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Summary

There have been many efforts in promoting the use of constiggic programming (CLP)
in program reasoning. There are two major approaches tggmoeasoning: path enumeration
approach and syntax tree approach. Path enumeration isch egestate space of a program, and
it can be accelerated by program analysis techniques, ws¥iltax-tree (program verification)-
based approach composes proofs of syntactic units, andusatig compositional. We propose
a CLP-based framework that accommodates both approaches.

Our framework is centered on a search-tree-based symb@agon algorithm which per-
forms generalization of execution state intermittentlgrélour algorithm is engineered to func-
tion like an abstract interpreter for program analysishulite main difference in that abstraction
is applied intermittently, instead of at every analysipst€he advantages are that the abstract
domain required to ensure convergence of the algorithm easirbplified, and that the cost of
performing abstractions, now being intermittent, is remtidntermittent abstraction also enables
compositional reasoning by viewing an abstraction poirg esmposition boundary.

The algorithm is optimized between the abstraction poisisgia novetlynamic summariza-
tion technique which summarizes a symbolic traversal subtregebgralizing its entry context
such that more of newly encountered nodes in tree will beddorbe subsumed and their cor-
rectness immediately concluded.

Our program reasoning framework can also employ optimomatiased on a novel notion
of relative safety which can significantly reduce the complexity of reasonivide propose a
framework which first lets the user speciipn-behavioral propertiesuch as symmetry, com-
mutativity, or serializability as relative safety assems, and prove the assertions automaticly.
The proved assertions are then input to a traditional sgfietyer to obtain proof with reduced
size. This allows us to handle more classes of symmetry thdieeapproaches to symmetry
reduction.

Our framework also handles verification of recursive datacstires, which are specified
recursively using CLP clauses. The verification techniguautomatable. Our intermittent ab-
straction technique allows for simpler specification ofursive data structures, and solves the
intermittence problem in data structure verification.

Our framework has the following formal underpinnings:

e Modeling of programs in CLP. Programs here include seqakstid concurrent programs,



with or without underlying hardware constraints, and higlel specifications encompass-

ing timed safety automata (TSA) and statecharts.

e Assertions to specify various correctness requiremerisir basic form is = H, where
G andH are conjunctions of CLP atoms and constraints. We can usas$ertions to
express traditional safety (invariance) properties atative safety (structural) properties
of programs such as symmetry, commutativity, and seriailitgin concurrent programs.
SinceG or H may contain atoms of CLP predicates defining recursive dat&tares

(linked lists, trees, etc.), the assertion can also be wsepdcify data structure properties.

e A proof method for general CLP programs. Our proof method us@& an obligation,
assumed to hold, to establish other obligations indugctiv&®e call this process eoinduc-

tion.

We have developed a number of automated prover prototypgsnvpurely in the CLPR)
programming language to demonstrate various aspects aeas, and we present the results of

the experimental runs.

Xi
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Chapter 1

Introduction

1.1 Problems

Having bugs in software is costly [186], and software fakihave caused loss of life in safety-
critical systems [76]. As the complexity of software syssantrease, the quest for reliable soft-
ware is becoming increasingly important. One of the tedlmsgto improve systems reliability
is verification where logical reasoning is applied in order to prpvepertiesof programs. This
thesis draws a story about verification of systems, in pagic computer programs. Here we
consider computer programs in a more general sense, enssimg@&oncurrent programs, mul-
tiprocedural programs, timed programs whose behaviorriépen the underlying hardware, as
well as high-level behavioral models which are exemplifigdiimed safety automat@ SA [99]
andstatechartg§88].

In program reasoning, the task is to prove whether a progedisfies a given property, that
is, a statement about the program. There are two well-kndasses of propertiesafetyand
liveness Informally, safety states that a bad thing does not occhilewiveness states that a
good thing will occur. Formal definitions of both safety angthess based on trace semantics
have been given by Schneider who also shows that in tracensiesygproperties can only be
either safety or liveness [178]. This thesis focuses salalgafety properties. Here we define
safety to be a subset of the state space of a program (thatubsat where the “bad thing” does
not occur). Some literature also categorizes statements &hite history of execution as safety,
in particular the definition of safety using past temporgid¢mperators, e.g., in [19]. This is still
consistent with our idea of safety since history can be @sxbin computer memory, and hence

can be viewed as a part of the state space.



There are two major approaches to safety verification in iteeature. The first of these,
which we callpath enumeratiorapproach, performs a search for error state (“bad thing”) by
computing all reachable states of the program starting fifeeninitial state, or, in the reverse
manner, performs a search for an initial state starting filoenerror state. All automatic reach-
ability checkers (e.g., Mdr[49]) belong to this class. Path enumeration also includegpbral
logic model checkers that proves the temporal logic formidawith ¢ a proposition. Such
formula states that the propositignholds in the initial state of the program and in all future
states.

In path enumeration approach, each step of the search pracégically performed by
strongest postconditiocomputation. The strongest postconditspt, @) is the state ocondition
(set of states) representing all possible next statestaftexecution of the statemerut state or
condition@. The search can also be done in a backward manner startingtiegrror state by
computing at each step the strongest postcondition of tre¥se of a statement (pre-image).

A major example of path enumeration approacim@lel checkingb3]. It is based on state-
space search given some properties to be proved. The ptate-search is done aoncrete
program states. A concrete state is an assignment of evegygm variable to a constant in its
domain, as opposed sgymbolicstate (condition), which is a constraint denoting a set otcete
states whose variable assignments satisfy the constraintodel checking, the termination
of the search is guaranteed due to the finiteness of of the idemModel checking has been
successful in hardware verification because here data dsncan always be reduced to finite
strings of binary digits. In contrast, software manipuatet only simple data such as numbers,
but also arrays and pointer data structures. Represehgsg using binary digits (“bit-blasting”)
too easily results in a blowup of the size of the search tréerdfore, for software verification, a
symbolic traversal of the state space is more effective tioacrete-state traversal. We note that
strongest postcondition is applicable to either concresymbolic state-space traversal.

The path enumeration approach can be accelerated, andeirotesinite-state systems, its
termination guaranteed, usimdpstract interpretatior{program analysistechniques [34]. This
approach is based on providing abstract description ofrprogstates, where the concrete state
space is mapped into abstract domain Reachability checking is then done on the abstract
descriptions. Often such abstraction results in a finite bemof possible abstract descriptions

of program states (e.g., using an abstract domain that fiaiselatticestructure), in which case

IThere are two different interpretations Bf on whether it includes the present (initial) state or not.reHee
assume it does.



the search is guaranteed to terminate. This technique ie gfficient than normal reachability
checking, but it is inherently incomplete due to the lossafumacy incurred by the abstraction.
We note thashape analysifl74] is an abstract-interpretation-based approach ta staticture
verification, but it suffers from inaccuracy [173, 86]. Theatlenge here is therefore the engi-
neering of suitable abstract descriptions that make tiversal efficient, yet enable a proof.

More advanced abstract interpretation-based verifierisaged ompredicate abstractiof80].
These incorporate an automated learning technique cadlenterexample-guided abstraction re-
finemen{CEGAR [30, 7, 97, 6] to try to compute a more appropriate abstrastaln after every
failure to prove a safety property. However, with predicdistraction, it can be expensive to per-
form traversal on the abstract description where a single st the search can be of exponential
complexity to the number of predicates used in the abstesitriptions [9, 80].

In the area of path enumeration, other than abstract ird&on, data structures such as
binary decision diagraniBDD) have been employed to make efficient both the propagatidn an
the storage of the information collected during search, dvaw its applicability in software
verification is limited. Another way to address the blowuplgem is by enhancing the search
technology. Explicit-state model checkers such as SPIN][&nhployspartial-order reduction
to reduce the search space. Some model checkers [96, 491 ]28nBloy symmetry reduction
for the same purpose. These reduction techniques do noptesesion, but their applicability
is limited. Partial-order reduction mainly applies to commitation protocols while symmetry
reduction applies to mostly symmetric problems (e.qg.ridhisted algorithms).

Another traditional branch of software verification tecliyy is based omprogram verifi-
cation [100]. This approach is ayntax treebased, and it is employed in the verification of
structured programs, that is, without arbitrary jungotQ) statements. Here, given a program
fragment, gorecondition and apostconditionwe verify that any terminating execution of the
program fragment in any state satisfying the preconditesuits in a state satisfying the post-
condition. The correctness condition of a program fragniesttherefore specified astaple
{o} t {Y}, wheregis the precondition, ang the postcondition. This technique can be used to
verify programs where there is no guarantee of finitenessiaf domain. The proof proceeds by
applying several proof rules to obtain the desired conolugHowever, it is highly manual: some
of the rules can be automated, but the rule to prove the doess of loops especially requires
the user to manually provide information.

Another challenge in program verification is symbolic coapion of verification conditions.



One way of performing symbolic propagation is Weakest preconditionomputation, which
is used in program verification tools such as ESC/Java [76] Knakatoa [137]. A weakest
preconditionwp(t, ) of a conditiony and statemeritis the weakest condition such that when
is executed from a state satisfying that condition, theltiegustate either satisfiap or diverges
(that is,t does not terminate normally). A triplgp} t {W} holds if and only ifgo = wp(t, ).
The use of weakest precondition, however, is not a necesgig/ can also employ strongest
postcondition propagation in program verification sincege {¢} t {{} holds also if and only
if sp(t, @) = Y.

We note that in contrast to path enumeration approach, trengale of syntax tree approach
is that it is compositional. For instance, the verificatieaults of smaller fragments, which are
specified as triples, can be used to establish the triplesof sequential composition.

Program verification is also amenable to data structurdie&tion, such as usinggparation
logic [166]. The reason is that any constraint, including thos¢ dne statements on state of data
structures based on separation logic, is admissible asrgitle- or postcondition. However, the
automation of separation logic to date remains a challenge.

We summarize our discussion by listing the problems in @ogreasoning that we address

in this thesis, namely
1. We address the efficiency of symbolic execution in thregswa

(a) By a novel way of applying abstraction on symbolic sta#sswe have mentioned,
one of the problems with abstract interpretation is engingeof suitable abstract
domain that does not too quickly lose precision during syliolicaversal. Another
problem is that one step of abstract traversal may be higleffficient. Our objective
is to simplify the abstraction used in the abstract travexéale maintaining preci-

sion, and also to increase the efficiency of each traverspl st

(b) By a novel way of performing symbolic state-space exion efficiently. New
search algorithms are needed to expedite symbolic propagdiote that symbolic
propagation for verification is typically as complex as tlegified program, which
in turn is as complex as it can be (e.g., a programming solutcan NP-complete

problem such asubset sum problem

(c) By anovel way of performing search-space reduction. Asivave mentioned above,

some reasoning systems employ symmetry and partial-oedeiction. These tech-



nigues are applicable only to programs written in a specifidax only. For pro-
grams where such properties are not obvious, the challengemnal demonstration

that they actually hold, so that they can be used for redutiegearch space.

2. We also address the open problem of automatic verificatiorcursive data structures.
We mention again that the main problem in shape analysis tispsdgram analysis in
general is information loss [27, 173, 86], while the mainkhpeon of separation logic is

automation.

In addition, we want to reason on procedures or program fesgsrseparately in order to simplify
the whole proof by avoiding redundant proofs. It is thereforucial to be able to perform

compositional program reasoning in a similar sense to pragrerification.

1.2 Our Solution

In this thesis we propose a CLP-based approach toward gollignproblems in program rea-
soning mentioned in the previous section. There have beaw efforts in promoting the use of
logic and constraint logic programming (CLP) for programgening. It is indeed natural to rep-
resent transition systems or deduction rules (e.g., toa®ethe satisfaction of a temporal logic
formula) as CLP clauses. For transition systems, the gkolasition relation is typically repre-
sented as a DNF formula, with each disjunct representingta stnsition. It is straightforward
to represent a state transition as a CLP clause. Similaret@ymbolic execution of transition
systems which visits program states, deductive proofe&iyialso contain a notion of a “state”
of a proof containing formulas that have been deduced sdCiaP clauses can also be used to
represent the transformation of such formulas.

Some of the existing CLP-based program reasoning appredeteng to the class of tempo-
ral logic model checkers, for example [46, 51, 65, 127, 182]10ther than these, the approach
of Gupta and Pontelli [84] can be considered as primarilyaahability checker. In fact, reacha-
bility checkers are straightforward to implement in (coastt) logic programming systems with
resolution mechanism such as SLD.

Our program reasoning framework’s main feature is symbiodigersal of state space by
strongest postcondition propagation. Here we employ theespondence of reduction in CLP
execution to the computation of strongest postconditinrgeneral, symbolic strongest postcon-

dition computation requires unbounded number of varialfesexample, the resulting strongest
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postcondition of the statements= y-+yfollowed byy := 0is the conditioq3z: x=2z) Ay=0.

In this way, a sequence of strongest postcondition comiputatnay increase the number of ex-
istentially quantified variables in the symbolic state. G&Buitable for implementing symbolic

strongest postcondition computation since the variableaatomatically maintained via an effi-
cient projection mechanism.

The notion of strongest postcondition is also central ingpan verification since a triple
{o} t {w} holds if and only ifsp(t,@) = Y, as we have mentioned previously. This makes it
possible to accommodate both the path enumeration apparatithe syntax tree-based pro-
gram verification approach in a single framework based on. GLhis thesis we propose such
framework.

We start our discussion with the formal foundations of oamnfework (Sections 1.2.1 and
1.2.2). We then expound on our main algorithm (Section ), Z&ification of data structures
(Section 1.2.4), the proof and use of relative safety (8acti.2.5), and we lastly discuss our

implementation (Section 1.2.6).

1.2.1 Modeling Programs in CLP

We start by providing a methodology for modeling an extemsariety of programs in CLP. This
include sequential and concurrent programs, multiprodguograms, programs with hardware
constraints on which they are run, programs with arrays amater data structures, even high-
level specifications which include timed safety automa®A)[99] and statecharts [88].

We show an example modeling of a program in CLP in Programarid1l.2, where Program
1.1 is a simple program withwahile loop and Program 1.2 is its CLP model. In Program 4.1,
denotes a program poihtWe assume that any program has an end @irtlere we map each
statement in Program 1.1 into the corresponding CLP clausgagram 1.2. We also model a
“condition of interest” as a CLP constraint fact. In Progr&, all states at the end poifitis
modeled by the constraint fapfQ, X, S N).

High-level specifications such as timed safety automatatatdcharts can be similarly trans-

lated into CLP programs.

1.2.2 Assertions and Proofs

After presenting the modeling of various kinds of program€LP, we proceed with their rea-

soning. The first thing that is required here is a way to folynspecify the properties of the



Initially x=s=0,n> 0.
(0) while (x<n)do
(1) S 1= S+X
(2) X = x+1

end do

Program 1.1: Sum

P(Q,X,SN)

P(0,X,SN) - p(L,X,SN), X <N.
p(0,X,SN) p(Q,X,SN),X > N.
p(1,X,SN) p(2,X,8,N),S =S+X
p(Z,X,S,N) p(2,X,S,N),X’:X+1

Program 1.2: Sum CLP Model

program. For this purpose we invent our own form of assestionspecify safety properties.
Their basic form iS5 = H, whereG andH aregoals(conjunctions of constraints and predicates
interpreted by a CLP program). The intuitive meaning is thiagnG is true, so iH.

The simplest form o6 = H that we use in this thesis [£X), ¢ = { wherepandy are purely
conjunctions of constraints, whilgis a predicate defined by the CLP model of a program. We
call such assertions a®n-recursive assertionsSuch assertions represent what is known in the
literature asnvarianceproperties (cf. [144]). Any safety property is a form of innce. In this
thesis we also call invariance taditional safety

We also consider cases wheor ) contain predicates of CLP programs. We call such asser-
tions asrecursive assertiongnd one of their use is in specifying traditional safety ecursive
data structures. As a simple example, the asseptfehY) |= alist(H,Y) specifies tha¥ points
to a head of an acyclic linked list on program héfpwvherealist is defined by a CLP program.

Another form of recursive assertionfigX ), ¢ = p(Y),  wherep is defined by a CLP model
of a program. We call such assertiongelative safety assertions. Relative safety specifies that
a state satisfying is reachable, if a state satisfyiggis. That is, it specifies relationships be-
tween states in the state space of the program. Relativey <&fe be uniquely used to assert
structural properties of programs. We use relative sategpecify symmetry, commutativity, or
serializability in a program. Relative safety allows usdpnesent and use larger class of symme-
tries than earlier approaches. Some mutual exclusionitiigws are a priority-based, destroying

the symmetry among the concurrent processes. Here, a gi@ptautational symmetry (e.g., as



handled byscalarsef107]) does not work. Nevertheless, some symmetry stillisohnd we can
specify and later prove this special kind of symmetry usiglgtive safety assertions. We then
employ the assertion for reduction in the verification ruptove the mutual exclusion property.
We manage to prove the safety of two-process Szymanskisidign using symmetry reduction,
which was not done previously.

We also devise a proof method to prove the assertions. The prethod is inductive, and
it consists of a number of proof rules based on CLP resolutiechanism. More specifically,
the proof ofG = H proceeds by a number ohfoldingsteps ofG to obtain a search tree with
assertiongs, = H,...Gy = H at the frontier. WherG; = H is unfolded from some ancestor
G = H andG; is a special case @, then we can apply inductive proof where we @&e¢= H
as a hypothesis to prow& = H. We call this inductive process asinduction

As a general CLP-based prover, the two main distinguishhmyacteristics of our proof

method are the following two:

1. Some inductive proof methods are based on fitting in trevalble inductive proofs into
aninduction scheml18], which is usually syntax-based. Instead, we emplojyndac-
tion schema. We detect the point of application of inductigpothesis using subsumption
(e.g., ofG; by G/ above). In other words, we discover the induction schemauhycally
using indefinite steps of unfoldings. This approach is mangeyful by the arbitrary num-

ber of unfolding steps, and more automatable by its algwmiitlfsearch-based” nature.

2. We provide a goal generalization step which integrateg naturally into our framework.
This adds into the completeness and efficiency of our proghoteby allowing us to
incorporate program analysis techniques. The same steygdkta incorporate reductions

such as symmetry reduction to improve efficiency.

1.2.3 Main Algorithm Based on Dynamic Summarization

The unfolding step of our proof method is based on reductiep 81 CLP execution, which,
as we have mentioned, corresponds to strongest postannditimputation. This enables the
combining of program analysis and verification in a singleagal algorithm based on our proof
method.

When we are willing to compromise the completeness of thear@iag, we should be al-

lowed to perform abstraction in the sense of program arsmtgsaccelerate the reasoning. What



is important here is the flexibility to apply abstractionamhittently. As mentioned above, it
is often not easy to provide a suitable abstract domain so asaintain accuracy. Program
analysis loses information too quickly during the searatpss due to abstraction at each step
of strongest postcondition computation. Applying abgtoaconly intermittently mitigates this
problem. Also, this makes it not necessary to provide ektieoabstract domains to maintain
accuracy.

Our algorithm can employ abstraction, such as predicataaii®on, and it can apply it in-
termittently. Here, our algorithm is engineered to funetiitxe an abstract interpreter, with the
main difference in that abstraction is only applied at somm@mm points. We repeat that the
advantages here are that the abstract domain requireduteasmvergence of the algorithm can
be minimized, and that the cost of performing abstractiong; being intermittent, is reduced.
Our work on intermittent abstraction has been reported 13]1

In this thesis we argue that the difference between absmtarpretation, program verifi-
cation, and compositional (e.g., multiprocedural) prognr@asoning is simply thiocation at
which abstraction is applied. In traditional abstractiiptetation, abstraction is applied every-
where while in program verification the abstraction is tgtlicdone only at a point within each
while loop whenever it is necessary to introdlieep invariant A loop invariant is a condition
that must be true at every iteration of a loop. Finally, in pasitional program reasoning ab-
straction is performed at procedure call points or prognagrhent boundaries. In our flavor of
compositional program reasoning, we prove assertion ofattie p(X’),q(X,X’), @ = g, where
p(X') represents program predicate ay(,X’) represents a predicate which is a CLP trans-
lation of a particular fragment of the program (e.g., a pdure). We first prove thag(X,X’)
implies a transition relatiop(X, X') before provingp(X), p(X,X’), @ = @ in place of the origi-
nal assertion.

Between abstraction points, our algorithm performs exacalfstracted) strongest postcon-
dition propagation. We now discuss how we make this exagetsal efficient. We note that
our algorithm constructs a proof tree with an assertion eh emde. The proof of an assertion
need not be pursued further when similar assertion has tsteahlished in the same tree. The
efficiency of the verification process increases the moresitindar assertions are. Here we de-
sign an optimization technique where we generalize progsdrgions to increase the similarity
of assertions encountered later in the proof. This tecleigbased on efficiently computing

a precondition of paths in the proof tree. The computed préition is more general than the



context condition with which the analysis of the fragmeriniiated. We call this technique as
dynamic summarizationt has been reported in [112] as a central component of arathvech-
nique to enhance the search efficiency for solving dynanagigamming problems with ad-hoc

constraints.

1.2.4 \Verification of Recursive Data Structures

Our proof method is also engineered to handle verificatiodat& structure properties repre-
sented as recursive assertions. For this purpose we defaeas a basic data type in our CLP
formalization, and we model the heap of the program as ag.akreecursive pointer data struc-
ture such as lists or trees can then be specified as a CLP progneh specifies the heap array.

Our algorithm can then be used for proving data structur@entes. Although we only
present an algorithm and not an automated implementationmethod is readily automatable
in handling most data structure verification problems dué tweing systematic, our reliance
on CLP resolution, and the use of two principlesray index principle(AlP) and separation
principle (SEB to simplify proofs.

Some works mention “intermittence” (see e.g. [86]) as athtmon of shape analysis, and
abstract interpretation methods in general. That is, dtegtaestructive nature of data-structure
updates, invariants hold intermittently. Such examplegaesented in [173], where the acyclic-
ity of a tree is temporarily violated, and in [27], where anlAYfee becomes temporarily un-
balanced. With intermittent abstraction, since we abstraly at specific (and small number of)
program points (e.g., one point in each loop), and therefereostly compute exact information
in the proof tree, we do not have to provide an elaborate spteaaficates to avoid information
loss. We demonstrate this using our proof of the AVL tree f@obof [173] in Section 5.9.4.

In [173], it is also emphasized that shape analysis captniysthe shape of the data struc-
ture, and not the contents, on which the correctness of gwitim may depend. In our frame-
work, it is straightforward to mix reasoning on data struetand its contents.

In the literature, data structure properties are oftenifpdaising an assertion language that
allows recursive definitions [103, 147]. These formulasid@ad to using fold/unfold transfor-
mations to accomplish the proof [147]. Such transformatiare used to achieve an inductive
proof.

Existing fold/unfold transformations are only applicabiethe case of recursive assertions

that are “compatible” with the computation specified by thegoam. For instance, fold/unfold
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transformations would not prove a property of a linked li¢dfied in a forward fashion, of a
program that iterates backward through the list. In genesakoning about programs annotated
with recursive assertions remains an open problem becaaser methods are limited in ap-
plicability. We demonstrate an example where, using oupfpnoethod, we can use different
recursion style in the recursive specification in order feesthe same verification problem.

The only CLP-based proof method that handles data strisctheg we are aware is the work
of Hsiang and Srivas [103], which presents a framework f@c#ging Prolog data types and
verifying it. The data structures here are limited to thosindble using Prolog terms, and is not
tailored for handling general pointer-based data strestir imperative languages. The frame-
work allows users to write data structure specification Wlgcathen transformed into implemen-
tation. When the implementation is given by the user, the&aork allows for the checking that
it satisfies the specification. The verification processeastie presented in [102], which uses in-
duction and manual variable marking to find the point of aggilon of induction hypothesis. In
contrast, we have developed an algorithm that is able tavaatioally discover, without manual

intervention, a point in the proof where induction can beligop

1.2.5 Relative Safety

Our proof method can be used to reason about symmetry, caativity; and serializability of
programs using the concept of relative safety. This allogviouspecify and prove more classes
of symmetry than can be handled by existing approaches. &veube the proved relative safety
assertion for reducing the proof size of traditional safetgertions. Our work has been reported
in [114] and partially in [111].

Existing approaches usually define symmetry on syntactitsiderations. Semantically,
symmetry is often defined as a transition-preserving etprieg [58, 29, 107, 60, 182], where an
automorphisnt, other than being a bijection on the reachable states, atsfies thatX,X') is a
transition if and only if(Ti(X), Ti(X') ) is. Another notion of equivalence used is bisimilarity [55]
replacing the second condition with bisimilarity on thetstgraph. These stronger equivalences
allows for the handling of larger class of properties beysaifegty such as CTiproperties. How-
ever, stronger equivalence also means less freedom inihgrsyimmetries on theollecting se-
mantics(set of reachable states), which we exploit further for prgwsafety properties. Because
we handle symmetries on collecting semantics only, we onbtaire flexibility in specifying var-

ious kinds of symmetries and employing them in state-spadeation, including symmetry in
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many problems that would not be considered symmetric byipuevmethods. We have men-
tioned above the Szymanski’'s mutual exclusion algorithre. ndte that we can handle a wider
range of symmetries than [55, 182]. More importantly, ieéasafety goes beyond symmetry
because it also encompasses the property of commutativdtgexrializability, which is related to
various techniques of reduction in literature [130, 155jisTwork has been presented in [114].
The use of our proof method for symmetry reduction in TSAfieation has also been reported
in[111].

As mentioned Fribourg [75] (and also by Ramakrishna et &5]1 when applied to the ver-
ification of finite-state systems, the goal of using CLP isdweha system written in a high-level
language with declarative and flexible facilities while g good performance compared to
specialized model checkers written in low-level code. Tgoal seems to have been partially
achieved by systems like XMC [165], however, CLP-basedesyststill cannot compete with
specialized model checkers. One of the reason, as mentignedbourg, beindack of integra-
tion with partial-order reduction techniqugg5]. Fribourg proposes the use of CLP resolution-
based technique aédundant derivation eliminatigrbut in this thesis we report an approach to

reduction using commutativity and serializability.

1.2.6 Implementation

We have developed a number of automated prover prototypéenvpurely in CLPR) [110]

to demonstrate various aspects of our ideas. Our protopgegsed to automatically prove tra-
ditional and relative safety assertions. The proofs ofiti@uhl safety properties either employ

relative safety properties (e.g., symmetry) for reductioruse dynamic summarization tech-
nique. Our implementations can be categorized as readlyathieckers, but with advanced op-

timizations. We straightforwardly employ CLP resolutioechanism combined with meta-level

features to symbolically manipulate constraints. In thissis we also provide execution results

of our prototypes.

1.3 Related Work

1.3.1 Related Work on CLP Prover for Program Reasoning

Related to our CLP proof method, is the class of work on reiagosbout programs represented

in CLP (see for example [75] for a non-exhaustive surveyllebd, it is generally straightfor-
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ward to represent program transitions as CLP clauses, amsktthe CLP operational model to
prove properties (as e.g., temporal logic) stated as CLBgbale to its capability for handling
constraints, CLP has been notably used in verification ofitefistate systems [111, 45, 51, 65,
84, 127], although results for finite-state systems are alsdable [149, 165]. These however,
are limited to certain representation of transition syst@md cannot be used for proving general
CLP programs. Moreover, these do not handle data strucéuiécation.

We next review individual approaches.

We start with XMC [165], which is a model checker implementedXSB logic program-
ming system [175], taking advantage of SLG resolution meigma implemented in XSB. The
specification language of XMC is a CCS-like value-passinglege, and properties are ex-
pressed using alternation-free mu-calculus. XMC/RT [S1&iversion of XMC for the verifi-
cation of timed safety automata given properties in timedaalgulus. As with XMC, most
temporal logic verification frameworks, in addition to repenting the system to be verified in
CLP, also represent the deduction rules of the temporat imgmula as CLP clauses. The veri-
fication is executed by a query on the deduction clauses.

Delzanno and Podelski [45, 46] present a CTL model checkiathad based on CLP. The
CTL properties that can be proved are restricteA®wp andAG (@1 = AF¢,). The CLP repre-
sentation of the system is transformed by adding rules septéng the verification condition, and
specialized algorithm is applied on the transformed represgion to check the given property.

Nilsson and libcke also propose a method for CTL model checking using GQ4R][ The
work treats semantically complete CTL, where it handlesBKe EG, andEU operators, which
form anadequate sebf CTL operators (see e.g., [105]). These are operators avitiotion
of existence, which can be easily formulated using CLP dauslowever, although Delzanno
and Podelski succeeded in proving two-process bakeryitiigowhich is infinite-state, Nilsson
and Lilbcke’s approach can only handle finite-state systems. Tdwf plgorithm is based on
transformation rules transforming a table contairmmgwersandgoals The model checking is
done locally (on-the-fly, picking one CLP clause at a tim&}, yses symbolic model checking
based on BDDs to perform CLP transformations.

Fioravanti et al. [65] propose another CTL verification aygmh using CLPspecialization
Specialization is a program transformation technique whaigective is the adaptation of a pro-
gram to the context of use. Note that CLP transformation maysform a program with a set

of clauses onto a set of constrained facts representingést inodel directly. Specialization of
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Fioravanti et al. is done by adding a new rule to the CLP pmogalascribing the possible query.
The program transformation is then used to infer that thel lvé#he rule is in theperfect model
semantics [4] of the CLP. The initial step of this approacbrasss-producing the program to be
verified with the CTL formula to derive the initial CLP clawsseThe result is a CLP program
with some resemblance to Nilsson anighicke’s, but the approach is not restricted to only CTL
operators with existential quantifier.

Finally we mention the work of Flanagan [66] which focusesti@amslating programs into
CLP such that the least model of the CLP program is a relatigiaot state and end state of
each block in the program. Given an error state, the CLP progs then transformed into
another CLP program whose least model is all the possibiialisitates of every block in the
program that leads to the error. The proof process procegdsduery on the representation
of the program’smai n block, constrained with the program’s actual initial stafe refutation
implies the reachability of the error state.

Satisfiability modulo theor{SMT) systems perform bounded (incomplete) automated verifi-
cation based on SAT solving conjoined with theorem provyeg the kind of theories that can be
handled automatically and efficiently is limited [148]. Tiheory solving and the SAT solving in
SMT systems are typically distinct. In CLP, they are tightitegrated, where theory (constraint)
solving is performed at every step during the search. Inwlg CLP avoids the problems in-
troduced by multilevel satisfiability test typical to SMTlgers. We also note that CLP can be
considered as kmzy approach to SMT where we there is no translation to booleastcaints

necessary.

1.3.2 Related Work on TSA Verification Tools

Timed automatas defined by Alur and Dill in [2] are>-automata [191] with continuougock
variablesdenoting elapsed time. In contrast to standard automatonyautomaton accepts
infinite words (known aso-acceptance), as suckautomata are used to represent the behavior
of systems that runs forever. Accordingly, timed automaicgy real-time systems that run
forever. Timedsafetyautomata (TSA) are timed automata withouticceptance [99], therefore
they are in essence transition systems. Reasoning of systétin continuous data domain as
are TSA is natural to a CLP-based approach due to the reguanestraint solving. Prior to our
work, TSA verification has been actively researched, ancethee verification systems such as

UPPAAL [13, 200], which is primarily a reachability checker, andaryolic model checkers for
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TSA which include HyTech [98], Kronos [201] and RED [197]. addition to these, there are
also TSA verification tools based on CLP, including, whichdegail next.

First, Gupta and Pontelli [84] presents a modeling of TSA PCAlthough the work does
not provide a systematic proof method, it demonstratesmhat P-based system it is not neces-
sary to use clock regions as in other timed automata veiiitatystems [2, 200], since we can
simply rely on the underlying constraint solving mechanism

The work of Urbina [192, 193] is on verification bfy/brid automatausing CLP{). Timed
automata belong to a particular class of hybrid automataey®hre called hybrid because the
specification contains both discrete and continuous ddteesaA particular example of hybrid
automata is timed automata. However, here the work treatsreia with nonlinear physical
properties. The framework allows for verifying Integra@wmputation Tree Logic (ICTL) prop-
erties. The paper discusses proof methods for reachabditgty, duration properties, and ICTL
properties. In our approach, we do not specify the congtrdivat can be handled. Our frame-
work is also applicable to nonlinear constraints providezdolver is available.

A more systematic proof method for timed automata may reqgome form of tabling, as is
presented with the XMC/RT model checker [51], which is basedhe SLG resolution of XSB
logic programming system [175]. It uses a generic condteatver libraries written in C++ for
solving linear arithmetic constraints over reals. XMC/Fepresents TSA as a CLP program,
and the properties are expressed using timed modal mukgalmodeled in CLP. The work of
Pemmasani et al. describes an improvement called XMC/dt&@][IXMC/dbm includes an
implementation for constraint solving usibgfference Bound MatriXDBM) [48], which is also
employed in the BPAAL model checker [200]. In contrast to our approach, the CLIstoe
have mentioned here do not employ any form of reduction. tstdedably, reduction is rather

complex in general temporal logic verification.

1.3.3 Related Work on Symmetry in Verification

A well-known approach to symmetry-based reduction in martedcking is based oscalar-
setd107], which is implemented in the M@irmodel checker. A scalarset is a qualifier of an index
of a finite array. When an array has a scalarset index, exaingtite values of the array elements
does not affect the truth value of the safety property beemnfied. That is, the array elements
arepermutable(hence scalarset approach hangleanutationalsymmetry). Such array can be

a list of program points, local variables of concurrent pamgs, or state of cache lines. In [107]
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Ip and Dill specify syntactic properties that must be satisin the use of a scalarset.

Other model checker that employs symmetry is SMC [58, 85, 183]. In SMC, permu-
tation is restricted to process indices (not generally oayaas with scalarsets), but in addition,
some early detection of future symmetries during stateespragersal is implemented. Here we
note that symmetry inducesitomorphisnmapping on the state reachability graph of a program.
Two distinct states can be considered as symmetric whencireype mapped to each other by
an automorphism. Emerson and Sistla describes how to fdenttomorphisms in CTt for-
mula [58, 59]. Although more variants of symmetries suclotational symmetry andeflective
symmetry were alluded to by Ip and Dill [107], the scalarsad MC approaches both only
handle permutational symmetry.

In some problems, not only array indices, but variable \&imeist be permuted as well to
obtain symmetry. For example, exchanging the value of scanaiMev fromv=1tov= 2.
This is calledpermutation of variable-value paji82]. This permutation is also handled by TSA
verification tools such as kPAAL [96] and RED [196] in a limited way. RED handles symme-
try is by assigning dynamic process ids to each concurrerggss (an automaton in a system
of automata) which are interchangeable (permutable) arvtiee processes. When process 1
exchanges its process id with process 2, the variablel now points to process 2, since it now
has id 1. RED, however, loses precision for problems withicwgtructure [198]. In contrast, our
implementation does not lose precision due to symmetry.

Sistla and Godefroid attempt to handle systems whose stapég are not fully symmetric
in [182]. The approach transforms the state graph into & &immetric one, while keeping
annotation for each transition that has no correspondenttesioriginal state graph. The graph
with full symmetry is then reduced by equating automorptates. This work is the most general
and can reduce the state graph of even totally asymmetrgraumss, however, the user has to
statically specify transition priorities. In contrastdar framework we prove the symmetry to be
used in reduction.

Clarke et al. provides a way of inferring symmetry from theusture of the model, such
as topology graph of concurrent processes [28] from thergasen that structural symmetry
introduces symmetry in the model to be verified. Still, hoarethe symmetries that can be
handled by this approach is more limited than ours.

Manku et al. [133, 134] developed an algorithm to identifjomuorphisms in a hardware sys-

tem specifications. Automorphisms are inferred from theeasimple structure of the circuits,
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where a function computed by a table can be represented aph. gfin the case of software,
we have no such convenience.) The algorithm succeededrtifideg rotational symmetry in a
hardware version of the dining philosophers problem.

The work of Pandey and Bryant uses symmetry for the veritioatif transistor-level cir-
cuits [151]. Pandey and Bryant mentioned in brief a techmigsing symbolic simulation on
transistor-level circuit to verify symmetry which is akin bur semantic proof of symmetry.
However, they present no systematic method for this andskatunore on inferring symmetry
from circuit structure.

The work of Emerson et al. [55] also considers programs with-obvious symmetries.
The approach requires bisimilarity relationship betwe®ss driginal computation tree and the
reduced computation tree. In our framework, we can do awaly this requirement since we
only deal with safety properties. Tivirtual symmetryconsidered by Emerson et al. is actually
parameterized on a given automorphism group. Since aufdrson group on state graph can
be arbitrarily given, theoretically it can handle any systeither symmetric or asymmetric. It
seems that here the problem of identifying symmetry itseffdt given sufficient attention.

The work of Tang et al. [190] is on using symmetry for unbouh8AT-based model checker.
The work mainly proposes an algorithm and makes no attengptlatging the set of symmetries
that can be treated.

We repeat that the main difference between our work and ikdébat we propose a verifica-
tion methodology where we prove that symmetry holds of aanog This is more powerful than
imposing syntactic constraints to problems in order to appinmetry reduction. Also since our
proof method only verifies safety properties, we can idgmtibre symmetries than is allowed in

temporal logic verification-based setting.

