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Summary

XML emerges as the standard for representing and exchanging electronic data

on the Internet. With increasing volumes of XML data transferred over the In-

ternet, retrieving relevant XML fragments in XML documents and databases is

particularly important. Among several XML query languages, keyword search is

a proven user-friendly approach since it allows users to issue their search needs

without the knowledge of complex query languages and/or the structures of un-

derlying XML databases.

Most prior XML Keyword search techniques are based on either tree or graph

(or digraph) data models. In the tree data model, SLCA (Smallest Lowest

Common Ancestor) semantics is generally simple and efficient for XML keyword

search. However, SLCA results may not be a good choice for direct result display

without using application semantic information. Moreover, it cannot capture the

important information residing in ID references which is usually present in XML

databases. In contrast, keyword search approaches based on the general graph

or directed graph (digraph) model of XML capture ID references, but they are

computationally expensive (NP-hard).

In this thesis, we propose Tree+IDREF data model for keyword search in

XML. Our data model effectively captures XML ID references while also lever-

aging the efficiency gain of the tree data model. In this model, we propose novel

v



Lowest Referred Ancestor (LRA) pair, Extended LRA (ELRA) pair and ELRA

group semantics as complements of SLCA. We also present algorithms to effi-

ciently compute the search results based on our semantics.

Then, we adopt ORA-SS to exploit underlying schema information in iden-

tifying meaningful units of result display. We study and propose rules based on

object classes and relationship types captured in ORA-SS to formulate result

display for SLCA, ELRA pair and ELRA group results.

We also developed a keyword search demo system based on our approach

with DBLP real-world XML database for the research community to search for

publications and authors. Some intuitive result ranking is implemented in the

demo system. The demo prototype is available at:

http://xmldb.ddns.comp.nus.edu.sg

Experimental evaluation shows keyword search based on our approach in

Tree+IDREF data model achieves much better result quality than that based

on SLCA semantics in the tree model; and much faster execution time with com-

parable or better result quality in terms of precision of top-k answers than that

based on the digraph model.
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Chapter 1

Introduction

1.1 Introduction to XML

XML (eXtensible Markup Language) is a markup language for documents con-

taining nested structured information. Nowadays, XML emerges as the standard

for representing and exchanging electronic data on the Internet.

An XML document consists of nested XML elements starting with the root

element. Each element can have attributes and values in addition to nested

subelements. In this thesis, unless otherwise specified, we do not make explicit

distinction between XML elements and attributes; and we use XML structural

nodes or simply nodes to refer to both types. In many XML databases, besides

nested relationships, there are also IDs (identifiers) and ID references, represented

as IDREFs, to capture node relationships.

Due to the nested structure, XML documents are usually modeled as rooted,

labeled trees. In most contexts, a labeling scheme is adopted to assign a numerical

label to uniquely identify each node in an XML tree structure. With focus on

XML keyword search, we adopt Dewey number labeling scheme [4,12] since it is
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commonly used for XML keyword search applications (i.e. [35,42,46] etc).

For example, Figure 1.1 shows an XML document modeled as a rooted tree for

a Computer Science department in a university that maintains information about

Students, Courses, Lecturers, etc. We include Dewey labels in the figure for later

illustration. Besides the nested hierarchical structure, the XML document of Fig-

ure 1.1 also includes ID references (i.e. IDREF edges) denoted by dashed lines to

indicate the Lecturer-Teaching relationship between lecturers and the courses they

are teaching. Each ID reference is captured by a value link from an XML IDREF

attribute to an XML element with ID attribute such that the IDREF and ID

attributes have the same text value. For example, there is an IDREF edge from

node @Course:0.2.0.2.0 to Course:0.1.2 since the text value of @Course:0.2.0.2.01

is the same as the identifier (i.e. @id) of Course:0.1.2, which is “CS502”. Note

we show the reference pointer from @Course:0.2.0.2.0 to Course:0.1.2 directly in-

stead of @id:0.1.2.0 simply because @id:0.1.2.0 is an identifier of Course:0.1.2.

We will explain more details about how ID (identifier) and ID references can be

represented with XML schema languages in Chapter 3.

1.2 Keyword search and motivation

With increasing volumes of XML data transferred over the Internet, retrieving

relevant XML fragments in XML documents and databases is particularly im-

portant. Several query languages have been proposed, such as XPath [9] and

XQuery [11]; and researchers have devoted a great amount of work ( [8,14,16,19,

29,37,38,43], etc) to efficient processing of these query languages.

However, XPath and XQuery are usually too complex for novice users to

1We show the link without text values of XML IDREF attributes (i.e. @Course) for simplicity.
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0

Courses

0.1

Lecturers

0.2

Course

0.1.0

... Lecturer

0.2.1

Lecturer

0.2.2

...

Title

0.1.0.1

“Advanced 

Topics in AI”

...

Students

0.0 ...

Name

0.2.2.1
Name

0.2.1.1

“David 

Jones”
“Marry 

Lee”

...

Teaching

0.2.2.2

Tree Edge

IDREF Edge

@id

0.1.0.0

“CS501”

@id 

0.2.1.0

...

@id

0.2.2.0

...

...

Teaching

0.2.1.2

Course

0.1.2

Title

0.1.2.1

“Advanced 

Topics in 

Database” Prereq

0.1.2.2

“CS502”

...
...

@id

0.1.2.0

@Course

0.1.2.2.0

@Course

0.2.2.2.0
@Course

0.2.1.2.0

Course

0.1.1

Title

0.1.1.1

“Database 

Management”

...@id

0.1.1.0

“CS202”

...

@id 

0.2.0.0

Lecturer

0.2.0

Name

0.2.0.1

“John 

Smith”
Teaching

0.2.0.2

...

...

...
@Course

0.2.0.2.0

Figure 1.1: Example XML document of computer science department with Dewey
labels (Nodes prefixed with @ are XML attributes instead of XML elements)

master. Moreover, they require users to have a clear understanding of the under-

lying schema information, which potentially prohibits even experienced database

people from issuing queries against an unfamiliar XML database. As a result,

keyword search in XML recently drawn the attention of many researchers due to

its proven user-friendliness that allows users to issue their search needs without

the knowledge of complex query languages and/or the structures of underlying

XML databases.

The majority of the research efforts in XML keyword search focus on keyword

proximity search in either the tree model or the general graph (or digraph) model.

Both approaches generally assume a smaller sub-structure of the XML document

that includes all query keywords indicates a better result.

3



1.2.1 Tree model for XML keyword search

In the tree model, SLCA (Smallest Lowest Common Ancestor) ( [35, 42, 46])

is a simple and effective semantics for XML keyword proximity search. Each

SLCA result of a keyword query is an XML subtree rooted at one XML node2

that satisfies two conditions. First, the node covers all keywords in its subtree;

second, it has no single proper descendant subtree to cover all query keywords.

For example, in Figure 1.1, the SLCA result of keyword query “CS202 Database

Management” is the Course:0.1.1 node (i.e. Course node with Dewey label 0.1.1).

However, the SLCA semantics based on the tree model does not capture ID

reference information which is usually present and important in XML databases.

As a result, SLCA is insufficient to answer keyword queries that require the in-

formation in XML ID references and may return a large tree including irrelevant

information for those cases. For example, in Figure 1.1, consider a search in-

tention that a searcher wants to look for whether lecturer Smith teaches some

Database course and also the information of the course and/or Smith if so. In

this case, “Smith Database” is a reasonable keyword query. However, the SLCA

result for this query without considering ID references is the root of the whole

XML database, which is overwhelming and will frustrate the searcher.

Moreover, SLCA results may not be a good choice for direct result display

without using application semantic information. For example, the SLCA result

for query “Database Management” in Figure 1.1 is Title:0.1.1.1 of a course. How-

ever, it is not informative to display just the title without other information of

the course. In this case, it is better to display the information of the course (i.e.

Course:0.1.1) with the matching title.

2In the following, we use the term subtree and node interchangeably to refer to a subtree
rooted at the corresponding node when there is no ambiguity.
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Tree Edge

IDREF Edge

Reduced subgraph (a) Reduced subgraph (b)

Lecturer

0.2.0

Name

0.2.0.1

“Jone 

Smith”
Teaching

0.2.0.2

Course

0.1.1

“Database 

Management”

Course

0.1.2

Prereq

0.1.2.2

Title

0.1.1.1 @Course

0.2.0.2.0@Course

0.1.2.2.0

Lecturer

0.2.0

Name

0.2.0.1

“Jone 

Smith”

Teaching

0.2.0.2

Course

0.1.2

Title

0.1.2.1

“Advanced 

Topics in 

Database” @Course

0.2.0.2.0

Figure 1.2: Example reduced subgraph results for query “Smith Database” in
Figure 1.1

1.2.2 Graph model for XML keyword search

On the other hand, XML documents can be modeled as graphs (or digraphs)

when ID reference edges are taken into account. With the graph (or digraph)

model, a keyword search engine captures a richer semantics than that based on the

tree model. The key concept in the existing semantics is called reduced subgraph

( [20]). Given an XML graph G and a list of keywords K , a connected subgraph

G′ of G is a reduced subgraph with respect to K if G′ contains all keywords of

K, but no proper subgraph of G′ contains all these keywords.

For example, with the XML document shown in Figure 1.1, some possible

reduced subgraph results for query “Smith Database” are shown in Figure 1.2.

Note, following [30], when there is a forward edge from node u to v in the

digraph model, we also consider there is a backward edge from v to u in this thesis.

This is to admit more interesting sub-structures in the results. For example,

in Figure 1.1, both Lecturers John Smith and Marry Lee teach Course “CS502

Advanced Topics in Database” shown in Figure 1.3. If we do not consider the

backward edges from Course nodes to (the subtrees of) Lecturer nodes, we will

5



Tree Edge

IDREF Edge

Course

0.1.2

Title

0.1.2.1

“Advanced 

Topics in 

Database”
Prereq

0.1.2.2

“CS502”

@id

0.1.2.0

...

@id 

0.2.0.1

Lecturer

0.2.0

Name

0.2.0.1

“Jone 

Smith”

Teaching

0.2.0.2
...

...

...

@Course

0.2.0.2.0

Lecturer

0.2.1

Name

0.2.1.1

“Marry 

Lee”

...
@id 

0.2.0.1

...
Teaching

0.2.1.2

...

@Course

0.2.1.2.0

Figure 1.3: Abstract connection of two lecturers teaching the same course

not be able to find the meaningful connection pattern that Smith and Lee teach

the same course for keyword query “Smith Lee” since we cannot reach Lecturer

nodes from Course nodes.

Although there exist very efficient algorithms on SLCA with the tree model

(e.g. [23, 42,46]), unfortunately, to our knowledge, there is no efficient algorithm

for reduced subgraphs. The reason is twofold. Firstly, the number of all reduced

subgraphs may be exponential in the size of G. In contrast, the number of

LCA subtrees is bounded by the size of the given XML tree. Note that different

reduced subgraphs present different connected relationships in the real world; and

most of them cannot be easily considered as redundant results. Secondly, if we

consider enumerating results by increasing sizes of reduced subgraphs for ranking

purposes according to the general assumption of XML keyword proximity search,

this problem can be NP-hard; the well-known Group Steiner tree problem [15]

for graph can be reduced to it (see reduction approach in [34]). Although there

are a multitude of polynomial time approximation approaches (e.g. [15,22]) that

can produce solutions with bounded errors for minimal Steiner problem, they

require an examination of the entire graph. These algorithms are not desirable

6



since the overall graph of XML keyword search is often very large.

1.3 Contribution

Motivated by the limitations of the tree and general graph (or digraph) mod-

els for XML keyword search, in this thesis, we study a novel special graph,

Tree + IDREF model, to capture ID references which are missed in the tree

model; and meanwhile to achieve better efficiency than the general graph model

by distinguishing reference edges from tree edges in XML to leverage the efficiency

benefit of the tree model.

In particular, we propose novel LRA pair (Lowest Referred Ancestor pair)

semantics. Informally, LRA pair semantics returns a set of lowest ancestor node

pairs such that each node pair (and their subtrees) in the set are connected by

ID references and the pair together cover all keywords in their subtrees. Since

ID references in XML documents usually indicate relevance between XML nodes,

it is reasonable to speculate that such connected and relevant pairs covering all

keywords are likely to be relevant to the keyword query. For example, consider

the query “Smith Database” in Figure 1.1 again. The result of LRA pair se-

mantics is the pair of nodes Lecturer:0.2.0 and Course:0.1.2 that are connected

by ID reference and together cover all keywords in their subtrees, which can be

understood as Smith teaches the course indicated by the ID reference. Then,

we extend LRA pairs that are directly connected by ID references to node pairs

that are connected via intermediate node hops by a chain of ID references; which

we call ELRA pair (Extended Lowest Referred Ancestor pair) semantics. Finally,

we further extend ELRA pair to ELRA group to define the relationships among

two or more nodes which together cover all keywords and are connected with ID

7



references.

The contributions of this thesis are summarized as follows:

(1) We introduce Tree + IDREF data model for keyword proximity search

in XML databases. In this model, we propose novel LRA pair, ELRA pair and

ELRA group semantics as complements of well-known SLCA to find relevant

results for keyword proximity search. The data model and search semantics are

general and applicable to most XML databases that maintain ID references.

(2) We study and analyze efficient polynomial algorithms to evaluate keyword

queries based on the proposed semantics.

(3) We further discuss some guidelines for result display based on application

schema semantics which can be captured in ORA-SS [44] so that we can provide

more meaningful search results when information of schema semantics is available.

(4) We developed ICRA keyword search prototype for DBLP dataset to pro-

vide keyword search service to research community to search for publications and

authors. Our ICRA system is available at: http://xmldb.ddns.comp.nus.edu.sg.

(5) We conduct extensive experiments with our keyword search semantics.

The results prove the superiority of the proposed model and search semantics

over existing approaches.

1.4 Thesis organization

In the rest of the paper, we first review related work in Chapter 2.

In Chapter 3, we discuss the background and data model of this work. It

includes a brief introduction to XML, two existing XML schema languages (DTD

and ORA-SS) and Dewey labeling scheme. We also emphasize the existence of

ID references in XML, and propose our Tree + IDREF data model.

8



In Chapter 4, we introduce proposed keyword search semantics, including

LRA pair, ELRA pair and ELRA group semantics. We also address their ap-

plicability to general XML databases. A detailed study of data structures and

algorithms to compute results based on our search semantic are also presented in

this chapter.

In Chapter 5, we discuss some guidelines for result display in XML keyword

search based on semantic information of underlying XML database which can be

captured in ORA-SS. We also present descriptions of the features of our online

keyword search demo prototype for DBLP bibliography.

In Chapter 6, we experimentally compare our Tree + IDREF data model with

the tree and digraph models for keyword search. We also show the effectiveness

of our online demo system in terms of search result quality.

Finally, we conclude this thesis and propose the future work in Chapter 7.

Some of the material in this thesis appears in our papers [18], [17] and [7].

9



Chapter 2

Related Work

2.1 XML keyword search with the tree model

Extensive research efforts have been conducted for XML keyword search in the

tree data model ( [23, 26, 35, 40, 42, 45, 46]) based on LCA (Lowest Common

Ancestors), SLCA (Smallest Lowest Common Ancestors) semantics and their

variations.

The first area of research relevant to this work is the computation of LCAs

(Lowest Common Ancestors) of a set of nodes based on the XML tree model .

Schmidt et al. [40] introduce the “meet” operator to compute LCAs based on

relational-style joins. The semantics of the meet operator is the nearest concept

(i.e. lowest ancestor) of XML nodes. It operates on multiple sets (i.e. relations)

where all nodes in the same set have the same prefix path. The meet operator

of two nodes v1 and v2 is implemented efficiently using joins on relations, where

the number of joins is the number of edges of the shorter one of the paths from

v1 and v2 to their LCA.

XRANK [23] presents a ranking method to rank subtrees rooted at LCAs.

10



XRANK extends the well-known Google’s PageRank [13] to assign each node u

in the whole XML tree a pre-computed ranking score, which is computed based

on the connectivity of u in the way that u is given a high ranking score if u

is connected to more nodes in the XML tree by either parent-child or ID refer-

ence edges. Note the pre-computed ranking scores are independent of queries.

