
TECHNIQUES AND PROTOCOLS FOR DISTRIBUTED

MEDIA STREAMING

Ma Lin

(Ph.D.)

National University of Singapore

A THESIS SUBMITTED

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

DEPARTMENT OF COMPUTER SCIENCE

NATIONAL UNIVERSITY OF SINGAPORE

2007

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarBank@NUS

https://core.ac.uk/display/48624979?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Acknowledgements

First of all, I would like to thank my advisor Dr. Ooi Wei Tsang, without whose

guidance, both intellectual and emotional, I could not have completed my Ph.D.

degree. He lead me to the door into the world of research, handed me the torch

that illuminated a few steps ahead in the unknown world, tolerated my mistakes,

and fortified my mind when I felt helpless.

I would also like to express my gratitude to Prof. A.L. Ananda, Dr. Chang

Ee-Chien, and Dr. Wang Ye. They shared with me their wisdom of teaching and

doing research, and encouraged me on every step forward during the candidature.

I cherish the time together with my fellow lab mates: Liu Yanhong, Gu Yan,

Cheng Wei, Satish Verma, and Pavel Korshunov. Their constant encouragement

and willingness until discuss helped me to insist to the end of the candidature.

The Department of Computer Science, National University of Singapore offered

me the scholarship and a good place to study. This offer changed my life so much

that I will always be thankful during the rest of my days.

I would like to thank Xiaoran, for sharing my joy and sadness, and for giving

her sweet and patient love during my long march.

Finally, I am forever indebted to my parents and my family.

i

Table of Contents

1 Introduction 1
1.1 Background . 1

1.1.1 Multimedia Streaming Models 2
1.1.2 P2P data sharing . 3

1.2 Distributed Media Streaming . 5
1.2.1 Receiver-Driven Protocol . 5
1.2.2 Advantages . 6

1.3 Research Challenges . 7
1.4 List of Contributions . 10

1.4.1 Retransmission for Distributed Media Streaming 10
1.4.2 Congestion Control for Distributed Media Streaming 10
1.4.3 TCP Extension for Unreliable Streaming 11

1.5 Structure of This Thesis . 12

2 Background and Related Work 13
2.1 Network Models . 13

2.1.1 CDN . 14
2.1.2 P2P . 14
2.1.3 Hybrid . 16
2.1.4 WLAN . 16
2.1.5 Wireless Mesh . 17

2.2 Data Models . 18
2.2.1 Single-Layer Coding . 18
2.2.2 Multi-Layer Coding . 19
2.2.3 Fine Granularity Scalable Coding 20
2.2.4 Multiple Description Coding 20
2.2.5 Forward Error Correction 21

2.3 Goals and Methods . 21
2.3.1 Bandwidth-Distortion Tradeoff 22
2.3.2 Loss Rate-Distortion Tradeoff 24
2.3.3 Delay-Distortion Tradeoff 26
2.3.4 Variation in Quality . 28
2.3.5 Shortest Buffering Delay . 29
2.3.6 Reducing Server Load . 31
2.3.7 Service Capacity Amplification 33

2.4 A Map of Research . 33

ii

2.4.1 Meddour’s Overview . 33
2.4.2 Our Map of Distributed Media Streaming 35

3 Retransmission in Distributed Media Streaming 37
3.1 Introduction . 37
3.2 Related Work . 39
3.3 Distributed versus Non-Distributed Retransmission 40

3.3.1 Two Naive Distributed Retransmission Schemes 41
3.3.2 Model and Assumptions . 41
3.3.3 Mathematical Analysis . 43
3.3.4 Experimental Evaluation . 51

3.4 A Dynamic Distributed Retransmission Scheme 57
3.4.1 Description of ARQ-L . 57
3.4.2 Simulation . 59
3.4.3 Experiment over PlanetLab 65

3.5 Conclusion . 68

4 Congestion Control in Distributed Media Streaming 70
4.1 Introduction . 70
4.2 Related Work . 74
4.3 Problem Formulation . 76

4.3.1 Task-level TCP-Friendliness 76
4.3.2 The Criterion for Task-Level TCP-Friendliness 77

4.4 Model and Assumptions . 80
4.4.1 AIMD versus Equation-Based 81
4.4.2 DMSCC . 81
4.4.3 Assumptions . 82

4.5 Throughput Control . 82
4.6 Congestion Location . 88
4.7 Congestion Control . 91

4.7.1 Updating the Increasing Factors 91
4.7.2 Bottleneck Recovery . 92

4.8 Simulation and Discussion . 93
4.8.1 The sensitivity of h . 96

4.9 Conclusion . 97

5 TCP Urel: A TCP Option for Unreliable Data Streaming 99
5.1 Introduction . 99
5.2 Related Work and Motivation . 101
5.3 Design of TCP Urel . 106

5.3.1 The Overall Idea . 106
5.3.2 Sending Procedure . 108
5.3.3 The Urel Option . 110
5.3.4 Receiver Procedure . 112
5.3.5 Urel Negotiation . 114
5.3.6 Application Programming Interface 115
5.3.7 Possibility of Bandwidth Wastage 115

iii

5.3.8 Support for Partial Reliability 116
5.4 Evaluation . 118

5.4.1 TCP Friendliness . 119
5.4.2 Protocol Efficiency . 125
5.4.3 Bandwidth Wastage . 129

5.5 Conclusion . 130

6 Conclusion and Future Work 131
6.1 Distributed Retransmission . 131
6.2 DMSCC . 132
6.3 TCP Urel . 133
6.4 Availability of Code . 134

Bibliography 135

iv

TECHNIQUES AND PROTOCOLS FOR DISTRIBUTED MEDIA

STREAMING

Ma Lin, Ph.D.

National University of Singapore 2007

Distributed media streaming employs multiple senders to cooperatively and simul-

taneously transmit a media stream to a receiver over the Internet. Having multiple

senders have lead to both sender and path diversity and improved robustness in

the system. But at the same time, distributed media streaming has raised many

challenging and interesting research problems. In this dissertation, we investigate

several of these problems that are related to media quality and fairness to other

applications.

First, we study how streaming quality can be improved through distributed re-

transmission – retransmission from alternate senders rather than the origin of the

lost packet. We explore the question of whether distributed retransmission recov-

ers more packet loss than non-distributed retransmission by comparing two naive

distributed retransmission schemes with the traditional non-distributed scheme.

Through analysis, simulations, and experiments over the Internet, we found that

distributed retransmission leads to fewer lost packets and shorter loss burst length.

To address the practical issue of who to retransmit from, we propose a distributed

retransmission scheme that selects a sender with the lowest packet loss rate to re-

transmit from. Results show that our proposed scheme effectively recovers packet

losses and improves playback quality.

Second, we investigate the issue of TCP-friendliness in distributed media stream-

ing. The traditional notion of TCP-friendliness is not suitable for multi-flow ap-

v

plications, such as distributed media streaming, as it is unfair to other single-flow

applications. We therefore introduce the notion of task-level TCP-friendliness for

distributed media streaming, where we require the total throughput for a set of

flows belonging to the same task to be friendly to a TCP flow. To this end, we

design a congestion control protocol to regulate the throughput of the flows in an

aggregated manner. The regulation is done in two steps. First, we identify the

bottlenecks and the subset of flows on the bottlenecks. Then, we adjust the con-

gestion control parameter such that the total throughput of the subset is no more

than that of a TCP flow on each bottleneck. Network simulation using multiple

congestion scenarios shows the efficiency of our approach.

Third, we propose an unreliable, congestion-controlled transport protocol for

media streaming, called TCP Urel. TCP Urel sends fresh data during retransmis-

sions, and therefore keeps the congestion control mechanism of TCP intact. TCP

Urel is simple to implement. We realized TCP Urel based on the existing TCP

stack in FreeBSD 5.4, with less than 750 lines of extra code. Our experiments

over a LAN testbed show that TCP Urel is friendly to different TCP versions and

introduces little CPU overhead.

vi

Biographical Sketch

Ma Lin was born in January, 1980 in the city of Hangzhou in Zhejiang Province,

China. After he completed his secondary education at the Affiliated Middle School

of Zhejiang University in 1998, he went on to pursue his undergraduate degree in

the Department of Computer Science and Engineering, at Zhejiang University. He

graduated with a Bachelor Degree in Computer Science in 2002, and then moved to

Singapore to pursue a Ph.D. degree in School of Computing, National University

of Singapore.

iii

To Grandma.

iv

Chapter 1

Introduction

The Internet, since its evolution from ARPANET in 1980s, has grown rapidly and

has tremendously improved people’s life in many aspects. The Internet traffic

increases exponentially over the years [16]. Multimedia applications are among

the most fascinating applications that fuel the growth of the Internet. One of

these applications is Video on Demand (VOD) service, which streams multimedia

content on demand over the Internet.

1.1 Background

Unlike bulk data transmission such as file transfer, realtime multimedia streaming

has several distinguishing characteristics. First, media streaming is delay-sensitive.

Packets arriving after its playback deadline cannot be played back. Second, mul-

timedia data consumes large amount of bandwidth. For instance, an MPEG-4

video typically consumes 56Kbps to 2Mbps bandwidth [78]. Third, multimedia

streaming tolerates some degree of data loss during transmission [24, 78]. These

characteristics require supports on delay guarantees, bandwidth reservation, and

flexible error control, which are not provided by the current Internet. VOD has

an additional requirement that playback should start as soon as possible after a

1

1.1. BACKGROUND 2

user request.There are three communication models for VOD: unicast, multicast,

and multipath streaming. Each model has its own weaknesses that hinder scalable

delivery of VOD service.

1.1.1 Multimedia Streaming Models

The unicast model uses a streaming session between one sender and one receiver

via one path, carrying either unidirectional or bidirectional traffic. This model is

widely used because of its simplicity. For example, VoIP applications such as Yahoo

Messenger and web-based VOD services such as Google Video use this model. In

web-based VOD services, when a user clicks the start button on the web page, the

client builds a connection to the server, which then streams1 video content via the

connection. As the number of session requests increases, the output bandwidth at

the server becomes a bottleneck. VOD over unicast is not scalable. For instance, to

scale their VOD service to millions of users, Google Video replicates video contents

in multiple servers located at the edge of the Internet, reducing the burden on each

server.

The multicast communication model uses a streaming session involving one

sender and multiple receivers. The sender does not maintain one connection to

each receiver. Instead, the stream is replicated at intermediate nodes along the

path for distribution to the receivers. This way, the sender is able to serve multiple

receivers while sending only one stream, significantly reducing the sender’s outgo-

ing bandwidth requirement. Two types of multicast exist, based on the layer in

which the intermediate nodes reside. In IP multicast [94], the intermediate nodes

are multicast-enabled routers. These routers support group management, packet

1More precisely, the video is progressively downloaded using HTTP protocol.
In this dissertation we do not discriminate streaming with RTP or transmission
with HTTP.

1.1. BACKGROUND 3

replication, and routing. The other type is application-layer multicast [79], which

uses end host as intermediate nodes and implements functionalities of group man-

agement, packet replication, and routing in the application layer. It requires no

changes to the routers in the current Internet, and therefore, can be deployed more

easily.

The other multimedia streaming model is multipath streaming. As suggested

by the name, it employs multiple (ideally uncorrelated) physical paths between

the sender and the receiver and streams multimedia content by multiple flows

on these paths [11, 14, 31, 33, 57]. Comparing to unicast, multipath streaming

has the following advantages: (i) By scattering packets among different paths, it

reduces the lost correlation between consecutive packets, hence reduces the quality

impairment from burst loss on single path; (ii) it increases the throughput by using

multiple flows; and (iii) with the heterogeneous channels, it offers the choice to

prioritize which media data to send onto which paths and to adapt to dynamic

network conditions. Nevertheless, multipath streaming still cannot scale, since,

like unicast it uses one sender and one receiver in a session. When the number of

receivers increases, the outgoing bandwidth at the sender becomes the bottleneck.

To provide scalable VOD service, we need a new model to disperse the stream-

ing burden to multiple senders and to relieve the outgoing bottleneck at the sender.

This approach is largely similar to that used for peer-to-peer (P2P) data sharing,

which we will introduce next.

1.1.2 P2P data sharing

Despite legality issues, data sharing over P2P networks has exploded in the past

few years. Since 1999, the percentage of P2P traffic on the Internet increases

exponentially every year. According to a report from CacheLogic [9], by the end of

1.1. BACKGROUND 4

2004, P2P has taken up 60% of the total Internet traffic. The same report points

out that more than 88.6% of the P2P traffic is for multimedia data. Large share of

multimedia data in the P2P traffic implies a huge demand for multimedia content

from the broadband home subscribers. In P2P data sharing, peers download data

from several other peers. A peer acts as a client when it downloads data and acts as

a server when it uploads data. Peers are end hosts on the Internet; they exchange

data through ad hoc connections, which weave up an overlay of peers. Such overlay

is scalable by nature: if a piece of data is popular, the number of receivers increases;

these receivers, in turn, become potential senders later and contribute their storage

and bandwidth to the overlay [84]. This large number of potential senders provides

high scalability and makes P2P data sharing tremendously successful.

Many P2P overlays [54] make use of distributed hash table, which allows in-

dexing of the resources, including regular files and multimedia data. For instance,

in an indexing ring with N nodes, Chord [88] can locate a file in log(N) rounds

of message passing. These indexing techniques allow a user to efficiently locate

available senders of a particular resource (e.g. a video clip in VOD).

Chord

1

2 3

4

5

5

5
R

A

B

C

6

6
6

Peers Indexing Servers

Messages in session setup:

1. Peer R sends a search query
to the nearest indexing server;
2. The query is forwarded among
the indexing servers;
3. Result of the query is returned
to the nearest indexing server;
4. The result is returned to R;
5. R contacts peers that are
listed in the result for session set
up.
6. Some peers reply with con-
firmations. Then, the session
starts.

Figure 1.1: Framework of a VOD service over P2P overlay

1.2. DISTRIBUTED MEDIA STREAMING 5

With the large number of peers in the overlay, a user has a high chance of

finding a popular video clip. Scalability and asynchronous availability, both offered

by P2P, match the needs of VOD. A possible P2P VOD service framework is shown

in Figure 1.1. In this framework, videos are stored in the peers and are indexed by

the indexing servers, which form a Chord ring. Similar indexing network can be

found in practical systems, e.g., ed2k and kad in eMule. After finding the senders,

the receiver sets up a streaming session and begin receiving video. Unlike unicast,

multicast, and multi-path streaming, due to the abundance of peers in the overlay,

P2P network can supply multiple senders to one receiver. We refer to a session

that involves multiple sender and one receiver as a distributed media streaming

session.

1.2 Distributed Media Streaming

Distributed media streaming uses multiple senders to simultaneously and cooper-

atively stream multimedia data to a single receiver. In the literature, it is also

known as multi-source streaming [2]. The streaming session from A, B, C to R in

Figure 1.1 is a distributed media streaming session. In the rest of this section, we

discuss some features of this model.

1.2.1 Receiver-Driven Protocol

Distributed media streaming typically adopts a receiver-driven protocol [50, 68,

81, 97], where the receiver (i) initiates the streaming session; (ii) measures the

network statistics such as loss rate, bit rate, and delay on the different channels;

and (iii) decides who sends which part of data at what time, to achieve the best

quality. These decision tasks are performed by the receiver for two reasons. First,

the receiver is the consumer of the media, hence it is fair for the receiver to spend

1.2. DISTRIBUTED MEDIA STREAMING 6

resources (CPU power, memory, and bandwidth) to decide how to stream. Second,

since only the receiver communicates with all the senders, network statistics tracked

at the receiver can be used for decision making without communication overhead

among the senders.

Chakareski and Frossard [10] designed a sender-driven protocol for distributed

media streaming, believing that the packet dependency is known prior at the

senders rather than the receiver, therefore determining which packets to be sent

by which sender should be carried out at the senders. Although this design shifts

part of the decision making from the receiver to the senders, the packet assignment

algorithm is still driven by the channel statistics measured by the receiver.

1.2.2 Advantages

Compared to unicast, multicast, and multipath streaming, distributed media stream-

ing model is better suited for VOD service.

First, having multiple senders allows each sender to contribute less upload

bandwidth in a session than having only a single sender. Requiring smaller upload

bandwidth than the download bandwidth in the session matches well with the

asymmetric download/upload bandwidth capacity in current broadband deploy-

ment. For instance, ADSL (ITU G.992.1) has a 8Mbps downstream and 1Mbps

upstream, and CDLP (a proprietary Cable Modem standard made by Motorola)

provides 10Mbps downstream and 1.532Mbps upstream2. Lowering the sending

rate also matches users’ general unwillingness to contribute uploading bandwidth

in P2P system [23], and therefore can attract broader user base, which is essential

to building a large scale P2P network and serving a large number of clients.

Second, although each sender contributes less bandwidth, contribution from

2http://en.wikipedia.org/wiki/Cable modem

1.3. RESEARCH CHALLENGES 7

multiple senders allows aggregation of bandwidth. In single-sender models, the

streaming rate is limited by the upload rate at the sender, which is likely to be

smaller than the download bandwidth due to the asymmetric links and users’

unwillingness to contribute. Distributed media streaming therefore can support

higher streaming rate than single-sender models.

Third, while the failure of the sender in single-sender models stops media

streaming to all the receivers completely, the same scenario causes less disruption

to distributed media streaming. Data are still being received from other senders,

allowing playback at a lower quality if proper coding methods are used. Therefore,

distributed media streaming is more robust to sender failure than single-sender

models.

Fourth, since distributed media streaming employs multiple channels, when one

channel is congested, the receiver can still receive data through other channels.

Diversified paths reduce packet loss correlation and impairment from burst loss

when proper error recovery techniques [55] is used. This advantage is also exploited

by multipath streaming [31]. We expect distributed media streaming to deliver

better media playback than single-channel models in a lossy network.

1.3 Research Challenges

As they said, however, “there ain’t no such thing as a free lunch3”. While dis-

tributed media streaming has many advantages, it also brings new challenges. We

highlight the major challenges below.

Sender Selection Given a potentially huge set of sender candidates returned by

the indexing network (e.g. the Chord ring in Figure 1.1), we need to select some

3“There ain’t no such thing as a free lunch.” – R. A. Heinlein, The Moon Is a
Harsh Mistress

1.3. RESEARCH CHALLENGES 8

of them as senders in the distributed streaming session. Many factors affect the

selection. For instance, if each sender only stores part of the media content (as the

case in Cui and Nahrstedt [19]), the selected group of senders must together provide

the whole media content under request. Sending rate of the candidates is another

factor: the selected group of senders should output a combined bit rate no less than

the playback bit rate of required media under request. Other factors include delay,

packet loss rate, and path diversity. Lower delay provides lower response time;

lower packet loss rate leads to higher media playback quality; and higher diversity

in paths from the senders to the receiver leads to fewer simultaneous packet losses.

Rate Allocation Rate allocation decides how fast a sender should send. Rate

allocation can be considered in conjunction with sender selection: the total send-

ing rate must exceed the minimum playback requirement. After the senders are

selected and the session starts, the rate may also be dynamically adjusted among

the senders to perform congestion control, to maintain the combined bit rate when

one sender is in severe congestion, and to avoid overflowing the receiver buffer.

Data Assignment Data assignment determines which sender should send which

part of the media content. A sender can send certain layer(s) for a multi-layer

video, or certain chunk(s) in a single-layer video, or certain packet(s). In general,

data assignment takes the rate allocated to the senders and the set of data units

as inputs and computes a mapping between the data units and senders, optimizing

the received media quality.

Error Recovery Error recovery is important as it reduces the quality impair-

ment caused by packet loss on the Internet, and hence offers better perceptual

quality at the receiver. Due to the existence of multiple senders, distributed media

streaming can scatter FEC blocks among the senders or choose different senders

1.3. RESEARCH CHALLENGES 9

for retransmission. By avoiding correlated packet loss on same channel, error

recovery schemes in distributed media streaming can improve the media quality

significantly.

Congestion Control Congestion control is key to maintain the Internet stabil-

ity [26]. Continuous streaming application like video streaming must be congestion

controlled, so that their deployment do not unfairly compete with other network

flows. The formulation of congestion control in distributed media streaming, how-

ever, is different from the one in single-sender models. Because multiple flows are

involved, TCP-friendliness, the common goal of congestion control, needs to be

redefined. Besides, due to the reverse tree topology in distributed media stream-

ing, the congestion control scheme needs to dynamically adapt to the different

bottlenecks in the tree.

Transport Protocol Distributed media streaming employs multiple flows to

deliver media data cooperatively. A transport protocol is needed to stream each

of these flows. Although congestion-controlled transport protocol in single path

streaming is well studied, distributed media streaming has its own requirements

that are not satisfied by existing protocols. First, the protocol needs not be reli-

able. Second, the protocol should notify the application about packet loss. The

application can then recover losses based on its own policy.

Among the above problems, the first three have been well studied in existing

literature [19, 35, 68, 81, 97]. The next two, however, are not studied previously.

Due to their importance in constructing a usable and practical distributed me-

dia streaming system, we chose them as the topics of this dissertation. We also

designed a transport protocol to satisfy the requirements of distributed media

streaming, providing a solution to the last problem.

1.4. LIST OF CONTRIBUTIONS 10

1.4 List of Contributions

The contributions of this thesis are as follows.

1.4.1 Retransmission for Distributed Media Streaming

We study the effectiveness of retransmission from senders other than the one that

loses the packet and propose a retransmission scheme for distributed media stream-

ing. Our scheme dynamically switches retransmitters when congestion appears,

and selects the channel with the lowest loss rate for retransmission. By doing so,

we successfully reduce the quality impairment caused by burst loss. We present

the detail in Chapter 3.

The dynamic retransmission scheme is the first attempt to exploit path diversity

in retransmission. The model and discussion in this study also apply to multipath

streaming, which also streams via multiple channels concurrently.

1.4.2 Congestion Control for Distributed Media Streaming

We propose DMSCC, a congestion control scheme for distributed media stream-

ing. We study existing measurement on congestion control and define a new notion

of task-level TCP-friendliness for multi-flow applications: depending on the loca-

tion of bottlenecks, the application flows in the bottleneck should offer a combined

throughput that is TCP-friendly. We design DMSCC to achieve this goal. DMSCC

has two relatively independent functionalities: throughput control and congestion

location. When congestion occurs, the congestion location module identifies the

bottleneck by observing the correlations among the one-way delay variation of the

channels. The throughput control module then updates the increasing factor of

AIMD loops of each flow on that bottleneck, so that the combined flow is friendly

to other TCP flows on the same bottleneck. Our simulation shows that DMSCC is

1.4. LIST OF CONTRIBUTIONS 11

able to achieve task-level TCP-friendliness in different congestion scenarios. Chap-

ter 4 presents the details of this work.

DMSCC is the first congestion control method designed for distributed media

streaming system. It is the first congestion control scheme that considers the

changing location of congestion in a topology of reverse tree. The method of

adjusting increasing factors to achieve certain bandwidth share of a TCP flow is

also useful to other applications that need aggregate congestion control.

1.4.3 TCP Extension for Unreliable Streaming

Generally, TCP is regarded as unsuitable for continuous multimedia streaming.

The reasons are that: (i) the sawtooth-like rate adaptation impairs the smoothness

of the media quality, and (ii) the automatic retransmission can cause unbounded

packet delay. For non-interactive applications such as VOD, the bit rate can always

be smoothed by a receiving buffer; therefore, the issue of sawtooth-like bit rate

fluctuation is not important. To tackle the second concern, we design a new

option for TCP: TCP Urel, which does not retransmit when packets are lost, but

maintains the congestion control operations of a TCP flow at the same time. To

help application-level error recovery, TCP Urel also informs the application about

the lost data, allowing error decision at the application layer.

TCP Urel improves the TCP friendliness of previous attempt to modify TCP

into unreliable streaming protocol [63]. Compared to other existing protocols sup-

porting unreliable but congestion controlled data delivery [41, 87], TCP Urel is

a simple, easy to use alternative that can be used by multimedia streaming and

other loss-insensitive applications over the Internet. Detail of TCP Urel will be

presented in Chapter 5.

1.5. STRUCTURE OF THIS THESIS 12

1.5 Structure of This Thesis

This thesis is structured as follows. Chapter 2 presents existing work in distributed

media streaming and gives a detailed review of the field. Chapter 3 presents

our study on retransmission in distributed media streaming. Chapter 4 describes

DMSCC, the congestion control scheme for distributed media streaming. Chapter

5 presents TCP Urel, the TCP extension for unreliable streaming. We conclude

this thesis in Chapter 6.

Chapter 2

Background and Related Work

Since 2002, distributed media streaming has been an active research topic. Sev-

eral research groups identified many problems from different perspectives, under

different network context, data types, and design objectives.

In this chapter, we present an overview of the existing work. First, we cate-

gorize these work according to their network models and data models. Then, we

organize them according to their goals and present the schemes proposed for differ-

ent network and data models. As a summary, we show a map of existing research

at the end of this chapter. In the map, we also indicate how this thesis fits into

the overall picture.

2.1 Network Models

Distributed media streaming can be used in different networks. The senders may

be servers in a Content Delivery Network [3], end hosts in a peer-to-peer (P2P)

overlay network [97], mobile users in a wireless LAN (WLAN) [48], or randomly

scattered mobile nodes in a wireless mesh [49]. These networks can be simplified

and abstracted as nodes (senders, receiver, and routers) and links (wired and

wireless). In this section, we elaborate on these networks and how they are modeled

13

2.1. NETWORK MODELS 14

in existing work.

2.1.1 CDN

A CDN consists of a group of servers placed strategically across the Internet, often

deployed over multiple backbones for high availability. They cooperate to deliver

media content to the users, transparent to the clients [36]. By carefully placing

the servers, CDN brings content nearer to the client, reducing response time and

distributing load across the servers. In a CDN, servers typically are provisioned to

have enough bandwidth to support unicast to the receivers. But we can still use

multiple senders to reduce quality degradation when some links are congested.

Servers in CDN have large storage, fat pipe, and are highly available. So

research efforts focus on modeling of the links, whose bandwidth, loss rate, and

delay affect the media quality. Apostolopoulos et al. [3] model each link with a

Gilbert model. A path from a sender to the receiver is a concatenation of several

links. Paths from multiple senders start with different links at first, but merge with

each other later, sharing the same links closer to the receivers. The authors study

streaming from two senders and model the paths with three Gilbert models, one

for each disjoint sub-path from the two senders, and one for the common sub-path.

These three Gilbert models are equivalent to a 8-state Markov Model identified by

an 8× 8 transitional matrix. With this model, they capture the pattern of packet

losses caused by either shared or independent congestion.

2.1.2 P2P

A P2P overlay relies primarily on the computing power and bandwidth of the end

hosts in the overlay network. Unlike CDN, P2P overlay is decentralized: a pure

P2P overlay does not have notions of clients or servers, but only peers, which

2.1. NETWORK MODELS 15

function as both “servers” and “clients” to other peers in the overlay [84].

