
THERMAL CONDUCTION IN NANOSCALE SYSTEMS

Nan Zeng

A THESIS SUBMITTED

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

DEPARTMENT OF PHYSICS

NATIONAL UNIVERSITY OF SINGAPORE

2007

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarBank@NUS

https://core.ac.uk/display/48624944?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


c© Copyright by Nan Zeng 2007

All Rights Reserved

ii



Acknowledgments

First and foremost, I would like to thank my supervisor, Prof. Jian-Sheng Wang. His

insightful opinions and suggestions are most valuable to me. Without him, this thesis

can not be completed.

I am indebted to my colleagues, Jian Wang and Jingtao Lü, who have provided a
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Summary

In recent years, the advance of nano technology has made manufacturing nanoscale

devices possible, which has intrigued increasing demand for understanding the ther-

mal transport properties of nanoscale materials. Compared to large scale systems,

where bulk properties are dominant, nanoscale systems usually have limited dimen-

sion in one or two directions. This limitation incurs novel properties which do not

present in bulk systems, thus special treatment is required.

In a three-dimensional mass system, the thermal conductivity is temperature de-

pendent and system size independent. However, It is found that in low-dimensional

systems, the thermal conductivity is size dependent and there is a power law relation

between the thermal conductance and the system size. Various interpretation has

been given for this phenomenon and for different models studied, the power index is

often different. The first part of this thesis is thus trying to find out the underlying

mechanism that determines the value of this power index. Classical molecular dy-

namics method is used in this part as it is suitable for studying many-body systems

at relatively high temperatures. A quasi one-dimensional chain model is chosen to

simulate a realistic high density polyethylene chain. The Nosé-Hoover heat baths are

applied to the ends of the chain to maintain a temperature gradient across the sys-

tem. The atoms in the chain move according to Newton’s laws with nearest neighbor

interactions. The thermal flux is then calculated to give the thermal conductivity of

vii



the system. We found that the value of the power index depends on the tension ex-

erted on the chain. With greater tension force, the system approaches a linear chain

with increasing thermal conductivity. This result suggests a simple way to control

the thermal conductivity of a low-dimensional system.

In the second part of the thesis, a nonequilibrium Green function method is used to

calculate the thermal conductance of a system. This quantum mechanical treatment

enables us to deal with systems at both low and high temperatures properly. The

Green functions are solved using both equation of motion method and perturbation

method. Nonlinear interactions are included in the derivation, which are essential for

systems at high temperatures. Feynman diagrams are used to simplify the calculation.

The thermal flux is derived and it is similar to the Caroli formula except for the

nonlinear term. An effective transmission function is also defined. We have applied

this method to investigate the thermal rectification effect of a one-dimensional chain

system. This effect is observed for systems with asymmetrical structure and nonlinear

interactions. We found that by modifying phonon frequency band in the transmission

material, thermal rectification can be achieved. Our results provide a general guide

to design real solid state thermal rectifiers.
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Chapter 1

Introduction

The advance of nanotechnology has made manufacturing of nanodevices possible.

Nanodevices are devices at the scale of nanometers, i.e. 10−9m. Their potential to be

used in various fields, such as the computer industry, medical instrument production

and others has invoked an increasing demand to have a deeper understanding of their

particular electrical and thermal transport properties.

The thermal transport properties of materials are reflected in their thermal con-

ductivities. Whenever there is a temperature difference across a system, there is

thermal flux. Heat energy flows from a region of higher temperature to a region of

lower temperature. In an isolated system without heat sources or heat sinks, this

process will eventually make it reach thermal equilibrium state. By applying heat

baths to the system, the system will instead come to a steady state. In a bulk macro-

scopic system, the heat flux can be calculated by the phenomenological Fourier’s Law

J = −κ∇T . Here J is the heat current, which is the energy that crosses a unit

area in a unit time, ∇T is the temperature gradient, which specifies a temperature

difference between different locations, and κ is the thermal conductivity. κ is usually

temperature dependent and is a scalar if the system is isotropic or a tensor otherwise.

To understand the underlying mechanism that governs thermal conductivity, we

1



CHAPTER 1. INTRODUCTION 2

need to start from the atomic level, where heat energy is carried by phonons and

electrons. For insulators, phonons play a major role in thermal transport, while in

metals, electrons’ effect is also important. Theoretically, for an infinite crystal with

purely harmonic interactions between phonons, as is well known, no temperature gra-

dient exists and the thermal conductivity is infinite. However, for mundane materials,

their thermal conductivities are always finite. It has been pointed out already that

there are three main factors for this result [1, 2]. Firstly, there are always various

defects, like mass differences caused by isotopes, dislocations, impurities and so on,

which will cause scattering of the heat carriers, thus reduce the thermal conductivity

of the material. Secondly, the size of the material is finite. The surface of the material

will cause scattering too. A famous example is Kapitza resistance [3, 4], which causes

temperature discontinuities at the interface between different materials. Finally, there

are anharmonic interactions, the so called Umklapp processes are usually essential for

finite thermal conductivity.

Based on the method being used, currently, research on thermal transport can be

divided into two categories. One is the classical point of view, where the dynamics

of the system follows Newton’s law. Molecular dynamics method is heavily used to

simulate the actual system. This method is generally very fast and can be used to

solve large many body systems. It is applicable for systems under high temperature.

For very low temperatures where quantum effects show up, this method is no longer

valid, and we need to resort to the second point of view, using quantum transport

theory.

In the following sections, works on low-dimensional thermal transport are first

reviewed. Then several quantum mechanical method frequently used in quantum

transport are discussed. It is followed by current experimental progress on measuring

thermal conductivities of nanowires and nanotubes. Finally, the problems faced in

the previous works are discussed and the object of this thesis is given.
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1.1 Low-dimensional thermal transport

The thermal transport properties of low-dimensional systems have gained great at-

tention in recent years, due to their abnormal behavior compared with macroscale

bulk systems. In certain circumstances, the thermal conductivities of low dimensional

systems were found to be divergent with κ ∝ Lα, where L is the length of the sys-

tem and α > 0. This is contrary to the thermal conductivities of macroscale three

dimensional systems where the thermal conductivities are always finite. A thorough

understanding of this abnormality is still lacking up to now.

It has been shown [5] that pure harmonic interactions will result in an infinite

thermal conductivity without internal temperature gradient, which is caused by the

lacking of scattering mechanism. To obtain an internal temperature gradient, nonlin-

ear interactions must be included [6]. The simplest model of this type is Fermi-Pasta-

Ulam (FPU) model [6, 7]. It includes both cubic and quartic interactions. Numerical

calculations on FPU model [7] showed that nonlinear interactions alone is not likely

to infer normal thermal transport and the power index α = 0.4 was obtained. Grass-

berger et al.[8] studied the thermal conductivity of a one-dimensional hard-particle

gas and obtained a 1/3 power law index, while Casati and Prosen [9] found α = 1/4

for the same model. Another model with nonlinear interactions is diatomic Toda

model, which has an exponential interaction between neighboring sites. Although

previous results [10] suggested no system size dependence of thermal conductivity for

this model, a more recent study [11] refuted that result and gave α around 0.35. The

authors further argued that the abnormal thermal conductivity should be a common

feature for a momentum conserved one-dimensional system. This argument is further

reinforced analytically [12, 13] and is consistent with some earlier research on mo-

mentum conserved systems. However, the work done by Gendelman and Savin [14],

Giardiná et al. [15], Garrido et al. [16] showed that even for systems with conserved



CHAPTER 1. INTRODUCTION 4

momentum, the thermal conductivity can be finite. Hu et al. [17] studied the Frenkel-

Kontorova model, which has harmonic interactions between neighboring sites and also

has a sinusoidal potential on each site. By including this external potential to the

system, they observed finite thermal conductivity. They thus claimed that the interac-

tion between phonons and the external lattice is essential to obtain the Fourier’s law.

The φ4 model, which includes a quartic on-site potential in the system Hamiltonian,

also presents normal thermal conductivity [18, 19]. Pereira and Falcao [20] studied

a weakly connected 1D model with on-site harmonic potential. Their results showed

that normal thermal conductivity of this model can be obtained at high temperatures.

Another model, so called “ding-a-ling” model [21], also has normal conductivity. It

includes hard cores in the chain as scattering center which interact with free particles

among them. Li et al. [22] studied the anomalous heat conduction in one-dimensional

momentum conserved model using an effective phonon method. They attribute the

abnormality of the thermal conductivity to a zero-frequency phonon mode which has

infinite mean free path. It does seem that momentum conservation plays an impor-

tant role in obtaining abnormal thermal conductivity, but it is not the single reason

for that.

Besides the interest in looking for an explanation for the one-dimensional anoma-

lous thermal transport, there are also interest in understanding what factors affect

the divergence. Dhar [23] discovered that the divergence is boundary dependent. Li

and Wang [24] established a connection between the abnormal thermal conductivity

and the diffusion in one-dimensional systems. Wang and Li [25] shows that transverse

motion results in a 1/3 power law index. Li and Li [26] investigated the temperature

dependence in the framework of effective phonon theory.

Some more realistic quasi-one-dimensional systems have also been studied, such as

carbon nanotubes [27, 28, 29, 30] and silicon nanowires [31, 32]. It is found that when

the diameter of nanotubes is small, with a chirality of (5, 5) for example, a power law
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index around 1/3 is obtained, which is similar to the pure one-dimensional case; when

the diameter is increased with a chirality (10, 10), the power index is about 0.11 [28].

This shows a trend of decreasing thermal conductivity with reduced diameter, or in

another word, with reduced transverse movement as the tension between each site is

increased.

There are also research on calculating the thermal conductivity of 2D systems

[33, 34, 35, 36, 37, 38, 39, 40]. Various models have been studied, such as 2D FPU

model, 2D Toda model, etc. Specifically, a logarithmic divergence was discovered in

a 2D FPU model [39, 40].

1.2 Quantum Transport

Almost all the non-equilibrium thermal transport theories work on a similar model.

The system usually comprises three parts: a left lead, a central conduction region, and

a right lead. The two leads are always thermostated with heat baths, thus maintaining

a fixed temperature. They are theoretically semi-infinite in length to suppress any

temperature fluctuation due to energy change. The central conduction region is the

particular molecule whose thermal transport properties we want to study. When the

size of the material is comparable to its phonon mean free path, phonons can no

longer be considered as free particles. The interference of phonons comes into play

and classical treatments are not valid anymore. Thus, we need quantum theory to

study the transport phenomenon. Three methods are used commonly in this field,

namely Langevin equation, Landauer formula and non-equilibrium Green’s function.

1.2.1 Langevin Equation

The Langevin Equation was devised to study stochastic processes, such as Brownian

motions, where random force is needed. The equations of motion of the system
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with random force can be solved analytically or numerically. This method provides

an effective way to construct heat baths, thus it can be applied to non-equilibrium

systems. A quantum form general Langevin equation was studied by Ford et al.[41].

They showed that quantum Langevin equation can be derived rigorously based on

some basic principles, such as the second law of thermal dynamics and causality.

This technique was later used by Segal et al.[42] to study the thermal conductance of

harmonic nanowires. They found that harmonic interactions played a major role in

the thermal conduction of relatively short molecular chains. A more recent study [43]

applied the general Langevin equation combined with molecular dynamics method

to study thermal transport problem, which gives an effective way to study quantum

systems by traditional calssical method. Even though the Langevin equation can be

applied to study quantum systems, the introduction of random force in the equations

of motion makes it a phenomenological equation, as experimental inputs are necessary

in most of the cases except for very simple models. In order to have a deeper insight

into the problem, it would be better to utilize a more fundamental theory.

1.2.2 Landauer Formula

A more fundamental approach is to use Landauer formula, which was first suggested

by Landauer [44] in the study of mesoscopic electrical transport with two terminals.

Later, it was generalized to multi-terminals by Buttiker [45], which made this for-

mula more suitable for comparing with experimental results. It was also shown that

this formula can be derived from linear response theory [46]. In both cases, only

non-interacting electrons were considered. The Landauer formula is widely used for

calculating electrical conductance. In recent years, it also found its way to thermal

transport. With this formula, Rego and Kirczenow [47] discovered that at low temper-

atures, a universal thermal conductance quantum π2k2
BT/3h existed, which was later

verified by experiments [48]. However, The Landauer formula is only valid for ballistic



CHAPTER 1. INTRODUCTION 7

regions, where no interactions are considered. In general situations, especially when

the temperature is much higher than absolute zero, three-phonon interactions and

four-phonon interactions are quite common. These nonlinear interactions are major

causes of thermal dissipation. In these cases, other theories more suitable for dealing

with interactions should be applied.

1.2.3 Green’s Function Method

The historical development

Green’s function method, which has its root in quantum field theory [49, 50], has been

applied to study many body problems since 1950s [51] or even earlier. Its strength

in dealing with interactions between particles makes it a very powerful tool in many

body physics.

The Green’s function method was originally applied to systems under ground

state, where the temperature is zero. It was later expanded to calculate the grand

partition function by Matsubara [52]. Matsubara’s approach makes the calculation

of systems with temperature T > 0 possible.

While the Green’s function is usually a time dependent function to signify the

evolution of the system, it can also be solved through Fourier transformation, where

the condition for arriving at a unique solution was given [53].

In solving the transport problems, it is necessary to maintain the conservation

laws of energy, momentum, angular-momentum and number of particles, which is

essential for a quantitative calculation. This becomes especially important when

approximations are applied. Several rules were given in Ref. [54, 55] and some widely

used approximations were discussed for a system under external perturbation.

Several attempts to solve the Green’s functions using the perturbation procedures
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have been made [56, 57], while the most accepted method for solving the Green’s func-

tions are given by Ref. [58, 59]. Keldysh developed a diagram approach, which uses

Feynman diagrams. Kadanoff and Baym created an equations of motion approach.

Both methods are well suitable for studying a dynamic system in nonequilibrium

state. They have formed the basis for the following works.

Fujita [60] derived a similar formula which is similar to Ref. [59] using the diagram

approach. It was shown that the initial correlation of the Green’s function is not

important. Its effect fades after some time and the Boltzman’s equation can be

derived [60].

Based on the general contour ordered Green’s function [58], Caroli et al. [61] were

able to calculate tunnelling current directly for a nonequilibrium system.

Several review articles were available in 1980s dealing with nonequilibrium Green’s

function method [62, 63, 64].

Wagner [65] generalized NEGF to arbitrary initial density matrix. Niu et al. [66]

derived the equations of motion approach from Keldysh formalism, thus unifying the

two different approaches. Meir and Wingreen [67] even derived a Landauer type

current formula from Keldysh formalism. It seems that NEGF is truly a fundamental

method for quantum transport theory. However, up to now, NEGF method has only

been used to study harmonic interactions, no investigation on nonlinear interactions

has been made.

In Ref. [68], the authors discussed a formalism to get arbitrary order perturba-

tions of Green’s functions, which can be used to study anharmonic interactions in

solids. Their treatment only works for equilibrium state systems, and maybe useful

for spectrum analysis of real solids. However, no actual application has been done in

this paper.

Several studies on electrical transport has been done using nonequilibrium Green’s

function method [69, 70]. A lead-junction-lead model was studied and nonlinear
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interactions in the junction part was included.

Since 2000, the potential of wide application of nanoscale system has intrigued

extensive studies on the quantum transport of nanodevices. Several groups have

studied nanoscale systems using this method [71, 72, 73, 74, 75, 76] and works on

thermal transport also began to emerge [77, 78, 79, 80, 78, 81], where nonequilibrium

Green’s function method is the major tour in these investigations.

The concept

The concept of Green’s function is quite simple. Consider a system at equilibrium.

We add in a particle at some time t and remove it at time t′. During this period,

the new particle will interact with the other particles in the system, thus causes a

perturbation. The system at t′ will be in different state from the system at time

t. This effect can be represented by correlation functions, which is Green’s function.

Green’s function can be used to calculate the expectation values of any single-particle

operator, the exciting spectrum and others.

1.3 Experimental measurements

Measuring the nanoscale thermal conduction requires that a suspended nanostructure

must be fabricated. Besides, nanoscale thermometers and nanoscale thermal heaters

are also required in order to measure the temperature and provide a heat flow, re-

spectively. The technique to fulfill these requirements are only becoming available in

recent years.

Electron-beam lithography has been utilized to fabricate nanoscale suspended

devices. Tighe et al. [82] are the first to use this technique to measure the thermal

conductivity of GaAs beams below 10K. Using the same technique, Fon et al. [83]

measured doped and undoped GaAs beams with a temperature up to 40K.
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Kim et al. [84] designed a different device to measure the nanoscale thermal

conductivity. In their approach, two silicon nitride membrane islands are suspended

by silicon nitride beams. The islands are heated by Pt resistors, which also serve

as thermometers. The nanowire to be measured is then placed on the suspended

islands to make a bridge. Using this method, the thermal conductivities of individual

multiwalled carbon nanotubes [84], single-walled carbon nanotubes [85, 86] and silicon

nanowires [87] were measured.

Another way is to apply self-heating 3ω method [88, 89, 90, 91, 92]. The sample is

placed between two electrodes. An alternate current with frequency ω flows through

the sample. This current causes a 3ω voltage fluctuation. The thermal conductivity

of the sample can be obtained by measuring the frequency dependence of the voltage

amplitude and its phase shift.

Instead of using the microfabrication technique, Dames et al. [93] developed a

hot-wire probe. The selected nanowire is placed between the hot-wire probe and the

scanning tunneling microscope (STM) tip. The hot-wire also acts as a thermometer.

The thermal conductivity of the selected nanowire can be obtained by measuring the

temperature rise of the probe corresponding to the power. Compared with previous

methods, this approach has greater flexibility and doesn’t involve any microfabrica-

tion.

Fujii et al. [94] suggested a new method to measure nanowire thermal conductivity

using sample-attached T-type nanosensor, and Pop et al. [95] measured the thermal

conductivity of a single-wall carbon nanotube above room temperature by Joule self-

heating method.

A measurement on a coated nanotube [96] has been worked out recently and

thermal rectification effect at such a scale was observed physically for the first time.

It was noted that thermal flux transmits better in the direction of mass decrement,

which can not be explained by the wave theory and the authors claimed that the
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observed rectification should be related to solitons.

The development of these nanoscale thermal conductivity measurements has made

it possible to verify theoretical results from molecular dynamics simulations or quan-

tum mechanical calculations.

1.4 Problems

Molecular dynamics simulation has been intensively used to study thermal trans-

port properties of low-dimensional systems, and the thermal conductivities of one-

dimensional models with conserved momentum are found to be divergent correspond-

ing to the system length, as we have reviewed above. The problem is that there are

still controversies over the exact value of the power index that signifies the divergence.