1.3.4 Related Work on Reduction

Lipton presents an approach to group together some statemertaining to one process in a
concurrent program as single transition [130]. This isvadd when the interleavings of the
statements with other processes are not necessary foicaédfi. Since then, reduction tech-
niques have been used for atomicity analysis [67, 68] aniifproving the efficiencies of model

checkers, known gzartial-order reduction53, 154, 155]. Both line of work are related to ours:
The former concerns the proving of commutativity and sizddiility assertions, and the latter

concerns the use of these assertions to expedite reasoning.
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Ibarra et al. have identified thadbmmutativity checkinig undecidable in general [106] (e.g.,
with infinite-state systems). Atomicity analysis are oftersed on conservative tests that either
miss atomicity violations or generate false alarms [68,184]. The work of Flanagan [67] is
based on examining all interleavings and checking thatderesult is the same state as executed
by a serial execution. This is similar in essence to the aggrave take in proving commutativity
or serializability assertions.

Partial order reduction is a technique to reduce the seaatesn model checking. At each
visited state, the model checker computes a subset of thdeghtaansitions at that state. Travers-
ing only the subset preserves some (most commonly k)lproperties. Partial-order reduction
is based on the observation that concurrently executesditiams are often commutative because
they arandependente.g., do not access the same shared variable. Traditroplmentations of
partial-order reduction such as in model checkemg101] is often based on statically defined
dependencies of transitions, and the result is often toserwative. Flanagan and Godefroid
proposed an algorithm fatynamicpartial-order reduction algorithm [69], which can analyee
pendencies more precisely. Dwyer et al. apply partialHordduction upon detection dfiread
locality of heap data in concurrent Java programs by both static amahalg means [52]. Here,

a memory region is thread-local, if at any one time duringcakien, it is reachable from at most
one thread only. Our technique of using commutativity arrthBeability properties for reduc-
tion can potentially be extended to any reduction that puesethe correctness of reachability
check, including those that have been mentioned here.

We note that there has been an effort to combine static partier and symmetry reduction
by Emerson et al. [56]. This is possible when the automorplig bisimulation preserving,
which is stronger thastuttering equivalenceequired by partial-order reduction [53]. Therefore,
symmetry reduction can be augmented on top of a partialreedkiction model checking, and
when some additional conditions are satisfied, pres€ZVds y properties. In our framework,
commutativity, serializability, and symmetry all belorggthe class of relative safety properties.
We can straightforwardly employ any combination of relatbafety properties for search space

reduction in verifying traditional safety properties.

1.3.5 Related Work on Compositional Program Reasoning

The compositional reasoning that we treat in this thesisasridependent reasoning of program

fragments (e.g., procedures) which results are then usezhtmn about the whole program. A
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classic in this area is the work of Sharir and Pnueli [179]cRitonsists of two approaches to
interprocedural dataflow analysis. The first approach iedahefunctionalapproach, where the
purpose is to establish input-output relation of each ptooe We then interpret a procedure call
as an operation whose effect on program state can be comysitegithe relations. The second
approach is orthogonal to the first. Itis called tadl-stringapproach. A call string is a sequence
of procedure calls which reflects the status of the call stediken a procedure is called with the
same call stack, it is considered called with the same sfidte.call string is an abstraction of
the program state, and therefore this approach is an appatioin, but efficient in certain cases.
Our compositional program reasoning technique is relaidtid first approach since we prove
an assertion which states the input-output relation of &quare. In the process, however, is
optimized using dynamic summarization.

Although, as we have discussed, abstract interpretatioatisaturally compaositional, there
is a work on compositionality for abstract interpretatiohieh is done by Ball et al. [8]. The
approach considers a second set of variables (called “sigrdmnstants”), in order to describe
the input-output behavior of a procedure, in the languageedicate abstraction. As a compar-
ison, our approach can also be tailored to utilize prediab&traction to summarize a procedure
by assertion. In addition, we use our novel dynamic sumratam for optimization in proving

assertions.

1.3.6 Related Work on Data Structure Verification

As we have mentioned above, there are two distinct appredattbe general area of reasoning
about programs and data structures. One approach is bakegignvhere new logical constructs
are introduced and then integrated into a program verifindtke proof system. Within this
class, a recent prominent workggeparation logid166], whose outstanding feature consists of
introducing logical connectives that describe non-shgpioperties of data structures. However,
as a program verification-based based calculus, it doeseadlily lend itself to automation.
Moreover, separation logic does not explicitly supporursive assertions. Although the work
of Guo et al. incorporates separation logic into shape aimlike framework with arbitrary
recursive predicates [83], but it is still not clear how tmtlke scalar values in their proof method.
Shape analysig¢surveyed in [174]) is another class of solutions to the d#atactures rea-
soning based on abstract interpretation. Here the focus th® accuracy/efficiency trade off

involving the abstract domain, constructed from predisdtat define the “shape” of the data
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structure, and the fixpoint iteration algorithm.

In general, shape analysis is global, in the sense thatétliqates specifies the whole heap.
It is therefore not easy to construct a modular, interpracaldshape analysis framework [50]
because during an update of only one cell in the heap, the&Shat the structure, which in
fact determines the reachability relations of all variableas to be recomputed. There have
been attempts to introduce local reasoning into shape sisdly combining it with separation
logic [168, 169, 83]. Separation logic mentioned above imtiast supports local reasoning well
by means of thérame rule For comparison, our recursive assertions are also glabed st
specifies the whole heap. However, the problem is mitigayehiermittent abstraction which
supports compositional reasoning.

To address the intermittence problem in shape analysistiomenl in Section 1.2.4), Chong
and Rugina define an abstract domain consisting of a graplspleaifies the reachability of the
heap regions from the variables in the stack [27]. In this dioynthe heap regions are assumed
to be dynamic, for the purpose of handling destructive ugiaAgain here we mention that our
intermittent abstraction solves the intermittence probieore straightforwardly.

Other approaches not yet mentioned include the approaeisesl lorgraph typeg121, 145],
which is based on program verification. PALE verifier [145hdze efficiently run when loop
invariant is given. Intermittence problem still exists éien which PALE allows the user to
specify exceptions to invariants at certain program poivtsere they are temporarily violated.
Reasoning about data fields are also allowed by some exten§iBALE. PALE can handle
only acyclic structures, or cyclic structure which are ayciot by following the same field. In
contrast, our approach is general.

McPeak and Necula presents an algorithm for specificatighvanification of data struc-
ture using equality axioms [140]. It has a better supporsf@iar values as compared to shape
analysis. In this framework, however, temporary invariargakage is still a problem. Dams
and Namjoshi [40] propose shape analysis using predicatieagtion which is based on a set
of basic recursive predicates stating reachability, sigaaind cyclicity which are then used to
define a set of derived predicates. A set of weakest pre¢ondiansformations of these predi-
cates are defined. Our approach is more general by allowemgdsesined predicates. Lahiri and
Qadeer [124] propose the concepinafll-founded linked listvhich is a (cyclic or acyclic) linked
list whose “end” is signaled by a marker called “head.” Tharkvconsiders only lists and does

not explicitly consider separation. Hendren et al. prop8isstract Description of Data Struc-
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tures(ADDS [95] as another abstract interpretation based approalcbsevabstract domain is
the path matrix, which consists of the set of relations betwmointers in the program and allows
maintaining alias information which is then used for compibptimization. Our approach to
data structure verification can also be used to prove n@siatj.

Finally, Jeannet et al. [116] propose an interproceduigbstanalysis, based on representing
each procedure as a structure on input and output predicEi@sever, their variant of shape
analysis is storeless: there is no way to identify individua an input abstract structure with
their corresponding individuals in the output abstraaictire. In comparison, our approach in
addition to being compositional, can also prove that anwiipap is a modification of the input

heap.

1.4 Structure of the Thesis

In Chapter 2 we start by providing an introduction to CLP wfth domain of integers, terms, and
arrays over integers. More domain, e.g., real and finite dom#l be assumed in later chapters
but left undefined. We build our exposition pedanticallytatg from the construction of predi-
cate logic. In Chapter 3 we discuss how we model various pragrand high-level specifications
as CLP programs. In Chapter 4 we define our assertions, whithe used to specify traditional
safety (invariance) properties, relative safety properind properties of recursive data struc-
tures. We also discuss how it may represent some kind ofdseand equivalence. In Chapter 5,
we present our proof method, whose core is a number of prées.riWe prove the soundness of
our proof rules, and we exemplify the use of our proof methogroving traditional safety, rel-
ative safety, and properties on recursive data structWvesalso present a theoretical foundation
for compositional program analysis and verification whislbased on intermittent abstraction,
and which is the basis of our basic algorithm. In Chapter 6 vesgnt a number of simple algo-
rithms based on our proof method and the dynamic summariztgthnique, which gives rise to
a general efficient algorithm for compositional programlgsia and verification. The algorithm
that is presented here proves non-recursive assertiorndpt€r 7 we discuss the automation of
recursive assertion proofs, including relative safety dath structure assertions. In Chapter 8
we present the techniques used in implementing our protstygnd the experimental result of

the prototypes. We conclude this thesis and provide soregfutork in Chapter 9.
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Chapter 2

Background in Constraint Logic

Programming

In this chapter we will develop a formal language to writesseft formulas which constitute
constraint logic program§CLP program$. In our language we can specify objects caliecys
We therefore start by explaining a simple theory of arraybdaused throughout this report,
elaborate the syntax and semantics of our language, andplares an execution mechanism to
prove the (un)satisfiability of our constraint logic progisa

Knowledge of constraint logic programming is useful (se paper of Jaffar et al. [108]),
although this chapter is generally rather pedantic. Herassime familiarity with first-order
logic and set theory. For readers new to first-order logic imdecision procedure, | would
recommend a textbook by by Davis et al. [43]. Introductiosdbtheory can be found in Chapter

1 of the same book.

2.1 A Theory of Arrays

We first define a theory of arrays which will be used throughbistreport.

We begin by denoting the set of natural numberiNaslefined aq1,2,...}, and the set of
integers aZ, defined ag...,—2,-1,0,1,2,...}.

An array is a function which has a finite suppdi®,1,...,n}. We denote the support of an
arraya, as well as any function, eaupga). Therefore we can speak of teeeof an arraya,
which is|sup@)|. An array maps an element of its support to an integer valoe ak arraya,

we write asa[i], wherei € supga), the mapping of by a. We denote the set of all arrays.ds
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Term = Function Symbol (Argument, ..., Argument,)

Argument = Variable||Term
Atom :’= Relation Symbol (Argumenty,...,Argument,)
Formula = O||Atom||Formula; = Formulaz||

(VVariable : Formula)||(3Variable : Formula)

Figure 2.1: Syntax of Formulas

An arraya can be updated at positiore sup@) with an integer value, resulting in another
arraya. We represent an array update using a functapd: 4 x Z x Z — A4, takes as its
arguments an arrag, positioni and argumeng, and it maps these arguments to a new aa‘ay

which satisfies the conditions:
e sup@) =supa),
e dfij=¢ and
e forall j € supa), whenj #1i, &[j] = a[j].

Arraysa andb are equal, denoted as= b, if and only if a andb have the same suppdt

and for anyi € S ali] = bji] holds.

2.2 Formulas

We next define a simple language of formulas, whose syntaefiaetl using BNF in Figure
2.1. We use the termubformulawhen referring to a formula which is a syntactic component of
another formula.

The syntax of nonterminals are obvious from Figure 2.1. We hlaerefore defined what we
mean by aerm anatomor aformula

Notice that a term or an atom has the synfdy;, ..., ), wheref is a function symbol
(for a term) or relation symbol (for an atom), and eaglis its argument We attach a left-to-
right ordering of the arguments which allow us to speak ablwifirst, second, third or ariyth
argument i(€ IN) of a term or atort, denoted as afg i). An arity of a term or atom is the
number of its arguments. Given a term or athwe denote its arity b(t). A term or an atom
with arity O is called aconstant A term (or atom) with arity 1, 2 or 3 is calledumary, binary or

ternaryterm (or atom).
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We next explain the terminalunction Symbol, Relation Symbol and
Variable in that order.

We have three kinds of function symboisteger(arithmetiq function symbolsarray func-
tion symbols andunctorsymbols.

Integer function symbols are the set of all Arabic represio of integer numbers used to
construct constants, the usugl —, x and/ arithmetic operator symbols, and the symamsf.
The constants are 0-ary, while the arithmetic operator s¥ysnéire binary. Instead of writing
+ (M1, l2), we use the infix notatiop + pp. The terms constructed usiragef are calledarray
referencesnd they are always binary. We would usually wetef(py, t2) asp[p2].

There is no constant in the set of array function symbols hemd we only have the symbol
aupdused to construcrray update expression®An array update expression always has arity
3, and has the syntaaupd, Y2, 3). We often write an array update expression as the triple
(M1, M2, M) -

Functor symbols include at least the constaand the binary symbalons We would write
conspy, t2) as[|He]. Similarly, we write
congpy, congy, ...consn,[])...)) as[pa, .-, Ul

Relation Symbol in Figure 2.1 is a relation symbol distinct from other synshdihere are two
kinds of relation symbolsinterpretedrelation symbols andninterpretedrelation symbols. In-
terpreted relation symbols include integer arithmetiatieh symbols=, < and>*. We overload
= to also represent array and functor equality relation. &ino arithmetic operator symbols,
instead of writing= (py, l2), we use the infix notatiop; = pp. Interpreted relations also include
the binary relatiorsize to be explained later. Uninterpreted relation symbolstdel symbols

distinct from the rest.

Definiton 2.1 (Constraint). A constraintin our language is a formula or subformula not

containing uninterpreted relation symbols.

We write a variablevariable as a sequence of Latin alphabet with a capital first letteckvhi
can be subscripted with a sequence of Arabic numbers, dilediex For example, botX and
Varp3 conform to the syntax of a variable. The index of the corresitg variable for the second
syntax is 23. We attachtgipeto every variable, which is either integer, array, functoany.

According to Figure 2.1, formulas may constructed usingthebolsd and=- . The symbol

INote that here we do not includeor > sincea < bif and only ifa+1<b, whilea> bifand onlyifa>b+1.
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O is calledfalsum and it denotes logical falsity. The symbel denotes logical implication, that
is, whena = 3 holds, then when thantecedenti holds, theconsequenf8 must also hold. We
will formalize these interpretations later.

For formulasa and3, we adopt the following shorthands:
e We write—a for a = 0.

e We writea < B for = a.

e We writea A B for =(a = —p).

o We writea Vv 3 for (—a) = .

e We writea < B for (o = ) A (a <= B).

Ourvocabulary? is the set of all function and relation symbols.

Although our definition is sufficient for now, later we will pand our set of formulas as we
see fit, such as adding real numbers, finite domain valueshairbperations.

Figure 2.1 allows us to write, within a formula a quantifiedsubformula either using a
universal quantification of Xwheref = (vX : a) or anexistential quantification of Xwhere
B=(3X:a). AvariableX has afree occurrencef it occurs iny not within a subformulax
of a quantification ofX. A variable X which occurs iny has abound occurrencetherwise.
A variable with free occurrence ipis afree variableof y. The set of all free variables of
is denotedvar(y). In writing formulas, we do not allow quantification of a vasia when it is
already bound. An example of a wrong formula with quantifarabf an already bound variable
Xis (VX : X <10= (VX : X >0)).

We call asentenca formula without free occurrences of variablégX : X < 10= p(X)) A

(VX : X >11= q(X)) is an example of a sentence.

2.3 Semantics of Formulas

We introduce here aniverse of discoursalso known aslomain?y 5 + of function and inter-
preted relation symbols. Whefis a function or interpreted relation symbol, we denotef bigs

interpretationin Dz, 4 .
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2.3.1 Semantics of Constants

For all integer constam, ¢' € Dz.a,7- Here,c' is the number whose representation using Arabic
numerals ig. Note that the integer constant interpretations in the dorfg, 4 + is exactly the
setZ of integers.

We assume that all arrays arefly, 4 ¢, thatis,4 C Dz 4 5, although throughout this thesis
we do not consider their syntactic representation. As wé seié later, we can nevertheless
precisely specify an array in a formula.

Any constant functor symbol has an interpretatioi 4 ¢, which is an element of the set

F defined as the least solution of the equation
X ={f(M,...,ln)In> 0, € ZUAUX, forall1<i<n}.
Z (integer),4 (arrays) andr (functors) are callebasic typesThey are pairwise disjoint.

2.3.2 Semantics of Non-Constant Function Symbols

For each non-constant interpreted function symbat 7%/, a functionf! : Q);(Qj — Dz a.¢

is in Dy 4 4. For example, the symbok* has as its interpretation (that is;') the arithmetic
operator+ € Dz 4 7. Note that it is important here to distinguish betweeri ‘as a syntactic
element and its interpretation. Similarly with “—", “ x” and “/.” The semantics of expressions

containing arithmetic operators are thus definable acoghgi

(Mt = W+,
(h—t) = W~
(WX ) = Hox i,
(W/i) = Wi/

We adopt a precedence rule among the operators suck thatl / has a higher order of prece-
dence than- and—. Betweenx and/, the one written in the formula at the left of the other has a
higher precedence. The same rule applies betweand—. All interpretations of the arithmetic

symbols are partial functions since they can only have aregs their arguments.
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We have the following interpretations of array reference aray update:

(mlpe))' = arefiu, i),

(b ko, pg) = aupdp, 1, 1)

The interpretation of a functor symbol belongs to the $etNote, however, that there is
a difference between a functor symbol and its representatibe write the representation of
a functor symbol with the fornm(py, ..., ), for n > 0. This representation defines a function
in Dz, 4 # Which constructs an element ¢f when somey; is substituted for an element of
Z.U AU F. However, the functor symbol itself can be different fréthand its arity can be
less tham. For exampleh(1,,2) can be a representation of a functor symbgl). Now, the
meaning off (g) (that is, f'(g')), assumingy' = gis the constant(1,g, 2), which belongs toF .

Or similarly, the 0-ary functor symba@may have as its representatiof®, 1) ¢ 72.

From now on the difference between a functor symbahd its interpretatiori' should be
clear, but to avoid confusion, we will always consider fumaymbols with the same symbol and
arity as their representations. Each functor symbol iseffoee interpreted into itself, but with
each of its arguments interpreted in its appropriate donmiiat is, for any functor symbdi,

(f(u1a-~7un))l = f(ullv'”vuln)'

2.3.3 Semantics of Relation Symbols

For each non-constant interpreted relation symbiol %/, a functionr! : Q)%@lf — {0,1} is

in Dz 4.¢. Informally, the value O denotes a “falsity” of the givenatbn while 1 denotes its

“truth.”

2In this way we also justify the O-aryness of the constant§ isince they are interpretations of O-ary functor
symbols.
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For integer arithmetic comparators,

(M=) = L=
0 otherwise.

(<) = Lo
B 0 otherwise.

) 1if > 1
B 0 otherwise.

When= is used to compare arrays, the interpretation is as follows:

1 if suppy) = sup()
(=) = and(vi € sup(hy) : k(i) = (i)

0 otherwise.

Another interpreted relation symbol on arraysize interpreted as follows:

1 if SUF(HIJ.):{Ovla>”|2_1}

0 otherwise.

size, o) =

We also define the operater to be a syntactic equality test between functor symbols as

follows?:

1 if i andpy have the same symbol and arity, and
(=) = for eachi-th argument(arg(wy,i) = arg(pp,i))' =1

0 otherwise.

Notice that we have overloaded the equality operator forpamson between integers, be-
tween arrays and between functors. Comparison betweerssipns which are interpreted to
different basic types has the value 0.

We do not provide a domain for uninterpreted relation symbahd they are supposed to

3This is the equality that separates functors framnterpreted functiondJninterpreted functions are equal if they
are syntactically equal, otherwise, we do not know. Furscéme equal if they are syntactically equal, otherwise they
are not.
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be interpreted in any suitable domain. Note, however, tmethey are relation symbols, in any

domain they should be given an interpretation that retunedue in{0,1}.

2.3.4 Semantics of Formulas

Atoms are formulas, and we have given their semantics in teeiqus section. In this section

we give the semantics of other kinds of formulas. The serosiftr O and=> is given below:

DIZO

(= 1) 0 ify,=1andy,=0
il b)) =
1 otherwise.

Here the only interpretation @f is O which denotes logical falsity.

Formulasa andp are semantically equivalent if and onlydf = B'. We can express the
semantics equivalence afandp using the operatos> asa < B. This is becausén < B)! =1
exactly whern' =p'.

From the above semantics Bfand=-, we can prove the following semantics equivalences:
(=(—a)) < a (negation law),

(@AB) = (BAa),
(@Vvp) < (Bva),

(aeB)< (B<a) (commutative laws),

(@A (BAY) & (aAB)AY),
(aVv(BVy)) < ((aVvp)Vy) (associative laws).

From the commutative and associative laws, there is no deswe in a sequence of conjunction

or disjunction of formulasi; to a,. We are allowed to then write; A ... A, as

n
/\Gi.
i=1

Similarly, we can writeo1 V...V d, as

n
\/(Xi.
i=1
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Other semantics equivalence include distributive and Degilio's laws:

an(BVY) < (aAB)V(any),
aVv(BAY) < (avB)A(avy),
av(B=y & (avp)=(avy),
o= (BAY) = (a=B)A(a=y),
a=(Bvy) < (a=B)V(a=y),

a=(B=y)< (a=p)= (a=y) (distributive laws),

~(aAB) & (ma)V(-B),
—(aVpB) < (-a)A (=) (De Morgan’s laws).

So far we have not completely define the semantics of formhgaause we have not given
any semantics to variables. A formula with variables is antgrpretable when each variable is
guantified. In other words, we only provide interpretationgentences. We define the interpre-
tation of non-sentence formuleto be given by the interpretation of the senteficear(y) : y).

We now explain the semantics of quantification operatorsdévote ag X — e} the substi-

tution of a variableX with a valueec ZU 42U F.

Necz X — €)' if X has the type integer

(X' =

[ (
(Aecqa WX +— €)' if X has the type array
(Aec s X — €])! if X has the type functor
(

| (Aeczuaus WX — €)' if X has the type any
Veez MX — €)' if X has the type integer
Veeq WX — €)' if X has the type array
Vecr KX — €]) if X has the type functor

(
X = (
(
(Veezuaus HIX — €)!if X has the type any

We would usually write{vXy : ... : (¥Xy 1 a)...) simply as(VXy,...,Xm: o), and similarly

for existential quantification.
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Note that the following semantics equivalences hold:

(VX,Y:a) < (VY,X:a)

(IX,Y:a) < @Gy, X:a)

Since in the above two cases the ordering of the quantifitatidX andY are unimportant, we
may introduce a se&X which encompasses both the variab¥eandY, and write formulas such
as:

(vX:a), or (IX:a).

WhenX encompasses all of the free variablesiiwe write (Vo) for (vX : a), and similarly
for existential quantification.
Although it includes no constant arrays symbols, our laggus powerful enough to express

allarrays inDz, 4 . For example, a particular array can be specified using treimg formula:
(VA: (VB:sizdA,2) A\B= ((A,0,10),1,20))).

B is certainly a variable which evaluates to an array,lsesere|supb)| = 2 andb(0) = 10 and

b(1) = 20.

2.4 Constraint Logic Programs

2.4.1 Definite Clauses

We first introducelefinite clausegalso calledHorn clause}, which are subformulas of the form

(VX :p<=(QA...Ah)),

wherepis an atom of uninterpreted relation symbol calledibadof the clause. The subformula
g1 /... AQnis called thebodyof the clause, and eacfy 0 <i < nis an atom. Note that therefore
here we do not allowegative literals where some; is of the form—(r), with r an atom. It

is possible that a clause has no body at all (the case whe®). We usually group together
interpreted relation symbols in the body to the left of uaipteted relation symbols (this does

not change the semantics of the clause due to commutativityrpunctions).
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X encompasses all variables occurring in the subformulasfitrantification. When nq
is an uninterpreted relation symbol, we call the definiteistaas aonstrained fagtor simply a
fact Note that a clause without a body is also a fact.

A constraint logic programis a conjunction of definite clauses. We usually call corstra
logic programs a€£LP programs, wher€LP stands forConstraint Logic ProgrammingWe

now provide two examples of CLP programs.

Example 2.1. The following programs define a predicgt@herep(n) is true for somen if and

only if nis a nonnegative even number.

(VX p(X) =X=0)A
(VXY 1 p(X) <= (X=Y+2Ap(Y))).

Example 2.2. The following is a CLP program adapted from an example in.[48f program

states that all men are mortal, and Socrates is a man.

(VX : mortal(X) < man(X))A

marn(socrates.

2.4.2 Simplified Syntax

Further, we would write a definite clause without the vamgafliantification, write the impli-
cation symbol as: - | write conjunction symboh using comma (,), and we end each clause
with a period. Assuming the precedence of conjunction ovglication, we also remove the

parentheses enclosing the body of each clause.

Example 2.3. Following is an example of the program in Example 2.1, raéemitusing new

notational conventions:
p(X):- X=0.

p(X):- X=Y+2p(Y).

The constraints in this program axe= 0 andX =Y + 2 (see Definition 2.1).
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Example 2.4. We may also write the program of Example 2.2 in this way:

mortal(X) : - man(X).

marn(socrates.

The example has no constraints. It contains one funstmrates

2.5 Information Processing with CLP

We can regard a CLP program as a kind of “database” whichskor@vledge that are of concern
to us. We therefore need a mechanism to infer a piece of irg#thom from this database. In this
section we first expound on the questions that we can pose k& gfdgram. We then explain a

decision procedure to answer the question.

2.5.1 Logical Consequence

Note that so far we have not really provide an interpretatioaninterpreted relation symbols.
Whenever an uninterpreted relation symbol occurs in a cainsfogic program, we may extend
| with an interpretation for it. Therefore, we may speak of am-unique extensiol’ of |
which makes a sentence (in particular a constraint logignam)[™ true, that is[" = 1. Such
interpretation is called modelof I'.

Given a CLP program we write

My

if every model of is also a model of. As in the following two examples, we will further assume

thaty is always a sentence containing no universal quantifier.

Example 2.5. Givenl the program in Example 2.3 (Page 32), we may write

I IFp(4).

In this case, we want to conclude thz#)"" = 1 for all modell’ of I'. One such moddl would

interpretp as follows:

y 1 ifX'isa positive even number,

0 otherwise.
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Example 2.6. Similarto the above, givef the program in Example 2.2 (Page 32), we may
write

I" IF mortal(socrates.

Here, based on information In we want to conclude that Socrates is mortal.

2.5.2 Resolution

We need a procedure to prove logical consequences. The @henmanted in CLP systems is
calledresolution

It is known thatl I- y holds if and only ifl A -y is unsatisfiable meaning that there is no
extensiorl’ of | such thai(" A —y)" = 1.

Notice that—y is equivalent tad < y. Further, whery is an existentially quantified formula
(3X : a), the formulad < yis equivalent tqVX : O < a). This can be written as a special CLP

program clause

We call clauses of this form asgmal clause We call as gyoal the body of a goal clause or any
other conjunction of atoms. We add this clause into our Cldgyam, then apply resolution to
the modified program to test its unsatisfiability.

The basic step of resolution is a generatiorrasfolventof two definite clauseg; andko.
Here, the body ok, must contain an atom of the same uninterpreted relation siymith the
head ofk,. Moreover, we assume that andk, do not share variables. Whenever they do, we
rename the variables kv appropriately to avoid sharing. Note thatandk, can be the same
clause, in which case we treat them as two separate copiesrantie the variables appropriately.

Important to resolution is the notion ahificationof two atoms or terms. Given two atoms
or termsa andp, a substitutioru on their variables such thatt = 3t is called aunifier of a and
B. If a andP have some unifiers, then there existmast general unifiefm.g.u) among therfy
A unifier py is more general thapy if there is a substitutiow of the variables iny such that

H10 = Ho.

4This is known as thenification theorem
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Now suppose that
Ky IS A:- By,...,Bn.
Ko is C:- Dq,...,Dnp.

and that som&; = p(Xy,...,X ), andC = p(Yi,...,Y|). Suppose that the most general unifier for
Bi andC is p. The resolvent ok; andkz by the matching oB; andC, denotedesols, (K1,Kz2)

is the new clause

A:- Bl,...,(Bi_l,Bi+1,...,Bn)u,...,X| =Y,D1,...,Dm.

WhenT is a CLP program which includes the special clalse- d, a sequence of clauses
K1,K2,...,Kn =K is called aresolution derivation ok if for eachi, 1 <i < n, eitherk; is a clause
in T or a resolvent ok andky, wherej,k < i. A resolution derivation ofJ from I" is called a
resolution refutation of.

We have the followingesolution theorenwhich is immediate from J. A. Robinson’s general

resolution theorem.

Theorem 2.1 (Resolution Theorem). A CLP programl” is unsatisfiable if and only if there

is a resolution refutation df.

Example 2.7. We now prove the logical consequence in Example 2.5 (Pagev8®re our

CLP program is as follows.

O:- p(4). K1
p(X):- X=0. K2
pPX):- X=Y+2,p(Y). Kz

We generate the following clauses using resolution, herdgidg ad, which proves the unsat-

isfiability of the above CLP program.

O:- p(2). Kgq=resoly(Ki,Ks)
O:- p(0). Ks=resolyy)(Ks,K3)

O Ke = resolvpg) (Ks,K2)
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Example 2.8. Now we are ready to prove that Socrates is mortal. Here wadrgytto prove

the unsatisfiability of the CLP program:

O:- mortal(socrates. Kj
mortal(X) : - manX). Kz

man(socrates. K3

Using resolution, we derive the following clauses from thewe CLP program, to prove its

unsatisfiability.

O :- man(socrate$. Ka =resolnorialsocrates(K1: K2)

m Ks = resolvmansocrates(K4,K3)

2.5.3 SLD Resolution

Notice that in the two examples in the previous section, ohesdiep we always generate a resol-
vent of a clause of a goal clause with a clause of the origihd& @rogram, resulting in another
goal clause, until finally we obtain a goal clause of the fam- o, wherea' = 1, and since
0' = 0, this expression is equivalent @ Therefore here our use @ = resol(K1,K>) is re-
stricted to the case wheq is a goal clause which contains the atérin its body,k> is a clause
of the original program, and the resulting resolvegtis a goal clause. Given a certain CLP
program, we say thads is areductof K;.

In computing the reduct of a goal clause, in general we neexpply some or all of the
clauses of the original CLP program. To implement resolutis a sequential algorithm, we
need to determine an ordering among program clauses whieingiae their order of application.
Similarly, given a goal clause, we also need to determinelwhbninterpreted atom in its body
is to be matched first. A well-known implementation cal®dD resolutiorapplies the program
clauses in top to bottom in the program text, and selectsttim & the goal clause’s body from
left to right in the program text. SLD is an abbreviation®élected-literal Linear resolution
for Definite clauseslin our restricted case literals are simply atoms and “deficiauses” here
means definite clauses.

Since there are a number of derivations which are possibilyite, an implementation has to

try each derivation one by one until it finds one which end&iThis is accomplished in CLP
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systems by a backtracking mechanism which, when a denvéits, returns to the deepest goal
where it is still possible to select another clause from ttegy@m to generate a new resolvent.
SLD resolution with backtracking can be efficiently implaerted using a stack which stores
goals.

We note that SLD resolution is not guaranteed to discovefiugaiion even though one exists,
not even when the set of the provable formulas (that isythdéogical consequendelt- y, where
I" is a CLP program) is recursive.

In addition to implementing resolution, CLP systems alstizet constraint solving algo-

rithms to simplify interpreted expressions at each deovestep.

Example 2.9. Now let us redo Example 2.7 (Page 35) using SLD resolutioncamstraint

solving, showing only the goals.

O:- p(4). Ki
O:-4=0. Kg=resolya(Ki,Kz)

Oo:-0. Simplify k4 with constraint solving: Proof fails.

Our proof fails at a first attempt singe : - 0O)' = 1 # O'. Fortunately, resolution engines
are equipped with backtracking mechanism which can remantearlier goal and re-try using

different program clause. Now, we returnkpand uses instead ofk, to generate a new goal.

O:- p(4). K1
O:-4=Y+2,p(Y). Ks=resolpu(Ka,Ks)

O:- p(2). Simplify ks with constraint solving.
O:-2=0. Ke = resol\vp o) (Ks, K2)
o:- 0. Simplify kg with constraint solving: Proof fails.
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Again the proof fails. Fortunately, we have not exhaustéga@dsibilities. We backtrack tes

and try to generate a resolvent using program clagsestead ok, resulting in the derivation

O:- p(4). K1
O:-4=Y+2,p(Y). Ks=resol\y(Ki,Ks)
O:- p(2). Simplify K5 with constraint solving.

O:-2=Y+2,p(Y). K7=resoly(Ks,K3)

O:- p(0). Simplify k7 with constraint solving.
O:-0=0. Kg = resolvyg) (K7, K2)
a. Simplify kg with constraint solving.

Since we have obtained the gaalthe unsatisfiability proof succeeds.

2.6 Least Model

We next explain théeast model semanticd CLP programs. Suppose thatis an extension of
| (that is,| C I’) which interprets the uninterpreted relation symbol§ isuch that™"’ = 1. A
modelof the CLP progrant is the set’ —I. Theleast modebf I' is the strongest such model,
which always exists for any CLP program with no negativeit¢109].

Let us now proceed more formally.

Definiton 2.2 (Ground Substitution). Given a formulaa, the ground substitutioro of a

denoteds(a) or ao substitutes each free variabledrwith a constant irDz 4 .

Definiton 2.3 (Immediate Consequence Operator). Given a progranfi, we define aimme-
diate consequence operatqar, hich takes an interpretatidrfor uninterpreted relation symbols

mentioned i and produces another one, as follows:

TJ) = {o(A) | A:-cy...,Cchisafactinl
and foralli,1<i<n,(o(g)) =1} U
{o(A) | A:-Ly,...,LmcCq1,...,Crisinl
and foralli,1<i<mm2>1, ando(L) € J,

and forallj,1 < j <n,(o(c))) =1}
Here AandLy,...,Lyare atomsg; for anyi are constraints, armldenotes a ground substitution.
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We denote byir 1 nthe sefl(0), whereTr 1 0= 0.

Definiton 2.4 (Least Model). Given a prograni, theleast modebf I' is the least solution of

the equatiorX = Tr(X). Further, we denote the least modeloasim(I").

Because of the monotonicity and continuity of the operator wherl does not contain
negative literals, then given a CLP programwithout negative literals, by Knaster-Tarski fixpoint
theorem (see e.g., [105]), whenis an infinite ordinal, thedr T w = Im(I"). For some CLP

programs]Tr T k= Im(I") for somek < w.

2.7 Clark Completion

By defining CLP programs as logical formulas, we have actymtvided their logical semantics.
Here we provide an even stronger logical semantics of CLBraros called Clark completion.
The logical semantics we have given so far has too many maoaleish is undesirable in verifica-
tion since to establish a property of a program, as we willa@e, we need to inspect all possible
behavior of the program. With our current logical semanfemjunction of implications), the
CLP representation of a program to be verified would imply ymather behavior which does not
exist as a behavior of the original program. For example saipte model’ of the CLP program
in Example 2.1 (Page 32) is(X)" =1 for any X. However, this is not thantendedmodel of
the CLP program. Instead, what we have in mind is the modelgin Example 2.5 (Page 33),
which is indeed the least model.

Using Clark completion as the logical semantics would retsthe possible models to the

least model only. The following discussions in this sectian also be found in [109].

Definiton 2.5 (Completion). The logical semantics af-ary predicate symbagb in the pro-

graml is the formula
(X1, %0, Y p(Xe,..., %) < B1V...VBn),

whereY are variables i1, . .., Bm, andXy, ..., X, are variables that do not appear in any clause.
Except when they belong %, . . ., X,, the variables of in B; is disjoint from the variables iBj,

whenevei # j, which can be achieved by appropriate renaming. Furthehn, Bamorresponds to
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a clause il of the form

p(te,...,tn) - L1,..., Lk

andB; is

Xi=tA...ANXn=thAL1A... ALk

If there is no clause with hegal the completion o is simply

VX1, X POXL, -, Xn) < 0.

The Clark completior* of a CLP progrant is the conjunction of the above definitions of

all uninterpreted relations ih.

A known result is that wheR* is the Clark completion off , Im(I"*) = Im(I"). Most impor-

tantly, establish the relatidf* I (Jy) if and only if Im("*) = (Jy).

2.8 Further Readings

We note that the array functiorjs and aupd introduced in Section 2.1 have appeared in the
literature. They are are similar to the aselectandstore of Nelson and Oppen [146], sead
andwrite of Jones et al. [117].

For further reading on the semantics of CLP programs, reféaffar et al. [109]. For further
reading on the basics of resolution and refutation, readessrefer to Davis et al. [43] as well as
Boolos and Jeffrey [20]. Introduction to constraint sofy@lgorithms can be found in the book

by Marriott and Stuckey [138].
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Chapter 3

Modeling Programs in CLP

To use CLP for program reasoning, we need to first model progigs CLP programs, such that
some semantics correspondence exists between the ompgomabhm and its CLP model. In this

chapter we show how we model various programs and high-$peddifications.