Peers

Unlike dedicated servers (e.g., those in a CDN network), peers are typically broad-

band home users with limited uploading bandwidth. Therefore, one factor in mod-

eling P2P network is the bandwidth of each sending peer. This factor is considered

by Nguyen and Zahkor (2002a) [68], which adds peers to the sender set until the

combined bandwidth of selected senders exceeds the requirement for streaming.

Senders can leave a session at anytime, as the action of end hosts is not pre-

dictable. When a sender leaves, the media quality degrades. The probability that

a peer leaves during a session can be modeled using an on/off probability [35].

As the receivers will become senders after receiving the media data, the sending

rate of a receiver is also a variable to be considered in the model. In the initial

phase, there are only a few seeds. Thus, it is hard to serve many request simul-

taneously due to the limited bandwidth available from the seeds. To address this

issue, Xu et al. [97] selects receivers with higher sending rate to serve.

Links

P2P overlay and CDN share similar link properties. Hefeeda et al. [35] model the

paths as concatenation of links, with possible sharing of links among paths. Nev-

ertheless, unlike Apostolopoulos et al. [3], who only consider packet loss, Hefeeda

et al. model each link’s bandwidth, packet loss rate, and delay. With these param-

eters, the authors can determine how much data can be transmitted in a period,

how many packets will be lost, by how long would they be delayed, and to what

extent these losses and delay would be correlated between two paths. By combin-

ing these information, they are able to select the best paths (hence the senders) to

maximize the playback quality of a streaming session.

2.1. NETWORK MODELS 16

Estimating the parameters (bandwidth, loss rate, and delay) of each link, es-

pecially before streaming has begin is difficult. Estimation error of a parameter

on one link may accumulate on links along the path and diminish the accuracy of

the path model significantly. Instead, many researchers simplify the modeling of

paths. Nguyen and Zahkor [68,69], and Xu et al. [97] model the paths as indepen-

dent links with loss rate, which is measurable by end-to-end methods. Rejaie and

Ortega [81] measure the bandwidth of these paths and estimate future bandwidth

using TFRC [34].

2.1.3 Hybrid

CDN is more reliable when servers are not overwhelmed, whereas P2P scales better

if videos are popular and are requested by many peers. To combine the merits

from both sides, hybrid system with both centralized servers and decentralized

peers are designed [6]. In such system, reliable servers can take over when a peer

fails. While establishing a new connection from the replacement peer, the server

helps significantly in reducing quality degradation.

Such system is a combination of the CDN and P2P models. Cui and Nahrstedt

[19] use the servers with large bandwidth and large storage and characterize the

peers as nodes with limited bandwidth and limited storage. The links of such

network are the same as in CDN and P2P systems.

2.1.4 WLAN

Distributed media streaming may also be deployed over WLAN. WLAN differs

from wired network as nodes in the same WLAN shares the same access point.

Each connection to and from the nodes in the WLAN passes through the access

point, even for communication between nodes in the same WLAN.

2.1. NETWORK MODELS 17

Li et al. (2005) [48] model the path between a sender and the receiver as the

concatenation of two links, one from the sender to the access point, the other from

the access point to the receiver. Since access point knows about the signal strength

to and from the peers, based on which accurate estimation of loss rate, bandwidth,

and delay of a link is possible, the authors place a proxy on (or near) the access

point to coordinate distributed streaming.

Senders in the WLAN are not only characterized by their sending rate, but also

the mobility. Li et al. (2005) [48] let the proxy trace the mobility of the nodes by

looking at the changing of signal strength, and estimate the effects of mobility on

the link quality for the next period of time.

2.1.5 Wireless Mesh

Wireless mesh is another type of wireless network, in which nodes are intercon-

nected with each other to form a mesh. A node may have more than one neighbors;

it not only receives packets from them but also relays packets to them. A node is

both a consumer of packets and a router. Compared to WLAN, a wireless mesh

is more extensible as each newly joined node expands the bandwidth and range of

the network. It is also more robust since packets could be routed through another

path if an intermediate node fails. In WLAN, in contrast, access point is the single

point of failure.

Assuming nodes are cooperative, the end-to-end bandwidth is determined by

the link bandwidth rather than the nodes’ contributed output rate. The network

modeling of wireless mesh focuses on the links rather than the nodes. Li et al.

(2006) [49] model a wireless mesh as a time-varied directed graph. A directed edge

captures a link and its loss rate, bandwidth, and delay. A edge exists only when

the distance between two nodes is within the communication range.

2.2. DATA MODELS 18

Unlike wired network, links in wireless network suffer from interference. One

simple model of interference is that, a link from node A to node B exists only when

other nodes having B in their communication range do not transmit to B. Li et al.

(2006) [49] adopt this interference model and construct a conflict matrix, whose

indices are the links and whose elements denote whether two links interfere with

each other.

2.2 Data Models

Considering the distance, loss rate, bandwidth, delay, and interference, links are

concatenated to form paths and selection can be made to decide the best senders

and routes for streaming

2.2.1 Single-Layer Coding

Single-layer coding (such as MPEG-2 [1]) codes video data into frames ordered by

time. Each frame should be played back at a deadline, and frames are modeled

as a sequence of packets ordered by playback time (display order). Packets may

depend on other packets according to their frame type (Figure 2.1(a)). While

transmitted via one single path, referred packets are transmitted before referring

packets (coding order). Current work in distributed media streaming further sim-

plify this model and assume that packets have the same size and are independent

(Figure 2.1(b)), e.g., Nguyen and Zahkor (2005a) [68]. Although many studies con-

cerning the dependency among frames and packets exist in the case of single path

streaming and multi-path streaming [11, 38], there are no corresponding research

in distributed media streaming.

2.2. DATA MODELS 19

I B B P(a) B B P

I I I I I I I(b)

Playback time sequence

Figure 2.1: Packet dependency of single-layer coding: (a) dependent packets, (b)

independent packets (assuming one frame per packet)

2.2.2 Multi-Layer Coding

Multi-layer coding [30] encodes the video data into two or more layers. The lowest

layer (base layer) is essential to decoding but only produces a low quality video.

The higher layers enhance the video quality after the lower layers are decoded.

When bandwidth is limited the sender can drop the highest layers and offer a lower

quality but continuous video playback. Multi-layer video are modeled such that (i)

higher-layers packets depend on lower-layer packets, and (ii) frame-level dependen-

cies are preserved among packets (Figure 2.2). Dependencies among packets have

been studied to optimize the streaming quality in single path [52] and multi-path

streaming [71], but there are no comparable study in distributed media streaming.

Existing work based on multi-layer video [19, 81] only study dependency at the

granularity of layers rather than packets.

I P P P P

I P P P P

Base Layer

Enhancement Layer

Figure 2.2: Packet dependency of multi-layer coding (2 layers)

2.2. DATA MODELS 20

2.2.3 Fine Granularity Scalable Coding

Fine granularity scalable coding (FGS) provides finer granularity on quality degra-

dation. Unlike multi-layer coding, in which a enhancement layers has to be fully

received to improve quality, FGS utilizes every received bit in enhancement layer

to improves quality [51]. FGS shares similar packet dependency graph as multi-

layered coding, therefore the problem of assigning layers to senders for better

quality or lowest server burden may have similar solutions. For example, Cui and

Nahrstedt [19] and Hsu [37] minimize the server’s burden while streaming multi-

layer video and FGS video in a hybrid network using distributed media streaming

respectively using similar solutions.

2.2.4 Multiple Description Coding

Both multi-layer coding and FGS encode the media into layers with dependency:

enhancement layers cannot be decoded if the base layer is not received. This model

prioritizes lower layers over higher layers and does not fit the characteristics of the

Internet, which is best effort and does not prioritize packets. Multiple description

coding (MDC) produces multiple streams called descriptions that are independent

from each other. When combined, these streams output video with higher quality.

This nice property, however, costs higher bandwidth [77]. According to the study

by Lee et at. [46], multi-layer coding gives better quality when bandwidth is less

than the full-quality playback rate; single-layer coding has better quality when

bandwidth is greater than the full-quality playback rate; and MDC gives worse

quality in both cases. The merit of using MDC in distributed media streaming,

however, is that we need not worry about which sender should send which de-

scription, since all descriptions are equally important. So the concern focuses on

the selection of senders, which leads to different paths with different correlation.

2.3. GOALS AND METHODS 21

The correlation could produce simultaneous channel loss or delay, causing quality

degradation. Apostolopoulos et al. [3] selects paths that are maximally disjoint to

reduce the correlation among the paths.

2.2.5 Forward Error Correction

FEC is normally regarded as a technique to recover packet loss, rather than a

coding scheme for video. But since FEC packets may recover data, video quality

can be improved by deciding the sending sequence (probably interleaving) of the

data and FEC packets. As multiple paths exist, distributed media streaming raises

the problems of which sender should send FEC packets, how much redundancy

should be added, and how can FEC packets interleave with data packets. These

problems lead to different rate allocation algorithms without [68] or with [69] FEC

in the work by Nguyen and Zahkor.

2.3 Goals and Methods

The design of a distributed media streaming system depends on the network model,

the data model, and the design goals. Existing work can be categorized according

to their design goals: (i) minimum distortion, (ii) shortest buffering delay, (iii)

minimum server load, and (iv) fastest service capacity growth. In this section, we

shall present and compare these existing work, organized by each goal.

One common way to evaluate video quality is the distortion of each frame. Dis-

tortion, which is calculated as the mean square error of the differences in signals,

measures the mismatch between a transmitted and decoded frame to the original

frame [13]. Distortion is introduced by three factors during transmission: (i) in-

sufficient bandwidth, thus, only part of the data can be sent; (ii) packet loss, only

part of the data sent are received, and (iii) unpredictable delay variation – data

2.3. GOALS AND METHODS 22

arrives after the playback deadline cannot be played back. Several publications

in distributed media streaming minimize distortion by reducing the impairments

from these three aspects. We will go through them in this section.

2.3.1 Bandwidth-Distortion Tradeoff

The combined sending rate of the senders decides the number of bytes that the

receiver can receive in a time unit. Given a higher sending rate, more data is

likely to be decoded, and therefore lower distortion can be achieved. The system

designer can either optimize by constraining the maximum bandwidth or maximum

distortion. The trade-off between bandwidth and distortion has been explored from

three aspects.

The first question related to the trade-off is that, given a certain amount of

bandwidth, how to maximize quality? The solution to this question depends on

the data model and network model.

Nguyen and Zahkor (2002a) [68] transmits single-layer video packetized into

fixed-size packets, with no dependency among the packets. In this simple data

model, the distortion increases as the packet loss rate increases. Minimizing the

distortion is therefore equivalent to minimizing the overall packet loss rate, which

can be achieved by selecting senders with the lowest packet loss rate until the

combined bandwidth reaches the requirement.

Rejaie and Ortega [81] transmits multi-layer coded video, where a layer is

decoded only when all layers below are decoded. The distortion, hence, is related

to the amount of decode-able data from different layers. In their system, called

PALS, the receiver tracks and estimates the senders’ bandwidth in the next time

window. When the combined estimated bandwidth is higher than the playback

rate, new layers are added; when it is lower, the top most layers are dropped.

2.3. GOALS AND METHODS 23

The receiver also tracks the amount of received data in each layer and decides the

bandwidth to allocate to each layer. These layers are weighted, and the combined

bandwidth (counted as number of packet per window) are distributed to the layers

according to the weights. The packets that fall into the window are ordered in

a zigzag sequence, so packets in the lower layers are likely to be delivered first;

therefore if the actual throughput is less than the estimated value, at lease the

lower layers are sent. Another heuristics-based zigzag sequence is also proposed in

their later work [2] to further improve the perceptual quality.

Li et. al (2005) [48] study distributed media streaming in a WLAN. The authors

consider scenario where part of the multimedia content requested already resides

on peers within the same WLAN1, in which peers communicate via the same access

point. Scalability in such a network is not the main issue, as the number of nodes is

limited by the access point, which forms a bottleneck of the network. The authors

set up a proxy near the access point to relay media data between the sender and the

receiver for all distributed media streaming sessions. During a session, the proxy

pulls data packets from the senders and push them to the client. To reduce packet

losses due to limited bandwidth, the proxy only pulls data from a sender when both

the sender-proxy and the proxy-client links have spare bandwidth. The frequency

of pulling is determined by a timer, whose interval is inversely proportional to the

link bandwidth estimated by TFRC. Given a selected sender-proxy link to deliver

the next chunk of data, they employ a rate-distortion optimization framework

derived from single path streaming [13] to schedule packets from that chunk on

the sender-proxy link. Since wireless network is more error-prone, caching and

retransmission are employed at the proxy, in order to conceal link-layer loss from

1The 802.11 has two basic modes of operation. Ad hoc mode enables peer-to-
peer transmission between mobile units. Infrastructure mode, allows mobile units
communicate via an access point. In Li et. al (2005) [48], infrastructure mode is
under discussion.

2.3. GOALS AND METHODS 24

the receiver. The proxy also handles joining and leaving of the peers and the setup

for all streaming sessions.

The previous studies achieve minimum distortion under a given bandwidth

constraint under different networks and data model. A question can be raised

from the other angle of the trade-off between bandwidth and distortion: to reduce

distortion to a certain level, what is the minimum bandwidth required? Majumdar

et. al [58] solve the problem using bisection. Since number of packets to be sent

is capped by the available bandwidth, and video quality increases as bandwidth

increases, the authors try with half of the available bandwidth and find the best

achievable quality – this is the same problem encountered by Nguyen and Zahkor

(2005a) [68]. Depending on whether the achieved quality is higher or lower than

the targeted quality, they subdivide the range of packet number and repeat the

process in the upper half or lower half of the range, until the required quality is

achieved.

2.3.2 Loss Rate-Distortion Tradeoff

Besides insufficient bandwidth, packet losses produce distortion as well. The loss

rate-distortion trade-off in distributed media streaming is explored by three exist-

ing work [3,35,69], in different network, using different data model, and interpreting

the trade-off differently.

The first work, by Nguyen and Zahkor (2005b) [69], considers the following

scenario. Given different loss rate on different paths, what should the sending

rate of each sender be? This problem is similar to that in Nguyen and Zahkor

(2005a) [68]. But loss rate instead of bandwidth becomes the main factor that

affects distortion since FEC protected packets are considered. Given a fixed level

of FEC protection, the authors minimize the probability of irrecoverable loss by

2.3. GOALS AND METHODS 25

determining the number of packets per FEC block that should be sent by each

sender. Modeling each channel with a Gilbert model, the authors solve the problem

for a two-sender case.

Hefeeda et. al [35] study the sender selection problem: Find a set of senders

that minimizes the overall loss rate. Instead of assuming that each path is inde-

pendent and selecting the senders based on end-to-end measurements (Figure 2.3),

the authors propose that the common link among the paths should be considered

(Figure 2.4). By inferring the approximate topology and measuring the available

bandwidth on the links, they propose a topology-aware sender selection method,

which selects senders with the highest quality. The quality of a sender, on the

other hand, is weighted and calculated based on a packet loss model that considers

peer availability, peers sending rate, and the available bandwidth along the path.

The authors showed that their topology-aware sender selection delivers the lowest

packet loss rate and the highest combined sending rate with or without peer fail-

ure, when compared to random selection and selection based on independent path

assumption.

Availlability

P1:0.25,0.2

P2:0.25,0.7

P3:0.25,0.8 P4:0.5,052 P5:0.25,0.8 P6:0.5,0.9
Offered rate

0.50.25

Receiver

0.25

0.5

0.5

0.5

End-to-end measured
available bandwidth

Figure 2.3: End-to-end selection, which does not consider shared segments (Figure

excerpted from Hefeeda et. al [35])

Apostolopoulos et. al [3] apply MDC to distributed media streaming in a CDN

2.3. GOALS AND METHODS 26

Availlability

P1:0.25,0.2

P2:0.25,0.7

P3:0.25,0.8 P4:0.5,052 P5:0.25,0.8 P6:0.5,0.9
Offered rate

1

2
3

4
5

Router 0.5

0.5

0.25
1.0

Availlable
bandwidthReceiver

Figure 2.4: Topology-aware selection constructs an approximate topology and con-

siders shared segments (Figure excerpted from Hefeeda et. al [35])

network. The authors recognize that the path from different servers to the same

receiver may share congestion, which can produce simultaneous packet losses on

different channels and increase the distortion by reducing the number of descrip-

tions available for decoding. The authors propose a distortion model for MDC that

takes path length and disjointness as input and computes the expected distortion.

Based on this model, a set of servers that minimize the distortion are selected in

the CDN networks as senders.

2.3.3 Delay-Distortion Tradeoff

Besides bandwidth and loss rate, delay is the third factor that introduces distortion.

Two previous work [10, 68] consider this factor explicitly in distributed media

streaming.

Nguyen and Zahkor (2005a) [68] study delay-distortion trade-off in the packet

assignment problem. After deciding the sending rate of each senders, the receiver

schedules packets among the senders. Packet assignment decides which packet

should be delivered by which sender. Since multimedia playback is sensitive to

delay; packets should arrive at the receiver as early as possible, so that the chance

2.3. GOALS AND METHODS 27

of a packet missing its playback deadline is minimized. A packet therefore assigned

to the sender that can deliver the packet to the receiver as early as possible. The

expected arrival time of a packet from a given sender is estimated based on sending

rate, round trip time, and the next time when the sender becomes available to send.

The authors later extend the rate allocation algorithm to FEC protected single-

layer media and applied the same packet assignment algorithm. The drawback of

Nguyen and Zahkor (2005b) [69] (and [70]) is that it does not explain the packet

assignment for FEC packets, whose time-based ordering is unclear. Time-based

ordering, on the other hand, is vital for the packet assignment algorithm.

Chakareski and Frossard [10] also consider delay in the “sender-driven” model

for distributed media streaming Figure 2.5. The authors propose that the receiver

only collects the path information such as delay and packet loss rate. Instead

of performing rate allocation and packet assignment at the receiver, their system

sends these path information to all senders. The senders, in turn, independently

calculate their sending rate and schedule the packets. During the computation,

there is no communication among the senders. As network delay on reverse path

prevent a sender from being updated on time about the path information, the

probability distribution of delay is considered when estimating the distortion. The

delay of path information changes the arrival time media data, the probability of

decoding those data before playback time, and therefore, the distortion.

Running the rate allocation and packet assignment algorithms at the senders

increases the burden of the senders. Furthermore this framework duplicates the

same computation at different senders and limits the senders’ capability to serve

many simultaneous streams.

2.3. GOALS AND METHODS 28

Lossrate, delay and bandwidth
 of all paths

Data Packet

Rate
allocation

and
packet

assignment

Collecting
paths

information

Figure 2.5: A “sender-driven” distributed media streaming system

2.3.4 Variation in Quality

Besides minimizing distortion, quality smoothness during playback (i.e., variation

of distortion) is another desired property. A user may rather prefer a slightly

coarser but smoother video. Nguyen and Cheung [67] explore flow control in

distributed media streaming to produce a smoothed combined throughput by using

multiple TCP connections, with reduced maximum window size. As the number

of TCP flows increases, the maximum window of each TCP flow decreases. In case

of a packet loss when a window should be halved, the window reduction becomes

smaller due to the smaller maximum window (Figure 2.6(b)). When all connections

suffer from packet losses at the same time, the combined window size reduces as

much as one TCP connection. But the combined window size recovers much faster

than a single TCP connection (Figure 2.6(c)), as the combined window increasing

slope is proportional to the number of connections.

Although using multiple TCP flows compensates for smaller maximum window,

it, however, makes the application unfair to other single-flow applications sharing

the same bottleneck, and encourages abuse of multiple connection. Although the

authors view adjusting the number of TCP connections as a mean to prioritize the

application, the prioritization must be limited strictly to the applications owned

by the same user. We elaborate on our view and solutions in Chapter 4 of this

thesis.

2.3. GOALS AND METHODS 29

Rate

Time

w/RTT

w/(2RTT)

Total amount of
throughput lose

Rate

Time

w/RTT

w/(2RTT)

Total amount of
throughput lose

(a)

(b)

No throughput loss
for connection 2

Amount of throughput lose
for connection 1

Rate

Time

w/RTT

w/(2RTT)

Total amount of
throughput lose

(c)

Amount of throughput lose
for connection 1 and 2

Figure 2.6: Illustration of throughput reduction for (a) one TCP connection with

single loss; (b) two TCP connections with single loss; (c) two TCP connections

with double losses (Figure excerpted from [67])

2.3.5 Shortest Buffering Delay

Xu et al. published their first study in distributed media streaming in 2002 (Xu et.

al [97]) and studied data assignment among senders from a different perspective.

The data assignment algorithm differs from Nguyen and Zahkor (2002a) [68],

even though they both target fixed size and sequentially ordered packet data, and

both of them interleave packets among the senders. Nguyen’s algorithm maxi-

mizes the buffering time of packets given certain playback time, whereas Xu et

2.3. GOALS AND METHODS 30

al. minimize the buffering time before playback and maintain the continuity of

playback at the same time. Xu et al. categorize a sender as class-n if its sending

rate is 1/2n of the playback rate. Playback can start once all packets are sched-

uled to arrive before their playback deadline in the future. Figure 2.7 shows an

example where eight packets are assigned to four senders (one class-1, one class-2

and two class-3). Different assignment leads to different buffering delay: the first

assignment needs 5t (equals to time to playback five packets) before starting play-

back, whereas the second assignments only needs 4t. Given the sending rate of

the senders, their algorithm computes a packet assignment such that the buffering

time is minimized. A drawback is that they classify senders into discrete classes,

which lead to under-utilization of peers’ bandwidth. But this under-utilization can

be rectified by defining multiple virtual peers in different classes on one physical

peer, under the condition that the combined sending rate of these virtual peers

equals to the sending rate of the physical peer.

P1

P2

P3

P4

1 2 3

4 5

6

7

0

Transmission of segments

0t 5t

0 1 2 3 4 5 6 7

time

Playback sequence

Buffering

P1

P2

P3

P4

1 3 7

2 6

5

4

0

Transmission of segments

0t 4t

0 1 2 3 4 5 6 7

time

Playback sequence

Buffering

(a) Assignment I (b) Assignment II

Figure 2.7: Difference media data assignments lead to different buffering delay

(excerpted from [97])

2.3. GOALS AND METHODS 31

2.3.6 Reducing Server Load

Minimizing distortion and buffering delay have direct impact on video quality at

the receiver. Their scope, however, is limited to one session. For a distributed

media streaming system, adopting a hybrid architecture (section 2.1.3), an impor-

tant goal is to reduce server load, so that it is ready to serve requests when peer

resources are not available. Three existing work [19,20,37] discuss this problem.

Cui and Nahrstedt [19] notice that when a peer-to-peer streaming system uses

layered media, peer can provides only a limited number of layers. These limited

layers further limit the layer availability of the downstream nodes. Although they

study the problem in the context of multicast communication model, the model is

similar to distributed media streaming in the following aspects: (i) data are cached

in peers to serve other peers; (ii) multiple peers serve one peer simultaneous.

Figure 2.8: Steps (a)–(f) of deciding layers for each peer (Figure excerpted from

Cui and Nahrstedt [19])

The authors characterize a sender by the video layers it stored and the available

2.3. GOALS AND METHODS 32

bandwidth, and a receiver by its receiving rate. Assuming peers only cache layer

incrementally, higher layers are always scarcer than lower layers in the system.

When a peer caching higher layers transmits, less bandwidth remains for future

use, diminishing the accessibility of the higher layers. Therefore, the authors pro-

pose that senders storing few layers (hence lower) should always be utilized before

senders with more layers. Figure 2.8 shows the steps of deciding the layers that

each peer should send. H1 to H4 are four sending peers. The squares besides stands

for the layers that are available at those peers. The shadowed square corresponds

to how many layers a peer’s sending rate can stream. The black square shows the

transmitted layers. Given a set of senders, the sender with least layers are picked

to send as much layers as allowed by its sending rate; the rest request layers are

picked recursively from the rest senders in the same manner.

Hsu and Hefeeda [37] applied a similar algorithm to FGS video and reduced

the server load significantly. We believe, however, both studies over simplify the

way layers are stored. Given limitation on local disk space and the shortage of

high level layers, the peers have no reason to store layers in an incremental order,

as assumed by both papers. How to optimize the availability of each layers in that

case, remains an open problem.

Dana et. al [20] construct a hybrid distributed media streaming system over a

BitTorrent 2 overlay network, where peers contribute upload bandwidth to reduce

the burden of the centralized server. When a media content is requested, peers that

can supply the requested content are looked up by using BitTorrent tracker. Data

that has not passed the playback deadline is downloaded from those peers. At

the deadline, the receiver downloads missing data from the centralized server. The

authors found significant reduction in bandwidth usage at the servers when number

of concurrent users increases. Although alleviated, the bottleneck still exists at the

2http://www.bittorrent.com/

2.4. A MAP OF RESEARCH 33

server. Earlier chunks have early deadline and shorter time to be downloaded from

the peers, and are mainly downloaded from the server. Therefore, the server may

still suffer from scalability problem when dealing with flash crowds.

2.3.7 Service Capacity Amplification

When there are few senders in the overlay network for distributed media streaming,

the system is not able to support too many clients. In this scenario, capacities

amplification is a big concern. Requests should be served selectively, and priority

should be given to those with higher capacity to serve others in the future. Xu et.

al [97] propose that when facing a flash crowd of requesters with different uploading

bandwidth, priority is given to those with higher uploading bandwidth, because

they can amplify the system capacity faster. But when the load of requests is light,

prioritization is renounced, so that requesters with lower uploading bandwidth are

still served.

2.4 A Map of Research

2.4.1 Meddour’s Overview

Meddour et al. published a survey [64] on P2P multimedia streaming, which covers

an overview for distributed media streaming. They categorized several factors to

be considered in this problem domain: (F1) appropriate video coding scheme,

(F2) managing peer dynamicity, (F3) peer heterogeneity, (F4) efficient overlay

construction, (F5) peer selection, (F6) measuring network condition, and (F7)

incentive for peer participation. We believe (F3) and (F6) are less relevant to

distributed media streaming, since they deal with the efficiency of the overlay. (F2),

(F3) and (F5) are directly related to the problem of sender selection [35]. (F7) is

2.4. A MAP OF RESEARCH 34

System capacity

Time

1

2

0

t0 t0+T t0+2T t0+3T

System capacity

Time

1

2

0

t0 t0+T t0+2T

(a) Higher adminssion priority to sender with small rate

(b) Higher admission priority to sender with big rate

Requester Receiver Sender

Sending rate equals to half of the playback rate

Sending rate equals to a quater of the playback rate

Colors:

Size:

Figure 2.9: Different admission decisions lead to different growth of streaming

capacity: (a) cannot serve two session simultaneously until after two session of

streaming, whereas (b) can do it right after one session of streaming (excerpted

from Xu et. al [97])

indirectly related to sender selection [19, 97]. Lowering the load on senders with

larger contribution (on disk space or bandwidth) encourages peers to contribute

more. (F1), (F2) and (F3) are important factors in rate allocation and packet

assignment [68, 69, 81]. Allocating higher sending rate to senders experiencing

2.4. A MAP OF RESEARCH 35

better network conditions would lead to better playback quality. Packet assignment

must consider dependency among packets, which in turn, is related to the coding

scheme. Table 2.1 shows a summary of the above points.

