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 SUMMARY 

 

In this thesis, we investigate and propose novel frameworks and methods for 

the computation of certain higher level semantic knowledge from Hollywood domain 

multimedia. More specifically, we focus on understanding and recovering the affective 

nature, as well as certain cinematographically significant semantics through the use of 

motion, from Hollywood movies.  

Though the audience relates to Hollywood movies chiefly through the affective 

aspect, its imprecise nature has hitherto impeded more sophisticated automatic 

affective understanding of Hollywood multimedia. We have therefore set forth a 

principled framework based on both psychology and cinematography to understand 

and aid in classifying the affective content of Hollywood productions at the movie and 

scene level.  

With the resultant framework, we derived a multitude of useful low-level audio 

and visual cues, which are combined to compute probabilistic and accurate affective 

descriptions of movie content. We show that the framework serves to extend our 

understanding for automatic affective classification. Unlike previous approaches, 

scenes from entire movies, as opposed to hand picked scenes or segments, are used for 

testing. Furthermore, the proposed emotional categories, instead of being chosen for 

ease of classification, are comprehensive and chosen on a logical basis.  

Recognizing that motion plays an extremely important role in the process of 

directing and fleshing out a story on Hollywood movies, we investigate the 

relationship between motion and higher level cinema semantics, especially through the 
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philosophy of film directing grammar. To facilitate such studies, we have developed a 

motion segmentation algorithm robust enough to work well under the diverse 

circumstances encountered in Hollywood multimedia. In contrast to other related 

works, this algorithm is designed with the intrinsic ability to model simple 

foreground/background depth relationships, directly enhancing segmentation accuracy.  

In comparison to the well behaved directing format for sports domain, shot 

semantics from Hollywood, at least at a sufficiently high and interesting level, are far 

more complex. Hence we have exploited constraints inherent in directing grammar to 

construct a well-thought-out and coherent directing semantics taxonomy, to aid in 

indexing directing semantics. 

With the motion segmentation algorithm and semantics taxonomy, we have 

successfully recovered and indexed many types of semantic events. One example is the 

detection of both the panning establishment and panning tracking shot, which share the 

same motion characteristics but are actually semantically different. We demonstrate on 

Hollywood video corpus that motion alone can effectively recover much semantics 

useful for video management and processing applications. 
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1CHAPTER I  

Introduction 

1.1 Introduction 

Motion pictures occupy a central position in popular entertainment. As a rich 

medium able to capture the human senses (sight and sound), staged dramatic renditions, 

movies, miniseries and dramas enjoy immense popularity in the modern age. The latest 

updated statistics of IMDB (Internet Movie Data Base) states that a mind-boggling 315 

thousand movies have been released [109] to date. Bearing in mind that the vast 

majority of those films are of Western origin, one can expect a literal explosion of 

movie production as the film-making industries of other cultures mature and the 

technical cost of film-making continues to drop.  

At the same time, the internet has steadily boomed over the past decade to be 

major vehicle of video data delivery and online commence. Several search engines like 

Google and Yahoo, along with video communities such as Youtube and Netflix, have 

arisen as a logical and necessary response to index, organize and search for video data 

on the sprawling World Wide Web, whose information would otherwise be nearly 

inaccessible to the masses. IPTV (Internet Protocol Tele-Vision), an anytime anyplace 

internet global channel delivery service, has also started to boom. In a similar vein, the 

confluence of these two major developments has led to the unprecedented demand for 

search engines specifically tailored to search and analyze motion pictures in a 

customizable manner for indexing, highlighting, summarization, data-mining, 
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automated-editing, recommendation and ultimately retrieval. With such a vast potential 

for automated commercial applications to fulfill the requirements of the general 

consumer, commercial vendors and niche markets, the possibilities of exploration in 

this field seems tremendous. Due to the immense popularity of Hollywood movies and 

the exponentially growing access and demand for it, the Hollywood multimedia 

domain stands out simultaneously as a most challenging and yet rewarding domain for 

machine understanding and processing. 

Thus in this thesis, we investigate the indexing of movie resources with 

semantic concepts, or semantic indexing, using two salient aspects of the Hollywood 

movie domain: motion and emotion. The strongest commonalities underlying these 

aspects that recommend them for this work are: 1) their inspiration from 

cinematography and 2) the high level of movie semantics recoverable from them. The 

first part of the thesis develops the theoretical framework for affective (emotional) 

classification and analysis of movies, something that due to its complexity has hitherto 

received little attention. The framework, which is based on integrating the fields of 

cinematography and psychology, is then used to deal with key issues surrounding 

machine affective understanding of movies and designing effective cues for 

implementation. The second part of the thesis explores the rich repertoire of semantics 

that can be computed from shots using motion based features and characteristics. Once 

again, the theoretical basis of the taxonomy for the recoverable semantics is grounded 

in cinematography. Additionally an intricate algorithmic framework, which involves 

motion segmentation, is presented to enable the recovery of semantics, thus 

demonstrating the efficacy of motion for movie indexing. 
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The rest of the chapter starts with a brief explanation of semantic indexing. We 

then give a brief overview of prior works and also explain in more detail the two 

aspects of semantic indexing investigated: for 1) affective understanding of film and 2) 

shot semantics using motion respectively. Finally a summary of the contribution of the 

thesis is presented, followed by the thesis organization. 

1.2 Semantic Indexing  

To anchor the discussion and overview on semantic recovery for Hollywood 

movie indexing, some commonly used terms are defined here. In this work, a 

document is taken to be self-contained and coherent data that can be expressed in the 

digital format, with the more common forms being a story text file, image or song. 

Most types of documents are naturally organized around a hierarchical structure, where 

the more basic units of information are integrated together to form more complex units. 

……….. 

Movie  Level 

Shot Level 

Figure 1.1 Hierarchy structure of a movie 

Scene Level 

Frame Level 

…. 

……..………..



 

 

 

 

4

Taking the analogy of a story, the individual words would be the basic units from 

which a more complex unit, such as the sentence, would be formed. Intuitively, 

sentences convey meanings or concepts which a user can relate to and are therefore 

interested in (high-level); we use the word semantics as a generic label for high level 

meanings and concepts. Individual words, on the other hand, cannot express ideas of 

sufficient interest in the absence of context (low-level). The movie possesses a similar 

hierarchy of information units, or levels of abstraction, which in descending order of 

complexity are the movie, scene, shot and finally individual frame (Figure 1.1). In 

reality, what data exactly constitutes as semantics is rather application and user 

dependent, and depends strongly upon the choice of level of abstraction.  

Whatever the case may be, the process of extracting semantics can be 

simplified to an indexing process. At its most fundamental level, this process of 

document semantic indexing can be thus described: locating occurrences of similarity 

within the document based on similarity with pre-defined semantic models. This is the 

main reason why indexing is such a critical capability in the exploitation of movie 

resources. With this capability, vast movie resources can be automatically classified 

and organized according to personalized and innovative semantic labels that manual 

annotation cannot possibly anticipate or accommodate. This greatly enhances the 

browsing experience by paring down an unmanageably large list to a short list of well 

chosen candidates.  

However semantic indexing of movies faces two tenacious problems. Firstly, as 

opposed to most present indexing works which deal with narrow domains, the movie 

domain has practically unlimited “variability in all relevant aspects of its appearance” 

Smeulders et al [108]. This implies the classification system must be carefully 
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designed to ensure that indexed semantic content remains well defined. Secondly, the 

greatest challenge to semantic indexing lies in bridging the semantic gap, which 

describes the apparent lack of relationship between low-level cues that are easier to 

compute and high-level semantics, which are more interesting. We note that indexing 

is more difficult than retrieval, which only needs to locate similarities with a given 

example within a document without any need for classification models.   

1.3 Brief Overview of Semantic Recovery Works 

Semantic recovery works are generally characterized according to two main 

aspects: by the level or the type of semantics being indexed. Because document level 

has a definite structure (Figure 1.2), the overview is organized according to the 

document level at which semantics are recovered.  

The topmost level is the genre of a video document, which is the broad class a 

video document belongs to (e.g. sport, news, cartoon). Genre types that are relatively 

well defined and commonly recognized (especially program type) are popular amongst 

researchers. A brief history of genre classification shows that the genres tackled 

include: cartoon, news, commercial, music and sport [34][112]. At a slightly finer 

resolution, movies have been classified into genres (the rough category it belongs to) 

[11] and sports footage classified into the exact sport [111].  

The next level is the scene level, which comprises of a consecutive series of 

shots. Semantics that hold coherent meaning at this level are plot elements, themes and 

location. Hence some works have attempted to detect the scene boundaries in order to 

recover the movie structure [2]. Recently the affective content of scenes has begun to 

receive attention from the indexing community. Pfeiffer used acoustic data mode to 
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detect for violent scenes in the MoCA (Movie Content Analysis) [106] project while 

Kang tried to recognize scene emotions using HMMs [10]. Note that our affective 

understanding work takes place at the scene level.  

The next lower level of semantics belongs to the shot level, where certain short 

duration “behavior” events take place, thus there are still some conceivable 

applications where shot level analysis and retrieval is called for. Eickeler tried to 

differentiate between classes of news shots: anchor shot, interview and report [114]. 

Haering [83] carried out event detection and applied it to hunts in wildlife videos. In 

the sports domain, Lazarescu [75] analyzed football videos for sports events like 

different football plays while Duan detected goal scoring using video and motion 

features [77]. Our shot semantics from motion work takes places at the shot level. 

As the building blocks of events, objects are conceptually the lowest level of 

semantics that users are probably interested. Due to its specificity, object indexing 

usually requires very strong a priori knowledge, encoded in the form of an object 

model. One of the most common objects to be detected or classified is the human face, 

by Kobla [110] and in the Name-It project at CMU [113]. 

      Figure 1.2 Semantic abstraction level for a movie. 

Movies 
Dramas/Miniseries 

MTV 
Sports  

Cartoons 
News 

Commercials 

Video Document level – Genre, Sub-genre  

Object level – object ( face etc. ) 

Scene level – Affective content, Plot structure 

Shot level – Semantic categories, Events 

Inputs Document and semantic abstraction level 
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1.4 Affective Understanding of Film 

Indisputably, the affective component is a major and universal facet of the movie 

experience, and serves as an excellent candidate for indexing movie material. Besides 

the obvious benefit of indexing, automated affective understanding of film has the 

potential to lead to a new emotion-based approach towards other hotly researched 

topics, including video summarization, highlighting and querying. This paves the way 

for even more exciting but unexplored applications, such as movie ranking and 

personalized automated movie recommendation.  

Film does not develop or exist independently of human psychology and culture, 

and the underlying principles behind many aspects of film grammar become clearer 

from a psychological perspective. In our work, we recognize and establish the intimate 

relationship between cinematography and psychology for affective understanding of 

film, as well as the benefits that an integration of the insights from both these fields 

will bring. Consequently we have used the methods and theories from both fields on a 

complementary basis to develop the required conceptual framework and design the 

low-levels cues necessary for affective classification of Hollywood movies.  

Because the movie structure naturally demarcates affective content at the scene 

level, we have chosen the scene as the basic unit for semantic affective extraction. We 

show that this information can actually be used to accurately classify the affective 

characteristics of movies at the higher document level. More significantly, we 

demonstrate the ability to infer the degree of different affective components in film, a 

step up in the sophistication level and usefulness, compared to classification alone.  



 

 

 

 

8

1.5 Film Shot Semantics from Motion and Directing Grammar 

Content based Visual Query (CBVQ) semantic indexing systems have recently 

come to appreciate that motion holds a reservoir of indexing information. This is most 

true of narrative videos like movies, where camera movement and object behavior are 

purposive and meaningfully directed to elucidate the intentions of the producer and aid 

the story flow. Guiding the director is a set of production rules on the relationships 

between shot semantics and motion, which are embodied in a body of informal 

knowledge known as film directing grammar.  

In this work, we explicate the intimate multifaceted relationship that exists 

between film shot semantics and motion by appealing to directing grammar. Based on 

our insight that manipulation of viewer attention is what ultimately defines the 

directing semantics of a shot, we have formulated a novel edge-based MRF motion 

segmentation technique, with integrated occlusion handling, to capture the salient 

information of the attention manipulation process.  

Directing grammar has also provided us with the framework to propose a 

coherent semantics taxonomy for film shots, and to design effective motion-based 

descriptors capable of mapping to high level semantics. Using both the motion 

segmentation algorithm and semantics taxonomy, we can recover semantics like 

director intent and possibly story structure from motion, which in turn directly aids 

film analysis, indexing, browsing and retrieval.  

For this work, the shot, which is the only unit to comprise an uninterrupted 

flow of motion, is naturally adopted as the basic unit for study.  
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1.6 Summary of Contributions 

Here we summarize the contributions of the thesis in point form: 

 

Affective Understanding of Film 

 Using psychology and cinematography to create a theoretical basis and framework 

for affective understanding of multimedia; exploring affective related issues.   

 Deriving a set of useful audio-visual low level cues for affective classification of 

movie scenes, especially a probabilistic method of accurately extracting affective 

scene information from noisy movie audio. 

 Investigate into the affective nature of movies and movie scenes. 

 Demonstrating innovative affective based applications with good results. 

 

Film Semantics from Motion 

 Investigating and developing the use of cinematography as the theoretical basis for 

using motion exclusively to recover semantic level information from movie shots.   

 Proposing a robust motion segmentation method capable of segmenting out video 

semantic objects (foreground and background) for use with Hollywood movies. 

 Proposing an organization principle based on film directing elements and 

grounded in directing grammar to construct a well-formed and coherent film 

directing semantics taxonomy.   

 Designing effective and robust descriptors to recover shot semantics using motion. 

 Demonstrating the proposed framework with good classification results.  
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1.7 Thesis Organization 

The rest of the thesis is organized as follows.  

In Chapter 2, we investigate the affective aspect of Hollywood movies. We 

introduce the foundational methodologies, consisting of both of psychology and 

cinematography, on which the theoretical framework necessary for developing the rest 

of the affective work is based. Several inevitable issues arising from affective 

classification in Hollywood multimedia are discussed, particularly choosing an 

appropriate set of output emotional categories.  

Chapter 3 builds upon the framework in the previous chapter to propose and 

justify a set of powerful audiovisual cues. A probabilistic inference mechanism based 

on the SVM is introduced, which produces the final probabilistic affective outputs. A 

comprehensive set of experiments are carried out, followed by a discussion of the 

results. Two applications of the affective classification framework are demonstrated. 

Chapter 4 proposes a new motion segmentation algorithm specifically suited to 

the purpose of film semantics recovery from motion. Ways to overcome likely 

problems are discussed. The implementation, performance characteristics are explored 

in detail and experimental results are demonstrated. 

Chapter 5 introduces a semantic taxonomy to classify shot semantics in the film 

domain using motion. We justify this taxonomy based on cinematography and in turn 

use it to formulate both the low level motion descriptors and the output semantic 

classes. Finally the experimental results for film indexing using the resultant 

framework are shown. 

Chapter 6 concludes the thesis with its implications and potential future works. 
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2CHAPTER II 

AFFECTIVE UNDERSTANDING IN FILM  

 
2.1 Introduction 

With the increasingly vast repository of online movies and its attendant demand, 

there exists a compelling case to empower viewers with the ability to automatically 

analyze, index and organize these repositories, preferably according to highly 

personalized requirements and criteria. An eminently suitable criterion for such 

indexing and organization would be the affective or emotional aspect of movies, given 

its relevance and everyday familiarity. Endowing an automated system with such an 

affective understanding capability can lead to exciting applications that enhance 

existing classification systems such as movie genre. For instance, finer categories such 

as comedic and violent action movies can be distinguished, which would otherwise 

have been grouped together in the action category under the present genre 

classification.  

With the ability to estimate the intensity of different emotions in a movie, a 

host of intriguing possibilities emerges, such as being able to rank just how “sad” or 

“frightening” a movie scene is. Taken to its logical end, this can lead to personalized 

affective machine reviewer applications, doing away with the limitations of predefined 

movie genres. In short, computable affective understanding promises a new emotion-
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based approach towards currently investigated topics such as automated content 

summarization, recommendation and highlighting. 

Surprisingly, immediately related works in affective classification of general 

domain multimedia have been few. While many works exist in the wider area of 

multimedia understanding, ranging from scene segmentation [2], sport structure 

analysis [3], event detection [4], semantic indexing in documentaries [5], sports 

highlight extraction [6], audio emotion indexing [7] to program type classification [34], 

literature in affective classification is sparse and recent. This state of affairs is mainly 

due to the seemingly inscrutable nature of emotions and the difficulty of bridging the 

affective gap [8], especially in this case where high level emotional labels are to be 

computed from low level cues. 

Of works that deal with affectively-related issues, [9] computed the motion, 

shot cut density and pitch characteristics along the temporal dimension of movie clips 

from which emotion profiles known as “affect curves” are obtained in a 2D emotional 

space known as the Valence-Arousal space. [10] used visual characteristics and camera 

motion with Hidden Markov Models (HMM) separately at both the shot and scene 

level in an attempt to classify scenes depicting fear, happiness or sadness, while [11] 

proposed a mean-shift based clustering framework to classify film previews into 

genres such as action, comedy, horror or drama, according to a set of visual cues 

grounded in cinematography. [12] proposed Finite State Machines (FSM) with face 

detection and an audiovisual based activity index to model and distinguish between 

conversation, suspense and action scenes.  

While these works have advanced research in affective classification, their 

output emotion categories in the affective context are somewhat ad hoc and incomplete 
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[10]-[12] ([9] does not use output emotions). Furthermore, the inputs treated by these 

works are previews [11] or handpicked scenes [10], which due to the prior manual 

filtering process, are biased by the aims and methods of the selectors. It remains to 

show whether these works can be readily extended to treat more emotions as well as to 

analyze complete movies. Crucially, the following important questions are left 

unaddressed: How should output emotion categories be chosen? And what should they 

actually be?  

Thus in establishing a successful movie affective understanding system, we put 

forth, as our first contribution, a complementary approach grounded in the related 

fields of cinematography and psychology. This approach identifies a set of suitable 

output emotion categories which are chosen with clear reason, a more complicated task 

than it seems. The increase in the number and subtlety of these categories results in a 

more difficult, but also more comprehensive and meaningful classification. In contrast, 

besides having less complete output emotion categories, previous works are explicitly 

based on just one of the two fields. In the film affective context, they are thus 

constricted by the limited information and paradigms at their disposal. [9] employed 

only psychology and [11] cinematography, while [10] mentioned psychology briefly 

but proceeded solely based on the cinematographic basis. 

For our second contribution, we develop from cinematographic and 

psychological considerations a set of effective audio-visual cues in the film affective 

context. Though low-level, some of these features can yield high-level information 

which helps to bridge the affective gap. For instance, we formulate a visual excitement 

feature that takes viewer feedback directly into account. Other useful features, which 

have not been employed in this context, are color energy, chroma difference, music 
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mode and the proportions of Music, Speech and Environ (MSE) audio. In particular, 

we propose a probabilistic based approach to extract movie audio affective information 

from each of the MSE channels in a more suitable and comprehensive manner than 

other film affective works. This is accomplished by splitting the audio analysis units 

according to cinematographic knowledge and processing each MSE channel differently 

to overcome confusing multiple-speaker presence and MSE mixing, amongst other 

challenges. 

Due to the dominance of the “classical Hollywood cinema” in film [1], the 

scope of this work deals with automatically analyzing and classifying the affective 

content of Hollywood movie scenes, and in turn the entire movies. The scene, also 

known as the story or thematic unit, is chosen as the basic unit of analysis, because it 

conveys semantically coherent content, and is the primary unit of distinct phases of 

plot progression in film [1]. The notion of mise-en-scene, where the design of props 

and settings revolve around the scene, further enhances its potency [1]. Not 

surprisingly, it is usually the individual scenes that are most sharply etched in the 

collective memories of the cinema.  

This chapter introduces the background and explores the fundamental issues of 

the work. Then we lay down the proposed complementary approach and demonstrate 

how it guides us in choosing the output emotional categories. Chapter 3 discusses the 

probabilistic framework, affective features designed for affective classification and 

presents the resultant system with experimental results. Figure 2.1 illustrates the scope 

covered by the affective work. 
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2.2 Review of Related Works 

With such a small number of directly relevant works, we will review their 

frameworks, algorithms and experimental results in greater detail in the following 

paragraphs. Hanjalic [9] proposed a purely dimensional approach to affect by utilizing 

the emotion theory of Russell and Mehrabian [18], who investigated the nature of 

emotions and suggested that all emotions could be characterized completely by three 

basic primitive affective qualities. These qualities are respectively Valence (measure of 

pleasure), Arousal (measure of mental intensity or agitation) and finally Dominance 

(measure of psychological control). In order to characterize video content in the VAD 

space, certain computable audio-visual cues that can supposedly directly measure these 

qualities have been designed. However due to the limited utility of Dominance, only 

Valence and Arousal have been eventually adopted. The Arousal measure proposed is 

a weighted linear combination of the shot density, energy in higher frequency sound 

and the magnitude of motion vectors while the Valence measure comprised the audio 

pitch, which is valid only in places where speech is voiced. By computing Valence and 

Figure 2.1 Illustration of scope covered in current work.  
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Arousal quantities along the temporal dimension of a movie clip, emotion profiles 

known as affect curves can be obtained in Valence-Arousal space. Hanjalic further 

suggested that the general location of such profiles could provide information about 

the dominant mood in clip. However he did not propose any output emotional classes 

which the affect curves could map to, nor are the two test video sequences used 

sufficient for drawing conclusions about the effectiveness of the algorithmic approach. 

Though attractive in its generality and simplicity, the overlap of fundamental emotions 

in such a VA space invalidates the exclusive use of VA space for affective 

classification, as will be shown later.  

Kang [10] used camera motion and visual features to characterize every shot 

into either fear, happy, sad or normal emotions. The camera motion features consist of 

the motion type (pan, tilt etc.) and its magnitude while the visual features contain the 

amount of brightness as well as the proportion of “culture colors”, where “culture 

colors” (red, yellow, green, blue, purple, pink, orange, gray, black ,white etc.) are 

colors claimed to be imbued with cultural or emotional significance. Each shot is 

therefore described by a feature vector, which is compressed into a symbol via vector 

quantization. Hidden Markov Models (HMM) are then trained separately at both the 

shot and scene level in an attempt to classify both shots and scenes into the four 

emotions.  

However such use of HMMs, especially for modeling emotions at the shot 

level, is fraught with problems for two reasons. Firstly, affect is not a well-defined 

concept at the shot level. Secondly, due to the first objection, the transitional 

probabilities for the HMMs are in turn not well-defined. Besides that, the testing data 

is inadequate (six 30 minutes worth of scenes, which usually last more than one minute 
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each). Furthermore, since the scenes are meticulously hand-picked, the introduction of 

bias is a likely probability that cannot be dismissed. The audio aspect has been 

neglected and finally, the output categories themselves are incomplete, and selected for 

the ease of classification.  

Rasheed et al [11] considered the slightly different yet related problem of genre 

classification of movie previews into action, comedy, horror or drama. A set of 

exclusively visual cues grounded in cinematography are proposed to characterize every 

preview: namely average shot length, motion content, color variance and lighting key. 

The significant contribution of this work lay not so much in the cues itself as in the 

cinematographic foundations used to justify the cues, which provides a theoretical 

foundation for the cues. A mean-shift based clustering framework is finally used to 

cluster test previews into different genre membership clusters. However due to the fact 

that film previews are manual summaries of films used for the purpose of 

advertisement, only shots that epitomize the genre of the movie would be included, 

thus simplifying the film genre classification task tremendously, as opposed to 

affective classification for every single scene in a movie. The aural aspect of film, 

which plays a pivotal role in the affective experience, has also not been addressed. 

Zhai et al [12] proposed using Finite State Machines (FSM) for classifying 

three different scene semantics (suspense, action and conversation). To accomplish this, 

two cues are extracted at the shot level. The first cue computes activity intensity, 

which is a weighted measure of the dominant motion vector, its variance and the mean 

audio intensity while the second cue detects the presence of human faces in every shot. 

Finite State Machines, which are a very specialized form of the Markov Model, are 

designed for each of these three semantics.  
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For instance, the FSM for detecting conversation specifies that there must be 

neighboring shots showing different faces and there must not be high activity shots. 

Each of these FSMs loops inevitably end with either an accept or reject node after 

certain sequences of shot types are encountered, regardless of the characteristics or 

number of shots remaining in a scene, which is very unrealistic. Furthermore, the 

endless variety with which such scenes can evolve is far beyond what simple hand-

crafted FSMs can possibly capture. Finally the video corpus, at sixty clips and only 

involving these three types of scenes, is too small and unrepresentative.  

 The last work by Moncrieff [4] uniquely focused on examining localized 

sound energy patterns, or events, associated with high level affect experienced with 

horror films. Defining four types of sound events (composed of varying sound energy 

profiles) usually associated with the horror genre, the central idea of the work centers 

on inferring affects brought about by these well established sound energy patterns 

employed in audio tracks of horror films. Using window matching, locations 

corresponding to these events are detected. In order to ascertain the accuracy and 

effectiveness of these events in inferring the presence of “horror” scenes or film, 

statistics compiled from the six movies were analyzed. The results showed that sound 

event detection can distinguish between horror and non-horror films, as well as 

detecting horror scenes in horror films. This demonstrates the indicative power of 

sound at both the film and scene level, albeit only in the limited genre of horror.  

As a broad comparison of our work with others, several main advantages 

emerge. Foremost among these, we have a set of output emotion categories that are 

theoretically better founded and thus more suited for affective film classification than 

the more ad hoc and limited emotional categories proposed by others. For instance, the 
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hand-crafted FSM used in [12] is inadequate for approximating the structural variety of 

many types of scenes, and [9] has not proposed any output categories. Secondly, we 

have exploited affective information for audio far more extensively than others, who 

concentrated on visual cues [9]-[12]. Thirdly, we have adopted a SVM based 

probabilistic inference engine capable of expressing beliefs in the affective 

components probabilistically instead of discretely [11], thus increasing output accuracy. 

