
A FRAMEWORK FOR PROGRAM REASONING
BASED ON CONSTRAINT TRACES

ANDREW EDWARD SANTOSA

NATIONAL UNIVERSITY OF SINGAPORE

2008

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarBank@NUS

https://core.ac.uk/display/48624879?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A FRAMEWORK FOR PROGRAM REASONING
BASED ON CONSTRAINT TRACES

ANDREW EDWARD SANTOSA
(B.Eng., University of Electro-Communications,
M.Eng., University of Electro-Communications)

A THESIS SUBMITTED

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

DEPARTMENT OF COMPUTER SCIENCE

NATIONAL UNIVERSITY OF SINGAPORE

2008

Acknowledgments

I thank Prof. Joxan Jaffar for it has been a great privilege toenjoy his support throughout my

doctoral study. I also thank Dr. Răzvan Voicu whose many ideas have inspired this thesis. I also

thank Prof. Roland H. C. Yap, Prof. Abhik Roychoudury, Prof.Rafael Ramirez, Prof. Jinsong

Dong, Prof. Gabriel Ciobanu, Prof. P. S. Thiagarajan, and Dr. Kenny Zhu, who have contributed

to my education at the National University of Singapore. I thank Prof. Jinsong Dong also for

the timed safety automaton example in Section 3.6.3. I thankMihail Asavoae for the example in

Section 3.5, and both Nguyen Huu Hai and Corneliu Popeea for discussions about parts of this

work. I also thank Giridhar Pemmasani of the State University of New York at Stony Brook for

his help on experimenting with XMC/RT, and Prof. Ranjit Jhala of the University of California

at San Diego for his help on using Blast. I also highly appreciate brief but insightful interactions

with Prof. David Dill of the Stanford University, and Prof. Andreas Podelski of the Max-Planck-

Institut für Informatik. I am also indebted to the thesis examiners fortheir useful comments,

including Prof. Cormac Flanagan of the University of California at Santa Cruz, and from the

National University of Singapore: again Prof. Abhik Roychoudhury, Prof. Martin Sulzmann,

Prof. Khoo Siau Cheng, and Prof. Martin Henz. Lastly, I am grateful for all my teachers and

mentors in the past, especially Dr. Yasuro Kawata for training in research.

ii

To Amelia

iii

Contents

Summary x

List of Programs xii

List of Figures xv

List of Tables xviii

1 Introduction 1

1.1 Problems . 1

1.2 Our Solution .5

1.2.1 Modeling Programs in CLP . 6

1.2.2 Assertions and Proofs .6

1.2.3 Main Algorithm Based on Dynamic Summarization 8

1.2.4 Verification of Recursive Data Structures 10

1.2.5 Relative Safety . 11

1.2.6 Implementation . 12

1.3 Related Work . 12

1.3.1 Related Work on CLP Prover for Program Reasoning 12

1.3.2 Related Work on TSA Verification Tools 14

1.3.3 Related Work on Symmetry in Verification 15

1.3.4 Related Work on Reduction .17

1.3.5 Related Work on Compositional Program Reasoning 18

1.3.6 Related Work on Data Structure Verification 19

1.4 Structure of the Thesis 21

iv

2 Background in Constraint Logic Programming 22

2.1 A Theory of Arrays .22

2.2 Formulas . 23

2.3 Semantics of Formulas .. . 25

2.3.1 Semantics of Constants .. 26

2.3.2 Semantics of Non-Constant Function Symbols 26

2.3.3 Semantics of Relation Symbols .. . 27

2.3.4 Semantics of Formulas .29

2.4 Constraint Logic Programs 31

2.4.1 Definite Clauses . 31

2.4.2 Simplified Syntax . 32

2.5 Information Processing with CLP 33

2.5.1 Logical Consequence .33

2.5.2 Resolution . 34

2.5.3 SLD Resolution . 36

2.6 Least Model . 38

2.7 Clark Completion .. 39

2.8 Further Readings .. 40

3 Modeling Programs in CLP 41

3.1 Sequential Programs .. . 41

3.1.1 Usual Semantics . 41

3.1.2 CLP Semantics . 44

3.1.3 Forward CLP Model . 47

3.1.4 Final Variables . 49

3.1.5 Programs with Array . 50

3.1.6 Programs with Heap and Recursive Pointer Data Structures 51

3.2 Multiprocedure Programs 54

3.3 Concurrent Programs .. . 58

3.3.1 Syntax . 59

3.3.2 CLP Semantics . 60

3.3.3 Scheduling . 62

v

3.4 Timed Programs .63

3.5 Hardware Constraints 65

3.6 Timed Safety Automata .. . 66

3.6.1 Timed Automata and Timed Safety Automata 67

3.6.2 State Transition Systems .. . 68

3.6.3 CLP Semantics of TSA . 69

3.6.4 More Examples . 76

3.7 Statecharts .. 80

4 Correctness Specifications 85

4.1 Assertions .85

4.2 Traditional Safety 86

4.3 Array Safety .87

4.4 Recursive Data Structures 88

4.5 Relative Safety .. 93

4.5.1 Group-Theoretical Symmetry .. . 96

4.5.2 More Examples of Program Symmetry 98

4.6 Discussions .107

4.6.1 Liveness . 107

4.6.2 General Equivalence .108

5 A Proof Method 110

5.1 First Example .110

5.2 Basic Definitions .. 111

5.3 Outline of the Proof Method 113

5.4 Proof Rules . 115

5.5 Proof Scope Notation and Simple Examples 117

5.6 Redundancy, Global Tabling, and Symmetry Reduction 121

5.6.1 Redundancy and Global Tabling .. . 121

5.6.2 Proof Using Redundancy .122

5.6.3 Proof Using Symmetry Reduction 123

5.7 Correctness .125

5.7.1 Soundness . 125

vi

5.7.2 On Completeness . 129

5.8 Compositional Program Analysis and Verification Framework 129

5.8.1 Unfold as Strongest Postcondition Operator 130

5.8.2 Intermittent Abstraction 131

5.8.3 Program Verification .133

5.8.4 Compositional Program Reasoning 142

5.9 Verification of Recursive Data Structures 145

5.9.1 Proving Basic Constraints .. . 145

5.9.2 Handling Different Recursions: Linked List Reset 147

5.9.3 Handling Separation: List Reverse 150

5.9.4 Intermittent Abstraction Solves Intermittence Problem 152

5.10 Discussion .. 154

5.10.1 Comparison to Mesnard et al.’s Proof Method 154

5.10.2 On Manna-Pnueli’s Universal Invariance Rule 158

5.10.3 Proving General Equivalence 160

5.11 Related Work .161

6 Basic Algorithm for Non-Recursive Assertions Based on Dynamic Summarization 166

6.1 Simple Algorithms for Program Verification and Analysis. 166

6.2 Dynamic Summarization .. . 169

6.2.1 First Example . 171

6.2.2 Summarization . 172

6.2.3 Incremental Propagation of Strengthened Assertion 173

6.2.4 Constraint Deletion .. 178

6.2.5 Information Discovery via Dynamic Summarization 184

6.3 The Basic Compositional Algorithm 187

7 Toward a Basic Algorithm for Recursive Assertions 192

7.1 Algorithm for Proving Relative Safety 192

7.2 Toward Automation of Data Structure Proof 193

8 Implementation and Experiments 197

8.1 Basic Implementation in CLP(R) . 197

vii

8.1.1 Verification Run with SLD Resolution 197

8.1.2 Checking Assertion Entailment 199

8.1.3 Storing in Global Table .. 199

8.1.4 Algorithm with Table Checking and Storing 200

8.2 Specialization to Programs 201

8.3 Handling Program Data Types 203

8.3.1 Tabling Integer in CLP(R) . 203

8.3.2 Subsumption of Functors in CLP(R) 204

8.3.3 Tabling Finite Domain Data in CLP(R) 204

8.4 Implementing Intermittent Abstraction 208

8.5 Implementing Reduction 210

8.6 Axioms . 213

8.7 Proving Relative Safety Assertions 215

8.8 Implementing Dynamic Summarization 216

8.9 On the Implementation of Arrays 217

8.10 Experimental Results 218

8.10.1 Experiments on Intermittent Abstraction 218

8.10.2 Experiments on Relative Safety 221

8.10.3 Experiments on Traditional Safety with Reduction 223

8.10.4 Experiments on Dynamic Summarization 225

8.11 Related Work .226

9 Conclusion 228

Bibliography 229

A Additional Modeling Examples 249

A.1 Modeling Real-Time Synchronization 249

A.1.1 Waiting Time . 249

A.1.2 The Modeling . 250

B Additional Proof Examples 256

B.1 Complete Proof of List Reverse Program 256

B.1.1 Main Proof of Linked List Reverse 258

viii

B.1.2 Proof of CUT Side Condition for Linked List Reverse 258

B.1.3 Proof of Assertion A . 259

B.1.4 Proof of Assertion B . 259

B.1.5 Proof of Assertion C . 260

B.1.6 Proof of Assertion D . 260

B.1.7 Proof of Assertion E . 261

B.1.8 Proof of Assertion F . 262

B.1.9 Proof of Assertion G . 263

ix

Summary

There have been many efforts in promoting the use of constraint logic programming (CLP)

in program reasoning. There are two major approaches to program reasoning: path enumeration

approach and syntax tree approach. Path enumeration is a search on state space of a program, and

it can be accelerated by program analysis techniques, whilesyntax-tree (program verification)-

based approach composes proofs of syntactic units, and is naturally compositional. We propose

a CLP-based framework that accommodates both approaches.

Our framework is centered on a search-tree-based symbolic execution algorithm which per-

forms generalization of execution state intermittently. Here our algorithm is engineered to func-

tion like an abstract interpreter for program analysis, with the main difference in that abstraction

is applied intermittently, instead of at every analysis step. The advantages are that the abstract

domain required to ensure convergence of the algorithm can be simplified, and that the cost of

performing abstractions, now being intermittent, is reduced. Intermittent abstraction also enables

compositional reasoning by viewing an abstraction point asa composition boundary.

The algorithm is optimized between the abstraction points using a noveldynamic summariza-

tion technique which summarizes a symbolic traversal subtree bygeneralizing its entry context

such that more of newly encountered nodes in tree will be found to be subsumed and their cor-

rectness immediately concluded.

Our program reasoning framework can also employ optimization based on a novel notion

of relative safety, which can significantly reduce the complexity of reasoning. We propose a

framework which first lets the user specifynon-behavioral propertiessuch as symmetry, com-

mutativity, or serializability as relative safety assertions, and prove the assertions automaticly.

The proved assertions are then input to a traditional safetyprover to obtain proof with reduced

size. This allows us to handle more classes of symmetry than earlier approaches to symmetry

reduction.

Our framework also handles verification of recursive data structures, which are specified

recursively using CLP clauses. The verification technique is automatable. Our intermittent ab-

straction technique allows for simpler specification of recursive data structures, and solves the

intermittence problem in data structure verification.

Our framework has the following formal underpinnings:

• Modeling of programs in CLP. Programs here include sequential and concurrent programs,

x

with or without underlying hardware constraints, and high-level specifications encompass-

ing timed safety automata (TSA) and statecharts.

• Assertions to specify various correctness requirements. Their basic form isG |= H, where

G andH are conjunctions of CLP atoms and constraints. We can use theassertions to

express traditional safety (invariance) properties and relative safety (structural) properties

of programs such as symmetry, commutativity, and serializability in concurrent programs.

SinceG or H may contain atoms of CLP predicates defining recursive data structures

(linked lists, trees, etc.), the assertion can also be used to specify data structure properties.

• A proof method for general CLP programs. Our proof method canuse an obligation,

assumed to hold, to establish other obligations inductively. We call this process acoinduc-

tion.

We have developed a number of automated prover prototypes written purely in the CLP(R)

programming language to demonstrate various aspects of ourideas, and we present the results of

the experimental runs.

xi

List of Programs

1.1 Sum . 7

1.2 Sum CLP Model . 7

3.1 Sum (Repeat of Figure 1.1) 42

3.2 Sum Backward CLP Model .47

3.3 Sum Forward CLP Model (Repeat of Figure 1.2) 49

3.4 Sum Forward CLP Model with Final Variables 50

3.5 Bubble Sort . 52

3.6 Bubble Sort Forward CLP Model 52

3.7 List Elements Reset .. . 53

3.8 List Elements Reset CLP Model 53

3.9 Binary Search Tree Insertion 55

3.10 Binary Search Tree Insertion CLP Model 56

3.11 No reachfor Binary Tree . 56

3.12 Multiprocedure Program 57

3.13 Multiprocedure Program Forward CLP Model 57

3.14 Two-Process Bakery Algorithm 62

3.15 Two-Process Bakery Algorithm CLP Model 62

3.16 Scheduled Concurrent Program 63

3.17 Scheduled Concurrent Program CLP Model 63

3.18 Dangerous Parrallel Fibonacci with Fixed Timing 64

3.19 Dangerous Parallel Fibonacci CLP Model 65

3.20 Bubbling Loop .66

3.21 Bubbling Loop Forward CLP Model 67

3.22 Worker CLP Model .77

3.23 Two-Process Fischer’s Algorithm TSA Backward CLP Model 78

xii

3.24 Two-Trains Bridge Crossing Backward CLP Model 80

3.25 Three-Process Real-Time Dining Philosophers CLP Model 81

3.26 Train Crossing CLP Model 84

4.1 Sorted . 88

4.2 Nonempty All-Zero Linked List I 88

4.3 Nonempty All-Zero Linked List II 90

4.4 Nonempty All-Zero Linked List III 90

4.5 Linked List Reverse .. . 91

4.6 Linked List Reverse CLP Model 91

4.7 First Version ofReverse/5. 92

4.8 Second Version ofReverse/5. 92

4.9 Alist . 93

4.10 No reachfor Linked Lists . 93

4.11 Bst . 94

4.12 No reachfor Binary Tree . 94

4.13 No sharefor Binary Tree . 95

4.14 AVL Tree Rebalancing Routine 95

4.15 AVL Tree Rebalancing Routine CLP Model 96

4.16 Avltree . 96

4.17 Philosopher 1 .. 100

4.18 Philosopher 1 CLP Model .. . 100

4.19 Two-Process Fischer’s Algorithm 101

4.20 Two-Process Fischer’s Algorithm CLP Model 101

4.21 Priority Mutual Exclusion 102

4.22 Priority Mutual Exclusion CLP Model 102

4.23 Two-Process Szymanski’s Algorithm 104

4.24 Two-Process Szymanski’s Algorithm CLP Model 105

4.25 Commutative Concurrent Program 106

4.26 Producer/Consumer 107

4.27 Producer/Consumer Partial CLP Model 107

4.28 Example 12 of [135] .. 108

5.1 Even Number Generator .. 111

xiii

5.2 Simple If Sequence Program 144

5.3 Simple If Sequence Program CLP Model 144

5.4 Mesnard et al.’s Example I 155

5.5 Mesnard et al.’s Example II 156

5.6 Mesnard et al.’s Example III 157

6.1 Simple If Sequence Program 171

6.2 Simple If Sequence Program CLP Model 173

8.1 First Engine .198

8.2 Store . 200

8.3 Checkand Store . 201

8.4 Second Engine . 201

8.5 Third Engine . 202

8.6 Fourth Engine .203

8.7 StoreandSubsumedfor Handling Terms . 205

8.8 RoomNegate, RoomNegateAll, andNoneUnifiable 207

8.9 Fifth Engine .208

8.10 AbstractandAbstract1 to Abstractk . 209

8.11 Sixth Engine .. 209

8.12 Permuteand NewCheckand Store. 210

8.13 Second Version ofPermute . 211

8.14 New Version ofCheckand Store . 212

8.15 2-Process Bakery Algorithm Problem in CLP(R) 214

8.16 Seventh Engine .. 214

8.17 Relative Safety Prover 216

8.18 Init andTransof Bubble Sort CLP Model . 218

8.19 Program with Loop .. 219

8.20 Sequential 2-Process Bakery 220

xiv

List of Figures

2.1 Syntax of Formulas .. 23

3.1 Simple Programming Language 42

3.2 TSA Specification of a Train Crossing 73

3.3 TSA Parallel Composition 74

3.4 Worker Timed Automaton .. 77

3.5 Fischer’s Algorithm TSA for Processi . 78

3.6 Bridge Crossing Controller TSA 79

3.7 Bridge Crossing Train TSA 79

3.8 Real-Time Dining Philosophers 81

3.9 Train Crossing Statechart 82

4.1 Wall Frieze . 97

4.2 State Graph of Priority Mutex 103

4.3 Automorphisms on Collecting Semantics 103

5.1 p(X) |= X = 2×?Y Natural Deduction Proof . 112

5.2 Informal Structure of Proof Process 115

5.3 Proof Rules . 117

5.4 Scope Notation Proof of First Example 119

5.5 Symmetry Proof of Two-Process Bakery Algorithm 120

5.6 Subsumption and Residual Obligation Proofs of the Symmetry Proof of the Two-

Process Bakery Algorithm .121

5.7 Proof of Sum . 122

5.8 Proof Rules with Global Table 123

5.9 Mutual Exclusion Proof of Two-Process Bakery Algorithm. 124

xv

5.10 Subsumption and Residual Obligation Proofs of the Mutual Exclusion Proof of

the Two-Process Bakery Algorithm 125

5.11 Reduced Mutual Exclusion Proof of Two-Process Bakery Algorithm 126

5.12 Program Verification Proof Rules 134

5.13 Compositional Proof of Sharir-Pnueli’s Example 143

5.14 Compositional Proof of Simple If Sequence Program 145

5.15 Proof of List Reset Program 147

5.16 Proof of Subsumption in List Reset Proof 148

5.17 Proof of Residual Obligation in List Reset Proof 149

5.18 Proof of CUT Condition in List Reset Proof . 149

5.19 Proof of Assertion D .. . 150

5.20 Proof of Mesnard et al.’s Example I 155

5.21 Proof of Mesnard et al.’s Example II 156

5.22 Partial Refutation of Mesnard et al.’s Example III 157

5.23 Full Refutation of Mesnard et al.’s Example III 158

5.24 Example 12 of [135] and Idempotence Property 161

5.25 Proof of Example 12 of [135] 165

6.1 Straightforward Algorithm 167

6.2 Algorithm with Global Tabling 168

6.3 First Algorithm Using CUT and Global Tabling 169

6.4 Second Algorithm Using CUT and Global Tabling 170

6.5 Optimized Proof Tree of Simple If Sequence Program 174

6.6 SummarizeProcedure . 187

6.7 Compositional Algorithm 188

6.8 Optimized Compositional Proof of Simple If Sequence Program 190

7.1 Relative Safety Prover Algorithm 193

7.2 Simple Algorithm for Proving Data Structure Property 194

8.1 Proof ofp(X),X = 2Y+1 |= 2 . 198

A.1 One-Way Synchronization 253

A.2 Time-Triggered Protocol 254

xvi

A.3 Symmetric Synchronization (Barrier) 255

xvii

List of Tables

8.1 Results of Experiments Using Abstraction 221

8.2 Relative Safety Proof Experimental Results 222

8.3 Traditional Safety Proof Experimental Results 223

8.4 Percent Reduction .. . 224

8.5 Experimental Results of Dynamic Summarization 226

xviii

Chapter 1

Introduction

1.1 Problems

Having bugs in software is costly [186], and software failures have caused loss of life in safety-

critical systems [76]. As the complexity of software systems increase, the quest for reliable soft-

ware is becoming increasingly important. One of the techniques to improve systems reliability

is verification, where logical reasoning is applied in order to provepropertiesof programs. This

thesis draws a story about verification of systems, in particular, computer programs. Here we

consider computer programs in a more general sense, encompassing concurrent programs, mul-

tiprocedural programs, timed programs whose behavior depends on the underlying hardware, as

well as high-level behavioral models which are exemplified by timed safety automata(TSA) [99]

andstatecharts[88].

In program reasoning, the task is to prove whether a program satisfies a given property, that

is, a statement about the program. There are two well-known classes of properties:safetyand

liveness. Informally, safety states that a bad thing does not occur, while liveness states that a

good thing will occur. Formal definitions of both safety and liveness based on trace semantics

have been given by Schneider who also shows that in trace semantics, properties can only be

either safety or liveness [178]. This thesis focuses solelyon safety properties. Here we define

safety to be a subset of the state space of a program (that is, asubset where the “bad thing” does

not occur). Some literature also categorizes statements about finite history of execution as safety,

in particular the definition of safety using past temporal logic operators, e.g., in [19]. This is still

consistent with our idea of safety since history can be recorded in computer memory, and hence

can be viewed as a part of the state space.

1

There are two major approaches to safety verification in the literature. The first of these,

which we callpath enumerationapproach, performs a search for error state (“bad thing”) by

computing all reachable states of the program starting fromthe initial state, or, in the reverse

manner, performs a search for an initial state starting fromthe error state. All automatic reach-

ability checkers (e.g., Murϕ [49]) belong to this class. Path enumeration also includes temporal

logic model checkers that proves the temporal logic formula2ϕ with ϕ a proposition. Such

formula states that the propositionϕ holds in the initial state of the program and in all future

states1.

In path enumeration approach, each step of the search process is typically performed by

strongest postconditioncomputation. The strongest postconditionsp(t,φ) is the state orcondition

(set of states) representing all possible next states afterthe execution of the statementt at state or

conditionφ. The search can also be done in a backward manner starting fromthe error state by

computing at each step the strongest postcondition of the inverse of a statement (pre-image).

A major example of path enumeration approach ismodel checking[53]. It is based on state-

space search given some properties to be proved. The state-space search is done onconcrete

program states. A concrete state is an assignment of every program variable to a constant in its

domain, as opposed tosymbolicstate (condition), which is a constraint denoting a set of concrete

states whose variable assignments satisfy the constraint.In model checking, the termination

of the search is guaranteed due to the finiteness of of the domains. Model checking has been

successful in hardware verification because here data domains can always be reduced to finite

strings of binary digits. In contrast, software manipulates not only simple data such as numbers,

but also arrays and pointer data structures. Representing these using binary digits (“bit-blasting”)

too easily results in a blowup of the size of the search tree. Therefore, for software verification, a

symbolic traversal of the state space is more effective thanconcrete-state traversal. We note that

strongest postcondition is applicable to either concrete or symbolic state-space traversal.

The path enumeration approach can be accelerated, and in case of infinite-state systems, its

termination guaranteed, usingabstract interpretation(program analysis) techniques [34]. This

approach is based on providing abstract description of program states, where the concrete state

space is mapped into anabstract domain. Reachability checking is then done on the abstract

descriptions. Often such abstraction results in a finite number of possible abstract descriptions

of program states (e.g., using an abstract domain that has afinite latticestructure), in which case

1There are two different interpretations of2 on whether it includes the present (initial) state or not. Here we
assume it does.

2

the search is guaranteed to terminate. This technique is more efficient than normal reachability

checking, but it is inherently incomplete due to the loss of accuracy incurred by the abstraction.

We note thatshape analysis[174] is an abstract-interpretation-based approach to data structure

verification, but it suffers from inaccuracy [173, 86]. The challenge here is therefore the engi-

neering of suitable abstract descriptions that make the traversal efficient, yet enable a proof.

More advanced abstract interpretation-based verifiers arebased onpredicate abstraction[80].

These incorporate an automated learning technique calledcounterexample-guided abstraction re-

finement(CEGAR) [30, 7, 97, 6] to try to compute a more appropriate abstract domain after every

failure to prove a safety property. However, with predicateabstraction, it can be expensive to per-

form traversal on the abstract description where a single step of the search can be of exponential

complexity to the number of predicates used in the abstract descriptions [9, 80].

In the area of path enumeration, other than abstract interpretation, data structures such as

binary decision diagram(BDD) have been employed to make efficient both the propagation and

the storage of the information collected during search, however, its applicability in software

verification is limited. Another way to address the blowup problem is by enhancing the search

technology. Explicit-state model checkers such as SPIN [101] employspartial-order reduction

to reduce the search space. Some model checkers [96, 49, 28, 61] employsymmetry reduction

for the same purpose. These reduction techniques do not loseprecision, but their applicability

is limited. Partial-order reduction mainly applies to communication protocols while symmetry

reduction applies to mostly symmetric problems (e.g., distributed algorithms).

Another traditional branch of software verification technology is based onprogram verifi-

cation [100]. This approach is asyntax tree-based, and it is employed in the verification of

structured programs, that is, without arbitrary jump (goto) statements. Here, given a program

fragment, aprecondition, and apostcondition, we verify that any terminating execution of the

program fragment in any state satisfying the precondition results in a state satisfying the post-

condition. The correctness condition of a program fragmentt is therefore specified as atriple

{φ} t {ψ}, whereφ is the precondition, andψ the postcondition. This technique can be used to

verify programs where there is no guarantee of finiteness of data domain. The proof proceeds by

applying several proof rules to obtain the desired conclusion. However, it is highly manual: some

of the rules can be automated, but the rule to prove the correctness of loops especially requires

the user to manually provide information.

Another challenge in program verification is symbolic computation of verification conditions.

3

One way of performing symbolic propagation is byweakest preconditioncomputation, which

is used in program verification tools such as ESC/Java [70] and Krakatoa [137]. A weakest

preconditionwp(t,ψ) of a conditionψ and statementt is the weakest condition such that whent

is executed from a state satisfying that condition, the resulting state either satisfiesψ or diverges

(that is,t does not terminate normally). A triple{φ} t {ψ} holds if and only ifφ ⇒ wp(t,ψ).

The use of weakest precondition, however, is not a necessity. We can also employ strongest

postcondition propagation in program verification since a triple {φ} t {ψ} holds also if and only

if sp(t,φ) ⇒ ψ.

We note that in contrast to path enumeration approach, the advantage of syntax tree approach

is that it is compositional. For instance, the verification results of smaller fragments, which are

specified as triples, can be used to establish the triple of their sequential composition.

Program verification is also amenable to data structure verification, such as usingseparation

logic [166]. The reason is that any constraint, including those that are statements on state of data

structures based on separation logic, is admissible as either pre- or postcondition. However, the

automation of separation logic to date remains a challenge.

We summarize our discussion by listing the problems in program reasoning that we address

in this thesis, namely

1. We address the efficiency of symbolic execution in three ways:

(a) By a novel way of applying abstraction on symbolic states. As we have mentioned,

one of the problems with abstract interpretation is engineering of suitable abstract

domain that does not too quickly lose precision during symbolic traversal. Another

problem is that one step of abstract traversal may be highly inefficient. Our objective

is to simplify the abstraction used in the abstract traversal while maintaining preci-

sion, and also to increase the efficiency of each traversal step.

(b) By a novel way of performing symbolic state-space exploration efficiently. New

search algorithms are needed to expedite symbolic propagation. Note that symbolic

propagation for verification is typically as complex as the verified program, which

in turn is as complex as it can be (e.g., a programming solution to an NP-complete

problem such assubset sum problem).

(c) By a novel way of performing search-space reduction. As we have mentioned above,

some reasoning systems employ symmetry and partial-order reduction. These tech-

4

niques are applicable only to programs written in a specific syntax only. For pro-

grams where such properties are not obvious, the challenge is formal demonstration

that they actually hold, so that they can be used for reducingthe search space.

2. We also address the open problem of automatic verificationof recursive data structures.

We mention again that the main problem in shape analysis as with program analysis in

general is information loss [27, 173, 86], while the main problem of separation logic is

automation.

In addition, we want to reason on procedures or program fragments separately in order to simplify

the whole proof by avoiding redundant proofs. It is therefore crucial to be able to perform

compositional program reasoning in a similar sense to program verification.

1.2 Our Solution

In this thesis we propose a CLP-based approach toward solving the problems in program rea-

soning mentioned in the previous section. There have been many efforts in promoting the use of

logic and constraint logic programming (CLP) for program reasoning. It is indeed natural to rep-

resent transition systems or deduction rules (e.g., to deduce the satisfaction of a temporal logic

formula) as CLP clauses. For transition systems, the globaltransition relation is typically repre-

sented as a DNF formula, with each disjunct representing a state transition. It is straightforward

to represent a state transition as a CLP clause. Similar to the symbolic execution of transition

systems which visits program states, deductive proofs typically also contain a notion of a “state”

of a proof containing formulas that have been deduced so far.CLP clauses can also be used to

represent the transformation of such formulas.

Some of the existing CLP-based program reasoning approaches belong to the class of tempo-

ral logic model checkers, for example [46, 51, 65, 127, 149, 192]. Other than these, the approach

of Gupta and Pontelli [84] can be considered as primarily a reachability checker. In fact, reacha-

bility checkers are straightforward to implement in (constraint) logic programming systems with

resolution mechanism such as SLD.

Our program reasoning framework’s main feature is symbolictraversal of state space by

strongest postcondition propagation. Here we employ the correspondence of reduction in CLP

execution to the computation of strongest postcondition. In general, symbolic strongest postcon-

dition computation requires unbounded number of variables. For example, the resulting strongest

5

postcondition of the statementsx := y+y followed byy := 0 is the condition〈∃z: x= 2z〉∧y= 0.

In this way, a sequence of strongest postcondition computations may increase the number of ex-

istentially quantified variables in the symbolic state. CLPis suitable for implementing symbolic

strongest postcondition computation since the variables are automatically maintained via an effi-

cient projection mechanism.

The notion of strongest postcondition is also central in program verification since a triple

{φ} t {ψ} holds if and only ifsp(t,φ) ⇒ ψ, as we have mentioned previously. This makes it

possible to accommodate both the path enumeration approachand the syntax tree-based pro-

gram verification approach in a single framework based on CLP. In this thesis we propose such

framework.

We start our discussion with the formal foundations of our framework (Sections 1.2.1 and

1.2.2). We then expound on our main algorithm (Section 1.2.3), verification of data structures

(Section 1.2.4), the proof and use of relative safety (Section 1.2.5), and we lastly discuss our

implementation (Section 1.2.6).

1.2.1 Modeling Programs in CLP

We start by providing a methodology for modeling an extensive variety of programs in CLP. This

include sequential and concurrent programs, multiprocedural programs, programs with hardware

constraints on which they are run, programs with arrays and pointer data structures, even high-

level specifications which include timed safety automata (TSA) [99] and statecharts [88].

We show an example modeling of a program in CLP in Programs 1.1and 1.2, where Program

1.1 is a simple program with awhile loop and Program 1.2 is its CLP model. In Program 1.1,〈l〉

denotes a program pointl . We assume that any program has an end pointΩ. Here we map each

statement in Program 1.1 into the corresponding CLP clause in Program 1.2. We also model a

“condition of interest” as a CLP constraint fact. In Program1.2, all states at the end pointΩ is

modeled by the constraint factp(Ω,X,S,N).

High-level specifications such as timed safety automata andstatecharts can be similarly trans-

lated into CLP programs.

1.2.2 Assertions and Proofs

After presenting the modeling of various kinds of programs in CLP, we proceed with their rea-

soning. The first thing that is required here is a way to formally specify the properties of the

6

Initially x = s= 0, n≥ 0.
〈0〉 while (x < n) do
〈1〉 s := s+x
〈2〉 x := x+1

end do

Program 1.1: Sum

p(Ω,X,S,N).
p(0,X,S,N) :- p(1,X,S,N),X < N.
p(0,X,S,N) :- p(Ω,X,S,N),X ≥ N.
p(1,X,S,N) :- p(2,X,S′,N),S′ = S+X.
p(2,X,S,N) :- p(2,X,S,N),X′ = X +1.

Program 1.2: Sum CLP Model

program. For this purpose we invent our own form of assertions to specify safety properties.

Their basic form isG |= H, whereG andH aregoals(conjunctions of constraints and predicates

interpreted by a CLP program). The intuitive meaning is thatwhenG is true, so isH.

The simplest form ofG |= H that we use in this thesis isp(X̃),φ |= ψ whereφ andψ are purely

conjunctions of constraints, whilep is a predicate defined by the CLP model of a program. We

call such assertions asnon-recursive assertions. Such assertions represent what is known in the

literature asinvarianceproperties (cf. [144]). Any safety property is a form of invariance. In this

thesis we also call invariance astraditional safety.

We also consider cases whenφ or ψ contain predicates of CLP programs. We call such asser-

tions asrecursive assertions, and one of their use is in specifying traditional safety on recursive

data structures. As a simple example, the assertionp(H,Y) |= alist(H,Y) specifies thatY points

to a head of an acyclic linked list on program heapH, wherealist is defined by a CLP program.

Another form of recursive assertion isp(X̃),φ |= p(Ỹ),ψ wherep is defined by a CLP model

of a program. We call such assertions asrelativesafety assertions. Relative safety specifies that

a state satisfyingψ is reachable, if a state satisfyingφ is. That is, it specifies relationships be-

tween states in the state space of the program. Relative safety can be uniquely used to assert

structural properties of programs. We use relative safety to specify symmetry, commutativity, or

serializability in a program. Relative safety allows us to represent and use larger class of symme-

tries than earlier approaches. Some mutual exclusion algorithms are a priority-based, destroying

the symmetry among the concurrent processes. Here, a simplepermutational symmetry (e.g., as

7

handled byscalarset[107]) does not work. Nevertheless, some symmetry still holds, and we can

specify and later prove this special kind of symmetry using relative safety assertions. We then

employ the assertion for reduction in the verification run toprove the mutual exclusion property.

We manage to prove the safety of two-process Szymanski’s algorithm using symmetry reduction,

which was not done previously.

We also devise a proof method to prove the assertions. The proof method is inductive, and

it consists of a number of proof rules based on CLP resolutionmechanism. More specifically,

the proof ofG |= H proceeds by a number ofunfoldingsteps ofG to obtain a search tree with

assertionsG1 |= H, . . .Gn |= H at the frontier. WhenGi |= H is unfolded from some ancestor

G′
i |= H andGi is a special case ofG′

i , then we can apply inductive proof where we useG′
i |= H

as a hypothesis to proveGi |= H. We call this inductive process ascoinduction.

As a general CLP-based prover, the two main distinguishing characteristics of our proof

method are the following two:

1. Some inductive proof methods are based on fitting in the allowable inductive proofs into

an induction schema[118], which is usually syntax-based. Instead, we employ noinduc-

tion schema. We detect the point of application of inductionhypothesis using subsumption

(e.g., ofGi by G′
i above). In other words, we discover the induction schema dynamically

using indefinite steps of unfoldings. This approach is more powerful by the arbitrary num-

ber of unfolding steps, and more automatable by its algorithmic “search-based” nature.

2. We provide a goal generalization step which integrates very naturally into our framework.

This adds into the completeness and efficiency of our proof method by allowing us to

incorporate program analysis techniques. The same step is used to incorporate reductions

such as symmetry reduction to improve efficiency.

1.2.3 Main Algorithm Based on Dynamic Summarization

The unfolding step of our proof method is based on reduction step in CLP execution, which,

as we have mentioned, corresponds to strongest postcondition computation. This enables the

combining of program analysis and verification in a single general algorithm based on our proof

method.

When we are willing to compromise the completeness of the reasoning, we should be al-

lowed to perform abstraction in the sense of program analysis to accelerate the reasoning. What

8

is important here is the flexibility to apply abstraction intermittently. As mentioned above, it

is often not easy to provide a suitable abstract domain so as to maintain accuracy. Program

analysis loses information too quickly during the search process due to abstraction at each step

of strongest postcondition computation. Applying abstraction only intermittently mitigates this

problem. Also, this makes it not necessary to provide elaborate abstract domains to maintain

accuracy.

Our algorithm can employ abstraction, such as predicate abstraction, and it can apply it in-

termittently. Here, our algorithm is engineered to function like an abstract interpreter, with the

main difference in that abstraction is only applied at some program points. We repeat that the

advantages here are that the abstract domain required to ensure convergence of the algorithm can

be minimized, and that the cost of performing abstractions,now being intermittent, is reduced.

Our work on intermittent abstraction has been reported in [113].

In this thesis we argue that the difference between abstractinterpretation, program verifi-

cation, and compositional (e.g., multiprocedural) program reasoning is simply thelocation at

which abstraction is applied. In traditional abstract interpretation, abstraction is applied every-

where while in program verification the abstraction is typically done only at a point within each

while loop whenever it is necessary to introduceloop invariant. A loop invariant is a condition

that must be true at every iteration of a loop. Finally, in compositional program reasoning ab-

straction is performed at procedure call points or program fragment boundaries. In our flavor of

compositional program reasoning, we prove assertion of theform p(X̃′),q(X̃, X̃′),φ |= ψ, where

p(X̃′) represents program predicate andq(X̃, X̃′) represents a predicate which is a CLP trans-

lation of a particular fragment of the program (e.g., a procedure). We first prove thatq(X̃, X̃′)

implies a transition relationρ(X̃, X̃′) before provingp(X̃′),ρ(X̃, X̃′),φ |= ψ in place of the origi-

nal assertion.

Between abstraction points, our algorithm performs exact (unabstracted) strongest postcon-

dition propagation. We now discuss how we make this exact traversal efficient. We note that

our algorithm constructs a proof tree with an assertion at each node. The proof of an assertion

need not be pursued further when similar assertion has been established in the same tree. The

efficiency of the verification process increases the more thesimilar assertions are. Here we de-

sign an optimization technique where we generalize proved assertions to increase the similarity

of assertions encountered later in the proof. This technique is based on efficiently computing

a precondition of paths in the proof tree. The computed precondition is more general than the

9

context condition with which the analysis of the fragment isinitiated. We call this technique as

dynamic summarization. It has been reported in [112] as a central component of an overall tech-

nique to enhance the search efficiency for solving dynamic programming problems with ad-hoc

constraints.

1.2.4 Verification of Recursive Data Structures

Our proof method is also engineered to handle verification ofdata structure properties repre-

sented as recursive assertions. For this purpose we define array as a basic data type in our CLP

formalization, and we model the heap of the program as an array. A recursive pointer data struc-

ture such as lists or trees can then be specified as a CLP program which specifies the heap array.

Our algorithm can then be used for proving data structure properties. Although we only

present an algorithm and not an automated implementation, our method is readily automatable

in handling most data structure verification problems due toit being systematic, our reliance

on CLP resolution, and the use of two principles:array index principle(AIP) andseparation

principle (SEP) to simplify proofs.

Some works mention “intermittence” (see e.g. [86]) as a limitation of shape analysis, and

abstract interpretation methods in general. That is, due tothe destructive nature of data-structure

updates, invariants hold intermittently. Such examples are presented in [173], where the acyclic-

ity of a tree is temporarily violated, and in [27], where an AVL tree becomes temporarily un-

balanced. With intermittent abstraction, since we abstract only at specific (and small number of)

program points (e.g., one point in each loop), and thereforewe mostly compute exact information

in the proof tree, we do not have to provide an elaborate set ofpredicates to avoid information

loss. We demonstrate this using our proof of the AVL tree problem of [173] in Section 5.9.4.

In [173], it is also emphasized that shape analysis capturesonly the shape of the data struc-

ture, and not the contents, on which the correctness of the algorithm may depend. In our frame-

work, it is straightforward to mix reasoning on data structure and its contents.

In the literature, data structure properties are often specified using an assertion language that

allows recursive definitions [103, 147]. These formulations lead to using fold/unfold transfor-

mations to accomplish the proof [147]. Such transformations are used to achieve an inductive

proof.

Existing fold/unfold transformations are only applicablein the case of recursive assertions

that are “compatible” with the computation specified by the program. For instance, fold/unfold

10

transformations would not prove a property of a linked list specified in a forward fashion, of a

program that iterates backward through the list. In general, reasoning about programs annotated

with recursive assertions remains an open problem because present methods are limited in ap-

plicability. We demonstrate an example where, using our proof method, we can use different

recursion style in the recursive specification in order to solve the same verification problem.

The only CLP-based proof method that handles data structures that we are aware is the work

of Hsiang and Srivas [103], which presents a framework for specifying Prolog data types and

verifying it. The data structures here are limited to those definable using Prolog terms, and is not

tailored for handling general pointer-based data structures in imperative languages. The frame-

work allows users to write data structure specification which is then transformed into implemen-

tation. When the implementation is given by the user, the framework allows for the checking that

it satisfies the specification. The verification process is the one presented in [102], which uses in-

duction and manual variable marking to find the point of application of induction hypothesis. In

contrast, we have developed an algorithm that is able to automatically discover, without manual

intervention, a point in the proof where induction can be applied.

1.2.5 Relative Safety

Our proof method can be used to reason about symmetry, commutativity, and serializability of

programs using the concept of relative safety. This allows us to specify and prove more classes

of symmetry than can be handled by existing approaches. We then use the proved relative safety

assertion for reducing the proof size of traditional safetyassertions. Our work has been reported

in [114] and partially in [111].

Existing approaches usually define symmetry on syntactic considerations. Semantically,

symmetry is often defined as a transition-preserving equivalence [58, 29, 107, 60, 182], where an

automorphismπ, other than being a bijection on the reachable states, also satisfies that(x̃, x̃′) is a

transition if and only if(π(x̃),π(x̃′)) is. Another notion of equivalence used is bisimilarity [55],

replacing the second condition with bisimilarity on the state graph. These stronger equivalences

allows for the handling of larger class of properties beyondsafety such as CTL∗ properties. How-

ever, stronger equivalence also means less freedom in handling symmetries on thecollecting se-

mantics(set of reachable states), which we exploit further for proving safety properties. Because

we handle symmetries on collecting semantics only, we obtain more flexibility in specifying var-

ious kinds of symmetries and employing them in state-space reduction, including symmetry in

11

many problems that would not be considered symmetric by previous methods. We have men-

tioned above the Szymanski’s mutual exclusion algorithm. We note that we can handle a wider

range of symmetries than [55, 182]. More importantly, relative safety goes beyond symmetry

because it also encompasses the property of commutativity and serializability, which is related to

various techniques of reduction in literature [130, 155]. This work has been presented in [114].

The use of our proof method for symmetry reduction in TSA verification has also been reported

in [111].

As mentioned Fribourg [75] (and also by Ramakrishna et al. [165]), when applied to the ver-

ification of finite-state systems, the goal of using CLP is to have a system written in a high-level

language with declarative and flexible facilities while keeping good performance compared to

specialized model checkers written in low-level code. Thisgoal seems to have been partially

achieved by systems like XMC [165], however, CLP-based systems still cannot compete with

specialized model checkers. One of the reason, as mentionedby Fribourg, beinglack of integra-

tion with partial-order reduction techniques[75]. Fribourg proposes the use of CLP resolution-

based technique ofredundant derivation elimination, but in this thesis we report an approach to

reduction using commutativity and serializability.

1.2.6 Implementation

We have developed a number of automated prover prototypes written purely in CLP(R) [110]

to demonstrate various aspects of our ideas. Our prototypesare used to automatically prove tra-

ditional and relative safety assertions. The proofs of traditional safety properties either employ

relative safety properties (e.g., symmetry) for reductionor use dynamic summarization tech-

nique. Our implementations can be categorized as reachability checkers, but with advanced op-

timizations. We straightforwardly employ CLP resolution mechanism combined with meta-level

features to symbolically manipulate constraints. In this thesis we also provide execution results

of our prototypes.

1.3 Related Work

1.3.1 Related Work on CLP Prover for Program Reasoning

Related to our CLP proof method, is the class of work on reasoning about programs represented

in CLP (see for example [75] for a non-exhaustive survey). Indeed, it is generally straightfor-

12

ward to represent program transitions as CLP clauses, and touse the CLP operational model to

prove properties (as e.g., temporal logic) stated as CLP goals. Due to its capability for handling

constraints, CLP has been notably used in verification of infinite-state systems [111, 45, 51, 65,

84, 127], although results for finite-state systems are alsoavailable [149, 165]. These however,

are limited to certain representation of transition systems and cannot be used for proving general

CLP programs. Moreover, these do not handle data structure verification.

We next review individual approaches.

We start with XMC [165], which is a model checker implementedon XSB logic program-

ming system [175], taking advantage of SLG resolution mechanism implemented in XSB. The

specification language of XMC is a CCS-like value-passing language, and properties are ex-

pressed using alternation-free mu-calculus. XMC/RT [51] is a version of XMC for the verifi-

cation of timed safety automata given properties in timed mu-calculus. As with XMC, most

temporal logic verification frameworks, in addition to representing the system to be verified in

CLP, also represent the deduction rules of the temporal logic formula as CLP clauses. The veri-

fication is executed by a query on the deduction clauses.

Delzanno and Podelski [45, 46] present a CTL model checking method based on CLP. The

CTL properties that can be proved are restricted toAGφ andAG(φ1 ⇒ AFφ2). The CLP repre-

sentation of the system is transformed by adding rules representing the verification condition, and

specialized algorithm is applied on the transformed representation to check the given property.

Nilsson and L̈ubcke also propose a method for CTL model checking using CLP [149]. The

work treats semantically complete CTL, where it handles theEX, EG, andEU operators, which

form an adequate setof CTL operators (see e.g., [105]). These are operators witha notion

of existence, which can be easily formulated using CLP clauses. However, although Delzanno

and Podelski succeeded in proving two-process bakery algorithm which is infinite-state, Nilsson

and L̈ubcke’s approach can only handle finite-state systems. The proof algorithm is based on

transformation rules transforming a table containinganswersandgoals. The model checking is

done locally (on-the-fly, picking one CLP clause at a time), yet uses symbolic model checking

based on BDDs to perform CLP transformations.

Fioravanti et al. [65] propose another CTL verification approach using CLPspecialization.

Specialization is a program transformation technique whose objective is the adaptation of a pro-

gram to the context of use. Note that CLP transformation may transform a program with a set

of clauses onto a set of constrained facts representing the least model directly. Specialization of

13

Fioravanti et al. is done by adding a new rule to the CLP program describing the possible query.

The program transformation is then used to infer that the head of the rule is in theperfect model

semantics [4] of the CLP. The initial step of this approach iscross-producing the program to be

verified with the CTL formula to derive the initial CLP clauses. The result is a CLP program

with some resemblance to Nilsson and Lübcke’s, but the approach is not restricted to only CTL

operators with existential quantifier.

Finally we mention the work of Flanagan [66] which focuses ontranslating programs into

CLP such that the least model of the CLP program is a relation of start state and end state of

each block in the program. Given an error state, the CLP program is then transformed into

another CLP program whose least model is all the possible initial states of every block in the

program that leads to the error. The proof process proceeds by a query on the representation

of the program’smain block, constrained with the program’s actual initial state. A refutation

implies the reachability of the error state.

Satisfiability modulo theory(SMT) systems perform bounded (incomplete) automated verifi-

cation based on SAT solving conjoined with theorem proving,yet the kind of theories that can be

handled automatically and efficiently is limited [148]. Thetheory solving and the SAT solving in

SMT systems are typically distinct. In CLP, they are tightlyintegrated, where theory (constraint)

solving is performed at every step during the search. In thisway, CLP avoids the problems in-

troduced by multilevel satisfiability test typical to SMT solvers. We also note that CLP can be

considered as alazy approach to SMT where we there is no translation to boolean constraints

necessary.

1.3.2 Related Work on TSA Verification Tools

Timed automataas defined by Alur and Dill in [2] areω-automata [191] with continuousclock

variablesdenoting elapsed time. In contrast to standard automaton, an ω-automaton accepts

infinite words (known asω-acceptance), as suchω-automata are used to represent the behavior

of systems that runs forever. Accordingly, timed automata specify real-time systems that run

forever. Timedsafetyautomata (TSA) are timed automata withoutω acceptance [99], therefore

they are in essence transition systems. Reasoning of systems with continuous data domain as

are TSA is natural to a CLP-based approach due to the requiredconstraint solving. Prior to our

work, TSA verification has been actively researched, and there are verification systems such as

UPPAAL [13, 200], which is primarily a reachability checker, and symbolic model checkers for

14

TSA which include HyTech [98], Kronos [201] and RED [197]. Inaddition to these, there are

also TSA verification tools based on CLP, including, which wedetail next.

First, Gupta and Pontelli [84] presents a modeling of TSA in CLP. Although the work does

not provide a systematic proof method, it demonstrates thatin CLP-based system it is not neces-

sary to use clock regions as in other timed automata verification systems [2, 200], since we can

simply rely on the underlying constraint solving mechanism.

The work of Urbina [192, 193] is on verification ofhybrid automatausing CLP(R). Timed

automata belong to a particular class of hybrid automata. They are called hybrid because the

specification contains both discrete and continuous data values. A particular example of hybrid

automata is timed automata. However, here the work treats automata with nonlinear physical

properties. The framework allows for verifying IntegratorComputation Tree Logic (ICTL) prop-

erties. The paper discusses proof methods for reachability, safety, duration properties, and ICTL

properties. In our approach, we do not specify the constraints that can be handled. Our frame-

work is also applicable to nonlinear constraints provided the solver is available.

A more systematic proof method for timed automata may require some form of tabling, as is

presented with the XMC/RT model checker [51], which is basedon the SLG resolution of XSB

logic programming system [175]. It uses a generic constraint solver libraries written in C++ for

solving linear arithmetic constraints over reals. XMC/RT represents TSA as a CLP program,

and the properties are expressed using timed modal mu-calculus modeled in CLP. The work of

Pemmasani et al. describes an improvement called XMC/dbm [156]. XMC/dbm includes an

implementation for constraint solving usingDifference Bound Matrix(DBM) [48], which is also

employed in the UPPAAL model checker [200]. In contrast to our approach, the CLP tools we

have mentioned here do not employ any form of reduction. Understandably, reduction is rather

complex in general temporal logic verification.

1.3.3 Related Work on Symmetry in Verification

A well-known approach to symmetry-based reduction in modelchecking is based onscalar-

sets[107], which is implemented in the Murϕ model checker. A scalarset is a qualifier of an index

of a finite array. When an array has a scalarset index, exchanging the values of the array elements

does not affect the truth value of the safety property being verified. That is, the array elements

arepermutable(hence scalarset approach handlespermutationalsymmetry). Such array can be

a list of program points, local variables of concurrent programs, or state of cache lines. In [107]

15

Ip and Dill specify syntactic properties that must be satisfied in the use of a scalarset.

Other model checker that employs symmetry is SMC [58, 85, 183, 184]. In SMC, permu-

tation is restricted to process indices (not generally on array as with scalarsets), but in addition,

some early detection of future symmetries during state space traversal is implemented. Here we

note that symmetry inducesautomorphismmapping on the state reachability graph of a program.

Two distinct states can be considered as symmetric when theycan be mapped to each other by

an automorphism. Emerson and Sistla describes how to identify automorphisms in CTL∗ for-

mula [58, 59]. Although more variants of symmetries such asrotationalsymmetry andreflective

symmetry were alluded to by Ip and Dill [107], the scalarset and SMC approaches both only

handle permutational symmetry.

In some problems, not only array indices, but variable values must be permuted as well to

obtain symmetry. For example, exchanging the value of some variablev from v = 1 to v = 2.

This is calledpermutation of variable-value pair[182]. This permutation is also handled by TSA

verification tools such as UPPAAL [96] and RED [196] in a limited way. RED handles symme-

try is by assigning dynamic process ids to each concurrent process (an automaton in a system

of automata) which are interchangeable (permutable) between the processes. When process 1

exchanges its process id with process 2, the variablev = 1 now points to process 2, since it now

has id 1. RED, however, loses precision for problems with cyclic structure [198]. In contrast, our

implementation does not lose precision due to symmetry.

Sistla and Godefroid attempt to handle systems whose state graphs are not fully symmetric

in [182]. The approach transforms the state graph into a fully symmetric one, while keeping

annotation for each transition that has no correspondence in the original state graph. The graph

with full symmetry is then reduced by equating automorphic states. This work is the most general

and can reduce the state graph of even totally asymmetric programs, however, the user has to

statically specify transition priorities. In contrast, inour framework we prove the symmetry to be

used in reduction.

Clarke et al. provides a way of inferring symmetry from the structure of the model, such

as topology graph of concurrent processes [28] from the observation that structural symmetry

introduces symmetry in the model to be verified. Still, however, the symmetries that can be

handled by this approach is more limited than ours.

Manku et al. [133, 134] developed an algorithm to identify automorphisms in a hardware sys-

tem specifications. Automorphisms are inferred from the rather simple structure of the circuits,

16

where a function computed by a table can be represented as a graph. (In the case of software,

we have no such convenience.) The algorithm succeeded in identifying rotational symmetry in a

hardware version of the dining philosophers problem.

The work of Pandey and Bryant uses symmetry for the verification of transistor-level cir-

cuits [151]. Pandey and Bryant mentioned in brief a technique using symbolic simulation on

transistor-level circuit to verify symmetry which is akin to our semantic proof of symmetry.

However, they present no systematic method for this and focused more on inferring symmetry

from circuit structure.

The work of Emerson et al. [55] also considers programs with non-obvious symmetries.

The approach requires bisimilarity relationship between the original computation tree and the

reduced computation tree. In our framework, we can do away with this requirement since we

only deal with safety properties. Thevirtual symmetryconsidered by Emerson et al. is actually

parameterized on a given automorphism group. Since automorphism group on state graph can

be arbitrarily given, theoretically it can handle any system, either symmetric or asymmetric. It

seems that here the problem of identifying symmetry itself is not given sufficient attention.

The work of Tang et al. [190] is on using symmetry for unbounded SAT-based model checker.

The work mainly proposes an algorithm and makes no attempt atenlarging the set of symmetries

that can be treated.

We repeat that the main difference between our work and theseis that we propose a verifica-

tion methodology where we prove that symmetry holds of a program. This is more powerful than

imposing syntactic constraints to problems in order to apply symmetry reduction. Also since our

proof method only verifies safety properties, we can identify more symmetries than is allowed in

temporal logic verification-based setting.

1.3.4 Related Work on Reduction

Lipton presents an approach to group together some statements pertaining to one process in a

concurrent program as single transition [130]. This is allowed when the interleavings of the

statements with other processes are not necessary for verification. Since then, reduction tech-

niques have been used for atomicity analysis [67, 68] and forimproving the efficiencies of model

checkers, known aspartial-order reduction[53, 154, 155]. Both line of work are related to ours:

The former concerns the proving of commutativity and serializability assertions, and the latter

concerns the use of these assertions to expedite reasoning.

17

Ibarra et al. have identified thatcommutativity checkingis undecidable in general [106] (e.g.,

with infinite-state systems). Atomicity analysis are oftenbased on conservative tests that either

miss atomicity violations or generate false alarms [68, 71,164]. The work of Flanagan [67] is

based on examining all interleavings and checking that the end result is the same state as executed

by a serial execution. This is similar in essence to the approach we take in proving commutativity

or serializability assertions.

Partial order reduction is a technique to reduce the search space in model checking. At each

visited state, the model checker computes a subset of the enabled transitions at that state. Travers-

ing only the subset preserves some (most commonly LTL−X) properties. Partial-order reduction

is based on the observation that concurrently executed transitions are often commutative because

they areindependent, e.g., do not access the same shared variable. Traditional implementations of

partial-order reduction such as in model checker SPIN [101] is often based on statically defined

dependencies of transitions, and the result is often too conservative. Flanagan and Godefroid

proposed an algorithm fordynamicpartial-order reduction algorithm [69], which can analyzede-

pendencies more precisely. Dwyer et al. apply partial-order reduction upon detection ofthread

locality of heap data in concurrent Java programs by both static and dynamic means [52]. Here,

a memory region is thread-local, if at any one time during execution, it is reachable from at most

one thread only. Our technique of using commutativity and serializability properties for reduc-

tion can potentially be extended to any reduction that preserves the correctness of reachability

check, including those that have been mentioned here.

We note that there has been an effort to combine static partial-order and symmetry reduction

by Emerson et al. [56]. This is possible when the automorphism is bisimulation preserving,

which is stronger thanstuttering equivalencerequired by partial-order reduction [53]. Therefore,

symmetry reduction can be augmented on top of a partial-order reduction model checking, and

when some additional conditions are satisfied, preservesCTL∗−X properties. In our framework,

commutativity, serializability, and symmetry all belong to the class of relative safety properties.

We can straightforwardly employ any combination of relative safety properties for search space

reduction in verifying traditional safety properties.

1.3.5 Related Work on Compositional Program Reasoning

The compositional reasoning that we treat in this thesis is the independent reasoning of program

fragments (e.g., procedures) which results are then used toreason about the whole program. A

18

classic in this area is the work of Sharir and Pnueli [179] which consists of two approaches to

interprocedural dataflow analysis. The first approach is called thefunctionalapproach, where the

purpose is to establish input-output relation of each procedure. We then interpret a procedure call

as an operation whose effect on program state can be computedusing the relations. The second

approach is orthogonal to the first. It is called thecall-stringapproach. A call string is a sequence

of procedure calls which reflects the status of the call stack. When a procedure is called with the

same call stack, it is considered called with the same state.The call string is an abstraction of

the program state, and therefore this approach is an approximation, but efficient in certain cases.

Our compositional program reasoning technique is related to the first approach since we prove

an assertion which states the input-output relation of a procedure. In the process, however, is

optimized using dynamic summarization.

Although, as we have discussed, abstract interpretation isnot naturally compositional, there

is a work on compositionality for abstract interpretation which is done by Ball et al. [8]. The

approach considers a second set of variables (called “symbolic constants”), in order to describe

the input-output behavior of a procedure, in the language ofpredicate abstraction. As a compar-

ison, our approach can also be tailored to utilize predicateabstraction to summarize a procedure

by assertion. In addition, we use our novel dynamic summarization for optimization in proving

assertions.

1.3.6 Related Work on Data Structure Verification

As we have mentioned above, there are two distinct approaches in the general area of reasoning

about programs and data structures. One approach is based onlogic, where new logical constructs

are introduced and then integrated into a program verification-like proof system. Within this

class, a recent prominent work isseparation logic[166], whose outstanding feature consists of

introducing logical connectives that describe non-sharing properties of data structures. However,

as a program verification-based based calculus, it does not readily lend itself to automation.

Moreover, separation logic does not explicitly support recursive assertions. Although the work

of Guo et al. incorporates separation logic into shape analysis-like framework with arbitrary

recursive predicates [83], but it is still not clear how to handle scalar values in their proof method.

Shape analysis(surveyed in [174]) is another class of solutions to the datastructures rea-

soning based on abstract interpretation. Here the focus is on the accuracy/efficiency trade off

involving the abstract domain, constructed from predicates that define the “shape” of the data

19

structure, and the fixpoint iteration algorithm.

In general, shape analysis is global, in the sense that its predicates specifies the whole heap.

It is therefore not easy to construct a modular, interprocedural shape analysis framework [50]

because during an update of only one cell in the heap, the “shape” of the structure, which in

fact determines the reachability relations of all variables, has to be recomputed. There have

been attempts to introduce local reasoning into shape analysis by combining it with separation

logic [168, 169, 83]. Separation logic mentioned above in contrast supports local reasoning well

by means of theframe rule. For comparison, our recursive assertions are also global since it

specifies the whole heap. However, the problem is mitigated by intermittent abstraction which

supports compositional reasoning.

To address the intermittence problem in shape analysis (mentioned in Section 1.2.4), Chong

and Rugina define an abstract domain consisting of a graph that specifies the reachability of the

heap regions from the variables in the stack [27]. In this domain, the heap regions are assumed

to be dynamic, for the purpose of handling destructive updates. Again here we mention that our

intermittent abstraction solves the intermittence problem more straightforwardly.

Other approaches not yet mentioned include the approaches based ongraph types[121, 145],

which is based on program verification. PALE verifier [145] can be efficiently run when loop

invariant is given. Intermittence problem still exists here, in which PALE allows the user to

specify exceptions to invariants at certain program points, where they are temporarily violated.

Reasoning about data fields are also allowed by some extension of PALE. PALE can handle

only acyclic structures, or cyclic structure which are cyclic not by following the same field. In

contrast, our approach is general.

McPeak and Necula presents an algorithm for specification and verification of data struc-

ture using equality axioms [140]. It has a better support forscalar values as compared to shape

analysis. In this framework, however, temporary invariantbreakage is still a problem. Dams

and Namjoshi [40] propose shape analysis using predicate abstraction which is based on a set

of basic recursive predicates stating reachability, sharing and cyclicity which are then used to

define a set of derived predicates. A set of weakest precondition transformations of these predi-

cates are defined. Our approach is more general by allowing user-defined predicates. Lahiri and

Qadeer [124] propose the concept ofwell-founded linked listwhich is a (cyclic or acyclic) linked

list whose “end” is signaled by a marker called “head.” This work considers only lists and does

not explicitly consider separation. Hendren et al. proposeAbstract Description of Data Struc-

20

tures(ADDS) [95] as another abstract interpretation based approach, whose abstract domain is

the path matrix, which consists of the set of relations between pointers in the program and allows

maintaining alias information which is then used for compiler optimization. Our approach to

data structure verification can also be used to prove non-aliasing.

Finally, Jeannet et al. [116] propose an interprocedural shape analysis, based on representing

each procedure as a structure on input and output predicates. However, their variant of shape

analysis is storeless: there is no way to identify individuals in an input abstract structure with

their corresponding individuals in the output abstract structure. In comparison, our approach in

addition to being compositional, can also prove that an output heap is a modification of the input

heap.

1.4 Structure of the Thesis

In Chapter 2 we start by providing an introduction to CLP withthe domain of integers, terms, and

arrays over integers. More domain, e.g., real and finite domain will be assumed in later chapters

but left undefined. We build our exposition pedantically starting from the construction of predi-

cate logic. In Chapter 3 we discuss how we model various programs and high-level specifications

as CLP programs. In Chapter 4 we define our assertions, which can be used to specify traditional

safety (invariance) properties, relative safety properties and properties of recursive data struc-

tures. We also discuss how it may represent some kind of liveness and equivalence. In Chapter 5,

we present our proof method, whose core is a number of proof rules. We prove the soundness of

our proof rules, and we exemplify the use of our proof method in proving traditional safety, rel-

ative safety, and properties on recursive data structures.We also present a theoretical foundation

for compositional program analysis and verification which is based on intermittent abstraction,

and which is the basis of our basic algorithm. In Chapter 6 we present a number of simple algo-

rithms based on our proof method and the dynamic summarization technique, which gives rise to

a general efficient algorithm for compositional program analysis and verification. The algorithm

that is presented here proves non-recursive assertion. In Chapter 7 we discuss the automation of

recursive assertion proofs, including relative safety anddata structure assertions. In Chapter 8

we present the techniques used in implementing our prototypes, and the experimental result of

the prototypes. We conclude this thesis and provide some future work in Chapter 9.

21

Chapter 2

Background in Constraint Logic

Programming

In this chapter we will develop a formal language to write sets of formulas which constitute

constraint logic programs(CLP programs). In our language we can specify objects calledarrays.

We therefore start by explaining a simple theory of arrays tobe used throughout this report,

elaborate the syntax and semantics of our language, and the explains an execution mechanism to

prove the (un)satisfiability of our constraint logic programs.

Knowledge of constraint logic programming is useful (see the paper of Jaffar et al. [108]),

although this chapter is generally rather pedantic. Here weassume familiarity with first-order

logic and set theory. For readers new to first-order logic andits decision procedure, I would

recommend a textbook by by Davis et al. [43]. Introduction toset theory can be found in Chapter

1 of the same book.

2.1 A Theory of Arrays

We first define a theory of arrays which will be used throughoutthis report.

We begin by denoting the set of natural numbers asN, defined as{1,2, . . .}, and the set of

integers asZ, defined as{. . . ,−2,−1,0,1,2, . . .}.

An array is a function which has a finite support{0,1, . . . ,n}. We denote the support of an

arraya, as well as any function, assup(a). Therefore we can speak of thesizeof an arraya,

which is |sup(a)|. An array maps an element of its support to an integer value. For an arraya,

we write asa[i], wherei ∈ sup(a), the mapping ofi by a. We denote the set of all arrays asA .

22

Term ::= Function Symbol(Argument1, . . . ,Argumentn)

Argument ::= Variable||Term

Atom ::= Relation Symbol(Argument1, . . . ,Argumentn)

Formula ::= 2||Atom||Formula1 ⇒ Formula2||
〈∀Variable : Formula〉||〈∃Variable : Formula〉

Figure 2.1: Syntax of Formulas

An arraya can be updated at positioni ∈ sup(a) with an integer valuee, resulting in another

arraya′. We represent an array update using a functionaupd: A ×Z×Z 7→ A , takes as its

arguments an arraya, positioni and argumente, and it maps these arguments to a new arraya′

which satisfies the conditions:

• sup(a′) = sup(a),

• a′[i] = e, and

• for all j ∈ sup(a), when j 6= i, a′[j] = a[j].

Arraysa andb are equal, denoted asa = b, if and only if a andb have the same supportS,

and for anyi ∈ S, a[i] = b[i] holds.

2.2 Formulas

We next define a simple language of formulas, whose syntax is defined using BNF in Figure

2.1. We use the termsubformulawhen referring to a formula which is a syntactic component of

another formula.

The syntax of nonterminals are obvious from Figure 2.1. We have therefore defined what we

mean by aterm, anatomor aformula.

Notice that a term or an atom has the syntaxf (µ1, . . . ,µn), where f is a function symbol

(for a term) or relation symbol (for an atom), and eachµi is its argument. We attach a left-to-

right ordering of the arguments which allow us to speak aboutthe first, second, third or anyi-th

argument (i ∈ N) of a term or atomt, denoted as arg(t, i). An arity of a term or atom is the

number of its arguments. Given a term or atomt, we denote its arity byδ(t). A term or an atom

with arity 0 is called aconstant. A term (or atom) with arity 1, 2 or 3 is called aunary, binaryor

ternaryterm (or atom).

23

We next explain the terminalsFunction Symbol, Relation Symbol and

Variable in that order.

We have three kinds of function symbols:integer(arithmetic) function symbols,array func-

tion symbols andfunctorsymbols.

Integer function symbols are the set of all Arabic representation of integer numbers used to

construct constants, the usual+, −, × and/ arithmetic operator symbols, and the symbolaref.

The constants are 0-ary, while the arithmetic operator symbols are binary. Instead of writing

+(µ1,µ2), we use the infix notationµ1 + µ2. The terms constructed usingaref are calledarray

referencesand they are always binary. We would usually writearef(µ1,µ2) asµ1[µ2].

There is no constant in the set of array function symbols, andhere we only have the symbol

aupdused to constructarray update expressions. An array update expression always has arity

3, and has the syntaxaupd(µ1,µ2,µ3). We often write an array update expression as the triple

〈µ1,µ2,µ3〉.

Functor symbols include at least the constant[] and the binary symbolcons. We would write

cons(µ1,µ2) as[µ1|µ2]. Similarly, we write

cons(µ1,cons(µ2, . . .cons(µn, []) . . .)) as[µ1, . . . ,µn].

Relation Symbol in Figure 2.1 is a relation symbol distinct from other symbols. There are two

kinds of relation symbols:interpretedrelation symbols anduninterpretedrelation symbols. In-

terpreted relation symbols include integer arithmetic relation symbols=, ≤ and≥1. We overload

= to also represent array and functor equality relation. Similar to arithmetic operator symbols,

instead of writing= (µ1,µ2), we use the infix notationµ1 = µ2. Interpreted relations also include

the binary relationsize, to be explained later. Uninterpreted relation symbols include symbols

distinct from the rest.

Definiton 2.1 (Constraint). A constraint in our language is a formula or subformula not

containing uninterpreted relation symbols.

We write a variableVariable as a sequence of Latin alphabet with a capital first letter which

can be subscripted with a sequence of Arabic numbers, calledits index. For example, bothX and

Var23 conform to the syntax of a variable. The index of the corresponding variable for the second

syntax is 23. We attach atypeto every variable, which is either integer, array, functor or any.

According to Figure 2.1, formulas may constructed using thesymbols2 and⇒ . The symbol

1Note that here we do not include< or > sincea < b if and only if a+1≤ b, while a > b if and only if a≥ b+1.

24

2 is calledfalsum, and it denotes logical falsity. The symbol⇒ denotes logical implication, that

is, whenα ⇒ β holds, then when theantecedentα holds, theconsequentβ must also hold. We

will formalize these interpretations later.

For formulasα andβ, we adopt the following shorthands:

• We write¬α for α ⇒ 2.

• We writeα ⇐ β for β ⇒ α.

• We writeα∧β for ¬(α ⇒¬β).

• We writeα∨β for (¬α) ⇒ β.

• We writeα ⇔ β for (α ⇒ β)∧ (α ⇐ β).

OurvocabularyW is the set of all function and relation symbols.

Although our definition is sufficient for now, later we will expand our set of formulas as we

see fit, such as adding real numbers, finite domain values and their operations.

Figure 2.1 allows us to write, within a formulaγ, a quantifiedsubformulaβ either using a

universal quantification of X, whereβ = 〈∀X : α〉 or anexistential quantification of X, where

β = 〈∃X : α〉. A variableX has afree occurrenceif it occurs in γ not within a subformulaα

of a quantification ofX. A variableX which occurs inγ has abound occurrenceotherwise.

A variable with free occurrence inγ is a free variableof γ. The set of all free variables ofγ

is denotedvar(γ). In writing formulas, we do not allow quantification of a variable when it is

already bound. An example of a wrong formula with quantification of an already bound variable

X is 〈∀X : X ≤ 10⇒ 〈∀X : X ≥ 0〉〉.

We call asentencea formula without free occurrences of variables.〈∀X : X ≤ 10⇒ p(X)〉∧

〈∀X : X ≥ 11⇒ q(X)〉 is an example of a sentence.

2.3 Semantics of Formulas

We introduce here auniverse of discourse, also known asdomainDZ,A ,F of function and inter-

preted relation symbols. Whenf is a function or interpreted relation symbol, we denote byf I its

interpretationin DZ,A ,F .

25

2.3.1 Semantics of Constants

For all integer constantc, cI ∈ DZ,A ,F . Here,cI is the number whose representation using Arabic

numerals isc. Note that the integer constant interpretations in the domain DZ,A ,F is exactly the

setZ of integers.