Then, for each LCA result with descendants u1, ...un to contain query keywords,

XRANK computes its rank as an aggregation of the pre-computed ranking scores

of each ui decayed by the depth distance between ui and the LCA result. XRANK

also proposes a stack-based algorithm to utilize inverted lists of Dewey labels. A

inverted list of a keyword is a list of Dewey labels whose corresponding nodes di-

rectly contains the keyword. The algorithm maintains a result heap and a Dewey

stack. The result heap keeps track of the top k results seen so far. The Dewey

stack keeps the ID and rank of the current dewey ID, and also keeps track of the

longest common prefixes computed during the merge of the inverted lists. The

stack algorithm merges all keyword lists and computes the longest common prefix

of the node with the smallest Dewey number from the input lists and the node

denoted by the top entry of the stack. Then it pops out all top entries containing

Dewey components that are not part of the common prefix. If a popped entry

n contains all keywords, then n is the result node. Otherwise, the information

about which keywords n contains is used to update its parent entry’s keywords

array. Also, a stack entry is created for each Dewey component of the smallest

node which is not part of the common prefix, to push the smallest node onto the

stack. The action is repeated for every node from the sort merged input lists.

XSearch [21] proposes a variation of LCA to find meaningfully related nodes

as search results, called interconnection semantics. According to interconnection

semantics, two nodes are considered to be semantically related if and only if
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there are no two distinct nodes with the same tag name on the paths from the

LCA of the two nodes to the two nodes (excluding the two nodes themselves).

Several examples are provided to justify the usefulness and meaningfulness of

the proposed interconnection semantics. For example, in Figure 1.1, id:0.1.2.0

and Title:0.1.2.1 are considered semantically related since there are no two nodes

of the same tag on the paths from their LCA (Course:0.1.2) to the two nodes.

However, it is obvious interconnection semantics does not work for all cases. For

example, Course:0.1.0 and Course:0.1.2 are not so semantically related, but they

are considered related by interconnection semantics.

As LCA semantics is defined on a set of nodes instead of a set of node lists,

LCA itself is not well suited for keyword search applications where each query

keyword usually has a list of XML nodes that contain it. For example, in Fig-

ure 1.1, keyword “Advanced” matches two nodes Title:0.1.0.1 and Title:0.1.2.1;

while “Database” also matches two nodes Title:0.1.1.1 and Title:0.1.2.1. As a

result, the LCAs of query “Advanced Database” include both Courses:0.1 (due

to Title:0.1.0.1 containing “Advanced” and Title:0.1.2.1 containing “Database”)

and Title:0.1.2.1 (containing both query keywords). It is obvious the first LCA

(i.e. Courses:0.1) is not meaningful for this query. Both [35] and [46] address the

problem. In [35], Li et al. propose Meaningful LCA and XKSearch [46] proposes

Smallest LCA. Both Meaningful LCA and Smallest LCA (SLCA) are essentially

similar to LCAs that do not contain other LCAs1. In other words, the SLCA

result of a keyword query is the set of nodes that each satisfies two conditions.

First, each node in the set covers all query keywords in its subtree. Second, each

node in the set does not have a single descendant to cover all query keywords.

Li et al. [35] incorporates SLCA (which they call Meaningful LCA) in XQuery

1In this thesis, we unify the two terms (i.e. Meaningful LCA and Smallest LCA) as Smallest
LCA (or SLCA)
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and proposes Schema-Free XQuery where predicates in an XQuery can be spec-

ified through the concept of SLCA. With Schema-Free XQuery, users are able

to query an XML document without full knowledge of the underlying schema.

When users know more about the schema, they can issue more precise XQueries.

However, when users have no ideas of the schema, they can still use keyword

queries with Schema-Free XQuery. [35] also proposes a stack based sort merge

algorithm to compute SLCA results with Dewey labels, which is similar to the

stack algorithm in XRANK [23].

XKSearch [46] focuses on efficient algorithms to compute SLCAs. It also

maintains a sorted inverted list of Dewey labels in document order for each key-

word. XKSearch addresses an important property of SLCA search, which is,

given two keywords k1 and k2 and a node v containing k1, only two nodes in the

inverted list of k2 that directly proceeds and follows v in document order are able

to form a potential SLCA solution with v. Based on this property, XKSearch

proposes two algorithms: Indexed Lookup Eager and Scan Eager algorithms. In-

dexed Lookup Eager scans the shortest inverted list of all query keywords and

probes other inverted lists for SLCA results. During the probing process, nodes

in other inverted lists that do not contribute to the final results can be effectively

skipped. In contrast, Scan Eager algorithm scans all inverted lists for cases when

all query keyword inverted lists have similar sizes. Experimental evaluation shows

the two algorithms are superior than the stack based algorithm in [35]. Indexed

Lookup Eager is better than Scan Eager when the shortest list is significantly

shorter than other lists of query keywords; or slightly slower but comparable to

Scan Eager when all inverted lists of query keywords have similar lengths.

Sun et al. [42] make a further effort to improve the efficiency of computing

SLCAs. It discovers the fact that we may not need to completely scan the short-
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est keyword list for certain data instances to find all SLCA results. Instead, some

Dewey labels in the shortest keyword list can be skipped for faster processing.

As a result, Sun et al. propose Multiway-based algorithms to compute SLCAs.

In particular, Multiway SLCA computes each potential SLCA by taking one key-

word node from each kewyord list in a single step instead of breaking the SLCA

computation to a series of intermediate binary SLCA computations. As com-

pared to XKSearch [46] where the algorithm can be viewed as driven by nodes

in the shortest inverted list; Multiway SLCA picks an “anchor” node from all

query keyword inverted lists to drive the SLCA computation. In this way, it is

able to skip more nodes than XKSearch [46] during SLCA computation. Though

algorithms in Multiway SLCA [42] have the same theoretical time complexity as

Indexed Lookup Eager algorithm in [46], experimental results show the superior-

ity of Multiway-based algorithms. In [42], Sun et al. also generalizes the SLCA

semantics to support keyword search to include both AND and OR boolean op-

erators, by transferring queries to disjunctive normal forms and/or conjunctive

normal forms.

Besides LCA and SLCA, Hristidis et al. [26] propose Grouped Distance Min-

imum Connecting Trees (GDMCT) and Lowest GDMCT as variations of LCA

and SLCA for XML keyword search. The main difference between GDMCT and

LCA is that GDMCT identifies not only the LCA nodes, but also the paths from

LCA nodes to their descendants that directly contain query keywords. Similarly,

Lowest GDMCT identifies not only the SLCA nodes, but also the paths from

SLCA nodes to descendants containing query keywords. GDMCT is useful to

show how query keywords are connected to the LCA (or SLCA) nodes in result

display, which is classified as path return (in contrast to subtree return in LCA

and SLCA) in [36].
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XSeek [36] addresses the search intention of keyword queries to find mean-

ingful return information based on the concept of object classes (which they call

entities) and the pattern of query matching. It proposes heuristics to infer the

set of object classes in an XML document and also heuristics to infer the search

intentions of keyword queries based on keyword match patterns. Its main idea

is if an SLCA result is an object or a part of an object, we should consider the

whole object subtree or some attribute of the object specified in the query that

is not the SLCA for result display.

Recently, Li et al. [33] propose Valuable LCA semantics, which is another

variation of LCA and SLCA. Its main idea is that an LCA of m nodes n1, n2, ..., nm

is valuable if and only if there are no nodes of the same tag name along the paths

from the LCA to n1, n2, ..., nm, except nodes in n1, n2, ..., nm may have the same

tag. This is similar to the idea of interconnection semantics in [21]. It further

proposes a variation of Dewey labeling, called MDC to infer the tag names in the

path, which is essentially similar to Extended Dewey in [38].

XML keyword proximity search techniques based on the tree model are gen-

erally efficient. However, they cannot capture important information in ID refer-

ences which are indications of node relevance in XML and they may return over-

whelming (or not informative) information as explained in Chapter 1. Note that

the ranking method proposed in XRANK [23] only computes ranks among LCAs,

thus it is not adequate when a single LCA is overwhelmingly large. GDMCT

in [26] identifies how query keywords are connected in each LCA or SLCA result,

which is useful in result display to enable the searcher to understand the inclusion

of each result However, without considering ID references, GDMCT is similar to

search by keyword disjunction when the root of a GDMCT is overwhelmingly

large. XSeek [36] based on the concept of objects is able to identify meaningful
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result units and to avoid returning overwhelming information. However, it con-

siders neither ID references nor relationships between objects. As a result, XSeek

may miss meaningful results of query relevant object relationships that contain

all keywords.

2.2 Keyword search with the graph model

XML databases can also be modeled as graphs (or digraphs) when ID references

edges are taken into account. In this part, we first present the overall search and

result semantics in the graph (or digraph) model. Then, we review some related

work of keyword search in relational databases and/or XML databases with the

graph (or digraph) model.

Keyword search in databases with the graph (or digraph) model was first ad-

dressed for relational databases in [5,10,27], etc. They view a relational database

as a graph G where tuples of relations are modeled as nodes N and relationships

such as foreign-key are modeled as edges E (i.e. G = (N,E)). Similarly, XML

databases can also be modeled as graph G for keyword search ( [10, 28], etc) in

the way that XML elements/attributes are viewed as nodes N and relationships

such as node containment (i.e. parent-child relationship) and ID references are

modeled as edges E.

In the graph model, answers to a keyword query k1, k2, ..., kn in a (either

relational or XML) database graph G are usually modeled as connected sub-

graphs of G such that 1) each answer subgraph G′ contains all keywords of query

k1, k2, ..., kn in its nodes (i.e. tuples in relational database or elements/attributes

in XML context) and 2) no nodes in G′ can be removed from G′ to form another

smaller subgraph G′′ to contain all query keywords. Each answer subgraph G′
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is usually referred to as a reduced subgraph of query k1, k2, ..., kn in G2 [20]. Re-

duced subgraphs of a query are ranked according to their sizes (e.g. [5, 27, 28],

etc.) with the intuition that a smaller reduced subgraph usually indicates a closer

connection between query keywords, thus a more meaningful result.

However, searching all reduced subgraphs ranked by size for a keyword query

is NP-hard. Li et al [34] show the translation between minimal (or ordered-by-

size) reduced subgraphs problem and the NP-hard Group Steiner Tree problem

on graphs. The Steiner tree problem [24] is known as the problem of finding the

minimum weighted connected subgraph, G′, of a given graph G, such that G′

includes all vertices in a given subset of R of G. Group Steiner tree problem is an

extension of Steiner tree problem, where we are given a set {R1, ..., Rn} of sets

of vertices such that the subgraph has to contain at least one vertex from each

group Ri ∈ {R1, ..., Rn}. Both Steiner Tree and Group Steiner Tree problems are

proven NP-hard. Therefore, most previous algorithms for keyword search with

the graph (or digraph) model are intrinsically expensive, heuristics-based.

Banks [10] adopts backward expanding search heuristics to find ranked re-

duced subgraphs of query keywords in digraphs. Each node in the graph is as-

signed a weight which depends on the prestige of the node; and each edge is also

given a weight based on schema to reflect the strength of the relationship between

two nodes. It computes, ranks and outputs results incrementally in approximate

order of result generation. Given a set of keywords {k1, ..., kn}, their inverted lists

{l1, ..., ln} and the union L =
⋃

li ∈ {l1, ..., ln} of query keyword inverted lists,

backward expanding algorithm in [10] concurrently runs |L| copies of Dijkstra’s

single source shortest path algorithm, one of each keyword node n ∈ L, with n as

the source. Each copy of the single source shortest path algorithm traverses the

2Some people call G′ a reduced subtree since G′ can be also viewed as a tree.
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graph edges in the reverse direction in order to find a common vertex from which

a forward path exists to one keyword node in each inverted list li ∈ {l1, ..., ln}.
Once a common vertex is found, it is identified as the root of a connection tree,

thus a search result.

A subsequent work [30] of Banks proposes bidirectional search to improve

on backward expanding search by allowing forward search from potential roots

towards leaves. During bidirectional search, each node is assigned an activation

score, reflecting how “active” it is to be expanded next. The initial activation

value of a keyword node in one inverted list is inversely proportional to the size

of the inverted list so that nodes containing a rare keyword will be expanded

(backward) first. It maintains two priority queues, one for backward expanding

Qb and one for forward expanding Qf . All nodes in inverted lists are initially

kept in backward expanding queue Qb. Once a node u with highest activation in

Qb is expanded backward, it transfers its partial activation value to other nodes

that are expanded to from u and puts those nodes into Qb; now u is put into Qf

from Qb with remaining activation value. Similarly, once a node u with highest

activation in Qf is expanded, it also transfers its activation value to other nodes

and puts them into Qf . Search results are identified during the expanding when

a node is found to be able to connect all keywords. Experimental results in [30]

shows bi-directional expanding is more efficient than backward expanding.

Bidirectional expanding approach in Banks is random in nature and suffers

poor worst-case performance. Moreover, Bidirectional expanding approach re-

quires the entire visited graph in memory which is infeasible for large databases.

Blinks [25] address these problems by using a bi-level index for pruning and ac-

celerating the search. Its main idea is to maintain indexes to keep the shortest

distance from each keyword to all nodes in the entire database graph. To reduce
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the space of such indexes, Blinks partitions a data graph into blocks: the bi-level

index stores summary information at the block level to initiate and guide search

among blocks, and more detailed information for each block to accelerate search

within blocks. Experiments of Blinks [25] show its benefit in improving search

efficiency. However, index maintenance is an inherent drawback of Blinks, since

adding or deleting an edge has global impact on shortest distances between nodes.

DBXplorer [5] and Discover [27] exploit relational schema to reduce search

space for keyword search in relational databases.

Given a set of query keywords, DBXplorer returns all rows (either from single

tables, or by joining tables connected by foreign-key relationships) such that each

row contains all query keywords (which is a relaxed form of reduced subgraphs).

DBXplorer has two steps to enable keyword search in an existing database, Pub-

lish (pre-process) and Search (query processing). In the publish step, a symbol

table is created, which is similar to inverted lists to determine the locations of

query keywords in the database. The location granularity of the symbol table

can be either cell level or column level, depending on several measures, such as,

the existence or not of a column index, space and time tradeoff during symbol

table creation and query processing. In the search step, the symbol table is first

looked up to identify the tables containing query keywords. Then, according to

schema graph where each node is a relation and each edge is a foreign-key, a set

of subgraphs are enumerated to build join trees. Each such join tree represents a

join of relations such that the join result contains rows that potentially contain all

query keywords. Finally, a join SQL statement is executed for each enumerated

join tree and rows with all query keywords are selected from join results.

Discover [27] improves over DBXplorer to consider solutions that include two

tuples from the same relation and to exploit the reusability of join trees for
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better efficiency. Result semantics in Discover is reduced subgraphs of query

keywords, which they call Minimal Total Join Network (MTJNT). Discover uses

master index (also similar to inverted lists) to identify all tuples that contain a

given keyword for each relation. During query processing for a given query K =

{k1, k2, ..., k3}, Discover first identifies relations that contain some keywords in K.

Each such relation Ri is partitioned horizontally into tuple sets RK′
i for all subsets

K ′ ⊂ K such that RK′
i contains tuples of Ri that contain all keywords of K ′ and no

other keywords in K. Then, with schema graph, Discover generates all candidate

networks, each of which is a graph of tuple sets RK′
i such that the join result of all

tuple sets in a candidate network 1) potentially contains reduced subgraphs of all

query keywords 2) but does not contain subgraph with all keywords that is not a

reduced subgraph. Finally, a plan of joining tuple sets for each candidate network

is generated and executed to exploit the reusability of intermediate join results

for better efficiency. Discover propose a greedy algorithm to choose intermediate

results for reuse; while the selection of the optimal execution plan is NP-complete

as shown in Discover [27].

A recent work [47] studies the problem of finding all records in a relation

such that each result record contains all query keywords. The problem addressed

in [47] can be viewed as a sub-problem of DBXplore and Discover since [47] does

not explore foreign key relationships. Moreover, [47] does not use Inverted Lists

for keyword search. As a result, the technique proposed in [47] is over complicated

and very inefficient. In contrast, DBXplore and Discover can handle the problem

more efficiently with Inverted Lists.

