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Abstract

Le but de cette thése est de présenter la théorie des fonctions copules. Le

principal intérêt de celles-ci est qu’elles permettent l’étude de la dependance

entre des variables stochastiques, et plus particulièrement dans le domaine

de la finance, celles-ci permettent le pricing de paniers de dérivés de crédit.

Ainsi, nous commencerons par introduire les concepts fondamentaux relatifs

aux fonctions copules. Ensuite, nous montrerons qu’elles sont un instrument

très puissant permettant la modélisation fine de la structure de dépendance

d’un échantillon de variables aléatoires. En effet, la famille des fonctions copules

est trés diversifiée et chacune d’entre elles permet de décrire un certain type de

structure de dépendance. Par conséquent une fonction copule peut être choisie

pour décrire précisément des données empiriques. La deuxième étape de notre

étude consistera à pricer un panier de dérivés de crédit. Pour ce faire, nous

mettrons en place une simulation de Monte-Carlo sur un panier de CDS. La

structure de corrélation des temps de défaut sera modélisée par différents types

de fonctions copules.

The aim of this thesis is to present the copula function theory. Copula

functions are useful to analyze the dependence between financial stochastic

variables, and in particular, these methods allow the pricing of basket credit

derivatives. We will first introduce the basic mathematical concepts related

to copula functions. Then, we will show that they are very powerful tools in

order to model the dependence structure of a random sample. Indeed, the

copula function family is a very large family and each copula function depicts

a certain kind of dependence structure. As a consequence, a copula function

can be chosen to accurately fit empirical data.
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The second step of our study will be the pricing of credit derivatives. To

do so, we will perform a Monte-Carlo simulation on a basket CDS. The default

correlation structure will be represented by different copula models.
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Introduction

The credit derivatives area is one of the fastest growing sectors in the derivative

markets. During the first half of 2002, the notional amount of transactions has been

US$ 1.5 trillions reaching US$ 8.3 trillions during the second half of 2004, compared

to, respectively, US$ 2.2 trillions and US$ 4.1 trillions for the equity derivatives

market. Nowadays, tranches of CDO (Collateralized Debt Obligation), for instance,

are considered by traders as vanilla products.

In this thesis, we will study how copula functions can be used in mathematical

finance in order to improve the accuracy of financial models. More practically we

will study how copula functions prove to be very powerful tools to model the default

correlation and then price financial products such as nth-to-default Basket CDS

(Credit Default Swap). This credit derivative generally references 5 to 20 credits,

and protects the buyer against the default of n credits, by receiving a cash amount

if n credits or more default. Studying Basket CDS is a very challenging exercise

because it involves correlation pricing, which is generally not easy to model. The

correlation problems are inferred by the fact that all the companies are linked to

each other by certain factors which are, for instance, the interest rates, the price of

commodities, the political and economic situation of a country, etc. The Asian crisis

in 1997 or the Internet bust in 2001 are good examples of correlation.

For approximately ten years, copula functions have become a very hot topic in the

field of credit derivatives, and numerous articles have been published on that issue.

However, as this field is still new compared to equity derivatives, the literature lacks

basic books to learn copula and their applications from A to Z, and this literature
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is made of many, very interesting articles, yet sometimes not easy to understand

because they only deal with parts of the copula function theory. In this thesis, we

will try to collect information through those articles and explain the main topics

related to the theory of copula functions.

Before going further into the history of the discovery of the copula functions, we

should first have a quick look at the reasons why they are so popular as a financial

modeling tool. One of the most interesting advantages of copula functions is that

this kind of function is a representation of joint distributions. As a consequence,

the marginal behavior described by the marginal distributions is disconnected from

the dependence, captured by the copula. Thanks to this splitting of the marginal

behavior and the dependence structure, copula functions enable financial modeling

where the joint normality assumption is abandoned and where more general joint

distributions are used.

Historically, Sklar is one of the pioneers of copulas. In 1959, Sklar [23] introduced

the concept of copulas and in its article [24] published in 1973, he proved elementary

results that relate copulas to distribution functions and random variables. In par-

ticular, he considered a copula function C, and (F1, · · · , Fn), a set of marginals, and

proved the existence of a probability space where he could define a copula function

C associated with a set of random variables X1, · · · , Xn defined over that probability

space. Another very important early contribution to the theory of copula functions

has been provided by Frank in 1979. In his article [9], Frank’s copula appeared first

and were described as a solution to a functional equation problem. That problem

involved finding all continuous functions such that F (x, y) and x + y − F (x, y) are

associative. Then, in the beginning of the 90’s, the canadian statistician Christian
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Genest [11], [12] worked on the issue of Archimedean copula functions which will be

described later in this thesis. He particularly describes methods to estimate the func-

tion which determines the Archimedean copula. Finally, in his book [21] published

in 1999, Nelsen described the entire knowledge about the theory of copula functions.

As a consequence of all those fundamental researches, the field of copula functions

was well defined in the second part of the 90’s and some specific applications of

copula functions to finance appeared. Since that date, hundreds of articles have

been published applying copula functions to financial problems and more particularly

to problems related to the pricing of credit derivatives. In this thesis we will pay

particular attention to Li’s article, [18] which describes how to use Gaussian copula

functions, and Joe and Xu [16] for an estimation method of inference functions for

marginals. For instance, applications of copula functions are described in Cadoux

and Loizeau [4] and Gatfaoui [10].

The aim of this thesis is to present as clearly as possible a very powerful math-

ematical tool and present some of its applications in the financial domain. As a

consequence, we will build this thesis around two aspects: on the one hand, the the-

ory of copula function which has been described through many articles which will be

studied and compiled. On the other hand, we will apply this theory to price Basket

CDS. As the reader can see in the title, we will focus on the semi-parametric estima-

tion of copula functions, which means that we will not try to estimate the parameter

of a copula through, for example, a maximum likelihood estimation. However, we

will use measures of concordance to determine the parameters of the copula and then

try to choose the best one. We will explain all those terms and ideas throughout this

thesis. Thus, in a first chapter, we will present the pricing of CDS using the hazard
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rate function, which is a modeling of the default time repartition. In the second part

of this first chapter, we will have a general discussion about what is correlation and

how it can be estimated. This second part aims to give to the reader some basic

knowledges of what is correlation, and why it is essential to study it when pricing

credit derivatives. Then, chapters 2 and 3 focus on the mathematical aspects behind

the copula function theory. In the beginning of chapter 2, we will define what is a

copula function and see its main properties with some examples. We will also see in

a second part what is correlation measurement, which will be used later in chapter 4

to perform semi-parametric estimations of the copula functions. In chapter 3, we will

focus on the theory of Archimedean copula functions, which is a very widely used

family of copula functions, mainly because it has very interesting properties which

will be described. Finally, in the fourth chapter, we will use the results demonstrated

in chapters 2 and 3 to realize two complementary applications of copula functions:

the pricing of a simple Basket CDS, and the development of an algorithm which

will enable us to choose the best copula regarding a dependence structure given by

market data.

Before developing the introduction on the credit derivatives market, we should

first go back to the title of this thesis and explain it: "‘copula functions: a semi-

parametric approach to the pricing of credit derivatives"’. As we will see in the

following, the Archimedean copula functions we will use are parametric copula func-

tions. However, we will use a terminology close to the terminology presented by

Genest and Rivest [12] which consider that the estimation method is semi-parametric

compared for example to the Maximum Likelihood Method which aims to estimate

the parameter of the copula function by maximising the likelihood depending on
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the parameters of the copula. Indeed, in our study, we will estimate the empirical

copula of our dataset which is a non-parametric copula. However, in order to be

able to model our dependence structure, we will then describe a method to find the

copula function which will describe the dependence structure the most accurately,

but we will never directly estimate a parametric copula function. In order to better

understand this point, we will develop it in 3.3.1.

On the credit derivatives market

Before focusing on the issue of Basket-CDS (Credit Default Swap), we will first

try to have a broader view on the issue of the credit derivatives market, which, as

we saw before, is a very fast growing market. Mainly, the goal of this market is

to transfer the risk and the yield of an asset to another counterpart without selling

the underlying asset. Even if this primary goal might has been turned away by

speculators, banks remain the main actor of this market in order to hedge their

credit risk and optimize their balance sheet.

In order to understand why credit derivatives are very useful to banks, we can look

at a simple example. Consider two banks Wine-bank and Beer-Bank. Wine-bank

is specialized in lending money to wine-producers whereas Beer-Bank is specialized

in lending money to brewers. As a consequence, both banks have a portfolio of one

type of credits, either correlated to the health of the wine sector or the beer sector.

The other consequence of this specialization is that both banks have been able to

develop a very good knowledge of its sector, thus they are able to lend money at a

better rate, because they are able to determine the credit risk much more accurately

than if both had to look at both sectors without being able to develop thorough
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knowledge of its sector. To summarize, we can say that both banks are able to

select the best companies in each sector, compared to the situation where each bank

would lend money to either wine-producers or brewers. However, the main problem

concerning this segmentation of the market is that if tomorrow, consumption of

wine decreases sharply in favor of the consumption of beer, Wine-bank could face

more credit defaults even if its portfolio is only made of good vineyards (financially

speaking!). As both banks have the same risk of facing an increase of defaults in its

sector because of external causes, they will try to hedge that risk. Intuitively, we can

understand that the main problem of both banks is that they have not diversified

their portfolios. One of the possibilities would be for both to sell part of their portfolio

to each other. As a consequence, both banks would be hedged against the decline of

one beverage as far as the lost of consumption of one beverage is supposed to be offset

by an increase of consumption of the other beverage. However, the main problem

of this method is that a client probably won’t be very happy to know that even if

he has signed a contract with bank A, his contract has been sold to another bank.

Besides, this transaction implies the exchange of the notional of each contract, and

as a consequence, the sale will not be easy to achieve. That’s why researchers have

imagined another way to transfer the risk linked to a credit, without transferring the

credit itself. This category of products is named credit derivatives, in opposition to

the products derived from the bond family, which are the underlying assets of interest

rates derivatives (likewise, stocks are the underlying assets of equity derivatives).

We have already mentioned credit default swaps (CDS) before. Indeed, this

product is becoming more and more popular and its aim is to hedge the potential

loss related to a credit event. More precisely, the CDS is a contract signed between
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two counterparts. The buyer of the CDS agrees to pay regularly a predetermined

amount to the seller of the CDS. On the other hand, in case of a credit event (like

a default, for example, but the notion of credit event can be broader, depending on

the contract), the seller agrees to reimburse the buyer of any losses caused by this

credit event. Nowadays, a similar product of CDS has developed, the Collateralized

Debt Obligation, which can be a structured like a basket CDS.
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1 Preliminary Results and Discussions

Before studying precisely the theory of copula functions, we first introduce some

basic results which will be used in the coming chapters. After the presentation of

the hazard rate function which is a very simple tool representing the instantaneous

default probability for an asset which has survived until the present time, we will

present how it can be used to price a CDS. Then, we will have a short discussion on

what default correlation is and how it can be measured.

1.1 The Hazard Rate Function

In this subsection, we want to model the probability distribution of time until default.

We denote T the time until default and thus study the distribution function of T .

From this distribution function, we derive the hazard rate function. These hazard

rate functions will be used to calculate the price of the 1st-to-default Basket CDS.

Let t→ F (t) be the distribution function of T

F (t) = P [T ≤ t] , t ≥ 0. (1)

Let t→ S(t) be defined by

S(t) = 1− F (t) = P [T > t] , t ≥ 0. (2)

The function t → S(t) is called the survival function, and it gives the probability

that a security will attain age t.
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We assume that t ≥ 0 and S(0) = 1. Let t → f(t) be the probability density

function of t→ F (t)

f(t) = F ′(t) = −S ′(t) = lim∆→0+

P [t ≤ T < t+ ∆]

∆
. (3)

At this step, we have defined the distribution function and the probability density

function of the survival function of our asset. We will now introduce the hazard rate

function, which gives the instantaneous default probability for an asset which has

survived until time x.

Consider the definition of the conditional probability. Assume A and B are two

events

P [A|B] =
P [A ∩B]

P [B]
.