We assume that all arrays are inDZ,A ,F , that is,A ⊂ DZ,A ,F , although throughout this thesis

we do not consider their syntactic representation. As we will see later, we can nevertheless

precisely specify an array in a formula.

Any constant functor symbol has an interpretation inDZ,A ,F , which is an element of the set

F defined as the least solution of the equation

X = { f (µ1, . . . ,µn)|n≥ 0,µi ∈Z∪A ∪X , for all 1≤ i ≤ n}.

Z (integer),A (arrays) andF (functors) are calledbasic types. They are pairwise disjoint.

2.3.2 Semantics of Non-Constant Function Symbols

For each non-constant interpreted function symbolf in W , a function f I : D
δ(f)
Z,A ,F 7→ DZ,A ,F

is in DZ,A ,F . For example, the symbol “+” has as its interpretation (that is,+I) the arithmetic

operator+ ∈ DZ,A ,F . Note that it is important here to distinguish between “+” as a syntactic

element and its interpretation+. Similarly with “−”, “ ×” and “/.” The semantics of expressions

containing arithmetic operators are thus definable accordingly:

(µ1 +µ2)
I = µI

1 +µI
2,

(µ1−µ2)
I = µI

1−µI
2,

(µ1×µ2)
I = µI

1×µI
2,

(µ1/µ2)
I = µI

1/µI
2.

We adopt a precedence rule among the operators such that× and/ has a higher order of prece-

dence than+ and−. Between× and/, the one written in the formula at the left of the other has a

higher precedence. The same rule applies between+ and−. All interpretations of the arithmetic

symbols are partial functions since they can only have integers as their arguments.

26

We have the following interpretations of array reference and array update:

(µ1[µ2])
I = aref(µI

1,µ
I
2),

〈µ1,µ2,µ3〉
I = aupd(µI

1,µ
I
2,µ

I
3).

The interpretation of a functor symbol belongs to the setF . Note, however, that there is

a difference between a functor symbol and its representation. We write the representation of

a functor symbol with the formh(µ1, . . . ,µn), for n ≥ 0. This representation defines a function

in DZ,A ,F which constructs an element ofF when someµi is substituted for an element of

Z∪A ∪ F . However, the functor symbol itself can be different fromh, and its arity can be

less thann. For example,h(1,µ,2) can be a representation of a functor symbolf (µ). Now, the

meaning off (g) (that is, f I(gI)), assuminggI = g is the constanth(1,g,2), which belongs toF .

Or similarly, the 0-ary functor symbolc may have as its representationh(0,1) ∈ F 2.

From now on the difference between a functor symbolf and its interpretationf I should be

clear, but to avoid confusion, we will always consider functor symbols with the same symbol and

arity as their representations. Each functor symbol is therefore interpreted into itself, but with

each of its arguments interpreted in its appropriate domain. That is, for any functor symbolf ,

(f (µ1, . . . ,µn))
I = f (µI

1, . . . ,µ
I
n).

2.3.3 Semantics of Relation Symbols

For each non-constant interpreted relation symbolr in W , a functionr I : D
δ(r)
Z,A ,F 7→ {0,1} is

in DZ,A ,F . Informally, the value 0 denotes a “falsity” of the given relation while 1 denotes its

“truth.”
2In this way we also justify the 0-aryness of the constants inF since they are interpretations of 0-ary functor

symbols.

27

For integer arithmetic comparators,

(µ1 = µ2)
I =

1 if µI
1 = µI

2

0 otherwise.

(µ1 ≤ µ2)
I =

1 if µI
1 ≤ µI

2

0 otherwise.

(µ1 ≥ µ2)
I =

1 if µI
1 ≥ µI

2

0 otherwise.

When= is used to compare arrays, the interpretation is as follows:

(µ1 = µ2)
I =

1 if sup(µI
1) = sup(µI

2)

and〈∀i ∈ sup(µI
1) : µI

1(i) = µI
2(i)〉

0 otherwise.

Another interpreted relation symbol on arrays issize, interpreted as follows:

size(µ1,µ2)
I =

1 if sup(µI
1) = {0,1, . . . ,µI

2−1}

0 otherwise.

We also define the operator= to be a syntactic equality test between functor symbols as

follows3:

(µ1 = µ2)
I =

1 if µ1 andµ2 have the same symbol and arity, and

for eachi-th argument,(arg(µ1, i) = arg(µ2, i))I = 1

0 otherwise.

Notice that we have overloaded the equality operator for comparison between integers, be-

tween arrays and between functors. Comparison between expressions which are interpreted to

different basic types has the value 0.

We do not provide a domain for uninterpreted relation symbols, and they are supposed to

3This is the equality that separates functors fromuninterpreted functions. Uninterpreted functions are equal if they
are syntactically equal, otherwise, we do not know. Functors are equal if they are syntactically equal, otherwise they
are not.

28

be interpreted in any suitable domain. Note, however, because they are relation symbols, in any

domain they should be given an interpretation that returns avalue in{0,1}.

2.3.4 Semantics of Formulas

Atoms are formulas, and we have given their semantics in the previous section. In this section

we give the semantics of other kinds of formulas. The semantics for2 and⇒ is given below:

2
I = 0

(µ1 ⇒ µ2)
I =

0 if µI
1 = 1 andµI

2 = 0

1 otherwise.

Here the only interpretation of2 is 0 which denotes logical falsity.

Formulasα and β are semantically equivalent if and only ifαI = βI . We can express the

semantics equivalence ofα andβ using the operator⇔ asα ⇔ β. This is because(α ⇔ β)I = 1

exactly whenαI = βI .

From the above semantics of2 and⇒, we can prove the following semantics equivalences:

(¬(¬α)) ⇔ α (negation law),

(α∧β) ⇔ (β∧α),

(α∨β) ⇔ (β∨α),

(α ⇔ β) ⇔ (β ⇔ α) (commutative laws),

(α∧ (β∧ γ)) ⇔ ((α∧β)∧ γ),

(α∨ (β∨ γ)) ⇔ ((α∨β)∨ γ) (associative laws).

From the commutative and associative laws, there is no precedence in a sequence of conjunction

or disjunction of formulasα1 to αn. We are allowed to then writeα1∧ . . .∧αn as

n̂

i=1

αi .

Similarly, we can writeα1∨ . . .∨αn as
n

_

i=1

αi .

29

Other semantics equivalence include distributive and De Morgan’s laws:

α∧ (β∨ γ) ⇔ (α∧β)∨ (α∧ γ),

α∨ (β∧ γ) ⇔ (α∨β)∧ (α∨ γ),

α∨ (β ⇒ γ) ⇔ (α∨β) ⇒ (α∨ γ),

α ⇒ (β∧ γ) ⇔ (α ⇒ β)∧ (α ⇒ γ),

α ⇒ (β∨ γ) ⇔ (α ⇒ β)∨ (α ⇒ γ),

α ⇒ (β ⇒ γ) ⇔ (α ⇒ β) ⇒ (α ⇒ γ) (distributive laws),

¬(α∧β) ⇔ (¬α)∨ (¬β),

¬(α∨β) ⇔ (¬α)∧ (¬β) (De Morgan’s laws).

So far we have not completely define the semantics of formulasbecause we have not given

any semantics to variables. A formula with variables is onlyinterpretable when each variable is

quantified. In other words, we only provide interpretation for sentences. We define the interpre-

tation of non-sentence formulaγ to be given by the interpretation of the sentence〈∀var(γ) : γ〉.

We now explain the semantics of quantification operators. Wedenote as{X 7→ e} the substi-

tution of a variableX with a valuee∈Z∪A ∪F .

〈∀X : µ〉I =

(
V

e∈Zµ[X 7→ e])I if X has the type integer

(
V

e∈A µ[X 7→ e])I if X has the type array

(
V

e∈F µ[X 7→ e])I if X has the type functor

(
V

e∈Z∪A∪F µ[X 7→ e])I if X has the type any

〈∃X : µ〉I =

(
W

e∈Zµ[X 7→ e])I if X has the type integer

(
W

e∈A µ[X 7→ e])I if X has the type array

(
W

e∈F µ[X 7→ e])I if X has the type functor

(
W

e∈Z∪A∪F µ[X 7→ e])I if X has the type any

We would usually write〈∀X1 : . . . : 〈∀Xn : α〉 . . .〉 simply as〈∀X1, . . . ,Xm : α〉, and similarly

for existential quantification.

30

Note that the following semantics equivalences hold:

〈∀X,Y : α〉 ⇔ 〈∀Y,X : α〉

〈∃X,Y : α〉 ⇔ 〈∃Y,X : α〉

Since in the above two cases the ordering of the quantifications ofX andY are unimportant, we

may introduce a set̃X which encompasses both the variablesX andY, and write formulas such

as:

〈∀X̃ : α〉, or 〈∃X̃ : α〉.

WhenX̃ encompasses all of the free variables inα we write〈∀̃α〉 for 〈∀X̃ : α〉, and similarly

for existential quantification.

Although it includes no constant arrays symbols, our language is powerful enough to express

all arrays inDZ,A ,F . For example, a particular array can be specified using the following formula:

〈∀A : 〈∀B : size(A,2)∧B = 〈〈A,0,10〉,1,20〉〉〉.

B is certainly a variable which evaluates to an array, sayb where|sup(b)| = 2 andb(0) = 10 and

b(1) = 20.

2.4 Constraint Logic Programs

2.4.1 Definite Clauses

We first introducedefinite clauses(also calledHorn clauses), which are subformulas of the form

〈∀X̃ : p⇐ (q1∧ . . .∧qn)〉,

wherep is an atom of uninterpreted relation symbol called theheadof the clause. The subformula

q1∧ . . .∧qn is called thebodyof the clause, and eachqi , 0≤ i ≤ n is an atom. Note that therefore

here we do not allownegative literals, where someqi is of the form¬(r), with r an atom. It

is possible that a clause has no body at all (the case whenn = 0). We usually group together

interpreted relation symbols in the body to the left of uninterpreted relation symbols (this does

not change the semantics of the clause due to commutativity of conjunctions).

31

X̃ encompasses all variables occurring in the subformula of the quantification. When noqi

is an uninterpreted relation symbol, we call the definite clause as aconstrained fact, or simply a

fact. Note that a clause without a body is also a fact.

A constraint logic programis a conjunction of definite clauses. We usually call constraint

logic programs asCLP programs, whereCLP stands forConstraint Logic Programming. We

now provide two examples of CLP programs.

Example 2.1. The following programs define a predicatep wherep(n) is true for somen if and

only if n is a nonnegative even number.

〈∀X : p(X) ⇐ X = 0〉∧

〈∀X,Y : p(X) ⇐ (X = Y +2∧ p(Y))〉.

Example 2.2. The following is a CLP program adapted from an example in [43]. The program

states that all men are mortal, and Socrates is a man.

〈∀X : mortal(X) ⇐ man(X)〉∧

man(socrates).

2.4.2 Simplified Syntax

Further, we would write a definite clause without the variable quantification, write the impli-

cation symbol as:- , write conjunction symbol∧ using comma (,), and we end each clause

with a period. Assuming the precedence of conjunction over implication, we also remove the

parentheses enclosing the body of each clause.

Example 2.3. Following is an example of the program in Example 2.1, rewritten using new

notational conventions:

p(X) :- X = 0.

p(X) :- X = Y+2, p(Y).

The constraints in this program areX = 0 andX = Y +2 (see Definition 2.1).

32

Example 2.4. We may also write the program of Example 2.2 in this way:

mortal(X) :- man(X).

man(socrates).

The example has no constraints. It contains one functor:socrates.

2.5 Information Processing with CLP

We can regard a CLP program as a kind of “database” which stores knowledge that are of concern

to us. We therefore need a mechanism to infer a piece of information from this database. In this

section we first expound on the questions that we can pose to a CLP program. We then explain a

decision procedure to answer the question.

2.5.1 Logical Consequence

Note that so far we have not really provide an interpretationto uninterpreted relation symbols.

Whenever an uninterpreted relation symbol occurs in a constraint logic program, we may extend

I with an interpretation for it. Therefore, we may speak of an non-unique extensionI ′ of I

which makes a sentence (in particular a constraint logic program)Γ true, that is,ΓI ′ = 1. Such

interpretation is called amodelof Γ.

Given a CLP programΓ we write

Γ γ

if every model ofΓ is also a model ofγ. As in the following two examples, we will further assume

thatγ is always a sentence containing no universal quantifier.

Example 2.5. GivenΓ the program in Example 2.3 (Page 32), we may write

Γ p(4).

In this case, we want to conclude thatp(4)I ′ = 1 for all modelI ′ of Γ. One such modelI ′ would

interpretp as follows:

(p(X))I ′ =

1 if XI is a positive even number,

0 otherwise.

33

Example 2.6. Similarto the above, givenΓ the program in Example 2.2 (Page 32), we may

write

Γ mortal(socrates).

Here, based on information inΓ, we want to conclude that Socrates is mortal.

2.5.2 Resolution

We need a procedure to prove logical consequences. The one implemented in CLP systems is

calledresolution.

It is known thatΓ γ holds if and only ifΓ∧¬γ is unsatisfiable, meaning that there is no

extensionI ′ of I such that(Γ∧¬γ)I ′ = 1.

Notice that¬γ is equivalent to2 ⇐ γ. Further, whenγ is an existentially quantified formula

〈∃X̃ : α〉, the formula2 ⇐ γ is equivalent to〈∀X̃ : 2 ⇐ α〉. This can be written as a special CLP

program clause

2 :- α.

We call clauses of this form as agoal clause. We call as agoal the body of a goal clause or any

other conjunction of atoms. We add this clause into our CLP program, then apply resolution to

the modified program to test its unsatisfiability.

The basic step of resolution is a generation ofresolventof two definite clausesκ1 andκ2.

Here, the body ofκ1 must contain an atom of the same uninterpreted relation symbol with the

head ofκ2. Moreover, we assume thatκ1 andκ2 do not share variables. Whenever they do, we

rename the variables inκ2 appropriately to avoid sharing. Note thatκ1 andκ2 can be the same

clause, in which case we treat them as two separate copies andrename the variables appropriately.

Important to resolution is the notion ofunificationof two atoms or terms. Given two atoms

or termsα andβ, a substitutionµ on their variables such thatαµ = βµ is called aunifier of α and

β. If α andβ have some unifiers, then there exists amost general unifier(m.g.u.) among them4.

A unifier µ1 is more general thanµ2 if there is a substitutionσ of the variables inµ1 such that

µ1σ = µ2.

4This is known as theunification theorem.

34

Now suppose that

κ1 is A :- B1, . . . ,Bn.

κ2 is C :- D1, . . . ,Dm.

and that someBi = p(X1, . . . ,Xl), andC = p(Y1, . . . ,Yl). Suppose that the most general unifier for

Bi andC is µ. The resolvent ofκ1 andκ2 by the matching ofBi andC, denotedresolvBi (κ1,κ2)

is the new clause

A :- B1, . . . ,(Bi−1,Bi+1, . . . ,Bn)µ, . . . ,Xl = Yl ,D1, . . . ,Dm.

When Γ is a CLP program which includes the special clause2 :- α, a sequence of clauses

κ1,κ2, . . . ,κn = κ is called aresolution derivation ofκ if for eachi, 1≤ i ≤ n, eitherκi is a clause

in Γ or a resolvent ofκ j andκk, where j ,k < i. A resolution derivation of2 from Γ is called a

resolution refutation ofΓ.

We have the followingresolution theorem, which is immediate from J. A. Robinson’s general

resolution theorem.

Theorem 2.1 (Resolution Theorem). A CLP programΓ is unsatisfiable if and only if there

is a resolution refutation ofΓ.

Example 2.7. We now prove the logical consequence in Example 2.5 (Page 33), where our

CLP program is as follows.

2 :- p(4). κ1

p(X) :- X = 0. κ2

p(X) :- X = Y +2, p(Y). κ3

We generate the following clauses using resolution, hence deriving a2, which proves the unsat-

isfiability of the above CLP program.

2 :- p(2). κ4 = resolvp(4)(κ1,κ3)

2 :- p(0). κ5 = resolvp(2)(κ4,κ3)

2 κ6 = resolvp(0)(κ5,κ2)

35

Example 2.8. Now we are ready to prove that Socrates is mortal. Here we are trying to prove

the unsatisfiability of the CLP program:

2 :- mortal(socrates). κ1

mortal(X) :- man(X). κ2

man(socrates). κ3

Using resolution, we derive the following clauses from the above CLP program, to prove its

unsatisfiability.

2 :- man(socrates). κ4 = resolvmortal(socrates)(κ1,κ2)

2 κ5 = resolvman(socrates)(κ4,κ3)

2.5.3 SLD Resolution

Notice that in the two examples in the previous section, in each step we always generate a resol-

vent of a clause of a goal clause with a clause of the original CLP program, resulting in another

goal clause, until finally we obtain a goal clause of the form2 :- α, whereαI = 1, and since

2
I = 0, this expression is equivalent to2. Therefore here our use ofκ3 = resolvA(κ1,κ2) is re-

stricted to the case whenκ1 is a goal clause which contains the atomA in its body,κ2 is a clause

of the original program, and the resulting resolventκ3 is a goal clause. Given a certain CLP

program, we say thatκ3 is areductof κ1.

In computing the reduct of a goal clause, in general we need toapply some or all of the

clauses of the original CLP program. To implement resolution as a sequential algorithm, we

need to determine an ordering among program clauses which determine their order of application.

Similarly, given a goal clause, we also need to determine which uninterpreted atom in its body

is to be matched first. A well-known implementation calledSLD resolutionapplies the program

clauses in top to bottom in the program text, and selects the atom in the goal clause’s body from

left to right in the program text. SLD is an abbreviation ofSelected-literal Linear resolution

for Definite clauses. In our restricted case literals are simply atoms and “definite clauses” here

means definite clauses.

Since there are a number of derivations which are possibly infinite, an implementation has to

try each derivation one by one until it finds one which ends in2. This is accomplished in CLP

36

systems by a backtracking mechanism which, when a derivation fails, returns to the deepest goal

where it is still possible to select another clause from the program to generate a new resolvent.

SLD resolution with backtracking can be efficiently implemented using a stack which stores

goals.

We note that SLD resolution is not guaranteed to discover a refutation even though one exists,

not even when the set of the provable formulas (that is, theγ in logical consequenceΓ γ, where

Γ is a CLP program) is recursive.

In addition to implementing resolution, CLP systems also utilize constraint solving algo-

rithms to simplify interpreted expressions at each derivation step.

Example 2.9. Now let us redo Example 2.7 (Page 35) using SLD resolution andconstraint

solving, showing only the goals.

2 :- p(4). κ1

2 :- 4 = 0. κ4 = resolvp(4)(κ1,κ2)

2 :- 2. Simplify κ4 with constraint solving: Proof fails.

Our proof fails at a first attempt since(2 :- 2)I = 1 6= 2
I . Fortunately, resolution engines

are equipped with backtracking mechanism which can return to an earlier goal and re-try using

different program clause. Now, we return toκ1 and useκ3 instead ofκ2 to generate a new goal.

2 :- p(4). κ1

2 :- 4 = Y+2, p(Y). κ5 = resolvp(4)(κ1,κ3)

2 :- p(2). Simplify κ5 with constraint solving.

2 :- 2 = 0. κ6 = resolvp(2)(κ5,κ2)

2 :- 2. Simplify κ6 with constraint solving: Proof fails.

37

Again the proof fails. Fortunately, we have not exhausted all possibilities. We backtrack toκ5

and try to generate a resolvent using program clauseκ3 instead ofκ2, resulting in the derivation

2 :- p(4). κ1

2 :- 4 = Y+2, p(Y). κ5 = resolvp(4)(κ1,κ3)

2 :- p(2). Simplify κ5 with constraint solving.

2 :- 2 = Y+2, p(Y). κ7 = resolvp(2)(κ5,κ3)

2 :- p(0). Simplify κ7 with constraint solving.

2 :- 0 = 0. κ8 = resolvp(0)(κ7,κ2)

2. Simplify κ8 with constraint solving.

Since we have obtained the goal2, the unsatisfiability proof succeeds.

2.6 Least Model

We next explain theleast model semanticsof CLP programs. Suppose thatI ′ is an extension of

I (that is,I ⊆ I ′) which interprets the uninterpreted relation symbols inΓ such thatΓI ′ = 1. A

modelof the CLP programΓ is the setI ′− I . The least modelof Γ is the strongest such model,

which always exists for any CLP program with no negative literal [109].

Let us now proceed more formally.

Definiton 2.2 (Ground Substitution). Given a formulaα, the ground substitutionσ of α

denotedσ(α) or ασ substitutes each free variable inα with a constant inDZ,A ,F .

Definiton 2.3 (Immediate Consequence Operator). Given a programΓ, we define animme-

diate consequence operator TΓ, which takes an interpretationJ for uninterpreted relation symbols

mentioned inΓ and produces another one, as follows:

TΓ(J) = {σ(A) | A :- c1, . . . ,cn is a fact inΓ

and for alli,1≤ i ≤ n,(σ(ci))
I = 1} ∪

{σ(A) | A :- L1, . . . ,Lm,c1, . . . ,cn is in Γ

and for alli,1≤ i ≤ m,m≥ 1, andσ(Li) ∈ J,

and for all j ,1≤ j ≤ n,(σ(c j))
I = 1}

Here,A andL1, . . . ,Lm are atoms,ci for anyi are constraints, andσ denotes a ground substitution.

38

We denote byTΓ ↑ n the setTn
Γ (/0), whereTΓ ↑ 0 = /0.

Definiton 2.4 (Least Model). Given a programΓ, theleast modelof Γ is the least solution of

the equationX = TΓ(X). Further, we denote the least model ofΓ aslm(Γ).

Because of the monotonicity and continuity of theTΓ operator whenΓ does not contain

negative literals, then given a CLP programΓ without negative literals, by Knaster-Tarski fixpoint

theorem (see e.g., [105]), whenω is an infinite ordinal, thenTΓ ↑ ω = lm(Γ). For some CLP

programs,TΓ ↑ k = lm(Γ) for somek < ω.

2.7 Clark Completion

By defining CLP programs as logical formulas, we have actually provided their logical semantics.

Here we provide an even stronger logical semantics of CLP programs called Clark completion.

The logical semantics we have given so far has too many models, which is undesirable in verifica-

tion since to establish a property of a program, as we will seelater, we need to inspect all possible

behavior of the program. With our current logical semantics(conjunction of implications), the

CLP representation of a program to be verified would imply many other behavior which does not

exist as a behavior of the original program. For example, a possible modelI ′ of the CLP program

in Example 2.1 (Page 32) isp(X)I ′ = 1 for anyX. However, this is not theintendedmodel of

the CLP program. Instead, what we have in mind is the model given in Example 2.5 (Page 33),

which is indeed the least model.

Using Clark completion as the logical semantics would restrict the possible models to the

least model only. The following discussions in this sectioncan also be found in [109].

Definiton 2.5 (Completion). The logical semantics ofn-ary predicate symbolp in the pro-

gramΓ is the formula

〈∀X1, . . . ,Xn,Ỹ : p(X1, . . . ,Xn) ⇔ B1∨ . . .∨Bm〉,

whereỸ are variables inB1, . . . ,Bm, andX1, . . . ,Xn are variables that do not appear in any clause.

Except when they belong toX1, . . . ,Xn, the variables of̃Y in Bi is disjoint from the variables inB j ,

wheneveri 6= j , which can be achieved by appropriate renaming. Further, each Bi corresponds to

39

a clause inΓ of the form

p(t1, . . . , tn) :- L1, . . . ,Lk.

andBi is

X1 = t1∧ . . .∧Xn = tn∧L1∧ . . .∧Lk.

If there is no clause with headp, the completion ofp is simply

〈∀X1, . . . ,Xn : p(X1, . . . ,Xn) ⇔ 2〉.

TheClark completionΓ∗ of a CLP programΓ is the conjunction of the above definitions of

all uninterpreted relations inΓ.

A known result is that whenΓ∗ is the Clark completion ofΓ, lm(Γ∗) = lm(Γ). Most impor-

tantly, establish the relationΓ∗
 〈∃̃γ〉 if and only if lm(Γ∗) ⇒ 〈∃̃γ〉.

2.8 Further Readings

We note that the array functions[] and aupd introduced in Section 2.1 have appeared in the

literature. They are are similar to the andselectandstoreof Nelson and Oppen [146], orread

andwrite of Jones et al. [117].

For further reading on the semantics of CLP programs, refer to Jaffar et al. [109]. For further

reading on the basics of resolution and refutation, readersmay refer to Davis et al. [43] as well as

Boolos and Jeffrey [20]. Introduction to constraint solving algorithms can be found in the book

by Marriott and Stuckey [138].

40

Chapter 3

Modeling Programs in CLP

To use CLP for program reasoning, we need to first model programs as CLP programs, such that

some semantics correspondence exists between the originalprogram and its CLP model. In this

chapter we show how we model various programs and high-levelspecifications.

3.1 Sequential Programs

3.1.1 Usual Semantics

We first define a simple sequential programming language whose syntax is given in Figure 3.1.

Note that particular to our language, we may (or may not) consider a sequence of assignments

as just a single statement. In our language, we annotate eachstatement of the program with a

unique positive integerprogram point labelenclosed in angle brackets. It can be considered as

an address of the statement relative to the start of the code segment of the program. We assume

there is a special program pointΩ at the end of each program.

Program 3.1 is an example of a program written in this syntax.Program 3.1 hasx, s, n and a

special variablel asprogram variables. The variablel is used to store the program point label of

the next statement to be executed. Before the program text weusually provide a comment using

“Initially” keyword, on the initial execution states of theprogram. For example, Program 3.1

starts withx = s= 0 andn≥ 0. We always assume that the initial value ofl is the first program

point of the program, which in Program 3.1 is 0.

Definiton 3.1 (States and Conditions). A program state(or simply state) is a substitution

σ of each program variable in the corresponding domain. We often represent a state using a

41

Prg ::= LabeledStmt1 . . .LabeledStmtn

LabeledStmt ::= 〈Label〉 Stmt ||
goto 〈Label〉

Stmt ::= AssignSeq ||skip ||
if (BoolExpr) then Prg end if ||
if (BoolExpr) then Prg elsePrg end if ||
while (BoolExpr) do Prg end do

AssignSeq ::= Variable := Expr ||
Variable := Expr AssignSeq

Figure 3.1: Simple Programming Language

Initially x = s= 0, n≥ 0.
〈0〉 while (x < n) do
〈1〉 s := s+x
〈2〉 x := x+1

end do

Program 3.1: Sum (Repeat of Figure 1.1)

constraint that is true if and only if the substitution is applied to the variables in the constraint. A

conditionis a set of states, hence a set of substitutions. We representa condition as a constraint

that is true when any of the substitution in the set is appliedto the variables.

Definiton 3.2 (Transitions). A transition is a relation between asource(pre) and atarget

(post) state. We represent it as a constraint on two sets of variables: program variables and

their primed versions. We usually adopt a more general notion of transition which relates two

conditions. Atransition relationis a set (disjunction) of transitions, denotedρ(x̃, x̃′), wherex̃ is

the sequence of program variables and ˜x′ is the sequence of their primed versions.

We denote the transitive closure of transition relationρ asρ∗.

A transition represents a change of program variable valuesfrom a source (pre) to a target

(post) condition. In this way we may define the notion of “computation” of a program by a

sequence of transitions, which starts from the initial condition.

Definiton 3.3 (Reachable State). A states2 is reachablefrom a states1 whens2 ⇒ 〈∃x̃′ :

(s1[x̃ 7→ x̃′]∧ρn(x̃′, x̃))〉 for somen≥ 0. In particular,s is a reachable stateof a program if and

42

only if s⇒ 〈∃x̃′ : (Θ[x̃ 7→ x̃′]∧ρn(x̃′, x̃))〉 for somen≥ 0, whereΘ is the initial condition of the

program.

So far we have actually provided the building blocks of a deterministicdiscrete dynamic sys-

tem[33], with a set of states (all possible substitutions on program variables), transition relation,

entry condition, and exit condition (l = Ω). Hence, following [33], we may characterize the set

of reachable states of the program as strongest interpretation of α such that

α = Θ∨〈∃x̃′ : α[x̃ 7→ x̃′]∧ρ(x̃′, x̃)〉.

Here, Θ is the initial condition of the program. We denote such strongest interpretation as

Conv(ρ,Θ). Therefore we can also say that a states is reachable if and only ifs⇒ Conv(ρ,Θ).

We may also define a “condition of interest”Ξ of a program. We may then want to analyze

the set from where the condition of interest may be reached. The condition of interest can be an

exit condition such as in [33], but this can be generalized toany condition. Following the result

of [33], we characterize the set of “ancestor” states of a condition of interest as the strongest

interpretation ofα such that

α = Ξ∨〈∃x̃′ : α[x̃ 7→ x̃′]∧ρ(x̃, x̃′)〉.

We denote such strongest interpretation asConv(ρ−1,Ξ). A states reachesΞ if and only if s⇒

Conv(ρ−1,Ξ).

Example 3.1. For example, a transition representing all possible state changes between pro-

gram points 0 and 1 in Program 3.1 can be represented as the constraint l = 0∧ x < n∧ l ′ =

1∧ x′ = x∧ s′ = s∧n′ = n. In this transition, the values of the program variables except l stays

the same, hence the constraintx′ = x∧s′ = s∧n′ = n. The value ofl , however, changes from 0

to 1, and the transition is only possible whenx < n.

Program 3.1 defines the transition relationρSum(l ,x,s,n, l ′,x′,s′,n′) defined as

(l = 0∧x < n∧ l ′ = 1∧x′ = x∧s′ = s∧n′ = n)∨

(l = 0∧x≥ n∧ l ′ = Ω∧x′ = x∧s′ = s∧n′ = n)∨

(l = 1∧ l ′ = 2∧x′ = x∧s′ = s+x∧n′ = n)∨

(l = 2∧ l ′ = 0∧x′ = x+1∧s′ = s∧n′ = n)

43

The set of reachable states of Program 3.1 is the condition

(l = 0∧s= (x2−x)/2∧0≤ x≤ n)∨

(l = 1∧s= (x2−x)/2∧0≤ x < n)∨

(l = 2∧s= (x2 +x)/2∧0≤ x < n)∨

(l = Ω∧s= (x2−x)/2∧0≤ x = n),

The ancestor states of the exit conditionl = Ω of Program 3.1 is characterized by the formula

l = Ω∨ l = 0∨ l = 1∨ l = 2. This means that the final program point is always reachable from

any program point.

3.1.2 CLP Semantics

We start by defining a translation of a program in the syntax ofFigure 3.1 into a CLP program.

We first define the notion of enclosing statement of a program point l , denotedenclosing(l) as

follows:

• When l labels a statement inside athen or else block of an innermost if conditional

labeled withlif , thenenclosing(l) = lif . What we mean by “innermost” here is that there

is no other if conditional or while loop betweenl from lif . Hence,enclosing(l) is uniquely

determined.

• Whenl labels a statement inside a the body of an innermost while loop labeled withlwhile,

thenenclosing(l) = lwhile.

• Other than the two cases above,enclosing(l) = Ω.

We define the notion ofnext labelof a statement labeled withl , denotednext label(l) as

follows:

• next label(Ω) = Ω.

• When l labels a sequence of assignments orskip followed by another statement in a se-

quence, thennext label(l) is the program point of the next statement in the sequence.

When there is no such statement, it isnext label(l) = next label(enclosing(l)). If the next

statement isgoto 〈m〉 (note that according to our syntax in Figure 3.1,goto statements

are not labeled), thennext label(l) = m.

44

• Whenl labels an if conditional, it has three next labels:

– next label(l) is the program point of the first statement after theend if . If there is no

such statement, it isnext label(enclosing(l)).

– next label then(l) is the program point of the first statement in thethen block. If the

first statement in thethen block isgoto 〈m〉 thennext label then(l) = m.

– next label else(l) is the program point of the first statement in theelse block, if

there is anelse block. If the first statement is theelse block is goto 〈m〉, then

next label else(l) = m.

We assume that there is no emptythen or else block.

• Whenl labels a while loop, it also has three next labels:

– next label(l) = l .

– next label then(l) is the program point of the first statement of the loop body. We

assume that a loop body is never empty. Similar to the if conditional, if the first

statement isgoto 〈m〉, thennext label then(l) = m.

– next label else(l) is the program point of the statement immediately followingend

do. If there is no such statement, it isnext label(enclosing(l)). If the statement is

goto 〈m〉, thennext label else(l) = m.

Complementing the sequence ˜x = x1, . . . ,xn of n distinct program variables of a sequential

program, we have a sequenceX̃ = X1, . . . ,Xn of distinctCLP variables, and a we draw a corre-

spondence between program variablexi and CLP variableXi . We denote byX̃′ the sequence of

the primed versions of the variables inX̃. We always use lower case letters to represent program

variables, and sequence of characters with capital first letter for CLP variables.

We define a functiontransb which maps a sequential program written in our language into

CLP program clauses as follows:

• transb(stmt1 . . .stmtk) =

transb(stmt1)
...

transb(stmtk).
Here,stmti is a labeled statement, possibly agoto statement.

• transb(goto 〈l〉) returns nothing.

45

• transb(〈l〉 xi1 := expr1 . . .xiq := exprq) =

p(next label(l), X̃q) :- p(l , X̃),

X1
1 = X1, . . . ,X1

i1 = expr1θ, . . . ,X1
n = Xn,

. . .

Xq
1 = Xq−1

1 , . . . ,Xq
iq = exprqθq−1, . . . ,Xq

n = Xq−1
n .

We denote byθ the renaming of program variables with the corresponding CLP variables.

Also, we denote byθi the renaming of program variables with versioni of the correspond-

ing CLP variables. For example, whenθ renames program variablex to CLP variableX,

θi would renames program variablex to CLP variableXi .

• transb(〈l〉 skip) = p(next label(l), X̃) :- p(l , X̃).

• transb(〈l〉 if (boolexpr) then stmt1 . . .stmtk end if) =

p(next label then(l), X̃) :- p(l , X̃),boolexprθ.

p(next label(l), X̃) :- p(l , X̃),¬boolexprθ.

transb(stmt1 . . .stmtk)

• transb(〈l〉 if (boolexpr) then stmt1 . . .stmtj elsestmtj+1 . . .stmtk end if) =

p(next label then(l), X̃) :- p(l , X̃),boolexprθ.

p(next label else(l), X̃) :- p(l , X̃),¬boolexprθ.

transb(stmt1 . . .stmtj) transb(stmtj+1 . . .stmtk)

• transb(〈l〉 while (boolexpr) do stmt1 . . .stmtk end do) =

p(next label then(l), X̃) :- p(l , X̃),boolexprθ.

p(next label else(l), X̃) :- p(l , X̃),¬boolexprθ.

transb(stmt1 . . .stmtk)

As in Program 3.1, we often describe the initial state of the program using the clause “Initially.”

We translate “Initiallyboolexpr” as the CLP fact

p(l , X̃) :- boolexprθ.

46

p(0,0,0,N). κ1

p(1,X,S,N) :- p(0,X,S,N),X < N. κ2

p(Ω,X,S,N) :- p(0,X,S,N),X ≥ N. κ3

p(2,X,S′,N) :- p(1,X,S,N),S′ = S+X. κ4

p(0,X′,S,N) :- p(2,X,S,N),X′ = X +1. κ5

Program 3.2: Sum Backward CLP Model

Here,l is the initial program point.

We define the semantics of the original program to be its CLP model. In this definition, the

interpretation of the predicatep in the least model of the CLP program is the set of reachable

states of the program. This corresponds to the characterization of the set of descendant states of

the set of entry states of a discrete dynamic system as a leastfixpoint in [33].

Example 3.2. Sum The CLP model of the program Sum (Program 3.1) is Program 3.2. Note

that the CLP variableX and its primed version corresponds to the program variablex, the CLP

variableS corresponds to the program variables, and the CLP variableN corresponds to the

program variablen. The model is qualified as “backward” for a reason to be explained later.

The least model of the CLP Program 3.2 is

{p(α,β,γ,δ) | (α = 0∧ γ = (β2−β)/2∧0≤ β ≤ δ)∨

(α = 1∧ γ = (β2−β)/2∧0≤ β < δ)∨

(α = 2∧ γ = (β2 +β)/2∧0≤ β < δ)∨

(α = Ω∧ γ = (β2−β)/2∧0≤ β = δ)},

in which the interpretation ofp exactly models the reachable states of the original Program3.1

according to the usual semantics given in Example 3.1.

3.1.3 Forward CLP Model

So far our CLP model of sequential programs seems to be the “reverse” of the resolution step,

because a CLP clause represents a transition from the body ofa clause to the head of a clause. A

resolution step, on the other hand, tries to unify with a headto obtain its body. We call this kind

of representation asbackwardCLP model.

Of course, this suggests aforward CLP model, which can be obtained by translating differ-

ently from the original program. So instead of using the translation functiontransb as before, we

47

use a new translation functiontransf , defined as follows:

• transf (stmt1 . . .stmtn) =

transf (stmt1)
...

transf (stmtn).

• transf (goto 〈l〉) returns nothing.

• transf (〈l〉xi1 := expr1 . . .xiq := exprq) =

p(next label(l), X̃) :- p(l , X̃q),

X1
1 = X1, . . . ,X1

i1 = expr1θ, . . . ,X1
n = Xn,

. . .

Xq
1 = Xq−1

1 , . . . ,Xq
iq = exprqθq−1, . . . ,Xq

n = Xq−1
n .

• transf (〈l〉 skip) = p(l , X̃) :- p(next label(l), X̃).

• transf (〈l〉 if (boolexpr) then stmt1 . . .stmtk end if) =

p(l , X̃) :- p(next label then(l), X̃),boolexprθ.

p(l , X̃) :- p(next label(l), X̃),¬boolexprθ.

transf (stmt1 . . .stmtk)

• transf (〈l〉 if (boolexpr) then stmt1 . . .stmtj elsestmtj+1 . . .stmtk end if) =

p(l , X̃) :- p(next label then(l), X̃),boolexprθ.

p(l , X̃) :- p(next label else(l), X̃),¬boolexprθ.

transf (stmt1 . . .stmtj) transf (stmtj+1 . . .stmtk)

• transf (〈l〉 while (boolexpr) do stmt1 . . .stmtk end do) =

p(l , X̃) :- p(next label then(l), X̃),boolexprθ.

p(l , X̃) :- p(next label else(l), X̃),¬boolexprθ.

transf (stmt1 . . .stmtk)

Compared to the definition oftransb, it is easy to see intransf we simply exchange the predicate

p in the head of the clause with the one in the body of the clause.

48

p(Ω,X,S,N). κ6

p(0,X,S,N) :- p(1,X,S,N),X < N. κ7

p(0,X,S,N) :- p(Ω,X,S,N),X ≥ N. κ8

p(1,X,S,N) :- p(2,X,S′,N),S′ = S+X. κ9

p(2,X,S,N) :- p(2,X,S,N),X′ = X +1. κ10

Program 3.3: Sum Forward CLP Model (Repeat of Figure 1.2)

In the forward translation, we do not translate the initial state a clause. Instead, we translate

the condition of interest. Suppose that our condition of interest is the constraintc on the program

variables. Then we include the clause

p(l , X̃) :- cθ.

Here,l is the program point of interest.

The least model of the forward CLP model of a program corresponds to the set of ancestors

of the condition of interest. When the condition of interestis the final program label, this is

equivalent to the set of ancestors of the exit states in [33].

Example 3.3. Program 3.3 is the forward CLP model of Program 3.1. Here the condition of

interest isl = Ω.

The least model of Program 3.3 is

{p(α,β,γ,δ) | α = Ω∨α = 0∨α = 1∨α = 2}.

This corresponds to the set of ascendant states of the condition of interest in Example 3.1.

3.1.4 Final Variables

Often our objective in analyzing a program is to reason aboutthe values of variables whenever a

program point of interest is reached from the initial state of the program. This is easily done with

backward CLP model of a program, since the least model of the CLP program represents all the

reachable states of the program.

The situation is not as simple with the forward model, since the least model of the CLP pro-

gram corresponds to states that can possibly reach the condition of interest. We can, however

reason that the condition of interest is reachable from the initial state by showing that a represen-

49

p(Ω,X,S,N,S). κ1

p(0,X,S,N,Sf) :- p(1,X,S,N,Sf),X < N. κ2

p(0,X,S,N,Sf) :- p(Ω,X,S,N,Sf),X ≥ N. κ3

p(1,X,S,N,Sf) :- p(2,X,S′,N,Sf),S′ = S+X. κ4

p(2,X,S,N,Sf) :- p(0,X,S,N,Sf),X′ = X +1. κ5

Program 3.4: Sum Forward CLP Model with Final Variables

tation of the initial state of the program is included in the least model of the CLP program. To

check that the program point is always reached with the correct variable values, we need to make

explicit in the least model the variable values whenever thecondition of interest is reached. For

this purpose, we add a sequence of variables calledfinal variables, which are copies of variables

of interest at the point of interest. WheneverY denotes a representation of program variabley,

Yf denotes the final variable version ofY. Similarly, wheneverX̃ denotes the sequence of the

representation of program variables,X̃f denotes the final version of the sequence.

Recall that in a forward model, a clause represents an execution of a labeled program state-

ment, and the constraint fact represents the condition of interest. The final variables are not

touched in the clauses, that is they are copied as is, from thearguments of thep predicate of

the head to the same predicate in the body, without being referred to in other parts of the clause.

We only require that at the constraint fact representing thecondition of interest, they are unified

with program variable representations. In this way, the least model of the CLP program inter-

prets the predicatep(L, X̃, X̃f), which is true under ground substitutionσ if X̃f σ is the value of

the program variables at the condition of interest, when thecondition of interest is reached from

program pointLσ with program variable values̃Xσ.

Program 3.4 is the forward CLP model of Program 3.1 with a finalvariableSf , which is the

final version ofS. In the example we do not provide the final versions of other variables. We

usually only provide the final versions of a subset of programvariable representations that are

essential for the reasoning.

3.1.5 Programs with Array

In place of variables, we may have array references in the program. In our CLP model we use a

variable to denote any array that is used in the program. Array referencea[i] is straightforwardly

the expression renamed toA[I] by the renamingθ in the CLP model, whereI is the renaming of

i, andA is the renaming ofa in the CLP model.A is the CLP variable which denotes the array

50

variablea in the program. A special note is with assignments of the form

a[i] := expr

which may appear in the middle of a sequence of assignments. This we translate using array

update expression intoA′ = 〈A, I ,expr〉 in the CLP program. More precisely,

transb(〈l〉xi1 := expr1 . . .xir [xt] := exprr . . .xiq := exprq) =

p(next label(l), X̃q) :- p(l , X̃),

X1
1 = X1, . . . ,X1

i1 = expr1θ, . . . ,X1
n = Xn,

. . .

Xr
1 = Xr−1

1 , . . . ,Xr
ir = 〈Xr−1

ir ,Xr−1
t ,exprrθr−1〉, . . . ,Xr

n = Xr−1
n ,

. . .

Xq
1 = Xq−1

1 , . . . ,Xq
iq = exprqθq−1, . . . ,Xq

n = Xq−1
n .

Similarly, transf (〈l〉xi1 := expr1 . . .xir [xt] := exprr . . .xiq := exprq) =

p(l , X̃) :- p(next label(l), X̃q),

X1
1 = X1, . . . ,X1

i1 = expr1θ, . . . ,X1
n = Xn,

. . .

Xr
1 = Xr−1

1 , . . . ,Xr
ir = 〈Xr−1

ir ,Xr−1
t ,exprrθr−1〉, . . . ,Xr

n = Xr−1
n ,

. . .

Xq
1 = Xq−1

1 , . . . ,Xq
iq = exprqθq−1, . . . ,Xq

n = Xq−1
n .

As an example, consider Program 3.5 and its forward CLP modelProgram 3.6. In our CLP

model, we eliminate the representation of the program variable t, since it is only used internally

in the assignment sequence starting at〈5〉.

3.1.6 Programs with Heap and Recursive Pointer Data Structures

We may also model in CLP a program which manipulates pointer-based data structures, such as

a linked list and a binary tree. We allow structure member referencesx→val, x→next, x→left,

x→right in place of normal variables in our simple programming language. The informal se-

mantics is thatx is a pointer variable pointing to a structure with membersval, next, left or right.

Now, x→memberis the value of the elementmemberof the structure (which is any ofval, next,

51

〈0〉 i := 0
〈1〉 while (i < n−1) do
〈2〉 j := 0
〈3〉 while (j < n−1− i) do
〈4〉 if (a[j +1] ≤ a[j]) then
〈5〉 t := a[j +1]

a[j +1] := a[j]
a[j] := t

end if
〈6〉 j := j +1

end do
〈7〉 i := i +1

end do

Program 3.5: Bubble Sort

p(Ω,A, I ,J,N,A,N). κ1

p(0,A, I ,J,N,Af ,Nf) :- p(1,A,0,J,N,Af ,Nf). κ2

p(1,A, I ,J,N,Af ,Nf) :- I ≥ N−1, p(Ω,A, I ,J,N,Af ,Nf). κ3

p(1,A, I ,J,N,Af ,Nf) :- I < N−1, p(2,A, I ,J,N,Af ,Nf). κ4

p(2,A, I ,J,N,Af ,Nf) :- p(3,A, I ,0,N,Af ,Nf). κ5

p(3,A, I ,J,N,Af ,Nf) :- J ≥ N−1− I , p(7,A, I ,J,N,Af ,Nf). κ6

p(3,A, I ,J,N,Af ,Nf) :- J < N−1− I , p(4,A, I ,J,N,Af ,Nf). κ7

p(4,A, I ,J,N,Af ,Nf) :- A[J+1] > A[J], p(6,A, I ,J,N,Af ,Nf). κ8

p(4,A, I ,J,N,Af ,Nf) :- A[J+1] ≤ A[J], p(5,A, I ,J,N,Af ,Nf). κ9

p(5,A, I ,J,N,Af ,Nf) :- A′ = 〈〈A,J+1,A[J]〉,J,A[J+1]〉,
p(6,A′, I ,J,N,Af ,Nf). κ10

Program 3.6: Bubble Sort Forward CLP Model

left or right).

In order to translate member references, we need to note thatthey actually refer to the pro-

gram heap, albeit implicitly. The program heap itself can bemodeled as an array, which we name

using an auxiliary variableh. This array is indexed by pointer variables. Whenx is the address

of the structure, we assume that the memberval is always stored at addressx, nextor left at the

addressx+1, andright at addressx+2. We then provide the following alternatives to member

references1:
1The use of array to denote structure member reference here isfollowing Reynolds [166].

52

Initially p 6= 0.
〈0〉 while (p 6= 0) do
〈1〉 p→val := 0
〈2〉 p := p→next

end do

Program 3.7: List Elements Reset

p(0,H,P,H f ,Pf) :- P = 0, p(Ω,H,P,H f ,Pf).
p(0,H,P,H f ,Pf) :- P 6= 0, p(1,H,P,H f ,Pf).
p(1,H,P,H f ,Pf) :- p(2,〈H,P,0〉,P,H f ,Pf).
p(2,H,P,H f ,Pf) :- p(0,H,H[P+1],H f ,Pf).
p(Ω,H,P,H,P).

Program 3.8: List Elements Reset CLP Model

Member Reference Alternative Expression

x→val h[x]

x→next h[x+1]

x→left h[x+1]

x→right h[x+2]

Notice that bothx→nextandx→left have the same alternative expression. This is never ambigu-

ous, since they have different use. We use the membernext to denote the address of the next

structure in a linked list, whileleft is used to denote the address of the left child structure of a

binary tree.

An assignment to structure member such asx→val := expr, therefore has an alternative

h[x] := expr. Expressions containing member reference as well as assignments to structure

member are therefore modeled in CLP as we would model array references and assignments to

array elements explained in the previous section. As an example, Program 3.7 which resets all

the values of a linked list into 0, is modeled in CLP, using forward modeling, as Program 3.8.

Known programming languages have ways to allocate some areaof the heap. For this pur-

pose, we add the structure allocation expression

new(expr1,expr2,expr3)

into our simple programming language. It simply denotes an unspecified address, saynew, of the

heap, whereh[new] = expr1, h[new+ 1] = expr2, andh[new+ 2] = expr3. Or we may also use

53

the simpler

new(expr1,expr2)

which similarly denotes an unspecified address, whereh[new] = expr1 andh[new+1] = expr2.

Without being too formal, here we simply say that to translate allocation expression into

CLP, we extendθ such that(new(expr1,expr2,expr3))θ = Newi , whennew(expr1,expr2,expr3)

is thei-th allocation expression in a labeled statement. Then in the body of the clause modeling

the statement, we add the constraintsH[Newi] = expr1θ, H[Newi +1] = expr2θ, andH[Newi +

2] = expr3θ. Of course,θ is the renaming to the appropriate variable version, when the la-

beled statement is a sequence of assignments (see Section 3.1.2). We also add the constraint

Newi 6= Newj for all 1 ≤ j < i to declare separation between allocations. In addition, wealso

state that the new variableNewi is not shared with existing data structures by adding the atom

no reach(H,Newi ,X), wheneverX represents a pointer variablex in the program. The definition

of no reachdepends on the data structure rooted atx.

The binary search tree value insertion program shown as Program 3.9 is an example of a

program which uses heap allocation expression. The CLP model is shown as the CLP Program

3.10. The definition of theno reachpredicate that we use here is given as Program 3.11. The

definition ensures thatNewis not shared with any cell of the tree rooted atX.

3.2 Multiprocedure Programs

In this section we discuss how a multiprocedure and multifragment programs can be translated

into forward CLP models (translation into backward CLP models can be defined similarly).

In order to write multiprocedure programs, we need to define afew language constructs.

They are:

1. Procedure definitionsof the syntaxproc ProcName (VarSeq) Prg end proc. Here, the

tuple of formal argumentsVarSeq is optional, andPrg is a program as defined earlier.

Procnameis the name of the procedure.

2. Procedure callof the syntaxProcName (ExprSeq) or x := ProcName (ExprSeq). The

tuple (ExprSeq) is optional, depending on whether the procedureProcName has formal

arguments or not.

3. Return statementof the syntaxreturn Expr , whereExpr is optional.

54

Initially x 6= 0.
〈0〉 if (a < x→val) then
〈1〉 if (x→left = 0) then
〈2〉 x→left := new(a,0,0)

x := x→left
else

〈3〉 x := x→left
goto 〈0〉

end if
else

〈5〉 if (a > x→val) then
〈6〉 if (x→right = 0) then
〈7〉 x→right := new(a,0,0)

x := x→right
else

〈8〉 x := x→right
goto 〈0〉

end if
end if

end if

Program 3.9: Binary Search Tree Insertion

Defining a program as a procedure with nameProcName = procnamesimply restricts the

CLP model of its translation to useprocnameas predicate name, instead of the generic “p” we

have been using earlier. The tuple of formal arguments(VarSeq) is important in a procedure call.

In procedural programming languages, some variables can belocal to a procedure, some can

be global. Some of the local variables can be considered asargumentvariables, including the

variables that represent its formal arguments, and areturn value variable. A return value variable

of a procedureprocnamei is namedr i . We assume that all global variables ˜g are known, similarly

all local variables ˜xi of each procedureprocnamei that are not its formal arguments nor its return

value variables (in real compilers, this information is obtained in a separate compilation phase).

We now describe the CLP semantics of a multiprocedure program starting with procedure

definitions. A program now consists of a sequence of procedure definitions. In our framework,

procedure definitions have no representations as CLP clauses: They simply define the clauses’

predicate names and a set of local variables which are formalarguments of the procedures. A

55

p(0,H,X,A,H f ,Xf) :- p(1,H,X,A,H f ,Xf),A < H[X].
p(0,H,X,A,H f ,Xf) :- p(5,H,X,A,H f ,Xf),A≥ H[X].
p(1,H,X,A,H f ,Xf) :- p(2,H,X,A,H f ,Xf),H[X +1] = 0.
p(1,H,X,A,H f ,Xf) :- p(3,H,X,A,H f ,Xf),H[X +1] 6= 0.
p(2,H,X,A,H f ,Xf) :- p(Ω,〈H,X +1,New〉,New,A,H f ,Xf),

H[New] = A,H[New+1] = 0,H[New+2] = 0,no reach(H,New,X).
p(3,H,X,A,H f ,Xf) :- p(0,H,H[X +1],A,H f ,Xf).
p(5,H,X,A,H f ,Xf) :- p(6,H,X,A,H f ,Xf),A > H[X].
p(5,H,X,A,H f ,Xf) :- p(Ω,H,X,A,H f ,Xf),A≤ H[X].
p(6,H,X,A,H f ,Xf) :- p(7,H,X,A,H f ,Xf),H[X +2] = 0.
p(6,H,X,A,H f ,Xf) :- p(8,H,X,A,H f ,Xf),H[X +2] 6= 0.
p(7,H,X,A,H f ,Xf) :- p(Ω,〈H,X +2,New〉,New,A,H f ,Xf),

H[New] = A,H[New+1] = 0,H[New+2] = 0,no reach(H,New,X).
p(8,H,X,A,H f ,Xf) :- p(0,H,H[X +2],A,H f ,Xf).
p(Ω,H,X,A,H,X).

Program 3.10: Binary Search Tree Insertion CLP Model

no reach(H, I ,L) :- L = 0.
no reach(H, I ,L) :- L 6= 0, I 6= L,

no reach(H, I ,H[L+1]),
no reach(H, I ,H[L+2]).

Program 3.11: No reachfor Binary Tree

multiprocedure program is translated into CLP model usingmptransf function below:

mptransf (proc procname1 (ṽ1) body1 end proc
...

proc procnamen (ṽn) bodyn end proc) =

bodytransf (procname1(ṽ1),body1)
...

bodytransf (procnamen(ṽn),bodyn)

The body of each procedure is translated into CLP usingbodytransf function. This function

is essentially thetransf function we discussed in Section 3.1.3 but with specified predicate name

and unique set of variables including global, formal arguments, local, return values, and final

variables (Section 3.1.4) to represent updates to global variables. Given a procedureprocnamei ,

we devise a mappingθ = {g̃ 7→ G̃, ṽi 7→ Ṽi , x̃i 7→ X̃i} which maps global variables ˜g, formal argu-

ments ˜vi , and local variables ˜xi into distinct CLP variables.

Now, the procedure calls are translated into CLP as follows:

56

proc main
〈0〉 t := a×b
〈1〉 p
〈2〉 t := a×b

end proc

proc p
〈0〉 if (a = 0) then
〈1〉 return

else
〈2〉 a := a−1
〈3〉 p
〈4〉 t = a×b

end if
end proc

Program 3.12: Multiprocedure Program

main(0,T,A,B,Tf ,Af ,Bf) :- main(1,A×B,A,B,Tf ,Af ,Bf).
main(1,T,A,B,Tf ,Af ,Bf) :- p(0,T,A,B,T ′,A′,B′),main(2,T ′,A′,B′,Tf ,Af ,Bf).
main(2,T,A,B,Tf ,Af ,Bf) :- main(Ω,A×B,A,B,Tf ,Af ,Bf).
main(2,T,A,B,T,A,B).

p(0,T,A,B,Tf ,Af ,Bf) :- p(1,T,A,B,Tf ,Af ,Bf),A = 0.
p(0,T,A,B,Tf ,Af ,Bf) :- p(2,T,A,B,Tf ,Af ,Bf),A 6= 0.
p(1,T,A,B,Tf ,Af ,Bf) :- p(Ω,T,A,B,Tf ,Af ,Bf).
p(2,T,A,B,Tf ,Af ,Bf) :- p(3,T,A−1,B,Tf ,Af ,Bf).
p(3,T,A,B,Tf ,Af ,Bf) :- p(0,T,A,B,T ′,A′,B′), p(4,T′,A′,B′,Tf ,Af ,Bf).
p(4,T,A,B,Tf ,Af ,Bf) :- p(Ω,T ′,A,B,Tf ,Af ,Bf),T ′ = A×B.
p(Ω,T,A,B,Tf ,Af ,Bf).

Program 3.13: Multiprocedure Program Forward CLP Model

• bodytransf (procnamei(ṽi),〈l〉 procnamej (˜expr)) =

procnamei(l ,G̃,Ṽi , X̃i ,Ri ,G̃f) :-

procnamej(G̃, ˜exprθ, X̃j ,Rj ,G̃′),procnamei(next label(l),G̃′,Ṽi , X̃i ,Ri ,G̃f).

• bodytransf (procnamei(ṽi),〈l〉 x := procnamej (˜expr)) =

procnamei(l ,G̃,Ṽi, X̃i ,Ri ,G̃f) :-

procnamej(0,G̃, ˜exprθ, X̃j ,X′,G̃′),procnamei(next label(l),G̃′′,Ṽ ′
i , X̃

′
i ,Ri ,G̃f).

Note that here eitherX′ ∈ G̃′′, x′ ∈ Ṽ ′
i , or X′ ∈ X̃′

i . Also, G̃′′ = G̃′ whenX′ 6∈ G̃′, Ṽ ′
i = Ṽi

57

whenX′ 6∈ Ṽ ′
i , andX̃′

i = X̃i whenX′ 6∈ X̃′
i .

Return statements transfer control to program pointΩ. We require that all procedures that

are called using the assignment form of the procedure call cannot reach program pointΩ without

havingreturn expras the last statement executed.return statements are translated into CLP as

follows:

• bodytransf (procnamei(ṽi),〈l〉 return) =

procnamei(l ,G̃,Ṽi , X̃i ,Ri ,G̃f) :-

procnamei(Ω,G̃,Ṽi , X̃i ,Ri ,G̃f).

• bodytransf (procnamei(ṽi),〈l〉 return expr) =

procnamei(l ,G̃,Ṽi , X̃i ,Ri ,G̃f) :-

procnamei(Ω,G̃,Ṽi , X̃i ,Ri ,G̃f),Ri = exprθ.

The discussion in this section together with the statechartexample later in Section 3.7 demon-

strate that CLP models are easily tailored to express compositional structure of the program to

be modeled.

Example 3.4. We take the multiprocedure program of Sharir and Pnueli [179] as an example.

The program is shown as Program 3.12, with its CLP model Program 3.13. The program only

has global variablest, a, andb, and both proceduresmainandp have no formal arguments nor

return values.

In this thesis we are somewhat liberal in our translation into CLP models. In Program 3.13

we simplify our model not to include return value variables.Also, we have〈2〉 as the program

point of interest in the proceduremain instead ofΩ. This is for our verification purpose later in

Chapter 5.

3.3 Concurrent Programs

Concurrency is in essence nondeterminism [5], and CLP clauses are suitable for representing

nondeterministic transition systems. In this section we show how to model concurrent programs

in CLP.

58

3.3.1 Syntax

Concurrency often coincides with programs that run forever. We enclose such program in a

loop forever . . .end loop construct. Instead ofΩ, the next label of the last statement of the

program is the program point of its first statement. For the more formal translation into CLP

semantics, we can mostly still use theenclosingandnext labeldefinitions as in the previous sec-

tion. However, we redefinenext label(Ω) = l , wherel is the program point of the first statement

of the program.

Now, in a concurrent setting we call each program aprocess, and aconcurrent programcon-

sists of more than one processes. Whereas in a sequential setting a program is executed without

interruption until it is (hopefully) terminated, in concurrent setting, an operating system running

in the background may stop a running process, and execute another process. We assume that a

process may only be stopped after it has completely executeda statement, and hence for concur-

rent programs we adopt the so-calledasynchronousor interleavingsemantics. Later in Section

3.6 we will also demonstrate the modeling of the complementary synchronousconcurrency where

transitions of different processes (automata) are executed at the same time.

Often in a concurrent setting, processes cooperate with oneanother. For this purpose, they

need to communicate, and communication is only possible if at least one party waits for infor-

mation from others. We realize the waiting of a process by introducing anawait statement of the

syntax

await (BoolExpr)

or

await (BoolExpr) Variable := Expr

Upon reaching any of the above statement, a process may only progress to the next program point

when the given boolean expression is true. With the latter syntax, when the boolean expression is

true, the given assignment is first executed before control progresses to the next program point.

Example 3.5. (Bakery Algorithm) Now consider our specification of two-process Bakery mu-

tual exclusion algorithm [125] as shown in Program 3.14. In the program, variablesxandydenote

the “ticket numbers” of each of Process 1 and 2, respectively. They are both 0 before the program

runs. Whenever a process is interested to enter its criticalsection (program point 2), it sets its

ticket number to one more than the other process’ ticket number.

59

The program variables of a concurrent program includes variables in the program text, and

the variablesl1, . . . , ln, to store the program point of each processi, 1 ≤ i ≤ n. The state of a

concurrent program is thus a ground substitution ofl1, . . . , ln and the variables of program text

into constants in the corresponding domains.

3.3.2 CLP Semantics

Interleaving semantics means that at any one time, only a statement in any of the processes can

be executing. Therefore, a state transition of a concurrentprogram represents only one state

transition in any of its processes. We perform a translationof a processi, where 1≤ i ≤ m,

wherem is the total number of processes, andn is the total number of variables, into backward

CLP model as follows:

• transb(stmt1 . . .stmtk) = transb(stmt1) . . . transb(stmtk). Here,stmti is a labeled statement,

possibly agoto statement.

• transb(goto 〈l i〉) returns nothing.

• transb(〈l i〉x j := expr) =

p(l1, . . . ,next label(l i), . . . , lm, X̃′) :-

p(l1, . . . , l i, . . . , lm, X̃),X′
1 = X1, . . . ,X′

j = exprθ, . . . ,X′
n = Xn.

• transb(〈l i〉 await (boolexpr)) =

p(l1, . . . ,next label(l i), . . . , lm, X̃′) :-

p(l1, . . . , l i, . . . , lm, X̃),boolexprθ.

• transb(〈l i〉 await (boolexpr) x j := expr) =

p(l1, . . . ,next label(l i), . . . , lm, X̃′) :-

p(l1, . . . , l i, . . . , lm, X̃),

boolexprθ,X′
1 = X1, . . . ,X′

j = exprθ, . . . ,X′
n = Xn.

60

• transb(〈l i〉 if (boolexpr) then stmt1 . . .stmtk end if) =

p(l1, . . . ,next label then(l i), . . . , lm, X̃) :-

p(l1, . . . , l i , . . . , lm, X̃),boolexprθ.

p(l1, . . . ,next label(l i), . . . , lm, X̃) :-

p(l1, . . . , l i , . . . , lm, X̃),¬boolexprθ.

transb(stmt1 . . .stmtk)

• transb(〈l i〉 if (boolexpr) then stmt1 . . .stmtj elsestmtj+1 . . .stmtk end if) =

p(l1, . . . ,next label then(l i), . . . , lm, X̃) :-

p(l1, . . . , l i , . . . , lm, X̃),boolexprθ.

p(l1, . . . ,next label else(l i), . . . , lm, X̃) :-

p(l1, . . . , l i , . . . , lm, X̃),¬boolexprθ.

transb(stmt1 . . .stmtj) transb(stmtj+1 . . .stmtk)

• transb(〈l i〉 while (boolexpr) do stmt1 . . .stmtk end do) =

p(l1, . . . ,next label then(l i), . . . , lm, X̃) :-

p(l1, . . . , l i , . . . , lm, X̃),boolexprθ.

p(l1, . . . ,next label else(l i), . . . , lm, X̃) :-

p(l1, . . . , l i , . . . , lm, X̃),¬boolexprθ.

transb(stmt1 . . .stmtk)

As in Program 3.1, we often describe the initial state of the program using the clause “Initially.”

We translate “Initiallyboolexpr” as the CLP fact

p(l1, . . . , lm, X̃) :- boolexprθ.

Here,l1, . . . , lm are the initial program points of process 1 tom.

61

Initially x = 0 andy = 0.
Process 1

loop forever
〈0〉 x := y+1
〈1〉 await (x < y∨y = 0)
〈2〉 x := 0

end loop

Process 2
loop forever

〈0〉 y := x+1
〈1〉 await (y < x∨x = 0)
〈2〉 y := 0

end loop

Program 3.14: Two-Process Bakery Algorithm

p(0,0,0,0). κ1

p(1,L2,Y+1,Y) :- p(0,L2,X,Y). κ2

p(2,L2,X,Y) :- p(1,L2,X,Y),(Y = 0∨X < Y). κ3

p(0,L2,0,Y) :- p(2,L2,X,Y). κ4

p(L1,1,X,X +1) :- p(L1,0,X,Y). κ5

p(L1,2,X,Y) :- p(L1,1,X,Y),(X = 0∨Y < X). κ6

p(L1,0,X,0) :- p(L1,2,X,Y). κ7

Program 3.15: Two-Process Bakery Algorithm CLP Model

The backward CLP model of Program 3.14 is Program 3.15. The state space of Program 3.14

is given by the least model of the CLP Program 3.15, which is asfollows:

{p(L1,L2,X,Y) | (L1 = 0∧0≤ L2 ≤ 2∧X = 0∧Y ≥ 0)∨

(0≤ L1 ≤ 2∧L2 = 0∧X ≥ 0∧Y = 0)∨

(L1 = 1∧ (L2 = 1∨L2 = 2)∧X = Y+1)∨

((L1 = 1∨L1 = 2)∧L2 = 1∧Y = X +1)}.

Clearly, the least model is infinite, that is, there are infinite ground substitutionσ such that

p(L1,L2,X,Y)σ is in the above least model. This means that the Bakery Algorithm is aninfinite-

state program.

In the next sections we show how we can add more details into our modeling of concurrent

programs in CLP.

3.3.3 Scheduling

Concurrent programs are often controlled by an operating system, which schedules the processes.

Here we demonstrate via an example how we may embed the operating system’s scheduling

policy in the CLP model.

Consider a simple two-process concurrent program shown as Program 3.16. We wish to add

62

Initially x = 0 andy = 0.
Process 1

loop forever
〈0〉 x := x+1

end loop

Process 2
loop forever

〈0〉 y := y+1
end loop

Program 3.16: Scheduled Concurrent Program

p(0,0,Q,X,Y) :- Q = 0,X = 0,Y = 0.
p(0,L2,Q+1,X +1,Y) :- Q≤ 2, p(0,L2,Q,X,Y).
p(L1,0,0,X,Y+1) :- Q > 0, p(L1,0,Q,X,Y).

Program 3.17: Scheduled Concurrent Program CLP Model

the scheduling policy where Process 1 executes at least one and at most three statements before

control is passed to Process 2. Thus we implement ak-fair schedulerwherek = 3 in this case.

We include this scheduling policy in our backward CLP model shown as Program 3.17. The

program is translated as described in Section 3.3.2, but here we add a variableQ representing

the state of the scheduler.Q is incremented whenever Process 1 executes, but Process 1 can only

execute whileQ≤ 2. On the other hand, execution of Process 2 is only possible when Q> 0, that

is when Process 1 has been executed after the last execution of Process 2, and this resetsQ to 0.

3.4 Timed Programs

Program 3.18 is a concurrent program that computes the Fibonacci numbers and assign them

to the arraya such thata[x] contains thex-th Fibonacci number. Both processes are run on

separate processors, but they access the shared variablesx, y and the arraya. We take the liberty

of introducing a new syntax:delay (t), which informal semantics is to delay the programt time

units. During the delay, the program do not access any of the program variables.

Now we provide informal explanation of the processes. Process 1 assigns on the arraya’s

even indicesx thex-th Fibonacci number, while Process 2 does the same with odd indices. There

is a danger that either the assignment at program point〈2〉 of Process 1 or the program point〈3〉

of Process 2 may refer to an array element that has not been assigned a Fibonacci number. Here

the system performs no scheduling, but with the right timings, the program remains correct to

an extent. We assume that every program statement takes a fixed numberε of time units, where

95≤ ε ≤ 105.

63

Initially a[0] = 0, a[1] = 1 anda[i] = 0 for all i ≥ 2.

Process 1
〈0〉 x := 2
〈1〉 while (x≤ n) do
〈2〉 a[x] := a[x−1]+a[x−2]
〈3〉 x := x+2

end do

Process 2
〈0〉 y := 3
〈1〉 delay(300)
〈2〉 while (y≤ n) do
〈3〉 a[y] := a[y−1]+a[y−2]
〈4〉 y := y+2

end do

Program 3.18: Dangerous Parrallel Fibonacci with Fixed Timing

The backward CLP model is the Program 3.19. In the CLP model weadd the auxiliary

variablesT1 and T2, which we callclock variables. Without further ado, we assume that the

clock variables have as their domain the set of real numbers.This domain can be easily included

among the domains already introduced in Chapter 22. T1 denotes how much time the processor

dedicated to Process 1 has spent in executing Process 1. Similarly, T2 denotes how much time

the processor dedicated to Process 2 has spent in executing the process. We assume that both

processors start executing their processes at the same time. This is reflected in the first fact of

Program 3.19, whereT1 andT2 are constrained to be exactly 0. Intuitively, since we assume

that time progresses uniformly everywhere3, we ought to have thatT1 = T2 everywhere in the

semantics of the program. However, this is not the case with our CLP modeling. Informally, in

our modelingT1 is the end time of last executed statement of Process 1, with the condition that

that statement has been executed at the pointT ′
1 in time whereT ′

1 ≤ T2. The semantics ofT2 is

the same for Process 2. Several subtler points are:

• Notice that in this semantics, it is never the case that the difference ofT1 andT2 reaches

infinity since no statement takes infinite time, and whenTi > Tj , it cannot be the case that

the statement of Processi is executed resulting in a least model whereTi + ε > Tj .

• In our CLP model, each statement is effective instantaneously at the start of its execution,

and then the processor only delays until the required time for the statement ends. We

could have adopted alternative modelings where a statementis effective at the end of its

duration, or where variables are read at the start or the duration, and updated at the end of

the duration.
2There are often arguments in the literature on whether it is best to use real or discrete time domain. Without

taking side, here our intention is simply demonstrate that CLP is powerful enough to modelhybrid systems, which are
those with both discrete and continuous components.

