Ant Colony Optimization on small- and medium-

scale instances of COPs which will be presented in chapter 3, but also con-

tributions to studies of decomposition-based algorithms on large scale in-

stances which will then be discussed in chapter 4. Recently developed hybrid

metaheuristics using classical clustering methods in artificial intelligence and/or

operation research can be considered as a specific class of decomposition-

based algorithms. Because the nowadays best-performing metaheuristic ap-

plications are composed of algorithmic components from different metaheuris-

tics. Therefore, the study of a certain metaheuristic as well as the develop-

ment of well-working applications of that metaheuristic require knowledge

about the whole field of metaheuristics. It is important to remain open-

minded towards other fields of metaheuristic research. For that reason we

give a survey of the nowadays most important metaheuristics in this chapter.

In the first section of this chapter, definitions and taxonomy of meta-

heuristics are presented. Then, important characteristics of a metaheuristic,

which are diversification and intensification, are technically explained at the

end of the first section. Section 2.2 gives basic descriptions of state-of-the-art

metaheuristics.

Section 2.3 is devoted to review recent works that, generally, aimed at im-

proving performance of well-established metaheuristics. Those works con-

sist of hybridization of metaheuristics with classical Artificial Intelligence

22

2.1 Metaheuristics - concepts, classification and characteristics 23

and/or Operations Research routines or using group theory and landscape

theory to characterize and construct efficient and useful local structures of so-

lution space of optimization problems.

Finally, the last section will give a summary of the chapter.

2.1 Metaheuristics - concepts, classification and characteris-

tics

2.1.1 What is a Metaheuristic ?

In the 70ies, a new kind of approximate algorithm has emerged which ba-

sically tries to combine basic heuristic methods in higher level frameworks

aimed at efficiently and effectively exploring a search space. These meth-

ods are nowadays commonly called metaheuristics. The term metaheuristic

first introduced in [89] derives from the composition of two words. Heuristic

means ”to find” while the suffix meta means ”beyond or at a higher level”.

Before this term was widely adopted, metaheuristics were often called mod-

ern heuristics [168]. This class of algorithms includes (in alphabetical order)

- but is not restricted to - ant colony optimization (ACO), evolutionary com-

putation (EC), iterated local search (ILS), simulated annealing (SA), and tabu

search (TS). So far, there is no widely accepted definition for the term meta-

heuristic. We list some of definitions in the following:

A metaheuristic is formally defined as an iterative generation

process which guides a subordinate heuristic by combing intelli-

gently different concepts for exploring and exploiting the search

23

2.1 Metaheuristics - concepts, classification and characteristics 24

space, learning strategies are used to structure information in or-

der to find efficiently near-optimal solutions [156].

A metaheuristic is an iterative master process that guides and

modifies the operations of subordinate heuristics to efficiently pro-

duce high-quality solutions. It may manipulate a complete (or in-

complete) single solution or a collection of solutions at each itera-

tion. the subordinate heuristics may be high (or love) level proce-

dures, or a simple local search, or just a construction method [202].

Metaheuristics are typically high-level strategies which guide

an underlying, more problem specific heuristic, to increase their

performance. The main goal is to avoid the disadvantages of iter-

ative improvement and, in particular, multiple descent by allow-

ing the local search to escape from local minima. This is achieved

by either allowing worsening moves or generating new starting

solutions for the local search in a more ”intelligent” way than just

proving random initial solutions. Many of the methods can be

interpreted as introducing a bias such that high quality solutions

are produced quickly. This bias can be of various forms and can be

cast as descent bias (based on the objective function), memory bias

(based on previously made decisions) or experience bias (based

on prior performance). Many of the metaheuristic approaches

rely on probabilistic decisions made dung the search. But, the

main difference to pure random search is that in metaheuristic al-

gorithms randomness is not used blindly but in an intelligent and

biased form [187].

24

2.1 Metaheuristics - concepts, classification and characteristics 25

A metaheuristic is a set of concepts that can be used to define

heuristic methods that can be applied to a wide set of different

problems. In other words, a metaheuristic methods that can be

seen as a general algorithmic framework which can be applied

to different optimization problems which relatively few modifica-

tions to make them adapted to a specific problem Metaheuristics

Network at [68].

The definitions of metaheuristics as given above allow us to extract some

fundamental properties by which metaheuristics are characterized:

• Metaheuristics are strategies that ”guide” the search process.

• The goal is to efficiently explore the search space in order to find (near)-

optimal solutions.

• Techniques which constitute metaheuristic algorithms range from sim-

ple local search procedures to complex learning processes.

• Metaheuristic algorithms are approximate and usually non-deterministic.

• They may incorporate mechanisms to avoid getting trapped in confined

areas of search space.

• The basic concepts of metaheuristics can be described on an abstract

level (i.e., not tied to a specific problem).

• Metaheuristics are not problem-specific.

• Metaheuristics may make use of domain-specific knowledge in the form

of heuristics that are controlled by the upper level strategy.

25

2.1 Metaheuristics - concepts, classification and characteristics 26

• Recently more advanced metaheuristics use search experience (embod-

ied in some form of memory) to guide the search.

In the next subsection, a taxonomy of metaheuristics is presented in terms

of characteristics such as nature-inspired, population-based, objective func-

tion type, the number of neighborhood structures, memory-based or memory-

less, iteratively or constructively building new solutions, the number of cy-

cles in termination (single run or repetitive), and instanced-based or model-

based.

2.1.2 Classification of Metaheuristics

There are different ways to distinguish and describe metaheuristics. Depend-

ing on the features selected to differentiate among them, several classifica-

tions are possible, each of them being a result of a specific viewpoint. In

this part, we briefly summarize the most important way of classifying meta-

heuristics as outlined in [106, 187].

Nature-inspired vs. non-nature inspired. One of the most intuitive ways to

classify metaheuristics refers to their origins. Nature-inspired algo-

rithms are, for examples, evolutionary computation, ant colony op-

timization, while examples of their counterpart are tabu search, par-

tial optimization metaheuristic under special intensification conditions

(POPMUSIC) (see subsection 4.1.2.1 on page 133 for more details). An

algorithm is classified as nature-inspired if its basic idea is “borrowed”

and modelized from nature’s “phenomenon” instead of from the intrin-

sic of the problem. However, distinguishing metaheuristics in terms

26

2.1 Metaheuristics - concepts, classification and characteristics 27

of this classification appears difficult with the appearance of many re-

cent hybrid algorithms that do not fit either class (or, in a sense they

fit both!). Additionally, the difficulty comes from the hardness of at-

tributing an algorithm to one of the two classes, for example the use of

memory in tabu search may be wondered if it is nature-inspired or not.

Single-point vs. population-based search. Another characteristic that can be

used to distinguish among metaheuristics is the number of current solu-

tions used to determine the next state of system. If at any time only one

solution is used so, then the algorithm is regarded to as a single-point-

based search method. Otherwise, it is regarded to as a population-

based search method. In addition, single-point-based methods are re-

ferred to as trajectory methods in this thesis. Instances of this class of

metaheuristics are based on local search, such as, tabu search, iterated

local search, guided local search, and variable neighborhood search.

They all share a common characteristic that describes a trajectory in

search space when they carry out the search. On the contrary, population-

based methods, either perform search processes which can be consid-

ered as the “evolution” of a set of points in the search space, or they

perform search processes which can be described as the evolutionary

of a probability distribution over the search space (as, for example, es-

timation of distribution algorithm).

Dynamic vs. static objective function. Metaheuristics can also be differen-

tiated according to characteristics of their objective functions. If an

algorithm does not change its objective function during its execution,

27

2.1 Metaheuristics - concepts, classification and characteristics 28

it belongs to the class of metaheuristics whose objective functions are

static. Whereas, other metaheuristics modify their objective functions

during the search, for example, guided local search [203]. A positive

consequence of modifying the objective function during the search is

the possibility of escaping from local optima. Moreover, useful infor-

mation collected during the search process can be used to alter the ob-

jective function.

One vs. various neighborhood structures. Numerous metaheuristics use only

one certain neighborhood structure for the whole runtime, i.e. the land-

scape topology does not change during the execution of their imple-

mentations. Whereas, other metaheuristics, for example variable neigh-

borhood search (VNS) (see subsection 2.2.2.1.2 on page 56 for more de-

tails about VNS) use a set of neighborhood structures in order to make

the search more diversity by interchanging between different search

landscapes.

Memory-based vs. memory-less methods. An important factor to distinguish

metaheuristics is the way they make use of the search history, that is,

whether or not they use a memory to remember the history. Since

memory-less methods use only available information of the current state

of the search process to decide the next action, their operations are re-

garded to as a Makov process. Examples of memory-less algorithms are

variable neighborhood search (VNS) and greedy randomized adaptive

search procedure (GRASP) (see subsection 2.2.2.1.1 on page 54). To

memory-based approaches, there is a differentiation between the use

28

2.1 Metaheuristics - concepts, classification and characteristics 29

of short- and long-term memory. While the short-term memory keeps

track of only recently visited solutions or performed moves, the long-

term one is used to store accumulation of synthetic parameters about

the search. Nowadays, using memory becomes a fundamental feature

of efficient and effective metaheuristics for examples ant colony opti-

mization (ACO)1, tabu search (TS) (see subsection 2.2.2.3 on page 61).

Iterative vs. constructive. Metaheuristics can be classified based on the way

they build up a new solution. An iterative heuristic starts with a (set of)

complete feasible solution(s) and then obtain a new (set of) solution(s)

by changing this (these) solution(s) in an iterative process so as to en-

hance quality of the current solution(s), whereas a constructive heuristic

builds up a new (set of) solution(s) “from scratch” by adding oppor-

tunely defined solution components to an initially empty partial solu-

tion. Components adding is done until a solution is complete or other

stopping criteria are met. A prominent example of iterative heuristics

is Local Search (LS for short) (see section 2.2.2.1 on page 51 for more

details about TS), where a new solution is resulted from changes of the

current solution based on a so-called neighborhood structure, and that

of constructive heuristics is Greedy Heuristics (GH for short) [30] where

the final solution is gradually built up in a linear process controlled by

“gains” of components which are accepted to be inserted at a certain

step.

1See subsection 2.2.1.4 on page 2.2.1.4 for a general overview or chapter 3

on page 48 for a detailed review.

29

2.1 Metaheuristics - concepts, classification and characteristics 30

Single run vs. repetitive This classification is based on the way that heuris-

tic procedures terminate Single-run procedures stop as soon as a cer-

tain internal termination condition is met (for example, a local optimum

has been reached in the case of LS, or the constructive process has fin-

ished in the case of GH). In repetitive procedures, the user dictates the

amount of runtime he wants to spend and the quality of the solution

enhanced as a function of the runtime. The single-run heuristic pro-

cedures are fast but result in moderate solution quality, whereas the

repetitive heuristic procedures might obtain the desired quality of the

solutions at the cost of very large computation time.

Instance-based vs. Model-based search. Metaheuristic search methods can

also be classified as either instance-based or model-based similarly to what

is done in the machine learning field [166]. A search method is regarded

to as instanced-based one if it generates new candidate solutions by us-

ing solely the current solutions or a the current batch solutions (or also

called current “population” of solutions). Most of classical search meth-

ods may belong to the instance-based class. Typical examples of this

class are genetic algorithms [116], or trajectory-based search algorithms

(local search), such as, for examples, simulated annealing [75, 138, 139],

tabu search [89, 96], variable neighborhood search [113, 144]. In con-

trast to instance-based methods, during the last decade, several meth-

ods, which may be considered to belong to the model-based class, have

been proposed. In model-based search approaches, set of candidate so-

lutions is generated by employing a parameterized probabilistic model that

is iteratively updated by “experience” (normally by previous obtained

30

2.1 Metaheuristics - concepts, classification and characteristics 31

solutions) in such a way that the search process will focus on the regions

containing potentially high-quality solutions.

At a very general level, the model-based search approach solves an op-

timization problem by repeating the following two steps [69]:

+ Candidate solutions are constructed using a parameterized prob-

abilistic model, that is, a parameterized probability distribution

over the solution space.

+ Candidate solutions are evaluated and then used to modify the

probabilistic model in a way that is deemed to bias future sam-

pling toward low-cost solutions. Also note that, the model’s struc-

ture may be fixed in advance, with solely the model’s parameters

being updated, or alternatively, the structure of the model may be

allowed to change in runtime as well.

Model Sample

Learning

Figure 2.1: The basic scheme of a model-based search algorithm.

The concept of the term “model” in this classification should be cau-

tiously awoken of. This term denotes an adaptive stochastic mechanism

for generating candidate solutions and not an approximate represen-

31

2.1 Metaheuristics - concepts, classification and characteristics 32

tation of the environment as in, for example, reinforcement learning2

[193]. Early works related to the model-based search approach, for

examples, population-based incremental learning [9], ant colony opti-

mization [39, 61, 65, 69, 106]. However, the first work that gave an ex-

plicit description of the model-based idea is credited to [21]. Figure (2.1)

Model Sample

Auxiliary

memory

Learning

Figure 2.2: A model-based search algorithm with auxiliary memory.

shows a general schematic description of the model-based search ap-

proach. It is noteworthy that Fig. (2.1) presents the “purest” configura-

tion of the model-based search approach. This configuration describes

the approach whose model update rules are based on only the cur-

rent solutions. Meanwhile, many model-based search algorithms ad-

ditionally use an auxiliary memory as described in Fig. (2.2) to update

their model. This auxiliary memory store information collected dur-

ing the search process. A well-known realization of the model-based

2However, the term “model” in the model-based search methods for com-

binatorial optimization problems can have a close connection with that in

reinforcement learning when that term is considered as an attempt to model

the structure of the “promising” solutions.

32

2.1 Metaheuristics - concepts, classification and characteristics 33

approach using an auxiliary memory is the recently developed meta-

heuristic namely estimation of distribution algorithm (EDS) [148, 152]. See

Fig. (2.3) for a schematic description of EDS in the view of a model-

based metaheuristic.

Model Sample

Learning

Population

Figure 2.3: Schematic description of Estimation of Distribution Algorithm.

In the following subsection, we will present the concept of diversification

and intensification that are two mainly powerful forces bringing high perfor-

mance to metaheuristic applications.

2.1.3 Diversification and Intensification in Metaheuristics

Effectively and efficiently searching the solution space is the main objective that

metaheuristics should be aimed at. A metaheuristic is actually efficient and

effective if its search process is guided “smartly” enough such that not only

intensively exploit areas with high-quality solutions but it also explores un-

visited area when deemed necessary. These goals are nowadays conceptual-

ized in the metaheuristic area as intensification and diversification (abbreviated

33

2.1 Metaheuristics - concepts, classification and characteristics 34

as I&D. These terms originated in TS field [96]. Related concepts have been

popularly used in EC field and denoted by exploitation and exploration that are

related to intensification and diversification respectively. But the concepts of

exploitation and exploration have more restricted meaning. Indeed, they of-

ten refer to short-term search strategies tied to randomness, while diversifi-

cation and intensification describe medium- and long-term search strategies

based on the usage of memory. Since the numerous different methods of em-

ploying memory become increasingly important in the whole field of meta-

heuristics, the notions diversification and intensification are more and more

adopted and understood in their original meaning.

A reference to an extensive and rather complete discussion about intensi-

fication and diversification is given in [19].

In the following paragraphs, some high-level descriptions of diversifica-

tion and intensification found in literature are quoted.

Two highly important components of tabu search are intensi-

fication and diversification strategies.Intensification strategies are

based on modifying choice rules to encourage move combinations

and solution features historically found good. They may also initi-

ate a return to attractive regions to search them more thoroughly.

Since elite solutions must be recorded in order to examine their

immediate neighborhoods, explicit memory is closely related to

the implementation of intensification strategies. The main differ-

ence between intensification and diversification is that during an

intensification stage the search focuses on examining neighbors

of elite solutions.[...]The diversification stage on the other hand

34

2.1 Metaheuristics - concepts, classification and characteristics 35

encourages the search process to examine unvisited regions and

to generate solutions that differ in various significant ways from

those seen before [96].

After a local minimizer is encountered, all points in its attrac-

tion basin lose any interest for optimization. The search should

avoid wasting excessive computing time in a single basin and di-

versification should be activated. On the other hand, in the as-

sumptions that neighborhoods have correlated cost function val-

ues, some effort should be spent in searching for better points lo-

cated close to the most recently found local minimum point (in-

tensification). The two requirements are conflicting and finding

a proper balance of diversification and intensification is a crucial

issue in heuristics [14].

A metaheuristic will be successful on a given optimization prob-

lem if it can provide a balance between the exploitation of the

accumulated search experience and the exploration of the search

space to identify regions with high quality solutions in a problem

specific, near optimal way [187].

Intensification is to search carefully and intensively around

good solutions found in the past search. Diversification, on the

contrary, is to guide the search to unvisited regions. These termi-

nologies are usually used to explain the basic elements of Tabu

Search, but these are essential to all the metaheuristic algorithms.

In other words, various metaheuristic ideas should be understood

35

2.1 Metaheuristics - concepts, classification and characteristics 36

from the view point of these two concepts, and metaheuristic al-

gorithms should be designed so that intensification and diversifi-

cation play balanced roles [208].

Holland frames adaption as a balance between exploration (the

search for new, useful adaptations) and exploitation (the use and

propagation of these adaptations) [116]. The tension comes about

since any move toward exploration testing previously unseen

schemata or schemata whose instances seen so far have low fit-

ness takes away from the exploitation of tried and true schemas.

In any system (e.g., a population of organisms) required to face

environments with some degree of unpredictability, an optimal

balance between exploration and exploitation must be found. The

system has to keep trying out new possibilities (or else it could

over-adapt and be inflexible in the face of novelty), but it also has

to continually incorporate and use past experience as a guide for

future behavior [143].

All these descriptions share the common view that there are two forces

for which an appropriate trade-off has to be found. Moreover, intensification

and diversification can be considered as effects of algorithm components. For

the sake of convenience, define I&D component as any functional or algorith-

mic component that has a diversification and/or an intensification effect on

the search process. Examples of I&D components are genetic operators, per-

turbation of probability distribution, changes in objective functions, and the

usage of tabu lists. Thus, I&D components are operators, actions, or search

strategies of metaheuristic algorithms. Although a still widely spread view

36

2.1 Metaheuristics - concepts, classification and characteristics 37

that there are algorithmic or functional components that have either a diver-

sification or an intensification effect, there are many components that have

both effects. In I&D components, that are normally labeled as diversification,

the diversification component is stronger than the intensification component,

and vice versa.

I&D components in metaheuristics can be divided in basic (or intrinsic)

ones and strategic ones. The basic I&D components are defined by the ba-

sic ideas of a metaheuristic. On the contrary, the strategic I&D components

are composed of techniques and strategies the algorithm designers purposely

add into the basic metaheuristic in order to improve performance by incor-

porating medium- or long-term strategies. Most of these strategies are orig-

inally developed in the context of a specific metaheuristic. However, it be-

comes more and more apparent that many of these strategies can also be very

useful when applied in other metaheuristics.

For example, the basic idea of TS is a neighbor choice rule using one or

more tabu lists. This I&D component has two effects on the search process.

The restriction of the set of possible neighbors in every step has a diversifying

effect on the search, whereas the choice of the best neighbor in the restricted

set of neighbors (the best non-tabu move) has an intensifying effect on the

search. The balance between these two effects can be varied by the length of

the tabu list. Shorter tabu lists result in a lower influence of the diversifying

effect, whereas longer tabu lists result in an overall higher influence of the

diversifying effect.

Another example is the following one. Ant Colony Optimization provides

an I&D component that manages the update of the pheromone values. This

37

2.2 Some state-of-the-art metaheuristics 38

component has the effect of changing the probability distribution that is used

to sample the search space. It is guided by the objective function (solution

components found in better solutions than others are updated with a higher

amount of pheromone) and it is also influenced by a function applying the

pheromone evaporation. The effect of this mechanism is basically the intensi-

fication of the search, but there is also a diversifying component that depends

on the greediness of the pheromone update (the less greedy or deterministic,

the higher is the diversifying effect).

The two following subsections - subsection 2.2.1 and subsection 2.2.2 - will

be devoted to reviews of metaheuristics that mainly belong to population-

based and trajectory classes of metaheuristics respectively.

2.2 Some state-of-the-art metaheuristics

In this section, we will present state-of-the-art metaheuristics that are classi-

fied as population-based and trajectory approaches. Population-based meth-

ods including Evolutionary computation (EC), scatter search and path relink-

ing (SS and PR), estimation of distribution algorithms (EDAs), and ant colony

optimization (ACO) are presented in the following subsection, while trajec-

tory ones including greedy randomized adaptive search procedures (GRASP),

variable neighborhood search (VNS), simulated annealing (SA), and tabu

search (TS) are presented in the other subsection of this section.

38

2.2 Some state-of-the-art metaheuristics 39

2.2.1 Population-based Approaches

In this subsection, a number of state-of-the-art population-based metaheuris-

tics will be presented. They are consisting of Evolutionary Computation,

Scatter Search and Path Relinking, Estimation of Distribution Algorithms,

and Ant Colony Optimization.

2.2.1.1 Evolutionary Computation

Evolutionary computation (EC) algorithms are inspired by natural capability to

evolve of living being so as to well adapt to their environment. EC algorithms

can be characterized as computational models of evolutionary processes. At

each iteration, a number of operators are applied to the individuals of the

current population to generate the individuals of the population of the next

generation (iteration). Usually, EC algorithms use operators called recom-

bination or crossover to recombine two or more individuals to produce new

individuals. They also use mutation or modification operators which cause a

self-adaptation of individuals. The driving force in evolutionary algorithms

is the selection of individuals based on their fitness (which can be based on the

objective function, the result of a simulation experiment, or some other kinds

of quality measure). This corresponds to the principle of survival of the fittest

in natural evolution. It is the capability of nature to adapt itself to a changing

environment, which gave the inspiration for EC algorithms.

There have been a variety of slightly different EC algorithms proposed

over years. Basically, they fall into three different categories which have

been developed independently of each other. These are evolutionary pro-

gramming (EP) as introduced by Fogel in [77] and by Fogel et al. in [78],

39

2.2 Some state-of-the-art metaheuristics 40

evolutionary strategies (ES) proposed by Rechenberg in [167] and genetic al-

gorithms (GAs) initiated by Holland in [116] ([100, 143, 169, 201] for further

references). EP arose from the desire to generate machine intelligence. While

EP originally was proposed to operate on discrete representations of finite

state machines, most of the present variants are used for continuous opti-

mization problems. The latter also holds for the most present variants of ES,

whereas GAs are mainly applied to solve CO problems in early dates but the

trend is to devote GAs to optimization problems including those in continu-

ous domain.

Algorithm 1 Evolutionary Computation (EC)
P← GenerateInitialPopulation()
Evaluate (P)
while termination conditions not met do

P′ ← Recombine(P)
P′′ ← Mutate(P′)
Evaluate(P′′)
P← S elect(P′′, P)

end while

While there are variants of EC like steady-state and generational approaches

([182]), the algorithm (1) shows the basic structure of EC algorithms. In

this algorithm, P denotes the population of individuals. A population of off-

spring is generated by the application of recombination and mutation operators

and the individuals for the next population are selected from the union of the

old population and the offspring population. There are many other ways

to perform an EC simulation. For example, there are steady-state and gen-

erational approaches, selection operator being applied before recombination

and mutation operators [].

EC algorithms have been applied to most CO problems and optimization

40

2.2 Some state-of-the-art metaheuristics 41

problems in general. Recent successes were obtained in the rapidly growing

bioinformatics area ([33]), but also in multi-objective optimization [32]. For

an extensive collection of references to EC applications we refer to [8].

2.2.1.2 Scatter Search and Path Relinking

The evolutionary approach called scatter search (SS), and its generalized form

called path relinking (PR), originated from formulations for creating compos-

ite decision rules and surrogate constraints [95, 97, 128]. Recent studies demon-

strate the practical advantages of these two approaches for solving a diverse

array of problems from both classical and real world settings in both discrete

and nonlinear optimization([76]). For an extensive list of applications of SS

and PR, refer to [98, 99] and Chap 19 in [63].

Scatter search and path relinking mainly contrast with other evolution-

ary procedures, such as genetic algorithms, by providing unifying principles

for joining (or recombining) solutions based on generalized path construc-

tions (in both Euclidean and neighborhood spaces) and by using strategic

designs where other approaches resort to randomization [92]. Additional

advantages are given by intensification and diversification mechanisms that

exploit adaptive memory, drawing on foundations that link scatter search

and path relinking to tabu search. Thus, scatter search is regarded to as a his-

torical bridge between evolutionary procedures and the adaptive memory

strategies of tabu search [91].

41

2.2 Some state-of-the-art metaheuristics 42

2.2.1.2.1 Scatter Search (SS) uses strategies for linearly combining solu-

tion vectors3 that have been proved to be effectivein a variety of problem set-

tings. SS, from the standpoint of metaheuristic classification, may be viewed

as an evolutionary (population-based) algorithm that constructs solutions by

combining others. It derives its foundations from formulations originally

proposed for combining decision rules and surrogate constraints in the con-

text of integer programming. The goal of this methodology is to enable the

implementation of solution procedures that can derive new solutions from

combined elements in order to yield better solutions than those procedures

that base their combinations only on a set of original elements ([94]).

A set of points so-called reference points that constitutes “good” solutions

resulted from previous solution attempts is used in scatter search’s operation.

The “good” solutions are defined as those including special criteria, like di-

versity, that purposely go beyond the objective function value. By combining

the reference points which correspond to population of individuals in EC al-

gorithms, the approach generates new points each of which is mapped into

an associated feasible point.

Basically, there are five methods consisted in SS that are explained as fol-

lows:

1. A diversification generation method to create a collection of diverse trial

solutions (or seed solutions), using one or more arbitrary trial solutions

as an input.

3Actually, SS uses linear combination of a population subset to create new

solutions. A special operator is, thus, used to ensure their feasibility and to

improve their quality.

42

2.2 Some state-of-the-art metaheuristics 43

2. An improvement method to transform a trial solution into one or more im-

proved trial solutions. This method does not require the feasibility of its

input and output, although normally output’s feasibility is requested.

3. A subset generation method to operate on the reference set to produce a

subset of its solutions as a basis for creating combined solutions. The

most common subset generation method is to produce all pairs of ref-

erence solutions (i.e. all subsets of size 2). The role of this method in SS

is similar to that of the operator “selection” in EC algorithms.

4. A solution combination method to transform a given subset of solutions

produced by the Subset Generation Method into one or more combined

solutions. This combination method is analogous to the crossover oper-

ator in genetic algorithms, however, it is capable to combine more than

two solutions.

A basic scatter search procedure is illustrated in Algorithm (2). This pro-

cedure starts with the creation of an initial reference set of solutions, symbol-

ized as S re f , from the set of diverse solutions S div
4 by ChooseReferenceSet.

The diversification generation method is employed (and implemented in Di-

versificationGenerator) to build a large collection of diverse solutions . The

set of best solutions found in the search process is stored in S best.

In the main loop of the procedure, at each iteration the following steps are

iteratively done in a number of cycles that is a parameter of the algorithm. In

the first step in a cycle, the subset generation method coded by Generate-

Subsets () chooses a set of subsets of solutions S sub from the set of diverse

4Empirically, the size of S div is 10 times of that of S re f .

43

2.2 Some state-of-the-art metaheuristics 44

Algorithm 2 Basic Scatter Search - SS
S div ← DiversificationGenerator(S seed);
S div ← LocalSeachImprover(S div);
S re f ← ChooseReferenceSet(S div);
S best ← ChooseBestOf(S div);
while termination conditions not met do

while termination criteria for the inner loop not met do
S sub ← GenerateSubsets(S re f);
S trial ← CombineSolutions(S sub)
S enhc ← LocalSeachImprover(S trial);
S re f ← UpdateReferenceSet(S re f , S enhc);

end while
S best ← ChooseBestOf(S re f);
S div ← DiversificationGeneration(S best);
S re f ← ChooseReferenceSet(S div);

end while

solutions S div. There are at least 2 solutions in a subset. The second step im-

plements the solution combination method CombineSolutions and generates

a set of trial solutions S trial from these chosen subsets of solutions S sub. These

trial solutions will then be enhanced in the next step by a local search proce-

dure LocalSeachImprover that results in a set of solutions named S enhc. The

final step of the cycle carries out an update method UpdateReferenceSet for

the reference set regarding to the set of enhanced solutions S enhc. After the

complete of number of these cycles, the set of diverse solutions are updated

with respect to the elite solutions from the latest updated reference set. After

that, a new reference set is chosen from the set of the resulting diverse solu-

tions. The procedure is terminated as early as the termination criteria of the

main loop is satisfied.

2.2.1.2.2 Path Relinking (PR) was originally proposed in [93] as an ap-

proach to integrate intensification and diversification strategies in the context

44

2.2 Some state-of-the-art metaheuristics 45

of tabu search . This approach is to generate new solutions by exploring tra-

jectories that connect high-quality solutions (or sometimes), by starting from

one of these solutions and generating a path in the neighborhood space that

leads toward the other solutions.

By starting from one or more high-quality solutions (or also referred to

as elite solutions), PR generates paths in the solution space that lead to other

elite solutions. These paths are explored in the search for better solutions. To

generates the paths, moves are chosen to introduce attributes in the current

solution that are present in the elite guiding solution. This selection progress

of PR may be viewed as a strategy that attempts to incorporate attributes of

elite solutions by favoring these attributes in the selected moves.

Algorithm (3) illustrates a pseudo-code of the PR procedure that is ap-

plied to a pair of solutions: x (initial solutions) and y (target solutions). First,

the procedure calculate the so-called symmetric difference δ(x, y) between the

initial and target solutions, i.e. a set of moves needed to reach y from x. At

each step in the “while” loop, the procedure tries all moves m ∈ δ(z, y) from

the current solution z and select the one that results the minimum cost solu-

tion, i.e. the one minimizes f (z � m) where z � m is the solution obtained by

applying move m to the current solution z. And z � m? becomes the current

solution after the best move m? is obtained. And the set of available moves

is updated by removing m? from δ(z, y). The best solution x? is necessarily

updated if the current solution is better than the best-so-far solution x?. The

procedure terminates when the symmetric difference is empty, i.e. the target

solution y is reached.

To balance between computation time and solution quality, several alter-

45

2.2 Some state-of-the-art metaheuristics 46

native ways of creating the set of moves and of how to explore the path have

been considered [172]:

• Periodical relinking: PR is applied but instead only periodically.

• Forward relinking: PR is applied using the worst between x and y as the

initial solutions and the other one as the target solution.

• Backward relinking: the roles of x and y is interchanged. PR is applied

but using the best between x and y as the initial solutions and the other

one as the target solution.

• Back and forward relinking: combines forward relinking and backward

relinking together, the two different trajectories are explored.

• Mixed relinking: two path are simultaneously explored each from one

solution until they meet at an intermediary solutions equidistant from

x and y.

• Truncated relinking: the full trajectory between x and y is not examined,

but a part of it.

Scatter Search has received increasing interest in recent years. Among

other problems SS is applied to are quadratic assignment problem [47], max-

imum clique problem [27], resource constrained project scheduling [199],

graph coloring problem [110]. Path relinking is usually used as a component

of other metaheuristics for examples Tabu Search [13, 115], and GRASP [172].

46

2.2 Some state-of-the-art metaheuristics 47

Algorithm 3 Path Relinking - PR
Input: Initial solution x and target solution y
Output: Best solutions x? on a path linking x and y
δ(x, y) ← CalculateSymetricDifference(x, y){δ(x, y) is a set of moves needed
to reach y from x}
f ? ← min{ f (x), f (y)};
x? ← arg min{ f (x), f (y)};
z← x;
while δ(z, y) , ∅ do

m? ← arg min{ f (z � m) : ∀m ∈ δ(z, y)};
δ(z � m?, y)← δ(z, y) \ {m?};
z← z � m?;
if f (z) < f ? then

f ? ← f (z);
x? ← z;

end if
end while

2.2.1.3 Estimation of Distribution Algorithms - EDAs

In last decade more and more researchers tried to overcome the drawbacks

of usual recombination operators of EC algorithms, which are likely to break

good building blocks5. With this aim, a number of algorithms that are some-

times called estimation of distribution algorithms EDAs [148] have been devel-

oped (see Algorithm (4) for the algorithmic framework). These algorithms,

which have a theoretical foundation in probability theory, are like EC algo-

rithms based on population that evolve as the search processes. This new

class of algorithms generalizes genetic algorithms by replacing the crossover

and mutation operators with learning and sampling from the probability dis-

tribution of the best individuals of the population at each iteration of the

5Roughly speaking, a good building block is a subset of the set of solution

components which result in a high average quality of all the solutions that

can contain this subset.

47

2.2 Some state-of-the-art metaheuristics 48

algorithm ([152]). Specifically, they work as follows. First, an initial popula-

tion P of solutions is randomly or heuristically generated. Then the following

cycle is repeated until the termination criteria are met. A fraction of the best

solutions of the current population (denoted by Psel) are selected in function

ChooseFrom(P). Then from the solutions in Psel, a probability distribution over

the search space is derived in function EstimateProbabilityDistribution(Psel).

This probability distribution is then sampled in SampleProbabilityDistribution(p(x))

function to produce the population of the next iteration.

Algorithm 4 Estimation of Distribution Algorithms (EDAs)
P← GenerateInitialPopulation()
while termination conditions not met do

Psel ← ChooseFrom(P) {{Psel ⊆ P}}
p(x) = p(x|Psel)← EstimateProbabilityDistribution(Psel)
P← SampleProbabilityDistribution(p(x)

end while

The field of EDAs is still quite young and much of research effort is fo-

cused on methodology rather than high-performance applications. Applica-

tions of EDAs to the knapsack problem, the job shop scheduling (JSS) prob-

lem, and other CO problems can be found in [152].

2.2.1.4 Ant Colony Optimization - ACO

Ant Colony Optimization is a metaheuristic in which a colony of artificial ants

cooperate in finding good solutions to difficult discrete optimization prob-

lems6 [39, 61, 65, 69, 106]. A part of study of this thesis is about ACO thus

6Most of works in literature have focused on ACO’s applications in dis-

crete domain. Very recently, the question about ACO’s applicability into con-

tinuous domain has been raised and early works have been carried out. More

48

2.2 Some state-of-the-art metaheuristics 49

an extensive literature review about this metaheuristic is presented in Chap-

ter 3. To make the report consistent, in this section we will show a general

overview about ACO.

The first algorithm belonging to the framework of ACO metaheuristic was

Ant System ([67]). Poor performance of AS is improved by a number of

its different algorithmic variants, for instances, Ant Colony System (ACS)

([65]), Max-Min Ant System (MMAS) ([190, 191]), and Best-Worst Ant Sys-

tem (BWAS) ([43, 44]. These algorithmic variants come under a common

framework as a consequence of research efforts first carried out in [63, 64].

The term Ant Colony Optimization has appeared since then.

Cooperation is the key design component of ACO algorithms: The choice

is to allocate the computational resources to a set of relatively simple agents

(artificial ants) that communicate indirectly by stigmergy, that is, by indirect

communication mediated by the environment.

ACO algorithms can be used to solve both static and dynamic combina-

torial optimization problems7.

In ACO algorithms, a number of artificial ants are used to search for solu-

reviews about this trend will be presented in Chapter 3.
7Static problems are those in which the characteristics of the problem are

given once and for all when the problem is defined, and do not change while

the problem is being solved. A paradigmatic example of such problems is

the Traveling Salesman Problem (TSP) ([131]) in which city locations and

their relative distances are part of the problem definition and do not change

at run time. On the contrary, dynamic problems are defined as a function of

some quantities whose value is set by the dynamics of an underlying system.