Since DBXplorer [5] and Discover [27] require relational schema during query

processing, they cannot be directly applied for XML keyword search if the XML

databases cannot be mapped to a rigid relational schema.
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XKeyword [28] extends the work of Discover to handle keyword search in

XML databases with the graph model. It requires database administrator to

manually split the schema graph into minimal self-contained information pieces,

which are called Target Schema Segments (TSS). The edges connecting the data

instances of TSSs in schema graph are stored in the connection tables. Besides,

redundant connection relations connecting several TSSs based on decomposi-

tion of TSS graph are materialized and used to improve the performance of the

search. During query processing, XKeyword first retrieves the schema nodes

from the inverted index, such that instances of those schema nodes in XML data

contain query keywords. Then, it exploits the schema graph to generate a com-

plete and non-redundant set of connection trees (similar to candidate networks

in Discover [27]) between them. Similar to Discover, each candidate network

may produce a number of answers to the keyword query, when evaluated on the

XML graph. However, XKeyword is laborious in that database administrator’s

knowledge is necessary in all stages of indexing, presenting results and query

processing. Moreover, redundant materialization of connection relations imposes

problems in updating the connection relations, in addition to space overheads.

In summary, keyword search approach in the graph (or digraph) models are

inherently expensive due to its NP-hard nature. DBXplorer [5], Discover [27] and

XKeyword [28] exploit schema information to reduce search space during query

processing. The former two are designed for relational databases and cannot be

directly used for XML; while the last one (i.e. XKeyword [28]) is designed for

XML databases. However, XKeyword [28] is laborious and requires specification

from DBA for each individual application whereas our approach does not require

DBA’s efforts during query processing though their optional efforts can be useful

in our case. Techniques in Banks project [10, 30] can be directly used for XML
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databases. However, our experimental results show they are significantly ineffi-

cient as compared to our approach in Tree+IDREF model. Blinks [25] improves

the efficiency over techniques in Banks with tradeoffs in index size and ease of

maintenance. It is orthogonal to our indexing approach and can be extended and

incorporated to improve our search efficiency with the same tradeoffs in index

size and ease of maintenance.
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Chapter 3

Background and Data Model

3.1 XML data

XML stands for eXtensible Markup Language, which is a markup language for

documents containing structured information. Originally designed to meet the

challenges of large-scale electronic publishing, XML is also playing an increasingly

important role in the exchange of a wide variety of data on the Web and elsewhere.

Tags are basic markups in XML, which are enclosed in angle brackets. An

XML document consists of nested XML elements starting with the root element.

An XML element is everything from (including) the element’s start tag to (includ-

ing) the element’s end tag. Each element can have attributes and text values in

addition to nested subelements. Each attribute has further text values. In many

XML databases, there are also IDs and ID references represented as IDREFs to

indicate relationships between XML elements.

Example 1 Figure 3.1 shows an example XML data document fragment that

maintains information for a Computer Science department in one university.

The document has one root element, Dept. In the inside rectangle, we highlight
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<Dept>

       <Students> …  </Students>

       <Courses>

<Course id=”CS501”>

       <Title> Advanced Topics in AI </Title>

       ...

</Course>

<Course id=”CS202”>

       <Title> Database Management </Title>

       ...

</Course>

<Course id=”CS502”>

       <Title> Advanced Topics in Database </Title>

       <Prereq Course=”CS202”/>

      ...

</Course>

...

       </Courses>

       <Lecturers>

<Lecturer id=”L01”>

       <Name> John Smith </Name>

       <Teaches Course=”CS502”>

<Year> 2007 </Year>

...

       </Teaches>

       ...

</Lecturer>

<Lecturer id=”L02”>

       <Name> David Lee </Name>

       <Teaches Course=”CS502”/>

       ...

</Lecturer>

<Lecturer id=”L03”>

       <Name> Marry Jones </Name>

       <Teaches Course=”CS202”/>

</Lecturer>

       </Lecturers>

</Dept>

Figure 3.1: Example XML data frag-
ment

<!ELEMENT Dept            (Students, Courses, Lecturers)>

<!ELEMENT Students      (...)>

...

<!ELEMENT Courses       (Course+)>

<!ELEMENT Course         (Title, Prereq*, Description)>

<!ATTLIST Course            id ID #REQUIRED>

<!ELEMENT Title              (#PCDATA)>

<!ELEMENT Prereq          EMPTY  >

<!ATTLIST Prereq             Course IDREF #REQUIRED>

<!ELEMENT Description   (#PCDATA)>

<!ELEMENT Lecturers      (Lecturer+)>

<!ELEMENT Lecturer        (Name, Teaching+, Address?

                                                        Hobby*)>

<!ATTLIST Lecturer           id ID #REQUIRED>

<!ELEMENT Name            (#PCDATA)>

<!ELEMENT Teaching       (Year, Semester)  >

<!ATTLIST Teaching         Course IDREF #REQUIRED>

<!ELEMENT Address         (#PCDATA)>

<!ELEMENT Hobby            (#PCDATA)>

Figure 3.2: Example DTD for XML
data in Figure 3.1

Courses

Course *

@id

Title
Prereq *

Lecturer *

Name Address?

Tree edge

Reference edge
Dept

Lecturers

Description

@id

Teaching +

Year
Semester

Students

@Course
@Course

...

Hobby *

Figure 3.3: Graph representation of
DTD in Figure 3.2 (@ denotes at-
tributes)

one XML element, Course. The information of this element includes everything

between its start tag <Course> and end tag </Course>. A course element has

further nested attribute id and nested elements Title and Prereq. Finally, attribute

id has text value “CS502” while Title has text value “Advanced Topics in Data-

base”. With the help of DTD or other schema languages which we will discuss

shortly, id attribute of each Course can be recognized as the identifier of the Course

element while Course attribute of each Prereq element can be recognized as an ID

reference to a particular Course element with the specified id value.
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3.2 Schema languages for XML

There are several existing languages to specify the schema of an XML database.

In this thesis, we present a brief description of two schema languages: XML

DTD (Document Type Description) and ORA-SS (Object-Relationship-Attribute

model for SemiStructured data).

3.2.1 XML DTD

Document Type Description (DTD) is a commonly used simple schema language

to describe the structure of an XML document. A very basic description of DTD

is given here.

From the DTD point of view, the building blocks of XML documents of in-

terest are element, attribute, #PCDATA and #CDATA. For each XML element,

DTD specifies its tag name. An element can either be empty or contain fur-

ther information in forms of sub-elements, attributes and text values. For empty

elements, DTD specifies them as EMPTY together with their tag names. For

elements with further information, DTD specifies its nested information as #PC-

DATA (i.e. text values) or attributes or the tag names of sub-elements using

regular expressions with operators * (a set of zero or more elements), + (a set of

one or more elements), ? (optional) and | (or). Sub-elements without operators

are mandatory (one and only one element) by default. Text values nested in

elements are specified as #PCDATA; while text values of XML attributes are

usually specified as #CDATA. Attributes can have further predefined types in

DTD. Some particular attribute types of interest are “ID” and “IDREF”. “ID”

type indicates the attribute value is an identifier of the attribute’s parent element

(i.e. unique, non-nullable and always present); while “IDREF” type indicates the
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attribute value is a reference to an element with specified identifier (ID) value.

Example 2 Figure 3.2 shows the DTD for our example department XML data.

The root element Dept has three mandatory sub-elements Students, Courses and

Lecturers and each has one and only one occurrence under Dept. Courses element

has more than one nested Course element while each Course in turn has Title,

Prereq and Description sub-elements. Title and Description are mandatory for

each Course and they contain only text values (i.e. #PCDATA) but no further

nested sub-elements. Prereq can have zero or more occurrences nested in each

Course. Each Prereq has one IDREF typed attribute Course, but has neither sub-

elements nor text values indicated by EMPTY. The value of each IDREF typed

attribute Course under Prereq is the identifier of some other element to represent

an ID reference from Prereq (to a Course element in this case evidenced from

XML data). Finally, Address nested in Lecturer is marked with ?, indicating each

Lecturer can have zero or one Address in the XML document.

Since DTD also has inherited hierarchical structure, we can use graphs to

represent DTDs for easy illustration. For example, Figure 3.3 shows the graph

representation of DTD in Figure 3.2, where XML attributes are annotated by @.

3.2.2 ORA-SS

The ORA-SS (Object-Relationship-Attribute model for SemiStructured data) is

a semantic rich schema language for XML documents. It can capture useful

semantic information which is missed in other schema languages. In this part,

we first present a brief introduction to ORA-SS; then we highlight two kinds

of semantic information that are important to meaningful keyword search but

cannot be captured by DTD.
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Course

id Title

Prereq

Lecturer

Name Address
Description

id

Teaching

?

CP, 

2, 0:n, 1:n

LT, 

2, +, +

LT LT

Year Semester
CourseCourse

Hobby

*

Figure 3.4: Example ORS-SS schema diagram fraction for XML data in Figure 3.1

ORA-SS data model has three basic concepts: object class, relationship type

and attribute. An object class is similar to an entity type in an ER diagram. A

relationship type describes a relationship among object classes. Attributes are

properties belonging to an object class or a relationship type. A full description

of the data model can be found in [44].

An ORA-SS schema represents an object class as a labeled rectangle, an

attribute as a labeled circle. All attributes are assumed to be mandatory and

single valued, unless the circle contains a “?” indicating it is optional and single

valued, “+” indicating it is mandatory and multi-valued, and “*” indicating it is

optional and multi-valued. Identifier of an object class is a filled circle.

The relationship type between object classes is assumed on any edge between

two objects, and described by a label in the form of “name, n, p, c” in ORA-

SS. Here, name denotes the name of relationship type; n indicates the degree of

the relationship type. A relationship of degree 2 (i.e. a binary relationship) is

between two objects, parent and child of the relationship. A relationship of degree

3 (i.e. a ternary relationship) relates three objects. In a tertiary relationship,

there is a binary relationship between two objects and a relationship between

this binary relationship and the other object. The parent, in this case, is the
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binary relationship and child is the other object. In the label of a relationship,

p indicates the participation constraints of the parent of the relationship, and

c is the participation constraints of the child of the relationship. p and c are

defined using the min:max notation, with shorthand of ?(0:1), *(0:n) and +(1:n).

A relationship type can also have attributes. The attribute of a relationship type

has the name of the relationship type to which it belongs on its incoming edge,

while the attribute of an object class has no edge label.

Finally, solid edge in ORA-SS represents nested relationship of XML while

dashed edge represent references. A reference depicts an object referencing an-

other object, and we say a reference object references a referenced object. The

reference and referenced objects can have different labels and relationships. Ref-

erences are also used to model recursive and symmetric relationships.

Example 3 Figure 3.4 shows the ORA-SS schema diagram for the XML data in

Figure 3.1. The rectangles labeled Course, Lecturer, Teaching and Prereq are four

object classes, and attributes id of Course and id of Lecturer, are the identifiers of

Course and Lecturer respectively. For each Lecturer, Name is a mandatory single

valued attribute, Address is an optional single valued attribute, and hobby is an

optional multi-valued attribute.

There are two binary relationship types, namely CP and LT. CP is a recursive

relationship type between Course and Prereq (prerequisite), and LT is a relation-

ship type between Lecturer and Teaching. Both CP and LT are many-to-many

relationships, where each Course can have zero or more Prereqs, each Prereq (or

Lecturer or Teaching) has one or more Courses (or Teachings or Lecturers respec-

tively).

The label LT on the edge between Teaching and Year indicates that Year is a

single valued attribute of the relationship type LT.
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Finally, Teaching and Prereq are reference objects and their information are

captured in their referenced objects (i.e. Course in this case).

ORA-SS captures significantly more semantic information of underlying XML

database applications. In this thesis, we highlight two kinds of important seman-

tic information that can be captured in ORA-SS, but not in DTD or other schema

languages.

• Object class v.s. attribute: Data can be represented in XML documents

either as attributes or elements. So, it is difficult to tell from the XML

document whether an element is in fact an object or attribute of some ob-

ject. DTD and other schema languages cannot specify whether an element

represents an object in the real world or is an attribute of some object.

For example, from the DTD graph in Figure 3.3, it is difficult to tell Lecturer

is an object class while Hobby is not an object class, but an attribute of

Lecturer object class.

• Attribute of object class vs. attribute of relationship type: As DTD and

and other schema languages do not have the concept of object classes and

relationship types (they only represent the hierarchical structure of elements

and attributes), there is no way to specify whether an attribute is the

attribute of one object class or the attribute of some relationship type.

For example, Year is considered as an attribute of LT relationship between

Lecturer and Teaching. However, from the DTD graph in Figure 3.3, it is

difficult to tell whether Year is an attribute of the relationship between Lec-

turer and Teaching or Teaching object class. Such information is important

for result display for XML keyword search which we will discuss in Chapter

5.
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While there are other kinds of semantic information in ORA-SS that DTD

and other schema languages cannot capture, with focus on keyword search, we

will discuss the importance of the above two kinds of semantic information in

keyword search result display in Chapter 5.

3.3 Dewey labeling scheme

In most contexts, a labeling scheme is adopted to assign a numerical label to

uniquely identify each node in an XML tree structure. In this thesis, we adopt

Dewey number labeling scheme since it is can easily identify the Lowest Common

Ancestor (LCA) between two given Dewey labels which is important for XML

keyword search.

With Dewey labeling, each node is assigned a list of components to represent

the path from the document’s root to the node. Each component along the path

represents the absolute order of an ancestor node within its siblings; and each

path uniquely identifies the absolute position of the node within the document.

For example, the Dewey numbers are shown with their corresponding XML

nodes (except text values) in Figure 1.1.

In the following, we present the properties of Dewey numbers in determining

the relationship between two given XML nodes n1 and n2 with different Dewey

number d1 and d2 respectively.

• Ancestor-Descendant (A-D) relationship: n1 is an ancestor of n2 if

and only if d1 is a proper prefix of d2; meanwhile if n1 is an ancestor of n2,

then n2 is a descendant of n1.

• Parent-Child (P-C) relationship: n1 is a parent of n2 if and only if d1

30



is a prefix of d2 and the length of d1 is that of d2 minus 1; meanwhile if n1

is a parent of n2, then n2 is a child of n1.

• Siblings relationship: n1 and n2 are siblings if and only if d1 and d2 only

differ in the last component.

• Document order1: n1 proceeds n2 if and only if d1 proceeds d2 in lexico-

graphical order.

• LCA: the LCA of n1 and n2 is the node with Dewey number which is the

longest common prefix of d1 and d2.

Example 4 In the XML data of Figure 3.1 and its tree (with ID references)

representation in Figure 1.1, based on the above properties of Dewey numbers, we

can conclude Courses:0.1 is an ancestor of Title:0.1.1.1; Course:0.1.1 is the parent

of Title:0.1.1.1; the LCA of id:0.1.1.0 and Title:0.1.1.1 is Course:0.1.1. Finally,

id:0.1.1.0 and Title:0.1.1.1 are siblings while id:0.1.1.0 proceeds Title:0.1.1.1 in

document order.

Note Dewey labels effectively capture the root to descendant paths in XML

data. However, Dewey labels do not reflect ID reference information. We will

discuss in Chapter 4 how such information is captured with the connection table.

3.4 Importance of ID references in XML

Foreign key reference has well-recognized importance in Relational databases.

Its equivalence in XML databases, ID reference, is also defined in DTD and many

other schema languages. In many XML databases, ID references are present and

1Document order represents the order of appearance of elements in XML document.
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play an important role in eliminating redundancies and representing relationships

between XML elements, especially when an XML database contains several types

of real world entities and wants to capture their relationships. For example, in

Figure 1.1, references indicate important teaching relationships between Lecturer

and Course elements. Without ID references, the relationships have to be ex-

pressed in further nested structures (e.g. each lecturer is nested and duplicated

in each course she/he teaches or vice versa), potentially introducing harmful re-

dundancies. Thus, we believe ID references are usually present and important in

XML databases which capture relationships among real world objects.