On the other hand, although molecular dynamics method is good for systems at rel-

atively high temperatures which is above the Debye temperature of the system, it is

not reliable for systems at or below the Debye temperature where quantum statistics

must be considered. Because of this reason, a quantum mechanical way to study

nanoscale thermal transport is necessary.

Even though quantum mechanical methods have been successfully applied to elec-

trical transport studies at various scales, an effective way to investigate thermal trans-

port properties of nanoscale systems with nonlinear interactions is still lacking. The

problem presented by the nonlinear interactions can be solved using nonequilibrium

Green’s function method, which has been solidly established in the electrical transport

studies. Thus an extension of this method to be used in thermal transport studies is

needed.
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1.5 Objectives

The purpose of this thesis is to investigate the thermal transport properties of nanoscale

systems. Because of the small length scale, the thermal conductivities of nanoscale

systems are quite different from those of macroscale systems. The Fourier’s Law,

which is a good approximation to thermal transport in macroscale systems, does not

always give a finite thermal conductivity in low-dimensional systems. The temper-

ature at such a scale is not well defined too. To treat these problems properly, we

need to apply quantum mechanical methods. In this thesis, we will focus on the

thermal conductance of insulators, where only phonon-phonon interactions are im-

portant. In this way, we avoid the complexity caused by electron-phonon interactions

and electron-electron interactions.

This thesis will be divided into two parts. In the first part, classical thermal

transport is studied. Molecular dynamics simulation is used to study the relationship

of thermal conductance and system length in quasi one-dimensional systems. This is

an attempt to solve the long existing controversy over this relationship. The effect

of different implementations of heat bath to the thermal conductance will also be

touched on. As the molecular dynamics method is based on Newton’s Laws, this

method cannot be applied to systems at very low temperatures, where quantum

theory must be applied.

The second part is on quantum transport theory. After comparing different quan-

tum transport theories currently available, the NEGF method is chosen as the starting

point, as this method is the most suitable method for solving transport problems with

interactions. However, most theoretical work using this method considered only lin-

ear interactions, as nonlinear interactions are quite difficult to solve. Thus, a rigorous

treatment of nonlinear interactions is still in demand. A derivation of thermal con-

ductance with nonlinear interactions using the NEGF method will be addressed in
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this thesis. After extending this method to the nonlinear region, several concrete

models will be studied.

This work on the thermal transport of nanoscale systems may deepen our under-

standing on the thermal transport properties of low dimensional systems. The general

NEGF method derived here should be helpful for further investigations of molecular

devices.



Part I

Classical Molecular Dynamics and

Heat Transport

14



Chapter 2

Thermal Conductivity of

Polyethylene

2.1 Molecular Dynamics Method

For a large classical system comprised of many particles, it is impossible to solve the

dynamical properties analytically. Numerical simulations are necessary in such case.

Two major methods are widely used. One is the Monte Carlo method (MC) based

on statistical physics and random theory. Another is the molecular dynamics method

(MD) based on Newton’s laws. The former is usually used when the system is in

its equilibrium state. The physical quantities are measured by the ensemble average.

However, this method is not suitable for nonequilibrium state. The latter can be used

both in equilibrium state and nonequilibrium state, which is its great advantage over

MC. Its drawback is that it can only be used in the situation where classical mechanics

is applicable, while MC can be used both classically or quantum mechanically. As

we are trying to study the thermal dynamic properties of a nanoscale system which

is nonequilibrium in its nature, we are left with the MD method.

In its concept, MD method is quite simple. From Newton’s law, if there is no

15
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external force exerted on an object, the object will remain still or in constant motion.

If there are force on the object, the object will move according to Newton’s second

law
dp

dt
= F, (2.1)

where p is the momentum of the object and F is the external force. We also know

that

p = m
dx

dt
, (2.2)

where x is the coordinate of the object and m is the mass. By solving this set of first

order differential equations, with proper initial coordinates and momenta, we are able

to obtain the coordinates and momenta of a many body system at any time. Once

we know these quantities, it is straightforward to calculate other physical quantities

from them. This is the basic ideas of molecular dynamics.

2.1.1 Force field

It is always possible to calculate material’s properties directly from first-principles

quantum mechanics, such as using Hartree-Fock method or density functional theory.

However, these methods are quite time consuming for large systems and become

practically impossible most of the time. In this situations, it is always desirable to use

some kind of empirical force field, which does not require tedious quantum mechanical

calculation. There are various force fields available currently. Some of them are

widely used, such as Amber, CHARMM, MM2, MM3, MM4, etc. These force fields

are geared towards special applications. For example, Amber and CHARMM are

good for proteins, and MM2, MM3, MM4 are particularly for small molecules. For

different force fields, they may have different function form, and different parameters.

It is usually the case that a particular force field should be chosen for a particular

implementation to get results as accurate as possible.
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For our application, we have chosen DREIDING force field [97]. This force field has

the virtue that it is quite general. It has a general set of parameters that do not change

across different applications. Once the atom type is given, all the other parameters

are fixed. The atom type depends on the chemical element, the hybridization, implicit

hydrogens attached and other specific characteristics of the atom.

Four types of force are usually included in a force field. They are bond stretch

force, bond angle force, dihedral angle force, and other long-range force, such as

Coulomb force or van der Waals force. The bond stretch force between two atoms

has two forms. One is the simple harmonic interaction, which has the potential

Vb =
1

2
kb(R − Rb)

2. (2.3)

Here R is the distance between the two atoms and Rb is the equilibrium distance

between them. The force on each atom is the derivative of (2.3), which yields

F = −kb(1 − Rb

R
)R. (2.4)

Another form of bond stretch interaction is the Morse function, which has the form

Vb = Db(e
−αn(R−Rb) − 1)2. (2.5)

Here n is the bond order. For an sp2 hybridization, for example, the bond order is 2.

α is determined by

α = (
kb

2Db

)1/2. (2.6)

This ensures that after Taylor expansion, the second order term are the same as the

harmonic case.
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The equilibrium distance between two atoms is determined by

R0
ij = R0

i + R0
j − δ, (2.7)

where δ = 0.01Å. It is simply an addition of the two atom radii and is subtracted by

a small value δ.

The bond angle interaction is the interaction potential between two bonds who

share a common atom. The change of the angle between these two bonds will affect

the bond angle potential. Assuming that there are three atoms i, j, k, which form

bond Rij and Rjk, the bond angle potential has the form

Vθ =
1

2
Cθ(cos θ − cos θ0)

2, (2.8)

where θ is the angle between the two bonds, θ0 is the equilibrium angle, Cθ =

kθ/(sin θ0)
2 and kθ is the parameter when the potential is written in a quadratic

form of θ

Vθ =
1

2
kθ(θ − θ0)

2. (2.9)

For four adjacent atoms i, j, k, l who form planes ijk and jkl, the torsion between

the two planes also contribute energy, which is called the dihedral potential. It has

the form

Vd =
1

2
kd

{

1 − cos[n(φ − φ0)]
}

. (2.10)

where n is the periodicity, φ is the dihedral angle, and φ0 is the equilibrium dihedral

angle. kd determines the flexibility of the rotation of the two planes, and is called

rotation barrier. For a CH3 group which has periodicity of 3, n = 3.

No long-range interactions are considered in our simulation.
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2.1.2 Numerical integrations

In molecular dynamics simulations, an essential task is to solve the Hamilton’s equa-

tions

d

dt
p(t) = − ∂

∂q
H(p(t), q(t), t),

d

dt
q(t) =

∂

∂p
H(p(t), q(t), t),

(2.11)

where p and q are generalized momentum and coordinate, respectively. With a proper

initial condition, the differential equations (2.11) can be solved using various inte-

gration numerical methods [98], such as Runge-Kutta method, predictor-corrector

method, Verlet method, etc. In our simulation, we have chosen a variant of Ver-

let method, i.e. velocity Verlet method. Compared with Runge-Kutta method, it

conserves the phase space quite good even after a long simulation, and it is easy to

implement.

Verlet method

We first do a Taylor expansion of the coordinates at a time slightly later and earlier

q(t + h) = q(t) +
h

m
p(t) +

h2

2m
F(t) + O(h3),

q(t − h) = q(t) − h

m
p(t) +

h2

2m
F(t) − O(h3).

(2.12)

Their subtraction gives

q(t + h) − q(t − h) =
2h

m
p(t) + O(h3), (2.13)
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Thus we get the momentum at time t

p(t)

m
=

q(t + h) − q(t − h)

2h
+ O(h3) (2.14)

Addition of (2.12) gives

q(t + h) = −q(t − h) + 2q(t) +
F(t)

m
h2 + O(h4). (2.15)

which shows that this equation is reversible. We can calculate the coordinate at

time t′ from t, or we can reverse the process to calculate q(t) from q(t′). This is an

advantage of Verlet algorithm over others, such as Runge-Kutta method.

Velocity Verlet method

A draw back of the Verlet algorithm is that we can not get the velocity and the

coordinate at the same time. To solve this problem, we use the improved velocity

Verlet method.

Increasing the time step by half, we first expand the momentum at time t + h
2

to

the momentum at time t. Then we calculate the coordinate q(t + h
2
) based on q(t)

and the new momentum p(t + h
2
), which yields

p(t +
h

2
) = p(t) +

h

2
F(q(t)) + O(h2)

q(t +
h

2
) = q(t) +

h

2m
p(t +

h

2
) + O(h2).

(2.16)

In the second half step, we calculate q(t + h) based on q(t + h
2
) and p(t + h

2
), and
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p(t + h) based on p(t + h
2
) and q(t + h). The equations are

q(t + h) = q(t +
h

2
) +

h

2m
p(t +

h

2
) + O(h2)

p(t + h) = p(t +
h

2
) +

h

2
F(q(t + h)) + O(h2)

(2.17)

Combine (2.16) and (2.17), we have

q(t + h) = q(t) +
h

m
p(t) +

h2

2m
F(q(t)) + O(h2)

p(t + h) = p(t) +
h

2
{F(q(t)) + F(q(t + h))} + O(h2).

(2.18)

This is the velocity Verlet algorithm. With this algorithm, we can calculate the

momentum and the coordinate at the same time step by step. Moreover, this algo-

rithm preserves the phase space volume, which is highly desirable in the numerical

simulation.

2.2 Heat Bath

Heat bath, which is also called thermostat, is essential in a constant temperature

molecular dynamics simulation, such as NVT or NPT simulation, where the num-

ber of particles, the volume or pressure of the system, and the temperature remain

constant. The heat bath maintains a fixed temperature for a particular part of the

system. It works by adding an additional force term to the system Hamiltonian.

This additional force interacts with the system particles. The particle’s momentum

is adjusted corresponding to the target temperature. If the momentum is too large,

it will be reduced. If it is too small, it will be increased.

Generally, there are two kinds of heat bath implementations. They are differenti-

ated by the property of the force term. If the force is random, the heat bath is called
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stochastic heat bath, otherwise, deterministic heat bath. Deterministic heat bath is

preferred as it is time reversible and the final results can be repeated. A most popular

deterministic heat bath is the Nosé-Hoover thermostat.

The original Nosé-Hoover thermostat [99] depends on the assumption that the

system is ergodic, i.e. the time average of a physical quantity is the same as its

ensemble average. When the system is small enough (only a few particles, for example

[100]) that ergodic assumption can not be applied, Nosé-Hoover thermostat can not

generate canonical distribution successfully. Thus a modification of Nosé-Hoover

thermostat, so called Nosé Hoover chain method, is suggested [101]. It works well

for small non-ergodic systems. This is the thermostat we used in our simulation as it

is an improvement to the previous Nosé-Hoover thermostat. The Hamiltonian of the

system is

H =
N
∑

i=1

p2
i

2m
+

M
∑

i=1

p2
ζi

2Qi

+ φ(r) + NfkTζ1 + kT
M
∑

i=2

ζi (2.19)

where M is the number of thermostats, pζi
and ζi are the generalized coordinates of

the thermostats. The equations of motion are:

ṙi =
pi

m

ṗi = Fi − pi
pζ1

Q1

ζ̇i =
pζi

Qi

ṗζ1 =

[

N
∑

i=1

p2
i

m
− NfkT

]

− pζ1

pζ2

Q2

(2.20)

ṗζj
=

[

p2
ζj−1

Qj−1

− kT

]

− pζj

pζj+1

Qj+1

ṗζM
=

[

p2
ζM−1

QM−1

− kT

]
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where Q1 = NfkT and Qj = kT .

2.2.1 Heat Flux

In order to obtain the thermal conductivity of the junction, we need to calculate the

heat flux first, which is the energy transferred across a unit area in a unit time. We

know that the continuity equation is

∂

∂t
ρ(r, t) + ∇ · j(r, t) = 0, (2.21)

where ρ(r, t) is the energy density. Our calculation requires a discrete description of

this equation. The energy density and heat flux can be discretized as

ρ(r, t) =
∑

n

ǫn(t)δ(r − rn),

j(r, t) =
∑

n

jn(t)δ(r − rn),
(2.22)

where ǫn is the local energy of each atom and jn is the local flux [102].

The Fourier transform of the continuity equation (2.21) gives

∂

∂t
ρ(k, t) + ik · j(k, t) = 0, (2.23)

with ρ(r, t) =
∫

ρ(k, t)eik·rdr and j(r, t) =
∫

j(k, t)eik·rdr. Replacing ρ(k, t) and j(k, t)

by their inverse Fourier transformation ρ(r, t) and j(r, t) gives

∂

∂t

∫

ρ(r, t)e−ik·rdr + ik ·
∫

j(r, t)e−ik·rdr = 0. (2.24)

Now we can replace the continuous form of energy density and heat flux density by
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their discrete form (2.22) and obtain

∑

n

∂ǫn(t)

∂t
e−ik·rn +

∑

n

ǫn(t)(−ik) · ∂rn

∂t
e−ik·rn +

∑

n

ik · jn(t)e−ik·rn = 0. (2.25)

As the energy loss rate for atom n should be equal to the energy gain rate of atom

n + 1, the first term of Eq. (2.25) can be written as

∑

n

∂ǫn(t)

∂t
e−ik·rn =

1

2

∑

n

(
∂ǫn(t)

∂t
− ∂ǫn+1(t)

∂t
)e−ik·rn

=
1

2

∑

n

∂ǫn(t)

∂t
e−ik·rn(1 − eik·(rn−rn+1)).

In the long wave length limit, this can be further reduced to

1

2

∑

n

∂ǫn(t)

∂t
e−ik·rn(−ik · (rn − rn+1))

=
1

2

∑

n

−ik · rn
∂ǫn(t)

∂t
e−ik·rn +

1

2

∑

n

ik · rn+1
∂ǫn(t)

∂t
e−ik·rn

≈
∑

n

−ik · rn
∂ǫn(t)

∂t
e−ik·rn .

Inserting this result into Eq. (2.25), we have

jn(t) =
∂

∂t
(ǫn(t)rn(t)) =

d

dt
(ǫn(t)rn(t)), (2.26)

where we have used the total differential form to reflect the fact that ǫn(t) and rn(t)

are time dependent only.

The relation between the total flux J, flux density j and local flux jn is

J =

∫

j dr =
∑

n

jn =
∑

n

d

dt
(rn(t)ǫn(t)). (2.27)
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The system’s thermal conductivity is calculated from the local heat flux jn, which

should be equal everywhere in a steady state, i.e.

〈jn〉 = 〈jn+1〉 =
J

N
, (2.28)

where 〈 〉 stands for a time average limT→∞
1
T

∫ T

0
dt. Eq. (2.27) and (2.28) give us

j ≈ J

V
=

N〈jn〉
NaA

=
〈jn〉
aA

, (2.29)

where a is the x axis projection of the distance between two adjacent particles and A

is the cross section area. With the Fourier’s law, it is straightforward that

〈jn〉
aA

= −κ∇T = −κ
∆T

Na
x̂, (2.30)

where x̂ is a unit vector pointing to the thermal flux flow direction. Eq. (2.30) gives

〈jn〉 ∝ Nα−1, thus κ ∝ Nα, where α is the power law index.



Chapter 3

Molecular Dynamics:

Implementation and Application

3.1 Implementations

In this part, we give the exact formulas to be used in the our molecular dynamics

program, such as the three kinds of force exerted on each atom, the thermal flux

across the system, etc..

3.1.1 Force

In the molecular dynamics simulation, we need to work out the force on each atom.

As we have already known the potential form, we can calculate the force by

F = −∇V. (3.1)

26
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Bond force

For the bond between atoms i and j, the bond potential is

V =
1

2
k(|rij| − R0)

2, (3.2)

where rij = ri − rj. The force on atom i is

Fi = −∂V

∂ri

= −k(|rij| − R0)
d|rij|
dri

= −k(|rij| − R0)r̂ij, (3.3)

where r̂ij is the unit vector. The force on atom j is the opposite of Fi, which yields

Fj = k(|rij| − R0)r̂ij. (3.4)

Bond angle force

For the bond angle interaction between bonds ij and jk, we choose the potential in

the harmonic form of angle θ as (2.9), i.e.

Vθ =
1

2
kθ(θ − θ0)

2.

The derivative of (2.9) gives the force on each atom. The force on atom i is

Fi = −∂Vθ

∂ri

= −dV

dθ

dθ

d cos θ

d cos θ

dri

=
kθ(θ − θ0)

sin θ

d cos θ

dri

(3.5)

From vector analysis, we know that

cos θ =
rij · rkj

|rij||rkj|
=

rij · rkj

rijrkj

(3.6)
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The derivative of cos θ to ri is

d cos θ

dri

=
r2
ijrkj − (rij · rkj)rij

r3
ijrkj

. (3.7)

The derivative of cos θ to rk is similar to (3.7), where we only need to exchange the

subscript i and k to get

d cos θ

drk

=
r2
kjrij − (rkj · rij)rkj

r3
kjrij

. (3.8)

The total force on the three atoms from this bond angle potential should be zero,

which yields
d cos θ

drj

= −d cos θ

dri

− d cos θ

drk

. (3.9)

This can easily be verified. Combining (3.5), (3.7), (3.8) and (3.9) together, we can

get the forces on each atom that is caused by bond angle interactions, which are

Fi =
kθ(θ − θ0)

sin θ

rkj − (r̂ij · rkj)r̂ij

rijrkj

, (3.10)

Fj = −kθ(θ − θ0)

sin θ

rij − (r̂kj · rij)r̂kj + rkj − (r̂ij · rkj)r̂ij

rijrkj

, (3.11)

Fk =
kθ(θ − θ0)

sin θ

rij − (r̂kj · rij)r̂kj

rijrkj

. (3.12)

Dihedral torsion

The dihedral torsion force is more complicated. In Fig.3.1, the atoms i, j, k, l form

two planes with an angle φ. m and n are vectors perpendicular to the joint line on each

plane. M and N are vectors perpendicular to plane ijk and plane jkl respectively.