Furthermore, this engine can be extended easily to accommodate more new affective 

features easily. Finally, we have not pre-selected our experimental data; and its size, at 

about two thousand scenes, is also larger than the next largest video corpus used [10] 

by about an order of magnitude. 

2.3 Definition of a Scene 

As the fundamental story unit around which the film is organized, the scene is 

invested with coherent and intelligible plot, causing the basic units of affect to be 

naturally demarcated along scene boundaries. Thus to facilitate affective scene 

classification, it is imperative to formulate a working definition for the scene that is 

consistent, appropriate and as objective as possible for the work. The term “scene” 

originates from a French classical theater term mise-en-scène, which literally means 

"put in the scene", and has a precise beginning and ending corresponding to the arrival 

and departure of characters [1]. Probably due to the inherent limitations of the theater 

and generally linear nature of the theater then, discerning scene boundaries was 

simpler. However in cinematography, the heavy use of editing as a technique (i.e. 

cutting) to form a narrative allowing events occurring in spatially different places to be 

portrayed as temporally parallel events - hence enabling the narrative to be 
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experienced in a more intuitive and non-linear manner - has blurred the meaning of 

scene boundaries as increasingly short duration cuts of different settings are 

interwoven one with another.    

In [2], which seeks a computational approach to detect scene boundaries, the 

authors state that it is more appropriate to define scenes from the film maker’s 

viewpoint and study cinematic devices to design an algorithmic solution. They used 

these set of guidelines to set up the ground truth and define scenes in their work: 

1. When there are no multiple interwoven parallel actions, a change in location 

or time or both defines a scene change.  

2. An establishing shot, though different in location to its corresponding scene, 

is considered part of that scene, as they are unified by dramatic incidence.  

3. When parallel actions are present and interleaved, and there is a switch 

between one action to another, a scene boundary is marked if and only if the duration 

of that action is shown for at least 30 seconds. Their reasoning is that when an action is 

briefly shown, it serves more as a reminder than representation of any significant event. 

This implies that while supporting action shots may never make a scene, a long 

dominant action scene may possibly be broken into smaller scene units. An example is 

raised in the training scene of The Matrix, where a few short shots are inserted to show 

group members watching through a computer (i.e. a different locale), which should not 

be considered as making up a new scene. 

4. Finally, a montage sequence which is formed by dynamic cutting, a 

technique where shots containing different spatial properties are rapidly joined 

together to convey a single dramatic event, constitutes a single scene. For example, in 

order to convey the desperate attempts of Carolyn Burnham to sell her house in The 
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American Beauty, the film maker joins many different shots of her showing different 

customers different parts of the house.  

 From experience, we find the above set of guidelines to be very useful. 

However since their primary motivation stems from finding a computable solution to 

scene segmentation, it is inevitable that the guidelines will not coincide with the 

definition of a scene that is more appropriate for affective scene classification. 

Although we fully concur with Guidelines 2 and 4, Guideline 1 throws up a question: 

what degree of change constitutes a change in time and location? For pursuing chase 

scenes, gradual slight locations/settings changes are natural. In a beginning scene from 

Terminator, Reese ran from the streets into a departmental store. There is at least a 

superficial change in setting, thus suggesting a scene boundary. Regardless, spectators 

will intuitively consider the street to store chase as one scene.  

This judgment, we believe, is due to a very strong continuity and constancy of 

the characters, mood and semantics of the shots. Furthermore, the change in settings 

happened on a spatial continuity, with Reese running from one to the other location. 

Conversely, if there is a complete lack of continuity in the mood/semantics/characters 

between two groups of shots except for the setting, it will be very difficult for 

spectators to experience these shots as one scene. We believe that although the first 

rule generally holds, yet the judgment of sameness in time and setting depends much 

on the degree of semantic, character and mood (affect) continuity. Presently, this 

observation is incomputable and inevitably subjective to a certain extent. However we 

believe it does help to clarify the principles behind what really constitutes a scene. 

Guideline 3 is strictly not true and has been violated many times, especially 

action films. In the famous last battle of Star Wars: Episode I, parallel narratives from 
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three vastly different places are tightly interwoven in a technique known as cross-

cutting. These temporally parallel plotlines showing how three groups of people 

fighting a common enemy in as many places are largely independent of each other and 

do not serve as reminders in any sense of the word. It is also noted that some of their 

brief appearances in the narrative last longer than 30 seconds. However from the 

director’s viewpoint, using such tight editing to produce this sense of mood/plot 

coherence and parallelism amongst all the shots can mean only one thing; these shots 

are meant to be experienced and remembered by the spectator as one long scene. We 

feel that the duration of 30 seconds to denote scene change is a good gauge, but can be 

set aside as long as the general pace and pattern of cross cutting is kept up throughout 

the parallel accounts.  

We note that rigid guidelines, though necessary for strictly computational 

purposes, are in reality insufficient. As a contiguous series of shots, the shots in a 

scene are unified chiefly by strong semantics to convey a cinema story. However due 

to the wide berth of freedom present in both the story plot and the style with which it is 

told, there will always be ambiguity in the boundaries that constitute the scenes. 

Therefore gathering the one common thread from the aforementioned discussion, we 

will add one final guideline.  

Guideline 5: For borderline cases arising from the application of the previous 

four guidelines, a strong continuity in the mood/semantics/characters/director’s intent 

signifies the absence of a scene boundary, and vice versa. 
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2.4 Background and Fundamental Issues 

Movie affective classification draws upon methodologies from two fields: 

cinematography and psychology. This section starts off by briefly introducing the 

necessary foundation of these two fields and the motivation for using them. We also 

explore various fundamental issues implicit in our approach. 

2.4.1 Cinematographic Perspective 

A film is made up of various elements such as editing, sound, mise-en-scene, 

and narrative. Governing the relationships amongst these elements is a set of informal 

rules known as film grammar, defined in [14] as “the product of experimentation, an 

accumulation of solutions found by everyday practice of the craft, and results from the 

fact that films are composed, shaped and built to convey a certain story.” The value of 

film grammar to the present problem lies in the fact that it defines a set of conventions 

through which the meanings – many of which are affective – of cinematic techniques 

employed by a director can be inferred.  

A quintessential example is that the excitement level of a scene increases as the 

shot length decreases. Other examples include rules about screen movements, cutting 

on action, colors and variation of lighting effects etc. By exploiting the constraints 

afforded by the film grammar, high level affective meaning can emerge from low level 

features such as shot length directly, thus offering a computable approach in bridging 

the difficult transition to high level semantics such as emotions. Many cues in Chapter 

3 are founded on the basis of film grammar. 
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2.4.2 Psychology Perspective  

Film evokes a wide range of emotions. Hence, a fundamental challenge of 

movie affective classification lies in the choice of appropriate output emotion 

representation in film. How do we represent emotions in movies, or relate them to 

existing emotion studies? These questions mirror some of the most important topics 

investigated in psychology, which provides emotion paradigms helpful for us in 

proposing reasonable answers to the questions.  

A survey of contemporary theory and research on emotion psychology reveals 

the most dominant and relevant general theoretical perspectives, respectively known as 

the Darwinian [38] and cognitive perspectives [39]. The Darwinian perspective 

postulates that basic emotions are evolved phenomena that confer important survival 

functions to humans as a species, strongly implying the biological origins and 

universality of certain human emotions. An impressive body of evidence in human 

facial expression study by Ekman [16] has identified perhaps the most supported set of 

proposed basic emotions: Happy, Surprise, Anger, Sad, Fear and Disgust. This set of 

emotions, which we call “Ekman’s List”, are found to be universal among humans, and 

significantly governs our choice of output emotions and its representation.  

On the other hand, the cognitive perspective postulates that appraisal, a thought 

process that evaluates the desirability of circumstances, ultimately gives rise to 

emotion. Using a dimensional approach to describe emotions under such a paradigm, 

several sets of primitive appraisal components thought to be suitable as the axes of the 

emotional space have been proposed [15], so that all emotions can be represented as 

points in that space. Such a representation is suited for laying out the emotions 

graphically for deeper analysis. The most popular appraisal axes VAD, proposed by 
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Osgood et al. [17] and also Mehrabian and Russell [18], are shown to capture the 

largest emotion variances, and comprise of Valence (pleasure), Arousal (agitation) and 

Dominance (control). For this work, we have found a simplified form, the VA space, 

helpful in visualizing the location, extent and relationships between emotion categories. 

Dominance is dropped because it is the least understood [33], and its emotional 

variance accounts for only half that of Valence and Arousal. 

Outside psychology, [32] utilized a different set of emotions for machine 

emotional intelligence. However that set was chosen for human-computer interaction 

purposes, and is not suitable for describing affective content in movies. 

2.4.3 Some Fundamental Issues 

We first address a few fundamental issues, beginning from the emotion ground 

truth labeling stage: should the film affective content be evaluated according to the 

emotion response of the viewer or what the director intends the viewer to feel? The 

answer partly hinges on the nature of the currently conceived affective applications. 

Since they are certainly viewer centric, it is more meaningful to use viewers to 

calibrate the affective content. This is also consistent with the requirements of future 

possibilities involving personalized affective applications, which will need viewer 

emotion response. Not to mention that polling for directors’ intentions rather than 

viewers’ emotion responses for numerous movie scenes is far more difficult. 

But this raises the question of how the inherent subjectivity of viewer emotion 

response should be dealt with. Some elements of uncertainty and subjectivity, 

depending on the unique emotion “makeup” of each individual, are inevitable in the 

viewer’s movie experience. However the collective mean, or normative emotion 
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response of a statistically large audience is stable and reproducible, especially when 

dealing with conventional films with a body of accepted “subjective” practices and 

principles, and thus can be considered objective. Similar assumptions underline the 

validity of feedback-based psychological studies [18]. For our work, we have thus 

obtained this normative emotion response to movie scenes in our video corpus from a 

group of dedicated test subjects.  

We emphasize that, though normative emotion response and director intentions 

broadly concur, they are not equivalent. This is apparent from the difficulties which 

even highly successful directors have met in conveying their visions. To us, this 

implies that viewer feedback is an essential element of any viewer-centric film 

affective system. However from the standpoint of future works involving personalized 

affective applications, a potential drawback is the large amount of emotion responses 

to scenes (of the order of a thousand) required to reliably characterize the unique 

emotion makeup of an individual viewer, which is too cumbersome for an ordinary 

user to provide. However this problem can, we feel, be greatly alleviated by casting the 

problem of characterizing a viewer as finding the moderately small differences 

between the individual viewer and normative emotion responses. 

Finally, legitimate concerns on the portability of this work to movies 

originating from non-western cultures may be raised, given our current focus on 

Hollywood movies, a product of western-oriented film grammar and perspectives. For 

practical reasons, it is preferable to start with more established video corpus when 

exploring the largely uncharted territory of automated affective understanding for 

movies. This work does not claim universal application over movies of all origins and 

types. However as can be seen later, a significant portion of this work deals with 
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emotion features and paradigms with an underlying psycho-physiological basis 

common to humankind. Therefore there is reason to be confident that the work, with 

some culture-specific adjustments, can be validly adapted to non-western movies. 

2.4.4 System Overview 

We now give a system overview of our affective scene classification system. 

For consistency, the input to the system comprises of movie scenes manually 

segmented according to the criteria adopted in Chapter 2.3. For each scene, the audio 

and the visual signal are processed separately. The visual signal is segmented into 

shots and key-frames to facilitate computing visual cues for each scene. The audio 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
Figure 2.2 Flowchart of system overview. 
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signal is then separated according to audio type (music, speech, environ or silence) 

before being sent into an SVM (Support Vector Machines) based probabilistic 

inference machine to obtain high level audio cues at the scene level. The audio and 

visual cues are finally concatenated to form the scene vectors, which are sent into the 

same inference machine to obtain probabilistic membership vectors. Figure 2.2 

illustrates the system overview. 

2.5 Overall Framework 

As a result of the intended domain of applications and perhaps to simplify 

matters, all prior related works have relied heavily on just one of three perspectives: 

Darwinian, cognitive (VA) or cinematographic. We argue for the advantages of 

utilizing all three perspectives in affective classification in film domain, and propose a 

complementary approach that for the first time exploits the information and emotion 

paradigms methodically from these perspectives to decide on the choice of output 

emotion categories and low-level input features.  

2.5.1 Characteristics of Each Perspective 

The cinematographic perspective provides the advantage of direct insight into 

film domain production rules, and is eminently suited for formulating new input 

features. However, its paradigm classifies film according to genre, rather than 

emotions. Genre is too coarse for emotion categorization, e.g. genres such as drama 

and romance contain a multiplicity of emotions. Nevertheless it is possible to use genre 

to indirectly gauge the relevance of any proposed emotion categories. The Darwinian 
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perspective provides the theoretical basis to categorize emotions meaningfully, but 

says nothing about other rich information residing in the film domain.  

The cognitive (VA) perspective has the advantage of decomposing emotions 

into its constituent elements. Such representation offers the possibility of visualizing 

the entire emotion spectrum at a glance in a 2D feature space, thereby facilitating the 

analysis of the membership coverage and neighbor relations of different emotion 

categories. Due to its seeming simplicity, some works have suggested feature-to-VA 

mapping. But such a proposition is fraught with severe difficulties, especially when 

applied to the film affective domain. As further explained in the feature selection 

Chapter 2.5.6, this is primarily due to the complex distribution of features with respect 

to emotions. 

However the main reason why we do not adopt the VA as the sole feature space 

for representing emotions is because some of the output emotions cannot even be 

sufficiently differentiated therein. In Figure 2.3, we graphically represented the “VA 

emotion space” occupied by various emotion words as ellipses, and observed that 

considerable overlap exists between the VA emotion spaces of emotion words 

associated with the basic emotions of Anger, Surprise and Fear. This overlap is 

confirmed by the dichotomized VA representations of output emotions (Table 2.2, 3rd 

column), respectively sourced from the strongest proponents of VA [18][19]. By their 

own accounts, VA space reveals severe to near total overlap between some output 

emotion categories in the VA space: namely the (Anger, Surprise), (Fear, Anger) and 

(Disgust, Fear) pairs. These conclusions are aligned with leading emotion theorists 

who criticized VA for being insufficient to “capture the differences among emotions” 

[36] and having “little explanatory value, and not much predictive power” [37].  
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2.5.2 Complementary Approach 

From the strengths and limitations of being restricted to just one perspective, it 

is clear that affective understanding in film can benefit from a complementary 

approach where each perspective offers its tools and paradigms to address facets of the 

affective problem that it handles well and others are not able to. For our approach to 

retain the original theoretical bases of these perspectives, we utilize their tools and 

paradigms in the manner consistent with their purported theoretical strengths and 

properties, as examined previously and summarized in Table 2.1.  

Due to a loose underlying consistency amongst the perspectives, features 

motivated primarily by one perspective may exhibit discernible relationships with 

others. Thus some may, in attempting to “unify” matters, force features arising 

naturally from all perspectives (e.g. the underlying physiological basis of speech audio 

features causes it to map more naturally in the Darwinian perspective) to map to the 

VA representation before mapping to the output emotions. However this hierarchical 

approach introduces information loss, stability and efficiency issues, especially in a 

complex domain such as affective classification. Instead the complementary approach 

fuses these features in a heterarchical manner by expressing them directly in a high 

dimensional space (concatenated into vectors), from which meaningful patterns can be 

extracted by a powerful inference engine. In this way, complex dependencies amongst 

features and output emotions can be captured directly, thus ensuring greater 

classification accuracy. The rest of the chapter will apply this complementary approach 

to show how the perspectives work together to decide on the choice of output emotions 

and low-level input features. 
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2.5.3 Output Emotion Categories 

A well chosen set of output emotions, besides simplifying complexity, is vital 

for consistent and principled manual ground truth labeling. In our view, this set should 

obey the following four criteria: 1) Universality: Each emotion can be universally 

comprehended and experienced. 2) Distinctiveness: Each emotion is clearly 

distinguishable from the other. 3) Utility: Each emotion should have significant 

relevance in the film context and finally 4) Comprehensiveness: The emotions in the 

set should be adequate to describe nearly all emotions in film. The first two criteria 

pertain to any general emotion categorization, whereas the last two are relevant for 

film domain application.  

As discussed in Chapter 2.5.1, the cinematographic perspective offers the 

notion of genre as possible output emotions but the genre is a movie (and not affective) 

descriptor, and hence is too blunt and inappropriate for describing scene-level affective 

content. The Darwinian perspective offers Ekman’s List which has been proven 

TABLE 2.1 
Summary of Complementary Approach 

Perspective Cinematographic Darwinian Cognitive (VA) 

Area of Strength Most related to 
production of film

Organize 
emotions into 

families 

Represent emotions 
in VA space well 

Tools provided  Film Grammar Basic Emotions  VA Space  

Main 
Contribution Input features 

Guide to choose 
initial emotion 

categories. 
Input features.   

Visualization of 
emotion membership 

and neighbor 
relationship. 

Input features.   
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through substantial experimental backing to be universally identifiable and 

distinguishable across cultural borders [40]. Ekman’s List has the chief advantages of 

fulfilling the first two criteria, and is thus used as the principal guide in choosing 

output emotions.  

We now want to adapt Ekman’s List to satisfy the other two criteria specific to 

film. To begin, we investigate the relevance of Ekman’s List to cinema viewers. We 

carried out a survey where nine respondents, each randomly assigned two movies, 

were asked to propose a word for each individual movie scene that would suitably 

describe their feelings about it, given a list of 151 emotion words found in [18] as a 

non-exhaustive guide. We note that because the respondents felt there were many 

emotionally neutral scenes, we add to the basic emotions in Ekman’s List a Neutral 

emotion category (no emotion). The second column of Table 2.2 lists the most 

commonly suggested emotion words and their correspondences with the emotion 

categories. From the table, we can see how the more specific emotion words are 

related to the emotion categories. This, with one exception, attests to the utility of the 

basic emotions, in the sense that they can be readily associated with the more specific 

emotion words.  

Unsurprisingly, the exception “Disgust” cannot find any correspondence with 

the genres and viewer feelings. This is primarily due to the lack of scenes that seek to 

evoke “pure” disgust in the viewer. Furthermore, cinematic scenes with an element of 

Disgust often contain a strong element of Fear and are thus subsumed under it. Due to 

its lack of utility in the cinema context, Disgust is henceforth dropped, leaving us with 

a set of what we term the six output emotions (Happy, Surprise, Anger, Sad, Fear and 

Neutral). 
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 For the sake of comparison, Table 2.2 also lists the correspondence between 

the output emotions and their approximate locations in VA space (3rd column), as well 

as the rough correspondence with film genres (4th column). This corroboration serves 

to strengthen the notion that the output emotions are relevant for describing movie 

affective content. Note that some of the genres such as drama and romance, which 

TABLE 2.2 
Descriptor Correspondence between Different Perspectives 

Output Emotions 
(Psychological) 

Feelings 
(Viewer) 

Dichotomized 
VA Space 

Genre 
(Cinema) 

Anger  
(Aggression) 

Exciting, 
Dangerous, 

Aggressive, Angry 

Action, 
Adventure  

-V+A 
+V+A Action 

Sad Depressed, Sad, 
Bad, Hopeless -V-A Melodrama 

Fear Scary, Fearful, 
Terrified -V+A Horror 

Surprise Surprised,  
Tense, Anticipation

-V+A 
+V+A 

Suspense, 
Thriller 

Happy 
 

Exuberance, 
Joyous, 

Enjoyment, Happy, 
Heart-Warming, 

Tender, 
Sentimental, 

Relaxed 

+V-A 
+V+A 

Comedy 
 

Disgust - -V+A, -V-A - 

Neutral Neutral, Boring (V=0)-A - 

 
Italicized feelings corresponding to Happy differ from the non-italicized feelings in 
terms of arousal, a fact that will be used later. The +,- represents the positive and 
negative half of the Valence(V) and Arousal(A) axes. 
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reflect a multiplicity of emotions, cannot be matched uniquely to the output emotions 

and are thus omitted from Table 2.2. 

To check for comprehensiveness, we used VA space as a tool to visualize the 

extent of coverage of the output emotions. It serves as an approximate test for 

comprehensiveness, in the VA sense, by showing up any large VA areas neglected by 

the emotions. To visualize the output emotions, we associate them to the closest 

related emotion words – drawn from viewer feedback in Table 2.2, 2nd column where 

possible – as found in the 151 emotion words list. This is because we view each group 

Figure 2.3 Plotting basic emotions in VA space. The VA spaces occupied by basic 
emotions Anger(+), Sad(o), Fear(*), Happy(x), Surprise(square) and
Disgust(diamond) according to manual feedback, centered around mean and 
bounded by one std. deviation. The exact emotion words used are, in order of
increasing arousal in each set, (Angry–anger, aggression), (Happy–relaxed, 
leisurely, kind, affectionate, enjoyment, joyful, happy), (Sad - sad, depressed), 
(Fear-fearful, terrified), (Surprise – tense, surprised) and (Disgust - disdainful, 
disgust). 
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of emotion words associated to an output emotion as “constituting a family of related 

affective states, which share commonalities in their expression, physiological activity, 

and in the types of appraisal that call them forth” [35]. These emotion words are finally 

mapped to the VA space in Figure 2.3, using the mean and standard deviation values 

of valence and arousal of those emotion words computed from manual feedback [18]. 

The diagram reflects the extent of coverage of the output emotions. Disgust is 

mapped for completeness, while Neutral, because it represents absence of emotion, 

does not have visualization data. The emotion areas which are more densely occupied 

form a rough U-shape; such distribution reflects the psychological reality that areas of 

high Arousal-neutral Valence and low Arousal-high Valence characterize uncommon 

affective states and are thus sparsely occupied. Expectedly, the only significant 

unoccupied region of VA space is centered on the neutral valence, low arousal area, 

vindicating the inclusion of the Neutral emotion in the output emotions.  

2.5.4 Finer Partitioning of Output Emotions 

As a natural extension of our work, we investigate into the possibility of finer 

meaningful output emotions. This is motivated by the fact that not all the six output 

emotion categories have equivalent status in the context of this work. The “Happy” 

emotion enjoys a privileged position in cinema, as mainstream cinema-goers still 

prefer to have a positive and enjoyable movie experience. This is attested by the fact 

that amongst the genres that can be strongly identified with an emotion (Table 2.2, 4th 

column), comedy is by number of movies the most popular genre (about 75,000), 

followed by the action genre at a distant second (about 18,000) [45].  
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The Darwinian perspective provides another motivation to subdivide “Happy”, 

which is observed to contain the most diversity in affective states [35], and hence able 

to yield sufficiently distinctive finer partitions. This observation is explained by the 

fact that four of the six basic emotions (Anger, Sad, Fear, Disgust) in Ekman’s List 

have immediate survival functions, and have thus evolved unique reaction patterns 

[36], including facial expressions, upon which Ekman’s List is based. In contrast, 

“Happy” contains multiple distinctive sub-families of positive feelings under it 

because due to the lack of immediate survival need, none have evolved its own unique 

facial expression away from the smiling expression [46]. This is borne out by the 

cognitive (VA) perspective in Fig. 2.3, which shows “Happy” affective states to be the 

most numerous. Hence we feel that it would be useful and cinematically relevant to 

extend our work by further partitioning the feelings used to describe “Happy”. 

We now attempt to partition “Happy” with the four criteria of output emotion 

selection in mind. To retain cinematic utility, comprehensiveness and universality, we 

confine ourselves to defining the partitions with the feelings used by viewers to 

describe “Happy” emotion in Table 2.2. Referring to the italicized and non-italicized 

words used to describe “Happy” feelings in Table 2.2, there seems to be two 

sufficiently distinctive sub-families of “Happy”.  The two reasons supporting this 

partition are as follows. Affectively, the non-italicized feelings encompass enjoyment 

and exuberance, and such scenes tend to be comedic or merry-making. The italicized 

feelings embody relaxation, kindness and tenderness, and these scenes are likely to be 

leisurely or heartwarming. Also in VA space, the two groups of feelings tend to be 

high and low in arousal respectively (Figure 2.3). Henceforth, these partitions are 

labeled as Joyous and Tender Affections (abbreviated as TA) respectively. As 
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examples, a scene where a parent comforts a child who has lost a toy falls under TA 

while comedic situations or boisterous friendly reunions fall under Joyous. 

Classification tests are carried out for both set of output emotions before and after this 

partitioning.  

2.5.5 VA Space for Ground Truth Arbitration 

To arbitrate over the output emotion assigned to emotionally ambiguous scenes 

that defy manual labeling of ground truth, we attempt to lay out the output emotions in 

the VA space (Figure 2.4) so that the entire emotional spectrum can be visualized in a 

glance and used as a guide. Note that Figure 2.4 is meant to conceptually depict the 

neighboring relationships between categories and approximate spheres of membership 

rather than literally demarcating crisp boundaries. In cases of ambiguity, the ground 

truth labeler can use the VA map as a last resort to arrive at a more objective final label. 

Figure 2.4 Conceptual illustration of the approximate areas where the final affective
output categories (in bold) occupy in VA. 



 

 

 

 

38

For example, in several scenes of The Sixth Sense, the protagonists conversed in 

worried tones. Although it is not immediately apparent which category “worry” 

belongs to, thinking in terms of where “worry” falls in VA space suggests that it 

should occupy the low arousal, low valence region, which coincides with Sad in Fig. 

2.4. Therefore these “worry” scenes are categorized under Sad. 

To function as an arbitrating tool, Figure 2.4 should avoid the emotion overlap 

illustrated by Figure 2.3, while preserving cinematic relevance and comprehensive 

coverage in the VA space. Hence it is necessarily a modification of Figure 2.3, and the 

boundaries of the output emotions have been suitably modified. Surprise is situated in 

negative valence regions to reflect the fact that Surprise scenes are mostly tense and 

suspenseful, as opposed to being pleasantly surprising. Aggression has also been 

shifted closer to neutral valence to acknowledge that such scenes are usually meant to 

excite, and not to provoke extreme infuriation. 