Sender Selection Rate Allocation Packet Assignment

(i) Coding Scheme [68] [69,81]

(ii) Peer Dynamicity [48] [48] [48]

(iii) Peer Heterogeneity [35] [81] [81]

(vii) Incentive [19,97] [19]

Table 2.1: Problems in distributed media streaming and the related factors

2.4.2 Our Map of Distributed Media Streaming

A distributed media streaming system aims to deliver high quality media content

to large number of receivers on demand. To achieve this goal, most of the studies

derive distortion models and minimize the distortion by properly allocate sending

rate and schedule packets to the senders [48,68,81,97]. Some achieve high quality

by smoothing the sending rate [67]. Others concern service availability, and propose

to reduce server load [19] or to increase system capacity faster [97]. As pointed

out by Wu et al. [96], however, video streaming over the Internet has many other

fundamental issues to cope with, such as error recovery and congestion control.

While error recovery is partially studied in the context of FEC [69], [48], we believe

that exploring retransmission – another important error recovery technique – is

important. We also believe that congestion control is important as it can affect

the practicality of distributed media streaming [26].

We summarize the current studies in the field by Figure 2.10. For each paper,

the technique, the optimized metrics, and the design goal are connected together by

lines of the same color. We also mark out the distinct positions of the study in this

2.4. A MAP OF RESEARCH 36

thesis in the figure, by dotted red lines. We are the first to study retransmission

and congestion control in distributed media streaming. We present our work in

detail in the rest of this thesis.

System
capacity

Nguyen (1)

Nguyen (2)

Xu (4)

Nguyen (3)

Hefeeda (5) Rejaie (8)

Apostolopoulos (7)

Dana (6)

Cui (10)

Li (9)

Sequential
Data

FEC

Layered
Coding

MDC

Flow
Control

Sender
Selection

Congestion
Control

Perceptual
Quality

Rate
Smoothness

Minimize
Distortion

Shortest
Buffering

Retransmission

Rate Allocation
Packet

Assignment

Data type

Publication

Technique

Optimization metric

Design goal

Internet
Stability

Ma (11)

Ma (12)

TCP
Friendliness

Figure 2.10: A map of current research in distributed media streaming, (1) Nguyen

and Zahkor (2002a) [68], (2) Nguyen and Zahkor (2002b) [69], (3) Nguyen et.

al [67], (4) Xu et. al [97], (5) Hefeeda et. al [35], (6) Dana et. al [20], (7)

Apostolopoulos et. al [3], (8) Rejaie and Ortega [81], (9) Li et. al [48], (10) Cui

and Nahrstedt [19], (11) Ma and Ooi [55], (12) Ma and Ooi [56]

Chapter 3

Retransmission in Distributed

Media Streaming

Error recovery reduces packet loss, decreases distortion, and improves media qual-

ity at the receiver side. Conventional methods include FEC and retransmis-

sion. While FEC has been studied in distributed media streaming by Nguyen

and Zahkor [69], retransmission, however, has not received much attention. In

distributed media streaming of prerecorded video, buffering is acceptable at the

receiver, giving opportunity to retransmit. This chapter applies retransmission to

distributed media streaming.

3.1 Introduction

Distributed media streaming model differs from traditional models in that multiple

channels are involved in one streaming session. The existence of multiple channels

provides the option of retransmitting from a channel other than the one which

lost the packet. Whether this new option would provide a better recovery rate

remains unknown. If it would, the design of such a retransmission scheme would

be interesting.

37

3.1. INTRODUCTION 38

For ease of reference, we term schemes that retransmit from channels other than

the original one as distributed retransmission and the traditional scheme as non-

distributed retransmission. Our approach in this study is first to reveal whether

distributed retransmission outperforms non-distributed retransmission in general,

and then design a practical distributed retransmission scheme to further improve

the recovery rate.

The scope of this study is limited to non-interactive streaming of pre-recorded

media, where maintaining low end-to-end latency is not crucial. We also assume

that the client buffers sufficient data to allow retransmission. The packets size are

fixed and the bit rates of the senders are constant.

The main contributions of this study are as follows. To compare distributed

and non-distributed retransmission schemes, two naive distributed retransmission

schemes are presented and compared with non-distributed retransmission. After

that we present a dynamic scheme for distributed retransmission, which changes re-

transmitter dynamically according to traced packet loss rate on different paths. By

comparing the different distributed retransmission schemes and the non-distributed

retransmission scheme under simulation or experiment over the Internet, we shows

that, in general, distributed retransmission offers a higher loss recovery rate, and

dynamic distributed retransmission further improves loss recovery rate.

The rest of the chapter is structured as follows. Section 3.2 presents related

works on distributed media streaming and error recovery. Section 3.3 presents two

naive design of distributed retransmission and compares them with non-distributed

retransmission via mathematical analysis, intranet emulation, and real Internet ex-

periments. Section 3.4 describes a dynamic distributed retransmission scheme and

presents a comparison to other schemes via simulation and Internet experiments.

Section 3.5 concludes this chapter.

3.2. RELATED WORK 39

3.2 Related Work

Few existing work on distributed media streaming has incorporated error recovery

schemes. Nguyen et. al. [69] and Golubchik et. al. [31] make use of Forward

Error Correction (FEC) in their streaming protocol. But no further analysis on

effectiveness of recovery is presented. Rejaie et. al. [81] implicitly apply non-

distributed retransmission in distributed media streaming for layered media, yet

the effectiveness of retransmission is not explored.

On the other hand, the issue of retransmission has been extensively studied in

single sender media streaming.

Papadopoulos and Parulkar’s work [74] is one of the earliest that applies selec-

tive retransmission in continuous media streaming. As long as the round trip time

is smaller than the time before the lost packet is to be played out, retransmission

reduces loss drastically. Their evaluation reveals that retransmission copes well

with burst loss. Our work is a natural extension of this work to distributed media

streaming.

Perkins et. al. discuss sender-based recovery in multicast [75]. FEC and ARQ

are both discussed. The authors suggest that ARQ works well in a low lossy envi-

ronment and FEC performs better in non-interactive streaming with less overhead.

While the survey points out the high overhead for ARQ, we must note that it is

mainly due to the nature of multicast – whenever a packet is retransmitted, it is

re-sent to the whole group. This overhead does not apply in distributed media

streaming.

Loguinov and Radha [53] study retransmission time-out (RTO) estimation in

NACK-based real time multimedia streaming. They show the inherent trade-off

between the number of duplicated packets and the unnecessary waiting for timeout.

They propose higher frequency RTT measurement in NACK-based protocol is

3.3. DISTRIBUTED VERSUS NON-DISTRIBUTED RETRANSMISSION 40

needed, in order to have an accurate RTO estimation.

Piecuch et. al. [76] designed a Selective Retransmission Protocol for multimedia

streaming, based on the observation that multimedia data allows certain percent-

age of packet loss while request for stringent arrival time. Their protocol provides

a compromise between unbounded delay of TCP and zero loss recover capability of

UDP. Selective retransmission selects particular packets to retransmit, while our

work selects particular channel to retransmit.

Several recent works have studied the use of TCP protocol for streaming media

(e.g. see [42]). Although our work recovers lost data using retransmission just as

TCP, we focus on selection of senders for retransmission, which can not be done

in TCP.

3.3 Distributed versus Non-Distributed Retransmission

Traditional single channel streaming does not provide different channel to retrans-

mit lost packets, therefore only non-distributed retransmission are allowed. Due

to the existence of multiple channels in distributed media streaming, distributed

retransmission becomes an option. Yet the performance of distributed retransmis-

sion remains unknown. Since packet loss is generally a consequence of network

congestion, the following packets are likely to experience the same congestion and

suffer from a high loss rate. In this case, distributed retransmission, which retrans-

mits a lost packet from a different channel, avoids the congestion, and therefore

should offer a better recovery rate.

In this section, we present two naive distributed retransmission schemes, and

study their recovery rate by modeling, analysis, simulation, and experiments on

the Internet.

3.3. DISTRIBUTED VERSUS NON-DISTRIBUTED RETRANSMISSION 41

3.3.1 Two Naive Distributed Retransmission Schemes

In order to compare the recovery effectiveness of distributed retransmission with

non-distributed retransmission, we designed two naive distributed retransmission

schemes called ARQ-D and ARQ-RR. ARQ-D is a scheme with a dedicated re-

transmitter among the senders. A sender with the lowest loss rate is manually

selected as a retransmitter. While other senders send data packets, it retransmits

if their packets are lost. ARQ-RR is a scheme that rotates retransmission task

among the senders in a round robin manner. For comparison, we call the non-

distributed retransmission scheme ARQ-O, in which the receiver asks the original

sender for retransmission.

Given the same channel conditions, ARQ-D uses the best channel to retransmit,

therefore provides the best recovery rate a distributed retransmission scheme could

have if it does not switch retransmitter during the session. In ARQ-RR, on the

other hand, the retransmission is carried out randomly on different channels with-

out any selection, therefore the scheme corresponds to the average performance

of distributed retransmission. The effectiveness of distributed retransmission is

better than non-distributed retransmission.

3.3.2 Model and Assumptions

In this section, we present our model and assumptions that help to simplify the

analysis.

To be fair to all three schemes, only one retransmission is performed for every

loss. It simplifies the analysis yet is sufficient to show their effectiveness in loss re-

covery: the same bandwidth is used for each packet recovery, but different effective

loss rate can be achieved.

The time between sending a lost packet and re-sending its ARQ packet is δ.

3.3. DISTRIBUTED VERSUS NON-DISTRIBUTED RETRANSMISSION 42

Value of δ is decided by round trip time (RTT) of the channels. In order to be

fair, we assume that all senders have the same RTT in analysis.

To calculate recovery rate, we do not assume any special coding scheme such

as layered coding or MDC.

The sequence of data packets are sent by the senders in a round robin manner

to reduce consecutive packet loss when one channel is congested.

10

1−q

1−p
p

q

Figure 3.1: Gilbert Model

Most of the time senders send packets at a constant rate: one packets for one

time unit. This assumption allows us to use a Gilbert model1 to model the state

of channels, with regard to the changing of channel states in discrete time (Figure

3.1). For senders sending both data packets and ARQ packets, however, we assume

the ARQ packets do not delay data packets. When retransmission happens, bit

rate is increased to send both data packet and ARQ packet in the same time

unit. This simplification removes the cumulative delay of data packets imposed by

retransmission.

We also assume that the retransmission does not deteriorate channel qual-

ity; video streaming requires certain network quality: if retransmission affects the

channel quality, the channel is generally not suitable for video streaming.

For ease of analysis, we also assume independence of channels among the

senders. As we will see in Section 3.4, this simplification is not valid in real world.

1p is the probability of channel state transforming from good to bad, q is the
one vice versa. For more on Gilbert model, refer to the paper by Bolot et. al. [7]

3.3. DISTRIBUTED VERSUS NON-DISTRIBUTED RETRANSMISSION 43

For analytical purpose, however, it is necessary. This assumption is also embraced

by other works [68,81].

3.3.3 Mathematical Analysis

We now model these different schemes analytically and analyze their effective loss

rate and expected burst length.

Let n be the number of senders. Treating each sender as an independent chan-

nel, we denote the set of senders as c1, c2, ..., cn. Each channel ci is modeled using

a Gilbert model with parameter pi and qi, where pi is the probability of transition

from good state (denoted as 0) to bad state (denoted as 1) and qi is the probability

of transition from bad state to good state (see Figure 3.1).

We introduce some additional notations as follows. Let Li be the average packet

loss rate of channel ci. Li can be estimated from the Gilbert model and is given

as pi/(pi + qi).

Given the Gilbert model, we can also estimate Pi(δ), which is the probability

of transition from a good state to bad state for channel ci after δ time units (or,

equivalently, after sending δ packets). Similarly, we can compute Qi(δ) as the

probability that a channel ci goes from a bad state to a good state after δ time

units. Pi(δ) and Qi(δ) are analogous to pi and qi in Gilbert model in terms of

good-to-bad and bad-to-good state transitions. These two probabilities are:

Pi(δ) = Li − Li(1 − pi − qi)
δ (3.1)

Qi(δ) = 1 − Li − (1 − Li)(1 − pi − qi)
δ (3.2)

We denote the value 1 − Pi(δ) as P̄i(δ). This value corresponds to the probability

that the state is good after δ time units, given that the current channel state is

good. Similarly, we use Q̄i(δ) to denote the probability of channel transiting from

bad state to bad state after δ time units, i.e., Q̄i(δ) = 1 − Qi(δ).

3.3. DISTRIBUTED VERSUS NON-DISTRIBUTED RETRANSMISSION 44

Effective Loss Rate

Using Li and Q̄i(δ), we can now compute the effective loss rate of distributed

streaming under different error recovery schemes. The effective loss rate, or unus-

able rate for short, is the probability that a packet is lost and cannot be recovered.

Unusable rate reveals the average quality degradation of the received media.

We now consider the unusable rate of ARQ-based schemes. A packet is unusable

if the packet is lost, and the retransmitted packet is lost as well. For simplicity, we

only model the case for single retransmission here. The unusable rate is therefore

estimated as the probability that the data packet is lost, and the retransmitted

packet is lost after time δ.

ARQ-D: Without loss of generality, let cn be the dedicated retransmitter chan-

nel and the other n − 1 channels be data channels. The probability that a data

packet is lost is given by
∑n−1

i=1 Li/(n−1) and the probability that the ARQ packet

is lost is Ln. The unusable rate of ARQ-D scheme, VARQ−D is therefore given by

VARQ−D =
Ln

n − 1

n−1∑
i=1

Li

ARQ-O: Since the data packet is sent on the same channel as retransmitted

packet, the loss probability for data packet and retransmitted packet is correlated.

We know that Li is the probability that data packet is lost on channel ci and Q̄i(δ) is

the probability that a packet is lost in the same channel after time δ. Assuming that

retransmission occurs after time δ, the unusable rate for that channel is therefore

LiQ̄i(δ). Averaging over n channels, we have the expected unusable rate as

VARQ−O =
1

n

n∑
i=1

(LiQ̄i(δ))

ARQ-RR: Under this scheme, the retransmitted packet is sent by different

senders. With probability 1/n, it is sent by the original sender. For a channel

ci, the probability that the data packet is lost is Li, and the probability that its

3.3. DISTRIBUTED VERSUS NON-DISTRIBUTED RETRANSMISSION 45

retransmitted packet is lost is (Q̄i(δ)+
∑

j 6=i Lj)/n. The unusable rate is therefore

given by

VARQ−RR =
1

n2

n∑
i=1

(Li(Q̄i(δ) +
n∑

j 6=i

Lj))

We have derived the expected unusable rate for the three ARQ schemes as a

function of Gilbert model’s parameters (pi, qi). We can now plot these functions.

0.2 0.4 0.6 0.8
0

0.05

0.1

0.15

0.2

Gilbert Model:
p

1
 = 0.20, q

1
 = 0.70

p
2
 = 0.20, q

2
 = 0.70

p
3
 = [0.05, 0.95], q

3
 = 0.70

δ = 2

Good to bad probability of channel 3: p
3

U
nu

sa
bl

e
ra

te

ARQ−D
ARQ−O
ARQ−RR

Figure 3.2: Unusable Rate vs. p3

For simplicity, only the case where n = 3 is considered. We vary the condition

of channel c3 (dedicated retransmission channel in ARQ-D scheme) and plot the

unusable rate in Figure 3.2 and 3.3 with δ = 2. Figure 3.2 shows that when the

channel condition of c3 is better then the other two channels, the ARQ-D scheme

gives lower unusable rate. This behavior is expected since the probability of suc-

cessful retransmission is higher in this scenario. As the probability of good-to-bad

transition increases for channel c3, the unusable rate for ARQ-D increases and be-

come worse than ARQ-RR. We expected this trend as well, since ARQ-RR rotates

among the channels for retransmission and for two out of three retransmissions, it

chooses a better quality channel than channel c3. An important observation from

3.3. DISTRIBUTED VERSUS NON-DISTRIBUTED RETRANSMISSION 46

0.2 0.4 0.6 0.8
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Gilbert Model:
p

1
 = 0.20, q

1
 = 0.70

p
2
 = 0.20, q

2
 = 0.70

p
3
 = 0.20, q

3
 = [0.05,0.95]

δ=2

Bad to good probability of channel 3: q
3

U
nu

sa
bl

e
ra

te

ARQ−D
ARQ−O
ARQ−RR

Figure 3.3: Unusable Rate vs. q3

this figure is that, using an unrealistically bad channel under the ARQ-D or ARQ-

RR schemes would still give lower unusable rate, compared to ARQ-O scheme.

Figure 3.3 shows the results when we vary the bad-to-good transition probability

of channel c3. We can see that the burstiness does not differentiate the unusable

rate of ARQ-RR and ARQ-D schemes much. Both of these schemes give lower

unusable rate than ARQ-O schemes, especially when the channel is bursty.

Figure 3.4 and 3.5 plot the unusable rate as we vary the conditions of channel

c1. In these plots, we configure channel c3, the dedicated retransmission channel,

as a good quality channel with p3 = 0.1 and q3 = 0.95. These figures show that by

using a good quality retransmission channel, we can achieve much lower unusable

rate if we use ARQ-D scheme compared to ARQ-RR or ARQ-O schemes.

In the above figures, we set the delay between an ARQ packet and its cor-

responding lost to 2 (δ = 2). The effects of δ on the three ARQ schemes are

plotted in Figure 3.6 with the same Gilbert setting as above mentioned figures. It

is obvious δ affects effectiveness of ARQ-O and ARQ-RR, but not ARQ-D.

3.3. DISTRIBUTED VERSUS NON-DISTRIBUTED RETRANSMISSION 47

0.05 0.15 0.25 0.35 0.45
0.01

0.03

0.05

0.07

0.09

Gilbert Model:
p

1
 = [0.05, 0.50], q

1
 = 0.70

p
2
 = 0.20, q

2
 = 0.70

p
3
 = 0.10, q

3
 = 0.95

δ = 2

Good to bad probability of channel 1: p
1

U
nu

sa
bl

e
ra

te

ARQ−D
ARQ−O
ARQ−RR

Figure 3.4: Unusable Rate vs. p1

0.5 0.6 0.7 0.8 0.9

0.02

0.03

0.04

0.05

0.06
Gilbert Model:
p

1
 = 0.20, q

1
 = [0.50, 0.95]

p
2
 = 0.20, q

2
 = 0.70

p
3
 = 0.10, q

3
 = 0.95

δ = 2

Bad to good probability of channel 1: q
1

U
nu

sa
bl

e
ra

te

ARQ−D
ARQ−O
ARQ−RR

Figure 3.5: Unusable Rate vs. q1

Expected Burst Length

To study the expected packet loss burst length, we further simplify our model

to homogeneous channels. In other words, we use the same Gilbert model with

parameter (p, q) to model all channels. We also restrict our model to three channels

3.3. DISTRIBUTED VERSUS NON-DISTRIBUTED RETRANSMISSION 48

1 2 3 4 5
0.02

0.025

0.03

0.035

0.04

0.045

0.05
Unusable rate while δ changes

Gilbert Model:
p

1
 = 0.20, q

1
 = 0.70,

p
2
 = 0.20, q

2
 = 0.70,

p
3
 = 0.10, q

3
 = 0.95

δ: the ARQ delay

U
nu

sa
bl

e
ra

te

ARQ−D
ARQ−O
ARQ−RR

Figure 3.6: Unusable rate versus δ (Analysis)

only.

Despite these vast simplifications, the analysis for expected burst length is still

quite complex. For each error recovery scheme, there are four cases to consider. A

burst of packet loss, or gap, of length m always starts with a usable packet, followed

by m consecutive unusable packets and ends with another usable packet. A usable

packet is either delivered, or lost but recovered. Thus, we have to consider the cases

where the gap begins and ends with both delivered packets (Case 1), begins with a

lost but recovered packets and ends with a delivered packet (Case 2), begins with

a delivered packet and ends with a lost but recovered packet (Case 3) and begins

and end with both lost but recovered packets (Case 4). We will analyze these four

cases separately, and use αi(m) to denote the probability that the burst length is

m for Case i. The probability of burst length m occurring is thus
∑4

i=1 αi(m).

While deriving the probability of occurrence of a gap of length m, we will only

explain in details Case 1 in ARQ-D scheme, and list the equations of gap length

for ARQ-O and ARQ-RR schemes without further explanations, as the derivation

3.3. DISTRIBUTED VERSUS NON-DISTRIBUTED RETRANSMISSION 49

is similar.

ARQ-D: For Case 1, with m = 1,

α1(1) = L2(1 − L)(1 − p) (3.3)

.

α1(1) is given as the probability that packet in channel c1 is delivered, 1 − L,

and a packet in channel c2 is lost and not recovered, L2, and the next packet in

channel c1 is delivered, 1 − p. This argument can be generalized for value of m

larger than 1, giving

α1(m) = L3p2(1 − q)2m−3, m ≥ 2. (3.4)

The probability for the other cases are given as:

α2(m) = α3(m) = L3q2(1 − q)2m−2 (3.5)

α4(m) = L3q2(1 − q)2m−1. (3.6)

ARQ-O: Similar to the analysis of ARQ-D, we compute αi(m) for all four

cases.

α1(m) =



(1 − L)2LQ̄(δ), m = 1,

(1 − L)L2Q̄(δ)2(1 − p), m = 2,

L3Q̄(δ)mq2(1 − q)m−3, m ≥ 3.

(3.7)

α2(m) = α3(m) (3.8)

=


(1 − L)L2Q̄(δ)Q(δ), m = 1,

L3Q̄(δ)mQ(δ)q(1 − q)m−2, m ≥ 2.

(3.9)

α4(m) = L3Q̄(δ)mQ(δ)2(1 − q)m−1 (3.10)

ARQ-RR: For ARQ-RR scheme, since the retransmitted packet is sent by the

senders, in a round robin manner, we compute the loss rate of the retransmitted

3.3. DISTRIBUTED VERSUS NON-DISTRIBUTED RETRANSMISSION 50

0.5 0.6 0.7 0.8 0.9
0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Gilbert Model:
p=0.20, q = [0.50, 0.95]
δ=2

Bad to good probability: q

E
xp

ec
te

d
ga

p
le

ng
th

ARQ−D
ARQ−O
ARQ−RR

Figure 3.7: Expected Gap Length vs. q

packet first. We denote this loss rate as L′.

L′ =
1

3
(2L + Q̄(δ)) (3.11)

Using derivation similar to previous schemes, we have

α1(m) =



(1 − L)2LL′, m = 1,

(1 − L)L2L′2(1 − p), m = 2,

(1 − L)L2L′mpq(1 − q)m−3, m ≥ 3.

(3.12)

α2(m) = α3(m) (3.13)

=


(1 − L)L2L′(1 − L′), m = 1,

(1 − L)L2L′m(1 − L′)p(1 − q)m−2, m ≥ 2.

(3.14)

α4(m) = L3L′m(1 − L′)2(1 − q)m−1 (3.15)

The probability of different gap length is plotted in Figure 3.7 using the derived

expressions with varying bad-to-good transition probability q and δ = 2. We can

see that ARQ-D scheme gives shortest expected gap length. We omit the curve that

3.3. DISTRIBUTED VERSUS NON-DISTRIBUTED RETRANSMISSION 51

shows the effect of Gilbert parameter p on expected gap length as the differences

among the schemes are too small to be interesting.

3.3.4 Experimental Evaluation

To evaluate the ARQ schemes and verify our analysis, we implemented an RTP-

based distributed streaming system for MP3 audio based on the LIVE555.COM2

media streaming library using the three proposed ARQ schemes for retransmission.

We conducted experiments over PlanetLab for realistic network settings, and over

our Intranet under controlled network environment.

For each experiment, the system streams a 31.8 second MP3 audio file, consist-

ing of 1224 application data unit (ADU),packetized based on RFC3119 ?? using

three senders. Each ADU is approximately 0.4KB, with one packet consists of 2

to 5 ADUs. ADUs are interleaved among the senders so that a lost packet from

one sender will not caused consecutive ADUs to be lost. In our experiments, we

measure unusable rate of ADUs and burst length of ADUs, as these metrics are

more meaningful than unusable rate and burst length of packets.

Experiments over Intranet

We first present our results based on experiments over Intranet using simulated

packet loss. Our goal is to further strengthen our observations since the analytical

results obtained in previous section is based on simplifying assumptions such as

homogeneous channels and fixed δ.

Using the same Gilbert model parameters as in Section 3.3.3, we first verified

our analytical results. Collected over 20 runs, our simulation results give very

similar curves. One such set of curves, which corresponds to Figure 3.4 is shown

in Figure 3.8.

2http://www.live555.com/liveMedia

3.3. DISTRIBUTED VERSUS NON-DISTRIBUTED RETRANSMISSION 52

0.05 0.15 0.25 0.35 0.45
0.01

0.03

0.05

0.07

0.09

Gilbert Model:
p

1
 = [0.05, 0.50], q

1
 = 0.70

p
2
 = 0.20, q

2
 = 0.70

p
3
 = 0.10, q

3
 = 0.95

1124 ADUs

Good to bad probability of channel 1: p
1

U
nu

sa
lb

e
ra

te

ARQ−D
ARQ−O
ARQ−RR

Figure 3.8: Unusable rate vs. p1 (Simulations)

Next, we study the effect of heterogeneous channels on burst length. We focus

mainly on results for bursty loss with length larger than one, as we find that the

results for gap length of one follows closely the behavior of the curves for unusable

rate (e.g., see Figure 3.9).

0.1 0.2 0.3 0.4 0.5
10

20

30

40

50

60

70

80

90

Gilbert Model:
p

1
 = [0.05, 0.50], q

1
 = 0.70

p
2
 = 0.20, q

2
 = 0.70

p
3
 = 0.10, q

3
 = 0.95

1224 ADUs

Good to bad probability of channel 1: p
1

N
um

be
r

of
 g

ap
s

pe
r

se
ss

io
n

(le
ng

th
=

1) ARQ−D
ARQ−O
ARQ−RR

Figure 3.9: Effect of p1 on Number of Gaps with Length 1

3.3. DISTRIBUTED VERSUS NON-DISTRIBUTED RETRANSMISSION 53

Figure 3.10 and 3.11 show the number of gaps in ADU with gap length larger

than one. They indicate that ARQ-D has fewer bursty losses compared to ARQ-RR

and ARQ-O as we vary the condition of channel c1.