3.5 Tree + IDREF data model

Due to the hierarchical structure and the existence of ID references in XML

databases, we model XML as special digraphs, Tree + IDREF, G=(N,E, Eref ),

where N is a set of nodes, E is a set of tree edges, and Eref is a set of ID

reference edges between two nodes. Each node n∈N corresponds to an XML

element, attribute or text value. Each tree edge denotes a parent-child (nested)

relationship. We denote a reference edge from u to v as (u,v)∈Eref . In this

way, we distinguish the tree edges from reference edges in XML. The subgraph

T = (N,E) of G without ID reference edges, Eref , is a tree. When we talk

about parent-child (P-C) and ancestor-descendant (A-D) relationships between

two nodes in N , we only consider tree edges in E of T .

For example, we have seen the Tree + IDREF model representation in Fig-

ure 1.1 for the XML data of Figure 3.1.

With Tree + IDREF data model, we are able to capture important ID ref-

erences in XML databases, which are missed in Tree data model for XML key-

32



word search. Meanwhile, our model distinguishes tree edges from IDREF edges

in XML. In this way, we are able to leverage the efficiency benefit of the tree

model (especially in finding node connections based on LCAs with Dewey label-

ing scheme) and significantly reduce the amount of expensive computations in

finding node connections in graphs.
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Chapter 4

XML Keyword Search with ID

References

In this part, we first formally introduce novel Lowest Referred Ancestor (LRA)

pair, Extended LRA (ELRA) pair and Extended LRA (ELRA) group semantics

for XML keyword proximity search in Tree+IDREF data model to overcome

the limitations of SLCA in the tree model. Then, we address the generality

and applicability of the newly proposed semantics, followed by the algorithms to

compute results based on our approach.

Since most of the examples in this chapters are based on Figure 1.1, we make

a copy of this figure in this chapter as Figure 4.1 for easy reference.

4.1 Existing SLCA semantics

Smallest Lowest Common Ancestor (SLCA) semantics has been widely studied

and accepted ( [35, 42, 46]) as an efficient approach for XML keyword search in

the tree data model. Now, we first review the concept of SLCA.
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Figure 4.1: Example XML document of computer science department with Dewey
labels (Copy of Figure 1.1)

Definition 1 (SLCA) In an XML document, SLCA semantics of a set of key-

words K returns a set of nodes such that each node u in the set covers all keywords

in K, but no single proper descendant of u covers all keywords in K.

Example 5 In Figure 4.1, node Course:0.1.2 is the SLCA result for query “CS502

Advanced Database”.

However, given the importance of ID references in many XML databases,

SLCA in the tree data model is not sufficient to meet all search requirements.

Example 6 Consider keyword query “Advanced Database Smith” that probably

looks for whether Smith teaches the specified course. In this case, the SLCA result

is the meaningless overwhelming root Dept:0 (whole document) in Figure 4.1.

An immediate solution to the above problem is to identify a set of over-

whelming nodes at system setup phase and exclude these nodes from SLCA re-

sults. Overwhelming nodes can be identified by setting a threshold for the fanout
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and/or size (i.e. number of descendants and/or bytes). Schema information can

also be helpful to define overwhelming nodes (i.e. tags in DTD that have no

*-annotated ancestor tags are likely to be overwhelming). For example, nodes

Students, Courses, Lecturers and root Dept in Figure 4.1 can be identified as over-

whelming nodes. However, exclusion of overwhelming nodes from SLCA results

will generate no results in the above example (for query “Advanced Database

Smith”).

Note, we believe it is better to return no result in the case where the SLCA

result is overwhelming, especially for huge databases. This is because overwhelm-

ing results can waste users’ significant amount of effort in going through a huge

ocean of information, most of which is likely irrelevant; while “no result” at least

saves such efforts. Therefore, in the rest of this thesis, we assume overwhelming

nodes are excluded from SLCA results.

One may further suggest using OR logic instead of AND to connect query

keywords. Unfortunately, it still includes many irrelevant answers such as course

“Advanced Topics in AI” and Lecturers named “Smith” who have no relationship

with Advanced Database courses.

4.2 Proposed search semantics with ID refer-

ences

4.2.1 LRA semantics

In this part, we introduce Lowest Referred Ancestor pair (LRA pair) semantics

to exploit ID references for keyword proximity search in XML. Before that, we

first define reference-connection that is important for LRA pair semantics.
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Definition 2 (reference-connection) Two nodes u, v with no A-D relation-

ship in an XML database have a reference-connection (or are reference-connected)

if there is an ID reference between u or u’s descendant and v or v’s descendant.

Example 7 There is a reference-connection between nodes Lecturer:0.2.0 and

Course:0.1.2 in Figure 4.1 since there is an ID reference edge between their de-

scendants (i.e. @Course:0.2.0.2.0 and @id:0.1.2.0)1.

Note the definition of reference-connection does not include the directions of

ID reference edges since our focus is on whether or not two nodes are connected.

However, directions can be enforced and displayed in the result output.

Keen readers may have noticed that some reference-connection are not very

meaningful according to the definition of reference-connection. For example,

Courses:0.1 and Lecturers:0.2 are also considered to have a reference-connection

according to Definition 2, which, however, is not concise enough (i.e. indicat-

ing some lecturers teach some courses) as a meaningful connection. There are

several ways to identify and exclude reference-connections that are not concise

enough from meaningful connections. First, when we can identify overwhelm-

ing nodes, we can exclude reference-connections that involve overwhelming nodes

from meaningful reference-connection. Or second, when the semantic informa-

tion of ORA-SS model exists, we can restrict the set of XML nodes that may

have meaningful reference-connections to the set of nodes that are considered as

object classes or attributes of some object classes. For example, since Courses:0.1

and Lecturers:0.2 of the XML data in Figure 4.1 are neither considered as object

classes nor attributes in ORA-SS model of Figure 3.4, we can exclude reference-

connections that involve Courses:0.1 or Lecturers:0.2 from meaningful reference-

1In figure 4.1, since attribute id is the identifier of Course element, we show the reference
from @Course nodes to Course nodes for simplicity.
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connections. In the rest of the thesis, when we say reference-connection, we refer

to meaningful reference-connections.

Now, we are ready to define LRA pair semantics for a list of keywords K.

Definition 3 (LRA pair) In an XML database, LRA pair semantics of a list of

keywords K returns a set of unordered node pairs {(u1, v1),(u2, v2),..., (um, vm)}
such that for any (ui, vi) in the set,

(1) ui and vi each covers some and together cover all keywords in K; and

(2) there is a reference-connection between ui and vi; and

(3) there is no proper descendant u′ of ui (or v′ of vi) such that u′ forms a

pair with vi (or v′ forms a pair with ui resp.) to satisfy conditions (1) and (2).

Intuitively, a pair of nodes (and their subtrees) form an LRA pair if they are

connected by reference-connection and they are the lowest to together cover all

keywords.

Example 8 Consider keyword query “Smith Advanced Database” in Figure 4.1.

Reference-connected Lecturer:0.2.0 and Course:0.1.2 form an LRA pair for this

query, indicating Smith teaches the course; while the SLCA is the overwhelming

root.

We can see from above example, compared to SLCA, LRA pair semantics has

a better chance to find smaller sub-structures, which is generally assumed better

in most XML keyword proximity search approaches (e.g. [23, 30,35,46], etc).

4.2.2 ELRA pair semantics

In this part, we extend the reference-connection in LRA pair semantics to a chain

of connections as n-hop-connection in Extended LRA pair (ELRA pair) semantics.
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Definition 4 (n-hop-connection) Two nodes u, v with no A-D relationship in

an XML database have an n-hop-connection (or are n-hop-connected) if there are

n−1 distinct intermediate nodes w1, ...wn−1 with no A-D pairs in w1, ...wn−1 such

that u,w1, ..., wn−1, v form a chain of connected nodes by reference-connection.

Example 9 In Figure 4.1, Lecturer:0.2.0 and Lecturer:0.2.1 are connected by a

2-hop-connection via node Course:0.1.2, which means the two lecturers teach the

same course.

Similarly, Lecturer:0.2.0 and Course:0.1.1 are connected by a 2-hop-connection

via node Course:0.1.2, indicating Course:0.1.1 is a prerequisite of the course (i.e.

Course:0.1.2) that Lecturer:0.2.0 teaches.

Definition 5 (ELRA pair) In an XML database, ELRA pair semantics of

a list of keywords K returns a set of unordered node pairs {(u1, v1),(u2, v2),...,

(um, vm)} such that for any (ui, vi) in the set,

(1) ui and vi each covers some and together cover all keywords in K; and

(2) there is an n-hop-connection between ui and vi; and

(3) there is no proper descendant u′ of ui (or v′ of vi) such that u′ forms a

pair with vi (or v′ forms a pair with ui resp.) to satisfy conditions (1) and (2).

Intuitively, ELRA pair semantics returns a set of pairs such that each pair

are two lowest n-hop-connected nodes to together cover all keywords. When the

length of the connection chain grows, we can potentially find more ELRA pairs

at the cost of longer response time due to larger search space. However, the

relevance between the nodes in each pair potentially becomes weaker in general

as the chain grows longer. Thus, the system can first compute ELRA pairs whose

connection chains are not longer than a default limit of L intermediate hops (i.e.

n-hop-connection with n ≤ L). Then if users are interested in more results, the
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system can progressively increase the limit to find more results for users upon

request. The value of n-hop-connection length limit can be set by users for each

query or (by default) determined at the system tuning phase in the way that the

execution time will not exceed users’ time budget for a set of testing queries.

Therefore, we present the following L-limited ELRA pair semantics when the

limit of n-hop-connection length is set to L.

Definition 6 (L-limited ELRA pair) In an XML database, L-limited ELRA

pair semantics of a list of keywords K returns a set of unordered node pairs

{(u1, v1),(u2, v2),..., (um, vm)} such that for any (ui, vi) in the set,

(1) ui and vi form an ELRA pair for K; and

(2) there is an n-hop-connection between ui and vi for an upper limit L of the

connection chain length.

In the following, when we say ELRA pair, we mean L-limited ELRA pair with

a tuned upper limit L for n-hop-connection length.

Example 10 In Figure 4.1, for keyword query “Smith Lee”, Lecturer:0.2.0 and

Lecturer:0.2.1 (connected by a 2-hop-connection via node Course:0.1.2) form an

ELRA pair if the limit of n-hop-connection chain length is set greater than or

equal to 2. This ELRA pair result can be understood as Smith and Lee teach

the same course. On the other hand, the SLCA result is the overwhelming node

Lecturers:0.2 including all lecturers; while LRA pair semantic cannot find results

for this query.

Similarly, for keyword query “Smith Database Management”, Lecturer:0.2.0

and Course:0.1.1 (connected by a 2-hop-connection via node Course:0.1.2) form an

ELRA pair result, indicating Database Management is a prerequisite of the course
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that Smith teaches. On the other hand, the SLCA result is the overwhelming root

node Dept:0; while LRA pair semantic cannot find results for this query.

We can see from this example that ELRA pair semantics has a better chance

to find more and/or smaller results than SLCA and LRA pair semantics since

ELRA pair semantics is a more general case of LRA pair semantics. Note LRA

pairs are the lowest pairs with direct reference-connection (or 1-hop-connection)

while ELRA pairs are the lowest pairs with connections up to a tuned limit (L)

intermediate hops including reference-connection. Therefore, ELRA pair seman-

tics can effectively replace LRA pair semantics with a tuned limit L to ensure

the query evaluation is within time budget.

It is interesting that there may be multiple n-hop-connections between two

nodes. However, it is sufficient to find one existence of n-hop-connection instead

of the “best” n-hop-connection during query processing since our focus is on the

connected nodes that cover all keywords. In case users are also interested in the

connections between a particular result pair, the system can compute a set of

their connections to show different relationships between the pair upon request.

4.2.3 ELRA group semantics

Finally, we extend ELRA pair semantics to ELRA group semantics to define re-

lationships among two or more connected nodes that together cover all keywords.

Definition 7 (ELRA group) In an XML database, ELRA group semantics of a

list of keywords K returns a set of node-group patterns {(h1-G1),(h2-G2),...,(hm-

Gm)} s.t. for each node-group pattern hi-Gi (1≤ i ≤m),

(1) each node in Gi covers some keywords and nodes in hi and Gi together

cover all keywords in K; and
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(2) hi connects all nodes in Gi by n-hop-connection; we call hi the hub for Gi;

and

(3) there are no proper descendants of any node u in Gi to replace u to cover

the same set of keywords as u and are n-hop-connected (n ≤ L′) to the hub; and

(4) there is no proper descendant d of Gi’s hub hi such that d is the hub of

another ELRA group Gd and (Gd ∪ {hi}) ⊇ Gi.

Intuitively, ELRA group semantics returns a group of nodes which are con-

nected to a common hub node such that all nodes in the group are the lowest to

contain a subset of query keywords and the hub is also the lowest to connect this

group of nodes.

Similar to ELRA pair semantics, we can choose a default value as the upper

limit L′ for n-hop-connection chain length in ELRA group semantics at the system

tuning phase (L′ is usually smaller than L which is the upper limit of chain length

in ELRA pair semantics); and L′ can be set or increased upon a user’s request.

Therefore, we present the following L′-limited ELRA group semantics when

the limit of n-hop-connection length is set to L′.

Definition 8 (L′-limited ELRA group) In an XML database, L′-limited ELRA

group semantics of a list of keywords K returns a set of node-group patterns {(h1-

G1),(h2-G2),...,(hm-Gm)} s.t. for each node-group pattern hi-Gi (1≤ i ≤m),

(1) hi connects all nodes in Gi by n-hop-connection with up to L′ as the

number of intermediate hops; and

(2) Gi form an ELRA group for K with hi as the hub.

With the tuned limit L′ for ELRA group semantics, the distances between

any two nodes in one ELRA group are effectively restricted to not more than

(L′ ∗ 2) hops away. Similar to ELRA pair semantics, when we say ELRA group
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semantics in the following, we refer to ELRA group with tuned upper limit L′ of

n-hop-connections.

Compared to SLCA and ELRA pair, ELRA group semantics can potentially

find more and smaller connected nodes that cover some query keywords in the

result.

Example 11 Consider keyword query “Lee Smith Database Management” in

Figure 4.1. With L′ set as one, the node group Course:0.1.1, Lecturer:0.2.0 and

Lecturer:0.2.1 form an ELRA group result with node Course:0.1.2 being the hub,

indicating Lee and Smith teach the same database course and “Database Manage-

ment” course is a prerequisite of their course. On the other hand, SLCA returns

the root and ELRA pairs have no result for this query.

4.2.4 Generality and applicability of the proposed seman-

tics

Up to now, we have illustrated the benefit of exploiting ID references with pro-

posed semantics compared to SLCA based on the particular example of Figure

4.1. Given the fact that ID references are important in XML to indicate the

relationships between real world entities, we believe these semantics are applica-

ble to many XML keyword search applications whose underlying XML database

contains ID references since ID reference connected nodes are usually related to

each other. In the following, we address the generality and applicability of the

proposed semantics based on two of the most-cited XML benchmark datasets:

DBLP [32] and XMark [41].

Figure 4.2 shows a part of the DTD graph for DBLP bibliography XML

database. The main structure of DBLP is a list of papers; and each ID reference
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Figure 4.2: DBLP DTD graph (partial)

indicates one citation relationship between two papers.

In this case, given a keyword query in DBLP, LRA pair (with reference-

connection) semantics can be used to find a paper that does not cover all query

keywords, but citing or cited by another paper such that they together cover all

keywords; ELRA pair (with 2-hop-connection) can be used to find two papers

that together cover all keywords and citing and/or cited by some common pa-

per. These papers (or paper pairs) can be good complementary results if users

want more query related papers besides those SLCA results containing all query

keywords. Note due to the citation relationships, it is reasonable to speculate

these connected results are usually more relevant than results based on SLCA

with keyword disjunction without considering ID references.

Consider, for instance, the query “XML querying processing”. LRA pair

semantics is able to find “query processing” papers that do not cover “XML” in

the title, but citing or cited by XML papers. These “query processing” papers

are usually more relevant to the query than other “query processing” papers not

citing or cited by XML papers.