Thus

P [x < T ≤ x+ ∆x|T > x] =
P [x < T ≤ x+ ∆x]

P [x < T ]

=
S(x)− S(x+ ∆x)

S(x)

≈ f(x)∆x

S(x)
.

Finally, we define h, the hazard rate function2 as

h(x) =
f(x)

S(x)
= −S

′(x)

S(x)
. (4)

The hazard rate function is the probability density function of T (the time at

which the default occurs), at the exact age x, given survival until x.
2This function is also called the default intensity
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In (4), we can recognize a first order ordinary differential equation, so that

S(t) = e−
R t
0 h(s)ds.

And

f(t) = h(t)e−
R t
0 h(s)ds, t ≥ 0. (5)

If we make the assumption that ∀t, h(t) = h, with h constant

f(t) = he−ht, t ≥ 0.

We can recognize the probability density function of an exponential distribution

F (t) = 1− e−ht, with E(T ) = 1
h

3 and V (T ) = 1
h2 . The skewness of this distribution

is equal to 2 and its kurtosis is equal to 9.

Finally, we want to determine the price of the 1st-to-default Basket CDS. The

method that is described will be used later to derive the price of a first to default bas-

ket CDS from Monte-Carlo simulation. Before going further, we need to understand

that this method is only valid if the default time repartition can be modeled by an

explicit hazard rate function. To illustrate this method, we assume that the hazard

rate function is constant: ∀x, h(x) = h. Let V be the value of our 1st-to-default

Basket CDS, P the payoff of the basket CDS, and Td the time until maturity of

the basket CDS. Let R ∈ [0, 1] be the recovery rate, ie the amount of money which
3

E(T ) = h

∫ ∞
0

Te−hT dT =
1
h

.
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will proceed from the reimbursement of the credit after the default event, and r the

interest rate, which is assumed to be constant. Then

V = (1−R)

∫ Td

0

Pe−rtf(t)dt

= (1−R)h

∫ Td

0

Pe−[(r+h)t]dt

= (1−R)
h

r + h
P (1− e−(r+h)Td).

(6)

This formula is valid if h is constant. However, we can also consider hazard rate

functions which are piecewise-constant, so that, if h(t) =
∑N

k=0 hk(t), with hk(t) = hk

if t ∈ [k, k + 1] and 0 otherwise. If we denote the time until maturity of the first

default Td to be equal to N + 1, then, the price of our 1st-to-default Basket CDS is

determined by

V = (1−R)
N∑
k=0

hk
r + hk

Pe−(r+hk)Td . (7)

This approach is a theoretic approach of the pricing of a 1st-to-default Basket

CDS, as we generally do not know the closed formula of h, the hazard rate function.

As a consequence, it can not be used directly to price nth-to-default Basket CDS.

However, this result will be used in part 4.1.3 in order to derive the price of a basket

CDS using a Monte-Carlo simulation.

1.2 The pricing of CDS

The study of credit derivatives is a very broad issue. To compare it with equity

derivatives, we can see CDS as similar to call and put options, in the way that both

are basic instruments used to build more sophisticated strategies based on derivatives.
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Indeed, CDS is the most basic credit derivative and is generally the first component

of a more complicated credit derivative like synthetic CDO. Thus, in this section, we

will see a first analytical method that allows to derive the price of this CDS. In our

study, we will use the seller convention, so that we will study the case of the seller

of the protection. Thus, we will be able to define our profit expectation which will

be called Feeleg, and our loss expectation which will be called the Defleg.

As we stated before, the CDS is described by its a maturity which is the time

until maturity of the contract. During this period, several events will occur. Each

month for instance, the buyer of the protection will pay the seller a fixed amount

which will be called the spread of the CDS. This amount is generally determined as a

percentage (in basis points) of the notional amount of the CDS. In order to simplify

our study we assume that:

• The payments related to the CDS and made by the buyer of the protection are

made at discrete times (every months for instance) at Ti.

• If we denote by R the recovery rate and CCDS the spread (or cost) of the

CDS, the money exchanged at each time t is equal to CCDS for the seller of

the protection if no default has occurred before time t (with the probability

1 − F (t) = e−
R t
0 h(s)ds), and 1 − R for the buyer if there is a default at time t

(with a probability h(t)e−
R t
0 h(s)ds) .

• p is the number of payments of the spread.

We now derive the price of a CDS using these hypothesis and the definition of

the hazard rate function presented in the section before.
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Let N denote the nominal amount of the portfolio, r the riskless interest rate, τ

the time of a credit default and CCDS the spread used for the pricing of the CDS.

Feeleg(CDS) = EQ

[
CCDS ∗N ∗

p∑
i=1

(Ti − Ti−1) ∗ 1 τ>Ti ∗ e−
R Ti
0 r(t)dt

]
.

With EQ [1τ>Ti ] = S(Ti) the survival probability until Ti, and t → r(t) the risk-

free interest rate function at time t.

And S(Ti) = e−
R Ti
0 h(t)dt, with h(t) the instantaneous default intensity at date t.

Here, we will suppose that h is a continuous and deterministic function of time.

Thus, with CCDS the price (or spread) of the CDS, we have:

Feeleg(CDS) = CCDS ∗N ∗
p∑
i=1

(Ti − Ti−1) ∗ e−
R Ti
0 r(t)dt ∗ e−

R Ti
0 h(t)dt.

Similarly, we have:

Defleg(CDS) = N ∗ (1−R) ∗
p∑
i=1

[
(S(Ti−1)− P(0, Ti)) ∗ e−

R Ti
0 r(t)dt

]
.

Finally, we can calculate the Net Present Value, or NPV, as the difference between

the profit expectation and the loss expectation:

NPV (CDS) = Feeleg(CDS)−Defleg(CDS).

We can now define the fair spread or implied spread of the CDS as the spread

which will set the value of the contract to 0 at the time of the transaction, using R

the recovery rate, we obtain:
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NPV (CDS) = 0,

CCDS =
N ∗ (1−R) ∗

∑p
i=1

[
(S(Ti−1)− S(Ti)) ∗ e−

R Ti
0 r(t)dt

]
N ∗

∑p
i=1

[
(Ti − Ti−1) ∗ S(Ti) ∗ e−

R Ti
0 r(t)dt

] .

To conclude, we have derive in this sub-section the price of a CDS, using the

concept of the hazard rate function we introduced previously. However, it is very

important to understand that the main problem in pricing CDS is not a default

correlation problem but a default time modeling problem. Even if the default time

modeling is not the core problem developed in this thesis, it is necessary to under-

stand where the frontier lies. In the following, we will mainly focus on correlation

modeling problem which arises when we mix within a portfolio several CDS together.
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1.3 On Default Correlation

The focus on the correlation problem is not something new in finance. Indeed,

correlation is widely studied in order to understand the behavior of portfolios and

indices in particular, and more generally to understand any problem where the payoff

depends on more than one parameter or instrument.

The first question one should ask when confronted with correlation is: what is

correlation? According to JP Morgan, it is the "‘strength of a relationship between

two or more variables"’ [19]. The most well-known correlation is the Pearson cor-

relation. However, several other kinds of non-linear correlation exist. Besides the

polynomial or log correlations, other techniques such as Spearmann or Kendall rank

correlation coefficients are also used as they provide a method which can overcome

some of the problems which can be encountered when using linear correlation calcula-

tions. However, this rank correlation coefficient method is not widely used compared

to the most common method of calculating correlation which is based on the Pearson

coefficient defined by:

ρ =

∑n
i=1(Xi − X̄)(Yi − Ȳ )√∑n

i=1(Xi − X̄)2
∑n

i=1(Yi − Ȳ )2
.

With Xi and Yi the observations, and X̄ and Ȳ the means of the random variables

X and Y .

Intuitively, we understand this correlation coefficient when it is equal to 1,−1

or 0, which respectively mean that if the correlation coefficient is equal to 1, then

the data are perfectly correlated, if it is equal to −1, then the data are perfectly
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negatively correlated, and finally, if the correlation coefficient is equal to 0, then

the data are independent. However, the main problem in the interpretation of this

coefficient arises when it is not equal to one of this three figures. How can we interpret

a correlation coefficient of 0.6, or −0.3? Obtaining such figures, we cannot actually

state if the data are indeed correlated or not. One can suggest that an 80− 20 rule

can be applied, which states that a correlation coefficient beyond 80% means that

the data are highly correlated, whereas a correlation coefficient under 20% means

that the data show little or no correlation.

However, the first thing one should examine carefully before performing a corre-

lation calculus is the relevance of such a calculus. Indeed, looking at the correlation

between the profits generated by a french car maker and a retail bank in Singapore

will give a result, mathematically speaking, but is it really relevant for drawing a con-

clusion? Probably not. Thus, one of the first things we will have to examine carefully

is probably not which correlation method must be used to calculate a correlation,

but rather if the calculus has any consistence.

As we can see everyday, correlation is all around us: we can study the correlation

between the size of men and their birth dates, the revenue of a family and the number

of cars they own, and the profits generated by a bank in France and in Singapore.

A full study of the theory of correlation is not the subject of this thesis, and that is

why we will concentrate our study on the subject of default correlation.
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1.4 Estimating default correlation

In the preceding sections, we have seen that default correlation is a key point in

pricing any portfolio of credit derivatives. So that we now study three methods to

estimate this correlation.

1.4.1 Estimating default correlation from historical data

Historical estimation of the default correlation between two companies is not some-

thing easy to realize, and if we want to look at it, it is probably because these very

companies still exist and have not defaulted before. Unlike historical volatility, for

instance, historical default correlation is not something easy to observe.

For stand alone companies, it is relatively easy to identify the rate of default

within an entire sector or even the entire market. However, it is not easy to draw

any conclusions from those data. For example, the fact that lots of businesses are

dependent on the business cycle makes the job even harder because if we don’t look

at a very long period, and draw conclusions on another very long period, it is very

easy to make false conclusions.

However, one very useful method using historical data is derived from the histor-

ical default data provided by rating agencies such as Standard and Poors or Moodys,

which gives the probability of default during a period as a function of the rating of a

company. These probabilities of default are in fact historical probabilities of default

as they are based on the observations made by the rating agency.
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1.4.2 Estimating default correlation from equity returns

Compared to the historical estimation of the default correlation, estimating corre-

lation from equity returns is commonly used as a method to price basket credit

derivatives. For example, the CreditMetrics model is based on the Merton frame-

work which suggests that credit and equity are related. Indeed, considering the

position of an equity and a bond holder in terms of options, an equity holder can be

considered as long a call option on the assets of the firm whereas the bond holder

can be considered as short a put on the same assets. As a consequence, using the

put-call parity, we can conclude that equity and debt are related. Moreover, if you

consider that the assets of a company are represented by a random variable, then the

company will default at some threshold (which can be for example when the assets

are worth strictly less than debt). However, as a time-series of the assets of a firm is

not something very easy to get, CreditMetrics uses equity returns as a proxy. Thus,

we can determine the correlation between two-firms as the correlation between their

equity returns and using the Merton [20] assumption we can finally say that in order

to estimate the default correlation between two firms, the correlation between the

equity of those two firms can be used as a proxy.

The main advantage of this method is that it is relatively easy to implement as

the stock prices are something very easy to get. This approach will be used in part

4.4 in order to approximate the default correlation of a portfolio based on equity

returns correlation.
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1.4.3 Estimating default correlation from credit spreads

In the previous section, we used the stock price for which historical data are gener-

ally easy to get. In this section, we will use other market data which are corporate

bond prices. Indeed, we know that bond prices include two components: the interest

rate and the credit risk related to a particular company. Since interest rates are

observable, we can strip them out of the price of bonds, then only the credit com-

ponent of the bond remains. From this component it is then easy to estimate the

default probability as soon as we can estimate the recovery rate (which is given by

the amount of money a bond holder expects to get in case of a default). This esti-

mation of the recovery is the tricky part because it is not easy to estimate how much

will be redeemed by bond holders in the case of default. However, we can use data

from rating agencies which give an estimate of the recovery rate based on historical

observations. Another problem raised by the estimation of default probability from

bond prices is that depending on the liquidity of the bond and depending on other

technical reasons inferred by the market quotation, bond prices can be polluted by

a third component which would be a market component and which is not easy to

eliminate.