3This is not true in the physical world.

64

p(0,0,T1,T2,A,X,Y,N) :- T1 = 0,T2 = 0,A[0] = 0,A[1] = 1.
p(1,L2,T ′

1,T2,A,2,Y,N) :- inc(T1,T2,T ′
1), p(0,L2,T1,T2,A,X,Y,N).

p(2,L2,T ′
1,T2,A,X,Y,N) :-

inc(T1,T2,T ′
1),X ≤ N, p(1,L2,T1,T2,A,X,Y,N).

p(Ω,L2,T ′
1,T2,A,X,Y,N) :-

inc(T1,T2,T ′
1),X > N, p(1,L2,T1,T2,A,X,Y,N).

p(3,L2,T ′
1,T2,A′,X,Y,N) :- inc(T1,T2,T ′

1),
A′ = 〈A,X,A[X−1]+A[X−2]〉, p(2,L2,T1,T2,A,X,Y,N).

p(1,L2,T ′
1,T2,A,X +2,Y,N) :- inc(T1,T2,T ′

1), p(3,L2,T1,T2,A,X,Y,N).
p(L1,1,T1,T ′

2,A,X,3,N) :- inc(T2,T1,T ′
2), p(L1,0,T1,T2,A,X,Y,N).

p(L1,2,T1,T ′
2,A,X,Y,N) :-

T2 ≤ T1,T ′
2 = T2 +300, p(L1,1,T1,T2,A,X,Y,N).

p(L1,3,T1,T ′
2,A,X,Y,N) :-

inc(T2,T1,T ′
2),Y ≤ N, p(L1,2,T1,T2,A,X,Y,N).

p(L1,Ω,T1,T ′
2,A,X,Y,N) :-

inc(T2,T1,T ′
2),Y > N, p(L1,2,T1,T2,A,X,Y,N).

p(L1,4,T1,T ′
2,A

′,X,Y,N) :- inc(T2,T1,T21),
A′ = 〈A,Y,A[Y−1]+A[Y−2]〉, p(L1,3,T1,T2,A,X,Y,N).

p(L1,2,T1,T ′
2,A,X,Y+2,N) :- inc(T2,T1,T ′

2), p(L1,4,T1,T2,A,X,Y,N).

inc(T1,T2,T ′
1) :- T1 ≤ T2,T1 +95≤ T ′

1 ≤ T1 +105.

Program 3.19: Dangerous Parallel Fibonacci CLP Model

We note here that timing can be added to sequential programs as well.

As has been explained in Chapter 2, whereA is an array, we use the notationA[I] to denote

theI -th element ofA, and〈A, I ,J〉 to denote the array resulting from replacing itsI -th element in

A by J.

In this section we have presented a concurrent program without synchronization between

the processes. We have also considered various ways of handling real-time synchronization, but

since this topic is less relevant to this thesis, its discussion is relegated to Section A.1 of the

appendix.

3.5 Hardware Constraints

Similar to the previous example, we seek here to model an internal component of a program’s

execution, which in this case is the timing characteristicsdue to computer hardware used to run

the program.

In the previous section we have exemplified how we may introduce clock variables in a

backward CLP model. The semantics of the clock variables there are intuitive: it is the amount

of time which have lapsed since the start of execution of the program. The semantics, however,

65

〈0〉 j := 1
〈1〉 while (j < 3) do
〈2〉 if (a[j] > a[j +1])then
〈3〉 swap(a[j],a[j +1])

end if
〈4〉 j := j +1

end do

Program 3.20: Bubbling Loop

is not very straightforward for a backward model: It is the amount of time which must have

lapsed from the start of the execution of the program, if the execution of the program is to have

the chance to reach the point of interest in some timeα from the start of the execution. In our

modeling, we do not have to provide the constantα : It can instead be represented as another

clock variableTf which value is unchanging, and is the same as the value of a clock variableT

at the program point of interest.

The example program that we use here is the inner loop of the bubble sort algorithm, which

we call “Bubbling,” shown as Program 3.20.

Now suppose that Bubbling is run on a direct-mapped instruction cache architecture. Here,

there is a fixed assignment of cache line to statements. We assume the architecture has 2 cache

lines: line 0 and 1, with each line contains at most 2 instructions. For Bubbling, statements

labeled with program points〈0〉, 〈2〉 and〈4〉 are mapped to cache line 0, while〈1〉 and〈3〉 to

cache line 1. A cache hit costs 1 time unit, while a miss costs 5time units.

We implement these assumptions in our CLP model shown as Program 3.21. The variables

K andK′ represent the cache configuration: a pair of lists (one for each cache line), and each

list contains at most two statements. Cache update operation is modeled by the predicateupdate.

Without giving their definitions, we note that The predicates in andnotin represent tests of inclu-

sion and non-inclusion, respectively, of a statement in a cache line.

3.6 Timed Safety Automata

In this section we focus on modeling of timed safety automata(TSA) specification in CLP to

demonstrate that CLP can be used not only to model programs, but also high-level specifications

which represent transition systems. Whereas in Section 3.3we have shown how to model asyn-

chronous concurrency in CLP. TSA specifications discussed here may contain both asynchronous

66

p(0,A,K,J,T,Tf) :- K = [[], []],
update(0,K,K′,E), p(1,A,K′,1,T +E,Tf).

p(1,A,K,J,T,Tf) :- J < 3,update(1,K,K′,E), p(2,A,K′,J,T +E,Tf).
p(1,A,K,J,T,Tf) :- J ≥ 3,update(1,K,K′,E), p(5,A,K′,J,T +E,Tf).
p(2,A,K,J,T,Tf) :- A[J] > A[J+1],

update(2,K,K′,E), p(3,A1,K′,J,T +E,Tf).
p(2,A,K,J,T,Tf) :- A[J] ≤ A[J+1],

update(2,K,K′,E), p(4,A,K′,J,T +E,Tf).
p(3,A,K,J,T,Tf) :- swap(A,J,J+1,A′),

update(3,K,K′,E), p(4,A′,K′,J,T +E,Tf).
p(4,A,K,J,T,Tf) :- update(4,K,K′,E), p(1,A,K′,J+1,T +E,Tf).
p(5,A,K,J,T,T).

update(I , [L0,L1], [L0,L1],1) :- in(I ,L0).
update(I , [L0,L1], [L0,L1],1) :- in(I ,L1).
update(I , [L0,L1], [L′

0,L1],5) :- notin(I ,L0),notin(I ,L1),
updateline(L0, I ,L′

0).
update(I , [L0,L1], [L0,L′

1],5) : −notin(I ,L0),notin(I ,L1),
updateline(L1, I ,L′

1).
updateline([], I , [I]).% cache empty
updateline([H1], I , [H1, I]).% partial
updateline([,H2], I , [H2, I]).% cache full

Program 3.21: Bubbling Loop Forward CLP Model

as well as synchronous concurrency.

3.6.1 Timed Automata and Timed Safety Automata

Timed automata[2] is a class ofω-automata (automata over infinite words) withtimedwords4.

The alphabet of a timed automata is a pair of transition labeland the occurrence time of the tran-

sition. A timedsafetyautomaton (TSA) [99, 51] is a timed automaton without theω-acceptance

condition. Hence by definition it is simply a transition system.

An ω-acceptance imposes some liveness to a timed automaton. Forinstance, B̈uchi automa-

ton accepts only infinite strings that visit any accepting state infinite number of time. A problem

when implementing a timed automaton as a real system is that,given a particular stage of com-

putation, it is in general undecidable to compute the amountof time which has to pass before

the next transition is taken, such that the run of the system satisfies the acceptance condition.

Waiting for too long or too short at a particular point alter the valuation of some transition guard

in the future such that the accepting state is never reached.ω-acceptance therefore distinguish

current execution state of the system as those that can possibly satisfy the acceptance condition

4For an introduction toω-automata, see [191].

67

and those that are not.

By removing the acceptance condition, we declare that any reachable state is part of the valid

behavior of the system, without further qualification. A reachable state of the system is a result of

accepting (any one of possibly infinite number of) finite strings. This implies that the properties

that we would be able to reason about now belongs to thesafetyclass of properties5. As noted

by Henzinger et al., properties verifiable using timed safety automata includereachability (or

possibility), invariance, andtime-bounded inevitability, which is a special kind of invariance [99].

3.6.2 State Transition Systems

Before we formally define TSA, we need to first define a concept of state transition system,in

which the notion ofvaluation is essential. Avaluation is a mapping of a variable into a value

in its domain. We extend this notion to a sequence of variables in the obvious way. When a

valuationγ maps the variablex of the integer domain to the number 1, we writeγ(x) = 1. In the

context of transition systems, we usually call a valuation as astate.

Definiton 3.4 (State Transition System). A transition system is a triple〈X̃,Θ,R 〉, whereX̃

is a sequence of variables, andΘ is a set ofinitial states, andR is a binary relation relating two

valuations. We writeγ −→ γ′ to denote that〈γ,γ′〉 ∈ R .

The semantics of a state transition system is a set of reachable states, which includesΘ, and

all other states related toΘ by one or more applications of relations inR .

It is always possible to representΘ as a disjunctive constraintD(X̃) ≡
Wm

i=1Di(X̃), where

D(γ(X̃)) holds if and only ifγ(X̃) ∈ Θ. Similarly, it is always possible to representR as a dis-

junctive constraintR(X̃, X̃′)≡
Wn

i=1Ri(X̃, X̃′), whereR(γ(X̃),γ′(X̃′)) holds if and only ifγ(X̃)−→

γ(X̃′).

It is obvious that the semantics of a state transition systemcorresponds to the least model of

5For a formal distinction between safety and liveness properties, see the book of Schneider [178], as well as the
paper of Bjørner et al. [19]. Bjørner et al. define safety to beall properties representable using temporal logic with
past operators only. In the semantics of past operators, thenotion of “past” is well-founded (finite): it always starts
from the time 0. This is not the case with future operators.

68

a CLP program which contains the clauses

p(X̃) :- D1(X̃).

...

p(X̃) :- Dm(X̃).

p(X̃′) :- R1(X̃, X̃′), p(X̃).

...

p(X̃′) :- Rn(X̃, X̃′), p(X̃).

3.6.3 CLP Semantics of TSA

We have shown how we translate a state transition system intoa CLP program. We now define

the structure of a timed automata, whose semantics is given by a state transition system. For the

translation into a CLP program, we simply assume the discussion in the previous section.

We have provided a formalization of TSA in [108]. Here we provide a formalization which

closely follows Bengtsson and Yi [14], including a CCS-style composition.

Definiton 3.5 (Timed Safety Automaton). A timed safety automaton is a structure〈Σ,Q ,q0,

C ,D, ι,∆, I〉 where:

• Σ is the input alphabet ofactions,

• Q is a finite set oflocations,

• q0 is theinitial location,

• C is a finite set ofclock variablesthat range over nonnegative real numbers (R+),

• D is a finite set ofdiscrete variablesthat range over integers and arrays,

• ι is theinitial valuationof the discrete variables,

• ∆ ⊆ Q×Σ×Q×B(C)×B(D)×2C ×R (D,D ′) is thetransition relation, where

– B(C) is the set of constraints onC ,

– B(D) is the set of constraints onD,

– R (D,D ′) is the set of all relations between the discrete variables and its primed

versions,

69

and,

• I : Q 7→ B(C) is a mapping that associates alocation invariantto every location.

The fact that a TSA has both continuous (real) and discrete (integer or array) components

means that it can be used for modelinghybrid systems.

We shall typically denote elements of the setsΣ, Q, C , B(C), B(D), 2C , andR (D,D ′) by

the following, possibly subscripted or primed symbols:s, q, c, ϕC , ϕD , r andρ respectively.

Note that there are three kinds of actions inΣ : internal, input andoutput actions. Input

actions are always written with postfix “?,” and output actions are always written with postfix “!”

Internal actions are written using neither postfix. Input and output actions are used in the parallel

composition of timed automata.

Note that other works, for example, [2, 14] provide TSA definitions that limit the language of

clock constraintsB(C) to constraints of the formc⊙n, or c1⊙c2, where⊙ ∈ {≤,<,=,>,≥},

andn is a nonnegative integer. This is due to to computability issues. We do not impose such

restriction to the language of constraints that we use. As wewill show later, for some problems,

more liberal use of constraint language still preserves decidability.

Given a transition(q,s,q′,ϕC ,ϕD , r,ρ), q represents the current location,s the action that

triggers the current transition,q′ is the next location,ϕC is a constraint overC that must hold

when the transition occurs, similarlyϕD overD, andr ⊆ C a set of clock variables to be reset

(assigned to 0) during the transition, andρ is the set of updates to the discrete variables.

Given a TSA, aclock valuationis a mapping from its set of clock variablesC to positive real

numbers. On the set of valuations we define the following partial order.

Given a set of clock variablesC = {c1, . . . ,ck}, we say that a clock valuationγ satisfies a

clock constraintϕC , written γ ∈ ϕC , if the result of the substitutionϕC [c1/γ(c1), . . . ,ck/γ(ck)] is

a ground constraint that holds.

Given two valuationsγ1,γ2, we writeγ1 ≤ γ2 if γ1(c) ≤ γ2(c) for every clock variablec∈ C .

For simplicity, we shall assume that the location invariants are convex, i.e., given a location

invariantI(q) at locationq, and three clock valuationsγ1,γ2 andγ3 such thatγ1 ≤ γ2 ≤ γ3, we

have thatγ2 ∈ I(q) wheneverγ1 ∈ I(q) andγ3 ∈ I(q).

We denote byγ+d, whered ∈ R+ the clock valuationγ′ where for all clock variablec∈ C ,

γ′(c) = γ(c)+d.

70

Definiton 3.6 (Operational Semantics of a Timed Safety Automaton). TSA is a transition

system where states are triples〈q,γ,δ〉, with the setΘ of initial states contains all valuations

〈q0,γ,δ〉, satisfyingγ ∈ I(q0), andδ ∈ ι. The state transition system has the following two kinds

of of transitions:

• Delay transition〈q,γ,δ〉 −→ 〈q,γ + d,δ〉 whenγ ∈ I(q) and (γ + d) ∈ I(q) for d ∈ R+.

Note that here, all clock valuations are incremented by thesame amount d.

• Discrete transition〈q,γ,δ〉 −→ 〈q′,γ′,δ′〉 when(q,s,q′,ϕC ,ϕD , r,ρ) ∈ ∆, γ ∈ ϕC , δ ∈ ϕD ,

γ′ = γ[r/0], γ′ ∈ I(q′) andρ(δ,δ′).

So far we have introduced the semantics of a timed safety automaton (following [14]). As

a system specification, however, we more often use a number ofautomata rather than a single

automaton. Here we provide the semantics of the parallel composition of a number of automata,

also following [14].

We are given a set of TSAs{T1, . . . ,Tn}, where eachTk is the structure〈Σk,Qk,qk
0,Ck,Dk, ιk,

∆k, Ik〉, for all k, 1≤ k ≤ n. Theparallel compositionof T1, . . . ,Tn is a transition system where

the state is〈q̃, γ̃, δ̃〉, whereq̃ is a vector(q1, . . . ,qn), qi ∈ Qi , andγ̃ is a clock valuation of the set

of clocks
Sn

i=1 Ci , and similarlyδ̃ is a valuation of the discrete variables in
Sn

i=1 Di . We write

γ̃ ∈ I(q̃) in place ofγ̃ ∈
Vn

i=1 I(qi).

Definiton 3.7 (Semantics of Parallel Timed Safety Automata). The parallel composition

of TSA is a transition system which has〈(q1
0, . . . ,q

n
0), γ̃, δ̃〉 in the set of initial states, wherẽγ ∈

I((q1
0, . . . ,q

n
0)), andδ̃ ∈ ι1∧ . . .∧ ιn, and with transitions of the following three types:

• Delay transitionswhich advance the time, but without executing an action:

〈q̃, γ̃, δ̃〉 −→ 〈q̃, γ̃+d, δ̃〉,

whenγ̃ ∈ I(q̃) andγ̃+d ∈ I(q̃).

• Discrete internal transitionsrepresent a transition that executes an internal action in one

of the automatonTi :

〈q̃, γ̃, δ̃〉 −→ 〈q̃[q′i 7→ qi], γ̃′, δ̃′〉,

when(qi ,s,q′i,ϕC ,ϕD , r,ρ) ∈ ∆i , γ̃ ∈ ϕC , δ̃ ∈ ϕD , γ̃′ = γ̃[r 7→ 0], ρ(δ̃, δ̃′) and γ̃′ ∈ I(q̃[q′i 7→

qi]).

71

• Discrete synchronization transitionsrepresent the simultaneous execution of an input ac-

tion s? of automatonTi and an output actions! of automatonTj :

〈q̃, γ̃, δ̃〉 −→ 〈q̃[q′i 7→ qi][q j 7→ q′j], γ̃
′, δ̃′〉,

when (qi ,s?,q′i,ϕC
i ,ϕD

i , r i ,ρi) ∈ ∆i ,(q j ,s!,q′j ,ϕC
j ,ϕD

j , r j ,ρ j) ∈ ∆ j , i 6= j , γ̃ ∈ ϕC
i ∧ϕC

j , δ̃ ∈

ϕD
i ∧ϕD

j , γ̃′ = γ̃[r i ∪ r j 7→ 0],ρi(δ̃, δ̃′),ρ j(δ̃, δ̃′) andγ̃′ ∈ I(q̃[q′i 7→ qi][q′j 7→ q j]).

Denote byT the parallel composition of the timed safety automataT1, . . . ,Tn. Intuitively,

eachTi runs independently insideT. Since the alphabetsΣi , 1≤ i ≤ n are not necessarily disjoint,

by the 3rd transition above, it is often the case that an eventtriggers synchronous transitions in

two parallel TSA, where one of the TSA executes an output action, and the other execute the

input version of the same action; such synchronous transitions are the means by which the TSAs

communicate with one another.

Figure 3.2 shows a graphical representation of a train crossing system specified as the parallel

composition of three TSAs: each representing the train, thecontroller and the gate. It is the TSA

version of the timed automata example in [2]. When the train approaches the gate, a sensor

emits an “approach” signal, denoted by the output actionapproach!. This signal is detected by

the controller, modeled using the transition with the inputsignalapproach? in the controller

automaton. After at least 2 time units approaching the crossing, the train enters the crossing,

expressed by the transition with the internal actionin. After some time the train exits the crossing,

executing the internal actionout. A sensor, which detects the train exiting the crossing then

executes anexit! output action which again is synchronized with theexit? input action of the

controller. All these must occur in less than 5 t.u. since thetrain approaches the crossing, hence

the constraintc < 5 given on the transition.

The function of the controller is to receive signals from thetrain and send appropriate in-

structions to the gate. When a train approach is detected by the controller, it then executes a

lower! output action which is synchronized with its input version in the gate. This transition has

to be executed at exactly 1 t.u. since the approach of the train was detected. Similarly, when the

controller detects that the train has exited the crossing, it then instructs the gate to raise using the

raise! action. This must happen less than 1 t.u.

The gate simply receives instructions from the controller to lower and raise the gate. There

are constraints on time taken for the gate to be fully lowered(when the actiondown is executed),

72

lower?

(c) Gate

raise?

d := 0

d < 2
d > 1∧
up

1

3 2

lower!

(a) Train

1

3 2

0

c > 2
in

c < 5
exit!

out

c := 0

approach!

0

0

e= 1e< 1
raise!

exit?

e := 0

approach?

2

d < 1
down

d := 0

(b) Controller

e := 0

1

3

Figure 3.2: TSA Specification of a Train Crossing

and for the gate to be fully raised (the execution of the action up).

Figure 3.3 shows the TSA representing the parallel composition of the three TSAs in Figure

3.2. We note that the eventsapproach andexit are in the alphabets of both the train and the

controller, while the eventslower andraiseare in the alphabets of both the gate and the controller.

All these four symbols trigger synchronous transitions; for example, the transition from location

[1,0,1] to location[1,1,2] on eventlower in Figure 3.3 represents synchronous transitions of

both the gate and the controller, which in Figure 3.2 is represented both as the output and input

actionlower! andlower?.

We can define the semantics of TSA as the set of reachable states that can be reached from

the initial state by a sequence of either delay or discrete transitions. In the sequence, it does

not matter how many times delay transitions is continually taken, since any number of delay

transitions can always be replaced by a single delay transition which delays the same amount

of time. Even nonexistent delay transition between two discrete transitions can be represented

by a single delay transition whose delay amount is 0. Therefore we may assume that TSA only

has one kind of transition which consists of taking a discrete transition and immediately taking a

delay to advance the clocks. Of course, the delay must satisfy the location invariant of the target

location.

73

down

d := 0
raise

[0,3,0]

[0,2,3]

[0,1,3][3,2,2]

lower
out

c > 2
in

d < 1

down

[2,2,2] [3,1,2]

in
lower

d < 1

lower

e := 0

e= 1
d := 0

down

exit

in

d < 2
d > 1∧
up

c < 5
out

down

d < 1

c < 5
e := 0

exit

out

c > 2d < 1 d := 0
e= 1

[2,1,2] [3,0,1][1,2,2]

[2,0,1]

c > 2e= 1
d := 0

[1,1,2]

[1,0,1]

approach
e := 0
c := 0

[0,0,0]

Figure 3.3: TSA Parallel Composition

This allows us to reduce the transition relations given in Definition 3.7 into just the following

two classes:

• Internal transitionsrepresents a transition that executes an internal action inone of the

automatonTi , immediately followed by some delayd ≥ 0 :

〈q,v〉 −→ 〈q[q′i 7→ qi],v
′〉,

when(qi ,s,q′i,B, r) ∈ ∆i ,v∈ B,v′ = v[r 7→ 0]+d andv′ ∈ I(q[q′i 7→ qi]).

• Synchronization transitionsrepresent the simultaneous execution of an input actions? of

automatonTi and an output actions! of automatonTj , immediately followed by some delay

d ≥ 0 :

〈q,v〉 −→ 〈q[q′i 7→ qi][q j 7→ q′j],v
′〉,

when(qi ,s?,q′i,Bi , r i) ∈ ∆i ,(q j ,s!,q′j ,B j , r j) ∈ ∆ j , i 6= j ,v∈ Bi ∧B j ,v′ = v[r i ∪ r j 7→ 0]+d,

74

andv′ ∈ I(q[q′i 7→ qi][q′j 7→ q j]).

As we have shown in Section 3.6.2, the translation of a state transition system into CLP

program clauses is straightforward.

Let us now look again at our train crossing example. Note thatin the train crossing example,

there is no discrete variables, nor state invariants. The initial states of the parallel composition is

described by the following constraint fact:

p(0,0,0,C,D,E) :- C≥ 0,C = D = E.

Since the initial locations have no location invariant, theclock valuations need only satisfy that

they belong toR+. The clock variables must have the same value, since they can only by incre-

mented (by a delay transition) by the same amount of time.

The CLP program clauses modeling internal transitions are the followings:

p(2,P2,P3,C+Delta,D+Delta,E+Delta) :-

p(1,P2,P3,C,D,E),C > 2,Delta≥ 0.

p(3,P2,P3,C+Delta,D+Delta,E+Delta) :-

p(2,P2,P3,C,D,E),Delta≥ 0.

p(P1,P2,2,C+Delta,D+Delta,E+Delta) :-

p(P1,P2,1,C,D,E),D < 1,Delta≥ 0.

p(P1,P2,0,C+Delta,D+Delta,E+Delta) :-

p(P1,P2,3,C,D,E),D > 1,D < 2,Delta≥ 0.

Note thatP1,P2 andP3 are variables representing the locations of the train, controller and gate,

respectively. Also, all clocks in the above transitions areincremented by the same nonnegative

Delta.

75

The CLP program clauses modeling synchronization transitions are the followings:

p(1,1,P3,Delta,D+Delta,Delta) :-

p(0,0,P3,C,D,E),Delta≥ 0.

p(0,3,P3,C+Delta,D+Delta,Delta) :-

p(3,2,P3,C,D,E),C < 5,Delta≥ 0.

p(P1,2,1,C+Delta,Delta,E +Delta) :-

p(P1,1,0,C,D,E),E = 1,Delta≥ 0.

p(P1,0,3,C+Delta,Delta,E +Delta) :-

p(P1,3,2,C,D,E),E < 1,Delta≥ 0.

The possible transitions of the train crossing can actuallybe represented graphically as in

Figure 3.3. Notice that each arrow is a specialization of oneof the CLP clauses above.

3.6.4 More Examples

As we have already noted above, we do not restrict the clock constraints on locations and transi-

tion guards to be of certain form. CLP modeling of timed automata is even more flexible: it can

be used to model timed automaton not according to the standard definition given above.

Example 3.6. (Worker TSA) Consider a timed automaton in Figure 3.4 describing a daily

schedule of a worker. The worker starts from home each day, staying in office for at most 10

hours, during which some of the time is spent in the cafe. The worker may visit the cafe a

number of times, and we want to record the total amount of timehe spends in the cafe. For

this purpose we introduce the variableY which is not a clock, but represents a real number

variable. In a transition, a non-clock variable is never incremented uniformly, as with the clock

variables. Notice that in Figure 3.4, we freely assign the clock valuesX andZ to the variableY,

and use the variable together with a clock variableX in a transition guard. This is not allowed

in our formalization of TSA given above. We provide the CLP model of the timed automata as

Program 3.22.

Existing timed automata analysis tools are limited in theirexpressiveness due to the model

checking algorithm used. This is because the standard algorithms for analysis of timed automata

depend on an analysis of clock regions [14], which use a more restrictive class of real constraints.

Not only we can enlarge the class of allowed specifications, we can actually automatically verify

76

Home CafeOffice
Z < 2Y < 4,Z:=0

Y:=Y+Z

X−Y ≤ 10

X−Y > 8,Y:=X

Y:=0

X:=0,Y:=0

Figure 3.4: Worker Timed Automaton

p(0,X,Y,Z) :- X ≥ 0,X = Z,Y = 0.
p(1,X′,Y′,Z′) :- Delta≥ 0,X′ = Delta,Z′ = Z+Delta,

Y′ = 0,X′−Y ≤ 10, p(0, ,Y,Z).
p(2,X′,Y′,Z′) :- Delta≥ 0,X′ = X +Delta,Y′ = Y,Z′ = Delta,

Y < 4,X−Y ≤ 10,Z′ < 2, p(1,X,Y,).
p(1,X′,Y′,Z′) :- Delta≥ 0,X′ = X +Delta,Y′ = Y+Z,Z′ = Z+Delta,

Z < 2,X′−Y′ ≤ 10, p(2,X,Y,Z).
p(0,X′,Y′,Z′) :- Delta≥ 0,X′ = X +Delta,Y′ = X,Z′ = Z+Delta,

8 < X−Y,X−Y ≤ 10, p(1,X,Y,Z).

Program 3.22: Worker CLP Model

the example, which we will demonstrate in later chapters.

Example 3.7. (Fischer’s Algorithm TSA)For this experiment we used the standard Fischer’s

algorithm; see Figure 3.5 wherei ranges over the number of processes. Location 3 is the critical

section of each process.

The working of the TSA can be explained informally as follows. There is a maximum delay

2 time units for the process to stay at location 1, and there isa minimum delay 4 time units for a

process to stay at location 2. Suppose that there are two processes that are to enter their critical

sections (location 3). Both processes must have taken at most 2 time units at location 1 and set

K to its own process id. Since both processes also wait at location 2 for more than 4 time units,

both processes must have finished their attempt to setK to its own process id. At state 2, both

processes thus can judge correctly based on the value ofK whether to enter its critical section

(location 3) or not (back to location 0).

We show the backward CLP model of two-automata Fischer’s algorithm TSA as Program

3.23.

Example 3.8. (Bridge Crossing Problem)Here we consider a modification of the bridge

crossing problem from UPPAAL 3.4.6 package. The system consists of 2 kinds of automata:

a controller (Figure 3.6) and a number of trains (Figure 3.7). WhenN is the number of trains, our

77

K := 0

K = 0

Xi ≥ 4
K 6= i

0

3 2

1
Xi := 0

K = i

Xi := 0
K := i
Xi ≤ 2

Xi ≥ 4

Figure 3.5: Fischer’s Algorithm TSA for Processi

p(0,0,X1,X2,K) :- K = 0,Z ≥ 0,X1 = Z,X2 = Z.
p(1,L2,Z,X2 +Z,K) :- p(0,L2,X1,X2,K),K = 0,Z ≥ 0.
p(2,L2,Z,X2 +Z,K) :- p(1,L2,X1,X2,K′),K = 1,X1 ≤ 2,Z ≥ 0.
p(3,L2,X1 +Z,X2 +Z,K) :- p(2,L2,X1,X2,K),K = 1,X1 ≥ 4.
p(0,L2,X1 +Z,X2 +Z,K) :- p(3,L2,X1,X2,K′),K = 0,Z ≥ 0.
p(0,L2,X1 +Z,X2 +Z,K) :- p(2,L2,X1,X2,K),K 6= 1,X1 ≥ 4,Z ≥ 0.
p(L1,1,X1 +Z,Z,K) :- p(L1,0,X1,X2,K),K = 0,Z ≥ 0.
p(L1,2,X1 +Z,Z,K) :- p(L1,1,X1,X2,K′),K = 2,X2 ≤ 2,Z ≥ 0.
p(L1,3,X1 +Z,X2 +Z,K) :- p(L1,2,X1,X2,K),K = 2,X2 ≥ 4,Z ≥ 0.
p(L1,0,X1 +Z,X2 +Z,K) :- p(L1,3,X1,X2,K′),K = 0,Z ≥ 0.
p(L1,0,X1 +Z,X2 +Z,K) :- p(L1,2,X1,X2,K),K 6= 2,X2 ≥ 4,Z ≥ 0.

Program 3.23: Two-Process Fischer’s Algorithm TSA Backward CLP Model

modeling uses 2N+1 variables, whereX1, . . . ,XN are clocks for each train, the nextN variables

Pos0, . . . ,PosN represent the positions of each train in a global queue, and the last variableLen

denotes the number of trains in the queue.

The original UPPAAL model containscommitted locations, which are locations where no time

progress is allowed. In our modeling, we translate the sequence of transitions that visit committed

locations between both endpoints into single transition. This does not change the semantics since

committed locations are not part of UPPAAL state space [13]. Also, in the original model, trains

that are to enter the crossing are kept in a queue. Instead of implementing the queue, as mentioned

above, we use the variablesPosi to model the position of each traini in the queue. Our modeling

allows for simple modeling of symmetry property later (Section 4.5.2).

We show the CLP model of two-trains bridge crossing problem TSA as Program 3.24.

Example 3.9. (Dining Philosophers with Timeout)Here we verify a real-time solution to the

dining philosophers problem whose automaton is shown in Figure 3.8. We assume there areN

philosophers, whereN ≥ 3. Each philosopher can be in any of 3 states:thinking (at location

0), hungry (at location 1), andeating (at location 2). Location 0 is the initial state of every

78

PosE := N+1

0

1

2

Len= 02≤ Len≤ N
PosE′ = 2

leave?

PosE = 1

Posi ≤ N →

Posi = N+1→

(∀i 6= E, i 6= E′ :

skip)

Posi := Posi −1,

Len:= Len+1
PosE := N+1
PosE′ := 1

E := E′

go!

Len:= 0

1≤ Len< N
Len:= Len+1
PosE := Len+1
stop!

appr?

appr?
PosE := 1
Len:= 1

leave?
Len= 1

Figure 3.6: Bridge Crossing Controller TSA

stop?

Xi ≤ 10
E = i

Xi := 0

Xi := 0

E := i
Xi ≥ 3
leave!

Xi := 0
Xi ≥ 10

Xi := 0
Xi ≥ 7

0

1

2

Xi ≤ 20 4

3

Xi := 0

Xi ≤ 5

Xi ≤ 15

go?
E = i

Xi := 0

appr!
E := i

Figure 3.7: Bridge Crossing Train TSA

philosopher. The location may change from 0 to 1 when philosopher i picks a forki, denoted

by changing the value of variableFi from 0 to 1 (there areN forks in the system, modeled as

variablesF1 to FN). Its location changes from 1 to 2 when philosopheri picks the forkFnext(i),

wherenext(i) = (i mod N)+1. From location 2, a philosopher may return to location 0 by setting

bothFi andFnext(i) to 0. To avoid deadlock, a philosopher may return to location0 from location

1 if it cannot continue to location 2 in less than 2 time units.We show the CLP model for three

dining philosophers as Program 3.25.

79

p(0,0,0,X1,X2,Pos1,Pos2,Len) :- Z ≥ 0,X1 = Z,X2 = Z,Pos1 = 3,Pos2 = 3.
p(1,L1,L2,X1 +Z,X2 +Z,Pos1,Pos2,0) :- p(0,L1,L2,X1,X2,Pos1,Pos2,Len).
p(1,0,L2,Z,X2 +Z,3,3,0) :- p(2,2,L2,X1,X2,1,3,1),

X1 ≥ 3,X1 ≤ 5,Z ≥ 0.
p(1,L1,0,X1 +Z,Z,3,3,0) :- p(2,L1,2,X1,X2,3,1,1),

X2 ≥ 3,X2 ≤ 5,Z ≥ 0.
p(2,0,4,Z,Z,3,1,1) :- p(2,2,3,X1,X2,1,2,2),

X1 ≥ 3,X1 ≤ 5,X2 ≤ 15,Z ≥ 0.
p(2,4,0,Z,Z,1,3,1) :- p(2,3,2,X1,X2,2,1,2),

X2 ≥ 3,X2 ≤ 5,X1 ≤ 15,Z ≥ 0.
p(2,3,L2,Z,X2 +Z,Len+1,Pos2,Len+1) :- p(2,0,L2,X1,X2,3,Pos2,Len),

Len≥ 0,Len≤ 1,Z ≥ 0.
p(2,L1,3,X1 +Z,Z,Pos1,Len+1,Len+1) :- p(2,L1,0,X1,X2,Pos1,3,Len),

Len≥ 0,Len≤ 1,Z ≥ 0.
p(2,1,L2,Z,X2 +Z,1,Pos2,1) :- p(1,0,L2,X1,X2,3,Pos2,0),

Z ≤ 20,Z ≥ 0.
p(2,L1,1,X1 +Z,Z,Pos1,1,1) :- p(1,L1,0,X1,X2,Pos1,3,0),

Z ≤ 20,Z ≥ 0.
p(L0,2,L2,Z,X2 +Z,Pos1,Pos2,Len) :- p(L0,1,L2,X1,X2,Pos1,Pos2,Len),

X1 ≤ 20,X1 ≥ 10,Z ≤ 5,Z ≥ 0.
p(L0,L1,2,X1 +Z,Z,Pos1,Pos2,Len) :- p(L0,L1,1,X1,X2,Pos1,Pos2,Len),

X2 ≤ 20,X2 ≥ 10,Z ≤ 5,Z ≥ 0.
p(L0,2,L2,Z,X2 +Z,Pos1,Pos2,Len) :- p(L0,4,L2,X1,X2,Pos1,Pos2,Len),

X1 ≤ 7,X1 ≥ 15,Z ≤ 5,Z ≥ 0.
p(L0,L1,2,X1 +Z,Z,Pos1,Pos2,Len) :- p(L0,L1,4,X1,X2,Pos1,Pos2,Len),

X2 ≤ 7,X2 ≥ 15,Z ≤ 5,Z ≥ 0.

Program 3.24: Two-Trains Bridge Crossing Backward CLP Model

3.7 Statecharts

Statechart is a popular modeling language, which is part of UML. It was originally introduced

by Harel [88], as a variant ofhypergraph[89]. In this section we show how wecompositionally

model in CLP a Statechart train crossing example in [12], which specification is given in Figure

3.9. Our exposition here will be rather informal.

Overview of various semantics of Statechart is given by von der Beeck [195] but excluding

STATEMATE semantics. STATEMATE semantics is described by Harel and Naamad [92, 91], and

Harel and Politi [93]. Some comparisons of Statemate and UMLsemantics of statechart have also

been provided by Eshuis et al. [63]. With respect to compositionality, the same also discussed by

Simons [181]. Bhaduri and Ramesh provide a survey on variousapproaches to model checking

of Statechart [16].

Among the compositional approaches to Statechart verification, Alur and Yannakakis’ ap-

proach is based on identification of repeating superstate templates [3], while Damm et al.’s is

80

Fnext(i) := 0
Fi := 0

Fnext(i) := 1
Fnext(i) = 0

Xi ≥ 2
Fi := 0

Xi := 0
Fi := 1

Fi = 0

Xi < 2
12

0

Figure 3.8: Real-Time Dining Philosophers

p(0,0,0,0,0,0,Z,Z,Z) :- Z ≥ 0.
p(1,L2,L3,1,F2,F3,Z,X2 +Z,X3 +Z) :- p(0,L2,L3,0,F2,F3,X1,X2,X3),Z ≥ 0.
p(2,L2,L3,F1,1,F3,X1 +Z,X2 +Z,X3 +Z) :- p(1,L2,L3,F1,0,F3,X1,X2,X3),X1 < 2,Z ≥ 0.
p(0,L2,L3,0,0,F3,X1 +Z,X2 +Z,X3 +Z) :- p(2,L2,L3,F1,F2,F3,X1,X2,X3),Z ≥ 0.
p(0,L2,L3,0,F2,F3,X1 +Z,X2 +Z,X3 +Z) :- p(1,L2,L3,F1,F2,F3,X1,X2,X3),X1 ≥ 2,Z ≥ 0.
p(L1,1,L3,F1,1,F3,X1 +Z,Z,X3 +Z) :- p(L1,0,L3,F1,0,F3,X1,X2,X3),Z ≥ 0.
p(L1,2,L3,F1,F2,1,X1 +Z,X2 +Z,X3 +Z) :- p(L1,1,L3,F1,F2,0,X1,X2,X3),X2 < 2,Z ≥ 0.
p(L1,0,L3,F1,0,0,X1 +Z,X2 +Z,X3 +Z) :- p(L1,2,L3,F1,F2,F3,X1,X2,X3),Z ≥ 0.
p(L1,0,L3,F1,0,F3,X1 +Z,X2 +Z,X3 +Z) :- p(L1,1,L3,F1,F2,F3,X1,X2,X3),X2 ≥ 2,Z ≥ 0.
p(L1,L2,1,F1,F2,1,X1 +Z,X2 +Z,Z) :- p(L1,L2,0,F1,F2,0,X1,X2,X3),Z ≥ 0.
p(L1,L2,2,1,F2,F3,X1 +Z,X2 +Z,X3 +Z) :- p(L1,L2,1,0,F2,F3,X1,X2,X3),X3 < 2,Z ≥ 0.
p(L1,L2,0,0,F2,0,X1 +Z,X2 +Z,X3 +Z) :- p(L1,L2,2,F1,F2,F3,X1,X2,X3),Z ≥ 0.
p(L1,L2,0,F1,F2,0,X1 +Z,X2 +Z,X3 +Z) :- p(L1,L2,1,F1,F2,F3,X1,X2,X3),X3 ≥ 2,Z ≥ 0.

Program 3.25: Three-Process Real-Time Dining Philosophers CLP Model

based on interface computation and abstraction (over-approximation) by the underlying model

checker [39, 17, 18], and Behrmann et al.’s approach is basedon under-approximation [12].

Some works provide compositional semantics of Statecharts, such as [44, 194, 79, 131].

In our discussion on TSA above we have introduced the notion of locations. In Statechart

argot, a location is called astate. However, to avoid confusion, we shall use the term “location”

instead of “state.” A Statechart specification often only has locations, although it is conceptually

easy to introduce variables and their guards similar to clocks and guards of TSA. For example,

the work of David et al. is on translating models in a Statechart variant calledTimed Hierarchical

Automata, which may be augmented with clocks, into timed (safety) automaton [42]. Similarly,

Eshuis et al. also allows augmentation of statecharts with real-number clock variables [63].

An important feature of a Statechart specification is that itis hierarchical, in which a location

may contain one or more parallel Statecharts. For example, in Figure 3.9, the top-level location

Root contains the parallel statechartsTrain andCrossing, while the locationMove contains one

statechart, which is also namedMove. We call a location containing more than one parallel

81

goright

goleft

Move

up

Train Crossing

Root

down

Left Right

in(Closed)
go

Stop

Open

Closed

up

Figure 3.9: Train Crossing Statechart

statecharts as anAND location, while we call a location containing one statechart as anOR

location. Hence, the top-level locationRoot is an AND location, while the locationMove is an

OR location. We call a location not containing other statecharts asprimitive location. In Figure

3.9,Stop, Left, Right, Open, andClose are all primitive locations.

As is a TSA, a statechart is also a state transition system. The state of a statechart is called

a configuration[92]. A configuration specifies the current active location of each statechart in a

specification.

A statechart specifies aninitial configurationand transitions from a configuration to another

by the triggering of an event. Here we assume that events are generated by the environment.

The events in Figure 3.9 aregoright, goleft, go, up, anddown. Common Statechart variants allow

events to be generated by the transitions themselves6

We represent a configuration as a term of the syntaxs(Name,SubconfigurationList), where

Nameis the name of the location, andSubconfigurationList is the list of configurations of the

parallel sub-statecharts included in the locationName. At any time, the configuration of a primi-

tive location has an empty subconfiguration list, those for an OR state has only one element in its

subconfiguration list, while the configuration of an AND state has more than one. For example,

the initial configuration of the statechart in Figure 3.9 is

s(root, [s(train, [s(stop, [])]),s(crossing, [s(closed, [])])]).

The subconfiguration list is dynamically changing, depending on the currently active locations.

We show as Program 3.26 our backward CLP model of the statechart in Figure 3.9. We

model the events using numbers, wheregoright=0, goleft=1, go=2, up=3, anddown=4. No-

tice that we separate individual statecharts into different predicate. The predicatesrootinitand

6This rises the issues ofstepversussuperstepsemantics. The former only executes all the transitions at the
occurrence of an event, while the latter also executes subsequently generated internal events until stable state is
reached. We are allowed to ignore this issue here.

82

roottransencode the initial configuration and the transitions of the StatechartRoot. Similarly

with traininitand traintranswhich encode the initial configuration and transitions of the Stat-

echartTrain, and so on. The arguments of thetrans predicate of each statecharts (roottrans,

traintrans, crossingtrans, andmovetrans) require some explanation. Among the arguments, the

second holds the current event, while the third and fourth hold the configuration before and after

the transition of the statechart, respectively. The first argument holds the topmost configuration

before the transition, which in this example is the configuration of Root. This is because there

can be guards such asin(Closed) which requires us to refer to the topmost configuration (which

always include other configurations) to check for transition enabledness.

The configuration space of the train crossing example is given by the interpretation of thep

predicate in the least model of Program 3.26.

In modeling, we had been ignoring the issue of transition priority. Here, an event may

both trigger a transition in the higher and lower level of hierarchy. Statemate semantics pri-

oritizes higher-level transitions [92, 91, 93], while UML semantics prioritizes lower-level tran-

sitions [150]. Although we could have adopted any of them, wehave opted not to for the sake

of cleaner modeling. The modeling is also flexible enough to be extended with “history states”

found in some Statechart models.

Since a statechart is hierarchical, it is only natural to independently verify statecharts of

different hierarchy, or of different parallel components.Thus an important requirement of a Stat-

echart verification system is itscompositionality. Some approaches to statechart verification have

some kind of compositionality [38, 39, 3, 17, 18, 12, 129, 177]. Those that are not compositional

are based on translating the top-level statechart into a flatstate transition system based on a given

semantics (e.g., Statemate or UML), for example [78, 142, 123, 42, 128, 126, 163, 63]. As can be

seen in Program 3.26, our modeling is obviously compositional, where each statechart is given

separate predicate. Reasoning independently about a subchart can be done by adding a predicate

which initial configuration is defined by theinit predicate, and the transitions are defined by the

transpredicate corresponding to the subchart. For example, for independently reasoning on the

Move subchart, we add the predicateq as follows:

q(C) :- moveinit(C).

q(C′) :- movetrans(,0,C,C′),q(C).

q(C′) :- movetrans(,1,C,C′),q(C).

83

p(C′) :- roottrans(C,0,C,C′), p(C).
p(C′) :- roottrans(C,1,C,C′), p(C).
p(C′) :- roottrans(C,2,C,C′), p(C).
p(C′) :- roottrans(C,3,C,C′), p(C).
p(C′) :- roottrans(C,4,C,C′), p(C).
p(C) :- rootinit(C).

rootinit(s(root, [s(train, [C1]),s(crossing, [C2])])) :-
traininit (C1),crossinginit(C2).

roottrans(C,E,s(root, [s(train, [C1]),s(crossing, [C2])]),
s(root, [s(train, [C′

1]),s(crossing, [C′
2])])) :-

traintrans(C,E,C1,C′
1),crossingtrans(C,E,C2,C′

2).

traininit(s(stop, [])).
traintrans(C,2,s(stop, []),s(move, [C′

1])) :-
moveinit(C′

1), in(C,s(closed,)).
traintrans(C,3,s(move,),s(stop, [])).
traintrans(C,E,s(move, [C1]),s(move, [C′

1])) :-
movetrans(C,E,C1,C′

1).

crossinginit(s(open, [])).
crossingtrans(C,3,s(closed, []),s(open, [])).
crossingtrans(C,4,s(open, []),s(closed, [])).
crossingtrans(C,E,C1,C1) :- E ≤ 2.

moveinit(s(left, [])).
movetrans(C,0,s(left, []),s(right, [])).
movetrans(C,1,s(right, []),s(left, [])).
movetrans(C,E,C1,C1) :- E ≥ 2.

Program 3.26: Train Crossing CLP Model

The set of reachable configurations of the subchartMove is now given by the interpretation ofq

in the least model.

Full compositional verification with Statecharts, howeveris not easy. Compositionality fa-

vors Statemate semantics instead of UML semantics, since with Statemate semantics, the reach-

ability higher in hierarchy cannot be canceled by the behavior of a subchart [181]. There are

also other issues such as transition guards which may refer to location of arbitrary subcharts.

This makes us unable to translate the reachability questionof a parallel component into a global

setting.

84

Chapter 4

Correctness Specifications

To reason about constraint logic programs, we need a way of specifying properties that we want

to prove on them. This chapter is devoted into introducing assertions for this purpose.

4.1 Assertions

We use assertions of the syntax

G |= H,

where bothG andH are goals possibly containing CLP program predicates.G andH may refer

to a set of common variables, sayX̃. We denote bỹY the variables that only occur inG, and by

Z̃ the variables that only occur inH. The above assertion has the following logical semantics:

〈∀X̃,Ỹ : G⇒ 〈∃Z̃ : H〉〉.

For clarity, in an assertionG |= H, the variables iñZ will be prefixed with “?”1.

The properties that we can specify using assertions belong to the safety class. In the remain-

der of this chapter we demonstrate how we may specify an extensive class of safety properties,

not only simple invariance property, but also invariance onpointer data structures, and evenstruc-

tural or non-behavioralproperties, such as symmetry of programs. In the next section we first

start with invariance, which we call traditional safety.

1We attribute this notational convention to Fribourg [74].

85

4.2 Traditional Safety

The notion of invariance is well-known in the literature, e.g. in [144]. It states the condition

(constraint) that all states of a program must satisfy. In stating traditional safety,H contains no

CLP program predicate. Here we proceed by example.

Example 4.1. When the interpretation ofp is given by Program 3.2, the following assertion

states that at the end of execution of Program 3.1, the relations= (n2−n) holds:

p(Ω,X,S,N) |= S= (N2−N)/2.

Example 4.2. An obvious property that we would like to verify on the bakeryalgorithm (Pro-

gram 3.14) is that it guarantees mutual exclusion, the property which can be represented using

the assertion

p(2,2,X,Y) |= 2,

wherep is interpreted in the least model of Program 3.15. The above assertion states that it is

impossible for the both processes to be in their critical section (program point〈2〉) at the same

time. More technically, none ofp(L1,L2,X,Y) whereL1 = 2 andL2 = 2 is included in the

interpretation ofp in Program 3.15. Alternatively, to specify the same property, one can also

write

p(L1,L2,X,Y) |= L1 6= 2∨L2 6= 2.

Example 4.3. When the interpretation ofp is given by Program 3.17, the following assertion

states that at any state of Program 3.16, the relationx≤ 3y always holds:

p(L1,L2,Q,X,Y) |= X ≤ 3Y.

86

Example 4.4. In Program 3.18, whenn≤ 3, both processes never access the same array loca-

tion. That is, at the end of the execution we can guarantee that a[i] = fib(i), wherefib(i) denotes

i-th Fibonacci number. This property can be represented by the assertion

p(Ω,Ω,T1,T2,A,X,Y,N),N ≤ 3 |= A[N] = fib(N),

interpreted on Program 3.19. Forn > 3, computinga[i] could precede computing ofa[i −1] for

somei, that is, the correctness of Program 3.18 is not guaranteed incasen > 3.

Example 4.5. To state that the execution time bound of Program 3.20 is 30 time units, we use

the assertion

p(0,A,K,J,T,Tf) |= Tf −T ≤ 30,

whose predicatep is interpreted by the CLP Program 3.21.

Example 4.6. To specify on TSA in Figure 3.4 that the worker is never more than 20 hours

outside the house on his work day, we use the assertion

p(0,X,Y,Z) |= Y ≤ 20,

whose predicatep is interpreted using the CLP Program 3.22.

Example 4.7. On the statechart of Figure 3.9, a property “the train is not in the state move

while the crossing in the state open” can be specified using the assertion

p(C), in(C,s(move,)), in(C,s(open,)) |= 2,

wherep is interpreted in the least model of CLP Program 3.26.

4.3 Array Safety

We now start with an example to show how we may specify traditional safety properties which are

constructed using CLP predicates. Here we use an assertion to state the correctness property of

the bubble sort algorithm (Program 3.5) given in Section 3.1.5. A suitable correctness condition

would be that at the end of the execution of the program, the array is sorted. To state this property,

87

sorted(A, I ,N) :- I = N−1.
sorted(A, I ,N) :- I < N−1,A[I] ≤ A[I +1],sorted(A, I +1,N).

Program 4.1: Sorted

allz(H,X,X) :- H[X] = 0,X 6= 0.
allz(H,X,Y) :- allz(H,X,T),H[Y] = 0,H[T +1] = Y,Y 6= 0.

Program 4.2: Nonempty All-Zero Linked List I

we first need to define what we mean by a sorted array. This we define as the CLP Program 4.1.

sorted(a, i,n) holds for any valuea, i, andn if and only if a is an array, where its elements with

indices fromi to n are sorted.

The correctness of Program 3.5 now can be stated as the assertion

p(0,A, I ,J,N,Af ,Nf), I = 0 |= sorted(Af ,0,Nf). (4.1)

4.4 Recursive Data Structures

CLP programs can be used, not only for providing semantics toprograms, but also to specify re-

cursive data structures properties. This is an extension tothe correctness specification of program

with array in the previous section. Here we view the heap as anarray and specify the correctness

of the heap using CLP predicates.

Recall the example programs in Section 3.1.6 which manipulate the heap. Let us discuss

Program 3.7 which resets the elements of a list to 0. The correctness statement that we may want

to ensure here is that at the end of the execution of the program, the elements of the list has their

values set to 0. In order to state this property, we need a definition of a linked list whose elements

are all 0. Here we show how we may construct one.

Using the modeling of program heap using arrayH as in Section 3.1.6, we may define recur-

sive data structures using CLP programs. We can model a nonempty linked list whose all of its

elements have the value 0 using Program 4.2. The least model of the program is represented by

88

the following set:

{allz(h,x,y) | x 6= 0∧h[x] = 0∧

h[x+1] 6= 0∧h[h[x+1]] = 0∧

h[h[x+1]+1] 6= 0∧h[h[h[x+1]+1]] = 0∧

. . .

h[. . .h[x+1] . . .] 6= 0∧h[h[. . .h[x+1] . . .]] = 0∧

y = h[. . .h[x+1] . . .]}.

That is, in the least model, the first argument ofallz can only be a heap containing a linked list

with all zero elements starting from the pointerx up to the pointery.

The correctness statement of Program 3.7 can now be specifiedas:

p(0,H,P,H f ,Pf),P 6= 0 |= allz(H f ,P,?Last),H[?Last+1] = Pf ,Pf = 0.

That is, if we start the execution of Program 3.7, with input anon-empty list, then at the end of

execution we will obtain a non-empty list with all of its elements reset to 0, and thenextmember

of the last element is 0 (null). Note here that the variableLast only appears at the lhs of the

assertion and is existentially quantified.

Although our specification looks good enough at first, we may need a more precise specifi-

cation in order to prove stronger property later. Program 4.2, for example, does not specify more

precisely how such linked list with all zero elements are constructed. Using array update expres-

sions, we may specify that the linked list is constructed from an original heap, already containing

a linked list, by assigning all elements of the original linked list to 0. We show the CLP program

as Program 4.3. Theallz predicate now has an extra last argument which is a placeholder of the

updated heap.

Notice that Program 4.3 “traverses” the list from the head tothe last element. We can also

define a reverse of this, which traverses the list from the last element to the head of the list, as

shown as Program 4.4.

Using either Program 4.3 or 4.4, we can re-state the correctness property of the linked list

reset program more precisely as:

p(0,H,P,H f ,Pf),P 6= 0 |= allz(H,P,?Last,H f),H[?Last+1] = Pf ,Pf = 0. (4.2)

89

allz(H,X,X,〈H,X,0〉) :- X 6= 0.
allz(H,X,Y,〈H1,X,0〉) :- allz(H,T,Y,H1),H[X +1] = T,X 6= 0.

Program 4.3: Nonempty All-Zero Linked List II

allz(H,X,X,〈H,X,0〉) :- X 6= 0.
allz(H,X,Y,〈H1,Y,0〉) :- allz(H,X,T,H1),H[T +1] = Y,X 6= 0.

Program 4.4: Nonempty All-Zero Linked List III

Now we discuss another example: A linked list reverse program originally appeared in [166],

which is Program 4.5. The forward CLP model is Program 4.6. (Note that we perform simplifi-

cation by removing the CLP representation of the variablek, which only appears locally in the

sequence of assignments in the loop body.)

The correctness statement for this program is that at the endof execution, we obtain a list

which is a reverse of the original. For this purpose, we need to specify using a CLP program,

what it means for two linked lists to be a reverse of each other. First note that what we roughly

mean as reverse here is that wheneverx→nextpoints toy in the first linked list,y→nextpoints

to x in the second linked list. Our first attempt at modeling this in CLP is Program 4.7. Our

informal interpretation ofreversehere is thatreverse(h, i, j ,h1, i1) holds when in heaph, a linked

list segment fromi up to but not includingj has a 0-terminating reverse in another heaph1,

starting from the addressi1, where inh, i1 → next= j (i1 is the address of the node immediately

pointing to j in the original list).

Program 4.7, however, does not specify that the two heapsh andh1 are related. Hence, it

says nothing on whether the data values are preserved or not.Instead, we may want to specify a

stronger property that the second heap is an update of the first heap (without changing the data

values), for which we can use a second version ofreversegiven as Program 4.8.

For this problem we want to prove, that given an acyclic list with headI , when the program

finishes, we obtain an acyclic list with headJ, which is the reverse of the original list. We express

this property as the following assertion:

p(0,H, I ,J,H f ,Jf),alist(H, I),J = 0 |= reverse(H, I ,0,H f ,Jf),alist(H f ,Jf). (4.3)

In the assertion, we use the predicatealist (Program 4.9) to specify that the program is given

90

Initially i 6= 0, j = 0.
〈0〉 while (i 6= 0) do
〈1〉 k := i→next

i→next := j
j := i
i := k

end do

Program 4.5: Linked List Reverse

p(0,H, I ,J,H f ,Jf) :- p(1,H, I ,J,H f ,Jf), I 6= 0.
p(0,H, I ,J,H f ,Jf) :- p(Ω,H, I ,J,H f ,Jf), I = 0.
p(1,H, I ,J,H f ,Jf) :- p(0,〈H, I +1,J〉,H[I +1], I ,H f ,Jf).
p(Ω,H, I ,J,H,J).

Program 4.6: Linked List Reverse CLP Model

input a null-terminating acyclic linked list. Note thatalist definition includes a call tono reach

(Program 4.10).No reach(h,x,y) states that the heaph contains a null-terminating linked list

which starts from addressy, without any node stored at addressx. The inclusion ofno reachwill

be important for the proof of the assertion which is to be given in Chapter 5. We have previously

provided another definition ofno reachin Chapter 3 (Program 3.11) to specify that a pointer is

not shared by a binary tree instead of linked list.

Note that because of the definition ofreverseused (Program 4.8), the assertion (4.3) also

implies

1. an “in-situ” property of the list reversal, where the memory region occupied by the list is

unchanged,

2. that whenever nodeA points toB in the input, andB is not 0, nodeB points to nodeA in

the output, and

3. that the program leaves unchanged memory regions outsidethe input list.

Both no. 1 and 2 above are guaranteed by the fact that Program 4.8 specifies that updates are

done only on the memory region occupied by the list and nowhere else.

Now let us revisit our binary search tree insertion program given in Section 3.1.6 (Program

3.9 and its CLP model Program 3.10). We may want to prove that,given a binary search tree,

and a value as an input, at the end of the execution of the routine, we obtain a binary search tree

where the value to be inserted initially is included. To express this, we design a predicatebst,

91

reverse(H, I , I ,H1,0).
reverse(H, I ,Y,H1,T) :- H[T +1] = Y,H1[T +1] = J, reverse(H, I ,T,H1,J).

Program 4.7: First Version ofReverse/5

reverse(H, I , I ,H,0).
reverse(H, I ,Y,〈H1,T +1,J〉,T) :- H[T +1] = Y, reverse(H, I ,T,H1,J).

Program 4.8: Second Version ofReverse/5

wherebst(h,x,min,max) holds when in the heaph the pointerx is a root of a binary search tree

whose minimum value ismin and the maximum value ismax. Now, using the predicatebst we

write the correctness statement of our binary search tree routine as follows:

p(0,H,X,A,H f ,Xf),X0 = X,X 6= 0,bst(H,X0,Min,Max)

|= bst(H f ,X0,min(A,Min),max(A,Max)).
(4.4)

In the above,minandmaxare functions that return the minimum and maximum of two numbers,

respectively.

We define the predicatebst as Program 4.11. In the program, we also use the a call to

no reachsimilar to Program 4.9. Here we use our definition ofno reachfor binary tree which

is Program 4.12, copied here from Program 3.11 for convenience. Here,no reach(h,x,y) means

that the heaph contains a null-terminating binary tree which is rooted at addressy, without any

of its node stored at addressx. The definition ofbstcontains calls tono share(Program 4.13), a

predicate which is essential for the proof.

Next, using the example of Rugina [173], we introduce a re-balancing routine of an AVL tree

after node insertion, shown as Program 4.14. The routine is given an input an unbalanced subtree

rooted atx, where its left subtree is two deeper than its right subtree, and at its left child, the left

subtree is 1 deeper than its right subtree. As the output, we expect to obtain a balanced AVL tree.

A CLP model of the above program is the Program 4.15.

We define using CLP Program 4.16 the specification of a balanced AVL tree. Intuitively,

avltree(h,x,d) holds if and only ifh is heap containing an AVL tree rooted atx, and whose depth

92

alist(H,L) :- L = 0.
alist(H,L) :- L 6= 0,alist(H,H[L+1]),no reach(H,L,H[L+1]).

Program 4.9: Alist

no reach(H, I ,L) :- L = 0.
no reach(H, I ,L) :- L 6= 0, I 6= L,

no reach(H, I ,H[L+1]).

Program 4.10: No reachfor Linked Lists

is d. Now, the correctness of the AVL tree can be stated via the following assertion.

p(0,H,X,Y,Z,H f ,Yf),avltree(H,H[X +2],DL−2),

avltree(H,H[H[X +1]+1],DL−1),avltree(H,H[H[X +1]+2],DL−2),

no share(H,X,H[X +2],H[H[X +1]+1],H[H[X +2]+2])

|= avltree(H f ,Yf ,DL).

(4.5)

Here we include ano shareatom (defined as Program 4.13) directly in the assertion. Again, this

is important for the proof.

4.5 Relative Safety

Relative safety declares that whatever invariant propertyholds for a subset of reachable states of

the program also holds for another subset. More simply put, astate is reachable if another is.

Note that this does not mean that the two states share a computation path.

Relative safety can be used to specify structural properties of programs, such as symmetry.

Symmetry has been widely used as a state-space reduction technique in model checking, for

instance, in Murϕ [107] and SMC [183] among many others. Since symmetry induces an equiv-

alence relation between program states, efficiency in stateexploration can be achieved by only

checking the representatives of the equivalence classes. Symmetry reduction in our proof method

will be discussed in Section 5.6.

We briefly repeat our discussion in Chapter 1 that the conceptof relative safety more pow-

erful in handling symmetry than other approaches. The flexibility is gained from the fact that

relative safety assertions specify relations on the reachable states only, whereas other approaches

such as [183] requires the symmetry of the computation tree for the purpose of temporal logic

93

bst(H,X,H[X],H[X]) :- H[X +1] = 0,H[X +2] = 0.
bst(H,X,MinL,MaxR) :-

H[X +1] 6= 0,H[X] > MaxL,bst(H,H[X +1],MinL,MaxL),
H[X +2] 6= 0,H[X] < MinR,bst(H,H[X +2],MinR,MaxR),
no reach(H,X,H[X +1]),
no reach(H,X,H[X +2]),
no share(H,H[X +1],H[X +2]).

bst(H,X,MinL,H[X]) :-
H[X +1] 6= 0,H[X] > MaxL,bst(H,H[X +1],MinL,MaxL),
H[X +2] = 0,no reach(H,X,H[X +1]).

bst(H,X,H[X],MaxR) :-
H[X +1] = 0,no reach(H,X,H[X +2]),
H[X +2] 6= 0,H[X] < MinR,bst(H,H[X +2],MinR,MaxR).

Program 4.11: Bst

no reach(H, I ,L) :- L = 0.
no reach(H, I ,L) :- L 6= 0, I 6= L,

no reach(H, I ,H[L+1]),
no reach(H, I ,H[L+2]).

Program 4.12: No reachfor Binary Tree

verification, and hence more restrictive.

For simplicity here we restrict our discussion to backward model of programs in CLP, there-

fore we speak about reachable states (from the initial states), and not the set of states from which

the state of interest is reachable. For detailed discussionon this issue, we refer the reader to

Chapter 3. As we have discussed there, in this case the set of reachable states of a program is

represented by the interpretation in the least model, of a certain predicatep of the CLP program.

Given a CLP program defining a predicatep, relative safety says that a restrictionΨ2 on the

interpretation of the predicatep is in the least model if a restrictionΨ1 is, written:

p(X̃1),Ψ1 |= p(X̃2),Ψ2.

Without loss of generality, we assume that the variable sequencesX̃1 and X̃2 are disjoint, and

the constraintΨ1 only refers to variables iñX1, while the constraintΨ2 may refer to both the

variables inX̃1 andX̃2.

Other than symmetry, relative safety assertions can also beused to specify commutativity

and serializability, which we will exemplify in the next section. Symmetry, commutativity, and

94

no share(H,L1,L2) :- L1 = 0.
no share(H,L1,L2) :- L1 6= 0,

no reach(H,L1,L2),
no share(H,H[L1 +1],L2),
no share(H,H[L1 +2],L2).

Program 4.13: No sharefor Binary Tree

〈0〉 y := x→left
〈1〉 if (y→val = 1) then
〈2〉 x→val := 0
〈3〉 y→val := 0
〈4〉 z := y→right
〈5〉 y→right := x
〈6〉 x→left := z

end if

Program 4.14: AVL Tree Rebalancing Routine

serializability are examples of structural or non-behavioral properties, i.e., properties determined

by the structure of the program, and which are not necessarily related to the intended result of the

computation. Relative safety is potentially useful to specify many other useful non-behavioral

properties, possibly ad-hoc and application specific. The class of such properties is potentially

large. It is intuitively clear that such information can help in speeding up the proof process of

other properties, which we will demonstrate in later chapters.

Example 4.8. For example, suppose that we have a program whose variables are x1 andx2.

The semantics of the program is given by a CLP program which defines the predicatep in the

manner of Chapter 3. Now, the relative safety assertionp(X1,X2) |= p(Y1,Y2),X1 = Y2,X2 = Y1

(or more succinctly,p(X1,X2) |= p(X2,X1)) asserts that if the statex1 = µ1,x2 = µ2 is reachable,

then so isx1 = µ2,x2 = µ1, for all valuesµ1 andµ2. In other words, the observable values of the

two program variablesx1 andx2 commute.

Example 4.9. (Permutational Symmetry)As another example, let us re-visit the two-process

bakery algorithm (Program 3.14). Now consider a relative safety assertion, stating symmetry for

the program as follows:

p(L1,L2,X,Y) |= p(L2,L1,Y,X). (4.6)

95

p(0,H,X,Y,Z,H f ,Yf) :- p(1,H,X,H[X +1],Z,H f ,Yf).
p(1,H,X,Y,Z,H f ,Yf) :- H[Y] = 1, p(2,H,X,Y,Z,H f ,Yf).
p(2,H,X,Y,Z,H f ,Yf) :- p(3,〈H,X,0〉,X,Y,Z,H f ,Yf).
p(3,H,X,Y,Z,H f ,Yf) :- p(4,〈H,Y,0〉,X,Y,Z,H f ,Yf).
p(4,H,X,Y,Z,H f ,Yf) :- p(5,H,X,Y,H[Y+2],H f ,Yf).
p(5,H,X,Y,Z,H f ,Yf) :- p(6,〈H,Y+2,X〉,X,Y,Z,H f ,Yf).
p(6,H,X,Y,Z,H f ,Yf) :- p(Ω,〈H,X +1,Z〉,X,Y,Z,H f ,Yf).
p(Ω,H,X,Y,Z,H,Y).

Program 4.15: AVL Tree Rebalancing Routine CLP Model

avltree(H,0,0).
avltree(H,X,D1 +1) :-

H[X] = D1−D2,0≤ D1−D2,D1−D2 ≤ 1,
avltree(H,H[X +1],D1),avltree(H,H[X +2],D2).

avltree(H,X,D2 +1) :-
H[X] = D1−D2,D1−D2 = −1,
avltree(H,H[X +1],D1),avltree(H,H[X +2],D2).

Program 4.16: Avltree

We may also imagine a three-process bakery algorithm, for which the following two assertions

are sufficient specify to all of the possible symmetries on the reachable states:

p(L1,L2,L3,X,Y,Z) |= p(L2,L1,L3,Y,X,Z).

p(L1,L2,L3,X,Y,Z) |= p(L1,L3,L2,X,Z,Y).

The first assertion specifies the transposition of Process 1 and 2, while the second assertion

specifies those between Process 2 and 3. Other permutations are achievable by some composition

of the above 2 transpositions. This example shows how our relative safety assertion handles what

is known in the literature aspermutationalsymmetry, for example, as defined and used in [107].

4.5.1 Group-Theoretical Symmetry

Here we clarify that the symmetry properties as defined by relative safety assertions are indeed

the symmetry known in mathematics, for example, see [199].

Symmetry is a group of transformations that preserves the transformed object, that is, it

is anautomorphism. Automorphisms in geometrical objects include translation, reflection and

rotation. For example, let us have a look at a frieze shown in Figure 4.1. Let us assume that

the frieze extends to infinity. In this situation, one transformation that preserves the frieze is

96

l

a0 b2b1b0b−1 a−1 a1

Figure 4.1: Wall Frieze

translation of lengthl to the left (or right), and also translation of lengthnl to the left (or right),

wheren is a natural number or 0. Whenn = 0, the transformation is anidentity. Another

transformation that preserves the frieze is reflection on the axes that cut through the middle of a

unit pattern, indicated with the letterai in Figure 4.1, wherei is an integer or the line separating

two unit patterns, indicated withbi . The only rotation possible here is 360◦ rotation around any

point on the two-dimensional plane, which is just the identity. The transformation can also be

composed of several transformations, for example, reflection on axisa0 followed by translation

of lengthl to the right is also a transformation.

Any automorphism must be included in a group with the composition of automorphisms as

its operator [199]. Such a group is known as anautomorphism group. Given an object, we may

determine its set of all transformations that are automorphisms on it. The composition of multiple

transformations is also an automorphism. Moreover, a set ofall automorphisms on a given object

induces a groupΓ, with the following characteristics:

• The identity transformation belongs toΓ.

• If automorphismsbelongs toΓ, then so is its inverses−1.

• If sandt belong toΓ, then so does their composites· t.

Let us defineAutΓ(x,y) if and only if there exists an automorphisms∈ Γ such thatx is trans-

formed toy. It is easy to see that the relationAutΓ is an equivalence.

As in many other works on symmetry for verification, in this thesis we will be interested

with model-theoretic instead of geometric automorphisms.However, such automorphism also

has geometric consequences, hence researchers have been concerned with automorphisms on a

possibly infinite computation tree, for example in [183]. Our work differs from the rest where

we are only concerned about automorphisms that preserve (donot restrict or enlarge) the set of

reachable states. This is enough to obtain reduction in safety verification, while allowing us to

97

specify symmetry in more cases.

Our idea is to use a set of relative safety assertions to specify possible automorphisms on

reachable states, which then induces an equivalence relation on them. Here, a single relative

safety assertion in general only describes a partial mapping, while an automorphism is total. In

general we need a set of assertions to describe a total mapping, sayπ. Moreover, equivalence

between states is obtained by also proving a complete set of assertions which represent all the

mappings in an automorphism group. This would include inverses, whose proof is often straight-

forward. Suppose thatmap(G |= H) is the mapping represented by the relative safety assertion

G |= H. Now, as an example, the symmetry assertion (4.6) for the two-process bakery algorithm

characterizes an automorphism groupAut on the set of reachable states as follows:

• We include the obviousmap(p(L1,L2,X,Y) |= p(L1,L2,X,Y)) in Aut satisfying the exis-

tence of identity.