When the problem instance’s characteristics dynamically change at running

49

2.2 Some state-of-the-art metaheuristics 50

tions. Each artificial ant is a stochastic procedure that constructs a new so-

lution “from scratch” by adding opportunely defined solution components

to an initially empty partial solution. Components adding is done until a

solution is complete or other stopping criteria are met. During the solution

construction stage, artificial ants use a shared global memory - that stimu-

lates the stigmergy characteristic of real ants when finding the shortest tours.

After ants finished building their solutions, the global memory is updated by

some ants. Ants allowed to update the global memory are chosen in terms

of some heuristic rules. The variance of the global memory before and after

being updated is a function of the global memory in the past and quality of

solutions constructed by chosen ants.

Many studies in the field found in literature suggest that performance of

ACO algorithms is much improved if local search procedures are incorpo-

rated into these algorithms. Most implementations of ACO algorithms use a

local search procedure at the time before the global memory is updated.

Successful applications of ACO include those in communication networks

routing [26], the sequential ordering problem (SOP) [82], and resource con-

straint project scheduling (RCPS) [137]. Further references to applications

of ACO can be found in [69]. Additionally refer to [62] for the most recent

survey about ACO metaheuristic.

time the algorithm for the dynamic COPs must be capable of adapting online

to the changing environment. An example of this situation is network routing

problems in which the data traffic and the network topology can vary in time.

50

2.2 Some state-of-the-art metaheuristics 51

2.2.2 Trajectory Approaches

In this subsection, a number of state-of-the-art trajectory (or single-point-

based) metaheuristics will be presented. They are consisting of Greedy Ran-

domized Adaptive Search Procedure, Variable Neighborhood Search, Simu-

lated Annealing, and Tabu Search.

2.2.2.1 Local Search Methods

Local search is a general approach for finding high-quality solutions to hard

combinatorial optimization problems in reasonable time. It is based on what

is perhaps the oldest optimization method - trial and error. The idea is so

simple and natural, in fact, that it is surprising how successful local search

has proven on a variety of difficult combinatorial optimization problems.

Local search is basically based on the iterative exploration of neighborhoods

of solutions trying to improve the current solution by local changes. The types

of local changes that may be applied to a solution are defined by a neighbor-

hood structure. Given an optimization problem whose set of feasible points

is S, a neighborhood structure is define as following.

Definition 2.2.1 (neighborhood structure). A neighborhood structure is a func-

tion N : S 7→ 2S that assigns a set of neighbors N(s) ⊆ S to every s ∈ S. N(s) is also

called the neighborhood of s.

If S = Rn, the set of points within a fixed Euclidean distance obviously

provides a natural neighborhood. The choice of an appropriate neighbor-

hood structure is crucial for the performance of a local search algorithm and

is problem-specific. The neighborhood structure defines the set of solutions

51

2.2 Some state-of-the-art metaheuristics 52

that can be reached from s in one single step of a local search algorithm. Typi-

cally, a neighborhood structure is defined implicitly by defining the possible

local changes that may be applied to a solution, and not by explicitly enu-

merating the set of all possible neighbors.

The solution found by a local search algorithm may only be guaranteed to

be optimal with respect to local changes and, in general, will not be a globally

optimal solution.

For example, the well-known k-opt (or also called k-change) neighborhood

for traveling salesman problem (TSP) ([160]) is one of such implicitly defined

neighborhood structures. Given a tour f of TSP, k-opt is defined as follows:

Definition 2.2.2 (k-opt).

Nk(f) = {g : g ∈ Sand g can be obtained from f as follows:

remove k edges from the tour f ; then replace them with k edges}
Definition 2.2.3 (local optimal). Given an optimization problem with a neighbor-

hood structure N and a cost function f , a local optimal with respect to N or simply

local optimal is a solution s such that ∀s′ ∈ N(s) : f (s) ≤ f (s′).

A local search algorithm also requires the definition of a neighborhood

examination scheme that determines how the neighborhood is searched and

which neighbor solutions are accepted. While the neighborhood can be searched

in many different ways, in the great majority of cases the acceptance rule is ei-

ther the best-improvement rule, which chooses the neighborhood solution giv-

ing the largest improvement on the objective function, or the first-improvement

rule, which accepts the first improved solution found.

In its most basic version, often called iterative improvement, or sometimes

hill-climbing or gradient-descent for maximization or minimization problems,

52

2.2 Some state-of-the-art metaheuristics 53

respectively, the local search algorithm, see Algorithm (5), searches for an

improved solution within the neighborhood of the current solution. If an im-

proved solution is found, it replaces the current solution and the local search

is continued. These steps are repeated until no improving solution if found

in the neighborhood and the algorithm terminates in a local optimal. A dis-

advantage of iterative improvement is that the algorithm may stop at a very

poor-quality local optimal. Another popular local search for the solution of

nonlinear non-convex optimization problems is the trust regions or restricted

step method [25, 28, 120] which approximates only a certain region (the so-

called trust region) of the objective function with a quadratic as opposed

to the entire function (for a comprehensive reference of this method, refer

to [40]). When an adequate approximation of the objective function is found

within the trust region then the region is expanded.

Algorithm 5 The basic local search algorithm - iterative improvement.
Sub-Procedure improve(t)

improve(t) =

{
any s ∈ N(t) with f (s) < f (t) if such an s exists
“no” otherwise

End Sub-Procedure
t← some initial starting point in S;
while improve(t) , ‘no’ do

t← improve(t)
end while
return t

To apply this basic local search to a particular problem, we must decide

a number of choices. First, we must decide how to obtain an initial feasible

solution. Next, we must choose a “good” neighborhood structure for the

problem at hand and an effective and efficient method for searching it. This

choice is usually guided by intuition, because very little theory is available

53

2.2 Some state-of-the-art metaheuristics 54

as a guide [37, 129, 160]. And the design of effective local search algorithms

has been, and remains, very much an art.

2.2.2.1.1 Greedy Randomized Adaptive Search Procedure - GRASP The

metaheuristic greedy randomized adaptive search procedures also known as GRASP

[73, 175] is a multi-start or iterative process. It randomizes greedy construc-

tion heuristics to allow the generation of a large number of different starting

solutions for applying a local search. In the iterative process, each iteration

basically consists of two stages: construction and local search. Assume that

the set of candidate components is formed by all components which can be

incorporated into the partial solution under construction without violating

feasibility. The algorithmic framework in Alg. (6) shows a high-level pseudo

code of GRASP.

Algorithm 6 Greedy randomized adaptive search procedures - GRASP
for i = 1, . . . , Number-of-Iterations do

s← GreedyRandomizedConstruction(seed) { seed is used for a pseudo-
randome number generator}
s← LocalSearch(s)
UpdateSolution(s, best-solution)

end for
return best-solution

In the former stage a feasible solution is built from scratch by a construc-

tive heuristic that is based on a greedy function. In this construction pro-

cess, a next component is determined according to the evaluation of a greedy

function for all candidate components. This greedy function represents the

gradual increase of cost function because of the incorporation of a new com-

ponent into the current partial solution under consideration. The component

is randomly selected from a restricted candidate list (RCL) whose elements are

54

2.2 Some state-of-the-art metaheuristics 55

formed by best elements, i.e. those resulting in the smallest incremental costs

when incorporated into the current partial solution8. Typical ways of deploy-

ing the restricted candidate list are either to take the best θ% of the solution

components or to take all solution components whose value of the greedy

evaluation function is within γ% of the best-evaluated solution component.

After having a component incorporated, the RCL is updated and the in-

cremental cost is reevaluated9. This strategy is similar to the so-called semi-

greedy heuristic proposed in [114]. The solutions obtained by a greedy ran-

domized construction is not highly possible not an optimal. The local stage

usually enhances the constructed solutions.

A local search algorithm operates in an iterative way by successively re-

placing the current solution by a better solution in the neighborhood of the

current solution (a very similar behavior to this iterative fashion can be found

in Algorithm (5) on page 53). However, also note that the basic GRASP

described above indicates that it does not rely on the history of the search

process. Only memory for a problem instance and best-so-far solution is re-

quired.

GRASP can be efficient if at least two following conditions are met: 1)

the construction heuristic is able to sample the most promising areas of the

search space; 2) the solutions constructed belong to the basins of attraction of

different local minima.

Numerous available applications of GRASP and several variants of the

basic GRASP algorithm presented above have been proposed, for an exten-

8This is the greedy aspect of the metaheuristic hence its name.
9This is the adaptive aspect of the metaheuristic.

55

2.2 Some state-of-the-art metaheuristics 56

sive survey see [74]. Among of those applications are feedback vertex set

problem [162], quadratic assignment problem [161, 175], and maximum clique

problem [119]. It is noteworthy that, theoretically, using RCL in the standard

implementation of GRASP may negatively affect on the convergence of the

heuristic to the optimal solutions ([145] for the regarded theoretical result).

One way to go around this problem is to let the parameter θ be randomly

chosen according to a uniform distribution [173].

2.2.2.1.2 Variable Neighborhood Search - VNS Variable Neighborhood Search

is a recently proposed metaheuristic for solving combinatorial and global op-

timization problems [112, 113, 144]. Its idea is derived from a simple princi-

ple: change the neighborhood structure within a local search when the search

is trapped on a local optima.

Algorithm 7 Basic scheme of variable neighborhood search - VNS
Initialization. Select the set of neighborhood structures Nk for k = 1, . . . , kmax,
that will be deployed in the search; find an initial solution x;
repeat

Set k ← 1;
while k < kmax do

(a) Shaking. Generating a point x′ at random from the kth neighbor-
hood of x (x′ ∈ Nk(x));
(b) Local search. Given x′ obtained from (a), a local search is applied
with x′ as the initial solution. Denote x′′ as the local optimum solution
obtained from this local search;
(c) Jump or not. If x′′ is better than the incumbent solution, replace x
by x′′ and start a completely new search progress with the neighbor-
hood structure Nk←1

10. Otherwise, increase k by 1.
end while

until termination conditions are met
return best-solution

The simplicity of the basic scheme of VNS gives many degrees of freedom

for designing variants and particular instantiations. VNS is based on the

56

2.2 Some state-of-the-art metaheuristics 57

three following facts [144]:

+ Fact 1 A local minimum w.r.t. one neighborhood structure is not neces-

sary so with another.

+ Fact 2 A global minimum is a local minimum w.r.t. all possible neigh-

borhood structures.

+ Fact 3 For many problems local minima w.r.t. one or several neighbor-

hood structures are very relatively close to each other.

There are three different ways to use facts 1 and 3 to solve an optimization

including i) deterministic; ii) stochastic; iii) both deterministic and stochastic.

The Algorithm (7) describes the basic scheme of VNS that combines both

deterministic and stochastic changes of neighborhood structures.

For the sake of definitiveness, in the following subparagraphs we present

the schemes of the deterministic way and the stochastic one whose techni-

cal names in literature are Variable Neighborhood Descent (VND) and Re-

duced VNS (RVNS) respectively.

Variable Neighborhood Descent - VRD is a basic variant of VNS when

the change of neighborhood structure is done in a deterministic way. VND’s

algorithmic steps are presented in Algorithm (8).

Usually, local search heuristics use in their descent a single or rarely two

neighborhoods, or in other words kmax ≤ 2. Also notice that the final solution

will be a local optimum with respect to all kmax neighborhood structures, so

higher chance to reach a global optimum solution is given to the strategy of

using more than a single neighborhood structure. However, since this VNS

57

2.2 Some state-of-the-art metaheuristics 58

Algorithm 8 Variable Neighborhood Descent - VND
Initialization. Select the set of neighborhood structures Nk for k = 1, . . . , kmax,
that will be deployed in the decent; find an initial solution x (or apply a
certain rule to a given x);
repeat

Set k ← 1;
while k < kmax do

(a) Neighborhood exploring. Find the best neighbor x′ of x according
to the kth neighborhood structure Nk by a certain local search;{Similar
to Alg. (5) on page 53}
(b) Jump or not. If the found solution x′ is better than the best-so-far
solution x then x← x′, k ← 1, otherwise set k ← k + 1,

end while
until no improvement is obtained
return best-solution

variant will search the whole neighborhood of a given solution for the best lo-

cal optimum of that neighborhood, much more computational resource must

be dedicated to it when the size of problem instance increases. To overcome

this difficulty, an alterative way is to use the stochastic approach named Re-

duced VNS that is presented in the following subparagraph.

Reduced VNS - RVNS is efficient and useful when dealing with large

problem instances for that VND is computationally expensive. Empirical

studies suggest that the best value for kmax should be 2 [144]. Moreover, one of

termination conditions utilizes the maximum number of iterations between

two improvements.

Among applications of VNS are vehicle routing problem [23], maximum

clique problem [111], and minimum spanning tree problem [174].

58

2.2 Some state-of-the-art metaheuristics 59

Algorithm 9 Reduced VNS - RVNS
Initialization. Select the set of neighborhood structures Nk for k = 1, . . . , kmax,
that will be deployed in the search; find an initial solution x;
repeat

Set k ← 1;
while k < kmax do

(b) Shaking. Produce in random a neighbor x′ from the kth neighbor-
hood Nk of x.
(b) Jump or not. If the produced solution x′ is better than the current
solution x then x ← x′, k ← 1; in other words the search is going on
with the neighborhood structure Nk←1, otherwise set k ← k + 1,

end while
until termination conditions are met
return best-solution

2.2.2.2 Simulated Annealing - SA

Simulated Annealing is commonly considered as the oldest among the meta-

heuristics. The origins of the algorithm are in statistical mechanics (see the

Metropolis algorithm [138, 139]). The idea of SA was provided by the an-

nealing process of meta and glass, which assume a low energy configuration

when cooled with an appropriate cooling schedule. Among recent trends

of extending SA, using quantum fluctuations [51] instead of thermal fluctua-

tions is to get through high but thin barriers in the target function or the idea

of stochastic tunneling [109] which attempts to overcome the increasing dif-

ficulty simulated annealing runs have in escaping from local minima as the

temperature decreases, by ’tunneling’ through barriers.

SA was first presented as a search algorithm for CO problems in [123]

and [200]. In order to avoid getting trapped in local minima, the fundamental

idea is to allow moves to solutions with objective function values that are

worse than the objective function value of the current solution. Such a kind

of move is often called an hill-climbing move. At each iteration, a solution

59

2.2 Some state-of-the-art metaheuristics 60

s′ ∈ N(s) is randomly chosen. If s′ is better than s (i.e. has a lower objective

function value), then s′ is accepted with a probability which is a function of

a temperature parameter Tk and f (s′) − f (s). This probability is computed

following the Boltzmann distribution:

p
(
s′|Tk, s

)
= e

−
f (s′) − f (s)

Tk (2.2.1)

Algorithm 10 Simulated Annealing (SA)
s← GenerateInitialSolution()
k ← 0
Tk ← SetInitialTemperature()
while termination conditions not met do

s′ ← PickNeighborAtRandom(N(s))
if f (s′) < f (s) then

s← s′ {s replaces s}
else

Accept s′ as new solution with probability p(s′|Tk, s) {{ see (2.2.1) }}
end if
AdaptTemprature(Tk)

end while

• AdapTemperature(Tk): The temperature Tk is adapted at each iteration

according to a cooling schedule (or cooling scheme)11.

SA has been applied to many CO problems, such as the quadratic assignment

problem (QAP) [41] and job shop scheduling (JSS) problem [127]. References

11The cooling schedule is a critical component to SA to determine the cool-

ing rate to be low enough for the probability distribution of the current state

to be near the equilibrium at all times. In practice, the ideal cooling rate is not

able to be determined in advance which makes designing a cooling schedule

a difficult task. There are many approaches to adapt Tk found in literature

like [177, 179]

60

2.2 Some state-of-the-art metaheuristics 61

to other applications can be found in [75, 118]. SA is nowadays more used as

a component in metaheuristics, rather than applied as a stand-alone search

algorithm.

2.2.2.3 Tabu Search - TS

Tabu search is one of the most successful metaheuristics for the application

to CO problems [20]. The basic ideas of TS were introduced in [89], based

on earlier ideas formulated in [88]. A description of the method and its con-

cepts can be found in [96]. The basic idea of TS is the explicit use of search

history, both to escape from local minima and to implement an explorative

strategy. A simple version of TS is described in this section in order to intro-

duce the basic concepts. A simple TS algorithm (see Algorithm (11)) is based

on a best-improvement local search and uses a short term memory to escape

from local minima and to avoid a cycle12. Recent application trends on TS

research is to incorporate TS with other search techniques (like EC) [158] or

with mathematical programming methods (like Simplex) [164].

Algorithm 11 Tabu Search (TS)
s← GenerateInitialSolution()
T L← ∅
while termination conditions not met do

Na(s)← N(s)\T L
s′ ← arg min { f (s′′)|s′′ ∈ Na(s)}
Update(T L, s, s′)
s← s′ {s replaces s′}

end while

The short term memory is implemented as a tabu list TL that keeps track

of the most recently visited solutions and excludes them from the neighbor-

12A cycle is a sequence of moves that constantly repeats itself.

61

2.3 Improving Performance of Metaheuristics 62

hood of the current solution. The restricted neighborhood of a solution s is

referred as the allowedset, which is denoted by Na(s). At each iteration, the

best solution from the allowed set is chosen as the new current solution. In

addition, in procedure U pdate(T L, s, s′) this solution is added to the tabu list

and - if T L has reached its maximum capacity - one of the solutions that were

already in the tabu list is removed.

TS has been applied to most CO problems; examples of successful applica-

tions are the Robust Tabu Search to the QAP [194], the Human-Guided Tabu

Search to the 2D HP protein folding problem (HPPF) [133], and to assignment

problems [53]. TS approaches dominate to job shop scheduling (JSS) problem

area ([153] and vehicle routing problem (VRP) area [85]. Further references

of applications can be found in [96].

2.3 Improving Performance of Metaheuristics

2.3.1 Hybridization

For many years, the research of metaheuristics has mainly focused on the

application of single metaheuristics to plenty of hard problems in variety of

areas like engineering, logistics, bioinformatics, etc. Recently, it has become

clear that applicability of a sole metaheuristic is rather limited when the di-

mensional complex of underlying problems increases. A skillful combination

of concepts of different metaheuristics, a so-called hybrid metaheuristic, can

provide a more efficient behavior and higher flexibility when dealing with

real-world and large-scale problems.

62

2.3 Improving Performance of Metaheuristics 63

2.3.1.1 Memetic Approaches

Memetic Algorithms (MAs) is a population-based approach for heuristic search

in optimization problems. The term memetic algorithms was firstly used

in [146] but originated from the term meme from a well-known book on the

evolution theory [52]13. The evolutionary difference between “memes” and

“genes” is that memes are possibly improved and processed locally meaning

that the people hold them can process and possibly improve them - some-

thing that cannot take place to genes. Locality is the key to that difference

and that is also the idea MAs are based on.

A key feature, presented in most MAs implementations, is the use of a

population-based search which intends to use all available knowledge about

the problem similarly to the feature of Evolutionary Algorithms (EAs). The

difference between MAs and EAs is that in MAs:

This knowledge is incorporated in the form of heuristics, approx-

imation algorithms, local search techniques, specialized recombi-

nation operators, truncated exact methods and many other ways

13The following is R. Dawkins’s own words about memes: “Examples of

memes are tunes, ideas, catch-phrases, clothes fashions, ways of making pots

or building arches. Just as genes propagate themselves in the gene pool by

leaping from body to body via sperms and eggs, so memes propagate them-

selves in the meme pool by leaping from brain to brain via a process which, in

the broad sense, can be called imitation.” An alternative name of MAs is Cul-

tural Evolution due to this. Other names of MAs include Hybrid Genetic Al-

gorithms, Genetic Local Search, Lamarckian Genetic Algorithms, Baldwinian

Genetic Algorithms.

63

2.3 Improving Performance of Metaheuristics 64

(chapter 14 in [147]).

While Genetic Algorithms (GAs) ([100, 140, 169]) was inspired by stim-

ulating biological evolution, MAs is to mimic cultural evolution (see foot-

note 13)14. In MAs, each individual (agent) of population is allowed to per-

form a heuristic local search to enhance its fitness until reaching a pre-determined

level. When this level of fitness is reached, the individual will start its either

cooperative or competitive interaction with other members in the population.

The competition can be similar to the selection process of GAs, while the co-

operation can be any “breeding” methods that result in a new individual like

the mechanism of crossover in GAs. In general, cooperation can be consid-

ered as the interchange of information.

In essence, most MAs can be interpreted as a cooperative-competitive strat-

egy of optimizing agents [146]. The central idea of this strategy, when the

search space is large, is to use collective properties of a group of recognized

agents which are separately performing the search. In consequence, the col-

lective behavior of the whole population generates solutions that are better

than those generated by each agent without interaction within the group.

A general framework of Local-Search-based Memetic Algorithms (LA-

based MAs) is described in Alg. (12). LA-based MAs have been generally

applied as a heuristic to find near-optimal solutions to problems that are

proven to be NP-hard. By fixing any parameters given in any LA-based MAs,

we must consider these LA-based MAs as a heuristic, or in other words an

14Based on this characteristic, we classify MAs into class of hybridization

metaheuristics. Although MAs can naturally be grouped into Population-

based Metaheuristics.

64

2.3 Improving Performance of Metaheuristics 65

instance of a general metaheuristic, for the problem under consideration.

Algorithm 12 A general framework of Local-Search-Based Memetic Algo-
rithms - LA-based MAs

Initialize the population Pop15

for all individual i ∈ Pop do
i← Improve-and-Evaluate(i)

end for
repeat

Pop← LS-Recombine(Pop) {Refer to Alg. (13) for details of this subrou-
tine.}
Pop← LS-Mutate(Pop) {Refer to Alg. (13) for details of this subroutine.}
Pop← Select(Pop)
if no improvements for Pop then

Pop← Restart(Pop)
end if

until termination-conditions-satisfied
return best solutions found

The general framework of a LS-based MAs in Alg. (12) is mostly the same

as the framework of a GAs. However, their difference lie in the deeper lev-

els. Before an offspring created by the same way as done in the procedure

Recombine of any GAs, the subroutine LS-Recombine within the loop of

Nrec steps of recombination is evaluated and inserted into the population.

Thus the offspring’s fitness is improved by a certain heuristic local search-

based procedure. This procedure will try to iteratively find a better individ-

ual until it is impossible to do so. The function of the procedure LS-Mutate

is also explained by the same way. Moreover, the usage of the procedure

Improve-and-Evaluate in the procedure LS-Mutate means that individuals

will have a possibility of being re-optimized after they passed the recombi-

nation process. The purpose of using the procedure Restart is to try to avoid

a premature convergence of the search process.

MAs has successfully applied to multitude of real-world problems like

65

2.3 Improving Performance of Metaheuristics 66

Algorithm 13 Subroutines LS-Recombine() and LS-Mutate() in LA-based
MAs

Sub-Function Improve-and-Evaluate(individual im)

individual im ← Local-Search-based-Improver(individual im)
individual im ← Evaluate(individual im)

End Sub-Function
Sub-Routine LS-Recombine(Pop)
for n = 1, . . . ,Nrec do

offspring in← Recombine(Pop) {This routine operates equivalently to that
in EC, see subsection 2.2.1.1;}
offspring in ← Improve-and-Evaluate(offspring in)
add offspring in into Pop

end for
End Sub-Routine
Sub-Routine LS-Mutate(Pop)
for m = 1, . . . , Mmut do

individual im ← Mutate(Pop) {This routine operates equivalently to that
in EC, see subsection 2.2.1.1;}
individual im ← Improve-and-Evaluate(individual im)
add individual im into Pop

end for
End Sub-Routine

66

2.3 Improving Performance of Metaheuristics 67

Machine Scheduling Problem [157], Timetabling [24], Protein Structure Pre-

diction Problem [126], Vehicle Routing Problem [16]. A rather detailed ref-

erence about applications and implementations of is given in a MAs tutorial

in [125] or in the survey [181].

2.3.2 Exploiting Problem Structure

Improving performance of metaheuristic algorithms by embedding local search

procedures into them is widely confirmed by extensively empirical works.

However, there are some issues related to the usage of the local search pro-

cedures for which we need to carefully pay attention at the algorithm design

stage. One issue is of how to design a “good” neighborhood structure. An-

other issue is that given a neighborhood structure, how to tune systematic

parameters of the algorithm and where and when to invoke these procedures

during the runtime. This section delivers a discussion about the former issue

only. Given an optimization problem, practically a neighborhood structure

is regarded to as a “good” one if it is specifically designed for that problem,

or in other words it must reflect, as many as possible, specific and useful

structures of that problem. An successful example of such neighborhood

structures is a so-called k-change neighborhood [134] that is popularly used

as a local search in several algorithms applied to Traveling Salesman Prob-

lem (see subsection 3.3.1.1 on page 106 for a definition of Traveling Salesman

Problem).

The next subsection will take a look at the landscape theory built on Grover’s

difference equation. This theory has been used to search for favorable prop-

erties to local search. Subsection 2.3.2.2 presents a review of recent works

67

2.3 Improving Performance of Metaheuristics 68

constructing local structures (of combinatorial optimization problems) whose

characteristics and performance are analyzed and evaluated in terms of group

theory - a powerful tool has been applied to study exact search methods.

2.3.2.1 Find Useful Search Neighborhoods using Landscape Theory

Recently, a great number of theoretical works that focus on searching prop-

erties favorable to local search has been proposed and developed. Among

of them is the landscapes theory, seemingly, beginning with the work in [105]

and in [31] and being extended by [11, 184, 185]. An abstract definition of

landscape is given in the following definition.

Definition 2.3.1 (Landscape). Given a combinatorial optimization problem whose

solution space is X, a neighborhood structure N, and an objective function f : X 7→
R, the triple L = (X, f ,R) defines a landscape of that problem with respect to the

neighborhood structure N.

The Grover’s difference equation [105] (that is similar to the wave func-

tion of mathematical physics) states that if a landscape satisfies it then any

local optimal is superior to the average value µ of the objective function over

the solution space16, and, the number of steps to reach a solution at least as

good as µ from any starting point is linear in the problem size. Landscapes

with specific notions of neighborhood arise from certain classes of combi-

natorial optimization problems, for example symmetric traveling salesman

problem, min cut problem, and graph partitioning problem were proved to

satisfy Grover’s difference equation [31, 105].

16This means that arbitrarily poor local optima do not exist.

68

2.3 Improving Performance of Metaheuristics 69

Grover’s Difference Equation Before introducing the equation, we need

to present some preliminary notions need. Let C be the cost function of a

combinatorial optimization problem17, Cavr be the average value over all the

costs of all feasible solutions to this problem. With the definition f (x) = C(x)−
Cavr, the Grover’s difference equation is defined as

∇2 f +
k
n

f = 0, k > 0, (2.3.1)

where n is the problem size, and k is a constant depending on the problem.

The symbol ∇2 f is used to denote the average difference operator over a spe-

cific neighborhood. If a neighborhood structure18 N is defined, then

∇2 f (x) =

∑|N(x)|
i=1 δi

|N(x)| ,

where δi is defined as

δi = f (x) − f (xi), ∀xi ∈ N(x).

The difference equation (2.3.1) gives a relation between the (cost) f (x) of

a solution x and ∇2 f (x) (i.e. the costs of the solutions belonging to the neigh-

borhood of x). This “link” between f (x) and ∇2 f (x) gives some information

about the local structure of the problem that satisfy (2.3.1. This information

is local because at each step of the local search procedure, we have some re-

lation between the solution x and its neighbors, however, no relation can be

established between x and the previous or the next solutions examined in the

local search procedure.

17C(x) denotes the cost of solution x.
18The original difference equation in [105] considered neighborhood struc-

tures that are regular and symmetric.

69

2.3 Improving Performance of Metaheuristics 70

2.3.2.2 Construct and Characterize Search Neighborhoods using Group

Theory

There are two important factors in designing a local search procedure that are

separately considered. One is the definition of the neighborhood structure.

The other is the “instructions” of how to move that structure from one (or a

set of) point(s) to another (or other set of points) efficiently. When the max-

imum cardinal (size) of set of neighbors of any point in the solution space

is so large, using an exhaustive search procedure will be costly. Although

depending on characteristics of the neighborhood structure themselves, it is

more possible that maximum cardinal increases when size of instances of

problems under consideration increases.

Thus, given a neighborhood structure, efficiently moves will positively

affect the outcome of the local search procedure. To heuristics and meta-

heuristics, group theory has emerged as one of promising approaches ([12,

34, 36, 46] not only to study how to find such moves by, for example pre-

serving some “good” sub-paths (or predetermined sub-structures) in elite

solutions, but also to find out other types of neighborhood structures. His-

torically, group theory is the foundation of several exact methods of integer

and mixed-integer programming ([87, 101, 102, 207]) but although being a

promising approach, group theory has only recently been in limited use in

heuristic and metaheuristic methods [12, 34–36, 38, 46, 122].

The following instantiation gives a simple picture of how group theory

can be applied to construct and characterize search neighborhoods by con-

sidering a special case of k-opt neighborhood structure for the TSP used as an

illustrative instance.

70

2.3 Improving Performance of Metaheuristics 71

With reference to the very illustrative definition of k-opt local search in

the definition (2.2.2) (on page 52), the neighborhood structure of k-opt will

be explicitly defined by using basic moves or single steps concepts that are, in

turn, based on the concept of permutation cycle in group theory. Studying the

factor groups of the non-Abelian symmetric group S n on n symbols can reveal

neighborhood structures of the incumbent solution of a n-city TSP instance 19.

Indeed, to give a simple example, let us consider a simple case when k = 2

(the well-known 2−opt local search applied to TSP).

Let Tn be the set of all transpositions (or permutation cycles of length 2) of

the symmetric group S n. Definition of a transposition is in (2.3.2)

Tn = {ai j = (i, j) : ∀1 ≤ i < j ≤ n}. (2.3.2)

Given a permutation τ = (τ1 τ2 . . . τn), when applying a transposition, says

(i, j) to τ, we obtain a new permutation π = (π1 π2 . . . πn) from τ by swapping

positions of the ith and jth objects in τ.

Thus, it is clear to see that, Tn is the complete set of basic steps of the

neighborhood structure 2-opt. Thus, the 2-opt neighborhood is algebraically

described.

To algebraically describe the other cases when k > 2, for example k = 6,

and let U ≡ the union of conjugacy classes whose cycle structures are (x, x, x, x, x, x),

(x, x)(x, x, x, x) and (x, x, x)(x, x, x), then the neighborhood of an element p ∈ S n

is given by pC.

Recently found results [35, 36] substantiate the relevance of applying group

theory to the study of metaheuristic neighborhoods. A consequence of those

19Remember that since a solution of a n-city TSP instance can be repre-

sented as a permutation of {1, 2, . . . , n}.

71

2.4 Summary of Chapter 72

results is the counter-intuitive fact for the presumption on which many search

strategies are based. The presumption is that an incumbent tour’s length will

directly reflect its neighborhood weight (the neighbors’s summed tourlengths),

i.e. a good tour will be found in a neighborhood of good tours. The counter-

intuitive fact found by group theoretic analysis in [36] shows that, under cer-

tain neighborhood types, a very inferior solution (associated with a relatively

large length) could have a small neighborhood weight implying that there ex-

ist short tours in the neighborhood of this inferior solution. Findings in [36]

also gave an theoretical evidence of the success seen in the application of the

swap neighborhood in literature (for example, see [132].

Moreover, so-called conjugative rearrangement neighborhoods that preserve

the cycle structure of the incumbent solution, i.e. all candidate neighbor so-

lutions must have the same number of cycles and each cycle must have the

same number of cities as in the incumbent solution, was proposed in [35, 36].

Considerations of neighborhoods that do not preserve the cycle structure of

the incumbent solution can be found in [37].

2.4 Summary of Chapter

In this chapter, we have presented and compared most important metaheuris-

tic methods nowadays. In Subsections 2.2.1 and 2.2.2 we have outlined the

basic configurations of metaheuristics as they are represented in literature.

Approaches to improving performance of metaheuristics have been presented

in this chapter as well. Integration of classical methods in AI and OR into

metaheuristics for dealing with larger instances of optimization problems is

described in Section 2.3. Actually, a part of our works focused on integrating

72

2.4 Summary of Chapter 73

clustering methods into search metaheuristic to reduce running time will be

presented in Section 4.2. Moreover, based on the well-established group the-

ory, a novel active and promising approach to gain systematically insights of

factors affecting on performance of local search procedures has been revised

in this chapter.

73

74

Chapter 3

Ant Colony Optimization
Among state-of-the-art metaheuristics, Ant Colony Optimization (ACO) has

received attention of many researchers.

In this chapter, basic principles of ACO and its recent developments is de-

served in section 3.1. Then, in section 3.2 our proposal and convergent analy-

sis for a generalized variant of Graph-based Ant System [106] are presented.

Results of this work was published and can be accessed at [59]. Following

findings of the convergent analysis in section 3.2, a study on how to improve

performance of Ant-based algorithms by dynamically tuning their system-

atic parameters, specifically by tuning the exploiting parameter, is denoted

in section 3.3. The empirical findings in that study was published and can be

found at [58]. The last section will give a summary of this chapter.

3.1 Background

Ant colony optimization (ACO) [61, 63, 64, 66, 69] is a metaheuristic approach

that was inspired by the foraging behavior of real ants. This behavior - as

described by Deneubourg et al. in [54] - enables ants to find shortest paths

between food sources and their nest. Initially, ants explore the area surround-

ing their nest in a random manner. As soon as an ant finds a source of food,

it evaluates quantity and quality of the food and carries some of this food to

the nest. During the return trip, the ant deposits a chemical pheromone trail

on the ground. The quantity of pheromone deposited, which may depend on

the quantity and quality of the food, will guide other ants to the food source.

74

3.1 Background 75

The indirect communication between the ants via the pheromone trails al-

lows them to find shortest paths between their nest and food sources. This

functionality of real ant colonies is exploited in artificial ant colonies in order

to solve CO problems.

In ACO algorithms, the chemical pheromone trails are simulated via a pa-

rameterized probabilistic model that is called pheromone model. The pheromone

model consists of a set of model parameters whose values are called the

pheromone values. The basic ingredient of ACO algorithms is a constructive

heuristic that is used for probabilistically constructing solutions using the

pheromone values.In general, the ACO approach attempts to solve a CO

problem by iterating the following two steps:

• Solutions are constructed using a pheromone model, that is, a parame-

terized probability distribution over the solution space.

• The constructed solutions and possibly solutions that were constructed

in earlier iterations are used to modify the pheromone values in a way

that is deemed to bias future sampling toward high quality solutions.

3.1.1 Problem Representation

An artificial ant in ACO is a stochastic constructive procedure that incremen-

tally builds a solution by adding opportunely defined solution components

to a partial solution under construction. Therefor, the ACO metaheuristic

can be applied to any combinatorial optimization for which a constructive

heuristic can be defined on.

Although this means that ACO metaheuristic can be applied to any inter-

75

3.1 Background 76

esting combinatorial optimization problems, the real issue is how to map the

considered problem to a representation that can be used by the artificial ants

to build solutions. The following is a formal characterization of the represen-

tation that the artificial ants use and of the policy they implement.

Let us consider the minimization problem (S, f ,Ω), where S is the set of

candidate solutions, f is the objective function which assigns an objective func-

tion (cost) value f (s, t) to each candidate solution s ∈ S, and Ω(t) is a set of

constraints. The parameter t indicates that the objective function and the con-

straints can be time-dependent, as is the case, for example, in applications to

dynamic problems.

The goal is to find a globally optimal feasible solution s?,that is, a minimum

cost feasible solution to the minimization problem.