Another way of determining the default probability is to use the credit default

swap (CDS) market which has become an efficient market with several years of

history. Indeed, with CDS, it is possible to directly convert the spread quoted in

the market into a default probability. However, the technical problems due to the

quotation are not eliminated.
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1.5 How to trade correlation?

Correlation trading is based on new financial products such as DJ Tranched TRAC-

X which is a standard CDO. Indeed, pure correlation traders buy or sell a tranche of

a synthetic corporate CDO, with the view that the correlation over the period they

will hold the CDO will be different to that embedded in the instrument.

The world of credit derivatives is evolving very quickly: instruments that were

considered exotic a few years ago are now regarded as vanilla products. In 2002 a

tradable synthetic index was created (iBoxx Diversified index in Europe and Dow

Jones CDX index in North America), a product that brought high volume, low-

margin trading to credit for the first time and provided a new way to take or hedge

exposure to the broad credit market.

Nowadays, the most traded correlation related products are: Nth-to-default bas-

ket (Standard or Tailor-made); Single-tranche synthetic CDOs; CDO-squared (CDO

of CDO); Index tranches.

The most basic of the correlation-based products are those related to baskets of

credits, with the first-to-default (FTD) basket the most familiar of these. Investors

in FTD structures sell protection on a reference portfolio of names and assume ex-

posure to the first default to take place within the pre-defined basket of credits. On

occurrence of a default, the FTD swap works like an ordinary CDS. First-to-default

baskets typically offer credit exposure to between three and 10 companies. From the

perspective of investors, the principal interest of a FTD structure is that it offers a

higher yield than any of the individual credits within the basket and limits downside

risk in the event of default. An additional interest for investors is the transparency of
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FTD swaps, because the credits included within the basket are generally the choice

of the investor.
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2 Some Insights On Copula Function

Copula functions are a very powerful but also new tool, which was discovered in the

late 60’s. The application of copula functions to financial problems began in the 80’s.

As we saw in the introduction, one of the main problems related to the pricing of

credit derivatives is the implementation of the correlation between the different assets

of a portfolio. Particularly in the environment of financial markets where random

variables are poorly described by Gaussian distributions, the use of more precise

models describing the behavior of portfolios is nowadays something of paramount

importance. Thus the utilization of copula functions has become something quite

common in financial mathematics in order to model the dependence structure of a

portfolio. Indeed, the main interest of copula functions is that they make it possible

to dissociate the dependence structure of multiple assets from their marginal distri-

bution. As a consequence, we can imagine studying the very common situation where

a portfolio marginal distribution is modeled by a Student-t distribution whereas the

dependence structure is described by a Gaussian distribution. The flexibility also

enables one to easily study another situation where the dependence structure (ie the

multivariate distribution function) is not Gaussian, and thus take into account the

fact that the dependence structure of a portfolio can have a fat tail, which means

that extreme values are more likely to happen than what the Gaussian dependence

structure describes. Finally, as copula functions split the problem of the estimation

of the marginals and the dependence structure, they are generally more tractable and

easier to estimate than multivariate distributions which are not described in terms

of copula functions.
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In this introduction, we will present the basic definitions and theorems describing

the world of copula functions. Our aim will be to try to understand mathematically

what copula functions are. This chapter will then enable us to apply the utilization of

copula functions to financial problems. After studying some mathematical definitions

and theorems which will be used later, we introduce the definition of correlation

measurement which is a very powerful tool to estimate copula functions.

Abe Sklar discovered copula function in 1959 as he thought that the determi-

nation of the set of the copula functions C is easier than the determination of

slF (F1, · · · ,Fn) which is the Frechet class:

Les copules sont en général d’une structure plus simple que les fonctions de

répartition (Sklar [23], page 231)4.

2.1 Definition and Properties

In this first section, we will present some definitions and properties which will be used

to describe mathematically the construction of a copula function. We particularly

present Sklar’s Theorem which is the basis of the copula function theory. All these

definitions can be found in [3] or [22].

Let X and Y be two random variables, with F and G their respective distribution

functions

F (x) = P[X ≤ x],

4copula generally have a more simple structure than distribution functions
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G(x) = P[Y ≤ y].

And the joint distribution function

J(x, y) = P[X ≤ x, Y ≤ y].

For each pair (x, y), we can associate 3 numbers: F (x), G(y) and J(x, y). More-

over, each number is in [0, 1]. Thus, each pair (x, y) has an image (F (x), G(y)), in

the unit square [0, 1]× [0, 1], and this pair corresponds to a value of J(x, y) in [0, 1].

The connection between F , G and J , ie between the joint distribution function and

its marginal distribution functions is called a copula function.

We denote R the space of real numbers (−∞,+∞), R̄, the extended space of

real numbers [−∞,+∞]. A rectangle B of R̄m is the cartesian product of m-closed

intervals

B = [x11, x12]× [x21, x22]× · · · × [xm1, xm2].

The vertices of B are the points (xi2, xi1), (xi1, xi2), (xi1, xi1), (xi2, yi2), ∀i ∈ [0,m].

The unit square is the product I × I × · · · × I, with I = [0, 1]. A m-dimensional

real function H is a function whose domain is a subset of R̄m, and whose image is a

subset of R.

Definition

In the case of an m-dimensional copula function, we define for a given t ∈ S1 · · ·Sm

where the Sk are m non empty sets which have at least one element:
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VH(B) = ∆bm
am∆bm−1

am−1
· · ·∆b2

a2
∆b1
a1
H(t),

with

∆bk
ak
H(t) = H(t1, · · · , tk−1, bk, tk+1, · · · , tm)−H(t1, · · · , tk−1, ak, tk+1, · · · , tm).

Definition A m-dimensional real function H is said to be "‘m-increasing"’ if for

all rectangles B whose vertices are in Dom(H),

VH(B) ≥ 0.

Definition Given a function H : R̄n → R and given S1, · · · , Sm = Dom(H)

where each Sk has at least one ak, we say that H is grounded if H(t) = 0 for all t in

Dom(H) such that tk = ak for at least one k.

We recall that a copula function is a function that links univariate marginals

(obtained with credit curves for example), to the multivariate distribution. In our

thesis, the problem is to study the behavior of a portfolio (ie the multivariate dis-

tribution), knowing the univariate marginals. As we will see later, the copula is the

analytical representation of the dependence structure.

Definition: For m uniform random variables, U1, U2, · · · , Um, the copula func-

tion is defined as a function from [0, 1]m → [0, 1] which satisfies:

1. C(u1, u2, · · · , um) is m-increasing,

33



2. C is grounded,

3. C(1, · · · , uk, · · · , 1) = uk ∀k ∈ [0,m],

4. C(u1, u2, · · · , um) = P [U1 ≤ u1, U2 ≤ u2, · · · , Um ≤ um].

Copula functions can be used to link marginal distributions with a joint distribu-

tion. For a given set of univariate marginal distribution functions F1(x1), F2(x2), · · · , Fm(xm),

the function F (x1, x2, · · · , xm) = C(F1(x1), F2(x2), · · · , Fm(xm)) describes the joint

distribution of F .

When using copula functions, the most interesting and important theorem is the

Sklar theorem [23], which establishes the converse of the previous equality:

Sklar’s Theorem: If F (x1, x2, · · · , xm) is a joint multivariate distribution function

with univariate marginal distribution functions F1(x1), F2(x2), · · · , Fm(xm), then

there exists a copula function C(u1, u2, · · · , um) such that

F (x1, x2, · · · , xm) = C(F1(x1), F2(x2), · · · , Fm(xm)). (8)

Moreover, if each Fi is continuous, then C is unique.

We now denote c(·) the density function associated with the copula function C(·),

we obtain c by calculating:

c(u1, · · · , um) =
∂mC(u1, · · · , um)

∂u1 · · · ∂um
. (9)
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If we note f(·) the joint density associated with F (·), and fk the kth marginal density,

we can show that:

f(x1, · · · , xm) = c(u1, · · · , um)
m∏
k=1

fk(xk). (10)

Thus, in this decomposition, c represents the dependence structure of f(·)

The main advantage in using copula functions is that it allows to build complex

multidimensional distributions, thanks to Sklar’s Theorem, which links univariate

marginals to their full multivariate distribution thereby separating the dependency

structure C. When dealing with complex analytical expressions of multidimensional

distributions, copula functions enable us to get more tractable expressions. Moreover,

copula functions allow us to use a different marginal distribution for each asset.

Another very interesting property of the copula function, is that these functions

are invariant under strictly increasing, continuous transformations. Again, we use

Nelsen’s book for the proof of this theorem:

Let X and Y be continuous random variables with copula CXY . If α and β are

strictly increasing functions on the domain described respectively by X and Y , then

Cα(X)β(Y ) = CXY .

Indeed, let F1, G1, F2, G2 denote the distribution functions of X, Y , α(X), β(Y ) re-

spectively. Since α and β are strictly increasing, F2(x) = P [α(X) ≤ x] = P [X ≤ α−1(x)] =
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F1(α−1(x)), and likewiseG2(y) = G−1(β−1(y)). Thus for any x, y in (Dom(α), Dom(β)),

Cα(X)β(Y )(F2(x), G2(x)) = P [α(X) ≤ x, β(Y ) ≤ y]

= P
[
X ≤ α−1(x), Y ≤ β−1(y))

]
= CXY (F1(α−1(x)), G1(β−1(y)))

= CXY (F2(x), G2(y)).

We have similar results if α and β are monotonic:

• If α is strictly increasing and β is strictly decreasing, then

Cα(X)β(Y )(u, v) = u− CXY (u, 1− v);

• If α is strictly decreasing and β is strictly increasing, then

Cα(X)β(Y )(u, v) = v − CXY (1− u, v);

• If α and β are both strictly decreasing, then

Cα(X)β(Y )(u, v) = u+ v − 1− CXY (1− u, 1− v).

The main advantages of these results in the study of nth-to-default basket CDS,

and more generally for any financial problem, is that we can study either price series

or log-price series with the same copula.

The last concept that will be introduced concerning copula functions is the tail

dependence, which plays a fundamental role in the description of the dependence
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structure and hence the copula function. A copula C(u, v)is said to have a left

(lower) tail dependence if

lim
u→0

C(u, u)

u
= λ > 0.

The right (upper) tail dependence is defined using the survival copula C̄ which is

defined by C̄(u, v) = 1− u− v + C(u, v), and the right dependence λr verifies

lim
u→1

C̄(u, u)

1− u
= λr > 0.

This tail dependence enables us to directly measure the probability that two

extreme events happen at the same time. This concept is used in the study of the

contagion of crisis between markets or countries.

2.2 Examples of Copula Function

After having studied the main properties which characterize the copula functions, we

will now introduce some of the most widely used copula functions. All these examples

can be found in Jouanin et al. [17]. The first copula function we study is already

known as a multivariate distribution, but probably not as a copula function. Indeed,

the Gaussian copula function can be studied as a Gaussian multivariate distribution.

Besides, the Student copula function tends to describe a similar dependence structure

when the degrees of freedom of this distribution increases. Finally, we will introduce

the empirical copula function which will be used in part 4.4 in order to determine

the most appropriate copula function given an empirical set of data.
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2.2.1 The Multivariate Normal Copula

This copula function is the most widely used copula function, because it is a relatively

tractable copula that fits well with the Monte-Carlo simulation model.