• By simple renaming{L1 7→ L2,L2 7→ L1,X 7→ Y,Y 7→ X} on assertion (4.6), the reverse

map(p(L2,L1,Y,X) |= p(L1,L2,X,Y)) is in Aut satisfying the existence of inverse.

• It is straightforward to show that ifmap(G1 |= G2) ∈ Aut andmap(G2 |= G3) ∈ Aut then

map(G1 |= G3) ∈ Aut.

Our proof method in Chapter 5 is designed to handle relative safety assertions as well, such that

we do not only specify and use for reduction, but also prove the relative safety assertions, in

contrast to earlier approaches to symmetry in verification.

4.5.2 More Examples of Program Symmetry

We now proceed with more examples to demonstrate the expressiveness of relative safety asser-

tions.

Example 4.10. (Symmetry in Bridge Crossing TSA)The symmetry definition that we used

for the Bridge Crossing Problem (Example 3.8 in Section 3.6.4), generalized toN train automata

is as follows:

p(L0,L1, . . . ,LN,X1, . . . ,XN,Pos1,PosN,Len) |=

p(L0,Lρ(1), . . . ,Lρ(N),Xρ(1), . . . ,Xρ(N),Posρ(1), . . . ,Posρ(N)),Len).

98

whereL0 is the location id of the controller, andL1, . . . ,LN are location ids of the trains. So

here the location id of the controller as well as the variableLen retains their value, while other

variables are permuted by some permutationρ. For instance, the symmetry definition for Bridge

Crossing Problem with two trains can be represented as follows:

p(L0,L1,L2,X1,X2,Pos1,Pos2,Len) |=

p(L0,L2,L1,X2,X1,Pos2,Pos1,Len).

Example 4.11. (Rotational Symmetry)Here we demonstraterotational symmetry in the so-

lution of N dining philosophers’ problem usingN− 1 tickets [25]. For simplicity, we assume

there areN = 3 philosophers having ids 1, 2, and 3, and there are three forks represented as

boolean variablesf1, f2, f3 which are forks used by philosophers 3 and 1, 1 and 2, and 2 and

3, respectively. Initially the ticket numbert = 2. The program code of Philosopher 1 is shown

as Program 4.17, and its CLP model as Program 4.18. A philosopher “eats” at program point

〈3〉, and “thinks” at program point〈0〉. For our purpose it is suffice to demonstrate the rotational

symmetry as the assertion:

p(L1,L2,L3,F1,F2,F3,T) |= p(L3,L1,L2,L3,L1,L2,T),

whereLi denotes the program point of philosopheri, Fi the value offi , andT is the number of

tickets left. The above assertion specifies one cyclic shiftto the right. Any cyclic shifts can be

represented by the composition of this cyclic shift.

For this example, arbitrary transposition does not result in automorphism. For example, the

program may be in the statel1 = 3, l2 = 0, l3 = 0, f1 = 1, f2 = 1, f3 = 0, t = 1 (that is, Philosopher 1

is eating while both philosophers 2 and 3 are thinking). Now,arbitrarily exchanging Philosopher

2 and 3, and forks 2 and 3 results in the statel1 = 3, l2 = 0, l3 = 0, f1 = 1, f2 = 0, f3 = 1, t = 1,

which specifies that Philosopher 1 is eating with 1 fork, while either Philosopher 2 or 3 is thinking

holding 1 fork. We know that this state is unreachable.

99

Initially t = 2 and fi = 0 for all i.
loop forever

〈0〉 await (t > 0) t := t −1
〈1〉 await (f1 = 0) f1 := 1
〈2〉 await (f2 = 0) f2 := 1

// eating
〈3〉 f1 := 0
〈4〉 f2 := 0
〈5〉 t := t +1

end loop

Program 4.17: Philosopher 1

p(0,0,0,0,0,0,2).

p(1,L2,L3,F1,F2,F3,T −1) :- p(0,L2,L3,F1,F2,F3,T),T > 0.
p(2,L2,L3,1,F2,F3,T) :- p(1,L2,L3,0,F2,F3,T).
p(3,L2,L3,F1,1,F3,T) :- p(2,L2,L3,F1,0,F3,T).
p(4,L2,L3,0,F2,F3,T) :- p(3,L2,L3,F1,F2,F3,T).
p(5,L2,L3,F1,0,F3,T) :- p(4,L2,L3,F1,F2,F3,T).
p(0,L2,L3,F1,F2,F3,T +1) :- p(5,L2,L3,F1,F2,F3,T).

Program 4.18: Philosopher 1 CLP Model

Example 4.12. (Rotational Symmetry in Dining Philosopherswith Timeout) Our real-time

dining philosophers example in Section 3.6.4 also enjoyed similar rotational symmetry:

p(L1,L2,L3,F1,F2,F3,X1,X2,X3) |= p(L3,L1,L2,F3,F1,F2,X3,X1,X2).

Full permutation of process indices is also not applicable for this example.

Example 4.13. (Permutation of Variable-Value Pair)In Section 3.6.4 we have discussed a

TSA version of Fischer’s algorithm, which is a timing-basedmutual exclusion algorithm. Con-

sider now the program version of the two-process Fischer’s mutual exclusion algorithm (see e.g.

[1]) shown as Program 4.19, where the decision of which process should enter the critical section

is made after a delay of 4 time units (other statements take 1 time unit each to execute).

The CLP model of Process 1 is shown as Program 4.20 (Process 2 is similar). This example

uses timing, and so we implemented it using auxiliary variablesT1 andT2 (see Section 3.4). Our

100

Initially k = 0
Process 1:

loop forever
〈0〉 await (k = 0)
〈1〉 k := 1
〈2〉 delay (4)
〈3〉 if (k 6= 1) then

goto 〈0〉
end if

〈4〉 k := 0
end loop

Process 2:
loop forever

〈0〉 await (k = 0)
〈1〉 k := 2
〈2〉 delay(4)
〈3〉 if (k 6= 2) then

goto 〈0〉
end if

〈4〉 k := 0
end loop

Program 4.19: Two-Process Fischer’s Algorithm

p(0,0,0,0,0).

p(0,L2,T ′
1,T2,K) :- p(0,L2,T1,T2,K),T ′

1 ≥ T2,T1 ≤ T2.
p(1,L2,T1 +1,T2,K) :- p(0,L2,T1,T2,K),T1 ≤ T2.
p(2,L2,T1 +1,T2,1) :- p(1,L2,T1,T2,K),T1 ≤ T2.
p(3,L2,T1 +4,T2,K) :- p(2,L2,T1,T2,K),T1 ≤ T2.
p(0,L2,T1 +1,T2,K) :- p(3,L2,T1,T2,K),T1 ≤ T2,K 6= 1.
p(4,L2,T1 +1,T2,K) :- p(3,L2,T1,T2,K),T1 ≤ T2,K = 1.
p(0,L2,T1 +1,T2,0) :- p(4,L2,T1,T2,K),T1 ≤ T2.

Program 4.20: Two-Process Fischer’s Algorithm CLP Model

assertion for symmetry here is

p(L1,L2,T1,T2,K) |= p(L2,L1,T2,T1,K
′),φ,

where the constraintφ constrains(K,K′) to (0,0),(1,2) or (2,1). This is calledpermutation of

variable-value pairin [182] since it maps the value of a variable onto a new value.This is not

covered by some previous approaches to symmetry such as [107, 183]. The same permutation

also applies to Fischer’s Algorithm TSA of Section 3.6.4.

Generalizing the symmetry forN processes, we have the generic assertion

p(L1, . . . ,LN,X1, . . . ,XN,K) |= p(Lρ(1), . . . ,Lρ(N),Xρ(1), . . . ,Xρ(N),ρ(K)),

whereρ(x) represents a permutation on indices{0, . . . ,N}, with the condition thatρ(0) = 0.

101

Initially x1 = x2 = 0.
Process 1:

loop forever
〈0〉 await (x2 6= 1) x1 := 1
〈1〉 await (x2 6= 2) x1 := 2
〈2〉 x1 := 0

end loop

Process 2:
loop forever

〈0〉 x2 := 1
〈1〉 await (x1 = 0) x2 := 2
〈2〉 x2 := 0

end loop

Program 4.21: Priority Mutual Exclusion

p(0,0,0,0).

p(1,L2,1,X2) :- p(0,L2,X1,X2),X2 6= 1.
p(2,L2,2,X2) :- p(1,L2,X1,X2),X2 6= 2.
p(0,L2,0,X2) :- p(2,L2,X1,X2).

p(L1,1,X1,1) :- p(L1,0,X1,X2).
p(L1,2,X1,2) :- p(L1,1,X1,X2),X1 = 0.
p(L1,0,X1,0) :- p(L1,2,X1,X2).

Program 4.22: Priority Mutual Exclusion CLP Model

Example 4.14. (Priority Mutual Exclusion) We can also express the kind of “not-quite” sym-

metry, as exemplified by the simple two-process priority mutual exclusion of Program 4.21. The

existence of priority among processes usually destroys symmetry, but not with our approach.

In Program 4.21, each process has〈2〉 as the critical section. Initially, the values of both

x1 andx2 are 0. The CLP model is Program 4.22. This example is semantically similar to the

asymmetric readers-writers in [54] and the priority mutualexclusion in [182]. Although the state

graph of the program is not symmetric, the state space, i.e. the set of nodes in the state graph, is,

and knowing this is already useful for search space reduction in proving safety properties such

as mutual exclusion. We can represent the symmetry on the reachable states simply as:

p(L1,L2,X1,X2) |= p(L2,L1,X2,X1). (4.7)

It is not immediately obvious that this symmetry holds basedon syntactic observation alone.

We now explain in more detail how our approach able to capturethe automorphism of this

“not-quite” symmetric example. Let us first examine the state graph of the program in Figure

4.2. In previous approaches to symmetry in verification, we are forced to distinguish between

state (A) and (B) since (A) has an outgoing edge that reaches state (C), while state (B) does not.

102

X1 = X2 = 0

P1 = 1,P2 = 0
X1 = 1,X2 = 0

P1 = 1,P2 = 2
X1 = 1,X2 = 2

P1 = 2,P2 = 1

X1 = 0,X2 = 2

X1 = 2,X2 = 1

P1 = 0,P2 = 1
X1 = 0,X2 = 1

P1 = 2,P2 = 0
X1 = 2,X2 = 0

P1 = P2 = 1
X1 = X2 = 1

P1 = 0,P2 = 2

P1 = P2 = 0

Figure 4.2: State Graph of Priority Mutex

P1 = 2,P2 = 0
X1 = 2,X2 = 0

P1 = 1,P2 = 0

X1 = 0,X2 = 2
P1 = 0,P2 = 2

X1 = X2 = 1
P1 = P2 = 1

X1 = X2 = 0
P1 = P2 = 0

X1 = 2,X2 = 1
P1 = 2,P2 = 1

X1 = 1,X2 = 2
P1 = 1,P2 = 2

X1 = 0,X2 = 1
P1 = 0,P2 = 1

X1 = 1,X2 = 0

Figure 4.3: Automorphisms on Collecting Semantics

The reason for considering edges here is because of the need to verify temporal logic properties,

which include liveness. Restricting ourselves to safety properties, however, allows us to blur

distinctions due to edges. This is because safety properties only concern the set of reachable

states (collecting semantics). This we clarify using Figure 4.3, where states (A) and (B) are now

drawn with the same color. The arrows in Figure 4.3 shows the automorphisms in the reachable

states of the program, which can exactly be represented as the relative safety assertion (4.7).

Example 4.15. (Szymanski’s Algorithm)Szymanski’s algorithm is a more complex priority-

based mutual exclusion algorithm which is commonly encountered in the literature. We show the

pseudo code as Program 4.23, where program point〈8〉 is the critical section. Its CLP model is

Program 4.24.

103

Initially x1 = x2 = 0.
Process 1:

loop forever
〈0〉 x1 := 1
〈1〉 await (x2 < 3)
〈2〉 x1 := 3
〈3〉 if (x2 = 1) then
〈4〉 x1 := 2
〈5〉 await (x2 = 4)

end if
〈6〉 x1 := 4
〈7〉 skip
〈8〉 await (x2 < 2∨x2 > 3)
〈9〉 x1 := 0

end loop

Process 2:
loop forever

〈0〉 x2 := 1
〈1〉 await (x1 < 3)
〈2〉 x2 := 3
〈3〉 if (x1 = 1) then
〈4〉 x2 := 2
〈5〉 await (x1 = 4)

end if
〈6〉 x2 := 4
〈7〉 await (x1 < 2)
〈8〉 skip
〈9〉 x2 := 0

end loop

Program 4.23: Two-Process Szymanski’s Algorithm

Since the algorithm is based on prioritizing Process 1 to enter the critical section〈8〉, it is not

possible for Process 2 to be in the critical section while Process 1 is trying to enter the critical

section. For example, the following simple symmetry does not hold:

p(8,7,X1,X2) |= p(7,8,X2,X1).

Here, some states satisfyingl1 = 8, l2 = 7 are reachable, and no reachable state satisfiesl1 =

7, l2−8. Therefore, a simple symmetry assertion such the one given inthe bakery algorithm does

not hold.

However, the following “not-quite” symmetry assertions still hold:

p(8,L2,X1,X2),L2 < 3 |= p(L2,8,X2,X1).

p(8,L2,X1,X2),L2 > 7 |= p(L2,8,X2,X1).

p(9,L2,X1,X2),L2 6= 7 |= p(L2,9,X2,X1).

p(L1,L2,X1,X2),L1 6= 8,L1 6= 9 |= p(L2,L1,X2,X1).

At first it seems that the above assertions no longer define an automorphism group sincep(L1,8,

X1,X2),3≤ L1 ≤ 7 |= p(8,L1,X2,X1) can be derived from the last assertion, yet the inverse does

not hold. However, by observation the assertionp(L1,8,X1,X2) |= L1 < 3∨L1 > 7 holds since

it is not possible for Process 2 to be in the critical section while process 1 is waiting and there-

fore the goalp(L1,8,X1,X2) |= 3 ≤ L1 ≤ 7 does not represent any reachable state. Similarly,

104

p(0,0,0,0).

p(1,L2,1,X2) :- p(0,L2,X1,X2).
p(2,L2,X1,X2) :- p(1,L2,X1,X2),X2 < 3.
p(3,L2,3,X2) :- p(2,L2,X1,X2).
p(4,L2,X1,X2) :- p(3,L2,X1,X2),X2 = 1.
p(5,L2,2,X2) :- p(4,L2,X1,X2).
p(6,L2,X1,X2) :- p(3,L2,X1,X2),X2 6= 1.
p(6,L2,X1,X2) :- p(5,L2,X1,X2).
p(7,L2,4,X2) :- p(6,L2,X1,X2).
p(8,L2,X1,X2) :- p(7,L2,X1,X2).
p(9,L2,X1,X2) :- p(8,L2,X1,X2),(X2 < 2∨X2 > 3).
p(0,L2,0,X2) :- p(9,L2,X1,X2).

p(L1,1,X1,1) :- p(L1,0,X1,X2).
p(L1,2,X1,X2) :- p(L1,1,X1,X2),X1 < 3.
p(L1,3,X1,3) :- p(L1,2,X1,X2).
p(L1,4,X1,X2) :- p(L1,3,X1,X2),X1 = 1.
p(L1,5,X1,2) :- p(L1,4,X1,X2).
p(L1,6,X1,X2) :- p(L1,3,X1,X2),X1 6= 1.
p(L1,6,X1,X2) :- p(L1,5,X1,X2).
p(L1,7,X1,4) :- p(L1,6,X1,X2).
p(L1,8,X1,X2) :- p(L1,7,X1,X2),X1 < 2.
p(L1,9,X1,X2) :- p(L1,8,X1,X2).
p(L1,0,X1,0) :- p(L1,9,X1,X2).

Program 4.24: Two-Process Szymanski’s Algorithm CLP Model

p(L1,9,X1,X2) |= L1 6= 7 also holds. These impose restrictions on the last assertion above.

We are not aware of any verification technique that would allow us to express and use this

kind of symmetry.

Example 4.16. (Commutativity) Now consider the simplified two-process concurrent pro-

gram shown as Program 4.25. Its CLP model contains at least the following two clauses:

p(6,L2,X +3) :- p(5,L2,X).

p(L1,12,X−5) :- p(L1,11,X).

In Program 4.25, the statement at〈5〉 of Process 1 is commutative to the statement at〈11〉 of

Process 2, since from any state where Process 1 is at〈5〉 and Process 2 is at〈6〉, executing either

statement first before the other results in the same state. Inother words, the statel1 = 6, l2 =

12,x = µ for any µ is reachable only if statel1 = 5, l2 = 11,x = µ+ 2 is2. The commutativity

2The reverse also holds, but not considered here.

105

Process 1:
...

〈5〉 x := x+3

〈6〉
...

Process 2:
...

〈11〉 x := x−5

〈12〉
...

Program 4.25: Commutative Concurrent Program

property here can be expressed by the assertion

p(6,12,X) |= p(5,11,X +2).

Example 4.17. (Serializability)Here we discuss another application of relative safety asser-

tion beyond symmetry. We show a producer/consumer program as Program 4.26, whose CLP

model is given as Program 4.27.

The macrosconk() andprol (), abstract program fragments that serve to produce and consume

respectively. We will imagine that apart from the variablefull there is another variablex which

may be used inconk() andprol ().

Consider the assertions:

p(n+1,L2,Full, f (X)),L2 ≤ n |= p(1,L2,Full,X).

p(L1,n,Full,g(X)),L1 ≥ 1 |= p(L1,0,Full,X),

where the expressionf (X) andg(X) are the results of performingcon1(), . . .conn() andpro1() . . .

pron() respectively onx. Then the assertions say that the result of performing the interleaving

of conk() and prol () macros, 1≤ k ≤ L1 − 1, 1≤ l ≤ L2 is as though the two sequences of

transitions are serializable. Note that here, although hardly a case of symmetry, we also have

an automorphism group which contains the mappings of reachable states defined by the above

assertions and their inverses.

106

Initially full := 0.
Consumer:

loop forever
〈0〉 await (full = 1) full := 0
〈1〉 con1()

...
〈n〉 conn()

〈n+1〉 skip
end loop

Producer:
loop forever

〈0〉 pro1()
...

〈n−1〉 pron()
〈n〉 await (full = 0) full := 1

〈n+1〉 skip
end loop

Program 4.26: Producer/Consumer

p(0,0,0,X).

p(1,L2,0,X) :- p(0,L2,1,X).
p(2,L2,Full,X) :- p(1,L2,Full,X).
p(n,L2,Full,X) :- p(n−1,L2,Full,X).
p(0,L2,Full,X) :- p(n,L2,Full,X).

p(L1,1,Full,X) :- p(L1,0,Full,X).
p(L1,n,Full,X) :- p(L1,n−1,Full,X).
p(L1,n+1,Full,X) :- p(L1,n,Full,X).
p(L1,0,1,X) :- p(L1,n+1,0,X).

Program 4.27: Producer/Consumer Partial CLP Model

4.6 Discussions

4.6.1 Liveness

So far we have discussed how to use our assertions to specify program properties that belong

to the safety class. Actually, we can also use our assertion language to specify some form of

liveness properties. Let us now re-visit our first example Program 3.1 in Chapter 3, with its CLP

model Program 3.2. We may write an assertion such as the following:

S= (X2−X)/2,0≤ X,X = N |= p(Ω,X,S,N).

The meaning of the assertion is that the least model of Program 3.2 necessarily includes all

p(Ω,x,s,n) such thats = (x2− x)/2, 0 ≤ x, andx = n. When we reflect this onto the original

Program 3.1, the assertion says that the state wherel = Ω, s= (x2− x)/2, 0 ≤ x, andx = n is

107

s(ω,ω).
s(X,Xf) :- X 6= ω, p(X) = 1,Xf = X.
s(X,Xf) :- X 6= ω, p(X) = 0,s(h(X),?Y),s(?Y,Xf).

Program 4.28: Example 12 of [135]

reachable. Adding the traditional safety assertion

p(Ω,X,S,N) |= S= (X2−X)/2,0≤ X,X = N,

we obtain an equivalence which specifies that the end programpoint Ω is both possible (reach-

able), and also that it is necessarily reached withs= (x2− x)/2, 0≤ x, andx = n. Here we are

saying that at any point in the program’s execution, it is always possible for the program to reach

such end state. We do not, however, say whether such end statewill be reached in a finite amount

of time.

4.6.2 General Equivalence

In the previous section we have discussed a use of equivalence to specify some liveness property.

Equivalences can be specified as a two-way implications. Here we discuss another example from

the paper of Manna et al. [135], which contains examples of properties of recursive program

schema containing equivalence.

One example program schema is as follows (Example 12 in [135]):

F(x) ⇐ if p(x) then x else F(F(h(x))) end if

Without explaining formally how we translate recursive program schema of Manna et al. into

CLP, we simply provide the CLP model of the schema as Program 4.28 according to the seman-

tics given in [135].

Here specify the idempotence of the program schema, that is,F(F(X)) ≡ F(X). Given Pro-

gram 4.28, we can state the same property as:

s(X,Y),s(Y,Xf) ⇔ s(X,Xf).

108

We can rewrite the above formula into a conjunction of the following two assertions:

s(X,Y),s(Y,Xf) |= s(X,Xf)

s(X,Xf) |= s(X,Y),s(Y,Xf).

We will demonstrate the proof of the assertions in the next chapter.

109

Chapter 5

A Proof Method

In this chapter we explicate on how to prove the assertions which we have discussed extensively

in Chapter 4. We first start with a motivating example. We thenproceed with a few basic defini-

tions and explain the outline of our proof method, which is based on a search process to discover

premises which establish the assertion. We then detail our proof rules, and demonstrate some

examples before providing their formal proofs. We then proceed on discussing extensions of our

proof method for handling various verification problems. These include a intermittent abstrac-

tion mechanism, program verification technique, reductiontechniques which include symmetry

reduction, and the verification of recursive data structures. We end this chapter after presenting

some discussions and related work on CLP-based proof methods.

5.1 First Example

Let us first examine Program 5.1, and consider how we may provethat

p(X) |= X = 2×?Y.

Given a groundingσ of X, this assertion is intuitively true, sincep(Xσ) is only true whenXσ is

an even number.

The assertion can be deduced from the following three premises using natural deduction:

1. 〈∀X : p(X) ⇔ (X = 0∨ p(X−2))〉,

2. 〈∀X : p(X−2) ⇒ 〈∃Y : X = 2Y〉〉,

3. 〈∀X : X = 0⇒ 〈∃Y : X = 2Y〉〉.

110

p(0). κ1

p(X +2) :- p(X). κ2

Program 5.1: Even Number Generator

The first premise is the Clark completion (Section 2.7) of ourexample program. For the moment,

the latter two we assume as given. The natural deduction proof using these premises is shown in

Figure 5.11.

Unfortunately, the proof is not established without also demonstrating the premises. Premise

1 is given by the CLP program, hence it is given. Further, we can easily see that Premise 3 is

true.

Notice that Premise 2 is in some sense “similar” to the original assertion. This could therefore

lead to infinite reasoning since by applying the same proof steps to Premise 2 we would again

need to establish a premise “similar” to the original assertion and Premise 2. Here we therefore

need to employ a form of induction.

Recall that we want to establish the original assertionp(X) |= X = 2×?Y. For this purpose,

we first hypothesize that the assertion holds when we replaceX with X−2, that is,p(X−2) |=

X−2 = 2×?Y. Now, assumingp(X−2) |= X−2 = 2×?Y holds, can we inductively prove that

p(X) |= X = 2×?Y? We certainly can, sincep(X − 2) |= X − 2 = 2×?Y is just equivalent to

p(X−2) |= X = 2×?Y, which is Premise 2. That is, here we derive Premise 2 immediately from

an induction hypothesis, in the context of an inductive proof of the original assertion.

In the subsequent sections we will explain a systematic proof method to obtain the premises

and to apply inductive reasoning. The method proves generalassertions of the formG |= H for

goalsG andH. We begin in the next section with a few definitions.

5.2 Basic Definitions

Definiton 5.1 (Unfold). Given a CLP programΓ and a goalG which contains an atomA, a

complete unfoldof a goalG, denoted byunfoldA(G) is the set

{G′|〈∃κ ∈ Γ : 2 :- G′ ≡ resolvA(2 :- G,κ)〉}.

1For an introduction to natural deduction, see [120].

111

1 〈∀X : p(X) ⇔ (X = 0∨ p(X−2))〉

4
�

�p(i)
5 p(i) ⇔ (i = 0∨ p(i −2)) ∀E1
6 p(i) ⇒ (i = 0∨ p(i −2)) ∧E5
7 i = 0∨ p(i −2) ⇒E4,6

2 〈∀X : p(X−2) ⇒ 〈∃Y : X = 2Y〉〉
8 ����p(i −2)
9 p(i −2) ⇒ 〈∃Y : i = 2Y〉 ∀E2
10 〈∃Y : i = 2Y〉 ⇒E8,9

3 〈∀X : X = 0⇒ 〈∃Y : X = 2Y〉〉
11 ���i = 0
12 i = 0⇒ 〈∃Y : i = 2Y〉 ∀E3
13 〈∃Y : i = 2Y〉 ⇒E11,12

14 〈∃Y : i = 2Y〉 ∨E7,10,13
15 p(i) ⇒ 〈∃Y : i = 2Y〉 ⇒I6,15
16 〈X : p(X) ⇒ 〈∃Y : X = 2Y〉〉 ∀I15

Figure 5.1: p(X) |= X = 2×?Y Natural Deduction Proof

We now state thelogical semanticsof unfold.

Proposition 5.1. 〈∀X̃,Ỹ, Z̃ : G⇔
W

unfoldp(X̃)σ(G)〉.

Proof. WhenA is p(X̃)σ, whereσ is some (not necessarily ground) substitution, the formula
W

unfoldA(G) is basically the result of application of modus ponens usingthe Clark completion of

the predicatep defined in the programΓ. When the completion ofp(X̃) in Γ is 〈∀X̃,Ỹ : p(X̃) ⇔

B1∨ . . .∨Bn〉 for some goalsBi , 1≤ i ≤ n, we have for any goalH with free variables from the

setX̃∪ Z̃, 〈∀X̃,Ỹ, Z̃ : p(X̃)σ,H ⇔ (B1∨ . . .∨Bn)σ,H〉. If, without loss of generality, we assume

that the goalG is p(X̃)σ,H, then by the above definition of unfold, the formula
W

unfoldp(X̃)σ(G)

is equivalent to(B1σ,H)∨ . . .∨ (Bnσ,H). Hence the proposition holds.2

To understand the use of an unfold in a proof process, let us reconsider our natural deduction

proof of p(X) |= X = 2×?Y in Section 5.1. We could obtain the Premises 2 and 3 from an unfold

of p(X). Given Program 5.1,
W

unfoldp(X)(p(X)) ≡ X = 0∨ p(X − 2) and sincep(X) ⇔ X =

0∨ p(X−2) (that is, Premise 1),p(X) |= X = 2×?Y holds if and only ifX = 0∨ p(X−2) |= X =

2×?Y. This holds whenp(X−2) |= X = 2×?Y (Premise 2) andX = 0 |= X = 2×?Y (Premise 3).

In the proof process to be introduced later, we will deal withrelations between assertions. In

our proof method, the proof of an assertion can be replaced with the proof of astrongerassertion.

112

We start with a formalization of what we mean by stronger or weaker assertion.

Definiton 5.2 (Assertion Entailment). An assertionG′ |= H ′ entailsanother assertionG |= H

written (G′ |= H ′) � (G |= H) if and only if (G′ |= H ′) ⇒ (G |= H). In this case we say that

(G′ |= H ′) is strongerthan(G |= H) and(G |= H) is weakerthan(G′ |= H ′).

Entailment is useful especially in an inductive proof, where we apply an induction whenever

we discover an assertion that is entailed by an ancestor assertion. However, here we need an

effective way to establish entailment.

It is easy to see that(G′ |= H ′)� (G |= H) holds if and only if

G,¬H ⇒ (G′,¬H ′)σ (5.1)

for some substitutionσ, which holds if and only if both of the following formulas hold:

1. G,¬H ⇒ G′σ. To establish this formula it is sufficient to prove thatG |= G′σ, which is

calledsubsumption.

2. G,¬H ⇒¬H ′σ. To establish this formula it is sufficient to prove eitherG,H ′σ |= H, H ′σ |=

H, or if G is of the formG′′,φ whereφ a constraint,φ,H ′σ |= H. We refer to any of these

asresidualobligation or assertion.

5.3 Outline of the Proof Method

In this section we will explain the outline of our proof method. We first provide a few formal

definitions which will be useful for our explanation in this section.

Definiton 5.3 (Unfold Tree Goals). Given a programΓ and a setS of goals, we define the

nondeterministic functionδ(H) ⊆ H ∪unfoldA(G), whenG∈ Sand the predicate of the atomA

is defined byΓ. Now, δn({G}) for some finiten is theunfold tree goalsof G.

Proposition 5.2. WheneverG′ ∈ δn({G}) for somen, we have thatG′ ⇒ G.

113

Proof. Whenever2 :- G′ ≡ resolvp(X̃)σ(2 :- G,κ), necessarilyG′ ⇒ G since suppose that

G is p(X̃)σ,H whereH is a goal with free variables in the setX̃∪Ỹ, andκ is

p(X̃) :- L1, . . . ,Ln,

Then〈∀X̃,Ỹ : p(X̃)σ,H ⇐ (L1, . . . ,Ln)σ,H〉. Hence,〈∀X̃,Ỹ : G′ ⇒ G〉. 2

Definiton 5.4 (Unfold Frontier). Given a CLP programΓ and a setSof goals we define the

nondeterministic function

ε(S) = (S−{G′})∪unfoldA(G′) for someG′ ∈ SandA∈ G′

We define anunfold frontierof G asεn({G}) for somen≥ 1.

Proposition 5.3. G⇒
W

εn(G) for anyn.

Proof. Induction using the definition ofε, and using the logical semantics of unfold.2

In order to proveG |= H, we proceed as follows: unfoldG completely a finite number of

steps in order to obtain an unfold frontier containing the goals G1, . . . ,Gn ∈ εk(G) for somek.

Then unfoldH, but this time not necessarily completely, that is, we simply obtain some unfold

tree goals ofH, which areH1, . . . ,Hm ∈ δl (H) for somel . This situation is depicted in Figure

5.2. Then, the proof holds if

G1∨ . . .∨Gn |= H1∨ . . .∨Hm

or alternatively,Gi |= H1 ∨ . . .∨Hm for all 1 ≤ i ≤ n. This follows easily from the fact that

G |= G1∨ . . .∨Gn (since from Proposition 5.3,G ⇒
W

εk(G) for any k), andH j |= H for all j

such that 1≤ j ≤ m (since from Proposition 5.2, wheneverG′ ∈ δl ({G}) for somel , we have that

G′ ⇒ G).

More specifically, but with some loss of generality, the proof holds if

〈∀i : 1≤ i ≤ n⇒ 〈∃ j : 1≤ j ≤ m∧Gi |= H j〉〉.

and for this reason, ourproof obligationwill be constructed from an assertion such asGi |= H j .

114

Coinduction

G1, . . . Gn

H
?
|=G

Complete

H1∨ . . .∨Hm

G1∨ . . .∨Gn |=
To Prove:

Hm

H j

. . .

. . .

H1

. . .

. . .

Unfold
Partial

Unfold

Figure 5.2: Informal Structure of Proof Process

Our proof method produces proof obligations and attempts todischarge them by direct proof

using constraint solver or by inductive reasoning.

Induction is used to handle the possibly infinite unfoldingsof G andH in Figure 5.2. We call

our version of induction ascoinduction. We apply an induction hypothesis whenever we discover

an obligation that is entailed by some ancestor obligation.We allow all frontier assertions to be

proved inductively, and this is why we use the term coinduction due to the sense of distinction

between our use of induction and normal well-founded induction which requires base case (non-

inductive proof).

5.4 Proof Rules

We now present a calculus for proving assertionsG |= H.

The proof process starts with a set of proof obligations and attempts to discharge them one

by one (although at times the set may in fact become larger).

Definiton 5.5 (Proof Obligation). A proof obligationis of the formÃ⊢ G |= H, whereG and

H are goals and̃A is a set of assertions.

The role of proof obligations is to capture the state of a proof. The setÃ, called theset of

assumed assertions, contains assertions that can be used as induction hypothesis to discharge the

proof obligation at hand. We sometimes also call as proof obligation the assertion partG |= H of

a proof obligation.

Our proof rules are presented in Figure 5.3. The⊎ symbol represents the disjoint union of two

sets, and emphasizes the fact that in an expression of the form Ã⊎{a}, we have thata 6∈ Ã. Each

rule operates on the (possibly empty) set of proof obligationsΠ, by selecting a proof obligation

115

from Π and attempting to discharge it. In this process, new proof obligations may be produced.

The proof process is typically centered around unfolding the goals in proof obligations.

Thedirect proof(DP) rule is the simplest proof rule. It discharges a proof obligation when it

can be directly proved that it holds, possibly by substituting some existentially-quantified vari-

ables of the rhs of the assertion.

The left unfold (LU) rule performs a complete unfold on the lhs of a proof obligation, pro-

ducing a new set of proof obligations. The original assertion, while removed fromΠ, is added

as possible induction hypothesis to every newly produced proof obligation, opening the door to

using induction in the proof.

The right unfold (RU) rule performs an unfold operation on the rhs of a proof obligation.

Note that there are a number of choices forH ′ ∈ unfold(H), and it is generally not known which

H ′ is the one we need. As a rule of thumb, however,H ′ should be chosen in such a way that the

new expressionG |= H ′ looks “similar” to an element of̃A, thus making possible the application

of theAP rule later, or such thatH ′ is “similar” to G, thus making possible the application of the

DP rule.

The assumption proof(AP) rule transforms an obligation by using a hypothesis. Sincean

induction hypothesis can only be created using theLU rule from a parent goal, theAP rule realizes

the coinduction principle, where we use the parent goal itself as hypothesis to prove the obligation

at hand. The underlying principle behind theAP rule is that a similar assertionG′ |= H ′ has

been previously encountered in the proof process, and is to be proved. Now, that assertion can

be used as an induction hypothesis in order to establish the current assertionG |= H provided

(G′ |= H ′)� (G |= H).

The cut (CUT) rule is used for strengthening a proof obligation. I is useful mainly for gener-

alizing the lhs goal of an assertion. Given an assertionG |= H, it is often the case thatH is too

weak to result in applications of other rules that would leadto a successful proof. To address this,

theCUT rule introduces a new, goalG′ possibly stronger thanH, with the condition that is weaker

thanG (that is,G |= G′). The obligation to proveG |= H is now replaced with the obligation to

prove thatG′ is indeed stronger thanH (G′ |= H). This technique is employed in the following

cases:

1. Abstracting a program condition into a more general description.

2. Introduction ofloop invariant. In the program verification framework [100], a human user

116

(DP)
Π⊎{Ã⊢ G,φ |= H}

Π
There exists a substitutionσ of
existential variables inH s.t.G |= Hσ

(LU)
Π⊎{Ã⊢ G |= H}

Π ∪
Sn

i=1{Ã∪{G |= H} ⊢ Gi |= H}
unfold(G) = {G1, . . . ,Gn}

(RU)
Π⊎{Ã⊢ G |= H}

Π∪{Ã⊢ G |= H ′}
H ′ ∈ unfold(H)

(AP)
Π⊎{Ã⊢ G |= H}

Π
G′ |= H ′ ∈ Ã,(G′ |= H ′)� (G |= H)

(CUT)
Π⊎{Ã⊢ G |= H}

Π∪{Ã⊢ G′ |= H ′}
(G′ |= H ′)� (G |= H)

(SPL)
Π⊎{Ã⊢ G |= H}

Π∪
Sk

i=1{Ã⊢ G,φi |= H}
φ1∨ . . .∨φk ⇔¬2.

Figure 5.3: Proof Rules

provides the loop invariant which generalizes the program states at a particular point within

a loop. This is exemplified later in the proof of the Sum program we give in Section 5.5.

3. Translation into equivalent condition. This is useful for the reduction of proof size by the

use of relative safety (e.g., symmetry), as to be explained in Section 5.6.

4. Strengthening ofinductive invariantin the context of verification using Manna-Pnueli’s

universal invariance rule to be discussed in Section 5.10.2.

Finally, thesplit (SPL) rule converts a proof obligation into several, more specialized ones.

Given an assertionG |= H, a proof shall start withΠ = { /0 ⊢ G |= H}, and proceed by repeat-

edly applying the rules in Figure 5.3 to it. The proof finisheswhen there are no more obligations

left to be proved. We will state the soundness of our proof rules and its proof in Section 5.7.

5.5 Proof Scope Notation and Simple Examples

We may apply theLU rule to the example of Section 5.1. Initially we haveΠ = { /0 ⊢ p(X) |=

X = 2×?Y}. Applying theLU rule using both CLP clausesκ1 andκ2, results in a setΠ′ of proof

obligations containing the two proof obligations:

• {p(X) |= X = 2×?Y} ⊢ X = 0 |= X = 2×?Y and

• {p(X) |= X = 2×?Y} ⊢ p(X−2) |= X = 2×?Y.

117

The first obligation can be discharged using theDP rule sinceX = 0 |= X = 2×?Y obviously

holds. We prove the second assertion usingAP. We notice that the assertionp(X) |= X = 2×?Y

is in the set of assumed assertions. Here we want to prove boththe subsumption and the residual

obligation to establish(p(X) |= X = 2×?Y)� (p(X−2) |= X = 2×?Y). Now consider the sub-

stitution σ = {X 7→ X −2,Y 7→ Z}. Obviously, the subsumptionp(X −2) |= p(X)σ holds and

can be proved byDP. Moreover, the residual obligationX−2 = 2×Z |= X = 2×?Y also holds

by DP (consider substitutingY with Z+1).

Explaining the proof in English as above is rather tedious. Therefore here we introduce our

flavor of proof scope notation, in order to compactly write the proofs. We show the features of

our scope notation by using it to represent the proof just explained, in Figure 5.4. Notice the

followings:

• We write the original assertion to be proved above a horizontal line.

• We never write down the set of assumed assertions in the scopenotation, but we assume

that it is accordingly updated at every rule application.

• At the right end, we write down the explanation how the assertion has been derived. The

information denotes which rule is applied to which ancestorassertions.

• The application ofLU rule results in a set of assertions indexed using alphabet (e.g., the

assertions 2a and 2b in Figure 5.4), each of which must eventually be discharged.

• The application ofAP or CUT spawns two new obligations: the subsumption (4s.1) and

residual obligation (4r.1). The numbering 4s.1 denotes thefirst assertion (1) in the proof

of subsumption (s) to prove assertion no. 4 in the main proof.In 4r.1, r denotes residual

obligation.

• We represent the discharging of an assertion byDP andAP as the formula¬2, denoting

true. Note that by ruleDP and AP, a discharged assertion is removed from the set of

obligations. When substitution of existential variables is necessary in the proof usingDP,

we provide the mapping in the explanation part.

We provide here as another example the proof of the symmetry property of the two-process

bakery algorithm (Example 4.9 on Page 95). We have presentedthe relative safety expression

that represent the symmetry as the formula (4.6) on Page 95. The complete proof is shown in

both Figures 5.5 and 5.6.

118

1 p(X) |= X = 2×?Y
2a X = 0 |= X = 2×?Y LU 1
2b p(X−2) |= X = 2×?Y LU 1
3 ¬2 DP 2a
4 ¬2 AP 1,2b

4s.1 p(X−2) |= p(X−2) AP 1,2b
4s.2 ¬2 DP 4s.1

4r.1 X−2 = 2×Z |= X = 2×?Y AP 1,2b
4r.2 ¬2 DP 4r.1{Y 7→ Z+1}

Figure 5.4: Scope Notation Proof of First Example

For this proof, initially,Π = { /0 ⊢ p(L1,L2,X,Y) |= p(L2,L1,Y,X)}, represented as the asser-

tion 1 in Figure 5.5. Using theLU proof rule, and all the clausesκ1 to κ7 of Program 3.15, we

perform an unfold of obligation 1 obtaining a new set of proofobligationsΠ′, which includes

proof obligations containing the assertions 2a to 2g respectively, in Figure 5.5. Let us focus on

the assertion 2b. Using proof ruleRU and CLP clauseκ5 of Program 3.15, we obtain assertion

52. We then apply theAP rule to assertion 5 using assertion 1 as the induction hypothesis. We

show the subsumption and residual obligation proofs of thisAP application in Figure 5.6. Other

assertions from 2c to 2g are proved similarly. In proving 2a,no hypothesis application (AP) is

necessary.

As our next example, we provide the proof of the assertion

p(0,0,0,N,Sf),N ≥ 0 |= Sf = (N2−N)/2

on Program 3.4, which, note again, is a forward CLP model of Program 3.1 with final variables.

The proof is shown in Figure 5.7.

It is not possible to establish obligation 1 without using the CUT rule. CUT strengthens an

assertion by weakening (generalizing) its lhs. For this purpose, we replace obligation 1 with the

stronger obligation 2. In this case, we often call the lhs of obligation 2 as aloop invariant, because

it essentially represent the loop invariant of the while loop, as to be explain in Section 5.8.3. It is

called invariant because when we can complete the proof coinductively by an application ofAP

2After performing right unfold, we may obtain existentially-quantified variables (prefixed with “?”). This is not
the case with left unfold since the lhs part of an assertion isthe negated part of the formula (recall thatα ⇒ β is
equivalent to¬α∨β) such that existential quantification in the lhs is transformed to universal quantification for the
whole assertion.

119

1 p(L1,L2,X,Y) |= p(L2,L1,Y,X)
2a L1 = 0,L2 = 0,X = 0,Y = 0 |= p(L2,L1,Y,X) LU 1
2b L1 = 1,X = Y+1,L′

1 = 0, p(L′
1,L2,X′,Y) |= p(L2,L1,Y,X) LU 1

2c L1 = 2,(Y = 0∨X < Y),L′
1 = 1, p(L′

1,L2,X,Y) |= p(L2,L1,Y,X) LU 1
2d L1 = 0,X = 0,L′

1 = 2, p(L′
1,L2,X′,Y) |= p(L2,L1,Y,X) LU 1

2e L2 = 1,Y = X +1,L′
2 = 0, p(L1,L′

2,X,Y′) |= p(L2,L1,Y,X) LU 1
2f L2 = 2,(X = 0∨Y < X),L′

1 = 1, p(L1,L′
1,X,Y) |= p(L2,L1,Y,X) LU 1

2g L2 = 0,Y = 0,L′
2 = 2, p(L1,L′

2,X,Y′) |= p(L2,L1,Y,X) LU 1
3 L1 = 0,L2 = 0,X = 0,Y = 0 |= L2 = 0,L1 = 0,Y = 0,X = 0 RU 2a
4 ¬2 DP 3
5 L1 = 1,X = Y+1,L′

1 = 0, p(L′
1,L2,X′,Y)

|= L1 = 1,X = Y+1,?L′′
1 = 0, p(L2,?L′′

1,Y,?X′′) RU 2b
6 ¬2 AP 1,5
7 L1 = 2,(Y = 0∨X < Y),L′

1 = 1, p(L′
1,L2,X,Y)

|= L1 = 2,(Y = 0∨X < Y),?L′′
1 = 1, p(L2,?L′′

1,Y,X) RU 2c
8 ¬2 AP 1,7
9 L1 = 0,X = 0,L′

1 = 2, p(L′
1,L2,X′,Y)

|= L1 = 0,X = 0,?L′′
1 = 2, p(L2,?L′′

1,Y,?X′′) RU 2d
10 ¬2 AP 1,9
11 L2 = 1,Y = X +1,L′

2 = 0, p(L1,L′
2,X,Y′)

|= L2 = 1,Y = X +1,?L′′
2 = 0, p(?L′′

2,L1,?Y′′,X) RU 2e
12 ¬2 AP 1,11
13 L2 = 2,(X = 0∨Y < X),L′

2 = 1, p(L1,L′
2,X,Y)

|= L2 = 2,(X = 0∨Y < X),?L′′
2 = 1, p(?L′′

2,L1,Y,X) RU 2f
14 ¬2 AP 1,13
15 L2 = 0,Y = 0,L′

2 = 2, p(L1,L′
2,X,Y′)

|= L2 = 0,Y = 0,?L′′
2 = 2, p(?L′′

2,L1,?Y′′,X) RU 2g
16 ¬2 AP 1,15

Figure 5.5: Symmetry Proof of Two-Process Bakery Algorithm

in just one more re-visit of〈0〉, any possible state of the program at〈0〉 necessarily satisfies the

lhs of obligation 2, projected to the main variables of the predicatep. For this use ofCUT to be

valid, we also have to establish the subsumption 2s.1 and theresidual obligation 2r.1. We also

provide their proofs in Figure 5.7). Both 2s.1 and 2r.1 can beimmediately discharged usingDP.

To prove obligation 2, we applyLU producing 3a and 3b. 3a corresponds to the path that

exits the program loop and reaches the end of the program, while 3b corresponds to the path

that runs through the loop body. Here we can further applyLU to 3a producing 4, which can be

immediately established byDP. In proving 3b, we applyLU twice resulting in 7.

Notice that 7 actually has the obligation 2 in its set of assumed assertions. This we can use

as induction hypothesis to establish 7. The use of 2 as a hypothesis to prove 7 is justified by

the proofs of the subsumption 8s.1 and the residual obligation 8r.1, where obligation 2 entails

obligation 7.

120

6s.1 L1 = 1,X = Y+1,L′
1 = 0, p(L′

1,L2,X′,Y) |= p(L′
1,L2,X′,Y) AP 1,5

6s.2 ¬2 DP 6s.1

6r.1 L1 = 1,X = Y+1,L′
1 = 0, p(L2,L′

1,Y,X′)
|= L1 = 1,X = Y +1,?L′′

1 = 0, p(L2,?L′′
1,Y,?X′′) AP 1,5

6r.2 ¬2 DP 6r.1{X′′ 7→ X′,L′′
1 7→ L′

1}

Figure 5.6: Subsumption and Residual Obligation Proofs of the SymmetryProof of the Two-
Process Bakery Algorithm

We note in examples such as Sum the rhs of the obligationSf = (N2−N)/2 is in a special

form that only refers to variables that are not updated throughout the unfolding. In this case the

proof of residual obligations such as 8r.1 is typically easy.

5.6 Redundancy, Global Tabling, and Symmetry Reduction

5.6.1 Redundancy and Global Tabling

There is an important principle which gives rise to optimization in the proof process, that of

a redundancybetween obligations. The essential idea is based on the observation that when

G′ |= H ′ has been established in one part of the proof tree, we may use it to concludeG |= H

when(G′ |= H ′)� (G |= H) holds.

Redundancy gives rise toglobal tablingwhere in the application ofAP, we use as assumed

assertion, not only a left-unfolding ancestor of the current obligation, but also any assertion that

has been encountered by the left unfolding process.

To accommodate global tabling, we update our proof rules of Figure 5.3 into those shown

in Figure 5.8. The rules in Figure 5.8 manipulates a global table T instead of a set of assumed

assertions̃A as in Figure 5.3. An important point here is that the global table T is independent

from any obligation while the set of assumed assertionsÃ is a component of an obligation. As

such, in Figure 5.8, the obligations no longer hasÃ attached and they accordingly take the same

form as assertions.

We note that the rules of Figure 5.8 is more powerful than the rules of Figure 5.3 since the

set of assumed assertionsÃ in Figure 5.3 is always a subset of the global tableT . Hence, if we

manage to prove an obligation by an application ofAP according to Figure 5.3, the same proof

can always be done with theAP of Figure 5.8. The reverse, however, does not hold. Nevertheless,

here we do not make any claim that the rules of Figure 5.8 are strictly more powerful than those

121

1 p(0,0,0,N,Sf),N ≥ 0 |= Sf = (N2−N)/2
2 p(0,X,S,N,Sf),S= (X2−X)/2,X ≤ N,N ≥ 0

|= Sf = (N2−N)/2 CUT 1
3a p(Ω,X,S,N,Sf),S= (X2−X)/2,X = N,N ≥ 0

|= Sf = (N2−N)/2 LU 2
3b p(1,X,S,N,Sf),X < N,S= (X2−X)/2,X ≤ N,N ≥ 0

|= Sf = (N2−N)/2 LU 2
4 S= Sf ,S= (X2−X)/2,X = N,N ≥ 0 |= Sf = (N2−N)/2 LU 3a
5 ¬2 DP 4
6 p(2,X,S′,N,Sf),S′ = S+X,X < N,S= (X2−X)/2,

X ≤ N,N ≥ 0 |= Sf = (N2−N)/2 LU 3b
7 p(0,X′,S′,N,Sf),X′ = X +1,S′ = S+X,X < N,S= (X2−X)/2,

X ≤ N,N ≥ 0 |= Sf = (N2−N)/2 LU 6
8 ¬2 AP 2,7

2s.1 p(0,X,S,N,Sf),X = 0,S= 0,N ≥ 0
|= p(0,X,S,N,Sf),S= (X2−X)/2,X ≤ N,N ≥ 0 CUT 1

2s.2 ¬2 DP 2s.1

2r.1 Sf = (N2−N)/2 |= Sf = (N2−N)/2 CUT 1
2r.2 ¬2 DP 2r.1

8s.1 p(0,X′,S′,N,Sf),X′ = X +1,S′ = S+X,X < N,S= (X2−X)/2,
X ≤ N,N ≥ 0 |= p(0,X′,S′,N,Sf),S′ = (X′2−X′)/2,X′ ≤ N,N ≥ 0 AP 2,7

8s.2 ¬2 DP 8s.1

8r.1 Sf = (N2−N)/2,X′ = X +1,S′ = S+X,X < N,S= (X2−X)/2,
X ≤ N,N ≥ 0 |= Sf = (N2−N)/2 AP 2,7

8r.2 ¬2 DP 8r.1

Figure 5.7: Proof of Sum

of Figure 5.3.

5.6.2 Proof Using Redundancy

In Figure 5.9, we show a proof of the mutual exclusion property of the two-process bakery

algorithm (Section 4.2). In Figure 5.9 we do not provide the proofs of the subsumptions and

residual obligations. Since these are simple, we provide only some of their proofs in Figure 5.10.

In Figure 5.10, we assume that the variablesX andY take nonzero integer values. The proof

uses the principle of redundancy between assertions, wherewe denote any redundant assertion

using “RED m,n” wheremdenotes the assertion to which assertionn is redundant. BothRED m,n

andAP m,n denote the application ofAP in Figure 5.8, but differentiate them based on whether

the assumed assertionm being used is an ancestor (AP m,n) or not (RED m,n).

122

(DP)
T ⊢ Π⊎{G |= H}

T ⊢ Π
There exists a substitutionσ of
existential variables inH s.t.G |= Hσ

(LU)
T ⊢ Π⊎{G |= H}

T ∪{G |= H} ⊢ Π ∪
Sn

i=1{Gi |= H}
unfold(G) = {G1, . . . ,Gn}

(RU)
T ⊢ Π⊎{G |= H}

T ⊢ Π∪{G |= H ′}
H ′ ∈ unfold(H)

(AP)
T ⊢ Π⊎{G |= H}

T ⊢ Π
G′ |= H ′ ∈ T ,(G′ |= H ′)� (G |= H)

(CUT)
T ⊢ Π⊎{G |= H}

T ⊢ Π∪{G′ |= H ′}
(G′ |= H ′)� (G |= H)

(SPL)
T ⊢ Π⊎{G |= H}

T ⊢ Π ∪
Sk

i=1{G,φi |= H}
φ1∨ . . .∨φk ⇔¬2.

Figure 5.8: Proof Rules with Global Table

5.6.3 Proof Using Symmetry Reduction

In this section we present symmetry reduction using our proof method. We repeat our discussion

in Chapter 1 that we advocate a methodology where we first establish the relative safety assertion

we wish to prove. We then use the assertion for reduction. More specifically, we use the assertion

to establish redundancy (Section 5.6.1).

As has been discussed in Chapter 1 and Section 4.5, this method is more powerful that it

can handle more cases of symmetry than other approaches. This is because we only consider the

verification of safety properties, allowing us extra power in handling arbitrary automorphisms on

the collecting semantics.

In the Section 5.5 we have demonstrated the proof of symmetryproperty in the two-process

bakery algorithm using our proof method. Here we use the symmetry assertion to obtain an even

smaller mutual exclusion proof then that of Figure 5.9 of thetwo-process bakery algorithm. The

reduced proof is shown in Figure 5.11.

Figure 5.11 is similar to Figure 5.9 up to assertion 11b, at which point the assertions that are

not yet proved are 11b and 2b.

We apply theCUT rule to 11b obtaining 13. The subsumption and residual obligation proof

for the application ofCUT here is shown in Figure 5.11 as the proofs of 13s.1 and 13r.1, respec-

tively. In the proof of 13s.1 we again useCUT rule to strengthen 13s.1 to 13s.2. Here 13s.2 is the

symmetry assertion itself of the two-process bakery algorithm (see Example 4.9 on Page 95 and

123

1 p(2,2,X,Y) |= 2

2a p(1,2,X,Y),(Y = 0∨X < Y) |= 2 LU 1
2b p(2,1,X,Y),(X = 0∨Y < X) |= 2 LU 1
3a p(0,2,X′,Y),Y = 0 |= 2 LU 2a
3b p(1,1,X,Y),(Y = 0∨X < Y),(X = 0∨Y < X) |= 2 LU 2a
4a p(2,2,X′′,Y),Y = 0 |= 2 LU 3a
4b p(0,1,X′,Y),(X′ = 0∨Y < X′),Y = 0 |= 2 LU 3a
5 ¬2 AP 1,4a
6 p(2,1,X′′,Y),Y = 0 |= 2 LU 4b
7 p(1,1,X′′,Y),Y = 0 |= 2 LU 6
8 p(0,1,X′′′,Y),Y = 0 |= 2 LU 7
9 p(2,1,Xiv,Y),Y = 0 |= 2 LU 8

10 ¬2 AP 6,9
11a p(0,1,X′,Y),Y = 0 |= 2 LU 3b
11b p(1,0,X,Y′),X = 0 |= 2 LU 3b
12 ¬2 RED 8,11a
13 p(1,2,X,Y′′),X = 0 |= 2 LU 11b
14 p(1,1,X,Y′′),X = 0 |= 2 LU 13
15 p(1,0,X,Y′′′),X = 0 |= 2 LU 14
16 ¬2 AP 11b,15

17a p(1,1,X,Y),(Y = 0∨X < Y),(X = 0∨Y < X) |= 2 LU 2b
17b p(2,0,X,Y′),X = 0 |= 2 LU 2b
18 ¬2 RED 3b,17a

19a p(1,0,X,Y′),(Y′ = 0∨X < Y′),X = 0 |= 2 LU 18b
19b p(2,2,X,Y′′),X = 0 |= 2 LU 18b
20 ¬2 RED 11b,19a
21 ¬2 AP 1,19b

Figure 5.9: Mutual Exclusion Proof of Two-Process Bakery Algorithm

Section 5.5). We have proved 13s.2 in Section 5.5, and it neednot be proved again here. 13 is

now redundant to 8 and the proof need not proceed further. We similarly prove 2b by applying

symmetry assertion obtaining assertion 15, and then establish its redundancy to 8.

Notice that the proof in Figure 5.11 is much smaller than the proof in Figure 5.9. The example

demonstrates that our proof method is capable of handling symmetry reduction in the verification

of safety properties. Recall in Chapter 4 that our assertionlanguage is powerful enough to specify

even “not-quite” symmetry properties in concurrent programs. Our proof method can also prove

such assertions, which can in turn be used for reducing the size of other proofs. We can even

handle examples that are not handled by previous approaches, such as the symmetry reduction

for Szymanski’s mutual exclusion algorithm.

Other than symmetry reduction, our proof method can also be employed for proving and

using more general relative safety assertions such as commutativity and serializability, whose

124

5s.1 p(2,2,X′′,Y),Y = 0 |= p(2,2,X′′,Y) AP 1,4a
5s.2 ¬2 DP 5s.1

5r.1 2 |= 2 AP 1,4a
5r.2 ¬2 DP 5r.1

12s.1 p(0,1,X′,Y),Y = 0 |= p(0,1,X′,Y),Y = 0 RED 8,11a
12s.2 ¬2 DP 12s.1

12r.1 2 |= 2 RED 8,11a
12r.2 ¬2 DP 12r.1

Figure 5.10: Subsumption and Residual Obligation Proofs of the Mutual Exclusion Proof of the
Two-Process Bakery Algorithm

instances we give in Example 4.16 (Page 105) and Example 4.17(Page 106).

5.7 Correctness

5.7.1 Soundness

The condition in which a proof can be completed using the rules of Figure 5.8 (and hence, as has

been argued in Section 5.6, also Figure 5.3) is stated in the following theorem.

Theorem 5.1 (Proof of Assertions). G |= H holds if, starting with the proof obligationΠ =

{ /0 ⊢ G |= H}, there exists a sequence of applications of proof rules thatresults inΠ = /0.

Proof. First we start by reasoning about thesoundnessof each proof rule, that is, that the proof

of the obligations in the conclusion would establish the obligation of the premise.

The ruleRU is sound because by the logical semantics of unfold (Proposition 5.1 on Page

112), whenH ′ ∈ unfold(H) thenH ′ |= H. Therefore, the proof of the obligationG |= H can be

replaced by the proof of the obligationG |= H ′ sinceG |= H ′ is stronger thanG |= H, that is,

(G |= H ′)� (G |= H).

Similarly, the ruleDP is sound becauseG |= H actually holds (assumed to be proved sepa-

rately), and hence can be removed from consideration.

The ruleCUT is sound because we replace an obligationG |= H by a stronger obligation

G′ |= H ′.

The ruleSPL is sound because the proof of all ofG,φi |= H for all i such that 1≤ i ≤ k is the

125

1 p(2,2,X,Y) |= 2

2a p(1,2,X,Y),(Y = 0∨X < Y) |= 2 LU 1
2b p(2,1,X,Y),(X = 0∨Y < X) |= 2 LU 1
3a p(0,2,X′,Y),Y = 0 |= 2 LU 2a
3b p(1,1,X,Y),(Y = 0∨X < Y),(X = 0∨Y < X) |= 2 LU 2a
4a p(2,2,X′′,Y),Y = 0 |= 2 LU 3a
4b p(0,1,X′,Y),(X′ = 0∨Y < X′),Y = 0 |= 2 LU 3a
5 ¬2 AP 1,4a
6 p(2,1,X′′,Y),Y = 0 |= 2 LU 4b
7 p(1,1,X′′,Y),Y = 0 |= 2 LU 6
8 p(0,1,X′′′,Y),Y = 0 |= 2 LU 7
9 p(2,1,Xiv,Y),Y = 0 |= 2 LU 8

10 ¬2 AP 6,9
11a p(0,1,X′,Y),Y = 0 |= 2 LU 3b
11b p(1,0,X,Y′),X = 0 |= 2 LU 3b
12 ¬2 RED 8,11a
13 p(0,1,Y′,X),X = 0 |= 2 CUT 11b
14 ¬2 RED 8,13
15 p(1,2,Y,X),(X = 0∨Y < X) |= 2 CUT 2b
16 ¬2 RED 2a,15

13s.1 p(1,0,X,Y′),X = 0 |= p(0,1,Y′,X),X = 0 CUT 11b
13s.2 p(L1,L2,X,Y′) |= p(L2,L1,Y′,X) CUT 13s.1 (Proved)

13r.1 2 |= 2 CUT 11b
13r.2 ¬2 DP 13r.1

Figure 5.11: Reduced Mutual Exclusion Proof of Two-Process Bakery Algorithm

proof ofG,(φ1∨
...∨φk) |= H which is equivalent toG |= H by the side condition of the rule.

The ruleLU is partially soundin the sense that whenunfold(G) = {G1, . . . ,Gn}, then proving

G |= H can be substituted by provingG1 |= H, . . . ,Gn |= H. This is because by Clark completion

(Section 2.7),G is equivalent toG1∨ . . .∨Gn. However, whether the addition ofG |= H to the

tableT is sound depends on the use of the set of assumed assertions inthe application ofAP.

Recall that in the ruleAP we require the proof of(G′ |= H ′) � (G |= H) for G′ |= H ′ an

assertion in the tableT .

Assume that using our method, given a CLP programΓ, we managed to concludeG |= H

whereG andH are goals possibly containing atoms and it is not the case that G |= H can be

proved without the application ofLU (since otherwise trivial by the soundness ofRU, DP, CUT,

andSPL). Assume that in the proof, there are a number of assumed assertionsA1, . . . ,An used

coinductively as induction hypotheses in applications ofAP. This means that in the proof of

G |= H the left unfold ruleLU has been applied at least once (possibly interleaved with the

126

applications of of other rules besideAP) obtaining two kinds of assertions:

1. AssertionsC which are directly proved using rules other thanLU andAP.

2. AssertionsB which are proved usingAP using some assumed assertionA j in the tableT

as hypothesis for 1≤ j ≤ n.

We may concludeΓ (G |= H) holds (cf. Section 2.5.1). From Section 2.6, this is equivalent to

lm(Γ) ⇒ (G |= H). We prove this.

First, define arefutationto an assertionG |= H as a successful derivation of one or more atoms

in G whoseanswerΨ has a ground substitutionσ such thatΨσ∧Hσ is false (cf. the notion of

resolution refutation in Chapter 2). We note that here, an answerΨ of a goalG consisting of a

sequence of atomsp1, . . . , pm and a constraintφ is a constraint on the variables ofG such that

Ψσ holds if and only ifpiσ ∈ lm(Γ) for all i in 1≤ i ≤ m, andφσ holds.

A finite refutation corresponds to resolution of finite length. A step in the resolution is

achieved by left unfoldLU rule only. Hence a finite refutation of lengthk implies a corresponding

k left unfold LU applications that result in a contradiction.

G |= H has a finite refutation of lengthk for somek if and only if¬(TΓ ↑ k⇒ (G |= H)).

Due to:

1. the soundness of other rulesRU, DP, CUT, andSPL, and the partial soundness ofLU with

the fact thatAi for all 1≤ i ≤ n are obtained fromG |= H by applying these rules, and

2. all assertionsC are proved byRU, CP, CUT andSPL alone,

we have:G |= H holds if Ai holds for all 1≤ i ≤ n hold, and these hold if and only if for alli

such that 1≤ i ≤ n, and for allk≥ 0 : Ai has no finite refutation of lengthk.

We prove inductively:

• Base case:Whenk = 0, for all i such that 1≤ i ≤ n, Ai trivially has no finite refutation of

length 0. In other words, for alli, trivially TΓ ↑ 0≡ 2 ⇒ Ai .

• Inductive case:Assume that

For all i such that 1≤ i ≤ n, Ai has no finite refutation of lengthk or less. (5.2)

we want to prove that

For all i such that 1≤ i ≤ n, Ai has no finite refutation of lengthk+1 or less. (5.3)

127

Notice again in our assumptions above that assertionsB are proved by applyingAP using

A j for some 1≤ j ≤ n. Because subsumption holds in every application ofAP, this means

that for any suchB,

A j �B. (5.4)

The proof is by contradiction. Now suppose that (5.3) is false, that is,Ai for somei such

that 1≤ i ≤ n has a finite refutation of lengthk+1 or less. But due to our hypothesis (5.2),

Ai has no finite refutation of lengthk or less. Therefore it must be the case thatAi has a

finite refutation of lengthk+1.

Again, note that we have appliedLU to Ai at least once, possibly interleaved with applica-

tions ofRU, DP, CUT, andSPL obtaining the following two kinds of assertions:

1. AssertionsC which are proved by applications ofRU, DP, CUT, or SPL.

2. AssertionsB which are proved byAP using someA j for 1 ≤ j ≤ n in the table as

induction hypothesis.

Then either of these must hold:

1. Some assertion of typeC is a refutation toAi of lengthk+1.

2. SomeAi has a finite refutation of lengthk+1.

For the first case, however, regardless of the length, since all such assertionsC are already

proved byRU, DP, CUT, andSPL that are sound, this case is not possible.

For the second case, sinceAi has to have a finite refutation of lengthk+1, therefore there

has to be at least one assertion of typeB that is reached ink or less unfolds. Therefore,B

has to have a refutation of lengthk or less. Now since (5.4) holds, then it should be the

case that someA j for 1≤ j ≤ n such thatA j also has a finite refutation of lengthk or less.

To see this, here notice thatB has a refutation of lengthk or less, that is,¬(TΓ ↑ k ⇒ B).

The conjunction of this, (5.4), andTΓ ↑ k ⇒ A j is unsatisfiable. Therefore, by the law of

excluded middle it must be the case that¬(TΓ ↑ k ⇒ A j), in other words,A j must have

a refutation of lengthk or less. But this contradicts our hypothesis (5.2) thatAi for all

1≤ i ≤ n has no finite refutation of lengthk or less.2

128

5.7.2 On Completeness

It is easy to construct an example that demonstrates the incompleteness of our method. Proving

G |= H is unsolvable in general [141], even when we assume that we have a perfect constraint

solver to solve all interpreted functions and relations.

We argue, however, that our proof method is more complete than proof methods that only

consider one level of left unfold before applying inductivereasoning, such as Kanamori and

Fujita’s [118] and Mesnard et al.’s [141]. Our proof method allows arbitrary level of left unfold

and discovers opportunistically the chance to apply inductive reasoning. This approach is also

more automatable. The proof process can be considered as an algorithmic search process, where

we apply inductive reasoning whenever we encounter a “cycle” or “redundancy” in the proof. We

provide a detailed comparison to Mesnard et al.’s proof method in Section 5.10.1 of the appendix.

5.8 Compositional Program Analysis and Verification Framework

There are two major approaches to program reasoning in the literature. The first of these, which

is theabstract interpretation[35] approach is based on providing abstract description ofprogram

states. State-space traversal is then done on abstracted description of reachable states, which

is more efficient than concrete (unabstracted) traversal. However, the approach is inherently

incomplete due to loss accuracy incurred by the abstraction. This approach is also calledprogram

analysisapproach.

The second approach is originally due to Hoare and Floyd [100]. It is based on composing

proofs from proofs of program fragments. Here the correctness of a program fragment is denoted

by triples of the form{φ} t {ψ} whereφ and ψ are conditions andt the program fragment.

Whent andt ′ appear in sequence in a program, the proofs of{φ} t {ψ} and{φ′}t ′{ψ′} are then

combined to construct the proof of{φ}tt ′{ψ′}, until finally the whole program is proved. This

approach is calledprogram verification.

Also central to a full-fledged program reasoning framework is compositionality. We may

want to verify procedures or program fragments separately in order to simplify the whole proof

by avoiding redundant proofs. Program verification is naturally compositional, while program

analysis is not. In this section we also introduce compositional reasoning based on our proof

rules.

We argue that the difference between abstract interpretation, program verification, and com-

129

positional program reasoning is simply thelocationat which abstraction usingCUT rule is ap-

plied. In traditional abstract interpretation abstraction is applied everywhere while in automated

program verification the abstraction is done only at a point within each loop. Finally, in compo-

sitional reasoning abstraction is performed at procedure call points or fragment boundaries.

What enables the unifying of program analysis and verification in a single framework is the

view of of left unfold (LU) as computation ofstrongest postcondition, which we explain next.

5.8.1 Unfold as Strongest Postcondition Operator

We argue that in forward CLP models (explained in Section 3.1.3), an unfold step corresponds

to a strongest postcondition computation. The strongest postcondition of a conditions, denoted

sp(t,s) is the smallest set of states to which a transitionρt defined by the program fragmentt can

be taken from any state ins. More formally [19]:

sp(t,s) ≡ 〈∃x̃0 : ρt(x̃0, x̃)∧s{x̃ 7→ x̃0}〉.

The formulaρt(x̃0, x̃) can be decomposed into a disjunction

ρ1(x̃0, x̃)∨ . . .∨ρn(x̃0, x̃)

where each disjunct represents a logical input-output relation induced by an execution path from

the start to the end program point oft. Now, the forward CLP programΓ, excluding the constraint

fact representing the condition of interest, represents exactly the transition relationρt since it

consists ofn clausesκ1, . . . ,κn (excluding constraint factκn+1) where clauseκi , 1≤ i ≤ n is:

p(X̃0) :- p(X̃),ρi(X̃0, X̃),

whereX̃0 andX̃ are the renamings of ˜x0 andx̃ as CLP variables, respectively.

Now,

sp(t,s) ≡
n

_

i=1

〈∃x̃0 : ρi(x̃0, x̃)∧s{x̃ 7→ x̃0}〉.

Similarly,

unfoldp(X̃)(S) = {S′|
n+1
_

i=1

2 :- S′ = resolvp(X̃)(2 :- S,κi)}.

The subset ofunfoldp(X̃)(S) of goals that includep therefore corresponds tosp(t,s). The result

130

of resolution usingκn+1 (constraint fact) is a goalS′ which does not contain predicatep, hence

S′ does not represent program states.

Example 5.1. Let us revisit Program 3.1 whose transition relationρSumis given in Example 3.1

(Page 43), and whose forward CLP model is Program 3.3 (Page 49).

Here,sp(Sum, l = 0∧ x = 10∧ s = 2) = (l = 1∧ x = 10∧ s = 2∧ n > 10)∨ (l = Ω∧ x =

10∧s= 2∧n≤ 10). Now, there are two possible resolution steps of the goal2 :- p(0,10,2,N).