The combinatorial optimization problem (S, f ,Ω) is mapped on a problem

that can be characterized by the following list of items:

• A finite set C = {c1, c2, . . . , cNC } of components is given, where NC is the

number of components.

• The states of the problem are defined in terms of sequences x = 〈ci, c j, . . . , ch, . . .〉
of finite length over the elements of C. The set of all possible states is

denoted by χ. The length of a sequence x, that is, the number of com-

ponents in the sequence, is expressed by |x|. The maximum length of a

sequence is bounded by a positive constant n < +∞.

• The set of (candidate) solutions S is a subset of χ (i.e. S ⊆ χ).

• A set of feasible states χ̃, with χ̃ ⊆ χ, defined via a problem-dependent

test that verifies that it is not impossible to complete a sequence x ∈ χ̃

76

3.1 Background 77

into a solution satisfying the constraints Ω. Note that by this definition,

the feasibility of a state x ∈ χ̃ should be interpreted in a weak sense. In

fact, it does not guarantee that a completion s of x exists such that s ∈ χ̃.

• A non-empty set S? of optimal solutions, with S? ⊆ χ̃ and S? ⊆ S.

• A cost g(s, t) is associated with each candidate solution s ∈ S. In most

cases, g(s, t) ≡ f (s, t), ∀s ∈ S̃, where S̃ ⊆ S is the set of feasible candidate

solutions, obtained from S via the constraints Ω(t).

• In some cases a cost or the estimate of a cost, J(x, t), can be associated

with states other than candidate solutions. If x j can be obtained by

adding solution components to a state xi, then J(xi, t) ≤ J(x j, t). Note

that J(s, t) ≡ g(s, t).

Given this formulation, artificial ants build solutions by performing ran-

domized walks on the completely connected graph GC = (C, L) whose nodes

are the components C, and the set L fully connects the components. The

graph GC is called construction graph1 and elements of L are called connections

.

The problem constraints Ω(t) are implemented in the policy followed by

the artificial ants, as explained in the next section. The choice of implement-

ing the constraints in the construction policy of the artificial ants allows a

certain degree of flexibility. In fact, depending on the combinatorial opti-

mization problem considered, it may be more reasonable to implement the

constraints in a hard way, allowing the ants to build only feasible solutions,

1another definition of concept construction graph can be found at the def-

inition (3.2.1) on page 88.

77

3.1 Background 78

or in a soft way, in which case the ants can build infeasible solutions that can

be penalized as a function of their degree of infeasibility.

3.1.2 Behavior of Artificial Ants

In ACO algorithms, artificial ants are stochastic constructive procedures that

build solutions by moving on the construction graph GC = (C, L), where the

set L fully connects the components C. The problem constraints Ω(t) are built

into the ants’ constructive heuristic. In most applications, ants construct fea-

sible solutions. However, sometimes it may be necessary or beneficial to also

let them construct infeasible solutions. Components ci ∈ C and connections

li j ∈ L can have associated a pheromone trail τ (τi if associated with compo-

nents, τi j if associated with connections), and a heuristic value η (ηi and ηi j,

respectively). The pheromone trail encodes a long-term memory about the

entire ant search process, and is updated by the ants themselves. Differently,

the heuristic value, often called heuristic information, represents a priori infor-

mation about the problem instance or run-time information provided by a

source different from ants. In many cases, η is the cost, or an estimate of the

cost, of adding the component or connection to the solution under construc-

tion. These values are used by the ants’ heuristic rule to make probabilistic

decisions on how to move on the graph.

Each ant k of the colony has the following properties:

• It exploits the construction graph GC = (C, L) to search for optimal solu-

tions s? ∈ S?.

• It has a memory Mk that it can use to store information about the path

78

3.1 Background 79

it followed so far. Memory can be used to 1) build feasible solutions;

2) compute the heuristic values; 3) evaluate the solution found; and 4)

retrace the path backward.

• It has a start state xk
s and one or more termination conditions ek. Usually,

the start state is expressed either as an empty sequence or as a unit

length sequence, that is, a single component sequence.

• When in state xr = 〈xr−1, i〉, if no termination condition is satisfied, it

moves to a node j in its neighborhood Nk(xr), that is, to a state 〈xr, j〉 ∈ χ.

If one of the termination conditions ek is satisfied, then the ant stops.

When an ant builds a candidate solution, moves to infeasible states are

forbidden in most applications, either through the use of the ant’s mem-

ory, or via appropriately defined heuristic values η

• It selects a move by applying a probabilistic decision rule. The proba-

bilistic decision rule is a function of 1) the locally available pheromone

trails (or pheromone values) and heuristic values; 2) the ant’s private

memory storing its current states; and 3) the problem constraints.

• When adding a component c j to the current state, it can update the

pheromone trail τ associated with it or with the corresponding connec-

tion.

• Once it has built a solution, it can retrace the same path backward and

update the pheromone trails of the used components.

It is important to note that ants act concurrently and independently and

that although each ant is complex enough to find a (probably poor) solution

79

3.1 Background 80

to the problem under consideration, good-quality solutions can only emerge

as the result of the collective interaction among ants. This is obtained via

indirect communication mediated by the information ants read or write in

the variables storing pheromone values.

3.1.3 ACO framework

An ACO algorithm can be imagined as the interplay of three procedures:

SolutionsConstruction, PheromonesUpdate, and DaemonActions. The ACO

metaheuristic framework consisting of these procedures is shown in Algo-

rithm (14). These three algorithmic components that are gathered in the

ScheduleActivities construct. The ScheduleActivities construct does not spec-

ify how these three activities are scheduled and synchronized. This is up to

the algorithm designer.

Algorithm 14 Ant Colony Optimization (ACO) Framework
while termination conditions not met do

ScheduleActivities

SolutionsConstruction()

PheromonesUpdate()

DaemonActions() {optional}
ScheduleActivities

end while

SolutionsConstruction(): As mentioned before in 3.1, the basic ingredient

of ACO algorithms is a constructive heuristic for probabilistically construct-

ing solutions. A constructive heuristic assembles solutions as sequences of

solution components taken from a finite set of solution components C =

80

3.1 Background 81

{c1, . . . , cn}. A solution construction starts with an empty partial solution

sp = ∅. Then at each construction step the current partial solution sp is ex-

tended by adding a feasible solution component from the set N(sp) ⊆ C \ sp,

which is defined by the solution construction mechanism. The process of

constructing solutions can be regarded as a walk (or a path) on the so-called

construction graph GC = (C,L) whose vertices are the solution components C

and the set L are the connections. The allowed walks on GC are hereby im-

plicitly defined by the solution construction mechanism that defines set N(sp)

with respect to a partial solution sp. The choice of a solution component from

N(sp) is at each construction step done probabilistically with respect to the

pheromone model, which consists of pheromone trail parameters Ti that are as-

sociated to components ci ∈ C. The set of all pheromone trail parameters is

denoted by T. The values of these parameters - the pheromone values - are

denoted by τi. In most ACO algorithms, the probabilities for choosing the

next solution component - also called the state transition probabilities or sim-

ply transition probabilities - are defined as follows:

p(ci|sp) =
ταi · η(ci)β∑

c j∈N(sp)
ταj · η(c j)β

,∀ci ∈ N(sp), (3.1.1)

where η is a weighting function, which is a function that, sometimes depend-

ing on the current partial solution, assigns at each construction step a heuris-

tic value η(c j) to each feasible solution component c j ∈ N(sp). The values

that are given by the weighting function are commonly called the heuristic in-

formation. Furthermore, α and β are positive parameters whose values deter-

mine the relation between pheromone information and heuristic information.

Most implementations of ACO set α = 2.0 and β = 1.0.

81

3.1 Background 82

PheromoneUpdate(): In ACO algorithms, we can find different types of

pheromone updates. First, we outline a pheromone update that is used by ba-

sically every ACO algorithm. This pheromone update consists of two parts.

First, a pheromone evaporation, which uniformly decreases all the pheromone

values, is performed. From the practical point of view, pheromone evapo-

ration is needed to avoid a too rapid convergence of the algorithm toward a

sub-optimal region. It implements a useful form of forgetting, favoring the ex-

ploration of new areas in the search space. Then one or more solutions from

the current and/or from earlier iterations are used to increase the values of

pheromone trail parameters on solution components that are part of these

solutions.

As a prominent example, we outline in the following the pheromone up-

date rule that was used in Ant System (AS) [66, 67], which was the first ACO

algorithm proposed. This update rule is defined by

τi ← (1 − ρ) · τi + ρ ·
∑

{s∈Piter |ci∈s}
F(s), (3.1.2)

for i = 1, . . . , n, where Piter is the set of solutions that were generated in the

current iteration. Furthermore, ρ ∈ (0, 1) is the parameter called evaporation

rate, and F : P → R+ is a function such that f (s) < f (s′) ⇒ F(s) ≥ F(s′),∀s ,
s′ ∈ P.

Generally ACO algorithms mainly differ from each other by the way they

update the pheromone values. See section 3.3.1.2 for the description of pheromone

updating rules used in some well-known ACO algorithms like Ant Colony

System, Best Worst Ant System, Max-Min Ant System.

82

3.2 An Extended Version of Graph-based Ant System, its Applicability
and Convergence 83

DaemonActions: Daemon actions can used to implement centralized ac-

tions which cannot be performed by single ants. Examples are the applica-

tion of local search methods to the constructed solutions, or the collection

of global information that can be used to decide whether it is useful or not

to deposit additional pheromone to bias the search process from a non-local

perspective. As a practical example, the daemon may decide to deposit ex-

tra pheromone on the solution components that belong to the best solution

found so far.

3.2 An Extended Version of Graph-based Ant System, its Ap-

plicability and Convergence

In this section we propose a generalized version of Gutjahr’s Graph-based

Ant System (GBAS) framework for solving static combinatorial optimization

problems and also conduct an analysis of convergence properties of this gen-

eralized framework. A new transition rule, intended to balance between the

exploration and the exploitation in the search progress of Ant-based algo-

rithms, is incorporated into Gutjahr’s GBAS model. As shown later, our gen-

eralized framework still holds all convergent properties of the GBAS model

and probably show a promising improvement in the quality of solutions for

Ant-based algorithms found in literature.

3.2.1 Introduction

Although many empirical studies have been conducted on ACO algorithms

so far, very little has been reported on the theoretical convergence analysis

83

3.2 An Extended Version of Graph-based Ant System, its Applicability
and Convergence 84

of this metaheuristic [62]. Below achievements are such recent attempts in

theoretical analysis on probabilistic convergence for or runtime of ACO:

1. Gutjahr [106] proved convergence properties of an Ant System-based

framework he proposed for static combinatorial optimization problems.

That framework is called Graph-Based Ant System (GBAS). His find-

ing about the convergence properties of the Ant-based framework is

the first well-known theoretical result on the soundness of the Ant-

based optimization approach. Under strong conditions, he proved that

GBAS’s current best solutions will converge to the global optimal solu-

tion of a given problem instance with a probability made arbitrarily close

to one. The convergence properties of GBAS are theoretically valuable

but, unfortunately, not practically important. The framework does not

model closely enough any implemented ACO algorithms and this lim-

its its range of applications. Moreover, although the convergent proba-

bility of GBAS can be made bigger by a reasonable value of either the

evaporation factor or the number of agents, the GBAS’s performance

has not been evaluated yet. As GBAS model assumes that the con-

struction graph is time-independent, i.e. the graph and the mapping

function is unchanged when solving problems, therefore the GBAS is

applicable only to static COPs.

2. Since GBAS is different from other ACO implementations, the appli-

cation range of its convergent result is quite restrictive. Stützle and

Dorigo [189] presented a class of ACO algorithms which are regarded as

variants of Max-Min Ant System ([190]). By adopting Gutjahr’s proof

method for GBAS into their proposed class of algorithms, Stützle and

84

3.2 An Extended Version of Graph-based Ant System, its Applicability
and Convergence 85

Dorigo showed that the probability of obtaining an optimal solution at

least once tends to one when the number of iterations approaches in-

finity. The algorithms in this class are stronger than GBAS in the sense

of having a less restrictive application range; however, its convergence

property is almost as weak as that for a random search. Another limita-

tion of Stützle and Dorigo’s convergence result is that the lower bound

of the probability for the current solutions to be optimal solutions can-

not be completely closed to one.

3. Recently, to overcome limitations of in GBAS and Stützle and Dorigo’s

framework, a time-dependent modification of GBAS along with its con-

vergence result was investigated by Gutjahr [107]. With this modified

GBAS framework, he showed that the current best solutions converge

to an optimal solution with a probability exactly equal to one. This frame-

work is practically better (but more complicated to implement) than

GBAS. Additionally, the proposed framework has a stronger conver-

gence property than that proposed by Stützle and Dorigo does. But

there exists a disadvantage of this time-dependent framework which

comes from tight conditions on a class of in-question problems and

hence practical algorithms developed from the framework may be less

efficient.

4. Recently, in an attempt to enlarge the applicability of GBAS, some tight

conditions on a class of problems to tackle were removed in a more gen-

eral model of GBAS suggested by Gutjahr [108]. Those tight conditions

in GBAS are the condition on the uniqueness of the optimal solution

85

3.2 An Extended Version of Graph-based Ant System, its Applicability
and Convergence 86

and that on the unique way of encoding this optimal solution. By relax-

ing these two conditions, Gutjahr showed that convergence properties

of the original GBAS remain intact for the relaxed GBAS model. Ad-

ditionally, he suggested that the condition on requiring a specific pa-

rameter update strategy at the first cycle can be relaxed by starting that

strategy at a certain cycle. Although statements of convergence proper-

ties for the tight-conditions-relaxed model in [108] are the same as those

for GBAS, findings for this relaxed model are actually more general and

stronger than those for GBAS.

5. Most recently, a runtime analysis on a special ACO algorithm of 1 ant

is conducted [60]. However, this analytic study is to focus on analyzing

runtime of ant algorithm under a specific condition and not to study

probabilistic convergence of ant algorithm which is the main focus of

this thesis.

Despite playing an important role in improving solution quality, studying

a so-called trade-off mechanism ([65] and Part IV in [72]) has just stopped

at empirical works and has not been found in any theoretical works so far.

This mechanism is used in almost all implemented ACO algorithms, firstly

in ACS [65] in which it defines the exploitation-based exploration of the search

process2. In these implementations, a strategy of using a fixed positive value

of a systematic parameter that is called exploiting parameter is applied to the

mechanism. The trade-off mechanism can be simply ignored in an ACO al-

gorithm by setting the value of this exploiting parameter to zero. Because

of the absence of the mechanism in the studied frameworks, findings of the-

2This mechanism is considered as a pattern of intensification technique.

86

3.2 An Extended Version of Graph-based Ant System, its Applicability
and Convergence 87

oretical works in the literature cannot explain the practically important role

of the mechanism. In this paper, we aim at investigating convergence prop-

erties of an Ant-based framework that includes the trade-off mechanism by

extending GBAS. The extended GBAS version is obtained by modifying the

transition rule of GBAS such that the function of this tradeoff mechanism is

modeled into that rule. Since our framework is different from Ant System-

based frameworks described in [106–108, 189], clearly the results obtained in

those works do not cover ours. It is also worthy of notice that investigation of

an Ant-based time-dependent framework in which the trade-off mechanism

is modeled is not in the scope of this present paper. The purpose of this paper

is to theoretically examine the influence of the mechanism over the conver-

gence of Ant-based algorithms. Because of GBAS’s simplicity and its conver-

gence properties evaluated, we choose GBAS as the original framework for

this purpose. This section is organized as follows. The next subsection 3.2.2

is devoted to descriptions of the GBAS and our extended GBAS version (EG-

BAS for short). In subsection 3.2.3, the validity of convergence properties of

EGBAS is proved. The last subsection will discuss about the importance of

our findings.

3.2.2 A Generalized GBAS Framework

Since the framework we study is an extended variant of GBAS, thus in this

subsection, first we recall Gutjahr’s GBAS framework presented in [106], then

describe the EGBAS proposed by us. Conceptual definitions and descrip-

tions related to the GBAS framework are quoted with comments if and when

deemed necessary.

87

3.2 An Extended Version of Graph-based Ant System, its Applicability
and Convergence 88

3.2.2.1 Graph-Based Ant Systems - GBAS

The GBAS uses a type of graph named construction graph whose definition is

given below.

Definition 3.2.1. Given an instance of a CO problem which is assumed as a min-

imization problem, a construction graph for this instance refers to a directed graph

G = (V,A)3 together with a function Φ with the following properties:

(1) In G, there is only one node marked as the start node.

(2) Let W be the set of (directed) walks w in G satisfying the conditions: (i) w starts

at the start node of G, (ii) w contains each node of G at most once, and (iii) the

last node on w has no successor node in G that is not already contained in w.

(3) Φ maps the set W onto a set of S containing all feasible solutions of the given

problem instance. In other words, to each walk w satisfying (i)-(iii), there

corresponds (via Φ) a solution in S, and to each solution in S (in particular: to

each feasible solution), there corresponds (via Φ−1) at least one walk satisfying

(i)-(iii).

Thus, a specific encoding scheme of the feasible solutions as “walks” is

clearly determined in a construction graph (G,Φ). And the objective function

value of a walk is set the same as that of its corresponding solution in S.

Thus, with this encoding scheme, the search process will seek the “best”

walks with the best value of the objective function in the W space instead of

searching best solutions with the best value of the objective function in the

S space. A graphic demonstration showing functional maps from the walks

space to solution space via objective function is given in Fig. (3.1).
3A is the set of arcs in G.

88

3.2 An Extended Version of Graph-based Ant System, its Applicability
and Convergence 89

Walks space W

Infeasible solutions

Feasible solutions S

W1

s1

W2

s2

W3

(w1) = s1

(w2) = s1

(w3) = s2

Figure 3.1: Functional relationship through the map Ω between walks

spaceW and solutions space S. {w1,w2} ∈ Ω−1(s1).

With the definition of a construction graph above, we will briefly re-state

the components of the GBAS ([106] for more details) below.

1. A construction graph (G,Φ) according to the definition (3.2.1).

2. A set A1, . . . , AS of agents(most papers in literature called ants). Each

agent performs a random walk with certain transition probabilities (see

component 3 below) in (G,Φ). The walk performed by each agent may

be done on a separate processor if a multi-processor system is used,

whereas, in a single-processor realization, moves of the agents are com-

puted sequentially. An interval of time in which each agent carries out

a walk (including many single moves) through G will be called a cycle.

An implementation of AS has M cycles; the number of cycles M is pos-

sibly fixed in advance or decided at a later time during the execution of

the algorithm.

3. Transition probability for each random move of the agents in each cycle

89

3.2 An Extended Version of Graph-based Ant System, its Applicability
and Convergence 90

is defined as the following. Let u = (u0, . . . , ut−1) indicate a partial walk

that an agent has already traversed right before its tth transition step in a

fixed cycle m, where u0, . . . , ut−1 are node indices in G (u0 referring to the

start node). If node l is visited in the partial walk u then one may write

l ∈ u, and l < u otherwise. The following general form of the transition

probabilities is used in almost every ACO algorithm,

pkl(m, u) =



[τkl(m)]α[ηkl(u)]β∑
r<u,(k,r)∈A

[τkr(m)]α[ηkr(u)]β
, if l < u and (k, l) ∈ A

0, otherwise

, (3.2.1)

where pkl(m, u) indicates the probability that a fixed agent having al-

ready traversed a partial walk u = (u0, . . . , ut−1 = k) in the current cycle

m, moves from the current node k to node l. It should be noted that this

probability is only determined if k = ut−1. The numbers τkl(m) are so-

called “pheromone values” (see component 4 below), and the numbers

ηkl(m) are called “desirability values” (see component 5 below). α and

β are parameters. As presented later, the mechanism of balancing between

the exploitation and the exploration in search progress is incorporated into this

component of GBAS forming our EGBAS framework.

4. An array of pheromone values τkl assigned to arc (k, l) in (G,Φ). Because

the pheromone values change from cycle to cycle (see below), we can

represent their dependence on the cycle index m in the form τkl(m). Let

τkl(1) be initialized to 1/(number of arcs) ∀(k, l) ∈ A. At the end of each

cycle m, the following pheromone updating rule is carried out. For each

agent As and each arc (k, l), a value ∆τ(s)
kl is defined as a function of the

solution assigned to the walk of As in the current cycle m. Suppose this

90

3.2 An Extended Version of Graph-based Ant System, its Applicability
and Convergence 91

solution has a cost value (objective function value) fs then for each arc

(k, l),

∆τ(s)
kl =


ϕ(fs), if As has travesed arc (k, l),

0, otherwise,
(3.2.2)

where ϕ is a non-increasing function which may depend on the walks

of the agents in the cycles 1, . . . ,m − 1. Let

C =
∑

(k,l)∈A

S∑

s=1

∆τs
kl. (3.2.3)

If C = 0, we set

τkl(m + 1) = τkl(m) ∀(k, l). (3.2.4)

If, otherwise, C > 0, we set

τkl(m + 1) = (1 − ρ)τkl(m) + ρ∆τkl, (3.2.5)

where4

∆τkl =
1
C

S∑

s=1

∆τ(s)
kl . (3.2.6)

5. An array of desirability values ηkl is assigned to arcs (k, l) in G. The desir-

ability values possibly depend on the partial walk u = (u0, . . . , ut−1 = k)

that the current agent has already traversed, so they can be written as

ηkl = ηkl(u). Typically, the value ηkl(u) is obtained from a certain Greedy

Heuristic applicable to the problem considered.

3.2.2.2 Extension of GBAS - EGBAS

As mentioned earlier in 3.2.1, a tradeoff mechanism is added into the tran-

sition rule of GBAS forming the proposed framework. The only difference

4The number ρ is called the evaporation factor (see [67]).

91

3.2 An Extended Version of Graph-based Ant System, its Applicability
and Convergence 92

between our EGBAS and GBAS is at the transition procedure and described

as follows.

Let q0 ∈ [0, 1] be a systematic constant called the exploiting parameter. A

random number q ∈ [0, 1) is always produced before any agent makes a move

to the next node. Let u = (u0, . . . , ut−1 = k) be the partial walk which the agent

has already traversed at cycle m. Then, its next node L is chosen according to

the below equation (3.2.7):

L =



arg max
r<u, (k,r)∈A

{[τkl(m)]α[ηkl(u)]β}, if q ≤ q0

l, otherwise,
(3.2.7)

where the node l is chosen according to (3.2.1). It is clear that by setting

q0 = 0, our model becomes GBAS. In other words, GBAS is a special case of

the proposed model.

Notice that (3.2.7 is the equation used to represent for the trade-off mech-

anism in ant algorithms in their transition rule.

Thus, in GBAS the next move of any agent is picked up according to

(3.2.1), in EGBAS whereas it is according to (3.2.7).

Remark 3.2.1. The incorporation of the balance mechanism into GBAS does not

affect the “structure” of the applicable problems in GBAS’s application range at all.

Therefore the application range of the EGBAS framework remains the same as that

of GBAS. It should be noted that the EGBAS is applicable to every combinatorial

optimization problem with a finite solution space the same as GBAS.

Given an instance of such a problem, a simple construction graph can have only

a start node, a termination node, a specific node vx for each feasible node x, and arcs

from the start node to any vx and from each vx to the termination node. This graph is

92

3.2 An Extended Version of Graph-based Ant System, its Applicability
and Convergence 93

obviously not practical, but we show it as an example of set of applicable construction

graphs.

3.2.3 Convergence of EGBAS

We now show that the convergence property of GBAS is still valid in our

framework EGBAS. The convergence property of EGBAS, that will be stated

in theorem (3.2.2) and be proven in this subsection, is informally restated as

follow: “under some conditions, the current solutions of EGBAS converge to

the optimal solution with the probability which is as arbitrarily close to 1 as

we want”. Such conditions are restated as follows [106]5.

a. The parameter α in (3.2.1) is selected as α = 1.

b. There is only one optimal walk in W. It is encoded by only one walk in

W.

c. Along the optimal walk w∗, the desirability value satisfies ηkl(u) > 0 ∀(k, l)

either ∈ w∗ or corresponding partial walks u of w∗.

d. Let f ∗ = f ∗(m) be the lowest cost value observed in the cycles 1, . . . ,m−1,

that is, the lowest objective function value fs corresponding to a walk

of an agent As in these m − 1 cycles. At m = 1, let f ∗ = ∞. Assume the

function ϕ chosen for the definition of the values ∆τ(s)
kl at the beginning

of cycle m + 1 (see (3.2.2)) has the below properties:

i. ϕ(fs) > 0 for fs ≤ f ∗ and

5Interested reader may refer to [106] for more explanations on these con-

ditions.

93

3.2 An Extended Version of Graph-based Ant System, its Applicability
and Convergence 94

ii. ϕ(fs) = 0 for fs > f ∗.6

Since our purpose is on investigating the convergence property of EGBAS,

we will show that the only theorem related to convergence properties of

GBAS (Theorem 4.1 in [106]) is still valid for EGBAS without changing its

statement. The theorem is restated below.

Theorem 3.2.2. Let conditions (a)-(d) be satisfied, and Pm denote the probability

that a fixed agent traverses the optimal walk in cycle m. Then the following two

assertions are valid:

1. For each ε > 0 and for fixed parameters ρ and β, it can be achieved by the choice

of a sufficiently large number S of agents that Pm ≥ 1− ε holds ∀m ≥ m0 (with

an integer m0 depending on ε).

2. For each ε > 0 and for fixed parameters S and β, it can be achieved by the

choice of an evaporation factor ρ sufficiently close to zero that Pm ≥ 1− ε holds

∀m ≥ m0 (with an integer m0 depending on ε).

The search procedure of EGBAS is considered as a Markov process in dis-

crete time if the states of this Markov process are formed as the triple

(τ(m),w(m), f ∗(m)) (m = 1, 2, . . .),

where

• τ(m) is the vector of the pheromone values τkl(m) ∀(k, l) during cycle m.

• w(m) is the vector of the walks w(s) (s = 1, . . . , S) of the agents A1, . . . , AS

in cycle m.

6It means that only walks which are at least as good as the best-found-so-

far walk receive a positive increment ∆
(s)
kl .

94

3.2 An Extended Version of Graph-based Ant System, its Applicability
and Convergence 95

• f ∗(m) is the best found cost value corresponding to the walk of any

agent in cycle 1, . . . ,m − 1, and f ∗(1) = ∞.

Proposition 3.2.3. [Proposition 1 in [106]] The state variables (τ(m), w(m), f ∗(m))

(m=1,2,. . .) form a Markov process.

It is clear that the addition of the tradeoff mechanism into GBAS’s transi-

tion probability does not affect the Markov characteristics of GBAS, thus, this

proposition is still valid in EGBAS.

Before going further into the details of proofs, let us define the symbols

that are used in those proofs (all these symbols are used with the same no-

tions and meanings as in and restated from [106]).

• w∗ indicates the optimal walk.

• L denotes the length (number of arcs) of w∗.

• Pr is the probability measure on the Markov process defined above.

• E(s)
m indicates the event w(s)(m) = w∗.

• Bm stands for ¬E(1)
m ∧ . . . ∧ ¬E(S)

m .

• Fm stands for B1 ∧ . . . ∧ Bm−1 ∧ ¬Bm, while F∗ stands for F1 ∨ F2 ∨

The following extra symbols are needed to prove the convergence in the

case of EGBAS. Let

ui = (u0, v1, v2, . . . , vi)

be a partial walk of w∗, then

• Xvir(m, ui) be the event of
{
τvivi+1η

β
vivi+1 > τvirη

β
vir

}
, where r < ui+1, (vi, r) ∈ A.

95

3.2 An Extended Version of Graph-based Ant System, its Applicability
and Convergence 96

• Pi(m, ui) =
∧

r<ui+1,(vi,r)∈A Xvir(m, ui).

According to (3.2.7), at any time an agent makes a move, the node vi+1 is

picked up as that agent’s next node with a probability Pr{Pi(m, ui)} if q ≤
q0. So, a fixed agent will randomly pick up node vi+1 as its next node while

standing at current node vi (with the current partial walk ui) at cycle m with

the the following probability:

Pvivi+1(m, ui) = q0 pvivi+1(m, ui) + (1 − q0)Pr{Pi(m, ui)}, (3.2.8)

where pvivi+1(m, ui) is computed in (3.2.1). For the sake of simplicity in expres-

sions, we use Pi(m, ui) from this point onward instead of Pr{Pi(m, ui)} unless

otherwise stated. It is worth mentioning here, for a cautious purpose, the

difference of meaning of notions that are Pvivi+1 (uppercase P) and pvivi+1 (low-

ercase p). The latter means the state transition probability of GBAS (without

the presence of the trade-off mechanism), whereas the former is that of EG-

BAS.

By setting cvir =

[
ηvivi+1(ui)
ηvir(ui)

]β
, which may be seen as a constant, then

Pr{Xvir(m, ui)} = Pr
{
τvir(m)
τvivi+1(m)

< cvir

}
∀r < ui+1, (vi, r) ∈ A, (3.2.9)

and,

Pr{Pi(m, ui)} =
∏

r<ui+1,(vi,r)∈A
Pr{Xvir(m, ui)}. (3.2.10)

It can be assumed without loss of generality that

γ = min
{
η
β
kl(u)|(k, l) ∈ w∗, u is any partial walk of w∗

}
> 0, (3.2.11)

and Γ = max
[
η
β
kl(u)

]
< ∞. Then, by normalizing, we obtain

[
η
β
kl(u) ≤ 1

]
, (3.2.12)

96

3.2 An Extended Version of Graph-based Ant System, its Applicability
and Convergence 97

for all arcs (k, l) ∈ A and all partial walks u.

Our strategy of proving theorem (3.2.2) is firstly to prove that lemmas

corollaries stated in [106] are still valid in the EGBAS context. Then, due

to the consequence of modifying the transition rule of GBAS, the proof of

theorem (3.2.2) may require other supplemental results, thus the strategy will

also consists of seeking and proving such supplemental results. If and when

necessary, the supplement results will be highlighted. Moreover, we adopt

the proof technique from Gutjahr’s proof in [106] to prove theorem (3.2.2) (in

the EGBAS context).

The next section will recall necessary results (lemmas and corollaries)

used to prove theorem (3.2.2) (in the context of GBAS). Our proof for this

theorem but in the new context - EGBAS - still rely on these results (in EG-

BAS context), so we need to prove that they are still valid in EGBAS context.

Their proofs and supplemental results are mentioned in the section 3.2.3.1.

3.2.3.1 Convergence of EGBAS

This section is devoted to present proofs for lemmas and corollaries used to

proof theorem (3.2.2)7. It also presents supplemental results and their proofs

if and when deemed necessarily.

Lemma 3.2.4. [similar to Lemma (C.0.1)] The probability Pr(¬Bm) which at least

one agent traverses the optimal walk in cycle m is not less than 1 − (1 − cm−1 p)S ,

where c = (1 − ρ)L and p = qL
0γ

L · ∏
(k,l)∈w∗

τkl(1) with γ defined by (3.2.11).

7Similar lemmas and corollaries to these and used in the proof of a similar

theorem in GBAS’s context can be found in the appendix of this thesis.

97

3.2 An Extended Version of Graph-based Ant System, its Applicability
and Convergence 98

This Lemma is a bit different from the Lemma (C.0.1) by the presence of

q0 in the last equation of computing p.

Proof. From (3.2.4), (3.2.5), and (3.2.6), it is clear that

τlk(m + 1) ≥ (1 − ρ)τkl(m)

. . .

≥ (1 − ρ)mτkl(1).

(3.2.13)

Due to (3.2.11), (3.2.12) and the method of updating τ(m), then

∑

r<u, (k,r)∈A
τkr(m)ηβkr(u) ≤ 1,

so

pkl(m, u) =
τkl(m)ηβkl(u)

∑
r<u, (k,r)∈A

τkr(m)ηβkr(u)

≥ τkl(m)ηβkl(u) ≥ γτkl(m).

(3.2.14)

Let w∗ = (u0, v1, v2, . . . , vL). From (3.2.8), (3.2.13), (3.2.14),

Pr(E(s)
m) =

L−1∏

i=0

Pvivi+1(m, ui) =

L−1∏

i=0

{
q0 pvivi+1(m, ui) + (1 − q0)Pi(m, ui)

}

≥
L−1∏

i=0

q0γτvivi+1(m) ≥ qL
0γ

L
L−1∏

i=0

(1 − ρ)m−1τvivi+1(1) = cm−1 p.

Since the walks of S agents are independent mutually, this implies

Pr(¬Bm) ≥ 1 − (1 − cm−1 p)S .

�

Similar to the proof of Lemma (3.2.4), the following corollary is obtained:

Corollary 3.2.5. [similar to Corollary C.0.2] The conditional probability Pr(¬Bm|B1∧
. . . ∧ Bm−1) ≥ 1 − (1 − cm−1 p)S .

98

3.2 An Extended Version of Graph-based Ant System, its Applicability
and Convergence 99

Herein, in the following lemmas and corollaries, assertions on conditional

probabilities which are conditional on event Fm shall be formed.

Proof of Lemma (C.0.3) in EGBAS context:

Proof. By considering two cases concerning to values of C (computed in (3.2.3)),

one case is C = 0 and the other C > 0, it is not difficult to obtain, with m′ > m,

τkl(m′ + 1) ≥ min{τkl(m + 1), 1/L} ≥ αkl(m),

where αkl(m) = (1 − ρ)mτkl(1).

Let (k, l) ∈ w∗, and u = (u0, . . . , ut−1 = k) be the partial walk from the start

node to node k on w∗. By (3.2.14), we have

pkl(m′, u) ≥ γτkl(m′) ≥ γαkl(m).

Thus, for a fixed agent As and m′ > m,

Pr(E(s)
m′ |Fm) ≥

∏

(k,l)∈w∗
q0 pkl(m′, u)

≥
∏

(k,l)∈w∗
q0γαkl(m)

= [q0γ]L
∏

(k,l)∈w∗
αkl(m)

= a(m) > 0,

(3.2.15)

It is obvious that the number a(m) is independent of m′. This result, in turn,

shows that even though there exists a difference between GBAS’s transition

probability and our EGBAS, the remaining part of proof of Lemma 4.2 in [106]

is left unchanged8, or Lemma (C.0.3) is proved. �

8The only difference between this proof and the corresponding in [106] is

the appearance of q0 in (3.2.15).

99

3.2 An Extended Version of Graph-based Ant System, its Applicability
and Convergence 100

Corollary 3.2.6. For each ε > 0 and each m ∈ N there is an integer d′(ε,m) such

that ∀ m′ ≥ m + d′(ε,m) then

Pr{Pi(m′, ui) ≥ 1 − ε |Fm} ≥ 1 − ε. (3.2.16)

Proof. From Lemma (C.0.3) (in EGBAS context), it clearly brings the following

result to us:

“For each ε̃ > 0 and each m̃ ∈ N, there exists an integer d̃(̃ε, m̃) ∈ N such

that

Pr
{
τkr(m′)
τkl(m′)

≤ ε̃ |Fm̃

}
≥ 1 − ε̃,

∀(k, l) ∈ w∗, (k, r) < w∗ and ∀m′ ≥ m̃ + d̃(̃ε, m̃).”

So, ∀r < ui+1, (vi, r) ∈ A and ∀̃ε ≤ min
r
{cvir} where cvir defined in (3.2.8), and

∀m′ ≥ m̃ + d̃(̃ε, m̃), then

Pr
{
τvivi+1(m

′)
τvir(m′)

≤ cvir|Fm̃

}
≥ Pr

{
τkr(m′)
τkl(m′)

≤ ε̃ |Fm̃

}
≥ 1 − ε̃. (3.2.17)

Hence, from the definition of Pi(m, ui) and taking a constant integer M =

card{r < ui+1, (vi, r) ∈ A}, we have with a probability of at least 1 − ε̃,

Pi(m′, ui) =
∏

r<ui+1,(vi,r)∈A

Pr
{
τvivi+1(m

′)
τvir(m′)

≤ cvir|Fm̃

}

≥
∏

r<ui+1,(vi,r)∈A

(1 − ε̃)

= (1 − ε̃)M.