Similarly, in XMark auction XML data whose DTD graph sketch is shown

in Figure 4.3, the information for persons, items and auctions is maintained

separately and ID reference from an auction to a person (or an item) indicates

the person attended (or the item is bidden for in) the auction. In this case, for
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Figure 4.3: XMark DTD graph (partial)

a keyword query of a person name and an item name, ELRA pair semantics is

able to find person and item pairs to see if the person attended some auction

for the item. Also, for a keyword query of a person name, an item name and an

auction date, ELRA group semantics is able to find out if the person attended

the auction on the particular date for the item.

4.3 Algorithms for proposed search semantics

This section presents the data structures and two algorithms: sequential-lookup

and rarest-lookup algorithms to find keyword search answers for the proposed

semantics.

4.3.1 Data structures

The two data structures that we adopt in this paper are keyword inverted lists

and connection table.

Keyword inverted lists are standard structures for keyword search applica-

tions. Each keyword inverted list stores the Dewey labels of all the parent nodes

that directly contain the keyword in our approach. Moreover, an index (e.g.
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B+-Tree) is built on top of each inverted list. Since inverted lists are standard

structures for keyword search, we mainly discuss the connection table in the

following.

The connection table maintains one connection-list, List(u), for each node u

in the XML document such that List(u) contains all the lowest nodes (v) that

have reference-connection (i.e. 1-hop-connection) to u in document order. From

the Dewey label of v, we can easily get all v’s ancestors that are not ancestors

of u so that they are also reference-connected to u. Indexes can be built on top

of the connection table to facilitate efficient retrieval of the connection list for a

given node.

0.1.2

0.1.1

...

...
0.1.2.2   0.2.2.2  ...

0.1.1   0.2.0.2  0.2.1.2 ...

B+ 

tree

0.1.2.2
 0.1.1  ...

0.2.0  0.1.2  ...
0.2.0.2  0.1.2  ...
0.2.1  0.1.2  ...
0.2.1.2  0.1.2  ...
0.2.2  0.1.1  ...
0.2.2.2  0.1.1  ...

...

Figure 4.4: The Connection Table of the XML tree in Figure 4.1

For example, Figure 4.4 shows the B+-tree indexed connection table for the

XML data in Figure 4.1. In Figure 4.4, we can see node 0.1.1 has reference

connection to 0.1.2.22, thus we can tell that 0.1.1 is also reference-connected to

0.1.2. Note we do not keep the direction of ID references in the connection table.

However, such information can be easily captured with one more bit for each

node to indicate whether the direction of ID reference is incoming or outgoing.

The size of the connection table in the worst case is O(|D| ∗ |ID|), where |D|
and |ID| are the number of nodes and IDs in an XML tree. However, the size is

2Note we ignore the reference connection between 0.1.1 and 0.1.2.2.0 in the connection table
for simplicity since @Course:0.1.2.2.0 is an IDREF typed attribute of element Teaching:0.1.2.2.
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usually much smaller than the worst case upper bound in most applications.

Note the connection table is similar to adjacency list representations of graphs.

The only exception is that if u is reference-connected to v, then we should also

keep in the connection table that u’s ancestors a’s are also reference-connected

to v for those a’s that are not v’s ancestors. Therefore, we can follow standard

graph traversal algorithms based on IDREFs to extract the connection table from

XML documents, with some care of the above mentioned exception. Similarly, to

compute u’s n-hop-connected nodes with L as the tuned upper limit of connection

chain length, we can do a depth-limited search (limited to L) from u based on

the connection table with special care that if u is n-hop-connected to v, then u

is also n-hop-connected to v’s ancestors that are not u’s ancestors.

For static XML data (or dynamic data where most updates are insertions),

we can even pre-compute and store all n-hop-connected nodes (n ≤ L for some

tuned L) for each node for faster query response. However, in this thesis we

compute n-hop-connections during query processing for generality.

4.3.2 Naive algorithms for ELRA pair and group

In this part, we present the naive algorithms, called sequential-lookup algorithms,

to compute all search results for ELRA pair and ELRA group semantics. The

sequential-lookup algorithm for ELRA pair semantics, ComputeELRA Pseq, is pre-

sented in Algorithm 1; while the sequential-lookup algorithm to compute ELRA

groups is named ComputeELRA Gseq in Algorithm 3. Note we can get all LRA

pairs by setting the limit L of n-hop-connection length in ELRA pairs as one.

Therefore, we omit the algorithm for LRA pair semantics.
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Algorithm computeELRA Pseq

Now, we present the naive sequential-lookup algorithm, computeELRA Pseq, to

compute ELRA pair results in Algorithm 1. Its main idea is to check each node

n and n’s ancestors in all query keywords’ inverted lists in document order to see

whether they and their connected nodes can contribute to ELRA pair results.

The input parameters of Algorithm computeELRA Pseq include inverted lists of

each individual query keyword I1,I2,...,Ik, the connection table CT and tuned up-

per limit of n-hop-connection length L for ELRA pairs. It sort-merges3 I1,I2,...,Ik

into Iseq and scans each node in Iseq and its ancestors to check if they and their

n-hop-connected (n ≤ L) nodes can form ELRA pair results; and returns all

ELRA pair results upon completion.

Algorithm 1: computeELRA Pseq

Input: Keyword lists I1,I2,...,Ik, connection table CT , the upper limits L
Output: ELRA P

1 initial empty ELRA P ; //mapping each u to ∀v s.t. u&v ∈ ELRA pair1

2 let Iseq be the sort-merged list of I1,I2,...,Ik; // sort-merge can also be done on the fly2

3 for (each self-or-ancestors u of each node in Iseq in top-down order) do3

4 get Ii, ..., Im whose keywords u does not cover ;4

5 if (u /∈ ELRA P and u does not cover all keywords) then5

6 Q=getConnectedList(u, CT , L) ;6

7 remove ∀q ∈ Q from Q s.t. u proceeds q in document order ;7

8 Su=computeSLCA(Q,Ii,...,Im); // adopt existing algorithms for SLCA8

9 remove ∀v ∈ Su from Su s.t. v covers all keywords ;9

10 ELRA P.put(u, Su);10

11 for (∀a s.t. a is ancestor of u and a ∈ ELRA P) do11

12 Sa = ELRA P.get(a);12

13 Sa = Sa - Su; // set difference13

14 ELRA P.update(a, Sa);14

end15

end16

end17

18 return ELRA P;18

The details of Algorithm computeELRA Pseq are as follows. It sequentially

scans Dewey labels and their ancestors in the sort-merged list (Iseq) in top-down

3Sort-merge can also be done on the fly.
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Function getConnectedList(u, CT , L)

1 return the list of lowest nodes computed by depth-limited search from CT that have1

n-hop-connection (n ≤ L) to u in document order ;

(i.e. ancestor to descendant) order (line 3). For each currently scanned Dewey

label u, we check whether u covers some but not all keywords (by probing the

indexed inverted list of each keyword). If so , we find i) the keywords and their

inverted lists Ii, ..., Im that u does not cover in line 4 and ii) all u’s lowest n-hop-

connected nodes (with chain length n ≤ L) Q by calling Function getConnect-

edList (line 6) which we will discuss shortly (we also defer the discussion of line 7

which is mainly for efficiency purposes). Then in line 8, we find the set (Su) such

that each node v in Su is a self-or-ancestor of some node in Q and v is the smallest

node to cover the remaining keywords with inverted lists Ii, ..., Im. This step is

achieved by performing an SLCA operation for the lists of Q and Ii, ..., Im. Now,

each node v in Su may potentially form an ELRA pair with u if we cannot find

a descendant of u to form a lower connected pair with v to cover all keywords

later on. So, we temporarily put u and Su in result ELRA P (line 10). Finally,

we use Su to prune the false positives of u’s ancestor a’s lowest connected nodes

in Sa (lines 11-15) that each together with a covers all keywords. The reason is

if some node v ∈ Su forms a lower pair with u to cover all keywords, it cannot

form an ELRA pair with u’s ancestor a according to the definition of ELRA pair

semantics.

Function getConnectedList takes a node Dewey ID u, the connection table

CT and the tuned upper limit of chain length L as inputs and returns all n-

hop-connected (n ≤ L) nodes for u. As mentioned in Section 4.3.1, to compute

u’s n-hop-connected nodes with L as the tuned upper limit of connection chain

length, we can do a depth-limited search (limited to L) from u based on the
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connection table with a special care that if u is n-hop-connected to v, then u is

also n-hop-connected to v’s ancestors that are not u’s ancestors. Therefore, we

omit the detailed pseudo code in the function.

Now, we come to line 7 which is simply for efficiency purposes to make Q

smaller as the input to Function computeSLCA. Now, assume nodes u and v form

an ELRA pair and u proceeds v in document order. Then, we will first encounter

u during the sequential scan and get u, v as an ELRA pair. After this, sequential

scan will also encounter v and if we do not remove u from v’s connected list in

line 7, we will waste computation in getting the pair twice and removing duplicate

results.

Note in line 8, given a number of existing algorithms for SLCA semantics, in

this thesis, we currently adopt the Index Lookup Eager algorithm in [46] which is

simple yet reasonably efficient since our focus is not on computing SLCAs. Other

SLCA algorithms, such as Stack Algorithm [35,46] and Multiway-SLCA [42] can

be easily incorporated in our approach to replace Index Lookup Eager algorithm

when necessary.

The following example shows a trace of Algorithm computeELRA Pseq for key-

word query “Database Smith” in the XML database of Figure 4.1, with upper

limit of n-hop-connection set to two (i.e. n ≤ L = 2). Note the SLCA result of

this query is the overwhelming root (or none if overwhelming nodes are removed

from results).

Example 12 Figure 4.5 (a) shows the inverted lists for keywords “Database”,

“Smith” and the sort-merged list; Figure 4.5 (b) shows part of the connection

table for the XML database in Figure 4.1.

The first node in the sort-merged list is 0.1.1.1. Following Algorithm com-

puteELRA Pseq, we scan all self-or-ancestors of 0.1.1.1 in top-down order. Since
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Sort-merged

Smith

Database

0.1.1.1,            0.1.2.1,            0.2.0.1

0.2.0.1

0.1.1.1,            0.1.2.1, 

(a)Inverted lists of keywords “Database”, “Smith” and their sort-merged list

0.1.2

0.1.1

...

...
0.1.2.2   0.2.2.2  ...

0.1.1   0.2.0.2  0.2.1.2 ...

B+ 

tree

0.1.2.2
 0.1.1  ...

0.2.0  0.1.2  ...
0.2.0.2  0.1.2  ...
0.2.1  0.1.2  ...
0.2.1.2  0.1.2  ...
0.2.2  0.1.1  ...
0.2.2.2  0.1.1  ...

...

(b) The Connection Table of the XML tree in Figure 4.1 (copy of Figure 4.4)

Figure 4.5: Data structures used in processing query “Database Smith”

node 0 and 0.1 are overwhelming and excluded from results, we start with 0.1.1

which covers “Database”. From Figure 4.5 (b), 0.1.1 is reference-connected to

0.1.2.2 and 0.2.2.2. Therefore, 0.1.1 is also reference-connected to 0.1.2 and 0.2.2

since they are ancestors of 0.1.2.2 and 0.2.2.2 respectively according to the defin-

ition of reference-connection. Note 0.1.2 is further reference-connected to 0.1.1,

0.2.0.2 and 0.2.1.2. As a result, 0.1.1 is 2-hop-connected to 0.2.0.2, 0.2.1.2 and

their ancestors via node 0.1.2 (but 0.1.1 is not considered 2-hop-connected to 0.1.1

itself). Therefore, we conclude 0.1.1 is n-hop-connected (n ≤ L = 2) to 0.1.2.2

(1-hop), 0.2.0.2 (2-hop via 0.1.2), 0.2.1.2 (2-hop via 0.1.2), 0.2.2.2 (1-hop) and

their corresponding ancestors. After performing the SLCA operation between the

n-hop-connection (n ≤ L = 2) list of 0.1.1 and the inverted list of “Smith”, we

find the lowest connected node of 0.1.1 that covers the remaining keyword “Smith”

is 0.2.0 via a 2-hop-connection. So, 0.1.1 and 0.2.0 together cover all keywords

and are put into ELRA pair candidates. Next, we move on to 0.1.1.1 to check for

ELRA pairs, which has no results since 0.1.1.1 is not reference-connected to any
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node.

The second node in the sort-merged list is 0.1.2.1 which covers “Database”. Its

ancestor 0.1.2’s n-hop-connected (n ≤ L = 2) list includes 0.1.1 (1-hop) (removed

by line 7 of Algorithm computeELRA Pseq), 0.2.0.2 (1-hop), 0.2.1.2 (1-hop) and

0.2.2.2 (2-hop via 0.1.1). So, we can find another pair 0.1.2 and 0.2.0 with 1-

hop-connection to cover all keywords. Since 0.1.2 is not a descendant of existing

candidate pair 0.1.1 and 0.2.0, no false positive can be found after getting 0.1.2

and 0.2.0.

Finally, the third node in the sort-merged list is 0.2.0.1. Its ancestor 0.2.0 is

n-hop-connected (n ≤ L = 2) to 0.1.1.0, 0.1.2.0 and 0.2.1.2. The first two are

removed by line 7 since they proceed 0.2.0.1 in document order. Therefore, no

more ELRA pair candidates can be found.

At this stage, pair 0.1.1 and 0.2.0 via a 2-hop-connection and 0.1.2 and pair

0.2.0 with 1-hop-connection are returned as ELRA pair results.

Algorithm computeELRA Gseq

Now, we present the sequential-lookup algorithm to compute ELRA group results,

computeELRA Gseq, in Algorithm 3. Its main idea is to check each node n in all

query keywords’ inverted lists in document order and n’s ancestors to see whether

they and their connected nodes can be a hub to connect a group of nodes to cover

all query keywords in order to be an ELRA group result.

The input parameters of Algorithm computeELRA Gseq include inverted lists

of each individual query keywords I1,I2,...,Ik, the connection table CT and the

tuned upper limit of n-hop-connection length L′ for ELRA groups. It sort-merges

I1,I2,...,Ik into Iseq and scans each node in Iseq and its ancestors to check if they

and their connected nodes can be a hub to connect a group of nodes to cover all
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query keywords; and returns all ELRA group results upon completion.

Algorithm 3: computeELRA Gseq

Input: Keyword lists I1,I2,...,Ik, the connection table CT , the upper limits L′

Output: ELRA G
1 initial empty ELRA G ; // mapping each u to a group G s.t. u is a hub to1

// connect ∀v ∈ G as an ELRA group

2 let Iseq be the sort-merged list of I1,I2,...,Ik; // sort-merge can also be done on the fly2

3 for (each self-or-ancestors u of each node in Iseq in top-down order) do3

4 G=getELRAGroup(u, I1,I2,...,Ik, CT , L′)4

5 if G 6= null then5

6 LRA G.put(u,G) ;6

end7

8 for (∀a s.t. a is ancestor of u and a ∈ ELRA G) do8

9 if (G ∪ {a} ⊇ ELRA G.get(a)) then9

10 ELRA G.remove(a) ;10

end11

end12

13 Q=getConnectedList(u, CT , L′) ;13

14 for (each self-or-ancestors q of each node in Q in top-down order) do14

15 G=getELRAGroup(q, I1,I2,...,Ik, CT , L′) ;15

16 if (G 6= null) then16

17 ELRA G.put(q, G) ;17

end18

19 for (∀a s.t. a is ancestor of u and a ∈ ELRA G) do19

20 if (G ∪ {a} ⊇ ELRA G.get(a)) then20

21 ELRA G.remove(a) ;21

end22

end23

end24

end25

26 return ELRA G ;26

The details of Algorithm computeELRA Gseq are as follows. For each Dewey

ID in Iseq and its ancestors (u) in top-down order (line 3), we check if u can be a

hub to form an ELRA group G by calling Function getELRAGroup (line 4) which

we will discuss shortly. After finding non-null group G, we check if u and G can

prune away the groups hubbed by u’s ancestors (lines 5–12). Then, we compute

all u’s n-hop-connected (n ≤ L′) nodes in set Q (line 13) and check whether

each node q in Q and q’s ancestors can be hubs to form ELRA groups by calling

Function getELRAGroup (line 15). Each time we find a new ELRA group with
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Function getELRAGroup(h, I1,I2,...,Ik, CT , L′)
1 if (h cover all keywords) then1

2 return null ;2

end3

4 Q = getConnectedList(h, CT , L′) ;4

5 initial empty set G ;5

6 for (each Ii ∈ I1, I2, ..., Ik) do6

7 Y = getSLCA(Ii, Q) ;7

8 remove ∀y ∈ Y from Y s.t. y covers all keywords ;8

9 if (Y is empty and h does not cover Ii’s keyword) then9

10 return null ;10

end11

12 G = G ∪ Y ;12

end13

14 return G ;14

hub q, we check each existing group whose hub is q’s ancestor to prune possible

false positives (lines 19–23) according to the definition of ELRA group semantics.