0.1 0.2 0.3 0.4 0.5
0

1

2

3

4

5

6

7
Gilbert Model:
p

1
 = [0.05, 0.50], q

1
 = 0.70

p
2
 = 0.20, q

2
 = 0.70

p
3
 = 0.10, q

3
 = 0.95

1224 ADUs

Good to bad probability of channel 1: p
1

N
um

be
r

of
 g

ap
s

pe
r

se
ss

io
n

(le
ng

th
>

1) ARQ−D
ARQ−O
ARQ−RR

Figure 3.10: Effect of p1 on Number of Gaps with Length > 1

0.5 0.6 0.7 0.8 0.9
0

1

2

3

4

5
Gilbert Model:
p

1
 = 0.20, q

1
 = [0.50 0.95]

p
2
 = 0.20, q

2
 = 0.70

p
3
 = 0.10, q

3
 = 0.95

1224 ADUs

Bad to good probability of channel 1: q
1

N
um

be
r

of
 g

ap
s

pe
r

se
ss

io
n

(le
ng

th
>

1) ARQ−D
ARQ−O
ARQ−RR

Figure 3.11: Effect of q1 on Number of Gaps with Length > 1

3.3. DISTRIBUTED VERSUS NON-DISTRIBUTED RETRANSMISSION 54

0.1 0.2 0.3 0.4 0.5
0

2

4

6

8

10

12
Gilbert Model:
p

1
 = 0.20, q

1
 = 0.70

p
2
 = 0.20, q

2
 = 0.70

p
3
 = [0.05, 0.50], q

3
 = 0.70

1224 ADUs

Good to bad probability of channel 3: p
3

N
um

be
r

of
 g

ap
s

pe
r

se
ss

io
n

(le
ng

th
>

1) ARQ−D
ARQ−O
ARQ−RR

Figure 3.12: Effect of p3 on Number of Gaps with Length > 1

A more interesting observation can be found in Figure 3.12 and 3.13, which

vary the condition of channel c3, the dedicated retransmission channel. We can see

in Figure 3.12 that even when channel c3 is less lossy, using ARQ-D scheme leads

to slightly more lengthy ADU gaps than ARQ-RR. The cause of this behavior is

that, in our model, ARQ-D uses only two channels for data transmission while

ARQ-RR uses all three. Thus, the probability of getting two consecutive losses

is higher for ARQ-D. Figure 3.13 shows that when channel c3 is bursty, ARQ-D

can result in most number of ADU gaps. Again, this result can be explained by

the fact that ARQ-D uses only two channels for data transmission. When the

retransmission channel is bursty, probability of recovering from two consecutive

data loss decreases. The number of gaps, however, drops rapidly as channel c3

becomes less bursty.

3.3. DISTRIBUTED VERSUS NON-DISTRIBUTED RETRANSMISSION 55

0.5 0.6 0.7 0.8 0.9
0

1

2

3

4

5

Gilbert Model:
p

1
 = 0.20, q

1
 = 0.70

p
2
 = 0.20, q

2
 = 0.70

p
3
 = 0.20, q

3
 = [0.50 0.95]

1224 ADUs

Bad to good probability of channel 3: q
3

N
um

be
r

of
 g

ap
s

pe
r

se
ss

io
n

(le
ng

th
>

1)

ARQ−D
ARQ−O
ARQ−RR

Figure 3.13: Effect of q3 on Number of Gaps with Length > 1

Experiments over PlanetLab

Besides experiments under controlled environment within our Intranet, we con-

ducted real experiments over PlanetLab, a wide-area test-bed for large scale dis-

tributed applications to see how the schemes performed under realistic network

conditions. We use three remote senders plus one local receiver3. The measured

loss rate of the channels are 13.34%, 11.60% and 12.34% respectively for c1, c2 and

c3. Due to the unpredictability of network conditions, we increase the number of

runs per experiments to 50.

Figure 3.14 presents the average unusable rate of different error recovery schemes.

The PlanetLab test results show that under realistic network conditions, ARQ-D

has the lowest average unusable rate.

Figure 3.15 shows the average frequency of single loss and burst loss with

length larger than 1, per session. The results from our PlanetLab experiments

3planetlab2.ie.cuhk.edu.hk (c1), planetlab2.cis.upenn.edu (c2),
planet1.cc.gt.atl.ga.us (c3) and soccf-planet-002.comp.nus.edu.sg.

3.3. DISTRIBUTED VERSUS NON-DISTRIBUTED RETRANSMISSION 56

Figure 3.14: Unusable rate (PlanetLab)

0

20

40

60

80

N
um

be
r

of
 g

ap
s

46.24
52.62 50.2

ARQ−D ARQ−Q ARQ−RR

Number of gaps (length 1) per session

ARQ−D ARQ−O ARQ−RR
0

5

10

N
um

be
r

of
 g

ap
s

1.52

9.16

2.52

Number of gaps (length ³ 2) per session

Figure 3.15: Gaps per session (PlanetLab)

indicate that ARQ-O can result in long gaps, while ARQ-D achieves least number

of gaps. We also observe that the performance of ARQ-RR does not differ much

from ARQ-D. This observation suggests that in the case where channel conditions

are unknown, ARQ-RR could be a good retransmission scheme. By requesting

a different sender for retransmission each time, the receiver experiences average

channel conditions in the long run.

3.4. A DYNAMIC DISTRIBUTED RETRANSMISSION SCHEME 57

Both analysis and the Internet experiment show that distributed retransmission

outperforms non-distributed retransmission. The two distributed retransmission

schemes, however, does not consider changing network condition while selecting

the retransmitter. To overcome this drawback, we design a dynamic retransmission

scheme that can further improve the recovery rate.

3.4 A Dynamic Distributed Retransmission Scheme

In the previous section, we show the superiority of distributed retransmission over

non-distributed retransmission scheme by demonstrating their much lower effective

loss rate both analytically and experimentally. The two distributed retransmission

schemes, however, are naive: (i) ARQ-D uses the channel with the lowest loss

rate for retransmission. But it does not dynamically change retransmitter during

the session, and the bandwidth of the dedicated retransmission channel is wasted

if there are no packet loss. (ii) ARQ-RR selects retransmitter in round robin

manner, i.e. the channels have equal chances of being assigned a retransmission

task regardless of their loss rate. In this section we present ARQ-L, a distributed

retransmission scheme that dynamically switches the retransmitter when packet

loss rate changes. The new scheme is simple yet effective in avoiding retransmis-

sion on congested channels, and showing notable improvements over ARQ-RR and

ARQ-D.

3.4.1 Description of ARQ-L

The idea of ARQ-L is simple: the receiver tracks the packet loss rate on each

path. When a packet loss is detected, retransmission is performed by the path

with the lowest packet loss rate. Unlike ARQ-D that dedicates a sender (hence a

path) to retransmission, all senders in ARQ-L send data. While the lost packets are

3.4. A DYNAMIC DISTRIBUTED RETRANSMISSION SCHEME 58

retransmitted from the fixed retransmitter in ARQ-D, they are retransmitted from

the best sender at that moment. The best sender, with the lowest probability to fail

the retransmission, is selected dynamically. If ARQ-D has shown that retransmit

from the path with the lowest packet loss rate provides the best recovery rate

(Figure 3.8), ARQ-L provides a finer granularity of the packet loss rate over the

time. ARQ-L also utilizes bandwidth better by sending data on every paths.

Packet Loss Detection

A packet loss plays two roles in ARQ-L. (i) It is used to count packet loss rate,

which is the indicator of path quality. (ii) It triggers retransmission. The two

functionalities, however, require different features on packet loss detection. On one

hand, in order to update the loss rate of each paths, detection needs to be fast, so

that the information is on time. Yet it is easy to misclassify a delayed packet as

lost. On the other hand, while triggering retransmission, loss detection needs to

be accurate, since unnecessary retransmission consumes extra bandwidth [53]. As

a result, in ARQ-L, we adopt two methods for loss detection: a timeout scheme

similar to RTO in TCP ensure the prompt update of loss rate, and a gap-based

method to trigger retransmission.

Timeout-based detection sets a deadline for each packet to arrive. If the

packet does not arrive on time, it is considered lost. Before calculating the deadline

of the packet we assume bit rate and packet size are fixed. The assumption is

reasonable in a short period of time, and is embraced by other works [68,97]. For

simplicity, in our experiments, we use constant bit rate and packet size for the

whole session.

Following the assumption, the packet interval would be fixed and denoted as

τ . If the first packet in the period is sent at t1, the nth packet should be sent at

tn, where tn = t1 + (n− 1)τ , t1 equals to ts + RTT/2, and ts is the time when the

3.4. A DYNAMIC DISTRIBUTED RETRANSMISSION SCHEME 59

receiver sends the first request in this period. RTT is the round trip time that are

sampled once for every period. In our experiment, as we do not change sending

rate, it is fixed before the streaming session.

Like in TCP [86], the maximum allowed delay variation is four times the jitter.

The deadline of nth packet would be tn + RTT/2 + 4 ∗ D., where D is the jitter

(a.k.a. smoothed mean deviation) of the one way delay. In ARQ-L it could be

measured by the jitter of inter arrival time of consecutive packets. Denoting the

newly measured inter arrival time as τ̂ , D is updated by: D ← D + α ∗ (τ̂ − τ),

on every received packet with a expecting sequence number. The variable α is the

deviation gain and is set to 0.25 [86].

Timeout-based loss detection reports losses when packets are delayed. It is fine

for congestion detection, but it should not trigger retransmission if the packet is

finally received. Therefore timeout-based method is used only to update loss rate.

Gap-based loss detection is used to trigger retransmission without unneces-

sary retransmission request. Upon receiving a packet with a discontinuous sequence

number, all packets in the sequence gap are considered lost, and retransmission

request are sent to the sender with lowest loss rate. If multiple senders have the

same loss rate, one of them is randomly picked for retransmission.

Gap-based detection brings extra delay before retransmission. The amount of

the delay (period without receiving any packet), however, is not likely to be greater

than the play-back buffering time at the receiver.

3.4.2 Simulation

We evaluate ARQ-L by comparing the unusable rate (effective loss rate) of ARQ-L,

ARQ-D, and ARQ-RR. The comparison are made in the same network environment

via in simulation and experiments over the Internet.

3.4. A DYNAMIC DISTRIBUTED RETRANSMISSION SCHEME 60

R

AB
C

D
F

Sender/Receiver

DMS flow

Cross Traffic Sender/Receiver

Cross Traffic

Aggreagate Point
2

3

0

1

Figure 3.16: A distributed media streaming session with background traffic

On the topology of Figure 3.16, we conduct the following simulation using ns-2

to show this advantage of ARQ-L. The aggregate bit rate is 120kbps and packet

size is 0.6kB. Therefore, for ARQ-RR and ARQ-L, the four senders send at 30kbps

each, and for ARQ-D, the three senders send at 40kbps each.

Background CBR flows C-D, F-D, and A-B congest shared path of flow 0 and

1, path of flow 2, and path of flow 3 respectively. The arrival of background

flows follow the poisson process, i.e., the inter-arrival time of congestion follows

exponential distribution. The average inter-arrival time of these flows are 60, 20

and 20 seconds for C-D, F-D and A-B respectively. The average duration of the

flows are 30 seconds. Because flow C-D appears less frequently than the other

two, loss rate of flow 0 or 1 are smaller than loss rate of flow 2 or 3. Hence in

ARQ-D, sender 0 is chosen as retransmitter; in ARQ-RR, three senders take turns

to retransmit; and in ARQ-L, the sender with the lowest loss rate at the moment

retransmits.

We plot the throughput of both data and ARQ packets in each paths. A

decreased throughput of data packets reveals a congestion in that channel, and an

increased throughput of ARQ packets shows retransmission request being sent to

that sender. Studying the throughput of the two types of packets on the paths

reveals how the three schemes pick retransmitters. The four sub-graphs in every

single figure (Figure 3.17, 3.18 and 3.19) correspond to the four channels in the

3.4. A DYNAMIC DISTRIBUTED RETRANSMISSION SCHEME 61

system. Horizontal axis is for time slot, and vertical axis is for number of packets.

From top to bottom, they are channel 0, 1, 2 and 3 respectively. In every sub-

graph, solid line tells the number of data packets (throughput) that are received

during that time slot (in length of five seconds). When a sender is congested, the

solid line declines. Dash line tells the number of ARQ requests sent to that sender

during the same time slot. A good scheme should avoid sending ARQ requests to

a congested sender: when solid line is low, dash line should be low. Please note

dash line could be higher than solid line when solid line is in its peak: when all

the data packets are received (the channel is not congested), throughput of ARQ

packets could be higher than data packets.

Given the sending rate and packet size in the experimental setting, the maxi-

mum packet rate on data channel of ARQ-D would be around 40 packets per slot

(120/(3× 0.6× 8)× 5), and the one of ARQ-RR and ARQ-L would be 32 packets

per slot (120/(4 × 0.6 × 8) × 5)).

Figure 3.17 shows the throughput of the four channels in ARQ-RR scheme. It

shows that, many ARQ requests are sent to congested senders. For example, during

the period from slot 5 to slot 20 of channel 0 and 1, when the zero throughput

of data packets indicates channel 0 and 1 are extremely congested, ARQ requests

(shown in dash line) are still sent to sender 0 and 1. Every sub-graph has cases

where solid line is in the bottom, but dash line is still high. The reason is that

ARQ-RR does not select path for retransmission, hence ARQ requests are sent to

each channels regardless of whether it is congested or not.

Figure 3.18 shows the throughput of the four channels in ARQ-D scheme. Chan-

nel 0 is dedicated for retransmission and does not send data packet, so it should not

have throughput of data packets (solid line). However for the purpose of compar-

ison, a solid line is copied from the throughput of channel 1, as we have shown in

Figure 9 (not shown in this draft) that channel 0 and 1 have similar throughput, as

3.4. A DYNAMIC DISTRIBUTED RETRANSMISSION SCHEME 62

 0

 20

 0 50 100 150 200

 0

 20

 0 50 100 150 200

 0

 20

 0 50 100 150 200

 0

 20

 0 50 100 150 200

N
um

be
r

of
 P

ac
ke

ts
 p

er
 S

lo
t

Time slot (5 seconds/slot)

Figure 3.17: Throughput of channels in ARQ-RR

all congestion are shared by them. It is obvious that retransmission requests were

sent to sender 0, even when its channel was severely congested, e.g. slot 5 to 20

in channel 0. In this case, ARQ-D scheme has a very poor recovery performance,

as all ARQ packets during that period suffer from severe congestion and are very

likely to be lost.

Figure 3.19 shows the throughput of the four channels in ARQ-L scheme. In

this scheme ARQ requests are sent to the channel that are least congested (highest

data packet throughput). Occasionally the dash line exceeds the solid line, e.g.

around slot 140 on channel 2. But if we compare the four channels at the same

time slot, the selected sender (with the highest dashed line among the four) also

has the highest solid line among the four channels. This indicates that in the case

of packet loss, ARQ-L is able to find the sender with the relatively best channel

condition, and request retransmission from that sender. This ability is the key to

3.4. A DYNAMIC DISTRIBUTED RETRANSMISSION SCHEME 63

 0
 20
 40
 60
 80

 0 50 100 150 200

 0

 20

 40

 0 50 100 150 200

 0

 20

 40

 0 50 100 150 200

 0

 20

 40

 0 50 100 150 200

N
um

be
r

of
 P

ac
ke

ts
 p

er
 S

lo
t

Time slot (5 seconds/slot)

Figure 3.18: Throughput of channels in ARQ-D

improve the recovery effectiveness.

Scheme ARQ-RR ARQ-D ARQ-L

Total data packet 30000 (100%)

Received before recovery 19291 (64.30%) 19304 (64.35%) 19207 (64.02%)

Received after recovery 24517 (81.72%) 25477 (84.92%) 27295 (90.98%)

ARQ requested 10709 (100%) 10691 (100%) 10793 (100%)

ARQ received 5226 (48.80%) 6173 (57.74%) 8088 (74.94%)

Table 3.1: Statistics of each session.

We repeated the above simulation for 20 times for every scheme. The average

value of (i) the total number of data packets, (ii) the number of received data

packets before recovery, (iii) the number of received packets after recovery, (iv)

the number of sent ARQ requests, and (v) the number of received ARQ packets in

one session are listed in Table 3.1. The similar figures in the row Received before

3.4. A DYNAMIC DISTRIBUTED RETRANSMISSION SCHEME 64

 0

 20

 40

 0 50 100 150 200

 0

 20

 0 50 100 150 200

 0
 20
 40
 60
 80

 0 50 100 150 200

 0
 20
 40
 60

 0 50 100 150 200

N
um

be
r

of
 P

ac
ke

ts
 p

er
 S

lo
t

Time slot (5 seconds/slot)

Figure 3.19: Throughput of channels in ARQ-L

recovery and ARQ requested indicate that the channel quality are generally the

same for the three schemes, thus the comparison among them is fair. The figures

in the row Received after recovery show the final received number of packets after

applying the different retransmission scheme. A higher figure in this item stands

for better overall performance. ARQ-L has the highest usable rate (90.98%). The

figures in the row ARQ received shows how successful the retransmission is and

reveals why a retransmission scheme produces certain level of usable rate. ARQ-L

has the highest receiving rate on ARQ packet (74.94%). Overall, the above table

demonstrates that ARQ-L outperforms the other two when congestion happens on

the shared link. It recovers the highest number of lost packets among the three

schemes.

3.4. A DYNAMIC DISTRIBUTED RETRANSMISSION SCHEME 65

3.4.3 Experiment over PlanetLab

Besides simulation with ns-2, we also conduct test over PlanetLab, which is an

uncontrolled environment. In order to test the effectiveness of error recovery, we

conduct our simulation in a large scale, hopefully to collect enough samples with

packet loss during the streaming session. We randomly pick 92 nodes from Plan-

etLab. These 92 nodes are then randomly grouped into 23 groups, each of four

nodes. Each of the group has one receiver and three senders, which are also ran-

domly assigned. By doing so, we make the network path and condition as general

as possible. Every group will repeat 30 runs of streaming. In each run, ARQ-RR,

ARQ-L, and ARQ-D are tried consecutively to maintain temporal locality of the

channel characteristics among the schemes. The dedicated retransmitter in ARQ-

D is the sender with the smallest loss rate in ARQ-RR and ARQ-L tests in the

same run. Each session is a 30-second MP3 streaming. We successfully collect

1372 session records from the experiments.

To show the three schemes actually encounter similar channel conditions in the

uncontrolled environment, for every scheme, we plot the ratio of sessions that see a

particular number of packet loss in all the channels. The graphs are shown in Figure

3.20. We have the following observation: (i) Number of packet loss per session is

exponentially distributed for every scheme. (ii) ARQ-D has a slightly better lossy

environment than the other two schemes. Lower percentage of its sessions have

large number of packet loss. (iii) The test environment for the three schemes are

comparable to each other. It is fair to compare the recovery effectiveness of ARQ-L

with that of ARQ-RR. The average number of channel packet loss are: 17, 16 and

16 per session, for ARQ-D, ARQ-RR and ARQ-L respectively.

Among the 1372 session records, 1064 of them were collected when at least one

channel has at least one packet loss (channel lossy condition). Out of these 1064

3.4. A DYNAMIC DISTRIBUTED RETRANSMISSION SCHEME 66

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 5 10 15 20 25 30

R
at

io
 o

f s
es

si
on

s

Number of lost packets in all channels

ARQ-D
ARQ-RR

ARQ-L

Figure 3.20: Similar network environment for the three schemes.

recordes, 378 are records of ARQ-D; 331 are from ARQ-RR; and 355 are from

ARQ-L.

Under the uncontrolled environment, we have no idea of when, where and how

long the congestion happens. So it is hard to compare the three schemes in exactly

same condition. But it is meaningful to see in this uncontrolled environment,

how much ratio (in total tries) of a particular scheme can give a certain level of

effective loss rate. We look at the number of effective ADU loss (ADUs that are not

recovered) per session. The ratio of sessions (in lossy condition) with particular

number of effective ADU loss is plotted. A good scheme has high ratio of sessions

with zero or small number of effective ADU loss, meaning a large portion of the

sessions in lossy environments lose zero or few ADUs. The graph is shown in Figure

3.21.

The graph shows that ARQ-RR fails to recover more packets compared to the

other two schemes. Only a bit more than 37% of its session in lossy channel stream-

3.4. A DYNAMIC DISTRIBUTED RETRANSMISSION SCHEME 67

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

0 1 2 3 4 5 6 7 8 9 >9

R
at

io
 o

f s
es

si
on

s
in

 lo
ss

y
co

nd
iti

on

Number of lost ADUs

ARQ-D
ARQ-RR

ARQ-L

Figure 3.21: Ratio of sessions with particular number of effective loss

ing has zero loss, while ARQ-D and ARQ-L has 43.65% and 45.72% respectively.

Compared to the other two schemes, ARQ-RR is less skewed, meaning a higher

chance to lose more ADUs. ARQ-L is the most skewed, showing that ARQ-L suc-

cessfully reduces number of packet loss per session. In this lossy environment, the

average number of effective ADU loss per session are 1.6702, 2.0356 and 1.5333 for

ARQ-D, ARQ-RR, and ARQ-L respectively. ARQ-L has the smallest number of

unrecoverable ADU loss. Although comparing to ARQ-D, the reduction on effec-

tiveness may not look significant, but this is due to the good network environment

during the test. During our test, the network shows few bursty losses and most of

the packets are sporadic, diminishing the advantage of ARQ-L to forecast the best

channel for retransmission. ARQ-L, however, is obviously better than ARQ-RR,

showing that its effectiveness of error recovery is above the average.

The simulation and experiment over the Internet show that ARQ-L offer better

performance when burst loss appears, especially when the dedicated retransmitter

3.5. CONCLUSION 68

in ARQ-D is congested, as it avoids retransmission through congested channel.

Although ARQ-L does not assume any topology knowledge of the streaming

session, and either does it identify the location of packet loss in the topology, ARQ-

L is able to avoid retransmission from a path that is suffering from burst loss. The

assumption is that, when a router is congested (hence burst loss happens), all the

flows passing through it suffer from packet loss. By observing packet loss, ARQ-L

avoids retransmitting on these congested paths.

ARQ-D has a degraded performance if shared path of data channel and ARQ

channel are congested. In the analysis in Section 3.3, we assume channel indepen-

dence. Correlated loss of two channels is not considered. In practice, however,

where distributed media streaming has a reverse-tree-like topology, and therefore

losses on two channels would be highly correlated if their shared path is congested.

In this case, the ARQ-D’s retransmitter, despite having a lowest loss rate in long

term, has a high probability of losing ARQ packets.

3.5 Conclusion

In this chapter, we discuss the problem of using retransmission for error recovery

in distributed media streaming. First, we propose distributed retransmission as

a new principle for retransmission. The effectiveness of distributed retransmis-

sion is shown by analysis, simulation, and experiments over the Internet. Second,

we propose a dynamic distributed retransmission scheme, ARQ-L, which selects

retransmitter according to current loss rate of the channels. Our simulation and

experiment show that ARQ-L copes well with burst loss and outperforms the other

two naive distributed retransmission methods.

In our study, we assume only one retransmission, in order to compare the

different schemes fairly. But in reality multiple retransmissions can be allowed

3.5. CONCLUSION 69

to further reduce loss rate. How multiple retransmissions can be performed given

different delays and playback deadline for the video packets could be an interesting

problem for future study.

Chapter 4

Congestion Control in

Distributed Media Streaming

Retransmission improves the quality of playback. But whether distributed media

streaming system can be deployed not only relies on the quality being delivered, but

also depends on whether the deployment is fair to other applications sharing the

Internet. One issue is whether distributed media streaming regulates its bandwidth

consumption responsively and fairly according to the network condition. This

chapter presents a method to achieve this responsiveness via congestion control.

4.1 Introduction

Existing studies on distributed media streaming mainly focus on improving the

streaming quality. Some of them reduce distortion [69, 81] or buffering time [97],

the other improves server utilization [19, 37]. This chapter studies how to ensure

traffic of distributed media streaming responsive to network congestion. According

to Floyd [25], a major issue of the Internet is the potential for future congestion col-

lapse due to flows that do not use responsible end-to-end congestion control. Since

the current Internet is a shared network, irresponsible flows that do not regulate the

70

4.1. INTRODUCTION 71

sending rate during congestion can deteriorate the situation and probably makes

the network unusable. Congestion control is required for deployment of distributed

media streaming system.

Since the first reported congestion collapse in the mid 1980’s [66], the dominant

protocol, TCP, has been re-engineered to incorporate Additive Increase Multiplica-

tive Decrease (AIMD) congestion control scheme, which is acknowledged as one

of the key factors to the success of the Internet [25]. Flows are regarded as good

citizen of the Internet if their long term rate is equal to or less than a TCP flow

in the same network, or TCP-friendly. TCP-friendliness is the de facto judgment

of whether a flow is congestion-controlled and can to be deployed on the Internet.

In this study, we investigate the congestion control problem in distributed media

streaming. Congestion control in media streaming with one sender is a well studied

problem (e.g., see the survey by Widmer et al. [93] and references therein). In

distributed media streaming, however, the problem of congestion control is more

complicated than the single sender scenario.

A distributed media streaming session contains multiple media flows (called

DMS flows) from different senders. These flows may or may not pass through the

same bottleneck. Ensuring TCP-friendliness of each DMS flow is not sufficient:

their combined throughput is larger than the other TCP flows on the same bot-

tleneck. This unfairness encourages abuse by selfish users — by increasing the

number of concurrent flows, a user can grab larger bandwidth share at the bot-

tlenecks. We need a different type of congestion control – one that controls the

aggregate throughput of the DMS flows such that their combined throughput is

TCP-friendly. We call such aggregate congestion control as task-level congestion

control.

Aggregate congestion control methods exist in the literature [4, 32, 73, 85], but

do not apply to distributed media streaming. In distributed media streaming, the

4.1. INTRODUCTION 72

flows from multiple senders converge on their way to the receiver, forming a reverse

tree (see Figure 4.1 for an example). The DMS flows only share parts of their links,

so they may experience different delay and congestion. The existing methods of

aggregate congestion control, however, assume that the flows traverse through the

same path and share the same bottleneck.

S0

S1

S2

f0

f1

f2

R

A

B

Figure 4.1: Reverse Tree Topology in Distributed Media Streaming.

We now illustrate the problem of congestion control in distributed media stream-

ing through an example (see Figure 4.1). A host R requests for some media content

from senders Si. DMS flows (fi) from the senders travel through different IP-level

paths and join each other at routers A and B. We term routers like A and B as

aggregation points. Throughout this study, we use the term link to refer to the set

of physical links between a sender and an aggregation point (e.g., S0-A), two ag-

gregation points (e.g., A-B), or an aggregation point and the receiver (e.g., B-R).

The set of DMS flows on a link is unique. Determining the set of DMS flows on

a link is important, as it is the element upon which TCP-friendliness is enforced.

Section 4.3 elaborates on this point.

In the reverse tree, congestion can occur on any link. If it occurs on R-B, the

aggregate of f0, f1 and f2 should be friendly to TCP flows on link R-B. But if

the congestion occurs on A-B, only the aggregate of f1 and f2 needs to be friendly

to TCP flows on link A-B. Flow f2, on the other hand, can consume as much

bandwidth as it wants. Similarly, if the congestion occurs on link S0-A, only f0

4.1. INTRODUCTION 73

needs to be TCP-friendly.