By choosing ε such that9 ε̃ = 1− (1− ε)1/M, there is an integer d′(ε,m) such that

∀ m′ ≥ m + d′(ε,m)

Pr
{
Pi(m′, ui) ≥ (1 − ε̃)M = 1 − ε |Fm̃

}
≥ 1 − ε̃ ≥ 1 − ε.

9Since ε̃ can assume any sufficiently small value, thus so can ε.

100

3.2 An Extended Version of Graph-based Ant System, its Applicability
and Convergence 101

The corollary is proven. �

Lemma (C.0.4) (Lemma 4.3 in [106]) still holds (in EGBAS context) since

components in its proof do not have any relationship to the parameter q0,

and what its proof needs is Lemma (C.0.3) which is already proved above.

An extended version of Lemma (C.0.4) for EGBAS case is the following:

Lemma 3.2.7. Lemma (C.0.4) above still holds if the quantity pkl(m′, u∗(k)) is re-

placed by Pkl(m′, u∗(k)) defined in (3.2.8), i.e. for each ε > 0 and each m ∈ N there

is an integer d′′′(ε,m) ∈ N such that ∀(k, l) ∈ w∗ and ∀m′ ≥ m + d′′′(ε,m)

Pr{Pkl(m′, u∗(k)) ≥ 1 − ε |Fm} ≥ 1 − ε.

Proof. Given conditional probability on Fm, from Corollary 3.2.6 and Lemma (C.0.4)

and the definition of Pkl(m′, u∗(k)) in (3.2.8), with a probability at least 1 − ε,
we have:

• An integer d′(ε,m) satisfying: ∀ m′ ≥ m + d′(ε,m), Pi(m′, u∗k) ≥ 1 − ε.

• An integer d′′(ε,m) satisfying: ∀ m′ ≥ m + d′′(ε,m), pkl(m′, u∗(k)) ≥ 1 − ε.

Hence, with a probability at least 1−ε, Pkl(m′, u∗(k)) ≥ q0(1−ε)+ (1−q0)(1−ε) =

1 − ε for all m′ ≥ m + max{d′(ε,m), d′′(ε,m)} = m + d′′′(ε,m). Thus the Lemma is

proved. �

Corollary 3.2.8. [similar to Corollary C.0.5] With the notations in Lemma (3.2.7),

set

Ym′ =
∏

(k,l)∈w∗
Pkl(m′, u∗(k)). (3.2.18)

Then, for each ε > 0 and each m ∈ N, there is an integer d′′′(ε,m) ∈ N such that

Pr{Ym′ ≥ 1 − ε|Fm} ≥ 1 − ε.

101

3.2 An Extended Version of Graph-based Ant System, its Applicability
and Convergence 102

for all m′ ≥ m + d′′′(ε,m).

The difference between this corollary and Corollary C.0.5 is that the quan-

tity pkl(m′, u∗(k)) in the latter is replaced by Pkl(m′, u∗(k)) in the former.

Proof. By following the same steps used in Corollary C.0.5’s proof (in [106])

but replacing symbol pkl(m′, u∗(k)) with Pkl(m′, u∗(k)) and the notion of Lemma (C.0.4)

with that of Lemma (3.2.7) we obtain this corollary. �

The next is the proof of Lemma (C.0.6) in EGBAS context.

Lemma (C.0.6). Similar to the way used to prove Corollary 3.2.8, we prove

this Lemma in the context of EGBAS by following the proof of Lemma (C.0.6)

(Lemma 4.4 in [106]) step by step but remember to replace the notions: Corol-

lary C.0.5 with Corollary 3.2.8 and Lemma (C.0.4) with Lemma (3.2.7). �

Taking all the corollaries and lemmas described above, we now establish

the proof of theorem (3.2.2).

Proof of theorem (3.2.2). We have shown that all Lemmas and Corollaries used

in proof of Theorem 4.1 in [106] still hold for the case when the probabilistic

transition rule of GBAS is replaced with that of EGBAS as given in (3.2.8).

To prove theorem (3.2.2), one just needs to follow the steps in [106] but re-

placing symbols such as indices of Lemmas, Corollaries, Proposition, A with

F∗, and pkl(m, u(k)) with Pkl(m, u(k)) if and when necessary. So, it can be shown

that this theorem (Theorem 4.1) also holds for EGBAS (in other words, theo-

rem (3.2.2) is proven completely).

However, to make the reading easier, appendix B will briefly present the

proof of theorem (3.2.2) in terms of steps in Gutjahr’s proof with necessary

replacements of symbols and notions according to our model. �

102

3.2 An Extended Version of Graph-based Ant System, its Applicability
and Convergence 103

Remark 3.2.9. Theorem (3.2.2) states that by making the value of evaporation

factor ρ small enough and also keeping number of agents S and β constant, the prob-

ability that at least one agent visits the unique optimal solution Pm can be arbitrarily

close to 1 after certain number of run cycles m. In other words, probability associated

convergence of EGBAS is arbitrarily close to 1 as we want.

3.2.4 Discussion

Similar to Gutjahr’s remarks about convergent results of GBAS, our results

here also do not tell explicitly how to choose reasonable values of “number of

agents” S and/or “evaporation factor” ρ in order to gain a high convergent

probability in applications. But these convergent results show that the addi-

tion of the tradeoff mechanism into the GBAS framework does not change

its convergence properties. As well as theoretical limits in GBAS, however,

we do not know how the addition impacts the convergence speed of the EG-

BAS framework, and also how the convergent probability is affected by the

exploiting parameter from the theoretical point of view. What we know is

that values of this parameter is set very high in applications10. There should

not be misled to statement that ”the higher value of q0, the better is the prob-

ability of convergence”. As a consequence, the chance of selecting the next

node based on (3.2.1) of a fixed agent is quite small (= 1 − q0). In addition,

as we can see, GBAS is a special case of our model when q0 is set to 0. From a

theoretical point of view, GBAS could not explain the balancing mechanism’s

role in ACO-based applications, whereas EGBAS does this better. GBAS did

not model the pseudo-random transition rule (aka the balancing mechanism)

10In ACS, q0 = 0.9 for small size TSP instances, and q0 = 0.98 for large ones.

103

3.3 Dynamically Updating the Exploiting Parameter in Improving
Performance of Ant-based Algorithms 104

also GBAS is a special model of that which is modeling the pseudo-random

transition rule hence convergence properties obtained from GBAS cannot be

adapted to algorithms using that pseudo-random transition rule. EGBAS’s

convergence properties can do so since EGBAS models the rule explicitly.

Another point to be noted here is that problems with infinite solution

space such as those in continuous optimization area and some in dynamic

optimization do not belong to the application scope of EGBAS. However, we

find that it is still possible to apply the EGBAS to some of the continuous

optimization problems by discretizing their continuous solution space11

3.3 Dynamically Updating the Exploiting Parameter in Im-

proving Performance of Ant-based Algorithms

The utilization of pseudo-random proportional transition rule (or trade-off mech-

anism) to balance between the exploitation and exploration of the search pro-

cess was proposed firstly in Ant Colony System (ACS) algorithm. This rule is,

then, widely used in many Ant-based implementations. In this rule, a param-

eter of notion q0 which is henceforth called exploiting parameter12 defines the

extensiveness of the trade-off exploitation-based exploration. However, in all

11By discretizing, the final solutions are certainly near-optimal in applying

to the continuous case. But it is the fact that the EGBAS itself is an heuristic

method whose final solutions are not mathematically confirmed to be opti-

mum even in discrete case.
12A description of notions and technical terms for this rule were also inten-

sively discussed in section 3.2. For the sake of easily following for readers,

we recall them here if and when deemed.

104

3.3 Dynamically Updating the Exploiting Parameter in Improving
Performance of Ant-based Algorithms 105

Ant-based implementations applied for TSP, this rule has been either omitted

or applied with a constant value of q0. Instances of those using the rule are

Ant Colony System (ACS), Max-Min Ant System (MMAS), Rank-based Ant

System (RAS), and Best-Worst Ant System (BWAS).

In ACS, this rule is governed by a parameter so-called exploiting param-

eter which is always set to a constant value. Besides, all ACO-based algo-

rithms either omit this rule or apply it with a fixed positive value of the ex-

ploiting parameter during the runtime of algorithms.

Moreover, one of attempts to understand the role of this rule in the as-

pect of algorithm convergence was reported in section 3.2. Findings from

that attempt about influence of this rule on convergence of Ant-based algo-

rithms are the main motivation for an empirical studying about the behavior

of those algorithms in which their exploiting parameter is dynamically tuned

over runtime. To carry out this empirical investigation, we incorporate this

dynamical updating trade-off rule into MMAS, ACS, BWAS algorithms when

applied them to symmetric TSP benchmark instances. Details of how to dy-

namically adapt the value of q0 in chosen ACO algorithms will be introduced

in section 3.3.1 as well. The next section will be devoted to analyze and com-

pare the performance of these modified algorithms with their original version

(fixed value of q0). Finally, some concluding remarks and future works will

be mentioned in the last section 3.3.3.3.

105

3.3 Dynamically Updating the Exploiting Parameter in Improving
Performance of Ant-based Algorithms 106

3.3.1 Ant Colony Optimization for Traveling Salesman Prob-

lem

3.3.1.1 Traveling Salesman Problem

The TSP is formally defined as: “Let V = {a1, .., an} be a set of cities where n

is the number of cities, A = {(r, s) : r, s ∈ V} be the set of edges, and δ(r, s) be

the cost measure associated with the edge (r, s) ∈ A. The objective is to find a

minimum cost closed tour that goes through each city only once.” In the case

that all of cities in V are given by their coordinates and δ(r, s) is the Euclidean

distance between any r and s (r, s ∈ V) then this is so-called an Euclidean

TSP problem. If δ(r, s) , δ(s, r) for at least one edge (r, s) then TSP becomes

asymmetric TSP (ATSP).

3.3.1.2 ACO algorithms for TSP

A simplified framework of ACO is recalled from [64] in Alg. (15).

Algorithm 15 Ant Colony Optimization for Traveling Salesman Problem
1: Initialize
2: while termination conditions not met do
3: // at this level, each loop is called an iteration
4: Each ant is positioned on a starting node
5: while all ants haven’t built a complete tour yet do
6: Each ant applies a state transition rule to increasingly build a solu-

tion.
7: Each ant applies a local pheromone updating rule.{optional}
8: end while
9: Apply the so-called online delayed pheromone trail updating

rule.{optional}
10: Evaporate pheromone.
11: Perform the deamon actions. {optional: local search, global updating}
12: end while

Following ACO-based algorithms share the same general state transition

106

3.3 Dynamically Updating the Exploiting Parameter in Improving
Performance of Ant-based Algorithms 107

rule when they are applied to TSP. That is, at a current node r, a certain ant

k will make a move to a next node s in terms of the following probability

distribution:

pk(r, s) =



[ταrs] · [ηβrs]∑
u∈Jk(r)[ταru] · [ηβru]

, if s ∈ Jk(r)

0, otherwise

, (3.3.1)

where Jk(r) is the set of nodes which ant k has not visited yet; τrs and ηrs are

respectively the pheromone value (or called trail value sometimes) and the

heuristic information of the edge (r, s). Brief descriptions of operation of ACS,

BWAS, MMAS are shown next.

ACS: Ant Colony System

Transition rule: The next node s is chosen as follows:

s =



arg max
u∈Jk(r)

{[τru]α · [ηru]β}, if q ≤ q0

S, otherwise
, (3.3.2)

where S is selected according to (3.3.1), q0 ∈ [0, 1] is the exploiting

parameter, 0 ≤ q ≤ 1 is a random variable.

Local updating rule: When an ant visits an edge, it modifies the pheromone

of that edge in the following way13:

τrs ← (1 − ρ) · τrs + ρ · ∆τrs,

where ∆τrs is a systematic parameter with a fixed positive value.

Global updating rule: This rule is done by the deamon procedure which al-

lows only the best-so-far ant to update pheromone values14.

13Another name is online step-by-step updating rule.
14It is sometimes called off-line pheromone updating rule in other studies.

107

3.3 Dynamically Updating the Exploiting Parameter in Improving
Performance of Ant-based Algorithms 108

BWAS: Best-Worst Ant System

Transition rule: of BWAS is based on only (3.3.1).

Local updating: Moreover it does not use online pheromone updating rule.

The local updating as being used in ACS is discarded in BWAS.

Global updating: Adopting the idea from Population-Based Incremental Learn-

ing (PBIL) [10] of considering both current best and worst ants, BWAS

allows these two ants to perform positive and negative global pheromone

updating rules respectively according to (3.3.3) and (3.3.4).

τrs ← (1 − ρ) · τrs + ∆τrs (3.3.3)

where

∆τrs =


f (C(S global−best)), if (r, s) ∈ S global−best

0, otherwise

f (C(S global−best)) is the amount of trail to be deposited by the best-so-

far ant. The following equation showing how the worst ant performs

pheromone updating:

τrs ← (1 − ρ) · τrs ∀(r, s) ∈ S current−worst and (r, s) < Sglobal−best. (3.3.4)

Restart: A restart of the search progress is done when it gets stuck.

Introducing diversity: BWAS also performs the “mutation” for the pheromone

matrix to introduce diversity in the search process. Each component of

pheromone matrix is mutated with a probability Pm as follows:

τ
′
rs =


τrs + mut(it, τthreshold), if a = 0

τrs − mut(it, τthreshold), if a = 1

108

3.3 Dynamically Updating the Exploiting Parameter in Improving
Performance of Ant-based Algorithms 109

τthreshold =

∑
(r,s)∈S global−best

·τrs

|S global−best|
with a being a binary random variable15, it being the current iteration,

and mut(·) being:

mut(it, τthreshold) =
it − itr

Nit − itr
· σ · τthreshold (3.3.5)

where Nit is the maximum number of iterations and itr is the last itera-

tion where a restart was done.

MMAS: Max-Min Ant System

Transition rule: of MMAS is the same as BWAS, e.g. it uses only (3.3.1)

to choose the next node. A variant of MMAS also used the pseudo-

random proportional transition rule [186, 191].

Local updating: The same as BWAS, no local updating rule is used in MMAS.

Global updating: After all ants complete their tours, pheromone trails on all

arcs are evaporated according to the following equation:

τi j → (1 − ρ)τi j + ∆τi j,

where

∆τi j =


ρ · τi j + 1/Cbest, if (i, j) ∈ the tour of the ant that allowed to deposit pherome,

0, otherwise,

and Cbest is the length of tour constructed by the ant that is allowed

to deposit pheromone. This ant is either the best-so-far one or the

15Its value is either 0 or 1.

109

3.3 Dynamically Updating the Exploiting Parameter in Improving
Performance of Ant-based Algorithms 110

iteration-best one or the restart-best one. In general, in MMAS imple-

mentations, these three types of ants are used to update in an alternative

way.

Initialize and Restart: MMAS sets initial pheromone values to an estimate

of the upper pheromone value bound. Moreover, it restarts the search

progress when the algorithm reaches the stagnation status. This tech-

nique is used the same as done in BWAS.

Introducing limits of pheromone values: Maximum and minimum values of

trail are explicitly introduced. MMAS does not allow trail strengths to

get zero value, nor too high value in order to avoid search stagnation.

It was shown that, in the long run, the upper pheromone value bound

on any arc is limited by 1/pC?, where C? is the length of the optimal

tour. Thus, MMAS uses an estimates of this value, 1/pCbs, where Cbs is

the length of the best-so-far tour, to define τmax. The lower pheromone

value is set to τmin = τmax/a, where a is a parameter.

3.3.2 Issues in Governing the Dynamical Updating in the Trade-

Off Technique

3.3.2.1 The Updating Function

The dynamical updating rule to q0 is governed by the following linear equa-

tion:

q0(t + 1) = q0(t = 0) +
(ξ − q0(t)) · number of current tours

θ ·maximum number of generated tours
(3.3.6)

110

3.3 Dynamically Updating the Exploiting Parameter in Improving
Performance of Ant-based Algorithms 111

where t is the index of the current iteration, q0(t) is the value of q0 at the t-

th iteration, parameters ξ and θ are used to control the value range of q0 to

ensure that the value of q0 is always in a given interval. ξ is set to a smaller

value than q0(0) such that, given θ, we have

ξ · number of current tours
θ ·maximum number of generated tours

� q0(0). (3.3.7)

With (ξ, θ) chosen as in (3.3.7), it is approximately to have q0(t) < q0(0) or

hence, from (3.3.6)

q0(0) > q0(t) > q0(0) · (1 − 1
θ

).

So, by selecting suitable values for (ξ, θ), we can assure that q0 receives only

values in any given value interval.

The next section will represent an numerical analysis of adding the pseudo-

random proportional rule (with q0 being dynamically adapted according to

(3.3.6)) into Ant-based algorithms including MMAS, ACS, and BWAS.

3.3.3 Experimental Settings and Analysis of Results

Dynamically updating value of q0 according to (3.3.6) is carried out either

right after all ants finish building their complete tours or at a certain step

which they have not finished building those tours yet. To do the later, (3.3.6)

must have a little bit modification. For the sake of simplicity, the former is

selected.

Because Ant-based algorithms work better when local search are utilized,

we will consider the influence of this new rule in two cases: using local

searchs or not. For TSP, a well-known local search named 2-opt is then se-

lected. The other well-known one is the 3-opt but this local requests a more

111

3.3 Dynamically Updating the Exploiting Parameter in Improving
Performance of Ant-based Algorithms 112

complex implementation and costs much more runtime than 2-opt does. Be-

cause of this reason, we select 2-opt for our testing purpose. All tests were

carried out on a Pentium IV 1.6Ghz with 512MB RAM on Linux Redhat 8.0

platform16.

3.3.3.1 Without local search

To understand how the pseudo-random transition rule impacts Ant-based al-

gorithms’ performance when the value of exploiting parameter is changed,

we need to experiment on MMAS, ACS, and BWAS. We first experiment on

MMAS and ACS to monitor their performance under the change; if the out-

come is positive then we will continue measuring BWAS’s performance. As

shown later, the outcome is negative thus we only report results on MMAS

and ACS. The MMAS and ACS algorithms with the new state transition rule

(dynamical updating one) are called MMAS-BNL (MMAS-Balance with No

Local search) and ACS-BNL correspondingly.

MMAS:

In all tests performed by MMAS-BNL, parameters are set as follows: the

number of ants m = n with n being the size of instances, the number

of iterations = 10,000. The average solutions are computed after 25 in-

dependent runs. Computational results of MMAS-BNL and MMAS are

shown in Table (3.1). Here, results of MMAS (without using the trade-

16The program we modified to fit our testing purpose is ACOTSP v.1.0

by Thomas Stützle. Source codes of this program can be downloaded at

http://iridia.ulb.ac.be/ mdorigo/ACO/aco-code/public-software.html

112

3.3 Dynamically Updating the Exploiting Parameter in Improving
Performance of Ant-based Algorithms 113

Table 3.1: Computational results of MMAS and MMAS-BNL. There are 25
runs done, and no local search is used in both algorithms. For MMAS-BNL,
ξ = 0.1, θ = 3, and q0(0) = 0.9. The number attached with a problem name
implies the number of cities of that problem. The best results are bolded.

MMAS MMAS-BNL

Problem Best Avg σ Best Avg σ

Eil51 426 (0.00%) 426.7 (0.16 %) 0.73 426 (0.00%) 427.87 (0.44%) 2.0

KroA100 21282(0.00%) 21302.80(0.1%) 13.69 21282(0.00%) 21321.72(0.19%) 45.87

D198 15963(1.14%) 16048.60(1.70%) 79.72 15994(1.36%) 16085.56(1.93%) 50.37

Att532 28000(1.13%) 28194.80(1.83%) 144.11 28027 (1.23%) 28234.80 (1.98) 186.30

off technique) are quoted from [190]. In order to gain a comparison

which is as fair as possible, the parameters setting of MMAS-BNL is the

same as that of MMAS in [190]. Values in parentheses in this Table are

the relative errors between current values (best and average ones) and

the optimal solutions. This error is computed as 100%*(current value -

optimal value)/optimal value. [h] From Table (3.1), it shows that per-

formance of MMAS-BNL is worse than that of MMAS. There is no solu-

tion quality improvement for any testing instances obtained when the

trade-off technique is introduced if not using local search.

ACS

We carry out experiments for ACS-BNL with parameter settings which are

the same as in [80]. The settings are as follows: the number of ants

m = 10, β = 2.0, ρ = α = 0.1. The number of iterations is computed

as it = 100 ∗ problem size, hence the number of generated tours will

be 100 ∗ m ∗ problem size, where problem size is the number of cities.

Except the result of ACS for pcb442 instance obtained from our imple-

mentation, results in Table (3.2) of ACS on selected testing instances of

113

3.3 Dynamically Updating the Exploiting Parameter in Improving
Performance of Ant-based Algorithms 114

Table 3.2: Computational results of ACS and ACS-BNL. There are 15 runs
done, and no local search is used in both algorithms. For MMAS-BNL, ξ =

0.1, θ = 3, and q0(0) = 0.9. The number attached with a problem name implies
the number of cities of that problem. The best results are bolded.

ACS ACS-BNL

Problem Best Avg σ Best Avg σ

Eil51 426 (0.00%) 428.06 (0.48 %) 2.48 426 (0.00%) 428.60 (0.61 %) 3.45

KroA100 21282(0.00%) 21420(0.65%) 141.72 21282(0.00%) 21437(0.73%) 234.19

Pcb442* 50778(0.00%) 50778(0.00%) 0.0 50778(0.00%) 50804.80(0.05%) 55.48

Rat783 9015(2.37%) 9066.80(2.97%) 28.25 9178(4.22%) 9289.20(5.49%) 70.16

TSP is recalled from [80]. Values in parentheses in this Table are the

relative errors between current values (best and average ones) and the

optimal solutions. This error is computed as 100%*(current value - op-

timal value)/optimal value. Numerical results for ACS and ACS-BNL

are shown in Table (3.2). In comparison with results of ACS which are

cited from [80], we see that ACS-BNL found the best solutions for small

scale instances like eil51, KroA100, Pcb442 and so did ACS. But the av-

erage solutions and values of the standard deviation found by ACS for

those instances are better than that by ACS-BNL. Moreover, ACS per-

forms better than ACS-BNL does on rat783 a large instance in terms

of measures of best solution, average solution, and standard deviation.

Without using local search, ACS outperforms ACS-BNL in all test in-

stances.

114

3.3 Dynamically Updating the Exploiting Parameter in Improving
Performance of Ant-based Algorithms 115

3.3.3.2 With local search

MMAS, BWAS, and ACS are the Ant-based algorithms chosen for this in-

vestigation purpose. The modified versions of MMAS, BWAS, and ACS al-

gorithms with the new state transition rule are called MMAS-BL (MMAS-

Balance with Local search), BWAS-BL, ACS-BL respectively. Results of the

original MMAS were taken from [190] while that of the original BWAS and

ACS were from [44] and [80] respectively. Values in parentheses in this Ta-

ble (3.3) are the relative errors between current values (best and average ones)

and the optimal solutions. This error is computed as 100%*(current value -

optimal value)/optimal value.

MMAS:

In [190], Stützle studied the importance of adding local search into MMAS

with the consideration that either all ants perform a local search or only

the best one does so. In addition, in his study, the number of ants is also

considered. Thus, there are three versions of MMAS with local search

added including: 10 ants used and all ants do local search (named

10+all-ls), 10 ants used and only the best ant does local search (10+best-

ls, and the last version which the number of ants used is equal to the

number of cities of TSP instance and only the best ant performs local

search (named MMAS+ls). We mentioned here 10+all-ls and MMAS+ls

versions since it was claimed that in long run these two are better than

the rest (10+best-ls). To make the comparison fairly, all systematic pa-

rameters of MMAS-BL were set equally to that of 10+all-ls. Settings

are: number of ants m = 10, number of nearest neighbor = 35, evapo-

115

3.3 Dynamically Updating the Exploiting Parameter in Improving
Performance of Ant-based Algorithms 116

Table 3.3: MMAS variants with 2-opt for symmetric TSP. The runs of MMAS-
BL were stopped after n·100 iterations. The average solutions were computed
for 10 trials. In MMAS-BL, m = 10, q0(0) = 0.9, ρ = 0.99, ξ = 0.1, and θ = 3. The
best results are bolded. The number attached with a problem name implies
the number of cities of that problem. The best results are bolded.

MMAS: n · 100 iterations MMAS: n · 2500 iterations

Problem MMAS-BL 10+all-ls MMAS-ls 10+all-ls MMAS-ls

KroA100 21282.00(0.00%) 21502(1.03%) 21481(0.94%) 21282(0.00%) 21282(0.00%)

D198 15796.20(0.10%) 16197(2.64%) 16056(1.75%) 15821(0.26%) 15786(0.04%)

Lin318 42067.30(0.09%) 43677(3.92%) 42934(2.15%) 42070(0.09%) 42195(0.39%)

Pcb442 50928.90(0.29%) 53993(6.33%) 52357(3.11%) 51131(0.69%) 51212(0.85%)

Att532 27730.50(0.16%) 29235(5.59%) 28571(3.20%) 27871(0.67%) 27911(0.81%)

Rat783 8886.80 (0.92%) 9576 (8.74%) 9171 (4.14%) 9047 (2.74%) 8976 (1.93%)

ration factor ρ = 0.99, α = 1.0, β = 2.0, all ants are allowed to perform

local search. It is noteworthy that the maximum number of iterations

of MMAS-BL for an instance of size n is n · 100 which implies that the

number of generated tours of MMAS-BL is m · n · 100. [h]

Comparing performance of MMAS-BL with performance of both MMAS−
ls and 10 + all − ls can be shown in Table (3.3). For the problem rat783,

even though only with 5000 iterations performed, MMAS-BL still out-

performed the other two algorithms (much more number of iterations

given to those two algorithms). In all tests, both small and large scale in-

stances, performance of MMAS-BL is always over MMAS-ls and 10+all-

ls even though the number of generated tours of MMAS-BL is much less

than or equal to that of the other two.

BWAS:

Parameters setting for experiments for BWAS with the dynamically updat-

ing trade-off technique (BWAS-BL) is the same that for BWAS in [44].

116

3.3 Dynamically Updating the Exploiting Parameter in Improving
Performance of Ant-based Algorithms 117

Table 3.4: Parameter and configuration of the local search procedure in BWAS

Parameter Value

No. of ants m = 25

Maximum no. of iterations Nit = 300

No. of runs 15

Pheromone updating rules parameter ρ = 0.2

Transition rule parameters α = 1, β = 2

Candidate list size cl = 20

Pheromone matrix mutation prob. Pm = 0.3

Mutation operator parameter σ = 4

% of different edges in the restart condition 5%

No. of neighbors generated per iteration 40

Neighbor choice rule 1st improvement

Don’t look bit structure used

Let us recall the table of parameters values of BWAS in [44] described

in Table (3.4). Results of BWAS and BWAS-BL are represented in Ta-

ble (3.5).

Except for Berlin51 to which the performance of BWAS and that of BWAS-

BL are the same, from Table (3.5), it has been seen that despite obtaining

the optimal solution, the average solution of BWAS-BL is marginally

worse than that of BWAS on small scale instances like Eil51, KroA100.

In contrast, on larger scale instances, like att532, rat783, fl1577, BWAS-

BL performs significantly better than BWAS in terms of measures of

best-found solution, average solution, and standard deviation. Except

the instance fl1577 where standard deviation of BWAS-BL is worse than

117

3.3 Dynamically Updating the Exploiting Parameter in Improving
Performance of Ant-based Algorithms 118

Table 3.5: Compare performance between the BWAS algorithm with its vari-
ant utilizing the trade-off technique. In BWAS-BL, ξ = 0.1, θ = 3, and
q0(0) = 0.9. The optimal value of the corresponding instance is given in the
parenthesis. The best results are bolded. Error =

bestvalue−optimalvalue
optimalvalue ∗ 100%.

Eil51 (426) Att532 (27686)

Model Best Average Dev. Error Model Best Average Dev. Error

BWAS 426 426 0 0 BWAS 27842 27988.87 100.82 1.09

BWAS-BL 426 426.47 0.52 0.11 BWAS-BL 27731 27863.20 84.30 0.64

Berlin52 (7542) Rat783 (8806)

Model Best Average Dev. Error Model Best Average Dev. Error

BWAS 7542 7542 0 0 BWAS 8972 9026.27 35.26 2.50

BWAS-BL 7542 7542 0 0 BWAS-BL 8887 8922.33 16.83 1.32

KroA100 (21282) Fl1577 (22249)

Model Best Average Dev. Error Model Best Average Dev. Error

BWAS 21282 21285.07 8.09 0.01 BWAS 22957 23334.53 187.33 4.88

BWAS-BL 21282 21286.60 9.52 0.02 BWAS-BL 22680 23051 351.87 3.60

Table 3.6: Parameter and configuration of the local search procedure in ACS

Parameter Value

No. of ants m = 10

Maximum no. of iterations Nit = 100* problem size

No. of runs 15

Pheromone updating rules parameter ρ = α = 0.1

Transition rule parameters β = 2

Exploiting parameter q0 = 0.98

Candidate list size cl = 20

that of BWAS, for other instances the inversion is held.

ACS:

Parameters setting for experiments for ACS which is incorporated with the

dynamically updating trade-off technique - call ACS-BL - is the same

118

3.3 Dynamically Updating the Exploiting Parameter in Improving
Performance of Ant-based Algorithms 119

Table 3.7: Compare performance between the ACS algorithm with its variant
ACS-BL utilizing the trade-off technique. In ACS and ACS-BL, ξ = 0.1, θ = 3,
and q0(0) = 0.98. The optimal value of the corresponding instance is given in
the parenthesis. The best results are bolded. Error =

bestvalue−optimalvalue
optimalvalue ∗ 100%

D198 (15780) Pcb442 (50779)

Model Best Average Dev. Error Model Best Average Dev. Error

ACS 15888 16054 71 0.68% ACS 51268 51690 188 0.96%

ACS-BL 15,780 15,880.67 52 0.0% ACS-BL 50779 50872.33 156.3 0.0

Att532 (27686) Rat783 (8806)

Model Best Average Dev. Error Model Best Average Dev. Error

ACS 28147 28523 275 1.67% ACS 9015 9,066 28 2.37%

ACS-BL 27752 27933.56 289 0.24% ACS-BL 8902 9012.33 16.83 1.01%

Fl1577 (22249)

Model Best Average Dev. Error

ACS 22977 23,163 116 3.27%

ACS-BL 22680 23082 204 1.94%

that for ACS in [80]. Parameter values of ACS in [80] are described in

Table (3.6). Results of ACS and ACS-BL are represented in Table (3.7).

Take note that, ACS was using a 3-opt procedure in its local search pro-

cedure. 3-opt usually produces better solutions than 2-opt as 3-opt’s

search space covers 2-opt’s. This local search is originated from a k-opt

local search 17. From Table (3.7), it has been seen that except for in-

stances Att532, Fl1577 only on which ACS-BL is outperformed by ACS

on the standard deviation metric only, on remaining instances and re-

maining metrics ACS-BL is significantly superior than ACS.

3.3.3.3 Discussion

As shown in the above computational results, the trade-off technique or pseudo-

random proportional rule with a dynamical updating technique is an efficient

17An illustration of k-opt can be found in the definition 2.2.2 on page 52.

119

3.3 Dynamically Updating the Exploiting Parameter in Improving
Performance of Ant-based Algorithms 120

and effective tool in improving solution quality of MMAS, BWAS, and ACS

when there is the presence of local search in these algorithms. Indeed, results

from Table (3.3) showed that MMAS-BL presents a better performance than

MMAS. It outperformed its testing counterpart for all six test instances within

smaller number of iterations. Also, from tables (3.5, 3.7), BWAS-BL and ACS-

BL proved the effectiveness and usefulness of this modified trade-off tech-

nique by outperforming original BWAS and ACS respectively for large in-

stances.

However, without using local search procedures, Ant-based algorithms

incorporating this technique performed worse than that which are not using

this technique. This claim is supported by obtained numerical results. But,

it is worth mentioning here that most experimental works in literature re-

vealed that performance of Ant-based algorithms is much improved if local

search procedures are utilized. Thus, the solution quality improvement of

this trade-off technique with presence of local search is more impressive and

worthily attentive; hence its failure to improve solution quality when local

search procedure is absent can be tolerable. Possible explanations of why

the proposed technique is able to provide better quality solutions only for

algorithms using local search procedures are of following:

• A local search aims at obtaining better solutions in the range of current

best solutions which might lead to early stagnation of algorithms. The

proposed technique aims at avoiding that stagnation by giving more

chance (higher probability) to search through unvisited regions. This

technique is designed to be more effective at the early and late stages of

search process. If the value of exploiting parameter is fixed, let’s say to

120

3.4 Chapter Summary 121

a high value, and then the search is focusing heavily on those first few

good solutions found in the early stage of the search and less chance of

guiding to visit to regions that are not traveled, i.e. less chance of im-

proving quality at the late stage. Similar explanation to if the parameter

is set to a low or medium value or in other words to a fixed value.

• The proposed technique has the role of introducing unvisited region

to the search process and the local search has the role of extensively

searching through the regions to get very good solutions. Therefore,

more regions containing local optimum solutions will be searched through.

If using the proposed technique without using local search, the search

process will similarly travel to more unvisited regions but will not search

extensively enough in those regions hence good solutions in those re-

gions receive less chance to be visited.

3.4 Chapter Summary

We investigated the convergence of a more general version of GBAS in sec-

tion 3.2. From the experimental aspect, our convergence results has draw-

backs of designing implementations in terms of this generalized framework

as that seen in GBAS. Indeed, a high convergent probability can be gained by

setting a very large number of agents and/or a small value of evaporation

parameter. And obtaining those results may cost a hardly acceptable amount

of computation time if run on a single-processor machine. Moreover, there is

a similarity between our convergent results and Gutjahr’s about the restric-

tion to the application range because of the appearance of the uniqueness

121

3.4 Chapter Summary 122

conditions (which are removed in [108]) in both frameworks.

However, our results are different from theoretical results in the previous

works in some aspects. First of all, our results seem to be closer to imple-

mentations; one such example is the ACS algorithm from which its trade-off

mechanism is adopted and analyzed in our framework . In actual imple-

mentations, the exploiting parameter q0 is usually set very close to 1 which

means that the probability of choosing the next node according to (3.2.1) is

very small (equal to 1−q0), hence GBAS is less fitting to explanation of behav-

ior of implementations than EGBAS. Secondly, the convergence speed of our

model might be controlled not only by systematic parameters as in GBAS but

also by the exploiting parameter. This seems that implementations based on

our model can have better flexibility in controlling the search progress than

those based on GBAS.

In section 3.3, a variant of pseudo-random proportional transition rule

with linearly dynamical updating techniques is proposed and empirically

analyzed. Experimental analysis of incorporating this rule into some state-of-

the-art Ant-based algorithms is carried out for Traveling Salesman Problem.

Computational results showed that this dynamical updating rule enhances

some Ant-based algorithms’ performance if local search procedures are in

use.