Let Σ be a symmetric, positive definite matrix with the diagonal terms equal to

1, and φΣ the multivariate normal distribution function, with the correlation matrix

Σ. Then we can define the multivariate normal copula function as

C(F1(x1), F2(x2), · · · , Fm(xm); Σ)

= φΣ(φ−1(F1(x1))︸ ︷︷ ︸
Y1

, φ−1(F2(x2))︸ ︷︷ ︸
Y2

, · · · , φ−1(Fm(xm))︸ ︷︷ ︸
Ym

),
(11)

with φ−1 the inverse of the cumulative probability distribution of a Normal distribu-

tion

Moreover, the density of the Gaussian copula function is given by5

c(u1, · · · , um; Σ) =
1

|Σ| 12
e−

1
2
ς∗(Σ−1−I)ς , (12)

with ς the vector of coordinates (ςn)∗ and ςn = φ−1(un)

Finally, Embrechts et al. in [6] have demonstrated that the Gaussian copula has

no tail dependence(page 18-19).
5The symbol ∗ mean the transpose of the vector

38



2.2.2 The Multivariate Student-t Copula

Let Σ be a symmetric, positive definite matrix with the diagonals terms equal to 1,

and TΣ,ν the multivariate Student-t distribution function6, with ν degrees of freedom,

with the correlation matrix Σ. The multivariate Student-t copula is defined by

C(F1(x1),F2(x2), · · · , Fm(xm); Σ; ν)

= TΣ,ν(t
−1
ν (F1(x1)), t−1

ν (F2(x2)), · · · , t−1
ν (Fm(xm)))

(13)

with t−1
ν the inverse of the univariate Student-t distribution 7. The corresponding

density is

c(F1(x1),F2(x2), · · · , Fm(xm); Σ)

= |Σ|−
1
2

Γ
(
ν+m

2

) [
Γ
(
ν
2

)]m (
1 + 1

ν
ζTΣ−1ζ

)− ν+m
2[

Γ
(
ν+1

2

)]m
Γ
(
ν
2

)∏m
n=1

(
1 + ζ2n

ν

)− ν+1
2

.
(14)

Given a multivariate Gaussian vector Y = (Y1, · · · , Yn) following a multivariate

normal distribution with the correlation matrix equal to Σ, the vector ΘY is said to

be Student-t distributed with n degrees of freedom if Θ =
√

n
X
, with X following a

χ2(n) law, and Θ independent of Y .

6TΣ,ν(x) =
Γ( ν+m2 )

Γ( ν2 )((nΠ)m/2|Σ|1/2[1+ 1
ν x

TΣx]
ν+m

2

7tν(x) =
Γ( ν+1

2 )√
νΠ

(
1 + x2

ν

)− ν+1
2
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2.2.3 The Fréchet Bounds

We say that the copula C1 is smaller than the copula C2, and we write C1 ≺ C2 if

∀(u1, · · · , um) ∈ Im, C1(u1, · · · , um) ≤ C2(u1, · · · , um). (15)

Two specific copulas play a particular role, the lower and the upper Fréchet

bounds C− and C+

C−(u1, · · · , um) = max

(
m∑
p=1

up −m+ 1, 0

)
; (16)

C+(u1, · · · , um) = min (u1, · · · , um) . (17)

It can be shown 8 that the following order is verified for any copula C

C− ≺ C ≺ C+. (18)

The 3D graphs in Figure 1, illustrates respectively the minimum (C−) and the

maximum (C+) copulas for the two-variable case.

2.2.4 The Empirical Copula

A copula function can also be calculated empirically. Indeed, a cumulative distribu-

tion function F of a random variable X can be written empirically from a sample

(x1, · · · , xn) of N realizations of X by the function:

Fe =
number of xi such that xi ≤ x

N
.

8See Nelsen (1998), Theorem 2.2.3
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Figure 1: Representation of the minimum (left) and maximum (right) Fréchet copula

In the following, we will use the following notation:

Fe =
#xi | xi ≤ x

N
.

Similarly, the bivariate empirical repartition He of a couple of random variables

(X, Y ) is equal to

He(x, y) =
#(xi, yi) | xi ≤ x and yi ≤ y

N
.

We now assume that the random variable X has a distribution function F and

that the random variable Y has a distribution function G. The bidimensional copula

C of (X, Y ) is the cumulative distribution function of the marginals F and G, thus we

can say that from the sample (xi, yi)i=1,··· ,N , the empirical copula Ce of (X, Y ) is equal

to nal copula C of (X, Y ) is the cumulative distribution function of the marginals F
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and G, thus we can say that from the sample (xi, yi)i=1,··· ,N , the empirical copula Ce

of (X, Y ) is equal to

Ce(u, v) =
#(xi, yi) | F (xi) ≤ u and G(yj) ≤ v

N
.

So that we can give the definition of an empirical copula function:

Definition Let (xk, yk)k=1,··· ,N be a sample of a bivariate random variable. The

empirical copula is the function given by

Ce

(
i

N
,
j

N

)
=

#(x, y) | x ≤ x(i) and y ≤ y(j)

N
,

with x(i) and y(i) the order statistics from the sample9.

2.3 Correlation measurement

In this section, we will describe what measures of concordance are, or more particu-

larly how we can link them with the copula functions. We will mainly use Roncalli’s

work [22] to do so. The Kendall’s τ will be used in part 4.4 in order to estimate the

parameter of a copula function from empirical data.
9the i-th order statistic is the i-th smallest value of a statistical sample
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2.3.1 Concordance

Informally, the concordance of a pair of random variables measures if ‘large’ values

of one are associated with ‘large’ values of the other, and ‘small’ values of one with

‘small’ values of the other.

To be more precise, let (xi, yi) and (xj, yj) denote two observations from a vector

(X, Y ) of continuous random variables. We say that (xi, yi) and (xj, yj) are concor-

dant if xi < xj and yi < yj, or if xi > xj and yi > yj. Similarly, We say that (xi, yi)

and (xj, yj) are discordant if xi < xj and yi > yj, or if xi > xj and yi < yj.

Note the alternate formulation: (xi, yi) and (xj, yj) are concordant if (xi − xj)(yi −

yj) > 0, and discordant if (xi − xj)(yi − yj) < 0.

Using this concept of concordance, we can now define measures of concordance

like the Kendall’s τ or the Spearman ρ.

2.3.2 Kendall’s Tau

The sample version of the quantity known as Kendall’s tau is defined in terms of

concordance as follows: Let {(x1, y1), (x2, y2), · · · , (xN , yN)} denote a random sample

of N observations from a vector (X, Y ) of continuous random variables. There are(
N
2

)
= N(N−1)

2
distinct pairs (xi, yi) and (xj, yj) of observations in the sample, and

each pair is either concordant or discordant. Let c denote the number of concordant

pairs, and d the number of discordant pairs. Then Kendall’s tau for the sample is

defined as

τ =
c− d
c+ d

=
2(c− d)

N(N − 1)
. (19)
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The population version of Kendall’s tau is defined as the probability of concor-

dance minus the probability of discordance

τ = P [(X1 −X2)(Y1 − Y2) > 0]− P [(X1 −X2)(Y1 − Y2) < 0] . (20)

For a copula function, Nelsen [21] shows the following equality:

τ = 4

∫ ∫
I2
C(u, v)dC(u, v)− 1. (21)

As a concordance measure, the Kendall’s τ ’s range is from −1 to 1. The meaning

of a Kendall’s τ (between n random variables) which is equal to 1 is that all the data

are perfectly concordant, whereas if the Kendall’s τ is equal to −1, then all the data

are perfectly discordant. A value of the Kendall’s τ means that we cannot extract

any concordance or discordance from the data.

The dependence measure of Kendall and Spermann can be easily extended to

finite families of random vectors whose dimensions are greater than 2. When using

those measures, we have two choices. Either we use 2n − 1 measures in order to

take into account all the random variables, or we use a unique measure. This is

the choice which will be made in our study. First, let us generalize the Kendall’s τ

of a bidimensional copula function to a multidimensional copula functionnal copula

function

τ(Cn) =
1

2n−1 − 1
(2n
∫
Cn(F1(x1), · · · , Fn(xn))dCn(F1(x1), · · · , Fn(xn))− 1)

=
1

2n−1 − 1
(2n
∫
Cn(u1, · · · , un)dCn(u1, · · · , un)− 1).

44



As before, we will study the case of 3-dimensional Archimedean copula function.

Let T be the generalized Kendall’s τ estimated from the N realizations of 3

random variables U, V and W with the associated copula Cβ1,β2 . T is calculated as

the average coefficient of (U, V ), (V,W ) and (U,W ):

T =
1

3
(τemp(U, V ) + τemp(V,W ) + τemp(U,W )).

Thus estimating β1 and β2 means finding two parameters β̂1 and β̂2 such as

τ(Cβ̂1,β̂2
) = T.

This equation can’t be solved directly because both β̂1 and β̂2 are unknown.

However, β̂1 can be interpreted as the coefficient of association of U and V with the

copula Cβ1 so that using the section concerning the estimation of the parameter of

a 2-dimensional copula function, we can deduce that a semi-parametric estimator β̂1

of β1 is:

β̂1 = τ−1(τEmp(U, V )),

with τEmp(UV ) the Kendall coefficient between U and V estimated from the realiza-

tions of those two vectors. Thus, the estimator β̂2 of β2 is solution of:

τ(Cβ̂1,β2
) = T.
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2.3.3 Spearman’s Rho

As with Kendall’s tau, the population version of the measure of correlation known as

Spearman’s rho is based on concordance and discordance. To obtain the population

version of this measure, we now let (X1, Y1), (X2, Y2), and (X3, Y3) be three indepen-

dent random vectors. The population version of the Spearman’s rho is defined to be

proportional to the probability of concordance minus the probability of discordance

for the two vectors (X1, Y1) and (X2, Y3)

ρ = 3(P [(X1 −X2)(Y1 − Y3) > 0]− P [(X1 −X2)(Y1 − Y3) < 0]) (22)

ρ = 12

∫ ∫
I2

[C(u, v)− uv] dudv. (23)

As a concordance measure, the Spearman’s ρ’s range is from −1 to 1. The

meaning of a Spearman’s ρ (between n random variables) which equals 1 is that all

the data are perfectly concordant, whereas if the Spearman’s ρ equals −1, then all

the data are perfectly discordant. A value of 0 of the Spearman’s ρ means that we

cannot extract any concordance or discordance from the data.

2.3.4 Application

These dependence parameters are of great interest because they enable us to link the

correlation coefficients of different types of copula functions. Indeed, the most popu-

lar copula functions have a closed formula for the Kendall’s tau and the Spearman’s

rho. Thus, we can compare the dependence measures of different copula functions.

For instance, the Student copula and the Gaussian copula have the same Kendall’s

tau which is equal to τ = 2
π
arcsin(ρ). The utilization of these dependence measures
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can be the measurement of the dependence between two markets, or between two

stocks. Besides, it is very interesting to understand that these dependence measures

are the translation of the dependence structure implied by the copula function.
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3 Archimedean Copula Functions

In this section, we will more particularly focus on the Archimedean copula functions

for three reasons:

• Archimedeans copula functions are computationally efficient to implement, gen-

erally having closed form solutions,

• they are various different kinds of Archimedeans copula functions,

• and Archimedean copula functions have many interesting properties that we

will describe below.

In order to understand more easily the properties of multivariate Archimedean

copula functions, we will first introduce the bivariate Archimedean copula functions

by showing their properties. Then we will describe algorithms to estimate those

copula functions. Finally, we will introduce a method which will be applied in chapter

4.4, which makes it possible to choose a copula function given a data-set.

3.1 2 dimensional (or bivariate) Archimedean copula func-

tions

In this subsection, we will introduce the most important theorems used to describe

the Archimedean copula functions. All these theorems have been proven by Nelsen

in his book (Nelsen [21]) such as by Genest and MacKay [11], and by Roncalli [22].

Theorems and Definition 3.1.a to 3.1.d will be used to define what Archimedean
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copula functions are. Then, Theorems 3.1.e and 3.1.f will show properties of the

Archimedean copula functions. Finally, we will show how to estimate a 2-dimensional

Archimedean copula function.

Definition 3.1.a Let ϕ be a continuous and strictly decreasing function from I

to [0,∞] such that ϕ(1) = 0. Let ϕ−1, which will be called the pseudo-inverse of ϕ

be defined on the domain [0,∞] with Ranϕ−1 = I and

ϕ−1(t) =


ϕ−1(t), 0 ≤ t ≤ ϕ(0)

0, ϕ(0) ≤ t ≤ ∞

.

We will see later that Archimedean copula functions are defined by C(u, v) =

ϕ−1(ϕ(u) + ϕ(v))

Theorem 3.1.b Let ϕ be a continuous and strictly decreasing function from I to

[0,∞], such as ϕ(1) = 0. Let ϕ−1 be the pseudo-inverse of ϕ. Let C be the function

defined from I2 to I by:

C(u, v) = ϕ−1(ϕ(u) + ϕ(v)).