The above example shows the difficulty in congestion control of distributed

media streaming – the set of DMS flows to be controlled depends on where con-

gestion appears. So the solution needs to first identify the flows sharing the same

congestion, and then regulate them accordingly.

This study proposes a complete framework called DMSCC to achieve the above

tasks. DMSCC tracks packet losses at the receiver as an indication of congestion

and identifies the location of congestion by correlating the one-way delays between

sender/receiver pairs. Additive increase, multiplicative decrease (AIMD) algo-

rithm, with carefully adjusted increasing factor, regulates the throughput of the

DMS flows on a bottleneck and produces a TCP-friendly flow aggregate. If there

are k DMS flows on a bottleneck, they are regulated such that, in ideal situation,

each flow consumes 1/k of the bandwidth of a TCP flow in a comparable network

condition. As a result, the flow aggregate consumes as much as one TCP flow

and is friendly to TCP. We use only TCP Reno in this study, but the scheme is

applicable to other versions of TCP.

When the throughput of the each flow is regulated, the receiver needs to de-

cide which packets each sender should send to conform to the new throughput

constraint. This and other issues (e.g., what to retransmit, media coding methods

used) are orthogonal to congestion control and are beyond the scope of this study.

The rest of the chapter is organized as follows. Section 4.2 presents some related

work. In Section 4.3, we make a case for task-level TCP-friendliness and formulate

the congestion control problem to achieve task-level TCP-friendliness in distributed

media streaming. Section 4.4 describes the framework of DMSCC and presents our

assumptions. Section 4.5 presents the methods to control throughput of DMS flows.

Section 4.6 describes how DMSCC locates congestion in a reverse tree. Section

4.7 shows how DMSCC combines congestion location and throughput control to

4.2. RELATED WORK 74

achieve TCP-friendliness at the task level. Section 4.8 presents simulation results,

which validate our design. Section 4.9 concludes the chapter.

4.2 Related Work

End-to-end, TCP-friendly, congestion control has been studied for many years. As

new application appears, the research focus of this topic shifted from unicast, to

multicast, and more recently to flow aggregate. We briefly review these work in

this section.

Methods for congestion control of unicast can be categorized into either window-

based or rate-based methods. Window-based methods [5,29] use a congestion win-

dow that is similar to TCP. By adjusting the size of congestion window, the sending

rate are controlled. Rate-based methods directly control the sending rate, and can

be further divided into AIMD-based and equation-based methods. AIMD-based

methods [80] apply TCP’s AIMD algorithm to compute sending rate. Equation-

based methods [34] calculate the sending rate using an equation, which takes net-

work parameters (loss rate, RTT and MTU) as input, and output the estimated

throughput of a conformant TCP flow.

Congestion control in IP multicast focuses on receiver-driven layered multicast

protocols. The pgmcc scheme [82] focuses on how to scale feedback to large number

of receivers. RLC [91] and PLM [47] focus on how to estimate and utilize the

available bandwidth by changing the number of subscribed layers, while keeping

the flows fair to TCP.

Congestion control for unicast and multicast aims to achieve fairness of one

flow to TCP flows. In distributed media streaming, however, we want to achieve

fairness of flow aggregate. This congestion control problem is therefore similar to

the problem of aggregated congestion control.

4.2. RELATED WORK 75

Our work is more related to the study on aggregate congestion control. Ag-

gregate congestion control pursues the fairness of a group of flows. Congestion

Manager (CM) [4] uses one AIMD congestion window adjustment loop for the flow

aggregate to achieve a fair combined throughput. CP [73] adopts equation-based

rate adaptation [27] with packets sub-sampling to achieve fair bandwidth share.

MPAT [85] keeps multiple bandwidth estimation loops and allows the application

to allocate bandwidth to different flows while ensuring that the total throughput

is fair. Hacker et al. study parallel TCP flows [32] and mimic TCP flows with

longer RTT, so that flows in the aggregate consume less bandwidth than a TCP

flow, making the aggregate TCP-friendly.

Aggregate congestion control is relatively new, and researchers still have dif-

ferent views on the definition of TCP-friendliness of flow aggregate. Some believe

that the flow aggregate should be fair to one TCP flow, so that software that uses

concurrent downloading do not gain advantage by establishing multiple flows, and

therefore does not encourage abuse using multiple flows [32]. Others allow an aggre-

gate of n flows to have equal bandwidth share to that of n TCP flows [73,85]. Their

argument is that, since traditional TCP-friendliness is between flows, granting n

flows a throughput equivalent to n TCP flows does not breach TCP-friendliness.

MulTCP [18] and TCP-P [12] also allow a group of TCP flows between the same

sender receiver pair to adjust the aggressiveness and produce bandwidth that are

equals to k normal TCP flows. Both work adjust aggressiveness by increasing the

number acknowledgment before increasing congestion window. TCP-P [12] even

allow k to be less than 1.

Regardless of the differences, these studies apply congestion control on a fixed

set of flows. In distributed media streaming, congestion control needs to be applied

on different sets of flows on different links. A new congestion control method is

therefore required.

4.3. PROBLEM FORMULATION 76

4.3 Problem Formulation

4.3.1 Task-level TCP-Friendliness

The term TCP-friendly is commonly used to describe a flow whose arrival rate at

steady state is no more than the arrival rate of a TCP flow under the same network

condition (such as packet loss rate and round trip time). We refer to congestion

control schemes that aim to produce TCP-friendly flows as flow-level congestion

control. Several work in the literature extends the notion of TCP-friendliness to

coarser granularity. Hacker et al. [32] consider parallel TCP flows and propose

an approach where multiple parallel TCP flows in one session are friendly to a

single (unmodified) TCP flow. We call this approach task-level congestion control.

Finally, congestion manager [4] seeks fairness of flow aggregate between a pair of

hosts. We refer to this approach as host-level congestion control.

We believe that task-level congestion control is appropriate for Internet appli-

cations, including distributed media streaming. Congestion control pursues fair

sharing of bandwidth at a bottleneck, and fairness is meaningful only when the

entity of bandwidth consumption is identified. Such entity should have two prop-

erties: (i) An entity consumes bandwidth to complete a well-defined task for an

end user; (ii) Creating more entities does not make completing the task better or

faster. The second property is crucial in removing the motivation to abuse the

network using multiple entities.

For example, an FTP file downloading session is an entity – the task is well

defined, and downloading another file does not accelerate the completion of the cur-

rent task. In this single-flow task, task-level congestion control is equivalent to flow-

level congestion control. On the other hand, some applications (e.g., FlashGet1)

allow users to download the same file with multiple flows concurrently. In this case,

1www.flashget.com

4.3. PROBLEM FORMULATION 77

the multi-flow downloading session is one entity – (i) the task is still downloading

of a file, and (ii) creating another multi-flow session for the same file does not

speed up the current downloading. Task-level congestion control takes the whole

downloading task as the entity of bandwidth consumption and keeps the total

throughput friendly to TCP. Contrarily, flow-level congestion control only requires

TCP-friendliness of individual flow. Therefore, the task consumes more bandwidth

than a TCP flow, gaining advantage over other single-flow tasks. Without task-

level TCP-friendliness, selfish users can use more flows to grab more bandwidth

on bottlenecks.

4.3.2 The Criterion for Task-Level TCP-Friendliness

We now formally describe the goal of task-level congestion control.

0f
f1

f

TCP
A B

(a) a single flow task

TCP
A B

(b) a two−flow task

Figure 4.2: A Single-Flow Task and a Two-Flow Task.

A Single-Flow Task

First, let’s consider a task with only one flow, as shown in Figure 4.2(a). The flow

f and a TCP flow share bottleneck A-B. As the task has only one flow, task-

level TCP-friendliness is equivalent to flow-level TCP-friendliness. Assuming that

the RTT of both flows are the same, TCP-friendliness is achieved if the following

equation holds:

B = BTCP

4.3. PROBLEM FORMULATION 78

where B and BTCP are the throughput of f and the TCP flow, respectively.

Consider a more general case where the two flows experience different RTT.

TCP’s congestion control algorithm is biased against flows with larger RTT [28].

Despite efforts to correct such unfairness (e.g., TCP Libra [60]), this unfairness

persists in current TCP implementations. On the other hand, B×RTT of the two

TCP flows remain the same if they experience the same loss rate. For flow f and

the TCP flow in Figure 4.2(a), it is reasonable to assume a similar loss rate: A-B

is the only bottleneck on their paths, and active queue management, such as RED,

tries to drop packets from both flows in a fair manner. Therefore, under different

RTT, TCP-friendliness is ensured by:

B × RTT = BTCP × RTTTCP (4.1)

where RTT and RTTTCP are the RTT of flow f and the TCP flow, respectively.

A Multi-Flow Task

We now extend Equation 4.1 to handle a multi-flow task sharing the same bottle-

neck with other TCP flows.

Consider a multi-flow task (e.g., Figure 4.2(b)). The two flows f0 and f1 share

bottleneck A-B with a TCP flow. Task-level TCP-friendliness requires the flow

aggregate to be friendly to a TCP flow. If we treat the flow aggregate as a single

flow, task-level TCP-friendliness is the same as flow-level TCP-friendliness. There-

fore, Equation 4.1 holds; except that, B is now the combined throughput of fi,

and RTT is the average round trip time of fi:

RTT =
1

B

∑
fi∈O

(bi × rtti)

where O is the set of flows in the flow aggregate, bi and rtti are the throughput

and round trip time of flow fi. By replacing B and RTT , we extend Equation 4.1

4.3. PROBLEM FORMULATION 79

to consider multi-flow tasks:

∑
fi∈O

(bi × rtti) = BTCP × RTTTCP (4.2)

Equation 4.2 provides the criterion for task-level TCP-friendliness on a given

bottleneck. Formally, a task is TCP-friendly if the combined B×RTT of its flows

is equal to that of a TCP flow on the same bottleneck.

The Goal of DMSCC

We now apply Equation 4.2 to the problem of congestion control in distributed

media streaming. Consider a distributed media streaming session as shown in

Figure 4.1. As bottlenecks form on different links, the flow aggregates on them

contain different sets of DMS flows. The criterion of task-level TCP-friendliness

for distributed media streaming should consider multiple bottleneck locations with

different sets of flows.

Let lj be a link, and a TCP flow passing through lj be TCPj. As the set of

DMS flows flowing through each link is distinct, we can represent a link using its

set of DMS flows. We use set notations to represent relationships among the flows

and the links. The notation fi ∈ lj means that flow fi passes through link lj;

and li ⊃ lj means that the flows on li are a proper superset of flows on lj, or li

dominates lj for short.

Distributed media streaming is task-level TCP-friendly when, on any bottleneck

lj, the following inequality holds:

∑
fi∈lj

(bi × rtti) ≤ BTCPj
× RTTTCPj

(4.3)

The above criterion is an inequality, as a DMS flow may experience multiple

bottlenecks.

4.4. MODEL AND ASSUMPTIONS 80

4.4 Model and Assumptions

DMS
Congestion

Control

DMS flows
Sender 0

Receiver

AIMD

AIMD

AIMD

Sender 1

Sender 2

Increasing

Factors

Figure 4.3: A Three-Sender Session.

Our congestion control scheme, DMSCC, is designed to ensure that Inequality

4.3 is satisfied on any congested link in a distributed media session. DMSCC is a

receiver-driven protocol – the receiver pulls the data from the senders by sending

requests with sequence numbers, and the senders reply with data. The receiver

therefore controls the sending rate of each senders and is the natural place to

implement the congestion control protocol.

Figure 4.3 shows the relationship between DMSCC and the DMS flows in a dis-

tributed media streaming session with three senders. There are three connections

between the receiver and the senders. At the receiver, each connection is controlled

by an AIMD loop similar to TCP. The increasing factors of these AIMD loops are

controlled by the DMSCC module in the receiver. We will show in Section 4.5 how

the increasing factors of individual DMS flows are determined. But first, in this

section, we introduce the framework of DMSCC and present our assumptions in

the design of our protocol.

4.4. MODEL AND ASSUMPTIONS 81

4.4.1 AIMD versus Equation-Based

AIMD and equation-based method [27] are two common methods for regulating

the throughput of a non-TCP flow. We use AIMD method to regulate DMS flows

in DMSCC for the following reason.

Equation-based methods rely on long term observation of network parameters

such as loss rate and smoothed RTT. These parameters are used in an equation to

estimate the long term throughput that is fair to TCP. This long term observation

is meaningful only in cases where flows share the same path, and bottlenecks affect

the same set of flows. In distributed media streaming, the congestion may affect

different set of DMS flows at different bottlenecks. Thus, a long term observation

might become outdated and fail to capture the congestion on a particular bottle-

neck. On the other hand, AIMD methods respond quickly to a packet loss and

adapt swiftly to congestion on new bottleneck. Although it is argued that AIMD

produces saw-tooth like throughput, in non-interactive streaming, as in the case

of distributed media streaming, buffering can be used to smooth the playback at

the receiver.

4.4.2 DMSCC

The framework of DMSCC is shown in Figure 4.4. DMSCC has two relatively inde-

pendent functionalities: throughput control (Section 4.5) and congestion location

(Section 4.6). These two functionalities cooperate to perform task-level congestion

control on DMS flows. When congestion occurs, the congestion location mod-

ule identifies the bottleneck. The throughput control module then updates the

increasing factor of AIMD loops of each DMS flow on that bottleneck.

4.5. THROUGHPUT CONTROL 82

 2 Congestion Control
Algorithm

1 Congestion
Location

3 Througput
Control

DMS Flows

1. Congestion location module monitors
packet loss and delays and estimates the
location of congestion.
2. Based on the location of congestion,
congestion control algorithm decides the
increasing factor of each flows.
3. Throughput control module then set
increasing factors of each flow to regulate
their rate.

Figure 4.4: Framework of DMSCC

4.4.3 Assumptions

Before proceeding to descriptions of DMSCC, we first clarify our assumptions.

First, we assume that the paths among the receiver and senders form a reverse

tree rooted at the receiver, and this topology is known by the receiver. Second, we

assume that DMS flows on the same bottleneck link experience similar loss rate.

This assumption is reasonable when active queue management schemes such as

RED is used. Third, we focus on links with high multiplexing factors, where loss

rate is decided by the background traffic rather than the DMS flows. Lastly, we

can reasonably assume that the number of senders in a DMS session is typically

small (less than 10). Thus, scaling DMSCC to large number of senders is not an

issue.

4.5 Throughput Control

In this section, we describe how to control the throughput of a DMS flow using

AIMD algorithm such that it achieves a fixed fraction of the throughput of a TCP

flow. In order for an aggregate of k DMS flows to be fair to a single TCP flow,

DMSCC tries to control the throughput of each of the DMS flow to be 1/k of the

throughput of a conformant TCP flow.

4.5. THROUGHPUT CONTROL 83

We derived our method from the well-known Mathis Equation [62]. Mathis et

al. assume that packet losses are distributed in such a way that, if the loss rate

is p, then for every 1/p packets, one packet is lost. Figure 4.5 shows the variation

of congestion window in such an ideal lossy channel. W denotes the size of the

congestion window (in number of packets) before packet loss. Every packet loss

reduces the congestion window to W/2. The congestion window then increases by

α packets for every RTT, until the next packet loss occurs.

C
on

ge
st

io
n

W
in

do
w

(p
ac

ke
ts

)

  
L = W/2α

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

Time (RTT)

W/2

W

Figure 4.5: Evolution of Congestion Window Under Periodic Loss.

The variable α is the increasing factor. If we let the period (in RTT) between

every two packet losses be L, then

L =
W/2

α
.

The total number of packets received during that period can be calculated as the

size of the shaded area S:

S =
3

2
× W

2
× L =

3W 2

8α
. (4.4)

From the assumption of ideal packet loss pattern, we know that the number of

packets between two packet losses is 1/p, that is,

S =
1

p
. (4.5)

From Equation 4.4 and 4.5, we obtain:

W =
√

α ×
√

8

3p
.

4.5. THROUGHPUT CONTROL 84

The throughput of a flow is proportional to the average size of congestion window,

which is:

W =
3

4
W =

√
α × 3

4

√
8

3p
. (4.6)

Equation 4.6 provides us a way to change the throughput by adjusting its

increasing factor α. If we want a DMS flow to have β times the throughput of a

TCP flow, whose increasing factor is 1, then

W = β × WTCP

⇒
√

α × 3

4

√
8

3p
= β × 3

4

√
8

3p

⇒α = β2. (4.7)

Equation 4.7 tells us that, for the throughput of a DMS flow to be β times of a

conformant TCP flow, we need to set its increasing factor α to β2. We tested this

observation in the following simulation (Simulation 1) using ns-2.28.

B

S R

......

A

TCP Senders TCP Receivers

50ms

50ms

50ms

50ms
10Mbps

10Mbps10Mbps

50ms

10Mbps10Mbps

Figure 4.6: Topology of Simulation 1.

The topology of the simulation is shown in Figure 4.6. The bottleneck between

nodes A and B has a bandwidth of 10Mbps and a delay of 50ms. Node A is a

4.5. THROUGHPUT CONTROL 85

RED gateway using ns-2.28 default setting2. Fifty TCP Reno flows pass through

the bottleneck and produce congestion. A DMS flow is sent from S to R. Its

increasing factor α changes based on the value of β according to Equation 4.7.

We increased β from 0.1 to 1.4 (note that in DMSCC, we are interested only in

β ≤ 1) and observed the ratio of the throughput of the DMS flow to the average

throughput of TCP flows. For each value of β, we repeated the simulation 20 times

and computed the average ratio.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0 0.2 0.4 0.6 0.8 1 1.2 1.4

T
hr

ou
gh

pu
t R

at
io

Expected Throughput Ratio, β

Confidence Interval: 95%

B/BTCP

Figure 4.7: Simulation 1: Throughput Ratio as β Changes.

The result is plotted in Figure 4.7. The x-axis, β, is the expected throughput

ratio (β). The y-axis is the ratio observed when setting α to β2. Figure 4.7 shows

that as β changes, the actual throughput ratio is close to β when β ranges from

0.2 to 1.0. The result shows the effectiveness of Equation 4.7.

Mismatch between the actual throughput ratio and β is observed in Figure

4.7 for small β and large β. This mismatch is due to bursty packet losses in the

2queue length = 50, min thresh = 5, max thresh = 15, gentle-enabled, and
mark p = 0.1

4.5. THROUGHPUT CONTROL 86

  

W0L=(W−)/ α

C
on

ge
st

io
n

W
in

do
w

(p
ac

ke
ts

)

W0

�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����

Time (RTT)

W

Figure 4.8: Effects of Minimum Congestion Windows.

simulation, which violates the assumption that packet losses are evenly distributed.

During the bursty loss period, the congestion window becomes small. When the

halved congestion window is less than the minimum window, the latter dominates

the throughput and skews the throughput ratio from β. We elaborate on this

below.

To study the effects of minimum congestion window over throughput, we make

a similar deduction as in Figure 4.5. Let W0 be the minimum window. When

the loss rate is high, congestion window is rarely greater than 2 × W0, since it

encounters packet losses frequently. On every packet loss, as W0 > W/2, the

congestion window is reduced to W0. Figure 4.8 shows the evolution of window

size in this situation. We can derive W as:



L = W−W0

α

S = WL − (W−W0)L
2

S = 1
p

⇒W =

√
2α

p
+ W 2

0 .

In a TCP flow, α equals to 1, hence the throughput ratio can be represented

as:

B

BTCP

=
W

WTCP

=

√
2α + pW 2

0

2 + pW 2
0

4.5. THROUGHPUT CONTROL 87

We further divide this value by β and denote the resulting value as R. Ideally, R

equals to 1 (i.e., throughput ratio equals β).

R =
B/BTCP

β
=

√
2 + pW 2

0 /α

2 + pW 2
0

(4.8)

=

√
1 +

(1 − α)W 2
0

2α/p + αW 2
0

(4.9)

Equation 4.8 tells us that when the size of congestion window is dominated by

the minimum window size, smaller α (therefore smaller β) increases R, i.e., the

throughput of the DMS flow becomes larger than expected. Similarly, larger α

(and β) decreases R, and the throughput of DMS flow is less than expected. This

equation explains the discrepancy between B/BTCP curve and the expected line

in Figure 4.7.

Equation 4.9 tells us that, for a DMS flow with a given α (α < 1), if loss rate

p increases, R (R > 1) will increase, i.e., the actual throughput will be larger than

the expected value, and the difference will be enlarged.

Although mismatch of the throughput ratio exists and is found to be inevitable

in lossy environment, the method still manage to control the throughput of a flow

to reasonable level of accuracy. Note that when the channel is highly lossy, media

streaming is generally not usable anyway. Thus the larger mismatch in throughput

ratio in this case is less of a concern in our context.

We have described our method to control the throughput of a DMS flow on a

bottleneck. To apply it in DMSCC, we need to find out where the bottlenecks are,

so that we can regulate the throughput of DMS flows on these bottlenecks. We

describe our approach to locate the congested bottlenecks in the next section.

4.6. CONGESTION LOCATION 88

4.6 Congestion Location

An ideal solution to locate a congestion should work as follow: (i) when a conges-

tion causes a packet loss on a DMS flow, the solution should be able to tell which

link is congested, so that DMS flows on the affected link can be regulated, (ii)

when the congestion subsides, the solution should sense it, so that the regulation

on the DMS flows previously imposed can be lifted. Such ideal solution is difficult

to achieve in a tree topology: (i) there may be multiple, simultaneous congestion

on different links in the tree, and (ii) the same flow might experience congestion

on different links.

Rubenstein et al. [83] partially solved this problem for the case with one shared

bottleneck. Based on the observation that a shared congestion produces highly

correlated one-way delay on flows, they compare the cross-correlation of two flows

and the auto-correlation of one of them. The shared bottleneck link is identified

as one where the cross-correlation is larger. For details of Rubenstein’s technique,

please refer to the original paper [83].

Rubenstein’s method works well when each flow experiences one congestion. To

use the same correlation test when a flow passes through multiple congested links

is difficult. On a shared bottleneck, the delay of the flows might contain too much

noise induced by other congested links. Solving the congestion location problem

completely in the distributed media streaming scenario remains a difficult and

open problem. In this study, we extend Rubenstein’s method to identify multiple

bottlenecks in the case where the delay values on the shared bottleneck has limited

interference from other congested links.

We use CorrTest(i,j) to denote the correlation test of Rubenstein applied on

flow i and flow j. When CorrTest(i,j) returns 1, the two flows share a bottleneck;

when it returns 0, no shared bottleneck is detected. We apply the test over a

4.6. CONGESTION LOCATION 89

window of one-way delays recorded using probe packets sent together with flows i

and j. We use probes to maintain certain minimum sampling frequency. Without

probes, flows i and j may not send any packet for a long period due to congestion

windows. Probes are tiny packets that consume negligible bandwidth (0.8KBps in

our simulation). In the rest of this section, we explore congestion location step by

step, and then propose our method.

First, consider a simple case where only one link is congested. In this case,

we can directly apply the correlation test. The method is listed as Algorithm 1,

The method is called whenever a packet loss is detected on flow fi. It applies

correlation test on (the probes of) fi and other DMS flows and adds DMS flows

that are correlated with fi into a set Cf . The least dominant link that contains

the set of flows in Cf is returned as the shared bottleneck.

Algorithm 1 OneBottleneck(fi)

INPUT: fi {the flow whose packet is lost}

Let F be the set of all flows and L be the set of all links;

Cf ← {fj|CorrTest(i, j) = 1,∀fj ∈ F};

Cl ← {l|l ⊇ Cf , l ∈ L};

OUTPUT: Link l ∈ Cl such that lk ⊇ l, ∀lk ∈ Cl;

The situation is more complex when two links are congested simultaneously.

For instance, in Fig 4.1, when two bottlenecks S0-A and A-B coexist, one-way

delay of f0 is worsen by both congestion, but one-way delay of f1 is only affected

by congestion at A-B. When a packet is lost, CorrTest(0, 1) can return either 1 or

0, depending on which bottleneck dominates value of delay during that sampling

period. When the queuing delay on one bottleneck is temporally reduced by con-

gestion control of background traffic or packet dropping, the queuing delay on the

other bottleneck can remain high and continue to dominate the end-to-end delay.

4.6. CONGESTION LOCATION 90

So, CorrTest(0, 1) may return 0 even when A-B is congested due to domination

of bottleneck S0-A on the one-way delay of f0, making it less correlated with f1.

Whereas a CorrTest(0, 1) value of 0 does not necessary imply no shared bot-

tleneck, a value of 1, however, does confirm the existence of shared congestion on

f0 and f1. Our observation is that, if the congestion is shared, CorrTest(0, 1) may

return 1 from time to time after every packet loss. Based on this observation, we

use a history-based method to update the set of current bottlenecks. We denote

C as a set of current congested links and H as a FIFO queue of previously de-

tected congested links due to the most recent h packet loss. When a packet loss is

detected on fi, H is updated as in Algorithm 2.

Algorithm 2 OnPacketLoss (fi)

INPUT: fi, H, h

l ← OneBottleneck(fi);

if |H| = h then

dequeue(H); {phase out old bottleneck}

end if

enqueue(H, l); {phase in new bottleneck}

C ← {l|l in H};

OUTPUT: C, H

We can view H has a history of bottleneck detection record. On every packet

loss, the oldest record in H is phased out. If no other records in H refers to the

same bottleneck, the bottleneck is removed from the output. In other words, if a

link is not identified as a bottleneck during the most recent h packet loss event,

the congestion on the link is likely to have subsided. The length of the queue, h,

should be long enough so that H is able to buffer all current congested links. If

h is too small, H may phase out existing bottlenecks and update C incorrectly.

4.7. CONGESTION CONTROL 91

On the other hand, h needs not be too large, as the probability of having many

simultaneous bottlenecks is small. Our experiments on a four-sender session show

that value of h beyond 8 produces little improvement in accuracy of C, so we use

h = 8 in our protocol.

After C is updated by Algorithm 2, C contains the set of current bottlenecks.

For instance, in the previous example with simultaneous congestion on link S0-A

and A-B, Algorithm 2 may return C ={S0-A, A-B} or {S0-A, A-B, S1-A}. In

the second set, S1-A is a false detection. To understand this, imagine that the

bottleneck A-B causes a packet loss on f1. When performing CorrTest(1, 0), the

result can be 0 as we have analyzed. Therefore, Algorithm 1 returns S1-A as a

bottleneck. But, fortunately, the false detection does not affect the correctness of

DMSCC, as we shall see in the next section.

4.7 Congestion Control

4.7.1 Updating the Increasing Factors

After identifying the set of bottlenecks, the next step is to adjust the increasing

factors of the DMS flows on the bottlenecks so that their combined throughput

is TCP-friendly. Given C, the set of current bottlenecks, Algorithm 3 construct

another set C ′ containing the set of bottlenecks that are not dominated by any

other bottlenecks in C. For each of the bottlenecks in C ′, the algorithm sets

the increasing factor of the DMS flows that pass through it to 1/n2 according to

Equation 4.7, where n is the number of DMS flows going through a bottleneck.