122

123

Chapter 4

Decomposition-based Search Approach
4.1 Background and Introduction

In the previous chapter (chapter 3), we have presented our findings related

to ACO which is nature-inspired metaheuristic to solve a broad class of com-

binatorial optimization problems. ACO has shown a good performance on

optimization problems of small and medium size. For those of large size, for

example instances of Traveling Salesman Problem (TSP), ACO’s running time

is increased due to its algorithmic complexity which is at least O(n2 ∗m) with-

out using local search and O(n3∗m) with local search embedded (for example,

see [65])1. New approaches to solve large size instances more effectively are

therefore needed. In this chapter, we will mainly present results of analy-

sis of a method based on a recently emerged approach that is to combine

a metaheuristic with classical decomposition techniques in Artificial Intelli-

gence (AI) and Operation Research (OR) to tackle large size instances of op-

timization problems. The method going to be presented is a combination be-

1m, n are the number of artificial ants and the number of cities of TSP re-

spectively. It is not mathematically rigorous to define ”the algorithmic com-

plexity of a metaheuristic” due to variety of algorithms (for certain problems)

built around the metaheuristic. Each of these algorithms has its own algorith-

mic complexity. However, in this case, we refer the algorithmic complexity

of ACO (for TSP) in terms of the algorithmic complexity of ACO’s state-of-

the-art algorithms (for TSP) which include ACS and MMAS.

123

4.1 Background and Introduction 124

tween decomposition (or clustering) techniques with an available problem-

solving method, especially a metaheuristic 2. Hence, the method based on the

combination is henceforth called decomposition-based method. In contrast to

nature-inspired metaheuristics, for example GA and ACO, whose problem-

solving capability is from modeling certain features of nature, the idea of

decomposition-based methods is to make full use of problem domain knowl-

edge, especially the mathematical structures of optimization problems, to ef-

fectively tackle large size instances by simply solving a number of smaller-

in-size instances of those problems.

Although the idea of decomposing a problem to simplify its solution is

not new, the use of large scale computers in recent years has led to rapid ex-

pansion of decomposition techniques for optimization, for solving reliability

and electrical network problems, for process control, and in a wide variety of

other problems.

The fact is that physical systems are growing bigger and bigger in size.

The size of inherent optimization problems associated with these systems

whose performance and efficiency are always required to be improved is

therefore growing by time. Thus, there has been increasing demand of solv-

ing large scale instances3 of optimization problems and that demand is from

both academic and industrial interests. Some nature-inspired metaheuristics

2The fact is that the analysis for decomposition-based method in this chap-

ter can be interpreted straightaway to any other methods to solve COPs.
3It is worthy of notice that it is subjective to judge whether an instance of

a certain optimization problem is “large scale” or not. A sound judgement

should take into account impacting factors like the hardness of the problem

in terms of complexity theory, the performance of state-of-the-art algorithms

124

4.1 Background and Introduction 125

have shown the drop of their performance when applied to large scale in-

stances of optimization problems for which they have achieved a good per-

formance when applied to small or moderate scale instances. One of reasons

that led to their decreasing performance is the high complexity of their algo-

rithms. It is beneficial to use existing algorithms to solve large scale problem

instances through solving smaller scale ones if we can utilize the mathemat-

ical structures of the problem to “break” a large scale instance into small or

medium scale parts that are efficiently and effectively solved by existing algo-

rithms and then assemble solutions found for those parts to form a solution

to the large scale instance.

In one portion of this chapter, we will present our findings of what we

benefit from these methods in terms of empirical runtime. The idea of decomposition-

based approach is based on the well-known principle called “Divide and

Conquer”.

Divide and Conquer Principle Divide and Conquer (derived from the Latin

saying Divide et impera and called DC for short) is an important algorithm de-

sign principle. The philosophy of the principle is to solve many simple prob-

lems rather than solve a difficult problem. It works by recursively breaking

down a problem into two or more sub-problems of the same (or related) type,

until these become simple enough to be solved directly by a specific problem-

for the problem, and the strength of the present computational technology.

However, it is sufficient to serve our purpose of this study when we use a

generic concept of “large scale”; thus if we henceforth refer to a large scale

instance of an optimization problem we mean it a generic large scale instance.

125

4.1 Background and Introduction 126

solving algorithm4. The solutions to the subproblems5 are then combined to

give a solution to the original problem.

Many well-known, effective and efficient algorithms based on DC were

proposed and developed such as sorting (e.g. quicksort, mergesort), search-

ing (e.g. binary search, depth-first search) and even the fast Fourier transform

algorithm (refer to [2, 45] for more details about DC’s applications). There

have also been numerous algorithms built around this principle and aimed

at solving large scale optimization problems in literature.

Based on the guarantee of the optimality of solutions of those algorithms,

we classified them into two types: exact and heuristic decomposition-based

algorithms. Brief reviews of both types will be presented in the next two

subsections.

4.1.1 Overview of chapter

A typical exact decomposition-based algorithm, that is well-known in the

mathematical programming area, by Dantzig and Wolfe [50] - now com-

monly referred to as Dantzig-Wolfe Decomposition Principle - is one of those

reviewed algorithms. Having similar characteristics to exact methods, ex-

act decomposition-based approaches have been designed to aim at obtain-

ing optimal solutions of underlying optimization problems. In contrast, the

4The algorithm used in this stage, which is so-called “the conquer stage”

in literature, to find solutions to subproblems is called the conquering-stage

algorithm in the rest of this paper.
5Hereafter, if there is not any confusion then the word “subsolution” will

be used for the phrase “solution of sub-problem” with the same meaning.

126

4.1 Background and Introduction 127

heuristic decomposition-based have been designed to compromise between

runtime and optimality of solutions. The inherent disadvantage of exact ap-

proaches is still the runtime. As presented in section 4.1.2, Dantzig-Wolfe

Decomposition Principle cannot predict how long the algorithm needs to run

before achieving the optimal solution. However, in general decomposition-

based methods can reduce their runtime by using parallel computation in

their iterative subproblems-solving process.

An advantage of decomposition-based methods is that their implementa-

tions run fast if their decomposition and recombination procedures are well-

designed [6, 178, 192]. Assume these procedures are designed well enough,

our study focuses on how fast they are in comparison to non-decomposition-

based methods. Our first findings which are presented in the section 4.2 show

that the decomposition-based methods are faster than their non-decomposition-

based competitors but cannot be faster than a certain times which is com-

puted through both the algorithmic complexity of the procedures to solve

subproblems and the number of resulted subproblems. As accounted for

later, another advantage of decomposition-based methods is the positive ef-

fect on memory requirement.

In this part of study, we focus more on inexact decomposition-based ap-

proaches. Parallel to the development of exact decomposition-based meth-

ods, the start of inexact decomposition-based methods can be traced back in

’60s [6]. Many applications in optimization field using inexact decomposition-

based methods can be found in literature ([121, 170, 178, 192, 195]). Refer

back in subsection 4.1.2.1 (on page 133) for the review on POPMUSIC method

which is regarded as an inexact decomposition-based method.

127

4.1 Background and Introduction 128

We also propose and test a simple heuristic decomposition-based method

for Euclidean Traveling Salesman Problem (see section 4.3). In addition to the

numerical simulation results, we show a sufficient condition for the method

which guarantees that the optimal solutions are included in search space

while the size of the search space is reduced. The result may appear triv-

ial due to its less impacting to other works, however, the motivation behind

the finding is very important to the field if we look at a disadvantage exist-

ing in most of heuristic decomposition-based methods in literature. Their

disadvantage of not able to guarantee the optimality of solutions is actually

the main challenging in their applications. Lack of a sufficient condition (for

certain methods applying to certain problems) to guarantee that the optimal

solutions belong to search space is one reason among reasons causing the

disadvantage.

The structure of this chapter is organized as follows. Exact decomposition-

based methods which originate from the principle of divide and conquer

will be reviewed in subsections 4.1.2, while review of inexact decomposition-

based method can be referred to subsection 4.1.2.1 After this introduction sec-

tion,the next section will be devoted to our theoretical findings which are re-

lated to relative upper and lower bounds of runtime of decomposition-based

methods. We will account for how these findings fit into the context of some

decomposition-based methods in literature in subsequent subsections. Also

in that section, we illustrate the usage of decomposition-based into two prob-

lems, each for a different illustrative purpose. For the first problem which is

named 2D protein folding problem, we illustrate how decomposition-based

approach helps to design a new way of representing protein conformations

128

4.1 Background and Introduction 129

on 2D grid to reduce search space for Genetic Algorithm. For the second

one named Euclidean Traveling Salesman problem (ETSP), in section 4.3 we

prove a sufficient condition on the geometrical structure of ETSP instances for

a simple heuristic decomposition-based algorithm. The condition guarantees

that all optimal solutions to original instance must be embraced in the search

space of that algorithm. What we did to prove that condition is actually ad-

dressing a concern over decomposition-based methods about whether or not

those methods converge to optimal solutions 6. Also for ETSP, we presented

numerical results for a decomposition-based method that using ACS to solve

ETSP in section 4.4. Some tested instances are from benchmark library while

the others are generated using a random generator of ETSP instances. Finally,

a summary will end the chapter.

4.1.2 Dantzig-Wolfe Decomposition Principle in Mathemati-

cal Program

It often happens that a large linear program is really a collection of smaller

linear programs that are largely independent of each other. As an example,

suppose we have some LP where constraint matrix is the node-arc incidence

matrix of a very large graph, but the graph has the form shown in Fig.4.1.

Arcs exist only between nodes of the same sets and between the set NC

and the others. The Dantzig-Wolfe decomposition method is designed to take

6Given an optimization problem and a decomposition-based method to

solve it, if we can show that the search space of the method does not include

any optimal solution, then indirectly we do reject any claim for the conver-

gence of the method.

129

4.1 Background and Introduction 130

A C

B

Figure 4.1: A graph whose node-arc incidence matrix is decomposable.

advantage of this special structure by allowing us to solve the entire problem

by iteratively solving subproblems with sizes of A and B. Using the above

graph to represent node-arc relationship for a LP whose constraint matrix is

formulated as follows:



n1cols. n2cols.

D F

A 0

0 B



}m0rows

}m1rows

}m2rows

(4.1.1)

with variables x ∈ Rn1 corresponding to the first n1 columns and y ∈ Rn2

corresponding to the next n2 columns. The complete LP can be written in

130

4.1 Background and Introduction 131

standard form as

min z = c′x + d′y

Dx + Fy = b0

Ax = b1

By = b2

x, y ≥ 0

(4.1.2)

The first m0 equation is called the coupling equations; the problems associ-

ated with the succeeding sets of rows are called subproblems A and B, respec-

tively. In particular, constraints of the subproblem A are considered as

Ax = b1

x ≥ 0
(4.1.3)

Since any feasible point in this subproblem can be written as a convex

combination of vertices of the feasible set. Call these vertices x1, ..., xp, and

write

x =
p∑

j=1
λ jx j

λ j ≥ 0
p∑

j=1
λ j = 1

(4.1.4)

Similarly, we write

y =
q∑

j=1
µ jy j

µ j ≥ 0
q∑

j=1
µ j = 1

(4.1.5)

where the y j are the vertices of subproblem B.

Replacing x and y by their representations in (4.1.4) and (4.1.5), (4.1.2)

becomes the LP in the variables λ j and µ j shown below

131

4.1 Background and Introduction 132

variables :

m0rows {
1rows {
1rows {

λ1...λp µ1...µq

∆1...∆p Φ1...Φq

1...1 0...0

0...0 1...1

b0

1

1

(4.1.6)

where

∆ j = Dx j, j = 1, ..., p

Φ j = Fy j, j = 1, ..., q
(4.1.7)

and the cost is

min z = θ′λ + σ′µ (4.1.8)

where

θ′ = c′x j, j = 1, ..., p

σ′ = d′y j, j = 1, ..., q
(4.1.9)

and

λ, µ ≥ 0 (4.1.10)

are the new variables, in Rp and Rq, respectively. The problem in this

form is usually called the master problem.

We may describe the operation of the decomposition method, that relies

on a so-called Revised Simplex Method [15, 130, 154], in the following terms.

The master problem, based on its overall view of the entire situation, sends

a price to subproblem A. This subproblem then responds with a solution

(called a proposal) for possibly improving the overall problem, based on its

local information and the price. The master problem then weighs the cost

of this proposal against its criterion α for subproblem A. If the proposal

is cheaper than α, it is implemented by bringing it into the basis. If not,

132

4.1 Background and Introduction 133

subproblem B is sent a price and asked for a proposal. As long as a sub-

problem can produce a favorable proposal, the master problem can find a

favorable pivot. When neither subproblem can come up with a favorable

proposal, we have reached an optimal solution for the entire problem [50].

This decomposition-based approach and its extensions are actually favored

to solve large scale instances than to solve small or moderate ones.

4.1.2.1 Partial Optimization Metaheuristic Under Special Intensification

Conditions

POPMUSIC which is considered as a metaheuristic, stands for Partial Opti-

mization Metaheuristic Under Special Intensification Conditions [196]. The

idea of this metaheuristic is to locally optimize sub-parts of a solution rather

than globally optimize the whole solution. Those sub-parts are found by a

certain clustering algorithm (one example is k-mean clustering [70]). There are

number of different approaches sharing the similar idea with POPMUSIC

principles and mentioned in [196] as well. The algorithmic framework (16)

below restates the general framework of POPMUSIC in [196].

To use POPMUSIC, a solution to the optimization problem in question

is assumed to be able to be presented as a set of p parts s1, . . . , sp. Some

parts are more in relation with other parts, and furthermore, it is posited that

one is able to define the relatedness measure between two parts. POPMU-

SIC first chooses a part so-called seed si and a number r < p of other parts

which are most related to si. A sub-problem Ri is then formed by those most

related parts. Both of these procedures (disassembling into parts and assem-

bling parts into a smaller-in-size problem) are carried out at step 4 and 5 of

133

4.1 Background and Introduction 134

Algorithm 16 POPMUSIC metaheuristic
1: Input: Solution S composed of parts s1, . . . , sp

2: Set O = ∅
3: while O , {s1, . . . , sp} do
4: Select si < O
5: Create a sub-problem Ri composed of the r < p parts si1 , . . . , sir most

related to si

6: Optimize Ri

7: if Ri has been improved then
8: Update S (and corresponding parts) and set O← ∅
9: else

10: Set O← O ∪ {si}
11: end if
12: end while

Alg. (16). Ri is next optimized at the step 6. Thus, rather than applying an op-

timizer to the entire of a given solution, POPMUSIC does locally which means

seeking optimal solutions to the sub-problem Ri only. Moreover, in [196], by

experimental results they claimed that POPMUSIC ran faster than the proce-

dure of optimizing the entire of the original solution (roughly speaking, this

procedure is likely POPMUSIC at p = 1).

4.1.2.2 Decomposition-based method’s advantage of less storage space re-

quirement

The effect on space requirement is an obvious advantage of the decomposi-

tion algorithm7. In any reasonable example, we now have a large number of

columns, one for each vertex of each of the two subproblems. But the number

of rows has been reduced from m0 + m1 + m2 to m0 + 2 (see (4.1.1) and (4.1.6))

7The effect on space requirement by the decomposition method presented

for Linear Programming problems in this portion is actually similar to that

by our heuristic decomposition-based method introduced in later section.

134

4.2 Runtime efficiency of decomposition-based methods and their
non-decomposition-based counterparts 135

and Revised Simplex method can be implemented with a “working” matrix

of size (m0 + 3) ∗ (m0 + 3). Putting all other considerations aside, this means

that we can fit much larger problems into a fast-access storage. We now re-

quire (m0 + 3)2 storage cells for the working matrix of the master problem, as

opposed to (m0 + m1 + m2)2 in the original formulation.

A little arithmetic shows the effectiveness of the approach in fitting large

problems into a computer. Suppose we have 100 subproblems each with 1000

rows and 1000 coupling equations (m0 = 1000). Then the original problem

has 1000 ∗ 100 + 100 = 100100 rows; its working matrix will have 1001002 ≈
1010 entries, which cannot fit in the fast memory of any computer known

to us. On the other hand, the working matrix of master problem will have

(1000 + 100 + 1)2 = 11012 ≈ 106 entries, which is practical to store in the fast

memory of any reasonably moderate computer nowadays.

However, it is not clear about its effect on time requirement due to the

hardness in estimating how many times the subproblems must be solved to

achieve an optimal solution (see Chapter 4 in [160]). As seen later in sec-

tion 4.2, our results can be used to answer that concern.

4.2 Runtime efficiency of decomposition-based methods and

their non-decomposition-based counterparts

4.2.1 Introduction and Notations

In the previous section we know that decomposition-based methods first de-

compose a problem instance into several subproblems whose type is the same

as or alike to that of the original problem and size is smaller than the origi-

135

4.2 Runtime efficiency of decomposition-based methods and their
non-decomposition-based counterparts 136

nal instance. A specific algorithm is deployed to solve those subproblems at

the second stage that is termed as conquering-stage and the algorithm is called

conquering-stage algorithm. All subproblems can be solved parallel or serially

and called parallel decomposition-based or serial decomposition-based ap-

proaches, respectively. All solutions to those subproblems are then combined

by a certain combining method to form a solution to the original instance. In

this part of study, we are going to focus on analyzing the empirical runtime

of serial decomposition-based approaches conceptually and compare their

runtime-oriented performance to that of approaches using only the specifi-

cally problem-solving algorithm (in the conquering-stage). For the sake of

simplicity, given a serial decomposition-based method, we name it SDEB8

and abbreviate the counterpart method using its specifically problem-solving

algorithm to solve only original instance PUND 9 of the corresponding SDEB

method10.

Recursiveness is the most simple and straightforward way of implement-

ing divide and conquer-based methods generally and a SDEB specifically.

However, recursive procedures always require long runtime in case of in-

puts with large size. Therefore, non-recursive and decomposition-based ap-

proaches offer promising alternatives for these large size inputs. Published

literature suggests that decomposition-based methods using metaheuristics

8Serial DEcomposition-Based method.
9PUrely Non-Decomposition-based counterpart.

10Thus, if we say A is a PUND implementation of the SDEB B (or B’s SDEB),

then we shorten the statement that the conquering-stage algorithm used to

solve subproblem in B is actually used in A to solve solely the same problem

type.

136

4.2 Runtime efficiency of decomposition-based methods and their
non-decomposition-based counterparts 137

as the conquering-stage algorithm can produce satisfactory solutions to real-

world instances of NP-hard optimization problems in a short runtime (e.g.

Taillard [195], Reimann et. al. [170] solved Vehicle Routing Problem - VRP;

Mulder et. al. [149] solved Traveling Salesman Problem - TSP).

There have been experimental achievements in solving NP-hard combi-

natorial optimization problems using approaches that have very similar fea-

tures with SDEB approaches. Below are instances of such attempts in litera-

ture.

1. Taillard [195] used TS - a well-known metaheuristic ([42], [90], [96]) - in

the conquer stage of solving a very large VRP instances (as large as 199

customers, actually this is a very large input size to practical applica-

tions) proposed by Christofides et. al. [29]. In [195], he suggested two

methods of decomposing (clustering). Taillard’s algorithm (a kind of

SDEB) not only ran faster in comparison to those of Gendreau [84] and

Osman [155] (the two methods in the later are PUND-alike approaches

of Taillard’s SDEB), but also produced better solutions to 5 of the 14 test

instances and found identical results for the remaining 9 ones.

2. Recently, Reimann et. al. [170] solved such large scale VRP instances

with the same approach as Taillard’s (SDEB approach) but used differ-

ent algorithms for the clustering and conquering stage (equivalently,

Reimann et. al.’s PUND differs from Taillard’s PUND one. In the de-

composing stage, the former used the modified Miehle algorithm [142]

to determine the gravity center of each route, and centers of those routes

are then decomposed (clustered) by Sweep algorithms of Gillett and

Miller [86]. Finally, the subsolutions are found by a conquering-stage

137

4.2 Runtime efficiency of decomposition-based methods and their
non-decomposition-based counterparts 138

algorithm so-called Savings-based Ant System (SBAS), which is derived

from ACO (readers interested to know more about ACO may refer to

Chapter 3). Performance of Reimann et. al.’s SDEB algorithm is simi-

lar to that of Taillard’s but noticeably it outperforms the original SBAS

- the PUND version of Reimann et. al.’s SDEB method - for large in-

stances in terms of both performance measures on runtime and quality

of solutions.

3. Mulder et. al. [149] used the a SDEB to solve TSP instances whose

size is unimaginably big, up to 1, 000, 000 cities. In this algorithm, the

decomposing (clustering) ability of Adaptive Resonance Neural Net-

work was used to break TSP instances into subproblems; and the Lin-

Kernighan (LK) [135] algorithm - the most successful heuristic partic-

ularly designed for TSP - was used as the conquering-stage algorithm.

In comparison to some well-known successful algorithms designed also

particularly for TSP, such as the original LK [135] (this is the PUND im-

plementation of Mulder et. al.’s SDEB), chained-LK algorithms [4, 136],

and Concorde package 11, Mulder’s experimental results showed a sig-

nificant speedup and a good scale of solution quality. In more details,

comparing to Concorde package at the 1, 000, 000−city level, their algo-

rithm took 16% as long to run and was 11% off of tour quality.

Most of all experimental studies have so far determined the fact that given

a big size instance, SDEB implementations always run faster than their PUND

counterpart. As a result, it demands theoretical studies that can explain these

experimental findings. Why SDEB implementations usually run faster than

11Http://www.tsp.gatech.edu/concorde/download.html.

138

4.2 Runtime efficiency of decomposition-based methods and their
non-decomposition-based counterparts 139

their PUND counterparts? To what the speedup of a SDEB implementation’s

conceptually empirical runtime in relative to its PUND implementation’s is

related: number of subproblems, the complexity of the conquering-stage al-

gorithm or any thing else? By speedup we mean the ratio of the empirical

runtime of a SDEB algorithm to empirical runtime of its PUND one. The

speedup concept can also be found in, for examples, Taillard [195] and Mul-

der [149].

However, no theoretical evidence has been published so far that proves

these facts. This article points out such an evidence by stating that the speedup

of a SDEB implementation relative to the corresponding PUND counterpart

has its own finite lower and upper bounds that can be evaluated. This

speedup , under some fairly weak conditions, is limited by an upper bound

which can be computed from the number of subproblems and the conceptual

empirical runtime function of the conquering-stage algorithm on inputs of a given

length 12; and by the lower bound of 1. Moreover, it is able to obtain a higher

lower bound that is much greater than 1 by changing systematic parameters

as proven later.

In following subsections, we present our theoretical evidence, which was

contributed in the publication [57], to explain the speedup of any SDEB im-

plementation in comparison to its counterpart PUND implementation. Un-

der some weak conditions, the results show that the bounds of the speedup

12The maximum number of steps that the algorithm uses on any input of

the length specified. For the purpose of simplicity, we sometimes call them

the conquering-stage runtime function or conquering-stage runtime function

instead.

139

4.2 Runtime efficiency of decomposition-based methods and their
non-decomposition-based counterparts 140

depend on the number of subproblems and on the complexity of the conquering-

stage algorithm. The next section presents the lower and upper bounds of the

speedup for a class of functions of the conceptual runtime of the conquering-

stage algorithm on inputs of a given length. It is next shown that these results

of the speedup are still valid for a class of functions extended to almost all

practical conquering-stage algorithms in asymptotical case when input size

approaches to infinity. Finally, the last section gives conclusions and direc-

tions for future works.

4.2.2 Speedup of the SDEB approach

4.2.2.1 Runtime efficiency of SDEB vs its PUND implementations

Firstly, we consider SDEB implementations whose conquering-stage algo-

rithms conceptually empirical runtime functions belong to the class of func-

tions Ω described as below:

Ω = {F : R+ → R+ : F(x) =

m∑

i=1

αixβi , m ∈ N, βm > . . . > β1 > 1, αm , 0, αi ≥ 0;∀i}.
(4.2.1)

We then analyze the speedup of a SDEB implementation versus its PUND

such that both of them satisfy (4.2.1).

Secondly, we pay attention to the speedup when the conceptual runtime

functions belong to a class of functions Ω̃ formed by relaxing the condition

on the coefficients αi in Ω. These coefficients in functions belonging to Ω̃

can receive either positive or negative values as long as the highest degree

140

4.2 Runtime efficiency of decomposition-based methods and their
non-decomposition-based counterparts 141

coefficient αm is still positive 13.

Ω̃ = {F : R+ → R+ : F(x) =

m∑

i=1

αixβi , m ∈ N, βm > . . . > β1 > 1}.

It is obvious that Ω̃ is a broader class of functions than Ω. As explained

later that approximated runtime functions of practical conquering-stage al-

gorithms are closer to the functions in Ω̃ than to those in Ω.

For a given input instance, the following two assumptions are assumed to

hold in all Lemmas and Corollaries presented in this section unless otherwise

specified.

Assumptions 1.

a. The runtime function of conquering-stage algorithm belongs to Ω.

b. The total runtime for the execution of both decomposing and combining stage is

much less significant compared to the total runtime for getting all subsolutions

(equal to the runtime for the execution of the conquering stage).

The assumption b. is actually saying that total runtime of a SDEB imple-

mentation is most vastly contributed by the conquering-stage algorithm.

Given an SDEB implementation, let A be the runtime of its conquering

stage’s execution, and B be that of its PUND counterpart. Then the speedup

under the above conditions is defined as B
A . For the sake of convenience in

proofs, we will find the bounds of the fraction A
B . Our main result is the

following:

13We want to stress the point that αm is always positive since the runtime

function F(x) must approaches to∞when x approaches to∞.

141

4.2 Runtime efficiency of decomposition-based methods and their
non-decomposition-based counterparts 142

Theorem 4.2.1. The speedup of a SDEB implementation relative to to its corre-

sponding PUND has

a. An upper bound of kβm−1, where k is the number of subproblems, βm is the

degree of the runtime function F of the conquering-stage algorithm14.

b. A lower bound of 1; but a larger lower bound can be obtained by changing

some systematic parameters of the decomposing algorithm.

Proposition 4.2.2. Given k ∈ N, k > 1; d j > 0,∀ j = 1..k such that
k∑

j=1
d j = 1 then

inequalities:

1 >
k∑

j=1

dβj ≥
1

kβ−1 (4.2.2)

hold ∀β > 1. The equality takes place if d j = 1
k ∀ j.

Proof. It is clear that 0 < dβj < d j,∀ j = 1, k, sum up these k distinct inequalities

side by side then the left hand side of the inequality (4.2.2) is followed. Let

f (x) = xβ, β > 1, then the 2nd derivative of f is f ′′(x) = β(β − 1)xβ−2 > 0, ∀x > 0.

Thus f (x) is a convex function in (0,∞). According to Jensen inequality 15, we

produce:

f



k∑
j=1

d j

k


≤

k∑
j=1

f (d j)

k
→ 1

kβ


k∑

j=1

d j


β

≤ 1
k

k∑

j=1

dβj →
1

kβ−1 ≤
k∑

j=1

dβj . (4.2.3)

The equality takes place clearly if and only if d j = 1
k ∀ j = 1, k. �

Proposition 4.2.3. With any numbers a, b, c, d > 0, we have

max
(a
b
,

c
d

)
≥ a + c

b + d
≥ min

(a
b
,

c
d

)
. (4.2.4)

14By degree, we mean the highest power of components in F.
15http://mathworld.wolfram.com/JensensInequality.html.

142

4.2 Runtime efficiency of decomposition-based methods and their
non-decomposition-based counterparts 143

Proof. Because of equivalent role between a
b and c

d , do not loose the generality,

assume that a
b ≤ c

d . Then, the inequality (4.2.4) is equivalent to

c
d
≥ a + c

b + d
≥ a

b
↔


bc + cd ≥ ad + cd,

ab + bc ≥ ab + ad
↔ bc ≥ ad.

�

Both equalities in the inequality (4.2.4) happen if and only if a
b = c

d .

Corollary 4.2.4. With any ai, bi > 0 ∀i = 1,m, then

max
i=1,...,m

{
ai

bi

}
≥

m∑
i=1

ai

m∑
i=1

bi

≥ min
i=1,...,m

{
ai

bi

}
.

From Proposition (4.2.3) and by induction, it is not difficult to obtain this

corollary; these both equalities take place if ai
bi

=
a j

b j
, ∀i , j.

Lemma 4.2.5. If m, k ∈ N,m ≥ 1, k > 1; βm > . . . > β1 > 1; bi > 0 ∀i = 1,m then

m∑
i=1

1
kβi−1 bi

m∑
i=1

bi

≥ 1
kβm−1 .

The equality takes place if m = 1.

Proof. Deriving from Corollary (4.2.4), we have:

m∑
i=1

1
kβi−1 bi

m∑
i=1

bi

≥ min
i=1,...,m


1

kβi−1 bi

bi

 = min
i=1,...,m

{
1

kβi−1

}
=

1
kβm−1 . (4.2.5)

Except for m = 1, the equality does not take place since the sequence
{

1
kβi−1

}m

i=1

is strictly monotonic, so this lemma is proved. �

The proof of Theorem (4.2.1):

143

4.2 Runtime efficiency of decomposition-based methods and their
non-decomposition-based counterparts 144

Proof. Let n be the size of the original instance, c j be the size of the jth sub-

problem (thus
k∑

j=1
c j = n), k be the number of subproblems and F(·) ∈ Ω be the

conquering-stage runtime function, we have the runtime of the execution of

the conquering stage:

A =

k∑

j=1

F(c j) =

k∑

j=1

m∑

i=1

αic
βi
j =

m∑

i=1


k∑

j=1

αic
βi
j

 =

m∑

i=1

ai,

where ai =
k∑

j=1
αic

βi
j ,∀i = 1,m. Similarly:

B = F(n) =

m∑

i=1

αinβi =

m∑

i=1

bi,

where bi = αinβi ,∀i = 1,m.

Let d j =
c j

n ,∀ j = 1, k, with the note of n =
k∑

j=1
c j, hence

k∑
j=1

d j = 1, then

according to Proposition (4.2.2), we deduce:

1 >
k∑

j=1

dβi
j =

k∑
j=1

cβi
j

(
k∑

j=1
c j)βi

≥ 1
kβi−1 ,→ 1 >

k∑
j=1
αic

βi
j

αi(
k∑

j=1
c j)βi

=
ai

bi
≥ 1

kβi−1 ,

for all i ≥ 1.

Combining with Corollary (4.2.4) and Lemma (4.2.5), we have

1 > max
i=1,...,m

{
ai

bi

}
≥

m∑
i=1

ai

m∑
i=1

bi

=
A
B
≥

m∑
i=1

1
kβi−1 bi

m∑
i=1

bi

≥ 1
kβm−1 . (4.2.6)

The right-hand-side equality happens when m = 1 and ai
bi

= 1
ki−1 ↔ c1 = c2 =

.. = ck = n
k . �

The above proof concludes the validity of Theorem (4.2.1). The below

corollary shows that the lower bound can reach to a higher value than 1 and

that higher value depends on the fraction of the maximum size of subprob-

lems over the size of the original instance.

144

4.2 Runtime efficiency of decomposition-based methods and their
non-decomposition-based counterparts 145

Corollary 4.2.6. Given any Kmax ∈ N,Kmax > 1, if the size of every subproblem is

bounded in the interval [1,Kmax] then

ε1−β1 ≤ speedup,

where 0 < ε = Kmax
n ≤ 1. The equality happens when m = 1 and k · Kmax = n.

Proof. Let

di =
ci

n
→ 1 =

k∑

i=1

di and 0 < di ≤ ε ≤ 1.

We have
ai

bi
=

k∑

j=1

dβi
j ≤

k∑

j=1

d jε
βi−1 = εβi−1

k∑

j=1

d j = εβi−1, (4.2.7)

for all i = 1,m. The equality takes place if d j = ε, ∀ j, hence k · Kmax = n.

Replace the inequality (4.2.7) into the left hand side of inequality (4.2.6), the

following inequality holds:

1 > εβ1−1 = max
i=1,...,m

{
εβi−1

}
≥ max

i=1,...,m

{
ai

bi

}
≥ A

B
.

Since the sequence
{
εβi−1

}m

i=1
is strictly monotonic, hence the left-hand-side

equality does not take place with except for m = 1, or

εβ1−1 ≥ A
B
←→ ε1−β1 ≤ B

A
= speedup. (4.2.8)

�

Remark 4.2.7. Under the conditions stated, the result of the part a in theorem (4.2.1)

suggests that a SDEB implementation is faster than its PUND counterpart, but can-

not be faster than kβm−1 times. This is the ultimate upper limit to the speedup of a

SDEB implementation relative to its PUND counterpart. The lower this upper limit,

the less runtime efficiency that SDEB implementation gains and vice versa.

145

4.2 Runtime efficiency of decomposition-based methods and their
non-decomposition-based counterparts 146

The result of part b presents a very simple way which allows the speedup to

receive an adjustable minimum value by setting a maximum size Kmax for all sub-

problems. By doing so, one almost guarantees that the speedup cannot be smaller

than ε1−β1 which is known in advance. In other words, this result also shows an ad-

vantage of the SDEB approach in efficiency and effectiveness. For example, we can

use this result to predict the speedup before the second stage is performed so that we

can reserve ahead a certain amount of time for the combining algorithm, used in the

combining stage, to improve the quality of the final solution while still run faster

than the PUND counterpart.

However, the first condition imposed on the conquering-stage runtime functions

is quite restrictive; thus the range of application of this theorem becomes narrower.

As we know, conceptual runtime functions of practical conquering-stage algorithms

can be represented directly or approximately (by Taylor’s expansion) as the function

form in Ω̃.

Below is a modified result of theorem (4.2.1) for the broader class of run-

time functions Ω̃ which seems very close to runtime functions of practical

algorithms.

Lemma 4.2.8. Assume v = (v1, . . . , vk) ∈ Rk
+, and 0 < α < β, then

lim
‖v‖→∞

Fα(v)
Fβ(v)

= 0,

where Fx belongs to a space on Rk
+, k ≥ 1 with the maximum norm16 and ∀x > 0, Fx

is determined as

Fx(v) =

k∑

i=1

vx
i .

16Defined as ‖v‖ = max
i=1,k
{vi}.

146

4.2 Runtime efficiency of decomposition-based methods and their
non-decomposition-based counterparts 147

Proof. We have, with 0 < α < β:

0 ≤ lim
‖v‖→∞

Fα(v)
Fβ(v)

= lim
‖v‖→∞

{‖v‖α
‖v‖β

}


c +
∑

vi<‖v‖
vαi
‖v‖α

c +
∑

vi<‖v‖
vβi
‖v‖β


= 0→ lim

‖v‖→∞
Fα(v)
Fβ(v)

= 0. (4.2.9)

Due to
k∑

i=1
vi is the Manhattan norm on that space, so (4.2.9) still holds if

we replace the maximum by the Manhattan norm. In other words:

0 = lim(
k∑

i=1
vi

)
→∞

Fα(v)
Fβ(v)

= lim(
k∑

i=1
vi

)
→∞

k∑
i=1

vαi

k∑
i=1

vβi

. (4.2.10)

�

Let us explain the meaning of (4.2.10). If we consider vi as the size

of ith subproblem,
k∑

i=1
vi as the size of the original instance, then the com-

putational time associated with the ith coefficients αi in a function of Ω is

ai = αi ·
k∑

i=1
vβi

i . Lemma (4.2.8) determines that if the size of original instances

is large enough, then the computational time associated with αi ∀i < m can

be ignored. In other words, if the condition on the “positive” sign of those

lower degree coefficients in the definition of Ω is relaxed, then when the size

of original instances is very enough, we can remove those low-degree com-

ponents out of the conceptual runtime functions without impacting much on

the value of functions; or mathematically, the form of the conceptual runtime

functions can be reduced to F(x) = αm · xβm , αm > 0, βm > 1. In consequence,

the lower bound of the speedup in this asymptotical case 17 will be 1
εβm−1 which

is greater than that shown in the left-hand-side of the inequality (4.2.8) since

1 ≤ β1 < βm. Hence, theorem (4.2.1) in the asymptotical case is briefly pre-

17The case when the input size approaches to infinity.