Then,

C(u, 0) = C(0, v) = 0, ∀u, v ∈ I2

and

C(u, 1) = u and C(1, v) = v.
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Proof

We have:

C(u, 0) = ϕ−1(ϕ(u) + ϕ(0)) = 0

and

C(u, 1) = ϕ−1(ϕ(u) + ϕ(1)) = ϕ−1(ϕ(u)) = u.

By symmetry, we have C(0, v) = 0 and C(1, v) = v.

Theorem 3.1.c Let ϕ, ϕ−1 and C be such that ϕ is a continuous and strictly

decreasing function from I to [0,∞], such as ϕ(1) = 0, ϕ−1 is the pseudo-inverse of

ϕ and C is defined as in the theorem before. Then C is 2-increasing if and only if,

∀u1 ≤ u2,

C(u2, v)− C(u1, v) ≤ u2 − u1 ∀v ∈ I. (24)

Proof

If C is two-increasing, it is obvious that (24) is verified. On the other hand, if we

assume that (24) is verified, let’s choose v1 and v2 in I such that v1 ≤ v2. Thus, we

have from Theorem 3.1.b

C(0, v2) = 0 ≤ v1 ≤ v2 = C(1, v2).
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Moreover, as ϕ and ϕ−1 are continuous, C is also continuous. As a consequence,

we can find t in I such that C(t, v2) = v1. Thus, from Definition 3.1.a,

C(u2, v1)− C(u1, v1) = ϕ−1(ϕ(u2)− ϕ(v1))− ϕ−1(ϕ(u1)− ϕ(v1))

= ϕ−1(ϕ(u2) + ϕ(v2) + ϕ(t))− ϕ−1(ϕ(u1) + ϕ(v2) + ϕ(t))

= C(C(u2, v2), t)− C(C(u1, v2), t)

≤ C(u2, v2)− C(u1, v2).

So that C is 2-increasing.

We can now define copula functions using the functions ϕ we have defined before.

Theorem 3.1.d Let ϕ be a continuous, strictly decreasing function from I to

[0,∞], such that ϕ(1) = 0 and ϕ−1 is the pseudo-inverse of ϕ. Then C is a copula

function if and only if ϕ is convex. Such a copula is called an Archimedean copula

function, and ϕ is the generator of this copula function.

Proof

Before going through the demonstration, we should first recall the definition a

convex function:

Let f be a continuous function of [0,+∞] and let s and t be in [0,+∞], such that

0 ≤ s < t. Then, f is said to be convex if and only if:

f(
s+ t

2
) ≤ f(s) + f(t)

2
. (25)
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We will first assume that C is a copula, and we will demonstrate in Theorem

3.1.c that ϕ is convex:

As C is a copula, we have demonstrated that

C(u2, v)− C(u1, v) ≤ u2 − u1, ∀v ∈ I.

Thus, if we set a = ϕ(u1), b = ϕ(u1), and c = ϕ(v), we obtain

ϕ−1(a) + ϕ−1(b+ c) ≤ ϕ−1(b) + ϕ−1(a+ c).

Thus, if we now set a = s+t
2
, b = s, c = t−s

2
and ϕ−1 = f , we obtain directly (25).

In the other direction, we will now assume that ϕ−1 is convex. We can now use

the same reasoning as before going backwards.

Theorem 3.1.e Let C be an Archimedean copula function with ϕ its generator.

• C is symmetric, C(u, v) = C(v, u), ∀u, v ∈ I

• C is associative, C(C(u, v), w) = C(u,C(v, w)),∀u, v, w ∈ I

• if c > 0 is constant, cϕ is also a generator.

Proof

The proof of this theorem is straightforward, as we only need to write the

definition 3.1.a of an Archimedean copula function. For the first point, we have

C(u, v) = ϕ−1(ϕ(u) + ϕ(v)) = ϕ−1(ϕ(v) + ϕ(u)) = C(v, u).
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For the second point: C(C(u, v), w) = ϕ−1(ϕ(ϕ−1(ϕ(u) + ϕ(v))) + ϕ(w)) =

ϕ−1(ϕ(u) + ϕ(v) + ϕ(w)) = ϕ−1(ϕ(u) + ϕ(ϕ−1(ϕ(u) + ϕ(w)))) = C(u,C(v, w)).

And finally for the third point: C(u, v) = ϕ−1(ϕ(u) + ϕ(v)) = 1/cϕ−1(cϕ(u) +

cϕ(v)) = ϕ−1(ϕ(u) + ϕ(v)).

Theorem 3.1.f A copula function C is Archimedean if it has 2 partial derivatives

and if there exists an integrable function f from [0, 1] to [0,∞] such as:

f(u)
∂

∂v
C(u, v) = f(v)

∂

∂u
C(u, v), ∀0 ≤ u, v ≤ 1.

With f = ϕ′ + c with c a constant.

Proof

We have seen earlier that ϕ is a convex function. As a consequence ϕ−1 exists

almost everywhere and thus the partial derivatives ∂
∂u
C(u, v) and ∂

∂v
C(u, v) exist

almost everywhere. From

ϕ(C(u, v)) = ϕ(u) + ϕ(v)

we can deduce that

ϕ
′
(C(u, v))

∂

∂u
C(u, v) = ϕ

′
(u)

and

ϕ
′
(C(u, v))

∂

∂v
C(u, v) = ϕ

′
(v)
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Moreover, since ϕ is strictly decreasing, ϕ′(t) 6= 0 wherever it exists. Thus we

can deduce the result

f(u)
∂

∂v
C(u, v) = f(v)

∂

∂u
C(u, v), ∀0 ≤ u, v ≤ 1.

Using the definition of a bidimensional copula function, we can now have a method

to simulate a random vector (X, Y ) of a copula C whose generator is ϕ.

Let U and S be two independent random variables obtained from an uniform

distribution in [0, 1], X = S and Y a random variable. Let Z = C(X, Y ). The

cumulative distribution function of Z knowing X is:

P(Z ≤ z|X = x) = P(C(X, Y ) ≤ z|X = x)

= P(ϕ−1(ϕ(X) + ϕ(Y )) ≤ z|X = x)

= P(Y ≤ ϕ−1(ϕ(z)− ϕ(X))|X = x)

= lim
t→0

P(Y ≤ ϕ−1(ϕ(z)− ϕ(X))|X ∈ [x− t, x+ t])).

Let y be an outcome of Y . If y is such that y = ϕ−1(ϕ(z)− ϕ(X)), we have

P(Z ≤ z|X = x) = lim
t→0

P(Y ≤ y,X ≤ x+ t)− P(Y ≤ y,X ≤ x− t)
P(X ∈ [x− t, x+ t])

=
∂H(x, y)

∂x

=
ϕ
′
(x)

ϕ′(z)
.

Let U be defined by U(x) = P(Z ≤ x|X = x) and x ∈ [0, 1], U is then a

random variable obtained from an uniform distribution in [0, 1]. Thus, we have
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ϕ
′
(x)

ϕ′ (z)
= U which implies that Z = ϕ

′−1(ϕ
′
(X)
U

) and Y = ϕ−1(ϕ(Z) − ϕ(X)), so that

P(X ≤ x, Y ≤ y) = C(x, y).

We can summarize this demonstration with these schemes in three steps:

• Step 1: Generate two independent random variables S and U from an uniform

distribution in [0, 1].

• Step 2: Calculate Z = ϕ
′−1(ϕ′(S)/U).

• Step 3: X = S and Y = ϕ−1(ϕ(Z)− ϕ(X)).

3.2 Examples of Archimedeans copula functions

In the following, we will present several families of Archimedean copula functions, and

their main properties. Those copula functions can be found for example in Bouye’s

article [3]. The copula functions we will present in this section will be applied in the

fourth chapter in order to see their empirical properties and determine which one fits

better to an empirical distribution.

3.2.1 Clayton copula functions

CC(u, v, θ) = (u−θ + v−θ − 1)−
1
θ ,

with θ ≥ 0.

This copula has heavy concentration of probabilities near (0,0) so it correlates

small losses. The fact that this copula has no tail dependence made it very similar

to the Gaussian copula.
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The generator of this copula is

ϕ(t) = t−θ − 1

and its Kendall tau is equal to

τ =
θ

θ + 2
.

We can check that:

CC(u, v, θ) = (ϕ(u) + ϕ(v) + 1)
1
θ .

Moreover,

t = (ϕ(t) + 1)−
1
θ .

Thus,

ϕ−1(x) = (x+ 1)−
1
θ ,

and

CC(u, v, θ) = ϕ−1(ϕ(u) + ϕ(v)).

Secondly, we can also check the formula of the Kendall’s τ , using Genest and

MacKay [11] who have demonstrated that:
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τ = 1 + 4

∫ 1

0

ϕ(u)

ϕ′(u)
du.

Thus,

τ = 1 + 4

∫ 1

0

1− u−θ

θu−θ−1
du

= 1 +
4

θ

∫ 1

0

(uθ+1 − u)du

= 1 +
4

θ

[
uθ+2

θ + 2
− u2

2

]1

0

=
θ

θ + 2
.

3.2.2 Frank copula functions

This copula is characterized by upper and lower tail independence. The Frank copula

functions family is defined for β 6= 1 and strictly greater than 0 by:

Cβ(u, v) =
ln(1 + (βu−1)(βv−1)

β−1

ln(β)
.

And the generator ϕβ is:

ϕβ(t) = − ln(
1− e−βt

1− e−β
).

Finally, the Kendall’s tau of Frank copula is equal to:

τ = 1− 4

β

(
1−

∫ β

0

t

et − 1
dt

)
.
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3.2.3 Gumbel copula functions

CG(u, v, δ) = e−((− ln(u))δ+(− ln(v))δ)
1
δ

,

with δ ≥ 1.

This copula has more probability concentrated in the tails than does Frank’s. It

is also asymmetric, with more weight in the right tail. Its main properties are that

its lower tail dependence is equal to zero whereas its upper tail dependence is equal

to 2− 2−
1
δ . The Kendall’s tau of the Gumbel copula is equal to τ = 1− 1

δ
.

Finally the generator of this copula function is equal to:

ϕ(t) = (− ln(t))δ.

3.3 Estimation of Archimedeans copula functions

In the case of a two variable Archimedean copula function, the copula function is

entirely known as soon as the parameter is known, and the family of the copula is

chosen. We will now study several methods to estimate the copula.
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3.3.1 Semi-parametric estimation of an Archimedean copula function

As we have seen in the introduction, we will mainly consider in this thesis the prob-

lem of the semi-parametric estimation of a copula function. This semi-parametric

estimation will be mainly based on the empirical copula function presented in 2.2.4.

The main advantage of this estimation is that it is not necessary to estimate the

marginal of the copula function. Moreover, the estimation of the empirical copula

function is relatively easy. However, the empirical copula has no closed formula.

That is why a second step of our study will be to find a parametric Archimedean

copula function whose dependence structure will be as close as possible to our em-

pirical copula function. In this section, we will first present the main theorems which

will then be used in 3.4 in order to describe the algorithm which will then be applied

in 4.4.

This semi-parametric estimation has been proposed by Genest and Rivest [12].

The main idea is that the copula Cϕ(x, y) = ϕ−1(ϕ(x)+ϕ(y)) is uniquely determined

by the functionK(v) = v− ϕ(v)
ϕ′(v)

. To prove this idea, we will use the following theorem:

The Proof of the following theorem can be found in Genest and Rivest [12]

Theorem 3.3.1.a Let X and Y be two uniform random variables, and the copula

function C(x, y) defined by C(x, y) = ϕ−1(ϕ(x)+ϕ(y)), with ϕ convex and decreasing

on [0, 1] with ϕ(1) = 0.

Let U = ϕ(X)
ϕ(X)+ϕ(Y )

, V = C(X, Y ) and λ(v) = ϕ(v)
ϕ′(v)

for 0 < v ≤ 1.

Then

1. U is uniformly distributed on [0,1],
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2. V is distributed with respect to the law K(v) = v − λ(v) on (0, 1) and

3. U and V are independent random variables.

Thus, we can estimate ϕ by solving the differential equation:

ϕ(v)

ϕ′(v)
= v −K(v),

which gives:

ϕ(v) = exp(

∫ v

v0

1

λ(t)
dt),

with 0 < v0 < 1 a constant.