Thus the dihedral angle can be obtained by

cos φ =
m · n
|m||n| , (3.13)
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i

l

k

N
M

n

m

jφ

Figure 3.1: An illustration of the dihedral angle potential among four adjacent atoms

where

m = rij − (rij · r̂kj)r̂kj,

n = −rkl + (rkl · r̂kj)r̂kj.

We use (2.10) to calculate the dihedral angle force on each atom, which gives

Fα = −∇αVd(φ) = −dVd(φ)

dφ

∂φ

∂rα

(3.14)

As particle i can move freely on the plane ijk without changing the potential Vd(φ),

the force caused by the dihedral angle potential must be perpendicular to the plane

ijk. Let atom i move in the direction of M with a distance ∆ri = |r′i − ri|. The

dihedral angle changes by

∆φ =
∆ri

|m| =
∆ri

|rij × r̂kj|
=

rkj∆ri

|M| , (3.15)

where M = rij × rkj. Thus the force on atom i is

Fi = −dVd(φ)

dφ

∆φ

∆ri

M̂ = −dVd(φ)

dφ

rkj

|M|M̂ = −dVd(φ)

dφ

rkj

|M|2M, (3.16)
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where M̂ is a unit vector. Similarly, the force on atom l is

Fl = −dVd(φ)

dφ

rkj

|N|2N, (3.17)

with N = rkj × rkl. To calculate the forces on the atoms j and k on the hinge, we

notice that the dihedral potential Vd(φ) is translation invariant, which means that

the total force on all the atoms involved should be zero, ie.

Fi + Fj + Fk + Fl = 0. (3.18)

Now we separate the forces into two groups. Let

Fj = −Fi + A,

Fk = −Fl − A.
(3.19)

As moving the atoms independently along the hinge doesn’t change the potential

Vd(φ), all the forces exerted by the dihedral potential should be perpendicular to rkj,

which yields A ⊥ rkj. Also notice that the dihedral potential is rotation invariant,

there is no total torque, thus

ri × Fi + rj × (−Fi + A) + rk × (−Fl − A) + rl × Fl = 0. (3.20)

(3.20) can be simplified to

rij × Fi + rjk × A + rlk × Fl = 0. (3.21)
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Let rkj × A = rij × Fi − rkl × Fl = B. As A ⊥ rkj, A is in the direction of B × rkj

and its value |A| = |B|/|rkj|. Thus we have

A =
|B|
|rkj|

B × rkj

|B||rkj|
=

B × rkj

r2
kj

=
1

r2
kj

(rij × Fi − rkl × Fl) × rkj

=
1

r2
kj

[(rij · rkj)Fi − (rkl · rkj)Fl],

(3.22)

where we have used Fi,Fl ⊥ rkj in the last line to remove two terms. (3.19) and

(3.22) give us

Fj =

[

rij · rkj

r2
kj

− 1

]

Fi −
rkl · rkj

r2
kj

Fl

Fk = −rij · rkj

r2
kj

Fi +

[

rkl · rkj

r2
kj

− 1

]

Fl

(3.23)

3.1.2 Thermal Flux

The thermal flux is our main targeted physical quantity to calculate in studying the

thermal conductivity of nanowires. In Eq. (2.27), a local energy is required, which

is the kinetic energy of the particle plus part of the potential. Writing down the

differentiation explicitly, we have

J =
∑

i

d

dt
(ri(t)ǫi(t)) =

∑

i

(

viǫi(t) + ri
dǫi(t)

dt

)

. (3.24)

The local energy ǫi(t) is contributed by the kinetic energy of the atom and the three

kinds of potential as discussed in Sec 2.1.1. The derivative of the kinetic part gives

us
d

dt

p2
i (t)

2mi

=
pi

mi

· dpi

dt
. = vi · Fi = vi · (Fb

i + Fθ
i + Fd

i ), (3.25)
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where Fi is the total force on the atom, Fb
i , Fθ

i , Fd
i are bond stretch force, bond angle

force and dihedral force respectively. In fact, the derivative of the local energy can

be written in a form as

d

dt
ǫi(t) =

∑

α

(

vi · Fα
i +

d

dt
V α(t)

)

≡
∑

α

d

dt
ǫα
i (t), (3.26)

where α stands for a particular potential involved.

For bond potential between atom i and j, the potential is separated equally into

the local energy of them, thus we have

ri
d

dt
ǫ
bij

i (t) = ri(vi · Fbij

i ) +
1

2

dV
bij

ij

dt
ri

= ri(vi · Fbij

i ) +
1

2

(

∂V
bij

ij

∂ri

· vi +
∂V

bij

ij

∂rj

· vj

)

ri

= ri(vi · Fbij

i ) − 1

2
(F

bij

i · vi + F
bij

j · vj)ri

=
1

2
(F

bij

i · vi − F
bij

j · vj)ri

(3.27)

The total flux through atoms i and j that is contributed by their bond potential is

Jbij = ri
dǫ

bij(t)
i

dt
+ rj

dǫ
bij

j (t)

dt

=
1

2
[(F

bij

i · vi − F
bij

j · vj)ri + (F
bij

j · vj − F
bij

i · vi)rj]

=
1

2
F

bij

i · (vi + vj)rij,

(3.28)

where we have used the fact that F
bij

i = −F
bij

j . For each individual atom, the flux is

simply one half of Jbij . To write in this form, we only use a relative distance between

ri and rj, thus avoid the possibility that ri becomes arbitrarily large which increases

numerical errors.

The thermal flux induced by the bond angle interaction can be calculated similarly.
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A problem arose here is how shall we divide the potential. We can divide the potential

equally, or contribute it more to the joint atom, or the other way around. Here we

give a general formula. Let atom j be at the joint, then the total potential V θ is

separated into V θ
i = V θ

k = βV θ and V θ
j = αV θ = (1 − 2β)V θ. The time derivative of

the local energy of atoms i, j, k are

d

dt
ǫθ
i (t) = vi · Fθ

i + β
dV θ

dt
= (1 − β)Fθ

i · vi − βFθ
j · vj − βFθ

k · vk, (3.29)

d

dt
ǫθ
j(t) = vj · Fθ

j + α
dV θ

dt
= −αFθ

i · vi + (1 − α)Fθ
j · vj − αFθ

k · vk, (3.30)

d

dt
ǫθ
k(t) = vk · Fθ

k + β
dV θ

dt
= −βFθ

i · vi − βFθ
j · vj + (1 − β)Fθ

k · vk. (3.31)

The total thermal flux contributed by the bond angle potential for three atoms is

thus

Jθ = ri
d

dt
ǫθ
i (t) + rj

d

dt
ǫθ
j(t) + rk

d

dt
ǫθ
k(t)

= [ri − (βri + αrj + βrk)]F
θ
i · vi

+ [rj − (βri + αrj + βrk)]F
θ
j · vj

+ [rk − (βri + αrj + βrk)]F
θ
k · vk,

(3.32)

which can be readily separated to three parts in this case.

The thermal flux caused by the dihedral angle is similar. The potential is divided

as V d
i = V d

l = βV d, V d
j = V d

k = αV , and α + β = 1/2. It has the form

Jd = [ri − (βri + αrj + αrk + βrl)]F
d
i · vi

+ [rj − (βri + αrj + αrk + βrl)]F
d
j · vj

+ [rk − (βri + αrj + αrk + βrl)]F
d
k · vk

+ [rl − (βri + αrj + αrk + βrl)]F
d
l · vl,

(3.33)
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3.2 Model

We studied the thermal conductivity of a simplified polyethylene chain model which

is comprised of connected CH2 units. The CH2 units are treated as unified atoms.

The bond interaction force constant is set to kb = 700 (kcal/mol)/Å2. The force

constant of bond angle potential is kθ = 100 (kcal/mol)/rad2, with θ0 = 1.91rad, For

the dihedral potential, we set kd = 2.0 kcal/mol, njk = 3, and φ0 = 180◦(or 60◦). The

values of these parameters are adapted from Mayo et al.[97].

The Hamiltonian of the chain is thus

H =
N
∑

i

p2
i

2m
+
∑

i

Vi,i+1 +
∑

i

Vi−1,i,i+1 +
∑

i

Vi,i+1,i+2,i+3, (3.34)

where the second term represents the bond interactions, the third term denotes the

bond angle interactions and the last gives the dihedral interactions.

The program is implemented in such a way that the positions, velocities and forces

are recorded in every unit step. The time step size is usually set to 0.01, thus a unit

step corresponds to 1/dt = 100 time steps. The units used in the program are kcal

for energy, g for mass and Å for length. From these units we can derive a single time

step corresponding to 48.8fs. The program usually runs more than 10 nano seconds

to obtain sufficiently good statistical average.

Initially, the program runs for a period of time to reach steady state before any

data are recorded. The steady state is examined by monitoring the potential energy.

Once it stops reducing further and begins to oscillate around a particular value, the

steady state is established.
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Figure 3.2: Temperature profile of polyethylene with 750 particles in the conduction
region with initial separation of 1.50Å. The red solid line is linear fitted. The heat
bath parts are omitted.

3.3 Results and Discussion

Figure 3.2 shows a typical temperature profile of the polyethylene chain connected to

two heat baths. The local temperature of the chain decreases linearly in the central

part, which indicates that a steady state has been well established. The profile near

the boundary is nonlinear, which is due to the boundary resistance. The boundary

resistance is directly related to the tension on the chain, which is governed by the

distance between the ends. For small tensions when the particles locate near their

equilibrium positions, the nonlinear effect of the boundary can be ignored and we can

simply use Eq. (2.30) for our calculation.
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All of our numerical simulations run with the following setup. The chain is coupled

to two heat baths, with the left heat bath at 310K and the right one at 290K, thus

the heat flux flows along the positive direction of the x axis. Different length of the

chain is used in each particular configuration to examine the size effect of the thermal

conductivity. The particle number runs through 100 to 800, with a step increase of

40 or 50. All the simulations in general run up to 50 nanoseconds after the steady

state has been reached. Particles in the chain can move freely in three-dimensional

space. Twenty additional particles on each side of the chain are in the heat baths.

We noticed that this number of particles will generate a well behaved heat bath with

the canonical distribution. The particles at the ends of the system are fixed.

Our aim in the simulation is to obtain the asymptotic power law relation between

the thermal conductivity and the system length. There are two things which are

particularly set in focus. One is the power index difference between a linear chain

and a nonlinear chain. Another is the effect of the chain extension on the index

number. These two foci determine the choice of parameters in the simulation.

Firstly, we studied the model with only harmonic interactions. The potentials of

the bond angle interactions and the dihedral interactions are set to zero. The particles

are initially distributed on the x axis with a specified separation range from 1.2Å to

1.5Å. A small position offset and an initial momentum according to the Maxwell

distribution are given to each particle. The results with different initial separations

are shown in Fig. 3.3. We note that with the increment of the system size, the average

thermal flux reduces. More over, by fitting the curve to the formula y = AxB, we got

a power law relation between the thermal conductivity and the system size. When

the chain is relatively flexible, i.e., the average separation is less than 1.4Å, the power

index α = B + 1 is around 0.55. With greater tension at 1.5Å, this number increases

sharply to 0.65. This shows a trend of increasing thermal conductivity with reduced

transverse motion. Previous analytical result [5] on a pure one-dimensional harmonic
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Figure 3.3: Dependence of average flux 〈j〉 on system size N with only linear bond
interactions. The samples are calculated with a separation of 1.2Å, 1.3Å, 1.4Å, 1.5Å
from the bottom to the top, respectively.

chain shows that one-dimensional thermal conductivity is proportional to the system

size, corresponding to a power index of 1. For a pure one-dimensional system, with

only harmonic interactions, no temperature gradient will build up in the central

region. Thus the system has infinite thermal conductivity. However, for a quasi one-

dimensional system, because of the additional freedom perpendicular to the thermal

flux direction, some energy is used by the particle to maintain a local vibration, thus

a temperature gradient always exists. For this reason, the thermal conductivity is

smaller compared with one-dimensional system. However, the increment of the power

index shows that the power index will gradually approaches 1 with increased tension
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Figure 3.4: Dependence of average flux 〈j〉 on system size N with additional bond
angle interactions and dihedral interactions.

and reduced freedom in the plane perpendicular to the flow direction, which is in

agreement with our intuitive.

Secondly, we turn on all the nearest neighboring interactions, i.e., including the

bond angle interactions and the dihedral interactions. Initial separations range from

1.10Å to 1.25Å. We obtain a similar pattern like Fig. 3.3 in Fig. 3.4. The relation

between the power index α and the average separation a of neighboring particles on

the x axis is shown in Fig. 3.5. We note that the power index number is significantly

smaller than the linear case, which means that nonlinear interactions reduce the

thermal conductivity through the chain. Additionally, there is a minimum value

around a = 1.18Å. For separation distances larger than 1.18Å, the power index goes
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Figure 3.5: relation between the power index α and the average separation a of
adjacent particles on the x axis

up, signifies the effect of tension. For separation distance smaller than 1.18Å, the

power index slowly reduced from a limit value. It should be noted that the distance

between adjacent particles should not be too small, as this will cause the folding of

the chain, which is not properly simulated for a chain model. Analytical analysis

using mode coupling theory [25] shows that the power index should be 1/3. However,

this is under the condition that no tension is exerted on the chain. When a small

tension exists in the chain, the power index is smaller, as shown in Fig. 3.5. Studies

on nanotubes [29, 28] also show smaller power index around 0.15 for large radius, in

which case the atoms are less confined, thus it is consistent with our study.
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3.4 Conclusion

We have studied the thermal conductive properties of a realistic polyethylene model

using molecular dynamics method. The chain is coupled to Nosé-Hoover heat baths

and the particles can move in three-dimensional space. We found that in general

there is a power law relation between the thermal conductivity and the system length.

Inclusion of nonlinear interactions give a smaller power index than purely linear in-

teractions. The power index is also connected with the transverse flexibility of the

chain. A small tension will reduce the power index, while a much larger tension will

transform the chain effectively to a harmonic chain.



Part II

Quantum Heat Transport and

Application
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Chapter 4

Non-equilibrium Green’s Functions

Thermal transport in nanoscale systems has gained more attention in recent years.

The transport properties at low temperatures are quite different from the properties

at high temperatures. When the temperature is high, we can study the system using

classical method, as what have been done in the first part of this thesis, where we

have studied thermal conductivity of quasi one-dimensional chains using molecular

dynamics method. However, this method cannot be used when the temperature is

sufficiently low, as the assumption of equal partition is no longer valid in that case,

and the Boltzmann’s distribution cannot be used. Instead, we need to apply quantum

mechanical method to the problem. For many body systems with interactions, Green’s

functions method is a standard method. This method has been thoroughly studied in

equilibrium systems and there is a great deal of literature on this subject. However,

for thermal transport problems in non-equilibrium state, little work has been done.

Because of the complexity of interactions in a many body system, there is still a vast

scope for investigation. In the following sections, we are trying to study the thermal

transport properties of one-dimensional systems using the non-equilibrium Green’s

function method.

In this chapter, we firstly discuss the interaction representation, which is essential

42
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for our study on many body systems with interactions. Then the adiabatic switching-

on concept is introduced, which is the basis for further derivation. We then present a

general non-equilibrium Green’s functions approach to the quantum transport theory,

which is our major tool. This is followed by an explanation of Feynman diagram and

mean field theory.

Sec. 4.1 – Sec. 4.5 and Sec. 4.8 except for the generalization of the Langreth theo-

rem are standard textbook materials. They are included here to make the discussion

complete.

4.1 Model

Our model consists of three parts. The right and left parts are semi-infinite linear

leads which act as heat baths. The central junction part is coupled to the leads

through linear interactions. It can be in any structure and it also includes nonlinear

interactions, which are our major interest. The Hamiltonian of the system is written

as

H =
∑

α=L,C,R

Hα + (uL)T V LCuC + (uC)T V CRuR + Hn,

Hα =
1

2
(u̇α)T u̇α +

1

2
(uα)T Kαuα,

Hn =
∑

ijk

1

3
kijku

C
i uC

j uC
k +

∑

ijkl

1

4
kijklu

C
i uC

j uC
k uC

l ,

(4.1)

where ui = xi
√

mi is the normalized displacement for atom i. Hα is the harmonic

Hamiltonian of each part, VLC and VRC are the interactions between the junction and

the lead, and Hn is the nonlinear interaction in the junction.

Thermal energy can be carried by electrons, or through the lattice vibrations,

which is abstracted as phonons. We have only considered phonons in our study
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as most of the time, thermal transport is dominated by phonons. When the sys-

tem is linear, the phonon mean free path is infinite, and phonons propagate freely.

When nonlinear interactions are involved, the phonon mean free path becomes finite.

Phonons get scattered with each other. In order to study the phonon-phonon interac-

tions effectively, we need to work in the interaction representation, which is the topic

of next section.

4.2 The interaction representation

In quantum mechanics, when dealing with systems with interactions, it is usually

preferred to work in the interaction representation. Thus in the following text, we

will present all the basic definitions and formulas for this representation. The text in

this and the next section has followed Ref. [103].

We begin with a Hamiltonian

Ĥ = Ĥ0 + Ĥ1, (4.2)

where Ĥ0 is the Hamiltonian without interactions and Ĥ1 is the interaction term. In

the Schrödinger’s representation, we have

i~
∂

∂t
|ΨS(t)〉 = Ĥ|ΨS(t)〉, (4.3)

where |ΨS(t)〉 is the state vector. This equation can be solved formally and gives

|ΨS(t)〉 = e−
i
~

Ĥt|ΨS(0)〉. (4.4)

Thus the state vector at a later time can be calculated from the state vector at an

initial time t = 0. We define a new interaction state vector based on Schrödinger’s
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state vector

|ΨI(t)〉 ≡ e
i
~

Ĥ0t|ΨS(t)〉. (4.5)

The time derivative of this state vector is

i~
∂

∂t
|ΨI(t)〉 = −Ĥ0e

i
~

Ĥ0t|ΨS(t)〉 + e
i
~

Ĥ0tĤ|ΨS(t)〉

= e
i
~

Ĥ0tĤ1e
− i

~
Ĥ0t|ΨI(t)〉

= Ĥ1(t)|ΨI(t)〉,

(4.6)

which has the same form as the Schrödinger’s equation (4.3) and we have set

Ĥ1(t) ≡ e
i
~

Ĥ0tĤ1e
− i

~
Ĥ0t. (4.7)

For an arbitrary operator in the interaction representation, we define

ÔI(t) ≡ e
i
~

Ĥ0tÔSe−
i
~

Ĥ0t. (4.8)

Its equation of motion is

i~
∂

∂t
ÔI(t) = −Ĥ0e

i
~

Ĥ0tÔSe−
i
~

Ĥ0t + e
i
~

Ĥ0tÔSĤ0e
− i

~
Ĥ0t

= ÔI(t)Ĥ0 − Ĥ0ÔI(t)

= [ÔI(t), Ĥ0].