3.1 Sequential Programs

3.1.1 Usual Semantics

We first define a simple sequential programming language evhgstax is given in Figure 3.1.
Note that particular to our language, we may (or may not) iclemsa sequence of assignments
as just a single statement. In our language, we annotatestateiment of the program with a
unique positive integgprogram point labekenclosed in angle brackets. It can be considered as
an address of the statement relative to the start of the @mgiaent of the program. We assume
there is a special program pofdtat the end of each program.

Program 3.1 is an example of a program written in this syrtaggram 3.1 hag, s, nand a
special variablé asprogram variables The variabld is used to store the program point label of
the next statement to be executed. Before the program temsueadly provide a comment using
“Initially” keyword, on the initial execution states of th@ogram. For example, Program 3.1
starts withx = s= 0 andn > 0. We always assume that the initial valuel @ the first program

point of the program, which in Program 3.1 is 0.

Definiton 3.1 (States and Conditions). A program statg(or simply state) is a substitution

o of each program variable in the corresponding domain. Wenafépresent a state using a
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Prg ::= LabeledStmt;,...LabeledStmty
LabeledStmt = (Label) Stmt ||
goto (Label)
Stmt = AssignSeq ||skip ||

if (BoolExpr) then Prg end if ||
if (BoolExpr) then Prg elsePrg end if ||
while (BoolExpr) do Prg end do

AssignSeq ::= Variable :=Expr ||
Variable := Expr AssignSeq

Figure 3.1: Simple Programming Language

Initially x=s=0,n> 0.
(0) while (x<n)do
(1) S 1= s+X
(2) X = x+1

end do

Program 3.1: Sum (Repeat of Figure 1.1)

constraint that is true if and only if the substitution is bgqb to the variables in the constraint. A
conditionis a set of states, hence a set of substitutions. We reprasemdition as a constraint

that is true when any of the substitution in the set is apbetie variables.

Definiton 3.2 (Transitions). A transitionis a relation between source(pre) and atarget
(posh state. We represent it as a constraint on two sets of vagalprogram variables and
their primed versions. We usually adopt a more general naifdransition which relates two
conditions. Atransition relationis a set (disjunction) of transitions, denofe, X ), wherexis

the sequence of program variables ahi$ the sequence of their primed versions.

We denote the transitive closure of transition relapamsp*.
A transition represents a change of program variable vdheas a source (pre) to a target
(post) condition. In this way we may define the notion of “cartgtion” of a program by a

sequence of transitions, which starts from the initial ¢tbod.

Definiton 3.3 (Reachable State). A states, is reachablefrom a states; whens, = (3% :

(s1[X— K] AP"(X,X))) for somen > 0. In particular,sis areachable stat®f a program if and
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only if s= (X : (O[X— X] A p"(X,X))) for somen > 0, where® is the initial condition of the

program.

So far we have actually provided the building blocks of a deimistic discrete dynamic sys-
tem[33], with a set of states (all possible substitutions orgpam variables), transition relation,
entry condition, and exit conditiort & Q). Hence, following [33], we may characterize the set

of reachable states of the program as strongest interjonetzfta such that
a=0V (I a[k— X]Ap(X,X)).

Here, O is the initial condition of the program. We denote such giest interpretation as
Convp,®). Therefore we can also say that a stwigreachable if and only = Con\p, ©).

We may also define a “condition of interesi”of a program. We may then want to analyze
the set from where the condition of interest may be reachbd.cbndition of interest can be an
exit condition such as in [33], but this can be generalizeary condition. Following the result
of [33], we characterize the set of “ancestor” states of alitmm of interest as the strongest

interpretation ofx such that
a==V (T :a[k— K]Ap(XX)).

We denote such strongest interpretatioilCasy(p—1,=). A states reache< if and only if s=

Conv(p~3,3).

Example 3.1. For example, a transition representing all possible stasmges between pro-
gram points 0 and 1 in Program 3.1 can be represented as tegaioll = 0AX < nAl’ =
1AX =xAS =sAN =n. In this transition, the values of the program variables pktatays
the same, hence the constraiht= xAS = sAn’ = n. The value ofl, however, changes from 0
to 1, and the transition is only possible whes n.

Program 3.1 defines the transition relatwgy,{l,x,s,n,I’,x,s,n’) defined as

(I=0Ax<nAl"=1AX =xAS =sAn =n)V
(I=0Ax>nAl"=QAX =xAS =sAn =n)Vv
(I=1AI =2AX =xAS =s+xAn =n)V
(

| =2A1I"=0AX =x+1AS =sAn =n)
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The set of reachable states of Program 3.1 is the condition

(I=0As=(X*—Xx)/2A0< X< n)V
(I=1As8= (X —Xx)/2A0< X< N)V
(I=2A8=(X+Xx)/2A0< X< N)V
(I=QAs=(X¥*—Xx)/2A0< x=n),

The ancestor states of the exit conditica Q of Program 3.1 is characterized by the formula

I =QvVvI=0vVvI=1vI =2 This means that the final program point is always reachabte fr

any program point.

3.1.2 CLP Semantics

We start by defining a translation of a program in the syntaikigfire 3.1 into a CLP program.

We first define the notion of enclosing statement of a programtp, denotedenclosingl) as

follows:

e Whenl labels a statement insidethen or else block of an innermost if conditional
labeled withl;s , thenenclosingl) = l;s . What we mean by “innermost” here is that there
is no other if conditional or while loop betweéfrom I;s . Hence enclosingl ) is uniquely

determined.

e Whenl labels a statement inside a the body of an innermost whileleeeled witH,, hije,

thenenclosingl) = lyhile-
e Other than the two cases aboeaclosingl) = Q.

We define the notion ofiext labelof a statement labeled withh denotednextlabel(l) as

follows:
e nextlabel(Q) = Q.

¢ Whenl labels a sequence of assignmentskip followed by another statement in a se-
quence, themextlabel(l) is the program point of the next statement in the sequence.
When there is no such statement, inextlabel(l) = nextlabel(enclosingl)). If the next
statement igjoto (m) (note that according to our syntax in Figure 3gbto statements

are not labeled), themextlabel(l) = m.
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e Whenl labels an if conditional, it has three next labels:

— nextlabel(l) is the program point of the first statement after¢ine if . If there is no

such statement, it isextlabel(enclosingl)).

— nextlabel then(l) is the program point of the first statement in then block. If the
first statement in ththen block isgoto (m) thennextlabel thenl) =m.

— nextlabelels€l) is the program point of the first statement in thge block, if
there is arelse block. If the first statement is thelse block isgoto (m), then

nextlabelelsgl) = m.
We assume that there is no emgtign or else block.
e Whenl labels a while loop, it also has three next labels:

— nextlabel(l) =1.
— nextlabelthen(l) is the program point of the first statement of the loop body. We
assume that a loop body is never empty. Similar to the if dol, if the first

statement igioto (m), thennextlabel thenl) =m.

— nextlabelelsgl) is the program point of the statement immediately followargl
do. If there is no such statement, itiextlabel(enclosingl)). If the statement is

goto (m), thennextlabelelsgl) = m.

Complementing the sequenge="xy, ..., X, of n distinct program variables of a sequential
program, we have a sequenXe= Xy, ..., X, of distinct CLP variables and a we draw a corre-
spondence between program variaklend CLP variablé;. We denote by’ the sequence of
the primed versions of the variables¥n We always use lower case letters to represent program
variables, and sequence of characters with capital fiterl&ir CLP variables.

We define a functioirang, which maps a sequential program written in our language into

CLP program clauses as follows:

trang,(stmt)
e trang,(stmg...stmk) =

trang,(stmg).
Here,stmt is a labeled statement, possiblgato statement.

e trang,(goto (l)) returns nothing.
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o trangy({l) X, = expr...X, = expr) =

p(nextlabel(l),X9) : - p(l,X),
Xil':X]_,...,Xi]l' :exprle,...,xnl:xn,

X=X X = expr@ -t X = X§

L q

We denote by the renaming of program variables with the corresponding @riables.
Also, we denote bg' the renaming of program variables with versiasf the correspond-
ing CLP variables. For example, wh@menames program variabkgto CLP variableX,

8' would renames program variabieéo CLP variableX'.

e trang,((l) skip) = p(nextlabel(1),X) : - p(l,X).

e trang,({l) if (boolexpy thenstmg ...stmg end if ) =

p(nextlabelther(l),X) : - p(l,X),boolexps.
p(nextlabel(1),X) : - p(l,X),—boolexp#.

trang,(stmg . .. stmy)
e trang,((l) if (boolexpy then stmy...stmy elsestmt;...stmg end if ) =

p(nextlabelther(l),X) : - p(l,X),boolexp#.
p(nextlabelelsgl),X) : - p(l,X),-boolexp#.

trang,(stmg ... stmf) trang,(stmg, 1 ... stmk)
e trang,({I) while (boolexpy do stmg ...stmf end do) =

p(nextlabelther(l),X) : - p(l,X), boolexp#.
p(nextlabelelsgl),X) : - p(l,X),—boolexp#.

trang,(stmg . .. stmyg)

As in Program 3.1, we often describe the initial state of tegpmam using the clause “Initially.”

We translate “Initiallyboolexpf as the CLP fact

p(1,X) :- boolexp#.
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p(0,0,0,N). K1
P(L,X,SN):- p(0,X,SN),X < N. Ko
p(Q,X,SN):- p(0,X,SN),X > N. K3
p(2,X,S,N) - p(1,X,SN),S =S+X. Kg
p(0, X/ ,SN) - p(2,X,SN),X' =X+1. Ks

Program 3.2: Sum Backward CLP Model

Here,l is the initial program point.

We define the semantics of the original program to be its CLBahdn this definition, the
interpretation of the predicatein the least model of the CLP program is the set of reachable
states of the program. This corresponds to the charadierizaf the set of descendant states of

the set of entry states of a discrete dynamic system as dibgaaint in [33].

Example 3.2. Sum The CLP model of the program Sum (Program 3.1) is ProgramNite
that the CLP variabl&X and its primed version corresponds to the program varigktlee CLP
variable S corresponds to the program varialsieand the CLP variabl&l corresponds to the
program variable. The model is qualified as “backward” for a reason to be explhiater.

The least model of the CLP Program 3.2 is

{p(a,B,y,0) | (a=0Ay=(B*—B)/2A0<B<B)V
a=2Ay=(B>+P)/2A0< B < d)V

(
(a=1Ay=(B*—B)/2A0<B <)V
(
(a=QAy=(B*—B)/2A0<B=3)},

in which the interpretation op exactly models the reachable states of the original Prog.dm

according to the usual semantics given in Example 3.1.

3.1.3 Forward CLP Model

So far our CLP model of sequential programs seems to be threrge” of the resolution step,
because a CLP clause represents a transition from the badglafise to the head of a clause. A
resolution step, on the other hand, tries to unify with a heasbtain its body. We call this kind
of representation asackwardCLP model.

Of course, this suggestdarward CLP model, which can be obtained by translating differ-

ently from the original program. So instead of using thegtation functiortrans, as before, we
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use a new translation functidrans , defined as follows:
trans (stmy)
e trang (stmg...stmy) =
trans (stmt,).

e trans (goto (I)) returns nothing.

o trang ((I)x, = expr...x, = expr) =

p(nextlabel(),X) : - p(l,X9),
X{=Xg,...., %t =expn6,.... X} =X,

XJ =Xt X = exprygit,. X = XSt

trang ((I) skip) = p(1,X) : - p(nextlabel(l), X).

trans ((I) if (boolexpy then stmg ... stm end if ) =

p(1,X) : - p(nextlabelthen(l),X), boolexp#.
p(1,X) : - p(nextlabel(l),X),~boolexp#.

trans (stmg . .. stmi)

trang ((I) if (boolexpy then stmy ...stmf elsestmt,;...stmgendif ) =

p(l,X) : - p(nextlabelthen(l),X), boolexp#.
p(1,X) : - p(nextlabelels€l),X), ~boolexp#.

trans (stmg ... stmy) trans (stmf 1 ... stmg)

trans ((I) while (boolexpy do stmy ...stmg end do) =

p(I,X) : - p(nextlabelthen(l),X), boolexp#.
p(1,X) : - p(nextlabelels€l),X), —boolexp#.

trans (stmg . .. stmy)

Compared to the definition dfans,, itis easy to see itrans we simply exchange the predicate

p in the head of the clause with the one in the body of the clause.
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P(Q,X,SN) Ko
p(0,X,SN):- p(1,X,SN),X <N. K7
p(O,X,S,N)- p(vaaS:N)aXZN Ksg
P(L,X,SN):- p(2,X,S,N),S =S+ X. Ko
p(Z,X,SN) p(Z,X,S,N),X/:X—|-1 K10

Program 3.3: Sum Forward CLP Model (Repeat of Figure 1.2)

In the forward translation, we do not translate the inittats a clause. Instead, we translate
the condition of interest. Suppose that our condition afri@st is the constraiiton the program

variables. Then we include the clause

p(l,X) : - cB.

Here,l is the program point of interest.
The least model of the forward CLP model of a program corredpao the set of ancestors
of the condition of interest. When the condition of interissthe final program label, this is

equivalent to the set of ancestors of the exit states in [33].

Example 3.3. Program 3.3 is the forward CLP model of Program 3.1. Here dmsglition of
interestid = Q.

The least model of Program 3.3 is

{p(avl‘37y76) | O(:Q\/O(ZO\/Gzl\/G:Z}

This corresponds to the set of ascendant states of the mondftinterest in Example 3.1.

3.1.4 Final Variables

Often our objective in analyzing a program is to reason atlmivalues of variables whenever a
program point of interest is reached from the initial stdtéhe program. This is easily done with
backward CLP model of a program, since the least model of the @ogram represents all the
reachable states of the program.

The situation is not as simple with the forward model, sifmeleéast model of the CLP pro-
gram corresponds to states that can possibly reach thetiwondf interest. We can, however

reason that the condition of interest is reachable fromritii state by showing that a represen-
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p(Q,X,S,N,S) K1
p(0,X,SN,Sr) pP(1,X,SN,S), X <N. Ko
p(07anuNasf) p(anastan)aXZN K3
p(1,X,SN,St) p(2,X,S,N,Sf),S =S+ X. Ka
p(2,X,SN,St) p(0,X,SN,S;), X' =X+1. Ks

Program 3.4: Sum Forward CLP Model with Final Variables

tation of the initial state of the program is included in tkadt model of the CLP program. To
check that the program point is always reached with the coveriable values, we need to make
explicit in the least model the variable values wheneveicthlition of interest is reached. For
this purpose, we add a sequence of variables céiletlvariables which are copies of variables
of interest at the point of interest. WheneYedenotes a representation of program variable
Y; denotes the final variable version ¥f Similarly, wheneverX denotes the sequence of the
representation of program variabl&s, denotes the final version of the sequence.

Recall that in a forward model, a clause represents an dérgacnita labeled program state-
ment, and the constraint fact represents the conditiontefaést. The final variables are not
touched in the clauses, that is they are copied as is, fronariigments of the predicate of
the head to the same predicate in the body, without beingreef¢o in other parts of the clause.
We only require that at the constraint fact representingtmalition of interest, they are unified
with program variable representations. In this way, thetl@aodel of the CLP program inter-
prets the predicata(L,)?,)?f), which is true under ground substitutionif X;o is the value of
the program variables at the condition of interest, wherctimlition of interest is reached from
program point.o with program variable value4o.

Program 3.4 is the forward CLP model of Program 3.1 with a fuaalableS;, which is the
final version ofS. In the example we do not provide the final versions of otheialdes. We
usually only provide the final versions of a subset of programable representations that are

essential for the reasoning.

3.1.5 Programs with Array

In place of variables, we may have array references in thgrano. In our CLP model we use a
variable to denote any array that is used in the program.yAgference(i] is straightforwardly
the expression renamedAdl | by the renamin@ in the CLP model, whereis the renaming of

i, andA is the renaming o# in the CLP model A is the CLP variable which denotes the array
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variablea in the program. A special note is with assignments of the form

ali] := expr

which may appear in the middle of a sequence of assignmeitis. vile translate using array

update expression in#® = (A, |, expr) in the CLP program. More precisely,

trang,({1)xi, = expr...x [%] = expr...x, = expr) =

p(nextlabel(1),X%) :- p(I,X),
X{=Xg,..., Xt =exprb,.... X3 =X,

XE =X X = (X expre ), X =X

Xd=xit . xd= expr,84t,.. X = X3,

0

Similarly, transs ({I)xi, = expr... % [X] = expr...X, = expy) =

p(1,X) :- p(nextlabel(l),X%),
X]:!':Xl,...,X& :exprlea"wxf}zxna

X[ =X{"1... X = <x{r*1,)({*1,exprr9r‘1>,...,qu = X1

X=X )T = expr, 0L, XS = XS

0

As an example, consider Program 3.5 and its forward CLP mBdajram 3.6. In our CLP

model, we eliminate the representation of the program kibeia since it is only used internally

in the assignment sequence startingsat

3.1.6 Programs with Heap and Recursive Pointer Data Structres

We may also model in CLP a program which manipulates poindsed data structures, such as

a linked list and a binary tree. We allow structure membegnaicex—val, x—next x—left,

x—right in place of normal variables in our simple programming laaggt The informal se-

mantics is thak is a pointer variable pointing to a structure with membes next left or right.

Now, x—membelis the value of the elemememberof the structure (which is any ofal, next
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(0) i:=0
(1) while (i<n—1)do
2 j=0
(3) while (j<n—1—i)do
@ e ]s alj]) then
(5) alj +1]
il +1) = el
alj] =t
end if
® =g+l
end do
(7) i =i+l
end do

Program 3.5: Bubble Sort

p(QvAala‘J:NaAaN) K1
p(0,A1,J,N,A¢,N¢) :- p(1,A 0,I,N,As,Ns). Ko
p(lvAa|7‘]7N7AfaNf) T IZN_la p(QvA7I7J7NaAfaNf)' K3
P(LALIN, AN - 1 <N—1,p(2,A1,3,N,A¢,Np). Ks
p(sza|7‘]7N7AfaNf) e p(‘?’aAvIvO)NaAfaNf)- Ksg
P ALIN,ALNG) (- J>N—1—1,p(7,A1,3,N,ANp). Ko
p(‘?’vAaI)‘])NaAfaNf) T 'J<N_l_lap(47Aa|7‘]7N7AfaNf)' K7
P(4,A 1IN, AN - AD+1] > AlJ], p(6,A1,J,N,Ar,Np). Ks
P(4A 1IN, AN - A+1] <A, p(5.A 1, J,N, A, N ). Ko
P(5,A 1IN, AN (- A = (A J+1,AQ),J, A +1]),

p(6,A',1,3,N, A¢,Np). K10

Program 3.6: Bubble Sort Forward CLP Model

left or right).

In order to translate member references, we need to notéhdaaictually refer to the pro-
gram heap, albeit implicitly. The program heap itself camogleled as an array, which we name
using an auxiliary variablé. This array is indexed by pointer variables. Wheis the address
of the structure, we assume that the memiaiis always stored at addressnextor left at the
address+ 1, andright at address + 2. We then provide the following alternatives to member

references

1The use of array to denote structure member reference hiekoising Reynolds [166].
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Initially p # 0.

(0) while (p#0)do

(1) p—val := 0

(2) p = p—next
end do

Program 3.7: List Elements Reset

p( ) - P=0,p(Q,H,PH¢,Px).
p( ) T P#Oap(lavaaHfan)'
p(L,H,PH¢,Ps) :- p(2,(H,P,0),P Hs,Ps).
p( ) o p(07H7H[P+1}7Hf7Pf)
p(

Program 3.8: List Elements Reset CLP Model

Member Reference| Alternative Expression
x—val h[x]
X—next h[x+1]
x—left hix+1]
x—right h[x+ 2]

Notice that bothx—nextandx—left have the same alternative expression. This is never ambigu-
ous, since they have different use. We use the meméxito denote the address of the next

structure in a linked list, whiléeft is used to denote the address of the left child structure of a

binary tree.
An assignment to structure member suchxasval := expr, therefore has an alternative
h[x] := expr. Expressions containing member reference as well as assigano structure

member are therefore modeled in CLP as we would model arfayereces and assignments to

array elements explained in the previous section. As an pbarRrogram 3.7 which resets all

the values of a linked list into 0, is modeled in CLP, usingifard modeling, as Program 3.8.
Known programming languages have ways to allocate somechtba heap. For this pur-

pose, we add the structure allocation expression

new(expr;, expr,, expr;)

into our simple programming language. It simply denotesrapacified address, sagw of the

heap, wheréanew = expr;, hinew+ 1] = expr,, andh[new+ 2] = expr;. Or we may also use
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the simpler

new(expry, expr,)

which similarly denotes an unspecified address, whirew = expr; andh[new+ 1] = expr,.
Without being too formal, here we simply say that to trareslallocation expression into
CLP, we extend® such that new(expr;,expr,, expr;))0 = New, whennew(expr,, expr,, expr;)
is thei-th allocation expression in a labeled statement. Thenarbtidy of the clause modeling
the statement, we add the constraid{iNew] = expr, 8, H[New + 1] = expr,0, andH[New +
2] = exprB. Of course,B is the renaming to the appropriate variable version, whenldh
beled statement is a sequence of assignments (see Sedtigh 3NVe also add the constraint
New # New; for all 1 < j < i to declare separation between allocations. In additionalse
state that the new variabMew is not shared with existing data structures by adding thmato
no_reach’H,New, X), wheneveiX represents a pointer variabién the program. The definition
of no_reachdepends on the data structure rootexl. at
The binary search tree value insertion program shown asr&@ro8.9 is an example of a
program which uses heap allocation expression. The CLP Indbeown as the CLP Program
3.10. The definition of th@o_reachpredicate that we use here is given as Program 3.11. The

definition ensures thadewis not shared with any cell of the tree rootedat

3.2 Multiprocedure Programs

In this section we discuss how a multiprocedure and mugiifrant programs can be translated
into forward CLP models (translation into backward CLP nisaan be defined similarly).
In order to write multiprocedure programs, we need to defifienalanguage constructs.

They are:

1. Procedure definition®f the syntaxproc ProcName (VarSeq) Prg end proc. Here, the
tuple of formal argumentsarSeq is optional, andPrg is a program as defined earlier.

Procnames the name of the procedure.

2. Procedure callof the syntaxProcName (ExprSeq) or X := ProcName (ExprSeq). The
tuple (ExprSeq) is optional, depending on whether the procedemecName has formal

arguments or not.

3. Return statemertf the syntaxeturn Expr, whereExpr is optional.
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Initially x # 0.
(0) if (a<x—val)then
(1) if (x—left=0) then
(2) x—left := new(a,0,0)
X = x—left
else
(3) X = x—left
goto (0)
end if
else
(5) if (a> x—val) then
(6) if (x—right=0) then
(7) x—right := new(a,0,0)
X = x—right
else
(8) X = x—right
goto (0)
end if
end if
end if

Program 3.9: Binary Search Tree Insertion

Defining a program as a procedure with naRtecName = procnamesimply restricts the
CLP model of its translation to uggocnameas predicate name, instead of the genepttwe
have been using earlier. The tuple of formal argumévisSeq) is important in a procedure call.

In procedural programming languages, some variables ckothEo a procedure, some can
be global. Some of the local variables can be consideredrgamentvariables, including the
variables that represent its formal arguments, areduan value variable A return value variable
of a procedurg@rocnameis named;. We assume that all global variablgaré known, similarly
all local variablesq of each procedurprocnamethat are not its formal arguments nor its return
value variables (in real compilers, this information isaibed in a separate compilation phase).

We now describe the CLP semantics of a multiprocedure progtarting with procedure
definitions. A program now consists of a sequence of proeedefinitions. In our framework,
procedure definitions have no representations as CLP dad$ey simply define the clauses’

predicate names and a set of local variables which are faangaiments of the procedures. A
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0,H, X, A Hy, X
0,H,X,A Hy, X
1,H,X,A Hs, X
1,H,X,A Hs, X
2,H, X, A Hy, X

3, H, X A He, X¢
5,H,X,A,Hf,Xf
5H,X,A H¢, X;
6,H,X,A Hs, Xs
6,H,X,A Hs, Xs

D(Q,H,XAH,X)-

[NeV\] AH[NeW+ ]

7,H,X,A H¢, Xs)
[Nevx] AH[NeW+1}
p(8,H,X,A H¢,Xs) :

) p(1,H,X,AHs, Xs), A< H[X].

) 1= p(5,H, X, A H, X¢),A> HIX].

) - p(2,H, X, AHe, X¢),HIX+1] =

) i p(3HXAHf,Xf) [X+1]7é0

) 1= p(Q,(H,X+1,New,NewA Hs, X),
1] = 0,H[New+ 2] = 0,no_reachH,New X).

) 1= p(O,H,H[X+1],A Hs, Xs).

) i- p(6,H,X,A H¢, Xs),A>HI[X].

) 1= p(Q,H, X, A H¢, Xs), A< H[X].

) 1= p(7,H,X,AH¢, X¢),HX+2] =0.

) 1- p(8H,X,A Hs, Xs), HX+2] #0.
p(Q, (H,X+2,New,New A H¢, X),

[New+ 2] = 0,no_reach’H, New X).

=0,H
p(0,H,H[X +2],A Hs, Xs).

Program 3.10: Binary Search Tree Insertion CLP Model

no_reach(H,I,L) : -
no_reach(H,I,L) : -

L=0.
L+£0,1 #L,
noreachH,I,H[L +1]),
no_reach(H, 1, H[L +2]).

Program 3.11: No_reachfor Binary Tree

multiprocedure program is translated into CLP model usipgrans function below:

mptrans (proc procname (V1) body, end proc

proc procname (V) body, end proc) =

bodytrans (procname(Vy), body,)

bodytrans (procname(Vy), body,)

The body of each procedure is translated into CLP ubdytrans function. This function
is essentially théranss function we discussed in Section 3.1.3 but with specifiedisate name
and unique set of variables including global, formal argateglocal, return values, and final

variables (Section 3.1.4) to represent updates to gloalhlas. Given a proceduprocname

we devise a mapping=

{§— G,V — Vi, & — )?i} which maps global variablag formal argu-

mentsvi, and local variables; into distinct CLP variables.

Now, the procedure calls are translated into CLP as follows:
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proc main

(0 t:=axb
(L p
(2) t:=axb
end proc
proc p
(0) if (a=0) then
(1) return
else
(2) a=a—1
(3) p
(4) t=axb
end if
end proc

Program 3.12: Multiprocedure Program

main(0, T,A,B, Tt,A¢,Bs) :
- p(oﬂT7A7BaT/aAfaB/)amair(szfaAlvBlanaAfaBf)-
.- mainQ,Ax B,A B,Tr,Ar,Br).

main(1, T,A, B, Ts,As, By)
main(2, T,A, B, Tt, At, By)
main2,T,A,B,T,A B).

p(O,T,A,B,Tf,Af,Bf)
p(0,T,A B, Ts,As,By)
p(1,T,A B, T, Af,Bs) : -
p(Z,T,A,B,Tf,Af,Bf) .-
p(3,T,A B, Ts,Af,Bs) :
p(4,T,A,B,Tf,Af,Bf) .-
p(Q,T,A B, Ts,Af,Bs).

- main1,Ax B,A B, T, At,Bs).

p(17T7Aa Ban,Afny),A: 0.

p(2,T,A B, Ts,As,Bf),A#0.

p(Q,T,A B, Ts,As,Bs).
p(3,T,A—1,B,Ts,As,Bs).

p(0,T,A,B,T". A B), p(4,T' A B Ts,As,Bs).
p(Q,T,A B, Tt,As,Bf), T'=AxB.

Program 3.13: Multiprocedure Program Forward CLP Model

e bodytrang (procnamg(Vi), (I) procname (eXpr)) =

procnamqlaé7\7iv>zi7Riaéf) .
procname(G, exp©, Xj, R;, G'), procnamg(nextlabel(l), G’ Vi, X, R, G+).

bodytrang (procname(Vi), (1) x := procname (expr)) =

procnamg(l, G Vi, X, R, G¢) : -
procname(0, G, exp®, Xj, X', &), procname(nextlabel(l), &" /. X/, R, G+).

Note that here eithex’ € G”, X € V/, or X’ € X/. Also, G’ = G’ whenX' ¢ G, V/ =V
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whenX’ ¢ V/, andX/ = X, whenX’ ¢ X/.

Return statements transfer control to program pdintWe require that all procedures that
are called using the assignment form of the procedure cafiaareach program poif2 without
havingreturn expras the last statement executeeturn statements are translated into CLP as

follows:

e bodytrans (procnamgVi), (I) return ) =

procnamg(l,G,V;, X, R, Gy) : -
procnamgQ, G, Vi, X, R, Gy).

e bodytrans (procnamg¥;), (I) return expr) =

procnamg(l, G, Vi, X, R, Gs) : -
procnamgQ, G, Vi, X, R, G¢), R = expi®.

The discussion in this section together with the state@hxanmple later in Section 3.7 demon-
strate that CLP models are easily tailored to express coitigooa structure of the program to

be modeled.

Example 3.4. We take the multiprocedure program of Sharir and Pnueli[&48%n example.
The program is shown as Program 3.12, with its CLP model Rrog.13. The program only
has global variablels a, andb, and both proceduresainand p have no formal arguments nor
return values.

In this thesis we are somewhat liberal in our translation @LP models. In Program 3.13
we simplify our model not to include return value variablédso, we have(2) as the program
point of interest in the procedureaininstead ofQ. This is for our verification purpose later in

Chapter 5.

3.3 Concurrent Programs

Concurrency is in essence nondeterminism [5], and CLP etaage suitable for representing
nondeterministic transition systems. In this section waashow to model concurrent programs

in CLP.
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3.3.1 Syntax

Concurrency often coincides with programs that run forewdle enclose such program in a
loop forever ...end loop construct. Instead o, the next label of the last statement of the
program is the program point of its first statement. For theenformal translation into CLP
semantics, we can mostly still use theclosingandnextlabel definitions as in the previous sec-
tion. However, we redefineextlabel(Q) = |, wherel is the program point of the first statement
of the program.

Now, in a concurrent setting we call each prograpr@essand aconcurrent progranton-
sists of more than one processes. Whereas in a sequertiiad seprogram is executed without
interruption until it is (hopefully) terminated, in concant setting, an operating system running
in the background may stop a running process, and executharmqrocess. We assume that a
process may only be stopped after it has completely exeaustéatement, and hence for concur-
rent programs we adopt the so-calisi/nchronousr interleavingsemantics. Later in Section
3.6 we will also demonstrate the modeling of the complemgrstgnchronousoncurrency where
transitions of different processes (automata) are exd@itthe same time.

Often in a concurrent setting, processes cooperate wittapather. For this purpose, they
need to communicate, and communication is only possiblel&ast one party waits for infor-
mation from others. We realize the waiting of a process hythicing arawait statement of the
syntax

await (BoolExpr)

or

await (BoolExpr) Variable := Expr

Upon reaching any of the above statement, a process may @mgygss to the next program point
when the given boolean expression is true. With the lattetesy when the boolean expression is

true, the given assignment is first executed before contognesses to the next program point.

Example 3.5. (Bakery Algorithm) Now consider our specification of two-process Bakery mu-
tual exclusion algorithm [125] as shown in Program 3.14hgrogram, variablesandy denote
the “ticket numbers” of each of Process 1 and 2, respectildigy are both 0 before the program
runs. Whenever a process is interested to enter its crig@aion (program point 2), it sets its

ticket number to one more than the other process’ ticket rumb

59



The program variables of a concurrent program includesiobes in the program text, and
the variabled,, ..., I, to store the program point of each procést < i < n. The state of a
concurrent program is thus a ground substitutiom of. ., 1, and the variables of program text

into constants in the corresponding domains.

3.3.2 CLP Semantics

Interleaving semantics means that at any one time, onlytansént in any of the processes can
be executing. Therefore, a state transition of a concuesgram represents only one state
transition in any of its processes. We perform a translatiba process, where 1<i <m,

wherem is the total number of processes, ani$ the total number of variables, into backward

CLP model as follows:

e trang,(stmg...stmk) = trang,(stmt) ... trang,(stmg). Here,stmt is a labeled statement,

possibly agoto statement.

trang,(goto (l;)) returns nothing.

trang, ((li)xj := expr) =

p(l1,...,nextlabel(l;),...,Im,X') : -

P(l1y - byl X), X = Xa, .., XD = expib, ..., X) = Xo.

trang,((l;) await (boolexpp) =

p(l1,...,nextlabel(l;), ..., Im, X) : -

p(l1,...,li,...,Im,X), boolexp#.

trang,((li) await (boolexpy x; := expr) =

p(ly,...,nextlabel(l;),...,Im,X’) : -

p(lla"'vlia'”alm’x)?
boolexpl, X{ = Xi,...,X] = exp®,..., X, = X.
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o trang,((l;) if (boolexpy thenstmy...stmf end if ) =

p(l1,...,nextlabelther(l;),...,Im,X) : -

p(l,...,li,...,Im,X),boolexp#.
p(l1,...,nextlabel(l;), ... Im,X) : -

p(l,...,li,...,Im,X),~boolexp#.

| trang,(stmg ... stmi)

o trang,((l;) if (boolexpy then stmg ...stmy elsestmt 1 ...stmg end if ) =

p(l1,...,nextlabelther(l;),...,Im,X) : -
p(l1,.. . li,-. .. Im X), boolexp#.
p(l1,...,nextlabelelsdl;),...,Im X) : -

p(l1,...,li,...,Im, X), ~boolexp#.

| trangy(stmg ... stmy) trang,(stm, ;... stmg)

e trang,({l;) while (boolexpn do stmy ...stm{ end do) =

p(l1,...,nextlabelther(l;),...,Im,X) : -

p(l1,.. ., li,- .., Im X), boolexph.

p(l1,...,nextlabel els€l;), ... ,Im,X) : -

p(l,...,li,...,Im, X), ~boolexp#.

| trang,(stmg . .. stmy)

As in Program 3.1, we often describe the initial state of tegpmm using the clause “Initially.”

We translate “Initiallyboolexpft as the CLP fact

p(l,...,ImX) - boolexp®.

Here,ly,...,Inm are the initial program points of process 1Into
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Initially x =0 andy = 0.

Process 1 Process 2
loop forever loop forever
(0) X =y+1 (0) y =x+1
(1) await (x<yVvy=0) (1) await (y < xVx=0)
(2) x =0 (2) y =0
end loop end loop

Program 3.14: Two-Process Bakery Algorithm

p(0,0,0,0). K1
p(1,L2,Y+1Y):- p(O,Lz,X,Y). Ko
p(2,L2,X,Y) - p(1,L2, X,Y), (Y =0VX<Y). K3
p(0,L2,0,Y) : - p(2,L2,X,Y). K4
p(Ll,l,X,X+1) - p(Ll,O,X,Y). Ksg
p(L1,2,X,Y) - p(L1,1,X,Y),(X=0VY < X). Kg
p(L1,0,X,0):- p(L1,2,X,Y). K7

Program 3.15: Two-Process Bakery Algorithm CLP Model

The backward CLP model of Program 3.14 is Program 3.15. &te space of Program 3.14
is given by the least model of the CLP Program 3.15, which felkmws:

{p(Ll,Lz,X,Y) | L; =0A0<L L2§2/\X:O/\YZO)\/

(

(0<L; <2AL;=0AX>0AY =0)V
(L1:1/\(L2:1\/L2:2)/\X=Y+1)\/
(

(Li=1VLli=2)Aly=1AY =X+1)}.

Clearly, the least model is infinite, that is, there are itdirground substitutiomw such that
p(L1,L2,X,Y)o is in the above least model. This means that the Bakery Algaris aninfinite-
state program

In the next sections we show how we can add more details intonodeling of concurrent

programs in CLP.

3.3.3 Scheduling

Concurrent programs are often controlled by an operatiatggy, which schedules the processes.
Here we demonstrate via an example how we may embed the imgesgstem’s scheduling
policy in the CLP model.

Consider a simple two-process concurrent program shownoggsdm 3.16. We wish to add
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Initially x =0 andy = 0.

Process 1 Process 2
loop forever loop forever
(0) X =x+1 (0) y =y+1
end loop end loop

Program 3.16: Scheduled Concurrent Program

p(0707Q7XaY) T Q:O,X :OvY =0.
p(07 L2,Q+1,X+1,Y) - QS 27 p(07 L27QaX7Y)'
p(L170707XaY+1) oo Q > 07 p(Ll,O,Q,X,Y).

Program 3.17: Scheduled Concurrent Program CLP Model

the scheduling policy where Process 1 executes at leastohatanost three statements before
control is passed to Process 2. Thus we impleméntaar schedulemwherek = 3 in this case.

We include this scheduling policy in our backward CLP modeiven as Program 3.17. The
program is translated as described in Section 3.3.2, bet\weradd a variabl® representing
the state of the schedul&).is incremented whenever Process 1 executes, but Proceshlga
execute whileQ < 2. On the other hand, execution of Process 2 is only possibla®he 0, that

is when Process 1 has been executed after the last exectifoooess 2, and this res&dsto O.

3.4 Timed Programs

Program 3.18 is a concurrent program that computes the &tmomumbers and assign them
to the arraya such thata[x] contains thex-th Fibonacci number. Both processes are run on
separate processors, but they access the shared vakapkesd the arrap. We take the liberty
of introducing a new syntaxdelay (t), which informal semantics is to delay the progratime
units. During the delay, the program do not access any ofritgram variables.