(κ11) using the clauses of Program 3.3, which does not result in success (2 :- 2). The first

resolution uses the clauseκ7 :

2 :- p(1,10,2,N),N > 10. κ13 = resolvp(0,10,2,N)(κ11,κ7).

The second resolution uses the clauseκ8 :

2 :- p(Ω,10,2,N),N ≤ 10. κ14 = resolvp(0,10,2,N)(κ11,κ8).

Each resolution corresponds to a disjunct insp(Sum, l = 0∧x = 10∧s= 2).

5.8.2 Intermittent Abstraction

In this section we present a way of engineering in our CLP framework into a general proof

method of program reasoning based on abstract interpretation in which the process of abstraction

is intermittent, that is, approximation is performed only at selected points in the proof tree, if at

all. This is an application of our theCUT rule in Figure 5.3. Here there is no restriction of when

abstraction is performed. The key advantages are the following two:

1. The abstract domain required to ensure convergence of thealgorithm can be minimized.

For example, to reason thatx = 2 after executing

x := 0

x := x+1

x := x+1

one needs to know thatx = 1 holds before the final assignment. Thus, in say apredicate

abstraction[80] setting, the abstract domain must contain the predicatesx = 0, x = 1 and

x = 2 for the above reasoning to be possible whereas in our framework it is enough to

131

use one predicatex = 0, which holds right after the execution of the first statement.From

our discussions in Section 5.8.1, we know that our frameworkis capable of computing the

strongest postcondition of the sequence ofx := x+ 1, which given the input condition

x = 0 isx = 2.

2. Computing the next abstract state in a transition can be expensive. When done naively, ab-

stract transition in a predicate abstraction framework requires exponential calls to theorem

prover [9, 80, 189].

We next show how we may perform abstract interpretation, in particular predicate abstraction,

possibly intermittently usingCUT rule.

Predicate abstraction [80] is a successful method of abstract interpretation [34]. The abstract

domain, constructed from a given finite set of predicates over program variables, is intuitive and

easily, though not necessarily efficiently, computable within a traversal method of the program’s

control flow structure. Predicate abstraction has been widely employed jointly with abstraction

refinement techniques [97, 11, 10].

In the literature on predicate abstraction, the abstract description is a specialized data struc-

ture calledmonomials[41], a.k.a. cubes[9]. The abstraction operation serves to propagate a

monomial through a small program fragment (a test or a contiguous group of assignments), and

then obtaining another monomial. The strength of this method is in the simplicity of using a

finite set of predicates over the fixed number of program variables as a basis for the abstract

description.

We choose to follow this method. However, our abstract description shall not be a distin-

guished data structure. In fact, our abstract description of a goal is itself a goal.

Given a finite number of propositionsϕ1, . . . ,ϕn, we may abstract a goalG≡ p(X̃),φ into the

goal p(X̃),ϕ′
1, . . . ,ϕ′

n where

ϕ′
i ≡

ϕi whenφ ⇒ ϕi

¬ϕi whenφ ⇒¬ϕi

¬2 otherwise

It is obvious that

p(X̃),φ |= p(X̃),ϕ′
1, . . . ,ϕ

′
n.

From an obligationp(X̃),φ |= H, theCUT rule would produce the two assertionsp(X̃),ϕ′
1, . . . ,ϕ′

n

|= H, and p(X̃),φ |= p(X̃),ϕ′
1, . . . ,ϕ′

n. Since the second assertion produced holds, theCUT rule

132

here in effect strengthensp(X̃),φ |= H, to p(X̃),ϕ′
1, . . . ,ϕ′

n |= H by weakening the lhs goal of the

assertion.

Example 5.2. The intermittent (predicate) abstraction technique has actually been exemplified

in the proof of the Sum program in Section 5.5. We refer to the detailed proof in Figure 5.7. Using

CUT we strengthened the assertion 1 into assertion 2 by proving at the side the subsumption 2s.1

and the residual obligation 2r.1. In 2s.1,ψ ≡ X = 0,S= 0,N ≥ 0, ϕ1 ≡ S= (X2−X)/2, ϕ2 ≡

X ≤ N, andϕ3 ≡ N ≥ 0. It is important to note that here the abstraction is applied intermittently,

that is, only at the assertion whose lhs goal represents the condition at program point〈0〉.

5.8.3 Program Verification

In this section we demonstrate how our proof method also provides a verification condition com-

putation mechanism in the context of program verification. Program verification was introduced

by Hoare in [100], which he attributed to Floyd. In [100] it isqualified asaxiomaticbecause of

the symbolic treatment of conditions which are constraintsdepending on the axioms of the under-

lying theory. In this method, given a sequential program fragmentt which is any statementStmt

in our simple programming language of Figure 3.1, or any sequential composition of statements

calledblocks, we provetriples of the form{φ} t {ψ}. The triple says that if the execution starts

in a states wheres⇒ φ, then if the execution oft terminates, we reach a states′ wheres′ ⇒ ψ.

φ is called thepreconditionandψ thepostcondition. The triple denotes apartial correctness of

the fragmentt since it may still hold independent on whethert actually terminates or not. There

is a stronger notion of correctness, which is that oftotal correctness where we also require that

t terminates. However, this belongs to the class of liveness properties which is outside the scope

of this thesis.

The program verification approach includes a number of proofrules to infer the triples. For

our simple programming language they are shown in Figure 5.12. Program verification only

handles structured program such that we exclude the consideration forgotos.

Being able to perform program verification distinguishes our framework from normal abstract

interpretation. In a normal abstract interpretation framework, it is not easy to provide a simple

abstraction that would be equivalent or close approximation of loop invariants. This is because

the abstraction applies at every condition or state of a program. In contrast, in our framework,

abstraction can be applied intermittently (Section 5.8.2)such that we can apply loop invariants

133

(COMPOSITION)
{φ} t1 {η} {η} t2 {ψ}

{φ} t1 t2 {ψ}

(ASSIGNMENT)
{ψ{x 7→ E}} x := E {ψ}

(SKIP)
{φ} skip {φ}

(IF1)
{φ∧β} t {ψ} φ∧¬β ⇒ ψ
{φ} if (β) then t end if {ψ}

(IF2)
{φ∧β} t1 {ψ} {φ∧¬β} t2 {ψ}

{φ} if (β) then t1 else t2 end if {ψ}

(WHILE)
{φ∧β} t {φ}

{φ} while (β) do t end do{φ∧¬β}

(IMPLIED)
φ′ ⇒ φ {φ} t {ψ} ψ ⇒ ψ′

{φ′} t {ψ′}

Figure 5.12: Program Verification Proof Rules

to generalize the context of a loop at the program point at which the loop is located. When

the user provides all the loop invariants necessary for the program, the proof process terminates

automatically.

We now discuss how we may accommodate program verification inour framework. We as-

sume that a sequential programPhas been translated into CLP, and we want to verify{φP}P{ψP}.

Here we consider proving{φ} t {ψ} compositionally, under various cases oft, wheret is a frag-

ment ofP. We make use ofLU, CUT, andAP rules.

Caset is:

• A sequential compositiont1 t2. According to theCOMPOSITIONrule (Figure 5.12), we

provide a conditionη and we prove separately{φ} t1 {η} and{η} t2 {ψ}.

Suppose thatt1 starts at program point〈l〉, t2 at 〈l ′〉, and the program point right aftert2 is

〈l ′′〉. We start with an obligation

p(l , X̃, X̃f),φ(X̃) |= ψP(X̃f).

We apply our proof rules according to the statements int1, stopping upon producing obli-

134

gations of the form

p(l ′, X̃, X̃f),η(X̃) |= ψP(X̃f).

This is a proof of{φ} t1 {η}.

We then start with applying our rules to the last assertion, stopping upon producing obli-

gations of the form

p(l ′, X̃, X̃f),ψ(X̃) |= ψP(X̃f).

Here we claim that we have established{η} t2 {ψ}.

• An assignment.Suppose that we haven program variablesx1, . . . ,xn and we want to prove

{φ} t {ψ}. wheret is the sequence the single statementxi := f (x̃) for somei such that

1≤ i ≤ n. Heret1 represents the transition relationτ(x̃, x̃′) ≡ x′i = f (x̃)∧
V

j 6=i x
′
j = x j . By

a translation of the programP into a forward CLP model with final variables, we have the

following CLP clause:

p(l , X̃, X̃f) :- τ(X̃, X̃′), p(next label(l), X̃′, X̃f).

Assumingt is located at program point〈l〉, here we again start with the obligation

p(l , X̃, X̃f),φ(X̃) |= ψP(X̃f).

We applyLU to this obligation using the above CLP clause obtaining the obligation

p(next label(l), X̃′, X̃f),τ(X̃, X̃′),φ(X̃) |= ψP(X̃f).

Here what we have done is a strongest postcondition propagation establishing{φ} t {sp(t,φ)}.

Sincesp(t,φ){xi 7→ f (x̃)} is equivalent toφ, this corresponds to the use of theASSIGN-

MENT axiom of Figure 5.12.

In casesp(t,φ) is not (trivially) equivalent toψ, we still need to useIMPLICATION rule of

Figure 5.12, to establish{φ} t {ψ} by proving, as an obligation,sp(t,φ) ⇒ ψ. Here we

applyCUT rule to the last obligation above obtaining

p(next label(l), X̃′, X̃f),ψ(X̃′) |= ψP(X̃f).

135

The side condition of theCUT rule requires us to prove the subsumption

p(next label(l), X̃′, X̃f),τ(X̃, X̃′),φ(X̃) |= p(next label(l), X̃′, X̃f),ψ(X̃′).

We prove this in a special way by proving

τ(X̃, X̃′),φ(X̃) ⇒ ψ(X̃′),

which is indeed the very proof ofsp(t,φ)⇒ ψ. Other than the subsumption, we also prove

the trivial residual obligationψP(X̃f) |= ψP(X̃f).

• A skip. In caset is skip, it represents the transition relationτ(x̃, x̃′)≡ x̃= x̃′. Assuming the

statement is located at program point〈l〉, we have in the forward CLP model the clause

p(l , X̃, X̃f) :- p(next label(l), X̃, X̃f).

We apply theLU rule using the above clause to the obligation

p(l , X̃, X̃f),φ(X̃) |= ψP(X̃f)

obtaining the new obligation

p(next label(l), X̃, X̃f),φ(X̃) |= ψP(X̃f).

This process is equivalent to the application of theSKIP axiom of Figure 5.12.

In caseφ is not trivially equivalent toψ, we need to apply theIMPLICATION rule of Figure

5.12 to proveφ ⇒ ψ. This is done in our framework by applying theCUT rule to the last

obligation obtaining the new obligation

p(next label(l), X̃, X̃f),ψ(X̃) |= ψP(X̃f).

The application ofCUT requires us to prove the subsumption

p(next label(l), X̃, X̃f),φ(X̃) |= p(next label(l), X̃, X̃f),ψ(X̃).

136

This we may prove by instead proving the sufficient conditionφ(X̃) ⇒ ψ(X̃), which is

exactly the proving ofφ ⇒ ψ mentioned above. The residual obligation here is trivial.

• An if conditional without else part. In caset is if (β) then t1 end if , according to the

IF1 rule of Figure 5.12, we need to prove separately{φ∧β} t1 {η} andφ∧¬β ⇒ η.

Assumingt starts at program point〈l〉, we have in our CLP model ofP the clauses

p(l , X̃, X̃f) :- β(X̃), p(next label then(l), X̃, X̃f).

p(l , X̃, X̃f) :- ¬β(X̃), p(next label(l), X̃, X̃f).

We start the verification again with the obligation

p(l , X̃, X̃f),φ(X̃) |= ψP(X̃f).

We apply a complete left unfoldLU using the two clauses of CLP above resulting in the

following two obligations:

p(next label then(l), X̃, X̃f),φ(X̃),β(X̃) |= ψP(X̃f).

p(next label(l), X̃, X̃f),φ(X̃),¬β(X̃) |= ψP(X̃f).

Here we assume that we proved{φ∧β} t1 {ψ} using our rules, which means that there is

an application of our proof rules which transforms the first obligation into

p(next label(l), X̃, X̃f),ψ(X̃) |= ψP(X̃f).

For the second obligation above, we applyCUT rule obtaining the same obligation. The

application ofCUT rule requires us to prove the subsumption

p(next label(l), X̃, X̃f),φ(X̃),¬β(X̃) |= p(next label(l), X̃, X̃f),ψ(X̃).

This we establish by proving the sufficient condition

φ(X̃),¬β(X̃) ⇒ ψ(X̃),

which indeed is the proof ofφ∧¬β ⇒ ψ. The residual obligation here is again trivial.

137

• An if conditional with else part. In caset is if (β) then t1 else t2 end if then ac-

cording to theIF2 rule of Figure 5.12 we replace the obligation with the proof of both the

obligations{φ∧β} t1 {ψ} and{φ∧¬β} t2 {ψ}.

Again, assumingt starts at program point〈l〉, we have in our CLP model ofP the clauses

p(l , X̃, X̃f) :- β(X̃), p(next label then(l), X̃, X̃f).

p(l , X̃, X̃f) :- ¬β(X̃), p(next label else(l), X̃, X̃f).

We start the verification again with the obligation

p(l , X̃, X̃f),φ(X̃) |= ψP(X̃f).

We apply a complete left unfoldLU using the two clauses of CLP above resulting in the

following two obligations:

p(next label then(l), X̃, X̃f),φ(X̃),β(X̃) |= ψP(X̃f).

p(next label else(l), X̃, X̃f),φ(X̃),¬β(X̃) |= ψP(X̃f).

Here we assume that we proved both{φ∧β} t1 {ψ} and{φ∧¬β} t2 {ψ} using our rules,

which means that there is an application of our proof rules which transforms the both

obligations into the single obligation

p(next label(l), X̃, X̃f),ψ(X̃) |= ψP(X̃f).

Hence we have applied program verification rules to prove{φ} t {ψ}.

• A while loop. Sayt is of the syntaxwhile (β) do t1 end do. We therefore want to establish

{φ} while (β) do t1 end do {ψ}. Here we require aloop invariant, which isφ itself in the

WHILE rule of Figure 5.12. However, in general we may fail to prove{φ∧β} t1 {φ}. We

therefore allow the user to manually provide a loop invariant ξ whereφ ⇒ ξ.

To provide a loop invariant, we require the application ofIMPLICATION rule, such that we

decompose the original obligation into the three obligations

1. φ ⇒ ξ,

2. {ξ} t {ξ∧¬β}, and

138

3. ξ∧¬β ⇒ ψ.

Again we assume thatt is located at program point〈l〉. In our framework, we start the

proof with an obligation

p(l , X̃, X̃f),φ(X̃) |= ψP(X̃f).

We first applyCUT rule to this condition to obtain the new obligation

p(l , X̃, X̃f),ξ(X̃) |= ψP(X̃f).

Here we prove at the sideφ(X̃) ⇒ ξ(X̃) which is the sufficient condition for subsumption,

establishing verification obligation 1 above. The residualobligation for this application of

CUT is trivial: ψP(X̃f) |= ψP(X̃f).

By the translation ofP into a forward CLP model, we have the following CLP clauses:

p(l , X̃, X̃f) :- β(X̃), p(next label then(l), X̃, X̃f).

p(l , X̃, X̃f) :- ¬β(X̃), p(next label(l), X̃, X̃f).

We then unfold our last obligation completely using these clauses obtaining the obligations

a. p(next label then(l), X̃, X̃f),ξ(X̃),β(X̃) |= ψP(X̃f).

b. p(next label(l), X̃, X̃f),ξ(X̃),¬β(X̃) |= ψP(X̃f).

It is important to note that here, since we have applied a leftunfold, the “ancestor” assertion

p(l , X̃, X̃f),ξ(X̃) |= ψP(X̃f) is now kept in the table.

Further, we assume that we proved{ξ∧β} t1 {ξ} by IMPLICATION rule, where we proved

separately{ξ∧ β} t1 {α} andα ⇒ ξ for someα. Here we assume that we have proved

{ξ∧β} t1 {α}.

Also sincet1 is a loop body, the next program point of its last statement is〈l〉. From these,

we may replace the obligation (a) above with

p(l , X̃, X̃f),α(X̃) |= ψP(X̃f). (5.5)

By the previous application ofLU, here the table contains the assertionp(l , X̃, X̃f),ξ(X̃) |=

ψP(X̃f). We use this assertion to prove (5.5) by an application ofAP. In this proof, we are

139

required to prove both the subsumption and the residual obligation. The residual obligation

in this case isψP(X̃f) |= ψP(X̃f) and is trivial. The subsumption here is the obligation

p(l , X̃, X̃f),α(X̃) |= p(l , X̃, X̃f),ξ(X̃).

This holds when we prove the sufficient conditionα(X̃) ⇒ ξ(X̃), which is one of the

premises of theIMPLICATION rule mentioned above.

For obligation (b), we apply theCUT rule to it obtaining the new obligation

p(next label(l), X̃, X̃f),ψ(X̃) |= ψP(X̃f).

Here we prove the sufficient conditionξ(X̃)∧¬β(X̃)⇒ψ(X̃) of the subsumption, which is

the proof of the program verification obligation no. 3 above.Again the residual obligation

here isψP(X̃f) |= ψP(X̃f), which is trivial.

We note that in our framework, when provingP using program verification technique we

would eventually encounter obligations of the form

p(Ω, X̃, X̃f),ψP(X̃) |= ψP(X̃f).

that is, when the left unfolds reach the end of the program. Byour translation ofP into forward

CLP model, we have the constraint fact

p(Ω, X̃, X̃).

Unfolding using this fact results in the obligationψP(X̃) |= ψP(X̃) which immediately holds.

Note that what we require as ingredients of a verification system with automated condition

generation based on strongest postcondition are the rulesLU, AP, and applications ofCUT at

fragment boundaries treated in Figure 5.12. Both the intermittent abstraction approach (Section

5.8.2) and program verification approach presented here areaccommodated by our overall algo-

rithm to be presented in Chapter 6. The key is the specification of abstraction points by the user

at which to apply theCUT rule.

140

Example 5.3. We apply program verification technique to the verification of the Sum problem

in Example 5.1 (Page 131). A proof using our rules has been provided in Figure 5.7 (Page 122).

The proof can be considered to have used intermittent abstraction (Example 5.2 on Page 5.2).

Here we argue that it is also a program verification proof.

Notice that here we prove a while loop:

{x = s= 0,n≥ 0}

〈0〉 while (x < n) do

〈1〉 s := s+x

〈2〉 x := x+1

end do

{s= (n2−n)/2}

Using theIMPLICATION rule we provex = s= 0,n≥ 0⇒ s= (x2−x)/2,x≤ n,n≥ 0 and

{s= (x2−x)/2,x≤ n,n≥ 0}

〈0〉 while (x < n) do

〈1〉 s := s+x

〈2〉 x := x+1

end do

{s= (n2−n)/2}

This corresponds to the application ofCUT to obligation 1 which produces obligation 2 in Figure

5.7.

We now apply theWHILE rule of program verification obtaining the two obligations

{s= (x2−x)/2,x < n,n≥ 0}

〈1〉 s := s+x

〈2〉 x := x+1

{s= (x2−x)/2,x≤ n,n≥ 0}

(5.6)

and

s= (x2−x)/2,x = n,n≥ 0⇒ s= (n2−n)/2. (5.7)

The second obligation obviously holds, and this corresponds to the proof of obligation 4 in Figure

141

5.7. Note that here we deviate from what has been suggested toprove a while conditional in that

we do not use theCUT rule. Nevertheless we still prove the same obligation (5.7).

To prove (5.6) we perform strongest postcondition computation across the two statements.

According to our program verification technique, here we prove that

{s= (x2−x)/2,x < n,n≥ 0}

〈1〉 s := s+x

〈2〉 x := x+1

{α}

andα ⇒ s= (x2−x)/2,x≤ n,n≥ 0 for someα. Hereα is the strongest postcondition across the

two statements, which iss= (x2−x)/2,x≤ n,n≥ 0. Henceα ⇒ s= (x2−x)/2,x≤ n,n≥ 0 is

immediate.

In Figure 5.7 we perform two left unfold steps from 3b to 6, andthen from 6 to 7, which

correspond to the strongest postcondition computation across the two statements (note that un-

folding corresponds to strongest postcondition, as has been discussed in Section 5.8.1). We then

apply theAP rule whose subsumption test establishesα ⇒ s= (x2−x)/2,x≤ n,n≥ 0.

5.8.4 Compositional Program Reasoning

Our CUT rule also allows us to perform compositional verification. Here we can prove program

fragments or procedures separately and combine the verification results at the end.

Let us now verify the multiprocedure Program 3.12 with its CLP model Program 3.13. Ac-

cording to [179] (from which the example is taken) here we want to demonstrate that at program

point〈2〉 in themainprocedure, the assignmentt := a×b is not necessary since at〈2〉 the relation

t = a×b always holds. The property that at〈2〉 in main the relationt = a×b can be expressed

as the assertion

main(0,T,A,B,Tf ,Af ,Bf) |= Tf = Af ×Bf . (5.8)

To prove the above assertion, there are two methods that we can use. The first, non-composit-

ional method is to applyLU as usual until we can establish an assertion either via application other

rules (mainlyDP or AP). The second alternative is to prove the assertion compositionally since

the program has a compositional structure. This is done by first by proving an assertion on the

procedurep and then using this assertion we prove (5.8).

142

1 p(0,T,A,B,Tf ,Af ,Bf),T = A×B |= Tf = Af ×Bf

2a p(1,T,A,B,Tf ,Af ,Bf),T = A×B,A = 0 |= Tf = Af ×Bf LU 1
2b p(2,T,A,B,Tf ,Af ,Bf),T = A×B,A 6= 0 |= Tf = Af ×Bf LU 1
3 p(Ω,T,A,B,Tf ,Af ,Bf),T = A×B,A = 0 |= Tf = Af ×Bf LU 2a
4 Tf = Af ×Bf ,Af = 0 |= Tf = Af ×Bf LU 3
5 ¬2 DP 4
6 p(3,T,A−1,B,Tf ,Af ,Bf),T = A×B,A 6= 0 |= Tf = Af ×Bf LU 2b
7 p(0,T,A−1,B,T ′,A′,B′), p(4,T ′,A′,B′,Tf ,Af ,Bf),T = A×B,A 6= 0

|= Tf = Af ×Bf LU 6
8 p(0,T,A−1,B,T ′,A′,B′), p(Ω,T ′′,A′,B′,Tf ,Af ,Bf),T ′′ = A′×B′,

T = A×B,A 6= 0 |= Tf = Af ×Bf LU 7
9 p(0,T,A−1,B,T ′,Af ,Bf),Tf = Af ×Bf ,T = A×B,A 6= 0 |= Tf = Af ×Bf LU 8

10 ¬2 DP 9

1 main(0,T,A,B,Tf ,Af ,Bf) |= Tf = Af ×Bf

2 main(1,T ′,A,B,Tf ,Af ,Bf),T ′ = A×B |= Tf = Af ×Bf LU 1
3 p(0,T ′,A,B,T ′′,A′,B′),main(2,T ′′,A′,B′,Tf ,Af ,Bf),T ′ = A×B

|= Tf = Af ×Bf LU 2
4 main(2,T ′′,A′,B′,Tf ,Af ,Bf),T ′′ = A′×B′ |= Tf = Af ×Bf CUT 3
5 Tf = Af ×Bf |= Tf = Af ×Bf LU 4
6 ¬2 DP 5

Figure 5.13: Compositional Proof of Sharir-Pnueli’s Example

Here we demonstrate the compositional proof. We first prove the following assertion on the

procedurep :

p(0,T,A,B,Tf ,Af ,Bf)T = A×B |= Tf = Af ×Bf . (5.9)

We use this assertion in the proof of (5.8).

The complete compositional proof of (5.8) is shown in Figure5.13. In assertion (3) in the

proof of (5.8), we use the assertion (5.9) to establish the validity of the CUT application.

Compositional proof is not applicable only to multiprocedure programs. In a normal pro-

grams, we may want to prove program fragments separately. Inexplaining this, we introduce

again a new example Program 5.2, whose forward CLP model is Program 5.3. We can imagine

this program to be divided into two fragments: The first fragment consists of statements from〈0〉

to 〈3〉, and the second fragment consists of statements from〈4〉 to Ω.

For the proof of the whole program, we may prove each fragments separately. This compo-

sitional proof is shown in Figure 5.14, where we prove

p(0,X,A,B,C,Xf),X > 0 |= Xf > 0. (5.10)

143

〈0〉 if (a = 1) then
〈1〉 skip

end if
〈2〉 if (b = 1) then
〈3〉 c := 0

end if
〈4〉 if (c = 1) then
〈5〉 x := x+1

end if

Program 5.2: Simple If Sequence Program

p(0,X,A,B,C,Xf) :- p(1,X,A,B,C,Xf),A = 1.
p(0,X,A,B,C,Xf) :- p(2,X,A,B,C,Xf),A 6= 1.
p(1,X,A,B,C,Xf) :- p(2,X,A,B,C,Xf).
p(2,X,A,B,C,Xf) :- p(3,X,A,B,C,Xf),B = 1.
p(2,X,A,B,C,Xf) :- p(4,X,A,B,C,Xf),B 6= 1.
p(3,X,A,B,C,Xf) :- p(4,X,A,B,0,Xf).
p(4,X,A,B,C,Xf) :- p(5,X,A,B,C,Xf),C = 1.
p(4,X,A,B,C,Xf) :- p(Ω,X,A,B,C,Xf),C 6= 1.
p(5,X,A,B,C,Xf) :- p(Ω,X +1,A,B,C,Xf).
p(Ω,X,A,B,C,X).

Program 5.3: Simple If Sequence Program CLP Model

In Figure 5.14, we first establish

p(4,X,A,B,C,Xf),X > 0 |= Xf > 0.

This we use in the proof of (5.10) to establish the validity ofthe CUT applications. It is easy to

see that non-compositional proofs would be larger since assertions (5), (4b), (11), and (10b) in

the proof of (5.10) would have been expanded into subtrees.

We can explain on why the proof becomes smaller compositionally, if we see our composi-

tional proof here as performing an intermittent abstraction at program point〈4〉. Whenever〈4〉

is visited in the proof of (5.10) in Figure 5.14, we abstract (5), (4b), (11), and (10b) usingCUT

into p(4,X,A,B,C,Xf),X > 0 |= Xf > 0, hence the three assertions (4b), (11), and (10b) are just

redundant to (5).

144

1 p(4,X,A,B,C,Xf),X > 0 |= Xf > 0
2a p(5,X,A,B,C,Xf),C = 1,X > 0 |= Xf > 0 LU 1
2b p(Ω,X,A,B,C,Xf),C = 0,X > 0 |= Xf > 0 LU 1
3 p(Ω,X +1,A,B,C,Xf),C = 1,X > 0 |= Xf > 0 LU 2a
4 Xf = X +1,C = 1,X > 0 |= Xf > 0 LU 3
5 ¬2 DP 4
6 X = Xf ,C = 0,X > 0 |= Xf > 0 LU 2b
7 ¬2 DP 6

1 p(0,X,A,B,C,Xf),X > 0 |= Xf > 0
2a p(1,X,A,B,C,Xf),A = 1,X > 0 |= Xf > 0 LU 1
2b p(2,X,A,B,C,Xf),A = 0,X > 0 |= Xf > 0 LU 1
3 p(2,X,A,B,C,Xf),A = 1,X > 0 |= Xf > 0 LU 2a

4a p(3,X,A,B,C,Xf),A = 1,B = 1,X > 0 |= Xf > 0 LU 3
4b p(4,X,A,B,C,Xf),A = 1,B = 0,X > 0 |= Xf > 0 LU 3
5 p(4,X,A,B,0,Xf),A = 1,B = 1,X > 0 |= Xf > 0 LU 4a
6 Xf > 0,A = 1,B = 1,X > 0 |= Xf > 0 CUT 5
7 ¬2 DP 6
8 Xf > 0,A = 1,B = 0,X > 0 |= Xf > 0 CUT 4b
9 ¬2 DP 8

10a p(3,X,A,B,C,Xf),A = 0,B = 1,X > 0 |= Xf > 0 LU 2b
10b p(4,X,A,B,C,Xf),A = 0,B = 0,X > 0 |= Xf > 0 LU 2b
11 p(4,X,A,B,0,Xf),A = 0,B = 1,X > 0 |= Xf > 0 LU 10a
12 Xf > 0,A = 0,B = 1,X > 0 |= Xf > 0 CUT 11
13 ¬2 DP 12
14 Xf > 0,A = 0,B = 0,X > 0 |= Xf > 0 CUT 10b
15 ¬2 DP 14

Figure 5.14: Compositional Proof of Simple If Sequence Program

5.9 Verification of Recursive Data Structures

As discussed in Chapter 4, our assertionG |= H allowsG andH to include any predicate defined

in a CLP program. Here we deal with how we may prove assertionsstating properties concerning

recursive data structures, which we have presented in Section 4.4.

5.9.1 Proving Basic Constraints

In this paper, we assume the existence of a constraint solverwhich can reason about integer

constraints. Recall however, that we also have array elements as integer terms, and so we describe

here a straightforward method of translating an integer constraint containing array expressions

into an equivalent one that does not.

Suppose the goalG at hand contains an array element with a composite array expression, say

145

〈H, I ,J〉[K]. We then rewriteG into

G〈H, I ,J〉[K] 7→ J whenG⇒ I = K, and

G〈H, I ,J〉[K] 7→ H[K] whenG⇒ I 6= K
(5.11)

These rules are due to McCarthy’s array axioms [139]. In somecases, we cannot determine

whetherG⇒ I = K or G⇒ I 6= K, in which case we leave the expression〈H, I ,J〉[K] in G as is.

Whenever〈H, I ,J〉[K] is rewritten intoH[K], further it can be treated as regular integer variable.

Another useful rule when proving a goalG containing array expression is

(G⇒ I = J) ⇒ H[I] = H[J]. (5.12)

Of course, even in this case we may not always know whetherG⇒ I = J. We call both simplifi-

cations of (5.11) and (5.12) asarray index principle(AIP) simplification.

At first, it seems hopeless to be able to reason about goals containing array update and ref-

erences efficiently. Fortunately, in most cases, whenever〈H, I ,J〉[K] is encountered, it is known

whetherI = K or I 6= K, and usually whenever two distinct expressionsH[I] andH[J] are en-

countered, it is known whetherI = J or I 6= J.

We now present another inference rule which, though not formally required, is very useful

in practice. The idea is that when an assertion predicate describes a heap and one or more con-

stituent data structures, that changes to the heap outside the reachable cells of the data structures

are irrelevant.

Suppose the assertion predicate at hand is of the form:a(H,X), whereX is the address of a

root node (e.g., head of a linked list) of a data structure on aheapH. Theseparation principle

(SEP) states that

a(〈H, I ,J〉,X) ≡ a(H,X)

whenno share(H,X, I) holds. Recall from Section 4.4 thatno share(H,X, I) declares the sepa-

ration of the data structure rooted atX andI .

This principle, while clearly cannot be a priori guaranteedfor an arbitrary user-defined pred-

icatea, generally holds in most cases. In fact, we discover its instances for all data structure

verification examples that we have considered so far. The practical use of this principle is to

immediately simplify array expressions〈H, I ,J〉 into H. The use of this principle can sometimes

be avoided, such as in the proof in the next section.

146

1 p(0,H,P,H f ,Pf),P 6= 0,P = P0 |= allz(H,P0,?Last,H f),Pf = H f [?Last+1],Pf = 0
2 p(1,H,P,H f ,Pf),P 6= 0,P = P0

|= allz(H,P0,?Last,H f),Pf = H f [?Last+1],Pf = 0 LU 1
3 p(2,H ′,P,H f ,Pf),P 6= 0,P = P0,H ′ = 〈H,P,0〉

|= allz(H,P0,?Last,H f),Pf = H f [?Last+1],Pf = 0 LU 2
4 p(2,H ′,P,H f ,Pf),allz(H,P0,P,H ′)

|= allz(H,P0,?Last,H f),Pf = H f [?Last+1],Pf = 0 CUT 3
5 p(0,H ′,P′,H f ,Pf),allz(H,P0,P,H ′),P′ = H ′[P+1]

|= allz(H,P0,?Last,H f),Pf = H f [?Last+1],Pf = 0 LU 4
6a p(Ω,H ′,P′,H f ,Pf),allz(H,P0,P,H ′),P′ = H ′[P+1],P′ = 0

|= allz(H,P0,?Last,H f),Pf = H f [?Last+1],Pf = 0 LU 5
6b p(1,H ′,P′,H f ,Pf),allz(H,P0,P,H ′),P′ = H ′[P+1],P′ 6= 0

|= allz(H,P0,?Last,H f),Pf = H f [?Last+1],Pf = 0 LU 5
7 H ′ = H f ,P′ = Pf ,allz(H,P0,P,H ′),P′ = H ′[P+1],P′ = 0

|= allz(H,P0,?Last,H f),Pf = H f [?Last+1],Pf = 0 LU 6a
8 ¬2 DP 7 {Last 7→ P}
9 p(2,H ′′,P′,H f ,Pf),allz(H,P0,P,H ′),P′ = H ′[P+1],P′ 6= 0,

H ′′ = 〈H ′,P′,0〉
|= allz(H,P0,?Last,H f),Pf = H f [?Last+1],Pf = 0 LU 6b

10 ¬2 AP 4,9

Figure 5.15: Proof of List Reset Program

5.9.2 Handling Different Recursions: Linked List Reset

Now let us re-visit Program 3.7 and its CLP model Program 3.8 discussed in Section 3.1.6, We

now prove assertion (4.2) we give in Section 4.4:

p(0,H,P,H f ,Pf),P 6= 0 |= allz(H,P,?Last,H f),H[?Last+1] = Pf ,Pf = 0, (5.13)

using the definition ofallz (4.3). The assertion states that at the end of the program’s execution,

the list has been converted to one whose values have been assigned 0.

We give the proof of Program 3.7 in Figure 5.15. We applyAP at 10, which requires the

proof of subsumption which is provided in Figure 5.16 and theproof of the residual obligation in

Figure 5.17. The proof in Figure 5.15 has a similar structurewith the proof of the Sum program

in Section 5.5. The main difference being the use of recursive predicates, in this caseallz, in the

assertions.

We note that the assertion (5.13) can be equivalently written as

p(0,H,P,H f ,Pf),P 6= 0,P = P0 |= allz(H,P0,?Last,H f),H[?Last+1] = Pf ,Pf = 0,

147

10s.1 allz(H,P0,P,H ′),P′ = H ′[P+1],P′ 6= 0,H ′′ = 〈H ′,P′,0〉
|= allz(H,P0,P′,H ′′)

10s.1′ allz(H,P0,P,H ′),H ′[P+1] 6= 0
|= allz(H,P0,H ′[P+1],〈H ′,H ′[P+1],0〉) Simplified 10s.1

10s.2a allz(H,H[P0 +1],P,H1),H ′ = 〈H1,P0,0〉,P0 6= 0,H ′[P+1] 6= 0
|= allz(H,P0,H ′[P+1],〈H ′,H ′[P+1],0〉) LU 10s.1′

10s.2b H ′ = 〈H,P0,0〉,P0 = P,P0 6= 0,H ′[P+1] 6= 0
|= allz(H,P0,H ′[P+1],〈H ′,H ′[P+1],0〉) LU 10s.1′

10s.2a′ allz(H,H[P0 +1],P,H1),H1[P+1] 6= 0,P0 6= 0
|= allz(H,P0,H1[P+1],〈〈H1,P,0〉,H1[P+1],0〉) Simplified 10s.2a

10s.3 ¬2 AP 10s.1′,10s.2a′

10s.2b′ P0 6= 0,H[P0 +1] 6= 0
|= allz(H,P0,H[P0 +1],〈〈H,P0,0〉,H[P0 +1],0〉) Simplified 10s.2b

10s.4 P0 6= 0,H[P0 +1] 6= 0
|= allz(H,H[P0 +1],H[P0 +1],?H1),P0 6= 0,

〈?H1,P0,0〉 = 〈〈H,P0,0〉,H[P0 +1],0〉 RU 10s.2b′

10s.5 P0 6= 0,H[P0 +1] 6= 0
|= P0 6= 0,H[P0 +1] 6= 0,

〈〈H,H[P0 +1],0〉,P0,0〉 = 〈〈H,P0,0〉,H[P0 +1],0〉 RU 10s.4
10s.6 ¬2 DP 10s.5

10s.3s.1 allz(H,H[P0 +1],P,H1),H1[P+1] 6= 0,P0 6= 0
|= allz(H,H[P0 +1],P,H1),H1[P+1] 6= 0 AP 10s.1′,10s.2a′

10s.3s.2 ¬2 DP 10s.3s.1

10s.3r.1 allz(H,H[P0 +1],H1[P+1],〈H1,H1[P+1],0〉),P0 6= 0
|= allz(H,P0,H1[P+1],〈〈H1,P0,0〉,H1[P+1],0〉) AP 10s.1′,10s.2a′

10s.3r.2 allz(H,H[P0 +1],H1[P+1],〈H1,H1[P+1],0〉),P0 6= 0
|= allz(H,H[P0 +1],H1[P+1],?H2),P0 6= 0,

〈〈H1,P0,0〉,H1[P+1],0〉 = 〈?H2,P0,0〉 RU 10s.3r.1
10s.3r.3 ¬2 DP 10s.3r.2{H2 7→ 〈H1,H1[P+1],0〉}

Figure 5.16: Proof of Subsumption in List Reset Proof

using a new variableP0 which conceptually represents the address of the first node of the list.

This is the obligation 1 of Figure 5.15.

Program 3.7 has a while loop, and so as in the proof of Sum,CUT is used for generalizing

the lhs of obligation 3 into a loop invariant (in obligation 4). Here, the subsumption test for the

application ofCUT is the following (the residual obligation trivially holds):

p(2,H ′,P,H f ,Pf),P = P0,H
′ = 〈H,P,0〉 |= p(2,H ′,P,H f ,Pf),allz(H,P0,P,H1).

This subsumption test includes the recursive predicateallz. This obligation is easily established

by right unfolding using the ruleRU and the first clause ofallz. The proof is shown in Figure

148

10r.1 allz(H,P0,Y,H f),Pf = H f [Y+1],Pf = 0,
allz(H,P0,P,H ′),P′ = H ′[P+1],P′ 6= 0,H ′′ = 〈H ′,P′,0〉
|= allz(H,P0,?Last,H f),Pf = H f [?Last+1],Pf = 0 AP 4,9

10r.2 ¬2 DP 10r.1{Last 7→Y}

Figure 5.17: Proof of Residual Obligation in List Reset Proof

4.1 p(2,H ′,P,H f ,Pf),P 6= 0,P = P0,H ′ = 〈H,P,0〉
|= p(2,H ′,P,H f ,Pf),allz(H,P0,P,H ′) CUT 4

4.1′ p(2,H ′,P,H f ,Pf),P 6= 0
|= p(2,H ′,P,H f ,Pf),allz(H,P,P,〈H,P,0〉) Simplified 4.1

4.2 p(2,H ′,P,H f ,Pf),P 6= 0
|= p(2,H ′,P,H f ,Pf),P 6= 0 RU 4.1′

4.3 ¬2 DP 4.2

Figure 5.18: Proof of CUT Condition in List Reset Proof

5.18.

Here we notice that each iteration of the loop changes the distance between the pointerP and

the headP0 of the original list. The generalization into the lhs atomallz(H,P0,P,H ′) in obligation

4 represents the relationship betweenP andP0 in any iteration throughout the execution of the

loop.

Now we continue the proof of obligation 4 of Figure 5.15. Further left unfolds will result in

branching into two obligations, one represents the exit andreaching of the final program pointΩ

(obligation 6a), while the other represents the re-entry ofthe loop (obligation 6b).

From 6b we obtain obligation 9 through a left unfolding step.We prove 9 by applying 4 as

an induction hypothesis via theAP rule. ForAP to be applicable, one of the requirement is for us

to prove the following subsumption test:

allz(H,P0,P,H
′),P′ = H ′[P+1],P′ 6= 0,H ′′ = 〈H ′,P′,0〉 |= allz(H,P0,P

′,H ′′).

This assertion proves the actual invariance of the loop invariant which has been used to strengthen

obligation 3 into obligation 4 usingCUT. The proof of this assertion is shown in Figure 5.16.

We note that we have used Program 4.3 as the definition ofallz in Figure 5.16. Program

proofs about assertions that are specified recursively usually require that the program fragment

behaves in tandem with the recursive formulation. That is, the program fragment increments the

data structure in the manner specified in the assertion for incrementally larger data structures.

149

D.1 reverse(H0, I0, I ,H,J),alist(H,J),alist(H, I),no share(H,J, I),
I 6= 0,H ′ = 〈H, I +1,J〉, I ′ = H[I +1],J′ = I

|= no share(H ′,J′, I ′)
D.1′ reverse(H0, I0, I ,H,J),alist(H,J),alist(H, I),no share(H,J, I), I 6= 0

|= no share(〈H, I +1,J〉, I ,H[I +1]) Simplified D.1
D.2 reverse(H0, I0, I ,H,J),alist(H,J),alist(H,H[I +1]),no reach(H, I ,H[I +1]),

no share(H,J, I), I 6= 0
|= no share(〈H, I +1,J〉, I ,H[I +1]) LU D.1′

D.3 reverse(H0, I0, I ,H,J),alist(H,J),alist(H,H[I +1]),no reach(H, I ,H[I +1]),
no share(H,J, I), I 6= 0

|= no reach(〈H, I +1,J〉, I ,H[I +1]),
no share(〈H, I +1,J〉,〈H, I +1,J〉[I +1],H[I +1]), I 6= 0 RU D.2

D.4 reverse(H0, I0, I ,H,J),alist(H,J),alist(H,H[I +1]),no reach(H, I ,H[I +1]),
no share(H,J, I), I 6= 0

|= no reach(〈H, I +1,J〉, I ,H[I +1]),
no share(〈H, I +1,J〉,J,H[I +1]), I 6= 0 AIP D.3

D.5 reverse(H0, I0, I ,H,J),alist(H,J),alist(H,H[I +1]),no reach(H, I ,H[I +1]),
no share(H,J, I), I 6= 0

|= no reach(〈H, I +1,J〉, I ,H[I +1]),
no share(H,J,H[I +1]), I 6= 0 SEP D.4

D.6 ¬2 DP D.5 with F.1

Figure 5.19: Proof of Assertion D

For example, in the proof above, theallz predicate could have instead been specified as Program

4.4.

Program 4.4 is “sublist-recursive” in the sense that a zeroed list segment starting from the

node with addressX, and ending at the node with addressY is defined to be a zeroed list segment

from addressX to T, appended by one extra zero node at addressY. However, in the previous

section, we in fact used Program 4.3 as the definition ofallz. Program 4.3 which we have used in

the proof is “tail-recursive,” that is, the zeroing of a listis specified in terms of the zeroing of its

tail. The proof is actually easier if Program 4.4 is used.

The property that there is no strong dependency on how the assertion predicate is defined

allows for greater flexibility. This is essentially enabledby coinduction. Notice that in Figure

5.16 we have used theAP rule to complete the proof. This is not necessary had we used the

“sublist-recursive” definition ofallz.

5.9.3 Handling Separation: List Reverse

In our framework, we can also state that two data structures are “separate,” that is, there is no

common cell that is reachable from both. This is done by usingtheno reachpredicates (Program

150

4.10 or Program 3.11) and theno sharepredicate (Program 4.13). In this section we demonstrate

the use of SEP together withno shareto complete a proof.

Here we use the motivating example of [166], which is on proving acyclic list reversal. Con-

sider again Program 4.5 with its correctness statement (4.3) given in Section 4.4, as follows:

p(0,H, I ,J,H f ,Jf),alist(H, I),J = 0 |= reverse(H, I ,0,H f ,Jf),alist(H f ,Jf).

The assertion says that given an acyclic list with headI as input, we get as output a list with head

J, which is a reverse of the original list. In (4.3),Jf denotes the final value of the variableJ, and

H f denotes the final state of the heap. The correctness statement here requires a reference to the

input variables (H andI), which is easily specified using our assertion language.

As with the proof of list reset program presented earlier, the main proof of the list reverse

program is again similar in structure to the basic while loopprogram Sum given in Section 5.5.

We therefore relegate the complete proof to the appendix Section B.1.1.

As with Sum and list reset, the proof requires an introduction of loop invariant in order to

find a recursion in the unfolding of the loop. Here we again usethe CUT rule to introduce loop

invariant, which requires us to prove the following assertion:

p(0,H, I ,J,H f ,Jf),alist(H, I),H0 = H, I0 = I ,J = 0

|= p(0,H, I ,J,H f ,Jf), reverse(H0, I0, I ,H,J),alist(H,J),

alist(H, I),no share(H,J, I).

(5.14)

The proof is shown in the appendix Section B.1.2.

Note that the loop invariant (5.14) states, amongst other things, the key property that the

lists α (which address isI) and β (which address isJ) are separate in memory by the predi-

cateno share(H,J, I). One iteration of the loop body produces new listsα′ = tail(α) andβ′ =

head(α) ·β (where· denotes a concatenation). This modification is the result ofthe update of the

heap fromH to H ′ = 〈H, I +1,J〉. We want to prove that the new listsα′ andβ′ are also separated

in H ′. This is expressed by the following assertion D, which is one of the assertions required to

prove the side condition of the application ofAP in the main proof (appendix Section B.1.1).

reverse(H0, I0, I ,H,J),alist(H,J),alist(H, I),no share(H,J, I),

I 6= 0,H ′ = 〈H, I +1,J〉, I ′ = H[I +1],J′ = I |= no share(H ′,J′, I ′).

151

The proof of D uses separation principle (SEP), and it requires F (proof in appendix Section

B.1.8), which in turn requires G (proof in appendix Section B.1.9).

We present the proof in Figure 5.19. Here, the separation principle is used to simplify the

atomno share(〈H, I +1,J〉,J, H[I + 1]) in the rhs of (D.4) into the atomno share(H,J,H[I +

1]) in (D.5). This simplification can be inferred from the atomsno reach(H, I ,H[I + 1]) and

no share(H,J, I) of the lhs of (D.5).

We now explain the intuitive proof of the assertion. Notice that we have thatno share(H,J, I)

and becauseα is acyclic (alist(H, I)) and nonempty (I 6= 0) we also have thatno reach(H, I ,H[I +

1]) (this reasoning corresponds to application ofLU to (D.1′) producing D.2 in Figure 5.19).

Hence here we know thathead(α) is separated fromtail(α) andβ, and we can therefore reason

thatα′ = tail(α) andβ′ = head(α) ·β are separated (or,no share(H ′,J′, I ′) holds).

5.9.4 Intermittent Abstraction Solves Intermittence Problem

We demonstrate here the use of intermittent abstraction in solving intermittence problem in data

structure, and also quantitative reasoning on an abstract data structure. We use the example of

Rugina [173], which has been introduced in Section 4.4 (Program 4.14 with CLP model Program

4.15).

AVL is a balanced binary tree, where for each node, the depth of its left and right subtrees

differs by only one node. The recursive specification of an AVL tree is given as Program 4.16.

Again we repeat the correctness of the AVL tree from Section 4.4 as follows.

p(0,H,X,Y,Z,H f ,Yf),avltree(H,H[X +2],DL−2),

avltree(H,H[H[X +1]+1],DL−1),avltree(H,H[H[X +1]+2],DL−2),

no share(H,X,H[X +2],H[H[X +1]+1],H[H[X +2]+2])

|= avltree(H f ,Yf ,DL).

(5.15)

In the above, the depth of the left subtree of the input tree isdenoted by the variableDL.

Program 4.14 is given an input an unbalanced subtree rooted at x, where its left subtree is two

deeper than its right subtree, and at its left child, the leftsubtree is 1 deeper than its right subtree.

As the output, we expect to obtain a balanced AVL tree. However, right at program point〈6〉,

the structure becomes temporarily cyclic, hence here it no longer makes sense to speak about

depth of left and right subtree. In our proof method, this is not a problem due to our intermittent

abstraction: We do not have to abstract the state at〈6〉 in the same way as shape analysis.

152

In the proof, we perform left unfold repeatedly from (5.15),which represents the state at

program point〈0〉, according to the program until we reach program point〈7〉. The last obligation

generated is the following.

p(7,H f ,X,Yf ,H2[Yf +2],H f ,Yf),Yf = H[X +1],

H[Yf] = 1,H1 = 〈H,X,0〉,H2 = 〈H1,Yf ,0〉,

H f = 〈H2,Yf +2,X〉,H f = 〈H f ,X +1,H2[Yf +2]〉,

avltree(H,H[X +2],DL−2),

avltree(H,H[H[X +1]+1],DL−1),

avltree(H,H[H[X +1]+2],DL−2),

no share(H,X,H[X +2],H[H[X +1]+1],H[H[X +2]+2])

|= avltree(H f ,Yf ,DL).

From here we perform right unfold according to the recursivedefinition ofavltreeobtaining the

assertion

p(7,H f ,X,Yf ,H2[Yf +2],H f ,Yf),Yf = H[X +1],

H[Yf] = 1,H1 = 〈H,X,0〉,H2 = 〈H1,Yf ,0〉,

H f = 〈H2,Yf +2,X〉,H f = 〈H f ,X +1,H2[Yf +2]〉,

avltree(H,H[X +2],DL−2),

avltree(H,H[H[X +1]+1],DL−1),

avltree(H,H[H[X +1]+2],DL−2),

no share(H,X,H[X +2],H[H[X +1]+1],H[H[X +2]+2])

|=

H f [Yf] = 0,H f [H f [Yf +2]] = 0,

avltree(H f ,H f [Yf +1],DL−1),

avltree(H f ,H f [H f [Yf +2]+1],DL−2),

avltree(H f ,H f [H f [Yf +2]+2],DL−2).

Next we perform simplifications using the (SEP) and (AIP) principles. We use both (SEP) and

(AIP) in reasoning about rhs atoms, and we use only (AIP) to prove rhs constraints. For example,

153

we need, as a subproof, the proof of the following assertion:

Yf = H[X +1],H[Yf] = 1,H1 = 〈H,X,0〉,H2 = 〈H1,Yf ,0〉,

H f = 〈H2,Yf +2,X〉,H f = 〈H f ,X +1,H2[Yf +2]〉,

no share(H,X,H[X +2],H[H[X +1]+1],H[H[X +2]+2])

|= H f [H f [Yf +2]] = 0

The proof is as follows:

H f [H f [H[X +1]+2]]

= H f [〈H f ,X +1,H2[H[X +1]+2]〉[H[X +1]+2]]

= H f [H f [H[X +1]+2]](sinceX +1 6= H[X +1]+2)

= H f [〈H2,H[X +1]+2,X〉[H[X +1]+2]]

= H f [X]

= 〈H f ,X +1,H2[H[X +1]+2]〉[X]

= H f [X](sinceX +1 6= X)

= 〈H2,H[X +1]+2,X〉[X]

= H2[X](sinceH[X +1]+2 6= X)

= 〈H1,H[X +1],0〉[X]

= H1[X](sinceH[X +1] 6= X)

= 〈H,X,0〉[X] = 0

Note that the premiseH[X +1] 6= X is justified by the existence of theno sharepredicate on the

lhs.

The assertions (4.4) is also proved similarly, using (AIP) and (SEP) principles. The same

techniques are also applicable for the correctness proof ofbubble sort (4.1). We do not give the

proofs here.

5.10 Discussion

5.10.1 Comparison to Mesnard et al.’s Proof Method

Mesnard et al. [141] propose a proof method for constraint logic programs to prove a system

of implications whose consequents only contain constraints. The method is based on trans-

formation, where we transform each clause of the given CLP program into a constraint whose

154

p(0). κ1

p(X) :- 2X = 1. κ2

Program 5.4: Mesnard et al.’s Example I

1 p(X) |= X = 0
2a X = 0 |= X = 0 LU 1
2b 2X = 1 |= X = 0 LU 1
3 ¬2 DP 2a
4 ¬2 DP 2b

Figure 5.20: Proof of Mesnard et al.’s Example I

unsatisfiability implies that the system of implications hold. The method has a relatively weak

completeness result, which we believe is due to the use of a specific induction schema which

forces the application of induction in one unfold step. Mesnard et al. provide three verification

examples which cannot be solved using their method. One of the example pertains to the impre-

cision of the chosen constraint domain, which is also inherent in our proof method, and hence

we also do not solve this problem. However, the other incompleteness cases are due to the proof

method itself, and here we show how we may prove them using ourmethod.

The first example demonstrates the inherent incompletenessdue to the actual constraint do-

main used in the implementation. Given Program 5.4, the assertion p(X) |= X = 0 holds in

CLP(N). The proof in CLP(N) is in Figure 5.20. However, the assertion does not hold in

CLP(Q). Our implementation to be described in Chapter 8 using CLP(R) system to verify inte-

ger assertions is therefore necessarily incomplete.

Similar to ours, the proof method of [141] is also inductive.However, we can say that in their

proof method, induction hypothesis has to be applied after just one level of unfold (corresponding

to the applicationLU). Here given Program 5.5, we would like to prove the following system of

implications:

q(X) |= X = X

p(X,Y) |= X = f gh(X),Y = h f g(Y).

The first assertion trivially holds, and only provided in [141] as a comparison with the use of the

stronger assertionq(X) |= X = gh f(X).

The proof of the second assertion requires two level of unfolds for induction hypothesis to be

applicable, and therefore cannot be done using Mesnard et al.’s proof method. Our proof of the

155

q(U) :- U = g(V),V = h(W),W = f (U). κ1

q(U) :- U = g(V), p(f (U),V). κ2

p(U,V) :- V = h(U),q(g(V)). κ3

Program 5.5: Mesnard et al.’s Example II

1 p(X,Y) |= X = f gh(X),Y = h f g(Y)
2 Y = h(X),q(g(Y)) |= X = f gh(X),Y = h f g(Y) LU 1

3a Y = h(X),g(Y) = gh f g(Y) |= X = f gh(X),Y = h f g(Y) LU 2
3b Y = h(X),g(Y) = g(V), p(f g(Y),V) |= X = f gh(X),Y = h f g(Y) LU 2
4 ¬2 DP 3a
5 ¬2 AP 1,3b

5s.1 Y = h(X),g(Y) = g(V), p(f g(Y),V) |= p(f gh(X),V) AP 1,3b
5s.2 ¬2 DP 5s.1

5r.1 Y = h(X),g(Y) = g(V), f g(Y) = f gh f g(Y),V = h f g(V)
|= X = f gh(X),Y = h f g(Y) AP 1,3b

5r.2 ¬2 DP 5r.1

Figure 5.21: Proof of Mesnard et al.’s Example II

assertion is shown in Figure 5.21.

Mesnard et al.’s proof method requires a demonstration of inductive proof from constraints

only. For example, suppose that we want to prove the assertion p(X,Y) |= Y +2≤ 3X holds on

Program 5.6. In Mesnard et al.’s proof method, this would be transformed into the unsatisfiability

questions of the following two goals:

X = 1,Y = 1,¬(Y+2≤ 3X)

X = X′ +1,Y = Y′ +2X′ +1,Y′ +2≤ 3X′,¬(Y+2≤ 3X)
(5.16)

The second goal is satisfiable in the integer domain, hence the proof method (luckily) correctly

concludes that the initial assertionp(X,Y) |= Y +2≤ 3X does not hold. However, this conclu-

sion may be wrong since instead the second goal above, the actual proof that we need is the

unsatisfiability of the goal

p(X′,Y′),X = X′ +1,Y = Y′ +2X′ +1,Y′ +2≤ 3X′,¬(Y+2≤ 3X),

that is, withp(X′,Y′) included.

The problem here is that Mesnard et al.’s transformation is similar to an application ofLU

156

p(1,1). κ1

p(X +1,Y+2X +1) :- p(X,Y). κ2

Program 5.6: Mesnard et al.’s Example III

1 p(X,Y) |= Y+2≤ 3X
2a X = 1,Y = 1 |= Y+2≤ 3X LU 1
2b p(X′,Y′),X = X′ +1,Y = Y′ +2X′ +1 |= Y+2≤ 3X LU 1
3 ¬2 DP 2a
4 ¬2 AP 1,2b

4s.1 p(X′,Y′),X = X′ +1,Y = Y′ +2X′ +1 |= p(X′,Y′) AP 1,2b
4s.2 ¬2 DP 4s.1

Figure 5.22: Partial Refutation of Mesnard et al.’s Example III

once followed byAP. The application ofAP spawns two new obligations: the subsumption test

and the residual obligation. These two obligations are onlysufficient conditions. If either one of

them does not hold, we cannot conclude that the initial obligation does not hold.

Let us explain this more carefully using our proof method, byexamining the partial refuta-

tion in Figure 5.22. We have not finished the proof, but here some explanations are necessary.

Essentially from the initial obligation 1 we obtain two new proof obligations: 2a and 2b, each cor-

responds to Mesnard et al.’s goals (5.16). The first obligation is exactly the negation of Mesnard

et al.’s first goal, and it can be proved immediately (since Mesnard et al.’s first goal is unsatisfi-

able). Now, we applyAP on 2b, resulting in the subsumption 4s.1. The residual obligation (4r.1)

here is

Y′ +2≤ 3X′,X = X′ +1,Y = Y′ +2X′ +1 |= Y+2≤ 3X.

Notice that this is exactly the negation of Mesnard et al.’s second goal.

Now, here, although 4r.1 does not hold (or, Mesnard et al.’s second obligation is satisfiable),

we cannot really conclude that the original assertionp(X,Y) |= Y +2≤ 3X does not hold.

The point of Mesnard et al.’s argument in [141] is that had we included the predicatep(X′,Y′)

in the lhs of the obligation 4r.1, and the obligation is false(possibly proved by further unfolds),

then we can conclude that the target obligation is false. This is because the inclusion ofp(X′,Y′)

in the lhs would make 4r.1 and 4s.1 no longer sufficient, but exact conditions.

Using our proof method, however, we can find a true refutationof the target obligation using

157

1 p(X,Y) |= Y+2≤ 3X
2a X = 1,Y = 1 |= Y+2≤ 3X LU 1
2b p(X′,Y′),X = X′ +1,Y = Y′ +2X′ +1 |= Y+2≤ 3X LU 1
3 ¬2 DP 2a

4a X′ = 1,Y′ = 1,X = X′ +1,Y = Y′ +2X′ +1 |= Y +2≤ 3X LU 2b
4b p(X′′,Y′′),X′ = X′′ +1,Y′ = Y′′ +2X′′ +1,X = X′ +1,Y = Y′ +2X′ +1

|= Y+2≤ 3X LU 2b
5 ¬2 DP 4a

6a X′′ = 1,Y′′ = 1,
X′ = X′′ +1,Y′ = Y′′ +2X′′ +1,X = X′ +1,Y = Y′ +2X′ +1
|= Y+2≤ 3X LU 4b

6b p(X′′′,Y′′′),X′′ = X′′′ +1,Y′′ = Y′′′ +2X′′′ +1,
X′ = X′′ +1,Y′ = Y′′ +2X′′ +1,X = X′ +1,Y = Y′ +2X′ +1
|= Y+2≤ 3X LU 4b

Figure 5.23: Full Refutation of Mesnard et al.’s Example III

only theDP andLU rules. This is shown by the refutation in Figure 5.23, where the obligation 4a

is false.

5.10.2 On Manna-Pnueli’s Universal Invariance Rule

Here we show how our coinductive proof method is related to Manna-Pnueli’s universal invari-

ance rule [136], a well-known inductive proof technique forprograms, which is an instance of

computational induction.

In our proof method, we generally start from an initial assertion p(X̃),ql (X̃) |= qr(X̃), but

this is just logically equivalent top(X̃) |= (ql (X̃) ⇒ qr(X̃)), and hence we can replace the rhs

with just some predicateq(X̃), which holds if and only ifql (X̃) ⇒ qr(X̃) and hence, in logical

sense, we can always assume that what we want to prove is an assertion p(X̃) |= q(X̃). Here,

assuming a backward CLP model of programs,p(X̃) represents any state of the program. Our

assertion therefore statesϕ(X̃) is satisfied in any statep(X̃) of the program. This is known as an

invariance property.

A well-known technique for proving invariance is due to Manna and Pnueli [136]. The rule

is called theuniversal invariance rule(A-INV rule). The formulation below is following [160].

158

Other versions are presented in [136, 19]:

I1. Θ ⇒ ϕ

I2. ϕ ⇒ q

I3. ϕ∧ρ ⇒ ϕ′

Θ |= 2q

For readers unfamiliar with temporal logic, the CTL conclusion Θ |= 2q means thatq holds

in all reachable states of the program, when execution starts from the initial state satisfyingΘ.

The formulaϕ is called aninductive invariant. Similar inductive proof rule without inductive

invariant is given by Misra in [144].

Here we demonstrate how we may perform inductive proof usinguniversal invariance rule

above in our framework. We show how our proof rules derive thepremises I1, I2, and I3 of the

A-INV rule from the original verification question.

We first assume that we have the following program, which is a backward model of a transi-

tion system in CLP with an initial state andn transitions.

p(X̃) :- Θ(X̃).

p(X̃′) :- ρ1(X̃, X̃′), p(X̃).

...

p(X̃′) :- ρn−1(X̃, X̃′), p(X̃).

Again, here we prove the invariance propertyp(X̃) |= q(X̃).

Using ourCUT rule, we may introduce or strengthen an inductive invariantby strengthening

an assertion. Here, we replace the assertionp(X̃) |= q(X̃) with the assertionϕ(X̃) |= q(X̃). The

latter assertion corresponds to Premise I2. For this we are required to prove(ϕ(X̃) |= q(X̃))�

(p(X̃) |= q(X̃)), which again consists of the proofs of the following two:

• Subsumption:p(X̃) |= ϕ(X̃).

• Residual assertion:q(X̃) |= q(X̃).

The residual assertion obviously holds, and can immediately be discharged.

We applyLU to the subsumption test above. The unfold using the CLP factp(X̃) :- Θ(X̃).

results in the obligationΘ(X̃) |= ϕ(X̃) which corresponds to the Premise I1.

159

We will now discuss how the unfold followed by the application of AP, using all of the other

CLP clauses results in obligations which correspond to the Premise I3.

First we apply left unfolding (LU) to the above subsumption test using the second to the last

clause of the CLP program resulting in the obligations

p(X̃′),ρ1(X̃′, X̃) |= ϕ(X̃)

...

p(X̃′),ρn−1(X̃′, X̃) |= ϕ(X̃)

We now prove each of these obligations usingAP. That is, for eachi where 1≤ i ≤ n−1, we

prove (p(X̃) |= ϕ(X̃)) � (p(X̃′),ρi(X̃′, X̃) |= ϕ(X̃)). Here also we prove both of the following

obligations:

• Subsumption:p(X̃′),ρi(X̃′, X̃) |= p(X̃′).

• Residual assertion:ϕ(X̃′),ρi(X̃′, X̃) |= ϕ(X̃).

It is easy to see that the subsumption part holds. The proof ofall the residual obligations for alli

such that 1≤ i ≤ n−1 constitute the proof of the Premise I3.

In forward CLP model, the constraint facts correspond to the“point of interest” of a program.

Moreover, with our forward model, in proving invariance of transitions we show that assuming

the postcondition satisfiesϕ, the precondition also satisfiesϕ. It is harder to think of invariants in

this way, but actually here we prove thatϕ is invariant in all states where the “point of interest”

is reachable. That is, we are actually establishing the pastlinear time temporal logic property

p⇒ ⊟q or its branching time versionp⇒ ⊟q, wherep represents the point of interest, and⊟ is

thealways in the pastoperator (see [19]).

5.10.3 Proving General Equivalence

In Section 4.6.2 we have shown how we may specify an equivalence property pertaining to a

simple program. In this section we discuss how we may prove the equivalence using our proof

method. We repeat the CLP program (Program 4.28) and the assertions to be established in Figure

5.24. The proof itself is shown in Figure 5.25 using scope notation. This example demonstrates

that it is straightforward to use a proof method for implication (as is ours) in order to prove

equivalence. Direct equivalence proof may be more compact than ours, but not necessarily easier.

160

s(ω,ω).
s(X,Xf) :- X 6= ω, p(X) = 1,Xf = X.
s(X,Xf) :- X 6= ω, p(X) = 0,s(h(X),Y),s(Y,Xf).

Assertions:
s(X,Y),s(Y,Xf) |= s(X,Xf)
s(X,Xf) |= s(X,?Y),s(?Y,Xf)

Figure 5.24: Example 12 of [135] and Idempotence Property

5.11 Related Work

Our proof method is closely related to various verification methods for (constraint) logic pro-

grams. Recall that we have discussed the approach of Mesnardet al. in Section 5.7.2. Here

we will discuss other approaches, but before proceeding in more detail, we first summarize the

following two basic advantages over any other existing proof methods:

1. Some inductive proof methods are based on fitting in the allowable inductive proofs into

an induction schema, which is usually syntax-based. Instead, we employ no induction

schema. We detect the point where we apply the induction hypothesis using subsumption.

In other words, we discover the induction schema dynamically using indefinite steps of

complete left unfolds. This approach is more complete and automatable.

2. We provide a generalization step (theCUT rule) which adds into the completeness of our

proof method.

Most related to our proof method are the works of Kanamori andFujita [118], and Kanamori

and Seki [119]. Our rhs unfold corresponds to thedefinite clause inference(DCI) step, while our

complete lhs unfold corresponds tonegation as failure inference(NFI) of [119]. However, the

main difference is in the application of induction. Here theapplicability of induction, however,

is limited by the lack of a generalization step (allowed by our CUT rule) and the necessity of its

application in a single unfold step. A use of a kind of structural induction in a similar framework

to Fujita and Seki’s is demonstrated by Fribourg in [74].

Stickel proposes a Prolog-based theorem prover that is complete for for first-order predicate

calculus, calledProlog Technology Theorem Prover(PTTP) [187]. The proof process is basically

Prolog’s refutation, that is, finding a counterexample to a query. Stickel proposes several exten-

sions to Prolog for this purpose, including amodel elimination reduction(ME reduction). Here,

when reduction is applied to a literal, the original literalis stored. Whenever a new goal which is

contradictory to a stored literal is found, we stop because this constitutes a refutation. Stickel’s

approach is similar to ours when we prove the assertionp1(X), . . . , pn(X) |= 2. The part of PTTP

161

that is akin to our induction is the detection when there is anoccurrence of the same literal (a

kind of subsumption test), in which case, the system backtracks. Our proof method, however,

does not deal with negative literals because transition systems modeled in CLP do not normally

have negative literals.

Hsiang and Srivas propose an inductive proof method for Prolog programs [102, 103]. The

main feature of the proof method is a semi-automatic generation of induction schema (in the

sense, this objective is similar to those of Kanamori and Fujita [118]). The assertion to be proved

is encoded in a predicateprop. The generation of inductive assertion is done by generating the

reduct of the goals (unfolding). The termination of the unfolding is implemented by a marking

mechanism on the variables. Whenever an input variables is instantiated during an unfold (in

other words, we need to make a decision about its value), it ismarked. In a sense, this is similar

to the use ofbomblistin the Boyer-Moore prover [22]. As is the case with Boyer-Moore prover,

the induction is structural. However, the method lacks a generalization step. Moreover, it requires

the user to distinguish a set ofinput variables to structurally induct on.

The work of Craciunescu [36] is on proving the equivalence ofCLP programs using either

induction or coinduction. The notion of coinduction here isdifferent from ours. While our

coinduction is aleastfixpoint induction, the coinduction of Craciunescu is agreatestfixpoint

induction. Greatest fixpoint induction can be used for reasoning about possible infinite computa-

tions that have no start [143]. For each induction and coinduction, Craciunescu presents separate

sets of proof rules (although most rules are shared). He alsoproves that each method is as power-

ful as another. In his proof framework, a CLP program is first transformed into a CLP∀ program,

which is its Clark completion (Section 2.7). The proof rulesinclude LU and RU-like rules of

the CLP∀ program. The inductive proof of Craciunescu is similar to the inductive proof of our

proof method, although both have been developed independently. However, in contrast to ours,

Craciunescu does not report any completed mechanization.

Also related are verification methods which are based on unfold/fold logic program transfor-

mation (of Tamaki and Sato, see [170] for an outline), notably the work of Pettorossi and Proietti

in proving equivalence [157], and the work of Roychoudhury et al. which is a proof method for

equivalence assertions on parameterized systems represented as logic programs [171, 172, 170].

For this purpose, Roychoudhury et al. develop a more generalnotion of unfold/fold, which is

implemented as the SCOUT system.

162

Equivalence is useful to prove liveness properties, and it can be handled by our proof method

by proving both ways of the implication. The SCOUT system canalso be extended to prove

implication [172], but the machinery for proving equivalence may not be suitable for this task

because of different correctness criteria. Equivalence proof requirestotal correctness, where the

transformed program has the same least model as the original.

We may also compare our proof method with unfold/fold transformation systems, by consid-

ering it as a transformation system which transforms an assertion (viewed as a Horn clause3), into

a set of others. Now, the correctness criteria for our “transformation” system is that the resulting

assertions, if they are consistent with the program, would imply the consistency of the original

assertion. In a sense, the resulting assertions are “stronger” than the original. This has the impli-

cation that they have a “least model” thatsubsumesthe original. This weaker correctness allows

for arbitrary generalization (widening) step, as is made possible by ourCUT rule, such as the

intermittent abstraction discussed in Section 5.8.2.

We note that the aforementioned weaker correctness criterion is not the same as the notion of

partial correctnessof unfold/fold transformation, where a transformed program has a least model

which issubsumed bythe original program. Therefore, although theCUT rule has some resem-

blances in its mechanical aspects withgoal replacementin unfold/fold transformation [170], its

purpose is to strengthen a “clause” (assertion) instead of replacing it with an equivalent or weaker

one as with the goal replacement technique.