To understand the reason why DMS flows are adjusted according to the domi-

nant bottlenecks, let us consider the previous example of simultaneous congestion

on S0-A and A-B in Figure 4.1. Suppose that, after a packet loss, Algorithm 2

returns C ={S0-A, A-B, S1-A}. Link A-B dominates the other two links. Conges-

4.7. CONGESTION CONTROL 92

Algorithm 3 UpdateAlpha (C)

INPUT: C

C ′ ← {l| 6 ∃li ∈ C : li ⊃ l, l ∈ C};

for all l ∈ C ′ do

n ← |{fi}|, fi ∈ l; {number of DMS flows}

αi ← 1/n2, ∀fi : fi ∈ l; {increasing factor}

end for

tion on A-B requires the aggregate of f0 and f1 to be TCP-friendly. According to

Equation 4.7, α0 and α1 should be set to 1/4. Congestion on the other two links

requires each of f0 and f1 to be TCP-friendly and thus both α0 and α1 should be

set to 1. Setting the increasing factor to 1, however, makes the flow aggregate on

A-B unfriendly. Considering the goal of DMSCC (Equation 4.3), αi should be set

conservatively to 1/4. In short, the dominant bottleneck restricts the aggressive-

ness of the DMS flows, and therefore the increasing factor should be set according

to the dominant links. This property also allows Algorithm 4.2 to return false

bottlenecks (e.g. S1-A) that are dominated by the shared bottleneck (e.g., A-B).

Such false bottlenecks do not affect the correctness of DMSCC.

4.7.2 Bottleneck Recovery

The above mentioned algorithms run whenever a packet loss is detected. When

congestion subsides and there is no more packet loss, we need to reset αi to 1

so that the network bandwidth can be fully utilized. Having no packet loss to

trigger the reset of αi, we adopt a timer-based method. A timer is refreshed

when packet loss is detected. If no packet loss is detected within t seconds, the

increasing factors of all DMS flows are reset to 1. This method ensures that after

congestion disappears, in at most t seconds, αs are reset to allow DMS flow to

4.8. SIMULATION AND DISCUSSION 93

fully utilize available bandwidth. But if the bottleneck is still there when timer

expires, resetting all α will make the flow aggregate unfriendly to TCP. To prevent

such over aggressiveness of DMS flows, we (i) set t conservatively long (15 seconds

in our simulation), and (ii) retain the value of C and H while resetting αi. The

latter helps Algorithm 2 to set αi back to the right value immediately if packet

loss reappears.

4.8 Simulation and Discussion

C D E

S2 0SS1S3

R A B

2 1 0

3

Figure 4.9: Topology of Simulation 2.

We constructed Simulation 2 in ns-2.28 to validate our design. Figure 4.9

shows a topology with four senders S0, S1, S2, and S3, and one receiver R. DMS

flows converge on the way to R in the order of S0, S1, S2, and S3. Besides fi,

the senders also send CBR probes to the receiver using UDP, at 40 bytes per

packet, 20 packets per seconds. The sample length for one-way delay records is

20 (one second in length) for correlation computation; according to Rubenstein et

al. [83] this length gives nearly 90% of accuracy in correlation test. All links are

configured with bandwidth of 5Mbps, delay of 20ms, and default RED setting in

ns-2.28. Background traffic may congest link l0, l1, l2 or l3 to produce bottleneck.

The background traffic consists of 20 TCP Reno flows on every bottleneck. The

RTTs of background TCP flows are set to 120ms.

The simulation aims to show that DMSCC leads to task-level TCP friendliness,

4.8. SIMULATION AND DISCUSSION 94

achieving our goal stated at the end of Section 4.3. When background traffic

produces congestion on a link, the throughput of fi and the RTTi are measured

to calculate B×RTT of the flow aggregate on the link. The average B×RTT of

the TCP background flows is also calculated. If B×RTT of the flow aggregate is

less than or equal to the average of a TCP flow, then task-level TCP-friendliness

(Equation 4.3) is achieved. Figure 4.10 shows B×RTT of the TCP flows (average)

and the flow aggregate; each subgraph corresponds to one link.

To show the ability of DMSCC to identify the dominant bottleneck, we generate

background traffic such that Link 0 is congested during time 0 - 100s and Link 2

is congested during time 50 - 150s. The first subgraph in Figure 4.10 shows that

during time 0 - 50s, B×RTT of the flow aggregate on Link 0 roughly equals to a

TCP flow; and the third subgraph shows that during time 100 - 150s, B×RTT of

the flow aggregate on Link 2 is also similar to a TCP flow. This confirms that task-

level TCP-friendliness is achieved when only one congestion exists in the topology.

During time 50 - 100s, when both Link 0 and Link 2 are congested, we find that

B×RTT of the flow aggregate on Link 2 equals to a TCP flow, and that B×RTT

of the flow aggregate on Link 0 is less than a TCP flow. This result demonstrates

that DMSCC is able to identify that Link 2 dominates Link 0, and therefore sets

the increasing factor accordingly to achieve task-level TCP-friendliness in the case

of simultaneous congestion.

To show that DMSCC is able to utilize bandwidth fully when congestion dis-

appears, Link 1 and Link 3 are congested during time 150 - 200s and 250 - 350s

respectively. The streaming session completes at time 400s. In the second sub-

graph (Link 1), at 200s, TCP flows disappear. The value of B×RTT of the flow

aggregate increases quickly to the maximum playback rate of the media, demon-

strating that the available bandwidth is fully utilized when there is no congestion.

We can also see in the last subgraph (Link 3), starting from time 350s, B×RTT

4.8. SIMULATION AND DISCUSSION 95

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20

 0 50 100 150 200 250 300 350 400

B
*R

T
T

 (
pa

ck
et

)

Time (s)

Link 0, B*RTT: f0 vs. TCP

DMS
TCP

 0
 5

 10
 15
 20
 25
 30
 35
 40

 0 50 100 150 200 250 300 350 400

B
*R

T
T

 (
pa

ck
et

)

Time (s)

Link 1, B*RTT: (f0, f1) vs. TCP

DMS
TCP

 0
 10
 20
 30
 40
 50
 60

 0 50 100 150 200 250 300 350 400

B
*R

T
T

 (
pa

ck
et

)

Time (s)

Link 2, B*RTT: (f0, f1, f2) vs. TCP

DMS
TCP

 0
 10
 20
 30
 40
 50
 60
 70
 80

 0 50 100 150 200 250 300 350 400

B
*R

T
T

 (
pa

ck
et

)

Time (s)

Link 3, B*RTT (f0, f1, f2, f3) vs. TCP

DMS
TCP

Figure 4.10: B×RTT of Aggregate DMS flows and TCP Flow on Each Links.

of the flow aggregate increases slowly at first and increases faster later. The small

slope is due to the small increasing factor (αi = 1/16), which is determined by the

congestion on Link 3. But when packet is not seen for a period of 15 sec (value

of t in this simulation), it is likely that the congestion has disappeared. DMSCC

4.8. SIMULATION AND DISCUSSION 96

therefore sets αi to 1, allowing throughput to increase quickly, achieving better

bandwidth utilization.

4.8.1 The sensitivity of h

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2 4 6 8 10 12 14 16 18 20

A
cc

ur
ac

y

h: length of congestion history

C
Dominant Bottlenecks

Figure 4.11: Effects of h on Accuracy of C and Dominant Bottlenecks.

When presenting Algorithm 2, we mentioned that the length of congestion his-

tory h controls the update frequency of C, and, therefore, affects the accuracy of

α. The value of h is empirically set to 8 in the simulation. We changed h from 1

to 20 and ran the above simulation 50 times each. On every packet loss, C (the

detected bottlenecks) is compared with the actual bottlenecks, and the detected

dominant bottlenecks (which affects the value of α) are compared with the real

dominant bottlenecks. The accuracy is defined as the number of correctly detected

bottlenecks over the number of bottlenecks. Figure 4.11 shows the average accu-

racy of C and dominant bottlenecks, when h changes. The accuracy of dominant

bottleneck is higher than that of C, indicating that even if false detection on bot-

4.9. CONCLUSION 97

tlenecks exists, the dominant bottleneck could still be correctly detected. After

the value of h exceeds 8, both curves increase slower: larger h contributes less to

the accuracy of α.

4.9 Conclusion

In this chapter, we introduce the problem of congestion control in DMS sys-

tem. It differs from previous congestion control problems as it involves multiple

flows traversing through different paths. A better definition of TCP-friendliness is

needed to further explore the problem. We therefore introduce the notion of task-

level TCP-friendliness in this study. We then formulate a criterion for task-level

fairness in the context of distributed media streaming. We divide the problem

of congestion control in distributed media streaming into two sub-problems. The

first is how to locate congestion in a reverse tree topology. The second is how to

control the throughput of a DMS flow using AIMD loop such that the combined

throughput on the bottleneck is TCP-friendly.

This study is the first one to address the problem of congestion control in

distributed media streaming. The concept of task-level TCP-friendliness gives a

different perspective to the meaning of TCP-friendliness, and it is usable in other

scenario such as peer-to-peer file sharing. Our method to control the aggregate

throughput of DMS flows might be useful in other context as well, including con-

trolling the throughput of parallel TCP connections.

DMSCC has several limitations. Our throughput control algorithm is based on

Mathis equation, and therefore does not work accurately in all network conditions

(e.g., when loss is frequent and bursty). Our congestion location algorithm relies

on Rubenstein’s method. Identifying location of congestion in multiple congestions

scenario with high delay interference remains a challenging problem. Our future

4.9. CONCLUSION 98

work aims to address these limitations.

Chapter 5

TCP Urel: A TCP Option for

Unreliable Data Streaming

DMSCC regulates the combined throughput of multiple DMS flows by adjusting

the increasing factors of individual flows, which in turn are controlled by TCP-like

AIMD loops; yet, TCP, due to the possible unlimited delay from automatic retrans-

mission, is not suitable for multimedia streaming. This chapter introduces a tech-

nique to retain AIMD and at the same time remove retransmission for TCP. This

technique, TCP Urel, is not only useful to distributed media streaming system,

but is also useful to a much broader range of multimedia streaming applications.

5.1 Introduction

As broadband services penetrate into residential places, multimedia applications

such as video on demand, on-line game, and video conferences become more and

more popular over the Internet. One recent successful example is YouTube, Inc.

When the multimedia applications make Internet versatile, many of them, how-

ever, lack disciplines on bandwidth usage. For instance, Mena et al. studied the

RealAudio traffic from a popular Internet audio server and found that RealAudio

99

5.1. INTRODUCTION 100

traffic shows behavior that is not TCP-friendly [65]. Nichols et al. discovered

that Windows Streaming Media is not TCP-friendly [72]. The irresponsible band-

width usage may harm the stability of the Internet, since the end-to-end congestion

control of TCP is an important reason that keeps the Internet from congestion col-

lapse [25]. Therefore a TCP-friendly congestion control protocol for multimedia

streaming applications is needed.

Although TCP is regarded as the key stone of keeping Internet stability thanks

to its Additive Increasing Multiplicative Decreasing (AIMD) congestion control

algorithm, it is not directly applicable to the above mentioned applications. One

reason is that, these applications may not need reliable data delivery. For instance,

packet loss may lower the quality of a Fine Granularity Scalable (FGS) video,

which, however, may still outperform a video with prefect picture but frequently

stalls. The other reason is that Automatic Repeat reQuest (ARQ) of TCP is

not suitable for multimedia applications, since the persistent retransmission may

produce unbounded delay on a segment. The segment may have been useless at the

time it is being retransmitted, e.g., frames in the future no longer depends on this

segment. The urgent need of congestion control in multimedia streaming together

with the drawbacks of applying existing TCP suggests that a congestion-controlled

but unreliable protocol is needed.

Existing solutions develop their congestion control algorithms on top of UDP

[21] or in the transport layer [41]. Both of the solutions have certain shortcoming

(Section 5.2). Instead of developing a protocol from scratch, our solution extends

TCP for unreliable but congestion controlled streaming. The core idea is to send

fresh data in each TCP segment, even in segments that are originally generated

for retransmission. This strategy does not recover packet loss. In this way, our

solution saves bandwidth from retransmission and uses it to deliver fresh data. It

also avoids unbounded retransmission delay in original TCP protocols.

5.2. RELATED WORK AND MOTIVATION 101

We designed a new TCP option, TCP Urel, short for UnRELiable data stream-

ing. When the option is on, segment sending and receiving procedures are modified

such that the payload of retransmission segments are replaced with fresh data but

the other dynamics in TCP remain the same. This study presents both the design

and the implementation of TCP Urel on FreeBSD 5.4. By comparing its through-

put with the one of TCP, we found that it is TCP-friendly to different versions of

TCP. Through counting the CPU cycles on acknowledging and sending TCP Urel

segments, we show that TCP Urel is computationally efficient. We observe the

segments that carry no useful data, and reveal that TCP Urel utilizes bandwidth

almost fully.

The structure of this chapter is as follow. In Section 5.2, related work is pre-

sented and the motivation to design TCP Urel is explained with more details.

In Section 5.3, we describe the design and implementation details of TCP Urel.

Section 5.4 presents our experiment results. Section 5.5 concludes the chapter.

5.2 Related Work and Motivation

Congestion control could be implemented at the application layer, on top of UDP

or raw IP [21,59]. Application layer resides in the user space in current operating

system (such as FreeBSD). Operation of protocols that reside in the user space

involves frequent switches between user and kernel in operating systems. Due to

the high overhead of kernel-user switch, (i) high speed data transmission becomes

expensive in terms of CPU time, and (ii) scalability becomes a problem at servers

with large number of concurrent connections. Even after carefully exploiting a set

of low level interfaces in order to improve the efficiency of the application layer

protocol, Edwards and Muir [21] still reported that their protocol is slower than

the kernel version. Due to these reasons, we believe that congestion control should

5.2. RELATED WORK AND MOTIVATION 102

be realized in the transport layer, which resides in the kernel space.

Datagram Congestion Control Protocol (DCCP) [41] is the recent effort to

design a set of congestion-controlled protocols for unreliable data delivery in the

transport layer. Currently it defines two profiles CCID2 and CCID3. CCID3

controls flow rate using TFRC [34] and is designed for streaming that requires

smooth rate. CCID2, using the TCP-like AIMD algorithm, is designed to achieve

as much bandwidth as possible while being TCP-friendly. TCP Urel is comparable

to CCID2 for the similarity on their goals and algorithms. While DCCP has been

under standardization for years, CCID2 still does not have an usable implemen-

tation. To the recent date (March 21, 2007), both the implementations of CCID2

in FreeBSD KAME 1 project and in Linux 2 are still under development. The

other potential problem for CCID2 is that, it is designed to be friendly to TCP

Sack: in the long run, the throughput of CCID2 equals to a competing TCP Sack

flow with the same network parameters (RTT, packet size and loss rate) [92]. But

TCP Sack does not behave the same as other TCP versions [22]. For example,

it acquires a higher throughput than TCP Reno in burst loss [8]. While CCID2

may be sufficient for Internet dominated by TCP Sack, it may not be suitable for

networks where other TCP variations dominate. For instance, Linux by default

uses TCP BIC [98], which is more aggressive than TCP with standard AIMD algo-

rithm. The problem could become worse in the future when TCP evolves. Due to

the complexity resulted from the different functions of sequence number in DCCP

and TCP [41], modifying CCID2 to achieve TCP-friendliness to a new version of

TCP could be much more difficult than evolving TCP itself.

With the above considerations, extending TCP becomes an attractive choice.

The advantage of extending TCP instead of building a protocol from scratch is

1http://www.kame.net
2http://linux-net.osdl.org/index.php/DCCP

5.2. RELATED WORK AND MOTIVATION 103

that: (i) it is in the kernel space, and is therefore highly efficient; (ii) it reuses the

congestion control module of TCP entirely, hence is friendly to TCP traffic; (iii)

by not modifying other TCP functions such as connection establishment, tearing

down and security, the new protocol inherits all the features from the well-studied,

developed and deployed TCP protocol; (iv) when TCP changes, the unreliable

protocol changes accordingly without hefty modifications; (v) inheriting the API

of TCP, the new protocol is easy to use. The modification on TCP is supported by

the extensible option field. A new functionality that is triggered by a new option,

could be inserted without much interference over other functionalities.

One can argue that TCP’s AIMD is not enough for applications that requires

smooth bandwidth adaptation. That is true but the penalty of a smoother through-

put is a slower rate adaptation. TCP-like congestion control allows application to

exploit bandwidth by quickly adapting to the network changes. Smoothness should

only be considered when the application really has the requirement. Otherwise,

TCP-like congestion control should be used [34]. For instance, allowing receiver-

side buffering, video streaming could use TCP-like congestion control and gain

higher throughput [40]. As a matter of fact, TCP is widely used in commercial

streaming system. Both Real Media and Windows Media support TCP streaming.

A recent measurement study found that 72% of on-demand and 75% live streaming

traffic use TCP [90].

Another argument for not using TCP to stream multimedia, is that TCP is a

stream-oriented protocol. Application data that previously layers on top of UDP

may not be easily layered on top of TCP, as the application data unit (ADU) may

not fit well into the TCP segment, the size of which is determined by the current

congestion window. Specifically we list two concerns here, and our explanations

are followed.

5.2. RELATED WORK AND MOTIVATION 104

(i) If the ADU is smaller than TCP segment size, it has to wait and may suf-

fer from extra delay. There are two cases. If the sending rate is high, the

delay caused by accumulating a segment is short. Compared to the delay at

the receiving buffer in most applications, the delay to accumulate a segment

(1.5KByte in Ethernet) is negligible. If the data rate is low and the appli-

cation cannot wait to accumulate for a full size segment, TCP provides the

PUSH flag to send the message as soon as congestion control allows.

(ii) The boundaries of ADU may not match with the boundaries of message in a

stream oriented protocol. This mismatch may lead to the following concerns.

First, for TCP Urel, ADU boundary may not be identified as easily as in UDP

packets (assuming variable UDP packets), but RTP framing over TCP [45]

solves this problem easily. Second, one message loss in TCP Urel could

jeopardize many ADUs, but it is the same for fixed size UDP packets, which

also carries data from different ADUs. Although variable size UDP packets do

not have this problem, it incurs other drawback: the overhead for UDP packet

header increase when the ADU becomes small. We regard the comparison

of applying TCP Urel or variable size UDP for media streaming as an open

problem, which cannot diminish the usability of TCP Urel. Third, ADU loss

can be detected when a UDP (variable size, one ADU in one UDP packet)

packet is lost. By outputting meta data, however, a stream oriented protocol

is also able to inform the application about which part of the data is lost.

TCP RC [63] is a TCP modification for multimedia streaming. It changes the

receiving procedure, so that all segments are acknowledged even when they are lost.

As a result, the sender never retransmits. The effective reduction on end-to-end

delay of TCP RC shows the merit of no retransmission. But ignoring packet loss

breaches congestion control loops of TCP – without the knowledge of packet loss,

5.2. RELATED WORK AND MOTIVATION 105

the sender cannot react to congestion, making TCP RC unfriendly to standard

TCP. Our work provides a safe way to remove retransmission without jeopardizing

congestion control.

TCP Urel is different from TCP Trunking [43] although the later also provides

TCP-friendly congestion control to unreliable flows. TCP Trunking relies on con-

gestion control instructions from a TCP flow that is streamed side-by-side with the

UDP flow. But TCP Urel only streams one flow and performs congestion control

by itself.

The purpose of TCP Urel is very similar to that of MTP [15]. The principle

of transmitting fresh data instead of retransmission are the same. But TCP Urel

adopts a Urel sequence aside from the original TCP sequence number. The exis-

tence of two different sequence numbers allows clearer separation of retransmission

from other TCP functionalities (i.e. congestion control), therefore allows a very

simple design and implementation. Unlike MTP, which is implemented in ns-2

simulation, TCP Urel is implemented over real TCP stack with very little code.

TCP Urel realizes the part of unreliable data streaming functionality in previous

partial order service (POS) in TCP extension [17]. Unlike POS, which provides

partial reliability, TCP Urel leaves retransmission to the application. This decision

is based on the observation that current media streaming applications varies on

whether, when and from where a packet loss could be recovered. Leaving error

recovery to the application entitles more flexibility to the application implementer,

and greatly reduces the complexity of designing and implementing TCP Urel.

The idea of TCP Urel is related to the work of late data choice (LDC) [44].

In LDC, the authors proposed to choose which data to send immediately before

transmission, with the aim of reducing the delay cost from buffering. Realizing

the fact that the payload of a TCP segment could be decided right before it is sent

out, we are inspired that the congestion control, the connection maintenance, and

5.3. DESIGN OF TCP UREL 106

other functionalities of TCP protocol can actually be separated from the data it

is delivering. The key is to detach the correspondence between the TCP sequence

number and the segment data. Though related to LDC, TCP Urel is different

both at the sender and at the receiver. LDC focuses on API, through which user

data is streamed with minimum delay; whereas TCP Urel focuses on detaching

retransmission from congestion control. Details of TCP Urel will be shown in the

next section.

5.3 Design of TCP Urel

5.3.1 The Overall Idea

TCP Urel is realized by defining the Urel option in the existing TCP protocol.

When this Urel option is on, TCP changes its sending (output) and receiving

(input) procedures such that, (i) while sending a segment, fresh data is always

delivered, even if the segment is a retransmission segment, and (ii) upon receiving

any segment, payload is handed to the application in the same order as they are

sent.

Figure 5.1 depicts this idea. AIMD algorithm at the sender decides the size

of the next segment to send. But the payload in the segment could be refilled

right before sending out the segment. Once the segment arrives at the receiver,

the payload is immediately buffered, reassembled and submitted to socket buffer.

Information extracted from the TCP header is used to generate acknowledgment,

which is crucial to retain the dynamics of TCP flow in the original form (congestion

control, flow control, etc.).

Before explaining the details of TCP Urel, we introduce some variables in the

FreeBSD TCP code. These variables are used for congestion control in original

TCP protocol, but behave slightly different in TCP Urel. We first explain how

5.3. DESIGN OF TCP UREL 107

AIMD

before data injection after data injection

Sender

Socket Buffer

fill Data

Receiver

Acknowledgement

ACK
drain

Socket Buffer

ACK

Figure 5.1: Overall idea of TCP Urel

these variables are used in original TCP.

(i) snd una is the TCP sequence number of the lowest TCP segment that is not

acknowledged. The segments before snd una are all acknowledged, and can

be discarded at the TCP sender.

(ii) snd max is the highest TCP sequence number that has been sent in the

current session. The segments between snd una and snd max may (if Sack

enabled) or may not have been acknowledged. Those unacknowledged are

used to estimate the amount of data that TCP has left in the network (on-fly

data). This amount is compared with the size of congestion window, in order

to determine the size of the next segment that can be sent [95]. Therefore,

snd una and snd max are important to the dynamics of congestion control.

(iii) snd nxt is updated by the congestion control algorithm. In sender’s socket

buffer, the byte pointed to by snd nxt begins the next segment to be sent.

TCP segments carry this sequence number in the TCP header. Upon re-

ceiving the segment, the receiver determines the acknowledgment sequence

5.3. DESIGN OF TCP UREL 108

number by this sequence number plus the size of the payload. Since ac-

knowledgment affects the sender’s behavior, snd nxt is vital to the dynamics

of TCP.

In TCP Urel some operations related to these variables are changed, which are

shown in the rest of this section.

5.3.2 Sending Procedure

The basic idea of TCP Urel at the sender is that, the AIMD algorithm still decides

the size of segment to send, but fresh data is always filled into the payload right

before the segment is sent out. When there is no packet loss, TCP always fill

fresh data into the segment. In this case, Urel option does not make a difference.

But when retransmission occurs, TCP resend old data. TCP Urel replaces the old

data in the segment with the same amount of fresh data and sends them out. As

a result, to implement TCP Urel, we only need to modify the behavior of TCP

sender on the path of retransmission. The shadow area in Figure 5.2 shows these

modifications.

Start
Yes

No

Retransmission?

AIMD and
Header Building

Data from
snd_nxt

Data from
snd_max

Send

Send

Buffer alignment

End

Figure 5.2: Sender modifications on the retransmission path

One key difference between the path of standard TCP sender and TCP Urel

sender is that, the former always sends data pointed by snd nxt, whereas the latter

always sends data pointed by snd max. snd nxt points to the data that TCP is

5.3. DESIGN OF TCP UREL 109

going to send, whereas snd max is the highest sequence number of segments TCP

has ever sent. In retransmission, snd nxt lags behind snd max. By sending the

data pointed by snd max, TCP Urel delivers fresh data in every segment.

While the above modification seems straightforward, it is actually error-prone,

due to the important role of snd max in TCP’s congestion control. Since snd max

is related to the calculation of in-flight data, changing snd max can eventually

change the size of next segment and therefore the sending rate. Due to this reason,

TCP Urel should not to modify the value of snd max, or else, the congestion

control mechanism will be affected. In other words, after sending data pointed to

by snd max, TCP Urel is not allowed to increase snd max to the new position.

But contrarily, snd max by definition, is supposed to point to the data with the

highest sequence number that has ever been sent, otherwise TCP Urel cannot send

fresh data in the next segment. To solve this problem, buffer alignment is needed

in the sending path of TCP Urel.

snd_una snd_nxt snd_max

Before alignment

After alignment

data to
retransmit

data to
drop

fresh
data

equal size

Figure 5.3: Before and after buffer alignment

Buffer alignment is performed by dropping certain amount of data in the socket

buffer. To TCP, socket buffer looks like a tape. Sequence numbers snd una, snd nxt

and snd max are cursors on the tape. Since TCP Urel cannot move snd max, in

order to match snd max with the newest data on the tape, TCP Urel moves the

5.3. DESIGN OF TCP UREL 110

tape (see Figure 5.3). Before buffer alignment, the payload size has been decided.

The original TCP intends to retransmit the data that is pointed by snd nxt. But

in TCP Urel, it is replaced by the same amount of fresh data. Once sent, these

data are not fresh any more. To point snd max to the next chunk of fresh data,

the whole tape is moved leftwards, by dropping the chunk of old data pointed by

snd una.

In FreeBSD 5.4, buffer alignment is realized by calling sbdrop(), which drops

data in the head of the tape with the size of the previous sent segment. After buffer

alignment, although the value of snd una and snd nxt remain the same, they do

not point to the previous data any more. But this is acceptable for TCP Urel, since

(i) the value of snd una, instead of the corresponding data, affects the behavior

of congestion control; (ii) the value of snd nxt, instead of its corresponding data,

affects the acknowledgment; and (iii) data pointed by snd una and snd nxt has

been sent. Once the data is sent, it becomes useless in TCP Urel.

The merits of buffer alignment are that, (i) values of snd una and snd max are

not changed, therefore original congestion control is preserved; (ii) snd max keeps

pointing to the fresh data; and (iii) value of snd nxt remains still, so the TCP

sequence number in the TCP header is not affected, and hence the connection

dynamic is preserved.