(4.9)
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Apply (4.9) to annihilation operator â(t), we have

i~
∂

∂t
âi(t) = [âi(t), Ĥ0] = eiĤ0t[âi, Ĥ0]e

−iĤ0t

= eiĤ0t[âi,
∑

j

~ωj â
†
j âj]e

−iĤ0t

= ~ωje
iĤ0t[âi, â

†
j]âje

−iĤ0tδij

= ~ωie
iĤ0tâie

−iĤ0t

= ~ωiâi(t)

âi(t) = âie
−iωit.

(4.10)

Let there be a propagator function that propagates the state vector from time t0 to t

|ΨI(t)〉 = Û(t, t0)|ΨI(t0)〉. (4.11)

From (4.4) and (4.5), this equation can be written out specifically as

|ΨI(t)〉 = e
i
~

Ĥ0t|ΨS(t)〉 (4.12)

= e
i
~

Ĥ0te−
i
~

Ĥt|ΨS(0)〉 (4.13)

= e
i
~

Ĥ0te−
i
~

Ĥte
i
~

Ĥt0|ΨS(t0)〉 (4.14)

= e
i
~

Ĥ0te−
i
~

Ĥte
i
~

Ĥt0e−
i
~

Ĥ0t0|ΨI(t0)〉, (4.15)

hence

U(t, t0) = e
i
~

Ĥ0te−
i
~

Ĥ(t−t0)e−
i
~

Ĥ0t0 . (4.16)

Substitute (4.11) into (4.6), we get the equation of motion for the propagator

i~
∂

∂t
Û(t, t0) = Ĥ1(t)Û(t, t0). (4.17)
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After integrating (4.17) from t0 to t, we have

Û(t, t0) − Û(t0, t0) = − i

~

∫ t

t0

Ĥ1(t
′)Û(t′, t0)dt′. (4.18)

It is obvious from (4.11) that

Û(t0, t0) = 1, (4.19)

hence

Û(t, t0) = 1 − i

~

∫ t

t0

Ĥ1(t
′)Û(t′, t0)dt′, (4.20)

which is a self-consistent equation. We replace the propagator at the r.h.s. of the

equation recursively, and obtain

Û(t, t0) = 1 − i

~

∫ t

t0

Ĥ1(t1)dt1 + (− i

~
)2

∫ t

t0

∫ t1

t0

Ĥ1(t1)Ĥ1(t2)dt1dt2 + ...

+ (− i

~
)n

∫ t

t0

∫ t1

t0

...

∫ tn−1

t0

Ĥ1(t1)Ĥ1(t2)...Ĥ1(tn)dt1dt2...dtn + ... . (4.21)

For the multi-variable integration, the time variables are ordered in the way that

later time variables are on the left and earlier time variables are on the right. These

are dummy variables and there are n! ways of permutation. We then expand each

upper limit to t, and attach a step function θ(ti − t). The overall effect is to order

the variables properly. The propagator thus has the form

Û(t, t0) =
∑

n

(− i

~
)n 1

n!

∫ t

t0

...

∫ t

t0

T [Ĥ1(t1)...Ĥ1(tn)]dt1...dtn

= T exp

{

− i

~

∫ t

t0

Ĥ1(t
′)dt′

}

.

(4.22)

In the Schrödinger’s representation, the state vectors are time dependent, while the

operators are time independent. In the interaction representation, both state vectors

and operators are time dependent. Another representation which is quite useful is the



CHAPTER 4. NON-EQUILIBRIUM GREEN’S FUNCTIONS 48

Heisenberg representation, whose state vectors are time independent. The relation

between the Schrödinger’s representation and the Heisenberg representation is

|ΨS(t)〉 = A(t)|ΨH〉 with A(0) = 1. (4.23)

Insert (4.23) into (4.3)

i~
∂

∂t
A(t)|ΨH〉 = ĤA(t)|ΨH〉, (4.24)

hence

A(t) = e−
i
~

Ĥt. (4.25)

We have

|ΨS(t)〉 = e−
i
~

Ĥt|ΨH〉. (4.26)

For an arbitrary operator ÔS, its representation in the Heisenberg representation can

be derived from (4.26)

〈ΨS(t)|ÔS|ΨS(t)〉 = 〈ΨH |e
i
~

ĤtÔSe−
i
~

Ĥt|ΨH〉

= 〈ΨH |ÔH |ΨH〉,

ÔH(t) = e
i
~

ĤtÔSe−
i
~

Ĥt.

(4.27)

The equation of motion of ÔH(t) is

i~
∂

∂t
ÔH(t) = −ĤÔH(t) + ÔH(t)Ĥ = [ÔH(t), Ĥ]. (4.28)

The relation between ÔH(t) and ÔI(t) is easily got from (4.8) and (4.27), i.e.

ÔH(t) = e
i
~

Ĥte−
i
~

Ĥ0tÔI(t)e
i
~

Ĥ0te−
i
~

Ĥt. (4.29)
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With the help of (4.16), (4.29) is simplified to

ÔH(t) = Û(0, t)ÔI(t)Û(t, 0). (4.30)

4.3 Adiabatic switching-on

In order to calculate the physical quantities at a specific time, we need to know the

state vectors first. Because of the effect of interactions, the system state is not known

to us. To get the state vectors of the current system, we need to start from some

already known intitial state. Then using the equation of motion of the state, we can

derive the state vectors at a later time. As the eigenstate with no interactions is

completely known, we can start from here and switch on the interactions gradually,

so that the interactions become full-fledged at the required time. This technique is

called adiabatic switching-on, as at each particular time, the eigenstate can be treated

as static and the total Hamiltonian does not change.

We start with the Hamiltonian in the form of Eq. (4.2). Initialy, there is no

interactions in the system, thus Ĥ = Ĥ0. The system is represented by a complete

set of eigenvectors |Φ0〉. The time dependent Hamiltonian can be represented as

Ĥ(t) = Ĥ0 + e−ǫ|t|Ĥ1, (4.31)

where ǫ is an arbitrarily small positive value. As time t = ±∞, the system has no

interactions. When the time t approaches zero, the interactions are fully switched on.

The state vector at the time t can be calculated from the state vector at the time

t0 through Eq. (4.11), ie. |ΨI(t)〉 = Uǫ(t, t0)|ΨI(t0)〉, with the subscript ǫ to remind

about the extra time dependent factor e−ǫ|t| in the interaction operator. The equation
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of motion of Uǫ(t, t0) is

i~
∂

∂t
Ûǫ(t, t0) = e−ǫ|t|Ĥ1(t)Ûǫ(t, t0), (4.32)

which, after integration, gives

Uǫ(t, t0) = T exp

{

− i

~

∫ t

t0

e−ǫ|t′|Ĥ1(t
′)dt′

}

. (4.33)

According to Eqs. (4.5) and (4.8), the state vector |ΨI(t0)〉 can be written as

|ΨI(t0)〉 = e
i
~

Ĥ0t0 |ΨS(t0)〉. (4.34)

Let t0 → −∞, so that the total Hamiltonian Ĥ approaches Ĥ0. The state vector

|ΨS(t0)〉 can be written as |ΨS(t0)〉 = e−
i
~

Ĥ0t0|Φ0〉, where |Φ0〉 is the initial eigenstate.

Thus Eq. (4.34) becomes |ΨI(−∞)〉 = |Φ0〉. In another word, without interaction, the

state vectors will remain in a steady state. As the interaction is turned on gradually,

the state vector will change according to Eq. (4.11). At the time t = 0, we have the

relation that |ΨI(0)〉 = |ΨS(0)〉 = |ΨH〉, which gives

|ΨH〉 = Uǫ(t,−∞)|Φ0〉. (4.35)

Let ǫ goes to zero, we then arrive at an state vector with full interaction which can be

represented by the state vector without interaction through the propagator U(t,−∞).

In our model, there are two kinds of interactions. one is the interaction between

the leads and the junction, and another is the nonlinear interaction in the junction.

Thus, our calculation is also separated into two steps. We first start from an initial

state that the three parts of the model are independent. No interactions between the

leads and the junction are involved and there are no nonlinear interactions either.
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Then we slowly switch on the interaction at the interface, until the interaction is fully

turned on at a specific time t0 and the whole system reaches a steady state. We then

let t0 approaches −∞, thus it becomes a new initial state, which is known now. We

begin to switch on the nonlinear interactions in the junction, which are fully turned

on at time t = 0. Through this two-step switching-on method, we are able to obtain

the current eigenstate under nonlinear interactions and surface interactions from the

eigenstate without interactions. The Hamiltonian of our model is thus written as

H(t) =
∑

α=L,C,R

Hα + e−ǫ|t−t0|(VLC + VCR) + e−ξ|t|Hn. (4.36)

With the above information, we are able to calculate any physical quantities if we

know the density matrix at the specified time, which is defined as

ρ̂I(t) ≡
∑

i

ωi|ΨIi(t)〉〈ΨIi(t)|. (4.37)

Substituting the state vector by Eq. (4.11), we have

ρ̂I(t) =
∑

i

ωiÛ(t, t0)|ΨIi(t0)〉〈ΨIi(t0)|Û(t0, t)

=
∑

i

ωiÛ(t, t0)Ŝ(t0,−∞)|ΨIi(−∞)〉〈ΨIi(−∞)|Ŝ(−∞, t0)Û(t0, t)

= Û(t, t0)Ŝ(t0,−∞)ρ̂(−∞)Ŝ(−∞, t0)Û(t0, t),

(4.38)

where

Ŝ(t, t0) = T exp

{

− i

~

∫ t

t0

V̂ (t′)dt′
}

,

Û(t, t0) = T exp

{

− i

~

∫ t

t0

Ĥn(t′)dt′
}

,

and we have used the relation Û †(t, t0) = Û(t0, t).
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4.4 Time ordered Green’s functions

To start with, we give the definition of a time ordered Green’s function

Gt(t, t′) = − i

~
〈T u(t)u(t′)T 〉, (4.39)

where T is the time ordering operator. When t and t′ have a specific order, the time

ordering operator T can be removed. Gt(t, t′) can be written as

G<(t, t′) = − i

~
〈u(t′)u(t)T 〉T t < t′, (4.40)

G>(t, t′) = − i

~
〈u(t)u(t′)T 〉 t > t′, (4.41)

i.e.

Gt(t, t′) = θ(t − t′)G>(t, t′) + θ(t′ − t)G<(t, t′). (4.42)

Sometimes, an anti-time ordered Green’s function is useful, which has the form

Gt̄(t, t′) = − i

~
〈T̄ u(t)u(t′)T 〉

= θ(t − t′)G<(t, t′) + θ(t′ − t)G>(t, t′).

(4.43)

Eq. (4.42) and (4.43) gives us

Gt(t, t′) + Gt̄(t, t′) = G<(t, t′) + G>(t, t′). (4.44)

We will also frequently use the retarded Green’s function and the advanced Green’s

function, which are defined as

Gr(t, t′) = − i

~
θ(t − t′)〈[u(t), u(t′)T ]〉, (4.45)

Ga(t, t′) =
i

~
θ(t′ − t)〈[u(t), u(t′)T ]〉. (4.46)
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The relation between Gr(t, t′), Ga(t, t′) and other Green’s functions are

Gr(t, t′) = θ(t − t′)(G>(t, t′) − G<(t, t′)), (4.47)

Ga(t, t′) = θ(t′ − t)(G<(t, t′) − G>(t, t′)), (4.48)

Gr(t, t′) − Ga(t, t′) = G>(t, t′) − G<(t, t′), (4.49)

Gr(t, t′) + Ga(t, t′) = Gt(t, t′) − Gt̄(t, t′). (4.50)

4.5 Equilibrium Green’s Functions

In equilibrium state with only harmonic interactions, phonons in the system move

freely. In this case, the Green’s functions have simple forms. In the followings, we

will discuss the Green’s functions in equilibrium state. Only one element of the whole

matrix is discussed, and as the matrix is diagonalized, the subscript is omitted. The

coordinates can be represented by the annihilation and creation operators, i.e.

û =

√

~

2ω0

(â + â†) (4.51)

Inserting (4.51) into Green’s function g<(t, t′) gives

g<(t, t′) = − i

~
〈û(t′)û(t)〉

= − i

2ω0

〈(â(t′) + â†(t′))(â(t) + â†(t))〉

= − i

2ω0

〈âe−iω0t′ â†eiω0t + â†eiω0t′ âeiω0t〉

= − i

2ω0

(eiω0(t−t′)〈ââ†〉 + eiω0(t′−t)〈â†â〉)

= − i

2ω0

(eiω0(t−t′)(1 + 〈â†â〉) + eiω0(t′−t)〈â†â〉)

= − i

2ω0

[eiω0(t−t′)(1 + f(ω0)) + eiω0(t′−t)f(ω0)]

(4.52)
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where we have used (4.10), commutation relation [â, â†] = 1, and 〈â†â〉 = 1
eβ~ω0−1

=

f(ω0), which is Bose-Einstein distribution and ω0 is the eigen frequency corresponding

to â. The Fourier transformation of (4.52) is

g<(ω) =

∫ ∞

−∞

g<(t, t′)eiω(t−t′)dt

= − i

2ω0

∫ ∞

−∞

[eiω0(t−t′)(1 + f(ω0)) + eiω0(t′−t)f(ω0)]e
iω(t−t′)dt

= − iπ

ω0

[δ(ω + ω0)(1 + f(ω0)) + δ(ω − ω0)f(ω0)],

(4.53)

where we have used δ(ω) = 1
2π

∫∞

−∞
eiωtdt. Similarly, we have

g>(t, t′) = − i

2ω0

[eiω0(t′−t)(1 + f(ω0)) + eiω0(t−t′)f(ω0)] (4.54)

g>(ω) = − iπ

ω0

[δ(ω − ω0)(1 + f(ω0)) + δ(ω + ω0)f(ω0)] (4.55)

We can also derive the retarded Green’s function

gr(t, t′) = − i

~
θ(t − t′)[û(t), û(t′)]

= − i

~
θ(t − t′)

~

2ω0

〈[â(t) + â†(t), â(t′) + â†(t′)]〉

= −θ(t − t′)
i

2ω0

〈[â(t), â†(t′)] + [â†(t), â(t′)]〉

= − i

2ω0

θ(t − t′)(eiω0(t′−t) − eiω0(t−t′)).

(4.56)
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In the Fourier space, (4.56) becomes

gr(ω) =

∫ ∞

−∞

gr(t, t′)eiω(t−t′)dt

= − i

2ω0

∫ ∞

−∞

θ(t − t′)(eiω0(t′−t) − eiω0(t−t′))eiω(t−t′)dt

= − i

2ω0

∫ ∞

−∞

{

−
∫ ∞

−∞

dω′

2πi

e−iω′(t−t′)

ω′ + iη

}

(ei(ω−ω0)(t′−t) − ei(ω+ω0)(t−t′))dt

=
1

4πω0

∫ ∞

−∞

dω′2π(δ(ω − ω0 − ω′) − δ(ω + ω0 − ω′))

ω′ + iη

=
1

2ω0

(
1

ω − ω0 + iη
− 1

ω + ω0 + iη
)

=
1

(ω + iη)2 − ω2
0

,

(4.57)

where we have used θ(t − t′) = −
∫∞

−∞
dω′

2πi
e−iω′(t−t′)

ω′+iη
and η is an infinitesimal positive

value. Similarly, we have the advanced Green’s function

ga(t, t′) =
i

2ω0

θ(t′ − t)(eiω0(t′−t) − eiω0(t−t′)) (4.58)

ga(ω) =
1

2ω0

(
1

ω − ω0 − iη
− 1

ω + ω0 − iη
) (4.59)

=
1

(ω − iη)2 − ω2
0

From (4.57) and (4.59), it is obvious that

gr(ω) = ga(ω)∗. (4.60)

Another very useful relation can be derived using the symbolic equation

1

ω ± iη
= P 1

ω
∓ iπδ(ω), (4.61)
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where P stands for principle value. Write (4.57) and (4.59) in this form, we have

gr(ω) =
1

2ω0

(P 1

ω − ω0

− iπδ(ω − ω0) − P 1

ω + ω0

+ iπδ(ω + ω0)

ga(ω) =
1

2ω0

(P 1

ω − ω0

+ iπδ(ω − ω0) − P 1

ω + ω0

− iπδ(ω + ω0).

Subtracting gr(ω) by ga(ω) yields

gr(ω) − ga(ω) =
iπ

ω0

(δ(ω + ω0) − δ(ω − ω0)). (4.62)

(4.62) has almost the same form as (4.53), in fact, multiply the Bose-Einstein distri-

bution at both sides of (4.62) gives

f(ω)[gr(ω) − ga(ω)] =
iπ

ω0

[f(ω)δ(ω + ω0) − f(ω)δ(ω − ω0)]

=
iπ

ω0

[f(−ω0)δ(ω + ω0) − f(ω0)δ(ω − ω0)]

= − iπ

ω0

[(1 + f(ω0))δ(ω + ω0) + f(ω0)δ(ω − ω0)]

= g<(ω),

(4.63)

where we have used f(−ω0) = 1
e−β~ω0−1

= −(1+ 1
eβ~ω0−1

) = −(1+f(ω0)) in the second

last line.

4.6 Contour ordered Green’s functions

In nonequilibrium steady state, the eigenstate of the system is derived from its ini-

tial state, where the interactions are gradually turned on and become full-fledged at

present time. It is not usually guaranteed that the system will return to its initial
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state after infinite long time, thus it would be better if the system goes backward to

its initial state. This procedure requires the system evolve on a complex path, where

a contour ordered Green’s function is defined, which is

Gα1,α2,...,αn

j1,j2,...,jn
(τ1, τ2, . . . , τn) = −i〈Tτu

α1
j1

(τ1)u
α2
j2

(τ2) . . . uαn

jn
(τn)〉, (4.64)

where α = L,C,R for different sections and ji represents the degree of freedom.