Now we provide informal explanation of the processes. Fs®deassigns on the arrais
even indicex thex-th Fibonacci number, while Process 2 does the same withratices. There
is a danger that either the assignment at program gajraf Process 1 or the program poi®)
of Process 2 may refer to an array element that has not beigmeds Fibonacci number. Here
the system performs no scheduling, but with the right timijrthe program remains correct to
an extent. We assume that every program statement takeglanfirebere of time units, where

95<e<105.
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Initially a[0] =0, a[1] = 1 andali] =0 for alli > 2.

Process 1 Process 2

(0) x:=2 (0) y:=3

(1) while (x<n)do (1) delay(300)

(2) ax] :=ax—1]+alx—2] (2) while (y<n)do

(3) x:=x+2 (3) aly] :=ay—1]+ay—2]
end do (4) y =y+42

end do

Program 3.18: Dangerous Parrallel Fibonacci with Fixed Timing

The backward CLP model is the Program 3.19. In the CLP modehakthe auxiliary
variablesT; and T,, which we callclock variables Without further ado, we assume that the
clock variables have as their domain the set of real numBdris.domain can be easily included
among the domains already introduced in ChapfefTz denotes how much time the processor
dedicated to Process 1 has spent in executing Process llaiBimii, denotes how much time
the processor dedicated to Process 2 has spent in exedutipydcess. We assume that both
processors start executing their processes at the sameTim®is reflected in the first fact of
Program 3.19, wher&; and T, are constrained to be exactly 0. Intuitively, since we assum
that time progresses uniformly everywh&rave ought to have thal; = T, everywhere in the
semantics of the program. However, this is not the case withtChP modeling. Informally, in
our modelingT; is the end time of last executed statement of Process 1, étledndition that
that statement has been executed at the ﬁ;im time WhereTl’ < T,. The semantics of; is

the same for Process 2. Several subtler points are:

e Notice that in this semantics, it is never the case that tfierdnce ofT; andT, reaches
infinity since no statement takes infinite time, and wiien T}, it cannot be the case that

the statement of Process executed resulting in a least model wh&re-& > T;.

¢ In our CLP model, each statement is effective instantarigatishe start of its execution,
and then the processor only delays until the required timeHe statement ends. We
could have adopted alternative modelings where a stateimeffective at the end of its
duration, or where variables are read at the start or theidarand updated at the end of

the duration.

2There are often arguments in the literature on whether ie#t bo use real or discrete time domain. Without
taking side, here our intention is simply demonstrate thaR G powerful enough to modélbrid systemswhich are
those with both discrete and continuous components.

3This is not true in the physical world.
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p(0,0, Ty, T, A, X,Y,N) : - T =0,T, = 0,A[0] = 0,A[1] = 1.
p(l, Lz, Tll, Tz,A, Z,Y, N) .- inC(Tl,Tz,Tl/), p(O, Lz, T]_, Tz,A, X,Y, N).
p(2,L2, T/, T2, A X,Y,N) : -

inc(Ty, T2, ), X <N, p(1,L2, T2, T2,A, X, Y,N).
p(Q, Lo, T, T2, A X,Y,N) : -

inC(Tl,Tz,T{),X > N, p(l, Lo, T1, T2, A, XY, N).
p(3,L2, T/, To, A, X,Y,N) : - inc(Ty, T2, T),

A= (AXAX -1 +AX-2]),p(2,L2, T1, T, A X,Y,N).
p(l, Lz,Tll,Tz,A,X =+ 2,Y, N) .- inC(Tl,Tz,Tl/), p(3, L2,T1,T2,A,X,Y, N).
p(L1,1, Ty, T, A X, 3,N) : - inc(To, Ty, T;), p(L1,0, T, T2, A, X, Y, N).
p(L1,2,T1, T, A X,Y,N) : -

T <T, T, =T>,+300p(L1,1,T1, T2, A, X,Y,N).
p(L1,3,T1, T, A X,Y,N) : -

inc(T2,T1,T5),Y <N, p(L1,2,T1, T2, A, X, Y, N).
p(L1,Q,T1, T3, A X,Y,N) : -

inc(T2, T1, T3),Y > N, p(L1,2,T1, T2, A, X,Y,N).
p(L1,4,T1,T2’,A’,X,Y,N) - inC(Tz,Tl,Tzl),

A =(AY,AY -1 +AY —2)), p(L1,3,Te, T, A, X, Y, N).
p(L1,2,T1,T2’,A,X,Y+2, N) .- inC(Tz,Tl,TZI), p(L1,4, T, T2, A XY, N).

inc(Ty, T, T)) :- 1 <Tp, T1 +95< T] <T1 +105

Program 3.19: Dangerous Parallel Fibonacci CLP Model

We note here that timing can be added to sequential programsla

As has been explained in Chapter 2, wharis an array, we use the notatiéfl | to denote
thel-th element oA, and(A, I, J) to denote the array resulting from replacinglith element in
AbyJ.

In this section we have presented a concurrent program wiittynchronization between
the processes. We have also considered various ways ofitgunelal-time synchronization, but
since this topic is less relevant to this thesis, its disouss relegated to Section A.1 of the

appendix.

3.5 Hardware Constraints

Similar to the previous example, we seek here to model anniateomponent of a program’s
execution, which in this case is the timing characteriglios to computer hardware used to run
the program.

In the previous section we have exemplified how we may inttedciock variables in a
backward CLP model. The semantics of the clock variable®thee intuitive: it is the amount

of time which have lapsed since the start of execution of thgnam. The semantics, however,
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(0 =1
(1) while (j < 3)do
(2) if (a[j] > a[j +1])then
(3) swapalj],a[j +1])
end if
4 =i+l
end do

Program 3.20: Bubbling Loop

is not very straightforward for a backward model: It is thecamt of time which must have
lapsed from the start of the execution of the program, if tkexation of the program is to have
the chance to reach the point of interest in some tinfeom the start of the execution. In our
modeling, we do not have to provide the constantlt can instead be represented as another
clock variableT; which value is unchanging, and is the same as the value ofci ghriableT

at the program point of interest.

The example program that we use here is the inner loop of theléwsort algorithm, which
we call “Bubbling,” shown as Program 3.20.

Now suppose that Bubbling is run on a direct-mapped insbnatache architecture. Here,
there is a fixed assignment of cache line to statements. Wenasthe architecture has 2 cache
lines: line 0 and 1, with each line contains at most 2 instomst For Bubbling, statements
labeled with program pointé0), (2) and (4) are mapped to cache line 0, whil&) and(3) to
cache line 1. A cache hit costs 1 time unit, while a miss cos$it®é units.

We implement these assumptions in our CLP model shown asd&mo8.21. The variables
K andK’ represent the cache configuration: a pair of lists (one foh &ache line), and each
list contains at most two statements. Cache update opeiatinodeled by the predicatgpdate
Without giving their definitions, we note that The predicdteandnotinrepresent tests of inclu-

sion and non-inclusion, respectively, of a statement inchedine.

3.6 Timed Safety Automata

In this section we focus on modeling of timed safety autonf@®A) specification in CLP to
demonstrate that CLP can be used not only to model prograrhaldm high-level specifications
which represent transition systems. Whereas in Sectiow8.8ave shown how to model asyn-

chronous concurrency in CLP. TSA specifications discusseglimay contain both asynchronous
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p(OaAvKaJaTan) - K= [[]7 mv
updaté0,K, K" E), p(L,A K, 1, T+E,Ts).
p(L,AK,J,T,Ts):- J< 3,updatél K. K E), p(2,AK',J, T +E,Ts).
p(L,AK,J,T,Tf):- J>3,updatél K. K" E), p(5,A K, J, T +E,T;).
p(2,AK,J,T,Ts) : - AJ] > AJ+1],
updaté€2,K,K' E), p(3,AL, K", J,T +E,T;).
p(2,AK,J,T,Ts) : - AJ] <AJ+1],
updaté€2, K, K" E), p(4,AK',J, T +E,Ts).
p(3,AK,J,T,Ts) : - swagA,J,J+1A),
updaté3,K,K' E), p(4,A,K'.J, T+E, Ts).
p(4,AK,J,T,T¢) : - updatdd, K,K' E),p(1,A K, J+1,T+E,Ts).
p(5AK,J,T,T).

updatél,[Lo,L1], [Lo,L1],1) : - in(l,Lo).

update{l s [Lo, L]_], [Lo, L]_], l) - in(I s Ll).

updatél, [Lo,L1], [Ly,L1],5) : - notin(l,Lg),notin(l,Ly),
updateline(Lo, I,Lg).

updatél, [Lo,L1], [Lo,L}],5) : —notin(l, Lo), notin(l,L1),
updateline(Ly,1,L)).

updateline([],1,[l]).% cache empty

updateline([H4],1,[H1,1]).% partial

updateline([-,H2], 1, [Hz2,1]).% cache full

Program 3.21: Bubbling Loop Forward CLP Model

as well as synchronous concurrency.

3.6.1 Timed Automata and Timed Safety Automata

Timed automat4?] is a class ofw-automata (automata over infinite words) witmedwords.
The alphabet of a timed automata is a pair of transition labdlthe occurrence time of the tran-
sition. A timedsafetyautomatonTSA [99, 51] is a timed automaton without theacceptance
condition. Hence by definition it is simply a transition syst

An w-acceptance imposes some liveness to a timed automatomstance, Bichi automa-
ton accepts only infinite strings that visit any acceptirajestnfinite number of time. A problem
when implementing a timed automaton as a real system isgivaty a particular stage of com-
putation, it is in general undecidable to compute the amofitime which has to pass before
the next transition is taken, such that the run of the sysiaisfies the acceptance condition.
Waiting for too long or too short at a particular point altee tvaluation of some transition guard
in the future such that the accepting state is never reaafeatceptance therefore distinguish

current execution state of the system as those that carbbosatisfy the acceptance condition

4For an introduction te>-automata, see [191].
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and those that are not.

By removing the acceptance condition, we declare that saghable state is part of the valid
behavior of the system, without further qualification. Agkable state of the system is a result of
accepting (any one of possibly infinite number of) finiterggd. This implies that the properties
that we would be able to reason about now belongs teéfetyclass of properties As noted
by Henzinger et al., properties verifiable using timed safettomata includeeachability (or

possibility), invariance andtime-bounded inevitabilityhich is a special kind of invariance [99].

3.6.2 State Transition Systems

Before we formally define TSA, we need to first define a concéptate transition systenm
which the notion ofvaluationis essential. Avaluationis a mapping of a variable into a value
in its domain. We extend this notion to a sequence of varialsiehe obvious way. When a
valuationy maps the variablg of the integer domain to the number 1, we wyt&) = 1. In the

context of transition systems, we usually call a valuatisastate

Definiton 3.4 (State Transition System). A transition system is a tripI(—f(,G),QU, whereX
is a sequence of variables, aBds a set ofinitial states and®_is a binary relation relating two

valuations. We writey — Y to denote thaty,y) € %.

The semantics of a state transition system is a set of rekctites, which include®, and
all other states related ® by one or more applications of relations®

It is always possible to represe@tas a disjunctive constraim(X) = \/™; D;(X), where
D(y(X)) holds if and only ify(X) € ©. Similarly, it is always possible to represeRtas a dis-
junctive constrainR(X, X') = \/'_; R (X, X’), whereR(y(X),y (X)) holds if and only ify(X) —
y(X)).

It is obvious that the semantics of a state transition systemesponds to the least model of

SFor a formal distinction between safety and liveness prigmrsee the book of Schneider [178], as well as the
paper of Bjgrner et al. [19]. Bjgrner et al. define safety talb@roperties representable using temporal logic with
past operators only. In the semantics of past operatoreidtien of “past” is well-founded (finite): it always starts
from the time 0. This is not the case with future operators.
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a CLP program which contains the clauses

3.6.3 CLP Semantics of TSA

We have shown how we translate a state transition systenai@oP program. We now define
the structure of a timed automata, whose semantics is givershate transition system. For the
translation into a CLP program, we simply assume the dison$s the previous section.

We have provided a formalization of TSA in [108]. Here we pdava formalization which

closely follows Bengtsson and Yi [14], including a CCS-stgbmposition.

Definiton 3.5 (Timed Safety Automaton). A timed safety automaton is a structy® Q, go,
C,D,1,A,l) where:

e 3 is the input alphabet aictions

Q is a finite set ofocations

o is theinitial location,

C is a finite set otlock variableghat range over nonnegative real numbé&s;

D is afinite set ofliscrete variableshat range over integers and arrays,

L is theinitial valuation of the discrete variables,

ACQxZIxQxB(C)x B(D)x 2 x R(D, D) is thetransition relation where

— B(C) is the set of constraints af,
— B(D) is the set of constraints af,

— R(D,D') is the set of all relations between the discrete variablesignprimed

versions,
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and,

e | : Q— B((C) is a mapping that associate®aation invariantto every location.

The fact that a TSA has both continuous (real) and discrateder or array) components
means that it can be used for modelmgorid systems.

We shall typically denote elements of the SEISQ, C, B(C), B(D), 2€, andR (D, D') by
the following, possibly subscripted or primed symbalgg, ¢, $<, $2, r andp respectively.

Note that there are three kinds of actions2in internal, input and output actions. Input
actions are always written with postfix,"&and output actions are always written with postfix “!”
Internal actions are written using neither postfix. Input antput actions are used in the parallel
composition of timed automata.

Note that other works, for example, [2, 14] provide TSA ddifimis that limit the language of
clock constraintsB( () to constraints of the form®n, or ¢; ® ¢, where® € {<,<,=,>,>},
andn is a nonnegative integer. This is due to to computabilityess We do not impose such
restriction to the language of constraints that we use. AwiNeshow later, for some problems,
more liberal use of constraint language still preservegdédity.

Given a transitionq,s,d,$<,$?,r,p), q represents the current locatiasthe action that
triggers the current transitionf is the next location$ is a constraint over that must hold
when the transition occurs, similar§y” over D, andr C C a set of clock variables to be reset
(assigned to 0) during the transition, gmds the set of updates to the discrete variables.

Given a TSA, alock valuationis a mapping from its set of clock variablggo positive real
numbers. On the set of valuations we define the followingglastder.

Given a set of clock variableS = {ci,...,c}, we say that a clock valuationsatisfies a
clock constrainthC, writteny € ¢, if the result of the substitutioh“[c; /y(c1),...,ck/Y(Ck)] is
a ground constraint that holds.

Given two valuationgi, y2, we writey; < y» if y1(c) < y2(c) for every clock variable € C.

For simplicity, we shall assume that the location invaisaare convex, i.e., given a location
invariantl (q) at locationg, and three clock valuationg,y, andys such thaty; <y, <ys, we
have thaty, € 1(g) whenever; € 1(q) andys € 1(Qq).

We denote by +d, whered € R, the clock valuatiory where for all clock variable € C,

Y(c) =y(c) +d.
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Definiton 3.6 (Operational Semantics of a Timed Safety Autormton). TSA is a transition
system where states are triplggy, o), with the set© of initial states contains all valuations
(0o, Y,0), satisfyingy € 1(qo), andd € 1. The state transition system has the following two kinds

of of transitions:

e Delay transition(q,y,0) — (q,y+d,d) wheny € 1(q) and(y+d) € I1(q) for d € R,.

Note that here, all clock valuations are incremented bystree amount.d

e Discrete transition(q,y,8) — (¢(,Y,d) when(g,s,d,$<,¢?,r,p) €A, y€ ¢¢, € ¢?,
y =y[r/0,y €1(d) andp(3,%').

So far we have introduced the semantics of a timed safetyreattn (following [14]). As
a system specification, however, we more often use a numbkautomata rather than a single
automaton. Here we provide the semantics of the paralleposition of a number of automata,
also following [14].

We are given a set of TSASI1, ..., Tn}, where eacHy is the structuréZy, Qy, q'(‘), Ge, D, ks
Dy, ly), for all k, 1 < k < n. The parallel compositiorof Ty, ..., T, is a transition system where
the state igq,YV, S>, whereq'is a vector(qs, . ..,0n), g € Qi, andy s a clock valuation of the set

of clocks " ; G, and similarIyS is a valuation of the discrete variables(iff_; 4. We write

€ 1(d) in place ofy € ALy 1(a).

Definiton 3.7 (Semantics of Parallel Timed Safety Automata) The parallel composition

of TSA is a transition system which h&&yg, . ..,q)),¥,8) in the set of initial states, wheflec

L((c,-..,0D)), andd € 11/ ... A Ih, and with transitions of the following three types:

e Delay transitionsvhich advance the time, but without executing an action:

wheny € 1(§) andy+d € 1(§).

e Discrete internal transitionsepresent a transition that executes an internal actiomén o

of the automatofT; :

(6.9.8) — (dlgf — a].¥.3),

when (q,s,q,6C,02,r,p) € &,§ € $€,5 € $2,¥ =[r — 0], p(3,8) and¥ € I ([cf —
ai])-
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e Discrete synchronization transitiomepresent the simultaneous execution of an input ac-

tion s? of automatofT; and an output actiosl of automatoril; :

&) — (ddf — ail[aj — o ].V.8),

(@7
when (6,52, 0,67, ri,pi) € A, (0,8, 6,05, 07,15,p5) € Aj,i # . € 0 A 96,5 €
0P AGP.Y =¥Iriur; — 0],0i(8,8),p;(8,8) and¥ € I(dlq — ailld] — aj)).

Denote byT the parallel composition of the timed safety automata.., Tn. Intuitively,
eachT; runs independently inside Since the alphabeis, 1 <i < nare not necessarily disjoint,
by the 3rd transition above, it is often the case that an avigigiers synchronous transitions in
two parallel TSA, where one of the TSA executes an outpubactnd the other execute the
input version of the same action; such synchronous transitire the means by which the TSAs
communicate with one another.

Figure 3.2 shows a graphical representation of a train crgsystem specified as the parallel
composition of three TSAs: each representing the traingtiméroller and the gate. Itis the TSA
version of the timed automata example in [2]. When the tr@gipreaches the gate, a sensor
emits an “approach” signal, denoted by the output acigproach!. This signal is detected by
the controller, modeled using the transition with the inpigihalapproach? in the controller
automaton. After at least 2 time units approaching the angsshe train enters the crossing,
expressed by the transition with the internal actrorAfter some time the train exits the crossing,
executing the internal actioout. A sensor, which detects the train exiting the crossing then
executes amxit! output action which again is synchronized with #ét? input action of the
controller. All these must occur in less than 5 t.u. sincettam approaches the crossing, hence
the constraint < 5 given on the transition.

The function of the controller is to receive signals from tren and send appropriate in-
structions to the gate. When a train approach is detectetidogdntroller, it then executes a
lower! output action which is synchronized with its input versiarihie gate. This transition has
to be executed at exactly 1 t.u. since the approach of thewas detected. Similarly, when the
controller detects that the train has exited the crossirtgen instructs the gate to raise using the
raise! action. This must happen less than 1 t.u.

The gate simply receives instructions from the controltelotver and raise the gate. There

are constraints on time taken for the gate to be fully lowéwdten the actiomlown is executed),
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down
d<1

d:=0
(c) Gate

Figure 3.2: TSA Specification of a Train Crossing

and for the gate to be fully raised (the execution of the aatjn).

Figure 3.3 shows the TSA representing the parallel comipositf the three TSAs in Figure
3.2. We note that the evenégpproach andexit are in the alphabets of both the train and the
controller, while the eventewer andraiseare in the alphabets of both the gate and the controller.
All these four symbols trigger synchronous transitions;gikample, the transition from location
[1,0,1] to location|[1,1,2] on eventlower in Figure 3.3 represents synchronous transitions of
both the gate and the controller, which in Figure 3.2 is re@néed both as the output and input
actionlower! andlower?.

We can define the semantics of TSA as the set of reachabls #tatecan be reached from
the initial state by a sequence of either delay or discretesitions. In the sequence, it does
not matter how many times delay transitions is continuaken, since any number of delay
transitions can always be replaced by a single delay tiansithich delays the same amount
of time. Even nonexistent delay transition between twordigctransitions can be represented
by a single delay transition whose delay amount is 0. Theeef@ may assume that TSA only
has one kind of transition which consists of taking a disctegtnsition and immediately taking a
delay to advance the clocks. Of course, the delay must g#tisflocation invariant of the target

location.
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[0,0,0]
c:=0
e=0

l approach

(1,1,2] 2,0,1]

lower
down in 1 out
d<1l c¢>2 d—0

(1,2,2] 2,1,2] 3,0,1]

in down out ei:1: 0
c>2 41 = lower

(2,2,2] 312

d> 1A exit
out e=0
d<1 c<5

[3,2,2] [0,1,3]

exit down
e=0
c<5 d<1

[0,2,3]
raise
d:=0

[0,3,0]

Figure 3.3: TSA Parallel Composition

This allows us to reduce the transition relations given ififid@on 3.7 into just the following

two classes:

e Internal transitionsrepresents a transition that executes an internal actiaménof the

automator;, immediately followed by some dela/> 0 :

<G,V> - <q[q|, = qi]>\/>a

when(q;,s,q,B,r) € Aj,ve B,V =V[r — 0] +d andV € | (7[q — qi]).

e Synchronization transitionepresent the simultaneous execution of an input ac?oof
automatorT; and an output actiosl of automatorTj, immediately followed by some delay
d>0:

when(qi,s?,qi’,Bi,ri) eAi,(qj,s!,q’j,Bj,rj) EAj,i 75 j,VE Bi/\Bj,\/:v[riUrj l—>0]—|—d,
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andVv € | (0[qf — g][d; — q;]).

As we have shown in Section 3.6.2, the translation of a statesition system into CLP
program clauses is straightforward.

Let us now look again at our train crossing example. Noteithtte train crossing example,
there is no discrete variables, nor state invariants. Titialistates of the parallel composition is

described by the following constraint fact:

p(0,0,0,C,D,E) :- C>0,C=D=E.

Since the initial locations have no location invariant, theck valuations need only satisfy that
they belong tdR .. The clock variables must have the same value, since theyrdgrbp incre-
mented (by a delay transition) by the same amount of time.

The CLP program clauses modeling internal transitionsteddllowings:

p(2,P,,P3,C -+ Delta, D + Delta, E + Delta) :
p(1,P>,P;,C,D,E),C > 2 Delta> 0.
p(3,P,, P3,C+ Delta, D + Delta, E + Delta) :

p(2, Pz, P3,C, D, E), Deltaz 0.

p(P1,P,,2,C+ Delta D + Delta, E + Delta) :
p(P1,P,,1,C,D,E),D < 1,Delta> 0.

p(P1, P2,0,C+ Delta, D + Delta, E + Delta) :
p(P1,P,3,C,D,E),D > 1D < 2,Delta> 0.

Note thatP;, P, andPs are variables representing the locations of the train,rotlat and gate,
respectively. Also, all clocks in the above transitionsiaczemented by the same nonnegative

Delta
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The CLP program clauses modeling synchronization trammsitare the followings:

p(1,1,Ps,Delta D + Delta,Delta) : -
p(0,0,Ps,C,D,E),Delta> 0.
p(0,3,Ps,C+ Delta, D + Delta, Delta) : -
p(3,2,P3,C,D,E),C < 5,Delta> 0.
p(P1,2,1,C+ Delta Delta, E + Delta) : -
p(P1,1,0,C,D,E),E = 1, Delta> 0.
p(P1,0,3,C+ Delta, Delta, E + Delta) : -
p(P1,3,2,C,D,E),E < 1,Delta> 0.

The possible transitions of the train crossing can actualyepresented graphically as in

Figure 3.3. Notice that each arrow is a specialization ofafrtee CLP clauses above.

3.6.4 More Examples

As we have already noted above, we do not restrict the clooktcaints on locations and transi-
tion guards to be of certain form. CLP modeling of timed alataris even more flexible: it can

be used to model timed automaton not according to the stdmigdinition given above.

Example 3.6. (Worker TSA) Consider a timed automaton in Figure 3.4 describing a daily
schedule of a worker. The worker starts from home each dayingf in office for at most 10
hours, during which some of the time is spent in the cafe. Thekar may visit the cafe a
number of times, and we want to record the total amount of timespends in the cafe. For
this purpose we introduce the variabfewhich is not a clock, but represents a real number
variable. In a transition, a non-clock variable is neverémeented uniformly, as with the clock
variables. Notice that in Figure 3.4, we freely assign tleekvaluesX andZ to the variabley,
and use the variable together with a clock varia¥la a transition guard. This is not allowed
in our formalization of TSA given above. We provide the CLPduabof the timed automata as
Program 3.22.

Existing timed automata analysis tools are limited in tlejpressiveness due to the model
checking algorithm used. This is because the standarditigw for analysis of timed automata
depend on an analysis of clock regions [14], which use a nesteictive class of real constraints.

Not only we can enlarge the class of allowed specificatioms;can actually automatically verify
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X:=0,Y:=0 [X—-Y<10 Y <4,Z:=0 [(zZ<2
- Office - Cafe
X=Y>8Y=X ~—"Y=4+Z

Figure 3.4: Worker Timed Automaton

p(0,X,Y,Z) :- X>0,X=2ZY =0.

p(1,X,Y',Z") :- Delta> 0,X' = Delta,Z’ = Z + Delta,
Y =0,X'—Y < 10,p(0,_,Y, 2).

p(2,X.Y".Z") :- Delta>0,X' =X+ Delta,Y' =Y,Z' = Delta,
Y <4,X-Y <10,Z' <2,p(1,X.Y,.).

p(1,X.Y".Z") :- Delta>0,X'=X+DeltaY =Y +2Z,Z =Z+ Delta,
Z<2,X'—Y'<10,p(2,X,Y,2).

p(0,X".Y".Z") :- Delta>0,X' =X+ Delta,Y' = X,Z' = Z+ Delta,
8<X—Y,X—Y <10,p(1,X,Y,2).

Program 3.22: Worker CLP Model

the example, which we will demonstrate in later chapters.

Example 3.7. (Fischer’s Algorithm TSA)For this experiment we used the standard Fischer’s
algorithm; see Figure 3.5 whereanges over the number of processes. Location 3 is theadritic
section of each process.

The working of the TSA can be explained informally as followéere is a maximum delay
2 time units for the process to stay at location 1, and theaenignimum delay 4 time units for a
process to stay at location 2. Suppose that there are twesses that are to enter their critical
sections (location 3). Both processes must have taken atZrtome units at location 1 and set
K to its own process id. Since both processes also wait atitwcatfor more than 4 time units,
both processes must have finished their attempt t& getits own process id. At state 2, both
processes thus can judge correctly based on the valevdiether to enter its critical section
(location 3) or not (back to location 0).

We show the backward CLP model of two-automata Fischer'sralgn TSA as Program

3.23.

Example 3.8. (Bridge Crossing Problem)Here we consider a modification of the bridge
crossing problem from BPAAL 3.4.6 package. The system consists of 2 kinds of automata:

a controller (Figure 3.6) and a number of trains (Figure.3/VhenN is the number of trains, our
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K=i

Figure 3.5: Fischer’s Algorithm TSA for Process

p(0,0,Xl,Xz, K) - K= O,Z > O,Xl = Z,Xz =27

p(1,L2,Z, X+ 2Z,K) :- p(0,Lz,X1,X2,K),K=0,Z>0.

p(2,L2,Z, X0+ 2Z,K) - p(1,La,Xq1,Xo, K/), K=1X;1<2,Z2>0.
p(3,L2, X1 +Z, X2+ 2Z,K) - p(2,Lz, X1, %2, K),K=1X; > 4.

p(O, L2,X1—|—Z,X2—|—Z,K) i- p(3, L2,X1,X2,K/),K =0,Z2>0.

p(0,L2, X1 +Z, X2+ Z,K) - p(2,L2,X1,X2,K),K# 1, Xy >4,Z>0.
p(L1,1,X1+Z,Z,K) :- p(L1,0,X1,X2,K),K=0,Z> 0.
p(L1,2,X1+2Z,Z,K) :- p(L1,1,X3, %X, K'),K=2,X,<2,Z>0.
p(L1,3, X1+2Z, X+ Z, K) i- p(L1,2, X1, X2, K), K=2X2>4,2>0.
p(L1,0,X1+Z,X2+2Z,K) :- p(L1,3,X1,%X2,K'),K=0,Z>0.
p(L1,0,X1+Z, X +2Z,K) :- p(L1,2,X1, X, K),K#2,X>4,Z>0.

Program 3.23: Two-Process Fischer’s Algorithm TSA Backward CLP Model

modeling usesI¥ + 1 variables, wher&g, ..., Xy are clocks for each train, the neéXtvariables
Pos, ..., Posy represent the positions of each train in a global queue, laadast variabld.en
denotes the number of trains in the queue.

The original LPPAAL model containsommitted locationavhich are locations where no time
progress is allowed. In our modeling, we translate the secpief transitions that visit committed
locations between both endpoints into single transitidns @oes not change the semantics since
committed locations are not part ofPBAAL state space [13]. Also, in the original model, trains
that are to enter the crossing are kept in a queue. Insteatptéinenting the queue, as mentioned
above, we use the variablBss to model the position of each traiiin the queue. Our modeling
allows for simple modeling of symmetry property later ($&ci.5.2).

We show the CLP model of two-trains bridge crossing problé3A&s Program 3.24.

Example 3.9. (Dining Philosophers with TimeoutHere we verify a real-time solution to the
dining philosophers problem whose automaton is shown inr€i@.8. We assume there de
philosophers, wherdl > 3. Each philosopher can be in any of 3 statésnking (at location

0), hungry (at location 1), anceating (at location 2). Location O is the initial state of every
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leave? leave?
2<Len<N Len=0 Len—=1
Pog =2
Pos =1 ._
(Vi £E.i £E - Pog :=N+1
Pos <N —
Pos ;= Pog — 1,
Pos=N+1—
skip)
Pos =N+1
Len:=Len+1
E —F appr?
go! 1<Len<N
Len:=Len+1
Pos :=Len+1
stop!

Figure 3.6: Bridge Crossing Controller TSA

Figure 3.7: Bridge Crossing Train TSA

philosopher. The location may change from 0 to 1 when phgheoi picks a forki, denoted
by changing the value of variabkg from 0 to 1 (there ard\ forks in the system, modeled as
variablesF; to Fy). Its location changes from 1 to 2 when philosophpicks the forkF,eyi),
wherenex{i) = (i mod N) + 1. From location 2, a philosopher may return to location O birsgt
bothF andFex) to 0. To avoid deadlock, a philosopher may return to locaidrom location

1 if it cannot continue to location 2 in less than 2 time unitge show the CLP model for three

dining philosophers as Program 3.25.
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p(0,0,0, X1, X2, Pos,Pog,Len) : - Z>0,X; =2Z,X; =2,Pog = 3,Pog = 3.

p(1,L1,Lo, X1 +Z, X+ Z,P0s,P0%,0) :- p(0,L1,Lo, X1, X2, POs, PO, Len).

p(1,0,L2,Z, X2 +2,3,3,0) :- p(2,2,Lp, X1,X%2,1,3,1),
Xy >3,%,<5,Z>0.

p(1,L1,0,X1+7,2,3,3,0) :- p(2,L1,2,X1,X%2,3,1,1),
Xo > 3,X, <5,Z > 0.

p(2,0,4,2,2,3,1,1) :- p(2,2,3,X1,%X2,1,2,2),
Xq > 3,%X; < 5,% <152 > 0.

p(2,4,0,2,2,1,3,1) :- p(2,3,2,X1,%2,2,1,2),
Xo >3 X, <5X,<15Z>0.

p(2,3,L2,Z, X2+ Z,Len+ 1, Pog,Len+1) .- p(2,0,L,X1,X2,3,P0g, Len),
Len>0,Len<1,Z>0.

p(2,L1,3,X1+2Z,Z,Pos,Len+1,Len+1) .- p(2,L1,0,X1,X2,P0s,3,Len),
Len>0,Len<1,Z>0.

p(2,1,Lp,Z, X, +2,1,P0%,1) : - p(1,0,Lz,X1,Xz,3,P0%,0),
Z<20,Z>0.

p(2,L1,1,X1+2Z,Z,Pos,1,1) : - p(1,L1,0,X1,X2,P0sg,3,0),
Z<20,Z>0.

p(Lo,2,L2,Z, X+ Z,Pos,Pog,Len) : - p(Lo,1, Ly, X1, X2, Pos, PO, Len),
X <20,%; >10,Z<5,Z > 0.

p(Lo,L1,2,X1+2Z,Z,Pos,Pog,Len) : - p(Lo,L1,1, X1, X2, Pos, Pog,Len),
X < 20,X, >10,Z < 5,Z > 0.

p(Lo,2,L2,Z,Xo+Z,Pos,Pog,Len) : - p(Lo,4, Ly, X1, X2, Pos, PO, Len),
Xy <7,% >1527<57>0.

p(Lo,L1,2,X1+2Z,Z,Pos,Pog,Len) : - p(Lo,L1,4, X1, X2, Pos, Pog, Len),
Xo < 7,Xp>1527<5,Z>0.

Program 3.24: Two-Trains Bridge Crossing Backward CLP Model

3.7 Statecharts

Statechart is a popular modeling language, which is partME It was originally introduced
by Harel [88], as a variant dfypergraph89]. In this section we show how wampositionally
model in CLP a Statechart train crossing example in [12] cWisipecification is given in Figure
3.9. Our exposition here will be rather informal.

Overview of various semantics of Statechart is given by venRBeeck [195] but excluding
STATEMATE semantics. SATEMATE semantics is described by Harel and Naamad [92, 91], and
Harel and Politi [93]. Some comparisons of Statemate and d&thantics of statechart have also
been provided by Eshuis et al. [63]. With respect to compmsility, the same also discussed by
Simons [181]. Bhaduri and Ramesh provide a survey on vadappsoaches to model checking
of Statechart [16].

Among the compositional approaches to Statechart veiditaflur and Yannakakis’ ap-

proach is based on identification of repeating superstatplttes [3], while Damm et al.’s is
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Figure 3.8: Real-Time Dining Philosophers

p(0,0,0,0,0,0,2,2,Z) :- Z>0.

p(1,Lo L3, 1, R, F3, Z, X0 +Z, X3+ 2Z) - p(0,L2,L3,0,F, Fs,X1,X2,X3),Z > 0.

p(2, L2,L3,Fl,l,Fg,X1+Z,X2—|—Z,X3—|—Z) i- p(l, L2,L3,F1,0,F3,X1,X2,X3),X1 <2,Z2>0.
p(0,L2,L3,0,0,F3, X1 +Z,X2+Z,X3+2Z) :- p(2,Lo, L3, F1,F, F3,X1,X2,X3),Z > 0.

p(O, L2,L3,0,F2,F3,X1—|—Z,X2—|—Z,X3—|—Z) i- p(l, L2,L3,F1,F2,F3,X1,X2,X3),X1 >2,2>0.
p(Ll, 1Ls,F, 1R, X1 +2Z,Z,X3+2Z) :- p(L1,0,L3,F1,0,F3,X1,X2,X3),Z > 0.
p(L1,2,L3,F1, B, 1, X1 +Z, X2+ 2Z,X3+2Z) :- p(L1,1,Ls,Fi,F,0,X1, X0, X3), X2 < 2,Z> 0.
p(Ll,O, L3,F]_,0,0,Xl—l—Z,Xz—i-Z,Xg—I—Z) - p(L1,2, L3, Fl,Fz,F3,X1,X2,X3),Z >0.
p(L1,0,L3,F1,0,F3, X1 +Z, X2 +Z,X3+2Z) :- p(L1,1,Ls,F,F,Fs, X1, X2,X3), X2 >2,Z> 0.
p(Ll, Lo, 1L, F, R, 1, X1 +2Z, X0+ Z, Z) - p(Ll, L2,0,F1,F,0, X, X, X3), Z>0.

p(L1,L2, 2,1,/ F3, X +Z, X2+ Z,X3+2Z) :- p(L1,L2,1,0,F, F3, X1, X2, X3),X3 < 2,Z> 0.
p(Ll,L2,0,O,FZ,O,X1+Z,X2+Z,X3—|—Z) i- p(Ll, Lo, 2, F]_,FZ,F3,X1,X2,X3),Z >0.
P(L1,L2,0,F,F2,0, X1 +Z, X0 +2Z,X3+2Z) @ - p(L1,L2,1,F1,Fo, F3, X1, X0, X3), X3 > 2,Z > 0.

Program 3.25: Three-Process Real-Time Dining Philosophers CLP Model

based on interface computation and abstraction (overmappation) by the underlying model
checker [39, 17, 18], and Behrmann et al.’s approach is baseghder-approximation [12].
Some works provide compositional semantics of Statechaurth as [44, 194, 79, 131].

In our discussion on TSA above we have introduced the notidacations. In Statechart
argot, a location is called state However, to avoid confusion, we shall use the term “loadtio
instead of “state.” A Statechart specification often onlyg leations, although it is conceptually
easy to introduce variables and their guards similar tokd@nd guards of TSA. For example,
the work of David et al. is on translating models in a Statetckaxiant calledTimed Hierarchical
Automata which may be augmented with clocks, into timed (safetypanston [42]. Similarly,
Eshuis et al. also allows augmentation of statecharts wahmumber clock variables [63].