2.5.6 Feature Selection 

Though features exhibiting law-like or rigorous relationships with the emotion 

representations of various perspectives are desirable from a classification standpoint, it 

is realized such rigidity is incongruous with the vast artistic freedom in the film 

domain. For instance, just because Fear scenes tend to be dark does not imply TA 

scenes cannot be similarly lit. Therefore, we prefer to obtain features by utilizing 

guidelines stating how each perspective suggests features with significant affective 

implications. These guidelines are provided below, while the resultant features are 

detailed in the next chapter. 
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A) Cinematographic perspective: There are often film grammar rules with 

affective implications. Examples include the shot duration and lighting key introduced 

in Chapter 3.2. The corresponding features can then be computed. Sometimes, these 

rules suggest features which are mapped to VA space instead of directly to the output 

emotions. An example is the shot duration in Chapter 3.2. 

B) Darwinian perspective: Many results in categorical perception show that 

the representation of some entity is critically related to its categorical membership [44], 

which implies that the underlying representations are different resulting from different 

categorical membership. The Darwinian perspective, by virtue of furnishing much of 

the basic emotional categories, clearly influences what features are to be used to 

represent these emotion categories. For instance, the audio features in Chapter 3.1, 

namely the Audio Type Proportion (ATP) and Scene Affective Vector (SAV), are 

selected (with the aid of cinematographic rules) in such a way that best separates the 

set of proposed emotion categories.  

C) Cognitive (VA) perspective: The requirement of VA to stringently reduce 

features to at most two dimensions renders many complex, multimodal but informative 

features unsuitable for direct feature-to-VA mapping. This is especially so when 

features are supposed to model the high level film domain, thus limiting the usefulness 

of VA for feature selection. But occasionally, the concept of affective dimensions (in 

our case valence and arousal) recommends features with a strong connection to those 

dimensions. Good examples of such features are color energy and visual excitement in 

Chapter 3.2. 
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3CHAPTER III 

FEATURES AND EXPERIMENTAL RESULTS 

 

In this chapter, the design and extraction of the low-level audiovisual cues used 

for affective classification are elaborated upon. We describe the probabilistic inference 

engine used in this work. Finally the experimental results are presented, followed by 

the conclusion. 

3.1 Audio Features 

Hitherto under-exploited, audio cues play an important role in this work. Five 

channels of information in film have been identified by Metz [13], which are: 1) the 

visual image, 2) print and other graphics 3) music, 4) speech and finally 5) sound or 

environmental effects. Interestingly, the majority of them (MSE – Music, Speech and 

Environ) are auditory rather than visual, implying that the auditory stream is a 

potentially rich source of information.  

The influence of Music, Speech and Environ (MSE) audio on the affective 

experience has come a long way since the bygone silent film era, and its importance 

can be testified by the money spent in the technology and talent to create aurally 

realistic/powerful experiences. A main reason is because it is easier to create audio 

stimuli that enjoy a closer correlation with the affective content compared to the visual 

stimuli. This is usually due to plot, budget or venue requirements that constrain the 

visual composition of a scene from optimally bringing out the mood the director 



 

 

 

 

41

intends to convey. For example, whereas the world environment and architecture in a 

fantasy movie like The Lord of the Rings may be freely designed to convey certain 

feelings in a visually spectacular fashion, the scope for such techniques is somewhat 

limited in films like Love Actually, which takes place in an ordinary urban setting. 

However the opposite is true of the accompanying music, which has much greater 

flexibility than its visual counterpart, as can be seen by the way music has been used in 

both the above movies to arouse emotions to great effect. Thus in the following audio 

sub-sections, we show the effective low level audio features derived based on 

considerations (particularly in relation to the seven output emotions chosen) discussed 

in Chapter 2. 

3.1.1 Audio Type Proportion 

Audio type classification refers to the classification of a short audio interval 

into one of these four types: music, speech, environ or silence. The audio type 

proportion (ATP) refers to the relative durations of the respective audio types to the 

scene duration in any particular scene. There are instances when the sound track will 

contain a mixture of different MSE simultaneously, however this is confusing and 

consequently rarely occur. The exception is speech-music, where the voice follows the 

affect and tune of the music (like in songs). This combination is classified as music, 

which is adequate for our classification purposes.  

While the audio aspect of film grammar is not as formalized as its visual 

counterpart, we conjecture scenes with different emotions tend to possess unique ATP 

signatures. Both cinematographic and Darwinian perspectives suggest that different 

audio types are naturally suited to provoke different emotions. For instance, silence is 
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regularly prescribed as a tried-and-tested means to provoke surprise, whereas an 

aggressive scene is usually accompanied by a liberal amount of environ audio type (e.g. 

crashing and gunfire sounds) generated by the violence on hand.  

To obtain the ATP, the entire audio stream is first divided into scenes based on 

manual scene segmentation. Starting and ending with the scene boundaries, type 

classification is carried out for every two second segment. Silence segments are first 

identified by thresholding the average segment energy. Two features, which are 

chroma difference and Low Short Time Energy Ratio (LSTER) [24], are subsequently 

extracted from each remaining segment. From experiments, LSTER is very effective 

for separating speech from music and environ segments. Finally, to differentiate 

between music and environ segments, we propose a simple, novel and effective feature 

we term “chroma difference”.  

Western music is based on a reference set of 12 semi-tone musical frequencies, 

grouped together to form an octave. Higher and lower musical frequencies are derived 

by halving or multiplying all the semitones in this reference octave by a factor of two 

to form new octaves. Two of the properties of western music are: (a) semitones spaced 

an octave apart are harmonic and thus sound similar (b) sound energy is confined 

overwhelmingly to the semitone (music) frequencies. The chroma [28] vector, a 12x1 

vector denoted as Chr, exploits property (a) to sum the energies for each of the 12 

semi-tones across all octaves to summarize music characteristics. We exploit property 

(b) to differentiate music and environ with this chroma difference feature computed as 
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where Chri is the ith entry of Chr. Chroma difference tends to be higher in music 

compared to environ segments, because for environ segments, energy is usually 

randomly and uniformly distributed in the chroma; whereas music has high and uneven 

energy concentration in certain chroma bins. Segments are finally classified into its 

MSE type with the two features using a simple SVM. 

To quantify and automatically sift out the broad patterns presented by ATP 

across emotions, we construct four ATP histograms – corresponding to the four audio 

types – for each of the seven emotions. Each of these histograms is divided into 10 

equal bins [0-10%, 11-20%, 21-30%, 31-40%, 41-50%, 51-60%, 61-70%, 71-80%, 81-

90%, 91-100%]. For each emotion, the bin denotes the percentage of scenes, whose 

duration of a particular audio type (relative to the scene) falls into the range of that bin. 

For instance, the 2nd bin (11-20%) of a Sad-music ATP histogram is incremented for 

each Sad scene with a sound track containing 11-20% of music by duration. The 28 

histograms constructed are presented in Figures 3.1-3.4. 

 Clustering is a useful analytic tool to discover underlying patterns to the ATP 

histograms. However to employ clustering, some sort of distance or similarity measure 

needs to be defined between histograms. We adopt the use of an “Earth-Mover” 

Distance (EMD), which for two histograms identical in everything but their bin values, 

is the minimal “movement” cost required to “move” probabilities across the bins such 

that one histogram is transformed into the other. As an illustration, let p be the 

“amount of probability” shifted across distbin number of bins, then movement cost 

incurred is computed as  

    (probability) *  (distance traversed in bin units)binp dist  (3.2) 
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Computing EMD using the brute force approach is a troublesome matter, however the 

following is an elegant alternative. First we compute the cumulative histogram, 

denoted as CHi, for ATP histogram Hi. A histogram intensity measure HIi is then 

computed for each CHi as: 

 
10

1

( )i i
b

HI b
=

=∑CH  (3.3) 

where b is the bin index of CHi and CHi(b) is the value of the bth bin. HIi tends to be 

higher for histograms with probabilities skewed towards the lower bins and lower for 

histograms with probabilities skewed towards the higher bins. Then the EMD between 

two ATP histograms Hm and Hn is simply 
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1

( , ) ( ) ( ) .m n m n
b

EMD b b
=

= −∑H H CH CH  (3.4) 

Now, we search for patterns exhibited by the ATP histograms within each of 

the four audio types according to the procedure below: 

 

Within each audio-type group (which consists of seven ATP histograms – one for each 

emotion)  

    1) Sort ATP histograms Hi with i=1,2,…,7 according to HIi. 

    2) Compute EMD between every consecutive Hi. 

    3) Split the sorted histograms into clusters between every pair of histograms m and n 

with EMD(Hm, Hn)>1. 

    4) Within each existing histogram cluster, if the EMD(first CH, last CH)>1, then 

split at the location of maximal EMD within the cluster to form two clusters.  
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    5) Check that every existing histogram cluster has EMD(first CH, last CH)<1. If yes, 

stop. If not then proceed to step 4. 

For our experiments, exactly two clusters are formed for each audio type 

histogram series. The results of this ATP clustering are shown in Table 3.1. 

The cinematographic and perhaps Darwinian perspective provides some 

intuition to interpreting Table 3.1 and Figures 3.1-3.4. Speech is relatively heavily 

employed by Joy and Neutral scenes (Table 3.1 and Figure 3.1), which is not 

surprisingly given that most Neutral scenes are dialogue scenes. Also, a majority of 

Joyous scenes consist of friendly gatherings or comedic situations, where dialogue is 

critical to conveying the intended atmosphere or comedy. On the other hand, the rest of 

the emotions exhibit significantly less verbosity, particularly for Sad and Fear scenes. 

This is reasonable, given the reticence of sad characters (who usually appear in Sad 

scenes). Frightened characters (usually appearing in Fear scenes), besides being 

possibly reticent, often find themselves in lonely situations with no one to converse.  

The patterns of environmental noise distribution across the different emotional 

classes show up two very distinct clusters (Table 3.1 and Figure 3.2). The first cluster 

consists of the Anger and Fear scenes, where environmental noise is relatively 

prominent. This noise typifies the loud chaotic surroundings, gunfire and noise from 

TABLE 3.1 
Relative Audio Type Proportions For Basic Emotions 

Emotions Anger Sad Fear Joyous Surprise T.A. Neutral 
Music + + + - + + - 
Speech - - - + - - + 
Environ + - + - - - - 
Silence - + - - + + - 

The symbols [+, -] represent the relatively low and high HI of the ATP histograms 
respectively for each emotion within each audio type group. 
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frantic activities so effective in creating the atmosphere of violence and terror common 

to these scenes. Environmental noise plays a more subdued role for the rest of the 

emotions in the second cluster and is consequently minimized.  

Silence frequently slips under the consciousness of the audience despite 

playing a subtle and important role in shaping the emotional perception. Once again, 

we observe two distinct clusters of silence histograms (Table 3.1 and Figure 3.3). The 

first cluster, which includes Sad, Surprise and Tender scenes, uses relatively liberal 

amounts of silence, though the mechanism whereby silence provokes the respective 

emotions is different. Silence enhances the soberness of Sad scenes while allowing the 

spectator an opportunity to engage in reflection or despair. It provides the pause 

necessary for engendering a sense of contentment, relaxation and quiet happiness for 

Tender scenes. Finally for Surprise scenes, it acts as the unsettling preamble to build 

audience suspense to an unbearable climax. The remaining emotions in the second 

cluster do not resort as readily to silence to convey themselves. 

Finally, as a powerful and versatile mood inducing medium, music can be used 

to provoke almost any kind of emotion, as can be seen from the nearly uniformly 

distributed music proportion histograms (Table 3.1 and Figure 3.4) for the majority of 

categories. In fact, although one expects melancholic music to play a major role in Sad 

scenes, it is still rather remarkable to note that the sound tracks from 10% of all Sad 

scenes are pure music compositions. The only emotion classes that under-weigh the 

use of music would be the Neutral and Joy categories. Due to the lack of emotional 

content, Neutral scenes have little need for music. 
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Figure 3.2 Environ audio proportion histograms for emotional classes. 
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Figure 3.1 Speech audio proportion histograms for emotional classes. 
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Figure 3.4 Music audio proportion histograms for emotional classes. 
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Figure 3.3 Silence audio proportion histograms for emotional classes. 
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3.1.2 Audio Scene Affect Vector (SAV) 

As pointed out, each MSE channel contains significant affective information. 

Owing to their origins and as well as semantic meanings, these three indispensable 

audio components of modern cinema are significantly different and in turn have to be 

treated in their own appropriate and unique ways. Amongst the triad, speech is the 

most indispensable. This is due to the predominance of the usage of speech in life, 

which necessitates its screen portrayal. Serving mostly as the primary vehicle for 

humans to interact one with another and to advance the plot, it also informs the 

spectator via devices like narratives and voice-overs. Due to the predominance of 

speech, and strong linkage between speech features and output emotions, speech plays 

the most important role amongst the triad. Music is similarly informative but due to its 

modest usage is slightly less influential. Lastly, though environ sound is the least 

distinctive of the triad, it can still distinguish between broad sets of emotions.  

This suggests the approach of computing appropriate low level audio features 

that contain affective information for each MSE type, and combining this information 

across a scene to obtain the scene affective composition, also known as the audio 

Scene Affect Vector (SAV). The SAV is a vector denoting the amounts, or 

probabilities, of the output emotions existing in a scene based on the audio track. Since 

the dimension and nature of the SAV are solely dependent on the exact output 

emotions chosen, it is intimately related to the Darwinian perspective. 

For a brief review, high accuracy for speech and music mood detection has 

been achieved by the current state of the art. For instance, New [26] achieved 78.1% 

accuracy in classifying speech emotions for Ekman’s List of emotions. The dataset 

comes from twelve speakers, reading standard scripts under laboratory conditions. Liu 
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[25] obtained 86.3% accuracy in classifying music clips into the four classes of 

contentment, exuberant, anxious and depression, with data consisting of meticulously 

prepared clips from the classical and romantic period.  

In contrast to the specially prepared data of those works, the vast diversity of 

movies has thrown up for us a very difficult dataset. The speech segments alone 

contain speech spoken by diverse races, gender, age groups and in multiple English 

dialects, styles, pitch, speed and volume. Similarly, the music segments feature large 

diversity of styles from different eras, generated from different instruments. In addition, 

the movie soundtrack is often interspersed with significant amount of incidental noise. 

It is under these trying circumstances that music and speech are both classified into 

seven output emotions. 

In order to effectively integrate the audio information from all the MSE types at 

the scene level, we have proposed the following algorithm (Figure 3.5). Initially, audio 

segments belonging to the same MSE type and scene are concatenated together, 

subject to only one constraint: speech segments cannot concatenate across shot 

boundaries, because they usually denote speaker change, whereas music easily 

stretches across shots. These concatenations are then partitioned into affect units of 8, 

4 and 2 seconds duration for music, speech and environ sound respectively. These 

durations are chosen because they are typically the least time required for a confident 

assessment of the affective content for the corresponding MSE type. For instance, four 

seconds is about the least time required to aurally discern the emotion of a speech 

fragment. Affect units are then labeled with the output emotion of the scenes they 

belong to. Each MSE type requires a different set of suitable features [24]-[28] to 

recover its affective content. Thus for each affect unit, we compute the set of features 
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appropriate for its MSE type, and organize these features into a vector. Here we 

present the details of the features and the basis for using them.  

Automated classification of speech emotion has been a topic of research for 

about fifty years: it has been discovered that psycho-physiological characteristics like 

air intake, vocal muscle, intonation and pitch characteristics vary with emotions. 

Computable speech features, also known as prosodic features, are able to measure 

these characteristics, hence directly aiding speech emotion classification. To compute 

the prosodic features for every 4 second speech affect unit, it is divided into 40 frames 

each lasting 100 milli-seconds. Discrete Short Time Fourier Transform is then 

performed on the signal of each frame to calculate the following features:  

 

Spectral shape features [25][42]: a) centroid, b) bandwidth, c) roll-off and d) spectral 

flux. These four features provide broad information on the shape and range of the 

spectral energy distribution for each frame, and how fast it varies from frame to frame, 

as emotion affects the energy distribution of voiced speech.  

 

Raw power feature: power of the unprocessed audio signal is used as a feature. 

 

Log Frequency Power Coefficients (LFPC) features: The most notable of prosodic 

features is a set of 12 frequency sub-bands [26], across which the distribution pattern 

of spectral energy is able to distinguish between different emotions in human speech. 

The energies of these twelve sub-bands are known as the Log Frequency Power 

Coefficients (LFPC), and constitute the key prosodic features used.  
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 Since the abovementioned 17 features are extracted from each of the 40 frames 

belonging to a speech affect unit, it is possible to calculate both the mean and 

variances for each individual feature above with respect to the affect unit. This results 

in a 34x1 vector –17 from the means and 17 from the variances of each feature – to 

describe a speech vector. 

For music mood identification, there is little consensus at present on the exact 

mechanism whereby music evokes emotions. However numerous references such as 

[43] and those found in [25], in accordance with established music knowledge, agree 

that aspects like music mode, intensity, timbre and rhythm play important roles in 

evoking different musical moods. To compute the music related features for a 8 second 

music affect unit, we have divided the unit into 40 frames each lasting 200 milli-

seconds. Discrete Short Time Fourier Transform is then performed on the signal of 

each frame to calculate the following features:  

 

Spectral shape features [25][42]: a) centroid, b) bandwidth, c) roll-off and d) spectral 

flux. These four features outline the shape and range of the spectral energy distribution 

for each frame, and how fast it varies from frame to frame, providing some useful 

information on the timbre of the music. 

 

Raw power feature: power of the unprocessed audio signal is used as a feature. 

 

Chroma features [28]: The energies of the frequency sub-bands belonging to the 

semitones in 7 consecutive octaves, from the lowest note as C1=32.7Hz to the highest 

note at C8=4186Hz, are extracted using 84 filter banks, due to the 12 semitones in 
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each of the 7 octaves. The chroma vector, a 12x1 vector, is obtained by summing the 

energies of the same type of semitones across the octaves. 

 

Dominant Music Scale feature: According to the influential “Doctrine of the 

Affections” [20], the music scale measures the valence of a music piece (minor scale 

for sad and major scale for happy). Both minor and major scales have their own unique 

semitone interval patterns which restricts the set of permissible semitones playable. 

Exploiting this fact, it is possible to compute the music scale of a frame: the energies 

of various semitones in the chroma vector are summed up according the individual sets 

of permissible semitones [133] for both scales, and the scale that receives the higher 

energy for this summing operation is deemed to be the scale of the frame.  

 

There are in total 17 spectral shape, raw power and chroma features extracted 

from each of the 40 frames belonging to a music affect unit. Similar to speech, the 

mean and variances of these individual features are computed with respect to the music 

affect unit, resulting in a 34x1 vector – 17 from the means and 17 from the variances 

of each feature. Two additional sets of features: a) the normalized mean chroma vector 

of the affect unit and b) the percentages of music frames classified as major and minor 

scale within the affect unit are added to the 34x1 vector, bringing it up to a 48x1 vector 

used to describe the  music affect unit.  

 Environ sound can originate from many different sources and corresponds only 

very loosely to certain sets of emotions. Consequently, there are few features that 

particularly lend themselves to characterizing environ affect units: the mean and 

variance of the audio signal are used to represent each environ affect unit. 
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At this stage, each affect unit is represented by a feature vector of the 

appropriate features for its MSE type. All feature vectors of all affect units are divided 

into three sets according to MSE type. For each of these three sets, the feature vectors 

therein are divided into K=10 groups; with each group being sent into a SVM 

probabilistic inference machine to obtain the output vectors Vau while the remaining K-

1 groups function as training data. This inference machine, which is mentioned in 

detail in Chapter 3.4, takes an input feature vector and outputs a N×1 row vector Vau, 

where N is the number of affective categories and the entries of Vau represent the 

probabilities of the feature vector belonging to the respective categories. Let the 

number of affect units, indexed by i, in a scene be Ns. Let their corresponding 

durations be ti and output vectors be Vau,i, then 
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Figure 3.5 Illustration of the process of concatenating the segments into affect units to 
be sent into the probabilistic inference machine. D is for discarded speech segments that 
straddle shot boundaries.  
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The SAV, which constitutes part of the final scene audio cues, possesses several 

advantageous qualities. Firstly, it is time weighted to accurately reflect the contribution 

of every classifying unit. Secondly, since the output vectors Vau,i are probabilities, the 

SAV has a natural probabilistic interpretation; each SAV entry (SAVE) denotes the 

probability of the scene belonging to the corresponding category like Vau.  Thirdly, due 

to the integration of information from many affect units, the SAV is far less prone to 

outlier errors. Finally, using affect units of short durations better models the possibility 

of affects changing throughout the scene.  

If we use an ordinary SVM to classify individual speech and music affect units, 

the overall classification performances are 45% and 40% respectively. The main 

reasons for such dismal results are because 1) the training samples are insufficient and 

2) the movie sound tracks contain many instances of MSE type mixing, which are 

much harder to classify than audio with one pure MSE type. For comparison purpose, 

we utilize the SAV probabilistic framework to construct two modified audio SAVs for 

each scene: one constructed using only speech affect units and the other using only 

music affect units. If the class receiving the highest probability in each modified audio 

SAV is the test label of the vector, then the speech and music modified audio SAV will 

enjoy classification accuracy of 65% and 57% respectively. 

3.2 Visual Features 

We describe several visual cues and show their relationships with respect to the 

perspectives laid out in Chapter 2. Here we state some important preliminaries that 

apply to the visual features described in this section. Unless otherwise stated, the 

visual cues are computed exclusively in the HLS (Hue, Lightness, and Saturation) 
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color space. This is justified purely on the psychological evidence [19] that humans 

perceive the “emotional” influence of colors with respect to its Hue, Lightness and 

Saturation components. HLS histograms, where applicable, are generated by dividing 

each axis into 20 equal intervals.  

For reasons of computational efficiency, all visual features, except shot 

duration (Chapter 3.2.1) and visual excitement (Chapter 3.2.2), are computed from key 

frames. The first frame of every shot is declared a key-frame and further key-frames 

from each shot are then selected according to the method detailed in [2], which selects 

a current frame as a key-frame if its visual difference with the previous key-frame 

exceeds a threshold. Let the key-frame feature (KFF) for visual feature z of key-frame 

KFi be KFF[z, KFi] and ti be the number of ordinary frames that key-frame KFi 

represents. Then the scene feature SF[z, sn] of visual feature z for the whole scene sn 

with NKF key-frames is 

( KFF[ , ])
SF[ , ] .

KF

KF

N

i i
i

N

i
i

t z KF
z sn

t
=
∑

∑
               (3.6) 

3.2.1 Shot Duration 

From the cinematographic perspective, the perceived passage of time, also 

known as the pace, is manipulated to great effect by editing effects like cuts, which 

defines the shot length. As each shot conveys an event, the director can heighten 

arousal and intensify a scene by increasing the event density via rapid shot changes 

[22]. To the viewer, rapid shot changes capturing the main action from different angles 
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certainly convey the dynamic and breathtaking excitement far more effectively than a 

long duration shot [11][23].   

Shot boundary detection is an essential first step. However since the system 

only needs to detect intra-scene shot boundaries, it does not need to consider 

challenging editing effects like dissolves or fades more often used for inter-scene 

boundaries. We start by computing the one dimensional shot boundary profile, M, 

which measures a certain visual distance between every frame pair F1 and F2. Let F1 

and F2 be similarly tessellated into 20×20 blocks, and let an L histogram (as in the 

HLS color space both these frames are represented in) be constructed for each of these 

blocks. Then M(F1,F2), or the visual difference between F1 and F2, is defined as the  

sum of the L2-norm between L histograms of all corresponding blocks of F1 and F2. 

Let j be a general frame index, then shot boundary is declared at frame i only if the 

frame fulfils these three criteria C1(i), C2(i) and C3(i): 
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C1(i) ensures the frame-pair frame visual difference is above a minimal value shot 

boundaries are empirically observed to exceed. C2(i) is used to disambiguate a true 

shot boundary from consecutive high frame visual difference due to fast or large 

moving objects (the latter case would have small 
2

2
j ij
=

∂
∂
Μ ). Finally, C3(i) encodes the 

condition that shots must last for a perceptible length of time. Average recall and 

precision rates are around 94%. The average shot length of a scene is then calculated 

as (total scene duration)/(no. of shots in scene).   
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3.2.2 Visual Excitement 

Motion plays a central role in the cinema experience owing to the intimate 

correlation between the degree of mental excitement and the perception of motion on 

screen. This correlation, broadly proven by a psycho-physiological study [21], seems 

to result from the natural association of fast motion with danger and excitement, as 

well as new activity or information. From the cognitive (VA) perspective, computing 

the arousal arising from motion, which we call visual excitement, is useful in 

differentiating between emotions in different halves of the arousal axis (Figure 2.3).  

Hence we explore a method to accurately determine this visual excitement by the 

motion present in a video sequence.  

Existing approaches [9]-[11] have proposed reasonable features to measure 

visual excitement. However in the affective context, those features suffer from a 

somewhat arbitrary mapping to visual excitement. In contrast, our proposed feature is 

actually obtained from a non-linear regression of actual psychophysical results 

obtained for visual excitement, thus reflecting the critical link between the low-level 

feature and visual excitement.  