5.3.3 The Urel Option

After the description of the sending procedure, one may notice that in TCP Urel,

the TCP sequence number dose not correspond to the bytes in the stream. For

example, a “retransmission” segment carries an old TCP sequence number, but

the data is different from the lost segment. In TCP Urel, the function of TCP

sequence number is to retain the protocol dynamics of the original TCP, including

5.3. DESIGN OF TCP UREL 111

congestion control. Lacking the correspondence to the data byte, TCP sequence

number cannot be used for data reassembling at the receiver side. Therefore, a new

field indicating the original position of the bytes in the stream must be included in

the TCP header, as part of the Urel option. We call the new field data sequence

number. The format of TCP Urel option is depicted in Figure 5.4.

TCP Urel
Option

Other options ...

Sack option

Kind LengthPadding

Data sequence number

0 1 2 3

Figure 5.4: The format of Urel option in TCP header

Kind is the option identifier, which is set to 27 for TCP Urel3. Length equals

to 6, meaning Urel option occupy six bytes. Both Kind and Length are one byte

long. Data sequence number is the data sequence number of the first byte carried

in this segment. It is a four-byte sequence number, and starts from zero for the

first byte in the first segment. Having the same length as a TCP sequence number,

data sequence number allows sufficient space for wrapping around. Data sequence

number increases by one on each byte sent. At the receiver side, the payload in

the incoming segments are reassembled based on this data sequence number.

Space Concern of Sack Blocks

Adding options to the existing TCP header, however, brings a new implementation

issue. In FreeBSD, the option field in the TCP header requires a four-byte align-

ment. Excluding the Time Stamp option (12 bytes including padding, enabled by

3Option number from 0 to 26 are implemented in FreeBSD 5.4, therefore we
pick the next: 27. But this option number may change to avoid conflicts to other
options under development.

5.3. DESIGN OF TCP UREL 112

default) [39], there are 28 bytes left for Sack [61] in the 40-byte option field, allow-

ing three Sack blocks. When the Urel option (8 bytes including padding) is added

in, the free space for Sack reduces to 20 bytes, allowing only two Sack blocks. In

other words, the insertion of Urel option may reduce the effectiveness of Sack op-

tion in TCP Urel. This issue, however, can be solved by removing Urel option from

the acknowledgements, as Sack blocks only appears in the acknowledgements. The

modification changes the Sack-based TCP Urel into a single directional streaming

protocol, i.e., it only passes application data from the sender to the receiver. But

the single directional streaming model is sufficient for non-interactive streaming,

such as VOD. The Urel option does not affects TCP Reno and NewReno, and

therefore are bidirectional while adopting congestion control of TCP Reno and

NewReno.

5.3.4 Receiver Procedure

As mentioned before, when TCP Urel option is enabled, TCP sequence number

does not correspond to the position of bytes in the original data sequence. So we

cannot rely on the reassembling function in the original TCP to reorder the data.

The idea of TCP Urel at the receiver side is that, after verifying the checksum

and extracting the options from the header, TCP Urel buffers the payload before

handing it to the original reassemble function. If necessary, TCP Urel needs to

reassemble the buffered data or submit them to socket buffer and signal the applica-

tion for reading. Both buffering and submitting functions require that the original

code does not submit data to socket buffer any more. For FreeBSD 5.4, the TCP

Urel implementation in TCP input function removes original calls of sbappend()

which submits data to socket buffer. Please note that we still need original TCP

reassembling based on TCP sequence number, as the queue it maintains plays a

5.3. DESIGN OF TCP UREL 113

vital role in (selective) acknowledgment, which eventually affects the behavior of

congestion control. The receiving path of TCP Urel is shown in Figure 5.5.

Expected Data
sequence?

Submit

Buffer
Queue

length > 3?

No

Yes

Yes
No

Start
Header checking and

Option extraction
End

(S)ACK/
TCP Reassemble ...

Figure 5.5: Receiver modification before handling packets to (S)ack

In the figure, the shaded area shows the position of buffering and submitting

in the receiving path. Expected data sequence number is the sequence number

that follows the highest data sequence number of the received bytes. If no loss

or packet reordering occurs, every arrival segment has a data sequence number

equals to the expected one. The arrival segment is submitted immediately. In case

of packet loss or packet reordering in the network, data sequence numbers arrives

out of order. Borrowing the idea from TCP reordering threshold, we pick three

segments as the reordering threshold. If a discontinuous data sequence is caused

by packet reordering, TCP Urel assumes that the continuity could be rebuilt in

three segments. If more than three segments arrive with data sequence numbers

higher than the expected one, a packet loss is assumed and all the data buffered

because of this loss will be submitted. Note that there could be other ways to

determine the value of reordering threshold; For example, RR-TCP [99] changes

it adaptively to avoid false retransmission. It is, however, out of the consideration

of this study.

5.3. DESIGN OF TCP UREL 114

5.3.5 Urel Negotiation

Urel is an option added to the existing TCP protocol. The TCP stack on a host

may or may not support TCP Urel. Therefore, during connection establishment,

negotiation is necessary. Urel negotiation is started by the connection initiator.

Unlike TCP Sack, we do not define extra option for Urel negotiation, as the Urel

option format in Figure 5.4 is sufficient for the purpose. The procedure of negotia-

tion is shown in Figure 5.6. The connection initiator sends a SYNC message with

Urel option enabled, and transits into Urel wait state. If the other side is able to

work under Urel mode, it replies with a SYNC/ACK message with Urel option

and transits into Urel mode. Upon receiving this message, the initiator knows that

the other side supports Urel, and transits into the Urel mode. Data streaming can

then start. If the other side does not support Urel, it will simply ignore the Urel

option in the first SYNC message, and reply with a SYNC/ACK without Urel

option. The initiator then finds that TCP Urel is not supported on the other side,

and gives up the attempt to use TCP Urel. The data sequence number during the

negotiation is ignored, as the size of the payload in the segments is zero and no

data is delivered.

Sync (opt: UREL)

Sync/Ack

Ack (opt: UREL)

UREL
mode

UREL
wait

UREL
mode

(opt: UREL)

Sync (opt: UREL)

Sync/Ack
UREL
wait

(opt: XX)

(a) Successful (b) Failed

Figure 5.6: Urel Negotiation

5.3. DESIGN OF TCP UREL 115

1 . . .

2 int sock = socket(PF INET, SOCK STREAM, IPPROTO TCP)

3 int urel = 1;

4 setsockopt(sock, IPPROTO TCP, TCP UREL, (char*) &urel, sizeof(urel));

5 . . .

6 bind(sock, (struct sockaddr*) &saddr, sizeof(saddr));

7 listen(sock, 5);

8 . . .

Figure 5.7: Source code from a simple server using TCP Urel

5.3.6 Application Programming Interface

As an option of TCP protocol, TCP Urel is easy to use. By adding a few lines to a

normal TCP program, we can set up a TCP Urel session. Figure 5.7 lists code that

set up a socket, and start listening to it. The code is similar to the normal way a

listening socket is set up using TCP. The only difference is line 3 and 4, where the

TCP Urel option is turned on, enabling unreliable streaming. Other APIs such as

listen(), connect(), accept(), and send() work the same way as before.

5.3.7 Possibility of Bandwidth Wastage

TCP Urel utilizes every segment to transfer fresh data, therefore its data con-

sumption rate at the sender is faster than existing TCP versions. An application

is responsible for providing enough data in socket buffer, so that the sending rate

does not diminish due to exhaustion of data.

Nevertheless, no matter how large the socket buffer is, there is a possibility that

when TCP Urel is about to use a “retransmission” segment, the cursor snd max

5.3. DESIGN OF TCP UREL 116

reaches the upper bound of the socket buffer. In this situation, the unmodified TCP

part will generate a retransmission segment for transmission. This segment with

this particular TCP sequence number must be sent in order to remain the action of

original TCP, including the dynamics of acknowledgment and TCP reassembling

at the receiver side. However since snd max is at the upper-bound of the socket

buffer, there is no fresh data to be filled into the payload. In this case, we perform

a retransmission as original TCP: this segment does not carry a Urel option nor

a data sequence number, and it provides no useful data to the receiver. Detecting

no Urel option in the TCP header, the receiver’s Urel code (shaded area in Figure

5.5) skips this segment. The segment then goes through the remaining part of the

receiver’s procedure to maintain the dynamics of TCP, which relies on the TCP

sequence number of the segment. But TCP Urel does not submit data from this

segment to the application. Transmission in the above case leads to bandwidth

wastage. But we will show in Section 5.4.3 that the amount of wastage is negligible.

5.3.8 Support for Partial Reliability

While most video/audio real-time streaming applications do not require reliabil-

ity, some applications may require partial reliability. For instance the distributed

streaming system described in previous chapter requires the freedom of selective re-

transmission. Although TCP Urel itself does not provide selective retransmission,

it is designed to provide support to retransmission if needed. More specifically,

TCP Urel informs the receiving application the position of missing bytes when

segment loss occurs. Whether to retransmit, and how to retransmit is decided

by the application. For instance, the receiver may send retransmission request in

a UDP packet. Upon receiving the request, the sender refill the lost data into

the socket buffer of TCP Urel for transmission, or it may send it in a UDP reply

5.3. DESIGN OF TCP UREL 117

packet. The difference is that the former strategy keeps strict TCP friendliness

by using TCP Urel, whereas the UDP packets in the later method consume ex-

tra bandwidth. TCP Urel does not specify which strategy an application should

adopt.

The advantages of supporting partial reliability but do not provide it directly

in TCP Urel are that, (i) it keeps TCP Urel simple, (ii) it gives the freedom of

retransmission to the application. This freedom allows the application to decide

whether to retransmit. Besides, it also allows the application to decides how

to retransmit, as described in last chapter. Compared to protocols that provide

partial reliability (e.g. PR-SCTP [87]) on single path, the simple support from

TCP Urel may be more flexible and suits larger variety of applications.

The support to partial reliability is realized by adding meta data into the

submitted stream at the receiver side. The data received by the application is

specially formatted. The byte stream is divided into chunks, each of which has a

fixed formatted chunk header that indicates the reliability and the length of the

data in this chunk. The rest of the chunk contains byte stream that is received

from the sender. The format of a chunk is shown in Figure 5.8.

Flag LenFlag. . . Len . . .Data

a chunk

chunk header

Figure 5.8: Chunk format of the received stream

The 2-byte Flag field describes the reliability of the data in the chunk. Cur-

rently only the first bit in Flag is used. If a segment is received from the network

with a continuous data sequence number, the first bit is set to 1. If a segment is

lost, a gap in data sequence number will be detected by TCP Urel. When submit-

5.4. EVALUATION 118

ting data to socket buffer, TCP Urel sets the first bit in Flag of the chunk header

to 0. Then it allocates an all-zero byte stream to fill up the gap in data sequence,

and submit the stream to socket buffer. Other bits in Flag are reserved for future

extension.

The 2-byte Len field stores the length of the data in the chunk. By reading

this field, an application is able to process the data chunk by chunk.

There are two points to be noted. First, a chunk does not have any semantical

meaning to the application. The purpose of inserting chunk header in the byte

stream is to allow the application to know the location of lost bytes. Problems

such as whether these bytes are important, whether retransmission of these bytes is

needed, and how to retransmit them, etc. are decided by the application. Second,

a chunk header is inserted by TCP Urel at the receiver side, before the byte stream

is handed to the application. Therefore, the chunk header does not consume extra

bandwidth. This insertion of chunk header does cost some CPU time overhead,

but it is small and acceptable (Section 5.4.2).

5.4 Evaluation

In this section, we will evaluate TCP Urel in three aspects. First, we show that

TCP Urel is friendly to difference versions of existing TCP. Second, we show that

TCP Urel is highly efficient. Comparing to existing TCP protocol, running Urel

option only increases CPU cycle by a constant number, regardless of the increasing

loss rate. Third, we will show that the bandwidth wastage described in Section

5.3.7 is negligible.

We implemented TCP Urel on FreeBSD 5.4. The source code added into the

original kernel is less than 750 lines, among which about 151 are debugging code

or preprocessor directives that can be further trimmed.

5.4. EVALUATION 119

The test-bed used for evaluation is shown in Figure 5.9. The prefix of the names

of the end hosts, tcp, urel and dccp, denotes the type of flows between the host pairs

and the suffix s and r represents sender and receiver respectively. For simplicity,

in our emulation, a particular type of flow is run on the host pair named after

the flow. For example, a TCP Urel flow is the flow sent from urels to urelr. Host

phoebe is a FreeBSD 5.4 box with dummynet4 enabled to emulate a bottleneck,

whose configuration parameters will be reported along with experiment results.

.1.1 .2.1
192.168.2.X, 100Mbit/s

tcpr urelr dccpr

.3 .4 .5.3

192.168.1.X, 100Mbit/s

.4 .5

dccpsurelstcps

10Mb/s, 10ms

phoebe

Figure 5.9: The illustration of the test-bed

5.4.1 TCP Friendliness

To show the TCP friendliness of TCP Urel, a comparison between throughput of

TCP Urel, DCCP CCID25 and other TCP flows would be persuasive. To the date

of this writing, however, there is still no usable CCID2 implementation. CCID2

implementation on Linux and in FreeBSD KAME tree is under development. The

available code by Lulea University of Technology 6 is able to run, but TCP friend-

liness is not provided and we believe the code is still immature. Therefore, to eval-

uate the TCP friendliness of CCID2, we borrowed data from Takeuchi’s work [89],

4http://info.iet.unipi.it/∼luigi/ip dummynet/
5DCCP CCID3 adopts TFRC for congestion control, hence is less comparable

to TCP Urel which uses AIMD for congestion control.
6Source code and patch for FreeBSD 6.1 available at:

http://mobqos.ee.unsw.edu.au/∼lochin/

5.4. EVALUATION 120

which evaluates CCID2 using ns-2 simulation.

TCP Friendliness of DCCP CCID2

(a) TCP Sack before DCCP CCID2 (b) DCCP CCID2 before TCP Sack

(c) Summary of stationary throughput

(Mb/s), TCP and CCID2

Figure 5.10: TCP friendliness of DCCP CCID2, from Takeuchi et al.’s work [89]

The topology of simulation by Takeuchi et al. [89] is the same as in Figure 5.9.

The bottleneck has a bandwidth of 10Mb/s, and a droptail queue with length 20

packets. Propagation delay are 10ms on the bottleneck link7, 3ms between the

senders and phoebe, and 2ms between phoebe and the receivers.

The plots and table in Figure 5.10 are directly borrowed from their work. For

comparison, we will show similar figures plotted from experiments on TCP Urel

7The bottleneck is a link in Takeuchi et al.’s ns-2 simulation. In our emulation,
delay is produced on phoebe using dummynet.

5.4. EVALUATION 121

from our emulation (Figure 5.11 and Figure 5.12).

Once DCCP CCID2 flow starts 5 seconds after/before a TCP flow. From Figure

5.10(a) and Figure 5.10(b), it shows that, CCID2 consumes more bandwidth than

TCP Sack flow. The stationary throughput listed in Figure 5.10(c) confirm this

observation: when CCID2 starts first it consumes more bandwidth than TCP flows,

no matter which version of TCP it is competing with; and even when TCP starts

first, CCID2 still grabs bandwidth from TCP Sack.

TCP Friendliness of TCP Urel

On the test-bed described in Figure 5.9, we set the bandwidth, the propagation

delays, and the queue length exactly the same as the ns-2 simulation by Takeuchi

et al. [89]. Three points are different and should be explained before we presenting

the results.

(i) We start one flow 10 seconds (instead of 5 seconds) after the other, to produce

two flows that are apart in time for readability of the graph. Each flow lasts

for 60 seconds.

(ii) Although the propagation delay are set according to the ns-2 simulation, the

actual RTT experienced by the flows in the emulated environment are differ-

ent from those in the simulation. In our emulation, we observe average RTT

varying from 48ms to 58ms, which produces a smaller total throughput than

previous ns-2 simulations. The reason might be the subtle differences be-

tween an emulated network and a ns-2 simulation, e.g. the clock granularity

of dummynet might cause extra delay as well. Producing smaller through-

put, though, the emulation still shows the TCP-friendliness of TCP Urel to

corresponding TCP flows in the same emulated network.

(iii) We not only carry out the emulation in droptail queue, but also in RED

5.4. EVALUATION 122

queue8. We present results for both queuing discipline.

 0

 1

 2

 3

 4

 5

 6

 0 10 20 30 40 50 60

T
hr

ou
gh

pu
t (

M
b/

s)

Time (s)

TCP Sack
TCP Urel

(a) TCP Sack before TCP Urel

 0

 1

 2

 3

 4

 5

 6

 0 10 20 30 40 50 60

T
hr

ou
gh

pu
t (

M
b/

s)

Time (s)

TCP NewReno
TCP Urel

(b) TCP NewReno before TCP Urel

 0

 1

 2

 3

 4

 5

 6

 0 10 20 30 40 50 60

T
hr

ou
gh

pu
t (

M
b/

s)

Time (s)

TCP Reno
TCP Urel

(c) TCP Reno before TCP Urel

 0

 1

 2

 3

 4

 5

 6

 0 10 20 30 40 50 60

T
hr

ou
gh

pu
t (

M
b/

s)

Time (s)

TCP Sack
TCP Urel

(d) TCP Urel before TCP Sack

 0

 1

 2

 3

 4

 5

 6

 0 10 20 30 40 50 60

T
hr

ou
gh

pu
t (

M
b/

s)

Time (s)

TCP NewReno
TCP Urel

(e) TCP Urel before TCP NewReno

 0

 1

 2

 3

 4

 5

 6

 0 10 20 30 40 50 60

T
hr

ou
gh

pu
t (

M
b/

s)

Time (s)

TCP Reno
TCP Urel

(f) TCP Urel before TCP Reno

Figure 5.11: Throughput convergence of TCP Urel and other TCP flows, in a

droptail queue

8RED parameters: queue weight 0.002, minimum threshold 5, maximum thresh-
old 20, and maximum dropping probability 0.1. They are set according to RED:
Discussions of Setting Parameters, by Sally Floyd, from a November 1997 email
message. Available at http://www.icir.org/floyd/REDparameters.txt

5.4. EVALUATION 123

 0

 1

 2

 3

 4

 5

 6

 0 10 20 30 40 50 60

T
hr

ou
gh

pu
t (

M
b/

s)

Time (s)

TCP Sack
TCP Urel

(a) TCP Sack before TCP Urel

 0

 1

 2

 3

 4

 5

 6

 0 10 20 30 40 50 60

T
hr

ou
gh

pu
t (

M
b/

s)

Time (s)

TCP NewReno
TCP Urel

(b) TCP NewReno before TCP Urel

 0

 1

 2

 3

 4

 5

 6

 0 10 20 30 40 50 60

T
hr

ou
gh

pu
t (

M
b/

s)

Time (s)

TCP Reno
TCP Urel

(c) TCP Reno before TCP Urel

 0

 1

 2

 3

 4

 5

 6

 0 10 20 30 40 50 60

T
hr

ou
gh

pu
t (

M
b/

s)

Time (s)

TCP Sack
TCP Urel

(d) TCP Urel before TCP Sack

 0

 1

 2

 3

 4

 5

 6

 0 10 20 30 40 50 60

T
hr

ou
gh

pu
t (

M
b/

s)

Time (s)

TCP NewReno
TCP Urel

(e) TCP Urel before TCP NewReno

 0

 1

 2

 3

 4

 5

 6

 0 10 20 30 40 50 60

T
hr

ou
gh

pu
t (

M
b/

s)

Time (s)

TCP Reno
TCP Urel

(f) TCP Urel before TCP Reno

Figure 5.12: Throughput convergence of TCP Urel and other TCP flows, in a RED

queue

Figure 5.11 shows the competition between TCP Urel and different TCP flows

in a droptail bottleneck. Figure 5.11 (a) and (d) show the throughput of TCP

Urel in competition with TCP Sack when TCP Sack starts before (a) or after (d)

TCP Urel. (b), (e) and (c), (f) are similar presentations for TCP Urel against

5.4. EVALUATION 124

TCP NewReno and TCP Reno respectively. In every figure, TCP Urel runs on

the same TCP congestion control scheme as the TCP version it is competing with.

When competing with TCP Sack, we use TCP Urel with Sack option enabled;

when competing with TCP NewReno, we use TCP Urel with Sack option disabled

and NewReno option enabled. Configuration of the TCP versions (and TCP Urel

versions) is done via command sysctl in FreeBSD 5.4.

From the plots we can see that by using different versions of congestion control

scheme, TCP Urel is able to maintain friendliness to different types of TCP flows,

no matter which flow starts first. This friendliness is further confirmed by the

average throughput listed in Table 5.1. We collect the average throughput of

each flow over 10 runs each. Since each flow-pair share the same competition

period (50 seconds) as well as the same length of channel monopoly period (10

seconds each), the throughput should be roughly the same if they are friendly

to each other. Comparing to data from Figure 5.10(c), where larger than 30% a

throughput difference are observed, the throughput of each flow pairs in Table 5.1

shows good proximity.

Table 5.1: Summary of throughput (Mb/s) in a droptail queue

TCP Urel Total

Reno TCP first 2.979 3.005 5.984

Urel first 2.986 2.964 5.950

NewReno TCP first 2.966 2.878 5.844

Urel first 2.879 2.997 5.876

Sack TCP first 2.979 3.033 6.012

Urel first 2.962 2.999 5.961

Besides droptail, we also tested TCP Urel over a RED queue, with the same

bandwidth, delay, and queue length. Similar graphs are generated (Figure 5.12),

5.4. EVALUATION 125

Table 5.2: Summary of throughput (Mb/s) in a RED queue

TCP Urel Total

Reno TCP first 2.629 2.564 5.193

Urel first 2.559 2.634 5.193

NewReno TCP first 2.837 2.845 5.682

Urel first 2.811 2.843 5.654

Sack TCP first 2.844 2.760 5.604

Urel first 2.777 2.818 5.595

and the TCP-friendliness of TCP Urel is further confirmed by the average through-

put in Table 5.2. Based on the roughly equal throughput of the competing flows,

we conclude that TCP Urel retains friendliness to TCP Sack, Reno, and NewReno

in both droptail and RED queues.

5.4.2 Protocol Efficiency

Network layer Efficiency

Being an extension based on existing TCP implementation, TCP Urel does have

extra cost over original TCP. The following experiment shows the cost of TCP Urel

in CPU time. In FreeBSD 5.4, tcp input() and tcp output() are the two functions

that are changed by TCP Urel. tcp input() takes care of incoming segments, and

tcp output() is in charge of outgoing segments. When a segment arrives, tcp input()

is called to handle it; after that, tcp output() is called to send a new segment (e.g.,

an acknowledgment). tcp input() is called in ip input() when IP layer handles the

incoming packet. Figure 5.13 shows the above loop. Our method of counting

the efficiency of TCP Urel is to count the CPU ticks before and after calling of

tcp input() in ip input(). The difference of the two ticks are the total CPU cycles

5.4. EVALUATION 126

consumed by TCP to process an acknowledgment and to send data, with or without

Urel option.

ip_input () {

 tick_s = current CPU tick

 tcp_input ();

 tick_e = current CPU tick
 ouput tick_e - tick_s

}

tcp_output(); ip_output();

Figure 5.13: The method to measure efficiency

We change the packet loss rate in the bottleneck on phoebe from 0 to 12%,

covering loss rate of practical networks. For each packet loss rate, we run a 60

seconds TCP Sack flow or TCP Urel flow. The CPU cycles described above are

recorded every time ip input() calls tcp input(). Each flow is repeated five times

and the average CPU cycle is then calculated and plotted, for both the sender and

the receiver.

Figure 5.14 shows the CPU cycle of TCP with or without Urel option at the

sender; Figure 5.15, shows the same measurement at the receiver. In both figures,

TCP Urel costs more than standard TCP flow, which is expected. We observe the

following:

(i) The cost of both protocols at both sides rises as packet loss rate increases,

due to handling of retransmission and congestion control.

(ii) At the sender side (Figure 5.14), comparing to TCP Sack, the extra cost

of TCP Urel is dominated by tcp output(), where data in “retransmission”

5.4. EVALUATION 127

 10

 20

 30

 40

 50

 60

 70

 0 0.02 0.04 0.06 0.08 0.1 0.12

C
P

U
 c

yc
le

 (
10

3)

Pakcet loss rate

TCP Sack
TCP Urel

Figure 5.14: Average CPU cycle at the sender side

segments are refilled. But the overhead at TCP Urel’s sender is negligible

compared to TCP Sack.

(iii) At the receiver side (Figure 5.15), the overhead of TCP Urel is caused by

insertion of meta data into every segment. By comparing the curves of TCP

Urel and TCP Sack, however, we believe that the extra cost is constant

regardless of the increase of packet loss rate. This property indicates that

regardless the network congestion, the scalability of TCP Urel is comparable

to TCP Sack.

It would be more persuasive if similar cost from DCCP CCID2 could be plotted.

But because of the immaturity of the code, we believe measurement on CCID2

could be unfair and the result would be misleading. In our primary test on Lulea’s

CCID2 implementation the sender side gives a much higher (2∼9 times) cost than

TCP Urel in different packet loss rate. The cost at the receiver side changes wildly

and is not evaluative to us.

5.4. EVALUATION 128

 10

 20

 30

 40

 50

 60

 70

 0 0.02 0.04 0.06 0.08 0.1 0.12

C
P

U
 c

yc
le

 (
10

3)

Pakcet loss rate

TCP Sack
TCP Urel

Figure 5.15: Average CPU cycle at the receiver side

Application Layer Efficiency

TCP Urel inserts meta data after receiving a packet; and we have shown (Fig

5.15) the overhead for this insertion is constant and acceptable. The application

now need to remove meta data for every packet. To measure the overhead of this

removal in application layer, we record the CPU clock ticks used for searching and

removing meta data. We streamed a 60-second session for 10 times, and recorded

405351 buffer reading at the receiver; among which, 405305 reads just one packet

(i.e. the buffer length equals to the payload length plus the meta data length).

Since the reading of single packet buffer dominates, we study the overhead of such

needs.

In Figure 5.16, we count the CPU ticks spent on removing their meta data for

the first 10000 packets. The ticks show the same pattern in the remaining 395305

packets. The average ticks for the 405305 packets is 297.61, i.e., meta data removal

costs an overhead of about 297 CPU ticks per packet. This time is roughly between

0.88 and 15 microseconds, with a mean of 3 microseconds. The variation depends

on process swapping in the CPU.

5.4. EVALUATION 129

 0

 500

 1000

 1500

 2000

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

C
P

U
 C

lo
ck

 T
ic

k

Pakcet Sequence Number

UREL

Figure 5.16: CPU ticks to remove meta data in application layer

5.4.3 Bandwidth Wastage

We have discussed the possible bandwidth wastage in TCP Urel in Section 5.3.7.