We will discuss in more detail in 3.4 how we can use this fundamental theorem

to perform the choice of the best copula function given an empirical dependence

structure.

Theorem 3.3.1.b Let X and Y two uniform random variables with the respective

copula function C(x, y). For 0 ≤ v ≤ 1, let K be defined by: K(v) = P(C(X, Y ) ≤ v)

and K(v−) be defined by: K(v−) = limt→vK(t).

Then, the function ϕ(v) defined by ϕ(v) = exp(
∫ v
v0

1
λ(t)

dt) is convex, decreasing

and satisfies ϕ(1) = 0 if and only if K(v−) > v for all 0 < v < 1.

Using the preceding theorem, we can now determine a method to estimate a cop-

ula C with a semi-parametric procedure. Let {(X1, Y1), . . . , (XN , YN)} be a sample

of random variables obtained from a bivariate law H(x, y) with continuous marginals
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F (x) and G(y) and a copula function C(x, y) (C(F (x), G(y)) = H(x, y)). We as-

sume that we want to estimate the copula C if C is an Archimedean copula function.

The method we will use is independent of the marginals so that we can use uniform

marginals and then generalize to any kind of marginals. So that H and C can be

mixed up as they are equivalent.

We have seen before that Archimedean copula functions are characterized by

the behavior of the stochastic random variables V = H(X, Y ), so that to estimate

the copula, we can estimate the univariate cumulative distribution function K(v) =

P(H(X, Y ) ≤ v) = P(C(F (X), G(Y ) ≤ v) on (0, 1). A two step method can be

derived:

• Step 1: Determine the empirical bivariate cumulative distribution function

HN((x, y)) associated with H.

• Step 2: Calculate HN(Xi, Yi) for i = 1, . . . , N and use pseudo-observations to

build a 1-dimensional empirical cumulative distribution function for K.

We will explain this method with more details in section 3.4.

3.3.2 Using Kendall’s τ or Spearmann’s ρ to estimate an Archimedean

copula function

When the marginal distributions are unknown, we must use the semi-parametric

method we have seen before to estimate an Archimedean copula function. After

studying the general concept of the semi-parametric method, we will apply it to

the case of the Kendall’s τ and the Spearmann’s ρ. We have studied before the
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correlation measurement and we have seen that those two measures are based on

the notion of concordance. Remember that for (X, Y ) a pair of continuous random

variables of copula C, the Kendall’s τ is given by:

τ(X, Y ) = 4

∫ ∫
[0,1]2

C(u, v)dC(u, v)− 1,

which is equivalent to τ(X, Y ) = E(C(U, V ))− 1.

Moreover, if the copula is an Archimedean copula Cβ with a parameter β, then

the Kendall’s τ can be written as τ(Cβ).

As a consequence of its definition, the empirical estimator of τ is given by:

τemp =
2
∑N−1

i=1

∑N
j=i+1XijYij

N(N + 1)
,

with Xij = 1 if xi ≤ xj, Xij = −1 if xi > xj, Yij = 1 if yi ≤ yj and Yij = −1 if

yi > yj

Thus, we can now define an estimator of the parameter β of the copula function:

β̂ = τ−1(τemp).

Using a result demonstrated by Genest and Mackay [11], we finally obtain that:

τ(Cβ) = 4

∫ 1

0

ϕβ(t)

ϕ
′
β(t)

dt+ 1.

Similarly, we can show the same methodology using the Spearman’s ρ which is

defined by:
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ρ(X, Y ) = 12

∫ ∫
[0,1]2

uvdC(u, v)− 3.

The empirical estimator of the Spearman’s ρ is given by

ρemp = 1− 6
N∑
i=1

Di
2

N(N2 − 1)
.

where Di is the rank difference 10 between xi and yi. Finally, we can estimate the

parameter of the copula function by:

β̂ = ρ−1(ρemp).

3.3.3 The simulation of a 3-dimensional Archimedean copula functions

In this sub-section, before going further into the applications of the theorems and

definitions we have studied before, we will just have a quick look at the method we

can use to simulate a 3-dimensional copula function.

In the following, we define the product copula by Π(u, v) = uv = exp(−((− ln(u))+

(− ln(v)))). For an n-dimensional product copula function, we have for u = (u1, . . . , un)

Πn(u) = u1 · · ·un = exp(−((− ln(u1)) + . . .+ (− ln(un)))).

10To calculate the rank difference between between xi and yi, you have to calculate the difference

between the order statistics of each sample. Moreover, if two xi or yi have the same value, the

order statistics is the same for each xi or yi and equals to the average of the order statistic
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This example is a good illustration of the fact that we can generalize the notion

of a copula function from the bivariate case:

Cn(u) = ϕ−1(ϕ(u1) + . . .+ ϕ(un)).

This notation is called the serial iterates of the bidimensional Archimedean copula

function generated by ϕ. We can state that C2(u1, u2) = C(u1, u2) = ϕ−1(ϕ(u1) +

ϕ(u2)). Thus for all n ≥ 3, we have:nal Archimedean copula function generated by

ϕ. We can state that C2(u1, u2) = C(u1, u2) = ϕ−1(ϕ(u1) + ϕ(u2)). Thus for all

n ≥ 3, we have:

Cn(u1, . . . , un) = C(Cn−1(u1, . . . , un−1), un).

However, this method does not provide a n-dimensional copula function for all

generators ϕ, continuous, strictly decreasing and convex. Thus, we have to provide

some additional properties to obtain an Archimedean copula function.

Starting from the bivariate case seen earlier, this Archimedean copula function is

obtained recursively:

Cn(u1, . . . , un) = ϕ−1
n (ϕn(Cn−1(u1, . . . , un−1)) + ϕn(un))

with 0 ≤ u1, . . . , un ≤ 1 and the generators ϕi strictly decreasing, continuous and

convex.

We can apply this formula to the generation of a copula function with 3 dimen-

sions. Thus, we have 2 functions ϕ1 and ϕ2, which are dependent on 2 parameters
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β1 and β2 defining the copula function Cβ1β2 . We will generate a random vector

(X, Y, Z), whose marginals are uniform on [0, 1], with the copula function Cβ1β2 gen-

erated by ϕ1 and ϕ2:

• Step 1: We generate 3 random variables X, U and T from a uniform distribution

on [0, 1],

• Step 2: We calculate W1 = (ϕ−1
1 )′(ϕ1(X)/U).

• Step 3: Let Y = ϕ−1
1 (ϕ1(W1)− ϕ1(X)).

• Step 4: We calculate W2 = F−1(T ), with F the conditional cumulative distri-

bution function of W2 = C(X, Y, Z) knowing X and Y .

• Step 5: Z = ϕ−1
2 (ϕ2(W2)− ϕ2(ϕ−1

1 (ϕ1(X) + ϕ1(Y )))).

Thus we have seen that Archimedean copula functions are defined from generator

functions ϕ which depends on one or more parameters βi. The proof of this algorithm

can be found in Hillali [13]. We will give the main ideas of this demonstration in the

following proof:

Proof

Let X and U be two independent random variables drawn from a uniform distri-

bution on [0, 1].

We will now try to determine the random variable Y such that (X, Y ) verifies

the same distribution as the copula H which is derived from a continuous, convex

and strictly decreasing function ϕ1.
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Let W1 = H(X, Y ). Then the cumulative distribution function of W1 given X is:

P(W1 ≤ w|X = x) = P(H(X, Y ) ≤ z|X = x)

= P(ϕ−1
1 (ϕ1(X) + ϕ1(Y )) ≤ z|X = x)

= P(Y ≤ ϕ−1
1 (ϕ1(z)− ϕ1(X))|X = x)

= lim
t→0

P(Y ≤ ϕ−1
1 (ϕ1(z)− ϕ1(X))|x− t ≤ X ≤ x+ t).

If we define y by y = ϕ−1
1 (ϕ1(z)− ϕ1(X) a value of Y . Then:

P(W1 ≤ w|X = x) = lim
t→0

P(Y ≤ y,X ≤ x+ t)− P(Y ≤ y,X ≤ x− t)
P(x− t ≤ X ≤ x+ t)

=
∂H(x, y)

∂x

=
ϕ
′
1(x)

ϕ
′
1(w)

.

If we define U by U(x) = P(W1 ≤ w|X = x) with x ∈ [0, 1], the U is random

variable uniformly distributed on [0, 1]. As a consequence:

U =
ϕ
′
1(X)

ϕ
′
1(W1)

,

so that

Z = ϕ
′−1
1

(
ϕ1(X)

U

)
.

Finally, Z has been constructed so that Y = ϕ−1
1 (ϕ1(Z) − ϕ1(X)) and P(X ≤

x, Y ≤ y) = H(x, y).
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We will now demonstrate Steps 4 and 5:

We will use F the cumulative distribution function of W2 = C(X, Y, Z) given X

and Y :

F (w2) = P(W2 ≤ w2|X = x, Y = y)

= P(C(X, Y, Z) ≤ w2|X = x, Y = y)

= T

with w2 ∈ [0, 1] and T a uniform random variable in [0, 1].

Thus we have

T = P(ϕ−1
2 (ϕ2(Z) + ϕ2(ϕ−1

1 (ϕ1(X) + ϕ1(Y )))) ≤ w2|X = x, Y = y)

= P(Z ≤ ϕ−1
2 (ϕ2(w2)− ϕ2(ϕ−1

1 (ϕ1(X) + ϕ1(Y )))) ≤ w2|X = x, Y = y).

Moreover, as X, Y and Z are three continuous R-random variables, we can de-

scribe the law of Z as a limit with t→ 0 of:

T =
P(Z ≤ ϕ−1

2 (ϕ2(w2)− ϕ2(ϕ−1
1 (ϕ1(X) + ϕ1(Y )))) ≤ w2|x ≤ X ≤ x+ t, y ≤ Y ≤ y + t)

P(x ≤ X ≤ x+ t, y ≤ Y ≤ y + t)
.

Let H1 be the 2-dimensional cumulative distribution function of (X, Y ). We

denote respectively by f(x), g(y) and h1(x, y) the density functions of X, Y and H1.

Then:

T =

∂2C
∂x∂y
− ∂C

∂x
− ∂C

∂y

h1(x, y)− f(x)− g(y)
.
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In order to simplify the calculus, we will simulate 3 random variables X, Y and

Z from a 3 dimensional Frank copula whose parameters are γ1 and γ2 associated

respectively to the generators ϕ1 and ϕ2. We will use for the calculations: u =

ϕ−1
1 (ϕ1(x) + ϕ1(y)), A1 = ϕ′1(x) + ϕ′1(y), A2 = ϕ′1(x)ϕ′1(y), B = ϕ′1(u), C = ϕ′2(u),

D = ϕ′′2(u), E = ϕ′′1(u)

F =
A1γ

u
1 + A2

Bγu1
;

G = CA1B
2, M = DBA2, I = A2CE, J = A2C

2B, K = B3F , L = K log(γ2).

Then, we have:

F (w2) = T =
(γw2

2 (G−M + I) + J)(1− γ2)

γ2w2
2 L

.

Using the inverse cumulative distribution function, we get W2, and by construc-

tion of H, we find Z.

3.4 Application to the choice of an Archimedean copula func-

tion [4]

In the previous sections, after having made a general presentation of copula functions,

we have seen methods to estimate the parameters of those copula functions. Besides,

we have seen that the family of copula functions is a very large family. We have

focused our attention on the family of Archimedean copula function, and we have

seen that each copula function has its own properties and fits a different dependence

structure. As a consequence, we now have to focus on the method to try to choose
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the best copula by comparing the dependence structure of each copula function to

our data-set.

As we have seen before, we can link the parameter of a copula function with the

concordance measure

τ = f(θ).

In our approach, τ is observed and f is a function dependent on the choice of the

copula. For example, for a Gumbel copula, τ = θ−1
θ
. As a consequence, it is possible

to estimate θ as

θ = f−1(τ).

The first step of our process is thus to estimate the parameter θ based on the

observation of τ . This estimation will be made for each kind of copula.