An important feature of a Statechart specification is thiatliierarchical, in which a location
may contain one or more parallel Statecharts. For examplegure 3.9, the top-level location
Root contains the parallel statechaftain and Crossing, while the locationrMove contains one

statechart, which is also namatbve. We call a location containing more than one parallel
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Root
Train ' Crossing
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in(Closed) | | YP !
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goright |
Ea—rml
goleft I Closed

Figure 3.9: Train Crossing Statechart

statecharts as aAND location while we call a location containing one statechart a<Odh
location Hence, the top-level locatidRoot is an AND location, while the locatioRlove is an
OR location. We call a location not containing other statethagprimitive location. In Figure
3.9, Stop, Left, Right, Open, andClose are all primitive locations.

As is a TSA, a statechart is also a state transition systera.stdte of a statechart is called
aconfiguration[92]. A configuration specifies the current active locatidreach statechart in a
specification.

A statechart specifies anitial configurationand transitions from a configuration to another
by the triggering of an event. Here we assume that eventsarergted by the environment.
The events in Figure 3.9 ageright, goleft, go, up, anddown. Common Statechart variants allow
events to be generated by the transitions themselves

We represent a configuration as a term of the systBbame Subconfiguratioriist), where
Nameis the name of the location, arfRubconfiguratiorList is the list of configurations of the
parallel sub-statecharts included in the locatitame At any time, the configuration of a primi-
tive location has an empty subconfiguration list, those foO& state has only one element in its
subconfiguration list, while the configuration of an AND stats more than one. For example,

the initial configuration of the statechart in Figure 3.9 is

s(root, [s(train, [s(stop[])]), s(crossings(closed[])])]).

The subconfiguration list is dynamically changing, depegdin the currently active locations.
We show as Program 3.26 our backward CLP model of the stateichkigure 3.9. We
model the events using numbers, whegeeight=0, goleft=1, go=2, up=3, anddown=4. No-

tice that we separate individual statecharts into diffepradicate. The predicatesotinitand

This rises the issues aftepversussuperstepsemantics. The former only executes all the transitioniat t
occurrence of an event, while the latter also executes guls#ly generated internal events until stable state is
reached. We are allowed to ignore this issue here.
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roottranseencode the initial configuration and the transitions of ttetethartRoot. Similarly
with traininitand traintranswvhich encode the initial configuration and transitions of Stat-
echartTrain, and so on. The arguments of ttrans predicate of each statechartedttrans
traintrans crossingtransandmovetranyrequire some explanation. Among the arguments, the
second holds the current event, while the third and fourttl tiee configuration before and after
the transition of the statechart, respectively. The firgtiarent holds the topmost configuration
before the transition, which in this example is the configjoraof Root. This is because there
can be guards such agClosed) which requires us to refer to the topmost configuration (Whic
always include other configurations) to check for transitmabledness.

The configuration space of the train crossing example isngiyethe interpretation of thp
predicate in the least model of Program 3.26.

In modeling, we had been ignoring the issue of transitiowniy. Here, an event may
both trigger a transition in the higher and lower level ofrhiehy. Statemate semantics pri-
oritizes higher-level transitions [92, 91, 93], while UMEmantics prioritizes lower-level tran-
sitions [150]. Although we could have adopted any of them haee opted not to for the sake
of cleaner modeling. The modeling is also flexible enoughad@ktended with “history states”
found in some Statechart models.

Since a statechart is hierarchical, it is only natural toepehdently verify statecharts of
different hierarchy, or of different parallel componentsus an important requirement of a Stat-
echart verification system is it@mpositionality Some approaches to statechart verification have
some kind of compositionality [38, 39, 3, 17, 18, 12, 129,]1Those that are not compositional
are based on translating the top-level statechart into atfiee transition system based on a given
semantics (e.g., Statemate or UML), for example [78, 143, 42, 128, 126, 163, 63]. As can be
seen in Program 3.26, our modeling is obviously composafiornhere each statechart is given
separate predicate. Reasoning independently about aatilban be done by adding a predicate
which initial configuration is defined by theit predicate, and the transitions are defined by the
trans predicate corresponding to the subchart. For examplenfi@gendently reasoning on the

Move subchart, we add the predicajas follows:

g(C) :- moveinitC).
q(C’) :- movetrang_,0,C,C'),q(C).
q(C’) :- movetrané_, 1,C,C’),q(C).
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p(C') : - roottrangC,0,C,C'), p(C).
p(C’) :- roottrangC,1,C,C'), p(C).
p(C') : - roottrangC,2,C,C'), p(C).
p(C') : - roottrangC,3,C,C'), p(C).
p(C') : - roottrangC,4,C,C'), p(C).
p(C) : - rootinit(C).

rootinit(s(root, [s(train, [Cy]), s(crossing[Cy])])) : -
traininit (Cy ), crossingini{Cy).

roottrangC, E, s(root, [s(train, [C1]), s(crossing[Cy))]),
s(root, [s(train, [C1]), s(crossing[C5])])) : -
traintrans(C, E,Cy,C;), crossingtrangC, E,C,,C5).

traininit(s(stop[])).

traintrans(C, 2, s(stop []), s(move[C}])) : -
moveini{C;),in(C,s(closed.)).

traintrang(C, 3,s(move_), s(stop|])).

traintrangC, E, s(move|[C1]),s(move[C;])) : -
movetranéC, E,Cy,Cy).

crossinginits(open|))).

crossingtrangC, 3,s(closed[]),s(open|))).
crossingtransC, 4, s(open|]),s(closed[])).
crossingtran§C,E,C;,C;) :- E<2.

moveini{s(left,[])).

movetrangC, 0, s(left, []), s(right, [])).
movetran&C, 1, s(right, []),s(left, [])).
movetran§C,E,C;,C;) :- E>2.

Program 3.26: Train Crossing CLP Model

The set of reachable configurations of the subckiaxie is now given by the interpretation gf
in the least model.

Full compositional verification with Statecharts, howeigenot easy. Compositionality fa-
vors Statemate semantics instead of UML semantics, sinteStatemate semantics, the reach-
ability higher in hierarchy cannot be canceled by the bedranf a subchart [181]. There are
also other issues such as transition guards which may meflecation of arbitrary subcharts.
This makes us unable to translate the reachability quesfiarparallel component into a global

setting.
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Chapter 4

Correctness Specifications

To reason about constraint logic programs, we need a wayeeifgng properties that we want

to prove on them. This chapter is devoted into introducirsggsons for this purpose.

4.1 Assertions

We use assertions of the syntax

GEH,

where bothG andH are goals possibly containing CLP program predicaBeandH may refer
to a set of common variables, s&y We denote byY the variables that only occur i@, and by

Z the variables that only occur . The above assertion has the following logical semantics:

(VX,)Y:G= (3Z:H)).

For clarity, in an assertio® = H, the variables ir?. will be prefixed with “?™L.

The properties that we can specify using assertions betotigetsafety class. In the remain-
der of this chapter we demonstrate how we may specify an sixtenlass of safety properties,
not only simple invariance property, but also invarianc@oimter data structures, and e\struc-
tural or non-behaviorabroperties, such as symmetry of programs. In the next sewtefirst

start with invariance, which we call traditional safety.

1We attribute this notational convention to Fribourg [74].
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4.2 Traditional Safety

The notion of invariance is well-known in the literatureg.ein [144]. It states the condition
(constraint) that all states of a program must satisfy. &tirsg traditional safetyi contains no

CLP program predicate. Here we proceed by example.

Example 4.1. When the interpretation gb is given by Program 3.2, the following assertion

states that at the end of execution of Program 3.1, the oelati (n? —n) holds:

P(Q,X,SN) |= S= (N*~N)/2,

Example 4.2. An obvious property that we would like to verify on the bakatgorithm (Pro-
gram 3.14) is that it guarantees mutual exclusion, the ptppeéhich can be represented using
the assertion

p(2,2,X,Y) =0,

wherep is interpreted in the least model of Program 3.15. The abesertion states that it is
impossible for the both processes to be in their criticatisaqprogram point2)) at the same
time. More technically, none op(L1,L2,X,Y) whereL; =2 andL, = 2 is included in the
interpretation ofp in Program 3.15. Alternatively, to specify the same propeshe can also

write

p(L1,L2,X,Y) =Ly #2VL0Ly #2.

Example 4.3. When the interpretation gb is given by Program 3.17, the following assertion

states that at any state of Program 3.16, the relatiorBy always holds:

p(L17L27Q7X7Y) ‘: X S 3Y
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Example 4.4. In Program 3.18, when < 3, both processes never access the same array loca-
tion. That is, at the end of the execution we can guarantéalfifa- fib(i), wherefib(i) denotes

i-th Fibonacci number. This property can be representeddgdkertion
P(Q,Q, T, T2,A X,Y,N),N < 3 = AN] =fib(N),

interpreted on Program 3.19. For> 3, computinggli] could precede computing afi — 1] for

somei, that is, the correctness of Program 3.18 is not guarantesaksien > 3.

Example 4.5. To state that the execution time bound of Program 3.20 isr88 tinits, we use
the assertion

p(0,AK,J, T, T;) ETs — T < 30,

whose predicat@ is interpreted by the CLP Program 3.21.

Example 4.6. To specify on TSA in Figure 3.4 that the worker is never montB0 hours

outside the house on his work day, we use the assertion
p(0,X,Y,Z) =Y < 20,
whose predicate is interpreted using the CLP Program 3.22.

Example 4.7. On the statechart of Figure 3.9, a property “the train is nathe state move

while the crossing in the state open” can be specified usimggskertion
p(C),in(C,s(move_)),in(C,s(open.)) |= O,

wherep is interpreted in the least model of CLP Program 3.26.

4.3 Array Safety

We now start with an example to show how we may specify trawliti safety properties which are
constructed using CLP predicates. Here we use an asseartate the correctness property of
the bubble sort algorithm (Program 3.5) given in Section53.A suitable correctness condition

would be that at the end of the execution of the program, ttagy@s sorted. To state this property,
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sorted A, I,N) :- I =N-1.
sortedA,I,N) :- | <N—-1A]l] <A[l +1],sortedA,1 +1,N).

Program 4.1: Sorted

allz(H,X,X) :- H[X]=0,X #0.
allz(H,X,Y) :- allz(H,X,T),H[Y] = O,H[T+1] =Y,Y #£0.

Program 4.2: Nonempty All-Zero Linked List |

we first need to define what we mean by a sorted array. This weeda$i the CLP Program 4.1.
sorteda, i, n) holds for any value, i, andn if and only if ais an array, where its elements with
indices fromi to n are sorted.

The correctness of Program 3.5 now can be stated as theiassert

p(0,A,1,J,N,As,N¢),| = 0= sorted As, 0, N¢). (4.2)

4.4 Recursive Data Structures

CLP programs can be used, not only for providing semantipsdagrams, but also to specify re-
cursive data structures properties. This is an extensitretoorrectness specification of program
with array in the previous section. Here we view the heap ag&y and specify the correctness
of the heap using CLP predicates.

Recall the example programs in Section 3.1.6 which manipulae heap. Let us discuss
Program 3.7 which resets the elements of a list to 0. The cimiess statement that we may want
to ensure here is that at the end of the execution of the pmaghee elements of the list has their
values set to 0. In order to state this property, we need aitiefiof a linked list whose elements
are all 0. Here we show how we may construct one.

Using the modeling of program heap using arrhgs in Section 3.1.6, we may define recur-
sive data structures using CLP programs. We can model a ruigeimked list whose all of its

elements have the value 0 using Program 4.2. The least mbthet program is represented by

88



the following set:

{allz(h,x,y) | x#O0Ah[x]=0A
h{x+ 1] # 0Ah[h[x+ 1]] = OA
hih[x+ 1] + 1] # O0A h[h[h[x+ 1] 4 1]] = OA

h...h[x+1]...] £ OAh[A[...h[x+1]...]] = OA
y=h...hjx+1]...]}.

That is, in the least model, the first argumentbif can only be a heap containing a linked list
with all zero elements starting from the pointeup to the pointey.

The correctness statement of Program 3.7 can now be spesfied

p(O, H,P,H;s, Pf),P;ﬁ 0 |: aIIz(Hf,P,?Last), H[?Last+ 1} =P;,P; =0.

That is, if we start the execution of Program 3.7, with inputoa-empty list, then at the end of
execution we will obtain a non-empty list with all of its elents reset to 0, and tmextmember
of the last element is O (null). Note here that the varidtdst only appears at the lhs of the
assertion and is existentially quantified.

Although our specification looks good enough at first, we megdha more precise specifi-
cation in order to prove stronger property later. Prograinfér example, does not specify more
precisely how such linked list with all zero elements arestarcted. Using array update expres-
sions, we may specify that the linked list is constructedifam original heap, already containing
a linked list, by assigning all elements of the original falist to 0. We show the CLP program
as Program 4.3. Thallz predicate now has an extra last argument which is a placehofdhe
updated heap.

Notice that Program 4.3 “traverses” the list from the heath&last element. We can also
define a reverse of this, which traverses the list from thedksnent to the head of the list, as
shown as Program 4.4.

Using either Program 4.3 or 4.4, we can re-state the comsstproperty of the linked list

reset program more precisely as:

p(0,H,P.H¢,P),P#£ 0= allz(H,P,?Last H¢),H[?Last+ 1] = P, Py =0.  (4.2)
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allz(H,X, X, (H,X,0)) :- X #0.
allz(H,X,Y, (Hy,X,0)) :- allz(H,T,Y,Hy),H[X+1] = T,X £0.

Program 4.3: Nonempty All-Zero Linked List Il

allz(H,X,X,(H,X,0)) :- X#0.
allz(H,X,Y,(H1,Y,0)) :- allz(H,X,T,H1),H[T+1] =Y,X#0.

Program 4.4: Nonempty All-Zero Linked List Il

Now we discuss another example: A linked list reverse progyeginally appeared in [166],
which is Program 4.5. The forward CLP model is Program 4.@&téNhat we perform simplifi-
cation by removing the CLP representation of the vari&bMhich only appears locally in the
sequence of assignments in the loop body.)

The correctness statement for this program is that at theoEarecution, we obtain a list
which is a reverse of the original. For this purpose, we neespecify using a CLP program,
what it means for two linked lists to be a reverse of each otfiest note that what we roughly
mean as reverse here is that whenewenextpoints toy in the first linked list,y—nextpoints
to x in the second linked list. Our first attempt at modeling tmsGLP is Program 4.7. Our
informal interpretation ofeversehere is thateverséh,i, j,hy,i1) holds when in heah, a linked
list segment froni up to but not includingj has a O-terminating reverse in another hbap
starting from the address, where inh, i; — next= j (i1 is the address of the node immediately
pointing toj in the original list).

Program 4.7, however, does not specify that the two hbagsd h; are related. Hence, it
says nothing on whether the data values are preserved dnst#ad, we may want to specify a
stronger property that the second heap is an update of thédiap (without changing the data
values), for which we can use a second versioreeérsegiven as Program 4.8.

For this problem we want to prove, that given an acyclic lighvineadl, when the program
finishes, we obtain an acyclic list with heddwvhich is the reverse of the original list. We express

this property as the following assertion:

p(O,H,I,J,H¢,J¢),alist(H,1),J =0 = reverséH,|,0,H¢,Js ), alist(H¢, Jr ). (4.3)

In the assertion, we use the predicatist (Program 4.9) to specify that the program is given
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Initially i £ 0, j = 0.
(0) while (i #0)do
(1) K := i—next
i—next:= j
o=
i =k
end do

Program 4.5: Linked List Reverse

p(O,H,1,J3,H¢,J¢) :- p(L,H,1,3,H¢,Jf),1 #0.
p(O,H,1,J3,H¢,J¢) - p(Q,H,I,I,H¢,J5),1 =0.
p(1,H,1,3,H¢,J¢) - p(O,(H,1 +1,3),H[I +1],1,H¢,If).
p(Q,H,1,J,H,J).

Program 4.6: Linked List Reverse CLP Model

input a null-terminating acyclic linked list. Note thalist definition includes a call too_reach
(Program 4.10).No_reach(h,x,y) states that the hedpcontains a null-terminating linked list
which starts from addregswithout any node stored at addres3 he inclusion oho_reachwill
be important for the proof of the assertion which is to be giveChapter 5. We have previously
provided another definition afo_reachin Chapter 3 (Program 3.11) to specify that a pointer is
not shared by a binary tree instead of linked list.

Note that because of the definition @verseused (Program 4.8), the assertion (4.3) also

implies

1. an “in-situ” property of the list reversal, where the meynegion occupied by the list is

unchanged,

2. that whenever nod& points toB in the input, and is not 0, nodeB points to nodeA in

the output, and
3. that the program leaves unchanged memory regions ouk&daput list.

Both no. 1 and 2 above are guaranteed by the fact that Prog@spdcifies that updates are
done only on the memory region occupied by the list and nogvkkse.

Now let us revisit our binary search tree insertion progravergin Section 3.1.6 (Program
3.9 and its CLP model Program 3.10). We may want to prove tian a binary search tree,
and a value as an input, at the end of the execution of thenukie obtain a binary search tree

where the value to be inserted initially is included. To egsthis, we design a predicdist,
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revers¢H, I, l,H1,0).
revers¢H,|,Y,Hy,T) : - H[T+1] =Y,Hy[T +1] = J,revers¢H, |, T,Hy,J).

Program 4.7: First Version ofReverse/5

reverséH,l,l,H,0).
reverséH,l,Y,(Hy, T+1,J),T) :- H[T+1] =Y, revers¢H,|,T,Hy,J).

Program 4.8: Second Version dReverse/5

wherebst(h,x, min,max holds when in the heapthe pointerx is a root of a binary search tree
whose minimum value imin and the maximum value imax Now, using the predicatest we
write the correctness statement of our binary search trg@eas follows:
p(0,H, X, A/ Hs, Xt ), Xo = X, X # 0,bst(H, Xo, Min, Max) 4.9)
= bst(H¢, Xo, min(A,Min), max A, Max)).
In the abovemin andmaxare functions that return the minimum and maximum of two nerap
respectively.

We define the predicatest as Program 4.11. In the program, we also use the a call to
no_reachsimilar to Program 4.9. Here we use our definitiomofreachfor binary tree which
is Program 4.12, copied here from Program 3.11 for converieHereno_reach h, x,y) means
that the heajln contains a null-terminating binary tree which is rootedddrassy, without any
of its node stored at addressThe definition ofostcontains calls tmo_share(Program 4.13), a
predicate which is essential for the proof.

Next, using the example of Rugina [173], we introduce a riesii@ng routine of an AVL tree
after node insertion, shown as Program 4.14. The routineén@n input an unbalanced subtree
rooted atx, where its left subtree is two deeper than its right subtned & its left child, the left
subtree is 1 deeper than its right subtree. As the outputxpeotto obtain a balanced AVL tree.
A CLP model of the above program is the Program 4.15.

We define using CLP Program 4.16 the specification of a bathAsé tree. Intuitively,

avitregh, x,d) holds if and only ifh is heap containing an AVL tree rootedatind whose depth
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alist(
alist(

) :- L=0.
) :- L#0,alist(H,H[L+1]),noreach(H,L,H[L+1]).

)

I T
—

9

Program 4.9: Alist

no_reach(H,I,L) :- L=0.
noreach(H,I,L) :- L#0,l #L,
no_reach(H,1,H[L+1]).

Program 4.10: No_reachfor Linked Lists

is d. Now, the correctness of the AVL tree can be stated via thevalig assertion.

p(0,H,X,Y,Z,H¢,Y;),avitregH, H[X + 2],DL — 2),
avitregH,H[H[X + 1] +1],DL — 1), aviltregH,H[H[X 4+ 1] + 2],DL — 2), (4.5)
noshargH,X,H[X + 2], H[H[X 4+ 1]+ 1], H[H[X + 2] + 2])

= avitregHs, Ys,DL).

Here we include ao_shareatom (defined as Program 4.13) directly in the assertioniri\gfais

is important for the proof.

4.5 Relative Safety

Relative safety declares that whatever invariant progeotgts for a subset of reachable states of
the program also holds for another subset. More simply patate is reachable if another is.
Note that this does not mean that the two states share a catigoupath.

Relative safety can be used to specify structural propedigrograms, such as symmetry.
Symmetry has been widely used as a state-space reductiomdae in model checking, for
instance, in Mup [107] and SMC [183] among many others. Since symmetry inslaceequiv-
alence relation between program states, efficiency in stgioration can be achieved by only
checking the representatives of the equivalence clasgesnstry reduction in our proof method
will be discussed in Section 5.6.

We briefly repeat our discussion in Chapter 1 that the conaleglative safety more pow-
erful in handling symmetry than other approaches. The fili#tyilis gained from the fact that
relative safety assertions specify relations on the rd@eflstates only, whereas other approaches

such as [183] requires the symmetry of the computation tveéhke purpose of temporal logic
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bstH,X,H[X],H[X]) :- H[X+1] =0,H[X+2] =0.
bst(H, X, MinL,MaxR) : -
H[X + 1] # 0,H[X] > MaxL,bst(H,H X + 1], MinL, MaxL),
H[X + 2] # 0,H[X] < MinR, bst(H, H[X + 2], MinR, MaxR),
no_reachH,X,H[X +1]),
no_reach(H,X,H[X +2]),
no_shargH, H[X +1],H[X +2]).
bst(H, X,MinL,H[X]) : -
H[X+ 1] # 0,H[X] > MaxL, bst{H,H[X + 1], MinL, MaxL),
H[X+2] = 0,noreach(H, X,H[X +1]).
bstH,X,H[X],MaxR) : -
H[X+ 1] = 0,no_reach(H,X,H[X+2]),
H[X+ 2] # 0,H[X] < MinR,bstH,H [X + 2], MinR, MaxR).

Program 4.11: Bst

noreach(H,I,L) :- L=0.

noreach(H,I,L) :- L#0,l #L,
noreach(H,l,H[L +1]),
no_reachH,l,H[L+2]).

Program 4.12: No_reachfor Binary Tree

verification, and hence more restrictive.

For simplicity here we restrict our discussion to backwamtal of programs in CLP, there-
fore we speak about reachable states (from the initialSteaad not the set of states from which
the state of interest is reachable. For detailed discussiothis issue, we refer the reader to
Chapter 3. As we have discussed there, in this case the seadfable states of a program is
represented by the interpretation in the least model, oftaiogpredicatep of the CLP program.
Given a CLP program defining a predicgierelative safety says that a restrictitfy on the

interpretation of the predicateis in the least model if a restrictid#; is, written:

p(X1), W1 [= p(Xo), Wa.

Without loss of generality, we assume that the variable secesX; and X, are disjoint, and
the constraint’; only refers to variables iXXe, while the constraint¥, may refer to both the
variables inX; andX,.

Other than symmetry, relative safety assertions can alagsbd to specify commutativity

and serializability, which we will exemplify in the next s@m. Symmetry, commutativity, and
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noshardH,L;,Lp) :- L3 =0.

nosharégH,L,Ly) :- L1 #0,
no_reach(H,Lq,L>),
noshargH,H[L; + 1],L>),
no_shargH,H[L1 +2],L2).

Program 4.13: No_sharefor Binary Tree

(0) y = x—left
(1) if (y—val=1)then
(2) x—val := 0
(3) y—val := 0
(4) z = y—right
(5) y—right := x
(6) x—left ;== z
end if

Program 4.14: AVL Tree Rebalancing Routine

serializability are examples of structural or non-behealiproperties, i.e., properties determined
by the structure of the program, and which are not necegsaldted to the intended result of the
computation. Relative safety is potentially useful to $fyemany other useful non-behavioral

properties, possibly ad-hoc and application specific. Tasscof such properties is potentially
large. It is intuitively clear that such information can inéh speeding up the proof process of

other properties, which we will demonstrate in later chegpte

Example 4.8. For example, suppose that we have a program whose variaigles andxo.
The semantics of the program is given by a CLP program whidineethe predicate in the
manner of Chapter 3. Now, the relative safety assemiofi, X2) = p(Y1,Y2),X1 = Y2, Xo =Y;

(or more succinctlyp(Xz1, X2) = p(Xz,X1)) asserts that if the state = p,xp = [ is reachable,
then so isxg = [z, X2 = My, for all valuesp; andy,. In other words, the observable values of the

two program variables; andx, commute.

Example 4.9. (Permutational Symmetry)As another example, let us re-visit the two-process
bakery algorithm (Program 3.14). Now consider a relatifetyassertion, stating symmetry for
the program as follows:

p(L1,L2,X,Y) = p(L2,L1,Y, X). (4.6)
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0,H,X,Y,Z,Hs,Ys
1,H,X,Y,Z,Hs,Y;
2.H.X,Y.ZHi. Yy

p( ) (L,H,X,H[X+1],Z,H¢,Ys).
p( )

p( )
p(3,H,X,Y,Z,Hf, f)

p( )

p( )

p( )

p(

Y] =1,p(2,H,X,Y,Z,Hs,Yp).
(3,(H,X,0),X,Y,Z,Hy,Ys).
(4,(H,Y,0),X,Y,ZH¢,Yy).

4.H,X,Y,Z,Hy,Yq (5.H,X,Y,H[Y +2],Hr, 7).

5.H,X,Y,Z,Hy, Y (

6,H,X,Y,Z,Hy,Ys (

Q.H,X,Y,Z,H,Y).

6. (H,Y +2,X),X.Y,Z, Hy,Y;).

p
H
- P
- p
- P
p
p(Q, (H, X+1,Z),X,Y,Z,Hf,Yf).

Program 4.15: AVL Tree Rebalancing Routine CLP Model

avitregH,0,0).
avitregH,X,D1+1) : -
H[X] =D1—-D2,0<D;—Dy,D1—D> <1,
avitregH,H[X +1],D1),avltregH,H[X +2],D>).
avitregH,X,D2+1) : -
H[X] = D1 —D2,D1 — Dy = —1,
avitregH,H[X +1],D1),avltregH,H[X + 2], Dy).

Program 4.16: Avltree

We may also imagine a three-process bakery algorithm, faclwiime following two assertions

are sufficient specify to all of the possible symmetries anrdrachable states:

p(L1,L2,L3,X,Y,Z) = p(La,L1,L3s,Y,X,2Z).
p(leL27L37X7Yaz) ): p(L17L3a L27X727Y)'

The first assertion specifies the transposition of Processd12a while the second assertion
specifies those between Process 2 and 3. Other permutatioastdaevable by some composition
of the above 2 transpositions. This example shows how oativelsafety assertion handles what

is known in the literature gsermutationakymmetry, for example, as defined and used in [107].

45.1 Group-Theoretical Symmetry

Here we clarify that the symmetry properties as defined ative safety assertions are indeed
the symmetry known in mathematics, for example, see [199].

Symmetry is a group of transformations that preserves threstormed object, that is, it
is anautomorphism Automorphisms in geometrical objects include transtati@flection and
rotation. For example, let us have a look at a frieze shownignire 4.1. Let us assume that

the frieze extends to infinity. In this situation, one tramafation that preserves the frieze is
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Figure 4.1: Wall Frieze

translation of length to the left (or right), and also translation of lengthto the left (or right),
wheren is a natural number or 0. Wheam= 0, the transformation is aientity. Another
transformation that preserves the frieze is reflection erattes that cut through the middle of a
unit pattern, indicated with the lettey in Figure 4.1, wheréis an integer or the line separating
two unit patterns, indicated witly. The only rotation possible here is 36®tation around any
point on the two-dimensional plane, which is just the idgntThe transformation can also be
composed of several transformations, for example, refleain axisay followed by translation
of lengthl to the right is also a transformation.

Any automorphism must be included in a group with the contmmsiof automorphisms as
its operator [199]. Such a group is known asaatomorphism groupGiven an object, we may
determine its set of all transformations that are automierpson it. The composition of multiple
transformations is also an automorphism. Moreover, a sa@t atitomorphisms on a given object

induces a group, with the following characteristics:
e The identity transformation belongsito
e |f automorphisms belongs td™, then so is its inverss .
¢ If sandt belong tol", then so does their composget.

Let us defineAut-(x,y) if and only if there exists an automorphissw I such thatx is trans-
formed toy. Itis easy to see that the relatidwit- is an equivalence.

As in many other works on symmetry for verification, in thigsis we will be interested
with model-theoretic instead of geometric automorphisidswever, such automorphism also
has geometric consequences, hence researchers have heemed with automorphisms on a
possibly infinite computation tree, for example in [183]. rGork differs from the rest where
we are only concerned about automorphisms that preserveofd@strict or enlarge) the set of

reachable states. This is enough to obtain reduction inysaéegification, while allowing us to
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specify symmetry in more cases.

Our idea is to use a set of relative safety assertions to fypeassible automorphisms on
reachable states, which then induces an equivalenceorelati them. Here, a single relative
safety assertion in general only describes a partial mgppihile an automorphism is total. In
general we need a set of assertions to describe a total ntppaEpT. Moreover, equivalence
between states is obtained by also proving a complete sefseftions which represent all the
mappings in an automorphism group. This would include iseeywhose proof is often straight-
forward. Suppose thamapG = H) is the mapping represented by the relative safety assertion
G = H. Now, as an example, the symmetry assertion (4.6) for thepnecess bakery algorithm

characterizes an automorphism grauyt on the set of reachable states as follows:

e We include the obvioumapp(L1,L2,X,Y) |= p(L1,L2,X,Y)) in Aut satisfying the exis-

tence of identity.

e By simple renamingL; — Lp,Ly — L1,X — Y,Y — X} on assertion (4.6), the reverse

map(p(L2,L1,Y,X) = p(L1,L2,X,Y)) is in Aut satisfying the existence of inverse.

e It is straightforward to show that hapG; = G,) € AutandmapG; = Gz) € Autthen
mapG; = G3) € Aut

Our proof method in Chapter 5 is designed to handle relatifety assertions as well, such that
we do not only specify and use for reduction, but also proeeréative safety assertions, in

contrast to earlier approaches to symmetry in verification.

4.5.2 More Examples of Program Symmetry
We now proceed with more examples to demonstrate the exyeasss of relative safety asser-

tions.

Example 4.10. (Symmetry in Bridge Crossing TSA)The symmetry definition that we used
for the Bridge Crossing Problem (Example 3.8 in Sectiord3,@eneralized td train automata

is as follows:

p(Lo,L1,...,Ln, X1, ..., XN, Pos, Posy, Len) &=

p(LO, Lp(1)> EEER) Lp(N)aXp(l)a s 7Xp(N)a PO%J(I)? SERE) PO%(N))? Len)‘
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wherely is the location id of the controller, arid,...,Ly are location ids of the trains. So
here the location id of the controller as well as the varidtda retains their value, while other
variables are permuted by some permutagioRor instance, the symmetry definition for Bridge

Crossing Problem with two trains can be represented asisilo

P(Lo,L1,L2, X1, X2, Pog, Pog, Len) |=
p(l—07 L27 L17 X27 X17 PO&: PO&, Len)'

Example 4.11. (Rotational Symmetry)Here we demonstratetational symmetry in the so-
lution of N dining philosophers’ problem using — 1 tickets [25]. For simplicity, we assume
there areN = 3 philosophers having ids 1, 2, and 3, and there are thres fefxesented as
boolean variables,, f,, f3 which are forks used by philosophers 3 and 1, 1 and 2, and 2 and
3, respectively. Initially the ticket number= 2. The program code of Philosopher 1 is shown
as Program 4.17, and its CLP model as Program 4.18. A philesdigats” at program point
(3), and “thinks” at program poinf0). For our purpose it is suffice to demonstrate the rotational

symmetry as the assertion:

p(l—la L27 L37 F17 F27 F37 T) ): p(l—37 Lla L27 L37 L17 L27T)7

whereL; denotes the program point of philosoplel; the value off;, andT is the number of
tickets left. The above assertion specifies one cyclic shifhe right. Any cyclic shifts can be
represented by the compaosition of this cyclic shift.

For this example, arbitrary transposition does not resudtutomorphism. For example, the
program may be inthe state=3,1,=0,I13=0, f1 =1, f, =1, f3=0,t = 1 (that s, Philosopher 1
is eating while both philosophers 2 and 3 are thinking). Nemvjtrarily exchanging Philosopher
2 and 3, and forks 2 and 3 results in the state 3,1, =0,13=0,f; =1,f, =0, f3 =1t =1,
which specifies that Philosopher 1 is eating with 1 fork, elkither Philosopher 2 or 3 is thinking

holding 1 fork. We know that this state is unreachable.
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Initially t = 2 andf; = O for alli.
loop forever

(0) await (t >0)t == t—1
<1> await(f1:O) f1 =1
(2) await (f,=0) fp = 1

Il eating
<3> fl =0
<4> f2 =0
(5 t:=t+1

end loop

Program 4.17: Philosopher 1

p(0,0,0,0,0,0,2).

17 L27 L37 Flv FZ; F37T - 1) i p(oa L27 L3a F17 FZ; F37T)aT > 0.
2,L,L3,1,F, 5, T 1,L,L3,0,R,F3,T).
37 L27L37F1717F37T 27 L27L3a Fl,O,F?,,T).

T

p(

p( ) - p(

p( ) - p(
p(4,L5,L3,0,F,Fs,T) - p(3,Lo,La,Fi,Fo,F3, T).
% ) - p(

p

©T T T O

5o, L3, F,0,Fs, T 4L, L3, F, R, R, T).
07L27L37F17F27F37T+1) - p(57L27L37F17F27F37T)'

Program 4.18: Philosopher 1 CLP Model

Example 4.12. (Rotational Symmetry in Dining Philosophersvith Timeout) Our real-time

dining philosophers example in Section 3.6.4 also enjoyraday rotational symmetry:

p(l—17 L27 L3a F17 F27 F37 X17 X27 X3) ): p(l—37 Lla L27 F37 F17 sz X37 le XZ)

Full permutation of process indices is also not applicabteHis example.

Example 4.13. (Permutation of Variable-Value Pair)In Section 3.6.4 we have discussed a
TSA version of Fischer’s algorithm, which is a timing-basedtual exclusion algorithm. Con-
sider now the program version of the two-process Fischeutial exclusion algorithm (see e.g.
[1]) shown as Program 4.19, where the decision of which m®should enter the critical section
is made after a delay of 4 time units (other statements takaelunit each to execute).

The CLP model of Process 1 is shown as Program 4.20 (Processriiar). This example

uses timing, and so we implemented it using auxiliary vdeisah, andT, (see Section 3.4). Our
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Initially k=10

Process 1: Process 2:
loop forever loop forever
(0) await (k=0) (0) await (k= 0)
(1) k:=1 (1) k:=2
(2) delay (4) (2) delay(4)
(3) if (k#1)then (3) if (k#2) then
goto (0) goto (0)
end if end if
(4) k:=0 (4) k:=0
end loop end loop

Program 4.19: Two-Process Fischer’s Algorithm

p(0,0,0,0,0).

p(O, Lz,T]{,Tz, K) - p(O, Lo, T1, Tp, K),T{ >T, i <To.
p(l, L2,T1—|—1,T2,K) i- p(O, L2,T1,T2,K),T1 <T.
p(2,L2, T1+1,Tp,1) :- p(1,L2, Ty, T2, K), Ty < To.

p(3, L2,T1—|—4,T2,K) i- p(2, L2,T1,T2,K),T1 <T.

p(O, Lo, T1+1,To, K) L p(3, Lo, T1, Ty, K),Tl <Tp,K 75 1
p(4, L2,T1—|—1,T2,K) - p(3, L2,T1,T2,K),T1 < T2,K =1
p(O, Lo, T1+1, Tz,O) - p(4, Lo, T1, To, K),Tl <T.

Program 4.20: Two-Process Fischer’s Algorithm CLP Model
assertion for symmetry here is
p(Lla L27T17 T27 K) ): p(L27 I—lu T2, T17 K/),(p,

where the constraing constraingK,K’) to (0,0),(1,2) or (2,1). This is calledoermutation of
variable-value pairin [182] since it maps the value of a variable onto a new valugs is not
covered by some previous approaches to symmetry such as]&8J The same permutation
also applies to Fischer's Algorithm TSA of Section 3.6.4.

Generalizing the symmetry fod processes, we have the generic assertion

p(L17"'7LN7X17"'7XN7K) ): p(Lp(l)7"'7Lp(N)7Xp(l)7'"7Xp(N)?p(K))7

wherep(X) represents a permutation on indidés. .., N}, with the condition thap(0) = 0.
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Initially X = X, = 0.

Process 1: Process 2:
loop forever loop forever
(0) await (xo#1)x; =1 (0) Xp =1
(1) await (xg #£2)x1 == 2 (1) await (xg=0)x := 2
(2) x1:=0 (2) X2 =0
end loop end loop

Program 4.21: Priority Mutual Exclusion

p(07 07 07 O) °

p(l, L2,1,X2) L= p(O, L2,X;|_,X2),X27é 1.
P(2,L2,2,X0) - p(1,L2, X1,X2), X # 2.
P(0,L2,0,Xz) :- p(2,L2,X1,X2).

p(L].?lu Xlal) .- p(L].?Ou X17X2)~
p(lezv lez) ot p(lela X17X2)7X1
p(L].?Ou X]_,O) .- p(L1727 X17X2)’

0.