We have chosen ~ = 1 in the definition of the Green’s function and hereafter for

simplicity. It can always be easily recovered by dimensional analysis. The contour

runs from τ = −∞ + iǫ to τ = 0, then from τ = 0 to τ = −∞− iǫ. We can define

an extended step function θ(τ − τ ′) which equals one if τ is later than τ ′ on the

contour, and equals zero otherwise. An extended δ-function, which is the derivative

of θ(τ − τ ′), is also required. It is defined as δ(τ − τ ′) = σδσ,σ′δ(t − t′) so that its

integral along the contour gives one. Here σ stands for the branch of the contour. If

the variable is above the real axis, σ = 1. If it is below the real axis, σ = −1.

The contour ordered Green’s function can be solved using equations of motion

method. Let’s consider Green’s function GCL
jk (τ, τ ′) = −i〈Tτu

C
j (τ)uL

k (τ ′)〉 as an exam-

ple, which is an important quantity in the following thermal conductance calculation.

Its first derivative gives

∂

∂τ ′
GCL

jk (τ, τ ′) = −i
∂

∂τ ′
〈Tτu

C
j (τ)uL

k (τ ′)〉

= −i
∂

∂τ ′
〈θ(τ − τ ′)uC

j (τ)uL
k (τ ′) + θ(τ ′ − τ)uL

k (τ ′)uC
j (τ)〉

= −i〈δ(τ − τ ′)[uL
k (τ ′), uC

j (τ)]〉 − i〈Tτu
C
j (τ)u̇L

k (τ ′)〉

= −i〈Tτu
C
j (τ)u̇L

k (τ ′)〉.

(4.65)

The first term in the second last line equals zero as the two elements with the same

time commute.
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The second derivative of GCL
jk (τ, τ ′) can be calculated the same way as Eq. (4.65),

which yields
∂2

∂τ ′2
GCL

jk (τ, τ ′) = −i〈Tτu
C
j (τ)üL

k (τ ′)〉. (4.66)

The second derivative of uL
k (τ ′) can be further replaced by its equation of motion.

Let’s derive the formula in the Hamiltonian representation. According to Eq. (4.28),

we have
∂

∂τ
u̇L

j (τ) = −i[u̇L
j (τ), H]. (4.67)

Here τ is equivalent to t as its imaginary part approaches zero. Expanding H into

its component form as defined in Eq. (4.1), and considering that only terms with

Cartesian coordinates uL
j (τ) on the left lead does not commute with u̇L

j (τ), we have

üL
k (τ) = −ieiHτ [u̇L

k , HL + VLC ]e−iHτ

= −ieiHτ [u̇L
k ,
∑

lm

1

2
uL

l KL
lmuL

m +
∑

lm

uL
l V LC

lm uC
m]e−iHτ

= −ieiHτ [−i
∑

l

KL
klu

L
l − i

∑

l

V LC
kl uC

l ]e−iHτ

= −
∑

l

KL
klu

L
l (τ) −

∑

l

V LC
kl uC

l (τ),

(4.68)

so that Eq. (4.65) becomes

∂2

∂τ ′2
GCL

jk (τ, τ ′) = −
∑

l

GCL
jl (τ, τ ′)KL

lk −
∑

l

GCC
jl (τ, τ ′)V CL

lk (4.69)

Eq. (4.69) can be written in a more compact matrix form, which gives

∂2

∂τ ′2
GCL(τ, τ ′) + GCL(τ, τ ′)KL = −GCC(τ, τ ′)V CL. (4.70)

This equation can be solved by defining a Green’s function of the left lead, which
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fulfills
∂2

∂τ ′2
gL(τ ′, τ ′′) + KLgL(τ ′, τ ′′) = −Iδ(τ ′ − τ ′′). (4.71)

By multiplying Eq. (4.70) by gL(τ ′, τ ′′) on the right, and multiplying Eq. (4.71) by

GCL(τ, τ ′) on the left, then integrating by parts the subtraction of Eq. (4.70) and

Eq. (4.71), we have

GCL(τ, τ ′′) =

∫

GCC(τ, τ ′)V CLgL(τ ′, τ ′′)dτ ′

+
∂GCL(τ, τ ′)

∂τ ′
gL(τ ′, τ ′′) − GCL(τ, τ ′)

∂gL(τ ′, τ ′′)

∂τ ′

∣

∣

∣

∣

−∞−iǫ

−∞+iǫ

(4.72)

At both ends of the contour, the heat bath and the central junction are decoupled

and each part maintains at its own equilibrium state. Thus when τ ′ = −∞ ± iǫ,

GCL(τ, τ ′) = 0 and ∂
∂τ ′

GCL(τ, τ ′) = 0. This becomes obvious if we look at the

definition of GCL
ij (τ, τ ′) = −i〈Tτu

C
i (τ)uL

j (τ ′)〉. When τ ′ = −∞ ± iǫ, uL
j (τ ′) can be

replaced by (aL
j
†
+ aL

j )e−iωjt multiplied by a constant. It will change the initial state,

but this change can not be recovered by uC
i (τ), thus it must be zero. It yields that

GCL(τ, τ ′′) =

∫

GCC(τ, τ ′)V CLgL(τ ′, τ ′′)dτ ′. (4.73)

We can calculate GCC
jk (τ, τ ′) = −i〈Tτu

C
j (τ)uC

k (τ ′)〉 based on the same procedure.

As uj(τ) and uk(τ
′) commute when τ = τ ′, the first derivative of GCC

jk (τ, τ ′) relative

to τ ′ gives
∂

∂τ ′
GCC

jk (τ, τ ′) = −i〈Tτu
C
j (τ)u̇C

k (τ ′)〉. (4.74)

For the second derivative, as [uC
j , u̇C

k ] = iδjk, we have

∂2

∂τ ′2
GCC

jk (τ, τ ′) = −i〈Tτu
C
j (τ)üC

k (τ ′)〉 − δ(τ − τ ′)δjk. (4.75)
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Now we need to replace üC
k (τ ′) by its equation of motion, which is

ük = −
∑

l

Kklul−
∑

l

V CL
kl uL

l −
∑

l

V CR
kl uR

l −
∑

lm

Tklmulum−
∑

lmn

Tklmnulumun, (4.76)

where the superscript C has been dropped for the junction part here after.

Things get a bit complicated here. Unlike the lead, where only linear interactions

are considered, nonlinear interactions are also involved in the junction, which are the

fourth and fifth term in Eq. (4.76). These coordinates are at the same time τ , while

in Green’s functions, in general, the time maybe different. We need a mechanism

to track the time. This can be done by integrating the term with a δ-function. For

example, let’s consider the third order interaction, which gives

∑

lm

Tklmul(τ)um(τ) =

∫∫

Tklmul(τ
′)δ(τ − τ ′)um(τ ′′)δ(τ − τ ′′)dτ ′dτ ′′. (4.77)

Define Tklm(τ, τ ′, τ ′′) = Tklmδ(τ − τ ′)δ(τ − τ ′′) = Tklmσ′δσ,σ′δ(t − t′)σ′′δσ,σ′′δ(t − t′′),

we have

∂2

∂τ ′2
GCC

jk (τ, τ ′) +
∑

l

GCC
jl (τ, τ ′)KCC

lk = −δjkδ(τ − τ ′) −
∑

l

GCL
jl (τ, τ ′)V LC

lk

−
∑

l

GCR
jl (τ, τ ′)V RC

lk −
∑

lm

∫∫

GCCC
jlm (τ, τ1, τ2)Tklm(τ ′, τ1, τ2)dτ1dτ2

−
∑

lmn

∫∫

GCCCC
jlmn (τ, τ1, τ2, τ3)Tklmn(τ ′, τ1, τ2, τ3)dτ1dτ2dτ3. (4.78)
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The second derivative of GCC
jk (τ, τ ′) to τ is similar, which is

∂2

∂τ 2
GCC

jk (τ, τ ′) +
∑

l

KCC
jl GCC

lk (τ, τ ′) = −δjkδ(τ − τ ′) −
∑

l

V CL
jl GLC

lk (τ, τ ′)

−
∑

l

V CR
jl GRC

lk (τ, τ ′) −
∑

lm

∫∫

Tjlm(τ, τ1, τ2)G
CCC
klm (τ ′, τ1, τ2)dτ1dτ2

−
∑

lmn

∫∫

Tjlmn(τ, τ1, τ2, τ3)G
CCCC
klmn (τ ′, τ1, τ2, τ3)dτ1dτ2dτ3. (4.79)

Without nonlinear interaction, the junction Green’s function gives

(

∂2

∂τ 2
+ KCC

)

G0(τ, τ
′)+

∫

(V CLgL(τ, τ ′′)V LC + V CRgR(τ, τ ′′)V RC)G0(τ
′′, τ ′)dτ ′′ = −Iδ(τ − τ ′), (4.80)

where we have used Eq. (4.73) to replace GCL and GCR. Thus ∂2

∂τ2 + KCC can be

represented by G0(τ, τ
′) as

∂2

∂τ 2
+ KCC = −Iδ(τ − τ ′)G−1

0 (τ, τ ′)

−
∫

(V CLgL(τ, τ ′′)V LC + V CRgR(τ, τ ′′)V RC)δ(τ − τ ′′)dτ ′′ (4.81)

Substitute Eq. (4.81) into Eq. (4.79), we have

GCC(τ, τ ′) = G0(τ, τ
′) +

∫∫∫

G0(τ, τ1)T (τ1, τ2, τ3)G
CCC(τ2, τ3, τ

′)dτ1dτ2dτ3

∫∫∫∫

G0(τ, τ1)T (τ1, τ2, τ3, τ4)G
CCCC(τ2, τ3, τ4, τ

′)dτ1dτ2dτ3dτ4 (4.82)

where δ(τ − τ ′)G0(τ − τ ′) is multiplied on both side of the equation.

The Eq. (4.82) gives an explicit way to solve arbitrary order Green’s functions

recursively. Fig. 4.1 shows how this is done. The rules for n-point Green’s function
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are:

1. For an n-point Green’s function, it can be depicted as a vertex having n double-

line legs.

2. For an mth order interaction, an m-terminal vertex is enrolled which is con-

nected to one of the leg with a single line represents G0 and connected to the

main vertex with two double lines, thus increase the order of the Green’s func-

tion by m − 2. This corresponds to the second term of Eq. (4.82).

3. One leg is paired with one of the remaining n − 1 legs with G0, which is then

multiplied by the remaining n − 2 order Green’s function. The summation of

these terms are then multiplied by i. This corresponds to the first term of

Eq. (4.82).

4. The graphs are symmetrized by working on each individual leg using step 2 and

3, then a summation is made and divided by n.

An implementation of above rules with cubic interactions using Mathematica is

given in Appendix B.

4.7 Feynman diagrams and Dyson’s equation

The equation of motion method is accurate and straight forward. However, a major

drawback of it is that the final formalism is too complicated and makes it very hard to

calculate. To solve this problem, we can use an equivalent but more intuitive method.

That is the Keldysh formalism using Feynman diagrams. We start from the definition

of the central junction Green’s function

Gjk(τ, τ
′) = −i〈Tτu

H
j (τ)uH

k (τ ′)〉

= −i Tr{ρ̂H(0)Tτu
H
j (τ)uH

k (τ ′)}.
(4.83)
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Figure 4.1: Recursive expansion rule for Green’s functions.

The operators here are in the Heisenberg representation, and the average is over

Heisenberg state characterized by the density matrix ρ̂H(0). We choose the Heisenberg

representation in the definition is because we want a fixed set of eigenstates which

does not change over time. However, in order to study a system with interactions, it

is better to use the interaction representation.

According to Eq. (4.30), at the time t = 0, the operator in the Heisenberg repre-

sentation is the same as the one in the interaction representation. Thus

ρ̂H(0) = ρ̂I(0) = S(0,−∞)ρ̂′
0S(−∞, 0), (4.84)

where S(τ, τ ′) is the evolution operator with nonlinear interactions switched on, and

ρ̂′
0 is the density matrix at a time before the nonlinear interactions are switched on

and the system has already established steady state. It is evolved from the equi-

librium state density matrix with the interface interactions turned on. Thus it can

be expressed as limτ0→−∞ U(τ0,−∞)ρ̂0U(−∞, τ0), where ρ̂0 is the equilibrium state

density matrix, U(τ, τ ′) is the evolution operator with interface interactions.
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It is more convenient to work in the interaction representation. The displace-

ment uH
i (τ) in the Heisenberg representation can be transformed to the interaction

representation by

uH
i (τ) = S(0, τ)uI

i (τ)S(τ, 0). (4.85)

Substituting Eq. (4.84) and Eq. (4.85) into Eq. (4.83) gives

Gjk(τ, τ
′) = −i Tr{ρ̂′

0S(−∞, 0)TτS(0, τ)uI
i (τ)S(τ, 0)

S(0, τ ′)uI
j (τ

′)S(τ ′, 0)S(0,−∞)}

= −i Tr{ρ̂′
0TτS(−∞,−∞)uI

i (τ))uI
j(τ

′)}

= −i〈Tτe
−i

R

τ
Hn(τ ′′)dτ ′′

uI
i (τ)uI

j (τ
′)〉.

(4.86)

The contour integral is from −∞ to τ , to τ ′ and to −∞. Written in the time domain,

we have
∫

dτ =
∑

σ=±1

∫ +∞

−∞
σdt. The Taylor expansion of the exponential term of

Eq. (4.86) yields

Gjk(τ, τ
′) = −i〈Tτ

∞
∑

m=0

(−i)m 1

m!

∫

C

dτ1...

∫

C

dτmH1
n(τ1)...H

m
n (τm)uI

j(τ)uI
k(τ

′)〉. (4.87)

We will drop the superscript I in the following section for simplicity. All the operators

are interpreted in the interaction representation.

When studying the equilibrium Green’s function, there is the general Wick’s the-

orem [103], which expands the Green’s function to a sum of all the possible pairings

of the coordinates. This theorem can be adapted to nonequilibrium case and it gives

〈ABCD . . . FG〉 = 〈AB〉〈CD〉 . . . 〈FG〉 + 〈AC〉〈BD〉 . . . 〈FG〉 + · · · . (4.88)

Now we can expand Eq. (4.87) in terms of G0,jk(τ, τ
′) = −i〈Tτuj(τ)uk(τ

′)〉, which
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yields

Gjk(τ, τ
′) = G0,jk(τ, τ

′) +
i

2
(
1

3
)2
∑

lmn

∑

opq

∫

· · ·
∫

dτ1dτ2dτ ′
1dτ ′′

1 dτ ′
2dτ ′′

2

G0,jl(τ, τ1)Tlmn(τ1, τ
′
1, τ

′′
1 )G0,mp(τ

′
1, τ

′
2)

G0,nq(τ
′′
1 , τ ′′

2 )Topq(τ2, τ
′
2, τ

′′
2 )G0,nk(τ2, τ

′) + · · · .

(4.89)

We have only shows one of the terms in the second order. It is obvious that the

result would be quite complicated to consider even a few terms. This is where the

Feynman diagram comes to rescue. A Feynman diagram representation of Eq. (4.87)

is given in Fig. 4.2. From these diagrams, we are able to write down all the terms as

in Eq. (4.89). The rules are as follows:

• Mark each end of a line by a symbol with a particular time τ , then replace each

single line by G0,ij(τi, τj) for line ij.

• The vertex is represented by Tijk(τi, τj, τk) or Tijkl(τi, τj, τk, τl), according to its

number of legs.

• Integrate over all the internal variables and sum over the internal index, then

multiply the prefactor (−i)m+1/m!.

Note that there are no disconnected diagrams in Fig. 4.2. These disconnected

diagrams only contribute a constant to the formula, thus in frequency domain, it

corresponds to δ(ω). As we will shown in Eq. (4.113), the thermal flux has a factor

ω, which becomes zero with the presence of δ(ω). Thus it does not contribute to

thermal flux.

Eq. (4.89) can be written in a more compact form. From Fig. 4.2 we notice that

the Green’s function can be represented by G = G0 +
∫

G0Σ
∗G0. Here Σ∗ is called

self-energy. There are two types of self-energies. One is the proper self-energy, which
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Figure 4.2: Feynman diagram for the Green’s function up to the 2nd order with 3rd
and 4th order nonlinear interactions.

can not be separated into two parts by dividing a single line. Another is the improper

self-energy. Improper self-energy can be represented by a combination of the other

proper self-energy by connecting the proper self-energy with G0. Thus the total self-

energy is a combination of all the proper self-energy. Denote the proper self-energy

as Σn, we have

Σ∗(τ, τ ′) = Σn(τ, τ ′) +

∫∫

dτ1dτ2Σn(τ, τ1)G0(τ1, τ2)Σn(τ2, τ
′)

+

∫∫∫∫

dτ1dτ2dτ3dτ4Σn(τ, τ1)G0(τ1, τ2)Σn(τ2, τ3)G0(τ3, τ4)Σn(τ4, τ
′) + · · · . (4.90)

Eq. (4.89) becomes

G(τ, τ ′) = G0(τ, τ
′) +

∫∫

dτ1dτ2G0(τ, τ1)Σn(τ1, τ2)G(τ2, τ
′). (4.91)

This can be easily verified by replacing G(τ2, τ
′) with the same formula iteratively.

Eq. (4.91) is called Dyson’s equation. In Eq. (4.91), we notice that the Green’s

function G is on both sides of the equation. Thus, Dyson’s equation is self-consistent.

The self-consistent property is very important as it is a requirement for the Green’s
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function to be convergent.

The Green’s function G0 can be calculated by considering the system without

nonlinear interaction, i.e.Hn = 0. The Dyson’s equation is still valid, and we have

G0(τ, τ
′) = gC(τ, τ ′) +

∫∫

dτ1dτ2g
C(τ, τ1)Σ(τ1, τ2)G0(τ2, τ

′), (4.92)

where Σ = ΣL + ΣR = V CLgLV LC + V CRgRV RC and can be calculated exactly.

The above formulae are important for the thermal flux calculation. However,

before we dive into the calculation of the thermal flux, we need a theory to carry out

the contour integration, which will be introduced in the next section.

4.8 Langreth Theorem

The contour integration in the calculation of Green’s function is hard to solve, if not

impossible. On the other hand, we can transform the contour integration into time

integration, thus the integration is calculated along the real axis. In order to do this,

we need Langreth theorem [104, 105].