Our visual excitement measure is based on the average number of pixels 

between corresponding frames that have changed according to human perception. This 

change is computed in the perceptually nearly uniform CIE Luv space, since visual 

excitement is intended to model human perception, and frame difference (L2-norm) 

calculations are required across the entire spectrum of possible colors. To compute this 

visual excitement measure between two consecutive frames F1 and F2, they are both 

similarly tessellated into 20x20 blocks. Let (L0,u0,v0) and (L1,u1,v1) be the average CIE 

Luv values of corresponding blocks from F1 and F2, and let the average frame 
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luminance be savL. To smooth over noise, the frame difference is calculated over a 

20×20 block (Figure 3.6) as 

  
( )

( )

2 2 2
1 0 1 0 1 0

2
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1/ 3 , 1/ 3

1/ 3 1/ 3 ,
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   (3.8) 

where a block is declared as changed if xfd is greater than threshold thresfd=7. Since 

frames low in savL tend to return lower visual excitement values, a scaling factor sL is 

used to increase the sensitivity of xfd to luminance differences for darker frames. Let H 

be the Heaviside step function, NH the number of blocks in a frame and let k index the 

blocks of each frame. Then Xfd is defined as  

   
1

( ( ) ) /
HN

fd fd fd H
k

X H x k thres N
=

= −∑     (3.9) 

Finally the visual excitement for each scene is computed as   

   
1

(1/ )* [ ( ) ]
cN

W
c fd fd f

f
N X X

=

+∑  s             (3.10) 

where Nc is the number of frames in the scene and f indexes the frame. In order to 

prevent bias towards slow motion clips, we add an offset bias (Xfd)W where W is a 

constant whose optimal value is empirically determined later.  

To determine the optimal parameters for the  visual excitement measure as 

objectively as possible, a diverse test set comprising of 82 video clips of various types 

and degrees of motion and lighting conditions are manually selected and segmented 

from seven movies. These clips feature explosions, large occlusions and special effects 

averaging around 15 seconds each and have only one type or degree of motion.  
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Figure 3.6 The amount of pixel change detected (%) for each pair of consecutive
frames using pixel sized (left) and 20x20 blocks for a video clip. Experimentally,
the plot for the 20x20 block size follows human perception of motion closely,
illustrating the smoothing benefits of aggregating pixel change over blocks.  

 

Three test subjects are instructed to give an approximate score to each clip, as 

far as humanly possible, according to how the motion (not the content) excites them. 

The clips that each test subject feel to be the most exciting and sedate are assigned ten 

and zero respectively, and used as reference (calibration) clips (Figure 3.7). Finally all 

the rest of the clips are scored manually on a linear excitation scale of zero to ten. 

Based on the scores, a proposed regression function with suitable parameter value of 

W=0.75 is obtained, with errors ranging from 0.1% to 13.45% and a mean of 3.91%. 

From the results (Figure 3.8), it is observed that the measure correlates very closely 

with the manual scale ranking. As mentioned before, few informative affective cues 

are suitable for such rigorous regression to even a very limited definition of 

psychological arousal (visual excitement). However the results show that the proposed 

measure is indeed an acceptable indicator of visual excitement. 
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Figure 3.8 Graph of the computed visual excitement measure plotted against the 
manual scale ranking for each movie clip. 

 
Figure 3.7 Video clips of various speeds on the scale of 0-10, arranged row-wise, 
with slower clips at the top and faster clips at the bottom. 
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3.2.3 Lighting Key 

In the cinematographic perspective, lighting is an extremely powerful tool, 

used specifically for the purpose of affecting the emotions of the viewer and 

establishing the mood of a scene. Generally two major aesthetic lighting techniques are 

frequently employed. Low-key lighting, or chiaroscuro lighting, is characterized by a 

contrast between light and shadow areas whereas high-key, or flat lighting, 

deemphasizes the light/dark contrast [22][1]. To generate the light-heartedness and 

warm atmosphere typical of TA and Joyous scenes, an abundance of bright 

illumination and a light background, in the form of high-key lighting, is usually 

employed. In the same vein, film grammar prescribes the use of dim lights, shadow 

play and predominantly dark background to recreate the Sadness, Fear and Surprise for 

sad, frightening or suspense scenes [22].  

From the above definitions of the two lighting keys, their differences are 

determined by two factors: 1) the general level of light and 2) the proportion of shadow 

area. [11] proposed detecting lighting key using the product of the mean and variance 

of the brightness of a frame. However the mean is very sensitive to extreme values. 

The variance is also not discriminative enough because it only measures the amount of 

deviation from a mean, and as such a high-key lighting frame can easily have the same 

variance as a low-key lighting frame.  

We have therefore attempted to formulate two visual features that can 

accurately quantify the aforementioned components of lighting key in order to better 

detect it. The median, Medl, is used as an indicator of the first component, which is the 

general level of brightness, due to its robustness in the presence of extreme values. The 

second component, the proportion of shadow area, can be characterized by using the 
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proportion of pixels, Pros, whose lightness fall below a certain shadow threshold Ths. 

This threshold is experimentally determined to be 0.18, at which an average saturation 

and highly textured surface no longer appears as textured.  

3.2.4 Color Energy and Associated Cues 

Psychological studies on color have shown that valence is strongly correlated 

to brightness and to a lesser extent saturation while arousal is strongly correlated to 

saturation [19]. Thus to capture these affective relationships, we have introduced what 

we call the color energy cue. This cue depends proportionally on the saturation, 

brightness and area occupied by the colors in a frame [22]. It depends also upon the 

hue, as in whether it contains more red (energetic) or blue (relaxing) components and 

the degree of contrast between the colors [22]. From the cognitive (VA) perspective, 

color energy measures the joint valence-arousal quality of a scene arising from the 

color composition alone. Thus, the degree of valence or arousal in a scene can be 

partially inferred by its color energy. For instance, a Joyous effect can be manufactured 

by setting up a scene with high color energy.  

Let i, j index the bins in the HLS histogram of an image and p(i) denote the 

histogram probability for bin i. Let d(i,j) denote the L2-norm in HLS space between 

bins i and j while M is the total number of pixels, over which index k iterates while sk, 

vk and hk are respectively the saturation, lightness and hue values of pixel k. Color 

Energy is defined as the product of raw energy (first term) and color contrast (second 

term) as:  

            ( ) ( ) ( )E( ) p p d , .
M

k k k
k i j

h s v i j i j
⎡ ⎤⎡ ⎤× × ×⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦

∑ ∑∑             (3.11) 
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The first term attempts to approximate the arousal caused by the color composition of 

an image by summing the product of sk and vk together, both variables that supposedly 

correlate positively with arousal. The E(hk) hue function weighs the resultant product 

with a value between [0.75-1.25], depending on the relative angular distance of hk to 

blue (relaxing – lower energy) and red (energetic – higher energy) respectively. In HLS 

space, the hue values of red and blue are 0 and 240 degrees respectively. Let distred and 

distblue be the minimal absolute angular differences of hk from 0 and 240 degrees 

respectively in a 360 degrees hue system (wrap-around from 360 to 0 degrees allowed), 

then E(hk) is defined as   

              1.25* 0.75*E( ) blue red
k

blue red

dist disth
dist dist

+
=

+
                                (3.12) 

The second term measures contrast within an image in terms of the colors and their 

amounts that make up the image. Colors that are very dissimilar generally produce 

greater contrast between themselves in the image and vice versa, which we attempt to 

capture with d(i,j). The function d(i,j) is multiplied by the product of p(i) and p(j) to 

factor in the greater influence of histogram bins with higher values.  

3.3 Inter-Feature Relationships 

To quantify the amount of correlation between each individual feature, we have 

computed the correlation coefficients according to  

 ( , )( , )
( , ) ( , )
C i jR i j

C i i C j j
=  (3.13) 

where C(i,j) is the covariance. The correlation matrix is illustrated graphically in 

Figure 3.9, with lighter cells denoting high correlation. From this matrix, several 
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observations can be made. Firstly, the level of intra-correlation of the three major 

groups of features is significantly stronger than the inter-correlation. At the same time, 

it may suggest some feature redundancy within especially the visual group. However 

given that some correlation is almost certain to occur within features of each group, 

and the small number of features relative to the power of the SVM, there is insufficient 

justification for feature pruning, which may harm classification accuracy.  

Secondly, the lower level of inter-feature correlation suggests that using audio 

features in addition to visual features does enhance classification accuracy because 

audio features contain information not available to the visual domain. Furthermore, it 

is interesting to note that though both ATP and SAVE are derived from audio 

information, the inter-correlation between them is not strong. This is because ATP 

deals with duration whereas SAVE mostly deals with how energies in specific 

VISUAL ATP SAVE

 

Figure 3.9 Feature correlation matrix.  
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frequency bands vary with time, confirming that the current separate grouping of these 

two groups is appropriate.  

3.4 Classification and Inference 

The affective features as described in previous sections are extracted and 

concatenated into row vectors to form the data points characterizing every scene. Due 

to the highly irregular nature of their probability densities, the classification method 

needs to be selected with care. In particular, no artificial constraint should be foisted 

on the data. This excludes parametric based methods or ad hoc rule based methods 

from consideration. In view of the requirements, we use a specially adapted variant of 

Support Vector Machines (SVM), which has proven highly successful for 

classification.  

The SVM, which can map vectors from an input space into a possibly infinite 

dimensional feature space and find the best separating hyperplane therein, has only two 

adjustable parameters and tends to be less susceptible to the curse of dimensionality 

[29]. This scheme does not make unwarranted independence assumptions regarding the 

interaction between audio and visual cues; any such interaction is left to the SVM to 

learn and exploit. As a kernel based method, it is also able to model extremely 

complicated class boundaries. Finally, the variant used allows flexibility in the features 

chosen and more importantly, outputs a posteriori probabilities for every category, 

permitting more refined characterization than binary outputs and allowing the presence 

of multiple emotions.  

To begin with, the data are normalized by shifting the centroid to the origin 

before dividing it by the mean of the absolute magnitudes. Then 10-fold cross 
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validation is used with grid search to obtain the optimal penalty and margin parameters. 

Subsequently, radial basis kernel SVM classifiers are individually trained for all 

unordered class-pair combinations. For instance, if there are seven classes in this work, 

then there will be (7*6/2)=21 class-pairs. In line with the ambiguous nature of those 

training data with dual labels, these data are included in the training sets of both 

classes of the class-pair SVM classifiers being trained, and excluded only if the SVM 

class-pair coincides with the dual labels. A posteriori sigmoidals fitted to the decision 

values of the SVMs are learnt for each class-pair [30]. The sigmoidals, with a, b as 

adjustable parameters, are of the form 

      1
1 exp( )i

i

p
af b

=
+ +

               (3.14) 

where pi is an a posteriori and fi a decision value. These sigmoidals are shown to be 

very good in modeling the a posteriori. The training phase ends when the parameters 

of all class-pair sigmoidals have been obtained.  

For the testing phase, a test vector vt – which in the general case is a vector of 

features representing a unit to be classified – is then processed by each class-pair SVM 

to obtain the decision values, which are in turn fed into the respective sigmoidals to 

produce class-pair probabilities. These probabilities are finally combined together to 

output a Ncx1 row vector where the entries are the a posteriori of vt belonging to each 

of the Nc classes [31]. For our work, the test vector vt is a vector of features 

representing either a movie genre, scene or shot depending on the specific application 

as seen in later sections.  
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3.4.1 Exploitation of Scene Temporal Relationship 

A natural inquiry into the affective analysis of Hollywood multimedia is this: 

do temporal relationships exist at a suitable level of abstraction that enables them to 

play a useful role in classifying scene affective information? At first sight, the answer 

is apparently positive. Afterall, Kang [10] and Zhai [12] have modeled such 

dependencies at the shot level using HMMs and FSMs respectively, with seemingly 

good results. However there are some serious caveats. In both works, only three 

emotion categories are specially chosen for the selectors’ algorithms. Furthermore, the 

input data are carefully selected and extremely limited at less than two hundred scenes. 

From our data, we observe there is a tendency for scenes of the same type to appear 

together. However it is not clear whether there really are significant causality 

relationships amongst scenes aside from this phenomenon. 

To investigate this issue, we carried out an experiment to ascertain if there is 

any advantage to adopt a temporal generative model like HMM as opposed to a 

discriminative model like SVM. Assuming Markovian distribution for scene labels, the 

idea is to obtain the probability distributions of the forward Markovian probabilities 

and prior forward probabilities between different categories and conduct a test for any 

significant statistical differences. Let PM(ci,cj) denote the Markovian forward 

probability of scenes of class ci preceding scenes of class cj, and Pa(ci,cj) denote the a 

priori probability of scenes of class ci and cj being adjacent to each other. If there is 

any exploitable temporal information, we would expect the probability distributions of 

PM(ci, cj) and Pa(ci, cj) to be different.  

Because the Kolmogorov-Smirnov test (KS-test) [130] does not make 

assumptions about the distribution of data, meaning it is non-parametric and 
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distribution free, the test is used to determine whether the distributions PM(ci, cj) and 

Pa(ci, cj) are different. We compare the seven column-wise one dimensional PDFs of 

PM(ci, cj), one at a time, with Pa(ci, cj), which is constant, at a statistical significance of 

5%. The results show that of the seven comparisons, only the Pa(ci,cj) of Fear is 

significantly different from Pa(ci, cj). Additionally, we used this data to construct a 

HMM inference system with the observation likelihoods provided by the SVM 

probabilistic output. However the results are poorer than using the SVM inference 

alone.  

We can only conclude that although there are certain exploitable temporal 

relationships amongst scenes, they are generally not strong nor widely applicable 

enough across all types of scenes. Secondly assumptions on scene label distribution 

may not even be appropriate for this problem. This argues against the use of specific 

temporal modeling techniques like HMM and FSM, which can possibly harm 

classification accuracy, although the use of other types of temporal modeling methods 

may yet prove beneficial. 

3.5 Experimental Results 

Our training data consists of 36 full-length and mostly recent mainstream 

Hollywood movies chosen to represent the more popular films. This translates into 

2040 scenes, whose percentage distribution by output emotions are Neutral(24%), 

Fear(8%), Joyous(13%), Surprise(16%), TA(11%), Anger(17%) and Sad(12%). There 

is also a diversity of directorial styles so that the training scenes are likely to be 

unbiased. Table 3.2 divides these films according to the major genres.  
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3.5.1 Manual Scene Labeling 

To obtain the ground truth for experimentation, we attempt to manually match 

the affective content of a scene to one of the output emotions.  If ambiguities arise, we 

resort to the VA diagram. Three persons are assigned to independently label each 

scene. To prevent fatigue and systematic bias, an individual labels only one random 

TABLE 3.2 
Movies Used For Affective Classification 

Action Horror 
The Fifth Element Ghostship 

Speed Queen of the Damned 
Lord of the Rings I The Haunting 

James Bond (Golden Eye) What Lies Beneath 
True Lies The Others 

Men In Black Dream Catcher 
Saving Private Ryan Ring 

Starship Troopers Gothika 
Star Wars I Legend of the Mummy 
Waterworld  

Jumanji  
  

Drama/Melodrama (D/M) Romance/Comedy (R/C) 
Forrest Gump There's Something About Mary 

Magnolia My Best Friend's Wedding 
Ghost Up Close and Personal 

Life is beautiful Bedazzled 
City of Angels 50 First Dates 

Artificial Intelligence Maid in Manhattan 
The Sixth Sense Love Actually 

 Bruce Almighty 
 Notting Hill 
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movie daily, of a genre different from the previously labeled movie. Except for 

unanimous decisions that stand, all scenes with dissenting views are reviewed using 

Figure 2.4 as a guide, which usually result in common agreement. Scenes where no 

agreement can be reached have dual labels; the main label that received two votes, and 

an alternate label that received one vote. Dual label scenes comprise 14.08% of all 

scenes; there are no cases with three differing votes. 

3.5.2 Discussion 

The testing is carried out by take-one-movie-out testing method using our 

system, whereby the scenes of an entire movie is used for testing while the remaining 

scenes are used for training. This method of testing, where every scene is classified 

into an output emotion, is repeated for every movie in Table 3.2. The results for all the 

movies are aggregated and presented in the form of a confusion matrix given in Table 

3.3 for the extended framework. For a clearer analysis of the algorithm performance, 

the confusion matrix is presented (Table 3.4) in the form of the confusion rate between 

every pair-wise emotion. Let c(i) denote the set of scenes in emotion class i, |c(i)| the 

cardinality of c(i), and err(i,j) the percentage of scenes from class i wrongly classified 

as class j from Table 3.3. Each cell(i,j) representing a unique pair-wise emotion in the 

upper diagonal of Table 3.4 is then obtained using the formula 

( ) ( , ) ( ) ( , )
cell( , )

( ) ( )
i err i j j err j i

i j
i j
+

=
+

c c
c c

    (3.15) 

and then normalized by dividing it by the sum of all the cells in Table 3.4 and 

expressing it in terms of percentage such that all the percentages add up to 100%. 
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Of the twenty-one possible pairs of emotions, Sad-TA, Sad-Surprise, Fear-

Surprise, Anger-Joyous, Anger-Surprise, Sad-Neutral and Anger-Fear are in 

descending order the seven pairs most culpable for errors. The confusion arises due to 

the frequent co-existence of these emotion pairs in cinema (i.e. the emotions of scenes 

that are labeled to contain two emotions usually belong to one of these seven emotion 

pairs). In some examples below, we illustrate typical instances of scenes where 

misclassification is common. For example, tenderness is often portrayed when 

someone comforts a despondent loved one. This implies that both TA and Sad emotion 

elements co-exist, thus increasing the classification error of the Sad-TA emotion pair if 

the classifier were forced to decide for only one of the emotions for such scenes. Large 

errors occur for the Sad-Surprise pair because many Surprise scenes are based on 

suspense, which occupies a very similar region in VA space (the low-arousal and low-

valence region) as Sad scenes.  

As for the third pair Fear-Surprise, these emotions are so intertwined in cinema 

that it is sometimes hard to even manually differentiate between them. Regarding the 

fourth pair Anger-Joyous, the difficulty arises because Joyous comedic scenes are 

usually slapstick in nature, and contain a fair amount of action elements inside, hence 

the confusion with Anger. In Chapter 2.5.1, the emotion pairs (Anger-Surprise) and 

(Anger-Fear) are two of the emotion pairs that have explicitly been identified by the 

cognitive perspective to overlap in VA space. Thus observation that these two emotion 

pairs are amongst the top seven pairs responsible for classification errors corroborates 

with emotion theory. 

Finally, neutral scenes are dominated by short scenes with dialogue in dull or 

subdued tones, which are not uncommon in Sad scenes, thus complicating the 
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discrimination of the Sad-Neutral pair. Having discussed the difficult cases, it is 

nevertheless well to note that the confusion matrix indicates that most scenes are 

classified correctly. Despite the challenge of classifying every scene of the entire 

movies, and the significantly larger number and increased subtlety of emotional 

categories compared to  existing works, the overall correct classification rate is 74.69%, 

or 85.82% if ‘alternate selected’ scenes are included (last row of Table 3.5). The 

second column under ‘Alternate Selected’ refers to those cases of dual label scenes 

whose dominant and alternate labels have received the second highest and highest 

probabilities respectively. Given the intrinsic ambiguity of these scenes and such a 

stringent criterion imposed, we believe that these so-called “alternate selected” scenes 

have been adequately classified and fully deserve a separate result category. 

Empirically speaking, the promising results suggest the classification of the affective 

categories is well-posed and separable using low level cues. 
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The results also shed light on the relative influence of the audio and visual cues 

on classification. Rows 2 and 3 of Table 3.5 present the classification results using the 

audio and visual cues individually and jointly. Firstly, it is evident that combining both 

audio and visual cues together for classification significantly outperforms either of the 

cues individually. The results also corroborate our view that audio cues are far more 

informative than visual cues with respect to affective content, confirming our initial 

expectations. To the extent that the visual cues presented in this paper have captured 

the visual reality, we observe that there is a general lack of strong correlation between 

TABLE 3.3 
Confusion Matrix for Extended Framework (%) 

 Anger Sad Fear Joyous Surprise TA Neutral 
Anger 69.38 3.93 5.62 8.15 7.30 0.84 4.78 
Sad 2.66 61.13 3.65 3.99 10.96 11.96 5.65 
Fear 7.57 1.08 83.78 0.54 6.49 0.00 0.54 

Joyous 6.59 1.55 0.388 80.62 1.94 2.71 6.20 
Surprise 6.16 11.23 9.42 1.81 65.22 3.26 2.90 

TA 0.00 17.35 0.00 3.20 3.20 71.69 4.57 
Neutral 4.50 7.19 1.57 5.84 5.40 4.05 71.46 

TABLE 3.4 
 Confusion Matrix for Pairwise Affective Classification (%) 

 Anger Sad Fear Joyous Surprise TA Neutral 
Anger 0 3.76 6.61 7.57 6.56 0.52 4.44 
Sad 0 0 3.19 3.19 11.68 15.81 6.75 
Fear 0 0 0 0.47 7.97 0 1.22 

Joyous 0 0 0 0 1.75 2.85 5.61 
Surprise 0 0 0 0 0 2.97 4.02 

TA 0 0 0 0 0 0 3.91 
Neutral 0 0 0 0 0 0 0 
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the simple low-level visual cues presented here and the affective content. For instance, 

except at the extreme regions of the HSL color space, color does not correlate well 

with the affective content [19]. This lack of correlation is compounded by the fact that 

the director is constrained by the plot and general settings in the amount of freedom to 

set up visual environments that will evoke the desired moods. 

However these difficulties do not seem to arise as severely for low level audio 

cues, where sound in film seems to be more immediately purposeful than visual details. 

In fact, the correlation between the low-level audio cues and the scene affect is in 

general so strong that unless there is a good reason for them to contradict (e.g. for 

comedic effect), the scene itself can easily be misinterpreted or appear jarring. Table 

TABLE 3.5 
Overall Classification Rate (%) 

 Correct Alternate Selected Incorrect 
Visual 42.86 9.87 49.27 
Audio 61.39 10.34 28.27 

Audio/Visual 74.69 11.13 14.18 

TABLE  3.6 
Ranking of Affective Cues 

Cues % Cues % 

  Silence Proportion  38.1   Environ Proportion  23.7 

  Joyous SAVE  32.1   Visual Excitement  20.2 

  Fear SAVE 28.7   Speech Proportion  20.2 

  Surprise SAVE  27.5   Median Lighting  19.7 

  TA SAVE  27.4   Shadow Proportion  19.4 

  Anger SAVE  27.4   Average Shot Length 17.6 

  Sad SAVE  26.2   Color Energy  17.4 

  Neutral SAVE  26.1   Music Proportion 16.7 
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3.6 ranks each cue according to the average rate of correct SVM classification between 

every pair of categories using only that cue. This table corroborates the finding that at 

the low-level, audio is more informative than visual cues. In particular, if one views 

absence of sound as an audio cue (a negative kind of audio cue), the top eight cues are 

all audio cues, with silence proportion as the most effective one. The sheer presence of 

absolute silence can be most dramatic and unsettling at times. 

The performance of our algorithm compares favorably with the 78.7% reported 

by Kang [10], the only work we are aware that has performed affective classification 

on Hollywood scenes. However with regards to Kang’s results, there are several 

important caveats. The test and training sets contain only selected scenes that are 

unambiguously manually labeled as one of only three classes: happy, sad or fear. The 

scenes were also selected from only six movie segments each lasting half an hour, as 

opposed to all the scenes in a movie. 

3.5.3 Application 

Machine understanding of the affective aspect of Hollywood multimedia can 

enhance and complement existing classification systems at several levels of resolution. 

Here we demonstrate applications at two levels: the more generalized movie genre 

level, and the more refined movie affective vector level (Figure 3.10). Other possible 

applications include using scene-level affective results for story unit extraction.  
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3.5.3.1 Movie Genre Level 

As it is, movie genres are sometimes too general to reflect the true character of 

a movie. For instance, genre labels seldom differentiate between comedic action and 

film noir action movies, or between tender drama and melodrama movies, although 

these differences substantially impact the movie experience. An obvious application of 

our work is to offer a more refined classification of any given movie and to detect dual 

genre movies, thus complementing existing genre classifications. In general, the genre 

of a movie can be largely determined by the proportion of time occupied by each of the 

affects. For example, a movie that has a significant amount of Fear and Surprise scenes 

is likely to belong to the horror genre. Therefore we let every movie be characterized 

by a movie affective vector (MAV), or Vi, 
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where i, s and Ni are the movie index, scene index and total number of scenes 

respectively. Λs,i is the vector of probabilities of each affective category for a scene 

Figure 3.10 Illustration of possible roadmap for applications based on affective 
understanding in film. Shaded areas denote completed tasks. 
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and τs,i is the duration of the sth scene in the ith movie. Effectively, Vi captures the 

affective content of a movie by weighing the affective vectors of the individual scenes 

comprising the movie with their duration. These scene affective vectors were already 

obtained by sending the scene feature vectors into the probabilistic classifier described 

in Chapter 3.4. 

The notion of affective vector then can be readily extended to the genre, Vg, 

where the summation and normalization is carried out over each genre rather than a 

movie. The genre of a movie can then be determined by the distance measured 

between an MAV and that of a genre.  We adopted the symmetrical Kullback-Leibler 

distance measure. Let the individual entries of the query and genre affective vectors be 

Vi,m and Vg,m, indexed by m which runs over every affective category, and i, g which 

are the movie and genre indices respectively. The measure Ma(i,g) is then defined as 
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A movie i is then assigned the genre g that returns the lowest Ma(i,g), because lower 

Ma(i,g) values indicate that similarity between a movie and the movies that make up 

the genre is strong. For the training, we take one movie out and train using the rest of 

the movies. The resultant classifier is then used to test the movie that has been taken 

out. This training-testing procedure is repeated for all the movies and 80.6% of all the 

movies are assigned the correct genre. All the “wrongly assigned” movies are listed in 

Table 3.7, where the 3rd and the 4th columns list the genres of these movies returning 

the lowest and second lowest Ma(i,g). As can be seen, the genres returning the second 

lowest Ma(i,g) values of all these movies correspond to the manual labels. This shows 
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that even for “wrongly assigned” movies, the manual labels of these movies have 

nevertheless received strong similarity values during testing. 