Program 4.22: Priority Mutual Exclusion CLP Model

Example 4.14. (Priority Mutual Exclusion) We can also express the kind of “not-quite” sym-
metry, as exemplified by the simple two-process priorityuatiexclusion of Program 4.21. The
existence of priority among processes usually destroysmatny, but not with our approach.

In Program 4.21, each process Ras as the critical section. Initially, the values of both
X1 andx, are 0. The CLP model is Program 4.22. This example is senadgtgimilar to the
asymmetric readers-writers in [54] and the priority mutsatlusion in [182]. Although the state
graph of the program is not symmetric, the state spacehieesdt of nodes in the state graph, is,
and knowing this is already useful for search space reduatigproving safety properties such

as mutual exclusion. We can represent the symmetry on tobabke states simply as:

p(L1, L2, X1, X2) = p(L2, L1, X2, Xy1). (4.7)

It is not immediately obvious that this symmetry holds basedyntactic observation alone.
We now explain in more detail how our approach able to captureautomorphism of this

“not-quite” symmetric example. Let us first examine theesigitaph of the program in Figure

4.2. In previous approaches to symmetry in verification, veefarced to distinguish between

state (A) and (B) since (A) has an outgoing edge that readhts (), while state (B) does not.
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Pp=2Py=1 P1=1P;=2
X1=2,X2=1 X1=1Xo=2

Figure 4.2: State Graph of Priority Mutex

P1=2,P2=1 P1=1P,=2
X1=2Xp=1 X1=1Xp=2
R e

Figure 4.3: Automorphisms on Collecting Semantics

The reason for considering edges here is because of themeedfy temporal logic properties,
which include liveness. Restricting ourselves to safetypprties, however, allows us to blur
distinctions due to edges. This is because safety propeastiy concern the set of reachable
states ¢ollecting semantigs This we clarify using Figure 4.3, where states (A) and (&) row
drawn with the same color. The arrows in Figure 4.3 shows tit@maorphisms in the reachable

states of the program, which can exactly be representectasltdtive safety assertion (4.7).

Example 4.15. (Szymanski’'s Algorithm)Szymanski's algorithm is a more complex priority-
based mutual exclusion algorithm which is commonly encergdt in the literature. We show the
pseudo code as Program 4.23, where program g8jris the critical section. Its CLP model is

Program 4.24.
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Initially x; = x> = 0.

Process 1: Process 2:
loop forever loop forever
(0) Xp =1 (0) Xp =1
(1) await (x2 < 3) (1) await (x; < 3)
(2) Xp =3 (2) Xp = 3
(3) if (x2=1) then (3) if (xa=1) then
(4) X1 = 2 (4) Xp 1= 2
(5) await (xp =4) (5) await (x; =4)
end if end if
6) x:=4 (6) Xo == 4
(7) skip (7) await (x1 < 2)
(8) await (X2 < 2Vx2 > 3) (8) skip
(9) X1 =0 (9) X2 =0
end loop end loop

Program 4.23: Two-Process Szymanski’s Algorithm

Since the algorithm is based on prioritizing Process 1 terethe critical sectior8), it is not
possible for Process 2 to be in the critical section whilecBss 1 is trying to enter the critical

section. For example, the following simple symmetry doeshadd:

p(87 7, X]_,Xz) ): p(7, 8a X27X1)'

Here, some states satisfyihg= 8,1, = 7 are reachable, and no reachable state satisfies
7,1, — 8. Therefore, a simple symmetry assertion such the one giviireibakery algorithm does
not hold.

However, the following “not-quite” symmetry assertiondl $iold:

p(8,L2,X1,X2), L2 <3 = p(Lz,8,X2,X1).

p(8,L2, X1, X2), Lo >7 = p(Lz,8,X2,X1).

p(9,L2, X1, X2),Lo#7 = p(Lz2,9,X2,X1).
p(L1,L2, X1, %), L1 #8, L1 #9 | p(La, L1, Xz, X1).

At first it seems that the above assertions no longer definetamarphism group sincg(L1, 8,
X1,X2),3< L1 <7 p(8,L1, X2, X1) can be derived from the last assertion, yet the inverse does
not hold. However, by observation the assertmh;, 8, X;,X2) = L1 < 3V L1 > 7 holds since

it is not possible for Process 2 to be in the critical sectidnl@vprocess 1 is waiting and there-

fore the goalp(L1,8,X1,X2) =3 < L; < 7 does not represent any reachable state. Similarly,
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p(oa L27X17X2)-
p(l, L2,X1,X2),X2 <3
p(2, L2,X1,X2).
p(3, L2,X1,X2),X2 =1
p(4, L2,X1,X2).
p(3, L2,X1,X2),X2 75 1.
P(5,L2, X1, Xz).
p(6a L27X17X2)-
p(7,L2,X1,Xz).
P(8,L2, X1,X2), (X2 < 2V Xo > 3).
P(9, L2, X1, Xz2).

p(L1,1,X1,1) - p(L1,0,X1,X2).

p(L1,2, X1,X2) p(Ll, 1, Xl,XQ),Xl < 3.
P(L1,3,X1,3) - p(L1,2,X1,X%).

p(L1,4, X1,X2) . p(Ll, 3, Xl,XQ),Xl =1
p(L1,5, X1,2) - p(L1,4, X]_,Xz).

p(Ll, 6, Xl,XZ) p(Ll, 3, X]_, X2),X1 7& 1
p(Ll, 6, X1,X2) p(Ll, 5, Xl,Xg).
P(L1,7,X1,4) :- p(L1,6,X1,Xz).

p(L1,8, X1,X2) p(Ll, 7, Xl,Xg),Xl <2
p(Ll,g, Xl,XZ) p(Ll, 8, X]_, Xz).
p(Ll,O, Xj_,O) L p(L1,9, X]_,Xz).

Program 4.24: Two-Process Szymanski’'s Algorithm CLP Model

p(L1,9,X1,X2) = L1 # 7 also holds. These impose restrictions on the last assextiove.
We are not aware of any verification technique that wouldvalls to express and use this

kind of symmetry.

Example 4.16. (Commutativity) Now consider the simplified two-process concurrent pro-

gram shown as Program 4.25. Its CLP model contains at leasvlilowing two clauses:

p(6,L2,X+3) T p(57L2aX)
p(Ll,lZ,X—s) - p(Lj_,ll,X)

In Program 4.25, the statement(&} of Process 1 is commutative to the statemenila} of
Process 2, since from any state where Process 1 and Process 2 is &), executing either
statement first before the other results in the same statethbr words, the state = 6,1, =

12,x = p for any p is reachable only if stath = 5,1, = 11, x = p+ 2 is?. The commutativity

2The reverse also holds, but not considered here.
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Process 1: Process 2:

(5) x :=:x+3 (1) x :=:x—5
(6) : (12 :

Program 4.25: Commutative Concurrent Program

property here can be expressed by the assertion

p(6,12,X) |= (5,11, X +2).

Example 4.17. (Serializability)Here we discuss another application of relative safetyrasse
tion beyond symmetry. We show a producer/consumer progeRregram 4.26, whose CLP
model is given as Program 4.27.

The macrogory() andpro, (), abstract program fragments that serve to produce and censum
respectively. We will imagine that apart from the variafl# there is another variabkewhich
may be used iory() andpro ().

Consider the assertions:

p(n+ 1,1, Full, f(X)), L<n ): p(la Lo, FU”,X)
p(Llana FU”,g(X)), Ll > 1 ): p(Ll,O, FU”,X),

where the expressioi(X) andg(X) are the results of performirgpn (), ...com() andpro;()...
pro,() respectively orx. Then the assertions say that the result of performing thexlesving
of corny() andproj() macros, I< k<L;—1, 1<I| <Ly is as though the two sequences of
transitions are serializable. Note that here, althougkllfzaa case of symmetry, we also have
an automorphism group which contains the mappings of rddelstates defined by the above

assertions and their inverses.
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Initially full := 0.

Consumer: Producer:
loop forever loop forever
(0) await (full =1)full := 0 (0) pro; ()
(1) com() :
5 (n—1)  proy()
(n) com() (n) await (full =0)full := 1
(n+1)  skip (n+1)  skip
end loop end loop

Program 4.26: Producer/Consumer

p(0,0,0,X).

p(1,L2,0,X) :- p(O,L2,1,X).
p(2,Lz,Full,X) :- p(1,Ly,Full,X).
p(n,La,Full,X) :- p(n—1,Ly,Full,X).
p(0, Lo, Full,X) :- p(n,Ly,Full,X).

p(Ly,1,Full,X) :- p(Lg,0,Full,X).
p(L1,n,Full,X) :- p(Ly,n—21,Full,X).
p(L1,n+1,Full;X) :- p(Lg,n,Full,X).
p(L1,0,1,X) :- p(L1,n+1,0,X).

Program 4.27: Producer/Consumer Partial CLP Model
4.6 Discussions

46.1 Liveness

So far we have discussed how to use our assertions to speoifyam properties that belong
to the safety class. Actually, we can also use our assemiogulage to specify some form of
liveness properties. Let us now re-visit our first exampleglPam 3.1 in Chapter 3, with its CLP

model Program 3.2. We may write an assertion such as theviolip

S=(X2-X)/2,0<X,X=N|=p(Q,X,SN).

The meaning of the assertion is that the least model of Pnog& necessarily includes all
p(Q,x,s,n) such thats= (x2 —x)/2, 0 < x, andx = n. When we reflect this onto the original

Program 3.1, the assertion says that the state wher®, s= (x> —x)/2, 0< x, andx=n is
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S(w, w).
S(X,Xf) - X#w,p(X)=1Xs=X.
S(X,Xp) 1= X # @, p(X) = 0,5(h(X), 7Y), (7, Xs).

Program 4.28: Example 12 of [135]

reachable. Adding the traditional safety assertion

P(Q,X,SN) =S= (X2—X)/2,0< X, X =N,

we obtain an equivalence which specifies that the end progam Q is both possible (reach-
able), and also that it is necessarily reached with(x? — x) /2, 0 < x, andx = n. Here we are
saying that at any point in the program'’s execution, it issalsvpossible for the program to reach
such end state. We do not, however, say whether such endvitdte reached in a finite amount

of time.

4.6.2 General Equivalence

In the previous section we have discussed a use of equivaterspecify some liveness property.
Equivalences can be specified as a two-way implicationse Werdiscuss another example from
the paper of Manna et al. [135], which contains examples op@rties of recursive program
schema containing equivalence.

One example program schema is as follows (Example 12 in J135]

F(x) < if p(x)then xelse F(F(h(x))) end if

Without explaining formally how we translate recursive gmam schema of Manna et al. into
CLP, we simply provide the CLP model of the schema as Progr@aktcording to the seman-
tics given in [135].

Here specify the idempotence of the program schema, thatkg,X)) = F(X). Given Pro-

gram 4.28, we can state the same property as:

S(X,Y),s(Y, Xt) < s(X, X¢).
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We can rewrite the above formula into a conjunction of théofeing two assertions:

S(X,Y),s(Y, X¢) = s(X, Xf)
(X, Xs) E=s(X,Y),s(Y, Xs).

We will demonstrate the proof of the assertions in the neaptdr.
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Chapter 5

A Proof Method

In this chapter we explicate on how to prove the assertiorishwhie have discussed extensively
in Chapter 4. We first start with a motivating example. We theoteed with a few basic defini-
tions and explain the outline of our proof method, which isdzhon a search process to discover
premises which establish the assertion. We then detail maf pules, and demonstrate some
examples before providing their formal proofs. We then paston discussing extensions of our
proof method for handling various verification problems.e$é include a intermittent abstrac-
tion mechanism, program verification technique, reductémlmniques which include symmetry
reduction, and the verification of recursive data strucuk&e end this chapter after presenting

some discussions and related work on CLP-based proof mnethod

5.1 First Example

Let us first examine Program 5.1, and consider how we may phate
p(X) | X =2x7.

Given a grounding of X, this assertion is intuitively true, sing#Xo) is only true whernXao is
an even number.

The assertion can be deduced from the following three pesnising natural deduction:
1. (VX:p(X) < (X=0Vp(X—2))),

2. (VX:p(X—=2)= (Y : X=2Y)),

3. (VXX =0= (Y : X =2Y)).
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p(O) K1
p(X+2) :- p(X). Kz

Program 5.1: Even Number Generator

The first premise is the Clark completion (Section 2.7) ofexample program. For the moment,
the latter two we assume as given. The natural deductiorf pedog these premises is shown in
Figure 5.1.

Unfortunately, the proof is not established without alsmdastrating the premises. Premise
1 is given by the CLP program, hence it is given. Further, we easily see that Premise 3 is
true.

Notice that Premise 2 is in some sense “similar” to the ogt@ssertion. This could therefore
lead to infinite reasoning since by applying the same pragssto Premise 2 we would again
need to establish a premise “similar” to the original assernd Premise 2. Here we therefore
need to employ a form of induction.

Recall that we want to establish the original asserp@d) = X = 2x?Y. For this purpose,
we first hypothesize that the assertion holds when we replagih X — 2, that is,p(X —2) =
X —2=2x7?Y. Now, assuming(X — 2) = X —2 = 2x? holds, can we inductively prove that
p(X) = X =2x?¥? We certainly can, sincp(X —2) = X —2 = 2x7?Y is just equivalent to
p(X —2) =X =2x7?Y, which is Premise 2. That is, here we derive Premise 2 immelglitom
an induction hypothesis, in the context of an inductive paddhe original assertion.

In the subsequent sections we will explain a systematicfpradhod to obtain the premises
and to apply inductive reasoning. The method proves geassartions of the forr® = H for

goalsG andH. We begin in the next section with a few definitions.

5.2 Basic Definitions

Definiton 5.1 (Unfold). Given a CLP progranh and a goalc which contains an ator, a

complete unfolaf a goalG, denoted byunfold,(G) is the set

{G|(3k el :0 :- G =resolwn(O :- G,K))}.

1For an introduction to natural deduction, see [120].
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1 [ (VX:p(X) < (X=0Vp(X—-2))

4 | pAj

5 p(i)e (i=0vpi—2)) VE1

6 | p(i)=(i=0Vvp(i—-2)) NES5

7 [i=0vp(i—2) =E4,6
2 | (WX:p(X—=2)=(3Y:X=2Y))

8 | pli—2y

9 | p(i—2)=(3FY:i=2Y) VE2

10| (IY:i=2Y) =E8,9

3 [(VX:X=0=(3Y:X=2Y))

11 | i=0

12[i=0= @Y :i=2Y) VE3

13| (FY:i=2Y) =E1112
14 (3Y:i=2Y) VE7,10,13
15 p(i)=(3Y:i=2Y) =16,15

16 (X:p(X)= (3Y:X=2Y)) V15

Figure 5.1: p(X) | X = 2x?Y Natural Deduction Proof

We now state théogical semanticef unfold.
Proposition 5.1. (vX,Y,Z: G« \/ unfoldy,4(G)).

Proof. WhenA s p()~<)0, whereo is some (not necessarily ground) substitution, the formula
V unfold, (G) is basically the result of application of modus ponens uiegClark completion of
the predicate defined in the prograrfi. When the completion g(X) in I is (vX,Y : p(X) <
B1V...VBpy) for some goal®;, 1 <i < n, we have for any goaH with free variables from the
setXUZ, (VX,Y,Z: p(X)o,H < (ByV...VBy)o,H). If, without loss of generality, we assume
that the goaG is p(X)a,H, then by the above definition of unfold, the formyfainfold, )5 (G)

is equivalent tdB;o,H) V...V (Bho,H). Hence the proposition holdsl

To understand the use of an unfold in a proof process, letammstder our natural deduction
proof of p(X) = X = 2x7?Y in Section 5.1. We could obtain the Premises 2 and 3 from amidinf
of p(X). Given Program 5.1}/ unfold,x)(p(X)) = X = 0V p(X — 2) and sincep(X) < X =
0V p(X —2) (thatis, Premise 1)p(X) =X =2x? holds ifand only ifX =0V p(X—2) =X =
2x Y. This holds wherp(X —2) =X =2x? (Premise 2) an&X = 0 = X = 2x? (Premise 3).

In the proof process to be introduced later, we will deal witlations between assertions. In

our proof method, the proof of an assertion can be replacttdtie proof of astrongerassertion.
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We start with a formalization of what we mean by stronger oakeg assertion.

Definiton 5.2 (Assertion Entailment). An assertiorG’ = H’ entailsanother assertio = H
written (G' = H') > (G = H) if and only if (G' = H’) = (G = H). In this case we say that
(G = H’) is strongerthan(G = H) and(G = H) is weakerthan(G' = H’).

Entailment is useful especially in an inductive proof, wdhere apply an induction whenever
we discover an assertion that is entailed by an ancestortiasseHowever, here we need an
effective way to establish entailment.

It is easy to see thdG' =H’) > (G |= H) holds if and only if

G,~H = (G,~H)o (5.1)

for some substitutior, which holds if and only if both of the following formulas hold

1. G,—H = G/o. To establish this formula it is sufficient to prove tiat= G'o, which is

calledsubsumption

2. G,—H = —H’c0. To establish this formula it is sufficient to prove eit&H'c =H, H'c |=
H, or if G is of the formG”, @ whereg a constraintp,H'c = H. We refer to any of these

asresidualobligation or assertion.

5.3 Outline of the Proof Method

In this section we will explain the outline of our proof methowe first provide a few formal

definitions which will be useful for our explanation in thisction.

Definiton 5.3 (Unfold Tree Goals). Given a prograni and a se6 of goals, we define the
nondeterministic functiod(H) C H Uunfoldy(G), whenG € Sand the predicate of the atofm

is defined byl". Now, 8"({G}) for some finiten is theunfold tree goal®f G.

Proposition 5.2. WheneveG' € §"({G}) for somen, we have thaG' = G.
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Proof. Wheneved : - G’zresolvpoz)G(D - G,K), necessarily{' = G since suppose that

Gis p(X)o,H whereH is a goal with free variables in the SétY, andk is

p(X) :- Li,...,Ln,

Then(vX,Y : p(X)o,H < (Ly,...,Ly)o,H). Hence,(vX,Y : G' = G). O

Definiton 5.4 (Unfold Frontier). Given a CLP progranmh and a sef of goals we define the

nondeterministic function
£(S) = (S—{G'})Uunfold,(G') for someG’ € SandA e G

We define arunfold frontierof G ase"({G}) for somen > 1.
Proposition 5.3. G =-\/€"(G) for anyn.

Proof. Induction using the definition af, and using the logical semantics of unfold.

In order to proveG = H, we proceed as follows: unfol& completely a finite number of
steps in order to obtain an unfold frontier containing thalg:, ..., G, € £4(G) for somek.
Then unfoldH, but this time not necessarily completely, that is, we simgiitain some unfold
tree goals oH, which areHy, ..., Hn € 8 (H) for somel. This situation is depicted in Figure

5.2. Then, the proof holds if
G1V...VGh E Hi1V...VHp

or alternatively,G; = HiV...VHpforall 1 <i <n. This follows easily from the fact that
Gk Gy1V... VG, (since from Proposition 5.35 = \/€X(G) for anyk), and H; = H for all j
such that I j < m(since from Proposition 5.2, whenev@t € &' ({G}) for somel, we have that
G = G).

More specifically, but with some loss of generality, the fitoalds if
(Vi:1<i<n=(3j:1<j<mAG [ Hj)).

and for this reason, oyaroof obligationwill be constructed from an assertion suctGas= H;.
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Partial
Complete Unfold
Unfold N L
. it To Prove:
H1 G1V...VGy ’:
HiV...VHn
Coinduction H
Hm

G17 . Gn

Figure 5.2: Informal Structure of Proof Process

Our proof method produces proof obligations and attemptdigocharge them by direct proof
using constraint solver or by inductive reasoning.

Induction is used to handle the possibly infinite unfoldin§& andH in Figure 5.2. We call
our version of induction asoinduction We apply an induction hypothesis whenever we discover
an obligation that is entailed by some ancestor obligatita.allow all frontier assertions to be
proved inductively, and this is why we use the term coinductiue to the sense of distinction
between our use of induction and normal well-founded inidnotvhich requires base case (non-

inductive proof).

5.4 Proof Rules

We now present a calculus for proving assertiGris H.
The proof process starts with a set of proof obligations dteh#ts to discharge them one

by one (although at times the set may in fact become larger).

Definiton 5.5 (Proof Obligation). A proof obligationis of the formAt+ G = H, whereG and

H are goals and is a set of assertions.

The role of proof obligations is to capture the state of a prabhe setA, called theset of
assumed assertionsontains assertions that can be used as induction hypetbaelscharge the
proof obligation at hand. We sometimes also call as proagabibn the assertion pa@ = H of
a proof obligation.

Our proof rules are presented in Figure 5.3. Breymbol represents the disjoint union of two
sets, and emphasizes the fact that in an expression of Mme&‘@Jr{a}, we have thaa ¢ A. Each

rule operates on the (possibly empty) set of proof obligetid, by selecting a proof obligation

115



from N and attempting to discharge it. In this process, new probfations may be produced.
The proof process is typically centered around unfoldirgggbals in proof obligations.

Thedirect proof(DP) rule is the simplest proof rule. It discharges a proof ddtiign when it
can be directly proved that it holds, possibly by substiigitsome existentially-quantified vari-
ables of the rhs of the assertion.

Theleft unfold (Lu) rule performs a complete unfold on the lhs of a proof oblwatpro-
ducing a new set of proof obligations. The original assartighile removed fronfl, is added
as possible induction hypothesis to every newly producedfbligation, opening the door to
using induction in the proof.

The right unfold (rRu) rule performs an unfold operation on the rhs of a proof dilan.
Note that there are a number of choicesHdre unfold(H), and it is generally not known which
H’ is the one we need. As a rule of thumb, howet€rshould be chosen in such a way that the
new expressios = H’ looks “similar” to an element of, thus making possible the application
of the AP rule later, or such that’ is “similar” to G, thus making possible the application of the
DPrule.

The assumption proofapr) rule transforms an obligation by using a hypothesis. Sate
induction hypothesis can only be created using.theule from a parent goal, ther rule realizes
the coinduction principle, where we use the parent godf siséhypothesis to prove the obligation
at hand. The underlying principle behind the rule is that a similar assertio® = H’ has
been previously encountered in the proof process, and ie fwrdived. Now, that assertion can
be used as an induction hypothesis in order to establishuirert assertios = H provided
(G EH)>(GEH).

The cut CuT) rule is used for strengthening a proof obligation. | is usefainly for gener-
alizing the Ihs goal of an assertion. Given an assef@da H, it is often the case tha is too
weak to result in applications of other rules that would lemd successful proof. To address this,
thecuT rule introduces a new, go@ possibly stronger thald, with the condition that is weaker
thanG (that is,G = G'). The obligation to prové& = H is now replaced with the obligation to
prove thatG' is indeed stronger thad (G’ = H). This technigue is employed in the following

cases:
1. Abstracting a program condition into a more general deton.

2. Introduction ofloop invariant In the program verification framework [100], a human user
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(o) Nw{AFG,@E=H} There exists a substitutianof
rn existential variables ikl s.t.G=Ho
Ny{AFGE=H
(LU) . UiAF G H} unfold(G) = {G, ..., Gn}
Nu UL {AU{G=H}FG EH}
MNw{AFrGE=H
(RU) SAEGEHL  C nfoldH)
NU{AFGEH}
Mu{A-GEH N
(AP) il - M LW EA (@ EH) (GER)
Nw{AFGE=H
(cum CATSER e he)eGRR)
NU{A+-G =H"}
Nw{AFGEH}
(sPy) = mV...Vi<s O
nUUi:l{AFGa(ﬂ ‘:H}

Figure 5.3: Proof Rules

provides the loop invariant which generalizes the progrites at a particular point within

a loop. This is exemplified later in the proof of the Sum prograe give in Section 5.5.

3. Translation into equivalent condition. This is useful flee reduction of proof size by the

use of relative safety (e.g., symmetry), as to be explain&kiction 5.6.

4. Strengthening oinductive invariantin the context of verification using Manna-Pnueli’s

universal invariance rule to be discussed in Section 5.10.2

Finally, thesplit (sPL) rule converts a proof obligation into several, more sgexgd ones.
Given an assertio® = H, a proof shall start witlil = {0+ G = H}, and proceed by repeat-
edly applying the rules in Figure 5.3 to it. The proof finiskéten there are no more obligations

left to be proved. We will state the soundness of our pro&g@nd its proof in Section 5.7.

5.5 Proof Scope Notation and Simple Examples

We may apply the.u rule to the example of Section 5.1. Initially we hae= {0+ p(X) |=
X =2x7?Y}. Applying theLu rule using both CLP clauses andky, results in a seffl’ of proof

obligations containing the two proof obligations:
e {PX)EX=2xH}FX=0=X=2x? and

o {P(X) =X =2x}H p(X—2) =X =2xP.
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The first obligation can be discharged using tirerule sinceX = 0 = X = 2x?Y obviously
holds. We prove the second assertion ugirgWe notice that the assertigiX) = X = 2x?%
is in the set of assumed assertions. Here we want to provelfmgubsumption and the residual
obligation to establisip(X) =X =2x?Y) > (p(X — 2) = X = 2x?). Now consider the sub-
stitutiono = {X — X —2,Y + Z}. Obviously, the subsumptiop(X — 2) |= p(X)o holds and
can be proved byppr. Moreover, the residual obligatioh—2 =2 x Z = X = 2x?Y also holds
by DP (consider substitutiny with Z +1).

Explaining the proof in English as above is rather tediouser&fore here we introduce our
flavor of proof scope notation, in order to compactly write firoofs. We show the features of
our scope notation by using it to represent the proof justagmed, in Figure 5.4. Notice the

followings:
¢ We write the original assertion to be proved above a hor&dime.

¢ We never write down the set of assumed assertions in the smipdon, but we assume

that it is accordingly updated at every rule application.

¢ At the right end, we write down the explanation how the agsetias been derived. The

information denotes which rule is applied to which anceatsertions.

e The application ofLu rule results in a set of assertions indexed using alphalget (ee

assertions 2a and 2b in Figure 5.4), each of which must eaiyte discharged.

e The application ofap or cuT spawns two new obligations: the subsumption (4s.1) and
residual obligation (4r.1). The numbering 4s.1 denotediteeassertion (1) in the proof
of subsumption (s) to prove assertion no. 4 in the main prbo#ir.1, r denotes residual

obligation.

e We represent the discharging of an assertiombyand AP as the formula-O, denoting
true. Note that by ruleop and AP, a discharged assertion is removed from the set of
obligations. When substitution of existential variablesiécessary in the proof usimg,

we provide the mapping in the explanation part.

We provide here as another example the proof of the symmebepty of the two-process
bakery algorithm (Example 4.9 on Page 95). We have presehgerklative safety expression
that represent the symmetry as the formula (4.6) on Page B&.cdmplete proof is shown in

both Figures 5.5 and 5.6.
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1] p(X) EX =2x?

2a| X =0=X=2x% Lul
2b | p(X—=2)=EX=2x% Lu1l
3| -0 DP 2a
4| -0 AP 1,2b

4.1 p(X—=2) = p(X—2) AP1,2b
4s.2| -0 DP4s.1

4r1|X—2=2xZEX=2x? AP12b
4r2 =0 DP4r1{Y —Z+1}

Figure 5.4: Scope Notation Proof of First Example

For this proof, initially,[1 = {0+ p(L1,L2,X,Y) |= p(L2,L1,Y,X)}, represented as the asser-
tion 1 in Figure 5.5. Using theu proof rule, and all the clauseg to k7 of Program 3.15, we
perform an unfold of obligation 1 obtaining a new set of probfigationsll’, which includes
proof obligations containing the assertions 2a to 2g rasy, in Figure 5.5. Let us focus on
the assertion 2b. Using proof rukey and CLP claus&s of Program 3.15, we obtain assertion
52. We then apply thep rule to assertion 5 using assertion 1 as the induction hysith We
show the subsumption and residual obligation proofs ofARispplication in Figure 5.6. Other
assertions from 2c to 2g are proved similarly. In proving r@ahypothesis applicatiom) is
necessary.

As our next example, we provide the proof of the assertion

p(0,0,0,N,Sf),N >0k St = (N2—N)/2

on Program 3.4, which, note again, is a forward CLP model offfarm 3.1 with final variables.
The proof is shown in Figure 5.7.

It is not possible to establish obligation 1 without using tuT rule. CUT strengthens an
assertion by weakening (generalizing) its lhs. For thippee, we replace obligation 1 with the
stronger obligation 2. In this case, we often call the Ihgadiigation 2 as doop invariant because
it essentially represent the loop invariant of the whiledpas to be explain in Section 5.8.3. Itis

called invariant because when we can complete the prootiaotively by an application okp

2after performing right unfold, we may obtain existentiatipiantified variables (prefixed with “?"). This is not
the case with left unfold since the lhs part of an assertiahésnegated part of the formula (recall thats (3 is
equivalent to-a Vv 8) such that existential quantification in the lhs is transfed to universal quantification for the
whole assertion.
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1 p(l—la L27X7Y) |: p(L27L17Y7X)
2a L]_:O,LZZO,X:O,Y:O):p(Lz,Ll,Y,X) LUl
2b| L1 =1,X=Y+1,L7=0,p(L],L2,X"Y) = p(L2,L1,Y,X) LUl
2c|L1=2,(Y=0VX<Y),L;=1p(L],L2,X,Y) = p(L2,L1,Y,X) LUl
2d | L1 =0,X=0,L; =2,p(L},L2,X"Y) |= p(L2,L1,Y,X) Lul
2e| Lo=1Y=X+1L,=0,p(L1,L5 X,Y") = p(L2,L1,Y,X) LUl
2f | Lo =2,(X=0VY < X),L] =1,p(L1,L},X.Y) = p(L2,L1,Y,X) LUl
29| L, =0,Y=0,L5=2 p(L1,L5X,Y') = p(L2,L1,Y,X) LUl
3|L1=0,L2=0,X=0,Y=0FL2=0,L1=0,Y=0,X=0 RU 2a
4| -0 DP3
5/ L1=1,X=Y+1L]=0,p(L]L2X.Y)
ELi=1,X=Y+1727=0,p(L2,L7,Y,?X") RU 2b
6| -0 AP 15
7| L1=2,(Y=0VvX<Y),L]=1p(L},L2,X,Y)
ELi=2(Y=0VvX<Y), L] =1 p(Lz,L],Y,X) RU 2C
8| -0 AP 1,7
9|L1=0,X=0,L7=2p(L],L2,XY)
=L =0,X=0,2L7 =2, p(L2, LT,Y, ?2X") RU 2d
10| -O AP 1,9
11| L, =1Y =X+1,L5=0,p(L1,L5 XY
ELo=1Y=X+127=0,p(2L},L1,?Y" X) RU 2e
12 | -O AP 1,11
13| L, =2,(X=0VY < X),L, =1,p(L1,L5, X,Y)
ElLy=2(X=0VY <X),2LY=1p(?LY5,L1,Y,X) RU 2f
14 | -O AP 1,13
15| L, =0,Y =0,L, =2, p(L1,L5,X,Y’)
=Lx=0,Y=0,7L = 2,p(7L5,L1,?Y" X) RU 29
16 | -O AP 1,15

Figure 5.5: Symmetry Proof of Two-Process Bakery Algorithm

in just one more re-visit of0), any possible state of the program(@f necessarily satisfies the
Ihs of obligation 2, projected to the main variables of thedicatep. For this use ofcuT to be
valid, we also have to establish the subsumption 2s.1 ancethidual obligation 2r.1. We also
provide their proofs in Figure 5.7). Both 2s.1 and 2r.1 cainfreediately discharged usimzp.

To prove obligation 2, we applyu producing 3a and 3b. 3a corresponds to the path that
exits the program loop and reaches the end of the progrante ®hicorresponds to the path
that runs through the loop body. Here we can further applyo 3a producing 4, which can be
immediately established kyr. In proving 3b, we apply.u twice resulting in 7.

Notice that 7 actually has the obligation 2 in its set of asstimssertions. This we can use
as induction hypothesis to establish 7. The use of 2 as a hgpistto prove 7 is justified by
the proofs of the subsumption 8s.1 and the residual obtige8i.1, where obligation 2 entails

obligation 7.
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6.1 Li=1,X=Y+1L}=0,p(LLs,X.Y) = p(Ly,La,XY) APL5
6s.2| -0 DP6s.1

6ril|Li=1,X=Y+1L,=0,p(LaLLY,X)
ELi=1X=Y+12,=0,pLa2lY,X") APLS5
1
6I’.2| -0 pp6r1{X" — X' L] — L]}

Figure 5.6: Subsumption and Residual Obligation Proofs of the Symmtoof of the Two-
Process Bakery Algorithm

We note in examples such as Sum the rhs of the oblig&ica (N2 —N)/2 is in a special
form that only refers to variables that are not updated thinout the unfolding. In this case the

proof of residual obligations such as 8r.1 is typically easy

5.6 Redundancy, Global Tabling, and Symmetry Reduction

5.6.1 Redundancy and Global Tabling

There is an important principle which gives rise to optiniiza in the proof process, that of
a redundancybetween obligations. The essential idea is based on thewalbies that when
G' = H’ has been established in one part of the proof tree, we mayt tseoncludeG = H
when(G' =H’)> (G = H) holds.

Redundancy gives rise global tablingwhere in the application ofp, we use as assumed
assertion, not only a left-unfolding ancestor of the curdligation, but also any assertion that
has been encountered by the left unfolding process.

To accommodate global tabling, we update our proof rulesigdifé 5.3 into those shown
in Figure 5.8. The rules in Figure 5.8 manipulates a glodaletd instead of a set of assumed
assertionsA as in Figure 5.3. An important point here is that the globble& is independent
from any obligation while the set of assumed assertisa component of an obligation. As
such, in Figure 5.8, the obligations no longer Bagttached and they accordingly take the same
form as assertions.

We note that the rules of Figure 5.8 is more powerful than thesrof Figure 5.3 since the
set of assumed assertioisn Figure 5.3 is always a subset of the global tableHence, if we
manage to prove an obligation by an applicatiompfaccording to Figure 5.3, the same proof
can always be done with the of Figure 5.8. The reverse, however, does not hold. Neviesbe

here we do not make any claim that the rules of Figure 5.8 artlgtmore powerful than those
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1 p(O,O,O,N,Sf),NZ(”:Sf:(NZ—N)/Z
2| p(0,X,SN,Sf),S= (X?—X)/2,X<N,N>0

=St =(N2-N)/2 cutl
3a| p(Q,X,SN,Sf),S=(X>-X)/2X=N,N>0

=St =(N2—-N)/2 LU 2
3b| p(L,X,SN,Sf),X <N,S=(X?-X)/2,X <N,N>0

=St =(N2—-N)/2 LU 2
4]S=5,S=(X2-X)/2,X=N,N>0}=S; = (N>-N)/2 LU 3a
5| -0 DP4
6| p(2,X,S,N,S),S =S+ X,X < N,S= (X2-X)/2,

X<N,N>0} S =(N2-N)/2 LU 3b
7| p(0,X;S,N,Sf), X' =X +1,S =S+ X, X <N,S= (X2-X)/2,

X<N,N>0f S =(N2-N)/2 LU 6
8| -O AP 2,7

2s.1| p(0,X,SN,Sf),X=0,S=0,N>0
= p(0,X,SN,S;),S=(X?-X)/2X<N,N>0 cuTl
2s.2| -0 DP2s.1

2r1| S =(N>-N)/2[ =S =(N?-N)/2 cuTl
2r2| -0 DP2r.1

8s.1| p(0,X',S,N,Sf), X' =X +1,S =S+ X,X < N,S= (X?>-X)/2,
X <N,N>0FE p(0,X,S,N,Sf),S = (X% -X)/2,X’<N,N>0 AP2,7
8s.2| -O DP8s.1

8rl| S =(N2-N)/2,X'=X+1,S =S+ X, X <N,S= (X2-X)/2,
X<N,N>0kE St =(N>-N)/2 AP 2,7
8r.2| -0 DP8r.1

Figure 5.7: Proof of Sum

of Figure 5.3.

5.6.2 Proof Using Redundancy

In Figure 5.9, we show a proof of the mutual exclusion propeftthe two-process bakery
algorithm (Section 4.2). In Figure 5.9 we do not provide thegbs of the subsumptions and
residual obligations. Since these are simple, we providesmme of their proofs in Figure 5.10.
In Figure 5.10, we assume that the variafesndY take nonzero integer values. The proof
uses the principle of redundancy between assertions, wieidenote any redundant assertion
using “‘RED m,n” wheremdenotes the assertion to which assertigmredundant. BotRED m,n
andAP m,n denote the application af in Figure 5.8, but differentiate them based on whether

the assumed assertiombeing used is an ancest@® m,n) or not RED m,n).
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THNWY{GEH}  There exists a substitutianof
T existential variables ifl s.t. G|=Ho
T FNw{G = H}
‘TU{G |:H}|—|_| U Uinzl{Gi ):H}
TFMW{GE=H
(RU) GGER L unfold)
THAU{G=H'}
TFNW{GEH
(AP) G W eT (G H) > (GEH)
TN
TFNW{GkEH
(cum) VCERL G e (G
THAU{G EH
THNw{GEH)
THM U U {G @ =H}

(DP)

(Lu) unfold(G) = {Ga,...,Gn}

(sPL) QV...Vee 0O

Figure 5.8: Proof Rules with Global Table

5.6.3 Proof Using Symmetry Reduction

In this section we present symmetry reduction using ourfarahod. We repeat our discussion
in Chapter 1 that we advocate a methodology where we firdbledtahe relative safety assertion
we wish to prove. We then use the assertion for reduction eMpecifically, we use the assertion
to establish redundancy (Section 5.6.1).