In our calculation, we often encounter integrals in the form

A(t, t′) =

∫

C

B(t, τ)C(τ, t′)dτ. (4.93)

Here τ is a dummy variable on the contour. Assuming that t < t′, we separate the

contour into two parts, so that t is on the first contour C1 and t′ is on the second

contour C2. We have

A<(t, t′) =

∫

C1

B(t, τ)C<(τ, t′)dτ +

∫

C2

B<(t, τ)C(τ, t′)dτ, (4.94)

as any time τ on contour C1 is less than t′ and any time τ on contour C2 is greater
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than t. We integrate contour C1 along a path slightly above the real axis from −∞
to ∞ and C2 along a path slightly below the real axis from ∞ to −∞, thus we have

A<(t, t′) =

∫ t

−∞

B>(t, τ)C<(τ, t′)dτ +

∫ −∞

t

B<(t, τ)C<(τ, t′)dτ

+

∫ t′

−∞

B<(t, τ)C<(τ, t′)dτ +

∫ −∞

t′
B<(t, τ)C>(τ, t′)dτ

=

∫ t

−∞

{B>(t, τ) − B<(t, τ)}C<(τ, t′)dτ

+

∫ t′

−∞

B<(t, τ){C<(τ, t′) − C>(τ, t′)}dτ

=

∫ +∞

−∞

θ(t − τ){B>(t, τ) − B<(t, τ)}C<(τ, t′)dτ

+

∫ +∞

−∞

θ(t′ − τ)B<(t, τ){C<(τ, t′) − C>(τ, t′)}dτ

=

∫ +∞

−∞

Br(t, τ)C<(τ, t′)dτ +

∫ +∞

−∞

B<(t, τ)Ca(τ, t′)dτ.

(4.95)

This can be written symbolically as

A< = BrC< + B<Ca. (4.96)

Similarly, we have

A> = BrC> + B>Ca. (4.97)
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For Ar(t, t′), we have

Ar(t, t′) = θ(t − t′)(A>(t, t′) − A<(t, t′))

= θ(t − t′)
{

∫ +∞

−∞

[(Br(t, τ)C>(τ, t′) + B>(t, τ)Ca(τ, t′))]dτ

−
∫ +∞

−∞

[Br(t, τ)C<(τ, t′) + B<(t, τ)Ca(τ, t′)]dτ
}

= θ(t − t′)
{

∫ +∞

−∞

Br(t, τ)θ(τ − t′)[C>(τ, t′) − C<(τ, t′)]dτ

+

∫ +∞

−∞

Br(t, τ)θ(t′ − τ)[C>(τ, t′) − C<(τ, t′)]dτ

+

∫ +∞

−∞

θ(t − τ)[B>(t, τ) − B<(t, τ)]Ca(τ, t′)dτ

+

∫ +∞

−∞

θ(τ − t)[B>(t, τ) − B<(t, τ)]Ca(τ, t′)dτ
}

= θ(t − t′)

∫ +∞

−∞

[Br(t, τ)(Cr(τ, t′) − Ca(τ, t′))

+ (Br(t, τ) − Ba(t, τ))Ca(τ, t′)]dτ

= θ(t − t′)

∫ +∞

−∞

[Br(t, τ)Cr(τ, t′) − Ba(t, τ)Ca(τ, t′)]dτ

=

∫ +∞

−∞

Br(t, τ)Cr(τ, t′)dτ.

(4.98)

Thus we have

Ar = BrCr, (4.99)

Aa = BaCa, (4.100)

where in the second last line of Eq. (4.98), we have used the fact that t > t′ in

the retarded Green’s function and t < t′ in the advanced Green’s function. With
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Eq. (4.96), (4.97), (4.99) and (4.100), a general formalism can be derived, which is

A<,> = Ar
1...A

r
n−1A

<,>
n + Ar

1...A
r
n−2A

<,>
n−1A

a
n + ...+

Ar
1...A

r
i−1A

<,>
i Aa

i+1...A
a
n + ... + A<,>

1 Aa
2...A

a
n, (n ≥ 2), (4.101)

Ar,a = Ar,a
1 Ar,a

2 ...Ar,a
n . (4.102)

We note that at the r.h.s of Eq. (4.101), the <,> component starts from the right

end in the first term gradually move to the left end in the following terms. All r

components are on the left side of <,> and all a components are on the right side

of <,>. To prove Eq. (4.101) and (4.102), we use mathematical induction. We have

already showed that the formulas Eq. (4.101) and (4.102) is correct at n = 2.

It is straightforward to prove Eq. (4.102). Let

A = A1A2...An,

M = A1A2...AnAn+1 = AAn+1.

We have

Ar,a = Ar,a
1 Ar,a

2 ...Ar,a
n ,

M r,a = Ar,aAr,a
n+1 = Ar,a

1 Ar,a
2 ...Ar,a

n Ar,a
n+1.

Eq. (4.102) is proved. To prove Eq. (4.101), we note that

M<,> = ArA<,>
n+1 + A<,>Aa

n+1

= Ar
1A

r
2...A

r
nA<,>

n+1 + (Ar
1...A

r
n−1A

<,>
n + ... + A<,>

1 Aa
2...A

a
n)Aa

n+1,

which has the same form as Eq. (4.101), thus Eq. (4.101) is proved.

If the correlation function A(t, t′) is time independent, i.e. only the time difference

is significant, the formulae can be represented in a more compact form in Fourier
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space. Let’s use Eq. (4.95) as an example. The left hand side gives

A<(t − t′) =

∫ +∞

−∞

e−iω(t−t′)A<(ω)dω, (4.103)

while the first term on the right hand side is

∫ ∞

−∞

dτ

∫ +∞

−∞

Br(ω)e−iω(t−τ)dω

∫ +∞

−∞

C<(ω′)e−iω′(τ−t′)dω′

=

∫ +∞

−∞

ei(ω−ω′)τdτ

∫ +∞

−∞

Br(ω)e−iωtdω

∫ +∞

−∞

C<(ω′)eiω′t′dω′

=

∫ +∞

−∞

Br(ω)e−iωtdω

∫ +∞

−∞

C<(ω′)eiω′t′δ(ω − ω′)dω′

=

∫ +∞

−∞

Br(ω)C<(ω)e−iω(t−t′)dω.

The second term can be calculated in the same way, and we have

A<(ω) = Br(ω)C<(ω) + B<(ω)Ca(ω).

To summarise, the Fourier transform of time invariant contour integral A(t − t′) =
∫

B(t − τ)C(τ − t′)dτ has the following relations:

A<(ω) = Br(ω)C<(ω) + B<(ω)Ca(ω), (4.104)

A>(ω) = Br(ω)C>(ω) + B>(ω)Ca(ω), (4.105)

Ar(ω) = Br(ω)Cr(ω), (4.106)

Aa(ω) = Ba(ω)Ca(ω). (4.107)
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4.9 Thermal flux

With all the previous definitions and derivations, we are able to calculate the ther-

mal flux that passes through the system. The thermal flux is defined as the energy

transferred from the heat source to the junction in a unit time, which is equal to the

energy transferred from the junction to the heat sink in a unit time, if we assume

that no energy is built up in the junction. According to this definition, the thermal

flux out of the left lead is

J(t) = −dHL(t)

dt
= i[HL(t), H] = i[HL(t), VLC(t)], (4.108)

where we have used Eq. (4.1). The last term of Eq. (4.108) is obtained because the

left lead Hamiltonian HL commutes with all the terms except VLC . To write this term

out explicitly, we have

[HL(t), VLC(t)] =
1

2
[u̇T

L(t)u̇L(t), uT
L(t)V LCuC(t)]

= −1

2
[
∑

jk

uLj(t)V
LC
jk uCk(t),

∑

i

u̇Li(t)u̇Li(t)]

= −1

2

∑

ijk

[uLj(t), u̇Li(t)u̇Li(t)]V
LC
jk uCk(t)

= −i
∑

ijk

u̇Li(t)δijV
LC
jk uCk(t)

= −i
∑

jk

u̇Lj(t)V
LC
jk uCk(t)

= −iu̇T
L(t)V LCuC(t).

(4.109)

Substitute Eq. (4.109) into Eq. (4.108), we have

J(t) = u̇T
L(t)V LCuC(t). (4.110)
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The average value of the thermal flux is thus given by

〈J〉 = 〈
∑

jk

u̇L
j (τ)V LC

jk uC
k (τ)〉

= lim
τ ′→τ+

〈
∑

jk

uC
k (τ ′)u̇L

j (τ)V LC
jk 〉

= i lim
τ ′→τ+

Tr[V LCḠCL,<(τ, τ ′)],

(4.111)

where we have used a general complex variable τ to replace the real variable t and

defined ḠCL,<
kj (τ, τ ′) = −i〈u̇L

j (τ ′)uC
k (τ)〉 .

The calculation of the thermal flux is at the time of steady state, where only the

time difference is relevant. Thus we can do a Fourier transform on ḠCL,<
kj (τ − τ ′),

which gives

ḠCL,<
kj (τ − τ ′) =

d

dτ ′
[−i〈uL

j (τ ′)uC
k (τ)〉]

=
d

dτ ′
GCL,<

kj (τ, τ ′)

=
d

dτ ′
GCL,<

kj (τ − τ ′)

=
1

2π

d

dτ ′

∫ +∞

−∞

GCL,<
kj (ω)e−iω(τ−τ ′)dω

=
1

2π

∫

iωGCL,<
kj (ω)e−iω(τ−τ ′)dω

(4.112)

Insert (4.112) into (4.111), we have

〈J〉 = − 1

2π

∫

ω Tr[GCL,<(ω)V LC ]dω (4.113)

The center-left Green’s function GCL can be replaced by the center-center Green’s



CHAPTER 4. NON-EQUILIBRIUM GREEN’S FUNCTIONS 74

function GCC using Eq. (4.73) and Eq. (4.104), which yields

〈J〉 = − 1

2π

∫

ω Tr[Gr
CC(ω)VCLg<

L (ω)VLC + G<
CC(ω)VCLga

L(ω)VLC ]dω

= − 1

2π

∫

ω Tr[Gr
CC(ω)Σ<

L(ω) + G<
CC(ω)Σa

L(ω)]dω.

(4.114)

In the following part, we will omit the subscript CC for simplicity.

In the Fourier space, Eq. (4.91) and Eq. (4.92) become

G(ω) = G0(ω) + G0(ω)Σn(ω)G(ω) (4.115)

G0(ω) = g(ω) + g(ω)Σ(ω)G0(ω) (4.116)

According to Langreth theorem Eq. (4.99), we have

Gr(ω) = Gr
0(ω) + Gr

0(ω)Σr
n(ω)Gr(ω) (4.117)

Gr
0(ω) = gr(ω) + gr(ω)Σr(ω)Gr

0(ω) (4.118)

Gr
0(ω) can be solved by multiplying gr−1(ω) on both sides, which yields

Gr
0 = (gr−1 − Σ)−1 = ((ω + iη)2I − KC − Σr)−1 (4.119)

Gr can be solved in the same way, and we have

Gr = (Gr
0
−1 − Σr

n)−1. (4.120)

We can also calculate G<
0 using Eq. (4.96), which gives

G<
0 = g< + grΣrG<

0 + grΣ<Ga
0 + g<ΣaGa

0. (4.121)
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Eq. (4.121) can be solved by expending G<
0 on the right side iteratively using the

same formula, which then yields

G<
0 = g< + grΣr(g< + grΣr(g< + grΣrG<

0 + grΣ<Ga
0 + g<ΣaGa

0)

+ grΣ<Ga
0 + g<ΣaGa

0) + grΣ<Ga
0 + g<ΣaGa

0

= (1 + grΣr + (grΣr)2)(g< + grΣ<Ga
0 + g<ΣaGa) + (grΣr)3G<

0

= (1 + grΣr + (grΣr)2 + ...)(g< + grΣ<Ga
0 + g<ΣaGa

0)

= (1 − grΣr)−1(g< + grΣ<Ga
0 + g<ΣaGa

0)

= Gr
0g

r−1g<(1 + ΣaGa
0) + Gr

0Σ
<Ga

0

= Gr
0g

r−1g<ga−1Ga
0 + Gr

0Σ
<Ga

0

= Gr
0g

r−1f(ω)(gr − ga)ga−1Ga
0 + Gr

0Σ
<Ga

0

= f(ω)Gr
0(g

a−1 − gr−1)Ga
0 + Gr

0Σ
<Ga

0

= Gr
0Σ

<Ga
0,

(4.122)

where we have used (4.57) and (4.59) in the second last line to eliminate the first

term. The variable ω is dropped here to make the formula simple.

G< is calculated in the same procedure until the fourth last line, i.e.

G< = GrGr
0
−1G<

0 Ga
0
−1Ga + GrΣ<

n Ga = Gr(Σ< + Σ<
n )Ga, (4.123)

where Eq. (4.122) is used.

Define

Γα(ω) = i(Σr
α(ω) − Σa

α(ω)) = iVαC(gr
α(ω) − ga

α)(ω)VCα

= ifα(ω)−1VαCg<
α (ω)VCα =

i

fα(ω)
Σ<

α (ω),

i.e. Σ<
α (ω) = −ifα(ω)Γα(ω), α = L,R.

(4.124)
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Γ(ω) is Hermitian as

Γ†
α(ω) = −i(Σa

α(ω) − Σr
α(ω)) = Γα(ω). (4.125)

As the flux (4.114) is a physical quantity, it can be written as half of the sum of

itself and its complex conjugate. With the help of Eq. (4.120) (4.123) and (4.124),

the thermal flux can be written as

〈JL〉 = − 1

4π

∫

ω Tr[GrΣ<
L + G<Σa

L − GaΣ<
L − G<Σr

L]dω

= − 1

4π

∫

ω Tr[−ifL(Gr − Ga)ΓL + G<(Σa
L − Σr

L)]dω

= − 1

4π

∫

ω Tr[−ifL(Gr − Ga)ΓL + iG<ΓL]dω

=
1

4π

∫

ω Tr[ifL(Gr − Ga)ΓL − iG<ΓL]dω,

(4.126)

where we have used Gr = Ga†, G<† = −G< according to the definition, and Σ<† =

VCα(g<
α )†VαC = −Σ<. The flux flows out from the left lead should be the same as the

flux flows into the right lead, thus (4.126) can be further symmetrized as

〈J〉 =
1

2
(〈JL〉 − 〈JR〉)

=
1

8π

∫

ω Tr[ifL(Gr − Ga)ΓL − iG<ΓL − ifR(Gr − Ga)ΓR + iG<ΓR]dω

=
1

8π

∫

ω Tr[i(Gr − Ga)(fLΓL − fRΓR) − iG<(ΓL − ΓR)]dω.

(4.127)

Note that the integral here is from −∞ to +∞, but we are only interested in the

positive frequencies, which gives

〈J〉 =
1

4π

∫ ∞

0

ω Tr[i(Gr − Ga)(fLΓL − fRΓR) − iG<(ΓL − ΓR)]dω. (4.128)
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4.10 Effective transmission function

In electronic transport, the Landauer formula calculates the conductance of the sys-

tem by defining a transmission function T [ω], so that

κ =
1

2π

∫ ∞

0

ωT [ω]
∂f(ω)

∂T
dω, (4.129)

where f(ω) is the distribution function at temperature T . In thermal transport, with

nonlinear interactions present, we would like a formula of the same form.

The thermal conductance is defined as

κ = lim
∆T→0

J

∆T
=

δJ

δT
(4.130)

where ∆T is the temperature difference between the two heat baths that are connected

to the junction. The temperature of the heat baths are TL = T + ∆T/2 and TR =

T−∆T/2. Eq. (4.130) can be calculated using the variational method. The variational

derivative is given by

δA

δT
= lim

∆T→0

A(TL, TR) − A(T, T )

TL − TR

. (4.131)

First we transform Eq. (4.128) to a formula based on Gr, Ga and Γ, which gives

〈J〉 =
1

4π

∫ ∞

0

ω Tr[i(Gr − Ga)(fLΓL − fRΓR)

− iGr(Σ< + Σ<
n )Ga(ΓL − ΓR)]dω

=
1

4π

∫ ∞

0

ω Tr[i(Gr − Ga)(fLΓL − fRΓR)

− Gr(fLΓL + fRΓR + iΣ<
n )Ga(ΓL − ΓR)]dω

(4.132)
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Note that

Gr−1 − Ga−1 = (Σa
L − Σr

L) + (Σa
R − Σr

R) + (Σa
n − Σr

n) = i(ΓL + ΓR + Γn) (4.133)

Gr(Gr−1 − Ga−1)Ga = Ga − Gr = iGr(ΓL + ΓR + Γn)Ga, (4.134)

Ga(Gr−1 − Ga−1)Gr = Ga − Gr = iGa(ΓL + ΓR + Γn)Gr, (4.135)

where we have defined iΓn = Σa
n − Σr

n. Inserting Eq. (4.134) into Eq. (4.132) gives

〈J〉 =
1

4π

∫ ∞

0

ω Tr[(fL − fR)(GrΓLGaΓR + GrΓRGaΓL)

+ GrΓnG
a(fLΓL − fRΓR) − iGrΣ<

n Ga(ΓL − ΓR)]dω (4.136)

Now let’s calculate the variation of 〈J〉 term by term. The variational derivative of

fL − fR is

δ(fL − fR)

δT
= lim

∆T→0

f(TL) − f(TR) − (f(T ) − f(T ))

∆T

=
1

2
lim

∆T→0

(

f(T + ∆T
2

) − f(T )
∆T
2

− f(T − ∆T
2

) − f(T )
∆T
2

)

=
∂f

∂T
. (4.137)

Because fL and fR approaches to the Bose distribution at temperature T as the

temperature difference ∆T between the left lead and the right lead goes to zero, the

first term in the trace of Eq. (4.136) gives

∂f

∂T
(GrΓLGaΓR + GrΓRGaΓL).

Noticing that ΓL,R is temperature independent, its derivative over T is thus equal to
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zero. We can derive the variation of fLΓL − fRΓR as

δ(fLΓL − fRΓR)

δT
= lim

∆T→0

f(TL)ΓL − f(TR)ΓR − [f(T )ΓL − f(T )ΓR]

∆T

=
1

2

∂f

∂T
(ΓL + ΓR).