Further inspection reveals that these results indeed reflect the dual nature of the 

majority of the movies in Table 3.7. For example, Life is Beautiful is actually a 

romance/comedy in the first half and a melodrama in the second half, while Saving 

Private Ryan is accurately described as a melodrama with a strong action element. On 

the other hand, Artificial Intelligence is correctly classified as an adventure (action) 

movie with much melodrama. Interestingly, although Lord of the Rings I is billed as an 

action movie, it has far more than its expected share of scary scenes. Classified by the 

algorithm as being most similar to the horror genre, the movie would warrant a caution 

for young children viewing it.    

3.5.3.2 Movie Affective Vector (MAV) Level 

At the next finer level of analysis, the MAV offers a more detailed picture of a 

movie. Due to the probabilistic inference framework adopted, the relative amounts of 

each affective component within a movie can now be estimated, as shown in Table 3.8. 

TABLE 3.7 
Movie Genre Classification Based on Scenes 

Movie Title Manual 1st Label 2nd Label 
  Jumanji A H A 

  Lord of the Rings I A H A 
  Saving Private Ryan A D/M A 

  Up Close and Personal R/C D/M R/C 
  Notting Hill R/C D/M R/C 

  Life is Beautiful D/M R/C D/M 
  Artificial Intelligence D/M A D/M 

The labels refer to the genres: Action(A), Horror(H), Romance/Comedy(R/C) and 
Drama/Melodrama(D/M). 
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This facilitates ranking of the movies according to a very useful and hitherto 

unimplemented aspect: its affective content. For instance, the affective vector of a 

movie can rank just how “happy” or “aggressive” etc. a movie is.  

We survey Table 3.8 for broad quantifiable trends by genre, noting that the 

existence of characteristic genre MAV patterns underlies the consistency of the MAV. 

Aggression and Surprise feature prominently for the action genre while the D/M genre 

is dominated by TA and Sad elements. The R/C movies are marked by strong 

Joyous/TA affects while horror movies tend towards Fear/Surprise inducing scenes.  

At the very top of the Aggression ranking list are Speed and Starship Troopers; 

the former is unrelentingly fast paced while the latter is extremely violent. 

Unsurprisingly, most other movies from the action genre followed closely, with the 

exceptions being Saving Private Ryan, which has strong melodramatic elements, and 

Jumanji, which being of the type “family entertainment”, abstained from overt 

violence. Popular horror cinema can generally be differentiated by the main directing 

technique employed to induce fear: creating overtly threatening situations (Fear) or the 

more subtle tension (Surprise), which shows up clearly in their MAVs. Ring and 

Gothika are outright frightening while The Others depends far more on Surprise; the 

rest of horror movies possess a rather even mix of both elements.  

As a rule of thumb, the summation of Fear and Surprise is a good indicator of 

the “scariness” of a movie. According to this indicator, Ring and What Lies Beneath 

would correctly be the scariest and mildest movies respectively. The same pattern 

appears for R/C movies, which generally belong to two groups: comedy/slapstick 

(Joyous) or sentimental (Tender Affection). Similarly, MAV can be used to classify 

these two groups and to rank them according to the summation of Joy and TA: 
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Bedazzled is slapstick, My Best Friend’s Wedding is sentimental while Notting Hill 

aptly has the MAV of a subtle drama depicting a tortuous romance.  

Besides using the MAV on its own for analysis, it can also complement the 

manually assigned genre of a movie if available, which provides the context for a more 

refined interpretation of the MAV. For example, because D/M movies tend to feature 

many dialogue scenes, it is understandable for such movies to obtain a high Neutral 

score. However if horror movies scored highly in the Neutral category, then such 

movies are not likely to be successful horror titles. Another example: having a high 

Surprise score for a romance/comedy genre movie usually indicates the presence of 

pleasant surprises while the same high Surprise score for a horror movie should be 

interpreted to imply the presence of unexpected shock and suspense. 

From the aforementioned paragraphs, MAV analysis is able to yield broadly 

accurate ranking results according to different affects and even differentiate between 

different sub-genres, leading to automatic movie recommendation according to 

personalized affective preferences. To our knowledge, this is a capability not yet 

available in existing systems. With further investigation, more interesting and subtle 

patterns from MAV analysis are likely to emerge.  
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TABLE 3.8 
Movie Level Affective Vector    

Action Agr Sad Fear Joy Sur TA Neu 
The Fifth Element 31 10 1 9 32 5 12 

Speed 69 8 8 3 4 3 6 
Lord of the Rings I 19 11 25 9 28 4 4 

James Bond (Golden Eye) 45 11 3 3 18 6 15 
True Lies 41 8 2 7 14 5 23 

Men In Black 33 3 1 2 42 1 17 
Saving Private Ryan 24 26 3 5 10 19 13 

Starship Troopers 60 7 2 10 4 3 13 
Star Wars I 36 9 4 18 7 3 24 
Waterworld 36 8 1 10 24 9 12 

Jumanji 13 26 13 3 29 7 9 
Drama/Melodrama (D/M)        

Forrest Gump 17 19 2 10 4 21 28 
Magnolia 21 23 4 8 8 15 21 

Ghost 23 12 9 3 6 22 24 
Life is beautiful 21 17 2 37 6 9 7 
City of Angels 11 33 3 5 8 26 15 

Artificial Intelligence 18 32 8 2 17 9 15 
The Sixth Sense 4 41 4 3 18 14 17 

Horror        
Ghostship 9 8 34 3 20 5 22 

Queen of the Damned 11 16 29 1 33 3 7 
The Haunting 4 6 23 0 39 3 24 

What Lies Beneath 4 30 14 2 22 10 17 
The Others 9 26 11 2 43 6 3 

Dream Catcher 19 7 42 6 6 3 17 
Ring 2 7 77 1 4 3 6 

Gothika 5 19 55 1 9 5 6 
Legend of the Mummy 8 6 19 1 28 2 37 

Romance/Comedy (R/C)        
There's Something About Mary 12 3 1 65 2 4 12 

My Best Friend's Wedding 8 5 0 28 2 52 4 
Up Close and Personal 13 14 2 7 5 38 21 

Bedazzled 12 2 2 68 4 4 8 
50 First Dates 7 5 2 61 2 17 6 

Maid in Manhattan 8 5 0 22 1 47 16 
Love Actually 3 8 0 32 2 46 9 

Bruce Almighty 12 7 2 44 2 18 16 
Notting Hill 12 16 1 16 5 21 29 

The abbreviations for the emotions are respectively: Aggression (Agr), Sad (Sad), Fear (Fear), Surprise 
(Sur), Tender Affections (TA) and Neutral (Neu). 
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3.6 Conclusion 

A complementary approach has been proposed to study and develop techniques 

for understanding the affective content of general Hollywood movies. We laid down a 

set of relevant and theoretically sound emotional categories and employed a number of 

low level features from cinematographic and psychological considerations to estimate 

these emotions. We discussed some of the important issues involved in automated 

affective understanding of film. We demonstrated the viability of the emotion 

categories and audiovisual features by carrying out experiments on large numbers of 

movies. In particular, we introduced an effective probabilistic audio inference scheme 

and showed the importance of audio information. Finally, we demonstrated some 

interesting applications with the resultant affective capabilities. 

Much work remains to be done in this largely unexplored field. Firstly, with 

regards the shortcomings of our work, the small proportion of scenes that are wrongly 

classified shows up the inherent limitation of low-level cues (especially visual) in 

bridging the affective gap. Therefore in the immediate future, we intend to implement 

more complex intermediate-level cues to further improve present results. Secondly, the 

existence of multiple emotions in scenes requires a more refined treatment. Finally, we 

will also investigate the possibility of finer sub-partitioning of the present affective 

categories, as well as further scene affective vector level analysis.  
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4CHAPTER IV  

MOTION BASED OBJECT SEGMENTATION 

 

4.1 Introduction 

In contrast to other types of media, the defining aspect of film, tellingly known 

also as moving pictures, is the presentation of information through the use of visual 

motion. Due to its saliency in describing certain interesting semantic concepts from 

largely directed video genres like film, sports and program shows, motion has 

gradually gained recognition as a potent feature for video indexing. This is well 

attested by the inclusion of motion descriptors in the MPEG-7 [103] standard like 

motion activity, camera movement, trajectory, and parametric motion, for the purposes 

of similarity-based video retrieval [80], video abstraction [121] and structuring video 

data [122]. A small sample of further example applications include identification of 

certain types of baseball plays [96], football plays [75] and presentation annotation 

[97], underlining the immense potential of motion for film shot semantic indexing. 

As the narrative video genre with one of the most sophisticated and mature 

traditions, film is embedded with different forms of semantics at various levels of 

abstraction. However it contains less apparent structure than news, talk shows and 

sports, thus attempts to extract film semantics using superficial motion-based low level 

computable features are met with limited success. In particular, these efforts are 

hampered by two issues: insufficient incorporation of domain specific knowledge to 
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suggest appropriate and more meaningful film shot categories, and lack of intermediate 

level computable visual features to facilitate such classification. In cinematography, a 

pivotal set of informal production rules we term directing grammar, further elaborated 

in the next chapter, governs the relationship between a subset of film shot semantics 

and camera related attributes, especially motion.  

Our work addresses the first issue by explicating the intimate multifaceted 

relationship that exists between film shot semantics and computable visual features by 

mining this directing grammar. For instance, detection of tracking operations in a shot 

likely indicates the presence of subject(s) of interest, which is of strong indexing value. 

Another common directing rule relies on the camera distance from the subject(s) of 

interest to re-orientate the audience or adjust the relative emphasis between the subject 

and surrounding environment, indirectly revealing some shot composition information 

and directing intentions as indexing cues. Exploiting this grammar enables us to 

propose a sufficiently high level semantic taxonomy for film shots to be of interest to 

users. 

On the second issue, we develop novel independent motion detection 

capabilities, specially adapted for cinema considerations, enabling us to formulate and 

compute effective motion-based descriptors that map to high level film shot semantics. 

This enables a compact number of salient and robust directing descriptors to accurately 

capture the directing semantics inherent in a film shot. Existing applications that can 

benefit from these systems include automated film analysis [69], editing [70], film 

structure creation [71], indexing [72] and video abstraction/summarization [121] for 

both specialized commercial and mass-consumer applications. 
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In general, every shot contains at least one subject or place of interest, which 

we call the Focus-of-Attention (FOA), and one main directing intention, conveyed 

mainly by manipulating the audience viewpoint in three different ways: 1) camera 

motion operations, 2) framing choice in the portrayal of FOA and finally 3) the 

duration that FOA(s) remain on-screen. This facilitates the central goal behind the 

viewpoint manipulation: namely to direct visual attention [121], a process whereby the 

director concentrates the interest of the viewer to closely observe an object or place. It 

is this act of attention, which privileges certain intended viewer experience and 

interpretation of what is observed, that ultimately defines the directing semantics of a 

given shot. Recovering the relevant computable directing descriptors to decipher these 

semantics necessitates accurate motion segmentation and foreground-background 

identification capabilities.  

Thus in this chapter, we will detail and present the results of a novel motion 

segmentation technique, specially designed for film shot semantics recovery, which 

forms the algorithmic core of the motion based Hollywood film shot indexing 

framework. The development and demonstration of this framework, grounded in 

cinematographic domain knowledge, will be discussed in the next chapter.  

4.2 Motion Segmentation Literature Review  

Motion segmentation is commonly viewed as the process of mapping sets of 

pixels (or supports) to different motions, and can be delineated into two major 

approaches. The first approach, also referred to as the top-down approach, seeks to 

recover the dominant motion, or the motion to which a majority of the pixels conforms. 

Pixels that conform to the dominant motion are grouped under one motion label while 
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other are treated as outliers. This process continues iteratively on the remaining 

outliers until most, if not all pixels, belong to a computed motion. The work by 

Odobez [48], which exemplifies this approach, returns excellent performance for the 

scenario with a dominant background and one motion-wise coherent foreground object. 

However there is no in-built competitive process between different motion hypotheses, 

and motion configurations deviating from this scenario can cause difficulties.  

The second approach seeks to estimate all motions and their respective 

supports simultaneously and in turn has three major variants. The first variant, also 

known as the bottom-up approach, estimates a large number of motions, one for each 

small image area, before merging patches that are similar in motion 

[49][52][53][54][55] (typically done using k-means clustering). One of the earliest and 

most representative works of this approach belongs to Wang and Adelson [49], who 

merged image patches exhibiting similar affine motions. This approach is attractive 

both in term of computation and flexibility, since redundant computation is avoided 

and the number of motions can vary as circumstances demand. However the criterion 

of merging must be carefully formulated to prevent wrong assignments. A unique 

example of this variant proposed by Shi and Malik [50][51] used a global graph 

partitioning method known as the Normalized Cut to best partition pixels into two 

dissimilar sets, which can be viewed as a merge that finally results in two sets.  

The second variant is the level set formulation where the boundaries of curves 

evolve according to certain partial differential equations [56][57][58] to group together 

areas of motion homogeneity, replacing active contours as the descriptors of motion 

boundaries. It does not require much parameterization and can adapt easily to changing 
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topologies. However the final solution does depend on initialization and areas labeled 

under the same motion must be contiguous.  

The last variant is the general Expectation Maximization (EM) framework, a 

popular technique [60][61][62][63][64][65][66]. In recent years, a large number of 

such works represent pixels or regions within the image with graphs, in order to find 

the motion labels of these image parts within the general EM framework. The Markov 

Random Field (MRF) [131] has emerged as a leading approach to model the motion 

labels of the image parts and their interactions amongst themselves and the 

observations. A critical strength of EM is the presence of competition amongst 

different motion hypotheses for image parts that encourages label assignments most 

capable of explaining the observations. An interesting innovation of EM by Sawhney 

and Ayer even prunes excessive motion models using a size-of-model criterion under a 

Minimum Description Length framework [62]. However there are some drawbacks to 

EM. The number of hypothesized motions must be fixed a priori, which is not realistic 

under many circumstances. Also, computation increases linearly with the numbers of 

hypothesized motions over the entire image, even if some motions are localized to only 

a small area of the image. 

Besides analyzing algorithms according to the relationships between the 

motion estimation process and support areas, a variety of constraints are being utilized 

in the cost function. The most universally used constraint, also known as the data term, 

is the likelihood of the resultant displaced intensity differences (DID) assuming correct 

motion estimation; a constraint directly related to the assumption that intensity is 

preserved across frames. The second term, or spatial continuity term, encodes the 

belief that regions from the same object should be spatially connected, and encourages 
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neighboring regions to share similar labels [55][65]. Another popular term is the 

temporal continuity term, which seeks to preserve the same labels in regions across 

time; Mezaris et. al. [54] is notable in this regard for considering the temporal track for 

the entire shot, as opposed to neighboring frames, before making the decision on 

semantic object level segmentation for each frame. A few works have also explicitly 

incorporated an appearance term [50] that depends on texture etc. Finally, the latest 

works have begun to consider depth ordering, via the observation of occlusion, as a 

constraint on motion segmentation. Some have used this as a separate post-processing 

step [49], however, Tweed and Calway [55], Drummond [60] and Torr et al [64] have 

integrated this constraint into the segmentation process itself.  

4.3 Our Motion Approach 

Recovering shot semantics in the extraordinarily diverse and dynamic film 

domain environment is a most challenging matter. We eschew purely statistical 

approaches that do not possess explicit object concepts, and are therefore severely 

handicapped by the inability to truly identify foreground and background. We also 

avoid a solely trajectory based approach, which depends heavily on continuous 

tracking, and are far too fragile for a movie environment where objects can vary 

tremendously in size, number, speed and even undergo occlusion. Instead, we have 

elected to incorporate key observations from directing grammar to guide our approach. 

The resultant incorporation of directing grammar leads to a novel motion segmentation 

algorithm specially adapted for film shot semantics recovery.  

In the film domain, it is observed that the dominant frame motion has almost 

invariably belonged to either an unobtrusive background, or the FOA. Exploiting this 
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key fact, our approach ultimately labels all image parts with only two motion labels: 

the dominant motion and “all-other-motions”. Then, it sets upon the critical task of 

identifying the FOA by deciding whether the FOA should belong to the dominant or 

“all-other-motion” label. To accomplish this, we assume a) the dominant motion 

belongs either to the FOA or background and 2) the FOA is always in the foreground. 

These reasonable assumptions, elaborated in the next sections, allow us to recover the 

dominant motion without being concerned with the variable and possibly large number 

of independent motions during the motion segmentation process.  

Our contribution here lies in the incorporation of directing grammar into the 

design of a motion segmentation scheme, based on using MRF to model the motions 

that different parts of each frame take on. This scheme features novel integrated 

occlusion reasoning to tell apart the FOA from non-FOA areas, precluding the need for 

separate pre-processing and ad-hoc occlusion detection methods [49], while allowing 

the foreground and background to be correctly identified at the global level without 

making the somewhat broad and common assumption that the dominant motion is 

always background [65]. Furthermore, intrinsic to the segmentation is the ability to 

track the evolution of viewer attention at the shot level by approximating how humans 

direct their attention towards FOA, allowing the creation of more informative 

descriptors.  

To ensure robustness and relevance in the dynamic film environment, we 

utilize a dominant motion framework where key parameters adapt automatically to the 

dominant motion speed for optimal segmentation. Unlike most motion algorithms, it 

relies exclusively on the most informative pixels - the edge pixels as opposed to all 

pixels - to extract motion information. The details for each step of the motion 
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segmentation algorithm are provided in the rest of the chapter. A system overview of 

our motion segmentation algorithm is illustrated below (Figure 4.1).  

 

 

 

 

Figure 4.1 Flowchart of motion algorithm module 
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4.4 Region Segmentation and Merging 

Since a prerequisite to motion segmentation is the presence of motion itself, we 

have implemented a frame change detection step that computes the intensity 

differences between two frames, and skips to the next frame if the proportion of pixels 

exhibiting an absolute difference larger than 6 is below 5%. This improves 

computation time, and more importantly segmentation accuracy, for shots with long 

periods of stationarity.  

To facilitate motion segmentation, we utilize a region based representation of 

the image frame by grouping spatially connected pixels by intensity into regions. This 

is because motion estimation performed over multiple pixels can utilize their collective 

information at the region level, enabling higher robustness to image noise, aperture 

problem and occlusion compared to the pixel level. Another important advantage is the 

computational savings that accrues from dealing with a small number of regions as 

opposed to the substantially larger number of pixels. Here we provide a brief 

description of our region segmentation implementation using the watershed 

segmentation algorithm [67][68].  

A suitable one channel intensity function F is first chosen to represent the 

frame. The gradient image G, a 2D matrix comprising the Sobel gradient magnitudes 

of every single pixel in F, is then computed. Being the derivative of F, G can be 

treated as a topographical surface that shows up the locations of sharp intensity 

differences in F, which in turn constitute the boundaries of the segmented regions. 

From this perspective, watershed regions are actually areas of nearly uniform intensity 

values in F bounded by sharp intensity changes. In order to partition F, we employ the 
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waterfall simulation method on G, which assigns every single pixel in F to a watershed 

region based on where its steepest descent path in G leads to. The watershed 

segmentation thus partitions F into the set of watershed regions denoted 

by { (1), (2), , ( )}ws ws wsR R R N=R K , where Nws is the original number of watershed 

regions. A drowning step is finally carried out to automatically merge adjacent pixels 

separated by a boundary weaker than a certain pre-determined threshold Thdrown. 

Due to the critical dependency of spatial segmentation on chromatic intensities, 

we evaluated several permutations of color spaces. The luminance channels Y and L 

are respectively chosen from the YCbCr and CIE Lab color spaces as the intensity 

function F for the segmentation. Additionally, to incorporate segmentation information 

from other color channels, the maximal value of all three color channels for each pixel 

is also used for the intensity function F. This brings the total number of candidate 

intensity functions to four: Y, L, maxLab and maxYCbCr. 

Subject to the condition that object boundaries are not violated, we judge the 

color space that 1) yields fewer regions during segmentation and 2) requires less 

computational resources as the most optimal. From experiments performed to obtain 

the optimal segmentation parameters and F (Figure 4.2), it is clear that Y and L 

produce significantly more regions that maxLab and maxYCbCr. This can be attributed 

to the fact that not all object boundaries are captured in the luminance component 

alone. Due to the linearity of the maxYCbCr, which bestows large speed advantages 

over maxLab, we have adopted maxYCbCr for watershed segmentation, using 

Thdrown=10.  
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The resultant over-segmented image preserves the object boundaries at the cost 

of significant computation cost arising from having to deal with numerous small 

regions.  More importantly, the larger perimeter-to-area ratio of small regions increases 

the likelihood of higher motion compensated difference (MCD) errors and inaccuracies 

in the subsequent motion estimation processes. Hence there is a need to reduce this 

original set of regions through region merging.  

Thus we define two inter-region measures based on chromaticity and edge 

strength to aid the spatial merging process. Let the color centroid of any region with 

index i be denoted by the vector 1 2 3{ , , }i i iI I I , which represents the three color channels 

of the color space used during region merging. The color centroid differences between 

two regions i and j are then defined as  

 1 1 2 2 2 2 3 3 2( , ) ( ) ( ) ( )Diff i j i j i jI i j I I I I I I= − + − + −  (4.1) 

Figure 4.2 Segmentation regions for different color-spaces. In the first 31 frames 
of Foreman sequence, the strong chromatic similarities between the foreman’s 
yellow helmet and the wall directly behind it allows us to adjust parameters 
associated with the four intensity functions till the helmet is correctly segmented. 
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To also quantify the edge strength between two regions, we define an edge strength 

difference measure 

 1
( ( , ))

( , )

Nij

k
k

Diff
ij

G bdr i j
G i j

N
==
∑

 (4.2) 

where bdrk(i,j) is the set of pixels along the borders of regions i and j, k indexes into 

this set and Nij is the cardinality of the set. With these two measures, the algorithm for 

region merging is as follows: 

 

1) Sort the set of regions by size and arrange them into a linked list for fast indexing. 

2) Starting from the smallest region Ri, merge it with the neighboring region with 

which it has the lowest IDiff(i,j), subject to: 

  [(Ri (size)<ThSize_small)]  ∨                           

  [(ThSize_small<Ri(size)<ThSize_med) ∧  (IDiff(i,j)<ThI_Diff_med) ∧  (GDiff(i,j)<ThG_Diff_med)]  ∨  

  [Ri(size)>ThSize_large) ∧  (IDiff(i,j)<ThI_Diff_large) ∧  (GDiff(i,j)<ThG_Diff_large)] 

3) This process of merging continues until the smallest region is above ThSize_large, or 

until no further merging can occur. 

We denote the final set of regions that remain after merging 

as 1 2{ , , , }NR R R=R K , where N is the total number of final regions. From systematic 

experiments, we found YCbCr color space to be the optimal color space for region 

merging. The optimal values for region merging empirically set to ThI_Diff_med=20, 

ThG_Diff_large=5, ThI_Diff_small=10 and ThG_Diff_small=40. ThSize_small, ThSize_med and ThSize_large 

are set at (1/2000), (1/500) and (1/15) of the size of the frame. This results in an 

average reduction by a factor of 18 in the number of regions (Figure 4.3). 
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4.5 Core Motion Estimation Algorithm 

The core motion estimation algorithm used for all motion estimation purposes 

thereafter is introduced in this section. To accomplish the essential task of motion 

estimation in image sequences, a parametric motion model estimation algorithm, 

incorporated with robust estimator (maximum likelihood) capabilities in a multi-

resolution framework, is used. The attractiveness of using a parametric model lies with 

its ability to compute a dense and good approximation of the optical flow utilizing only 

a small number of parameters (maximum 6 for affine flow) within a region, reasonably 

(a) Before Merging: 5069 regions (b) After Merging: 323 regions 

(c) Before Merging: 7106 regions (c) After Merging: 345 regions 
Figure 4.3 Region merging. A drastic reduction in regions for the watershed 
segmentation after the merging procedure for frames 1 of the Foreman (a,b) and 
Coastal (c,d) sequence. 
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assumed to be under coherent motion. In addition to simplifying computation by 

reducing the number of unknowns, it suppresses minor specific motions in favor of a 

more general and useful motion description. The use of a robust estimator (Tukey 

biweight estimator) further minimizes the contribution of outliers in occlusion cases to 

return more reliable optical flow estimates. Finally the multi-resolution scheme enables 

large motions to be computationally feasible in a gradient-based motion estimation 

framework. The following sub-sections describe the algorithmic details [47] involved 

in motion estimation. 

4.5.1 Parametric Motion Model 

Motion is represented with the class of 2D polynomial motion models of the 

point coordinates (x, y) in the image plane up to the affine model, which is the first 

order polynomials in x and y. Using matrix notation, a model M is expressed as 

           

( ) 1 0 0 0
( ) ( ) and ( )

( ) 0 0 0 1
i i i

i i i
i i i

u X x y
X X X

v X x y
⎡ ⎤ ⎡ ⎤

= = =⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

V D M D
  (4.3) 

where it is linear with respect to the n motion parameters Mt = (a1, a2, …, an), and 

Xi=(xi, yi) refers to the spatial image position of a point while V(Xi) refers to the flow 

vector at Xi. The affine flow motion model (n=6) is the motion model we utilize 

because it exhibits a good tradeoff between complexity and ability to represent motion 

sufficiently accurately (e.g. translation, rotation, scaling, and deformation). It  

describes the flow field w.r.t. the unknowns Mt=[a1,a2,a3,a4,a5,a6] as 

1 2 3

4 5 6

( )
( ) .

i i i

i i i

u X a a x a y
v X a a x a y

= + +
= + +

     (4.4) 
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To confer onto the optical flow estimation some adaptability to global illumination 

changes, the Brightness Constancy Equation (BCE) can be written as 
                     

 

                              ( , ) ( , )i i i ir I X X t t I X t tδ δ ςδ= + + − +                        (4.5)      

where ri is the residue of Xi and ς denotes the global change in illumination. By noting 

that δXi=V(Xi) and taking δt=1 to simplify the notation, ri can be re-expressed as  

( ( ( ) , 1) ( , ) )i i i ir I X X t I X t ς= + + − +D M                       (4.6)                        

4.5.2 Multi-Resolution Least Square Estimation 

An estimate of the motion field is computed by obtaining the set of optimal 

motion parameters for the motion parametric model that minimizes the displaced 

intensity differences (DID), which is the residue, between two consecutive frames. A 

multi-resolution least square estimation scheme, which uses an incremental estimation 

of the motion model through course-to-fine refinement, is thus used to minimize the 

following sum of squared difference errors, or error function: 

      2 2( ) ( ) ( ( ( ) , 1) ( , ) )
i i

i i i i
X S X S

E r I X X t I X t ς
∈ ∈

= = + + − +∑ ∑Φ D M            (4.7)    

where S denotes the region of support the algorithm uses to perform motion estimation. 