Then, we will have to make a choice between all those copula to find the copula

which best fits our distribution, and describe accurately the dependence structure

between the data. Intuitively, we will choose the copula type which lies the closest

to the empirical dependence structure. Namely, the optimal copula is the function

which minimizes the observed errors relatively to the empirical copula function.

The principle for selecting the optimal copula is simple. For this purpose, we will

introduce a discrete L2 norm which will measure the distance between a theoretical

copula C which will belong to our copula set C̄ and the empirical copula Ĉ that will

be estimated on the observed data. Thus, we will obtain the optimal copula C∗ that
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is to say the copula which gives the best description of the dependence structure of

our sample of data.

To do so, we will first introduce the distance d̂2 of the discrete L2 norm:

d̂2(C, Ĉ) =

(
T∑

t1=1

T∑
t2=1

[
C(
t1
T
,
t2
T

)Ĉ(
t1
T
,
t2
T

)

]2
)1/2

,

where C belongs to C̄, and T corresponds to the number of observations. Therefore,

the optimal copula function C∗ describing the dependence structures we study, given

our copula set C̄, has to satisfy:

C∗ = argminC∈C̄ d̂2(C, Ĉ) .

Another method can be used to select the optimal copula function among a set of

copula functions. This method has been first described by Genest and Rivest [11] and

it is based on the observation of an unobserved random variable Zi = F (X1i, X2i)

that has a distribution function K(z) = P(Zi ≤ z). Genest and Rivest showed

that this distribution function is related to the generator of an Archimedean copula

function through the expression:

K(z) = z − ϕ(z)

ϕ′(z)
.

The identification of ϕ is thus made in three steps:

1. Estimate the Kendall’s correlation coefficient.
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2. Construct a semi-parametric estimate of K by first determining the pseudo-

observation Zi = number of X1j, X2jsuch that X1j < X1iand X2j < X2ifor

i = 1, · · · , n. And then construct the estimate of Kas Kn(z) =proportion of

Zi ≤ z.

3. Construct a parametric estimate of K using the relationship Kϕ(z) = z− ϕ(z)
ϕ′(z) .

For example, we can test different types of copula by first estimating Kendall′sτ

to calculate an estimate of the parameter of the copula function. We then use this

estimate of the copula to further estimate the generator of the copula. Finally, we

use this estimate of the generator to estimate Kϕn .

We then repeat Step 3 for different choices of ϕ. We will finally compare these

results with the semi-parametric estimate constructed in step 2, and select the choice

of ϕso that the parametric estimate Kϕnmost closely resembles (in terms of L2norm)

the semi-parametric estimates.

This algorithm will be used in part 4.4 in order to model the joint distribution

of equity returns by choosing the most appropriate copula function.
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4 Application to 1st-to-default Basket CDS Pricing

Before going through the pricing process, let’s have a look at a very simple example

which will remind us of the reason why studying correlation is a paramount prob-

lem in pricing Basket CDS. Let’s take the example of a simple Basket CDS, which

reference to two bonds. Assume that the default correlation between the two assets

is equal to zero, which means that if a company defaults, we cannot make any as-

sumption about the likeliness of default of the other company. Then it is intuitively

clear that the probability of one default in the Basket CDS is strictly greater than

the probability of two defaults. Thus, the value of the 1st-to-default Basket CDS

is greater than the value of 2nd-to-default Basket CDS. Now let’s assume that the

default correlation between the two bonds in the Basket CDS is equal to one. Then,

as soon as a bond defaults, the other one defaults too, and the value of the 1st-to-

default Basket CDS and the 2nd-to-default Basket CDS are equal. This very simple

example shows us that the study of default correlation is a key point in the valuation

of such credit derivatives.

Default correlation is also a time dependent problem. To illustrate this, we can

consider the following very intuitive example. Take two companies whose default

correlation is not equal to zero. Then we can assert that the probability that both

companies default within two years is greater than the probability that both compa-

nies default within one year.

In this chapter, our aim is to describe how we can perform the pricing of a very

simple Basket CDS. The first subsection gives the process used to price a 1st-to-

default Basket CDS. Then, we present the result of this pricing and compare the
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price obtained by different dependence structures which are modeled by different

copula functions. Finally, we apply another very interesting algorithm described in

chapter 3.4 which enables us to choose the best copula function to fit a given data-set.

4.1 The Pricing Process

The pricing process using copula functions is much more simple than the direct use

of joint distributions, because it lets us separate the study of the marginal functions

(the credit curves), and the dependence between those marginal functions. This way,

we can use different copula functions to model different kinds of dependence between

the marginal functions. This pricing process has been extensively described by Li

[18].

As a copula function based model can be very complicated to fit to the market

data, we will not study in this thesis a market based model. Indeed, our portfolio

will be made with simplified bonds. The default characteristics of those simplified

bonds will not be extracted from market data, but from Moody’s table of default

probabilities. Thus, this very simple model aims to understand the basic mechanisms

implied by the utilization of copula functions.

In this section, we will use a portfolio of 6 credits with a recovery rate equal to

zero (i.e. in case of a default, the credit is worth zero). The correlation between each

credit is supposed to be equal. However, this assumption is very easy to relax, but

using different correlation coefficients will hide the effect of dependence on the price
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of the nth-to-default Basket CDS. Finally, the product priced is a contract which

pays 1$in case of the default of one of the credit of the portfolio 11.

We now describe the process to price a 1st-to-default basket CDS. This process

uses the Monte-Carlo simulation to simulate a random sample. It means that we

will not derive the price of the basket CDS from a closed formula but we will choose

random variables which will be used to model the default time. Then, we will use

the dependence structure given by the copula function to calculate the price of the

basket CDS. We will then do this random choice again (typically several thousand

times) and each time calculate a price for the basket CDS. Finally, the average of

the prices will converge to the price of the basket CDS.

As a consequence each Monte-Carlo simulation will be split into three main steps:

Model the joint distribution with the copula: In our study, we will use the

multivariate normal copula function (cf. 2.2.1). The first step is to simulate

Y1, Y2, · · · , Yn from an n-dimensional normal distribution with correlation co-

efficient matrix Σ.

Obtain the corresponding marginal distributions: After obtaining the sam-

ple Y1, Y2, · · · , Yn, we will use a percentile-to-percentile mapping to obtain the

default times T1, T2, · · · , Tn using Ti = F−1
i (N(Yi))

12.

Calculate the price of the 1st-to-default basket CDS: Knowing the first de-

fault time in the portfolio, we can now calculate the price of our derivative.
11This pricing also uses risk-free interest rate. This interest rate will always be equal to 5% in

our applications
12Fi will be derived from Moody’s historical default times
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To conclude, remember that the utilization of copula functions in our study will

let us study, in part 4.3, portfolios which have different dependence structures and

see that the prices of such basket CDS is a function of the dependence structure.

4.1.1 Model the joint distribution with the copula

A widely used method for drawing a random vector Y from the n-dimensional mul-

tivariate normal distribution with mean vector µ (in our study, this vector is equal

to zero) and correlation matrix Σ (required to be symmetric and positive definite)

works as follows:

1. Compute the Cholesky decomposition (matrix square root) of Σ, that is, find

the unique lower triangular matrix A such that LLT = Σ.

2. Let Z = (z1, . . . , zn) be a vector whose components are n independent standard

normal variates.

3. Let Y be LZ.

4.1.2 Obtain the corresponding marginal distributions

The simulation of the time to default is obtained from the cumulative default prob-

abilities given by Moody’s. To obtain Ti, we compare N(Yi) with Moody’s data.

However, as the cumulative default probability is not a continuous probability (ie

it is only given for discrete time: each time a year), we have to make a choice to

calculate the time to default: 13

13In this study, we will use the first possibility, and keep it to be consistent
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1. We can suppose that if N(Yi) is less than or equal to the cumulative default

probability at time Ti, then we consider that the default occurs at time Ti.

2. We can suppose that if N(Yi) is less than or equal to the cumulative default

probability at time Ti, then we consider that the default occurs at time Ti−1.

3. We can suppose that if N(Yi) is less than or equal to the cumulative default

probability at time Ti, we will perform a linear regression of the cumulative

default probability between Ti and Ti−1. Thus, the default time will be equal

to

Ti
Ci − Ci− 1

Ci −N(Yi)

with Ci, the cumulative default probability for the year i.

4.1.3 Calculate the price of the 1st-to-default basket CDS

To perform the calculation of the price of the Basket CDS, we simply compute the

present value of the 1$ payoff and finally make the average over all the Monte-Carlo

simulation. In order to compute the present value, we use the result we proved in

1.1.

4.2 Results

Thanks to a VBA program based on the algorithm described, we will be able to

get some insight about basket CDS and their parameters. To perform the Monte-

Carlo algorithm study, we first study the convergence of this algorithm, for several

numbers of simulations, and the precision of those simulations. Then, we study the
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dependence of the portfolio to different parameters. The first which will be studied

is the correlation coefficient between the credit, which is assumed to be constant and

equal between all the credits. The second parameter is the influence of the lifetime

of the portfolio. Finally, we also study the influence on the price of the portfolio of

an increase of n, the number of defaults before the 1$ payment.

The portfolio that we study is made of 6 credits: 2 are rated Aaa, 2 are rated

Baa1 and the two remaining are rated Caa-C. If no other indication is given, the

lifetime of the portfolio is equal to 5 years, and the correlation coefficient is equal to

0.3. This portfolio will be referred in the following as the standard portfolio.

Figure 2: Representation of the price of the 1st-to-default standard Basket CDS as

a function of the number of simulations.

Figure 2 shows the convergence of the Monte-Carlo algorithm. As we can see

the precision increases with the number of simulations (y-axis), as the incertitude on

the 1st-to-default Basket CDS price (x-axis) decreases. So that the average price of

0, 6969$ (for 10 samples) is obtained, with a standard deviation of 3.4 ∗ 10−3.
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Another calculation with 100 000 simulations was performed. The result is a

mean price of 0.6975$, with a standard deviation of 1.3 ∗ 10−3.

Figure 3: Evolution of the price of the 1st-to-default standard Basket CDS as a

function of the correlation coefficient

Figure 3 represents the evolution of the price of the 1st-to-default standard Basket

CDS when the correlation coefficient changes. We can see that when the correlation

coefficient increases, the price decreases. The reason is that when the correlation

coefficient increases, all the entities default times are getting closer. We can consider

the limit case of a correlation coefficient equal to 1. Then, it is obvious that if all

the bonds have the same rating, they will default at the same time. Thus, when

the correlation coefficient increases, the prices of all nth-to-default portfolios tend to

become equal. And, as we can see in Figure 4, the price of a nth-to-default Basket

CDS tends to decrease as n increases.

Figure 5 represents the evolution of the price of the 1st-to-default Basket CDS

when the lifetime of the portfolio increases. We can see that when the lifetime of
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Figure 4: Evolution of the price of the nth-to-default standard Basket CDS as a

function of n, the number of defaults before the payment is made

Figure 5: Evolution of the price of the 1st-to-default standard Basket CDS as a

function of the lifetime of the portfolio

the portfolio increases, the price also increases, which is consistent with the fact

that if the portfolio’s lifetime is greater, the probability of a default in the portfolio
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intuitively increases.

4.3 Comparison of the different dependence structures

In the previous sections, we have seen how to price a 1st-to-default basket CDS

with the Gaussian copula function. We have been able to see that the price of this

basket CDS changes with respect to the time until maturity of the portfolio, the

rating of the credits included, or the correlation coefficient between those different

credits. Another very important parameter which has to be studied when pricing

a basket CDS is the dependence structure of the default correlation between the

different names of the portfolio. As we have seen before, this dependence structure

can be model by different copula functions translating for example the fact that the

correlation between different names of a portfolio may increase if the credit spreads

increase sharply. As a consequence, we will model a very simple basket CDS in order

to show that its price varies when the copula functions are different. In our study,

we will model this basket CDS with 6 different copula functions:

• The independent Copula function;

• The perfectly correlated Copula;

• The Gaussian Copula;

• The Gumbel Copula;

• The Frank Copula;

• The Clayton Copula.
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Our numerical example will be based on a portfolio of two credits. The payoff will

be one dollar if any of the credits defaults. We can assume that the defaults occur for

individual assets according to a Poisson process with a deterministic intensity called

hazard rate h. As a consequence, the default times T are exponentially distributed

with a mean equal to 1
h
. In our example, we will use a Monte-Carlo simulation

with 30 000 trials. For each trial, we will draw uniform bivariates from the chosen

copula, and then derive the default times from the inverse cumulative exponential

distribution, and finally derive the payoff.