(4.138)

To calculate the variation of Eq. (4.136), we also need to know the value of δGr/δT ,

which can be derived from Dyson’s equation Gr = Gr
0 + Gr

0Σ
r
nG

r as

δGr = δGr
0 + δGr

0Σ
r
nGr + Gr

0δΣ
r
nG

r + Gr
0Σ

r
nδGr

= Gr
0δΣ

r
nG

r + Gr
0Σ

r
nδGr

= Gr
0(δΣ

r
nG

r + Σr
nδGr)

= Gr(1 + Σr
nGr)−1(δΣr

nGr + Σr
nδG

r),

(4.139)

where we have omitted δT for simplicity and used δGr
0/δT = 0 to eliminate δGr

0.

Multiplying (Gr−1+Σr
n) on both sides of Eq. (4.139) with some simple manipulations,

we have

δGr = GrδΣr
nGr, (4.140)

which is also valid for δGa.

The second term in the trace of Eq. (4.136) thus yields

(δGrΓnG
a + GrδΓnG

a + GrΓnδG
a)(fLΓL − fRΓR) +

1

2
GrΓnG

a(ΓL + ΓR)
∂f

∂T

= (GrδΣr
nG

rΓnG
a+GrδΓnG

a+GrΓnG
aδΣa

nG
a)(ΓL−ΓR)f+

1

2
GrΓnG

a(ΓL+ΓR)
∂f

∂T
.
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Repeating the same process, the third term in the trace of Eq. (4.136) gives

− i(δGrΣ<
n Ga + GrδΣ<

n Ga + GrΣ<
n δGa)(ΓL − ΓR)

= −i(GrδΣr
nG

rΣ<
n Ga + GrδΣ<

n Ga + GrΣ<
n GaδΣa

nGa)(ΓL − ΓR).

These terms can be further simplified if we replace Σ<
n by −ifΓn and define

S = i

[

f(
δΣr

n

δT
− δΣa

n

δT
) − δΣ<

n

δT

](

∂f

∂T

)−1

. (4.141)

The final form can then be compared with the Landauer formula and we obtain

an effective transmission function [106]

T [ω] =
1

2
Tr{Gr(ΓL +

1

2
Γn − S)GaΓR} +

1

2
Tr{GaΓLGr(ΓR +

1

2
Γn + S)} (4.142)

This effective transmission function represents the transmission possibility for phonons

of different frequencies to get through the nonlinear junction section. It is an impor-

tant concept in thermal transport and its applications will be discussed in the next

chapter.



Chapter 5

NEGF: Implementation and

Applications

The nonequilibrium Green’s function method is a very general method, which is

applicable to systems with arbitrary structures. In this chapter, we will discuss

the procedures to solve the Green’s function and calculate the thermal conductance.

The algorithm to solve the surface Green’s function is given. This is followed by a

discussion about mean field approximation. Then we will apply the resulted program

to study some concrete systems. Most importantly, the program is used to study

thermal rectification effect.

5.1 Numerical implementation

5.1.1 Procedures for calculating the thermal conductance

The procedure for implementing a program to calculate the thermal conductance of an

arbitrary junction is given below. It is just a guide line for the actual implementation.

Some detailed tricks and algorithms are explained later.

81
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1. Initialize the program by reading the input files containing the structure of

the intended model, i.e. the interactions between each degree of freedom. For

system with nonlinear interactions in the junction, third and fourth order in-

teractions are also needed.

2. Compute the Green’s function of the semi-infinite leads, using the equation

gα(ω) = (ω2 − Kα)−1 with α = L,R. Even though KL,R and thus gL,R(ω) has

many degrees of freedom, only the element at the surface is necessary, as tight-

binding approximation is used. Therefore it can be calculated effectively using

a decimation method given in Sec. 5.1.2.

3. Calculate the self-energy of both leads with Σα = V CαgαV αC . For a central

junction part with N degrees of freedom, the self-energy Σα is an N×N matrix.

4. Compute the linear junction retarded and advanced Green’s function Gr,a
0 by

Gr
0 = Ga

0
† = ((ω + iη)2I − KC − Σr)−1, where Σr = Σr

L + Σr
R.

5. Calculate the nonlinear self-energy Σn in the junction using Feynman diagrams,

as explained in Sec. 4.7. The self-energy is calculated self-consistently until it

converges.

6. Obtain the junction part of Gr and G< with nonlinear interactions by Gr =

(Gr
0
−1 − Σr

n)−1 and G< = Gr(Σ< + Σ<
n )Ga.

7. Get the thermal flux of the system with

J =
1

4π

∫ ∞

0

ω Tr{(Gr − Ga)(Σ<
R − Σ<

L) + iG<(ΓR − ΓL)}dω

where ΓL,R = i(Σr
L,R − Σa

L,R).

8. Obtain the thermal conductance of the junction from κ = lim∆T→0
J

∆T
, where
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∆T is the temperature difference between the two heat baths that are connected

to the junction.

5.1.2 Surface Green’s function

The surface Green’s function is an essential part in our calculation. We have followed

Ref. [107] to present the derivation. The Green’s function of the lead is given by

Eq. (4.57), i.e. gr(ω) = (ω2 − K)−1, where K is the interaction matrix. The leads

are comprised of principal layers. Each principal layer only interacts with its two

neighboring layers. This can always be done if the long range interaction is negligible.

The matrix form of Eq. (4.57) is

















ω2 − K00 −K01 0 . . . . . . . . . . . . .

−K10 ω2 − K11 −K12 0 . . . . . .

0 −K21 ω2 − K22 −K23 0 . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

































g00 g01 g02 . . .

g10 g11 g12 . . .

g20 g21 g22 . . .

. . . . . . . . . . . . . . . . .

















= I, (5.1)

where I is the unit matrix. It can be written out as a set of equations explicitly,

which yields

(ω2 − K00)g00 = 1 + K01g10,

(ω2 − K00)g10 = KT
01g00 + K01g20,

(ω2 − K00)g20 = KT
01g10 + K01g30,

. . .

(ω2 − K00)gn0 = KT
01gn−1,0 + K01gn+1,0,

(5.2)

where we have used K00 = K11 = K22 = . . . , K01 = K12 = K23 = . . . and K10 = KT
01.

For cases where K00 6= K11, the result should be similar. Our aim is to calculate g00.
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Combine the first two equations of Eq. (5.2), we have

(ω2 − K00 − K01(ω
2 − K00)

−1KT
01)g00 = 1 + K01(ω

2 − K00)
−1K01g20. (5.3)

Similarly, any arbitrary layer has

(ω2 − K00 − K01(ω
2 − K00)

−1KT
01 − KT

01(ω
2 − K00)

−1K01)gn0

= KT
01(ω

2 − K00)
−1KT

01gn−2,0 + K01(ω
2 − K00)

−1K01gn+2,0. (n ≥ 2) (5.4)

This procedure effectively removes the nearest neighbors from the equation set. To

summarize, we have

(ω2 − ǫs)g00 = 1 + αg20,

(ω2 − ǫ)gn0 = βgn−2,0 + αgn+2,0 (n ≥ 2),
(5.5)

with

ǫs = K00 + K01(ω
2 − K00)

−1KT
01,

ǫ = K00 + K01(ω
2 − K00)

−1KT
01 + KT

01(ω
2 − K00)

−1K01,

α = K01(ω
2 − K00)

−1K01,

β = KT
01(ω

2 − K00)
−1KT

01.

(5.6)

A subset of Eq. (5.5) gives the even Green’s function element, which is

(ω2 − ǫs)g00 = 1 + αg20,

(ω2 − ǫ)g2n,0 = βg2(n−1),0 + αg2(n+1),0 (n ≥ 1),
(5.7)

which has the same form as Eq. (5.2), thus the above procedure can be used again
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and we arrive at

(ω2 − ǫs
i )g00 = 1 + αig2in,0, (n ≥ 1),

(ω2 − ǫi)g2in,0 = βig2i(n−1),0 + αig2i(n+1),0,
(5.8)

with

αi = αi−1(ω
2 − ǫi−1)

−1αi−1,

βi = βi−1(ω
2 − ǫi−1)

−1βi−1,

ǫs
i = ǫs

i−1 + αi−1(ω
2 − ǫi−1)

−1βi−1,

ǫi = ǫi−1 + αi−1(ω
2 − ǫi−1)

−1βi−1 + βi−1(ω
2 − ǫi−1)

−1αi−1,

(5.9)

and ǫs
0 = ǫ0 = K00, α0 = K01, β0 = KT

01. Eq. (5.9) gives an explicit iterative

procedure. The iteration can be terminated when α and β are small enough so that

ǫs
i ≈ ǫs

i−1 and ǫi ≈ ǫi−1, and we have

(ω2 − ǫs
i )g00 ≈ I. (5.10)

In the actual calculation, ω is replaced by ω + iη. This is to avoid the singularity

appeared in Eq. (5.10). A short program to calculate the surface Green’s function is

included in Appendix A.

5.1.3 Mean field approximation

In the Feynman diagram expansion, there are terms of arbitrary orders. Due to the

calculation capacity, only a few of these terms can be calculated. At low temperatures,

the higher order diagrams are not important, thus can be safely discarded. However,

at high temperatures, the omission of higher order terms will seriously affect the

final results. Thus we need to find a way to include higher order terms, and at the
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same time, make the problem still solvable. This can be done through mean field

approximation. The mean field approximation of self-energy is given in Fig. 5.1,

where some of the single lines representing G0 in Fig. 4.2 are replaced by double lines

representing G so that the expansion of the self-energy after replacement provides

higher order terms.

=  2 i + 2 i + 3 i + (-6)

Figure 5.1: Mean field approximation to the self-energy. The double line represents
the full Green’s function G. The single line denotes G0

5.2 Results and Discussion

5.2.1 One-dimensional harmonic chain

Firstly, we study a uniform one-dimensional harmonic chain. This simple system can

be solved exactly, thus the results of our calculation can be checked easily.

For such a system, there are no resistance for the phonon transmission, thus all

the phonons up to a specific frequency can be transmitted as free particles. The result

is shown in Fig. 5.2. A direct calculation shows that the maximum frequency for a

harmonic chain with force constant K and mass m is
√

4K/M [2]. For K = 1 and

M = 1, the maximum frequency would be ω = 2, which is the same as what is shown

in Fig. 5.2.
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Figure 5.2: Thermal transmission for uniform harmonic one-dimensional chain with
K = 1 and m = 1.

5.2.2 Thermal conductivity with nonlinear interactions

To show the effects of nonlinear interactions on the system’s thermal conductivity,

we calculated the thermal conductivity of a one-dimensional chain with cubic and

quartic interactions. The Hamiltonian of the system is in the form of Eq. (4.1), while

the nonlinear term is much simpler in this case. It gives

Hn =
∑

i,j=i±1

1

3
k3(ui − uj)

3 +
∑

i,j=i±1

1

4
k4(ui − uj)

4, (5.11)
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Figure 5.3: Thermal conductivity vs. temperature of one-dimensional chain with
and without nonlinear interactions. The solid line denotes the system with nonlinear
interactions, and the segmented line represents the results without the nonlinear
interactions. k2 = 17.3 ev/Å2, k3 = 116 ev/Å3, k4 = 605.6 ev/Å4, and m = 12 g/mol.

where we have only considered interactions between adjacent atoms. Figure 5.3 shows

the relation between the thermal conductivity and the temperature for two different

cases. The solid line represents the case with the nonlinear interactions switched on,

and the segmented line denotes the case without the nonlinear interactions. We have

set the linear interactions between adjacent atoms as k2 = 17.3 ev/Å2. The cubic

and quartic force constants have the values k3 = 116 ev/Å3 and k4 = 605.6 ev/Å4,

respectively. The mass of each atom is m = 12 g/mol. There are 10 atoms altogether
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in the junction part. From the figure we notice that the thermal conductivity in-

creases linearly at low temperatures. It reaches the maximum around 700K and then

decreases as the temperature gets higher. This agrees well with our intuition. At low

temperatures, the nonlinear interactions are very weak, thus their effects on thermal

conduction are not obvious. As the temperature gets higher, the lattice movements

become more violent and thus more and more phonons are generated. The phonon

mean free path changes from infinity to a finite value, cause the chance of collision

has increased. These collisions are caused by the nonlinear interactions. For a pure

harmonic model, the system is ballistic, thus no decline should be observed, as is

shown by the segmented line in the figure.

5.2.3 Benzene molecule in the junction

Molecular devices have attracted a lot of attentions in recent years, due to their

potential to be used in future generation electronics. A lot of theoretical analyses of

their electronic and thermal transport properties have been performed [108, 109, 110,

111, 112, 113], and experiments at such a scale are also increasing rapidly [82, 114,

88, 115, 84, 116, 83, 117, 87, 85, 89, 94, 118, 86, 96, 119, 95, 91, 93, 90, 92]

In this subsection, we examine the thermal transport properties of a benzene

molecule connected to two polyethylene leads. Two opposite sites of a benzene ring,

which are normally the hydrogen atoms, are now bound covalently to carbon atoms,

forming a 1,4-dibutyl-benzene molecule representing the whole system. The system

has 14 carbon atoms and 22 hydrogen atoms. The model is shown in Fig. 5.4 The

interactions are calculated using Gaussian 03 [120]. We use the Hartree-Fock method

with the 6-31G basis set. We have also used a convenient new feature of Gaussian,

which can calculate anharmonic interactions up to the 4th order.

Figure 5.5 (solid line) shows the effective transmission function T̃ [ω] of the benzene

junction model at a temperature of 300 K calculated using the mean-field theory. The
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Figure 5.4: Benzene-dithiol molecule connected to polyethylene chain

peak features are complicated, resulting from the vibrational modes of the molecule,

the interaction with the leads, and the vibrational spectra of the leads, as well as the

temperature effect. To understand the transmission function better, we correlate the

peak features with the vibrational spectrum of an isolated benzene molecule calculated

from Gaussian, shown in Fig. 5.5 as solid bars. The transmission peaks are roughly

located at where the vibrational frequencies appear, but somewhat shifted to low

frequencies. It is difficult to identify the peaks with eigenmodes unambiguously.

We notice that the hydrogen atoms do not play much role in the thermal transport.

In particular, there are frequencies around 3000 cm−1 associated with the vibrations

of H atoms, but there is no transmission in these high frequencies. Vibrations of H

atoms have only local effects. We confirm that the H atoms are less important by
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Figure 5.5: Effective transmission of the benzene ring junction at a temperature of
300 K. The solid line is for a full model with force constants calculated from Gaussian,
while the dotted line is from a simplified 2D model. The vertical bars indicate the
vibrational frequencies of isolated benzene rings of the full model (topmost) and
simplified model (dashed), respectively.
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a much simplified model retaining only the degrees of freedom of the carbon atoms

in a 2D model. The leads are pseudo polyethylene chains; we use an united atom

approximation, so the CH2 group is treated as a single atom. The force constant

between each atom is obtained from the DREIDING model [97]. There are only

bond interactions in the leads, and we have used the Morse function to calculate the

bond potential, which has the form D(e−α(R−R0) − 1)2, where D = 70 (kcal/mol),

α =
√

5 Å
−1

, and R − R0 is the displacement (with the equilibrium bond length

R0 = 1.4 Å). For the benzene ring, we also include an angular potential, which has

the form 4
3

(

cos(θijk) + 1
2

)

E, where E = 100 (kcal/mol). We make a Taylor expansion

of the potential and calculate the force constants up to the 4th order.

The transmission for the simplified model (dotted line in Fig. 5.5) is smoother due

to much reduced degrees of freedom. It is qualitatively in agreement with the full

model. In this case, the peaks appear to be in good agreement with the vibrational

modes of a hexagonal ring.

5.2.4 Thermal rectification

In this part, we study the thermal rectification effect in nanoscale systems. Although

its counterpart in electronics was invented a hundred years ago, the exciting possi-

bility of a thermal rectifier is only now becoming a reality as a result of progress

in nanotechnology. The novel electrical and thermal properties of nanoscale systems

make them good candidates for solid-state thermal rectifiers. However, to design and

optimize useful thermal rectifiers, it is essential to gain an understanding of the fun-

damental mechanisms behind thermal rectification. Previous work, reviewed below,

has shown that two conditions are necessary. The first is that the system must be

asymmetric. The second is that there must be nonlinear interactions in the system.

While the first condition is obvious, the mechanisms by which the second comes into

play are poorly understood.
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Terraneo et al. [121] were the first to suggest a possible one-dimensional thermal

rectifier model using molecular dynamics simulations. Their model consisted of a

chain of particles with harmonic coupling and a Morse on-site potential giving rise

to nonlinear interactions. The thermal rectification effect was observed with asym-

metrical thermostats. Their explanation using an effective phonon analysis, however,

was not very satisfactory, as it did not explain how phonons can transform their fre-

quencies gradually to get through the channel. A different model concentrating on

the interface effect was introduced by Li et al.[122, 123, 124, 125]. In their model,

two separate nonlinear lattices described by the Frenkel-Kontorova model were joined

together with a harmonic chain. Their numerical simulation showed that the heat

flow can be controlled by the coupling strength and other system parameters, and

the difference in the heat flux in the two directions can be significant. Experiments

to measure the thermal conductance of nanowires began to appear in recent years

[96]. An experiment measuring the thermal conductance of a nanotube with a coat-

ing of increasing mass along the length of the nanotube was carried out by Chang

et al. [96], which is the first of this kind. It was noted that thermal flux transmits

better in the direction of mass decrement, which cannot be explained by the wave

theory and the authors claimed that the observed rectification should be related to

solitons. A follow-up study by Yang et al. [126] with a simple one-dimensional model

confirmed the rectification effect in such a structure. Simulations to look for thermal

rectification in a more complicated nanotube were also carried out [127]. While most

of results were obtained from classical molecular dynamics simulations, we also note

the work of Segal et al. [128, 112, 129] in which a two level system was analysed

quantum mechanically, and in which thermal rectification was also found. [123]

Inspired by the experiment [96], we studied a one-dimensional chain with increas-

ing mass from one end to the other. Changing the mass is effectively equivalent

to changing the interaction coefficients, as we can always normalize the coordinates.



CHAPTER 5. NEGF: IMPLEMENTATION AND APPLICATIONS 94

The mass gradient provides the necessary asymmetrical structure, and three-body

and fourth-body interactions are included to fulfill the second requirement.

Our model is a one-dimensional system which is separated into three parts. The

right and left parts are semi-infinite linear leads which are acting as heat baths. The

central junction part is coupled to the leads through linear interactions. It can have

any structure and it also includes nonlinear interactions, which are our major interest.