Let Φ = [a1 a2 a3 a4 a5 a6 ς], ˆ ˆ, , ς
∧

Φ M  be the current estimates of , ,ςΦ M  and 

, , ς∆ ∆ ∆Φ M  the incremental change to be computed, then 

ς ςς

∧

∧

∧

= + ∆

⎡ ⎤ ∆⎡ ⎤ ⎡ ⎤⎢ ⎥= +⎢ ⎥ ⎢ ⎥⎢ ⎥ ∆⎣ ⎦ ⎣ ⎦⎣ ⎦

Φ Φ Φ

M M M                  (4.8) 

It is well known that with the increment so defined, Taylor’s expansion can be used to 

expand the residue to the first order of I around point ( )i iX X
∧

+D M  at time t+1 to give  
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'

( ( ) , 1) ( ), 1

( , ) ( ( ) , 1) .

i i i

i i i i

i i i i

r B

A I X X t X

B I X t I X X t ς

∧

∧ ∧

= ∆ −

⎡ ⎤= ∇ + +⎢ ⎥⎣ ⎦

= − + + −

A Φ

D M D

D M

    (4.9) 

Hence by casting the error function as a quadratic error measure minimization 

2 2( ) ( ') ( )
i i

i i i
X S X S

E r B
∈ ∈

= = ∆ −∑ ∑Φ A Φ                    (4.10) 

we can obtain the incremental solution via the iterative least square approach: 

        
1

( ) ( ) .
i i

t t
i i i i

X S X S

A A A B
−

∧

∈ ∈

⎡ ⎤
∆ = ⎢ ⎥

⎣ ⎦
∑ ∑Φ              (4.11) 

This incremental estimation is embedded in a coarse-to-fine refinement scheme where 

several levels of Gaussian low-pass pyramids of each image are used. At the coarsest 

level, no estimation is available. However for a typical image size of 352x288, having 

four image pyramid levels typically ensures that the displacements are small enough 

for the BCE to approximately hold true, thus a null motion initialization is used. For 

each level, successive iterations using equations (4.8)-(4.11) are performed until the 

incremental estimate is too small or the limit for number of iterations is reached. Then, 

the estimated parameters are transmitted to the finer level, where the refinement 

process starts again. These cycles of iterations are repeated until the finest level is 

reached.  

4.5.3 Robust Outlier Estimation 

Outliers caused by noise, occlusion and violation of motion model assumptions 

are ameliorated using the Tukey-biweight robust estimator ρ to minimize the 

contribution of outliers. The shape of robust estimator ρ with derivative ψ 
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2 2'(1 ( '/ ) ) | ' |

( ', )
0

i i i
i

r r C if r C
r Cψ

⎧ − <
= ⎨
⎩

  (4.12) 

allows the error penalty, which is the value returned by the robust estimator ρ, to be 

capped at a constant for residue ri above a certain value C=8, thus mitigating the undue 

effect of outliers on the parameter computation. Incorporating this robust estimator 

into the error function gives: 

        2 ( ')1( ) ( ') ( ') .
2 '

i i

i
i i i i

X S X S i

rE r w r and w
r

ψρ
∈ ∈

= = =∑ ∑Φ             (4.13) 

where wi represents the measure of membership of each pixel to the current motion 

parameters M. The weight wi, whose range is between [0,1], can be directly interpreted 

as the likelihood of pixel i being assigned the correct optical flow. The support S is 

over the set of edge pixels lining the perimeter of some regions returned by the 

watershed segmentation. The regions included in the support S depend on which 

particular stage of the hierarchical optical flow estimation process they are in (see next 

section). Expressing the error function in terms of motion parameters gives   

    2 21 1( ) ( ') ( )
2 2

i i

i i i i i
X S X S

E w r w B
∈ ∈

= = ∆ −∑ ∑Φ A Φ                      (4.14) 

while the incremental update equation becomes 

       
1

( ') ' ( ') '.
i i

t t
i i i i i i

X S X S

w A A w A B
−

∧

∈ ∈

⎡ ⎤
∆ = ⎢ ⎥

⎣ ⎦
∑ ∑Φ              (4.15) 

In practice, within every iteration loop of the incremental motion estimation, there 

exists another loop that computes the wi and ri consecutively and iteratively using 

equations (4.9), (4.12)-(4.15) till both values stabilize. 
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4.6 Hierarchical Optimal Flow Estimation 

Motion segmentation and attention tracking require accurate and robust 

computation of optical flow between two frames, especially in the presence of 

occlusion. Due to the tremendous computation needed to recover dense optical flow, 

we have adopted a hybrid approach combining top down and bottom up techniques. 

Basically, this separates the entire motion estimation procedure into various stages 

where motion is estimated in the following order: frame, large region and finally the 

block level. Estimation is carried out at higher levels first, and stepped down to lower 

levels only for pixels that do not yet conform to any of the previously computed 

motions. Correspondingly, the motion models used for motion estimation also steps 

down in complexity with the decrease in support pixel area in order to achieve 

significant time savings and motion estimation robustness. This information is 

eventually smoothed and accumulated to give a robust inference of the optical flow for 

each region. The entire process of motion estimation is illustrated in Figure 4.5. 

Different from the vast majority of existing motion algorithms ([60] is one of 

the few exceptions), we have chosen to utilize only the pixels lining the perimeter of 

the regions, which we call edge pixels, for this task. A key difference between us and 

[60] is our usage of the DID of these edge pixels as opposed to the Euclidean distances 

between them for motion estimation. The exclusive use of edge pixels at the global 

level is motivated by three reasons. Firstly, due to their high intensity gradients, edge 

pixels contain much more reliable motion information compared to the smooth 

homogenous pixels comprising the region interior, which cannot constrain the 

interpretation of motion. Secondly, using only edge pixels typically consume only two-
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thirds of the computation time compared to using all the pixels. Thirdly, and most 

importantly, with a sufficient number of edge pixels, using edge pixels exclusively 

generally gives more accurate motion segmentation compared to using all pixels, 

especially in the presence of occlusion. Because of their high intensity gradients, edge 

pixels require highly accurate motion estimation to minimize DID, and are less likely 

to fall into a spurious local minimum.  

4.6.1 Region/Block motion estimation 

Initially, motion estimation is performed over all edge pixels to obtain the 

dominant motion. Let the average weight of the edge pixels (defined in Equation 4.13) 

of region i under the current motion estimate be w(i), then all regions with w(i)>0.7, 

which implies a high likelihood that the pixels conform to the current motion, are 

assigned to the current motion model and their pixels are retired from subsequent 

motion estimation process.  This first recovered motion is designated as the dominant 

motion and the process is iterated repeatedly for other secondary major motions until 

the region areas under these secondary motions fall below 15% of the image area.  

For the remaining regions that are not yet assigned a motion model due to their 

smaller support, it is more robust to adopt a more localized motion estimation 

approach. The motion model used has also been stepped down in simplicity to one that 

estimated only translation and divergence [47]. We adopt this treatment for every of 

the unassigned regions whose areas exceed the size of three 32x32 blocks. 

By this stage, the only regions with no motion models are those that are neither 

large nor conformed to the dominant and major secondary motions. We proceed to 

assign a fitting motion model to each of these regions with the following procedure. 
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First, the frame is tessellated into 32x32 blocks and motion estimation is performed in 

each individual block if at least 10% of the block is occupied by unassigned edge 

pixels. We use only the edge pixels of unassigned regions within that block, and the 

estimated motion is then assigned to the entire block. Given the modest support and 

local nature of each block, we step down to a uniform 2D translation model because it 

is adequate and provides improved stability over more complex motion models.  

Due to the occurrences of occlusion or multiple motions within a block, the 

motion computed from the block estimation step may be spurious or wrongly assigned. 

Thus each block is further tessellated into 8x8 “block-lets” to further refine motion 

assignment. The idea is to assign to the block-let an optimal motion model from the 

motions of the 32x32 blocks neighboring the block-let. Since optical flow is usually 

smooth, we can assume the true motion model of any block-let i is within the candidate 

set CS(i) of motion models obtained from the nine nearest 32x32 blocks (see Stage 3 

of Figure 4.5). All the unassigned pixels – not only edge pixels – of each block-let i are 

greedily initialized to the motion from CS(i) that maximizes the average pixel weight. 

Let NBLM(i) be the set of optimal motion models currently adopted by the eight 

neighboring block-lets of block-let i and wblk(a,mb) the average pixel weight of block-

let a under motion mb. The optimal motion selection process is then carried out for 

each block-let in raster-line order to select the motion j from CS(i) that best minimizes 

the following objective function OBJ(i) over all j: 

( )

( ) ( ( , ) ( , )) ( , ).

( , ) [1 1 ]

i

blk i blk j mtnDist j k
k

mtnDist j k j k

OBJ i w i m w i m f m m

f m m bs bs bs bs m m

ς= − +

= −

∑
NBLM

             (4.16) 
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where ς=30, bs is the block size=32, j indexes into CS(i), current motion mi = [a1,i a2,i 

a3,i a4,i a5,i a6,i]T and candidate motion mj = [a1,j a2,j a3,j a4,j a5,j a6,j]T. The first term of 

the objective function is a data term to encourage selecting a motion for the block-let 

that maximizes its average pixel weight (Stage 4 of Figure 4.5), while the second term 

fmtnDist(mj,mk) is a smoothness term promoting smoothness of neighboring motion 

models by penalizing dissimilarity between neighboring block-let motion models. This 

entire raster-line optimal motion model selection process is iterated seven times in all, 

and the block-let motions of the last iteration are accepted as the final motions. 

Finally, to select the best motion model for those regions which have been 

tessellated in blocks, we define the notion of a region motion consistency (RMC) 

measure, which computes the consistency of any particular motion model in a region 

(Stage 5 of Figure 4.5). The idea is to implement a voting scheme where the motion 

most consistent with other models within the same region is chosen as the optimal 

region motion model. Let a region i contain Nm different motion models in the set 

RM(i) amongst its pixels, and q indexes RM(i). Let the membership of pixels 

belonging to the motion mq have a cardinality of |mq|. Then the RMC(i,p) for motion 

model p in region i is defined as: 

( )
( , ) min( , )* ( , )

0                           ( , ) 2
( , ) =

1- ( ( , ) / 2)   ( , ) 2

mN

p q mtnDist p q
q i

mtnDiff p q
mtnDiff p q

mtnDiff p q mtnDiff p q

RMC i p m m reg m m

f m m
reg m m

f m m f m m

∈

=

≥⎧⎪
⎨ <⎪⎩

∑
RM

                (4.17) 
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The motion model p within RM(i) with the highest RMC(i,p) is thus adopted as 

the region motion model.  With this, robust and accurate dense optical flow is obtained 

(Figure 4.4). 

 

(a) (c) 

(b) (d) 
Figure 4.4 Optical flow smoothing. Optical flow results with smoothing (c,d) and 
without smoothing (a,b), where (c,d) exhibit smoother optical flow conforming far 
more closely to the real motion.  
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Stage 2: Those regions not tentatively classified under 
the dominant, major secondary or large region motions 
are tessellated into 32x32 blocks for parametric motion 
estimation. Only edge pixels are used for motion 
estimation. However the computed motion models are 
assigned to all unassigned pixels within the block. 
Different motion models are indicated with different 
colors. 

 
Stage 1: Initial dominant 
(black) and non-dominant 
area segmentation. 
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Stage 3: The 32x32 block M05 
is divided into 16 8x8 block-
lets. Motion models that 
maximize block-let weights
are selected from amongst 
motions of neighboring 
blocks.  

 

55
6
6

5
5

5
5

55

5
5
5

5

6

5

Assigned 
PixelsM01 

M05 
M06

M09M08 M07 

M04 

M02 

 
Stage 4: Iterative smoothing is performed 
at the 8x8 block-let level. Shaded block-
lets show changed motion models after 
smoothing. 
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Stage 5: For each region (e.g. the 
shaded shape), region model selection is 
performed by selecting the motion 
model of the block-lets within the 
region that fits best with other motion 
models in the region.  

Figure 4.5 Illustration of the optical flow computation process. 
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4.7 Motion Segmentation with Markov Random Field (MRF) 

Known for their ability to capture spatial relationships in 2D image processing, 

the MRF is a graphical model in use for several decades in various applications 

ranging from image restoration [117] to motion segmentation [65]. Due to the 

Hammersley-Clifford theorem [119], which proved the equivalence between Gibbs 

random fields and MRF, MRF has been established as a numerically tractable and 

attractive tool to model a large variety of non-causal processes.   

The MRF offers a formal approach capable of easily incorporating a priori 

domain knowledge, capturing spatial relationships and modeling a variety of dynamics. 

In our case, it allows us to incorporate a few crucial cinematographic constraints 

previously alluded to. Firstly, we assume the Focus of Attention (FOA) to be in the 

foreground. While there are some exceptions, it holds true for the vast majority of 

cases. Secondly, it is assumed that the dominant motion is sufficiently accurate to 

describe either the FOA or the background. Although the background usually 

conforms quite rigidly to one motion, this may not be the case for the FOA, which, for 

instance, may be a walking human with multiple articulated hand motions. For our 

shot indexing purpose, it is nevertheless sufficient to identify the dominant motion 

exhibited by the human body as foreground, while leaving out the swinging hands.   

In accordance with these two constraints, we cast the region labeling problem 

as one where each region is labeled either as foreground or background. We also need 

to determine if the region’s motion belongs to that of the “dominant motion” or “all 

other motions”. Thus at the global level, the region labeling process has to test two 

hypotheses, Hypo1 (dominant=BG, others=FG) and Hypo2 (dominant=FG, 
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others=BG). The hypothesis with the higher probability is taken to be the correct 

interpretation.  

Applying MRF modeling [61][65][131] to our region labeling problem, we 

represent the N regions R={R1, R2, R3,…, RN} as the set of MRF sites, which are 

defined on a popular neighborhood system Ξ where physically adjacent sites are 

neighbors. A hypothesis of this MRF thus comprises of the set of random variables, or 

configuration ξ ={ξ1, ξ2,…, ξN}, where ξi can take on either the FG or BG label for 

region i, as well as the variable H, which can take on Hypo1 or Hypo2. ξ is said to be a 

Markov random field on R with respect to a neighborhood system Ξ if and only if two 

conditions are satisfied: 1) positivity: ( ) 0, space of all possible P ′ ′= > ∈ξ ξ ξ ξ  and 2) 

markovianity: { }( | ) ( | )
ii i iP Pξ ξ ξ ξ− =R Ξ  where {R}-i is the set difference, ξ{R}-i denotes 

the labels of sites {R}-i, while ξΞi denotes the labels of sites neighboring site i on 

neighborhood system Ξ. Positivity is a very mild condition usually assumed in practice, 

while the markovianity assumption is satisfied by modeling likelihoods that depend 

only upon neighboring sites, as elaborated in the next sub-section.  

Let the observation O={O1, O2, O3, …, ON} be the set of individual features Oi 

observed for region Ri. The solution we seek is the optimal configuration ξ and 

hypothesis H that maximizes the MAP (maximum a posteriori) P(ξ|O,H). On the 

assumption of a uniform prior P(ξ), and given a constant evidence P(O,H), MAP is 

proportional to the likelihood P(O,H|ξ) and is expressed in the Bayesian framework as   

( , | ) ( )( | , )
( , )

( , | )

P H PP H
P H

P H

=

∝

O ξ ξξ O
O

O ξ
                                        (4.18) 
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In conjunction with the Hammersley-Clifford theorem [119], the MAP can be 

expressed as a Gibbs distribution 

( , | )

( | , )
U H

H

eP H
Z

−

∝
O ξ

ξ O                (4.19) 

where ZH is the partition function and is constant for a specific H, while the MAP is 

maximized by minimizing the likelihood energy function U(O,H|ξ). U(O,H|ξ) 

comprises the intra-region and inter-region interactions captured by the local clique 

potentials VD, VS and VA to reflect our data, spatial and attention constraints. Let the set 

of all possible singleton cliques be C1 and pair-wise cliques be C2 in this 

neighborhood system, then 

1 1 2
{ } 1 { } 1 { , } 2

1 1 2
( )

( , | )

( , , ) ( , , ) ( , , , )

( , , ) ( , , ) ( , , , )

data spatial attention

D A S
d i a i s i j

i C i C i j C

N
D A S

d i a i s i j
i j Neighbor i

U H E E E

V H V H V H

V H V H V H

κ ξ κ ξ κ ξ ξ

κ ξ κ ξ κ ξ ξ

∈ ∈ ∈

∈

= + +

= + +

⎛ ⎞
= + +⎜ ⎟

⎝ ⎠

∑ ∑ ∑

∑ ∑

O ξ

O O O

O O O

    (4.20) 

where κd, κs and κa are constants that control the relative importance of these three sets 

of energy potentials. The clique potentials V1
D and V1

A are defined on singleton cliques, 

while V2
S is defined on pair-wise cliques, in accordance to the neighborhood system. 

Higher order cliques are not explored due to the exponential increase in complexity, 

and more importantly, because the interactions we want to model (as elaborated in the 

next sections) are fully met with cliques defined up to the pair-wise level.  

4.7.1 Data Term 

The MRF solves two problems simultaneously: which regions conform to the 

dominant motion (the motion recovered first in the preceding section), and whether 

these regions belong to the foreground or background. For the first task, it is readily 
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determined by considering for each edge pixel how well the inter-frame image 

intensity is preserved under this dominant motion. We recomputed the weight w of all 

the region edge pixels using this dominant motion, and obtain the average edge pixel 

weight w(i) of region i. This recomputed w(i) is utilized as the main observation to 

determine the data energy term. In theory, w(i) follows distinct likelihood distribution 

curves for both dominant motion regions (high likelihood) and non-dominant motion 

regions (low likelihood), and the point where they intersect would be the optimal place 

to read off a decision threshold, which can be used for data energy term computation.  

However it is known empirically that this decision threshold varies strongly 

with two factors: global speed and the intensity gradient magnitude of each region. 

High global speed causes blurring of region boundaries, causing spuriously low w(i). 

At the same time, low intensity gradient magnitude for region i, avGrad(i), leads to 

inaccurately high w(i). Hence these factors have to be flexibly compensated for to 

obtain robust region labeling. 

We approach this problem by computing an adaptive decision threshold EQw(i) 

for each region i based on these two factors. First, for a frame with average dominant 

speed avGS, we define various speed levels at spdlo=2, spdmid=4, spdhi=12, and various 

intensity gradient magnitude levels at gradlo=20 and gradhi=50. Then a global 

adjustment GSadjust that is adaptive to the various speed and gradient magnitude levels 

can be computed with the following equation: 
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The global adjustment is then added to EQw(i) in a step that also compensates for 

possibly low avGrad(i): 
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            (4.22) 

where EQwc=0.7 is the equilibrium weight constant. After determining the suitable 

decision threshold EQw(i) for every region i, the data energy potential is calculated as: 
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where κd=5. Note that the V1
D(ξi,O,H) is designed such that both foreground and 

background are equi-probable when w(i)==EQw(i). In this context, EQw(i) plays a very 

important role in the computation of an almost continuous and variable data energy 

function, as opposed to a binary function.  

The heart of the occlusion handling mechanism revolves around the 

computation of w(i), where edge pixels are selectively summed depending on the 

hypothesized relative depth order of any region i with its adjacent regions. Edge pixels 

tend to be occluded whenever occlusion occurs, and as Bergen [115] observed, given 

the correct motions for any two regions, error density is often high on the occluded 

side of an edge, and low on the occluding side. For instance, edge pixels belonging to 

FG labeled regions are always taken into account when computing the data energy 

because these pixels are supposed to be unoccluded, and hence observable. However 

the edge pixels belonging to a region labeled as BG and bordering regions labeled as 
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FG are excluded from computation because they have a high likelihood of being 

occluded, as per the hypothesis.  

By varying the behavior of how edge pixels are used to compute the data 

energy between adjacent regions with differently labeled depths, it enables the 

modeling of occlusion into the MRF process (Figure 4.6) instead of an ad hoc or 

complicated multi-motion occlusion/depth order handling process. Let bdrw(i,j) denote 

the total weights of the set of edge pixels along the borders of regions i and j, Ni the 

number of regions bordering i and let av() be the average operator, then 
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Finally, the value of w(i) is calculated differently depending on both the value H, and 

the label ξi of region i. Note that w(i)  is computed for both hypotheses Hypo1 and 

Hypo2. 
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4.7.2 Spatial Term 

The spatial energy potential, consisting of pair-wise cliques, expresses the a 

priori assumption that regions belonging to the same label (FG or BG) have similar 

colors, and tend to cluster together. Thus this energy encourages the formation of 

compact and adjoining foreground and background boundaries. Let Nij be the 

perimeter length and IDiff(i,j) the L2 distance between the color centroids in YCbCr 

space of regions i and j respectively. Then 
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(a) (c) 

 
(b) (d) 

Figure 4.6 Comparison of occlusion energy. Segmentation results with occlusion 
(c,d) and without occlusion (a,b) factored into the energy calculations. Background 
regions in (a,b) near the helmet and neck that encounter occlusion are wrongly 
classified as foreground. 
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where κs=2 and fse(i,j) is a color centroid similarity measure to encourage adjacent 

regions with similar color to take on similar labels. Referring to the above equations, 

clrhi=2 and clrlo=0.5 control the range of the spatial energy potentials, while tc,lo=20 

and tc,hi=80 control the thresholds that determine how well a given IDiff(i,j) value 

satisfies the color similarity assumption between adjacent regions i and j. 

4.7.3 Attention Term 

As discussed previously, the directing semantics of a shot is subtly influenced 

by the skilful direction of the viewer’s attention. By correctly identifying the FOA in 

each frame, and tracking the number of times different areas receive attention 

throughout the shot, an “attention signature” can be composed from such information 

for each shot. This is motivated by the expectation that different classes of shot 

semantic have their own characteristic attention signatures.  

To model this attention process, we use two 2D image buffer the size of the 

image frame: Recatt to record the net duration a pixel has been classified as FG in the 

most recent 25 frames, subject to a ceiling of Tatt_span=25, and Histatt, to record the total 

number of times the pixel has been classified as FG in the shot. The value of Tatt_span 

for Recatt is equivalent to approximately one second in duration, considering the 

standard frame rate of 25 fps, and is chosen to model the persistence behavior of 

attention span remaining on an area that has stopped moving before it fades and all 

focus is transferred to other moving areas.  
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We denote avRatt(i) and avHistatt(i) as the average value of the pixels of region i 

in the current Recatt and Histatt respectively. We exclude from computation the pixels 

in the current frame that are not mapped to by the optical flow from the previous frame 

pair. This is because such areas tend to be those that have just newly appeared and 

would spuriously pull down avRatt(i) and avHistatt(i) if they were included. By the 

same token, any region with unmapped area exceeding 50% of its own area are 

probably newly appearing background and will have its corresponding pixel locations 

in both buffers set to zero. All pixels in both buffers for each region are then updated 

to their respective avRatt(i) and avHistatt(i) values. 

We posit that the longer any object has been moving in recent memory, the 

likelier it is to continue receiving attention. To model this phenomenon and encourage 

smoothness in labeling along the temporal dimension, a threshold Tatt=5 is introduced 

which encourages FG labeling for a region with avRatt(i) above Tatt, while penalizing a 

region being classified as FG if its avRatt(i) is below Tatt. Note that Tatt is set much 

lower than Tatt_span to model the assumption that FOA attracts viewer’s attention faster 

than it is relinquished. Furthermore, we compute the attention energy potential only 

after a burn-in period of the first Tatt_span number of frame pairs; this ensures we have 

sufficient evidence from past frames to compute the attention energy potential. 

Expressing the above modeling assumptions, with κa=1.5, the attention energy 

potential term can be written as 
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4.7.4 Optimal Hypothesis and Region Labels 

The process of finding the optimal configuration ξ and hypothesis H that 

minimizes U(O,H|ξ) is separated into two stages. In the first stage, the hypothesis H is 

fixed either as Hypo1 or Hypo2 to ensure computation stability for the second stage, 

where actual iterative energy minimization is carried out. The configuration ξ is 

initialized in a greedy manner such that the labels maximize the solitary clique (i.e. 

non-pair-wise) data and attention energy potentials. Then, at every iteration to 

minimize U(O,H|ξ) by adjusting ξ, the total energy potential for both labels {FG, BG} 

for all regions are computed, and the region that decreases U(O,H|ξ) the most with its 

alternative label will switch its current label. This iterative minimization process, also 

known as the Highest Confidence First (HCF) method [118], continues until U(O,H|ξ) 

reaches a stable minimum or a certain number of iteration, in our case 7N,  has passed.  

 At the conclusion of the separate MAP maximization iterative processes for 

both H=Hypo1 and H=Hypo2, the “Weighted-Likelihood” (WL) energy UWL(O,H|ξ) is 

computed from the different final configurations ξ obtained under both H labels. 