The work of Pettorossi et al. [158] is on proof method for closed first-order formula given

a theperfect model semantics(see the survey [4]) of a stratified CLP program. The method is

based on unfold/fold transformations. Compared to previous works such as [171], it is more gen-

eral in that it handles first-order formula instead of specific form of equivalence or implication.

Compared to techniques employed in theorem proving, the authors argue that the idea provide

a way to eliminate existential quantification through program transformations. The elimination

here is of variables appearing only in clause bodies.

Since this proof method allows for the proof of stratified program, it is more general than

ours since we handle only positive programs (CLP programs without negation). In our proof

method, we do not provide any method for eliminating existential quantification of variables in

the premise of an assertion. This is because such quantification is actually a universal one, since

3This is possible assuming the rhs of an assertion is a conjunction and does not contain existentially-quantified
variables. An existential quantification is essentially a (possibly infinite) disjunction, and a disjunctive rhs wouldgive
us a non-Horn clause.

163

the premise is the negated part of the assertion. To eliminate the existential quantification of

the conclusion, we use substitution in theDP rule. The method of Pettorossi et al. also has the

limitation to real constraints due to unfold/fold technique used to eliminate existential quantifiers.

In contrast, we our proof method does not have the corresponding limitation.

As an induction-based technique, our proof method is related to fixpoint induction[152] for

proving properties of the least fixpoint of monotonic functions, such as recursive programs. A

complementary technique which is also discussed in [152] can be used to reason about greatest

fixpoint, which is related to the proof method of Gupta et al. [180] and the greatest fixpoint

induction of Craciunescu mentioned above.

We finally compare our proof method with the well-known Boyer-Moore prover [22, 23]

for functional programs. To detect the applicability of induction hypothesis, the Boyer-Moore

prover uses a heuristic [24]. The technique basically detects an argument of an unfolded atom

becoming specialized, denoting a decreasing measure [22, 23]. Our constraint subsumption is

different, in which the detection is on all arguments of the unfolded atoms, instead of just one of

the argument. This solves theREVERSE1 problem in [22], where the Boyer-Moore prover fails to

detect the applicability of induction hypothesis.

164

1 s(X,Y),s(Y,Xf) |= s(X,Xf)
2 s(X,Xf) |= s(X,?Y),s(?Y,Xf)

3a s(ω,Xf) |= s(ω,Xf) LU 1
3b X 6= ω, p(X) = 1,X = Y,s(Y,Xf) |= s(X,Xf) LU 1
3c X 6= ω, p(X) = 0,s(h(X),Z),s(Z,Y),s(Y,Xf) |= s(X,Xf) LU 1

¬2 DP 3a
¬2 DP 3b

4 ¬2 AP 1,3c
5a X = Xf = ω |= s(X,?Y),s(?Y,Xf) LU 2
5b X 6= ω, p(X) = 1,Xf = X |= s(X,?Y),s(?Y,Xf) LU 2
5c X 6= ω, p(X) = 0,s(h(X),Z),s(Z,Xf) |= s(X,?Y),s(?Y,Xf) LU 2
6 X = Xf = ω |= X =?Y = ω,s(?Y,Xf) RU 5a
7 X = Xf = ω |= X =?Y = ω,?Y = Xf = ω RU 6
8 ¬2 DP 7
9 X 6= ω, p(X) = 1,Xf = X |= X 6= ω, p(X) = 1,X =?Y,s(?Y,Xf) RU 5b

10 X 6= ω, p(X) = 1,Xf = X
|= X 6= ω, p(X) = 1,X =?Y,?Y 6= ω, p(?Y) = 1,Xf =?Y RU 9

11 ¬2 DP 10
12 ¬2 AP 2,5c

4s.1 X 6= ω, p(X) = 0,s(h(X),Z),s(Z,Y),s(Y,Xf)
|= s(Z,Y),s(Y,Xf) AP 1,3c

4s.2 ¬2 DP 4s.1

4r.1 X 6= ω, p(X) = 0,s(h(X),Z),s(Z,Xf) |= s(X,Xf) AP 1,3c
4r.2 X 6= ω, p(X) = 0,s(h(X),Z),s(Z,Xf)

|= X 6= ω, p(X) = 0,s(h(X),?Y),s(?Y,Xf) RU 4r.1
4r.3 ¬2 DP 4r.2{Y 7→ Z}

12s.1 X 6= ω, p(X) = 0,s(h(X),Z),s(Z,Xf) |= s(Z,Xf) AP 2,5c
12s.2 ¬2 DP 12s.1

12r.1 X 6= ω, p(X) = 0,s(h(X),Z),s(Z,W),s(W,Xf)
|= s(X,?Y),s(?Y,Xf) AP 2,5c

12r.2 X 6= ω, p(X) = 0,s(h(X),Z),s(Z,W),s(W,Xf)
|= X 6= ω, p(X) = 0,s(h(X),?U),s(?U,?Y),s(?Y,Xf) RU 12r.1

12r.3 ¬2 DP 12r.2
{U 7→ Z,Y 7→W}

Figure 5.25: Proof of Example 12 of [135]

165

Chapter 6

Basic Algorithm for Non-Recursive

Assertions Based on Dynamic

Summarization

In this chapter we propose an algorithm based on our proof method, which accommodates pro-

gram verification and analysis. The main component of this algorithm is an efficient exact sym-

bolic propagation usingdynamic summarization. The dynamic summarization technique refor-

mulated as computation ofCraig interpolants[37] has been presented in [112] in the context of

dynamic programming search.

This chapter is structured as follows. In Section 6.1 we firstpresent a number of simple

algorithms based on our proof rules. We then introduce the concept of dynamic summarization

in Section 6.2 to make exact propagation more efficient. The dynamic summarization technique

can also be used to discover a safety property of a program. Wefinally present our general

algorithm in Section 6.3.

We note that in this chapter we mainly deal with the proof of non-recursive assertions. They

are of the formp(. . .),φ |= ψ, whereφ andψ are constraints. We will deal more specifically with

the automated proof of recursive assertions in Chapter 7.

6.1 Simple Algorithms for Program Verification and Analysis

In this section we provide some simple algorithms to ease ourselves to the development of our

proposed main algorithm in Section 6.3. The implementationof some of the algorithms men-

166

program
prove(/0,G |= H)

end program

proc prove(Ã,G |= H)
〈1〉 if (G |= H is provable, or

there isA∈ Ã
〈2〉 such thatA� (G |= H)) then

return Success
end if
Ã := Ã∪{G |= H}
F := unfold(G)
if (F 6= /0) then

for each (g∈ F) do
prove(Ã,g |= H)

end for
return Success

end if
abort

end proc

Figure 6.1: Straightforward Algorithm

tioned here will be discussed in Chapter 8.

A straightforward implementation of the proof rules of Section 5.4 is shown in Figure 6.1.

When provingG |= H, the objective is to compute a (complete) unfold tree fromGwhose frontier,

sayG1, . . . ,Gn, is such that for each 1≤ i ≤ n, we can proveGi |= H directly, or via coinduction

(AP). A canonical algorithm for left unfolding (LU) is thus obtained by performing unfolding

step by step, and at each step, checking the new frontier goals againstH and for coinduction,

terminating when there are no more unresolved frontier goals. The order in which unfolding

is performed, i.e. the choice of which frontier goal to unfold next can be arbitrary. We use a

depth-first strategy in Figure 6.1.

The proof ofG |= H in Line 〈1〉 and the proof ofA� (G |= H) in Line 〈2〉 of Figure 6.1 can

only be done directly (usingDP and constraint solving), since in this chapter we deal only with

assertionsp(. . .),φ |= ψ. In Chapter 7 we will consider more general assertions.

As has been discussed in Section 5.6, we sometimes encounteran obligation which has al-

ready been proved in some other part of the proof tree. In thiscase, we may immediately es-

tablish the redundant obligation. This generalizes parent-child entailment and is best supported

via a global tabling mechanism. Here whenever we encounter an obligation that is redundant to

one already stored in the table, we stop (returnSuccess). Otherwise, we add it into the table and

167

program
Table:= /0
prove(G |= H)

end program

proc prove(G |= H)
〈1〉 if (G |= H is provable, or

there isA∈ Table
〈2〉 such thatA� (G |= H)) then

return Success
end if
Table:= Table∪{G |= H}
F := unfold(G)
if (F 6= /0) then

for each (g∈ F) do
prove(g |= H)

end for
return Success

end if
abort

end proc

Figure 6.2: Algorithm with Global Tabling

unfold (applyLU) further. We display the pseudocode of this algorithm in Figure 6.2.

So far we have not discussed how theCUT rule is implemented. Recall that theCUT rule is

used in the intermittent abstraction proof method (Section5.8.2), the program verification method

(Section 5.8.3) and also in reduction by the use of relative safety (e.g., symmetry) assertions

(Section 5.6). The use ofCUT rule in these cases differ. In the case of intermittent abstraction and

program verification, whenever we can replace the assertionG |= H with the assertionG′ |= H

whereG |= G′ holds, we never again consider provingG |= H. On the other hand, in the case of

symmetry reduction we only make an attempt at replacingG |= H with G′ |= H. In caseG′ |= H

cannot be immediately concluded (viaAP), we revert back to provingG |= H. These two different

cases induce two different algorithms for implementingCUT.

For the relative safety case, before we test whetherG |= H holds in the functionprove, we

first try to apply a set of independently proved assertionsG |= G′ (which always includeG |= G)

to G, which we use to generalizeG to G′′, and then try to proveG′′ |= H instead byDP or AP,

failing which, we continue to unfoldG |= H. The resulting algorithm is shown in Figure 6.3.

We show our algorithm for the case of intermittent abstraction and program verification in

Figure 6.4. Compared to 6.3, it includes a small addition of an if conditional at〈1〉. The additional

168

program
Table:= /0
prove(G |= H)

end program

proc prove(G |= H)
〈1〉 for each (G′′ ∈ {G′|G |= G′}) do
〈2〉 if (G′′ |= H is provable, or

there isA∈ Table
〈3〉 such thatA� (G′′ |= H)) then

return Success
end if

end for
Table:= Table∪{G |= H}
F := unfold(G)
if (F 6= /0) then

for each (g∈ F) do
prove(g |= H)

end for
return Success

end if
abort

end proc

Figure 6.3: First Algorithm Using CUT and Global Tabling

if conditional is located after the test for direct proof ofG |= H, but before the table checking.

This is because whenG |= G′, the direct proof ofG |= H is often easier thanG′ |= H (e.g., when

G ≡ 2). The predicateabstractionpoint(G) tests whetherG matches some criteria where we

can applyCUT. If abstractionpoint(G) holds, and there isG′ in an assertionG |= G′ supplied,

and already proved independently by the user, then we continue with provingG′ |= H instead of

G |= H by assigningG′ to G in 〈2〉.

6.2 Dynamic Summarization

In this section we discuss an optimization technique to verify programs using depth-first search

strategy. This technique can be extended into one for extracting bounds (e.g., time, energy con-

sumption, etc.) from a program. It is mainly intended as an optimization of the algorithm in

Figure 6.4. We note that in Figure 6.4, the algorithm performs exact symbolic traversal between

abstraction points where the unfoldings (LU applications) are not interleaved withCUT. Here we

optimize the symbolic propagation. This optimization willthen become a primary component of

169

program
Table:= /0
prove(G |= H)

end program

proc prove(G |= H)
if (G |= H is provable) then

return Success
end if

〈1〉 if (abstractionpoint(G) andG |= G′) then
〈2〉 G := G′

end if
if (There isA∈ Table

such thatA� (G |= H)) then
return Success

end if
Table:= Table∪{G |= H}
F := unfold(G)
if (F 6= /0) then

for each (g∈ F) do
prove(g |= H)

end for
return Success

end if
abort

end proc

Figure 6.4: Second Algorithm Using CUT and Global Tabling

our main algorithm in Section 6.3.

The idea is based on strengthening an assertionG |= H, proved via a proof treeT into a

stronger assertionG′ |= H ′ which can also be proved using the same proof treeT. The stronger

assertionG′ |= H ′ has more chance of making other obligations redundant (by redundancy dis-

cussed in Section 5.6) than the originalG |= H.

Before proceeding to the main discussion, we note that in this section we will discuss proof

trees explicitly, and when referring to a proof tree we wouldemploy the terms parent, child,

sibling, ancestor, and descendants, which are defined as usual.

170

〈0〉 if (a = 1) then
〈1〉 skip

end if
〈2〉 if (b = 1) then
〈3〉 c := 0

end if
〈4〉 if (c = 1) then
〈5〉 x := x+1

end if

Program 6.1: Simple If Sequence Program

6.2.1 First Example

We start with an example Program 6.1 and its CLP model Program6.2. These programs are

already presented in Section 5.8.4, but repeated here. One possible incomplete proof of

p(0,X,A,B,C,Xf),X > 0 |= Xf > 0

using depth-first strategy is shown as a tree in Figure 6.5, where assertion number indicates the

order in which the assertions are produced by applications of LU or DP. An arrow augmented

with with LU or DP indicates that the target assertion is obtained through an application ofLU or

DP respectively from the source assertion. Note that a complete proof would have assertion 2b

expanded.

In Figure 6.5, whenever an assertionG |= H is established via a left unfolding using some

clauseκ which is then followed byDP, the question is what is a strongerĜ |= Ȟ that we can

use as a replacement such that the same left unfold using clauseκ followed by DP still proves

Ĝ |= Ȟ. Typically,Ĝ is a generalization ofG andȞ implies, or simplyH. Now, this generalization

of G into Ĝ necessitates the generalization of ancestor goals as well,since only more general

ancestor goals can be left-unfolded toĜ. More concretely, whenG |= H is derived fromG′ |= H

whereG∈ unfold(G′), the generalization̂G would induce a generalization of̂G′ of G′ such that

Ĝ∈ unfold(Ĝ′).

Recall that our redundancy check (Section 5.6) is based on establishing subsumption. The

purpose of generalization is to obtain more chance for subsumption.

Here we exemplifyconstraint deletionas an algorithm that we use for generalizing goals. At

eachDP proof, we delete constraints that are not necessary to establish the proof. For example,

at assertion 6a in Figure 6.5, we can delete all constraints but the underlinedC′ = 0 andC′ = 1.

171

Other constraints are not necessary to establish the proof by DP which produces 7. This has the

consequence that at assertion 5, onlyC′ = 0 is required to ensure that the proof at 6a succeeds.

Similarly, at assertion 8 we can delete all constraints butX > 0 andX = Xf . This means that at

6b onlyX > 0 is important. Further, at 5X > 0 is required to ensure that the proof at 8 succeeds.

The set of important constraints at 5 is now consists ofX > 0 andC′ = 0. In this manner, we can

actually strengthen assertion 5 intop(4,X,A,B,C′,Xf),X > 0,C′ = 0 |= Xf > 0 by deleting all

constraints in its lhs goal exceptX > 0 andC′ = 0.

Now, using information obtained form its children, we can strengthen assertion 3 into

p(2,X,A,B,C,Xf),X > 0 |= Xf > 0.

Assertion 3 is now stronger than 2b, that is,

(p(2,X,A,B,C,Xf),X > 0 |= Xf > 0)� (p(2,X,A,B,C,Xf),X > 0,A 6= 1 |= Xf > 0).

Therefore, 2b is now redundant. In this way we obtain more redundancy than normally possible,

hence reducing the proof size.

Note however that this method is opportunistic because reduction may not be applicable even

after applying constraint deletions. For example, in Figure 6.5, we notice that 4b is not redundant

to 5 in the way 2b is redundant to 3. Hence, we need to expand theproof subtree of 4b.

We note that our technique for goal generalization here preserves the original proof tree.

For comparison, abstractions such as one introduced by our intermittent abstraction technique

(Section 5.8.2) in general introduces new proof paths (calledspurious paths), that are nonexistent

without generalization. Also, this technique is applicable only to depth-first backtracking proof

algorithms.

6.2.2 Summarization

Recall the definition of assertion entailment (Definition 5.2) in Chapter 5. The concept of asser-

tion entailment is required in a proof of some assertionp(X̃),φ(X̃) |= H(X̃), where we want its

proof tree to also generate a stronger assertionG |= H as a replacement, which we then record

in the global table as proved. The stronger assertion has more chance to establish as redundant,

other assertion in the proof tree. As shown in Figure 6.5, theassertion 2b is not redundant to

the original obligation 3 which isp(2,X,A,B,C,Xf),X > 0,A = 1 |= Xf > 0, but 2b becomes

172

p(0,X,A,B,C,Xf) :- p(1,X,A,B,C,Xf),A = 1.
p(0,X,A,B,C,Xf) :- p(2,X,A,B,C,Xf),A 6= 1.
p(1,X,A,B,C,Xf) :- p(2,X,A,B,C,Xf).
p(2,X,A,B,C,Xf) :- p(3,X,A,B,C,Xf),B = 1.
p(2,X,A,B,C,Xf) :- p(4,X,A,B,C,Xf),B 6= 1.
p(3,X,A,B,C,Xf) :- p(4,X,A,B,0,Xf).
p(4,X,A,B,C,Xf) :- p(5,X,A,B,C,Xf),C = 1.
p(4,X,A,B,C,Xf) :- p(Ω,X,A,B,C,Xf),C 6= 1.
p(5,X,A,B,C,Xf) :- p(Ω,X +1,A,B,C,Xf).
p(Ω,X,A,B,C,X).

Program 6.2: Simple If Sequence Program CLP Model

redundant after 3 is strengthened top(2,X,A,B,C,Xf),X > 0 |= Xf > 0.

We are now ready to provide a definition forsummarization.

Definiton 6.1 (Summarization). Given an assertionA that is proved by a proof treeT, another

assertionS is asummarizationof A with proof treeT whenScan be proved to hold by the same

proof treeT, andS�A.

As in the example above, the summarization of 3 which isp(2,X,A,B,C,Xf),X > 0,A =

1 |= Xf > 0 is p(2,X,A,B,C,Xf),X > 0 |= Xf > 0. The summarization can still be proved

by the proof tree of 3 and is stronger than 3, i.e.,(p(2,X,A,B,C,Xf),X > 0 |= Xf > 0) �

(p(2,X,A,B,C,Xf),X > 0,A = 1 |= Xf > 0). The subsequent sections will deal with the compu-

tation of summarizations.

6.2.3 Incremental Propagation of Strengthened Assertion

Suppose that we have a programΓ with clausesκ1 to κn. By an application ofLU, an assertion

p(X̃),φ(X̃) |= H(X̃) is unfolded into a number of assertions, each proved separately. There are

five ways in which a child assertion is proved, represented bythe proving of the following child

assertionsA1 to A5 :

1. AssertionA1 : β(X̃),φ(X̃) |= H(X̃) is obtained by a left unfold using constraint factκ1 :

p(X̃) :- β(X̃), and a direct proof using the assertion.

2. AssertionA2 : p(X̃′),δ(X̃, X̃′),φ(X̃) |= H(X̃) is obtained by left unfold using non-fact

clauseκ2 : p(X̃) :- δ(X̃, X̃′), p(X̃′) and is then proved by direct proofDP.

173

LU

LU

LU

LU

LU

LU

LU

LU

LU

LU

DP

DP

13.¬2

7. ¬2

8. X > 0,A = 1,B = 1,C′ = 0,X = Xf |= Xf > 0

12. X′ = X +1,X > 0,A = 1,B 6= 1,C = 1,X′ = Xf |= Xf > 0 DP

15.¬2

DP

LU

LU

9. ¬2

2b. p(2,X,A,B,C,Xf),X > 0,A 6= 1 |= Xf > 0

6b. p(Ω,X,A,B,C′,Xf),X > 0,A = 1,B = 1,C′ = 0 |= Xf > 0

10b. p(Ω,X,A,B,C,Xf),X > 0,A = 1,B 6= 1,C = 0 |= Xf > 0

LU

LU

14. X > 0,A = 1,B 6= 1,C = 0,X = Xf |= Xf > 0

4b. p(4,X,A,B,C,Xf),X > 0,A = 1,B 6= 1 |= Xf > 0

11. p(Ω,X′,A,B,C,Xf),X′ = X +1,X > 0,A = 1,B 6= 1,C = 1 |= Xf > 0

10a.p(5,X,A,B,C,Xf),X > 0,A = 1,B 6= 1,C = 1 |= Xf > 0

4b. p(4,X,A,B,C,Xf),X > 0,A = 1,B 6= 1 |= Xf > 0

6a. p(5,X,A,B,C′,Xf),X > 0,A = 1,B = 1,C′ = 0,C′ = 1 |= Xf > 0

1. p(0,X,A,B,C,Xf),X > 0 |= Xf > 0

5. p(4,X,A,B,C′,Xf),X > 0,A = 1,B = 1,C′ = 0 |= Xf > 0

2a. p(1,X,A,B,C,Xf),X > 0,A = 1 |= Xf > 0

3. p(2,X,A,B,C,Xf),X > 0,A = 1 |= Xf > 0

4a. p(3,X,A,B,C,Xf),X > 0,A = 1,B = 1 |= Xf > 0

Figure 6.5: Optimized Proof Tree of Simple If Sequence Program

3. AssertionA3 : p(X̃′),ρ(X̃, X̃′),φ(X̃) |= H(X̃) is obtained by left unfold using non-fact

clauseκ3 : p(X̃) :- ρ(X̃, X̃′), p(X̃), and is then proved either by

(a) further left unfold (LU),

(b) applying induction hypothesis (AP), or,

(c) application ofCUT resulting in a proof of stronger assertionS whereS� A3 (cf.

Section 6.2.2).

Here, for example, the same unfold step usingκ1 can actually be used to prove a stronger

assertion than the originalp(X̃),φ(X̃) |= H(X̃). For example, had the original assertion been

p(X̃) |= β(X̃), we unfold this using the CLP clauseκ1 to β(X̃) |= β(X̃), which still holds. Notice

that

(p(X̃) |= β(X̃))� (p(X̃),φ(X̃) |= H(X̃))

174

becauseβ(X̃),φ(X̃) |= H(X̃). (That is, sincep(X̃) |= β(X̃), we replaceβ(X̃) with p(X̃) resulting

in p(X̃),φ(X̃) |= H(X̃).) In fact, p(X̃) |= β(X̃) is the strongest assertion which can be proved by

an unfold step usingκ1.

We next demonstrate that for each unfold usingκ1, κ2, or κ3, there is a theoretical strongest

assertion that can be proved. Due to the existence of the strongest assertion, the same unfold step

can be used to prove anything weaker, including the originalproved assertion. Since the original

assertion may not be the strongest assertion, this opens thedoor to its strengthening.

Proposition 6.1. The strongest assertion that can be established by a left unfold step using a

constraint factκ1 : p(X̃) :- β(X̃) is p(X̃) |= β(X̃).

Proof. Suppose thatp(X̃),φ(X̃) |= H(X̃) is established by a left unfold usingp(X̃) :- β(X̃),

that is,β(X̃),φ(X̃) |= H(X̃). Hence,β(X̃) ⇒ (φ(X̃) ⇒ H(X̃)), and therefore(p(X̃) |= β(X̃))�

(p(X̃),φ(X̃) |= H(X̃)). 2

The unfold usingκ2 is handled by the next proposition.

Proposition 6.2. The strongest assertion that can be directly proved after a left unfold us-

ing the clauseκ2 : p(X̃) :- δ(X̃, X̃′), p(X̃′), where the result is proved usingDP is p(X̃) |=

δ(X̃,?X̃′), p(?X̃′).

Proof. Suppose thatp(X̃),φ(X̃) |= H(X̃) is directly proved after a left unfold using the clause

p(X̃) :- δ(X̃, X̃′), p(X̃′). This means thatp(X̃′),δ(X̃, X̃′),φ(X̃) |= H(X̃), hencep(X̃′),δ(X̃, X̃′) |=

(φ(X̃) ⇒ H(X̃)). Therefore,(p(X̃) |= δ(X̃,?X̃′), p(?X̃′))� (p(X̃),φ(X̃) |= H(X̃)). 2

The unfold usingκ3 is handled by the next proposition. We assume that the unfoldresult

A3 : p(X̃′),ρ(X̃, X̃′),φ(X̃) |= H(X̃) has been strengthened to assertionS : p(X̃),φ′(X̃) |= H ′(X̃′)

and we want to know what is the strongest assertion which results in Safter left unfold using the

same clauseκ3.

Proposition 6.3. Suppose that an assertionS : p(X̃′),φ′(X̃′) |= H ′(X̃′) has been established.

The strongest assertion that is left unfolded to an assertion B whereS�B using the clauseκ3 :

p(X̃) :- ρ(X̃, X̃′), p(X̃′) is

p(X̃),〈∀Ỹ : ρ(X̃,Ỹ) ⇒ φ′(Ỹ)〉 |= ρ(X̃,?Z̃),H ′(?Z̃) (6.1)

175

Proof. First notice that (6.1) is equivalent to

p(X̃) |= 〈∀Ỹ : ρ(X̃,Ỹ) ⇒ φ′(Ỹ)〉 ⇒ 〈∃Z̃ : ρ(X̃, Z̃),H ′(Z̃)〉

≡ p(X̃) |= 〈∃Ỹ : ¬(¬ρ(X̃,Ỹ)∨φ′(Ỹ))〉∨〈∃Z̃ : ρ(X̃, Z̃),H ′(Z̃)〉

≡ p(X̃) |= 〈∃Ỹ : ¬(¬ρ(X̃,Ỹ)∨φ′(Ỹ))∨ (ρ(X̃,Ỹ),H ′(Ỹ))〉

≡ p(X̃) |= ρ(X̃,?Ỹ),(φ′(?Ỹ) ⇒ H ′(?Ỹ)).

Suppose that an assertionp(X̃),φ(X̃) |= H(X̃) is unfolded into assertionB : p(X̃′),ρ(X̃, X̃′),φ(X̃) |=

H(X̃) using the clauseκ3.

Now, assertionS�B holds. Then sinceScan be written asp(X̃′) |= (φ′(X̃′)⇒H ′(X̃′)), while

B can be written asp(X̃′) |= (ρ(X̃, X̃′) ⇒ (φ(X̃) ⇒ H(X̃))), necessarily

(φ′(X̃′) ⇒ H ′(X̃′)) ⇒ (ρ(X̃, X̃′) ⇒ (φ(X̃) ⇒ H(X̃)))

≡ (ρ(X̃, X̃′),(φ′(X̃′) ⇒ H ′(X̃′))) ⇒ (φ(X̃) ⇒ H(X̃))

≡ 〈∃Ỹ : ρ(X̃,Ỹ),(φ′(Ỹ) ⇒ H ′(Ỹ))〉 ⇒ (φ(X̃) ⇒ H(X̃)).

This means that (6.1) is stronger thanp(X̃),φ(X̃) |= H(X̃). 2

Case 3(a) is covered by Proposition 6.3 whenSis a summarization ofA3, case 3(b) is covered

whenS is an already proved assertion, and case 3(c) is whenS is a replacement assertion ofA3,

where application ofCUT establishesS�A3.

When our CLP clauses represent the transitions of a state transition system, the computation

of (6.1) fromA : p(X̃′),φ′(X̃′) |= H ′(X̃′) can be considered as:

• for the lhs of (6.1), computing aweakest precondition[47] of a transition relationρ(x̃, x̃′)

represented as a CLP clause, and

• for the rhs of (6.1), a strongest postcondition (see Section5.8.2) of its inverse transition.

We repeat here thatwp(t,φ′) is defined to be the most liberal condition, from which a transi-

tion step defined by the fragmentt may reach a conditionφ′(x̃) on the program variables ˜x. More

formally, whenρ represents the transition relation defined byt [19],

wp(t,φ′) ≡ 〈∀x̃′ : ρ(x̃, x̃′) ⇒ φ′(x̃){x̃ 7→ x̃′}〉.

176

Weakest precondition complements the strongest postcondition we have discussed in Section

5.8.1. Now, the strongest postcondition of an inverseρ−1 of the transition relationρ (that is,

ρ−1(x̃′, x̃) if and only if ρ(x̃, x̃′)) defined byt, given the conditionH ′(x̃) is

sp(t−1,H ′) ≡ 〈∃x̃′ : ρ(x̃, x̃′)∧H ′(x̃){x̃ 7→ x̃′}〉.

In the above,t−1 denotes the “inverse” or “backward” fragment defining the transition relation

ρ−1. From these, we can write (6.1) as

p(X̃),wp(t,φ′) |= sp(t−1,H ′).

As we have seen, left unfold using different CLP clauses result in different strengthening

of the unfolded assertionp(X̃),φ(X̃) |= H(X̃). Suppose that there aren clauses/unfolds, and

thereforen strongest assertionsp(X̃),φi(X̃) |= Hi(X̃) for 1 ≤ i ≤ n. The strongest assertion is

in general not computable and often inefficient to compute. Hence instead of the strongest as-

sertionp(X̃),φi(X̃) |= Hi(X̃), we compute a weakerp(X̃),φ′
i(X̃) |= H ′

i (X̃) where(p(X̃),φi(X̃) |=

Hi(X̃))� (p(X̃),φ′
i(X̃) |= H ′

i (X̃)). However, in order to still be useful as a strengthening of the

unfolded assertion, we require that(p(X̃),φ′
i(X̃) |= H ′

i (X̃))� (p(X̃),φ(X̃) |= H(X̃)). That is, it is

actually stronger than the original assertion.

Based on our discussions so far, the strengthening of the unfolded assertionp(X̃),φ(X̃) |=

H(X̃) can now be written as the disjunction

n
_

i=1

(p(X̃),φ′
i(X̃) |= H ′

i (X̃)). (6.2)

Recall that our purpose in computing the strengthening of the unfolded assertionp(X̃),φ(X̃) |=

H(X̃) is such that its proof is more likely to make the proving of other assertions redundant.

Therefore we need to memo (6.2) in computer memory. However,storing a disjunction of asser-

tions can be inefficient (it can be exponential to the depth ofthe subtree). We therefore propose

to store a single assertion instead.

In the following proposition, we state how we may construct asingle summarization of the

original obligation out of the stronger assertions returned by the unfold children.

177

Proposition 6.4. Suppose that we managed to prove an assertionA : p(X̃),φ(X̃) |= H(X̃) by

first applyingLU using all theκ1, . . . ,κn clauses of a CLP program. Now,p(X̃),φ′
i(X̃) |= H ′

i (X̃)

is an assertion which can be proved by an unfold using clauseκi only, for 1≤ i ≤ n. An assertion

S: p(X̃),φ′′(X̃) |= H ′′(X̃) such that

• φ′′(X̃) ⇒
Vn

i=1 φ′
i(X̃),

• H ′′(X̃) ⇐
Wn

i=1H ′
i (X̃), and

• S�A,

is a summarization ofA.

Proof. The condition thatS�A for summarization is satisfied by definition. Now we demon-

strate that the proof tree ofAcan be used to proveSalso. Note that for any 1≤ i ≤n, (p(X̃),φ′
i(X̃) |=

H ′
i (X̃))�S. This is becauseφ′′(X̃) ⇒ φ′

i(X̃) andH ′
i (X̃) ⇒ H ′′(X̃) for all 1≤ i ≤ n. ThereforeS

can be proved by left unfold using any rule fromκ1 to κn. 2

In the next section we formalize the computing of summarizations via constraint deletion,

which has been exemplified in Section 6.2.1.

6.2.4 Constraint Deletion

Deletion Functions

Here we first propose black-box primitives of an efficient proof algorithm which employs con-

straint deletion to strengthen assertions. An essential element of the algorithm is the storing and

manipulation of sequence of constraints corresponding to the unfold path.

We first define a functioncdel(A,C) which, when given an assertionA and a clauseC, com-

putes a stronger assertion thanA using constraint deletion technique, based on the information

obtained by left unfold using clauseC. Here we also consider the three cases mentioned in Sec-

tion 6.2.3.

For the unfold using constraint factκ1, the value ofcdel(A,C) = cdel1(A,C), where the value

of cdel1 is given as follows:

cdel1((p(X̃),c1, . . . ,ca,ca+1, . . . ,cb |= H),κ1) =

p(X̃),ca+1, . . . ,cb |= 2 if β(X̃),ca+1, . . . ,cb |= 2

p(X̃),ca+1, . . . ,cb |= Ȟ if β(X̃),ca+1, . . . ,cb |= Ȟ andȞ,c1, . . . ,ca |= H.

(6.3)

178

Note that in this definition we do not specify how to compute the goalȞ. This will be the subject

of the next section. In particular,̌H can be simplyH, as in the proof of our first example in

Section 6.2.1.

Before discussing thecdel for the second case, we first introduce a restriction that we only

consider left unfold usingκ2 where the lhs of the resultingA2 evaluates to2. That is, p(X̃′),

δ(X̃, X̃′),φ(X̃) |= H(X̃) is directly proved by our algorithm only whenδ(X̃, X̃′),φ(X̃) |= 2.

The value ofcdel(A,C) for this case is given by the functioncdel2(A,C) defined as follows.

cdel2((p(X̃),c1, . . . ,ca,ca+1, . . . ,cb |= H),κ2) =

p(X̃),ca+1, . . . ,cb |= 2 whereδ(X̃, X̃′),ca+1, . . . ,cb |= 2

(6.4)

We now consider cases 3(a), 3(b), and 3(c) separately.

For case 3(a), whereA3 is proved by further left unfold, we define the followingcdel3(a)

function:

cdel3(a)((p(X̃),c1, . . . ,ca,ca+1, . . . ,cb |= H),κr.i) =

p(X̃),ca+1, . . . ,cb |= Ȟ where

1. summ(p(X̃′),ρi(X̃, X̃′),c1, . . . ,cb |= H) = p(X̃′),e1, . . . ,ed |= H ′(X̃′)

where{c1, . . . ,ca}∩{e1, . . . ,ed} = /0,

2. ρi(X̃, X̃′),H ′(X̃′) |= Ȟ, and

3. Ȟ,c1, . . . ,ca |= H.

(6.5)

The functioncdel3(a) above uses the functionsummwhich we will define later. For now, it

suffices to say thatsumm(p(X̃′),ρi(X̃, X̃′),c1, . . . ,cb |= H) is only defined when its argument

p(X̃′),ρi(X̃, X̃′),c1, . . . ,cb |= H is provable starting with a left unfold (LU), and it returns a

stronger assertionp(X̃),e1, . . . ,ed |= H ′ which can also be proved given the CLP programΓ,

such that{e1, . . . ,ed} ⊆ {ρi(X̃, X̃′),c1, . . . ,cb} andH ′ |= H.

We now discuss the case 3(b) where the value ofcdel is given by the functioncdel3(b) as

179

follows.

cdel3(b)((p(X̃),c1, . . . ,ca,ca+1, . . . ,cb |= H),κ3) =

p(X̃),ca+1, . . . ,cb |= Ȟ where

1. an assertionS: p(Ỹ),φ |= H ′(Ỹ) is proved or assumed and

θ renames awayS from p(X̃′),ρ(X̃, X̃′),c1, . . . ,cb |= H,

2. ρ(X̃, X̃′),ca+1, . . . ,cb |= φθ, X̃′ = Ỹ (subsumption),

3. ρ(X̃, X̃′),H ′(Ỹ)θ, X̃′ = Ỹ |= Ȟ (residual assertion), and

4. Ȟ,c1, . . . ,ca |= H.

(6.6)

We now consider case 3(c). Here the value ofcdel(A,C) is given bycdel3(c)(A,C) as follows.

cdel3(c)((p(X̃),c1, . . . ,ca,ca+1, . . . ,cb |= H),κ3) =

p(X̃),ca+1, . . . ,cb |= Ȟ where

1. an assertionS: GS |= HS is proved,

θ renames awayS from A3 : p(X̃′),ρ(X̃, X̃′),c1, . . . ,cb |= H, and

Ỹ ⊆ var(Sθ) andZ̃ ⊆ var(A3) s.t. |Ỹ| = |Z̃|.

2. p(X̃′),ρ(X̃, X̃′),ca+1, . . . ,cb |= GSθ,Ỹ = Z̃ (subsumption),

3. ρ(X̃, X̃′),HSθ,Ỹ = Z̃ |= Ȟ (residual assertion), and

4. Ȟ,c1, . . . ,ca |= H.

(6.7)

cdel3(c) is similar tocdel3(b). The difference is only in the way subsumption test is done.

We now define the functionsumm(A), given an assertionA. The function is only defined

whenA is provable using one application ofLU, followed by arbitrary applications ofLU, DP,

AP, andRU, and following our restriction mentioned above, that we never useDP to conclude a

proof obligation unless either the lhs of the assertion evaluates to2 or the assertion is obtained

by a left unfold using a constraint fact.

Suppose thatA : p(X̃),φ(X̃) |= H(X̃) is completely unfolded by applyingRU rule using all

clausesκ1, . . . ,κn of a CLP program. Suppose thatcdel(A,κi) is p(X̃), φ̂i(X̃) |= Ȟi(X̃) for 1 ≤

i ≤ n. Following from our discussions above, we know thatφ̂i(X̃) can be viewed as a set of

constraints which is a subset ofφ(X̃).

We define:

summ(A) ≡ p(X̃),
n

[

i=1

φ̂i(X̃) |= Ȟ(X̃), (6.8)

180

whereȞ(X̃) ⇐
Wn

i=1 Ȟi(X̃) andȞ(X̃) |= H(X̃). Note that again here we leave open how we may

computeȞ.

Correctness

We will now prove thecorrectnessandusefulnesslemmas of the functions defined above. Later

in this section we will establish thatsumm(A) is a summarization ofA (according to Definition

6.1 on Page 173).

Definiton 6.2 (Correctness). CdelX (A,κ) is correct for eitherX = 1, 2, 3(a), 3(b), or 3(c)

when it can be established by left unfolding using the clauseκ.

Definiton 6.3 (Usefulness). CdelX (A,κ) is usefulfor eitherX = 1, 2, 3(a), 3(b), or 3(c) when

cdelX (A,κ)�A.

Lemma 6.1. Cdel1(A,κ1) is correct and useful.

Proof. Suppose thatA is p(X̃),c1, . . . ,ca,ca+1, . . . ,cb |= H andcdel1(A,κ1) is given as in (6.3).

We consider two cases:

1. β(X̃),ca+1, . . . ,cb |= 2. In this case,cdel1(A,κ1) = p(X̃),ca+1, . . . ,cb |= 2. Since this can

be established by a left unfold step usingκ1 then necessarily(p(X̃) |= β(X̃))�cdel1(A,κ1).

In order to prove the usefulness, we assume thatp(X̃),ca+1, . . . ,cb |= 2, i.e., cdel1(A,κ1)

holds, and we proveA. It is easy to see that

(a) p(X̃),c1, . . . ,ca,ca+1, . . . ,cb |= p(X̃),ca+1, . . . ,cb.

(b) 2 |= H.

Combining the above 2 withcdel1(A,κ1) by modus ponens we establishA.

2. β(X̃),ca+1, . . . ,cb |= Ȟ andȞ |= H. In this case,cdel1(A,κ1) = p(X̃),ca+1, . . . ,cb |= Ȟ is

correct since it can be proved by left unfold using clauseκ1, therefore necessarily(p(X̃) |=

β(X̃))�cdel1(A,κ1). For the usefulness, we assume thatcdel1(A,κ1) holds and we derive

A. Here it is easy to see fromcdel1(A,κ1) that

p(X̃),c1, . . . ,ca,ca+1, . . . ,cb |= Ȟ,c1, . . . ,ca.

181

SinceȞ,c1, . . . ,ca |= H, we getA. This establishescdel1(A,κ1)�A. 2

Lemma 6.2. Cdel2(A,κ2) is correct and useful.

Proof. Suppose thatA is p(X̃),c1, . . . ,ca,ca+1, . . . ,cb |= H, andcdel2(A,κ2) = p(X̃),ca+1, . . . ,

cb |= 2 whereδ(X̃, X̃′),ca+1, . . . ,cb |= 2. Cdel(A,κ2) is correct because by left unfolding it using

κ2 we getp(X̃′),δ(X̃, X̃′),ca+1, . . . ,cb |= 2 which holds sinceδ(X̃, X̃′),ca+1, . . . ,cb |= 2.

Also, cdel2(A,κ2) is useful since, first of all it is easy to see that

1. p(X̃),c1, . . . ,ca,ca+1, . . . ,cb |= p(X̃),ca+1, . . . ,cb.

2. 2 |= H.

Now, usingcdel2(A,κ2) we deriveA by modus ponens using the above 2 assertions.2

Lemma 6.3. Cdel3(a)(A,κ3) is correct and useful.

Proof. Suppose thatA is p(X̃),c1, . . . ,ca,ca+1, . . . ,cb |= H andcdel3(a)(A,κ3) = p(X̃),ca+1, . . . ,

cb |= Ȟ. We now left unfoldcdel3(a)(A,κ3) usingκ3 resulting inp(X̃′),ρi(X̃, X̃′),ca+1, . . . ,cb |=

Ȟ. Since{c1, . . . ,ca} ∩ {e1, . . . ,ed} = /0 then necessarily{e1, . . . ,ed} ⊆ {ρi(X̃, X̃′),c1, . . . ,cb},

thereforep(X̃′),ρi(X̃, X̃′),ca+1, . . . ,cb |= p(X̃′),e1, . . . ,ed, and thereforep(X̃′),ρi(X̃, X̃′),ca+1,

. . . ,cb |= p(X̃′),ρi(X̃, X̃′),e1, . . . ,ed. Now sincep(X̃′),e1, . . . ,ed |= H ′(X̃′) we have thatp(X̃′),

ρi(X̃, X̃′),e1, . . . ,ed |= ρ(X̃, X̃′),H ′(X̃′). By modus ponens we establishp(X̃′),ρi(X̃, X̃′),ca+1,

. . . ,cb |= ρ(X̃, X̃′),H ′(X̃′), and sinceρ(X̃, X̃′),H ′(X̃′) |= Ȟ, again by modus ponens we finally

establishp(X̃′),ρi(X̃, X̃′),ca+1, . . . ,cb |= Ȟ.

On the usefulness, it is easy to see that fromcdel3(a)(A,κ3) we have thatp(X̃),c1, . . . ,ca,

ca+1, . . . ,cb |= Ȟ,c1, . . . ,ca. And sinceȞ,c1, . . . ,ca |= H, we deriveA, and thereforecdel3(a)(A,κ3)

�A. 2

Lemma 6.4. Cdel3(b)(A,κ3) is correct and useful.

Proof. Suppose thatA is p(X̃),c1, . . . ,ca,ca+1, . . . ,cb |= H andcdel3(b)(A,κ3) = (p(X̃),ca+1, . . . ,

cb |= Ȟ). Unfoldingcdel3(b)(A,κ3) we getp(X̃′),ρ(X̃, X̃′),ca+1, . . . ,cb |= Ȟ. Due to condition no.

2 in (6.6), we have thatp(X̃′),ρ(X̃, X̃′),ca+1, . . . ,cb |= p(X̃′),ρ(X̃, X̃′),φθ, X̃′ = Ỹ. By modus po-

nens using assertionSwe have thatp(X̃′),ρ(X̃, X̃′),ca+1, . . . ,cb |= ρ(X̃, X̃′),H ′(Ỹ)θ, X̃′ = Ỹ. By

182

another modus ponens using condition no. 3, we have thatp(X̃′),ρ(X̃, X̃′),ca+1, . . . ,cb |= Ȟ,

which is the left unfold ofcdel3(b)(A,κ3).

For the usefulness, it is easy to see fromcdel3(b)(A,κ3) that p(X̃),c1, . . . ,ca,ca+1, . . . ,cb |=

Ȟ,c1, . . . ,ca. And sinceȞ,c1, . . .ca |= H, thereforeA holds, and thereforecdel3(b)(A,κ3)�A. 2

Lemma 6.5. cdel3(c)(A,κ3) is correct and useful.

Proof. The proof is similar to the proof of Proposition 6.4.

Suppose thatA is p(X̃),c1, . . . ,ca,ca+1, . . . ,cb |= H andcdel3(c)(A,κ3) = (p(X̃),ca+1, . . . ,cb |=

Ȟ). Unfoldingcdel3(c)(A,κ3) we getp(X̃′),ρ(X̃, X̃′),ca+1, . . . ,cb |= Ȟ. Due to condition no. 2 in

(6.7), we have thatp(X̃′),ρ(X̃, X̃′),ca+1, . . . ,cb |= p(X̃′),ρ(X̃, X̃′),GSθ,Ỹ = Z̃. By modus ponens

using assertionS we have thatp(X̃′),ρ(X̃, X̃′),ca+1, . . . ,cb |= ρ(X̃, X̃′),HSθ,Ỹ = Z̃. By another

modus ponens using condition no. 3, we have thatp(X̃′),ρ(X̃, X̃′),ca+1, . . . ,cb |= Ȟ, which is the

left unfold ofcdel3(c)(A,κ3).

For the usefulness, it is easy to see fromcdel3(c)(A,κ3) that p(X̃),c1, . . . ,ca,ca+1, . . . ,cb |=

Ȟ,c1, . . . ,ca. And sinceȞ,c1, . . . ,ca |= H, we deriveA, and thereforecdel3(c)(A,κ3)�A. 2

Theorem 6.1 (Summarization by Deletion). Summ(A) is a summarization ofA.

Proof. From Definition 6.1, here we need to establish the following two:

1. ThatSumm(A) can be proved by the same left unfold as is applied toA (and hence proved

by the same subtree.

2. ThatSumm(A)�A.

From Lemmas 6.1, 6.2, 6.3, and 6.4, we know thatcdel(A,κi) is correct for 1≤ i ≤ n. Now,

for any 1≤ i ≤ n, obviouslyp(X̃),
Sn

j=1 φ̂ j(X̃) |= p(X̃), φ̂i(X̃). Moreover,Ȟi(X̃)⇒ Ȟ(X̃). Hence,

for all 1 ≤ i ≤ n, cdel(A,κi) � summ(A). Sincecdel(A,κi) is correct for all 1≤ i ≤ n, then

summ(A) can be proved by the same left unfold usingκ1, . . . ,κn.

We now provesumm(A)� A. We now demonstrate how we may obtainA from summ(A).

Obviouslyp(X̃),φ(X̃) |= p(X̃),
Sn

i=1 φ̂i(X̃) since for all 1≤ i ≤ n, φ̂i(X̃) ⊆ φ(X̃). Using this and

summ(A) and by modus ponens we have thatp(X̃),φ(X̃) |= Ȟ(X̃), and sinceȞ(X̃) |= H(X̃), we

obtainA. 2

183

6.2.5 Information Discovery via Dynamic Summarization

In the previous section we have described the constraint deletion technique to generalize lhs of

an assertion in order to obtain a candidate for summarization, which is more informative than the

original assertion. Generalization of the lhs can be coupled with a specialization of the rhs of an

assertion for the same purpose, and this is the focus of this section.

Also in the previous section we have assumed the existence ofa function which would auto-

matically produceȞ from an unfold ofp(X̃),c1, . . . ,ca,ca+1, . . .cb |= H such thatȞ,c1, . . . ,ca |=

H. We can viewȞ,c1, . . . ,ca as a specialization ofH. In normal safety proof, as in our example

in Section 6.2.1,Ȟ is simplyH, but we can be more flexible depending on the given problem.

One such problem is the proof of execution time bound, which we will use as our main example.

The proof will become essentially a discovery process of thetime bound.

Users may initially guide the information that they want to extract by providing an initial

lhs H with existentially quantified variables. For example, whenwe wish to discover the timing

bound of a program, we run a dynamic summarization-based algorithm with input the assertion

p(0, X̃,T,Tf),φ(X̃),T = 0 |= Tf −T ≤?Bound.

Here,T represents the current execution time of the program, andTf is a final variable represent-

ing the execution time at the end of the program. We assume that the program indeed terminates,

and there is an actual value forB.

Now suppose that a sequence of left unfolds updates the aboveassertion into the following

assertionA at depthk (assuming the increment of variableT is 1 with each unfold), which is to

be unfolded using a constraint fact:

p(l , X̃k,Tk,Tf),φ(X̃), . . . ,T = 0,T ′ = T +1,T ′′ = T ′+1, . . . ,Tk = Tk−1+1 |= Tf −T ≤?Bound.

Again suppose that in the program we have the constraint factκ1 :

p(l , X̃,T,Tf) :- T = Tf .

The result of left unfold ofA using this clause is the assertion

Tk = Tf ,φ(X̃), . . . ,T ′ = T +1,T ′′ = T ′ +1, . . . ,Tk = Tk−1 +1 |= Tf −T ≤?Bound.

184

Computing the functioncdel1(A,κ1) whereȞ = H results in the following assertionA′ :

p(l , X̃k,Tk,Tf),T
′ = T +1,T ′′ = T ′ +1, . . . ,Tk = Tk−1 +1 |= Tf −T ≤?Bound.

Here, the constraints sequenceT = 0,φ(X̃), . . . , in A is not necessary for the assertion to hold,

hence they are deleted fromA. The assertionA′ is already a correct candidate for summarization

of A, however, we can produce more informative candidate by the following procedure:

• We first produceȞ such thatȞ,T ′ = T +1,T ′′ = T ′ +1, . . . ,Tk = Tk−1 +1 |= Tf −T ≤

?Bound. In the special case of proving timing bound,Ȟ can be easily determined to be the

boundTf −Tk ≤ 0 betweenTf andTk.

• We then examine the assertionA′ with its rhs replaced withTf −Tk ≤ 0 :

p(l , X̃k,Tk,Tf),T
′ = T +1,T ′′ = T ′ +1, . . . ,Tk = Tk−1 +1 |= Tf −Tk ≤ 0.

Now, the constraintsT ′ = T +1,T ′′ = T ′ +1, . . . ,Tk = Tk−1 +1 are no longer necessary

to imply the rhs, and can be further removed, resulting in ourfinal candidateA′′ :

p(l , X̃k,Tk,Tf) |= Tf −Tk ≤ 0.

It is easy to see thatA′′ satisfies all the properties ofcdel1(A,κ1) (6.3), and it is more

informative thanA′, i.e.,A′′
�A′.

We now deal with the question of propagating the candidate summarization to the ancestors.

Let us considercdel3(a) (casescdel3(b) andcdel3(c) are similar). Consider an immediate ancestor

of A, which we callB :

p(m, X̃k−1,Tk−1,Tf),φ(X̃), . . . ,T ′ = T +1,T ′′ = T ′+1, . . . ,Tk−1 = Tk−2+1 |= Tf −T ≤?Bound.

Here we want to generate a candidate summarization ofB from A′′. Suppose thatB is unfolded

to A by the clauseκ2 :

p(m, X̃,T,Tf) :- X̃ = X̃′,T ′ = T +1, p(l , X̃,T ′,Tf).

First we consider the lhs ofcdel3(a)(B,κ2). SinceA′′ does not require all constraints inφ(X̃), . . . ,

185

T ′ = T +1,T ′′ = T ′ +1, . . . ,Tk = Tk−1 +1, we can delete all of these fromB. We next consider

the rhs ofcdel3(a)(B,κ2). Again here we want to produce ǎH, but now two conditions must hold

(conditions 2 and 3 of (6.5)):

1. X̃k−1 = X̃k,Tk = Tk−1 +1,Tf −Tk ≤ 0 |= Ȟ, and

2. Ȟ,φ(X̃), . . . ,T ′ = T +1,T ′′ = T ′ +1, . . . ,Tk−1 = Tk−2 +1 |= Tf −T ≤?Bound.

For our special problem, it is easy to determine suchȞ to beTf −Tk−1 ≤ 1. Hence, we have a

candidate summarizationB1 :

p(m, X̃k−1,Tk−1,Tf) |= Tf −Tk−1 ≤ 1.

The remaining problem is on computing a single assertion which is a summarization ofB,

i.e.,summ(B) according to (6.8). Suppose thatB can be unfolded using another clauseκ3, which

produces a candidate summarizationB2 as follows:

p(m, X̃k−1,Tk−1,Tf) |= Tf −Tk−1 ≤ 2.

BothB1 andB2 have the same lhs. One of the correctsumm(B) is

p(m, X̃k−1,Tk−1,Tf) |= Tf −Tk−1 ≤ 2∨Tf −Tk−1 ≤ 1.

Unfortunately, in this case the rhs contains a disjunction,which can be of exponential size as

summarizations are propagated to the ancestors. From Proposition 6.4, however, we know that it

is enough to use an expression which is a cover of the disjunction. In our special case of timing

bound discovery, this is always one of the disjuncts, which in the above case isTf −Tk−1 ≤ 2.

We therefore obtainsumm(B) = B2. As it is here, in its most generality, we derive a disjunction

at the rhs, but it can often be simplified.

We note that although, this technique discovers bounds, it does not discover the tightest

bound. For instance, the most that we can guarantee is that itdiscovers some timing bound and

not theworst-case execution time(WCET). The problem is that when we consider an assertion

to be proved is redundant to a summarization stored in the table, it is not necessarily the case that

the path that gives rise to the timing bound of the summarization is also feasible in the redundant

assertion. As the result of redundancy test, we may get an answer bound for the redundant

186

proc summarize(G |= H)
〈0〉 TableL,NotDoneL := /0, /0
〈1〉 Summarization:= recursesumm(/0,G |= H)
〈2〉 return Summarization,NotDoneL

end proc

proc recursesumm(ÃL,G |= H)
〈3〉 L,R := ⊤,⊥
〈4〉 for each (κ ∈ Γ) do
〈5〉 g := unfoldκ(G)
〈6〉 if (abstractionpoint(g)) then
〈7〉 if (S∈ Tables.t.S�p (g |= H)) then
〈8〉 (G′ |= H ′) := cdel3(b)(G |= H,κ)

else
〈9〉 chooseSs.t.S� (g |= H)

〈10〉 NotDoneL := NotDoneL ∪{S}
〈11〉 (G′ |= H ′) := cdel3(c)(G |= H,κ)

end if
〈12〉 else if (S∈ ÃL s.t.S�p (g |= H)) then (G′ |= H ′) := cdel3(b)(G |= H,κ)
〈13〉 else if (S∈ TableL s.t.S�p (g |= H)) then (G′ |= H ′) := cdel3(b)(G |= H,κ)
〈14〉 else if (κ is non-fact andg is 2) then (G′ |= H ′) := cdel2(G |= H,κ)
〈15〉 else if (κ is fact) then
〈16〉 if (g |= H is provable) then (G′ |= H ′) := cdel1(G |= H,κ)
〈17〉 else abort end if

else
〈18〉 (G′ |= H ′) := recursesumm(ÃL ∪{G |= H},g |= H)

end if
〈19〉 L,R := intersect(L,G′),closure(R,H ′)

end for
〈20〉 TableL := TableL ∪{L |= R}
〈21〉 return (L |= R)

end proc

Figure 6.6: SummarizeProcedure

assertion which is actually an over approximation.

Other than the discovery of timing bound or bounds on resource usage in general, the tech-

nique explained in this section can potentially be extendedfor retrieving various information

about a program.

6.3 The Basic Compositional Algorithm

Before we present our main algorithm, we first provide an algorithm which performs traver-

sal with dynamic summarization, in the form ofsummarizeprocedure shown in Figure 6.6.

Summarizeis simply a wrapper to the procedurerecursesumm. The procedure accesses two

187

proc prove(G |= H)
〈0〉 Table,NotDone:= /0, /0
〈1〉 (G′ |= H ′),NotDone′ := summarize(G |= H)
〈2〉 Table:= Table∪{G′ |= H ′}
〈3〉 NotDone := NotDone∪NotDone′

〈4〉 while (NotDone6= /0) do
〈5〉 (G |= H) := pop(NotDone)
〈6〉 (G′ |= H ′),NotDone′ := summarize(G |= H)
〈7〉 Table:= Table∪{G′ |= H ′}
〈8〉 NotDone := NotDone∪NotDone′

end do
return Success

end proc

Figure 6.7: Compositional Algorithm

kinds of table represented as the two variablesTableandTableL. Tableis defined in the main pro-

gram (to be shown later), and is a global table for the whole program. It stores proved assertions

at abstraction points. On the other hand,TableL is the local table for the current execution of

summarize, where strengthening of proved assertions which are not abstraction points are stored.

We now explainrecursesummin more detail.Recursesummis called with two arguments:

ÃL represents the current assumed assertions to be used in coinduction, andG |= H is the assertion

which is to be proved and its strengthening produced. At〈3〉 we reset the two variablesL andR.

L stores the current computed lhs of the summarization, whileRstores the rhs.L is initialized to

⊤, while R is initialized to⊥. L |= R is eventually to be returned to the caller, and its final value

is computed incrementally.

The algorithm basically attempts to perform left unfold using each CLP clauseκ in the pro-

gramΓ and update the summarizationL |= R. To denote an unfold using a particularκ, here we

define a functionunfoldκ, such thatunfoldκ
p(X̃)(G) = G′ when2 :- G′ ≡ resolvp(X̃)(2 :- G,κ).

Note thatunfoldp(X̃)(G) = {unfoldκ
p(X̃)(G)|κ ∈ Γ}. We simply writeunfoldκ

p(X̃) asunfoldκ when

the unfolded atomp(X̃) is clear.

After unfolding usingκ, the procedure may encounter abstraction points (the condition at

〈5〉 holds). Here there are two cases: the summarization of the abstraction point is already kept

in the global table, in which case we generate a summarization usingcdel3(b). Otherwise, we

include some stronger assertionS in NotDoneL. NotDoneL is a set which stores all encountered

abstraction points whose assertions are not yet proved. It is to be passed to the main program.

The procedure may also encounter a point where we apply coinduction (Line 〈11〉). It is

188

also possible that the unfolded assertion is redundant to a summarization in theTableL (Line

〈12〉). Line 〈13〉 handles the case when theκ is not a fact, yetg evaluates to2. Line 〈15〉–〈16〉

handle the case whenκ is a fact. If none of the above cases apply, we have not yet beenable to

produce a summarization, in which case we need to go deeper inthe proof tree by recursing on

recursesumm(Line 〈17〉).

At Line 〈18〉 we generateL |= R incrementally using 2 procedures:intersectandclosure.

The functionintersect(L,G′) computes some conditionϕ such thatϕ ⇒ (L∧G′). In the case

of constraint deletion,intersect(L,G′) simply returns the union of the conjuncts inL andG. On

the other hand,closure(R,H ′) computes a conditionψ such that(R∨H ′) ⇒ ψ. We may adopt

an implementation where in caseR is 2 thenclosure(R,H ′) is H ′ and similarly whenH ′ is 2

thenclosure(R,H ′) is R. In case we attempt to discover timing bounds, whenR is the constraint

Tf −T ≤ α andH ′ is the constraintTf −T ≤ β, closure(R,H ′) ≡ Tf −T ≤ max(α,β). In case

we are proving a safety condition and neitherR nor H ′ is 2, thenR≡ H ′ ≡ closure(R,H ′). In

this way we have an iterative computation ofsumm(G |= H), whose formal definition we give in

Section 6.2.4.

At Line 〈19〉 the procedure updates the local table by adding the new summarizationL |= R

and returns the assertion at Line〈20〉.

We show the pseudocode of our main algorithm in Figure 6.7. The algorithm calls the pro-

ceduresummarize(G |= H) which returns a strengthening ofG′ |= H ′ of G |= H and a set of

assertions that are not yet proved in the setNotDone′, which is then added to the setNotDone.

The program iterates untilNotDoneis an empty set.

We now exemplify a compositional proof using our algorithm.Here we return to our example

Program 6.1, which has been proved compositionally in Section 5.8.4, and proved using dynamic

summarization in Section 6.2.1. Here we again prove the example, but using both composition

and dynamic summarization.

We show the proof tree in Figure 6.8. We also define〈4〉 as a breakpoint of two frag-

ments as in Section 5.8.4, but now we reason on each fragment using dynamic summariza-

tion. Here, we assume that the user have specified that any assertionG |= H whose lhs satisfies

p(4,X,A,B,C,Xf), X > 0 is an abstraction point, and thatp(4,X,A,B,C,Xf),X > 0 |= Xf > 0

needs to be proved. We start the execution of our algorithm bythe call

prove(p(0,X,A,B,C,Xf),X > 0 |= Xf > 0).

189

4b. p(4,X,A,B,C,Xf),X > 0,A = 1,B 6= 1 |= Xf > 0

2b. p(2,X,A,B,C,Xf),X > 0,A 6= 1 |= Xf > 0

6. Xf > 0,A = 1,B = 1,C′ = 0 |= Xf > 0

CUT

7. ¬2

DP

CUT

DP

9. ¬2

1. p(4,X,A,B,C,Xf),X > 0 |= Xf > 0

2a. p(5,X,A,B,C,Xf),X > 0,C = 1 |= Xf > 0

3. p(Ω,X′,A,B,C,Xf),X′ = X +1,X > 0,C = 1 |= Xf > 0

5. ¬2

DP

LU

LU

LU

LU

LU

7. ¬2

DP4. X′ = X +1,X > 0,C = 1,X′ = Xf |= Xf > 0

2b. p(Ω,X,A,B,C,Xf),X > 0,C = 0 |= Xf > 0

6. X > 0,C = 0,X = Xf |= Xf > 0

5. p(4,X,A,B,C′,Xf),X > 0,A = 1,B = 1,C′ = 0 |= Xf > 0

8. Xf > 0,A = 1,B 6= 1 |= Xf > 0

LU

4a. p(3,X,A,B,C,Xf),X > 0,A = 1,B = 1 |= Xf > 0

3. p(2,X,A,B,C,Xf),X > 0,A = 1 |= Xf > 0

2a. p(1,X,A,B,C,Xf),X > 0,A = 1 |= Xf > 0

1. p(0,X,A,B,C,Xf),X > 0 |= Xf > 0

LU

LU

LU

LU

LU

Figure 6.8: Optimized Compositional Proof of Simple If Sequence Program

The procedureprovewould then call

summarize(p(0,X,A,B,C,Xf),X > 0 |= Xf > 0).

which initiates a traversal of the lower proof tree in Figure6.8 in depth-first manner. Nodes 5

and 4b of the proof tree are abstraction point, assuming thatp(4,X,A,B,C,Xf),X > 0 |= Xf > 0

is not yet proved, this is then handled by Lines〈9〉–〈11〉 in Figure 6.6. In this case, theS that

we choose in Line〈9〉 is p(4,X,A,B,C,Xf),X > 0 |= Xf > 0. This unproved assertion is added

to theNotDoneL set, and at the end of the execution ofsummarizeis returned toprove to be

included inNotDone. Provethen iterates over the contents ofNotDoneand prove each by again

callingsummarize(Lines〈4〉–〈8〉 in Figure 6.7). Sincep(4,X,A,B,C,Xf),X > 0 |= Xf > 0 is in

NotDone, it is therefore processed here by the call

summarize(p(4,X,A,B,C,Xf),X > 0 |= Xf > 0)

which produces the traversal of the upper tree in Figure 6.8.This traversal produces no more

assertion inNotDone, and hence after the return fromsummarizethe program terminates.

190

We note that here we obtain a proof which is smaller than both Figure 5.14 (Section 5.8.4)

and Figure 6.5 (Section 6.2.1). Due to compositionality, itis not necessary to repeat the proof

of the upper tree at 5 and 4b of the lower tree, and due to summarization, 2b of the lower tree

becomes redundant to 3.

191

Chapter 7

Toward a Basic Algorithm for

Recursive Assertions

Here we discuss the verification of two kinds of recursive assertions we have previously men-

tioned: relative safety assertions and general recursive assertions we encounter in array and

pointer data structure verification. The proof of relative safety assertions we have discussed

so far is automatable, and we provide the basic algorithm in Section 7.1. We also provide dis-

cussions on how general recursive assertions in data structure verification can be automated in

Section 7.2.

7.1 Algorithm for Proving Relative Safety

We devise an algorithm for proving relative safety in Figure7.1. It is based on our straightforward

algorithm in Figure 6.1. Similar to Figure 6.1, it uses the set of assumed assertions only instead

of global tabling, but different from it, it allows for application of CUT rule in order to check

whether an assertion is related by a relative safety property (e.g., symmetric) to another in the set

of assumed assertions.

Since the proof of a relative safety assertion can employ other relative safety assertions that

are proved separately, we allow the invocation of the procedureprovewith a nonempty assumed

assertions̃A at 〈1〉. In addition, the proof of a relative safety assertion using our proof method

requires the application ofRU rule. The checking ofG′′ |= H at〈2〉would require a search process

that uses only theRU andDP rules. G′′ |= H is established when after a number of applications

of RU we are able to conclude the final obligation usingDP. The right unfold viaRU here can

192

program
〈1〉 prove(Ã,G |= H)

end program

proc prove(Ã,G |= H)
for each (G′′ ∈ {G′|G |= G′}) do

〈2〉 if (G′′ |= H is provable, or
there isA∈ Ã

〈3〉 such thatA� (G′′ |= H)) then
return Success

end if
end for
Ã := Ã∪{G |= H}
F := unfold(G)
if (F 6= /0) then

for each (g∈ F) do
prove(Ã,g |= H)

end for
return Success

end if
abort

end proc

Figure 7.1: Relative Safety Prover Algorithm

be done either by depth-first or breadth-first strategy. It isoften useful to give a bound on the

depth of the right unfolding since it is possible that further right unfolding beyond certain depth

is futile. The proof process has to progress by more steps of left unfold (LU) when the right

unfolding has reached its depth bound without finding a proof.

7.2 Toward Automation of Data Structure Proof

Our main compositional algorithm of Figure 6.7 for program analysis and verification can also be

used for verifying programs with pointer data structures. However, in this case, the proof is not

completely automatic. For explanation, we provide a simpler algorithm for proving data structure

property in Figure 7.2. It is similar to the algorithm in Figure 6.4 for intermittent abstraction and

global tabling, and in fact Figure 6.4 is also a correct algorithm for data structure verification, but

in Figure 7.2 we opt to simply use the set of assumed assertions, which is enough for our purpose

instead of global table. We note that our sample data structure proofs in Chapter 5 and appendix

Section B.1 have been done without the redundancy checks made possible by global tabling.

Figure 7.2 is not completely automatic because at the momentthe operations at〈1〉, 〈2〉,

193

program
prove(/0,G |= H)

end program

proc prove(Ã,G |= H)
〈1〉 if (G |= H is provable) then

return Success
end if

〈2〉 if (abstractionpoint(G) andG |= G′) then
G := G′

end if
if (There isA∈ Ã

〈3〉 such thatA� (G |= H)) then
return Success

end if
Ã := Ã∪{G |= H}
F := unfold(G)
if (F 6= /0) then

for each (g∈ F) do
prove(Ã,g |= H)

end for
return Success

end if
abort

end proc

Figure 7.2: Simple Algorithm for Proving Data Structure Property

and〈3〉 are not fully automatic. The test at each of these points is a proof of general recursive

assertion with constraints on arrays, which often requiresright unfolding (RU rule) due to the

atoms in the rhs of the assertion, or seemingly arbitrary generalization viaCUT rule. To be more

specific, suppose that we want to provep1(X̃1), . . . , pm(X̃m),φ |= q(Ỹ),ψ. Here, often we need

to generalize the lhs, such as by removing some literals. Thepurpose of this is so that we may

conclude the proof later by the application of coinduction (AP).

Fortunately, in the domain of recursive data structure verification, the proof steps of general

recursive assertions are not completely arbitrary. Here weprovide a strategy that would work for

our examples.

We assume that a general recursive assertion has the form

p1(X̃1), . . . , pm(X̃m),φ |= q(Ỹ),ψ,

whereφ andψ are constraints. This form with only one atom at the rhs is general enough since

194

G |= q1(. . .),q2(. . .), . . . ,qn(...), can be proved by separately provingG |= q1(. . .), G |= q2(. . .),

. . . , andG |= qn(. . .). We also assume that nopi(X̃i), for 1 ≤ i ≤ m is a predicate of program

model (the predicatep we have been using so far). The above general recursive assertion can be

encountered as a subsumption test for applyingAP, the residual obligation after an application of

AP, or after applyingLU rule using a constraint fact.

Given the above general recursive assertion, we perform thefollowing steps:

1. First we try to prove the assertion directly by application of DP, or by a number of ap-

plications ofRU, which is followed by a singleDP. If this prove succeeds, we return to

the caller, reporting a success. Here we may also utilize separation principle (SEP) and/or

array index principle (AIP) to simplify the assertions. We often also need to discover a

substitution to existential variables of the rhs of the assertion to allow the application of

DP. It is straightforward to implement an incomplete automated procedure for this purpose

which is based on unification.

2. We try to applyAP if there is an ancestor of this assertion in the proof tree with the same

multiset of predicates in the lhs goal. Any application ofAP involves the following two:

(a) Subsumption test.

(b) Proof of the residual assertion.

Both are proved independently, and each is also a proof of general recursive assertion. If

we succeed with both proofs, we signal a success to the caller.

3. If with the above cases we are unable to establish a proof, we attempt to perform more left

unfold (LU). In the recursive data structure verification, we can impose some restriction on

the way we perform the unfolds.

Since we are dealing with predicates defining recursive datastructures which are typically

simple (trees, lists, etc.), in most cases, each atom needs only one level of unfold. There-

fore, an atompi , where 1≤ i ≤ n which is a result of previous left unfold can be given

lower priority to be unfolded at the current stage of the proof. This results in fair atom

selection in the unfold. That is, if the proof does not conclude earlier, all atoms in the

initial obligation will eventually be unfolded.

Here there are two cases:

195

(a) In case no more unfold possible, signal failure to the caller, and terminate the whole

proof process.

(b) Otherwise, try to unfold the goal, and for each child goal, repeat from step 1.

196

Chapter 8

Implementation and Experiments

8.1 Basic Implementation in CLP(R)

In this section we discuss the implementations of the algorithms given in Chapters 6 and 7 in the

CLP(R) programming language [110, 94].