The Hamiltonian of the system is written as

H =
∑

α=L,C,R

Hα + uT
LVLCuC + uT

CVCRuR + Hn

Hα =
∑

i

1

2
u̇2

αi +
∑

i,j=i±1

1

2
kα,ij(uαi − uαj)

2

Hn =
∑

i,j=i±1

1

3
k3(ui − uj)

3 +
∑

i,j=i±1

1

4
k4(ui − uj)

4

(5.12)

where ui = xi
√

mi is the normalized displacement for atom i. Hα is the harmonic

Hamiltonian of each part, VLC and VRC are the interactions between the junction and

the lead, and Hn is the nonlinear interaction in the junction.

In our calculations, the tight-binding approximation is assumed, so the atoms can

only interact with their nearest neighbors. The interaction coefficients between ad-

jacent atoms are obtained from the Morse potential D{exp[a(r − r0)
2] − 1}2, where

D = 70 kcal/mol, a =
√

5Å−1, and r0 is the equilibrium distance between adjacent

atoms. The values of these parameters were obtained from Ref. [97] for C-C inter-

actions. The third and fourth order coefficients in Eq.(5.12) are obtained by Taylor

expansion of the potential around the equilibrium distance. The left lead and the

right lead maintain a temperature difference ∆T , which gives TL = T + ∆T/2 and

TR = T −∆T/2 for a particular temperature T , or in the reverse order for heat flows

in the opposite direction.

In the following part, without specification, the unit of mass is g/mol, the units
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of the second, third and fourth order interaction coefficients are eV/Å2, eV/Å3 and

eV/Å4 respectively, and the unit of temperature is K as usual. All other quantities

have units derived from these.

We start with a one-dimensional chain model with an uneven mass distribution in

the junction section. There are 20 atoms in the junction. The mass of each atom is

mp = mL(1+0.4p) with p ∈ [0, 20). The second order force constant between adjacent

atoms is k2 = 17.3. The third and fourth interaction coefficients are k3 = −116 and

k4 = 605.6, respectively. This setup is similar to the experimental conditions for

which thermal rectification was measured on a nanotube coated unevenly with heavy

molecules [96]. The mass gradient provides the necessary asymmetrical structure for

thermal rectification, and three-body and four-body interactions are included to fulfill

the requirement of nonlinear interactions.

The thermal transmission probability T (ω) of phonons with different frequencies is

shown in Fig. 5.6. The dot-dot-dashed line represents the result for thermal flux flow

from left to right with temperature TL = 1100 and TR = 900. The dashed line shows

the results when the direction of thermal flux is reversed. The heat baths at both ends

of the junction are identical with a monatomic lattice basis of mass mL = mR = 14.

The plot is divided into two regions by frequency ωc. From Fig. 5.6 we notice that

at low frequencies, where ω < ωc, the transmission probability difference between

the two curves is small, while at high-frequency region, where ω > ωc, the difference

is quite noticeable. This indicates that the thermal rectification effect is due to the

contribution of high-frequency phonons.

To examine the effect of heat baths on the transmission probability, we change

the lattice basis mass of the right heat bath to mR = 120.4 to match the right end

of the junction. The results are shown by the solid line and the dot-dashed line in

Fig. 5.6. This time, the separation of the low-frequency region and the high-frequency

region is more obvious. In fact, the separation frequency ωc is approximately equal
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Figure 5.6: (Color Online) Effective thermal transmission vs. phonon frequency, with
n = 20, mp = mL(1 + 0.4p) in the junction region. The dot-dot-dashed line and
the dashed line have the same heat baths at each ends with mL = mR = 14. The
dot-dashed line and the solid line have different heat baths at each ends with mL = 14
and mR = 120.4. ωc is the separation frequency of the high-frequency region and the
low-frequency region.

to
√

4K/Mmax where K is the force constant, and equal to k2 here, Mmax is the

maximum atom mass in the chain, which gives ωc = 0.758. When ω > ωc, we notice

that the T (ω)’s for phonons flowing from right to left match almost exactly in both

heat bath setups. As no high-frequency phonons flow out of the right heat bath due

to the filtering at the right interface, this means that the high-frequency phonons

flowing into the left heat bath are junction related.

We can define the thermal rectification ratio as

γ =
|κL→R − κR→L|

κL→R

, (5.13)

where κL→R is the thermal conductance for heat flows from left to right and κR→L is

the thermal conductance in the opposite direction. Using Eq. (4.129) we obtain the
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thermal conductance κL→R = 78.0 pW/K and κR→L = 91.2 pW/K with equal heat

baths. Thus the thermal rectification ratio is γ = 0.169.

To understand the results of Fig. 5.6, we draw the maximum transmittable phonon

frequencies across the system as in Fig. 5.7. Different heat baths at the ends are

chosen for generality. The left heat bath has a higher cut-off frequency than the

right heat bath. The maximum transmittable phonon frequency decreases gradually

across the junction section due to the variation of the atom mass. When the thermal

flux flows from left to right, phonons with frequency ω < ωc can enter the right

lead without problem, while phonons with frequency ω > ωc are blocked at the

interface of the junction and the right lead. When the system reaches steady state, the

thermal flux across the right interface of the junction and the right lead is proportional

to the difference of the number of phonons at both sides, i.e. J ∝ NL(ω, TC) −
NR(ω, TR), where TC and TR is the temperature at the left and right side of the

interface, respectively, with frequencies 0 < ω < ωc. When the thermal flux is

reversed, we have the same difference for low-frequency phonons at the left interface.

However, there are extra high-frequency phonons flow into the left lead. This is

the reason why the thermal conductance is larger when the thermal flux flows from

lower cutoff frequency region to higher cutoff frequency region. In this case, the

thermal conductance is larger in the mass decrease direction. This is in agreement

with Ref. [123, 96, 126].

The extra high-frequency phonons flowing into the left lead originate from low-

frequency phonons due to nonlinear interactions in the junction. Without these non-

linear interactions, there would be no high-frequency phonons in the junction when

heat flows from right to left, and thus no thermal rectification.

As only high-frequency phonons contribute to the thermal rectification, if the

low-frequency phonons are suppressed, the thermal rectification ratio is expected to

increase, even though as a consequence the overall thermal flux will also reduce. In
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Figure 5.7: Maximum transmittable phonon frequencies for one-dimensional chain
with mass varying junction section connected with different heat baths.

other words, the separation frequency ωc need to be as small as possible. We thus

construct a model with even simpler configuration. The atoms in junction section

have mass mp = mL = 14, and the atoms in the right lead have mass mR = βmL

with β ranging from 2 to 1024. Now the only frequency range difference appears at

the right interface. The right lead behaves like a high-frequency phonon filter, with

only low-frequency phonons allowed to enter. The interaction coefficients are chosen

as previously, i.e. k2 = 17.3, k3 = −116 and k4 = 605.6. The results are shown in

Fig. 5.8, which gives the dependence of thermal rectification ratio γ on the heat bath

mass ratio β. Figure 5.8 shows that as β increases, the thermal rectification ratio

γ increases too. The inset of Fig. 5.8 shows the dependence of the thermal conduc-

tance difference ∆κ on β. ∆κ becomes a constant when β is sufficiently large. The

low-frequency phonons are effectively suppressed, which means that the major contri-

bution to the thermal conductance come from the high-frequency phonons. However,

it should also be pointed out that even though the rectification ratio can be very

large due to the reduced weight of low-frequency phonons in the conduction, the ac-

tual thermal flux is rather small. This is caused by the low density of high-frequency

phonons generated in the junction section.

In order to increase the number of high-frequency phonons in the junction, we
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Figure 5.8: Thermal rectification ratio γ vs. heat bath mass ratio β = mR/mL.
The inset gives the dependence of the thermal conductance on β for opposite flow
directions.

recall that this is temperature related. When the temperature gets higher, more

phonons are generated, so the chance of collision is also increased. The relation

between the thermal rectification ratio γ and the temperature is illustrated in Fig. 5.9,

with the same model parameters in Fig. 5.8 and with β set to 512. Figure 5.9 shows

that the thermal rectification ratio increases as the temperature is raised. Ref.[124,

125] using molecular dynamics method also obtained similar results.

In conclusion, we have discussed the thermal rectification effect in a one-dimensional

asymmetrical lattice with nonlinear interactions using the nonequilibrium Green’s

function method. This allowed us to calculate the effective thermal transmission

function for phonons. We have shown that thermal rectification is caused by the
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Figure 5.9: Temperature dependence of thermal rectification ratio with mL = 14,
mR = βmL, β = 512, n = 20

transmission of high-frequency phonons. These high-frequency phonons are gener-

ated from low-frequency phonons by collisions. A thermal rectifier can be realised

by designing an effective high-frequency phonon filter at one end of the system so

that heat carried by high-frequency phonons are forbidden to enter at one end but

freely transmittable at the other end. The thermal rectification ratio can be effec-

tively increased by reducing the weight of low frequency phonons in the entire phonon

spectrum. On the other hand, the thermal flux across the system is limited by the

conversion rate between low-frequency phonons and high-frequency phonons.



Chapter 6

Conclusion

In this thesis, we have investigated the thermal transport properties of nanoscale

systems, where lead-molecule-lead models were studied. Our main focus is on the

study of nonlinear effects on the system’s thermal conductance.

This thesis is separated into two parts. In the first part, thermal transport is

treated from a classical point of view. We studied a quasi one-dimensional polyethy-

lene model using the molecular dynamics method, where the DREIDING force field

was used to obtain the force between atoms. We assumed that each atom is in a local

equilibrium state, otherwise the temperature will not be well-defined. The relation-

ship between system length and thermal conductivity was studied. We found that the

thermal conductivity of this model depends on the tension exerted on its ends. The

value of the power index becomes larger as the tension increases. The result explains

how different models may have different power index and it suggests a simple way to

realize a system with better thermal conductance.

In the second part of the thesis, we studied thermal transport from a quantum

point of view. We derived a formalism using nonequilibrium Green’s function method,

101
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where we treated the nonlinear interactions explicitly. This is the first time that non-

linear interactions in the nanoscale thermal transport problem is studied using quan-

tum mechanics method. With this formalism, we investigated the thermal transport

properties of benzene. The benzene molecule was connected to two semi-infinite

polyethylene. We used the DREIDING force field [97] to calculate the energy matrix

and the force constants of the system. The force constants up to the 4th order were

derived analytically. We then calculated the thermal transmission function using a

variational method. A comparison between thermal transmission functions with har-

monic interactions and that with anharmonic interactions was made. We noticed

that anharmonic interactions greatly reduce the thermal transmission of the system.

We also noticed that there is a gap in the transmission function. In order to under-

stand the cause of this, we studied both the spectra of polyethylene and benzene.

Compared with the transmission function of the whole system, we found that the

gap is caused by the mismatch of phonon dispersion relations of polyethylene and

benzene. Another interesting feature we found is that the nonlinear effects are more

significant at high temperatures. At low temperatures, their influence is small and

generally we can ignore the nonlinear effects. This result agrees with our intuition.

When the temperature is very low, there are very few phonons. Thus the phonons

can be treated as the ideal gas, where no interactions between phonons exist. As the

temperature increases, the density of phonons will also increase, thus the chance of

phonon collisions increase too. Phonons can no longer be considered as the ideal gas

in this case and the anharmonic interactions need to be considered.

We have also studied thermal rectification effect in one-dimensional chains. In

particular, the atoms of the chain have varying mass. It is found that the mass

gradient in the central junction plays a role of modifying the phonon transmission

frequency band. The asymmetry of the band structure causes thermal rectification.

Besides the asymmetry of the structure, nonlinear interactions in the junction is also
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necessary, as it provides mechanism for phonons of different frequencies converting

between each other. Low frequency phonons in the phonon band overlay region do

not contribute to the thermal rectification while high frequency phonons do. Our

results present an explicit explanation to the thermal rectification and should enable

further investigation on the creation of real solid state thermal rectifiers.

Our NEGF theory is among the first attempts [78, 106, 79] up to now to tackle the

nonlinear problems in thermal transport. It sets the ground for further investigations.

This first-principles approach enhances our understanding of thermal transport in

nanoscale systems. It is both important theoretically and valuable practically.

However, there are some limitations of our formalism that we need to address.

Firstly, only phonon-phonon interactions are considered. So our formalism is not

applicable to systems whose thermal energy carriers are mainly electrons. We have

intentionally omitted the other type of interactions because the materials we are

interested in are all insulators. Secondly, we have applied mean field theory in our

calculation. Because of this, the results are only qualitatively correct. However, this

is not quite critical for our current study, as even a qualitative result is beneficial

for our understanding. Thus, a more accurate theory should be developed in the

future for this formalism to be widely applicable. Another issue is that no symmetry

is considered in the calculation, as this will make the calculation quite complicated.

However, because of this, some of the calculations may be redundant, and waste a

lot of time. It is desirable to fully utilize the symmetry of the system to make the

calculation more efficient.

Up to now, all the research on thermal conductance of nanoscale systems have

concentrated on phonon transmission. However, for metals and semiconductors, elec-

trons play an important role in energy transport, which should be studied further.

Also, for magnetic and ferromagnetic materials, their thermal transport properties

under the magnetic field would be quite different from normal state. A study of the
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magnetic effect on the thermal transport would be valuable.
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Appendix A

Surface Green’s functions

"""Calculating surface green functions of a quasi one dimensional system"""

from scipy import *

def sgf(omega, H 00, H 01):

# initialize

E = Es = H 00

alpha, beta = H 01, H 01.H

eta, eps = 1e−14, 1e−10

m, n = H 00.shape

assert(m == n) 10

omega matrix = (omega**2 + eta * 1j) * mat(identity(n))

while True:

temp = (omega matrix − E).I

alpha new = alpha * temp * alpha

beta new = beta * temp * beta

E new = E + alpha * temp * beta + beta * temp * alpha

Es new = Es + alpha * temp * beta

if abs(max(asarray(E new − E).flat.real)) < eps: 20
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break

else:

alpha = alpha new

beta = beta new

E = E new

Es = Es new

return (omega matrix − Es).I



Appendix B

Recursive expansion of Green’s

functions

The following gives Mathematica code to compute the expansion of Green’s functions

according to the recursive rules discussed in Sec. 4.6. The coupling T [i, j, k] is denoted

by λ, which controls the order of expansion. Maxorder is the highest order to compute,

Grn[ {a,b,c},n] is the Green’s function with leg [a,b,c]. n indicates the number of λ

generated so far in the final graph. At the highest (top) level, we take n=0. Two

terminating conditions for the grand recursion are first set. Grn[] implements the

resursive rules and also symmetries with respect to the arguments with the orderless

attributes.

Clear[maxorder, Grn, G, ts, permuterules];Clear[maxorder, Grn, G, ts, permuterules];Clear[maxorder, Grn, G, ts, permuterules];

maxorder = 4maxorder = 4maxorder = 4

SetAttributes[G, Orderless];SetAttributes[G, Orderless];SetAttributes[G, Orderless];

Grn[{}, n ]:= − I;Grn[{}, n ]:= − I;Grn[{}, n ]:= − I;

Grn[arg List, n ]:=0/;n > maxorderGrn[arg List, n ]:=0/;n > maxorderGrn[arg List, n ]:=0/;n > maxorder

Grn[arg List, n Integer]:=Grn[arg List, n Integer]:=Grn[arg List, n Integer]:=

Module[{len, k, j, newarg, res, tdummy},Module[{len, k, j, newarg, res, tdummy},Module[{len, k, j, newarg, res, tdummy},
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len = Length[arg];len = Length[arg];len = Length[arg];

tdummy = ToExpression["t" <> ToString[n]];tdummy = ToExpression["t" <> ToString[n]];tdummy = ToExpression["t" <> ToString[n]];

res = 0;res = 0;res = 0;

For[k = 1, k ≤ len, ++k,For[k = 1, k ≤ len, ++k,For[k = 1, k ≤ len, ++k,

newarg = Insert[ReplacePart[arg, tdummy, k],newarg = Insert[ReplacePart[arg, tdummy, k],newarg = Insert[ReplacePart[arg, tdummy, k],

tdummy, k];tdummy, k];tdummy, k];

res+=(1/len) ∗ λ ∗ G[arg[[k]], tdummy]∗res+=(1/len) ∗ λ ∗ G[arg[[k]], tdummy]∗res+=(1/len) ∗ λ ∗ G[arg[[k]], tdummy]∗
Grn[newarg, n + 1];Grn[newarg, n + 1];Grn[newarg, n + 1];

For[j = 1, j ≤ len, ++j,For[j = 1, j ≤ len, ++j,For[j = 1, j ≤ len, ++j,

If[j 6= k,If[j 6= k,If[j 6= k,

res+=(1/len) ∗ I ∗ G[arg[[k]], arg[[j]]]∗res+=(1/len) ∗ I ∗ G[arg[[k]], arg[[j]]]∗res+=(1/len) ∗ I ∗ G[arg[[k]], arg[[j]]]∗
Grn[Delete[arg, {{k}, {j}}], n];Grn[Delete[arg, {{k}, {j}}], n];Grn[Delete[arg, {{k}, {j}}], n];

];];];

];];];

];];];

res//Simplify//Expandres//Simplify//Expandres//Simplify//Expand

]]]

g12 = Grn[{1, 2}, 0];g12 = Grn[{1, 2}, 0];g12 = Grn[{1, 2}, 0];

Canonize[] takes a term, puts it into the canonical form by permuting all the

dummy indices tn and chooses a particular one.

ts = Table[ToExpression["t" <> ToString[k]],ts = Table[ToExpression["t" <> ToString[k]],ts = Table[ToExpression["t" <> ToString[k]],

{k, 0, maxorder − 1}];{k, 0, maxorder − 1}];{k, 0, maxorder − 1}];
permuterules = Map[Thread[ts → #]&, Permutations[ts]];permuterules = Map[Thread[ts → #]&, Permutations[ts]];permuterules = Map[Thread[ts → #]&, Permutations[ts]];

canonize[fyn ]:=Module[{flist},canonize[fyn ]:=Module[{flist},canonize[fyn ]:=Module[{flist},
flist = Sort[fyn/.permuterules];flist = Sort[fyn/.permuterules];flist = Sort[fyn/.permuterules];

Return[flist[[1]]]Return[flist[[1]]]Return[flist[[1]]]
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]]]

canonize/@g12canonize/@g12canonize/@g12

Draw Feynman diagrams from the above results: (1) draw n vertexes if there is

a λn, label the vertexes as t0, t1, ..., tn−1, plus two extra terminals 1 and 2, connect

with lines if there is a Green’s function G[a,b]. G[a,b] is the Green’s function without

the cubic interaction, still nonequilibrium (contour ordered) Green’s functions. The

numerical factors are the same as in the above formula. Finally, the dummy indices

tk=(j,t) have to be summed (for lattice site indices) and integrated (for time on the

contour).