UWL(O,H|ξ) weighs the likelihood of each region i by its visual presence, as modeled 

by its number of edge pixels γ(i). A WL partition function ZWL,H is computed under 

pseudo-likelihood assumptions [131], defined as the simple product of the conditional 

likelihood, and in the large lattice limit is shown to converge to the true likelihood. 
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The WL MAP PWL(ξ|O,H) is finally computed for both hypotheses, and the 

configuration ξ and hypothesis H responsible for the higher PWL(ξ|O,H) are taken to be 

the truth labels. 
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With the final region labelings, the two attention buffers for the kth pixel of 

region i are updated respectively as: 
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     (4.31) 

Finally, the values in both buffers Recatt and Histatt are shifted according to the 

motion model assigned to each pixel. Locations that are unmapped due to uncovering 

are indicated as such while locations with more than one value mapped to it will accept 

the higher value. Occasionally spurious motion estimation and segmentation introduce 

inconsistencies into both attention buffers. To ameliorate this, we perform a 1-neighbor 

memory diffusion process on both Recatt and Histatt, using the 3x3 weighing kernel of 

[1, 1, 1, 1, 8, 1, 1, 1, 1] over pixels that belong to the same region to smooth the buffers 

and to strengthen the maintenance process. Figure 4.7, 4.8 illustrate the results of using 

the occlusion handling mechanism to identify the foreground and background correctly. 
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(a) Snapshot 1 (b) Snapshot 2 

  
(c) Snapshot 3 (d) Snapshot 4 

Figure 4.8 Snapshots taken from one of the famous scenes of “The Fellowship of the 
Ring”. The characters, upon which the director directs our focus, are each larger 
than the background they have temporarily occluded.    

(a) frame 1 (b) frame 25 

(c) frame 75 (d) frame 100 
Figure 4.7 Identifying foreground and background. In an extremely fast moving 
action sequence from “The Dreamcatcher”, the camera zooms in onto an F16, 
changing its size drastically. Despite this, the global FG/BG segmentation module is 
able to successfully distinguish between the two, unlike algorithms that simply 
associates the dominant motion with the background.  
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Figure 4.9 shows some examples of attention signatures. Figure 4.10 and 

Figure 4.11 illustrate the performance of the proposed motion segmentation algorithm 

with a large variety of realistic Hollywood shots, each with different motion content, 

characteristics and challenges. On a Pentium IV 3.4Ghz processor, the un-optimized 

(a) Frame 5 (b) Frame 37 (c) Frame 67 

(d) Frame 40 (e) Frame 75 (f) Frame 111 

(g) Frame 133 (h) Frame 175 (i) Frame 300 
Figure 4.9 Attention signature maps for two sequences (a-c) and (d-i). Whiter areas 
indicate higher attention intensity. Note the attention intensity rises and ebbs 
accurately according to the location of the FOA at the moment. 
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C++ algorithm takes an average of 1.26s to compute dense optical flow and 

foreground/background segmentation for a 352x288 frame. It is noted that for non-

action normal paced shots, frame skipping is frequent and can decrease the total 

amount of expected processing time by half and even more.  
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Figure 4.10 Segmentation results from “There’s something about Mary”. Note the 
wide variety of camera distances present within these shots. 
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4.8 Difficulties Encountered by Motion Segmentation Module 

Due to the extremely wide domain of Hollywood shots filmed under the most 

diverse circumstances possible, it is inevitable that motion segmentation will under 

some circumstances produce segmentation that does not conform to the human 

perception of the focus of attention.  

 
Figure 4.11 Segmentation results from the action movies “The Fellowship of the 
Ring” and “James Bond: Golden Eye”. Presented are the segmentation results of 
some of the most furious action sequences in either of these movies. 
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One of the difficulties is associated with the confusion between foreground and 

background regions, typically for cases where the background is extremely bland and 

small in area compared to the foreground. Without effective optical constraints, the 

background tends to be assigned the wrong motion, causing errors in distinguishing 

between foreground and background. An example would be an extremely close up face 

shot framed by a bland wall by the sides.  

The second class of difficult shots occurs whenever there is temporary 

occlusion of some tracked foreground object (i.e. a man who is tracked throughout the 

shot may be momentarily occluded with someone else walking in front of the camera). 

This wipes the accumulated memory away from the occluded foreground completely, 

rendering the memory values in the last frame unreliable as a guide of the on screen 

duration of an object. 

The third class of difficult shots arises whenever the assumption of affine 

motion model for the background is violated, which is common for panoramic shots 

covering a wide range of depths, and even indoor shots. Another somewhat related 

manifestation of this problem is a miscellaneous and rare group of shots featuring 

highly non-rigid motion (swirling water, burning fire etc.) or special lighting effects.  

Finally, some shots are so low in average intensity that even humans will find 

difficult to determine the exact optical flow. These shot usually appear in the horror 

genre, where it is not infrequent to encounter shots with totally dark background, or in 

effect, no background. For the purpose of this work, we have excluded shots that are 

too dim. 
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4.9 Conclusion 

Discovering the directing intentions behind film shots potentially leads to a 

wealth of semantics necessary for various video content management and processing 

applications. In tackling this challenge, we have formulated a unique approach based 

on a pivotal observation from film grammar: namely the manipulation of the viewer’s 

visual attention is what ultimately defines the directing semantics of a given shot. 

To capture the salient information behind this attention manipulation process, 

we proposed a novel edge-based MRF motion segmentation technique, specially 

adapted for film shot semantics. This technique is capable of identifying the Focus-of-

Attention (FOA) areas accurately by utilizing edge pixels to model occlusion explicitly. 

The elegant integrated occlusion reasoning dispenses with the need for ad-hoc 

occlusion detection, allowing the foreground and background to be correctly identified 

at the global level without making somewhat unrealistic assumptions on the 

background, as do other related works in the Hollywood domain. 

The segmentation process inherently tracks FOA areas with attention maps and 

recovers accurate optical flow, which are vital to the eventual computation of effective 

and robust directing descriptors to extract shot directing semantics for indexing 

purposes. The motion segmentation is robust in the dynamic film environment, where 

key parameters adapt automatically to the shot characteristics for optimal segmentation. 

Furthermore, it does not make unwarranted nor restrictive assumptions on the size, 

number and speed of independently moving objects. Experiments show the algorithm 

performs satisfactorily on real life Hollywood shots, despite some difficult shot types, 

which we hope to solve in future works using non-motion a priori knowledge.  
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5CHAPTER V 

FILM SHOT SEMANTICS USING  

MOTION AND DIRECTING GRAMMAR 

5.1 Introduction 

Film directing grammar, used interchangeably with “directing” henceforth, is 

one of the most crucial set of production rules underlying the movie making process, 

due to its critical role of conveying director intentions through specific camera motions 

and viewpoint attributes. Though subtle, it exerts surprising amount of influence on 

how the viewer perceives and experiences the movie through three major ways.  

Firstly, directing plays an instrumental role in focusing the attention in order to 

cue the viewer in on important details or objects. For instance, to strongly imply the 

presence of interesting FOA (Focus of Attention), a number of motion-related tasks 

such as tracking are routinely executed by the director. Secondly, directing prescribes 

different camera distances for framing viewpoints, which in turn provoke different 

subjective responses, an example being the well known rule that close-ups tend to have 

more emotion impact than long distance shots. Finally, it is able to change the 

perception of the passage of time; a prime example being the pace of change of camera 

viewpoint and motion. As the above examples illustrate, directing grammar implies a 

strong correspondence between a certain set of movie-related semantics and motion-

related computable descriptors, which we term “directing descriptors”. This 

correspondence can in turn be harnessed to map the directing descriptors, a hitherto 
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superficially utilized source of information, onto semantic level knowledge, as shown 

in Figure 5.1. Movie shots are passed through the motion segmentation algorithm for 

extraction of the relevant directing descriptors. These descriptors are in turn fed into 

the SVM classifier to infer what we term the shot “directing semantics”. 

Most prior motion based indexing works are limited to the sports domain 

[73][74][75][76][77], whose organized structure allows easier application of motion to 

recover semantics. In contrast, the use of directing grammar on a comprehensive basis 

to extract semantics in the more challenging film domain is seldom addressed, if at all 

directly, having been restricted to the extraction of a few simple types of camera 

motion such as pan, tilt and zoom. Others have concentrated on motion description 

capabilities that fall into the three major methods based on motion trajectory [78], 

motion activity [79] and statistical modeling [80][82][124][125]. However these works 

are more concerned with motion based retrieval, whose frameworks are generally not 

optimized with any domain in mind, as opposed to the semantically specialized motion 

based indexing, which explicitly models the target semantic categories. [81] and [83] 

have proposed using generic frameworks to recover high level semantics; however the 

Video shots from 
movie as input 

 

Film directing 
semantics  

of each shot 
 

Motion Segmentation module extracts 
low level motion information 

Proposed framework computes 
directing descriptors from information 

Figure 5.1 Flowchart of system overview. 

Classification using SVM classifier 
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generality of the framework and low-level cues are not specifically tailored to mine 

semantic information embedded in film directing structure at the shot level.  

In this chapter, we address the above issues by firstly proposing a qualitative 

film directing semantics taxonomy - organized using certain vital film directing 

elements - that articulates a set of the most significant vocabulary of directing 

semantics. Secondly, guided by directing film grammar, we formulate effective 

directing descriptors capable of recovering their corresponding semantics. Finally, we 

demonstrate our system with experimental results. 

In determining the scope, parameters and domain of the work, we consider 

several issues. A common adage in film directing states that “every shot and cut fulfils 

a purpose”. Since the shot is the natural level of abstraction for directing grammar 

based analysis to yield significant semantics, we seek to recover this purpose, or at 

least some meaningful characteristics at the shot level, for indexing purposes. Due to 

more elaborate setups, cinematographic motion as prescribed by directing tends to find 

fuller expression in Hollywood films; hence our focus on them. However we 

emphasize that directing grammar is also employed in the production of the vast 

majority of fictional video narratives ranging from dramas to mini-series, thus securing 

wide domain for the application of our work especially in automated film analysis [69], 

editing [70], film structure creation [71], indexing [72] and video 

abstraction/summarization [121]. To our knowledge, no work in the film domain 

recovers such a comprehensive set of film shot semantics, or even use directing 

grammar based methods exclusively. Though motion is the modality under 

investigation, our framework easily allows other modalities or even forms of semantics 
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(e.g. affective – Chapter 2) to complement and enhance its film shot semantics 

indexing capabilities.   

5.2 Literature Review 

Vision based document query systems can be organized according to whether 

they are primarily designed for indexing or retrieval. Whereas retrieval only seeks to 

locate similarities with provided examples, indexing takes a further step by exploiting 

a priori information to formulate classes and their respective models for classification 

work in a specific domain. Following is a review of the use of motion in both system 

types, with the latter system type being of greater relevance to our work on indexing 

film directing semantic concepts at the shot level. 

5.2.1 Content Based Visual Query (CBVQ) for Retrieval  

For the more low level works, Idris [84] used a spatiotemporal index at the shot 

level comprising of the spatial content in the representative frame of a shot and its 

camera motion. Aghbari [85] characterized every shot by the motion histograms of 

several representative frames. Oh [86] proposed a more elaborate scheme based on 

camera and object motion as well as the number of detected moving objects.  

Amongst works that feature explicit and full motion segmentation, [87][88] 

used the long-term motion trajectories of objects for retrieval. Dagtas et al. [89] 

developed the most extensive work in matching motion trajectories with a video search 

engine called PICTURESQUE, which uses invariance spatial-temporal features for 

motion-based querying. Hsu [90] did similar work but modeled the trajectories using 

polynomials instead. Nam [91] carried out motion segmentation of video sequences 
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using 3-D wavelet decomposition to construct motion signatures of moving objects for 

storage as potential query terms. Courtney [92] tracked individual objects through the 

segmented data, to generate a symbolic representation of the video in the form of a 

directed graph. This graph describes the objects and their movement, and annotated for 

events of interest like appearance/disappearance and motion/rest of objects etc. 

However, object detection works only under the stationary case. 

Chang et al proposed VideoQ [93], an object-oriented video search system 

capable of allowing users to specify motion trajectories and temporal duration of 

objects drawn in an “animated sketch” to formulate the query, which are matched to 

motion segmentation results for retrieval. In [94], Mezaris proposed a similar scheme 

and extended the previous work by utilizing intermediate-level descriptors for object 

attributes and inter-spatiotemporal object relationships explicitly for retrieval. Fu et al. 

[95] described a hierarchical approach for object-based motion description of video, 

which comprises of a hierarchy of low-level motions and interactions (coexist, relative 

directions etc.). Although Fu’s framework is theoretically more detailed than Mezaris’s, 

yet Mezaris’s system is fully unsupervised, while Fu’s object detection is fragile and 

requires manual supervision. 

Fablet [80] used Gibbs models expressed in terms of co-occurrences to describe 

shots by certain statistical and global measures of their dynamic content, which are 

retrieved using the Kullback-Leibler similarity measure. Shots can be differentiated by 

dissimilar temporal behavior, though not sufficiently so by the spatial behavior. 

Furthermore it is difficult to extend the work in the total absence of the object concept.  
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More recently, Benini [128] used some common motion features on interesting 

applications like movie summarization while Chen [129] computed similiarty 

measures only for motion within “regions-of-interests” for retrieval purposes. 

TRECVID 2005, a video retrieval evaluation track sponsored by NIST, set up 

the task of classifying shot-level camera motion classification into pan, tilt and zoom. 

The best performers (Tsinghua [99], Fudan [100] and Marburg [101]) used the most 

reliable motion vectors of macro-blocks provided in the MPEG stream to compute the 

frame-level motion type. These results are then filtered with certain rules (typically 

involving duration and intensity) to determine the motion type of the shot by 

employing parametric and statistical models to estimate the relevant motion parameters. 

5.2.2 CBVQ for Indexing 

In contrast to the preceding works where little or no attempt has been made to 

establish the semantic significance of the features used, this following group of works 

has explicitly mapped motion features to high level semantics. Unlike retrieval systems, 

existing indexing systems have hitherto chosen work in highly structured domains with 

more predictable and easy to model constraints (e.g. sports). This ensures the 

feasibility of defining a “vocabulary” of actions, or computable motion features and 

patterns that can map to semantics.  

Lie et al [96] used simple camera motion based on affine models with a simple 

neural network inference engine to distinguish between 1) non-hitting, 2) in-field and 3) 

out-field basketball clips. Takagi [76] relied on the same camera motion models, but 

instead investigated the statistical properties of the camera motion type transition 
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parameters (pan, tilt, zoom, shake), which holds promise in distinguishing between the 

different genres of sports footages (baseball, soccer, tennis, sumo wrestling etc.). 

Using robust motion estimation techniques, Ju et al [97] analyzed and 

annotated video sequences of technical talks by detecting four distinct and useful 

finger gestures, and segmenting out the less useful parts. Lazarescu [75] derived 

discrete intermediate descriptors such as camera angle, speed, number of stages in 

camera motion and net pan/tilt to recognize different parts of offensive plays in 

American football. However the assumption of the availability of hardware-supplied 

camera motion parameters is overly constrictive. 

Ma [98] compressed the motion information of a video shot into a circular 

polar representation storing the magnitude and angular information of the optical flow. 

This “circle” is divided into four quadrants and several statistical measures such as 

kurtosis, skew and gyration are fed into an SVM to classify object shots (with objects), 

camera shots (no objects) and finally non-semantic shots (no meaningful movement). 

Object shots are further classified into different sports. Besides using a very arbitrary 

classification, there is no explicit relation between features and some classes. Rea [74] 

illustrated the use of the spatio-temporal behavior of an object in the footage as an 

embodiment of a semantic event in the snooker domain tracking the position of the 

white ball using a HMM with motion features to detect various snooker play semantics 

like shot-to-nothing, break building, conservative play and snooker escape. 

Haering et al [83] proposed a three-level semantic indexing framework to 

detect events where the first level extracts low level cues like moving blobs while the 

mid-level employs a neural network to determine the object class of the blobs and 

generate shot descriptors. The domain-specific inference process at the third level then 
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uses these descriptors to detect certain user-defined events. But it is unrealistic for 

generic low-level features to capture domain specific information and identify object 

classes, especially in the general Hollywood film domain. 

 

5.3 Semantic Taxonomy for Film Directing 

Cinematography considers film as a narrative formal system where a group of 

interacting and interdependent film elements (sound, setting, directing etc.) are put 

together to deliver the narrative in a smooth and coherent manner [1]. As a vital film 

element, directing manifests its influence on the narrative at the shot level. With the 

skilful manipulation of camera motion and distance, each shot can convey additional 

meaning or enhanced viewer impact through accomplishing certain common yet 

important directing tasks. Indeed, in the light of the richness of the underlying 

directing semantics that can potentially be recovered, the indexing value of the 

directing handiwork is undeniable.  

However in comparison to the well behaved directing format for sports domain, 

shot semantics from the film domain, at least at a sufficiently high and interesting level, 

are far more complex. Hence indexing directing semantics requires exploiting 

constraints inherent in directing grammar to construct a well-thought-out and coherent 

directing semantics taxonomy. Naturally, this organization should be suitably 

grounded upon the film directing elements. 
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5.3.1 Film Directing Elements 

Film directing grammar encompasses two major directing elements, whose 

organizational relationships with shot semantics are broadly explicated and highlighted. 

 

Camera Motion/FOA Behavior: As the chief means of subtly narrating a story 

through the director’s perspective, camera motion in tandem with FOA (Focus of 

Attention) behavior, convey far more meaning than most consciously realize. Camera 

motion recovery is thus an indispensable step. Traditionally, the major camera motion 

types are pan (rotation about the vertical axis), tilt (rotation about the horizontal axis) 

and finally zoom (change in focal length). However for semantic level video indexing 

purposes, it is not so much the exact amount of zoom, or whether the camera is tilting 

or panning that is important, but the qualitative camera operation and its qualitative 

amount of movement.  

In the simplest case, the stationary shot can be used to signify calm or even a 

pause pregnant with meaning. A major non-stationary shot category is the tracking 

shot, which are shots that exhibit the unique motion behavior of keeping the FOA - in 

other words the subject of interest - in view. Another major shot category is the 

establishment shot, whose purpose is to introduce locations instead of focusing on 

FOAs. Yet another major motion type with semantic significance, by virtue of its 

strong psychological effects on humans, is the zoom-in, and to a lesser extent, the 

zoom-out motion. Finally, it is recognized that not all shots are characterized by 

patterned camera motion and FOA behavior. Hence we create the chaotic shot 

category to describe shots that do not exhibit discernible motion patterns.  
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Camera Distance: Camera framing refers to the manner the FOA(s) are presented in 

the frame, which embodies the aspects of distance, composition, angle (low/high 

angled shot), level (degree of canting) and height [1]. Of these five, we concentrate on 

one of the most influential aspects of framing: camera distance. Cinematography 

admits of three coarse distance graduations (Figure 5.2): close-up, medium and long 

[127]. Because emotional involvement and degree of attention are approximately 

inversely correlated with camera distance, it can be directly used as a semantic index 

for the amount of attention and emotional proximity.  

For the purpose of indexing, we have further consolidated the distance 

categories into two: close-ups and medium shots in one category and long shots in the 

other category, for the following two reasons. Firstly, on a relative basis, many more 

shots straddle the fine line demarcating close-ups and medium shots compared to the 

clean line of separation between medium and long shots: a consequence of the popular 

use of head-and-shoulders shots. Secondly, the camera distance is directly related to 

the size of the field of view, and serves as a good index of whether the director intends 

the shot to offer a broad overview or specific focus [104], whose distinction coincides 

quite neatly with the demarcation between short/medium and long shots.  

(a) (b) (c) 
Figure 5.2 Example shots at different camera distances. Typical images of (a) 
close-up (b) medium and (c) long shot. 
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5.3.2 Proposed Semantic Taxonomy 

Proposing a semantic taxonomy is not an easy task, given the various criteria it 

should ideally fulfill. Firstly, the semantics within the taxonomy should be qualitative 

and meaningful to the user. For instance, commonly used low level motion classes like 

“pan-right” or even “tilt” should be avoided if possible, since they do not correspond 

strongly to higher level semantics in directing grammar and may be less relevant to the 

user. Secondly, the semantics selected should remain within the scope of the work as 

defined by its motion and film directing focus. 

Since directing semantics are expressed by permutations of the directing 

elements, it is intuitive to utilize these directing elements as a basis to organize the 

semantic taxonomy. To accomplish this organization, we generate a table from all 

possible permutations of the directing elements (i.e. camera motion/FOA behavior and 

camera distance). Then we select the most meaningful and frequently employed 

directing semantics from directing film grammar and assign these semantics to their 

corresponding permutations within the table (Table 5.1). 

Many advantages accrue to such an organization. The very fact that exhaustive 

permutations of directing elements are used as the basis of organizing the taxonomy 

ensures that the resultant semantic classes are relevant to the work scope and are 

sufficiently comprehensive to cover the whole spectrum of shots. Impossible 

combinations are easily detected and removed. For instance, the definition of zoom 

camera behavior precludes any combination with fixed camera distance. Similarly, the 

lack of any consistent FOA in establishment camera motion behavior renders camera 

distance combinations meaningless too. At the same time, feasible new semantic 

classes that contribute to a richer taxonomy may emerge, as in the case of Tracking, 
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which can logically be split into the meaningful Focus Tracking and Contextual 

Tracking classes along the camera distance element. 

 

 

TABLE 5.1 
Directing Semantics Organization by Film Directing Elements 

Semantics Camera Motion /  
FOA Behavior Camera Distance 

1) Stationary (Static) Stationary: 
Little camera and FOA motion 

Not Applicable:  
Very weak motion 

renders camera distance 
computation invalid. 

   

2) Contextual Tracking Long 

3) Focus Tracking 

 
Tracking: 

following particular FOA 
 Close Up / Medium 

   

4) TTC (Zoom In) 
TTC: 

Camera behavior dominated 
by camera distance 

Decreasing 

   

5) Zoom Out 
Zoom Out:  

Camera behavior dominated 
by camera distance  

Increasing 

   

6) Intermittent / 
Panning Establishment 

Establishment:  
Revealing surroundings and 
spatial relationships without 

particular FOA 

Not Applicable:  
absence of FOA 

   

7) Chaotic: Dominating  
sense of un-patterned 
motion with little 
coherent semantics 

Un-Patterned Motion: 
Presence of large magnitude 

non-patterned motion from both 
FOA and camera 

Not Applicable:  
Incoherent FOA  

and camera motion 
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Finally, under some circumstances, different semantics with the same 

permutation of directing elements can even be merged together. For instance, shots 

that do not belong to any of the first six semantic classes generally do not share any 

commonality in directing semantics, nor have any distinct directing semantics, save for 

the fact that they are characterized by significant un-patterned camera/FOA motions. 

In such a case, a new semantic class with the label “Chaotic”, which accurately 

describes the shots motion-wise, is used to house this set of shots.  

We finally settle on the seven semantic classes: 1) static, 2) contextual tracking 

(C-Track), 3) focus tracking (F-Track) 4) TTC, 5) zoom out, 6) establishment and 7) 

chaotic. Although directing semantics may necessarily be “fuzzier” and less mutually 

exclusive as opposed to clear-cut categories typical of the sports domain (goal shots, 

replay etc), clear indexing value can be fruitfully distilled from them, as the fuller 

descriptions of the semantic classes and their significance in the following paragraphs 

illustrate.  

 

Establishment shot: In film grammar, scenes or story units should ideally start with 

an establishment shot (Figure 5.4 - 2nd row)[14]. Used to introduce or remind the 

viewer of a new environment or spatial relationships inside it, establishment shots are 

realized using smooth panning motion or stationary camera, with the former using 

panning to survey the new location. Detection of the establishment shot aids in story 

structure recovery such as analyzing the story units of a movie and scene segmentation. 

Sometimes, an establishment shot can be inserted in a long scene in order to relocate 

the FOA in the setting with a long shot after a number of medium and close-up shots. 
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Another closely related common technique in cinematography is the 

intermittent pan [5], where the camera focuses the attention on multiple – usually two 

– FOAs by panning from one FOA to another with smooth camera movements (Figure 

5.3). The chief purpose behind the intermittent pan - similar to the establishment shot - 

is to use the panning motion to highlight the spatial relationship between various FOAs 

within the shot, without focusing exclusively on any of them. Therefore it is actually a 

form of establishment shot, even though superficially it resembles the tracking shot.  

 

Stationary (Static) shot: As the workhorse shot for many occasions, the vast majority 

of dialogue shots (over-the-shoulder, two-person shots etc.) and practically all close-up 

shots fall under this category [22]. The minimal motion content of such shots reflects a 

large portion of human interaction, which is typically sedate in terms of motion, and 

serves as a good index of the lull portions of a movie in contrast to its climaxes. 

 

 
Figure 5.3 Intermittent Panning. The camera begins by following a group of 
soldiers moving in double line (1), then an onlooking group turning to the left (2), 
then a gardener (3) pushing a wheelbarrow, then a man on horseback (4) and 
finally the camera focuses on a group of persons talking to each other (5). 
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Tracking shot: The tracking shot is defined by a moving camera whose primary 

intention is to specially identify a FOA, by using the camera to either follow or rotate 

around the subject closely. This draws the viewer into a closer, more intense 

relationship with the subject [127] by creating the illusion that the viewer is directly 

present within the scene itself. Consequently, tracking shots are a valuable index for 

the strong presence of FOAs and first-person point-of-views. There exist two major 

variants of tracking shots. The first variant, which we call the Focus Tracking shot 

type, concentrates the viewer’s attention on a subject by employing either close or 

medium camera shot distance. The other type, the Contextual Tracking shot (Figure 

5.4 - 1st row), uses the long shot to show off the surroundings while accomplishing the 

dual purpose of tracking the subject. These two types of shots usually intertwine in 

longer tracking sequences as the directing requirements alternate.  