147

4.2 Runtime efficiency of decomposition-based methods and their
non-decomposition-based counterparts 148

sented as:
1

εβm−1 ≤ speedup ≤ kβm−1, (4.2.11)

where ε, k are defined in theorem (4.2.1) and corollary (4.2.6).

4.2.2.2 Difference between our findings and Amdahl’s law

Our findings should not be confused with Amdahl’s law [3] which is funda-

mentally different from ours though both of them deal with things related

to speedup. Indeed, Amdahl’s law governs the speedup in solving a prob-

lem using parallel processors in comparison to using only one serial processor

to solve the same problem. According to this law, it is possible to derive an

upper bound of the speedup when the number of processors approaches to

infinity. In contrast to Amdahl’s law, our results deals with the speedup of

a SDEB implementation compared to its PUND version. Moreover, the two

implementations in our case are executed on the same serial processor. As

shown in the previous subsection that the speedup is bounded for given in-

puts of given size.

4.2.2.3 Discussion

This analytical study investigates the bounds on the runtime speedup of

SDEB implementation with reference to its PUND counterpart. It has been

proven mathematically that the speedup is bounded. Given an input in-

stance, the upper bound of the speedup can be determined by the degree

of the conceptual runtime function of the conquering-stage algorithm and

the number of subproblems. However, it is not proven here that the bound

is a strict upper bound in a general case except in the asymptotical case. In

148

4.2 Runtime efficiency of decomposition-based methods and their
non-decomposition-based counterparts 149

asymptotical case, that upper bound is actually the strict bound and in or-

der to reach a speedup as high as possible, all subproblems must have same

size18.

Under the assumption 1.b of runtime of the dividing and combining stages,

the lower bound is always greater than 1 implying that a SDEB implemen-

tation runs faster than its PUND counterpart. This lower bound can be in-

creased by setting a maximum number of elements 19 for subproblems as

proven in Corollary 4.2.6. For the asymptotical case that when size of the

original instance is very huge, according to the inequality (4.2.11) in Lemma (4.2.8),

the lower bound increases even without changing that maximum number of

elements.

Our results are different from Amdahl’s law not only because of serial

versus parallel realization but also for different bound values. The bounds in

our investigation depend on input size, parameters settings, and complexity

of the conquering-stage algorithm, whereas in Amdahl’s law the bound val-

ues do not depend on any of these factors. Moreover, Amdahl’s law shows

the finite upper bound of speedup of any program run on parallel machines

no matter how many processors are used; in contrast, we showed that the

speedup of SDEB implementation is bounded but its upper bound kβm−1 in-

creases if the number of subproblems increase, and this bound is surely finite

only if the number of subproblems k is finitely bounded. It should be cautious

18Since the reduced form of conceptual runtime function in Ω̃ indicates m =

1, the equal-in-size condition for all subproblems makes all equalities take

place in Propositions, Lemmas, and Corollaries (in previous subsection).
19Which means cities or nodes for TSP and/or VRP.

149

4.2 Runtime efficiency of decomposition-based methods and their
non-decomposition-based counterparts 150

when applying the bounds if the assumption of running time of conquering

stage to be greater than other stages is violated. From current analytical re-

sults, the running time of a SDEB implementation becomes shortest when all

sub-problems are at equal size. As decomposing and combining stage can

be independent of conquering stage which lead to their running time might

be independent of sub-problem size, the assumption will be hence violated

if the decomposing and combing stage produce longer running time than

conquering stage when all sub-problems are at equal size. Finally, by assign-

ing an available processor to the task of solving a subproblem, we can easily

build up an efficient and effective parallel version of a serial SDEB imple-

mentation. We would like to point it out here that the result presented here

should be interpreted cautiously as the upper bound has not been proved to

be the strict upper bound of the speedup. We expect to address that issue in

future.

Decomposing algorithms are usually defined based on the so-called “dis-

tance function” which measures the distance between two points in search

space. For example, in Euclidean Traveling Salesman Problem (ETSP), this

function is the Euclidean distance function. But the definition of a suitable

distance function is problem-dependent and is aimed at describing as close as

possible the impact (or role) of one or more components of a solution20 upon

the complete solution of the problem. On the other hand, not less impor-

tant than building up a suitable distance function, decomposing algorithms

should be designed such that 1) it is convenient to re-construct a high qual-

ity solution to the original instance from the subsolutions and 2) it results in

20Components are, for example, two joining cities in a closed tour of TSP.

150

4.2 Runtime efficiency of decomposition-based methods and their
non-decomposition-based counterparts 151

subproblems of approximately equal size to gain better speedup.

These findings have shown the runtime efficiency of the SDEB approach

in comparison to its PUND approach. One may question about the quality

of solution of the SDEB approach compared to that of the PUND. In fact, the

solution quality of the SDEB approach depends not only on the strength of

the conquering-stage algorithm but also on how well decomposing and com-

bining algorithms are designed and how skillful the combination between

them is. Consequently, structure of problem will affect on the way of com-

bining subsolutions of and designing those algorithms. If the structure of

problem can be exploited to ease the problem decomposition into subprob-

lems such that structure of these subproblems are highly independent of each

other, then an SDEB approach which makes full use the problem structure is

a promising candidate to solve the problem effectively.

Comparing the solution quality between an SDEB and PUND approaches

in general is not possible since the design of decomposing and combining

algorithms is problem-dependent i.e. there is no general paradigm for cre-

ating those algorithms. But, given a particular problem, this comparison

can be done in some ways. One possible way is to determine determinis-

tically/probabilistically whether or not at least one optimal solution exists

in the search space of the SDEB implementation. Another way is to prove

on the convergence to optimality of the SDEB implementation. Following

the former way, we obtained a sufficient condition for instances of Euclidean

TSP that ensure that all optimal solutions are in the search space by a simple

decomposing and combining algorithms. This finding will be presented in

subsection 4.3.

151

4.2 Runtime efficiency of decomposition-based methods and their
non-decomposition-based counterparts 152

4.2.2.4 SDEB in relationship with POPMUSIC and Dantzig-Wolf Principe

- How many subproblems need to be solved?

There are some similar characteristics shared between our SDEB approach

and POPMUSIC. Firstly, in POPMUSIC a search procedure is used to opti-

mize the sub-problems formed by parts resulted from a clustering algorithm

rather than optimize the original problem. This procedure can be viewed as

playing the same role as the conquering-stage algorithm in SDEB approach.

Secondly, if r = p in POPMUSIC the implementation is equivalent to the

PUND employing that search procedure. Thirdly, after a sub-problem is lo-

cally optimized, there is a certain procedure used to recover the solution of

the original problem from that of the sub-problem. In SDEB methods, such a

procedure appears in the combining stage.

But there are some dissimilarities between them. Indeed, the SDEB ap-

proach may require the sub-problems right after clustering stage and be-

fore the execution of the conquering stage to be known, whereas POPMU-

SIC builds such a sub-problem from the parts. In addition, sub-problems in

SDEB are distinct from each other, but in POPMUSIC they can interfere mu-

tually. In SDEB, the number of sub-problems are fixed, whereas this quantity

in POPMUSIC cannot be known until the end of the execution.

From the runtime efficiency point of view, the results of the speedup

bounds presented in section 4.2 can be applied to analyze runtime perfor-

mance of POPMUSIC. More specifically , if the sum of the sizes of all sub-

problems, which would be optimized in iterations of POPMUSIC’s imple-

mentation, is close to the size of the original instance, then our results of

speedup bounds can be used to approximate the speedup of the POPMUSIC

152

4.2 Runtime efficiency of decomposition-based methods and their
non-decomposition-based counterparts 153

and its PUND version. A similar reasoning is also applicable to Dantzig-Wolf

Principle.

Now, assume there is an implementation of these methods to solve a cer-

tain COP and this implementation will eventually end its solving process

after solving K subproblems with corresponding size Ni,∀i = 1,K for an op-

timization problem instance with size N. Set

M =

K∑

i=1

Ni.

Devised by runtime analysis in the previous section, we will try to answer

how many subproblems this implementation should run to maintain a better

performance in terms of runtime in comparison to its PUND version. As-

sume that the empirical runtime function of the algorithm used to solve sub-

problem belongs to Ω (see Equation (4.2.1)) we have:

1
εβ1−1 ≥

K∑
i=1

F(Ni)

F(
K∑

i=1
Ni)

=

K∑
i=1

F(Ni)

F(M)
≥ 1

kβm−1 (4.2.12)

where

ε =

max
i=1,K

Ni

M
,

and empirical runtime of that implementation is

A =

K∑

i=1

F(Ni)

Let B = F(N) be the empirical runtime of the PUND version of that imple-

mentation on the original instance, inequalities (4.2.12) are equivalent to

1
εβ1−1 ≥

A
F(M)

=
A
B

F(N)
F(M)

≥ 1
kβm−1 ⇒

1
εβ1−1

F(M)
F(N)

≥ A
B
≥ 1

kβm−1

F(M)
F(N)

(4.2.13)

153

4.2 Runtime efficiency of decomposition-based methods and their
non-decomposition-based counterparts 154

From Corollary 4.2.4, we deduce the following claim:

min
j=1,m

(M
N

)βi

≤ F(M)
F(N)

=

m∑
j=1
α jM

β
j

m∑
j=1
α jN

β
j

≤ max
j=1,m

(M
N

)βi

. (4.2.14)

Remark 4.2.9. In the event that total size of solved subproblems is smaller or equal

to the size of the original instance, i.e. M ≤ N, then that decomposition-based im-

plementation still runs faster than its PUND version at least εβ1−1 ∗
(

N
M

)β1
times due

to

max
j=1,m

(M
N

)βi

=

(M
N

)β1

>
(M

N

)β2

> . . .
(M

N

)βm

= min
j=1,m

(M
N

)βi

.

Moreover, an upper bound of the speedup between runtime of that decomposition-

based implementation to runtime of its PUND version is derived as

speedup =
B
A
≤ kβm−1

(N
M

)βm

where the equality takes place if and only if m = 1. When m > 1, this upper bound is

no longer the tightest bound of the speedup. That bound value becomes the tightest

bound only when M = N. This implicates that, we can regard the above bound value

as a good approximate upper bound when M is close to N. When the total size of

subproblems is much far smaller than the size of original instance, the approximation

for the upper bound here will become less accurate than when the total size is very

close to the original instance’s size.

Remark 4.2.10. When total size of all solved subproblems is greater than the size of

the original instance, i.e. M > N, similarly we have:

min
j=1,m

(M
N

)βi

=

(M
N

)β1

<
(M

N

)β2

< . . .
(M

N

)βm

= max
j=1,m

(M
N

)βi

.

Hence,

εβ1−1 ∗
(N

M

)βm

≤ speedup =
B
A
≤ kβm−1

(N
M

)β1

154

4.3 On the Optimality of Solutions to Euclidean TSP using a simple SDEB
Method 155

If M is large enough such that the right-most-hand-side term is less than 1, i.e.

the decomposition-based implementation needs to solve too many subproblems be-

fore reaching a good solution (to the original instance), then the decomposition-based

implementation is no longer more efficient in term of runtime perspective than the

non-decomposition-based version. More precisely, if M > M0 where

M0 = N ∗ β1
√

kβm−1.

then the decomposition-based implementation becomes less efficient than its non-

decomposition-based version.

4.3 On the Optimality of Solutions to Euclidean TSP using a

simple SDEB Method

As discussed in subsection 4.2.2.3 on pros and cons of SDEB methods, besides

efficiency in runtime there is an obstacle for SDEB methods in achieving high

quality solutions that lies at the decomposing and combining stages. To en-

sure that achievement for a certain SDEB implementation over its PUND im-

plementation, we need to guarantee that there is always a “positive chance”

of finding optimal solutions for the SDEB. Solution quality of that SDEB im-

plementation will depend on how strong the guarantee is. The most simple

guarantee is to ensure that the search space of that SDEB implementation will

contain at least one optimal solution21. Another guarantee that is harder to

obtain is to ensure the convergence to optimal solutions for the SDEB imple-

mentation. In this subsection, we will conduct a case study on ETSP using a

21There is possibility that optimal solutions are filtered out of the search

space due to decomposing and combining procedures.

155

4.3 On the Optimality of Solutions to Euclidean TSP using a simple SDEB
Method 156

simple SDEB method. The aim of the study is to obtain a sufficient condition

on structure of ETSP to guarantee that the SDEB method will have optimal

solutions in its search space.

The work in this subsection contributed a part in the publication [56]

4.3.1 The Optimal Solutions in Solution Space - a Sufficient

Condition on Structure of ETSP

In this paragraph, we consider the case where a SDEB method is applicable

to ETSP. In accordance to SDEB approaches’ scheme in section 4.2, after ob-

taining all solutions to subproblems, one needs to assemble them to form a

feasible solution, i.e. a closed tour in the context of solving TSP, to the origi-

nal instance. The most intuitive approach is to choose some edges on tours

of subproblems (we will use the term “sub-tour” onwards instead) then cre-

ate bridges linking sub-tours mutually (these bridges will have vertices from

chosen edges) in such a way that after those chosen edges are removed from

sub-tours, bridges and the rest edges of sub-tours will form a closed tour - a

feasible solution to the original instance. If we search for such a feasible solu-

tion by increasing the number of chosen edges of all sub-tours to the number

of edges of corresponding sub-tours then this procedure will be intractable as

the ETSP is a NP-hard problem [5]. So, it is the best choice if we can confine

the number of chosen edges (for each sub-tour) to one edge. However, one of

possible concerns such as whether or not optimal solutions are in the search

space with such a limitation, may be raised.

This concern will be resolved by a sufficient condition on ETSP’s structure

in this subsection. If any ETSP instance satisfies this condition, then all opti-

156

4.3 On the Optimality of Solutions to Euclidean TSP using a simple SDEB
Method 157

mal solutions of this instance must be in the search space of a certain SDEB

approach.

Theorem 4.3.1. Assume the number of subproblems equals two, and let A and B

denote these two set of points22, dA and dB be diameter23 of A and B, respectively, and

dAB be distance24 between A and B. If there exist n ∈ N, 2 ≤ n ≤ min{|A|, |B|} such

that

dAB ≥ dn =
min{dA, dB}

2(n − 1)
+ dA + dB, (4.3.1)

then there exists an SDEBimplementation whose search space contains all optimal

solutions to the original instance and that search space is formed with a total number

of chosen edges of two sub-tours less than 2n.

Proof. Let Tn be the set of all feasible tours to the original instance obtained

by the combining procedure from two tuples. Where each tuple has n edges

chosen from a part (the number of edges of a tuple is equal to the other’s

to make a feasible tour to the original instance). Obviously we have 1 ≤ n ≤
min{|A|,|B|}

2 . Set S n = min{cost of a tour t = |t| : t ∈ Tn}, we will prove that if (4.3.1)

holds then

S n > S 1 ∀n > 1. (4.3.2)

We choose any n edges for each sub-tour whose lengths are ai, bi, i = 1..n,

where ai ∈ A, bi ∈ B ∀i. Let xi, i = 1..2n be the length of the ith bridge, ξ be the

22Each set contains all points of one subproblem
23By diameter of a set, we mean the longest distance between any two

points of the set.
24By distance between two sets, it is defined as the shortest distance be-

tween any pair of points, one from a set, another from the other one.

157

4.3 On the Optimality of Solutions to Euclidean TSP using a simple SDEB
Method 158

Figure 4.2: There are at least two chosen edges, one from a sub-tour, the other

from the other one; such that the vertices of two bridges A1B1 and A2B2 are

from their four vertices A1, A2, B1, B2 only. Here a, c, f , e are lengths of edges

accordingly.

sum of length of the rest edges of the two sub-tours (not chosen edges) . We

need to consider following two cases:

Case 1: There exists at least one pair of edges such that the two bridges

formed from only their four vertices as shown in Fig.4.3.1. So, the length of

the final tour is

|t2| = ξ +

2n−2∑

i=1

xi −
n−1∑

i=1

(ai + bi) + (e + f − a − c).

From (4.3.1), we have
2n−2∑

i=1

xi ≥ (2n − 2)dAB > 2(n − 1)(dA + dB) ≥ 2
n−1∑

i=1

(ai + bi)

→ |t2| > ξ +

n−1∑

i=1

(ai + bi) + (e + f − a − c) ≥ S 1.

Case 2: If case 1 does not happen, we can assume without loss of generality

that dA ≥ dB and there are two edges of the sub-tour of A and two of B with

bridges formed as shown in Fig.4.3. The length of the final tour, in this case,

is

|t2| = ξ +

2n−4∑

i=1

xi −
n−2∑

i=1

(ai + bi) + (e + g + h + i − a − b − c − d).

158

4.3 On the Optimality of Solutions to Euclidean TSP using a simple SDEB
Method 159

A1

A2 B2

B1

B3

B4
A4

A3

b

i

x

h
d

a c

e

f

g

Figure 4.3: There is no existence of any two chosen edges, one from a sub-

tour, another from the other one; such that the vertices of two bridges come

from their four vertices. Here, A1A2, A3A4 are chosen edges of cluster A and

B1B2 is a certain chosen edge of cluster B. Lowercase letters stand for the

lengths of according edges. Since A1 links to B1, so B2 must links to A3 (cannot

be A2 due to the assumption), then A4 definitely links to another node, name

B3 and so on ...

Due to h + x > f and from the assumption (4.3.1), we have

2n−4∑

i=1

xi + (g + i) ≥ dB + 2(n − 1)(dA + dB) ≥ 2{
n−2∑

i=1

(ai + bi) + (b + d)} + x.

→ |t2| > ξ +

n−2∑

i=1

(ai + bi) + (b + d) + (e + f − a − c) ≥ S 1

Hence if this case takes place, one always has another way of choosing

one edge only from each sub-tour , and this choosing will definitely form

a certain tour belonging to T1 such that the length of this new formed tour

is absolutely lower than the length of the tour in Tn (in this case this length

equals |t2|).
In other words, these both cases have proven successfully the inequality

(4.3.2). Since

159

4.4 A hybrid SDEB method with ACO for large ETSP 160

dn =
min{dA, dB}

2(n − 1)
+ dA + dB

is a monotonically decreasing sequence, if (4.3.1) takes place at n = n0

then

dAB ≥ dn0 > dn ∀n > n0 → S n > S 1 ∀n > n0.

In other words , the inequality (4.3.2) is held ∀n ≥ n0 or all optimal tours of

the original instance are in the search space formed with a number of chosen

edges from each sub-tour which is less than n0. Theorem (4.3.1) has been

proved. �

Remark 4.3.2. A clear corollary resulting from this theorem is that if n = 2 and

(4.3.1) still holds then since the total number of chosen edges for these two sub-

tours must be even and less than 2n, the optimal tours of the original instance will be

included in the search space formed by using only two bridges (i.e. choose only one

edge from each sub-tour to make bridges). In consequence, the complexity of finding

the best tour for the original instance given two sub-tours will be O(m) , where m is

the size of the original instance.

4.4 A hybrid SDEB method with ACO for large ETSP

The result in the previous subsection may be theoretically interesting but its

assumptions are less frequently met in real-world instances, such as, it is hard

to satisfy the condition (4.3.1. The following results are for the case when the

number of subproblems is higher than two.

160

4.4 A hybrid SDEB method with ACO for large ETSP 161

Let us state the following assumptions before entering details. If the num-

ber of subproblems k > 2, and the inter-distances among them (possibly used

interchange as “clusters” or “set of points”) are much larger than the diame-

ter of any cluster (this could be the case when clusters are very far away from

each other); and the distances among any three clusters meet the triangular

inequality; then we have a result stated in Theorem (4.4.1). Noticing that each

cluster has an even number of bridges in order to guarantee that the final tour

(tour to the original instance) is closed, we obtain:

Theorem 4.4.1. In an optimal final tour, there exist no two clusters that are joined

together by at least two bridges.

Proof. Assuming there exists a final tour containing two certain clusters A

and B which are joined together by at least two bridges as shown in Fig.4.4.

In this figure, the two clusters are joined together by two bridges AaB and

AxB whose length are a and x, respectively25. Due to the fact that there are

more than 2 clusters, we can assume without loosing generality that cluster

B has at least one bridge of length y which links B to a cluster C. By the

triangular inequality, x + y > z, so if we replace bridges AB = x and BC = y

of this final tour by a new bridge AC = z then we obtain a new final tour t

which is shorter than the previous tour26. In other words, the previous tour

cannot be an optimal tour , or equivalently, the optimal final tour cannot

contain two bridges used to join two certain clusters together or this theorem

is proven. �

25For simple visualization, a cluster is drawn as a point in the figure.
26It is easy to show t is a feasible solution.

161

4.4 A hybrid SDEB method with ACO for large ETSP 162

B

D

b

A

C

y

x

z

a

Figure 4.4: Cluster A has two bridges which link A to cluster B with the length

of a and x, respectively. Here, bridges AB and BC are replaced by AC to get a

better solution.

B

A

E

C
F

Figure 4.5: Cluster A has at least four bridges linking to other clusters.

Bridges BA and CA are replaced by BC to obtain a better solution. The nodes’

order of the previous tour can be ..BAF..CAE..B. After being replaced, this

order will become ..BC..FAE..B.

Theorem 4.4.2. In an optimal final tour, there exists no cluster that has at least four

bridges to link to other four distinct clusters.

Proof. Assuming that the cluster A has at least four bridges, each links to an-

other cluster (according to Theorem (4.4.1)) and the shape of linking is shown

in Fig.4.527. Similar to the proof of Theorem (4.4.1), we replace two bridges

27The arrows drawn in figure are for the purpose of simpler visualization.

162

4.4 A hybrid SDEB method with ACO for large ETSP 163

BA and CA by BC and obtain a new final tour which is surely shorter than the

old tour. Theorem (4.4.2) is proved. �

Observe that from Theorems (4.4.1, 4.4.2), in order to build an optimal

tour from sub-tours, each cluster should have only two bridges which are

deployed to link to two different clusters.

To summarize, we have suggested in this subsection a procedure based on

Theorems (4.4.1, 4.4.2) to resolve the case that the number of subproblems is

more than just two. This case is more frequently met in real-world instances

than the case of two clusters as in Theorem (4.3.1). Although this procedure is

basically a greedy algorithm and may not result in good solutions for all real-

world cases28, it is possibly effective to (at least) clustered ETSP instances.

4.4.1 Experimental Results

4.4.1.1 Large scale TSP instances for testing

We test the effectiveness of the proposed SDEB method by applying the algo-

rithm to two different benchmark problems. The first problem is the TSPLIB

at http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95.

We consider some large Euclidean instances with the number of cities be-

tween 650 and 3795. The second benchmark is a group of instances where

cities are randomly clustered distributed on the square [0, 106]. These in-

stances with the number of cities between 1000 and 5000 were generated by

the Instance Generator Code of the 8th DIMACS Implementation Challenge29.

28Due to No Free Lunch Theorem, this remark is also true for other ap-

proaches.
29http://www.research.att.com/ dsj/chtsp/download.html

163

4.4 A hybrid SDEB method with ACO for large ETSP 164

4.4.1.2 Performance comparison between SDEB-ACS and ACS

We compare the proposed SDEB-ACS with ACS. Because the run-time quan-

tity is also used to compare their computational efficiency, both algorithms

were run on the same computer (a Dell PC Pentium IV 2.4GHz processor,

256MB of RAM), the same code to implement ACS (except code parts par-

ticularly designed for SDEB-ACS including clustering and combining parts),

and the same settings for parameters as discussed in [65], m = 10, β = 2, q0 =

0.98, α = ρ = 0.1, and τ = 1/(n·Lnn)−1. In addition, all testing instances are very

large, thus for both case, a candidate list is used with the length of cl = 20.

4.4.1.3 Memory storage requirement:

For the large-scale TSP instances, the required memory to store the pheromone

and cost matrix may contribute most remarkably to the memory require-

ment of the algorithm. With the input size of N cities, the amount of mem-

ory to store these two matrices should be CN(N − 1) bytes, where C is a

system-dependent parameter to store a real-type number and these two ma-

trices store the upper triangle of matrices only. However, the proposed SDEB

method takes, during the execution of ACS, approximately Cn(n − 1) bytes

where n is the size of largest cluster. It can be seen that, from the point of

view of memory requirement, the SDEB-ACS is more efficient than ACS.

4.4.1.4 Experimental results:

To compare the run-time of SDEB-ACS with ACS, we take the factor total run-

time of ACS of SDEB-ACS. The larger this factor, the faster the SDEB-ACS is.

Due to the fact that the optimal solutions of generated clustered Euclidean

164

4.4 A hybrid SDEB method with ACO for large ETSP 165

TSP instances are unknown, we use a factor relative performance to compare

ACS’s performance with SDEB-ACS on quality of solutions. This factor (rela-

tive performance) is computed by taking proportion of the subtraction of the

smallest cost found by ACS with SDEB-ACS’s over SDEB-ACS’s. Each in-

stance was run totally 15 trials, each trial had 5000 iterations, and for clusters

whose size is less than 150 we set the parameter cl = 0, because such a cluster

may not be considered as a large instance.

4.4.1.4.1 For clustered Euclidean TSPs: As shown in the table 4.4.1.4.1,

SDEB-ACS always produces better solutions than the standard ACS, in much

shorter time. For example, it took 16354.6 seconds for solving a 5000-city

instance using ACS, but only 1383.31 seconds for the proposed SDEB-ACS

algorithm. This is attributed to the fact that SDEB-ACS outperforms ACS in

clustered Euclidean TSP. Moreover, notice that the order of runtime function

of ACS βm = 3, and according to theorem (4.2.1) the speedup gained by

using ACS as conquer algorithm would not be greater than kβm−1 = k2 where k

is number of subproblems. The experimental result in table 4.4.1.4.1 therefore

conforms to theoretically estimated bounds.

4.4.1.4.2 For benchmark Euclidean TSPs: Because almost large benchmark

instances do not follow the sufficient condition mentioned in Theorems (4.4.1,

4.4.2), thus the combining algorithm used for such an instance has a little but

important change which takes a part in improving the quality of final solu-

tion. After doing the same thing as done for the above type of instance, the

”representative tour” (found at step 2 in the above remark) is replaced by

a closed tour which characterizes like a TSP tour -starts from a city, visit all

165

4.4 A hybrid SDEB method with ACO for large ETSP 166

Table 4.1: A comparison of SDEB-ACS and ACS is based on clustered in-
stances of 1000-5000 cities randomly generated. Each trial was stopped after
5000 iterations. Averages are over 15 trials. Results in bold are the best in
the table. (*) is the proportion of run-time of ACS to SDEB-ACS’s; k is the
number of clusters. Entries in the results are in Euclidean distance.

No. of SDEB ACS (*)ACS/ [(2)-(1)]

cities average std dev best(1) k average std dev best(2) SDEB /(1)

1000 11870553.80 74110.93 11747792 6 12302227.67 88129.51 12168397 3.68 3.58%

1500 13840435.67 70049.18 13735671 6 14143592.20 104250.71 13971107 5.63 1.71%

2000 16435565.40 82162.62 16307804 8 17124049.13 187148.32 16908891 5.08 3.69%

2500 17841082.93 68272.57 17740618 13 18592455.20 185965.00 18324584 6.35 3.29%

5000 25300826.40 82162.62 25147562 26 26515075.20 239561.92 26202524 11.82 4.20%

Table 4.2: A comparison of SDEB-ACS and ACS is based on large benchmark
instances. Averages are over 15 trials. Each trial were stopped after 5000
iterations. Results in bold are the best in the table. (*) is the proportion of
run-time of ACS to SDEB-ACS’s; k is the number of clusters.

prob. SDEB ACS Optimum (*)ACS/ [(2)-(1)]

name average std dev best(1) k average std dev best(2) known SDEB /(1)

p654 35554.67 297.48 35113 3 35860.67 438.98 35120 34643 1.96 0.02%

fl3795 30804.33 120.27 30689 4 30881.33 64.97 30842 28772 2.44 0.50%

other cities and come back the starting city- but a city in the closed tour can be

visited more than once as long as its total length is less than the replaced one.

As shown in Table 4.4.1.4.2, SDEB ACS outperformed ACS for both bench-

mark instances p654 and fl3795 both average and optimal solution, but for

fl3795 the ACS seems more stable than SDEB ACS which can be seen from

the value of standard deviation.

4.4.1.5 Discussions

The SDEB ACS proposed in this article shows promising results in increas-

ing efficiency both in run-time and quality of solution for large clustered Eu-

clidean TSP. The proposed method runs faster than the conventional ACS

166

4.5 A One-Level Partitioning-based Implementation for 2D Protein
Folding Problem 167

that does not use clustering. Moreover, the proposed algorithm can be con-

verted to a parallel version with a little changes in its serial version. The

results presented in this article underscores the idea that both decreasing run-

time and guaranteed quality of solutions is achievable when a decomposition-

based method is applied to problems whose solutions can be decomposed

into sub-solutions.

4.5 A One-Level Partitioning-based Implementation for 2D

Protein Folding Problem

A protein’s spatial structure determines its biological function which is very

important in modern molecular biology. However, it is well-known that

problem of Protein Structure Prediction (PSP) is intractable on even simple

lattice models [55]. This leads to the situation that metaheuristic optimization

methods tend to be the most appropriate algorithmic choice to solve PSP. In

this section, we conducted a simple experiment showing how to solve PSP

for 2D HP models by a GA-based algorithm that uses the idea of reducing

the size of search space from decomposition-based search methodology. A

new way of representing conformations on 2D grid which reduces the size of

search space at least twice in comparison to the size of search space formed

by the conventional way, is suggested and experimented in this section. The

reasons that we experiment this problem with GA but not ACO are 1) to un-

derstand why GA is outperformed by ACO [180] by focusing on the issue

of GA’s problem representation; 2) to apply the idea of decomposition-based

search into GA.

167

4.5 A One-Level Partitioning-based Implementation for 2D Protein
Folding Problem 168

4.5.1 The HP Model

The hydrophobic-hydrophilic model (HP model) is one of the most studied

simple protein folding models proposed in [55]. HP model is based on the

generally accepted assumption that the hydrophobicity of amino acids is one

of central forces involved in driving proteins to adopt a compact globular

form. The native structure of most proteins contains a hydrophobic core, i.e.,

the more hydrophobic (non-polar) amino acids are concentrated in compact

cores while hydrophilic (polar) amino acids are located on the surface of the

protein. Thus, a protein is modeled as a string over H, P, where H represents

a hydrophobic amino acid and P represents a hydrophilic amino acid. It is

clear that the HP model restricts the space of conformations to self-avoiding

paths on the lattice in which vertices are labeled by the amino acid.

Scoring in the HP model is based on topological hydrophobic contacts. To

evaluate a particular conformation in the HP model, the number of H-H topo-

logical contacts in the lattice is counted. A H-H topological contact is formed

by a pair of amino acids which are adjacent on the grid and not consecutive

in the sequence, see Fig. (4.6). Such a H-H contact is assumed to provide

an energy contribution of −1. The optimal conformation is the one with the

most H-H contacts. As the length of amino acids sequence increases, exhaus-

tive searching of all possible conformations, even on the two-dimensional

lattice, becomes intractable. In this case, optimization (or search) algorithms

must be used to find near-optimal conformations. Various advanced compu-

tational methods have been employed, including evolutionary computation,

simulated annealing, Monte Carlo methods, branch and bound and machine

learning approaches.

168

4.5 A One-Level Partitioning-based Implementation for 2D Protein
Folding Problem 169

Figure 4.6: HP sequences embedded in the square lattice (the left figure) and

the triangular lattice (the right figure). The black squares stand for residues

H, while the white for amino acids P. The dot lines show the formed H-H

contacts.

Details of setting up a simple GA to solve this problem for a 2D model can

be found in the next section. Section 4.5.3.2 will be devoted for experimental

results and discussion as well. The last section will give some conclusions

about this work.

4.5.2 Algorithm Design

When working with lattice models, proteins are often represented using in-

ternal coordinates including Relative Encoding and Absolute Encoding. In

our algorithm, the relative encoding scheme is used. Furthermore, the HP

model under consideration is on the two-dimensional square lattice.

4.5.2.0.1 Mutation on the Relative Encoding The effect of one-point mu-

tation on the structure is examined in Fig. (4.7(a)). Its relative encoding is

S rel = FRFRRLFLF when viewed from the amino acid marked by 1. A one-

169

4.5 A One-Level Partitioning-based Implementation for 2D Protein
Folding Problem 170

point mutation in the fifth position could produce either of S 1
rel = FRFRFLFLF

or S 2
rel = FRFRLLFLF, which are shown in Fig. (4.7(b)) and Fig. (4.7(c)) re-

spectively. From this example, we can see that a one-point mutation in the

9 8

5

4 2

1

5

4 2

1

8

9

7

7

5

4 2

1

7

8 9

(a) (b) (c)

Figure 4.7: In (b) a one-point mutation of the structure in (a) at the fifth gene.

An ‘R’ was mutated to an ‘F’ producing a lever effect of 90 degrees coun-

terclockwise. In (c) an ‘R’ was mutated to an ‘L’ producing a lever effect of

180 degrees counterclockwise. The dot lines in (b) and (c) represent the “mu-

tated” contacts.

relative encoding produces a rotation effect in the structure at the mutated

point. To get the same effect in the absolute encoding, one must perform

a specific mutation operator so-called macro-mutation, that is, many genes

need to be simultaneously mutated to produce the same change in the struc-

ture. [126] defined such a rotation operator in the absolute encoding as, given

a point at which the rotation is produced, all the remaining genes will be

changed according to a mapping that depends on the angle to be rotated,

i.e. to rotate 90 degrees clockwise U → R,R → D,D → L, L → U. In the

current example, Fig. (4.7(a)) is encoded as S abs = DLLURUULL while the

first mutated configuration (Fig. (4.7(b))) is S 1
abs = DLLUULLDD and the rest

configuration is S abs = DLLULDDRR.

In our algorithm, if a gene is mutated, it will follow the regular: L →

170

4.5 A One-Level Partitioning-based Implementation for 2D Protein
Folding Problem 171

R,R→ F, F → L.

4.5.3 Fitness function

4.5.3.1 Computing number of H-H Contacts

In the conventional way of encoding in GA approaches ([126, 163, 197]), the

first and second amino acids in the sequence have fixed position on the square

lattice on which the first one is supposed to be at the origin without loosing

the generality. Thus, given a sequence of N + 2 amino acids, it needs to en-

code each chromosome as a sequence of only N genes, each gene receives

any value in {L,R, F}. Given such a chromosome and knowing the positions

of the first and second residues (amino acid), one can calculate the number of

H-H contacts and the number of collision positions (each of which has more

than 1 residue being put at).

Search space of this approach has, however, contained at least 4 distinct

solutions for each conformations (both feasible and infeasible one). It means

that, given a certain conformation, there are at least 4 distinct chromosomes

under the form of {L,R, F}N encoding that conformation ! Technically, if we

assume the length between two adjacent residues on the lattice is 1, then the

smallest-in-size square needed to cover any conformation will definitely has

the size 2(N+1). This problem tends to be a kind of ‘redundant’ encoding.

In this report, we proposed a new way of encoding that overcomes this is-

sue. From the fact that given a sequence {L,R, F}N there always exists a square

of size N + 1 that covers any conformation induced by Relative or Absolute

Encoding, hence we can assume there is a fixed square of size N + 1 in prior

and put the conformation into that square without changing its “structure”

171

4.5 A One-Level Partitioning-based Implementation for 2D Protein
Folding Problem 172

(actually, this can be done by using ‘shifting and/or rotating’ operators on

the previous position of the conformation). Moreover, to do this, instead of

fixing positions of the first and second residues, one must fix positions of the

middle residue and its adjacent residue. Also, it is a bit technical that when

one draws position of the whole conformation on square lattice, one needs

to start from the residues staying on the same side in relative to the middle

(right side, for instance), then from the other side (left). After that, the num-

ber of H-H contacts and collision positions are found by the same way as in

previous approaches.