Function getELRAGroup takes a node h, inverted lists of each individual query

keywords I1,I2,...,Ik, the connection table CT and tuned upper limit of n-hop-

connection length L′ for ELRA group semantics as inputs; and returns a group of

nodes G such that nodes in G form a candidate ELRA group with h as the hub

(G is null if h cannot be a hub to form an ELRA group with n-hop-connections

n ≤ L′).

Function getELRAGroup first ensures input h is not a self-or-ancestor of SLCA

(lines 1–3). Then, it gets all h’s n-hop-connected (n ≤ L′) nodes Q by calling

Function getConnectedList (line 4). From line 6 to line 13, we get all h’s n-hop-

connected (n ≤ L′) nodes that contain some query keywords. We achieve this by

computing the SLCAs (Y ) of list Q and inverted list of each query keyword in

line 7. In line 8, we make sure each node in Y does not contain all query keywords.

If the SLCA result (Y ) is empty for a given keyword with inverted list Ii and

h itself does not cover the corresponding keyword, then null is returned since h

cannot be a hub to form an ELRA group (as all nodes that are n-hop-connected

54



Sort-merged

Smith

Database

0.1.1.1,          0.1.2.1,          0.2.0.1,          0.2.1.1

0.2.0.1

0.1.1.1,          0.1.2.1, 

Lee 0.2.1.1

Management 0.1.1.1,      

(a)Inverted lists of keywords “Database”, “Management”, “Smith”, “Lee” and
their sort-merged list

0.1.2

0.1.1

...

...
0.1.2.2   0.2.2.2  ...

0.1.1   0.2.0.2  0.2.1.2 ...

B+ 

tree

0.1.2.2
 0.1.1  ...

0.2.0  0.1.2  ...
0.2.0.2  0.1.2  ...
0.2.1  0.1.2  ...
0.2.1.2  0.1.2  ...
0.2.2  0.1.1  ...
0.2.2.2  0.1.1  ...

...

(b) The Connection Table of the XML tree in Figure 4.1 (copy of Figure 4.4)

Figure 4.6: Data structures used in processing query “Database Management
Smith Lee”

(n ≤ L′) to h including h do not cover the query keyword of Ii). Otherwise,

if null is not returned in line 10 for all iterations, then all query keywords can

be covered by some node with n-hop-connection (n ≤ L′) to h. Therefore, a

candidate ELRA group is found with h as the hub.

The following example shows a trace of Algorithm computeELRA Gseq for key-

word query “Database Management Smith Lee” in the XML database of Fig-

ure 4.1, with upper limit of n-hop-connection set to one (i.e. n ≤ L′ = 1).

Example 13 Figure 4.6 (a) shows the inverted lists for keywords “Database”,

“Management”, “Smith”, “Lee” and the sort-merged list; Figure 4.6 (b) shows

part of the connection table for the XML database in Figure 4.1.

The first node in the sort-merged list is 0.1.1.1. Following the function, we

scan all self-or-ancestors of 0.1.1.1 in top-down order. Since node 0 and 0.1 are
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overwhelming and excluded from results, we start testing whether 0.1.1 can be a

hub to form an ELRA group, which is n-hop-connected (n ≤ L′ = 1) to 0.1.2.2,

0.2.2.2 and their corresponding ancestors. After performing SLCA operations

based on the connected list and each keyword inverted list, we will not get mean-

ingfully connected nodes to cover all query keywords. Thus, 0.1.1 cannot be a hub

to form an ELRA group with n-hop-connection (n ≤ L′ = 1).

Next, Algorithm computeELRA Gseq checks whether nodes in 0.1.1’s connected

list can be hubs to form candidate ELRA groups. The first connected node is

0.1.2.2. We first test its ancestor 0.1.2 for ELRA group hub. 0.1.2 is n-hop-

connected (n ≤ L′ = 1) to 0.1.1, 0.2.0.2 and 0.2.1.2. After performing SLCA

operations based on the connected list and each keyword inverted list, we will find

nodes 0.1.1, 0.2.0 and 0.2.1 form an ELRA group with 0.1.2 as the hub. Thus,

a candidate ELRA group is found. After checking that 0.1.2.2 cannot form an

ELRA group, the previous candidate ELRA group becomes a real result. The

second connected node of 0.1.1 is 0.2.2.2, for which we cannot find an ELRA

group.

Now, Algorithm computeELRA Gseq moves on to scan subsequent nodes in

the sort-merged list and their connected lists to check for more candidate ELRA

groups and prune false positives according to the definition of ELRA group se-

mantics.

Finally, node 0.1.2 is returned as a hub to form an ELRA group since this

group is not identified as false positives.
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4.3.3 Rarest-lookup algorithms for ELRA pair and group

semantics

The naive algorithm is expensive when the number of query keywords grows, since

it sequentially scans all nodes in all keywords’ inverted lists to check for ELRA

pair and group results. In fact, it is sufficient to only check the shortest (rarest)

inverted list for all results to significantly reduce the amount of computations,

based on the following lemma.

Lemma 1 Every ELRA pair (or ELRA group) must include at least one node

(or its ancestor) from the shortest (rarest) inverted list of query keywords.

Therefore, we propose rarest-lookup algorithms to compute ELRA pairs and

groups, which are presented in Algorithm 5 computeELRA Prare and Algorithm 6

computeELRA Grare respectively.

Algorithm 5: computeELRA Prare

Input: Keyword lists I1,I2,...,Ik, the connection table CT , the upper limits L
Output: ELRA P

1 initial empty ELRA P ; //mapping each u to ∀v s.t. u&v ∈ ELRA pair1

2 let Irarest be the rarest (shortest) list of I1,I2,...,Ik;2

3 for (each self-or-ancestors u of each node in Irarest in top-down order) do3

4 get Ii, ..., Im whose keywords u does not cover ;4

5 if (u /∈ ELRA P and u does not cover all keywords) then5

6 Q=getConnectedList(u, CT , L) ;6

7 Su=computeSLCA(Q,Ii,...,Im);7

8 remove ∀v ∈ Su from Su s.t. v covers all keywords ;8

9 ELRA P.put(u, Su);9

10 for (∀a s.t. a is ancestor of u and a ∈ ELRA P) do10

11 Sa = ELRA P.get(a);11

12 Sa = Sa - Su; // set difference12

13 ELRA P.update(a, Sa);13

end14

end15

end16

17 return ELRA P;17
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Algorithm 6: computeELRA Grare

Input: Keyword lists I1,I2,...,Ik, the connection table CT , the upper limits L′

Output: ELRA G
1 initial empty ELRA G ; // mapping each u to a group G s.t. u is a hub to1

// connect ∀v ∈ G as an ELRA group

2 let Irarest be the rarest (shortest) list of I1,I2,...,Ik;2

3 for (each self-or-ancestors u of each node in Irarest in top-down order) do3

4 G=getELRAGroup(u, I1,I2,...,Ik, CT , L′) ;4

5 if G 6= null then5

6 LRA G.put(u,G) ;6

end7

8 for (∀a s.t. a is ancestor of u and a ∈ ELRA G) do8

9 if (G ∪ {a} ⊇ ELRA G.get(a)) then9

10 ELRA G.remove(a) ;10

end11

end12

13 Q=getConnectedList(u, CT , L′) ;13

14 for (each self-or-ancestors q of each node in Q in top-down order) do14

15 G=getELRAGroup(q, I1,I2,...,Ik, CT , L′) ;15

16 if (G 6= null) then16

17 ELRA G.put(q, G) ;17

end18

19 for (∀a s.t. a is ancestor of u and a ∈ ELRA G) do19

20 if (G ∪ {a} ⊇ ELRA G.get(a)) then20

21 ELRA G.remove(a) ;21

end22

end23

end24

end25

26 return ELRA G ;26

Since Algorithm 5 computeELRA Prare and Algorithm 6 computeELRA Grare

share great similarity with Algorithm 1 computeELRA Pseq and Algorithm 3

computeELRA Gseq respectively, we only highlight their differences in this part,

omitting detailed explanations and examples for brevity.

The only changes from computeELRA Pseq in Algorithm 1 to computeELRA Prare

are in line 2 and line 7 of computeELRA Pseq. In line 2, instead of getting the

sort-merged list of all query keyword inverted lists, we choose the shortest (rarest)

inverted list. For line 7, we need to remove it from computeELRA Pseq for com-

puteELRA Prare. The reason is simply because we only scan the rarest inverted list
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now, instead of scanning nodes in all inverted lists. Therefore, we need to make

sure all connected nodes of each node in the shortest inverted list are checked for

potential ELRA pair results.

Similarly, the only change from computeELRA Gseq in Algorithm 3 to com-

puteELRA Grare is in line 2. Instead of getting the sort-merged list of all query

keyword inverted lists, we choose the shortest (rarest) inverted list.

4.3.4 Time complexity analysis

In the following, we present the analysis of time complexities of our algorithms.

Lemma 2 The time complexities of naive sequential-lookup algorithms to com-

pute ELRA pairs and ELRA groups are the following:

• Algorithm 1 computeELRA Pseq for ELRA pair semantics:

O(d
∑k

i=1 |Ni|(|EL|+ kd|QL| log |Nmax|)), and,

• Algorithm 3 computeELRA Gseq for ELRA group semantics:

O(|QL′|d2
∑k

i=1 |Ni|(|EL′|+ kd|QL′| log |Nmax|))

where k is the number of keywords; d is the maximum depth of the XML docu-

ments; |Nmin|, |Nmax| and |Ni| are the sizes of shortest, longest and ith inverted

lists in the query respectively; EL and QL are the maximum number of edges and

nodes reached by depth-limited search with chain length limit L for ELRA pair

semantics; and finally EL′ and QL′ are the maximum number of edges and nodes

reached by depth-limited search with chain length limit L′ for ELRA groups.

PROOF SKETCH:
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We first derive the complexity of Algorithm 1 computeELRA Pseq for ELRA

pair semantics. The factor, d
∑k

i=1 |Ni|, in the complexity is simply due to the

for statement in line 2 of Algorithm 1 computeELRA Pseq. The other factor,

(|EL|+kd|QL| log |Nmax|), represents the complexity of each iteration (i.e. lines 3–

15) inside the for statement. The two most significant operations in terms of big-

O notation are line 5 and line 7. The complexity of line 5 is |EL|+ |QL|, which is

for depth-limited search. The complexity for line 7 (SLCA) is kd|QL| log |Nmax|4.
Thus, the sum of the two lines in terms of big-O is (|EL| + kd|QL| log |Nmax|).
Therefore, the complexity for ELRA pair semantics is derived. Note the com-

plexity of nested for loop (lines 10–14) is d|QL| since the set different operation

can be done in linear time given Sa and Su are sorted in document order. This

complexity for nested for loop is less significant than that of line 7.

Now, we derive the complexity of Algorithm 3 computeELRA Gseq. First,

the complexity of Function getELRAGroup is O(|EL′| + kd|QL′| log |Nmax|). The

reason is the most significant operations in Function getELRAGroup are line 4

(i.e. |EL′|+ |QL′|) and iterated line 7, which is the product of k (due to loop) and

the cost of SLCA for Ii and Q (i.e. 2 ∗ d|QL′| log |Ii|).
Next, in line 14 of Algorithm 3 computeELRA Gseq, getELRAGroup is called

|QL′|d2
∑k

i=1 |Ni| times in total due to the nested loops in line 2 and line 13.

Therefore, the complexity of Algorithm 3 computeELRA Gseq is the product of

|QL′|d2
∑k

i=1 |Ni| and (|EL′|+ kd|QL′| log |Nmax|) in big-O notation.

Lemma 3 The time complexities for rarest-lookup algorithms to compute ELRA

pairs and groups are the following:

4Since we adopt Index Lookup Eager algorithm in [46], the complexity for SLCA
(kd|QL| log |Nmax|) directly comes from [46]. Interested readers may refer to [46] for the analy-
sis, while we focus on using the analysis result of [46] to derive the complexity in computing
our ELRA pair and ELRA group.
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• Algorithm 5 computeELRA Prare for ELRA pair semantics:

O(d|Nmin|(|EL|+ kd|QL| log |Nmax|)), and,

• Algorithm 6 computeELRA Grare for ELRA group semantics:

O(|QL′|d2|Nmin|(|EL′|+ kd|QL′| log |Nmax|))

where the variables are the same as those in sequential-lookup’s complexity.

PROOF SKETCH: Algorithm 5 and Algorithm 6 are similar to Algorithm 1

and Algorithm 3, except we use the rarest inverted list instead of the sort-merged

list in Algorithm 5 and Algorithm 6. Therefore, we can simply substitute
∑k

i=1 |Ni|
in sequential-lookup algorithms by |Nmin| for the complexities of rarest-lookup al-

gorithms.
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Chapter 5

Result Display with ORA-SS and

DBLP Demo

Semantic information of the underlying XML database is important for result

display of XML keyword search. In this chapter, we discuss some guidelines for

result display based on object classes and relationship types in ORA-SS. Then,

we present our keyword search demo system, ICRA, that provides keyword search

services in DBLP bibliography.

Note the discussion for result display in XSeek [36] also uses the concept of

object classes. However, it exploits neither ID references in XML nor relationships

between (among) objects.

5.1 Result display with ORA-SS

In the following, we will discuss how ORA-SS can be used to interpret the mean-

ings of keyword queries and present search results based on object classes and

relationship types.
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Figure 5.1: Example ORS-SS schema diagram fraction for the XML data in
Figure 3.1 (Copy of Figure 3.4)

Note that all the examples in this section are based on the ORA-SS schema

in Figure 3.4. For ease of reference, we show a copy of Figure 3.4 in Figure 5.1.

5.1.1 Interpreting keyword query based on object classes

Now, we discuss some guidelines of the interpretations of keyword queries based

on object classes in ORA-SS model. This part focuses on the result display for

SLCA.

First, the most common keyword queries are just a list of keywords which are

values of object properties1. For these queries with only property values, we first

compute the SLCA results. Then if the SLCA results are properties of objects,

we should display all and only the information of the whole objects instead of just

the keyword matching properties. For example, a user may search for a course

via the course title with query “Database Management”. In this case, the system

should display the information of the course, including id (i.e. course-code), Title,

Description, etc. However, the SLCA itself (i.e. Title) is not very informative as

it is the same as the keyword query.

1In this chapter, we use property to refer to attribute of an object to avoid confusion with
XML attributes
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Second, sometimes users may want to define the output node as a keyword in

the query. For example, a user can search for only id of a course via the Title with

query “Database Management id”. In this case, “id” is interpreted as output node

since “id” matches a property name of Course object class. Therefore, we should

output the course code (id) of “Database Management” instead of the whole

object. Similarly, users can also use property name as a predicate for existence

test, which we call existential predicate. For example, we can search for lecturers

who have provided their address with query “Smith address”. (i.e. search for

lecturers with last name “Smith” and who have provided their addresses) or

“Smith address Law Link” (i.e. search for lecturers with last name “Smith” and

having a address in “Law Link”). In this case, the system will find the objects

that contain the SLCAs of value “Smith” and address node (with value “Law

Link” for the second query) to answer the keyword query.

Note it may be difficult to distinguish queries with existential predicates and

queries with output nodes. For example, keyword “address” that matches a

property name in query “Smith address” have the ambiguity of whether it should

be interpreted as output node or existential predicate. We adopt the following

rules to resolve the ambiguities.

• First, when keywords in a query match a property name and its value, then

the system should interpret it as an existential predicate.

For example, query “Name John Smith” should be interpreted as search-

ing for lecturers with sname=“John Smith” instead of searching for Name

property of the matching lecturer.