 

Time-To-Collision (TTC) shot: A term originating from computer vision, TTC refers 

to the time remaining for an object to collide with the camera if the relative motion 

between the camera and the object remains the same. Our definition of Time-To-

Collision shot (Figure 5.4 – 3rd row) is expanded to include shots where 1) subject or 

camera is moving towards the other and 2) zoom-in, where it creates an apparent 

impression of collision. The significance of the TTC shot lies in its ability to create and 

amplify emotional empathy connected with the perception of character expressions or 

impending collisions. This is amply demonstrated in action genre shots that use the 

TTC effect to create the visceral tension of impending impact (e.g. colliding car), 

augmenting the indexing value of TTC shots. Lastly, TTC shots can be employed to 

clarify details and to identify objects of importance. 
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Zoom-out shot: Zoom out shots, also known as detachment shots, emotionally detach 

or relax the interest of the viewer from the subject. This effect is usually achieved 

through zooming out or dolly out shots, as the camera gradually moves away from the 

subject and creates emotional distance. Since this shot widens the field of view, it is 

also employed to reveal more information about the surroundings [104]. 

 

Chaotic shot: The chaotic shot (Figure 5.4 – 4th row) refers to shots characterized by 

large degree of FOA movement, usually in conjunction with un-patterned camera 

motion. This unique motion behavior covers almost all other combinations of motion 

behavior not covered by other semantic classes. In this shot type, it is not unusual for 

the fast moving FOA to dominate viewer attention. Such shots usually cluster around 

the movie climax peaks and tend to be more prevalent in action genre movies.  
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5.3.3 Shot Labeling 

According to the TRECVID 2005 committee [126], in attempting to provide 

ground truth for shot-level camera motion to be classified into pan, tilt and zoom and 

no-motion, 2600 of the 5000 shots in the video corpus were rejected as being too 

ambiguous for annotation purposes, a situation largely attributed to 1) strong 

perceptual dependence on individuals and 2) presence of multiple motion types with 

varying strengths.  

Figure 5.4   Examples of semantic classes. Contextual tracking shot (1st row), 
establishment shot (2nd row), TTC shot (3rd row) and chaotic shot (4th row). 
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To minimize labeling subjectivity and rejection of shots from our video corpus, 

the choice of semantic classes is of utmost importance. Although there is still some 

room for judgment ambiguity in our semantics taxonomy, the more qualitative nature 

of our classes reduce the need to make fine quantitative judgments. For instance, under 

our taxonomy, it is not necessary to distinguish between pan and tilt. Neither is it 

required to gauge if tilt is significantly more than pan etc. Instead the primary labeling 

difficulty lies with the fact that a significant minority of shots have two equally 

significant directing semantics in consecutive arrangement within the shot (e.g. a shot 

with a long stationary period followed by an equally long tracking period). However 

identifying the two semantic classes and where they join is relatively easier, and shots 

felt to contain two significant directing semantics are appropriately assigned dual 

labels. 

Additionally, we have also formulated a set of systematic guidelines below to 

improve objectivity in the manual assignment of ground truth for the semantic labels 

of some of the more ambiguous movie shots: 

1) If there is a only a fragment of background framing the “tracked” foreground (the 

greenery outside in Figure 5.5a, then the background is totally discounted and the shot 

will be not labeled as a tracking shot but perhaps as a static shot if the foreground is 

relatively stationary.  

2) Establishment shots that employ object tracking as the technique to introduce new 

scenery to the viewer are labeled as tracking shots. In the same vein, establishment 

shots filmed using a totally static shot, a technique used from time to time, are labeled 

as static shots (Figure 5.5b). This is in recognition that some forms of establishment 
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shot requires more than just motion features to detect and thus lie outside the scope of 

the work.  

3) If a stationary camera portrays a long shot, then regardless of the FOA motion, the 

shot is labeled as a static shot. This is because the foreground area is simply too small 

to override the effects of the stationary camera (e.g. tiny fragment of FOA in the 

middle of Figure 5.5c).  

5.4 Film Directing Descriptors 

To distinguish shots between various directing semantics classes, the 

descriptors computed should intuitively possess some general relationships with the 

directing elements (i.e. camera motion/FOA behavior and distance) responsible for 

generating the semantics. This is not to claim a rigid one-to-one correspondence 

between directing elements and semantics. However occasional violations of film 

grammar do not invalidate the broad relationships between film directing elements and 

directing semantics. On the contrary, it argues for designing computable motion-based 

descriptors shown by directing grammar to possess conceptual linkages with the 

semantic classes. We now detail the various mid-level modules used to compute 

directing descriptors from the outputs of the motion segmentation module (Chapter 4), 

illustrated in a flowchart in Figure 5.6.  

(a) (b) (c) 
Figure 5.5 Example shots to illustrate labeling rules. 



 

 

 

 

144

5.4.1 Key-Frame and Frame Level Descriptors 

From the motion segmentation process described in Chapter 4, every shot is 

represented by a number of key-frames. Starting with the first frame as a key-frame, 

subsequent key-frames are selected when the frame differencing threshold between the 

current frame under consideration and the immediate previous key-frame exceeds a 

fixed threshold. Thus for every key-frame, relative to the next key-frame, we are able 

to obtain four separate types of motion-based information. These are the 1) dense 

optical flow, the 2) binary background/foreground image segmentation map, the 3) 

Figure 5.6 Flowchart of the shot semantics classification process. 
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attention signature image map and finally the 4) background motion, which is 

succinctly represented in the affine parametric form (Equation 4.4).  

Since the raw motion-related information is extracted at the key-frame level, it 

is necessary to normalize both the background affine parameters and optical flow 

distribution, w.r.t. the number of frames between each pair of key-frames. This is 

accomplished by extrapolating and smoothing the affine parameters and optical flow 

across the entire shot for every frame. After normalization, the background affine 

parameters and optical flow become shared descriptors at both the key-frame and 

frame level.  

Now, let every key-frame be represented by a vector of descriptors, which we 

call the Key-Frame Descriptor Vector (KFDV). These descriptors, which are computed 

from the above-mentioned key-frame motion information, are as follows: 

 

Background Speed: The background speed, or the camera motion speed, for every 

key-frame k in a shot is computed by MagBG,k= 2 2
1 4 .a a+  

Compressed Foreground Magnitude Histogram (CFMH): Our motion 

segmentation algorithm computes the optical flow for the foreground, as denoted by 

the binary background/foreground image segmentation map, in every key-frame. This 

is in contrast to other works that usually exploit the motion vectors provided by the 

MPEG format, which are meant to minimize inter-frame differences and do not 

necessarily conform to the true optical flow our algorithm is designed to recover. The 

foreground pixels of every key-frame are represented with a polar representation 

histogram comprising of 8 equi-angular bins of 45 degrees and 16 motion magnitude 
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bins ([0.25, 1.0, 2.0, 3.0, 4.0, 5.0, 6.25, 7.75, 9.25, 11.0, 13.0, 15.0, 17.5, 20.5, 23.5, 

30]), for a total of 128 bins. To obtain the final Compressed Foreground Magnitude 

Histogram, the 128 bin histogram is collapsed along the angle dimension and 

compressed along the magnitude dimension into only 5 bins of the following 

configuration: [1st-3rd bins, 4th-6th bins, 7th-9th bins, 10th-12th bins and 13th-16th bins]. 

Higher foreground magnitudes have a loose correspondence with closer camera 

distances. 

 

Motion Vector Entropy: This measure computes the entropy of the 128 bin version 

of the foreground polar representation histogram. To a certain extent, the entropy 

admits an indirect measure of the likelihood of disparate objects in the frame, which in 

turn affects our inference of the number of objects, and hence the shot distance. 

 

Foreground Area Percentage: This descriptor measures the total percentage of pixels 

designated as foreground w.r.t the frame area, and functions as the chief measure of 

camera distance. It is certainly true that the percentage of foreground is not strictly 

inversely proportionate to camera shot distance. However this descriptor functions 

adequately as a differentiator between the coarse camera distance categories of close 

up/medium shots and long shots.  

5.4.2 Shot Level Distance Based Descriptor  

In order to gauge the camera distance of every shot, the key-frame level 

descriptors of the shot, or KFDV, are fed into a probabilistic SVM classifier. This 

SVM classifier is trained as a 2-class classifier, using the close up/medium and long 
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shots as the two different classes. The percentages of key-frames in a shot that are 

classified into the two classes are used as the shot level distance based descriptor. This 

descriptor is the chief means to distinguish between contextual tracking and focus 

tracking shots, which differ only in their camera distance.  

5.4.3 Shot Level Motion Based Descriptors  

Normalized Shot Duration: This descriptor is derived by dividing the absolute 

duration of a shot (seconds) by 2tsd, where tsd=4.3s is the average shot duration. 

Although semantics do not have any strict rules in film grammar concerning shot 

duration, chaotic shots tend to be of much shorter duration compared to most other 

semantic classes. On the other hand, both establishment and tracking shots tend to 

have a relatively long minimal duration, because both semantics require time to allow 

the viewers to be familiarized with the location or the tracked FOA respectively.  

 

Stationarity Percentage: This descriptor measures the percentage of frames in the 

shot where MagBG<2. As opposed to other semantic classes, stationary shots tend to 

overwhelmingly cluster around high values of this measure.   

 

Zoom-In and Zoom-Out Percentages: The Time-To-Collision (TTC) value for every 

frame is computed as (1/(a3+a6)), and TTC values between [0,400] and [-400,0] are 

deemed significant indicators that the camera is experiencing the zoom-in and zoom-

out phenomenon respectively. Thus the percentages of frames within a shot deemed to 

undergo the zoom-in and zoom-out phenomenon are the Zoom-In and Zoom-Out 
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Percentages respectively. This is the main measure to differentiate between zooming 

and non-zooming shots. 

 

Smoothness Percentage: This descriptor calculates the longest consecutive period of 

the camera motion being either the pan (a1) or tilt (a4) without a change in direction, 

where the camera is deemed to be in motion if MagBG>2. This descriptor serves as a 

measure of the smoothness of motion typical of establishment and tracking shots.  

 

Shot Compressed Foreground Magnitude Histogram: This descriptor is the average 

CFMH of every key-frame within a shot. Very intense histograms are a good sign of 

the chaotic semantic class, while the converse is true for static shots.  

5.4.4 Shot Level Attention Based Descriptors 

Distinguishing between the establishment and tracking semantic classes, which 

share the same smooth background motion, requires the detection of the presence of an 

FOA. The attention image map (Figure 5.7), whose intensity at every pixel records the 

number of times it is classified as part of an FOA, serves to indicate presence of FOAs 

using motion-based information.  

First, we normalize the values of the attention image map against the total 

number of key-frames in a shot. This normalized map is used to construct an equally-

spaced 10 bin attention histogram AH={ah1,ah2,…,ah10} where each ahn denotes the 

proportion of pixels in the attention image map with normalized attention values 

falling within the bin (e.g. ah5 will have a bin range of [0.5,0.6]). In theory, the 

attention histogram at the last key-frame of the sequence should be able to give a good 
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indication of FOA presence. However there is a noticeable tendency for some tracking 

shots to allow the tracked FOA to either leave the frame or be occluded in the last 

moments. This would destroy the attention trail that had hitherto been maintained and 

give spurious classification results if only the last frame were used.  

To counter this problem, we compute an AH intensity measure, AHim, for each 

key-frame in the last-third portion of the shot as 
10

= median( )* .im i i
i

ah ah∑AH For 

instance, bin ah5 bin has the range [0.5,0.6] and hence will have a median value of 0.55. 

The AH with the highest AHim is finally used as the shot level attention based 

descriptor. This ensures the FOA is at least consistently tracked until at least the last 

third of a shot to fulfill the tracking criterion, and can increase robustness against 

occlusions that occur in the last portion of the shot. 

5.4.5 Shot Descriptor Vector 

The shot level attention, distance and motion descriptors of each shot are 

concatenated into a 21 dimension Shot Descriptor Vector (SDV) to describe the shot.  
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(a) Frame 5 (b) Frame 155 (c) Frame 255 

(d) Frame 5 (e) Frame 201 (f) Frame 404 

(g) Frame 1 (h) Frame 150 (i) Frame 299 

(j) Frame 3 (k) Frame 37 (l) Frame 65 
Figure 5.7 Attention signatures from four sequences (row-wise). The tracking shots 
are (a-c) and (d-f), whereas the establishment shots are (g-i) and (j-l). Notice that 
the contrast in the intensity of the attention signatures between the last frames of the 
tracking and establishment sequences. 
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5.5 Experimental Results 

Our original video corpus (Table 5.2) comprises of 5226 shots lasting 366 

minutes and spans across seven movies of diverse genres: two full romantic comedy 

movies (There’s something about Mary, Bedazzled), one melodrama (City of Angels) 

and finally selected fast action scenes from four action movies (Lord Of the Ring I, 

Star Wars, James Bond and Starship Troopers). From this video corpus, we have taken 

out 172 extremely low intensity shots whose average frame intensities are below 30, 

on the basis that these shots pose problems even for manual foreground and 

background segmentation. Other than this one condition, the video corpus has been 

chosen to maximize variety. For labeling purposes two persons are employed to 

TABLE 5.2 
Video Corpus Description by Shot and Frames 

Movie Shots 
(final/original) 

Frames Duration 

There’s something about Mary 1004/1039 155938 104 mins 

Bedazzled 980/1012 119641 80 mins 

City of Angels 1053/1141 149545 100 mins 

Lord Of the Ring I 653/659 43211 29 mins 

Star Wars 495/502 27992 19 mins 

James Bond 565/568 37950 21 mins 

Starship Troopers 304/305 23171 13 mins 

Total 5054/5226 557448 366 mins 
 

TABLE 5.3 
Composition of Directing Semantic Classes in Video Corpus (%) 

 Static ZoomOut TTC Estab C-Track F-Track Chaotic 
Number 1931 34 231 146 412 879 1421 

(%) 38.21 0.67 4.57 2.89 8.15 17.39 28.12 
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independently label all shots according to guidelines in Chapter 5.3.3. Finally, the few 

labeling discrepancies between both label sets are harmonized after discussion between 

the labelers. The number of shots with dual labels consists of 15.3% of the entire video 

corpus.  

To carry out shot semantics classification, the probabilistic SVM classifier 

(Chapter 3.4) is used to classify the Shot Descriptor Vector (SDV) (Chapter 5.4.5) that 

represents each shot, and outputs a 7x1 vector where each entry denotes the probability 

of the shot belonging to a particular shot semantic. We used a multi-class C-SVM with 

radial basis function kernel, with the penalty parameters C=2 and margin γ=5. To 

reduce the deleterious effects of the great imbalance of samples between certain 

classes as shown in Table 5.3 (Zoom Out and Estab classes have relatively fewer 

samples), we conduct training and classification using the following method.  

For each training-classification iteration, we select shots for training and testing 

in a manner similar to bagging [132]. With this method, we randomly select from each 

class the smaller number between 300 and 85% of all shots of that class for training, 

and reserve the remaining shots for testing, allowing a much more balanced training 

set. During the testing phase, the test label of each test shot is the class receiving the 

highest probability, and the test results are noted down. This training-classification 

process is iterated 100 times. Finally, the test label results of every shot are tallied over 

all iterations and each shot is finally assigned to the test label receiving the most votes 

according to the tallied results. The classification results are shown in the following 

tables. 
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Analyzing the confusion matrix in Table 5.4, certain classification error rates 

stand out and deserve explanation. It is observed that the Static and Chaotic classes 

tend to be confused one with another. Because the main difference between these two 

classes is mainly the magnitude of movement, which can be easily “misjudged” due to 

mild viewer subjectivity, there will inevitably be a small number of “mislabeled” 

borderline shots. Another source of relatively high error is that of Establishment shots 

being mistaken as Contextual Tracking (C-Track) shots. Both types of shots are 

characterized by long durations of panning motion, and sometimes if the small FOA 

moves too fast in a Contextual Tracking shot, it is possible for the attention trail to 

vanish and consequently take on the appearance of an Establishment shot.  

TABLE 5.4 
Confusion Matrix for Directing Semantic Classes (%) 

 Static ZoomOut TTC Estab C-Track F-Track Chaotic 
Static 91.94 0.20 0.78 0.73 0.67 0.34 5.34 

ZoomOut 2.37 83.59 1.85 0.74 5.93 1.48 2.74 
TTC 0.39 0.33 87.55 0.59 0.52 2.16 8.56 
Estab 2.58 0.00 1.97 82.12 4.32 3.79 3.03 

C-Track 0.98 0.29 0.68 6.89 87.94 5.54 0.82 
F-Track 0.62 6.36 2.43 1.12 4.96 86.45 4.07 
Chaotic 6.12 0.29 1.74 0.91 1.33 4.25 85.36 

 
TABLE 5.5 

Recall and Precision for Directing Semantic Classes (%) 

 Static ZoomOut TTC Estab C-Track F-Track Chaotic 
Recall 91.94 83.59 87.55 82.12 87.94 86.45 85.36 

Precision 94.57 68.29 74.81 65.97 80.44 88.17 87.90 
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Similarly, due to the similarities in the tracking motion, both Contextual 

Tracking and Focus Tracking classes have the tendency to be confused one with 

another. From the last column, it is noticed that Chaotic class seems most prone to 

confusion with other classes. This is likely because Chaotic class is the most 

unconstrained and unstructured class both in terms of motion characteristics and 

camera shot distance, thus occupying a disproportionately large area in the descriptor 

space and increasing the likelihood of encroaching upon other classes. 

From the lst row of Table 5.5, the recall rates for all classes seem satisfactory. 

However due to the disproportionately small sample sizes in the video corpus for the 

semantic classes TTC, Zoom-out and Establishment, their precision rates are extremely 

susceptible to false positives from other much larger classes, which though few in 

number, are sufficient to significantly reduce precision rates of smaller classes. 

 To evaluate the effectiveness of the proposed occlusion handling mechanism 

for the MRF based motion segmentation algorithm, the mechanism is “switched off” 

by adopting the hypothesis that the dominant motion is the background all the time. 

The new results of such a change are tabulated in Table 5.6 and Table 5.7 and 

compared with its counterpart results of Table 5.4 and Table 5.5. It can be observed 

that although there are little differences for most results, there is a rather significant 

drop in classification rates when occlusion handling is “switched off” for the C-Track, 

F-Track and Chaotic classes.  

Occlusion handling is specifically formulated to identify foreground from 

background. Therefore it is expected to turn in better classification rates in comparison 

to algorithms that assume the dominant motion is always the background, especially 

for classes with a higher proportion of close-up shots, which tend to feature dominant 
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foreground. As a matter of fact, close-ups are very heavily concentrated in the Static 

and Chaotic classes; even F-Track class is comprised mostly of medium shots. In the 

event of confusion between background and foreground, Static shots by virtue of their 

stationarity are not likely to be mislabeled as other classes, as seen from the recall rates 

for the Chaotic class (Table 5.7). However Chaotic shots are much more liable to be 

labeled as Tracking shots, especially F-Track class (seen from its precision rate in 

Table 5.7), due to the relatively high magnitude motion characteristics they share. It 

can be concluded that the occlusion handling mechanism does seem to improve 

semantic classification accuracy under certain circumstances. 

 

TABLE 5.6 
Confusion Matrix for Directing Semantic Classes with no Occlusion Handling (%)

 Static ZoomOut TTC Estab C-Track F-Track Chaotic 
Static 91.24 0.20 0.78 0.73 0.67 0.34 6.04 

ZoomOut 2.37 83.59 1.85 0.74 5.93 1.48 2.74 
TTC 0.39 0.33 87.55 0.59 0.52 2.16 8.56 
Estab 2.58 0.00 1.97 82.19 6.32 3.79 3.03 

C-Track 0.98 0.29 0.68 6.89 85.34 5.54 0.82 
F Track 0.62 0.36 2.43 1.12 4.96 86.15 4.57 
Chaotic 6.12 0.29 1.74 0.91 2.63 7.25 81.35 

 
TABLE 5.7 

Recall and Precision for Directing Semantic Classes 
 with no Occlusion Handling (%) 

 Static ZoomOut TTC Estab C-Track F-Track Chaotic 
Recall 91.24 83.59 87.55 82.19 85.34 86.15 81.35 

Precision 94.53 68.29 74.81 64.52 77.97 83.92 86.20 
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5.6 Conclusion 

Given the wealth of underlying directing semantics residing within each shot, 

the indexing value of such directing handiwork is undeniable. However the choice of 

suitable directing semantics needs to satisfy the constraints of directing grammar. We 

have thus proposed to organize the semantics taxonomy based on two of the vital film 

directing elements: camera motion/FOA behavior and camera distance, in order to 

construct a coherent film directing semantics taxonomy. This framework leads us to a 

set of well-formed directing semantic classes and a set of effective and directing-

elements-related motion descriptors. Our experiments have shown that the motion-

based characteristics of the directing elements within a shot are sufficient to index its 

directing semantics well, despite the fact that the classes themselves correspond to 

relatively high level and complex semantics. 

For future works, it will be useful to investigate how to approximate camera 

distances reliably enough to tell apart close-ups from medium shots. For instance, the 

usage of face detectors can conceivably give useful clues to the camera distance.   

Extending the idea further, contextual information such as inter-shot relationships can 

be incorporated into the framework, paving the way for a richer semantics taxonomy. 

Promising avenues for further research include the use of other modalities such as 

image, audio and even affective information to boost the variety of semantics available 

for extraction.  
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6CHAPTER VI 

CONCLUSION 

In this thesis, we have focused on the semantic indexing of Hollywood movie 

domain, a domain chosen for both the challenges and rewards presented to machine 

understanding and processing. We have explored this intriguing objective from the 

hitherto little explored film directing and affective perspectives – in other words its 

motion and emotion – and proposed the frameworks and algorithms to demonstrate 

their feasibility on real movie video corpus.  

As any avid fan or student of the cinema will attest, emotion and motion are 

critically intertwined with the cinema, and provide cinema with much of its meaning. 

Therefore an important task must be to investigate how to accomplish semantic 

indexing of cinema from the emotional and motion perspectives. In approaching this 

task, we have decided to tackle the problem with a unified approach, and ground our 

approach on an authoritative and objective basis: film grammar. Here we briefly recap 

our contributions to the objective set forth for this thesis. 

 

Contributions for the Affective Perspective:  

A complementary approach has been proposed to study and develop techniques 

for understanding the affective content of general Hollywood movies. We laid down a 

set of relevant and theoretically sound emotional categories and employed a number of 

low level features from cinematographic and psychological considerations to estimate 

these emotions. We discussed some of the important issues attendant to automated 
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affective understanding of film. We demonstrated the viability of the emotion 

categories and audiovisual features by carrying out experiments on large numbers of 

movies. In particular, we introduced an effective probabilistic audio inference scheme 

and showed the importance of audio information. Finally, we demonstrated some 

interesting applications with the resultant affective capabilities. 

Much work remains to be done in this largely unexplored field. Firstly, the 

wrong classification of a small proportion of scenes shows up the inherent limitation of 

low-level cues (especially visual) in bridging the affective gap. Therefore in the 

immediate future, more complex intermediate-level cues can be implemented to further 

improve present results. Secondly, the existence of multiple emotions in scenes 

requires a more refined treatment. Lastly, it is worth investigating the possibility of 

finer sub-partitioning of the present affective categories, as well as further scene 

affective vector level analysis. 

 

Contributions for the Film Directing Perspective:  

To uncover the wealth of directing semantics behind each movie shot, we have 

formulated a unique approach based on a pivotal observation from film grammar: 

namely the manipulation of the viewer’s visual attention is what that ultimately defines 

the directing semantics of a given shot. To capture the salient information behind this 

attention manipulation process, we proposed an elegant and novel edge-based MRF 

motion segmentation technique capable of identifying the Focus-of-Attention (FOA) 

areas more accurately, by utilizing edge pixels to model occlusion explicitly. The 

elegant integrated occlusion reasoning dispenses with the need for ad-hoc occlusion 

detection, allowing the foreground and background to be correctly identified at the 
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global level without making somewhat unrealistic assumptions on the background, as 

do other related works in the Hollywood domain. 

The motion segmentation is robust in the dynamic film environment, where key 

parameters adapt automatically to the shot characteristics for optimal segmentation. 

Furthermore, it does not make unwarranted nor restrictive assumptions on the size, 

number and speed of independently moving objects. Experiments show the algorithm 

performs satisfactorily on real life Hollywood shots, despite some difficult shot types. 

To exploit the output of the motion segmentation algorithm, we have proposed 

a coherent film directing semantics taxonomy based on vital film directing elements 

(i.e. camera motion/FOA behavior and camera distance). This framework leads us to a 

set of well-formed directing semantic classes and a set of effective and directing-

elements-related motion descriptors. Our experiments have shown that the motion-

based characteristics of the directing elements within a shot are sufficient to index its 

directing semantics well, despite the fact that the classes themselves correspond to 

relatively high level and complex semantics. 

One of the immediate improvements to work on is to study how to approximate 

camera distances reliably enough to tell apart close-ups from medium shots. Extending 

the idea further, contextual information such as inter-shot relationships can be 

incorporated into the framework, paving the way for a richer semantics taxonomy. 

Promising avenues for further research include the use of other modalities such as 

image, audio and even affective information to boost the variety of semantics available 

for extraction. 
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In the Future: 

Much remains to be done in the difficult domain of film multimedia content 

management, processing and understanding. At this stage, most technologies are still 

straddling somewhere between content retrieval and indexing. Looking into the mid-

term future, capabilities such as the highly precise voice-to-text language translation 

and eventually text-to-semantics technologies will seem likely to emerge as the cutting 

edge in film multimedia content understanding. On the visual front, another 

technology ripe for exploration would be the exciting yet daunting object recognition. 

Because of its potency, and probably the corresponding need for some groundbreaking 

advances in AI, its deployment will probably be some way off.  

However back to the near future, we foresee personalized reviewing and 

indexing as a vital component of the entire plethora of multimedia indexing 

technologies in the future, and the work in this thesis will certainly be suited to play a 

substantial part in this scenario. Existing and new online video communities will 

mature. Internet Protocol Tele-Vision will start to blossom and set off a wave of 

unprecedented demand for video content management systems specifically tailored to 

search and analyze motion pictures in a customizable manner for indexing, 

highlighting, summarization, data-mining, automated-editing, recommendation for 

consumption. With this consumption driven by the general consumer, commercial 

vendors and niche markets, the possibilities of exploration in this field are breathtaking. 
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