Here we show how small the waste is. Experiment setting is exactly the same

as in previous section. But in each streaming session, we count the number of

“retransmission” segments and the number of segments that are not refilled with

fresh data (thus wasted). The percentage of wasted data out of “retransmission”

segments is computed and listed in Table 5.3. The sender side socket buffer is set

to 64KBytes. Table 5.3 shows that the percentage of waste is not linearly related

to packet loss rate. Waste only happens when socket buffer exhaustion coincides

with “retransmission”. From the results, we can say that the waste is practically

negligible: even with a waste percentage of 1.38%, when the packet loss rate of

4%, the wasted bytes in total data is around 0.05%.

5.5. CONCLUSION 130

Table 5.3: Percentage of waste bytes in “retransmission” segments

Loss Rate % 2 4 6 8 10 12

Waste % 0.39 1.38 0.68 0.87 0.39 0.77

5.5 Conclusion

In this chapter, we presented TCP Urel, a TCP option for congestion controlled

but unreliable streaming. As an extension of existing TCP, it has a set of simple

API that is easy to use. With little modifications on existing TCP, we achieve

unreliability, but yet retain TCP friendliness to different versions of TCP. Further,

TCP Urel costs little CPU overhead. As a TCP option, Urel is able to keep TCP

friendliness even when TCP itself evolves in the future. Being simple, efficient, and

easy to use, TCP Urel offers one more choice for congestion-controlled unreliable

streaming.

TCP Urel is not designed to challenge DCCP CCID2 in all respects, because

DCCP has many features that is not foreseen at the age when TCP was originally

designed, such as the reverse path congestion control scheme. But we believe that,

due to its similarity to other non-Urel TCP, TCP Urel could be very easily adopted

by applications that previously use TCP for streaming.

Our future work includes an extensive evaluation of applying TCP Urel to

applications. Comparative study between TCP Urel, SCTP and DCCP CCID2

will also be conducted.

Source code of TCP Urel and the full set of emulation scripts based on FreeBSD

5.4 are available at http://www.comp.nus.edu.sg/∼malin.

Chapter 6

Conclusion and Future Work

Our work in distributed retransmission, DMSCC, and TCP Urel has contributed

towards the improvement and deployment of distributed media streaming over the

Internet. There are, however, many issues remain to be addressed. In this chapter,

we conclude our work and outline possible future extensions.

6.1 Distributed Retransmission

Through comparisons to non-distributed retransmission, we show the effectiveness

of distributed retransmission in distributed media streaming in reducing both the

effective loss rate and packet loss burst length. The effectiveness of distributed

retransmission comes from avoiding retransmission on the path that originally lost

the packet; this principle reduces the chance of missing the retransmitted packet

due to error burst. We propose a distributed retransmission scheme, ARQ-L,

that keeps track of packet loss rate on each channel and retransmits only from

the channel with the lowest packet loss rate. Experiments show that this scheme

provides the lowest effective packet loss rate among the distributed retransmission

schemes.

Distributed retransmission is not only useful to distributed media streaming.

131

6.2. DMSCC 132

Its principle applies to multi-path streaming and other applications that involve

multiple sources/channels.

Research can be extended in the following aspects regarding distributed retrans-

mission. First, if the bandwidth of the channels are variable and retransmission

consumes limited bandwidth, how should the retransmitter be chosen? In such

model, retransmitting a packet may delay the other data packets and reduce the

media quality at the receiver. Choices must be made to balance the loss rate, the

delay, and the bandwidth to achieve the lowest effective loss rate. Second, we use

on packet losses to estimate the quality of the channels and choose the retransmit-

ter. But, one-way delay, which reveal congestion in the network earlier than packet

loss, could be an alternative metric that can be used to decide retransmitter. A

distributed retransmission scheme that uses delay as indicator of channel quality

(e.g., channel correlation) would be an intersting study.

6.2 DMSCC

We study congestion control in distributed media streaming and design a scheme

to achieve task-level TCP-friendliness. We present the idea of task-level congestion

control, which identifies a bottleneck and enforces TCP-friendliness over the subset

of the application flows that pass through the bottleneck. We found that by

adjusting the increasing factor of the AIMD algorithm of a congestion controlled

flow, we can control its steady state throughput in a bottleneck. We also found

that by observing the correlation of one-way delay of the paths, we can detect

the location of the congestion and the set of application flows upon which TCP-

friendliness should be enforced. DMSCC combined the above two components:

it detects the correct set of flows using congestion location, and it changes their

increasing factors to make their total throughput TCP-friendly.

6.3. TCP UREL 133

The concept of task-level TCP-friendliness gives a different perspective to the

meaning of TCP-friendliness. It is usable in other scenarios where multiple flows

are engaged in the same application, and where bottleneck affects different set

of flows (e.g., multi-source peer-to-peer file sharing). The method to control the

aggregate throughput of DMS flows might be useful in other contexts as well,

including controlling the throughput of parallel TCP connections.

Our throughput control algorithm is based on Mathis equation, and therefore

does not work accurately in all network conditions (e.g., when loss is frequent

and bursty). Our congestion location algorithm relies on Rubenstein’s method.

Identifying location of congestion in multiple congestions scenario with high delay

interference remains a challenging problem. Our future work aims to address these

limitations.

6.3 TCP Urel

We extend TCP for unreliable data streaming. By keeping TCP sequence number

for congestion control and carrying data sequence number for data ordering, TCP

Urel is able to avoid retransmission and keep congestion control intact. We present

the detailed design and implementation of TCP Urel, and we evaluate its TCP-

friendliness as well as protocol efficiency.

The usage of TCP Urel is much broader than distributed media streaming. It

can be applied to other loss insensitive streaming applications, that require TCP-

like AIMD congestion control. Changing existing TCP-based streaming applica-

tions to use TCP Urel is extremely easy, and the retransmission can be handled

by application layer flexibly.

As future study, comprehensive comparison between DCCP CCID2 and TCP

Urel could be carried out. Application specific measurement study of TCP Urel

6.4. AVAILABILITY OF CODE 134

should also be conducted to provide a complete evaluation of the protocol.

6.4 Availability of Code

All the code and scripts that are necessary to reproduce the experimental re-

sults are available at http://www.comp.nus.edu.sg/~malin. They include a

Live555.COM based distributed MP3 streaming program for testing distributed

retransmission, an ns-2 simulation package for DMSCC, a FreeBSD 5.4 implemen-

tation of TCP stack with TCP Urel, and all the experimental scripts.

Bibliography

[1] ISO/IEC 13818: Generic Coding of Moving Pictures and Associated Audio
(MPEG-2).

[2] V. Agarwal and R. Rejaie. Adaptive multisource streaming in heterogeneous
peer-to-peer networks. In Proceedings of Multimedia Computing and Network-
ing, San Jose, California, USA, December 2004.

[3] J. Apostolopoulos, T. Wong, W. Tan, and S. Wee. On multiple description
streaming with content delivery networks. In Proceedings of IEEE INFOCOM
’02, New York, New York, USA, June 2002.

[4] H. Balakrishnan, H. Rahul, and S. Seshan. An integrated congestion manage-
ment architecture for Internet hosts. In Proceedings of ACM SIGCOMM ’99,
Cambridge, Massachusetts, USA, September 1999.

[5] D. Bansal and H. Balakrishnan. Binomial congestion control algorithms. In
Proceedings of IEEE INFOCOM ’01, Anchorage, Alaska, USA, April 2001.

[6] H. G.-M. Beverly Yang. Comparing hybrid peer-to-peer systems. In Proceed-
ings of the International Conference on Very Large Data Base, Rome, Italy,
September 2001.

[7] J. C. Bolot, S. Fosse-Parisis, and D. Towsley. Adaptive FEC-based error
control for Internet telephony. In Proceedings of IEEE INFOCOM ’99, New
York, New York, USA, March 1999.

[8] R. Bruyeron, B. Hemon, and L. Zhang. Experimentations with TCP selec-
tive acknowledgment. ACM SIGCOMM Computer Communication Review,
28(2):54–77, April 1998.

[9] CacheLogic Research. Peer-to-peer in 2005. http://www.cachelogic.com/

research/p2p2005.php.

[10] J. Chakareski and P. Frossard. Distributed sender-driven video streaming.
In Proceedings of Visual Communications and Image Processing, San Jose,
California, USA, Jan 2006.

135

BIBLIOGRAPHY 136

[11] G. Cheung and W. Tan. Reference frame optimization for multi-path video
streaming using complexity scaling. In Proceedings of Packet Video Workshop,
Irvine, California, USA, December 2004.

[12] S. Cho and R. Bettati. Adaptive aggregated aggressiveness control on parallel
TCP flows using competition detection. In Proceedings of IEEE International
Conference on Computer Communications and Networks, Arlington, Virginia,
USA, October 2006.

[13] P. Chou and Z. Miao. Rate-distortion optimized streaming of packetized
media. Technical report, Microsoft Research Technical Report MSR-TR-2001-
35, February 2001.

[14] A. L. H. Chow, L. Golubchik, J. C. S. Lui, and W.-J. Lee. Multi-path stream-
ing: optimization of load distribution. Performence Evaluation, 62(1-4):417–
438, 2005.

[15] J. Chung, M. Claypool, and R. Kinichi. MTP: a streaming-friendly transport
protocol. Technical report, Technical Report WPI-CS-TR-05-02, Worcester
Polytechnic Institute, May 2005.

[16] K. G. Coffman and A. M. Odlyzko. Internet growth: is there a “Moore’s Law”
for data traffic? Handbook of Massive Data Sets, pages 47–93, 2002.

[17] T. Connolly, P. Amer, and P. Conrad. An Extension to TCP : Partial Order
Service, RFC1693, November 1994.

[18] J. Crowcroft and P. Oechslin. Differentiated end-to-end Internet services using
a weighted proportionally fair sharing TCP. ACM SIGCOMM Computer
Communication Review, 28:53–67, July 1998.

[19] Y. Cui and K. Nahrstedt. Layered peer-to-peer streaming. In Proceedings
of International Workshop on Network and Operating Systems Support for
Digital Audio and Video, Monterey, California, USA, June 2003.

[20] C. Dana, D. Li, D. Harrison, and C.-N. Chuah. BASS: BitTorrent assisted
streaming system for video-on-demand. In Proceedings of IEEE International
Workshop on Multimedia Signal Processing, Shanghai, China, October 2005.

[21] A. Edwards and S. Muir. Experiences implementing a high performance TCP
in user-space. In ACM SIGCOMM ’95: Proceedings of the Conference on
Applications, Technologies, Architectures, and Protocols for Computer Com-
munication, New York, New York, USA, August 1995.

[22] K. Fall and S. Floyd. Simulation-based comparisons of Tahoe, Reno and SACK
TCP. ACM SIGCOMM Computer Communication Review, 26(3):5–21, July
1996.

BIBLIOGRAPHY 137

[23] M. Feldman, C. Papadimitriou, J. Chuang, and I. Stoica. Free-riding and
whitewashing in peer-to-peer systems. In PINS ’04: Proceedings of the ACM
SIGCOMM Workshop on Practice and Theory of Incentives in Networked
Systems, Portland, Oregon, USA, August 2004.

[24] R. Finlayson. A more loss-tolerant RTP payload format for MP3 Audio, RFC
3119, June 2001.

[25] S. Floyd. Congestion Control Principles, RFC2914, September 2000.

[26] S. Floyd and K. Fall. Promoting the use of end-to-end congestion control.
IEEE/ACM Transactions on Networking, 7(4):458–472, 1999.

[27] S. Floyd, M. Handley, J. Padhye, and J. Widmer. Equation-based conges-
tion control for unicast applications. In Proceedings of ACM SIGCOMM ’00,
Stockholm, Sweden, August 2000.

[28] S. Floyd and V. Jacobson. Traffic phase effects in packet-switched gateways.
ACM SIGCOMM Computer Communication Review, 21(2):26–42, April 1991.

[29] S. Floyd and E. Kohler. Profile for DCCP congestion control ID 2:
TCP-like congestion control. http://www.ietf.org/internet-drafts/

draft-ietf-dccp-ccid2-10.txt, March 2005. IETF Internet draft.

[30] M. Ghanbari. Two-layer coding of video signals for VBR networks. IEEE
Journal on Selected Areas in Communications, 7(5):771–781, June 1989.

[31] L. Golubchik, J. C. S. Lui, T. F. Tung, A. L. H. Chow, W.-J. Lee, G. Frances-
chinis, and C. Anglano. Multi-path continuous media streaming: what are
the Benefits? Performence Evaluation, 49(1-4):429–449, 2002.

[32] T. J. Hacker, B. D. Noble, and B. D. Athey. Improving throughput and
maintaining fairness using parallel TCP. In Proceedings of IEEE INFOCOM
’04, Hong Kong, China, March 2004.

[33] H. Han, S. Shakkottai, C. Hollot, R. Srikant, and D. Towsley. Overlay TCP
for multi-path routing and congestion control. In ENS-INRIA ARC-TCP
Workshop, Paris, France, November 2003.

[34] M. Handley, S. Floyd, J. Padhye, and J. Widmer. TCP Friendly Rate Control
(TFRC): protocol specification, RFC3448, January 2003.

[35] M. Hefeeda, A. Habib, B. Botev, D. Xu, and B. Bhargava. PROMISE: Peer-to-
peer media streaming using CollectCast. In Proceedings of ACM International
Conference on Multimedia, Berkeley, California, USA, November 2003.

[36] M. Hofmann and L. R. Beaumont. Content Networking: Architecture, Proto-
cols, and Practice. Morgan Kaufmann Publisher, 2005.

BIBLIOGRAPHY 138

[37] C. Hsu and M. Hefeeda. Optimal bit allocation for fine-grained scalable video
sequences in distributed streaming environments. In Proceedings of Multime-
dia Computing and Networking, San Jose, California, USA, Jan 2007.

[38] C.-M. Huang, K.-C. Yang, , and J.-S. Wang. Error resilience supporting
bidirectional frame recovery for video Streaming. In Proceedings of IEEE
International Conference on Image Processing, Singapore, October 2004.

[39] V. Jacobson, R. Braden, and D. Borman. TCP extensions for high perfor-
mance, RFC1323, May 1992.

[40] T. Kim and M. Ammar. Receiver buffer requirements for video streaming
over TCP. In Proceedings of Visual Communications and Image Processing
Conference, San Jose, California, USA, January 2006.

[41] E. Kohler, M. Handley, and S. Floyd. Designing DCCP: congestion con-
trol without reliability. In Proceedings of ACM SIGCOMM ’06, Pisa, Italy,
September 2006.

[42] C. Krasic, K. Li, and J. Walpole. The case for streaming multimedia with
TCP. In Proceedings of International Workshop on Interactive Distributed
Multimedia Systems, Ancaster, UK, September 2001.

[43] H. Kung and S. Wang. TCP trunking: design, implementation and per-
formance. In Proceedings of International Conference on Network Protocols,
Toronto, Canada, October 1999.

[44] J. Lai and E. Kohler. Efficiency and late data choice in a user-kernel interface
for congestion-controlled datagrams. In Proceedings of Multimedia Computing
and Networking, San Jose, California, USA, January 2005.

[45] J. Lazzaro. Framing Real-time Transport Protocol (RTP) and RTP Control
Protocol (RTCP) packets over connection-oriented transport, RFC 4571, July
2006.

[46] Y.-C. Lee, J. Kim, Y. Altunbasak, and R. M. Mersereau. Performance com-
parisons of layered and multiple description coded video streaming over error-
prone networks. In Proceedings of IEEE Conference on Communications,
Seattle, Washington, USA, May 2003.

[47] A. Legout and E. W. Biersack. Pathological behaviors for RLM and RLC. In
Proceedings of the International Workshop on Network and Operating System
Support for Digital Audio and Video, Chapel Hill, North Carolina, USA, June
2000.

[48] D. Li, C.-N. Chuah, G. Cheung, and S. J. Yoo. MUVIS: multi-source video
streaming for video-on-demand over IEEE 802.11 WLAN. Journal of Com-
munications and Networks - Special Issue on Towards the Next Generation
Mobile Communications, 7(2):144–156, June 2005.

BIBLIOGRAPHY 139

[49] D. Li, Q. Zhang, C.-N. Chuah, and S. J. B. Yoo. Multi-source multi-path video
streaming over wireless mesh networks. In Proceedings of IEEE International
Symposium on Circuits and Systems, Island of Kos, Greece, May 2006.

[50] J. Li. PeerStreaming: a practical receiver-driven peer-to-peer media stream-
ing system. Technical report, Microsoft Research Report MSR-TR-2004-101,
September 2004.

[51] W. Li. Overview of fine granularity scalability in MPEG-4 Video Standard.
IEEE Transactions on Circuits and Systems for Video Technology, 11(3):301–
317, March 2001.

[52] Y. J. Liang, E. G. Steinback, and B. Girod. Real-time voice communication
over the Internet using packet path diversity. In Proceedings of ACM In-
ternational Conference on Multimedia, Ottawa, Ontario, Canada, September
2001.

[53] D. Loguinov and H. Radha. Retransmission schemes for streaming Internet
multimedia: evaluation model and performance analysis. ACM SIGCOMM
Computer Communication Review, 32(2):70–83, April 2002.

[54] K. Lua, J. Crowcroft, M. Pias, R. Sharma, and S. Lim. A survey and compar-
ison of peer-to-peer overlay network schemes. IEEE Communications Surveys
& Tutorials, 7:72–93, 2005.

[55] L. Ma and W. T. Ooi. Retransmission in distributed media streaming. In
Proceedings of International Workshop on Network and Operating Systems
Support for Digital Audio and Video, Stevenson, Washington, USA, June 2005.

[56] L. Ma and W. T. Ooi. Congestion control in distributed media streaming. In
Proceedings of IEEE INFOCOM ’07, Anchorage, Alaska, USA, May 2007.

[57] Z. Ma, H.-R. Shao, and C. Shen. A new multi-path selection scheme for
video streaming on overlay networks. In Proceedings of IEEE International
Conference on Communications, Paris, France, June 2004.

[58] A. Majumdar, R. Puri, and K. Ramchandran. Distributed multimedia trans-
mission from multiple servers. In Proceedings of IEEE International Confer-
ence on Image Processing, Rochester, New York, USA, September 2002.

[59] K. Mansley. Engineering a user-level TCP for the CLAN network. In NICELI
’03: Proceedings of the ACM SIGCOMM workshop on Network-I/O Conver-
gence, New York, New York, USA, December 2003.

[60] G. Marfia, C. Palazzi, G. Pau, M. Gerla, M. Sanadidi, and M. Roccetti. TCP-
Libra: exploring RTT fairness for TCP. Technical report, UCLA Computer
Science Department Technical Report TR050037, 2005.

[61] M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow. TCP Selective Acknowl-
edgment options, RFC2108, October 1996.

BIBLIOGRAPHY 140

[62] M. Mathis, J. Semke, and J. Mahdavi. The macroscopic behavior of the TCP
congestion avoidance algorithm. ACM SIGCOMM Computer Communication
Review, 27:67–82, July 1997.

[63] D. McCreary, K. Li, S. A. Watterson, and D. K. Lowenthal. TCP-RC: a
receiver-centered TCP protocol for delay-sensitive applications. In Proceedings
of Multimedia Computing and Networking, San Jose, California, USA, January
2005.

[64] D.-E. Meddour, M. Mushtaq, and T. Ahmed. Open issues in P2P multimedia
streaming. In Proceedings of Multimedia Communications Workshop: State
of the Art and Future Directions, Istanbul, Turkey, June 2006.

[65] A. Mena and H. Heidemann. An empirical study of RealAudio traffic. In
Proceedings of IEEE INFOCOM ’00, Tel Aviv, Israel, March 2000.

[66] J. Nagle. Congestion Control in IP/TCP Internetworks, RFC896, January
1984.

[67] T. Nguyen and S. Cheung. Multimedia streaming with multiple TCP connec-
tions. In Proceedings of International Performance Computing and Commu-
nications Conference, Phoenix, Arizona, USA, April 2005.

[68] T. Nguyen and A. Zahkor. Distributed video streaming over the Internet. In
Proceedings of Multimedia Computing and Networking, San Jose, California,
USA, January 2002.

[69] T. Nguyen and A. Zahkor. Distributed video streaming with forward error cor-
rection. In Proceedings of Packet Video Workshop, Pittsburgh, Pennsylvania,
USA, April 2002.

[70] T. Nguyen and A. Zakhor. Multiple sender distributed video streaming. IEEE
Transactions on Multimedia, 6(2):315–326, April 2004.

[71] V. T. Nguyen, E.-C. Chang, and W. T. Ooi. Layered coding with good allo-
cation outperforms multiple description coding over multiple paths. In Pro-
ceedings of IEEE International Conference on Multimedia and Expo, Taipei,
Taiwan, China, June 2004.

[72] J. Nichols, M. Claypool, R. Kinicki, and M. Li. Measurements of the con-
gestion responsiveness of Windows Streaming Media. In Proceedings of In-
ternational Workshop on Network and Operating Systems Support for Digital
Audio and Video, County Cork, Ireland, June 2004.

[73] D. E. Ott, T. Sparks, and K. Mayer-Patel. Aggregate congestion control for
distributed multimedia applications. In Proceedings of IEEE INFOCOM ’04,
Hong Kong, China, March 2004.

BIBLIOGRAPHY 141

[74] C. Papadopoulos and G. Parulkar. Retransmission-based error control for
continuous media applications. In Proceedings of International Workshop on
Network and Operating Systems Support for Digital Audio and Video, Zushi,
Japan, April 1996.

[75] C. Perkins, O. Hodson, and V. Hardman. A survey of packet loss recov-
ery techniques for streaming audio. IEEE Network Magazine, 12(5):40–48,
September/October 1998.

[76] M. Piecuch, K. French, G. Oprica, and M. Claypool. A selective retransmis-
sion protocol for multimedia on the Internet. In Proceedings of International
Symposium on Multimedia Systems and Applications, Boston, Massachusette,
USA, November 2000.

[77] R. Puri, K. R. K. Lee, and V. Bharghavan. Application of FEC based multiple
description coding to Internet video streaming and multicast. In Proceedings
of Packet Video Workshop, Forte Village Resort, Sardinia, Italy, May 2000.

[78] R. Koenen (Editor). Overview of the MPEG-4 Standard. ISO/IEC
JTC1/SC29/ WG11 (2001).

[79] S. Ratnasamy, M. Handley, R. Karp, and S. Shenker. Application-level mul-
ticast using content-addressable networks. In Proceedings of International
Workshop on Networked Group Communication, London, England, Novem-
ber 2001.

[80] R. Rejaie, M. Handley, and D. Estrin. RAP: an end-to-end rate-based conges-
tion control mechanism for realtime streams in the Internet. In Proceedings
of IEEE INFOCOM ’99, New York, New York, USA, March 1999.

[81] R. Rejaie and A. Ortega. PALS: peer-to-peer adaptive layered streaming.
In Proceedings of International Workshop on Network and Operating Systems
Support for Digital Audio and Video, Monterey, California, USA, June 2003.

[82] L. Rizzo. pgmcc: a TCP-friendly single-rate multicast congestion control
scheme. In Proceedings of ACM SIGCOMM ’00, Stockholm, Sweden, August
2000.

[83] D. Rubenstein, J. Kurose, and D. Towsley. Detecting shared congestion of
flows via end-to-end measurement. IEEE/ACM Transactions on Networking,
10(3):381–395, June 2002.

[84] S. Saroiu, P. Gummadi, and S. Gribble. A measurement study of peer-to-peer
file sharing systems. In Proceedings of Multimedia Computing and Networking,
San Jose, California, USA, January 2002.

[85] M. Singh, P. Pradhan, and P. Francis. MPAT: aggregate TCP Congestion
management as a building block for Internet QoS. In Proceedings of IEEE
International Conference on Network Protocols, Berlin, Germeny, October
2004.

BIBLIOGRAPHY 142

[86] W. R. Stevens. TCP/IP Illustrated, Volume 1. The protocols, chapter 21.
Addiso-Wesley, 1994.

[87] R. Stewart, M. Ramalho, Q. Xie, M. Tuexen, and P. Conrad. Stream Control
Transmission Protocol (SCTP) Partial Reliability Extension, RFC3758, May
2004.

[88] I. Stoica, R. Morris, D. Liben-Nowell, D. R. Karger, M. F. Kaashoek,
F. Dabek, and H. Balakrishnan. Chord: a scalable peer-to-peer lookup
protocol for Internet applications. IEEE/ACM Transaction on Networking,
11(1):17–32, 2003.

[89] S. Takeuchi, H. Koga, K. Iida, Y. Kadobayashi, and S. Yamaguchi. Per-
formance evaluations of DCCP for bursty traffic in real-time applications.
In IEEE/IPSJ International Symposium on Applications and the Internet
(SAINT), Trento, Italy, January 2005.

[90] J. van der Merwe, S. Sen, and C. Kalmanek. Streaming video traffic: charac-
terization and network Impact. In Proceedings of the International Workshop
on Web Content Caching and Distribution, Boulder, CO, USA, August 2002.

[91] L. Vicisano, J. Crowcroft, and L. Rizzo. TCP-like congestion control for
layered multicast data transfer. In Proceedings of IEEE INFOCOM ’97, Kobe,
Japan, April 1997.

[92] M. Vojnovic and J.-Y. L. Boudec. On the long-run behavior of equation-based
rate control. In ACM SIGCOMM ’02: Proceedings of the 2002 Conference on
Applications, Technologies, Architectures, and Protocols for Computer Com-
munications, Pittsburgh, Pennsylvania, USA, August 2002.

[93] J. Widmer, R. Denda, and M. Mauve. A survey on TCP-friendly congestion
control. IEEE Network Magazine, Special Issue on Control of Best Effort
Traffic, 15(3):28–37, May 2001.

[94] R. Wittmann and M. Zitterbart. Multicast Communication: Protocols, Pro-
gramming, and Applications. Morgan Kaufmann Publishers, May 2000.

[95] G. R. Wright and W. R. Stevens. TCP/IP Illustrated, Volume 2: The Imple-
mentation. Addison-Wesley, 1995.

[96] D. Wu, Y. Hou, W. Zhu, Y. Zhang, and J. Peha. Streaming video over
the Internet: approaches and directions. IEEE Transactions on Circuits and
Systems for Video Technology, Special Issue on Streaming Video, 11(3):282–
300, March 2001.

[97] D. Xu, M. Hefeeda, S. Hambrusch, and B. Bhargava. On peer to peer media
streaming. In Proceedings of IEEE International Conference on Distributed
Computing Systems, Vienna, Austria, July 2002.

BIBLIOGRAPHY 143

[98] L. Xu, K. Harfoush, and I. Rhee. Binary increase congestion control for fast,
long distance networks. In Proceedings of IEEE INFOCOM ’04, Hong Kong,
China, March 2004.

[99] M. Zhang, B. Karp, S. Floyd, and L. Peterson. RR-TCP: a reordering-robust
TCP with DSACK. In Proceedings of the IEEE International Conference on
Networking Protocols, Atlanta, GA, USA, November 2003.