As has been discussed in Chapter 1 and Section 4.5, this chthmore powerful that it
can handle more cases of symmetry than other approachesisti@cause we only consider the
verification of safety properties, allowing us extra powehandling arbitrary automorphisms on
the collecting semantics.

In the Section 5.5 we have demonstrated the proof of symnpetiyyerty in the two-process
bakery algorithm using our proof method. Here we use the sstmynassertion to obtain an even
smaller mutual exclusion proof then that of Figure 5.9 ofttle-process bakery algorithm. The
reduced proof is shown in Figure 5.11.

Figure 5.11 is similar to Figure 5.9 up to assertion 11b, dtiwpoint the assertions that are
not yet proved are 11b and 2b.

We apply thecuT rule to 11b obtaining 13. The subsumption and residual ahbg proof
for the application ofuT here is shown in Figure 5.11 as the proofs of 13s.1 and 1&spec-
tively. In the proof of 13s.1 we again us®T rule to strengthen 13s.1 to 13s.2. Here 13s.2 is the

symmetry assertion itself of the two-process bakery allgori(see Example 4.9 on Page 95 and
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1] p(2,2,X,Y) =0

2a| p(1,2,X,Y), (Y =0VX <Y) DO Lul

2b| p(2,1,X,Y),(X=0VY < X) DO Lul

3a| p(0,2,XY),Y=0EDO LU 2a

3b| p(1,1,X,Y),(Y =0VX <Y),(X=0VY<X)=O LU?2a

da| p(2,2,X".Y),Y=0E0O LU 3a

4b| p(0,1,X".Y), (X' =0VvY < X'),Y=0FDO LU 3a

5| -0 AP 1,4a

6| p(2,1,X".Y),Y =00 LU 4b

7| p(L,1,X"Y),Y=00O LUG6

8| p(0,1,X"Y),Y =00 Lu 7

9| p(2,1,XVY),Y =00 LU 8

10| —-O AP 6,9
11a| p(0,1,X"Y),Y =00 LU 3b
11b| p(1,0,X,Y"),X =00 LU 3b

12| —O RED8,11a
13| p(1,2,X,Y"),X =00 LU 11b
14| p(1,1,X,Y"),X =00 LU 13

15| p(1,0,X,Y"),X =00 LU 14

16 | —O AP 11b,15
17a| p(1,1,X,Y),(Y =0VX <Y),(X=0VY <X)|=O Lu2b
17b| p(2,0,X,Y),X =00 LU 2b

18| -O RED3b,17a
19a| p(1,0,X,Y"), (Y =0vX<Y'),X=0FEO LU 18b
19b| p(2,2,X,Y"), X =0=0 LU 18b

20| -O RED 11b,19a
21| O AP 1,19b

Figure 5.9: Mutual Exclusion Proof of Two-Process Bakery Algorithm

Section 5.5). We have proved 13s.2 in Section 5.5, and it neetle proved again here. 13 is
now redundant to 8 and the proof need not proceed further.imiéady prove 2b by applying
symmetry assertion obtaining assertion 15, and then ésttdtd redundancy to 8.

Notice that the proofin Figure 5.11 is much smaller than tlo®fin Figure 5.9. The example
demonstrates that our proof method is capable of handlimgrstry reduction in the verification
of safety properties. Recall in Chapter 4 that our asseldioguage is powerful enough to specify
even “not-quite” symmetry properties in concurrent progsaOur proof method can also prove
such assertions, which can in turn be used for reducing #eedfiother proofs. We can even
handle examples that are not handled by previous approashes as the symmetry reduction
for Szymanski’'s mutual exclusion algorithm.

Other than symmetry reduction, our proof method can alsonglayed for proving and

using more general relative safety assertions such as ctatinity and serializability, whose
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55.1\ p(2,2,X".Y),Y =0 p(2,2,X")Y) AP1l4a
5s.2| -0 DP5s.1

5r1| 00 Aplda
5r.2| -0 DP5r.1

12s.1] p(0,1,X,Y),Y =0 p(0,1,X',Y),Y =0 ReD8,1la
125.2| -0 DP12s.1

12r.1] OO REDS,1la
12r.2| -0 DP12r.1

Figure 5.10: Subsumption and Residual Obligation Proofs of the Mutualision Proof of the
Two-Process Bakery Algorithm

instances we give in Example 4.16 (Page 105) and ExamplgR&ge 106).

5.7 Correctness

5.7.1 Soundness

The condition in which a proof can be completed using thesrafd-igure 5.8 (and hence, as has

been argued in Section 5.6, also Figure 5.3) is stated iroltening theorem.

Theorem 5.1 (Proof of Assertions). G = H holds if, starting with the proof obligatioR =

{0+ G = H}, there exists a sequence of applications of proof rulesrésafits inM = 0.

Proof. First we start by reasoning about theundnessf each proof rule, that is, that the proof
of the obligations in the conclusion would establish thegailon of the premise.

The ruleru is sound because by the logical semantics of unfold (Prtposh.1 on Page
112), wherH’ € unfold(H) thenH’ |= H. Therefore, the proof of the obligatidd = H can be
replaced by the proof of the obligatidd = H’ sinceG = H’ is stronger tharG = H, that is,
(GEH)>(GEH).

Similarly, the rulepp is sound becausé = H actually holds (assumed to be proved sepa-
rately), and hence can be removed from consideration.

The rulecuT is sound because we replace an obligat®p- H by a stronger obligation
G =H.

The rulespLis sound because the proof of alléf@ = H for all i such that I< i < ks the
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1] p(2,2,X,Y) =0

2a| p(1,2,X,Y), (Y =0VvX<Y) O Lul

2b| p(2,1,X,Y),(X=0VY < X) DO Lul

3a| p(0,2,X"Y),Y=0FEDO LU 2a

3b| p(L,1,X,Y),(Y=0VX <Y),(X=0VY<X)=0O Lu?2a

da| p(2,2,X".Y),Y =00 LU 3a

4b| p(0,1,X"Y),(X'=0VvY <X'),Y=0F0O LU 3a

5| -0 AP 1l4a

6| p(2,1,X",Y),Y =00 LU 4b

7| p(L,1,X"Y),Y=00O LU 6

8| p(0,1,X"Y),Y=00O Lu7

9| p(2,1,XVY),Y=0D LU 8

10| —O AP 6,9
11a| p(0,1,X",Y),Y =00 LU 3b
11b| p(1,0,X,Y),X =0[=0 LU 3b

12| -O REDS8,11a
13| p(0,1,Y',X),X =0[=0 cuT11b
14| -O RED 8,13
15| p(1,2,Y,X),(X=0VY < X) DO cuT2b
16 | O RED 24,15
13s.1| p(1,0,X,Y"),X =0k p(0,1,Y',X),X =0 cuT1lb
133.2\ p(L1,L2, X,Y") E p(L,L1,Y', X) cuT 13s.1 (Proved)
13r1| 00O cuTllb
13r.2| -0 DP13r.1

Figure 5.11: Reduced Mutual Exclusion Proof of Two-Process Bakery Athar

proof of G, (g1 V: V @) = H which is equivalent t& = H by the side condition of the rule.

The ruleLu is partially soundin the sense that whamfold(G) = {G;, ...,Gn}, then proving
G = H can be substituted by provir@; =H,...,G, |=H. This is because by Clark completion
(Section 2.7)G is equivalent taG; V ... V G,. However, whether the addition & = H to the
tableT is sound depends on the use of the set of assumed asserttbesajpplication olp.

Recall that in the rulesp we require the proof ofG' = H') > (G = H) for G’ = H’ an
assertion in the tablg".

Assume that using our method, given a CLP progfanwe managed to conclude = H
whereG andH are goals possibly containing atoms and it is not the cageGha H can be
proved without the application afu (since otherwise trivial by the soundnessraf, DP, CUT,
andspPL). Assume that in the proof, there are a number of assumediagsd,,...,A, used
coinductively as induction hypotheses in applications\pf This means that in the proof of

G E H the left unfold ruleLu has been applied at least once (possibly interleaved wih th

126



applications of of other rules beside) obtaining two kinds of assertions:

1. Assertion< which are directly proved using rules other thanandap.

2. Assertions8 which are proved usingp using some assumed assertignin the table7

as hypothesis for £ j <n.

We may concludé€ IF (G = H) holds (cf. Section 2.5.1). From Section 2.6, this is eqenato
Im(I") = (G = H). We prove this.

First, define aefutationto an assertiofs = H as a successful derivation of one or more atoms
in G whoseanswerW has a ground substitutiamsuch thatPo AHo is false (cf. the notion of
resolution refutation in Chapter 2). We note that here, awan¥ of a goalG consisting of a
sequence of atompgy, ..., pm and a constraing is a constraint on the variables Gf such that
Wo holds if and only ifpjo € Im(I") for alli in 1 <i < m, andgo holds.

A finite refutation corresponds to resolution of finite ledmgtA step in the resolution is
achieved by left unfold u rule only. Hence a finite refutation of lengthmplies a corresponding
k left unfold Lu applications that result in a contradiction.

G = H has a finite refutation of lengthfor somek if and only if =(Tr T k= (G = H)).

Due to:

1. the soundness of other rules, DP, cuT, andspPL, and the partial soundnessiof with

the fact thaty; for all 1 <i < n are obtained fron® = H by applying these rules, and

2. all assertion€ are proved byru, CP, cUT andspPLalone,

we have:G = H holds if A; holds for all 1<i < n hold, and these hold if and only if for aill
such that K< i < n, and for allk > 0 : A; has no finite refutation of length

We prove inductively:

e Base caseWhenk =0, for all i such that I< i < n, A trivially has no finite refutation of

length 0. In other words, for all trivially Tr 10=0 = A.

e Inductive case: Assume that

For alli such that I< i < n, A; has no finite refutation of lengthor less. (5.2)

we want to prove that

For alli such that I< i < n, Aj has no finite refutation of length+ 1 or less. (5.3)
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Notice again in our assumptions above that asserfiom® proved by applyingp using
A for some 1< j < n. Because subsumption holds in every applicatioamfthis means
that for any suclB,

A > B. (5.4)

The proof is by contradiction. Now suppose that (5.3) isdathat is,A; for somei such
that 1<i < n has a finite refutation of length+ 1 or less. But due to our hypothesis (5.2),
A has no finite refutation of lengtkor less. Therefore it must be the case thabhas a

finite refutation of lengthk + 1.

Again, note that we have applied to A at least once, possibly interleaved with applica-

tions ofRu, DP, CUT, andspPL obtaining the following two kinds of assertions:

1. Assertion€ which are proved by applications sy, bP, CUT, or SPL

2. AssertionsB which are proved byp using someA; for 1 < j < nin the table as

induction hypothesis.
Then either of these must hold:

1. Some assertion of tyfigis a refutation tod; of lengthk+ 1.

2. SomeA; has a finite refutation of lengtk+ 1.

For the first case, however, regardless of the length, sihsach assertion€ are already

proved byru, DP, CUT, andspPLthat are sound, this case is not possible.

For the second case, sinBehas to have a finite refutation of length- 1, therefore there
has to be at least one assertion of tfthat is reached ik or less unfolds. Therefor&
has to have a refutation of lengkhor less. Now since (5.4) holds, then it should be the
case that som&; for 1 < j < nsuch tha#A; also has a finite refutation of lengkior less.

To see this, here notice thBthas a refutation of lengtk or less, that is;(Tr T k = B).
The conjunction of this, (5.4), antt T k= A is unsatisfiable. Therefore, by the law of
excluded middle it must be the case thdflr T k = Aj), in other words A; must have

a refutation of lengthk or less. But this contradicts our hypothesis (5.2) tiafor all

1 <i < nhas no finite refutation of lengthor less.O
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5.7.2 On Completeness

It is easy to construct an example that demonstrates thenipleteness of our method. Proving
G |= H is unsolvable in general [141], even when we assume that we &gerfect constraint
solver to solve all interpreted functions and relations.

We argue, however, that our proof method is more complete pinaof methods that only
consider one level of left unfold before applying inductieasoning, such as Kanamori and
Fujita’s [118] and Mesnard et al.s [141]. Our proof methdidws arbitrary level of left unfold
and discovers opportunistically the chance to apply indegeasoning. This approach is also
more automatable. The proof process can be considered égoaithemic search process, where
we apply inductive reasoning whenever we encounter a “tpeldedundancy” in the proof. We

provide a detailed comparison to Mesnard et al.'s proof mubth Section 5.10.1 of the appendix.

5.8 Compositional Program Analysis and Verification Framevork

There are two major approaches to program reasoning intératiire. The first of these, which
is theabstract interpretatioi35] approach is based on providing abstract descriptigmajram
states. State-space traversal is then done on abstractedptien of reachable states, which
is more efficient than concrete (unabstracted) traversawener, the approach is inherently
incomplete due to loss accuracy incurred by the abstracibis approach is also callgadogram
analysisapproach.

The second approach is originally due to Hoare and Floyd][1®@ based on composing
proofs from proofs of program fragments. Here the corressioé a program fragment is denoted
by triples of the form {¢@} t {} where@ andy are conditions and the program fragment.
Whent andt’ appear in sequence in a program, the proofsgft {@} and{¢ }t'{y'} are then
combined to construct the proof ¢p}tt’{y’}, until finally the whole program is proved. This
approach is callegrogram verification

Also central to a full-fledged program reasoning framewarkkompositionality. We may
want to verify procedures or program fragments separatedyder to simplify the whole proof
by avoiding redundant proofs. Program verification is reltyrcompaositional, while program
analysis is not. In this section we also introduce compmséi reasoning based on our proof
rules.

We argue that the difference between abstract interpoetgirogram verification, and com-
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positional program reasoning is simply tleeation at which abstraction usinguT rule is ap-
plied. In traditional abstract interpretation abstracti® applied everywhere while in automated
program verification the abstraction is done only at a poithiw each loop. Finally, in compo-
sitional reasoning abstraction is performed at procedaitgoints or fragment boundaries.
What enables the unifying of program analysis and verificain a single framework is the

view of of left unfold (Lu) as computation o$trongest postconditigrvhich we explain next.

5.8.1 Unfold as Strongest Postcondition Operator

We argue that in forward CLP models (explained in Section3},an unfold step corresponds
to a strongest postcondition computation. The strongestpadition of a conditiors, denoted
sp(t,s) is the smallest set of states to which a transippdefined by the program fragmentan

be taken from any state 81 More formally [19]:
sp(t,s) = (Ko : pt(Ro,X) AS{X+— KXo}).
The formulap; (%o, X) can be decomposed into a disjunction

P1(X0,X) V...V pn(X0,X)

where each disjunct represents a logical input-outputiosianduced by an execution path from
the start to the end program pointtoNow, the forward CLP programn, excluding the constraint
fact representing the condition of interest, represenéetix the transition relatiop; since it

consists oh clausex, . ..,Kn (excluding constraint faagt,,, 1) where claus&;, 1 <i <nis:
p(o) - p(X),pi(Xo, X),

whereX andX are the renamings of andxas CLP variables, respectively.

Now,
n

spit,s) = \/ (3K : pi (K0, R) A S{K— Ko}).
i=1

Similarly,
n+1

unfoldy ) (S) = {S|\/ O :- S =resolyx, (0 :- Ski)}.
i=1

The subset otinfold, %, (S) of goals that includep therefore corresponds sp(t,s). The result
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of resolution using.1 (constraint fact) is a go&@ which does not contain predicape hence

S does not represent program states.

Example 5.1. Let us revisit Program 3.1 whose transition relati@gmis given in Example 3.1
(Page 43), and whose forward CLP model is Program 3.3 (Padge 49

Here,sp(Suml = 0AXx=10As=2) = (| =1AXx=10As=2An>10)V(l = QAX=
10As=2An < 10). Now, there are two possible resolution steps of the goal p(0,10,2,N).
(k11) using the clauses of Program 3.3, which does not resultdness 0 : - O). The first

resolution uses the clauge:

a:- p(l, 10,2, N), N>10. Kiz3= FESO|Vp(0710727N)(K11, K7).

The second resolution uses the clagge

O:- p(Q,10,2,N),N <10. K14 = resolyg102N)(K11,Ks).

Each resolution corresponds to a disjuncsiSuml = 0AXx = 10As=2).

5.8.2 Intermittent Abstraction

In this section we present a way of engineering in our CLP é&a&ork into a general proof

method of program reasoning based on abstract intergretativhich the process of abstraction
is intermittent, that is, approximation is performed on\salected points in the proof tree, if at
all. This is an application of our theuT rule in Figure 5.3. Here there is no restriction of when

abstraction is performed. The key advantages are the fmgptwo:

1. The abstract domain required to ensure convergence @lgogithm can be minimized.

For example, to reason that= 2 after executing

Xx:=0
X = x+1
X = X+1

one needs to know that= 1 holds before the final assignment. Thus, in sgyetlicate
abstraction[80] setting, the abstract domain must contain the preé@at 0, x =1 and

x = 2 for the above reasoning to be possible whereas in our frankeilvis enough to
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use one predicate= 0, which holds right after the execution of the first statem&ntm
our discussions in Section 5.8.1, we know that our framewsdapable of computing the
strongest postcondition of the sequencexof= x+ 1, which given the input condition

Xx=0isx=2.

2. Computing the next abstract state in a transition can peresive. When done naively, ab-
stract transition in a predicate abstraction frameworkiireg exponential calls to theorem

prover [9, 80, 189].

We next show how we may perform abstract interpretationamtigular predicate abstraction,
possibly intermittently usinguT rule.

Predicate abstraction [80] is a successful method of atistri@rpretation [34]. The abstract
domain, constructed from a given finite set of predicates px@gram variables, is intuitive and
easily, though not necessarily efficiently, computablédimita traversal method of the program’s
control flow structure. Predicate abstraction has beenlwiglaployed jointly with abstraction
refinement techniques [97, 11, 10].

In the literature on predicate abstraction, the abstrastrjaion is a specialized data struc-
ture calledmonomialg41], a.k.a. cubes[9]. The abstraction operation serves to propagate a
monomial through a small program fragment (a test or a coatig group of assignments), and
then obtaining another monomial. The strength of this nektilsan the simplicity of using a
finite set of predicates over the fixed number of program béetas a basis for the abstract
description.

We choose to follow this method. However, our abstract detsoen shall not be a distin-
guished data structure. In fact, our abstract descripti@gmal is itself a goal.

Given a finite number of propositions, . .., ¢, we may abstract a go& = p(X), @into the
goal p(X), 8%, ..., 0, where

¢i when@=- ¢;
i =14 —0; when@= —;

-0 otherwise

It is obvious that

p(X), 0= p(X), 91, 0n.

From an obligatiorp(X), @ = H, thecuT rule would produce the two assertiopEX), ¢4, . .., o,

=H, andp(X), 0= p()~(),c|)’1,...,c|)§1. Since the second assertion produced holdsctbierule
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here in effect strengthengX), @ = H, to p(X),¢7, ...,¢, = H by weakening the Ihs goal of the

assertion.

Example 5.2. The intermittent (predicate) abstraction technique hasadly been exemplified
in the proof of the Sum program in Section 5.5. We refer to #taited proof in Figure 5.7. Using
CcuUT we strengthened the assertion 1 into assertion 2 by provitigg &ide the subsumption 2s.1
and the residual obligation 2r.1. In 2sifl=X = 0,S=0,N >0, ¢; = S= (X2 —X)/2, ¢ =

X <N, andd3z =N > 0. It is important to note that here the abstraction is appinermittently,

that is, only at the assertion whose Ihs goal representsotiditeon at program point0).

5.8.3 Program Verification

In this section we demonstrate how our proof method alsoiges\a verification condition com-
putation mechanism in the context of program verificatiamgPam verification was introduced
by Hoare in [100], which he attributed to Floyd. In [100] itgsalified asaxiomaticbecause of
the symbolic treatment of conditions which are constralefsending on the axioms of the under-
lying theory. In this method, given a sequential programmantt which is any statemergtmt

in our simple programming language of Figure 3.1, or any setjal composition of statements
calledblocks we provetriples of the form{@} t {w}. The triple says that if the execution starts
in a states wheres = @, then if the execution of terminates, we reach a staevheres = .

@ is called thepreconditionand ) the postcondition The triple denotes partial correctness of
the fragment since it may still hold independent on whetherctually terminates or not. There
is a stronger notion of correctness, which is thatatél correctness where we also require that
t terminates. However, this belongs to the class of livenegsgties which is outside the scope
of this thesis.

The program verification approach includes a number of pnalek to infer the triples. For
our simple programming language they are shown in Figurg.5Rrogram verification only
handles structured program such that we exclude the coasioleforgotacs.

Being able to perform program verification distinguishessfrmmework from normal abstract
interpretation. In a normal abstract interpretation fraume, it is not easy to provide a simple
abstraction that would be equivalent or close approximatioloop invariants. This is because
the abstraction applies at every condition or state of anarag In contrast, in our framework,

abstraction can be applied intermittently (Section 5.8uh that we can apply loop invariants
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(composmioy (@it {n}t{y}
{0} tat2 {W}
(ASSIGNMENT)
{P{x—E}} x = E{y}
(SKIP) -
{9} skip {¢}
(k1) [OABI (W) QA-B= U
1 {@} if (B) then tendif {Y}
(IF2) {onBtu {4} {@A—B}t2 {W}
i {@}if (B) then t; elsety end if {Y}
(WHILE) {onB} t {@}
{@} while (B) do t end do{pA B}
(IMPLIED) ¢=0 {@t{y} =y
{g}t{y'}

Figure 5.12: Program Verification Proof Rules

to generalize the context of a loop at the program point atkvitihe loop is located. When
the user provides all the loop invariants necessary for thgram, the proof process terminates
automatically.

We now discuss how we may accommodate program verificationrframework. We as-
sume that a sequential progr&rhas been translated into CLP, and we want to veiggy} P {Wp}.
Here we consider provin{p} t {W} compositionally, under various cased pivheret is a frag-
ment ofP. We make use ofu, cuT, andAP rules.

Casd is:

e A sequential compositiont; t,. According to thecomposiTIONrule (Figure 5.12), we

provide a conditiom and we prove separate{w} t; {n} and{n} tz {W}.

Suppose tha starts at program poirt), t; at (I’), and the program point right afteris

(I"). We start with an obligation

p(l,)N(,>~(f),(p()~() ): lIJP()Zf)

We apply our proof rules according to the statements,istopping upon producing obli-
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gations of the form
p(ll,)z,kf), W(X) ): l.IJP()Zf)
This is a proof o @} t1 {n}.

We then start with applying our rules to the last assertitopg@ng upon producing obli-

gations of the form

p(|/7>2a)zf)a lIJ()Z) ): llJP()Zf)
Here we claim that we have establisheg t> {W}.

An assignment.Suppose that we haveprogram variablesg, . . ., X, and we want to prove
{@} t {W}. wheret is the sequence the single statement= f(X) for somei such that

1 <i <n. Herety represents the transition relatiofk, X') = x = f(X) A A\ Xj = Xj. By

a translation of the programinto a forward CLP model with final variables, we have the

following CLP clause:

p(1, X, X¢) :- (X, X'), p(nextlabel(1), X', X).

Assumingt is located at program poirt), here we again start with the obligation

P, X, X ), (X) = Wp(Xs).
We applyLu to this obligation using the above CLP clause obtaining thigation
p(nexuabel(l)a)zla)zf)v-[()zv)zl)v(p()z) = qJP()Zf)

Here what we have done is a strongest postcondition proijpagetablishind @} t {sp(t,¢)}.
Sincesp(t,®){x — f(X)} is equivalent tap, this corresponds to the use of thesIGN-

MENT axiom of Figure 5.12.

In casesp(t, @) is not (trivially) equivalent tap, we still need to usevPLICATION rule of
Figure 5.12, to establishg} t {W} by proving, as an obligatiorsp(t, ®) = W. Here we

applycuT rule to the last obligation above obtaining

p(nextlabel(1), X', X¢ ), P(X') = wp(Xs).
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The side condition of theuT rule requires us to prove the subsumption

p(nextlabel(l), X', X;),1(X,X"),@X) |= p(nextlabel(),X’, X ), y(X").

We prove this in a special way by proving

(X, X'),0(X) = y(X'),

which is indeed the very proof af(t, @) = W. Other than the subsumption, we also prove

the trivial residual obligationsp(Xs) = Wp(Xs).

A skip. In casd is skip, it represents the transition relatiofX, X') = X = X'. Assuming the

statement is located at program pofhit we have in the forward CLP model the clause

p(1,X,X¢) - p(nextlabel(l), X, X).
We apply theLu rule using the above clause to the obligation
p(1, X, Xt), ®(X) = Wp(X+)
obtaining the new obligation

p(nextlabel(1), X, Xs), o(X) = wp(Xs).

This process is equivalent to the application of siker axiom of Figure 5.12.

In casepis not trivially equivalent tap, we need to apply thempPLICATION rule of Figure
5.12 to provep = Y. This is done in our framework by applying tleeT rule to the last

obligation obtaining the new obligation

p(nextlabel(1), X, X ), p(X) = Wp(Xs).
The application ofuUT requires us to prove the subsumption

p(nextlabel(), X, Xs),p(X) = p(nextlabel(l), X, X¢), p(X).
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This we may prove by instead proving the sufficient condiggX) = Y (X), which is

exactly the proving op = ) mentioned above. The residual obligation here is trivial.

An if conditional without else part. In caset isif () then t; end if , according to the

IF1 rule of Figure 5.12, we need to prove separafey. B} t1 {n} andoA - = n.

Assumingt starts at program poirt), we have in our CLP model d? the clauses

p(1,X,Xs) :- B(X), p(nextlabelthen(l),X,Xs).

p(1,X,Xs) :- —B(X), p(nextlabel(l), X, Xs).
We start the verification again with the obligation
P, X, Xe), o(X) = Wp(Xs).

We apply a complete left unfoldu using the two clauses of CLP above resulting in the

following two obligations:

p(nextlabelther(l), X, Xs),®X),B(X) |= Wp(Xr).
p(nextlabel(), X, Xs),o(X), ~B(X) = Wp(Xs).

Here we assume that we provégA 3} t1 {{} using our rules, which means that there is

an application of our proof rules which transforms the fitdigation into

p(nextlabel(1), X, X ), p(X) = Wp(X).

For the second obligation above, we applyT rule obtaining the same obligation. The

application ofcuT rule requires us to prove the subsumption

p(nextlabel(), X, Xs),p(X), ~B(X) = p(nextlabel(1), X, X¢ ), P(X).

This we establish by proving the sufficient condition

P(X), ~B(X) = W(X).

which indeed is the proof @A =3 = Y. The residual obligation here is again trivial.
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e An if conditional with else part. In caset isif (B) then t; else t; endif then ac-

cording to theF, rule of Figure 5.12 we replace the obligation with the problbath the
obligations{@A B} t1 {Y} and{@A B} t2 {W}.
Again, assuming starts at program poirt), we have in our CLP model d? the clauses

p(1,X,Xs) :- B(X), p(nextlabelthen(l), X, Xs).

p(1, X, X¢) :- —B(X), p(nextlabelelsgl), X, Xr).

We start the verification again with the obligation

p(lv)za)zf)>(p()z) ): LIJF’()Zf)

We apply a complete left unfoldu using the two clauses of CLP above resulting in the

following two obligations:

p(nextlabelthen(l),X, X¢), @(X),B(X) |= Wp(X).

)
p(nextlabelelsgl), X, Xs),o(X), ~B(X) = wp(Xs).

Here we assume that we proved bétpn B} t1 {Y} and{@A -} t> {Y} using our rules,
which means that there is an application of our proof rulegcwiransforms the both

obligations into the single obligation

p(nextlabel(1), X, X ), p(X) |= Pp(X).

Hence we have applied program verification rules to piaplet {{}.

A while loop. Sayt is of the syntaxvhile () do t; end do. We therefore want to establish
{@} while (B) do t; end do {y}. Here we require &op invariant which is@itself in the
WHILE rule of Figure 5.12. However, in general we may fail to prége\ B} t1 {¢@}. We

therefore allow the user to manually provide a loop invartawhere@=- €.

To provide a loop invariant, we require the applicationnfLICATION rule, such that we

decompose the original obligation into the three obligagio

1 o=¢,

2. {€}t {EA-B}, and
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B.EAB=0.

Again we assume thatis located at program poirit). In our framework, we start the

proof with an obligation

p(l,)N(,)~(f),(p()~() ): lIJp()Zf)

We first applycuT rule to this condition to obtain the new obligation

p(I,X,Xf),E(X) ): l-lJP(Xf)

Here we prove at the sidgX) = &(X) which is the sufficient condition for subsumption,
establishing verification obligation 1 above. The residimdigation for this application of

cuTis trivial: Pp(Xs) = Wp(Xs).

By the translation oP into a forward CLP model, we have the following CLP clauses:

p(I,X,Xs) - B(X), p(nextlabelthen(l), X, Xs).

p(1,X,Xs) :- —B(X), p(nextlabel(l), X, Xs).

We then unfold our last obligation completely using thes@ises obtaining the obligations

a. p(nextlabelthen(),X,X;),&(X),B(X) |= Yp(Xr).
b. p(nextlabel(1),X,Xs),&(X),-B(X) = Wp(Xf).

Itis important to note that here, since we have applied aldtild, the “ancestor” assertion
p(l, X, Xs),E(X) = Wp(Xs) is now kept in the table.

Further, we assume that we proviggh B} t1 {§} by IMPLICATION rule, where we proved

separately{¢ A B} t1 {a} anda = & for somea. Here we assume that we have proved
{EAB}tu {a}.
Also sincet; is a loop body, the next program point of its last statemegbid=rom these,

we may replace the obligation (a) above with

p(1, X, Xs), 0 (X) = Wp(Xs). (5.5)

By the previous application afu, here the table contains the assertigh X, X;),&(X) =

Wp(Xs). We use this assertion to prove (5.5) by an applicatioarofin this proof, we are
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required to prove both the subsumption and the residuajatidin. The residual obligation

in this case ispp(X;) = Wp(X;) and is trivial. The subsumption here is the obligation

This holds when we prove the sufficient conditiaiX) = &(X), which is one of the

premises of themPLICATION rule mentioned above.

For obligation (b), we apply theuT rule to it obtaining the new obligation

p(nextlabel(), X, X ), p(X) = Wp(X).

Here we prove the sufficient conditi@iX ) A =B(X) = w(X) of the subsumption, which is
the proof of the program verification obligation no. 3 abo&gain the residual obligation

here iswp(X;) = Wp(X¢), which is trivial.

We note that in our framework, when provifgusing program verification technique we

would eventually encounter obligations of the form

p(Q, X, X), Pp(X) = Wp(X¢).

that is, when the left unfolds reach the end of the programoytranslation oP into forward

CLP model, we have the constraint fact

p(Q, X, X).

Unfolding using this fact results in the obligatidm(X) = Wp(X) which immediately holds.
Note that what we require as ingredients of a verificatioriesyswith automated condition
generation based on strongest postcondition are the ruleap, and applications oEuT at
fragment boundaries treated in Figure 5.12. Both the integnt abstraction approach (Section
5.8.2) and program verification approach presented heracammmodated by our overall algo-
rithm to be presented in Chapter 6. The key is the specificati@bstraction points by the user

at which to apply thecuT rule.
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Example 5.3. We apply program verification technique to the verificatibthe Sum problem
in Example 5.1 (Page 131). A proof using our rules has beeriged in Figure 5.7 (Page 122).
The proof can be considered to have used intermittent abistina(Example 5.2 on Page 5.2).
Here we argue that it is also a program verification proof.

Notice that here we prove a while loop:

{x=s=0,n>0}
(0) while (x< n) do
(1) S 1= S+X
(2) X = x+1
end do

{s=(n—n)/2}

Using theIMPLICATION rule we provex=s=0,n>0=s= (x¥*—x)/2,x<n,n>0and

{s=(x¥*—x)/2,x<n,n> 0}
(0) while (x<n)do
(1) S 1= S+X
(2)  x:=x+1

end do

{s=(n—n)/2}

This corresponds to the application@fT to obligation 1 which produces obligation 2 in Figure

5.7.

We now apply thevHILE rule of program verification obtaining the two obligations

{s=(¥*—-x)/2,x<n,n>0}

(1) S 1= s+X

(5.6)
(2) X = x+1
{s=(¥*—=x)/2,x<n,n>0}
and
s=(¥*-x)/2,x=nn>0=s=(n>—n)/2. (5.7)

The second obligation obviously holds, and this correspémthe proof of obligation 4 in Figure
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5.7. Note that here we deviate from what has been suggespedue a while conditional in that
we do not use theuT rule. Nevertheless we still prove the same obligation (5.7)
To prove (5.6) we perform strongest postcondition comparadcross the two statements.

According to our program verification technique, here wevprihat

{s=(¥*—x)/2,x<n,n>0}
(1) S 1= S+X
(2) X = Xx+1

{a}

anda = s= (x*—x)/2,x< n,n > 0 for somen. Herea is the strongest postcondition across the
two statements, which s= (x> —x)/2,x < n,n> 0. Hencea = s= (x> —x)/2,x<n,n >0 is
immediate.

In Figure 5.7 we perform two left unfold steps from 3b to 6, ahen from 6 to 7, which
correspond to the strongest postcondition computatioosadhe two statements (note that un-
folding corresponds to strongest postcondition, as has diseussed in Section 5.8.1). We then

apply theap rule whose subsumption test establishes s= (x> —x)/2,x < n,n> 0.

5.8.4 Compositional Program Reasoning

Our cuT rule also allows us to perform compositional verificatiorerelwe can prove program
fragments or procedures separately and combine the véiofiazsults at the end.

Let us now verify the multiprocedure Program 3.12 with itsFOinodel Program 3.13. Ac-
cording to [179] (from which the example is taken) here we twaremonstrate that at program
point(2) in themainprocedure, the assignment= a x b is not necessary since @ the relation
t = ax b always holds. The property that &) in mainthe relatiort = a x b can be expressed
as the assertion

main(O, T,A B,Tf,Af,Bf) |: Ts = As x Bs. (5.8)

To prove the above assertion, there are two methods thatwesea The first, non-composit-
ional method is to applyu as usual until we can establish an assertion either viacgijdn other
rules (mainlybp or AP). The second alternative is to prove the assertion compoalty since
the program has a compositional structure. This is done bylfir proving an assertion on the

procedurep and then using this assertion we prove (5.8).
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1| p(0,T,A B, Ts,A,Bf), T =Ax B =T = Af x By
2a p(l,T,A, B,Tf,Af,Bf),T =AX B,A:O‘: Ts = As x By LUl
2b | p(2,T,AB,Ti,Ar,Bf), T =AxB,A% 0= Ty = As x By Lu 1
3 p(Q,T,A,B,Tf,Af,Bf),T =AxB,A=0 ):Tf = As x By LU 2a
4| Tr = Ar x Bs,At =0 =Tt = Ar x Bs LU 3
5| -0 DP4
6| p(3,T,A—1,B,T;,A;,Bf), T =AxB,A#£0 = T; = A; x By LU 2b
7| p(0,T,A—1,B, T A ,B),p4,T A,B, TiA;,Bi), T=AxBA#0
|:Tf:Af><Bf LU 6
8| p(0,T,A-1B,T A B),p(Q,T" A B, T,A;,Bf), T =A x B,
T=AxB,A#0ETi = At x B¢ LU 7
9| p(0,T,A—1,B, T, A;,B;), Tr =A; x B;, T =AxB,A£0=T; =A; xB; LUS8
10| O DP9
1| main(0,T,A B, Tt,As,Bt) = Tr = At x B¢
2 main(l,T’,A,B,Tf,Af,Bf),T’ =AxB |: T: = Af x Bs LUl
3| p(0,T’,AB,T”,A,B),main2, T" A B, Tr,As,B;), T/ = Ax B
= T = A X Bg LU 2
4 mair‘(Z,T”,A’,B’,Tf,Af,Bf),T” =AxB |: T; = As X Bs CuT3
5| Tr =As x Bt = Tr = Af x Bs LU 4
6| -0 DP5

Figure 5.13: Compositional Proof of Sharir-Pnueli's Example

Here we demonstrate the compositional proof. We first prbeddllowing assertion on the
procedurep :

p(ovTaAaBanvAfan)T:AXB):Tf:AfXBf- (59)

We use this assertion in the proof of (5.8).

The complete compositional proof of (5.8) is shown in Fighrg3. In assertion (3) in the
proof of (5.8), we use the assertion (5.9) to establish thiditsaof the cuT application.

Compositional proof is not applicable only to multiproceglprograms. In a normal pro-
grams, we may want to prove program fragments separatelgxplaining this, we introduce
again a new example Program 5.2, whose forward CLP modebgr®m 5.3. We can imagine
this program to be divided into two fragments: The first fragiconsists of statements frg®)
to (3), and the second fragment consists of statements {fro Q.