• Second, if keywords of a query only match a property name that is manda-

tory in the object class or relationship type (i.e. the property appears at
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least once in every object or relationship respectively) without matching the

values of the property, intuitively, this keyword is an output node, instead

of an existential predicate.

For example, since id is mandatory in Lecturer objects, the meaning of “id

John Smith” is clear to search for id property of the matching lecturer.

• Finally, when keywords in a query match a property name that is optional

in the object class or relationship type without matching the values of the

property, then the system can regard this keyword as existential predicate

to find all objects containing the node.

For example, we will interpret query “Smith address” as searching for lec-

turers with last name “Smith” and having provided their addresses. The

reason is users still can see the address of matching lecturers in case they

want keyword “address” as output node.

Besides the above rules, we can also adopt simple syntax p to resolve am-

biguities. We use “<>” to indicate output nodes, “[ ]” to indicate existential

predicates and “N :k” (or “N :{k k′ ...}”) to indicate the containment of keyword

k (or keywords k k′...) in a node N . For example, “Smith [address]” (or “Smith

[address:{Law Link}]”) means finding lecturers with last name “Smith” and hav-

ing address (in Law Link); while “Smith <address>” means finding the address

of “Smith”.

5.1.2 Interpreting keyword query based on relationship-

type

Relationship types in ORA-SS are also important to interpret keyword queries.

Now, we extend the result display for ELRA pair and ELRA group. We start
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with cases where each ELRA pair/group result matches a single relationship

type in ORA-SS. Note when different ELRA pair/group results match different

relationship types, we can display results in different categories.

First, if a keyword query matches a property of a relationship type, then the

output of the query should be the whole relationship together with all the partic-

ipating objects. It may not be correct and meaningful to return the SLCAs. For

example, for query “Smith year:2007”, the system should display the Lecturer-

Teaching relationships including both Lecturer and Teaching objects with relation-

ship property Year=“2007”, instead of just the subtree of corresponding SLCA

Lecturer node. Note Teaching is a reference object, which means we should also

include the information of the referenced object, i.e. Course, when we return

Teaching. Similarly, for query “Database 2002”, besides database courses that

are taught in 2002, the system should also display the lecturers who taught Data-

base in 2002. However, displaying only the LRA pair without the information of

Lecturer may not be meaningful for this query.

Second, if a keyword query matches properties of two objects of two different

object classes and there is a relationship type with respect to the two object

classes, then the system should output the matching relationships. For example,

for query “Database John Smith”, the system should return the relationships

involving the matching Course and Lecturer objects together with the relationship

properties Year and Semester.

Third, if a keyword query matches the name of one object class and property

values of an object for another object class and there is a relationship type with

respect to the two object classes, then the system should output objects of the

first object class together with the properties of relationships that involve the two

object classes. For example, for query “John Smith <course>”, the system should
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return all courses and the corresponding years in which John Smith teaches the

course.

The above guidelines are applicable when each ELRA pair/group result matches

a single relationship type in ORA-SS. When an ELRA pair/group spans multi-

ple relationship types, we can first extract result nodes in the pairs and groups.

Then, we display these result nodes grouped by object classes with links to show

their ELRA pairs and groups. In this way, each displayed result object contains

some query keywords, but users have the choice to view the ELRA pairs and

groups of each result.

Finally, grouping ELRA pairs/groups by participant nodes are also useful

when the same node are duplicated in several ELRA pair and ELRA group re-

sults. For example, for query “Smith database”, if Smith teaches multiple data-

base courses, then the same Smith lecturer object will be duplicated in several

ELRA pair results. Similarly, if the same database course is taught by several

lecturers who share common name “Smith”, then the same database course is

also duplicated in different ELRA pair results2. In this case, we can group results

by one type of node (object class) for clarity. For example, we can group results

by lecturers for query “Smith database”. Therefore, we will see all the database

courses taught by each lecturer who has name Smith. It is up to the user to select

which object class they want to group by while the system can choose a default

one for the first display.

2This case may seem rare. However, for query “XML query processing” in DBLP, the same
“XML” paper may cite or is cited by many “query processing” papers and meanwhile one
“query processing” paper can cite or is cited by many “XML” papers
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5.2 ICRA: online keyword search demo system

We apply our keyword search approach in the DBLP bibliography to provide

keyword search services for the research community.

In this part, we demonstrate our ICRA online keyword search prototype. We

will first present a simple briefing for the implementation of the demo system.

Then we show the features of our system. The ICRA demo prototype is available

at http://xmldb.ddns.comp.nus.edu.sg.

5.2.1 Briefing on implementation

Currently, we identify two object classes in DBLP, publication and author, for

result display. Users can select one as their object class of interest for each query.

Search for publications

Given one keyword query when searching for publications, our system first com-

putes the SLCA, ELRA pair and ELRA groups. SLCA results include all publi-

cations that each contains all query keywords; while ELRA pair (or group) results

include all connected pairs (or groups) that each pair (or group) of publications

contain all query keywords. We limit the length of the connection to 2 hops for

ELRA pair and 1 hop for ELRA group so that papers citing or cited by some

common papers are considered relevant.

Then, we group ELRA pair and ELRA group results by publications to avoid

duplication. For clarity, we do not directly display the pairs and groups that each

publication participates in, but provide links to show the pairs/groups of each

paper for users to click.

Therefore, when publication is selected as the selected object class of interest,
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the final result for each query is a list of publications.

We adopt the following simple rules for ranking purposes in our demo system.

Anecdotal results of some sample queries proves the effectiveness of our ranking

rules for DBLP. However, a general approach of result ranking in XML is left as

future work.

• SLCA results are ranked before publications in ELRA pair and ELRA group

results.

• In SLCA results, a publication with a property (i.e. author or title or

conference/journal) that is fully specified in the keyword query is ranked

higher than a publication without a fully specified property. For example,

for query {Tian Yu}3, a publication with one author whose name is Tian

Yu is ranked before a publication with an author whose name is Tian-Li

Yu.

• In ELRA pair and group results, a publication with more query keywords

is ranked before a publication with less query keywords.

• In ELRA pair and group results, a publication that participates in more

ELRA pairs is ranked higher than a publication participating in less ELRA

pairs which is in turn ranked higher than a publication that participates in

ELRA groups.

Search for authors

Given one keyword query when searching for authors, the system first computes

the list of publications in the same way as searching for publications. Then, we

3In this chapter, we use curly bracket to enclose keyword queries.
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extract all authors from these publications for result display. Since each author’s

name appears in each of his/her publications and there is no identifier for authors,

we treat the same author names in different publications as the same person. How

to distinguish different persons with the same name is beyond the scope of this

thesis.

For ranking purposes, first, an author whose name is fully specified in the

query is ranked higher than other authors. Also, we give higher rank to an

author with more query relevant publications than another one with less.

5.2.2 Overview of demo features

Inspired by the simplicity of Google, our demo system provides a simple user

interface for pure keyword queries; except users can specify if they are interested

in publications (default) or authors in DBLP bibliography. We show the main

user interface in Figure 5.2.

Search for publications

Our demo provides query flexibility in that users are free to issue keyword queries

which can be any combination of words in full or partial author names, topics,

conference/journal names and/or year.

In the following, we illustrate some ways to search for publications in our

ICRA demo system. We do not demonstrate all the types of queries and reader

are welcome to try other queries.

1. An author name: for example, users can input {Tian Yu} (or {Yu Tian} as

Asian convention) to search for Tian Yu’s publications. Our system auto-

matically ranks Tian Yu’s publications before other authors’ whose names

70



Figure 5.2: ICRA search engine user interface

include more than “Tian Yu” (e.g. Tian-Li Yu) as shown in Figure 5.3.

2. Multiple author names : we can search for co-authored papers with names

of multiple authors.

3. Topic: we can input a topic to search for related publications. For exam-

ple, we can query {XML query processing}. Besides papers containing all

keywords, other related papers (e.g. “Query optimization for XML” writ-

ten by Jason McHugh and Jennifer Widom) are also ranked and displayed

according to our ELRA pair and ELRA group semantics).

4. Topic by an author : for example, we can query {Jim Gray transaction}
for his publications related to transaction. Besides Jim Gray’s papers con-

taining “transaction”, our system ranks his papers, which do not contain

“transaction”, but are “transaction” related, before his other papers due
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Figure 5.3: ICRA publication result screen for query {Yu Tian}

Figure 5.4: ICRA publication result screen for query {Jennifer Widom OLAP}
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to the reference/citation relationships with transaction papers captured in

ELRA pair and ELRA group semantics. Similarly, for query {Jennifer

Widom OLAP}, our system is able to find her related papers whose titles

do not contain “OLAP”, but contain “data warehousing” since those papers

cite or are cited by “OLAP” papers. A snapshot of the results for query

{Jennifer Widom OLAP} is shown in Figure 5.4.

5. Topic of a year : for example, we can search for keyword search papers in

2007 with query {keyword search 2007}.

6. Conference and author : for example, we can search for Prof. Ooi Beng

Chin’s publications in ICDE with query {ICDE Beng Chin Ooi} as shown

in Figure 5.5.

Figure 5.5: ICRA publication result screen for query {Ooi Beng Chin ICDE}

7. Conference and year, author and year, etc.
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Figure 5.6: ICRA author result screen for query {Ling Tok Wang}

Search for authors

Users can also search for authors with a wide range of query types. In the

following, we illustrate some ways to search for authors in our ICRA demo system.

We do not demonstrate all the types of queries and reader are welcome to try

other queries.

1. Author name: the most intuitive way to search for authors is to search by

their names. In our system, besides the author with matching name, we also

return his/her co-authors. For example, we can search for Prof. Ling Tok

Wang’s co-authors with query {Ling Tok Wang}; and some ICRA author

results for this query are shown in Figure 5.6.

2. Topic: we can search for authors who have contributions to a topic. For

example, we can input query {XML} for authors with most contributions
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Figure 5.7: ICRA author result screen for query {XML}

to “XML” as shown in Figure 5.7.

3. Conference/journal : similar to topic, we can search for authors who are

most active in a particular conference/journal. For example, Figure 5.8

shows the result of query {ICDE} to search for active authors in “ICDE”.

4. Author name and topic/conference/journal : We can even search for one

author’s co-authors in a particular topic or conference/journal. For exam-

ple, we can search for Surajit Chaudhuri’s co-authors in ICDE with query

{Surajit Chaudhuri ICDE} and the ICRA author results are shown in Fig-

ure 5.9.

Some readers may have noticed the two numbers displayed with each author

result. They are for browsing purposes, which we will discuss shortly.
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Figure 5.8: ICRA author result screen for query {ICDE}

Figure 5.9: ICRA author result screen for query {Surajit Chaudhuri ICDE}
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Note when we search for authors by name, since the system does not require

users to specify the search intention of a keyword in the query (e.g. whether a

keyword should be an author name or a part of a topic), the results also include

other authors (e.g. most are co-authors since the co-authors’ publications also

contain the searched name) that do not match the name. However, we believe

the inclusion of other authors usually does not affect the satisfaction of the user

as long as the author matching the searched name is ranked in the top few (e.g.

top-2 or 3) results. The reason is a query which searches an author by name

is usually considered as known item search, meaning the searcher knows exactly

what she needs. Thus, the user can simply stop reading other authors once she

finds the searched author without being frustrated by a long list of results ranked

after the searched author. And, importantly, our system is usually able to rank

the author with matching name as the first result due to our ranking approach

mentioned in Section 5.2.1.

Browsing

Besides searching, our system also supports browsing from search results to im-

prove the practical usability. For example, users can click an author (or confer-

ence/journal) name in a result publication to see all publications of the author

(or in the same proceeding/journal).

When searching for authors, we also output the number of publications con-

taining all the query keywords and the number of publications (based on ELRA

pair and group results) that may be relevant according to reference connections

so that users can click the numbers to see the publications.

For example, when we search for authors with query {XML query processing},
author Daniela Florescu has 3 publications containing all the keywords and 7
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Figure 5.10: ICRA author result screen for query {XML query processing}

publications that may be related even though not all of them contain all keywords,

which are shown in Figure 5.10. Note due to the incomplete information of

citations in DBLP, our current estimation for relevant publications based on

reference/citations may miss some relevant ones.
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Chapter 6

Experimental Evaluation

6.1 Experimental settings

Hardware and implementation We use a PC with a Pentium 2.6GHz

CPU and 1GB memory for our experiment. All codes are written in Java. In our

experiments, we set the upper limit of connection chain length as two for ELRA

pair and one for ELRA group. Results show these limits are reasonable for the

tradeoff between execution time and result size.

Datasets and indexes creation We choose both real DBLP and synthetic

XMark datasets in our experiment. They have been widely studied for measuring

the efficiency of various XML keyword search applications(e.g. [6,30,46] etc.). The

reality of DBLP also makes it possible to study the quality of search results for

our demo system, which is available at http://xmldb.ddns.comp.nus.edu.sg.

Two datasets are pre-processed to create the inverted lists and the connection

tables. They are stored in Disk with Berkeley DB [3] B+-trees and their entries

are cached in memory only after the entries are used. The details of the file sizes

and index creations of the two datasets are shown in Table 6.1. Note that the
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Table 6.1: Data size, index size and index creation time
Data File size Keyword inverted lists Connection table

creation time size creation time size
DBLP 362.9MB 321 sec 145.7MB 81 sec 1.62MB
XMark 113.8MB 193 sec 140.3MB 234 sec 13.7MB

inverted lists of XMark has comparable size with DBLP’s despite DBLP having a

much larger file size. This is because each dewey ID in the inverted lists of DBLP

is smaller due to its flat structure. Note that the connection table of DBLP is

small due to the incomplete citation information of the data.

Queries and performance measures For each dataset, we generate

random queries of 2 to 5 keywords long, with 50 queries for each query size. We

use these random queries to compare the 1) efficiency of Sequential-lookup and

Rarest-Look algorithms, 2) effectiveness of ELRA pair and group search semantics

in Tree + IDREF model in terms of execution time and result size tradeoff as

compared to SLCA alone, and 3) efficiency of computing ELRA pair/group as

compared to Bi-Directional expansion heuristics in the general digraph model.

We also use sample queries to measure the result quality in the real DBLP dataset.

Our metric for result quality is the number of relevant answers among top-10, 20

and 30 results. Answer relevance is judged by discussions of a small group in our

database lab, including volunteers.
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6.2 Comparison of search efficiency based on

random queries

6.2.1 Sequential-lookup v.s. Rarest-lookup

We present the efficiency comparisons between Sequential-lookup and Rarest-

lookup in computing ELRA pair (SeqP and RarestP ) and ELRA group (SeqG

and RarestG) in Figure 6.1 for DBLP dataset and Figure 6.2 for XMark dataset

respectively.
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Figure 6.1: Time Comparisons between Rarest-lookup and Sequential-lookup in
DBLP dataset

From Figure 6.1 and Figure 6.2, it is clear that Rarest-lookup achieves much

better efficiency (up to 10 times faster for query size of five than Sequential-

Lookup) in both datasets. Rarest-lookup is also more scalable to queries of more

keywords since it only scans the shortest inverted lists, while Sequential-lookup

goes significantly slower as the number of keywords increases. The reason is

Sequential-lookup scans all keyword lists; thus it scans more and costs more

when there are more keywords.
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Figure 6.2: Time Comparisons between Rarest-lookup and Sequential-lookup in
XMark dataset

We can also tell from the two figures that time spent in ELRA pair and group

computation does not differ much for both algorithms in both datasets. The

reason is ELRA pair and group semantics have about the same search space by

setting chain length of ELRA pair and group semantics as two and one respec-

tively (i.e. any two nodes in one result of either ELRA pair or ELRA group are

not more than 2 hops away).

In Figure 6.2 for XMark dataset, time spent in ELRA pair semantics is slightly

shorter than that in ELRA group, which conforms to our time complexity analy-

sis. On the other hand, it is also interesting to see in Figure 6.1 that time

spent in computing ELRA pair results is longer than that for ELRA group in

DBLP although computation of ELRA groups has relatively larger theoretical

time complexity. The reason is some papers in DBLP are connected to (cited by)

many papers; thus depth-limited search from these papers for 2-hop-connections

in ELRA pair semantics is costly. However, ELRA groups does not have this

problem due to its 1-hop-connections in the experimental setting.
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Figure 6.3: Time comparisons among SLCA, ELRA pair and group computation
in DBLP dataset

6.2.2 Tree + IDREF v.s. tree data model

In this part, we compare our approach in Tree + IDREF with SLCA in the tree

data model in terms of search efficiency and the total number of results returned.