8.1.1 Verification Run with SLD Resolution

Let us start with an implementation of the CLP program that wewant to reason about, whose

general form is Program 8.1. From the discussion in Section 2.5.2, we know that we can al-

ready perform some reasoning on the program using SLD resolution. For example, proving

p(X̃),ϕ(X̃) |= 2 is the same as posing the query clause

2 :- p(X̃),ϕ(X̃).

For example, we may pose the query2 :- p(2,2,X,Y). to Program 3.15 (Page 62) in order to

establishp(2,2,X,Y) |= 2.

In this case standard CLP resolution already implementsLU andDP proof rules, because one

step of resolution corresponds to generation of resolventsusing all program rules. DP here is

manifested by the checking of the satisfiability of a conjunction (sequence) of constraints. In

case we encounter a goal clause2 :- ϕ, where the goalϕ is just a satisfiable sequence of

constraints, a reasonable CLP system would automatically report a refutation.

Example 8.1. For example, let us again refer to the proof ofp(2,2,X,Y) |= 2 (Figure 5.9) in

Section 5.6. First note that in one step the resolvents of thequery2 :- p(2,2,X,Y) (name this

197

p(X̃) :- α1(X̃, X̃′), p(X̃′).
...

p(X̃) :- αn(X̃, X̃′), p(X̃′).
p(X̃) :- β1(X̃).

...
p(X̃) :- βm(X̃).

Program 8.1: First Engine

1 p(X),X = 2Y+1 |= 2

2a 0 = 2Y +1 |= 2 LU 1
2b p(X−2),X = 2Y+1 |= 2 LU 1
3 ¬2 DP 2a
4 ¬2 AP 1,2b

4s.1 p(X−2),X = 2Y+1
|= p(X−2),X−2 = 2×?Z+1 AP 1,2b

4s.2 ¬2 DP 4s.1

4r.1 2,X = 2Y+1 |= 2 AP 1,2b
4r.2 ¬2 DP 4r.1

Figure 8.1: Proof of p(X),X = 2Y+1 |= 2

clauseκ8) produced using the clauses of Program 3.15 are

2 :- p(1,2,X,Y),(Y = 0∨X < Y). κ9 = resolvp(2,2,X,Y)(κ8,κ3)

2 :- p(2,1,X,Y),(X = 0∨Y < X). κ10 = resolvp(2,2,X,Y)(κ8,κ6)

Obviouslyκ9 is the obligation 2a in Figure 5.9, whileκ10 is the obligation 2b in Figure 5.9.

Example 8.2. As another example, let us prove the assertionp(X),X = 2Y+1 |= 2 on Program

5.1 (Section 5.1). The proof is shown in Figure 8.1. Given Program 5.1, we pose the query

2 :- p(X),X = 2Y+1 (call this clauseκ3), which has the following two resolvents:

2 :- 0 = 2Y +1. κ4 = resolvp(X)(κ3,κ1)

2 :- p(X−2),X = 2Y+1. κ5 = resolvp(X)(κ3,κ2)

Here,κ4 is the obligation 2a in Figure 8.1, andκ5 is the obligation 2b in Figure 8.1. Assuming the

existence of an automated integer constraint solver, we cansimplify the expression 0= 2Y+1 in

κ4 into 2 hence producing2 :- 2. This corresponds to a direct proof (DP) step producing the

198

obligation 3 in Figure 8.1.

8.1.2 Checking Assertion Entailment

To implementAP or use the redundancy principle, we implement the global tabling mentioned

in Section 6.1 (Figure 6.2). Here we need to test for assertion entailment, which we perform in

the following way. Assume two assertionsG |= 2 andH |= 2, whereH |= 2 is stored in the

table. We consider the goalG to be subsumed byH whenG andH are renamed apart, the goal

G is p(X̃),G′, the goalH is p(Ỹ),H ′, andG′ |= H ′, X̃ = Ỹ. In our implementation, which will

be detailed later, the subsumed and subsuming goals (G andH respectively) are always renamed

apart. Now,G′ |= H ′, X̃ = Ỹ is equivalent to

〈∃var(G′)−var(X̃) : G′〉 ⇒ 〈∃var(H ′)−var(Ỹ) : H ′〉, X̃ = Ỹ. (8.1)

The expression〈∃var(G′)−X̃ : G′〉 is aprojectionof G′ into the variables̃X. Similarly,〈∃var(H ′)−

Ỹ : H ′〉 is a projection ofH ′ into the variables̃Y. Such projections are computed automatically

and efficiently by CLP(R). The residual obligation here is2 |= 2 which is trivial.

Example 8.3. For example, in the mutual exclusion proof of the two-process bakery algorithm

(Figure 5.9), we already assume the existence of a constraint solver capable of computing pro-

jections. Now let us computeκ11 from κ9 as follows:

2 :- p(0,2,X′,Y),(Y = 0∨X < Y),X = Y+1. κ11 = resolvp(1,2,X,Y)(κ9,κ2)

Since the variableX no longer appears in the arguments of the atomp(0,2,X′,Y), CLP(R)

automatically projects it out and instead process the much simple clause

2 :- p(0,2,X′,Y),Y = 0. Simplify κ11 with constraint solving.

This clause corresponds to the obligation 3a in Figure 5.9.

8.1.3 Storing in Global Table

To implement the global tabling mechanism, we need a way to store assertions persistently.

Notice again that to establish subsumption we test whether agoal is subsumed by a goal already

199

store(X̃) :- dump(X̃, X̃′,S),negateall(S,S′),assert(t(X̃′,S′)).

negateall([], []).
negateall([C|R], [C′|R′]) :- negate(C,C′),negateall(R,R′).

Program 8.2: Store

stored in the table (Formula (8.1)), which is equivalent to the unsatisfiability of

〈∃var(G′)−var(X̃) : G′〉∧〈∃var(H ′)−var(Ỹ) : ¬H ′〉, X̃ = Ỹ. (8.2)

The subsumption test that we implement is actually the unsatisfiability test of (8.2). For effi-

ciency, it is therefore desirable not to simply to store an assertion, but to store the negation of

the constraints part¬H ′ of its lhs such that¬H ′ need not be recomputed whenever we test for

subsumption.

For negating and storing a goal, we implement thestoreprocedure shown as Program 8.2.

Our storeprocedure uses CLP(R)’s built-in dumpprocedure to extract the constraints on the

variablesX̃ into a list of syntactic constraintsSon the variables̃X′. We then compute the syntactic

negation by thenegateall procedure, and then store the negation in the persistent store using

CLP(R)’s assertbuilt-in procedure. Note that in (8.2)H ′ can be a sequence (conjunction) of

constraints, sayϕ1, . . . ,ϕn. Negateall computes the list[ϕ′
1, . . . ,ϕ′

n], whereϕ′
i is a negation ofϕi ,

for 1≤ i ≤ n. The meaning of this list is the disjunction
Wn

i=1 ϕ′
i.

8.1.4 Algorithm with Table Checking and Storing

It is best to combine the table checking and storing into a single procedure, as shown in Program

8.3. In thecheckand storeprocedure, we first test whether a set of constraints is not subsumed

by the table. If this is the case, we then execute thestoreprocedure to store it in the table. The

actual subsumption test is implemented in thesubsumedprocedure by testing whether there is an

item t(X̃,S) in the table, whereS is a negated constraints list with̃X as the variables, and where

all constraints inS is unsatisfiable. Recall that the meaning ofS is a disjunction of its elements.

Hence, the unsatisfiability ofSrequires unsatisfiability of each of its elements.All unsatiterates

through the elements ofSand checks for the unsatisfiability of each. Thesatisfiableprocedure,

whose code is not shown here, is a syntactic constraint evaluator.

Our remaining task is to putcheckand store in the appropriate places in Program 8.1. We

200

checkand store(X̃) :- not subsumed(X̃),store(X̃).

subsumed(X̃) :- t(X̃,S),all unsat(S).

all unsat([]).
all unsat([C|R]) :- not satisfiable(C),all unsat(R).

Program 8.3: Checkand Store

p(X̃) :- checkand store(X̃),q(X̃).

q(X̃) :- α1(X̃, X̃′), p(X̃′).
...

q(X̃) :- αn(X̃, X̃′), p(X̃′).
q(X̃) :- β1(X̃).

...
q(X̃) :- βm(X̃).

Program 8.4: Second Engine

refer again to our algorithm in Figure 6.2, where table checking is the first routine executed

in the procedureprove, which is then followed by the storing. Accordingly,p must first call

checkand storebefore executing the unfolds. In Program 8.4 we therefore define a new proce-

dureq, which actually executes the unfolds and recursively callsp. We then modifyp to first call

checkand storebefore callingq to execute further unfolds.

Program 8.4 is already a complete implementation of the algorithm in Figure 6.2 for proving

G |= 2. In order to separate the verification machinery from the problem so that we can use the

same engine for separate problems, we separate the problem-dependent constraintsα1, . . . ,αn

andβ1, . . . ,βn into predicatestransandinit in Program 8.5.

8.2 Specialization to Programs

An important application of our proof method is for reasoning about programs and timed au-

tomata. As we have discussed in Chapter 3, programs have program points, similarly timed

automata have location identifiers which are nonnegative integers. We usually assign program

point variables to the leftmostn arguments ofp, wheren is the number of concurrent processes

or automata.

When running our prover engine on program or timed automata problems, all goals always

201

trans(X̃, X̃′) :- α1(X̃, X̃′).
...

trans(X̃, X̃′) :- αn(X̃, X̃′).

init(X̃) :- β1(X̃).
...

init(X̃) :- βm(X̃).

p(X̃) :- checkand store(X̃),q(X̃).

q(X̃) :- trans(X̃, X̃′), p(X̃′).
q(X̃) :- init(X̃).

Program 8.5: Third Engine

have the program point argumentsground, that is, they have known integer values. Therefore in

the subsumption check logically formalized by (8.2), we need not have constraints on program

points or timed automata locations inH ′ since we would only test for subsumption of goals with

the same program point values. This improves, or will potentially improve, the efficiency of our

implementation for the following reasons:

• We can avoid negating the groundings of program points or locations, which would im-

prove the efficiency of our algorithm.

• CLP(R) indexes clauses based on the numeric value of its first (leftmost) argument. There-

fore, having the first argument of the table clausest in Program 8.2 to be numeric is im-

portant for efficiency of table checking.

• We could potentially implement more efficient problem-specific indexing mechanisms.

To accommodate the new table storing and subsumption checking, we modify the predicates

we have introduced before, by separating the program pointsfrom the rest of the arguments.

We show the modified predicates as Program 8.6. In the predicates trans and init, we now

separate the first ground values ˜r1, . . . , r̃n, r̃ ′1, . . . , r̃
′
n, s̃1, . . . , s̃m. In the other predicates we separate

the arguments intõL andX̃. The negation of constraints instoreonly involves constraints on the

argumentsX̃, and notL̃. In subsumedwe simply match the ground values ofL̃ with which the

procedure is called with the table without testing for unsatisfiability (of say,L = 1∧L 6= 1).

202

trans(r̃1, X̃, r̃ ′1, X̃
′) :- α1(X̃, X̃′).

...
trans(r̃n, X̃, r̃ ′n, X̃

′) :- αn(X̃, X̃′).

init(s̃1, X̃) :- β1(X̃).
...

init(s̃m, X̃) :- βm(X̃).

checkand store(L̃, X̃) :- not subsumed(L̃, X̃),store(L̃, X̃).

subsumed(L̃, X̃) :- t(L̃, X̃,S),all unsat(S).

store(L̃, X̃) :- dump(X̃, X̃′,S),negateall(S,S′),assert(t(L̃, X̃′,S′)).

p(L̃, X̃) :- checkand store(L̃, X̃),q(L̃, X̃).

q(L̃, X̃) :- trans(L̃, X̃, L̃′, X̃′), p(L̃′, X̃′).
q(L̃, X̃) :- init(L̃, X̃).

Program 8.6: Fourth Engine

8.3 Handling Program Data Types

The domains of variables in CLP(R) are only functors and real numbers. In this section we

discuss various possible variants of implementingstoreandsubsumeddepending on the intended

data type of the verification problem at hand.

8.3.1 Tabling Integer in CLP(R)

As we have mentioned in Section 5.10.1, there is an inherent incompleteness when verifying

integer problems due to our use of CLP(R). However, there is a technique that we can employ

to increase precision. The solution here is that in the implementation ofnegate(Program 8.2) we

should never negate constraints on integer variables to strict inequality.

All said, other than not affecting the soundness of verification result, we also believe the

problem considered here has a rare occurrences. Therefore this technique is not yet implemented

in our actual prover prototype.

Example 8.4. Suppose that during the run of the prover we obtain earlier the goalp(15,X),X ≤

5 |= 2, which we store in the table (usingassert) after negatingX ≥ 5 toX < 5, as the constraint

203

fact

t(15, [X > 5]).

A problem occurs whenX is intended to be an integer variable: Suppose that in another part of

the tree we prove the assertion

p(15,X),X < 6 |= 2.

SinceX is an integer variable, the lhs goal should be subsumed by thelhs goal ofp(15,X),X ≤

5 |= 2.

The prover engine checks whether the last assertion has beentabled or not by executing

the callsubsumed(15,X) from within checkand store. This leads to the execution of the goal

X < 6,all unsat([X > 5]). In real domainX < 6∧X > 5 has solutions, thereforeall unsatand

subsumedfail, and the assertionp(15,X),X < 6 |= 2 is wrongly considered by our implementa-

tion to be not subsumed by CLP(R).

The solution here is that instead of storingt(15, [X > 5]) in the table, we should have stored

t(15, [X ≥ 6]), that is, we do not negate the constraint to strict inequality.

8.3.2 Subsumption of Functors in CLP(R)

We need to handle functors to verify problems such as the statechart example in Section 3.7. For

this, we need to modify how the table is constructed and used in subsumption check. An obvious

way to store a term in the table is by storing it as is, as shown in Program 8.7 (no “negating” as

in Program 8.2).

For the subsumption check, note that a termT is subsumed by another termSwhen there is

a substitutionσ of the variables ofSsuch thatSσ = T. Our task is therefore to generate one such

substitution. This is implemented in our new version ofsubsumedin Program 8.7.Subsumed

calls all subsumed, which further callssubsumedaux. Subsumedaux uses CLP(R)’s var and

= .. built-in predicates.Var is used to test whether a variable has a constant valuation ornot,

while = .. is used to decompose a term into a list containing its head andarguments.

8.3.3 Tabling Finite Domain Data in CLP(R)

The main use of this type is to be able to handle finite integer constraints such asK 6= α in the

transition definitions, whereK is of finite subset of integers andα a constant in the domain of

K without translating it into the disjunctionK < α∨K > α. The problem with disjunction is

204

store(X̃) :- assert(t(X̃)).

subsumed(X̃) :- t(Ỹ),subsumedall(X̃,Ỹ).

all subsumed([], []).
all subsumed([X|R], [Y|S]) :-

subsumedaux(X,Y),all subsumed(R,S).

subsumedaux(A,B) :- var(B), !,A= B.
subsumedaux(A,B) :- not var(A),

A = ..[H|R],B= ..[H|S],
all subsumed(R,S).

Program 8.7: StoreandSubsumedfor Handling Terms

that it results in more branchings in the proof tree, which isagainst our effort to keep the proof

tree as small as possible. For example, in the Fischer’s mutual exclusion algorithm example in

Section 4.5.2, we have an if conditional which condition is an inequality. Since CLP(R) has no

representation for inequality constraint, the actual CLP(R) implementation of the sixth clause in

Program 4.20 are the two clauses

p(0,L2,T1 +1,T2,K) :- p(3,L2,T1,T2,K),T1 ≤ T2,K < 1.

p(0,L2,T1 +1,T2,K) :- p(3,L2,T1,T2,K),T1 ≤ T2,K > 1.

These two rules would result in branching in the proof tree, possibly enlarging its size. Similar

case can be found in Szymanski’s algorithm (also in Section 4.5.2), where there are if conditionals

with equality condition. The failure (“else”) path of the conditional therefore has inequality as

its guard.

To solve this problem we introduce special terms of the formroom(List), which we callroom

terms1, whereList is a list of 0, 1, or “any” value, which in CLP(R) is denoted by2, with the

convention that only one element with value 1 is allowed, andin case when there exists a 1, no

is allowed in the list, and the list cannot be all 0. Thereforeterms such asroom([0,1,0]) and

room([,0,0]) are well formed, while terms such asroom([0,0,0]) or room([1,1,]) are not.

Each element ofList represents an element of a finite domain. For example, in the term

room([a1,a2,a3]), a1, a2, and a3 may correspond to the colors “red,” “green,” “blue,” or the

numbers “5,” “3,” “4,” respectively, depending on the interpretation given by the user. Suppose

1The naming is inspired by the flag variablesx1,x2 in two-process Szymanski’s mutual exclusion algorithm which
point to some finite number of “waiting rooms.”

2 can be understood to be some fresh, otherwise unconstrainedvariable.

205

that we adopt the numeric interpretation. The termroom([0,1,0]) now represents exactly the

number “3.” For this to be so, the element of the list which correspond the object “3” is set to 1

while the rest of the elements are set to 0.

We use our term not only to represent a value, but also a set of values in the finite domain. To

represent a set of values that does not include “3,” we need a term which abstractsroom([1,0,0])

(representing “5”) androom([0,0,1]) (representing “4”). The term isroom([,0,]), denoting

“not 3.” Note that now the middle element of the list which corresponds to “3” is 0, while the

rest are given (“any” value). Here we do not need to use disjunction to represent an inequality.

We now explain how to store and use room terms for subsumptionchecks efficiently. For this

purpose, similar to numeric variables, we also pre-processa room term by “negating” it before

storing, such that the subsumption check can be done simply by unification (defined on Page

2.5.2).

We first define an asymmetricnegationmapping of list elements:{0 7→ ,1 7→ 0, 7→ 0},

which implementation for negating room terms is shown as Program 8.8. When the callroom ne-

gate(A, B) succeeds given room termA as input, we callB to be the room negation ofA (but not

the vice versa due to the asymmetry of the mapping). In addition to mapping list elements,

room negatealso adds the constraint that the sum of all non-ground elements in the list of room

termB is 1. For example, the termroom([X,0,Y]),X +Y = 1, whereX andY are non-ground

(“any”), is the room negation ofroom([0,1,0]) (but again, not the vice versa).

Other predicates defined in Program 8.8 includeroom negateall which construct the nega-

tions of room terms in a list, andnoneunifiableto test of non-unifiability of corresponding room

terms of two lists.

We now specify a subset of the program variables with finite domains, and we accommodate

these into a new version of our prover engine, shown as Program 8.9. In Program 8.9 we denote

a list of room term variables bỹF , F̃ ′, or G̃.

We need the following result:

Proposition 8.1. Correctness of Room Term Subsumption.The termroom(List1) is not

unifiable withroom(List2), whereroom(List2) is the room negation ofroom(List3), if and only

if the set of values represented byroom(List1) is included in the set of values represented by

room(List3).

206

room negate(room(L), room(L′)) :-
room negateaux(L,L′,1).

room negateaux([], [],0).
room negateaux([A|R], [0|S],X) :- var(A), !, room negateaux(R,S,X).
room negateaux([0|R], [A|S],A+X) :- room negateaux(R,S,X).
room negateaux([1|R], [0|S],X) :- room negateaux(R,S,X).

room negateall([], []).
room negateall([X|R], [Y|S]) :- room negate(X,Y), room negateall(R,S).

noneunifiable([], []).
noneunifiable([X|R], [Y|S]) :- not X= Y,noneunifiable(R,S).

Program 8.8: RoomNegate, RoomNegateAll, andNoneUnifiable

Proof. First we prove the only if case. Note that sinceroom(List2) is a room negation of

room(List3), List2 does not contain a 1. Hence, the termroom(List1) is not unifiable with

room(List2) if and only if List1 has a 1 at positioni, while List2 has a 0 at the same position.

The 0 at positioni of List2 can only be a result of room-negating eitheror 1. In either case, the

set of values represented byroom(List3) necessarily include those represented byroom(List1).

Next we prove the if case by contraposition that ifroom(List1) is unifiable withroom(List2),

then necessarily the set of objects represented byroom(List1) is not included in the set of ob-

jects represented byroom(List3). Note thatList2 contains only 0s and somek > 1 non-grounds,

g1, . . . ,gk, such thatg1 + . . .+gk = 1.

The only case when the above is violated is when given the m.g.u. (defined on Page 34)

µ of room(List1) androom(List2) is such thatroom(List1)µ = room(List2)µ = room([0, . . . ,0]).

To see this, first we suppose that the result of unification contains a . Then necessarily both

List1 and List2 contain at the same position. Sinceis a room negation of 0, this means

room(List1) represents some objects not represented byroom(List3). Next, suppose that the result

of unification contains a 1. Then necessarilyList1 contains a 1 at that position whileList2 contains

a at the same position. Sinceis a negation of 0, then the object represented byroom(List1)

cannot be included in the set of objects represented byroom(List3).

However, the unification with the resultroom(List1) = room(List2) = room([0, . . . ,0]) is not

possible sincek > 1 andg1 + . . .+gk = 1. 2

Using the above theorem, it is thus possible to check whetherthe set of values represented

by room(List1) encountered during search, is subsumed by the set of values represented by

207

trans(r̃1, X̃, F̃, r̃ ′1, X̃
′, F̃ ′) :- α1(X̃, F̃, X̃′, F̃ ′).

...
trans(r̃n, X̃, F̃, r̃ ′n, X̃

′, F̃ ′) :- αn(X̃, F̃, X̃′, F̃ ′).

init(s̃1, X̃, F̃) :- β1(X̃, F̃).
...

init(s̃m, X̃, F̃) :- βm(X̃, F̃).

checkand store(L̃, X̃, F̃) :- not subsumed(L̃, X̃, F̃),store(L̃, X̃, F̃).

subsumed(L̃, X̃, F̃) :- t(L̃, X̃,G̃,S),noneunifiable(F̃,G̃),all unsat(S).

store(L̃, X̃, F̃) :- dump(X̃, X̃′,S),negateall(S,S′),
room negateall(F̃, F̃ ′),assert(t(L̃, X̃′, F̃ ′,S′)).

p(L̃, X̃, F̃) :- checkand store(L̃, X̃, F̃),q(L̃, X̃, F̃).

q(L̃, X̃, F̃) :- trans(L̃, X̃, F̃, L̃′, X̃′, F̃ ′), p(L̃′, X̃′, F̃ ′).
q(L̃, X̃, F̃) :- init(L̃, X̃, F̃).

Program 8.9: Fifth Engine

room(List3) encountered earlier by checking non-unifiability ofroom(List1) to room(List2).

Sometimes in the proof tree some ill-formed room terms can beconstructed. An example

of the problem is whenroom([0,0,0])3 is generated due to unification ofroom([0, ,]) with

room([,0,]), and then withroom([, ,0]) in a single search path. Either in the position of

room(List1) (the term to be compared with a previously encountered one),or room(List3) (the

term previously encountered to be compared with) mentionedin Proposition 8.1, the subsumption

check always detects unifiability. This problem can be solved using the mechanism for axiom

checking to be introduced in Section 8.6, where for all variables of room term data type, we add

the requirement that the occurrence of 1s is exactly one.

8.4 Implementing Intermittent Abstraction

Here we discuss an implementation of the algorithm of Figure6.4 for program analysis and

verification, specialized to predicate abstraction. In Figure 6.4, before testing for subsumption

we test whether the constraints on the variablesL̃ and X̃ is an abstraction point (the condition

abstractionpoint(G)). In this case, we replacẽX with new variables having weaker constraints.

3When we must provide an intuitive interpretation, this has a’no value’ interpretation.

208

abstract(l̃ , X̃, X̃′) :- once(abstract1(X̃, X̃′)).
abstract(L̃, X̃, X̃).

abstract1(X̃, X̃′) :- not¬ϕ1(X̃),ϕ1(X̃′),abstract2(X̃, X̃′).
abstract1(X̃, X̃′) :- not ϕ1(X̃),¬ϕ1(X̃′),abstract2(X̃, X̃′).
abstract1(X̃, X̃′) :- abstract2(X̃, X̃′).

...
abstractk−1(X̃, X̃′) :- not¬ϕk−1(X̃),ϕk−1(X̃′),abstractk(X̃, X̃′).
abstractk−1(X̃, X̃′) :- not ϕk−1(X̃),¬ϕk−1(X̃′),abstractk(X̃, X̃′).
abstractk−1(X̃, X̃′) :- abstractk(X̃, X̃′).

abstractk(X̃, X̃′) :- not¬ϕk(X̃),ϕk(X̃′).
abstractk(X̃, X̃′) :- not ϕk(X̃),¬ϕk(X̃′).
abstractk(X̃, X̃′).

Program 8.10: AbstractandAbstract1 to Abstractk

p(L̃, X̃, F̃,) :- abstract(L̃, X̃, X̃′),checkand store(L̃, X̃′, F̃),q(L̃, X̃′, F̃).

q(L̃, X̃, F̃) :- trans(L̃, X̃, F̃, L̃′, X̃′, F̃ ′), p(L̃′, X̃′, F̃ ′).
q(L̃, X̃, F̃) :- init(L̃, X̃, F̃).

Program 8.11: Sixth Engine

In our implementation, an abstraction point is determined from the values of program points

or automata locations alone. We show our abstraction routine as Program 8.10, where program

point values are denoted using the first argumentl̃ of abstract. When abstract is called, the

program point values must matchl̃ . We useabstractonly for abstracting numeric constraints,

and not finite-domain constraints, since abstraction of finite-domain constraints are not required

in our experiments.

Abstractcallsabstract1, abstract1 in turn callsabstract2, where constraints are actually ab-

stracted. Recall that in Section 5.8.2, we are given a set of predicatesϕ1, . . . ,ϕk. Then we abstract

a set of constraintsφ to a conjunctionϕ′
1, . . . ,ϕ′

k, whereϕ′
i is ϕi when we can decide thatφ ⇒ ϕi ,

¬ϕi when we can decideφ ⇒ ¬ϕi , or ¬2 when we can decide neither. We straightforwardly

implement this as the proceduresabstracti (for 1≤ i ≤ k) in Program 8.10.

Program 8.11 updates thep procedure in Program 8.9 by adding a call toabstract.

209

permute(L̃, X̃, F̃, L̃′, X̃′, F̃ ′) :- not¬ϕ1(L̃),α1(L̃, X̃, F̃, L̃′, X̃′, F̃).
...

permute(L̃, X̃, F̃, L̃′, X̃′, F̃ ′) :- not¬ϕk(L̃),αk(L̃, X̃, F̃, L̃′, X̃′, F̃ ′).
permute(L̃, X̃, F̃, L̃, X̃, F̃).

checkand store(L̃, X̃, F̃) :- permute(L̃, X̃, F̃, L̃′, X̃′, F̃ ′),
not subsumed(L̃′, X̃′, F̃ ′),store(L̃′, X̃′, F̃ ′).

Program 8.12: Permuteand NewCheckand Store

8.5 Implementing Reduction

The symmetry and serializability assertions in Section 4.5all take the form

p(L̃, X̃, F̃),ϕ(L̃) |= p(L̃′, X̃′, F̃ ′),α(L̃, X̃, F̃, L̃′, X̃′, F̃).

In general we are given a number of assertions, say

p(L̃, X̃, F̃),ϕ1(L̃) |= p(L̃′, X̃′, F̃ ′),α1(L̃, X̃, F̃, L̃′, X̃′, F̃ ′).

...

p(L̃, X̃, F̃),ϕk(L̃) |= p(L̃′, X̃′, F̃ ′),αk(L̃, X̃, F̃, L̃′, X̃′, F̃ ′).

Suppose that the current assertion to be proved isp(L̃, X̃, F̃),φ(L̃, X̃, F̃) |= 2, whereφ(L̃, X̃, F̃) is

a sequence of non-atom constraints. According to the algorithm of Figure 6.3, In order to use a

symmetry or serializability assertion, we perform the following steps:

1. Test whether〈∃X̃ : φ(L̃, X̃, F̃)〉 impliesϕ(L̃). This establishesG |= G′ at 〈1〉 in Figure 6.3.

2. Check that the assertion

p(L̃′, X̃′, F̃ ′),α(L̃, X̃, F̃, L̃′, X̃′, F̃ ′),φ(L̃) |= 2

can be directly proved (〈2〉 in Figure 6.3) or its lhs goal subsumed by another assertion in

the table (〈3〉 in Figure 6.3).

By simply following the algorithm of Figure 6.3, we can implement a naive proof engine with

symmetry reduction by modifyingcheckand storeas shown in Program 8.12.

Recall, however, that we only encounter assertions (goals)with ground program points. We

can therefore replace each testnot ϕi(L̃) with ϕi(L̃) for 1 ≤ i ≤ k. This is because wheñL is

210

permute(L̃, X̃, F̃, L̃′, X̃′, F̃ ′) :- ϕ1(L̃),α1(L̃, X̃, F̃, L̃′, X̃′, F̃ ′).
...

permute(L̃, X̃, F̃, L̃′, X̃′, F̃ ′) :- ϕk(L̃),αk(L̃, X̃, F̃, L̃′, X̃′, F̃ ′).
permute(L̃, X̃, F̃, L̃, X̃, F̃).

Program 8.13: Second Version ofPermute

ground, the〈∃X̃, F̃ : φ(L̃, X̃, F̃)〉 ⇒ ϕi(L̃) if and only if 〈∃X̃, F̃ : φ(L̃, X̃, F̃)〉∧ϕi(L̃). The updated

permuteis shown as Program 8.13.

We note here that the permutation of variable-value pairs wediscussed in Section 4.5.2 is en-

coded inα1, . . . ,αk. Given a room term, sayroom([0,1,0]), representing a number “1,” we may

permute the elements of its list such that it represents different element of finite domain. For ex-

ample, exchanging the 1 with the second 0 inroom([0,1,0]) results in a room termroom([0,0,1])

representing “2.” In this way we can encode the symmetry relation in the two-process Fischer’s

mutual exclusion algorithm (Example 4.13 on Page 100) as

permute(L1,L2,T1,T2,K,L2,L1,T2,T1,K′) :-

K = room([X,A,B]),not X= 1,K′ = room([0,B,A]).

permute(L1,L2,T1,T2,K,L2,L1,T2,T1,K′) :-

K = room([X,A,B]),not X= 0,K′ = room([1,A,B]).

permute(L1,L2,T1,T2,K,L1,L2,T1,T2,K).

Here,room([1,0,0]), room([0,1,0]), androom([0,0,1]) represent “0,” “1,” and “2,” respectively.

Unfortunately, the implementation given as Program 8.13 isin general inefficient. To see

why, suppose that we have a CLP model of a concurrent program with N symmetric processes.

Then this means that there areN! ways to exchange the processes to obtain a symmetric program

state. Hence in Program 8.13,permutehask = N! clauses, and for each assertion in the proof

tree these clauses induceO(N!) table checks! In general, computing whether an encountered

goal is equivalent (via symmetry) to another goal (stored inthe table) is at least as hard as graph

isomorphism problem [29, 107, 58, 59]. This is calledorbit problemin [28], where it is equated

to the more general problem of finding a set stabilizer of a setin a coset (SSC problem).Orbit is

the term used for an equivalence class of states induced by symmetry.

To partially solve this problem, we usenormalizationof goals. Recall the discussion in

Section 4.5 that symmetry divides the collecting semantics, and therefore goals, into a number of

211

checkand store(L̃, X̃, F̃) :- normalize(L̃, X̃, F̃, L̃′, X̃′, F̃ ′),
not subsumed(L̃′, X̃′, F̃ ′),store(L̃′, X̃′, F̃ ′).

Program 8.14: New Version ofCheckand Store

disjoint equivalence classes. The problem is, given a goalG, there are possiblyN! representatives

in its equivalence class, making simple search for the correct representative highly inefficient.

In order to make the number of choices smaller, we need to be more particular about possible

representatives. Recall that in the proof tree we only encounter assertionsp(l̃ , X̃, F̃),φ(X̃, F̃) |= 2

wherel̃ is list of ground values. Here we restrict possible representatives to only those wherẽl

is sorted. We therefore need only to compute thesortedform of goals. We may say that here

we normalize a goal into its sorted form. The problem is partially mitigated since even the worst

sorting procedure is still of polynomial complexity. Although we still have not escaped from the

orbit problem since there areN! solution in sorting a goal wherẽl is the list of lengthN of the

same number, in many other cases there are only a small numberof possible sorted forms. To

mitigate the orbit problem even further, we limit the possible sort outcomes to a fixed number (7

in our experiments). This decreases the chance for successful subsumption due to symmetry, but

it makes the engine runs faster.

The above normalization using sort function is for permutational symmetry (and cases of not-

quite symmetry with some modifications). Sorting is not suitable for rotational (cyclic) symmetry

(e.g. in dining philosophers’ problem) since it can result in a goal not equivalent by symmetry.

Fortunately, normalization is not hard for cyclic symmetrysince for such problems normalization

is a cyclic shift which is linear to the length of program point list l̃ (cf. [28]). A possibly more

efficient normalization function (generating more specificrange of possible representatives) that

shifts until the smallest element comes first in the list can be devised.

Neither sorting nor cyclic shift explained above is necessary when using serializability asser-

tions. For not-quite-symmetry assertions, we took a conservative approach that does not perform

sorting for any goal which permutation cannot be done or is possibly irreversible.

Program 8.14 is the new version ofcheckand store, where it calls a black box predicate

normalize(instead ofpermute) which performs normalization according to the kind of symmetry

or serializability assertion used.

212

8.6 Axioms

In order to obtain a proof faster, we may want to allow the userto specify a set ofaxiomsto help

the prover. Axioms are independently proved traditional safety assertions, which are introduced

into the proof process via an application of our versatileCUT rule.

Let us now elaborate the use of axioms further by using as an example the two-process

bakery mutual exclusion algorithm (Section 3.3). Representation of this problem ininit and

transpredicates is shown as Program 8.15, where we rewrite the disjunctionsY = 0∨X < Y and

X = 0∨Y < X into separate rules, since this is the way CLP(R) handles disjunctions.

Previously we have proved that mutual exclusion holds in Section 5.6, where the proof

uses the assumption that the variablesX andY are of positive integer domain. Unfortunately,

our CLP(R) implementation uses variables in real domain. This results in nontermination of

the proof process when we naively use our prover engine. To bemore specific, in proving

p(2,2,X,Y) |= 2 (the mutual exclusion property), the following unfold sequence would be pos-

sible in the real numbers domain:

p(2,2,X,Y) |= 2

↓

p(1,2,X,Y),X < Y |= 2

↓

p(1,1,X,Y),X < 0,Y = 0 |= 2

↓

p(1,0,X,Y′),X = −1,Y = 0 |= 2

↓

...

In fact, the above sequence is a prefix of an infinite one. However, we know that the values ofx

andy of the bakery algorithm are never negative. We may representthis fact using the assertion

p(L1,L2,X,Y) |= X ≥ 0,Y ≥ 0. Now, when this assertion holds, by theCUT rule we may replace

the assertionp(1,1,X,Y),X < 0,Y = 0 |= 2 above withX ≥ 0,Y ≥ 0,X < 0,Y = 0 |= 2 which

holds immediately (proved byDP), and we can then stop the unfold sequence.

Timed automata models, in particular, require that the clock values are not negative. This

has no consequence in a bottom-up reasoning, since clocks start with non-negative value, and

213

init(0,0,X,Y) :- X = 0,Y = 0.

trans(0,L2,X,Y,1,L2,Y+1,Y).
trans(1,L2,X,Y,2,L2,X,Y) :- Y = 0.
trans(1,L2,X,Y,2,L2,X,Y) :- X < Y.
trans(2,L2,X,Y,0,L2,0,Y).

trans(L1,0,X,Y,L1,1,X,X +1).
trans(L1,1,X,Y,L1,2,X,Y) :- X = 0.
trans(L1,1,X,Y,L1,2,X,Y) :- Y < X.
trans(L1,2,X,Y,L1,0,X,0).

Program 8.15: 2-Process Bakery Algorithm Problem in CLP(R)

negax(L̃, X̃, F̃) :- φ1(L̃, X̃, F̃).
...

negax(L̃, X̃, F̃) :- φk(L̃, X̃, F̃).

p(L̃, X̃, F̃) :- not negax(L̃, X̃, F̃),checkand store(L̃, X̃, F̃),q(L̃, X̃, F̃).

q(L̃, X̃, F̃) :- trans(L̃, X̃, F̃, L̃′, X̃′, F̃ ′), p(L̃′, X̃′, F̃ ′).
q(L̃, X̃, F̃) :- init(L̃, X̃, F̃).

Program 8.16: Seventh Engine

can only be incremented or reset to zero. However, we must intentionally ensures the property

using an axiom in a top-down reasoning using backward CLP modeling, since clock variables are

actually decremented from a goal to the next, in which it is possible to obtain a set of constraints

that implies negative values for some of the clocks.

We note that the application of non-negative clock axioms isanalogous to theBorder-Line

operation on time regions in an early timed automata verification framework of Yi et al. which is

based on backward pre-image computation [200].

We assume that axioms are always of the formp(L̃, X̃, F̃) |= ϕ(L̃, X̃, F̃), whereϕ(L̃, X̃, F̃)

is a sequence (conjunction) of constraints. Now assume thatthe negation ofϕ(L̃, X̃, F̃) is the

disjunctionφ1(L̃, X̃, F̃)∨ . . .∨φk(L̃, X̃, F̃). We encode this using thenegaxpredicate in Program

8.16, and checking of axiom is now encoded in the clause ofp as a test of failure of the call to

negax.

214

8.7 Proving Relative Safety Assertions

So far we have only presented prover engines for proving assertions of the formp(X̃),φ(X̃) |=

ψ(X̃), whereφ(X̃) andψ(X̃) are constraints. We now describe the implementation techniques

for proving relative safety assertions, which are of the form:

p(L̃L, X̃L, F̃L),ϕ(L̃L) |= p(L̃R, X̃R, F̃R),α(L̃L, X̃L, F̃L, L̃R, X̃R, F̃R).

A prover for this problem would essentially generate a lhs tree and at each newly encountered

node, try to perform rhs unfold. Here instead of simply computing a goal from another as pre-

viously (where any assertion is of the formG |= 2), we propagate the whole assertion. This is

because the effect ofLU application on the variables̃LL, X̃L, andF̃L need to be reflected on the

variablesL̃R, X̃R, andX̃R, respectively. Similarly, the table no longer stores just a goal (assuming

all assertions are of the formG |= 2), but instead both lhs and rhs goals of assertions.

We show the basic skeleton of our relative safety prover as Program 8.17. The main differ-

ences with our previous provers are:

1. Instead of propagating constraints onL̃, X̃, F̃, we propagate constraints onL̃L, X̃L, F̃L, L̃R,

X̃R, andF̃R.

2. Instead of global tabling, we use a list of assumed assertions, as advocated by our first

algorithm of Figure 7.1. This is because we suspect that redundancy is much less likely

to occur compared to hypothesis application (AP). Therefore it is more efficient to simply

check for ancestor assertions than all of the previously visited assertions in the proof tree.

3. We replace direct subsumption check in the body ofcheckand storeinto a proof via right

unfold (RU). Here we perform the right unfolding in a depth-first mannerby iterative

deepening. We start with no right unfold (that is, unfold up to level 0). If subsumption

does not hold, we attempt to prove by rhs unfolding up to level1, and so on, until certain

finite depth, specified by the user.

Note that in proving relative safety assertions, program points (the listsL̃L andL̃R) may not

be ground. Therefore the definition ofpermutefor Program 8.17 should be the one given in

Program 8.12, and not Program 8.13. The call topermuteis to make use of other relative safety

assertions in the proof.

215

checkand store(L̃L, X̃L, F̃L, L̃R, X̃R, F̃R, Ã, Ã′) :-
permute(L̃L, X̃L, F̃L, L̃′

L, X̃
′
L, F̃

′
L),

not right unfold(L̃′
L, X̃

′
L, F̃

′
L, L̃R, X̃R, F̃R, Ã),

store(L̃′
L, X̃

′
L, F̃

′
L, L̃R, X̃R, F̃R, Ã, Ã′).

p(L̃L, X̃L, F̃L, L̃R, X̃R, F̃R, Ã) :- checkand store(L̃L, X̃L, F̃L, L̃R, X̃R, F̃R, Ã, Ã′),
q(L̃L, X̃L, F̃L, L̃R, X̃R, F̃R, Ã′).

q(L̃L, X̃L, F̃L, L̃R, X̃R, F̃R, Ã) :- init(L̃L, X̃L, F̃L).
q(L̃L, X̃L, F̃L, L̃R, X̃R, F̃R, Ã) :- trans(L̃L, X̃L, F̃L, L̃′

L, X̃
′
L, F̃

′
L), p(L̃′

L, X̃
′
L, F̃

′
L, L̃R, X̃R, F̃R, Ã).

Program 8.17: Relative Safety Prover

8.8 Implementing Dynamic Summarization

We now explain how we implement the dynamic summarization introduced in Chapter 6. We

note again that dynamic summarization is applied only on non-cyclic fragments of programs. Our

implementation, however, can analyze sequential programswith loops. Here we view terminating

loops with counter as acyclic because each iteration of a terminating loop is different from one

another by the loop counter. We implement a version of dynamic summarization which uses

constraint deletion as described in Section 6.2.4. Becausethe actual implementation is rather

involved, here we will not display the concrete code but instead provide an overview of the

techniques used.

In order to perform constraint deletion, our CLP implementation maintains a list of explicit

constraints collected on an execution trace. Other than this, it also maintains aflag list of the

same length as the constraints list. An element of the flag list at a particular position denotes

whether the constraint at the same position can be deleted ornot. When the element is “,” it

means that the constraint can be deleted. An “o” denotes thatthe constraint cannot be deleted.

The whole contents of the flag list is initially set to “.” Whenever a new constraint is added in a

left unfold step, the flag list is lengthened by adding a “.”

We implement a procedurefilter to implement the functionscdel1, cdel2, cdel3(b), andcdel3(c),

of Section 6.2.4.Filter linearly scans the constraint list to find constraints that are to be kept to

ensure that the whole conjunction still preserves the unsatisfiability or the desired postcondition

(for cdel1 andcdel2), subsumption (forcdel3(b)), or provability by stronger assertion (forcdel3(c)).

It does this by evaluating the whole constraint list withoutthe constraint at positioni. If the de-

sired condition still holds, it removes this constraint from the list and advances to positioni +1.

216

Otherwise, it retains the constraint and mark the flag list atthe same position with an “o.”

Recall that the functioncdel3(a) in Section 6.2.4 basically returns a potential summarization

of an assertion in the proof tree wrt. the summarizations of the assertions to which it has been

left-unfolded. It is indirectly implemented also byfilter. We note that the flag list of a child node

is actually an extension of the flag list of its parent. Modifying the flag list at the child level (as

an implementation ofcdel1, cdel2, cdel3(b), andcdel3(c)) also updates the flag list of the parent.

This is how we propagate the deletable constraints of a node to its ancestors.

Computing the final summarization of an assertion is done by unification of the flag lists

returned from the processing of its immediate left-unfold children. Since the unification of “o”

and “ ” is “o,” any constraint that is required in a particular unfold branch will also be marked as

required for the assertion.

Finally, we note that for efficiency we always retain constraints of the formX = X′, say of a

statement that does not modify a variablex, such that they need not be considered explicitly. This

is also because they do not contribute to unsatisfiability ofa goal or preservation of postcondition.

8.9 On the Implementation of Arrays

We do not implement array reasoning in our current prover prototype. Handling array requires

more complete and complex constraint solving. Here we propose ways to propagate array con-

straints in future versions of the prototype with respect tothe following two problems:

1. Array referenceA[I] is not parsed by CLP(R). Therefore, to represent the value of array

referenceA[I] using a variable, sayX, and carry the relation in the proof tree. We denote

A[I] = X using the termaref(X,A, I), called anarray reference term. In traversing a path

in the proof tree, we accumulate array reference terms in a list.

Program 8.18 containsinit andtranspredicates of the bubble sort program (Program 3.5)

given in Section 3.1.5. It is a rather straightforward translation of Program 3.6 (Page 52),

where the clauseκi in Program 3.6 corresponds to clauseλi in Program 8.18.

Notice that we use array reference terms in clausesλ8, λ9, andλ10, since array references

of the formA[J] andA[J+1] appear in clausesκ8, κ9 andκ10 of Program 3.6.

2. Array update expression〈A, I ,X〉 cannot be parsed by CLP(R) as well. To represent an

array update expression〈A, I ,X〉 we use thearray update term aupd(A, I ,X). The use is

demonstrated in clauseλ10 of Program 8.18.

217

init(8,A, I ,J,N,A,N,L). λ1

trans(0,A, I ,J,N,Af ,Nf ,L,1,A,0,J,N,Af ,Nf ,L). λ2

trans(1,A, I ,J,N,Af ,Nf ,L,8,A, I ,J,N,Af ,Nf ,L) :- I ≥ N−1. λ3

trans(1,A, I ,J,N,Af ,Nf ,L,2,A, I ,J,N,Af ,Nf ,L) :- I < N−1. λ4

trans(2,A, I ,J,N,Af ,Nf ,L,3,A, I ,0,N,Af ,Nf ,L). λ5

trans(3,A, I ,J,N,Af ,Nf ,L,7,A, I ,J,N,Af ,Nf ,L) :- J ≥ N−1− I . λ6

trans(3,A, I ,J,N,Af ,Nf ,L,4,A, I ,J,N,Af ,Nf ,L) :- J < N−1− I . λ7

trans(4,A, I ,J,N,Af ,Nf ,L,6,A, I ,J,N,Af ,Nf , [aref(X,A,J+1),aref(Y,A,J)|L]) :-
X > Y. λ8

trans(4,A, I ,J,N,Af ,Nf ,L,5,A, I ,J,N,Af ,Nf , [aref(X,A,J+1),aref(Y,A,J)|L]) :-
X ≤Y. λ9

trans(5,A, I ,J,N,Af ,Nf ,L,6,A′, I ,J,N,Af ,Nf , [aref(X,A,J+1),aref(Y,A,J)|L]) :-
A′ = aupd(aupd(A,J+1,Y),J,X). λ10

Program 8.18: Init andTransof Bubble Sort CLP Model

Both array update and reference terms can be accumulated first and then solved at the last

obligations in the proof tree when no more left unfold (LU) is possible, or they can be solved at

various points in the proof tree. We may solve them using implementations of (AIP) and (SEP)

principles introduced in Section 5.9.

8.10 Experimental Results

We implement our proof engines as regular CLP(R) [110] programs, making use of its meta-level

facilities. In this section we discuss four kinds of experiments using our prototypes: proving

traditional safety using intermittent predicate abstraction, proving of relative safety assertions,

proving of traditional safety with reduction using symmetry and serializability assertions, and

proving of traditional safety assertions using dynamic summarization. The experiments reported

in this section are all conducted on on a 2.8 GHz Pentium 4 machine with 512MB of RAM

running Linux, except for TSA problems in Section 8.10.3, which we ran on Pentium 4 Xeon

cluster with 2.0GB RAM and minimum CPU clock speed set to 2.0 GHz.

8.10.1 Experiments on Intermittent Abstraction

We first show an example that demonstrates, in a predicate abstraction setting, that intermittent

abstraction requires fewer predicates than when abstraction is applied at every point in the proof

tree. Let us consider a looping program written in C (Program8.19). We note that the C program

can be straightforwardly translated into its CLP model, similar to the way we translate programs

218

int main() {
int i=0, j, x=0;
while (i<50) {

i++; j=0;
while (j<10) { x++; j++; }
while (x>i) { x--; }

} }

Program 8.19: Program with Loop

in our simple programming language into CLP in Chapter 3. Theprogram’s postconditionx≥ 50

can be proved by providing an invariantx = i ∧ i < 50 before the first statement of the loop body

of the outer while loop. For predicate abstraction, we supplied the predicatesx = i, i < 50, and

respectively their negationsx 6= i, i ≥ 50 for that program point to our verifier. We then ran our

prover engine with the intermittent abstraction. As the result, the execution finished in less than

0.01 seconds. When we did not provide an abstraction, the execution finished in 20.34 seconds.

Here intermittent abstraction required fewer predicates:We also ran the same program with

BLAST and provided the predicatesx = i and i < 50 (BLAST automatically also included their

negations). BLAST finished in 1.33 seconds, and in addition, it also produced 23other predicates

through refinements. Running it again with all these predicates given, BLAST finished in 0.28

seconds.

Further, we also ran our prover on a “sequential” version of the bakery mutual exclusion

algorithm (Program 3.14 in Section 3.3.1), whose two-process version is shown as Program 8.20.

In Program 8.20 we use if the conditionsBLAST NONDET which is compiled by BLAST into

nondeterministic branching. Program 8.20, including the nondeterministic branching, is also

straightforwardly translated into CLP. For this experiment we performed runs with two, three, and

four process versions of the sequentialized bakery algorithm. WhenN is the number of processes,

each of the version has theN variablespci , where 1≤ i ≤ N, each denoting the program point

of processi as in Program 3.14.Pci can only take a value from{0,1,2}. Each of the two, three,

or four process versions also hasN variablesxi, each denoting the “ticket number” (x or y in

Program 3.14) of a process.

Here we needed an abstraction to terminate the analysis since the bakery algorithm is has

an infinite state space. Here we verified mutual exclusion, that is, no two processes are in the

critical section (pci = pcj = 2 wheni 6= j) at the same time. Here we performed three sets of

runs, each consisting of runs with two, three and four processes. In all three sets, we use a basic

set of predicates:xi = 0, xi ≥ 0, pci = 0, pci = 1, pci = 2, wherei = 1, . . . ,N andN the number

219

int main()
{

〈0〉 int pc1=0, pc2=0;
unsigned int x1=0, x2=0;

〈1〉 while (1) {
〈2〉 if (pc1==1 || pc2==1) {
〈3〉 /* Abstraction point 1 */; }
〈4〉 if (pc1==0 || pc2==0) {
〈5〉 /* Abstraction point 2 */;

} else if (pc1==2 && pc2==2) {〈6〉 ERROR: }
〈7〉 if (BLAST NONDET) {
〈8〉 if (pc1==0) {
〈9〉 x1=x2+1; pc1=1;

} else if (pc1==1 &&
(x2==0 || x1<x2)) {

〈10〉 pc1=2;
} else if (pc1==2) {

〈11〉 pc1=0; x1=0;
}

} else {
〈12〉 if (pc2==0) {
〈13〉 x2=x1+1; pc2=1;

} else if (pc2==1 &&
(x1==0 || x2<x1)) {

〈14〉 pc2=2;
} else if (pc2==2) {

〈15〉 pc2=0; x2=0;
}}}}

Program 8.20: Sequential 2-Process Bakery

of processes, and also their negations.

• Set 1: Use of abstraction at every state with full predicate set. We perform abstraction

at every state encountered during search. In addition to thebasic predicates, we also require

the inclusion of the predicates shown in Table 8.1 (a) (and their negations) to avoidspurious

counterexamples, which are counterexample traces resulting from coarse abstraction which

do not exist in the actual run of the program.

• Set 2: Intermittent abstraction with full predicate set. We use intermittent abstraction

on our prototype implementation. We abstract only when for some processi, pci = 1 holds.

The set of predicates is as in the first set.

• Set 3: Intermittent abstraction with reduced predicate set. We use intermittent ab-

straction on our tabled CLP system. We only abstract whenever there areN−1 processes

at program point 0 (in the two-process sequential version this means eitherpc1 = 0 or

220

Bakery-2 x1 < x2

Bakery-3 x1 < x2, x1 < x3, x2 < x3

Bakery-4 x1 < x2, x1 < x3, x1 < x4

x2 < x3, x2 < x4, x3 < x4

Time (in Seconds)
CLP with Tabling BLAST

Set 1 Set 2 Set 3

Bakery-2 0.02 0.01 <0.01 0.17
Bakery-3 0.83 0.14 0.09 2.38
Bakery-4 131.11 8.85 5.02 78.47

(a) Additional Predicates (b) Timing Comparison

Table 8.1: Results of Experiments Using Abstraction

pc2 = 0). For aN-process bakery algorithm, we only need the basic predicates and their

negations without the additional predicates shown in Table8.1 (a).

We also compare our results with BLAST. We supplied the same set of predicates that we

used in the first and second sets to BLAST. Again, in BLAST we do not have to specify their

negations explicitly. Interestingly, for the four-process bakery algorithm BLAST requires even

more predicates to avoid refinement, which arex1 = x3+1, x2 = x3+1, x1 = x2+1, 1≤ x4, x1 ≤

x3, x2 ≤ x3 andx1 ≤ x2. We suspect this is due to the fact that precision in predicateabstraction-

based state-space traversal depends on the power of the underlying theorem prover. We have

BLAST generate these additional predicates it needs in a pre-run,and then run BLAST using

them. Here since we do not run BLAST with refinement, thelazy abstractiontechnique [97] has

no effect, and BLAST uses all the supplied predicates to represent any abstract state.

For these problems, using our intermittent abstraction with CLP tabling is also markedly

faster than both full predicate abstraction with CLP and BLAST. We show our timing results in

Table 8.1 (b) (smallest recorded time of three runs each).

The first set and BLAST both run with abstraction at every visited state. The timingdifference

between them and second and third sets shows that performingabstraction at every visited state is

expensive. The third set shows further gain over the second when we understand some intricacies

of the system and able to employ abstraction more carefully.

8.10.2 Experiments on Relative Safety

Here we discuss the run results of our prototype implementations for proving relative safety

assertions, which we have discussed in Section 8.7.

Experimental results in proving relative safety assertions are shown in Table 8.2. InProblem-

Name-N, N denotes the number of processes, except forProd/Cons-N whereN denotes that

there areN produce and consume operations. For each problem we verify anumber of relative

221

Problem No. of Right Iter. Hypothesis Time (s)
Assertions Depth Bound Nodes Applications

Bakery-2 1 ∞ 9 9 0.00
Bakery-3 2 ∞ 44 44 0.04
Bakery-4 3 ∞ 147 147 0.30
Bakery-5 4 ∞ 424 424 2.11
Bakery-6 5 ∞ 1145 1145 13.23
Bakery-7 6 ∞ 3486 3486 81.38

Philosopher-3 1 ∞ 19 19 0.01
Philosopher-4 1 ∞ 25 25 0.01

Priority 1 3 39 20 0.05
Priority 1 4 30 17 0.05
Priority 1 5 23 13 0.05

Szymanski-2 8 3 1470 63 7.53
Szymanski-2 8 4 1276 71 13.21
Szymanski-2 8 5 1107 87 20.35
Prod/Cons-2 2 10 17 12 0.59
Prod/Cons-3 2 10 42 24 2.43
Prod/Cons-4 2 10 303 134 11.37
Prod/Cons-5 2 10 1487 619 70.84

Table 8.2: Relative Safety Proof Experimental Results

safety assertions. The “Nodes” and “Time” numbers are totalspace and time in proving all of

the assertions of each problem. “Right Iter. Depth Bound” column in the table represents the

maximal right unfold depth.

As we have discussed in Section 8.5, the total number of symmetry assertions to be proved

in fully symmetric systems is of order factorial to the number of processes in the worst case.

However, it is actually enough to prove just a subset of theseassertions, which are those that

constitute exchanges of two adjacent positions, since other assertions can be immediately derived

from this subset. The size of this subset is linear to the number of processes, and since the number

of transitions is also linear to the number of processes, we expect the proof size of symmetry for

fully permutable systems to be of cubic order to the number ofprocesses. To see this, first note

that for fully symmetric programs, we only need one level of left and right unfolds. In effect

the proof of each assertion is a comparison of transitions with one another, which is of quadratic

complexity to the number of processes. This is then multiplied by the number of assertions

obtaining the cubic order. As we see from Table 8.2, however,the runs of bakery algorithm

has more than cubic complexity. This is because the number oftransitions itself increases more

than linearly to the number of processes due to need of encoding disjuncts inawait guards as

separate CLP clauses. For dining philosophers, there is always only one assertion, which is one

222

Our Implementation Delzanno- XMC/RT
Problem No Assertion W/ Assertion Podelski

Stored Time # Stored Time # Facts # Answers Time

Bakery-2 15 0.00 8 0.00 13
Bakery-3 296 0.08 45 0.01 109
Bakery-4 4624 5.90 191 0.21 963
Bakery-5 ∞ ∞ 677 2.76
Bakery-6 ∞ ∞ 2569 45.82
Bakery-7 ∞ ∞ 11865 971.84

Peterson-2 105 0.03 10 0.00
Peterson-3 20285 107.53 175 0.14
Peterson-4 ∞ ∞ 3510 11.38
Lamport-2 143 0.01 72 0.01
Lamport-3 4255 0.89 707 0.25
Lamport-4 ∞ ∞ 5626 4.44
Priority 8 0.00 8 0.00

Szymanski-2 240 0.08 84 0.02
Szymanski-3 10883 35.43 3176 2.91

Philosopher-3 882 0.46 553 0.30
Philosopher-4 4293 24.44 2783 8.48
Prod/Cons-2 64 0.00 43 0.00
Prod/Cons-3 104 0.01 59 0.01
Prod/Cons-4 154 0.01 75 0.01
Prod/Cons-5 214 0.02 91 0.01
Prod/Cons-10 664 0.10 171 0.02
Prod/Cons-20 2314 1.90 331 0.04
Fischer TSA-4 875 1.66 72 0.03 632 0.82
Fischer TSA-5 6872 203.47 165 0.13 6330 8.91
Fischer TSA-6 ∞ ∞ 325 0.42 75972 187.16
Fischer TSA-7 ∞ ∞ 591 1.41 ∞ ∞
Fischer TSA-8 ∞ ∞ 1016 6.17 ∞ ∞
Fischer TSA-9 ∞ ∞ 1649 37.79 ∞ ∞
Fischer TSA-10 ∞ ∞ 2536 322.76 ∞ ∞
Fischer TSA-11 ∞ ∞ 3759 3176.60 ∞ ∞

Philosopher TSA-3 147 0.16 89 0.10 422 0.16
Philosopher TSA-4 640 2.40 322 1.11 ∞ ∞
Philosopher TSA-5 5776 188.84 2340 58.29 ∞ ∞

Table 8.3: Traditional Safety Proof Experimental Results

position right circular shift since other cyclical transpositions can be derived from this. Hence for

rotational symmetry, the cost is of order quadratic to the number of processes (just the number of

transitions comparison), which is confirmed by the table. For simple priority mutual exclusion

and 2-process Szymanski’s algorithm, we also notice a decrease in the number of left tree size

when we increase the right unfold depth bound, although the execution time also increases most

likely due to the need to examine larger program.

8.10.3 Experiments on Traditional Safety with Reduction

Our last experiment is on automatically proving traditional safety assertions of the formG |= 2

with or without reduction via relative safety assertions.

223

Problem % Reduction
Type Space Time

Bakery 76% 78%
Peterson 95% 99.9%
Lamport 67% 65%

Szymanski 68% 83%
Philosopher 36% 53%

Prod/Cons-10and-20 87% 94%
Fischer TSA 95% 99%

Philosopher TSA 50% 53%

Table 8.4: Percent Reduction

The results are shown in Table 8.3. In the table, “# Stored” denotes the number of assertions

stored in the table, as an indicator of the size of the search space, and times are in seconds. We

ran the bakery, Peterson’s, Lamport’s fast mutual exclusion, Szymanski’s, and the TSA version

of the Fischer’s algorithms proving mutual exclusion. Notethat we do not prove the symmetry

assertions of some of the problems (e.g., Szymanski-3). Forthe dining philosophers’ problems

(both the program and TSA versions), we prove that there cannot be more thanN/2 philosophers

simultaneously eating. For the producer-consumer problem(Program 4.26), eachproi() incre-

ments a variablex, andconj() decrements it. Here we verify that the value ofx can never be

more than 2N.

Bakery algorithm has infinite reachable states, and therefore cannot be handled by finite-state

model checkers. Here we compare our search space with the results of the CLP-based system

of Delzanno and Podelski as reported in [46]. As also noted byDelzanno and Podelski, the

problem does not scale well to larger number of processes, but using symmetry, we have pushed

its verification limit to 7 processes without abstraction.

We compare our results for TSA problems with the run of similar example on XMC/RT [156].

The XMC/RT system is implemented on XSB [175, 176], and utilizes built-in tabling based on

SLG resolution, as well as a DBM library. In our experiments,we only considered reachability

analysis in XMC/RT. XMC/RT has a prover engine that generates all possible execution traces

(answers) in a bottom-up manner and checks for violating traces. With XMC/RT we count the

number of such traces generated. For the Fischer’s algorithm, without symmetry reduction the

space complexity of our implementation seems to be similar to XMC/RT, although the time com-

plexity seems to be much worse. Of course, our runs can be expedited by symmetry reduction,

as shown in the table.

In Table 8.4 we summarize the effectiveness of the use of a variety of relative safety asser-

224

tions. The use of symmetry assertion effectively reduces the search space of perfectly symmetric

problems (bakery, Peterson’s, Lamport’s fast mutex, TSA Fischer’s algorithm, dining philoso-

phers, both program and TSA versions). Notice also that the reduction for Szymanski’s algorithm

is competitive with perfectly symmetric problems, showingthat “not-quite” symmetry reduction

is worth pursuing. The use of rotational symmetry in both versions of the dining philosophers’

problem is, expectedly, less effective due to the fact that circular shift is more restrictive than

full permutation. We also note that we managed to obtain a substantial reduction of search space

for the producer/consumer problem. Reduction in time roughly corresponds to those of search

space.

We note here that the TSA verification tool RED also has symmetry reduction capability, both

for full permutational symmetry and cyclic symmetry. It hasexceeded our result for Fischer’s

algorithm run at 13 processes [197]. However, RED loses precision for problems with cyclic

structure [198]. In contrast, our engine does not lose precision due to symmetry.

Finally, comparing Table 8.2 and 8.3, it can be seen that the proof of relative safety assertions

are no easier than the proof of traditional safety assertions. This is because of the need to per-

form rhs unfold when proving relative safety. We may consider future optimizations for proving

relative safety, such as storing of right unfold goals in a separate table for reuse without redoing

the right unfolding.

8.10.4 Experiments on Dynamic Summarization

We also implement a prototype which is optimized using dynamic summarization. For the ex-

periments, we use sample programs fromworst-case execution time(WCET) benchmark suites,

where we prove (via discovery) a timing bound of each program.

The experimental results are shown in Table 8.5 (time is in seconds). We note that the encoder

and decoder problems are taken from ADPCM encoder and decoder appeared in [167]. The sqrt

and qurt programs are from SNU RT Benchmark Suite [185], and the jannecomplex program

is from Mälardalen Benchmark Suite [132]. We also ran our prover on a generic bubble sort

program and another version of bubble sort where each element of the array has a binary domain.

From Table 8.5, the amount of reduction obtainable by dynamic summarization seems to

be inversely correlated to the amount of unsatisfiable goalsencountered in the proof tree. The

encoder example has a structure with interdependence of sequences of if statements. In the binary

bubble sort, the limitation in the possible elements produced limitations on the number possible

225

No Optim. Optimized % Space (Time)
Problem Spc. Time Spc. Time Reduction

encoder 494 0.91 252 0.41 48.99% (54.95%)
decoder 344 0.31 38 0.02 88.95% (93.55%)

sqrt 923 4.25 91 0.38 90.14% (91.06%)
qurt 1104 14.47 273 2.52 75.27% (82.58%)

jannecomplex 1517 17.93 410 2.13 72.97% (88.12%)
bubble sort (5) 1034 94.49 58 0.58 94.39% (99.39%)

binary 381 10.88 170 4.00 55.38% (63.24%)
bubble sort (4)

Table 8.5: Experimental Results of Dynamic Summarization

swaps. This in turn increased the number of unsatisfiable goals. For both of these examples,

the amount of reductions obtained were not as high as the other examples, for which dynamic

summarization performed well.

8.11 Related Work

A tabling mechanism exists for logic programs, which is calledSLG-resolution [26] and is imple-

mented in the XSB logic programming system [175]. The XSB system tables both the formula

and the answers of the formula. In our tabling mechanism, we only keep derived formulas with-

out keeping its answer constraints.

To mitigate the orbit problem, Emerson and Trefler proposes an approach usinggeneric rep-

resentatives[54], for example, in a symmetric mutual exclusion algorithm with process loca-

tions N, T andC (representingnon-critical, trial andcritical section, respectively), the states

(N,N,T,C), (N,C,T,N) and (T,N,N,C) are equivalent and can be represented in a generic

manner as(2N,1T,1C). This is exploited further by Emerson and Wahl to mitigate the orbit

problem [62]. Emerson and Wahl propose a transformation of the program to be verified into

a program with counters: For example, a transition of any concurrent process fromN to T is

transformed into a new global transition with the decrementof the counternN and the increment

of the counternT of the new program, wherenN is the total number of processes in stateN,

while nT is the total number of processes in stateT. The property to be verified is also similarly

transformed. The transformed program is shown to be bisimilar to the original program. In this

way, the states of the transformed program are exactly the generic representatives, and hence the

computing of representative using orbit relation during traversal is not necessary.

We also mention the work of Tang et al. [190] is on using symmetry for unbounded SAT-

226

based model checker. The model checking approach is howeverunique:

1. Before the model checking process, for each orbit, asymmetry-breaking constraintis gen-

erated. When it is conjuncted with a newly encountered frontier, this symmetry-breaking

constraint will filter out those states that are necessarilyimpossible to be representatives.

Hence, what are stored in the BDDs are all the possible representatives. For example

the symmetry-breaking constraint would specify that only states withx1 = 1, x2 = 2, and

x3 = 3 can be representative for all permutations ofx1, x2, x3, where exactly one of them

has the value 1, 2, or 3.

2. The model checker only stores those states that are possible to be a representative of its

orbit.

The symmetry-breaking constraint can be adjusted to be moreconstrained, resulting in more

reduction in state space (but possible harder to compute representatives), or less constrained,

resulting in more states stored in the BDD.

227

Chapter 9

Conclusion

In this thesis we propose a CLP-based framework that accommodates both program analysis and

program verification approaches. Our framework is centeredon a general verification condition

computation algorithm which performs abstraction intermittently. This allows for composition-

ality and simpler yet accurate abstraction than normal abstract interpretation. Our first primary

contribution is that the algorithm is optimized between theabstraction points using a dynamic

summarization technique.

There are three formal foundations of our framework including:

1. modeling of programs and high-level specifications in CLPwhere we model the computer

memory as an array,

2. assertions to specify traditional safety (invariance) including recursive data structure prop-

erties as well as relative safety (non-behavioral/structural properties), and

3. a proof method for proving the assertions.

Our framework handles traditional safety proof including proof of recursive pointer data

structures. The precision of the verification is helped by intermittent abstraction. Our other

contribution is the proof of relative safety assertions which accommodates symmetry properties

not handled by existing approaches, as well as commutativity and serializability properties. We

use these relative safety properties for reduction in proofsize.

We also provide a general algorithm for program analysis andverification based on our proof

method. We discussed the implementations of some simpler variants of our general algorithm in

CLP(R) and provide the experimental results.

228

As future work, our framework is to be extended with the verification of liveness properties

such as termination of programs. This is made possible by thefact that the proof tree in our

framework also represents possible execution traces of theprogram. A feasible approach to live-

ness verification is by a form of discovery of well-foundedness in the proof tree. In handling

liveness, the concept offairnesswill become important. In the modeling side, a possible tech-

nique to represent fairness in the CLP model is by providing avariable representing a counter

which has an positive indefinite but not infinite value. Sincethe counter is always decreased yet

stays positive, it will eventually reach 0, which, when detected, affects further execution of the

program.

We note that the above proposed modeling of fairness can alsobe used to model B̈uchi au-

tomata in CLP, since B̈uchi automata, in addition to modeling behavior (state transitions), also

model eventuality of states. This would provide a way to model not only behavioral specifica-

tions such as timed automata and statecharts, but also specifications with inherent liveness such

aslive sequence charts(LSCs) [90]. In this way we would be able to cover more formal speci-

fication languages. The simulation of specifications in these languages is important for systems

development, and it therefore can also be a topic for future work.

Throughout this thesis, we have always assumed that abstraction is provided by the user. As

future work, it is also possible to consider automated generation of abstractions. One possible

direction is work on loop invariant discovery. The idea is tostart from the execution context of a

loop. The algorithm iteratively generalizes the context until it finds a suitable loop invariant.

In Chapter 6 we have discussed that it is also possible to use the dynamic summarization

technique to infer information from program. This can be extended in the future toward an

algorithm for general resource (e.g., time) analysis. Whereas the technique presented in this

thesis can discover at most a bound on resource usage, this technique can be advanced to discover

an exact bound on resource usage.

229

Bibliography

[1] M. Abadi and L. Lamport. An old-fashioned recipe for realtime. ACM Transactions on

Programming Languages and Systems, 16(5):1543–1571, September 1994.

[2] R. Alur and D. L. Dill. A theory of timed automata.Theoretical Computer Science,

126(2):183–235, April 1994.

[3] R. Alur and M. Yannakakis. Model checking of hierarchical state machines.ACM Trans-

actions on Programming Languages and Systems, 23(3):273–303, May 2001.

[4] K. R. Apt and R. N. Bol. Logic programming and negation: A survey. Journal of Logic

Programming, 19/20:9–71, May/July 1994.

[5] K. R. Apt and E.-R. Olderog.Verification of Sequential and Concurrent Programs. Grad-

uate Texts in Computer Science. Springer, 2nd edition, 1997.

[6] A. Armando, C. Castellini, and J. Mantovani. Software model checking using linear con-

straints. In J. Davies, W. Schulte, and M. Barnett, editors,6th ICFEM, volume 3308 of

Lecture Notes in Computer Science, pages 209–233. Springer, 2004.