Clearly, using this proposed technique overcomes such a redundant issue

in encoding and may affect the convergent speed positively.

4.5.3.1.1 Choosing fitness function It is well-known that this is always

one of key steps in designing Genetic Algorithms. If the fitness function is

badly designed, it would guide wrongly the search progress.

Our designed GA for the PSP allows infeasible conformations to exist,

thus its fitness function must take into account the number of collision posi-

tions. Since there have been no suggestion in details of how to design such

a fitness function with the existence of infeasible conformations found in the

works already mentioned, we tried to list standards (conditions) on which a

fitness function should be built.

Let x and y denote the number of H-H contacts and the number of colli-

sion positions, respectively, and let the fitness function be F(x, y). Below are

standards for building F(., .):

1. F(x, y) > 0 ∀x, y ∈ N (a must).

172

4.5 A One-Level Partitioning-based Implementation for 2D Protein
Folding Problem 173

2. F(x, y1) > F(x, y2)⇐⇒ y1 < y2 (a must).

3. F(x1, y) > F(x2, y)⇐⇒ x1 > x2 (a must).

4. F(x1, 0) > F(x2, y) ∀y > 0 (optional).

The standards (1,2,3) are compulsory, while the fourth needs to be paid

more attention to. Indeed, if we want to make sure that the best infeasible

conformation has a fitness lower than the worst feasible conformation, then

the fourth should be used. But, applying this standard can lead to a biased

search process in which it ignores potential conformations (have y > 0 but

need few changes - mutation steps - to become feasible ones with x value

much higher).

In addition, with the same reason as for the standard 4, knowing clearly

the relationship between F(x1, y1) and F(x2, y2) if x1 < x2, y1 < y2 should also

be taken care of.

4.5.3.2 Results

In this section, performance of the approach using our proposed technique

(see section 4.5.3.1) is compared with that not using this technique (conven-

tional way).

Below are the benchmark instances which were used at least in [126, 163,

197] for the purpose of comparing performance. We will pick some of them

for our tests.

1. (20) HPHPPHHPHPPHPHHPPHPH;

2. (24) HHPPHPPHPPHPPHPPHPPHPPHH;

173

4.5 A One-Level Partitioning-based Implementation for 2D Protein
Folding Problem 174

3. (25) PPHPPHHPPPPHHPPPPHHPPPPHH;

4. (36) PPPHHPPHHPPPPPHHHHHHHPPHHPPPPHHPPHPP;

5. (48) PPHPPHHPPHHPPPPPHHHHHHHHHHPPPPPPHHPPHHPPHPPH

HHHH;

6. (50) HHPHPHPHPHHHHPHPPPHPPPHPPPPHPPPHPPPHPHHHHPHP

HPHPHH;

7. (60) PPHHHPHHHHHHHHPPPHHHHHHHHHHPHPPPHHHHHHHHHHHH

PPPPHHHHHHPHHPHP;

8. (64) HHHHHHHHHHHHPHPHPPHHPPHHPPHPPHHPPHHPPHPPHHPP

HHPPHPHPHHHHHHHHHHHH;

9. (20) HHHPPHPHPHPPHPHPHPPH;

Table 4.3: Found results for these sequences in literature. The bolded values
of E* are the surely minimum energies for the given protein sequences, the
other values have been the best known so far.

Instances
Seq. No. Length E*

1 20 -9
2 24 -9
3 25 -8
4 36 -14
5 48 -23
6 50 -21
7 60 -36
8 64 -42
9 20 -10

With the purpose of fairly comparing our proposed technique (mentioned

in section 4.5.3.1) with others, the code for both approaches was written on

Matlab 6.5 with a slight difference in the part of calculating fitness, and run

on the same computer which is a Pen IV, 2.6Ghz, 512MRAM.

174

4.5 A One-Level Partitioning-based Implementation for 2D Protein
Folding Problem 175

4.5.3.2.1 Algorithm Settings In all tests, common settings are below.

• .95 Crossover probability.

• 1-point crossover, roulette-wheel selection30.

• Mutation probability less than .005.

• Fixed population size at 100.

• Randomly initial population.

• Non-valid structures allowed by penalized counting the number of po-

sitions in the grid where collisions take place (see section 4.5.3.1.1)

• Complete population replacement (A) or the mating population and the

current one are ranked then choosing the best ones (B). In both scheme

just an elite individual is passed to the next generation.

• Two parents are mated with a probability PX to form two offsprings. If

the mating does not happen then the both parent will be considered as

the two offsprings.

4.5.3.2.2 Empirical results Listed below are specific fitness functions we

will consider for both GA approaches. From now on, we call the GA ap-

proach with our proposed technique GAreduced, and the other (not using this

technique) GAnot−reduced.

30As to fairly compare the performance of GAs on different ways of rep-

resenting conformation, selection operators must be the same in GA imple-

mentations. Therefore, we use wheel roulette selection operator for this study

although tournament selection is more the state-of-the-art.

175

4.5 A One-Level Partitioning-based Implementation for 2D Protein
Folding Problem 176

1. F(x, y) = ((x + 1)2 ∗ log(2 + x5))/(2 + y)2;

2. F(x, y) = ((x0.7 + 1) ∗ log(2 + x2))/((y ∗ (1 + log(2 + y)) + 1/log(2)) ∗ log(2 + y));

3. F(x, y) = (x + 1)2/(y + 1);

4. F(x, y) = (N + 2 + x − y)/(y + 1);

5. F(x, y) = (x0.5 ∗ log(2 + x5) + 0.01)/(y0.85 + 1.0);

Table 4.4: Results with different fitness functions for both GA approaches on
sequence 1. sq is the best solution quality over all runs, nopt is the number
of runs the algorithm finds sq, nruns is the total number of runs, % suc. is the
percentage of runs in which solution quality sq was achieved. There are 100
generations for each trial and scheme (A) of the population replacement is
used. GAreduced is GA using our proposed technique.

Fit. function GAreduced GAnot−reduced

No. sq nopt/nruns % suc. sq nopt/nruns % suc.

1 -8 2/10 20.0 -8 1/10 10.0

2 -8 6/10 60.0 -8 5/10 50.0

3 -8 6/10 60.0 -8 4/10 40.0

4 -8 2/10 20.0 -7 1/10 10.0

5 -8 5/10 50.0 -8 3/10 30.0

From Table(̃4.4, 4.5), the fitness functions 2,3,5 seem to be most suitable

for both GAreduced and GAnot−reduced.

Furthermore, as can be seen from these two Tables, with the same settings

GAreduced always outperforms GAnot−reduced in terms of the number of times it

hits the best solution (quantity nopt/nruns).

From Table (4.6), GAreduced gave a faster convergence to current best solu-

tions than GAnot−reduced did. A possible reason is because of the search space

176

4.5 A One-Level Partitioning-based Implementation for 2D Protein
Folding Problem 177

Table 4.5: Results with different fitness functions for both GA approaches on
sequence 4. sq is the best solution quality over all runs, nopt is the number
of runs the algorithm finds sq, nruns is the total number of runs, % suc. is the
percentage of runs in which solution quality sq was achieved. There are 150
generations for each trial and scheme (A) of the population replacement is
used. GAreduced is GA using our proposed technique.

Fit. function GAreduced GAnot−reduced

No. sq nopt/nruns % suc. sq nopt/nruns % suc.

1 -12 2/10 20.0 -12 1/10 10.0

2 -13 2/10 20.0 -13 1/10 10.0

3 -13 1/10 10.0 -13 1/10 10.0

4 -12 1/10 10.0 -12 1/10 10.0

5 -12 3/10 30.0 -12 1/10 10.0

Table 4.6: Compare performance between GAreduced and GAnot−reduced The fit-
ness function 2 is used in both implementations. There are 150 generations
for sequences whose length is less than 40, and 300 generations for the rest.

Instances GAreduced GAnot−reduced

Seq. No. Length E* sq nopt/nruns % suc. sq nopt/nruns % suc.

1 20 -9 -8 3/5 60.0 -8 3/10 60.0

2 24 -9 -8 3/5 60.0 -8 5/10 50.0

3 25 -8 -6 2/5 40.0 -7 1/10 10.0

4 36 -14 -13 2/5 40.0 -13 2/5 40.0

5 48 -23 -16 1/5 20.0 -15 1/10 10.0

6 50 -21 -18 1/10 10.0 -18 1/10 10.0

9 20 -10 -6 5/5 100.0 -7 1/10 10.0

of GAreduced is more compact than that of GAnot−reduced while both of them are

still containing all possible solutions. Any 2D conformation is modeled as

more than two distinct points in search space of GAnot−reduced which diverges

177

4.5 A One-Level Partitioning-based Implementation for 2D Protein
Folding Problem 178

the search because the search process might focus on distinct regions around

good distinct genes even though those distinct genes models the same so-

lution (i.e. the same 2D conformation). Because of this potential divergence,

GAnot−reduced could converge to best-so-far solutions slower than GAreduced does.

4.5.4 Discussion

In this section, we have shown a sufficient condition on Euclidean Traveling

Salesman Problem, when deploying the SDEB method. This condition guar-

antees all optimal solutions of a given instance (which meets the condition)

will be in the search space formed by choosing a certain number of edges

to form bridges. This condition is currently proven for the case that there

are two subproblems. Probably because of some conditional constraints, this

condition may not be seen frequently in real-world instances of ETSP, and

consequently the application range of this result is quite restricted.

It would be interesting to find other sufficient conditions with the same

purpose as this proven condition, but for higher number of subproblems.

Moreover, some early results obtained from ongoing numerical experiments

carried out to investigate the practical usefulness of results from Theorems (4.4.1,

4.4.2) were satisfactory (at least) to clustered Euclidean Traveling Salesman

Problem instances, and are the main motivation to continue those ongoing

experiments.

178

4.6 Summary 179

4.6 Summary

Empirical runtime analysis for the approach based on divide and conquer

principle to large scale instances of optimization problems was presented in

this chapter. The analysis has addressed scenarios to achieve better lower

bound on speedup of any SDEB approach in relative to its PUND approach.

Those scenarios include also the asymptotical case when size of input in-

stance approaches to infinity. Result on the asymptotical case showed that

the approach theoretically gain a faster runtime in comparing with its coun-

terpart but there exists a finite limit (upper bound) for the gain of runtime re-

duction. And that finite limit can be estimated from the empirical complexity

of an algorithm used to solve underlying problems and the number of parts

(subproblems) going through the searching process by the SDEB algorithm.

The estimation for that upper limit is a tight limit under given assumptions

for both asymptotical and non-asymptotical cases.

Relationship between these findings with runtime analysis for SDEB meth-

ods that do not govern number of subproblems when solving the original

instance, for examples POPMUSIC and Dantzig-Wolf Decomposition Princi-

ple, is addressed in this chapter. Results on the upper and lower bounds can

be transformed to these methods when total size of subproblems they were

solving is very close to size of the original instance.

In this chapter, we have also shown a sufficient condition on structure Eu-

clidean Traveling Salesman Problem so as to obtain the most simple guaran-

tee on optimality of found solutions of a SDEB method. This condition guar-

antees all optimal solutions of a given instance (which meets the condition)

must be in the search space formed by choosing a certain number of edges

179

4.6 Summary 180

to form bridges. This condition is currently proven for the case that there

are two subproblems. Probably because of some conditional constraints, this

condition may not be seen frequently in real-world instances of ETSP, and

consequently the application range of this result is quite restricted. This re-

striction on number of subproblems of two is removed in theorems (4.4.1)

and (4.4.2). However, results achieved in these two theorem are imposed by

the assumptions that perhaps suitable to large clustered ETSP.

It should be interesting to find other sufficient conditions similar to this,

but for higher number of subproblems without imposing any assumption.

Moreover, numerical experiments need to carry out to investigate the practi-

cal usefulness of results from theorem (4.4.1) and (4.4.2). We hope that these

results probably give very fruitful solutions to (at least) clustered Euclidean

Traveling Salesman Problem.

180

181

Chapter 5

Conclusions and Future Works
5.1 Summary of Contributions of the Thesis

This research investigates issues of solving combinatorial optimization prob-

lems using Ant Colony Optimization metaheuristic for small and medium

scale instances and decomposition-based methods for large scale ones. The

primary findings and contributions of this research are summarized as fol-

lows.

5.1.1 Ant Colony Optimization

The first part of the study on Ant Colony Optimization has investigated the

role of the trade-off technique which is used popularly in Ant-based algo-

rithms. We have approached this problem in two directions. One of them is

to model the ACO metaheuristic with this trade-off mechanism by extending

the model so-called Graph-based Ant System proposed by Gutjahr [106]. The

direction is to carry out simulation-based experiments for which a dynami-

cally linear updating rule for trade-off mechanism is applied.

Following the first direction, we conducted a theoretical study for a more

generalized Graph-based Ant System framework into which the trade-off

mechanism is incorporated. We have carried out the analysis of convergence

properties of this generalized model as the value of the exploiting parameter

is fixed over time. Results from the analysis show that all convergence prop-

erties of the original GBAS (without containing the trade-off mechanism) are

181

5.1 Summary of Contributions of the Thesis 182

still intact in our generalized version of GBAS. This finding shows the theo-

retical soundness of using the trade-off mechanism in Ant-based implemen-

tations in terms of the convergence property.

In this part of the study we did not point out how much the incorporation

of this mechanism into the model affects the convergence speed of Ant-based

algorithms derived from this generalized model in comparison to those de-

rived from original GBAS model. Nevertheless, this limitation is acceptable

because the same obstacle has been also encountered in other studies due

to the complexity of analyzing the convergence speed for ACO-based algo-

rithms. There has been no study in the field which investigates the conver-

gence speed of any Ant-based algorithm.

For the experimental direction, we introduced a time-dependent trade-off

mechanism into ACO-based algorithms by dynamically updating the value

of the exploiting parameter using a linear rule. ACO-based algorithms al-

ways either employ the trade-off mechanism with a fixed-over-time value of

the exploiting parameter or exclude the mechanism from their implementa-

tions. The experimental results show that, for all Ant-based algorithms using

the mechanism, with the presence of local search procedure, those with the

mechanism incorporated have a better performance than those without using

the mechanism. The good performance of this dynamical approach can be ex-

plained as follows. In the late stage of ACO-based algorithms, it is most likely

that the search space guided by the pheromone matrix is narrowed down to

the search areas including feasible solutions around the best-so-far solutions.

Thus, gradually increasing or decreasing the value of the exploiting param-

eter over runtime, is likely to increase the probability of discovering distinct

182

5.1 Summary of Contributions of the Thesis 183

solutions in other search areas of search space in the late stage. This can be

considered as a promising method to prevent the stagnation from occurring

in the late stage of ACO-based algorithms.

5.1.2 Decomposition-based Search Algorithms

This part of the study aimed at providing theoretical evidences to explain

the time efficiency of decomposition-based over non-decomposition-based

algorithms. By modeling the runtime functions of decomposition-based al-

gorithms as under the polynomial-like form, we obtained the theoretical ev-

idence that strongly supports experimental results-based claims about the

faster runtime of decomposition-based algorithms in comparison to the non-

decomposition-based ones for the same inputs. This evidence shows that

there exist finite bounds on the speedup of the decomposition-based algo-

rithms in relation to their non-decomposition-based counterparts. Moreover,

these finite bounds are determined by the number of subproblems and the

runtime function of the algorithm used to solve the underlying problem. This

finding points out that the runtime efficiency of decomposition-based algo-

rithms over non-decomposition-based ones can be measured quantitatively.

From experimental analysis conducted in other studies, decomposition-

based algorithms are clearly superior to non-decomposition-based ones in

large-scale instances. To understand this phenomenon, we carried out an

asymptotical-runtime analysis which the input size approaches infinity. In-

terestingly, for this asymptotical case, the bounds on the ratio are still identi-

fiable using features of the highest order component of the runtime function

of the problem-solving algorithm (used in the decomposition-based method).

183

5.1 Summary of Contributions of the Thesis 184

Not only do the findings from this theoretical study provide evidence for the

experiment-based claim, but based on findings we also suggest some meth-

ods to increase the runtime efficiency of decomposition-based algorithms by

setting the maximum size of subproblems at desired values.

Since the optimal solutions may be excluded from the search space of

an inexact decomposition-based algorithm due to the decomposition and

assembling process, the optimality of those methods’ solutions is not com-

pletely guaranteed. In this part of study, we developed a simple decomposition-

based algorithm solving Euclidean Traveling Salesman Problem (ETSP) in or-

der to illustrate a new approach of studying the the issue of a decomposition-

based algorithm in terms of the optimality of its solutions. The approach is

to find out conditions for structure of optimization instances under which

all optimal solutions of satisfied instances are guaranteed to appear in the

search space of a given inexact decomposition-based method. Given a sim-

ple decomposition-based algorithm for ETSP, we proved a sufficient condi-

tion on the structure of ETSP’s instances such that all optimal solutions are

guaranteed to stay in the search space of the algorithm. This sufficient condi-

tion has been found for the case of two subproblems. We admit that studying

such conditions is not easy even for a simple decomposition-based method

which we established a result for the case of two subproblems. Indeed, when

the number of subproblems is more than two, it would be very challenging to

use the same or a bit modified approach to solve for that case of, for instance,

three subproblems.

184

5.2 Future Works 185

5.2 Future Works

Turning to suggestions for future research, several problems remain open for

both theoretical and experimental study. Most notably, incorporating the ..

5.2.1 Ant Colony Optimization

We have studied an extended model of GBAS which inherits limitations due

to strong constraints (on required structure of optimization problems and the

method of encoding solutions) of GBAS. To overcome those inherited limita-

tions, Gutjahr developed a variant of GBAS whose systematic parameters are

time-dependent [107]. So, we can adopt a similar way to relax those strong

constraints in the extended model. Moreover, another coherent limitation of

our extended model is to keep the value of the exploiting parameter constant

over time. For a recommendation of further study, a time-dependent version

of this extended model which can relax those strong constraints and adjust

the parameter over time should be carried out. To strengthen the conclusion

of that the convergence speed of EGBAS model might be controlled not only

by systematic parameters but also by the exploiting parameter, more exten-

sive experiments should be done.

There are still two remaining open interesting questions related to study

ACO-based algorithms’ performance. One of them is to find out how conver-

gence speed of Ant-based algorithms functions in relationship with system

parameters or problems being tackled. The other is on examining whether

or not performance of these algorithm is improved if the Markov property

of ACO framework is violated. If the answer to the last question is posi-

185

5.2 Future Works 186

tive, i.e. the performance of ACO is improved, then obviously, an efficient

pseudo-probabilistic method which is similar to ACO can be derived from

that study.

Building on the idea of employing the strategy of varying-over-time pop-

ulation size from Evolutionary Computation, future works should investi-

gate the performance of ACO-based algorithms in the case that number of

agents changes over time. To the best of our knowledge, no one has con-

ducted any work on this idea in ACO although results in the work by Gut-

jahr [106] provided a rough indication of how the idea works.

Finally, for the approach of tuning values of a group of systematic pa-

rameters, in that experimental study, we did not examine any non-linear rule

for dynamically tuning the exploiting parameter. Neither did we study any

linear or non-linear rule for updating a set of parameters. However, with

the simple rule for a specific parameter, the performance of studied Ant-

based algorithms has been slightly improved. Thus, the finding of this ap-

proach suggests that a rule for simultaneously dynamically updating values

of “representative” parameters would improve performance of Ant-based al-

gorithms. Representative parameters could be chosen in a hierarchical way

such that the number of such parameters should be reduced as many as pos-

sible while increasing influence of those parameters on performance of the

algorithms. Therefore , we suggest for a further study on non-linear rules for

a certain parameter or combining linear with non-linear rules but for a group

of systematic parameters.

186

5.2 Future Works 187

5.2.2 Decomposition-based Algorithms

By modeling runtime functions of the problem-solving algorithms - which

are used in the conquering stage of the decomposition-based methods as

functions of size of input instances of optimization problems, we showed the

efficiency in runtime of decomposition-based methods over the correspond-

ing non-decomposition-based. The efficiency is obvious for the asymptoti-

cal case when the size of input instances is very large. However, for non-

asymptotical case when the size of input instances can receive any value, the

efficiency is showed for algorithms whose runtime functions are polynomial-

like with positive coefficients. The constraint on the sign of coefficients of

those functions has restricted the application extent of the model.

We recommend a further study on an extended model in which that con-

straint is relaxed, or more specifically the class of runtime functions repre-

sented in that extended model should be extended to that which contains

not only all polynomial-like functions with real-valued coefficients1 but also

logarithm-like or compound functions. We predict that findings of this rec-

ommended study for such extended models may introduce relative values

of certain metrics on problem structures with which if problem instances are

satisfied then using decomposition-based methods to solve those instances is

more suitable than it is when those instances are not satisfied.

With the new approach in resolving the issue related to the optimality of

solutions of inexact decomposition-based algorithms, there is enough room

for further theoretical studies about the sufficient conditions on the structure

of problem instances to improve quality of solutions produced by those al-

1These coefficients can receive positive or negative values.

187

5.2 Future Works 188

gorithms. Those sufficient conditions are strongly dependent on the type of

problems under considerations or the specific (inexact) decomposition-based

algorithms employed.

188

189

Appendix A

Author’s Publications
1. H. T. Dinh and A. A. Mamun. The speedup of the cluster-based ap-

proach in the divide and conquer paradigm. In Proceedings of 4th EU-
ME Workshop on Design and Evaluation of Advanced Hybrid Meta- Heuris-
tics, 2004.

2. H. T. Dinh and A. Al-Mamun. A combination of clustering algorithm
with ant colony optimization for large clustered traveling salesman prob-
lem. WSEAS Transactions on Systems, 3(3):1221-1227, 2004.

3. H. T. Dinh, A. A. Mamun, and D. Hieu. Dynamically Updating the
Exploiting Parameter in Improving Performance of Ant-Based Algo-
rithms. In N. Megiddo, Y. Xu, and B. Zhu, editors, Proceedings of Algo-
rithmic Applications in Management, Xian, China, volume 3521 of Lecture
Notes in Computer Science, pages 340-349. Springer, 2005.

4. H. T. Dinh, A. A. Mamun, and H. T. Huynh. A generalized version
of graph-based ant system and its applicability and convergence. In
Proceeding of 4th IEEE International Workshop on Soft Computing as Trans-
displinary Science and Technology (WSTST’05), pages 949-958. Springer-
Verlag, 2005.

5. H. T. Dinh, D. Hieu, and A. A. Mamun. On designing clustering and
combining algorithms in POPMUSIC and 3-stage method. In 7th Inter-
national Conference on Artificial Evolution EA2005, Lille, France, CDROM,
2005.

6. H. T. Dinh, A. A. Mamun, and H. T. Huynh. On extension of Graph-
based Ant System with a tradeoff mechanism and its applicability and
convergence. Submitted to Journal of Heuristics, Sep 2007.

189

190

Appendix B

Proof of Theorem (3.2.2)
We have

Pm = Pr
{
E(1)

m

}
= Pr

{
E(2)

m

}
= .. = Pr

{
E(s)

m

}
.

By Corollary 3.2.5 and Lemma (3.2.4), because the event F∗ can be presented

as

F∗ = ¬(B1 ∧ B2 ∧ . . .),

we obtain

Pr{F∗} = 1 − lim
m→∞

Pr{B1 ∧ . . . ∧ Bm} ≥ 1 − lim
m→∞


m∏

i=1

(1 − ci−1 p)


S

= 1 − w(p, c, S).

Since w(p, c, S) ≤ exp
(
− S p

1−c

)
, so

Pr{F∗} ≥ 1 − ε/4

by choosing appropriate values for S or ρ(*). In addition, due to

1 > Pr{F∗} = Pr{F1 ∨ F2 ∨ . . .} =

∞∑

m=1

Pr{Fm}.

Then there is an integer K = K(ε) such that

∞∑

m=K+1

Pr{Fm} < ε

4
.

Let F = F1 ∨ . . . ∨ FK , hence

Pr{F} =

K∑

m=1

Pr{Fm} ≥ Pr{F∗} − ε
4
≥ 1 − ε

2
.

By Lemma (C.0.6),

Pr
{
E(s)

m′ |Fm

}
≥ 1 − ε

2
, (B.0.1)

190

191

for all m′ ≥ m + d′′′′(ε/2,m). Let

d(ε) = max
(
d′′′′(

ε

2
, 1), . . . , d′′′′(

ε

2
,K)

)
,

and

m0 = m0(ε) = K + d(ε)

. Then for m ≤ K, (B.0.1) holds for all m′ ≥ m0

Pm′ = Pr
(
E(1)

m′
)

= Pr
(
E(1)

m′ ∧ (¬F ∨ F)
)

= Pr
(
E(1)

m′ |F1

)
Pr(F1) + . . . + Pr

(
E(K)

m′ |FK

)
Pr(FK)

+ Pr
(
E(1)

m′ |¬(F1 ∨ . . . ∨ FK)
)
· Pr(¬(F1 ∨ . . . ∨ FK))

≥ Pr
(
E(1)

m′ |F1

)
Pr(F1) + . . . + Pr

(
E(K)

m′ |FK

)
Pr(FK)

≥
(
1 − ε

2

)
(Pr(F1) + . . . + Pr(FK)) ≥

(
1 − ε

2

) (
1 − ε

2

)
≥ 1 − ε.

(B.0.2)

From the remark (*) and (B.0.2), theorem (3.2.2) is successfully proven.

191

192

Appendix C

Restatement of lemmas and corollaries

used to prove GBAS’s convergence
Lemma C.0.1. [Lemma 4.1 in [106]] The probability Pr(¬Bm) which at least one

agent traverses the optimal walk in cycle m is not less than 1 − (1 − cm−1 p)S , where

c = (1 − ρ)L and p = γL · ∏
(k,l)∈w∗

τkl(1) with γ defined by (3.2.11).

Corollary C.0.2. [Corollary 4.1 in [106]] The conditional probability Pr(¬Bm|B1 ∧
. . .∧Bm−1) that at least one agent traverses in cycle m the optimal walk, given that all

agents have never traversed the optimal walk in all previous cycles, is not less than

1 − (1 − cm−1 p)S , where c is computed as in Lemma (C.0.1).

Lemma C.0.3. [Lemma 4.2 in [106]] For each ε > 0 and each m ∈ N there is an

integer d(ε,m) ∈ N such that ∀ m′ ≥ m + d(ε,m)


Pr
{∣∣∣∣∣τkl(m′) − 1

L

∣∣∣∣∣ < ε, ∀(k, l) ∈ w∗|Fm

}
≥ 1 − ε

Pr{τkl(m′) < Lε, ∀(k, l) < w∗|Fm} ≥ 1 − ε

(C.0.1)

Lemma C.0.4. [Lemma 4.3 in [106]] Let u∗(k) indicates the partial walks on w∗

leading to node k (k ∈ w∗). Then for each ε > 0 and each m ∈ N there is an integer

d′′(ε,m) ∈ N such that ∀(k, l) ∈ w∗ and ∀m′ ≥ m + d′′(ε,m)

Pr{pkl(m′, u∗(k)) ≥ 1 − ε |Fm} ≥ 1 − ε.

Corollary C.0.5. [Corollary 4.2 in [106]] With the notation in Lemma (C.0.4), let

Ym′ =
∏

(k,l)∈w∗
pkl(m′, u∗(k)). (C.0.2)

192

193

Then, for each ε > 0 and each m ∈ N, there is an integer d′′′(ε,m) ∈ N such that

Pr{Ym′ ≥ 1 − ε|Fm} ≥ 1 − ε.

for all m′ ≥ m + d′′′(ε,m).

Lemma C.0.6. [Lemma 4.4 in [106]] For each ε > 0 there is an integer d′′′′(ε,m) ∈
N, such that for a fixed agent s and for all m′ ≥ m + d′′′′(ε,m)

Pr
{
E(s)

m′ |Fm

}
≥ 1 − ε.

193

194

Appendix D

List of Abbreviations
ACO Ant Colony Optimization

ACS Ant Colony System

AS Ant System

BWAS Best-Worst Ant System

COP Combinatorial Optimization Problem

DC Divide and Conquer

EC Evolutionary Computation

EDA Estimation of Distribution Algorithm

EGBAS Extension of Graph-based Ant System

EP Evolutionary Programming

ES Evolutionary Strategies

ETSP Euclidean Traveling Salesman Problem

GA Genetic Algorithm

GBAS Graph-based Ant System

GRASP Greedy Randomized Adaptive Search Procedure

I&D Intensification and Diversification

LP Linear Programming

MA Memetic Algorithm

MMAS Max-Min Ant System

NFL No Free Lunch

POPMUSIC Partial Optimization Metaheuristic Under Special Intensification Conditions

PUND Purely Non-Decomposition-based Method

SA Simulated Annealing

SDEB Serial Decomposition-based Method

TS Tabu Search

TSP Traveling Salesman Problem

VND Variable Neighborhood Descent

VNS Variable Neighborhood Search

194

BIBLIOGRAPHY 195

BIBLIOGRAPHY

[1] E. Aarts and J. Korst. Simulated annealing and Boltzmann machines:
A stochastic approach to combinatorial optimization and neural computing.
John Wiley and Sons, Inc.: New York, 1990.

[2] A. Aho, J. Hopcroft, and J. Ullman. The Design and Analysis of Computer
Algorithms. The MIT Press, 1974.

[3] G. Amdahl. Validity of the single-processor approach to achieving
large scale computing capabilities. In AFIPS Conference Proceedings, vol-
ume 30 (Atlantic City, N.J., Apr. 18-20), pages 483–485. AFIPS Press,
Reston, Va., 1967.

[4] D. Applegate, W. Cook, and A. Rohe. Chained lin-kernighan for
large traveling salesman problems. INFORMS Journal on Computing,
15(1):82–92, 2003.

[5] S. Arora. Polynomial time approximation schemes for euclidean trav-
eling salesman and other geometric problems. Journal of the ACM
(JACM), 45(5):753–782, 1977.

[6] S. Ashour. A decomposition approach for the machine scheduling
problem. International Journal of Production Research., 6:109–122, 1967.

[7] G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti-
Spaccamela, and M. Protasi. Complexity and Approximation: Combina-
torial optimization problems and their approximability properties. Springer
Verlag, 1999.

[8] T. Bäck, D. B. Fogel, and Z. Machalewics, editors. Handbook of Evolu-
tionary Computation. Institute of Physics Publishing Ltd., Bristol, UK,
1997.

[9] S. Baluja. Population-based incremental learning: A method for in-
tegrating genetic search based function optimization and competitive
learning. Technical Report CMU-CS-94-163, Carnegie Mellon Univer-
sity,, Pittsburgh, PA, 1994.

[10] S. Baluja and R. Caruana. Removing the genetics from the standard
genetic algorithm. In A. Prieditis and S. Rusell, editors, Machine Learn-
ing: Proceedings of the 12th International Conference., pages 38–46. Mor-
gan Kaufmann Publishers, 1995.

[11] J. W. Barnes, B. Dimova, S. P. Dokov, and A. Solomon. The theory
of elementary landscapes. Applied Mathematics Letters., 16(3):337–343,
2003.

195

BIBLIOGRAPHY 196

[12] J. W. Barnes, V. D. Wiley, J. T. Moore, and D. M. Ryer. Solving the aerial
fleet refueling problem using group theoretic tabu search. Mathematical
and Computer Modeling., 39:617–640, 2004.

[13] M. Bastos and C. Ribeiro. Reactive tabu search with path-relinking for
the steiner problem in graphs. In Proceedings of the Third Metaheuristics
International Conference, pages 31–36, 1999.

[14] R. Battiti. Reactive search: Toward self-tuning heuristics. In V. J.
Rayward-Smith, I. H. Osman, C. R. Reeves, and G. D. Smith, edi-
tors, Modern Heuristic Search Methods., pages 61–83. John Wiley & Sons,
Chichester, UK, 1996.

[15] E. M. L. Beale. Mathematical Progamming in Practice. John Wiley & Sons,
Inc., New York, 1968.

[16] J. Berger, M. Sassi, and M. Salois. A hybrid genetic algorithm for
the vehicle routing problem with time windows and itinerary con-
straints. In W. Banzhaf, J. Daida, A. E. Eiben, M. H. Garzon, V. Honavar,
M. Jakiela, and R. E. Smith, editors, Proceedings of the Genetic and Evo-
lutionary Computation Conference (GECCO-1999), pages 44–51. Morgan
Kaufmann Publishers, San Fransisco, CA, 1999.

[17] M. Birattari, editor. The Problem of Tuning Metaheuristics as Seen from a
Machine Learning Perspective. DISKI 292, Infix/Aka, Berlin, Germany,
2005.

[18] M. Birattari, M. Zlochin, , and M. Dorigo. Towards a theory of practice
in metaheuristics design: A machine learning perspective. Theoretical
Informatics and Applications., 40(2):353–369, 2006.

[19] C. Blum and A. Roli. Metaheuristics in combinatorial optimiza-
tion: Overview and conceptual comparison. ACM Computing Surveys,
35:268–308, 2003.

[20] C. Blum, A. Roli, and E. Alba. An introduction to metaheuristic tech-
niques. In E. Alba, editor, Parallel Metaheuristics: A New Class of Algo-
rithms. John Wiley & Sons, Inc., 2005.

[21] J. S. D. Bonet, C. L. Isbell, and P. Viola. MIMIC: Finding optima by
estimating probability densities. In M. J. M. Mozer and T. Petsche., edi-
tors, Advances in Neural Information Processing Systems, volume 9., pages
424–431. Morgan Kaufmann, Amherst, Massachusetts, 1997.

[22] Y. Borenstein and R. Poli. No free lunch, kolmogorov complexity and
the information landscape. In The 2005 IEEE Congress on Evolutionary
Computation., pages 2784–2791 Vol. 3, 2005.

196

BIBLIOGRAPHY 197

[23] O. Bräysy. A reactive variable neighborhood search for the vehicle-
routing problem with time windows. INFORMS Journal on Computing,
15(4):347–368, 2003.

[24] E. K. Burke, J. P. Newall, and R. F. Weare. A memetic algorithm for
university exam timetabling. In 1st International Conference on the Prac-
tice and Theory of Automated Timetabling (ICPTAT’95, Napier University,
Edinburgh, UK, 30th Aug - 1st Sept 1995), pages 496–503, 1995.

[25] R. H. Byrd, R. B. Schnabel, and G. A. Shultz. A trust region algorithm
for nonlinearly constrained optimization. SIAM Journal on Numerical
Analysis, 24(5):1152–1170, 1987.

[26] G. D. Caro and M. Dorigo. Antnet: Distributed stigmergetic control
for communications networks. Journal of Artificial Intelligence Research,
9:317–365, 1998.

[27] L. Cavique, C. Rego, and I. Themido. A scatter search algorithm for
the maximum clique problem. In Essays and Surveys in Metaheuristics,
pages 227–244. Kluwer Academic Publishers, 2001.

[28] M. Celis, J. E. Dennis, and R. A. Tapia. A trust region strategy for
nonlinear equality constrained optimization. In P. Boggs, R. Byrd, and
R. Schnabel, editors, Numerical Optimization, Philadelphia: SIAM., pages
71–82, 1985.

[29] N. Christofides, A. Mingozzi, and P. Toth. The vehicle routing prob-
lem. In N. Christofides, A. Mingozzi, P. Toth, and C. Sandi, editors,
Combinatorial Optimization, pages 315–338. Wiley, Chichester, 1979.