Since Rarest-Lookup outperforms Sequential-Lookup, we only show the efficiency

of Rarest-Lookup algorithm for the comparison with SLCA in Figure 6.3 and

Figure 6.4.

Note since we propose ELRA pair and group semantics as complements to

SLCA results, we run SLCA followed by ELRA pair, which is in turn followed by

ELRA group, to simulate real cases that system outputs SLCA first, followed by

ELRA pair and group results. As a result, we also show the total time spent in

all SLCA, ELRA pair and ELRA group semantics.

From Figure 6.3 and Figure 6.4, we can see the execution time for ELRA pair

and ELRA group results are longer than the time for SLCA. This is expected

since our approach needs to perform more computations to exploit ID references

in XML.

For DBLP dataset in Figure 6.3, the computation for ELRA pair and ELRA
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Figure 6.4: Time comparisons among SLCA, ELRA pair and group computation
in XMark dataset

group results are 5 and 2.5 times slower than SLCA for queries of two keywords;

while the differences become smaller to around 1.2 times slower for 5-keyword

queries. The reason is the efforts in exploiting ID references for queries of 2 or 5

keywords are not significantly different in Rarest-Lookup to compute ELRA pair

and group results; while the efforts of computing SLCA grows as the number of

keywords increases since SLCA needs to probe more keyword inverted lists in

Indexed Lookup Eager [46] that we use and potentially incur more disk accesses.

Note that the computation of ELRA pair and group results also requires to

probe keyword inverted lists. However, such probing can benefit from previous

SLCA computation in the way that the inverted lists of query keywords are likely

to be cached in memory. For XMark dataset in Figure 6.4, the experimental

result is similar to DBLP’s except that computation of ELRA pair and groups is

further slower compared to SLCA computation. This is because there are more

ID references in XMark than DBLP which slows down the computation of ID

reference exploration.

Although ELRA pair and group semantics require more computation effort,

the gain in more results does outweigh the cost as shown in Table 6.2 and Ta-
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Table 6.2: Average result size for SLCA/ELRA pair/ELRA group of random
queries in DBLP dataset

Keyword DBLP

# SLCA ELRA pair ELRA group Total

pair# node# group# node# node#

2 86 597 174 142 174 260

3 6 83 56 94 288 294

4 3 14 11 44 227 230

5 3 4 4 24 267 270

ble 6.3. It is clear that ELRA pair and ELRA group results on top of SLCA can

find significantly more results than SLCA alone (3-90 times more for DBLP and

40-1000 times more results for XMark in terms of total number of distinct result

nodes). As discussed in previous chapters, these ID reference connected nodes

are likely to be relevant to the keyword query. At least, our approach provides a

good chance to find more relevant results in top ranked answers especially with

good ranking methods according to application requirements. We will see shortly

our demo system for DBLP dataset with application specific ranking indeed re-

turns more relevant results in top ranked answers by exploiting ID references

than SLCA alone.

Finally, we address that our approach computes SLCA, ELRA pair and ELRA

group results in three independent steps. Therefore, real XML keyword search

engine can first output SLCA results for those applications where the computation

of ELRA pair and group results may be slow. Then, while users are consuming

SLCA results, the system can continue searching ELRA pair and group result in

the background such that the user will not perceive the relatively long execution

time in exploiting ID references when users want more results based on ELRA

pair and ELRA group semantics.
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Table 6.3: Average result size for SLCA/ELRA pair/ELRA group of random
queries in XMark dataset

Keyword XMark

# SLCA ELRA pair ELRA group Total

pair# node# group# node# node#

2 31 3492 1148 791 1148 1177

3 6 1103 597 557 1755 1761

4 2 206 154 301 1916 1918

5 1 51 40 176 1898 1899

6.2.3 Tree + IDREF v.s. general digraph model

Bi-directional expansion (Bi-dir for short) [30] is one good heuristics for keyword

search in the general digraph model. It tries to search as a small portion of a

graph as is possible and outputs result reduced subgraphs in the approximate

order of the result generation during expansion.

Therefore, instead of comparing the time spent in computing all search results,

we compare the time spent in getting first-k responses between Bi-dir expansion

and our algorithms in Tree + IDREF model. Note that we slightly modify Bi-dir

expansion to not expand to a node that are more than two ID reference edges

away from a keyword node. In this way, the results of Bi-dir is similar to our

algorithms in that any two nodes in a result are not more than 2 hops away.

Sample runs show this modification improves the efficiency of Bi-dir in getting

first-k responses by limiting its search space. Also note that, even with this search

space limitation, the time spent in waiting for Bi-dir to complete searching all

results is unbearable for sample runs.

The experimental comparisons of various keyword query sizes are shown in

Figure 6.6 for DBLP dataset and Figure 6.5 for XMark.

All results in both datasets clearly demonstrate Bi-directional (Bi-dir) in

the digraph model is significantly slower than our Sequential-lookup (Seq) and
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Figure 6.5: Time comparisons between Bi-Directional Expansion and proposed
algorithms for getting first-k responses in XMark
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Figure 6.6: Time comparisons between Bi-Directional Expansion and proposed
algorithms for getting first-k responses in DBLP

Rarest-lookup (Rarest) in Tree + IDREF data model. In many cases, first-k of

Bi-dir is even slower than Rarest-lookup to compute all results (with result size

in the order of hundreds). For example, if we consider Figure 6.6(a) and (b) with

Figure 6.3, we can see the execution time of Bi-dir in getting the first response is

much slower than Rarest-lookup to finish computing all results. Similarly, if we

consider Figure 6.5(b) and (c) with Figure 6.4, we can see the time of Bi-dir in

getting the first-10 response for queries of 3 and 4 keywords is again slower than

Rarest-lookup in computing all results
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The reasons for the inefficiency of Bi-dir are: Firstly, at each expansion, Bi-dir

needs to find the best node to expand among all expandable nodes in order to

find the next result quickly; while our algorithms simply check nodes in document

order and saves the efforts in heuristic best node finding. Secondly, Bi-dir involves

floating point numbers in computing and comparing the goodness of expandable

nodes. Thirdly and more importantly, when Bi-dir computes or updates the

goodness of a node, it has to recursively propagate the goodness to all neighbors

to improve their goodness until no nodes’ goodness can be improved.

Finally, some readers may notice we only have results of keyword query size

up to three for DBLP dataset. This is due to that we follow [30] for Bi-dir to keep

the entire searched digraph portion in memory. We encounter Java Heap out of

memory exception in case of 4-keyword query size for DBLP and 5-keyword query

size for XMark datasets, even we set java virtual memory to 800M. However, from

existing results, we can see that the efficiency of Bi-dir drops as the number of

query keywords increases; while Rarest-lookup is quite scalable to keyword query

size.

6.3 Comparison of result quality based on sam-

ple queries

In this part, we study the result quality of our ICRA demo system based on Tree

+ IDREF model for XML keyword search in DBLP bibliography with application

specific ranking.

We use sample queries of length 2-5 with wide range of meanings (as shown in

Table 6.4) to measure the effectiveness of our ICRA demo system compared with

other five existing systems, including three academic systems and two commercial
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Table 6.4: Tested queries
ID Query Meaning
Q1 Giora Fernández Co-author
Q2 Jim Gray transaction Topic by author
Q3 Dan Suciu semistructured Topic by author
Q4 Conceptual design Topic

relational database
Q5 Join optimization parallel Topic

distributed environment

systems. Our metric for result quality is the number of relevant answers among

top-10, 20 and 30 results (precision of top-k results). Answer relevance is judged

by discussions of a small group in our database lab, including volunteers.

6.3.1 ICRA v.s. other academic demos

Now, we report the comparison among other academic demo systems for keyword

search in DBLP (BANKS [10,30], XKSearch [46], ObjectRank [6]) and our ICRA

demo system base on Tree + IDREF model with DBLP specific ranking. BANKS

[10, 30] returns results based on their bi-directional expansion in digraph model.

XKSearch [46] returns results based on SLCA semantics in tree model, except

XKSearch returns a publication when an SLCA is smaller than the subtree rooted

at the publication. ObjectRank [6] identifies publications as objects in DBLP and

adopts authority-based ranking to rank publications for each query. Its main idea

is that a publication p is more related to a keyword k if p is cited by more papers

contains keyword k.

The comparisons for result quality are shown in Figure 6.7. Since four systems

use different datasets, for fair comparison, we show the results of ICRA based

on other systems’ data. For example, “ICRA for BANKS data” in Figure 6.7
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Figure 6.7: Comparisons of answer quality with other academic systems
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means that we run our system on data used by BANKS. Note that BANKS

outputs results in the format of reduced trees (containing publication IDs) instead

of lists of publications; we assume there is a middle-ware to transfer BANKS

results to publication lists. From Figure 6.7, we can see the result quality of

our system is superior than existing academic demo in general. ObjectRank is

good at ranking results for single keywords. However, its result quality drops

significantly as the number of keywords goes beyond three (e.g. Q4 & Q5).

ObjectRank cannot handle Q1-3 (no relevant result for Q1 and Q3) possibly

because it does not well maintain information for author names. As expected,

the SLCA semantics in XKSearch is too restrictive when it limits the results to

publications containing all query keywords. Despite the slow response of BANKS

based on Bidirectional expansion, our results are considerably better. For Q4,

BANKS results are comparable to ours since they also captures ID references in

XML.

6.3.2 ICRA v.s. commercial systems

Finally, we show the comparisons of our system with existing commercial systems,

Microsoft Libra [1] and Google Scholar [2]. We consider them as commercial

systems since they are products of commercial companies. However, readers may

regard them as non-commercial system at their choice. The possible significant

difference in machine power among Libra, Scholar and ours makes it unfair to

compare execution time. Also, our limited resource prohibits us from comparing

the overall usefulness such as their wonderful interfaces, the ability to get pdf

files etc. Thus we focus on comparison of the relevance of top-k results. Figure

6.8 shows our system is comparable to (if not better than) Libra and Scholar for

all sample queries even they are able to search in significantly more web data as
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Figure 6.8: Comparisons of answer quality with commercial systems
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compared to our DBLP data. Our result is much better for for Q1 than Libra

and Scholar. Libra outputs only three results for Q1 possibly due to the encoding

problem; whereas Scholar’s results include papers where the two authors do not

appear as co-authors. For Q5 our result is comparable to Scholar’s and much

better than Libra’s. Libra cannot find any results for Q5 possibly since they

only consider results containing all keywords, whereas keyword disjunction with

IR-style ranking (i.e. TF*IDF [39] and PageRank [13]) possibly helps Scholar to

find relevant results in large amount of web data. Note that the large amount of

web data is positive for Scholar for Q5, but negative for Q1 as noises. However,

from the anecdotal evidence of sample queries, our system is able to achieve the

positive facts of large amount of web data with only 384M DBLP data; and

meanwhile our system is not affected by the noises.
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Chapter 7

Conclusion

XML emerges as the standard for representing and exchanging electronic data

on the Internet. With increasing volumes of XML data transferred over the

internet, retrieving relevant XML fragments in XML documents and databases

is particularly important. Among several XML query languages, keyword search

is a proven user-friendly approach since it allows users to issue their search needs

without the knowledge of complex query languages and/or the structures of the

underlying XML databases.

7.1 Research summary

This thesis studies the problem of keyword search in XML documents. We pro-

pose Tree+IDREF data model for efficient and effective keyword search in XML

by exploiting XML ID references. We also address the importance of schema se-

mantics information in answering XML keyword queries when schema semantics

is available.

Most prior XML Keyword search techniques are based on either tree or graph
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(digraph) data models. In the tree data model, SLCA (Smallest Lowest Com-

mon Ancestor) semantics and its variations are generally simple and efficient for

XML keyword search. However, they cannot capture the important information

residing in ID references which is usually present in XML databases. In con-

trast, keyword search approaches based on the general graph or directed graph

(digraph) model of XML capture ID references, but they are computationally

expensive (NP-hard).

In this thesis, we address the importance of ID references in XML databases

and propose Tree+IDREF data model to capture ID references while also lever-

aging the efficiency gain of the tree data model for efficient and effective keyword

search in XML. In this model, we propose novel Lowest Referred Ancestor (LRA)

pair, Extended LRA (ELRA) pair and ELRA group semantics as complements

of SLCA. Studies based on common benchmark data for XML keyword search,

such as DBLP and XMark, show the generality and applicability of our novel

search semantics with ID references. We also present and analyze algorithms to

efficiently compute the search results based on our semantics.

Then, we exploit underlying schema information in identifying meaningful

units of result display. We propose rules and guidelines based on object classes

and relationship types captured in ORA-SS to formulate result display for SLCA,

ELRA pair and ELRA group results.

We also developed a keyword search demo system based on our approach

for DBLP real-world XML database for the research community to search for

publications and authors. A simple ranking approach is incorporated in the

demo system; while a more general ranking approach is left as future work. The

demo prototype is available at: http://xmldb.ddns.comp.nus.edu.sg

Experimental evaluation shows keyword search based on our approach in
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Tree+IDREF data model achieves much better result quality than that based

on SLCA semantics in the tree model; and much faster execution time with com-

parable or better result quality than that based on the digraph model. Compar-

isons with existing commercial keyword search system for academic field, such

as Google Scholar and Microsoft Libra, also demonstrate comparable or even

superior effectiveness of our approach in terms of result quality.

7.2 Future directions

Relevance oriented ranking is a crucial issue for effective keyword search systems.

In this thesis, we only present a simple and specific ranking approach that is

tailored for DBLP datasets. It would be an interesting future work to study and

extend existing ranking approaches in Information Retrieval, such as TF*IDF

[39], PageRank [13], HITS [31], etc for effective ranked keyword search in XML

in general.

However, effective relevance oriented ranking in XML poses new challenges.

One particular challenge is the ambiguity that the same word may appear in dif-

ferent tags and carries different meanings in XML. For example, “Lecturer Smith”

is a reasonably intuitive query to search for Lecturer whose name is “Smith”.

However, our current approach also includes lecturers who do not have “Smith”

in their names but have address in “Smith Street”. Simple syntax can help to

resolve such ambiguities. For example, users can use “Lecturer Name:Smith” or

“Lecturer Address:Smith” to explicitly specify if they are interested in name or

address. While syntax is powerful, users will prefer using pure keyword queries

in most cases. Therefore, it would be interesting to resolve ambiguity based on

human intuitions without syntax.
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One possible way is to use statistics which is an effective approach to model

intuitions. For example, when people see “Smith”, it is more intuitive to be

related to human names and less intuitive to be related to address, which can

be explained from statistical point of view that “Smith” is more frequently used

as a person’s name. Similarly, when we see “address” in the database with

schema context in Figure 3.3, we usually regard it as a tag name. Despite it

matching the tag name Address, we can also explain such intuitive “regard” from

statistics point of view that “address” is frequent in “Address” nodes as tag

names. Therefore, it is interesting to make search engines understand human

intuitions based on statistics to resolve ambiguities so that search engines will

consider queries “Lecturer Smith” and “Lecturer Name Smith” as searching via

Name nodes and query “Lecturer Address Smith” as searching via Address nodes.

Since most ranking approaches in IR are indeed based on statistics, combin-

ing ambiguity resolving into relevance oriented ranking based on statistics for

keyword search in XML would be a promising direction.

Moreover, our current approach exploits schema information for result out-

put, but does not fully exploit schema during the computation of SLCA, ELRA

pair and group results. This approach has the advantage that result computa-

tion is largely system independent so that system administrators of a particular

application can concentrate on issues of result display without bothering about

result computation. However, it would be interesting to study whether schema

can be helpful to improve efficiency during result computation. Removal of the

requirement of schema in result display is also worth investigation for cases where

ORA-SS is not available.

Finally, it is also interesting to study alternative index structures to improve

the computation efficiency of our proposed search semantics.
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