Finally, in order to check the results given by our Monte-Carlo simulation, we can

derive the analytical solution for the independent case, given the notation explained

in section 1.1 (7):

V =
h′

r + h′
∗ (1− e−t(r+h′)).

With h′ = h ∗ n in the case of the independent copula function.

In order to be able to compare the different dependence structures, we will use

the same Kendall’s τ for all the copula functions.

Concerning the Gaussian copula function, we will use the standard bivariate

normal distribution with correlation coefficient ρ:

C(u, v, ρ) =

∫ Φ−1(u)

−∞

∫ Φ−1(v)

−∞

1

2Π
√

1− ρ2
e
−−(s2−2ρ∗s∗t+t2)

2(1−ρ2) dsdt,
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Duration Perf. Corr Independent Gaussian Clayton Gumbel Frank

2 Years 0,178 0,310 0,239 0,211 0,244 0,235

4 Years 0,301 0,455 0,356 0,362 0,383 0,373

6 Years 0,401 0,550 0,438 0,472 0,482 0,474

Table 1: Price of the Basket CDS with h=0,1 and r=0,1

Duration Perf. Corr Independent Gaussian Clayton Gumbel Frank

4 Years 0,0024 0,0021 0,0027 0,0028 0,0030 0,0029

Table 2: Standard Deviation of the price of the Basket CDS with h=0,1 and r=0,1,

calculated over 10 times 30 000 simulations

where φ and Φ are the univariate standard normal density and cumulative distribu-

tion functions, respectively. In our computation, we will use a Taylor expansion for

simplicity reasons:

C(u, v, ρ) = uv + ρφ(Φ−1(u))φ(Φ−1(v)).

Duration Independent

2 Years 0,301

4 Years 0,466

6 Years 0,556

Table 3: Analytical Price of the Basket CDS with h=0,1 and r=0,1
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Duration Perf. Corr Independent Gaussian Clayton Gumbel Frank

2 Years 0,092 0,192 0,145 0,107 0,138 0,134

4 Years 0,169 0,298 0,229 0,201 0,233 0,225

6 Years 0,232 0,373 0,288 0,276 0,302 0,294

Table 4: Price of the Basket CDS with h=0,05 and r=0,1

In the previous tables, which show the price of our simple basket CDS, we can

notice that the price inferred by a different dependence structure can differ greatly

from the Gaussian copula. For short maturities, the price of the CDS can double

if we consider a perfect correlation or on the contrary no correlation at all. The

difference of price between the other copula functions can be as great as 15%. Thus

the dependence structure embedded in the portfolio is of great importance for a

correct pricing of that kind of product. Moreover, the standard deviation obtained

from our simulations shows that the result of simulation has an interesting accuracy.

We can also notice that the price of the basket CDS depending on the copula

function chosen always verifies: PClayton < PFrank < PGumbel. Indeed, the Clayton

copula function shows a heavy tail near 0 whereas the Gumbel copula has a heavy

right tail. As a greater correlation implies a lower price, the Clayton copula will put

more dependence on the default occurring in a near future whereas Gumbel copula

will translate the contrary.

Concerning the Frank copula, its structure should be closer to the Gaussian cop-

ula. However the Taylor expansion used for simplicity reasons tends to hide this

phenomenon. However, for short time until maturity where this expansion is closer
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to the real form, we can see that the behavior of the Frank copula and the Gaussian

copula are indeed similar.

4.4 How to choose between different dependence structures?

In the preceding sub-section, we compared different dependence structures, and were

able to conclude that depending on the dependence structure we choose, the price

of the basket CDS will be different. As a consequence, one of the missions of a

basket CDS trader will be to determinate which copula function describes the most

accurately the portfolio he wants to model. To do so, we will apply the algorithm

of a choice of copula to pairs of UK stocks. Indeed, we have seen in 1.4.2 that

default correlation between two names of a basket credit derivative can be estimated

from equity returns thanks to the model described by Merton [20]. We will thus

use the algorithm described in 3.4 to choose the best copula which will describe the

dependence structure between two stocks, which is a proxy for the default correlation

of those stocks.

We will now apply the algorithm seen in 3.4. The main idea of this algorithm is

based on the measurement of the distance between the empirical copula, described

by the data, and a copula function (like Frank’s copula for instance). The objective

is to choose the copula which is closest to the empirical copula, which means that

the copula function will describe most accurately the dependence structure between

the two time-series we are studying. The goal is then to use this copula function

in the pricing of the basket CDS in order to obtain the price which will best fit the
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Figure 6: Marginal distribution of HSBC daily returns

dependence structure of the portfolio, and thus the price which will be the closest to

the market price.

As our goal is not to draw conclusions on the dependence structure of the financial

markets, but just to present a very powerful algorithm to make a choice of copula,

we will only focus our study on 2 datasets which will be the daily returns of 3 stocks:

HSBC, Royal Bank of Scotland and BP. The daily returns will be taken from May

25th 1999 to May 25th 2007. This dataset represents 1981 daily returns.
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Figure 7: Daily returns of HSBC (x-axis) against RBS (y-axis)

Before focusing on the results of our algorithm, we should first have a very quick

look at the structure of our marginal distribution. For example, let’s concentrate on

HSBC. The daily returns over 8 years have a standard deviation of 1.56%. Moreover,

we have represented in figure 6, the distribution of the daily returns of HSBC, com-

pared to the Gaussian distribution. It is very clear looking at that distribution, that

the marginal distribution cannot be considered as being Gaussian. Moreover, we have

Frank Copula Clayton Copula Gumbel Copula

Parameter of the copula 1,04 0,63 1,32

Distance 2, 8× 10−2 9, 5× 10−2 6, 2× 10−2

Table 5: Distance to the empirical copula for HSBC-BP, Kendall’s tau = 0,24
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Figure 8: Daily returns of HSBC (x-axis) against BP (y-axis)

calculated the skewness and kurtosis of this distribution which are respectively equal

to −0, 06 and 5, 98, compared to the Gaussian distribution whose skewness equals

0 and kurtosis equals 3. As a consequence, the utilization of the semi-parametric

method of estimation for a copula is very accurate, because we don’t have to make

any hypothesis on the marginal distribution of our dataset. This is one of the most

important properties of semi-parametric estimation.

Frank Copula Clayton Copula Gumbel Copula

Parameter of the copula 2,53 1,05 1,52

Distance 3, 7× 10−2 10, 4× 10−2 6, 0× 10−2

Table 6: Distance to the empirical copula for HSBC-RBS, Kendall’s tau = 0,34
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Figure 9: Density of the daily returns(z-axis) of HSBC (x-axis) against RBS (y-axis)

Figure 10: 3-d representation of the empirical copula function for the HSBC-RBS

couple

Figure 11: Level curves obtained for theHSBC-RBS couple from different copula

function with the same Kendall’s tau: from top right to bottom left, the empirical

copula, the Gumbel copula, the Clayton copula and the Frank copula

To continue our study, we have drawn 2 graphs: figures 7 and 8 which show

the correlation of the daily returns of our two couples of stocks: HSBC and RBS

and HSBC and BP. Moreover, figure 9 shows the 3-dimensional density of the daily
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returns of HSBC and RBS.

The aim of our study is now to determinate which copula function among a given

set of copula function is the best one to fit the empirical market data. For our study,

the set of copula functions will be the Frank copula, the Clayton copula and the

Gumbel copula. Thus, as we have described in 3.4, we will draw from the market

data the empirical copula. Then, we will calculate the Kendall’s τ of our dataset

which will enable us to determine the parameter of each of our copula functions.

Finally, we will calculate d̂2, the distance between our empirical copula and the

studied copula. The copula which will be the closest in terms of distance to our

empirical copula will be the one describes most accurately the dependence structure

between our two stocks.

Even if the goal of this section is to present the result of the algorithm we pre-

sented in part 3.4, we will quickly recall the way to derive those results. The input

of our program is a dataset given by Reuters which is the closing price of two stocks.

From those closing prices, we derive a daily return from which we will calculate the

Kendall’s τ (see part 2.3.2 for the formula). From this dataset, we will also derive

its empirical copula function, using the method described in section 2.2.4. As we

described in section 3.4, we will then use Genest and Rivest [12] results exposed in

section 3.3.1 in order to calculate the distribution function of the Archimedean copula

function. This distribution function (ie the function K) will be represented in figures

12 and 13 for the two examples we study. Finally, we will measure the distance be-

tween the distribution function of the empirical copula function and the distribution

function of the Archimedean copula function. The copula function which is closest
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to the empirical copula function will be the copula function which will describe the

dependence structure the most accurately.

As a reminder of the results and details of the algorithm, we will present again

its different steps:

1. Estimate the Kendall’s correlation coefficient of our dataset.

2. Construct the empirical copula by first determining the pseudo-observation

Zi = number of X1j, X2jsuch that X1j < X1iand X2j < X2ifor i = 1, · · · , n.

And then construct the estimate of Kas Kn(z) =proportion of Zi ≤ z.

3. Construct a parametric estimate of Kusing the relationship Kϕ(z) = z −
ϕ(z)
ϕ′(z)

which will use the Kendall′sτcalculated in the first step. It will be the

estimate of the copula we want to model (ie in C̄).

4. Finally calculate the distance between the empirical copula and the copula we

want to model:

d̂2(C, Ĉ) =

(
T∑

t1=1

T∑
t2=1

[
C(
t1
T
,
t2
T

)Ĉ(
t1
T
,
t2
T

)

]2
)1/2

.

In tables 5 and 6 we have compiled the results of our study. The parameter of the

copula function has been calculated using the empirical value of the Kendall′sτ we

have calculated from our data-set, and the formula from chapter 3.2. On the second

line, we have presented the distance of the copula function to the empirical copula.

In both cases, we can see that the closest copula function to the empirical copula

function is Frank copula. This result could be explained by the fact that we have

a good correlation for small returns, however, for larger returns, we have a wider
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Figure 12: Comparison of the distribution (ie the function K) of the copula function

for the HSBC-RBS couple

distribution. A similar result has been described by Gatfaoui [10]. In an article

studying the correlation between index returns and credit spreads, she concluded

that Frank copula was the best copula to describe the dependence structure between

index returns and credit spreads. The interest of this conclusion is that we can

now use the Frank copula function to model the dependence structure between stock

returns, and as a proxy between default probabilities. Then, we can conclude that

the market price we should obtain for a basket CDS is closer to the price obtained

when we model the dependence structure of the portfolio with a Frank copula.

91



Figure 13: Comparison of the distribution (ie the function K) of the copula function

for the HSBC-BP couple
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Conclusion

The description of dependence is paramount in finance. Indeed, dependence is

often described as a mere number which is the correlation coefficient and seldom

described more completely like the structure which can be achieved using copula

functions. Moreover, the normal multivariate distribution is still widely used in

finance, whereas it does not describe accurately the behavior of portfolios.

In this thesis, we have introduced some tools to understand the basic concepts

of the copula function theory which makes it possible to model this dependence

structure precisely. Indeed, we have seen that the family of the copula functions is

a very wide family, where each copula describes a different dependence structure.

We have particularly focused our attention on the Archimedean copula functions

because this family of copula functions is easily tractable and has many interesting

properties. Moreover, we have seen that the semi-parametric estimation is a very

powerful and tractable tool to estimate copula functions and compare the different

dependence structures they model. Finally, we explained the methods to realize the

choice of the best copula function given a set of data, using the empirical copula

functions.

In order to understand the application of copula functions in the pricing of credit

derivatives, we applied most of the results demonstrated in this thesis in order to

realize the pricing and the study of a basket CDS. Throughout those applications,

we studied the impact of the different parameters of the portfolio. We particularly

studied the impact of the dependence structure.
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