[30] V. Chvatal. A greedy heuristic for the set-covering problem. Mathemat-
ics of Operations Research., 4(3):233–235, 1979.

[31] B. Codenotti and L. Margara. Local properties of some np-complete
problems. Technical Report. TR-92-021, International Computer Sci-
ence Institute, University of California at Berkeley., 1992.

[32] C. A. C. Coello. An updated survey of GA-based multiopjective opti-
mization techniques. ACM Computing Surveys., 32(2):109–143, 2000.

[33] C. A. C. Coello. Discovery of RNA structural elements using evolu-
tionary computation. Nucleic Acids Research., 30(23):5310–5317, 2002.

[34] B. Colletti and J. Barnes. Group theory and metaheuristic neighbor-
hoods. Technical Report. Series 99-02, Graduate Program in Operations
Research, the University of Texas at Austin., 1999.

197

BIBLIOGRAPHY 198

[35] B. Colletti and J. Barnes. Local search structure in the symmetric travel-
ing salesperson problem under a general class of rearrangement neigh-
borhoods. Applied Mathematics Letters., 14:105–108, 2001.

[36] B. Colletti, J. Barnes, and D. Neuway. Using group theory to study
transition matrices of metaheuristic neighborhoods. Technical Report.
Series 2000-03, Graduate Program in Operations Research, the Univer-
sity of Texas at Austin., 2000.

[37] B. Colletti and J. W. Barnes. Using group theory to construct and char-
acterize metaheuristic search neighborhoods. In C. Rego and B. Ali-
daee, editors, Adaptive Memory and Evolution: Tabu Search and Scatter
Search, 2004.

[38] B. W. Colletti. Group Theory and Metaheuristics. PhD thesis, The Univer-
sity of Texas at Austin, 1999.

[39] A. Colorni, M. Dorigo, and V. Maniezzo. Distributed optimization by
ant colonies. In F.Varela and P.Bourgine, editors, Proceedings of the First
European Conference on Artificial Life., pages 134–142. Elsevier Publish-
ing, Amsterdam, 1991.

[40] A. R. Conn, N. I. M. Gould, and P. L. Toint. Trust-region methods. Society
for Industrial and Applied Mathematics, 2000.

[41] D. T. Connolly. An improved annealing scheme for the QAP. European
Journal of Operational Reseach, 9(3):93–100, 1990.

[42] J. Cordeau and G. Laporte. Tabu search heuristics for the vehicle rout-
ing problem. GERAD Technical Report G-2002-15, University of Mon-
treal, Canada, 2002.

[43] O. Cordón, I. F. de Viana, and F. Herrera. Analysis of the best worst
ant system and its variants on the qap. In M. Dorigo, G. D. Caro,
and M. Sampels, editors, Ant Algorithms, volume 2463 of Lecture Notes
in Computer Science, pages 228–234. Springer Verlag, Berlin, Germany.,
2002.

[44] O. Cordón, I. F. de Viana, F. Herrera, and L. Moreno. A new ACO
model integrating evolutionary computation concepts: The best-worst
ant system. In M. Dorigo, M. Middendorf, , and T. Stützle, editors, Ab-
stract Proceedings of ANTS 2000 - From Ant Colonies to Artificial Ants: A
Series of International Workshops on Ant Algorithms., pages 22–29. Uni-
versit Libre de Bruxelles, Belgium, 2000.

[45] T. Cormen, C. Leiserson, R. Rivest, and C. Stein. Introduction to Algo-
rithms. The MIT Press, 2nd edition, 2002.

198

BIBLIOGRAPHY 199

[46] J. R. Crino, J. T. Moore, J. W. Barnes, and W. P. Nanry. Solving the mil-
itary theater distribution vehicle routing and scheduling problem us-
ing group theoretic tabu search. Mathematical and Computer Modeling.,
39:599–616, 2004.

[47] V. Cung, T. Mautor, P. Michelon, and A. Tavares. A scatter search
based approach for the quadratic assignment problem. In T. Baeck,
Z. Michalewicz, and X. Yao, editors, Proceedings of IEEE International
Conference on Evolutionary Computation and Evolutionary Programming,
Indianapolis, United States of America., pages 165–170. IEEE Press, 1997.

[48] V. Cutello and G. Nicosia. An immunological approach to combinato-
rial optimization problems. volume 2527 of Lecture Notes in Computer
Science, pages 361–370. Springer-Verlag, 2002.

[49] V. Cutello, G. Nicosia, M. Pavone, and J. Timmis. An immune algo-
rithm for protein structure prediction on lattice models. IEEE Transac-
tions on Evolutionary Computation, 11(1):101–117, 2007.

[50] G. Dantzig and P.Wolfe. Decomposition principle for linear programs.
Operations Research, 8:101–11, 1960.

[51] A. Das and B. K. Chakrabarti. Quantum Annealing and Related Optimiza-
tion Methods. Lecture Note in Physics, Vol. 679, Springer, 2005.

[52] R. Dawkins, editor. The Selfish Gene. Oxford University Press, 2006.

[53] M. Dell’Amico, A. Lodi, and F. Maffioli. Solution of the cumulative as-
signment problem with a well-structured tabu search method. Journal
of Heuristics, 5:123–143, 1999.

[54] J. L. Deneubourg, S. Aron, S. Goss, and J. M. Pasteels. The self-
organizing exploratory pattern of argentine ant. Journal of Insect Be-
haviour., 3:159–168, 1990.

[55] K. Dill. Theory for the folding and stability of globular-proteins. Bio-
chemistry, 24(6):1501–1509, 1995.

[56] H. T. Dinh, H. T. Dinh, and A. A. Mamun. On designing cluster-
ing and combining algorithms in POPMUSIC and 3-stage method. In
7th International Conference on Artificial Evolution (EA2005), Lille, France,
CDROM, 2005.

[57] H. T. Dinh and A. A. Mamun. The speedup of the cluster-based ap-
proach in the divide and conquer paradigm. In Proceedings of 4th
EU-ME Workshop on Design and Evaluation of Advanced Hybrid Meta-
Heuristics., 2004.

199

BIBLIOGRAPHY 200

[58] H. T. Dinh, A. A. Mamun, and H. T. Dinh. Dynamically Updating the
Exploiting Parameter in Improving Performance of Ant-Based Algo-
rithms. In N. Megiddo, Y. Xu, and B. Zhu, editors, Proceedings of Algo-
rithmic Applications in Management, Xian, China, volume 3521 of Lecture
Notes in Computer Science, pages 340–349. Springer, 2005.

[59] H. T. Dinh, A. A. Mamun, and H. T. Huynh. A generalized version
of graph-based ant system and its applicability and convergence. In
Proceeding of 4th IEEE International Workshop on Soft Computing as Trans-
displinary Science and Technology (WS TS T ′05), pages 949–958. Springer-
Verlag, 2005.

[60] B. Doerr, F. Neumann, D. Sudholt, and C. Witt. On the runtime analy-
sis of the 1-ANT ACO algorithm. In GECCO’07: Proceedings of the 9th
annual conference on Genetic and evolutionary computation, pages 33–40.
ACM, New York, NY, USA., 2007.

[61] M. Dorigo. Optimization, Learning and Natural Algorithms (in Italian).
PhD thesis, PhD thesis, Dipartimento di Elettronica, Politecnico di Mi-
lano, Italy, 1992.

[62] M. Dorigo and C. Blum. Ant colony optimization theory: A survey.
Theoretical Computer Science, 344(2-3):243–278, 2005.

[63] M. Dorigo and G. D. Caro. The ant colony optimization metaheuristic.
In D. Corne, M. Dorigo, and F. Glover, editors, New Ideas In Optimiza-
tion. McGraw-Hill, 1999.

[64] M. Dorigo, G. D. Caro, and L. Gambardella. Ant algorithms for discrete
optimization. Artificial Life, 5:137–172, 1999.

[65] M. Dorigo and L. Gambardella. Ant colony system: A cooperative
learning approach to the travelling salesman problem. IEEE Transac-
tions on Evolutionary Computation, 1:53–66, 1997.

[66] M. Dorigo, V. Maniezzo, and A. Colorni. Ant system: Optimization by
a colony of cooperating agents. IEEE Transactions on System, Man, and
Cybernetics, 26(1):28–41, 1996.

[67] M. Dorigo, V. Maniezzo, and A. Colorni. The ant system: Optimization
by a colony of cooperating agents. IEEE Transaction on Systems, Man,
and Cybernetics, 26:29–41, 1996.

[68] M. Dorigo and T. Stützle. http://www.metaheuristics.net, 2000. Visited
2004.

[69] M. Dorigo and T. Stützle. Ant Colony Optimization. MIT Press, Cam-
bridge, MA, 2004.

200

BIBLIOGRAPHY 201

[70] R. O. Duda, P. E. Hart, and D. G. Stork, editors. Pattern Classification.
Wiley-Interscience, 2nd edition, 2000.

[71] J. Edmonds. Paths, trees, and flowers. Canadian Journal of Mathematics.,
17:449–467, 1965.

[72] A. Engelbrecht. Computational Intelligence : An Introduction. Hoboken,
N.J. : J. Wiley and Sons, 2002.

[73] T. Feo and M. Resende. Greedy randomized adaptive search proce-
dures. Journal of Global Optimization., 6:109–133, 1995.

[74] P. Festa and M. Resende. Grasp: An annotated bibliography. In
C. Ribeiro and P. Hansen, editors, Essays and Surveys in Metaheuristics.,
pages 325–367. Kluwer Academic Publishers, 2002.

[75] M. Fleischer. Simulated annealing: past, present and future. In C. Alex-
opoulos, K. Kang, W. R. Lilegdon, and G. Goldsman, editors, Proceed-
ings of the 1995 Winter Simulation Conference., pages 155–161, 1995.

[76] C. Fleurent, F. Glover, P. Michelon, and Z. Valli. A scatter search
approach for unconstrained continuous optimization. In Proceedings
of IEEE International Conference on Evolutionary Computation, Nagoya,
Japan., pages 643–648, 1996.

[77] L. J. Fogel. Toward inductive inference automata. In Proceedings of the
International Federation for Information Processing Congress., pages 395–
399, 1962.

[78] L. J. Fogel, A. J. Owens, and M. J. Walsh. Artificial Intelligence through
Simulated Evolution. Wiley, 1966.

[79] L. Gambardella and M. Dorigo. Ant-Q: A reinforcement learning ap-
proach to the traveling salesman problem. In International Conference on
Machine Learning, pages 252–260, 1995.

[80] L. Gambardella and M. Dorigo. Solving symmetric and asymmetric
TSPs by ant colonies. In IEEE Conference on Evolutionary Computation
(ICE’96). IEEE Press, 1996.

[81] L. Gambardella, E. D. Taillard, and G. Agazzi. MACS-VRPTW: A mul-
tiple ant colony system for vehicle routing problems with time win-
dows. In D. Corne, M. Dorigo, and F. Glover, editors, New Ideas In
Optimization. McGraw-Hill, 1999.

[82] L. M. Gambardella and M. Dorigo. Ant colony system hybridized with
a new local search for sequential ordering problem. INFORMS Journal
on Computing., 12(3):237–255, 2000.

201

BIBLIOGRAPHY 202

[83] M. R. Garey and D. S. Johnson. Computers and intractability: A guide to
the theory of NP-completeness. W. H. Freeman, 1979.

[84] M. Gendreau, A. Hertz, and G. Laporte. A tabu search heuristic for the
vehicle routing problem. report CRT-777, Centre de recherche sur les
transports, Université de Montréal. Management Science, 1992.

[85] M. Gendreau, G. Laporte, and J.-Y. Potvin. Metaheuristics for the vehi-
cle routing problem. In P. Toth and D. Vigo, editors, The Vehicle Routing
Problem, Volume 9 of SIAM Series on Discrete Mathematics and Applica-
tions., pages 129–154, 2001.

[86] B. Gillett and L. Miller. A heuristic algorithm for the vehicle dispatch
problem. Operations Research, 22:340–349, 1974.

[87] F. Glover. Integer programming over a finite additive group. SIAM
Journal on Control., 7:213–231, 1969.

[88] F. Glover. Heuristics for integer programming using surrogate con-
straints. Decision Sciences, 8:156–166, 1977.

[89] F. Glover. Future paths for integer programming and links to artificial
intelligence. Computers and Operations Research, 13:533–549, 1986.

[90] F. Glover. Tabu search, part I. ORSA Journal on Computing, 1:190–206,
1989.

[91] F. Glover. Genetic algorithms and scatter search: Unsuspected poten-
tials. Statistics and Computing., 4(2):131–140, 1994.

[92] F. Glover. Scatter search and star-paths: Beyond the genetic metaphor.
OR Spectrum., 17(2-3):125–137, 1995.

[93] F. Glover. Tabu search and adaptive memory programing advances,
applications and challenges. In R. Barr, R. Helgason, and J. Ken-
nington., editors, Interfaces in Computer Science and Operations Research.,
pages 1–75. Kluwer Academic Publishers, Boston, 1996.

[94] F. Glover. A template for scatter search and path relinking. In J. Hao,
E. Lutton, E. Ronald, M. Schoenauer, and D. Snyers, editors, Artificial
Evolution, volume 1363 of Lecture Notes in Computer Science, pages 13–
54. Springer-Verlag, 1998.

[95] F. Glover. Scatter search and path relinking. Technical Report HCES-
01-99, University of Mississippi, Hearin Center for Enterprise Science.,
1999.

202

BIBLIOGRAPHY 203

[96] F. Glover and M. Laguna. Tabu Search. Kluwer Academic Publishers:
Boston, MA, 1997.

[97] F. Glover, M. Laguna, and R. Martı́. Fundamentals of scatter search and
path relinking. Control and Cybernetics, 29(3):653–684, 2000.

[98] F. Glover, M. Laguna, and R. Martı́. Scatter search and path relinking:
Advances and applications. In F. Glover and G. Kochenberger, editors,
Handbook of Metaheuristics., pages 1–36. Kluwer Academic Publishers,
Boston, 2003.

[99] F. Glover, M. Laguna, and R. Martı́. Scatter search and path relinking:
Foundations and advanced designs. In G. C. Onwubolu and B. V. Babu,
editors, New Optimization Techniques in Engineering. Springer-Verlag,
Heidelberg, 2004.

[100] D. E. Goldberg. Genetic algorithms in search, optimization and machine
learning. Addison Wesley, Reading, MA, 1989.

[101] R. E. Gomory. On the relation between integer and non-integer solu-
tions to linear programs. Proceeding of the National Academy of Science.,
53:260–265, 1965.

[102] R. E. Gomory. Some polyhedra related to combinatorial problems. Lin-
ear Algebra and its Applications., 2:451–558, 1969.

[103] B. S. Gottfried and J. Weisman. Introduction to Optimization Theory.
Prentice-Hall, Inc. New Jersey, 1973.

[104] M. Grötschel. Discrete mathematics in manufacturing. Preprint SC92-3,
ZIB, 1992.

[105] L. Grover. Local search and the local structure of np-complete prob-
lems. Operations Research Letters., 12:235–243, 1992.

[106] W. Gutjahr. A graph-based ant system and its convergence. Future
Gerneration Computer Systems, 16(9):873 – 888, 2000.

[107] W. Gutjahr. Aco algorithms with guaranteed convergence to the opti-
mal solution. Information Processing Letters, 82:145 – 153, 2002.

[108] W. Gutjahr. A generalized convergence result for the graph-based ant
system metaheuristic. Probability in the Engineering and Informational
Sciences, 17(4):545 – 569, 2003.

[109] K. Hamacher. Adaptation in stochastic tunneling global optimization
of complex potential energy landscapes. Europhys. Lett., 74(6):944–950,
2006.

203

BIBLIOGRAPHY 204

[110] J. Hamiez and J. Hao. Scatter search for graph coloring. In P. Collet,
C. Fonlupt, J.-K. Hao, E. Lutton, and M. Schoenauer, editors, Artificial
Evolution : 5th International Conference, Evolution Artificielle, EA 2001,
France, volume 2310 of Lecture Notes in Computer Science, pages 168–
179. Springer Verlag, Berlin, Germany., 2002.

[111] P. Hansen, N. Mladenović, and D. Urošević. Variable neighbor-
hood search for the maximum clique. Discrete Applied Mathematics.,
145(1):117–125, 2004.

[112] P. Hansen and N. Mladenovié. An introduction to variable neighbor-
hood search. In S. Voss, S. Martello, I. Osman, and C. Roucairol, editors,
Meta-Heuristics: Advances and Trends in Local Search Paradigms for Opti-
mization., pages 433–458. Dordrecht, Netherlands, Kluwer Academic
Publishers, 1999.

[113] P. Hansen and N. Mladenovié. Variable neighborhood search: Princi-
ples and applications. European Journal of Operational Research., 130:449–
467, 2001.

[114] J. Hart and A. Shogan. Semi-greedy heuristics: An empirical study.
Operations Research Letters., 6:107–114, 1987.

[115] S. C. Ho and M. Gendreau. Path relinking for the vehicle routing prob-
lem. Journal of Heuristics, 12(1-2):55–72, 2006.

[116] J. Holland. Adaption in Natural and Artificial Systems. Univ. of Michigan
Press: Ann Arbor. Reprinted in 1992 by MIT Press, Cambridge MA,
1975.

[117] C. Igel and M. Toussaint. On classes of functions for which no free
lunch results hold. Information Processing Letter., 86(6):317–321, 2003.

[118] L. Ingber. Adaptive simulated annealing (ASA): Lessons learned. Con-
trol and Cybernetics - Special Issue on Simulated Annealing Applied to Com-
binatorial Optimization., 25(1):33–54, 1996.

[119] A. Jagota and L. A. Sanchis. Adaptive, restart, randomized greedy
heuristics for maximum clique. Journal of Heuristics., 7(6):565–585, 2001.

[120] C. Kanzow and A. Klug. An interior-point affine-scaling trust-region
method for semismooth equations with box constraints. Computational
Optimization and Applications, 37(3):329–353, 2007.

[121] V. S. Khaled AlSabti, Sanjay Ranka. An efficient space-partitioning
based algorithm for the k-means clustering. In N. Zhong and L. Zhou,
editors, Proceedings of Methodologies for Knowledge Discovery and Data

204

BIBLIOGRAPHY 205

Mining: Third Pacific-Asia Conference, PAKDD-99, volume 1574 of Lec-
ture Notes in Computer Science, pages 355–359,. Springer, 1999.

[122] G. W. Kinney. A group theoretic approach to metaheuristic local search for
partitioning problems. PhD thesis, The University of Texas at Austin,
2005.

[123] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simu-
lated annealing. Science, 220(4598):671–680, 1983.

[124] B. Korte, editor. Modern Applied Mathematics: Optimization and Opera-
tions Research. North-Holland Publishing Company, 1982.

[125] N. Krasnogor. A tutorial on memetic algorithms. In The 7th International
Conference on Parallel Problem Solving from Nature - PPSN 2002, Spain.,
page 127, 2002.

[126] N. Krasnogor, D. Pelta, P. M. Lopez, P. Mocciola, and E. de la Canal.
Genetic algorithms for the protein folding problem: A critical view. In
E. Alpaydin and C. Fyfe, editors, Proceedings of Engineering of Intelligent
Systems, EIS’98., pages 353–360. ICSC Academic Press, 1998.

[127] P. J. M. V. Laarhoven, E. H. L. Aarts, and J. K. Lenstra. Job shop schedul-
ing by simulated annealing. Operations Research, 40:113–125, 1992.

[128] M. Laguna. Scatter search. In P. M. Pardalos and M. G. C. Resende,
editors, Handbook of Applied Optimization, pages 183–193. Oxford Uni-
versity Press, 2002.

[129] G. Laporte. The vehicle routing problem: An overview of exact
and approximate algorithms. European Journal of Operational Research,
59(3):345–358, 1992.

[130] L. S. Lasdon. Optimization Theory for Large System. MacMillan Inc.,
London, 1970.

[131] E. Lawler, J. K. Lenstra, A. H. G. R. Kan, and D. B. Shmoys. The Travel-
ling Salesman Problem. John Wiley and Sons, New York, NY, 1985.

[132] E. L. Lawler, J. K. Lenstra, A. H. G. R. Kan, and D. B. Shmoys. The
traveling salesman problem. John Wiley, 1985.

[133] N. Lesh, M. Mitzenmacher, and S. Whitesides. A complete and effective
move set for simplified protein folding. In Proceedings of the seventh
annual international conference on Computational molecular biology., pages
188–195. ACM Press, 2003.

205

BIBLIOGRAPHY 206

[134] S. Lin. Computer solutions of the traveling salesman problem. Bell
System Technical Journal., 44:2245–2269, 1965.

[135] S. Lin and B. Kernighan. An effective heuristic algorithm for the trav-
eling salesman problem. Operations Research, 21:498–516, 1973.

[136] O. Martin, S. W. Otto, and E. W. Felten. Alarge-step markov chains for
the traveling salesmanproblem. Complex Systems, 5(3):299–326, 1991.

[137] D. Merkle, M. Middendorf, and H. Schmeck. Ant colony optimization
for resource-constrained project scheduling. IEEE Transactions on Evo-
lutionary Computation., 6(4):333–346, 2002.

[138] N. Metropolis, A. Rosenbluth, M. Rosenbluth, M. Teller, and E. Teller.
Equations of state calculations by fast computing machines. Journal of
Chemical Physics, 21:1087–1092, 1953.

[139] N. Metropolis, A. Rosenbluth, M. Rosenbluth, M. Teller, and E. Teller.
Equations of state calculations by fast computing machines. Addison-
Wesley, 2nd edition, 1989.

[140] Z. Michalewics. Genetic Algorithms + Data Structures = Evolutionary Pro-
grams. Springer: New York, 3rd edition, 1996.

[141] Z. Michalewicz and M. Michalewicz. Evolutionary computation tech-
niques and their applications. In Proceedings of the IEEE International
Conference on Intelligence Processing System., pages 14–24. Institute of
Electrical and Electronics Engineerings, Incorporated., 1997.

[142] W. Miehle. Link-length minimization in networks. Operations Research,
6:232–243, 1958.

[143] M. Mitchell. An introduction to genetic algorithms. MIT press, Cam-
bridge, MA, 1998.

[144] N. Mladenović and P. Hansen. Variable neighborhood search. Comput-
ers and Operations Research., 24(11):1097–1100, 1997.

[145] J. Mockus, W. F. Eddy, A. Mockus, L. Mockus, and G. Reklaitis. Bayesian
Heuristic Approach to Discrete and Global Optimization: Algorithms, Visu-
alization, Software, and Applications (Nonconvex Optimization and Its Ap-
plications). Dordrecht, Kluwer Academic Publishers, 1997.

[146] P. Moscato. On evolution, search, optimization, genetic algorithms
and martial arts: Towards memetic algorithms. Caltech Concurrent
Computation Program. Report 826, California Institute of Technology,
Pasadena, California, USA., 1989.

206

BIBLIOGRAPHY 207

[147] P. Moscato. Memetic algorithms: A short introduction. In D. Corne,
M. Dorigo, and F. Glover, editors, New Ideas In Optimization, pages 219–
234. McGraw-Hill, 1999.

[148] H. Mühlenbein and G. Paass. From recombination of genes to the es-
timation of distributions. In H. M. Voigt, W. Ebeling, I. Rechenberg,
and H. P. Schwefel, editors, Proceedings of the 4th Conference on Parallel
Problem Solving from Nature - PPSN IV, volume 1411 of Lecture Notes in
Computer Science, pages 178–187. Springer, 1996.

[149] S. Mulder and D. W. II. Million city traveling salesman problem solu-
tion by divide and conquer clustering with adaptive resonance neural
networks. Neural Networks, 16(5-6):827–832, 2003.

[150] G. L. Nemhauser and L. A. Wolsey. Integer and Combinatorial Optimiza-
tion. John Wiley and Sons, New Jork, 1999.

[151] A. S. Nemirovsky and D. B. Yudin, editors. Problem Complexity and
Method Efficiency in Optimization. John Wiley and Sons translated by
E. R. Dawson, 1983.

[152] P. L. nga and J. A. Lozano, editors. Estimation of Distribution Algorithms:
A New Tool for Evolutionary Computation. Kluwer Academic Publishers,
Boston, MA, 2002.

[153] E. Nowicki and C. Smutnicki. A fast taboo search algorithm for the
job-shop scheduling. Management Science, 42(5):797–813, 1996.

[154] W. Orchard-Hays. Advanced Linear-Programming Computing Techniques.
McGraw-Hill Book Company, New York, 1968.

[155] I. Osman. Metastrategy simulated annealing and tabu search algo-
rithms employing a generalised savings criterion. Annals of Operations
Research, 41(1–4):421–451, 1993.

[156] I. H. Osman and G. Laporte. Metaheuristics: A bibliography. Annals of
Operations Research, 63:513–623, 1996.

[157] F. M. P. Frana, A. Mendes and P. Moscato. Memetic algorithms ap-
plied to the single machine and parallel machine scheduling problems.
In Anais da Primeira Oficina de Planejamento e Controle da Produo em Sis-
temas de Manufatura, April 1999. projeto temtico FAPESP 97/13930-1,
Campinas, SP.

[158] S.-M. Pan and K.-S. Cheng. Evolution-based tabu search approach to
automatic clustering. IEEE Transactions on Systems, Man, and Cybernet-
ics, Part C: Applications and Reviews, 37(5):827–838, 2007.

207

BIBLIOGRAPHY 208

[159] C. H. Papadimitriou. Computational Complexity. Addison-Wesley Inc.,
1994.

[160] C. H. Papadimitriou and K. Steiglitz. Combinatorial Optimization - Algo-
rithms and Complexity. Dover Publications, Inc., New York, 2nd edition,
1998.

[161] P. Pardalos, L. Pitsoulis, and M. Resende. A parallel GRASP imple-
mentation for the quadratic assignment problem. In A. Ferreira and
J. Rolim, editors, Parallel Algorithms for Irregularly StructuredProblems -
Irregular’94. Kluwer Academic Publishers, 1995.

[162] P. Pardalos, T. Qian, and M. Resende. A greedy randomized adaptive
search procedure for feedback vertex set. Journal of Combinatorial Opti-
mization., 2(4):399–412, 1998.

[163] A. L. Patton, W. F. P. III, and E. D. Goodman. A standard GA approach
to native protein conformation prediction. In ICGA, pages 574–581,
1995.

[164] J. P. Pedroso. Simple metaheuristics using the simplex algorithm for
non-linear programming. In T. Sttzle, M. Birattari, and H. H. Hoos,
editors, SLS, volume 4638 of Lecture Notes in Computer Science, pages
217–221. Springer, 2007.

[165] M. Pilat and T. White. Using genetic algorithms to optimize ACS-TSP,.
In M. Dorigo, G. D. Caro, and M. Samples, editors, ANTS 2002, From
Ant Colonies To Artificial Ants: The Third International Workshop on Ants
Algorithms, pages 282–287. Springer, 2002.

[166] J. R. Quinlan. Combining instance-based and model-based learning.
In Proceedings of the Tenth International Conference on Machine Learning.,
pages 236–243. Morgan Kaufmann, Amherst, Massachusetts, 1993.

[167] I. Rechenberg. Evolutionsstrategie: Optimierung technischer Systeme nach
Prinzipien der biologischen Evolution. PhD thesis, Fromman-Holzboog,
Stuttgart, 1973.

[168] C. R. Reeves. Modern Heuristic Techniques for Combinatorial Problems.
Blackwell Scientific Publishing, Oxford, England, 1993.

[169] C. R. Reeves and J. E. Rowe. Genetic Algorithms: Principles and Per-
spectives. A Guide to GA Theory. Kluwer Academic Publishers, Boston
(USA), 2002.

[170] M. Reimann, K. Doerner, and R. Hartl. D-ants: Savings based ants
divide and conquer the vehicle routing problem. Computers and Opera-
tions Research, 31:563–591, 2004.

208

BIBLIOGRAPHY 209

[171] D. H. P. Rene Cori, Daniel Lascar. Mathematical Logic: A Course with Ex-
ercises Part I: Propositional Calculus, Boolean Algebras, Predicate Calculus,
Completeness Theorems . Oxford University Press, USA, 2000.

[172] M. Resende and C. Ribeiro. Grasp with path-relinking: Recent ad-
vances and applications. In K. Nonobe and M. Yagiura, editors, Meta-
heuristics: Progress as Real Problem Solvers. Kluwer Academic Publishers,
2005.

[173] M. G. C. Resende, L. S. Pitsoulis, and P. M. Pardalos. Fortran sub-
routines for computing approximate solutions of weighted MAX-SAT
problems using GRASP. Discrete Applied Mathematics, 100(1–2):95–113,
2000.

[174] C. C. Ribeiro and M. C. Souza. Variable neighborhood search for the
degree-constrained minimum spanning tree problem. Discrete Applied
Mathematics., 118(1-2):43–54, 2002.

[175] A. J. Robertson. A set of greedy randomized adaptive local search pro-
cedure GRASP implementations for the multidimensional assignment
problem. Computational Optimization and Applications., 19(2):145–164,
2001.

[176] P. Salamon, P. Sibani, and R. Frost. Facts, Conjectures, and Improvements
for Simulated Annealing. SIAM, 2003.

[177] H. S. Sánchez and J. F. Solı́s. A method to establish the cooling scheme
in simulated annealing like algorithms. In ICCSA (3), pages 755–763,
2004.

[178] J. G. Shanthikumar and Y. B. Wu. Decomposition approaches in per-
mutation scheduling with application to the m-machine flow shop
scheduling problems. European Journal of Operations Research., 19:125–
141, 1985.

[179] Y. Shen, S. Kiatsupaibul, Z. B. Zabinsky, and R. L. Smith. An ana-
lytically derived cooling schedule for simulated annealing. Journal of
Global Optimization, 38(3):333–365, 2007.

[180] A. Shmygelska, R. A. Hernández, and H. H. Hoos. An ant colony op-
timization algorithm for the 2D HP protein folding problem. In Ant
Algorithms, pages 40–53, 2002.

[181] A. Sinha and D. E. Goldberg. A survey of hybrid genetic and evolution-
ary algorithms. Technical Report 2003004, IlliGAL, Urbana : University
of Illinois at UrbanaChampaign, General Engineering Department, Jan
2003.

209

BIBLIOGRAPHY 210

[182] J. Smith. On replacement strategies in steady state evolutionary algo-
rithms. Evolutionary Computation, 15(1):29–59, 2007.

[183] W. M. Spears, K. A. D. Jong, T. Bück, D. B. Fogel, and H. D. Garis. An
overview of evolutionary computation. In P. B. Brazdil, editor, Proceed-
ings of the European Conference on Machine Learning ECLM-93, volume
667, pages 288–289. Springer Verlag, Vienna, Austria, 1993.

[184] P. Stadler. Spectral landscape theory. In J. Crutchfield and P. Schus-
ter, editors, Evolutionary Dynamics – Exploring the Interplay of Selection,
Neutrality, Accident and Function. Oxford University Press, New York,
1999.

[185] P. F. Stadler. Landscapes and their correlation functions. Journal of
Mathematical Chemistry., 20:1–45, 1996.

[186] T. Stützle, editor. Local Search Algorithms for Combinatorial Optimiza-
tion Problems: Analysis, Improvements, and New Applications. vol 220 of
DISKI. Sankt Augustin, Germany, Infix, 1999.

[187] T. Stützle. Local Search Algorithms for Combinatorial Problems - Analysis,
Algorithms and New Applications. Dissertations in Artificial Intelligence-
Infix, Sankt Augustin, Germany, 1999.

[188] T. Stützle and M. Dorigo. ACO algorithms for the quadratic assignment
problem. In D. Corne, M. Dorigo, and F. Glover, editors, New Ideas In
Optimization. McGraw-Hill, 1999.

[189] T. Stützle and M. Dorigo. A short convergence proof for a class of ACO
algorithms. IEEE Transactions on Evolutionary Computation, 6(4):358–
365, 2002.

[190] T. Stützle and H. Hoos. The MAX-MIN ant system and local search
for the traveling salesman problem. In T. Bäck, Z. Michalewicz, and
X. Yao, editors, Proceedings of the 4th International Conference on Evolu-
tionary Computation (ICEC’97), pages 308–313. IEEE Press, 1997.

[191] T. Stützle and H. Hoos. MAX-MIN ant system and local search for
combinatorial optimization problems. In S. Voss, S. Martello, I. Osman,
and C. Roucairol, editors, Meta-Heuristics: Advances and Trends in Local
Search Paradigms for Optimization., pages 137–154. Dordrecht, Nether-
lands, Kluwer Academic Publishers, 1999.

[192] C. S. Sung, Y. H. Kim, and S. H. Yoon. A problem reduction and decom-
position approach for scheduling for a flowshop of batch processing
machines. European Journal of Operational Research., 121:179–192, 2000.

210

BIBLIOGRAPHY 211

[193] R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction.
MIT Press, Cambridge, MA, 1998.

[194] E. D. Taillard. Robust taboo search for the quadratic assignment prob-
lem. Parallel Computing, 17:443–455, 1991.

[195] E. D. Taillard. Parallel iterative search methods for vehicle routing
problems. Networks, 23:661–73, 1993.

[196] E. D. Taillard and S. Voss. POPMUSIC–partial optimization meta-
heuristic under special intensification conditions. In C. C. Ribeiro and
P. Hansen, editors, Essays and Surveys in Metaheuristics., pages 613–629.
Kluwer Academic Publisher, 2002.

[197] R. Unger and J. Moult. Genetic algorithms for protein folding simula-
tions. Biochemistry, 231(1):75–81, 1993.

[198] A. Uwe and D. Dipankar. Chapter 13: Artificial immune systems tu-
torial. In E. Burke and G. Kendall, editors, Search Methodologies - Intro-
ductory Tutorials in Optimization and Decision Support Techniques, pages
375–399. Springer, 2006.

[199] V. Valls, S. Quintanilla, and F. Ballestı́n. A population based approach
to the resource constrained project scheduling. Technical Report TR06-
2001, Departamento de Estadı́stica e Investigación Operativa, Facultad
de Matemáticas, Universitat de València, Spain, 2001.

[200] V. Černý. A thermodynamical approach to the travelling salesman
problem: an efficient simulation algorithm. Journal of Optimization The-
ory and Applications, 45:41–51, 1985.

[201] M. D. Vose. The simple genetic algorithm: foundations and theory. MIT
press, Cambridge, MA, 1999.

[202] S. Voß, S. Martello, I. H. Osman, and C. Roucairol. Meta-Heuristics -
Advances and Trends in Local Search Paradigms for Optimization. Kluwer
Academic Publisher, Dordrecht, The Netherlands, 1999.

[203] C. Voudouris and E. Tsang. Guided local search. Technical Report
CSM-247, Department of Computer Science, University of Essex., 1995.

[204] D. Whitley and J. Watson. Complexity theory and the no free lunch the-
orem. In E. Burke and G. Kendall, editors, Search Methodologies: Intro-
ductory Tutorials in Optimization and Decision Support Techniques, pages
317–339. Springer, 2006.

[205] D. H. Wolpert and W. G. Macready. No free lunch theorems for search.
Technical Report SFI-TR-95-02-010, Santa Fe Institute., 1995.

211

BIBLIOGRAPHY 212

[206] D. H. Wolpert and W. G. Macready. No free lunch theorems for op-
timization. IEEE Transactions on Evolutionary Computation., 1(1):67–82,
1997.

[207] L. A. Wolsey. Mixed Integer Programming: Discretization and the Group
Theoretic Approach. PhD thesis, Massachusetts Institute of Technology,
1969.

[208] M. Yagiura and T. Ibaraki. On metaheuristic algorithms for combinato-
rial optimization problems. Systems and Computers in Japan., 32:33–55,
2001.

212