[7] T. Ball, R. Majumdar, T. Millstein, and S. K. Rajamani. Automatic predicate abstraction

of C programs. In PLDI2001 [159], pages 203–213. SIGPLAN Notices 36(5).

[8] T. Ball, T. Millstein, and S. K. Rajamani. Polymorphic predicate abstraction.ACM Trans-

actions on Programming Languages and Systems, 27(2):314–343, 2005.

[9] T. Ball, A. Podelski, and S. K. Rajamani. Boolean and Cartesian abstraction for model

checking C programs. In T. Margaria and W. Yi, editors,7th TACAS, volume 2031 of

Lecture Notes in Computer Science, pages 268–283. Springer, 2001.

230

[10] T. Ball and S. K. Rajamani. Automatically validating temporal safety properties of in-

terfaces. In M. B. Dwyer, editor,8th SPIN, volume 2057 ofLecture Notes in Computer

Science, pages 103–122. Springer, 2001.

[11] T. Ball and S. K. Rajamani. The SLAM project: Debugging system software via static

analysis. In POPL2002 [161], pages 1–3. SIGPLAN Notices 37(1).

[12] G. Behrmann, K. G. Larsen, H. R. Andersen, H. Hulgaard, and J. Lind-Nielsen. Ver-

ification of hierarchical state/event systems using reusability and compositionality. In

Cleaveland [31], pages 163–177.

[13] J. Bengtsson, W. O. D. Griffioen, K. J. Kristoffersen, K.G. Larsen, F. Larsson, P. Petters-

son, and W. Yi. Verification of an audio protocol with bus collision using UPPAAL. In

R. Alur and T. A. Henzinger, editors,8th CAV, number 1102 in Lecture Notes in Computer

Science, pages 244–256. Springer, 1996.

[14] J. Bengtsson and W. Yi. Timed automata: Semantics, algorithms and tools. In J. Desel,

W. Reisig, and G. Rozenberg, editors,Lectures on Concurrency and Petri Nets: Advances

in Petri Nets, volume 3098 ofLecture Notes in Computer Science, pages 87–124. Springer,

2004.

[15] G. Berry. The foundations of Esterel. In G. Plotkin, C. Stirling, and M. Tofte, editors,

Proof, Language and Interaction: Essays in Honour of Robin Milner. MIT Press, 1998.

[16] P. Bhaduri and S. Ramesh. Model checking of Statechart models: Survey and research

directions.CoRR, cs.SE/0407038, 2004.

[17] T. Bienmüller, U. Brockmeyer, W. Damm, G. D̈ohmen, C. Eßmann, H.-J. Holberg,

H. Hungar, B. Josko, R. Schlör, G. Wittich, H. Wittke, G. Clements, J. Rowlands, and

E. Sefton. Formal verification of an avionics applications using abstraction and symbolic

model checking. In F. Redmill and T. Anderson, editors,7th Safety-Critical Systems Sym-

posium, pages 150–173. Springer, 1999.

[18] T. Bienmüller, W. Damm, and H. Wittke. TheSTATEMATE verification environment—

making it real. In E. Allen Emerson and A. Prasad Sistla, editors,CAV 2000, volume 1855

of Lecture Notes in Computer Science, pages 561–567. Springer, 2000.

231

[19] N. Bjørner, A. Browne, and Z. Manna. Automatic generation of invariants and intermedi-

ate assertions.Theoretical Computer Science, 173(1):49–87, February 1997.

[20] G. S. Boolos and R. C. Jeffrey.Computability and Logic. Cambridge University Press,

3rd edition, 1989.

[21] A. Bossi, editor. Logic Programming Synthesis and Transformation, 9th International

Workshop, LOPSTR ’99, Venezia, Italy, September 22-24, 1999, Selected Papers, volume

1817 ofLecture Notes in Computer Science. Springer, 2000.

[22] R. S. Boyer and J. S. Moore. Proving theorems about LISP functions.Journal of the ACM,

22(1):129–144, 1975.

[23] R. S. Boyer and J. S. Moore.A Computational Logic. Academic Press, 1979.

[24] R. S. Boyer and J. S. Moore. A theorem prover for a computational logic. In M. E.

Stickel, editor,10th CADE, volume 449 ofLecture Notes in Computer Science, pages

1–15. Springer, 1990.

[25] N. Carriero and D. Gelernter. Linda in context.Communications of the ACM, 32(4):444–

458, April 1989.

[26] W. Chen and D. S. Warren. Tabled evaluation with delaying for general logic programs.

Journal of the ACM, 43(1):20–74, January 1996.

[27] S. Chong and R. Rugina. Static analysis of accessed regions in recursive data structures.

In R. Cousot, editor,10th SAS, volume 2694 ofLecture Notes in Computer Science, pages

463–482. Springer, 2003.

[28] E. M. Clarke, E. A. Emerson, S. Jha, and A. P. Sistla. Symmetry reductions in model

checking. In Hu and Vardi [104], pages 147–158.

[29] E. M. Clarke, T. Filkorn, and S. Jha. Exploiting symmetry in temporal logic model check-

ing. In Courcoubetis [32], pages 450–462.

[30] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-guided ab-

straction refinement for symbolic model checking.Journal of the ACM, 50(5):752–794,

September 2003.

232

[31] R. Cleaveland, editor.Tools and Algorithms for Construction and Analysis of Systems, 5th

International Conference, TACAS ’99, Held as Part of the European Joint Conferences

on the Theory and Practice of Software, ETAPS’99, Amsterdam, The Netherlands, March

22-28, 1999, Proceedings, volume 1579 ofLecture Notes in Computer Science. Springer,

1999.

[32] C. Courcoubetis, editor.Computer Aided Verification, 5th International Conference,

CAV ’93, Elounda, Greece, June 28 - July 1, 1993, Proceedings, volume 697 ofLecture

Notes in Computer Science. Springer, 1993.

[33] P. Cousot. Semantic foundations of program analysis. In S. S. Muchnick and N. D. Jones,

editors,Program Flow Analysis, chapter 10, pages 303–343. Prentice-Hall, 1981.

[34] P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for static analy-

sis. In4th POPL, pages 238–252. ACM Press, 1977.

[35] P. Cousot and R. Cousot. Systematic design of program analysis frameworks. In6th

POPL, pages 269–282. ACM Press, 1979.

[36] S. Craciunescu. Proving the equivalence of CLP programs. In Stuckey [188], pages 287–

301.

[37] W. Craig. Three uses of Herbrand-Gentzen theorem in relating model theory and proof

theory.Journal of Symbolic Computation, 22, 1955.

[38] W. Damm and J. Helbig. Linking visual formalisms: A compositional proof system for

statecharts based on symbolic timing diagrams. In E.-R. Olderog, editor,PROCOMET ’94,

pages 267–286. North-Holland, 1994. IFIP Transactions A-56.

[39] W. Damm, B. Josko, H. Hungar, and A. Pnueli. A compositional real-time semantics of

STATEMATE designs. In W. P. de Roever, H. Langmaack, and A. Pnueli, editors,COM-

POS ’97, volume 1536 ofLecture Notes in Computer Science, pages 186–238. Springer,

1998.

[40] D. Dams and K. S. Namjoshi. Shape analysis through predicate abstraction and model

checking. In Zuck et al. [202], pages 310–324.

233

[41] S. Das, D. L. Dill, and S. Park. Experience with predicate abstraction. In N. Halbwachs

and D. Peled, editors,11th CAV, number 1633 in Lecture Notes in Computer Science,

pages 160–171. Springer, 1999.

[42] A. David, M. O. Möller, and W. Yi. Formal verification of UML statecharts withreal-time

extensions. In R.-D. Kutsche and H. Weber, editors,5th FASE, volume 2306 ofLecture

Notes in Computer Science, pages 218–232. Springer, 2002.

[43] M. D. Davis, R. Sigal, and E. J. Weyuker.Computability, Complexity, and Languages:

Fundamentals of Theoretical Computer Science. Academic Press, 2nd edition, 1994.

[44] N. Day. A model checker for Statecharts (linking CASE tools with formal methods).

Master’s thesis, Department of Computer Science, University of British Columbia, 1993.

Technical report TR-93-95.

[45] G. Delzanno and A. Podelski. Model checking in CLP. In Cleaveland [31], pages 223–

239.

[46] G. Delzanno and A. Podelski. Constraint-based deductive model checking.International

Journal on Software Tools for Technology Transfer, 3(3):250–270, 2001.

[47] E. W. Dijkstra.A Discipline of Programming. Prentice-Hall Series in Automatic Compu-

tation. Prentice-Hall, 1976.

[48] D. L. Dill. Timing assumptions and verification of finite-state concurrent systems. In

J. Sifakis, editor,Automatic Verification Methods for Finite State Systems, volume 407 of

Lecture Notes in Computer Science, pages 197–212. Springer, 1990.

[49] D. L. Dill, A. J. Drexler, A. J. Hu, and C. H. Yang. Protocol verification as hardware

design aid. InICCD ’92, pages 522–525. IEEE Computer Society Press, 1992.

[50] D. Distefano, P. W. O’Hearn, and H. Yang. A local shape analysis based on separation

logic. In H. Hermanns and J. Palsberg, editors,12th TACAS, volume 3920 ofLecture

Notes in Computer Science, pages 287–302. Springer, 2006.

[51] X. Du, C. R. Ramakrishnan, and S. A. Smolka. Tabled resolution + constraints: A recipe

for model checking real-time systems. In21st RTSS, pages 175–184. IEEE Computer

Society Press, 2000.

234

[52] M. B. Dwyer, J. Hatcliff, Robby, and V. P. Ranganath. Exploiting object escape locking

information in partial-order reductions for concurrent object-oriented programs.Formal

Methods in System Design, 25(2–3), 2004.

[53] Jr. E. M. Clarke, O. Grumberg, and D. A. Peled.Model Checking. MIT Press, 1999.

[54] E. A. Emerson. From asymmetry to full symmetry: New techniques for symmetry reduc-

tions in model checking. In L. Pierre and T. Kropf, editors,10th CHARME, volume 1703

of Lecture Notes in Computer Science, pages 142–156. Springer, 1999.

[55] E. A. Emerson, J. Havlicek, and R. J. Trefler. Virtual symmetry reduction. In15th LICS,

pages 121–131. IEEE Computer Society Press, 2000.

[56] E. A. Emerson, S. Jha, and D. Peled. Combining partial order and symmetry reductions.

In E. Brinksma, editor,3rd TACAS, volume 1217 ofLecture Notes in Computer Science,

pages 19–34. Springer, 1997.

[57] E. A. Emerson and K. S. Namjoshi, editors.Verification, Model Checking, and Abstract

Interpretation, 7th International Conference, VMCAI 2006, Charleston, SC, USA, January

8–10, 2006, Proceedings, volume 3855 ofLecture Notes in Computer Science. Springer,

2006.

[58] E. A. Emerson and A. P. Sistla. Model checking and symmetry. In Courcoubetis [32],

pages 463–478.

[59] E. A. Emerson and A. P. Sistla. Symmetry and model checking.Formal Methods in System

Design, 9(1/2):105–131, 1996.

[60] E. A. Emerson and A. P. Sistla. Utilizing symmetry when model-checking under fairness

assumptions.ACM Transactions on Programming Languages and Systems, 19(4):617–

638, July 1997.

[61] E. A. Emerson and R. J. Trefler. Model checking real-timeproperties of symmetric sys-

tems. In L. Brim, J. Gruska, and J. Zlatuska, editors,23rd MFCS, volume 1450 ofLecture

Notes in Computer Science, pages 427–436. Springer, 1998.

[62] E. A. Emerson and T. Wahl. On combining symmetry reduction and symbolic represen-

tation for efficient model checking. In D. Geist and E. Tronci, editors,12th CHARME,

volume 2860 ofLecture Notes in Computer Science, pages 216–230. Springer, 2003.

235

[63] R. Eshuis, D. N. Jansen, and R. Wieringa. Requirements-level semantics and model check-

ing of object-oriented statecharts.Requirements Engineering Journal, 7:243–263, 2002.

[64] K. Etessami and S. K. Rajamani, editors.Computer Aided Verification, 17th International

Conference, CAV 2005, Edinburgh, Scotland, UK, July 6–10, 2005, Proceedings, volume

3576 ofLecture Notes in Computer Science. Springer, 2005.

[65] F. Fioravanti, A. Pettorossi, and M. Proietti. Verifying CTL properties of infinite-state

systems by specializing constraint logic programs. In M. Leuschel, A. Podelski, C. R.

Ramakrishnan, and U. Ultes-Nitsche, editors,2nd VCL, pages 85–96, 2001.

[66] C. Flanagan. Automatic software model checking using CLP. In P. Degano, editor,12th

ESOP, volume 2618 ofLecture Notes in Computer Science, pages 189–203. Springer,

2003.

[67] C. Flanagan. Verifying commit-atomicity using model-checking. In S. Graf and

L. Mounier, editors,11th SPIN, volume 2989 ofLecture Notes in Computer Science, pages

252–266. Springer, 2004.

[68] C. Flanagan and S. N. Freund. Atomizer: A dynamic atomicity checker for multithreaded

programs. In31st POPL. ACM Press, 2004.

[69] C. Flanagan and P. Godefroid. Dynamic partial-order reduction for model checking soft-

ware. In POPL2005 [162], pages 110–121.

[70] C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson, J. B. Saxe, and R. Stata. Extended

static checking for Java. In16th PLDI, pages 234–245. ACM Press, May 2002. SIGPLAN

Notices 37(5).

[71] C. Flanagan and S. Qadeer. A type and effect system for atomicity. In 17th PLDI, pages

338–349. ACM Press, 2003.

[72] E. Freeman, S. Hupfer, and K. Arnold.JavaSpaces: Principles, Patterns, and Practice.

The Jini Technology Series. Addison-Wesley, 1999.

[73] E. C. Freuder, editor.Proceedings of the Second International Conference on Principles

and Practice of Constraint Programming, Cambridge, Massachussets, USA, August 19–

22, 1996, volume 1118 ofLecture Notes in Computer Science. Springer, 1996.

236

[74] L. Fribourg. Automatic generation of simplification lemmas for inductive proofs. In V. A.

Saraswat and K. Ueda, editors,ISLP 1991, pages 103–116. MIT Press, 1991.

[75] L. Fribourg. Constraint logic programming applied to model checking. In Bossi [21],

pages 30–41.

[76] S. Garfinkel. History’s worst software bugs. URL http://www.wired.com/software/cool-

apps/news/2005/11/69355, November 2005.

[77] R. Giacobazzi, editor.Static Analysis, 11th International Symposium, SAS 2004, Verona,

Italy, August 26–28, 2004, Proceedings, volume 3148 ofLecture Notes in Computer Sci-

ence. Springer, 2004.

[78] S. Gnesi, D. Latella, and M. Massink. Model checking UMLstatechart diagrams using

JACK. In R. Paul and C. Meadows, editors,4th HASE. IEEE Computer Society Press,

1999.

[79] S. Gnesi, D. Latella, and M. Massink. Modular semanticsfor a UML statechart diagrams

kernel and its extension to multicharts and branching time model-checking.Journal of

Logic and Algebraic Programming, 51(1):43–75, 2002.

[80] S. Graf and H. Säıdi. Construction of abstract state graphs of infinite systems with PVS.

In Grumberg [82], pages 72–83.

[81] S. Graf and M. I. Schwartzbach, editors.Tools and Algorithms for Construction and Anal-

ysis of Systems, 6th International Conference, TACAS 2000,Held as Part of the European

Joint Conferences on the Theory and Practice of Software, ETAPS 2000, Berlin, Germany,

March 25 - April 2, 2000, Proceedings, volume 1785 ofLecture Notes in Computer Sci-

ence. Springer, 2000.

[82] O. Grumberg, editor. Computer Aided Verification: 9th International Conference,

CAV ’97, Haifa, Israel, June 1997, Proceedings, number 1254 in Lecture Notes in Com-

puter Science. Springer, 1997.

[83] B. Guo, N. Vaccharajani, and D. I. August. Shape analysis with inductive recursion syn-

thesis. In21st PLDI, pages 256–265. ACM Press, 2007.

[84] G. Gupta and E. Pontelli. A constraint-based approach for specification and verification

of real-time systems. In18th RTSS, pages 230–239. IEEE Computer Society Press, 1997.

237

[85] V. Gyuris and A. P. Sistla. On-the-fly model checking under fairness that exploits symme-

try. Formal Methods in System Design, 15(3):217–238, November 1999.

[86] B. Hackett and R. Rugina. Region-based shape analysis with tracked locations. In

POPL2005 [162], pages 310–323.

[87] N. Halbwachs.Synchronous Programming of Reactive Systems. Kluwer Academic Pub-

lishers, 1993.

[88] D. Harel. Statecharts: A visual formalism for complex systems. Science of Computer

Programming, 8(3):231–274, June 1987.

[89] D. Harel. On visual formalisms.Communications of the ACM, 31(5):514–530, May 1988.

[90] D. Harel and R. Marelly.Come, Let’s Play: Scenario-Based Programming Using LSCs

and the Play-Engine. Springer, 2003.

[91] D. Harel and A. Naamad. The STATEMATE semantics of statecharts. Technical Re-

port CS95-31, Faculty of Mathematics and Computer Science,The Weizmann Institute of

Science, 76100 Rehovot, Israel, October 1995.

[92] D. Harel and A. Naamad. The STATEMATE semantics of Statecharts.ACM Transactions

on Software Engineering and Methodology, 5(4):293–333, October 1996.

[93] D. Harel and M. Politi.Modeling Reactive Systems with Statecharts: the StatemateAp-

proach. McGraw-Hill, 1998.

[94] N. C. Heintze, J. Jaffar, S. Michaylov, P. J. Stuckey, and R. H. C. Yap. The CLP(R)

Programmer’s Manual Version 1.2, September 1992.

[95] L. J. Hendren, J. Hummel, and A. Nicolau. Abstractions for recursive pointer data struc-

tures: Improving the analysis and transformation of imperative programs. In5th PLDI,

pages 249–260. ACM Press, July 1992. SIGPLAN Notices 27(7).

[96] M. Hendriks, G. Behrmann, K. G. Larsen, and F. W. Vaandrager. Adding symmetry re-

duction to Uppaal. In K. G. Larsen and P. Niebert, editors,1st FORMATS, volume 2791

of Lecture Notes in Computer Science, pages 46–59. Springer, 2003.

[97] T. A. Henzinger, R. Jhala, and R. Majumdar. Lazy abstraction. In POPL2002 [161], pages

58–70. SIGPLAN Notices 37(1).

238

[98] T. A. Henzinger, P.-H. Lo, and H. Wong-Toi. HyTech: A model checker for hybrid sys-

tems. In Grumberg [82], pages 460–463.

[99] T. A. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine.Symbolic model checking for

real-time systems.Information and Computation, 111(2):193–244, 1994.

[100] C. A. R. Hoare. An axiomatic basis for computer programming. Communications of the

ACM, 12(10):576–580, October 1969.

[101] G. J. Holzmann.The SPIN Model Checker: Primer and Reference Manual. Addison-

Wesley, 2003.

[102] J. Hsiang and M. Srivas. Automatic inductive theorem proving using Prolog.Theoretical

Computer Science, 54(1):3–28, 1987.

[103] J. Hsiang and M. K. Srivas. A PROLOG framework for developing and reasoning about

data types. In H. Ehrig, C. Floyd, M. Nivat, and J. W. Thatcher, editors,1st TAPSOFT Vol.

2, volume 186 ofLecture Notes in Computer Science, pages 276–293. Springer, 1985.

[104] A. J. Hu and M. Y. Vardi, editors.Computer Aided Verification: 10th International Con-

ference, CAV ’98. Vancouver, BC, Canada, June/July 1998. Proceedings., number 1427 in

Lecture Notes in Computer Science. Springer, 1998.

[105] M. R. A. Huth and M. D. Ryan.Logic in Computer Science: Modelling and Reasoning

about Systems. Cambridge University Press, 2000.

[106] O. H. Ibarra, P. C. Diniz, and M. C. Rinard. On the complexity of commutativity analy-

sis. In J. Cai and C. K. Wong, editors,2nd COCOON, volume 1090 ofLecture Notes in

Computer Science, pages 323–332. Springer, 1996.

[107] C. N. Ip and D. L. Dill. Better verification through symmetry. Formal Methods in System

Design, 9(1/2):41–75, 1996.

[108] J. Jaffar and M. J. Maher. Constraint logic programming: A survey. Journal of Logic

Programming, 19/20:503–581, May/July 1994.

[109] J. Jaffar, M. J. Maher, K. Marriott, and P. J. Stuckey. The semantics of constraint logic

programs.Journal of Logic Programming, 37(1–3):1–46, October 1998.

239

[110] J. Jaffar, S. Michaylov, P. J. Stuckey, and R. H. C. Yap.The CLP(R) language and system.

ACM Transactions on Programming Languages and Systems, 14(3):339–395, 1992.

[111] J. Jaffar, A. Santosa, and R. Voicu. A CLP proof method for timed automata. In25th

RTSS, pages 175–186. IEEE Computer Society Press, 2004.

[112] J. Jaffar, A. E. Santosa, and R. Voicu. Efficient memoization for dynamic programming

with ad-hoc constraints. To be published in the Proceedingsof AAAI ’08.

[113] J. Jaffar, A. E. Santosa, and R. Voicu. A CLP method for compositional and intermittent

predicate abstraction. In Emerson and Namjoshi [57], pages17–32.

[114] J. Jaffar, A. E. Santosa, and R. Voicu. Relative safety. In Emerson and Namjoshi [57],

pages 282–297.

[115] D. N. Jayasimha. Distributed synchronizers. InICPP ’88, pages 23–37, 1988.

[116] B. Jeannet, A. Loginov, T. Reps, and M. Sagiv. A relational approach to interprocedural

shape analysis. In Giacobazzi [77], pages 246–264.

[117] R. B. Jones, D. L. Dill, and J. R. Burch. Efficient validity checking for processor verifi-

cation. In R. L. Rudell, editor,ICCAD 1995, pages 2–6. IEEE Computer Society Press,

1995.

[118] T. Kanamori and H. Fujita. Formulation of induction formulas in verification of Prolog

programs. In J. H. Siekmann, editor,8th CADE, volume 230 ofLecture Notes in Computer

Science, pages 281–299. Springer, 1986.

[119] T. Kanamori and H. Seki. Verification of Prolog programs using an extension of execution.

In E. Y. Shapiro, editor,3rd ICLP, volume 225 ofLecture Notes in Computer Science,

pages 475–489. Springer, 1986.

[120] J. Kelly. The Essence of Logic. Essence of Computing. Prentice Hall Europe, 1997.

[121] N. Klarlund and M. I. Schwartzbach. Graph types. In20th POPL, pages 196–205. ACM

Press, 1993.

[122] H. Kopetz.Real-Time Systems: Design Principles for Distributed Embedded Applications.

Kluwer Academic Publishers, 1997.

240

[123] G. Kwon. Rewrite rules and operational semantics for model checking UML statecharts.

In A. Evans, S. Kent, and B. Selic, editors,3rd UML, volume 1939 ofLecture Notes in

Computer Science, pages 528–540. Springer, 2000.

[124] S. K. Lahiri and S. Qadeer. Verifying properties of well-founded linked lists. In33rd

POPL, pages 115–126. ACM Press, 2006.

[125] L. Lamport. A new solution of Dijkstra’s concurrent programming problem.Communi-

cations of the ACM, 17(8):453–455, August 1974.

[126] D. Latella, I. Majzik, and M. Massink. Automatic verification of a behavioral subset of

UML Statechart diagrams using the SPIN model checker.Formal Aspects of Computing,

11(6):637–664, December 1999.

[127] M. Leuschel and T. Massart. Infinite-state model checking by abstract interpretation and

program specialization. In Bossi [21], pages 62–81.

[128] J. Lilius and H. Sara. An implementation of UML state machine semantics for model

checking. InNWPT 1999, 1999. URL http://www.docs.uu.se/nwpt99/proceedings/.

[129] J. Lind-Nielsen, H. R. Andersen, G. Behrmann, H. Hulgaard, K. Kristoffersen, and K. G.

Larsen. Verification of large state/event systems using compositionality and dependency

analysis. In B. Steffen, editor,4th TACAS, volume 1384 ofLecture Notes in Computer

Science, pages 201–216. Springer, 1998.

[130] R. J. Lipton. Reduction: A method for proving properties of parallel programs. In2nd

POPL, pages 78–86. ACM Press, 1975. Communications of the ACM 18(12).

[131] G. Lüttgen, M. von der Beeck, and R. Cleaveland. A compositionalapproach to statecharts

semantics. In8th FSE, pages 120–129. ACM Press, 2000.

[132] Mälardalen WCET research group benchmarks. URLhttp://www.mrtc.mdh.se/pro-

jects/w cet/benchmarks.html.

[133] G. S. Manku. Structural symmetries and model checking. Master’s thesis, Department of

Computer Science and Engineering, University of California at Berkeley, 1997.

[134] G. S. Manku, R. Hojati, and R. Brayton. Structural symmetry and model checking. In Hu

and Vardi [104], pages 159–171.

241

[135] Z. Manna, S. Ness, and J. Vuillemin. Inductive methodsfor proving properties of pro-

grams.Communications of the ACM, 16(8):491–502, August 1973.

[136] Z. Manna and A. Pnueli.Temporal Verification of Reactive Systems: Safety. Springer,

1995.

[137] C. March́e, C. Paulin-Mohring, and X. Urbain. The KRAKATOA tool for certification of

JAVA/JAVACARD programs annotated in JML.Journal of Logic and Algebraic Program-

ming, 58(1–2):89–106, 2004.

[138] K. Marriott and P. J. Stuckey.Programming with Constraints. MIT Press, 1998.

[139] J. McCarthy. Towards a mathematical science of computation. In C. M. Popplewell, editor,

IFIP Congress 1962. North-Holland, 1983.

[140] S. McPeak and G. C. Necula. Data structure specifications via local equality axioms. In

Etessami and Rajamani [64], pages 476–490.

[141] F. Mesnard, S. Hoarau, and A. Maillard. CLP(X) for automatically proving program

properties. In F. Baader and K. U. Schulz, editors,1st FroCoS, volume 3 ofApplied Logic

Series. Kluwer Academic Publishers, 1996.

[142] E. Mikk, Y. Lakhnech, and M. Siegel. Hierarchical automata as model for Statecharts. In

R. K. Shyamasundar and K. Ueda, editors,3rd ASIAN, volume 1345 ofLecture Notes in

Computer Science, pages 181–196. Springer, 1997.

[143] R. Milner and M. Tofte. Co-induction in relational semantics. Theoretical Computer

Science, 87(1):209–220, 1991.

[144] J. Misra.A Discipline of Multiprogramming: Programming Theory for Distributed Appli-

cations. Monographs in Computer Science. Springer, 2001.

[145] A. Møller and M. I. Schwartzbach. The pointer assertion logic engine. In PLDI2001 [159],

pages 221–231. SIGPLAN Notices 36(5).

[146] G. Nelson and D. C. Oppen. Simplification by cooperating decision procedures.ACM

Transactions on Programming Languages and Systems, 1(2):245–257, October 1979.

242

[147] H. H. Nguyen, C. David, S. Qin, and W.-N. Chin. Automated verification of shape, size

and bag properties via separation logic. In B. Cook and A. Podelski, editors,8th VMCAI,

volume 4349 ofLecture Notes in Computer Science, pages 251–266. Springer, 2007.

[148] R. Nieuwenhuis, A. Oliveras, E. Rodrı́guez-Carbonell, and A. Rubio. Challenges in satis-

fiability modulo theories. In F. Baader, editor,18th RTA, volume 4533 ofLecture Notes in

Computer Science, pages 2–18. Springer, 2007.

[149] U. Nilsson and J. L̈ubcke. Constraint logic programming for local and symbolicmodel

checking. In J. W. Lloyd, V. Dahl, U. Furbach, M. Kerber, K.-K. Lau, C. Palamidessi,

L. M. Pereira, Y. Sagiv, and P. J. Stuckey, editors,1st CL, volume 1861 ofLecture Notes

in Computer Science, pages 384–398. Springer, 2000.

[150] Object Management Group, Inc.OMG Unified Modeling Language Specification, March

2003. Version 1.5 formal/03-03-01.

[151] M. Pandey and R. K. Bryant. Exploiting symmetry when verifying transistor-level circuits

by symbolic trajectory evaluation. In Grumberg [82], pages244–255.

[152] D. Park. Fixpoint induction and proofs of program properties. In B. Meltzer and D. Michie,

editors,Machine Intelligence 5, pages 59–78. Edinburgh University Press, 1969.

[153] D. Peled. Combining partial order reductions with on-the-fly model-checking. In D. L.

Dill, editor, 6th CAV, number 818 in Lecture Notes in Computer Science, pages 377–390.

Springer, 1994.

[154] D. Peled. Combining partial order reductions with on-the-fly model checking. For-

mal Methods in System Design, 8:39–64, 1996. Preliminary version appeared in 6th

CAV [153].

[155] D. Peled. Ten years of partial order reduction. In Hu and Vardi [104], pages 17–28.

[156] G. Pemmasani, C. R. Ramakrishnan, and I. V. Ramakrishnan. Efficient model checking

of real-time systems using tabled logic programming and constraints. In Stuckey [188],

pages 100–114.

[157] A. Pettorossi and M. Proietti. Synthesis and transformation of logic programs using un-

fold/fold proofs.Journal of Logic Programming, 41(2–3):197–230, 1999.

243

[158] A. Pettorossi, M. Proietti, and V. Senni. Proving properties of constraint logic programs

by eliminating existensial variables. In S. Etalle and M. Truszczynski, editors,22nd ICLP,

volume 4079 ofLecture Notes in Computer Science, pages 179–195. Springer, 2006.

[159] Proceedings of the 2001 ACM SIGPLAN Conference on Programming Language Design

and Implementation (PLDI), Snowbird, Utah, USA, June 20–22, 2001. ACM Press, May

2001. SIGPLAN Notices 36(5).

[160] A. Pnueli. Lecture 4: Deductive verification of CTL∗. URL www.cs.nyu.edu/courses/

spring04/G22.3033-017/lecture4.ps, 2004. Lecture Slides ofAdvanced Topics in Reactive

Verification, NYU, Spring 2004.

[161] Conference Record of POPL 2002: The 29th SIGPLAN-SIGACT Symposium on Prin-

ciples of Programming Languages, Portland, January 16–18,2002. ACM Press, 2002.

SIGPLAN Notices 37(1).

[162] Annual Symposium on Principles of Programming Languages: Proceedings of the 32nd

ACM SIGPLAN-SIGACT Symposium on Principles of ProgrammingLanguages, Long

Beach, California, January 12–14, 2005. ACM Press, 2005.

[163] I. Porres.Modeling and Analyzing Software Behavior in UML. PhD thesis, Department

of Computer Science,̊Abo Akademi University, November 2001.

[164] S. Qadeer and D. Wu. KISS: Keep it simple and sequential. In W. Pugh and C. Chambers,

editors,18th PLDI, pages 14–24. ACM Press, 2004.

[165] Y. S. Ramakrishna, C. R. Ramakrishnan, I. V. Ramakrishnan, S. A. Smolka, T. Swift, and

D. S. Warren. Efficient model checking using tabled resolution. In Grumberg [82], pages

143–154.

[166] J. C. Reynolds. Separation logic: A logic for shared mutable data objects. In17th LICS,

pages 55–74. IEEE Computer Society Press, 2002.

[167] R. Richey. Adaptive Differential Pulse Code Modulation Using PICmicro Microcon-

trollers. Microchip Technology, Inc., 1997.

[168] N. Rinetzky, J. Bauer, T. Reps, M. Sagiv, and R. Wilhelm. A semantics for procedure local

heaps and its abstractions. In POPL2005 [162], pages 296–309.

244

[169] N. Rinetzky, M. Sagiv, and E. Yahav. Interprocedural shape analysis for cutpoint-free

programs. In C. Hankin and I. Siveroni, editors,12th SAS, volume 3672 ofLecture Notes

in Computer Science, pages 284–302. Springer, 2005.

[170] A. Roychoudhury, K. N. Kumar, C. R. Ramakrishnan, and I. V. Ramakrishnan. An un-

fold/fold transformation framework for definite logic programs. ACM Transactions on

Programming Languages and Systems, 26(3):464–509, 2004.

[171] A. Roychoudhury, K. N. Kumar, C. R. Ramakrishnan, I. V.Ramakrishnan, and S. A.

Smolka. Verification of parameterized systems using logic program t4ransformations. In

Graf and Schwartzbach [81], pages 172–187.

[172] A. Roychoudhury and I. V. Ramakrishnan. Automated inductive verification of parame-

terized protocols. In G. Berry, H. Comon, and A. Finkel, editors,13th CAV, volume 2102

of Lecture Notes in Computer Science, pages 25–37. Springer, 2001.

[173] R. Rugina. Quantitative shape analysis. In Giacobazzi [77], pages 228–245.

[174] M. Sagiv, T. Reps, and R. Wilhelm. Parametric shape analysis via 3-valued logic.ACM

Transactions on Programming Languages and Systems, 24(3):217–298, May 2002.

[175] K. Sagonas, T. Swift, D. S. Warren, J. Freire, P. Rao, B.Cui, E. Johnson, L. de Castro,

S. Dawson, and M. Kifer.The XSB System Version 2.5 Volume 1: Programmer’s Manual,

June 2003.

[176] K. Sagonas, T. Swift, D. S. Warren, J. Freire, P. Rao, B.Cui, E. Johnson, L. de Castro,

S. Dawson, and M. Kifer.The XSB System Version 2.5 Volume 2: Libraries, Interfaces

and Packages, June 2003.

[177] T. Scḧafer, A. Knapp, and S. Merz. Model checking UML state machines and collabora-

tions. In1st SoftMC. Elsevier Science, 2001. Electronic Notes in Theoretical Computer

Science 55(3).

[178] F. B. Schneider.On Concurrent Programming. Graduate Texts in Computer Science.

Springer, 1997.

[179] M. Sharir and A. Pnueli. Two approaches to interprocedural dataflow analysis. In S. S.

Muchnick and N. D. Jones, editors,Program Flow Analysis: Theory and Applications,

pages 189–233. Prentice-Hall, 1981.

245

[180] L. Simon, A. Mallya, A. Bansal, and G. Gupta. Co-logic programming: Extending logic

programming with coinduction. In L. Arge, C. Cachin, T. Jurdzinski, and A. Tarlecki,

editors,34th ICALP, volume 4596 ofLecture Notes in Computer Science, pages 472–483.

Springer, 2007.

[181] A. J. H. Simons. On the compositional properties of UMLStatechart diagrams. In3rd

ROOM, 2000.

[182] A. P. Sistla and P. Godefroid. Symmetry and reduced symmetry in model checking.ACM

Transactions on Programming Languages and Systems, 26(4):702–734, July 2004.

[183] A. P. Sistla, V. Gyuris, and E. A. Emerson. SMC: A symmetry-based model checker for

verification of safety and liveness properties.ACM Transactions on Software Engineering

and Methodology, 9(2):133–166, April 2000.

[184] A. P. Sistla, L. Miliades, and V. Gyuris. SMC: A symmetry-based model checker for

verification of liveness properties. In Grumberg [82], pages 464–467.

[185] SNU real-time benchmarks. URLhttp://archi.snu.ac.kr/realtime/benchmark/.

.

[186] Software errors cost U.S. economy $59.5 billion annually: NIST asseses technical needs

of industry to improve software testing. URL http://www.nist.gov/publicaffairs/relea-

ses/n02-10.htm, June 2002. NIST News Release.

[187] M. E. Stickel. A Prolog technology theorem prover: A new exposition and implementation

in Prolog.Theoretical Computer Science, 104(1):109–128, 1992.

[188] P. J. Stuckey, editor.Logic Programming, 18th International Conference, ICLP 2002,

Copenhagen, Denmark, July 29–August 1, 2002, Proceedings, volume 2401 ofLecture

Notes in Computer Science. Springer, 2002.

[189] Y. Tanabe, T. Takai, and K. Takahashi. Verification tools using abstraction.Computer

Software, 22(1):2–44, January 2005.

[190] D. Tang, S. Malik, A. Gupta, and C. N. Ip. Symmetry reduction in SAT-based model

checking. In Etessami and Rajamani [64], pages 125–138.

246

[191] W. Thomas. Automata on infinite objects. In J. van Leeuwen, editor,Handbook of The-

oretical Computer Science Volume B: Formal Models and Semantics, chapter 4, pages

133–191. Elsevier Science, 1990. Second printing 1998.

[192] L. Urbina. Analysis of hybrid systems CLP(R). In Freuder [73], pages 451–467.

[193] L. Urbina. The generalized railroad crossing: Its symbolic analysis in CLP(R). In Freuder

[73], pages 565–567.

[194] A. C. Uselton and S. A. Smolka. Compositional semantics for Statecharts using labeled

transition systems. In B. Jonsson and J. Parrow, editors,5th CONCUR, volume 836 of

Lecture Notes in Computer Science, pages 2–17. Springer, 1994.

[195] M. von der Beeck. A comparison of statechart variants.In H. Langmaack, W.-P. de Roever,

and J. Vytopil, editors,FTRTFT 1994, volume 863 ofLecture Notes in Computer Science,

pages 128–148. Springer-Verlag, 1994.

[196] F. Wang. Efficient data structure for fully symbolic verification of real-time systems. In

Graf and Schwartzbach [81], pages 157–171.

[197] F. Wang. Efficient verification of timed automata with BDD-like data structures. In Zuck

et al. [202], pages 189–205.

[198] F. Wang and K. Schmidt. Symmetric symbolic safety analysis of concurrent software with

pointer data structures. In D. Peled and M. Y. Vardi, editors, 22nd FORTE, volume 2529

of Lecture Notes in Computer Science, pages 50–64. Springer, 2002.

[199] H. Weyl. Symmetry. Princeton University Press, 1952. First Princeton Science Library

Printing, 1989.

[200] W. Yi, P. Pettersson, and M. Daniels. Automatic verification of real-time computing sys-

tems by constraint-solving. In D. Hogrefe and S. Leue, editors,7th FORTE, volume 6 of

IFIP Conference Proceedings, pages 243–258. Chapman & Hall, 1995.

[201] S. Yovine. Kronos: A verification tool for real-time systems. International Journal on

Software Tools for Technology Transfer, 1(1/2):123–133, October 1997.

[202] L. D. Zuck, P. C. Attie, A. Cortesi, and S. Mukhopadhyay, editors. Verification, Model

Checking, and Abstract Interpretation, 4th InternationalConference, VMCAI 2003, New

247

York, NY, USA, January 9–11, 2002, Proceedings, volume 2575 ofLecture Notes in Com-

puter Science. Springer, 2003.

248

Appendix A

Additional Modeling Examples

A.1 Modeling Real-Time Synchronization

Await statement which is introduced in Chapter 3 is useful forsynchronization. Another com-

monly encountered synchronization mechanism in concurrent settings is bysignalsor interrupts.

The common mechanism of signaling is that a process first declares its interest in a signal speci-

fiable by a signal identifier, and then it goes to sleep or perform other tasks. We say that the

processwaits for the signal. The signal can then be generated by another process when certain

conditions are met or certain set of tasks are completed. Thegeneration of the signal triggers

the waiting process after a small amount of time, which then awakes from its sleep or terminates

what it is currently executing, and starts to execute a prespecified piece of code (calledsignal

handleror interrupt service routine).

Signaling can be thought as another level of abstraction above busy waiting, since it is ac-

tually implemented in digital computers as busy waiting forthe raising of the signal. However,

usually the busy waiting in signaling is implemented by a specialized hardware separated from

the CPU such that no CPU time is lost executing a loop.

A.1.1 Waiting Time

There is a modeling issue with regard theawait statement introduced in Section 3.3. This is

because it may take an indefinite amount of time before it succeeds. An implementation of an

await statement in real programming languages would have used operating system facilities to

check from time to time whether the condition is satisfied or not, which is the so-calledbusy

waiting. The checking is not necessarily periodic, but the operating system’s scheduling mecha-

249

nism would guarantee that the checking of the condition willeventually be performed. Assuming

a dedicated operating system, it is possible to provide the range of time difference between one

check with another.

Suppose that the condition of an await statement is periodically checked everyε time units,

whereεl ≤ ε ≤ εh, and we have a program with two processes, and Process 1 contains anawait

statement of the form

〈l〉await (boolexpr)

Then we translate the above statement into the following twoCLP clauses:

p(l1, l2, X̃,T ′
1,T2) :-

¬boolexprθ,T1 ≤ T2,T1 + εl ≤ T ′
1 ≤ T1 + εh, p(l1, l2, X̃,T1,T2).

p(next label(l1), l2, X̃,T ′
1,T2) :-

boolexprθ,T1 ≤ T2,T1 + εl ≤ T ′
1 ≤ T1 + εh, p(l1, l2, X̃,T1,T2).

The first clause is the case when the condition does not hold and the busy waiting loop has to

iterate one more time, while the second clause is the case when the test succeeds and control

advances to the statement at the next program point.

A.1.2 The Modeling

We now allow a concurrent program text to use three new statements:

kill (PosInt) Variable := Expr

signal (PosInt)

signal sleep(PosInt)

The syntactic elementPosInt denotes an expression that evaluates to a positive integer,usually

simply a constant.

To represent the state of a signal in the CLP model, we use a functor signal(Id,S,R), where

the argumentsId, SandRare signal identifier, signal status and number of processeswaiting for

the signal, respectively. The signal status is eitherup or down, denoting whether the signal is

raised or not.

We now explain the CLP model of the three statements above. Inour explanation, we assume

a two-process concurrent program, each with its corresponding clock variable. This setting can

250

be trivially generalized to more than two processes.

〈l2〉 kill (id) xk := expr is used to generate a signal, and atomically assign the expression

exprto the variablex. Assuming that it is executed by Process 2, we translate the above statement

into the following backward CLP clauses:

p(L1,m,signal(id,up,R),X1, . . . ,X′
k, . . . ,Xn,S1,S2,T1,T ′

2) :-

p(L1, l2,signal(id,down,R),X1, . . . ,Xk, . . . ,Xn,S1,S2,T1,T2),

X′
k = exprθ,T2 + εl ≤ T ′

2 ≤ T2 + εh.

p(L1,next label(l2),signal(id,down,0),X1, . . . ,Xn,S1,S2,T1,T2) :-

p(L1,m,signal(id,up,0),X1, . . . ,Xn,S1,S2,T1,T2).

The first clause models the rising of a signal. Notice the change fromsignal(id,down,R) to

signal(id,up,R). This signal sending takesε amount of time, whereεl ≤ ε ≤ εh. The program

pointm denotes await locationof Process 2, where its value is different from program points or

other wait locations of Process 2. The variablesS1 denotes the signal id Process 1 is currently

waiting on, similarly withS2 for Process 2. In the above clauses, these are unchanged.T1 andT2

are both clock variables.

The basic idea is that when a signal is raised, all other processes that wait for the signal are

notified, and each of them acknowledges the receiving of the signal by decrementing by one the

number of waiting process (the third argument ofsignal). When the number of waiting processes

reaches 0, the signal flag can be lowered, which is modeled by the second CLP clause above. In

this way, all processes that are waiting for the signal must have been serviced before the process

executing thekill statement proceeds to execute the next statement.

〈l1〉 signal (id) is used to declare that the current process is waiting for a signal. It basically

increments the third argument ofsignal functor. In our two-process program, we assume that

Process 1 executes this statement. In the backward CLP modelof the program, the statement is

translated into two clauses, of which the first one is:

p(next label(l1),L2,signal(id,down,R+1),X1, . . . ,Xn,S′1,S2,T ′
1,T2) :-

p(l1,L2,signal(id,down,R),X1, . . . ,Xn,S1,S2,T1,T2),

S′1 = id,T1 + εl ≤ T ′
1 ≤ T1 + εh.

Notice that we setS1 to the signal id, denoting that Process 1 is now waiting for that signal. The

execution of the statement also consumes some time, which iswithin [εl ,εh].

251

The second clause handles the case when the signal is raised and Process 1 must jump to a

signal handler.

p(m,L2,signal(id,up,R),X1, . . . ,Xn,S′1,S2,T ′
1,T2) :-

p(L1,L2,signal(id,up,R+1),X1, . . . ,Xn,S1,S2,T1,T2),

S′1 = 0,T1 + εl ≤ T ′
1 ≤ T1 + εh.

In the above clause,m is the start program point of the signal handler andL1 is a variable denoting

any program point of Process 1. The clause models the decrement of the third argument ofsignal

functor, to declare that the process has been serviced. Moreover, since Process 1 should no longer

wait for signalId, it sets the value ofS1 to 0, to declare that Process 1 now waits for no signal

(recall that a signal id is always a positive integer).

〈l1〉 signal sleep(id) is used to declare that Process 1 waits for a signalid, and then it im-

mediately goes to sleep, waiting for the signal to be raised.It is translated into the following two

backward CLP clauses:

p(m,L2,signal(id,down,R+1),X1, . . . ,Xn,T1,T2) :-

p(l1,L2,signal(id,down,R),X1, . . . ,Xn,T1,T2).

p(next label(l1),L2,signal(id,up,R),X1, . . . ,Xn,T ′
1,T2) :-

p(m,L2,signal(id,up,R+1),X1, . . . ,Xn,T1,T2),

T2 +δl ≤ T ′
1 ≤ T2 +δh,T1 + εl ≤ T ′

1.

The first clause models the registering of Process 1 waiting for the signalid, while signalid is

still down. Here we increaseR by 1 in the tuple to denote that one more process is waiting for

signalid. With this Process 1 also moves to program pointm. We assume that the value ofm is

two more than the maximum program point value in the program text.

The second clause models the awakening of the sleeping Process 1 due to the rising of the

corresponding signal by Process 2. Here, while signalid is up, we reduce the number of processes

that is waiting for the signal fromR+ 1 to R. An important thing here is that Process 1 would

have waited for indefinite amount of time, when the signal is raised. Therefore the correct clock

value when the Process 1 awakes must be the same as the clock value of Process 2. But here we

add someδ delays in the execution, whereδl ≤ δ ≤ δh. Moreover, there is a minimum amount of

time spent in sleep, at least for the execution time of the statement itself, which isεl .

We now show the flexibility of the above language constructs in modeling various synchro-

252

kill (id)

signal sleep(id)

controller
gatetrain

Figure A.1: One-Way Synchronization

nization paradigms found in the literature.

One-Way Synchronization. This mode of synchronization is useful to model an environ-

ment acting on a system. Such modeling of environment is adopted in Esterel synchronous lan-

guage [87], where the environment “drives” the system by emitting signals one-way. An example

of a train (environment in this case) sending a synchronous one-way message to a railway gate

controller (the system) is shown using UML sequence diagramin Figure A.1. Note that solid ar-

rows as in UML sequence diagrams denote a synchronous message. The self-call annotated with

“signal sleep(id)” represents the registering of the interest in the signal bythe gate controller.

This is the activity modeled by the first CLP clause of the CLP modeling ofsignal sleep. The

train may then trigger the signal, say when it is approachingthe gate. This is the sending of the

message annotated withkill (id). Correspondingly, the gate controller accepts the message and

starts to lower the crossing gate. The message acceptance bythe gate controller is modeled by

the second clause of the CLP model ofsignal sleep(id).

Time-Triggered Protocol (TTP). TTP is used to implementTime-Triggered Architecture

(TTA) [122]. TTA is becoming the standard architecture for modern embedded real-time systems

due to its high predictability obtained through a global periodic clock1.

Time-triggered architecture was proposed by Kopetz [122] to increase the timing predictabil-

ity of distributed real-time systems. It is basically a middleware for distributed real-time systems,

which takes advantage of a priori known information to ensure hard real-time constraints. As we

have mentioned, TTA is based on a communication protocol called the Time-Triggered Protocol

(TTP). The TTP is basically a Time-Division Multiple Access(TDMA) protocol which transmits

1Note that TTA/TTP does not actually require that the time difference between synchronization points to be peri-
odic [122]. The important thing is that a synchronization will eventually occur after some time.

253

kill (id)x := y

kill (id)x := y kill (id)x := y

kill (id)x := y

signal sleep(id)

signal sleep(id) signal sleep(id)

signal sleep(id)

producer(y)consumer(x)

t

time
server

Figure A.2: Time-Triggered Protocol

messages from a node (time server) within some fixed time slice in a round-robin fashion.

Figure A.2 is a UML sequence chart depicting one full period of a time-triggered protocol

communication. In such protocol, we always have atime server,which broadcasts a signal at

every specified periodt. In addition to a time server, in Figure A.2 there are also a producer

and consumer which capture the signal. The producer produces a value which is stored in the

variabley, while the consumer uses the value given as the variablex. In TTP, the exchange of data

only happens at period boundary, and they occur “instantaneously.” To model this, the atomic

assignment inkill statement is handy. In Figure A.2, whenever the signal is risen, they is

assigned tox, modeling an instantaneous data transfer from the producer to the consumer. The

waiting until the period expires at the time server can be implemented using a delay statement.

Execution steps of synchronous languages such as Esterel [15] can also be modeled in a

similar manner. We can see the analogy of TTP with Esterel’s semantics where the effect of a

signal is only noticed within time region. Essentially TTA can be used as an implementation

platform for synchronous languages such as Esterel.

Symmetric Synchronization (Barrier). Synchronization barrier(see e.g., [115, 72]) is a

well-known technique to synchronize a number of parallel processes. According to [72], “A

barrier is a particular point in a distributed computation that every process in a group must reach

before any process can proceed further.”

Barriers can be implemented using the constructs we have introduced so far. The basic mech-

anism is exemplified by the sequence diagram shown in Figure A.3. Two processes, Process 1

and 2 that are to be synchronized at some point have to reach certain stages of computation. We

254

Process 1 Process 3

(id)

Process 2

x := 1

signal sleep(id)
x := 0

y := 1

y := 0

kill (id)kill (id)

await (x = 1∧y = 1)

signal sleep

Figure A.3: Symmetric Synchronization (Barrier)

assume that when Process 1 has reached the stage it assignsx to 1. Similarly, Process 2 would as-

signy to 1. Here we assume that initially the values ofx andy are both 0. After the assignments,

both processes goes to sleep by executingsignal sleep(id).

Some time after the assignments, Process 3, which have previously executedawait (x = 1∧

y = 1), becomes aware that Process 1 and 2 have set the values ofx andy respectively to 1. This

detection is depicted in Figure A.3 by the two sloped half-arrows, which denoteasynchronous

communication. Process 3 then resets bothx and theny to 0. We assume that enough time has

passed such that Process 1 and 2 are already asleep waiting for the signal (perhaps by introducing

sufficient delay). At this point both Process 1 and 2 have reached the barrier. Process 3 then raises

the id signal, which at the same time awakens both Process 1 and 2 to continue their executions.

255

Appendix B

Additional Proof Examples

B.1 Complete Proof of List Reverse Program

The assertion that we prove here is the following:

p(0,H, I ,J,H f ,Jf),alist(H, I),J = 0 |= reverse(H, I ,0,H f ,Jf),alist(H f ,Jf).

The main proof is shown in Section B.1.1.

The proof requires an introduction of loop invariant in order to find a recursion in the unfold-

ing of the loop. We therefore generalize the lhs of obligation 1′ using theCUT rule into obligation

2. The use ofCUT requires us to prove

p(0,H, I ,J,H f ,Jf),alist(H, I),H0 = H, I0 = I ,J = 0

|= p(0,H, I ,J,H f ,Jf), reverse(H0, I0, I ,H,J),alist(H,J),alist(H, I),no share(H,J, I).

((5.14) on Page 151). The proof is shown in Section B.1.2.

From obligation 2 further proof will branch into two obligations. One of the branch 3a

denotes the program’s execution path that exits the loop, while the branch 3b denotes the path

that enters the loop body, and eventually reaches〈0〉 again at assertion 6, which is proved by

coinduction (AP application). The application ofAP at 6 requires the proof of the side condition.

The subsumption test is obligation 7s.1 and the residual obligation is 7r.1.

We assume that 7s.1 is directly proved (viaDP), however, we are obliged to establish the

256

following assertions:

A. reverse(H0, I0, I ,H,J),alist(H,J),alist(H, I),no share(H,J, I),

I 6= 0,H ′ = 〈H, I +1,J〉, I ′ = H[I +1],J′ = I |= reverse(H0, I0, I ′,H ′,J′).

B. reverse(H0, I0, I ,H,J),alist(H,J),alist(H, I),no share(H,J, I),

I 6= 0,H ′ = 〈H, I +1,J〉, I ′ = H[I +1],J′ = I |= alist(H ′,J′).

C. reverse(H0, I0, I ,H,J),alist(H,J),alist(H, I),no share(H,J, I),

I 6= 0,H ′ = 〈H, I +1,J〉, I ′ = H[I +1],J′ = I |= alist(H ′, I ′).

D. reverse(H0, I0, I ,H,J),alist(H,J),alist(H, I),no share(H,J, I),

I 6= 0,H ′ = 〈H, I +1,J〉, I ′ = H[I +1],J′ = I |= no share(H ′,J′, I ′).

The proofs of A, B, C, and D are given in Sections B.1.3, B.1.4,B.1.5, and B.1.6, respectively.

The proof of B also requires that E be established (Section B.1.7). The proof of D requires

that F is established (proof in Section B.1.8), which in turnrequires that G (proof in Section

B.1.9) is established.

The proofs of B, C, and D uses the separation principle (SEP) discussed in Section 5.9.1.

257

B.1.1 Main Proof of Linked List Reverse

1 p(0,H, I ,J,H f ,Jf),alist(H, I),J = 0 |= reverse(H, I ,0,H f ,Jf),alist(H f ,Jf)
1′ p(0,H, I ,J,H f ,Jf),alist(H, I),H0 = H, I0 = I ,J = 0

|= reverse(H0, I0,H f ,Jf),alist(H f ,Jf) Simplified 1′

2 p(0,H, I ,J,H f ,Jf), reverse(H0, I0,H,J),alist(H,J),alist(H, I),no share(H,J, I)
|= reverse(H0, I0,0,H f ,Jf),alist(H f ,Jf) CUT 1′

3a p(Ω,H, I ,J,H f ,Jf), reverse(H0, I0, I ,H,J),alist(H,J),alist(H, I),
no share(H,J, I), I = 0

|= reverse(H0, I0,0,H f ,Jf),alist(H f ,Jf) LU 2
3b p(1,H, I ,J,H f ,Jf), reverse(H0, I0, I ,H,J),alist(H,J),alist(H, I),

no share(H,J, I), I 6= 0
|= reverse(H0, I0,0,H f ,Jf),alist(H f ,Jf) LU 2

4 reverse(H0, I0,0,H f ,Jf),alist(H f ,Jf),alist(H f ,0),no share(H f ,Jf ,0)
|= reverse(H0, I0,0,H f ,Jf),alist(H f ,Jf) LU 3a

5 ¬2 DP 4
6 p(0,H ′, I ′,J′,H f ,Jf), reverse(H0, I0, I ,H,J),alist(H,J),alist(H, I),no share(H,J, I)

I 6= 0,H ′ = 〈H, I +1,J〉, I ′ = H[I +1],J′ = I
|= reverse(H0, I0,0,H f ,Jf),alist(H f ,Jf) LU 3b

7 ¬2 AP 2,6

7s.1 p(0,H ′, I ′,J′,H f ,Jf), reverse(H0, I0, I ,H,J),alist(H,J),alist(H, I),no share(H,J, I)
I 6= 0,H ′ = 〈H, I +1,J〉, I ′ = H[I +1],J′ = I

|= p(0,H ′, I ′,J′,H f ,Jf), reverse(H0, I0,H ′,J′),alist(H ′,J′),
alist(H ′, I ′),no share(H ′,J′, I ′) AP 2,6

7s.2 ¬2 See A,B,C,D

7r.1 reverse(H0, I0,0,H f ,Jf),alist(H f ,Jf), reverse(H0, I0, I ,H,J),alist(H,J),alist(H, I),
no share(H,J, I), I 6= 0,H ′ = 〈H, I +1,J〉, I ′ = H[I +1],J′ = I

|= reverse(H0, I0,0,H f ,Jf),alist(H f ,Jf) AP 2,6
7r.2 ¬2 DP 7r.1

B.1.2 Proof ofCUT Side Condition for Linked List Reverse

2.1 p(0,H, I ,J,H f ,Jf),alist(H, I),H0 = H, I0 = I ,J = 0
|= p(0,H, I ,J,H f ,Jf), reverse(H0, I0, I ,H,J),alist(H,J),alist(H, I),

no share(H,J, I)
2.2 p(0,H, I ,J,H f ,Jf),alist(H, I),H0 = H, I0 = I ,J = 0

|= p(0,H, I ,J,H f ,Jf),alist(H,J),alist(H, I),no share(H,J, I),
H0 = H, I0 = I ,J = 0 RU 2.1

2.3 p(0,H, I ,J,H f ,Jf),alist(H, I),H0 = H, I0 = I ,J = 0
|= p(0,H, I ,J,H f ,Jf),alist(H, I),no share(H,J, I),H0 = H, I0 = I ,J = 0 RU 2.2

2.4 p(0,H, I ,J,H f ,Jf),alist(H, I),H0 = H, I0 = I ,J = 0
|= p(0,H, I ,J,H f ,Jf),alist(H, I),H0 = H, I0 = I ,J = 0 RU 2.3

2.5 ¬2 DP 2.4

258

B.1.3 Proof of Assertion A

A.1 reverse(H0, I0, I ,H,J),alist(H,J),alist(H, I),no share(H,J, I), I 6= 0
H ′ = 〈H, I +1,J〉, I ′ = H[I +1],J′ = I

|= reverse(H0, I0, I ′,H ′,J′).
A.1′ reverse(H0, I0, I ,H,J),alist(H,J),alist(H, I),no share(H,J, I), I 6= 0

|= reverse(H0, I0,H[I +1],〈H, I +1,J〉, I). Simplified A.1′

A.2 reverse(H0, I0, I ,H,J),alist(H,J),alist(H, I),no share(H,J, I), I 6= 0
|= reverse(H0, I0, I ,H,J) RU A.1′

A.3 ¬2 DP A.2

B.1.4 Proof of Assertion B

B.1 reverse(H0, I0, I ,H,J),alist(H,J),alist(H, I),no share(H,J, I), I 6= 0,
H ′ = 〈H, I +1,J〉, I ′ = H[I +1],J′ = I |= alist(H ′,J′)

B.1′ reverse(H0, I0, I ,H,J),alist(H,J),alist(H, I),no share(H,J, I), I 6= 0
|= alist(〈H, I +1,J〉, I) Simplified B.1′

B.2a reverse(H0, I0, I ,H,J),alist(H,J),alist(H, I), I 6= 0,J = 0
|= alist(〈H, I +1,J〉, I) LU B.1′

B.2b reverse(H0, I0, I ,H,J),alist(H,J),alist(H, I),
no reach(H,J, I),no share(H,H[J+1], I), I 6= 0,J 6= 0

|= alist(〈H, I +1,J〉, I) LU B.1′

B.3 reverse(H0, I0, I ,H,J),alist(H,J),alist(H, I), I 6= 0,J = 0
|= I 6= 0,alist(〈H, I +1,J〉,〈H, I +1,J〉[I +1]),

no reach(〈H, I +1,J〉, I ,〈H, I +1,J〉[I +1]) RU B.2a
B.4 reverse(H0, I0, I ,H,J),alist(H,J),alist(H, I), I 6= 0,J = 0

|= I 6= 0,alist(〈H, I +1,J〉,J),no reach(〈H, I +1,J〉, I ,J) AIP B.3
B.5 reverse(H0, I0, I ,H,J),alist(H,J),alist(H, I), I 6= 0,J = 0

|= no reach(〈H, I +1,J〉, I ,J), I 6= 0,J = 0 RU B.4
B.6 reverse(H0, I0, I ,H,J),alist(H,J),alist(H, I), I 6= 0,J = 0

|= I 6= 0,J = 0 RU B.5
B.7 ¬2 DP B.6
B.8 reverse(H0, I0, I ,H,J),alist(H,J),alist(H, I),

no reach(H,J, I),no share(H,H[J+1], I), I 6= 0,J 6= 0
|= alist(〈H, I +1,J〉,〈H, I +1,J〉[I +1]),

no reach(〈H, I +1,J〉, I ,〈H, I +1,J〉[I +1]) RU B.2b
B.9 reverse(H0, I0, I ,H,J),alist(H,J),alist(H, I),

no reach(H,J, I),no share(H,H[J+1], I), I 6= 0,J 6= 0
|= alist(〈H, I +1,J〉,J),no reach(〈H, I +1,J〉, I ,J) AIP B.8

B.10 reverse(H0, I0, I ,H,J),alist(H,J),alist(H, I),
no reach(H,J, I),no share(H,H[J+1], I), I 6= 0,J 6= 0

|= alist(H,J),no reach(〈H, I +1,J〉, I ,J) SEP B.9
B.11 ¬2 DP B.10 with E.1

259

B.1.5 Proof of Assertion C

C.1 reverse(H0, I0, I ,H,J),alist(H,J),alist(H, I),no share(H,J, I)
I 6= 0,H ′ = 〈H, I +1,J〉, I ′ = H[I +1],J′ = I |= alist(H ′, I ′)

C.1′ reverse(H0, I0, I ,H,J),alist(H,J),alist(H, I),no share(H,J, I), I 6= 0
|= alist(〈H, I +1,J〉,H[I +1]) Simplified C.1

C.2 reverse(H0, I0, I ,H,J),alist(H,J),alist(H,H[I +1]),no reach(H, I ,H[I +1]),
no share(H,J, I), I 6= 0 |= alist(〈H, I +1,J〉,H[I +1]) LU C.1′

C.3 reverse(H0, I0, I ,H,J),alist(H,J),alist(H,H[I +1]),no reach(H, I ,H[I +1]),
no share(H,J, I), I 6= 0 |= alist(H,H[I +1]) SEP C.2

C.4 ¬2 DP C.3

B.1.6 Proof of Assertion D

D.1 reverse(H0, I0, I ,H,J),alist(H,J),alist(H, I),no share(H,J, I),
I 6= 0,H ′ = 〈H, I +1,J〉, I ′ = H[I +1],J′ = I

|= no share(H ′,J′, I ′)
D.1′ reverse(H0, I0, I ,H,J),alist(H,J),alist(H, I),no share(H,J, I), I 6= 0

|= no share(〈H, I +1,J〉, I ,H[I +1]) Simplified D.1
D.2 reverse(H0, I0, I ,H,J),alist(H,J),alist(H,H[I +1]),no reach(H, I ,H[I +1]),

no share(H,J, I), I 6= 0
|= no share(〈H, I +1,J〉, I ,H[I +1]) LU D.1′

D.3 reverse(H0, I0, I ,H,J),alist(H,J),alist(H,H[I +1]),no reach(H, I ,H[I +1]),
no share(H,J, I), I 6= 0

|= no reach(〈H, I +1,J〉, I ,H[I +1]),
no share(〈H, I +1,J〉,〈H, I +1,J〉[I +1],H[I +1]), I 6= 0 RU D.2

D.4 reverse(H0, I0, I ,H,J),alist(H,J),alist(H,H[I +1]),no reach(H, I ,H[I +1]),
no share(H,J, I), I 6= 0

|= no reach(〈H, I +1,J〉, I ,H[I +1]),
no share(〈H, I +1,J〉,J,H[I +1]), I 6= 0 AIP D.3

D.5 reverse(H0, I0, I ,H,J),alist(H,J),alist(H,H[I +1]),no reach(H, I ,H[I +1]),
no share(H,J, I), I 6= 0

|= no reach(〈H, I +1,J〉, I ,H[I +1]),
no share(H,J,H[I +1]), I 6= 0 SEP D.4

D.6 ¬2 DP D.5 with F.1

260

B.1.7 Proof of Assertion E

E.1 no reach(H,J, I),no share(H,H[X +1], I),X 6= 0, I 6= 0
|= no reach(〈H, I +1,J〉, I ,X)

E.2a no reach(H,J, I),H[X +1] = 0,X 6= 0, I 6= 0
|= no reach(〈H, I +1,J〉, I ,X) LU E.1

E.2b no reach(H,J, I),no reach(H,H[X +1], I),no share(H,H[H[X +1]+1], I),
X 6= 0, I 6= 0,H[X +1] 6= 0

|= no reach(〈H, I +1,J〉, I ,X) LU E.1
E.3 no reach(H,J, I),X 6= 0, I 6= 0,H[X +1] = 0

|= no reach(〈H, I +1,J〉, I ,H[X +1]),X 6= 0 RU E.2a
E.4 no reach(H,J, I),X 6= 0, I 6= 0,H[X +1] = 0

|= X 6= 0,H[X +1] = 0 RU E.3
E.5 ¬2 DP E.4
E.6 ¬2 AP E.1,E.2b

E.6s.1 no reach(H,J, I),no reach(H,H[X +1], I),no share(H,H[H[X +1]+1], I),
X 6= 0, I 6= 0,H[X +1] 6= 0

|= no reach(H,J, I),no share(H,H[H[X +1]+1], I),
H[X +1] 6= 0, I 6= 0 AP E.1,E.2b

E.6s.2 ¬2 DP E.6s.1

E.6r.1 no reach(H,J, I),no reach(H,H[X +1], I),no reach(〈H, I +1,J〉, I ,H[X +1]),
X 6= 0, I 6= 0,H[X +1] 6= 0

|= no reach(〈H, I +1,J〉, I ,X) AP E.1,E.2b
E.6r.2 no reach(H,J, I),no reach(H,H[X +1], I),no reach(〈H, I +1,J〉, I ,H[X +1]),

X 6= 0, I 6= 0,H[X +1] 6= 0
|= X 6= 0,no reach(〈H, I +1,J〉, I ,H[X +1]) RU E.6r.1

E.6r.3 ¬2 DP E.6r.2

261

B.1.8 Proof of Assertion F

F.1 no share(H,J, I),no reach(H, I ,H[I +1]), I 6= 0
|= no reach(〈H, I +1,J〉, I ,H[I +1]),no share(H,J,H[I +1]), I 6= 0

F.2a no reach(H, I ,H[I +1]), I 6= 0,J = 0
|= no reach(〈H, I +1,J〉, I ,H[I +1]),no share(H,J,H[I +1]),

I 6= 0 LU F.1
F.2b no reach(H,J, I),no share(H,H[J+1], I),no reach(H, I ,H[I +1]), I 6= 0,J 6= 0

|= no reach(〈H, I +1,J〉, I ,H[I +1]),no share(H,J,H[I +1]),
I 6= 0 LU F.1

F.3 no reach(H, I ,H[I +1]), I 6= 0,J = 0
|= no reach(〈H, I +1,J〉, I ,H[I +1]), I 6= 0,J = 0 RU F.2a

F.4 ¬2 DP F.3
with G.1

F.5 no reach(H,J,H[I +1]),no share(H,H[J+1], I),no reach(H, I ,H[I +1]),
I 6= 0,J 6= 0, I 6= J

|= no reach(〈H, I +1,J〉, I ,H[I +1]),no share(H,J,H[I +1]),
I 6= 0 LU F.2b

F.6 ¬2 AP F.1,F.5

F.6s.1 no reach(H,J,H[I +1]),no share(H,H[J+1], I),no reach(H, I ,H[I +1]),
I 6= 0,J 6= 0, I 6= J

|= no share(H,H[J+1], I),no reach(H, I ,H[I +1]), I 6= 0 AP F.1,F.5
F.6s.2 ¬2 DP F.6s.1

F.6r.1 no reach(H,J,H[I +1]),no reach(〈H, I +1,H[J+1]〉, I ,H[I +1]),
no reach(H, I ,H[I +1]),no share(H,H[J+1],H[I +1]), I 6= 0,J 6= 0, I 6= J

|= no reach(〈H, I +1,J〉, I ,H[I +1]),no share(H,J,H[I +1]),
I 6= 0 AP F.1,F.5

F.6r.2 no reach(H,J,H[I +1]),no reach(〈H, I +1,H[J+1]〉, I ,H[I +1]),
no reach(H, I ,H[I +1]),no share(H,H[J+1],H[I +1]), I 6= 0,J 6= 0, I 6= J

|= no reach(〈H, I +1,J〉, I ,H[I +1]),no reach(H,J,H[I +1]),
no share(H,H[J+1],H[I +1]), I 6= 0,J 6= 0 RU F.6r.1

F.6r.2 ¬2 DP F.6r.2
with G.1

262

B.1.9 Proof of Assertion G

G.1 no reach(H, I ,X) |= no reach(〈H, I +1,J〉, I ,X)
G.2a X = 0 |= no reach(〈H, I +1,J〉, I ,X) LU G.1
G.2b no reach(H, I ,H[X +1]),X 6= 0, I 6= X |= no reach(〈H, I +1,J〉, I ,X) LU G.1
G.3 X = 0 |= X = 0 RU G.2a
G.4 ¬2 DP G.3
G.5 ¬2 AP G.1,G.2b

G.5s.1 no reach(H, I ,H[X +1]),X 6= 0, I 6= X |= no reach(H, I ,H[X +1]) AP G.1,G.2b
G.5s.2 ¬2 DP G.5s.1

G.5r.1 no reach(〈H, I +1,J〉, I ,H[X +1]),X 6= 0, I 6= X
|= no reach(〈H, I +1,J〉, I ,X) AP G.1,G.2b

G.5r.2 no reach(〈H, I +1,J〉, I ,H[X +1]),X 6= 0, I 6= X
|= no reach(〈H, I +1,J〉, I ,H[X +1]),X 6= 0, I 6= X RU G.5r.1

G.5r.3 ¬2 DP G.5r.2

263