For the proof of the whole program, we may prove each fragessparately. This compo-

sitional proof is shown in Figure 5.14, where we prove

p(0,X,A,B,C,X;),X > 0= X; > 0. (5.10)
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(0) if (a=1)then
skip

end if

if (b=1)then
c=0

end if

if (c=1)then
X = x+1

end if

—
[y
-

S~
wW N
> >

aE

Program 5.2: Simple If Sequence Program

p(0,X,A, B,C, X¢) p(1,X,AB,C X;),A=1
p(0,X,A,B,C, X¢) p(2,X,A,B,C,X¢),A# 1.
p(1,X,A B,C, X¢) p(2,X,A,B,C, Xt).
p(2,X,A,B,C,Xs) :- p(3,X,A,B,C, X¢),B=1.
p(2,X,A,B,C,X¢) :- p(4,X,AB,C X;),B#1.
p(3,X,A,B,C,X¢) :- p(4,X,AB,0,Xs).
p(4,X,A,B,C, X¢) :- p(5X,AB,C, X;),C=1.
p(4,X,A B,C, X¢) p(Q,X,A B,C,Xs),C# 1.
p(5,X,A,B,C, X¢) :- p(Q,X+1,AB,C, X).
p(Q,X,A B,C,X).

Program 5.3: Simple If Sequence Program CLP Model

In Figure 5.14, we first establish

p(4,X,A,B,C,Xf),X > 0‘: Xi > 0.

This we use in the proof of (5.10) to establish the validitytted cuT applications. It is easy to
see that non-compositional proofs would be larger sincertisas (5), (4b), (11), and (10b) in
the proof of (5.10) would have been expanded into subtrees.

We can explain on why the proof becomes smaller compositigriawe see our composi-
tional proof here as performing an intermittent abstractio program point4). Whenever(4)
is visited in the proof of (5.10) in Figure 5.14, we abstrddt (4b), (11), and (10b) usinguT
into p(4,X,A,B,C, Xt),X > 0 = X; > 0, hence the three assertions (4b), (11), and (10b) are just

redundant to (5).
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1| p(4,X,AB,C,X;),X>0FX;>0
2a| p(5X,A,B,C,X;),C=1,X>0X; >0 Lul
2b | p(Q,X,A,B,C,X),C=0,X>0EX; >0 Lul
3| p(Q,X+1,ABCX;),C=1X>0=X; >0 LU?2a
4 Xi=X+1C=1X>0X; >0 Lu 3
S| -0 DP 4
6| X=X;,C=0,X>0X;>0 LU 2b
7| =o DP6
1| p(0,X,A,B,C,X:),X>0=X; >0
2a| p(1,X,A,B,C,X;),A=1X>0=X; >0 LUl
2b| p(2,X,A,B,C,X;),A=0,X>0EX; >0 Lul
3| p(2,X,AB,C,X;),A=1X>0EX; >0 LU 2a
4a| p(3,X,A/B,C,X;),A=1B=1,X>0Xf >0 LU3
4b | p(4,X,A,B,C,X;),A=1B=0,X>0X;f >0 LU3
5| p(4,X,A,B,0,X;),A=1B=1X>0X; >0 LU4a
6| Xf>0A=1B=1X>0EX; >0 cuTh
7| -0 DP6
8| X >0,A=1B=0,X>0=X; >0 cuT4b
9| -0 DP8

10a| p(3,X,A,B,C,X;),A=0,B=1X>0X; >0 LU2b
10b| p(4,X,A,B,C,X;),A=0,B=0,X>0EX; >0 LU 2b
11| p(4,X,A,B,0,X),A=0,B=1X>0X; >0 LU 10a

12| X >0,A=0,B=1X>0EX; >0 cuTll
13| O DP12
14| X >0,A=0,B=0,X>0FEX; >0 CuUT 10b
15| -0 DP 14

Figure 5.14: Compositional Proof of Simple If Sequence Program
5.9 \Verification of Recursive Data Structures

As discussed in Chapter 4, our assertidpg= H allowsG andH to include any predicate defined
in a CLP program. Here we deal with how we may prove assersitaimg properties concerning

recursive data structures, which we have presented indbeti.

5.9.1 Proving Basic Constraints

In this paper, we assume the existence of a constraint selieh can reason about integer
constraints. Recall however, that we also have array elesasrinteger terms, and so we describe
here a straightforward method of translating an integestramt containing array expressions
into an equivalent one that does not.

Suppose the go&@ at hand contains an array element with a composite arragsegjon, say
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(H,1,J)[K]. We then rewrites into

G(H,1,J3)[K] — JwhenG =1 =K, and
(5.11)
G(H,I,J)[K] — HIK] whenG = | # K
These rules are due to McCarthy’s array axioms [139]. In soases, we cannot determine
whetherG = | =K or G =1 #K, in which case we leave the expressith |,J)[K] in G as is.

WheneverH,1,J)[K] is rewritten intoH [K], further it can be treated as regular integer variable.

Another useful rule when proving a gdalcontaining array expression is

(G=1=J)=HJ[l]=H[J]. (5.12)

Of course, even in this case we may not always know whe&bherl = J. We call both simplifi-
cations of (5.11) and (5.12) asray index principle(AIP) simplification.

At first, it seems hopeless to be able to reason about goatainomy array update and ref-
erences efficiently. Fortunately, in most cases, when@¥elr, J) [K] is encountered, it is known
whetherl = K or | # K, and usually whenever two distinct expressidti$] andH[J] are en-
countered, it is known whethér=J or | # J.

We now present another inference rule which, though not &lyrmequired, is very useful
in practice. The idea is that when an assertion predicateides a heap and one or more con-
stituent data structures, that changes to the heap ouktsdeachable cells of the data structures
are irrelevant.

Suppose the assertion predicate at hand is of the fafhh; X), whereX is the address of a
root node (e.g., head of a linked list) of a data structure beapH. The separation principle
(SEB states that

a((H,1,J3),X)=a(H,X)

whenno_shargH, X, ) holds. Recall from Section 4.4 thab_shargH, X, 1) declares the sepa-
ration of the data structure rootedXa@ndl .

This principle, while clearly cannot be a priori guarantémdan arbitrary user-defined pred-
icatea, generally holds in most cases. In fact, we discover itsamsts for all data structure
verification examples that we have considered so far. Thetipeh use of this principle is to
immediately simplify array expressiog, |,J) into H. The use of this principle can sometimes

be avoided, such as in the proof in the next section.
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[EEN

p(O,H,P,H¢,Ps),P#0,P =Py = allz(H, Py, Last H¢ ), Py = H¢[?Last+ 1],Ps =0
2| p(1,H,P,H¢,Ps),P£0,P=P

Eallz(H, Py, ?Last H¢ ), P = H¢[?Last+ 1],P; =0 Lul
3| p(2,H",PH¢,P;),P#£0,P=Py,H = (H,P0)

= allz(H, Py, 2Last H¢ ), Ps = H¢[2Last+ 1],P; =0 LU 2
4| p(2,H',P,H¢,Ps),allz(H, Py, P, H")

= allz(H, Py, 2Last H¢ ), Ps = H¢[2Last+ 1],P; =0 cuTt3
5| p(0,H’,P' /H¢,Ps),allz(H,Py,P,H"), P =H'[P+1]

= allz(H,Po, ?Last Hr ), Pr = Hf[?Last+ 1],Ps =0 LU 4
6a| p(Q,H’, P H¢,Ps),allz(H,Py,PH"),P =H'[P+1],P =0

= allz(H,Po, ?Last Hr ), Pr = H¢[?Last+ 1],Ps =0 LUS
6b | p(1,H’,P'  H¢,Ps),allz(H,Py,P,H"),P =H'[P+1],P #0

= allz(H,Po, ?Last Hr ), Ps = H¢[?Last+ 1],Ps =0 LUS
7| H =H;, P =P;,allzH,Py,P,H"),P =H'[P+1],P =0
Eallz(H, Py, ?Last Hy ), Ps = He[?Last+1],P; =0 LU 6a

8| -0 DP 7 {Last— P}
9 p(za H//,P/,Hf,Pf),a“Z(H,Po,P,H/),P/ = H/[P—Fl],P/ # 07
H” = (H',P’,0)
Eallz(H, Py, ?Last Hy ), Ps = H¢[?Last+1],P; =0 LU 6b
10| —O AP 4.9

Figure 5.15: Proof of List Reset Program

5.9.2 Handling Different Recursions: Linked List Reset

Now let us re-visit Program 3.7 and its CLP model Program &8u$sed in Section 3.1.6, We

now prove assertion (4.2) we give in Section 4.4:

p(0,H,P,H¢,Ps),P#0 = allz(H,P,Last H¢ ), H[?Last+ 1] = P;,P; = 0, (5.13)

using the definition o&llz (4.3). The assertion states that at the end of the program&ugon,
the list has been converted to one whose values have begned§i.

We give the proof of Program 3.7 in Figure 5.15. We appiyat 10, which requires the
proof of subsumption which is provided in Figure 5.16 andgtaof of the residual obligation in
Figure 5.17. The proof in Figure 5.15 has a similar structithk the proof of the Sum program
in Section 5.5. The main difference being the use of recansiedicates, in this cagdiz, in the
assertions.

We note that the assertion (5.13) can be equivalently wrdte

p(0,H,P.H¢,Ps),P#0,P =Py |=allz(H, Py, 2Last H¢ ), H[?Last+ 1] = Ps,P; = 0,
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10s.1 a”Z(H,Po,P,H’),P’: H’ [P+ 1] p/#o H" = <H/ 24 O>
):aIIZ(HaF)OaP/vH )
10s.1 [ allz(H, Po,P,H"),H'P+ 1] £ 0

Eallz(H,Py,H'[P+1],(H,H'[P+1],0)) Simplified 10s.1
10s.2a] allz(H,H[Py+1],P,H1),H’ = (H1,P,0),Py # O,H’[P+1] # 0

= allz(H, Py, H'[P+ 1], (H',H'[P+1],0)) LU 10s.1
10s.2b| H' = (H,Py,0),Py=P,Py # O,H'[P+1] £ 0

= allz(H, Py, H'[P+ 1], (H,H'[P+1],0)) LU 10s.1
10s.24| allz(H,H[Py + 1], P,H1),H1[P+ 1] # 0,Py # 0

= allz(H,Po,H1[P+ 1], ((H1,P,0),H1[P+1],0)) Simplified 10s.2a

10s.3| O AP 10s.1,10s.24

10s.2b | Py # 0,H[Py+1] # 0

= allz(H,Po,H[Po+ 1], ((H, P, 0),H[Poy + 1],0)) Simplified 10s.2b

10s.4| Py # O,H[Py+1] #0
):allz(H H[Po—l—l], [Po—|— l] 7H;|_) Po;ﬁo

<7H1,P0, > << ,Po, >, [Po+1],0> RU 10s.2b
10s.5| Py #O0,H[Py+ 1] #0
=Po#0,H[Po+1] #0,

((H,H[Py+1],0),Py,0) = ((H,P,0),H[P,+1],0) RuU10s.4
10s.6| —O DP10s.5

10s.3s.1 allz(H,H[Py+1],P,H1),H1[P+1] #£0,Py # 0
Eallz(H,H[Py+1],P,H;),Hi1[P+1] #0 AP 10s.1,10s.24
10s.3s.2 -0 DP10s.3s.1

10s.3r.1] allz(H,H[Py+ 1],H1 [P+ 1], (H1,H1[P+1],0)),Py # O
= allz(H, Po, H1[P+ 1], ((H1, Po,0), Hy [P+ 1],0)) AP 10s.1,10s.24
10s.3r.2| allz(H,H[Po+ 1],H1[P+ 1], (H1,H1[P+1],0)),Po # O
= allz(H,H [Py + 1], Hy [P+ 1], 72H2), Py # 0,

<<H1,P0,0>,H1[P—|— l],0> = <?Hz, P0,0> RU 10s.3r.1
10s.3r.3| O DP 10s.3r.2{Hz — (H1,H1[P+1],0)}

Figure 5.16: Proof of Subsumption in List Reset Proof

using a new variabl® which conceptually represents the address of the first nbtieedist.
This is the obligation 1 of Figure 5.15.

Program 3.7 has a while loop, and so as in the proof of SuwT, is used for generalizing
the lhs of obligation 3 into a loop invariant (in obligatioh Here, the subsumption test for the

application ofcuT is the following (the residual obligation trivially holds)

p(2>H,aPaHf7Pf)7P: POaH/ = <H,P,O> |: p(sz/>RHfaPf)vaIIZ(HaPO>RHl)'

This subsumption test includes the recursive prediabite This obligation is easily established

by right unfolding using the rul&u and the first clause dllz. The proof is shown in Figure
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10r.1| allz(H,Py,Y,H¢),Ps = H¢[Y +1],Ps = 0,
allz(H,Po,P,H’),P' = H'[P+1],P' # 0,H" = (H’,P’,0)
= allz(H, Py, ?Last Ht ), Py = H¢[?Last+ 1],P; =0 AP 4,9
10r.2| O DP10r.1{Last— Y}

Figure 5.17: Proof of Residual Obligation in List Reset Proof

4.1| p(2,H’,P.Hs,P;),P+#0,P = Py,H' = (H,P,0)
):p(2,H’,P,Hf,Pf),aIIz(H,PO,P,H’) cuT4

4.1 [ p(2,H",P.H;,P;),P£0

= p(2,H’,P,H¢,Py),allz(H,P,P,(H,P,0)) Simplified 4.1
4.2| p(2,H',P.Hs,P;),P#0

):p(Z,H’,P,Hf,Pf),PyéO rRU4.7

43| -O DP 4.2

Figure 5.18: Proof of QuT Condition in List Reset Proof

5.18.

Here we notice that each iteration of the loop changes thardie between the pointBrand
the head™ of the original list. The generalization into the Ihs atatiz(H, Py, P,H’) in obligation
4 represents the relationship betwdeandP, in any iteration throughout the execution of the
loop.

Now we continue the proof of obligation 4 of Figure 5.15. IRertleft unfolds will result in
branching into two obligations, one represents the exitraadhing of the final program poi
(obligation 6a), while the other represents the re-enttphefloop (obligation 6b).

From 6b we obtain obligation 9 through a left unfolding stéye prove 9 by applying 4 as
an induction hypothesis via ther rule. Forap to be applicable, one of the requirement is for us

to prove the following subsumption test:

allz(H,Py,P,H'),P = H'[P+1],P’ # 0,H” = (H',P’,0) = allz(H, Py, P, H").

This assertion proves the actual invariance of the loopiamawhich has been used to strengthen
obligation 3 into obligation 4 usinguT. The proof of this assertion is shown in Figure 5.16.
We note that we have used Program 4.3 as the definitiallnin Figure 5.16. Program
proofs about assertions that are specified recursivelyllygeguire that the program fragment
behaves in tandem with the recursive formulation. Thatis grogram fragment increments the

data structure in the manner specified in the assertion twementally larger data structures.
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D.1| revers€Ho,lo,l,H,J),alist(H,J),alist(H,1),no_shardH, J, 1),
| £#0,H = (H,1+1,J),I'’=H[I +1],J =1
= no_shardH’,J' 1)
D.1 | reverséHo, lo,l,H,J),alist(H,J),alist(H,1),no_shargH,J,1),l1 #0
=nosharg (H,1 +1,J),1,H[I +1]) Simplified D.1
D.2 | revers€Ho, lo,l,H,J),alist(H,J),alist(H,H[l 4+ 1]),no_reach(H, I, H[l +1]),
no_shargH,J,1),1 #0
= nosharg (H,1 +1,J),1,H[l +1]) LuD.7
D.3 | reversgHo,lo,1,H,J),alist(H,J),alist(H,H[l +1]),no_reach(H, I, H[l +1]),
no_shargH,J,1),1 #0
= no_reach((H, I +1,J3),1,H[l +1]),
noshard (H,1 +1,J3), (H,1 + 1, 3)[I + 1],H[I +1]), #0 RuD.2
D.4 | reversgHo,lo,1,H,J),alist(H,J),alist(H,H[l +1]),no_reach(H, I, H[l +1]),
no_shargH,J,1),1 #0
= noreach((H,1 +1,3),1,H[l +1]),
no_sharg(H,l +1,J),J,H[l +1]),I #0 AIP D.3
D.5 | revers€Ho, lo,I,H,J),alist(H,J),alist(H,H[l 4+ 1]),no_reach(H, I, H[l +1]),
no_shargH,J,1),1 #0
= noreach((H,1 +21,J),1,H[l + })
no_shardH,J, H[l + 1)), # SEPD.4
D.6 | -O pp D.5 with F.1

Figure 5.19: Proof of Assertion D

For example, in the proof above, th#z predicate could have instead been specified as Program
4.4.

Program 4.4 is “sublist-recursive” in the sense that a zbt@e segment starting from the
node with addresX, and ending at the node with addrésis defined to be a zeroed list segment
from addres to T, appended by one extra zero node at addvesfsowever, in the previous
section, we in fact used Program 4.3 as the definiticallaf Program 4.3 which we have used in
the proof is “tail-recursive,” that is, the zeroing of a listspecified in terms of the zeroing of its
tail. The proof is actually easier if Program 4.4 is used.

The property that there is no strong dependency on how thertamss predicate is defined
allows for greater flexibility. This is essentially enableg coinduction. Notice that in Figure
5.16 we have used thepr rule to complete the proof. This is not necessary had we used t

“sublist-recursive” definition oéllz.

5.9.3 Handling Separation: List Reverse

In our framework, we can also state that two data structure$szparate,” that is, there is no

common cell that is reachable from both. This is done by uirgo_reachpredicates (Program
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4.10 or Program 3.11) and the_sharepredicate (Program 4.13). In this section we demonstrate
the use of SEP together witio_shareto complete a proof.
Here we use the motivating example of [166], which is on prg\acyclic list reversal. Con-

sider again Program 4.5 with its correctness statemerjt@i&n in Section 4.4, as follows:

p(O,H,I,J,H¢,Js),alist(H,1),J =0 |=revers¢H, |,0,H¢,Js ), alist(H¢, Jr ).

The assertion says that given an acyclic list with hleasl input, we get as output a list with head
J, which is a reverse of the original list. In (4.3, denotes the final value of the varialdleand

Hs denotes the final state of the heap. The correctness stdtbarerrequires a reference to the
input variablesid andl), which is easily specified using our assertion language.

As with the proof of list reset program presented earlieg, riain proof of the list reverse
program is again similar in structure to the basic while Ipopgram Sum given in Section 5.5.
We therefore relegate the complete proof to the appenditiddeB.1.1.

As with Sum and list reset, the proof requires an introdurctbloop invariant in order to
find a recursion in the unfolding of the loop. Here we againthgecuT rule to introduce loop

invariant, which requires us to prove the following asserti

p(0,H,1,J,H¢,Jf),alist(H,1),Hg=H,lg=1,J=0
= p(0,H,1,J,H¢,J¢), reverséHo, lo, 1, H, J), alist(H, J), (5.14)
alist(H,1),no_shardH, J.I).

The proof is shown in the appendix Section B.1.2.

Note that the loop invariant (5.14) states, amongst othag#h the key property that the
lists a (which address i$) and B (which address id) are separate in memory by the predi-
cateno_shargH,J,1). One iteration of the loop body produces new ligts= tail(a) andp’ =
heada) - B (where- denotes a concatenation). This modification is the resuhliefipdate of the
heap fromH toH’ = (H,1 +1,J). We want to prove that the new list§ and3’ are also separated
in H’. This is expressed by the following assertion D, which is ofihe assertions required to

prove the side condition of the applicationas in the main proof (appendix Section B.1.1).

reverséHo, lo,l,H,J),alist(H,J),alist(H,I),no_shargH,J, 1),
| £0,H = (H,1+1,3),I'=H[I +1],J = | |=no_shargH’,J,I").
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The proof of D uses separation principle (SEP), and it regui (proof in appendix Section
B.1.8), which in turn requires G (proof in appendix Sectiaf.B).

We present the proof in Figure 5.19. Here, the separatiocipte is used to simplify the
atomno_shard (H,| +1,J),J, H[l + 1]) in the rhs of (D.4) into the atomo_shargH,J,H[l +
1]) in (D.5). This simplification can be inferred from the atomsreach’H,!,H|[l + 1]) and
no_shargH,J, 1) of the lhs of (D.5).

We now explain the intuitive proof of the assertion. Noticattwe have thato_shardH, J, 1)
and because is acyclic @list(H, I )) and nonemptyl(# 0) we also have thato_reach(H, 1, H[l +
1]) (this reasoning corresponds to application.of to (D.1) producing D.2 in Figure 5.19).
Hence here we know théieada) is separated frortail (o) and, and we can therefore reason

thata’ = tail(a) andp’ = heada) - B are separated (anp_shargH’, J',1") holds).

5.9.4 Intermittent Abstraction Solves Intermittence Prodem

We demonstrate here the use of intermittent abstractiooluirg intermittence problem in data
structure, and also quantitative reasoning on an abstedatairucture. We use the example of
Rugina [173], which has been introduced in Section 4.4 (Rmogt.14 with CLP model Program
4.15).

AVL is a balanced binary tree, where for each node, the defitis teft and right subtrees
differs by only one node. The recursive specification of ath. Ae is given as Program 4.16.

Again we repeat the correctness of the AVL tree from Sectidrad follows.

p(0,H,X,Y,Z,H¢,Y;),avitreeH,H[X +2],DL — 2),
avltregH,H[H[X +1]+1],DL —1),avltregH,H[H[X +1] +2],DL — 2), (5.15)
noshargH,X,H[X +2],H[H[X 4+ 1]+ 1], H[H[X + 2] + 2])

= avltregHs,Ys,DL).

In the above, the depth of the left subtree of the input trelei®ted by the variabBL.

Program 4.14 is given an input an unbalanced subtree robked/here its left subtree is two
deeper than its right subtree, and at its left child, thedelfitree is 1 deeper than its right subtree.
As the output, we expect to obtain a balanced AVL tree. Howeight at program point6),
the structure becomes temporarily cyclic, hence here iongér makes sense to speak about
depth of left and right subtree. In our proof method, thisasaaproblem due to our intermittent

abstraction: We do not have to abstract the staté)an the same way as shape analysis.
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In the proof, we perform left unfold repeatedly from (5.1%}kich represents the state at

program point0), according to the program until we reach program p6fint The last obligation

generated is the following.

p(7,Hs, X, Y5, Ha[Ys + 2], H¢,Y:), Y = H[X + 1],

H[Yi] = 1,Hi1 = (H,X,0),Hz2 = (H1,Y;,0),

Hi = (Hz2,Ys +2,X),Hs = (Hs, X+ 1, Ho[Y; + 2)),
avitregH,H[X +2],DL - 2),

avltregH,H[H[X +1]+1],DL—1),
avitregH,H[H[X + 1]+ 2],DL - 2),

no_shargH, X, H[X +2],H[H[X 4+ 1]+ 1], H[H[X + 2] + 2])
= avitreeHs,Ys,DL).

From here we perform right unfold according to the recurdiegnition ofavltreeobtaining the

assertion

p(7,Hs, X, Y, Ho[Ys + 2], H¢, Ys), Y = H[X + 1],
H[Y:] =1,H1= (H,X,0),H; = (Hy,Ys,0),

Hi = (Ha,Yi +2,X),Hs = (Hs, X+ 1, Ho[Ys + 2]),
avitregH,H[X +2],DL — 2),

avltregH,H[H[X +1]+1],DL—1),
avitregH,H[H[X +1]+2],DL —2),
noshargH,X,H[X +2],H[H[X 4+ 1]+ 1], H[H[X + 2] + 2])
=

H¢[Y:] = O,H¢[H¢[Y;: +2]] =0,

avitregH¢, H¢[Ys +1],DL—1),
avitreg(Hs, H¢ [H¢[Ys + 2] +1],DL — 2),
avitregH¢, H¢[H+[Y; + 2]+ 2],DL — 2).

Next we perform simplifications using the (SEP) and (AlPhpiples. We use both (SEP) and

(AIP) in reasoning about rhs atoms, and we use only (AlP)do@rhs constraints. For example,
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we need, as a subproof, the proof of the following assertion:

Yi = H[X+1],H[Y¢] = 1,H1 = (H,X,0),H2 = (H1,Ys,0),
Hi = (Ha,Yi +2,X),Hs = (Hs, X+ 1, Ho[Ys + 2]),
no_shargH,X,H[X +2],H[H[X 4+ 1]+ 1], H[H[X + 2] + 2])
=Hf[HfY;+2]]=0

The proof is as follows:

He[H¢ [H[X+1]+2]]
= He[(He, X+ 1, Hp[H[X + 1] + 2)) [H[X + 1] +2]]
= Hi[Hi[HX+1]+2]](sinceX +1#H[X+1]+2)
= Hi[(H, HIX + 1]+ 2, X)[H[X + 1] + 2]]
= H¢[X]
= (H¢, X+ 1,Ha[H[X + 1] +2])[X]
= Hi[X](sinceX +1# X)
= (Ho, H[X+1]+2,X)[X]
= Hz[X](sinceH[X + 1]+ 2 # X)
= (H1,H[X+1],0)[X]
= Ha[X](sinceH[X + 1] # X)
= (H,X,0)[X]=0

Note that the premisl [X + 1] # X is justified by the existence of thre_sharepredicate on the
Ihs.

The assertions (4.4) is also proved similarly, using (AIR) éSEP) principles. The same
techniques are also applicable for the correctness prdofilmble sort (4.1). We do not give the

proofs here.

5.10 Discussion

5.10.1 Comparison to Mesnard et al.'s Proof Method

Mesnard et al. [141] propose a proof method for constraigicl@rograms to prove a system
of implications whose consequents only contain conssaithe method is based on trans-

formation, where we transform each clause of the given Cldgnam into a constraint whose
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p(O) K1
p(X) :- 2X=1. Ky

Program 5.4: Mesnard et al.'s Example |

1| p(X) EX=0

2a| X=0F=X=0 w1
2b|2X=1X=0 Lu1l
3| -0 DP2a
4| -0 DP2b

Figure 5.20: Proof of Mesnard et al.'s Example |

unsatisfiability implies that the system of implicationddhoThe method has a relatively weak
completeness result, which we believe is due to the use oéeaifgpinduction schema which
forces the application of induction in one unfold step. Masinet al. provide three verification
examples which cannot be solved using their method. Oneeaéxhmple pertains to the impre-
cision of the chosen constraint domain, which is also intieire our proof method, and hence
we also do not solve this problem. However, the other incetepless cases are due to the proof
method itself, and here we show how we may prove them usingietinod.

The first example demonstrates the inherent incompletehesso the actual constraint do-
main used in the implementation. Given Program 5.4, therigsep(X) = X = 0 holds in
CLP(IN). The proof in CLRNN) is in Figure 5.20. However, the assertion does not hold in
CLP(Q). Our implementation to be described in Chapter 8 using @)Pystem to verify inte-
ger assertions is therefore necessarily incomplete.

Similar to ours, the proof method of [141] is also inductitAmwever, we can say that in their
proof method, induction hypothesis has to be applied aft#igne level of unfold ( corresponding
to the application.u). Here given Program 5.5, we would like to prove the follogvsystem of
implications:

qxX) E X=X
p(X,Y) E X=fgh(X),Y=hfg(Y).
The first assertion trivially holds, and only provided in {14s a comparison with the use of the
stronger assertiog(X) = X = ghf(X).
The proof of the second assertion requires two level of wisfédr induction hypothesis to be

applicable, and therefore cannot be done using Mesnardsepedof method. Our proof of the
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qU) - U =g(V),V=hW)W=fU). Kk
qu) :- U =g(V),p(f(U),V). K2
pU,V) -V =h(U),q9(V))- K3

2| Y=h(X),q(g(Y)) =X = fgh(X),Y =hfg(Y Lul
3a| Y =h(X),g(Y)=ghfgY) X = fgh(X),Y =hfg(Y) LU 2
30| Y =h(X),g(Y) =g(V),p(fg(Y),V) £ X = fgh(X),Y = hfg(Y) LU 2

4| -0 DP 3a
5| -0 AP 1,3b

5s.2| -0 DP5s.1
5r.1| Y = h(X),g(Y) = g(V), fg(Y) = fghfgY),V = hfg(V)

=X = fgh(X),Y =hfg(Y) AP 1,3b
5r.2| -0 DP5r.1

Figure 5.21: Proof of Mesnard et al.'s Example I

assertion is shown in Figure 5.21.

Mesnard et al.'s proof method requires a demonstrationddtive proof from constraints
only. For example, suppose that we want to prove the assgit¥,Y) =Y +2 < 3X holds on
Program 5.6. In Mesnard et al.'s proof method, this would-@edformed into the unsatisfiability
guestions of the following two goals:

X=1Y=1-(Y+2<3X) 516

X=X+1Y=Y+2X"+1Y +2<3X',~(Y +2 < 3X)

The second goal is satisfiable in the integer domain, hereprtof method (luckily) correctly
concludes that the initial asserti@X,Y) =Y + 2 < 3X does not hold. However, this conclu-
sion may be wrong since instead the second goal above, thal gebof that we need is the

unsatisfiability of the goal

PX, YY) X=X 4+1Y =Y +2X'+1,Y' +2 < 3X/,~(Y +2 < 3X),

that is, withp(X’,Y’) included.

The problem here is that Mesnard et al.'s transformatiomnilar to an application of.u
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p(l,l) K1
PX+1,Y+2X+1) :- p(X,Y). K2

Program 5.6: Mesnard et al.'s Example I

1| p(X,Y) EY+2<3X

2| X=1Y=1FY+2<3X Lul
2b | p(X, Y ), X=X'+1Y=Y'+2X'+1EY+2<3X LUl
3| -0 DP2a
4| -0 AP 1,2b

4s5.1| pOX,Y) X =X'+1Y =Y +2X'+ 1= p(X,Y") AP1.2b
4s.2| -0 DP4s.1

Figure 5.22: Partial Refutation of Mesnard et al.'s Example I

once followed byap. The application olAP spawns two new obligations: the subsumption test
and the residual obligation. These two obligations are suofficient conditions. If either one of
them does not hold, we cannot conclude that the initial albilign does not hold.

Let us explain this more carefully using our proof methodelkgmining the partial refuta-
tion in Figure 5.22. We have not finished the proof, but hermaesexplanations are necessary.
Essentially from the initial obligation 1 we obtain two nevopf obligations: 2a and 2b, each cor-
responds to Mesnard et al.’s goals (5.16). The first oblgat exactly the negation of Mesnard
et al.’s first goal, and it can be proved immediately (sincesivied et al.'s first goal is unsatisfi-
able). Now, we applyp on 2b, resulting in the subsumption 4s.1. The residual abtig (4r.1)
here is

Y42<3X' X=X+1Y=Y+2X'+1EY+2<3X.

Notice that this is exactly the negation of Mesnard et atsomd goal.

Now, here, although 4r.1 does not hold (or, Mesnard et ac®sd obligation is satisfiable),
we cannot really conclude that the original asserpod,Y) =Y + 2 < 3X does not hold.

The point of Mesnard et al.'s argument in [141] is that hadweduided the predicate(X’,Y’)
in the Ihs of the obligation 4r.1, and the obligation is falgessibly proved by further unfolds),
then we can conclude that the target obligation is falses Bbecause the inclusion pfX’,Y’)
in the Ihs would make 4r.1 and 4s.1 no longer sufficient, bategonditions.

Using our proof method, however, we can find a true refutatiche target obligation using
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1] p(X,Y) =Y +2<3X

2a| X=1Y=1FY+2<3X Lul
2b | p(X,Y), X=X'+1Y =Y +2X'+1EY+2<3X Ltul
3| -0 DP 2a
da| X' =1Y =1 X=X'4+1Y=Y+2X'+1EY+2<3X LU 2b
4b | p(X" Y, X' =X"+1Y' =Y"4+2X"+1 X =X"+LY =Y +2X'+1
EY+2<3X LU 2b
5| -0 DP4a

6a| X" =1Y"=1,

X =X"+1Y =Y"+2X"+1,X=X"+1Y=Y'+2X"+1
EY+2<3X LU 4b
6b p(X/// Y///) X// X/// + 1 Y// Y/// + 2X/// + 17

X =X"+1Y =Y"+2X"+1.X=X'"+1Y =Y +2X'+1
EY+2<3X LU 4b

Figure 5.23: Full Refutation of Mesnard et al.'s Example I

only thepp andLu rules. This is shown by the refutation in Figure 5.23, whleedbligation 4a

is false.

5.10.2 On Manna-Pnueli’'s Universal Invariance Rule

Here we show how our coinductive proof method is related teméaPnueli’s universal invari-
ance rule [136], a well-known inductive proof technique ffwograms, which is an instance of
computational induction.

In our proof method, we generally start from an initial atiserp(X),q (X) = q:(X), but
this is just logically equivalent tp(X) = (g (X) = g:(X)), and hence we can replace the rhs
with just some predicatg(X), which holds if and only ifg (X) = g:(X) and hence, in logical
sense, we can always assume that what we want to prove is emi@sg(X) = q(X). Here,
assuming a backward CLP model of program@i) represents any state of the program. Our
assertion therefore statg$X) is satisfied in any statg(X) of the program. This is known as an
invariance property

A well-known technique for proving invariance is due to Marand Pnueli [136]. The rule

is called theuniversal invariance rul€éA-INV rule). The formulation below is following [160].
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Other versions are presented in [136, 19]:

1. ©=0¢
12. ¢=q
3. dAp=0¢

O 0Oq

For readers unfamiliar with temporal logic, the CTL conahms® |= 0Oq means thaf] holds
in all reachable states of the program, when executionsshiann the initial state satisfyin@.
The formula¢ is called aninductive invariant Similar inductive proof rule without inductive
invariant is given by Misra in [144].

Here we demonstrate how we may perform inductive proof ugirigersal invariance rule
above in our framework. We show how our proof rules derivepitemises 11, 12, and I3 of the
A-INV rule from the original verification question.

We first assume that we have the following program, which iacktvard model of a transi-

tion system in CLP with an initial state amdransitions.

pxX) - OX).
p(xX") - pu(X,X), p(X).
p(X") - paa(X,X"), p(X).

Again, here we prove the invariance propeptX) |= q(X).

Using ourcuT rule, we may introduce or strengthen an inductive invargrstrengthening
an assertion. Here, we replace the assemiof) |= q(X) with the assertio(X) = q(X). The
latter assertion corresponds to Premise 12. For this weeaained to provéd(X) = q(X)) >

(p(X) = q(X)), which again consists of the proofs of the following two:
e Subsumptionp(X) = ¢(X).
e Residual assertiomg(X) = q(X).

The residual assertion obviously holds, and can immediatedischarged.
We applyLu to the subsumption test above. The unfold using the CLPd&¢) : - O(X).

results in the obligatio®(X) = ¢(X) which corresponds to the Premise I1.
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We will now discuss how the unfold followed by the applicatiof AP, using all of the other
CLP clauses results in obligations which correspond to teenize 13.
First we apply left unfolding(u) to the above subsumption test using the second to the last

clause of the CLP program resulting in the obligations

P(X'),p1(X",X) = $(X)

p(X'). pr-1(X'.X) = $(X)

We now prove each of these obligations usik®y That is, for each where 1<i<n-—1, we
prove (p(X) = ¢(X)) > (p(X’), pi(X’,X) = ¢(X)). Here also we prove both of the following

obligations:
e Subsumptionp(X), pi (X, X) = p(X').
e Residual assertiori(X'), pi(X’,X) = ¢(X).

It is easy to see that the subsumption part holds. The praaif tfe residual obligations for aill
such that I< i < n— 1 constitute the proof of the Premise 13.

In forward CLP model, the constraint facts correspond tdploant of interest” of a program.
Moreover, with our forward model, in proving invariance ddrtsitions we show that assuming
the postcondition satisfids the precondition also satisfiés It is harder to think of invariants in
this way, but actually here we prove thfats invariant in all states where the “point of interest”
is reachable. That is, we are actually establishing the lpeesdr time temporal logic property
p = Hq or its branching time versiop = Hq, wherep represents the point of interest, aads

thealways in the pasbperator (see [19]).

5.10.3 Proving General Equivalence

In Section 4.6.2 we have shown how we may specify an equigal@noperty pertaining to a
simple program. In this section we discuss how we may progestiuivalence using our proof
method. We repeat the CLP program (Program 4.28) and theiassdo be established in Figure
5.24. The proof itself is shown in Figure 5.25 using scopeatian. This example demonstrates
that it is straightforward to use a proof method for implicat(as is ours) in order to prove

equivalence. Direct equivalence proof may be more compactdurs, but not necessarily easier.
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S(w, w). Assertions:
S(X,X¢) - X#w,p(X)=1Xs=X. S(X,Y),s(Y, X¢) = s(X, Xt)
S(X,Xs) - X#w,p(X)=0,sh(X),Y),s(Y,Xs). s(X,Xs) E=s(X,?Y),s(?Y,Xs)

Figure 5.24: Example 12 of [135] and Idempotence Property
5.11 Related Work

Our proof method is closely related to various verificatioatiiods for (constraint) logic pro-
grams. Recall that we have discussed the approach of Meshaild in Section 5.7.2. Here
we will discuss other approaches, but before proceedingarerdetail, we first summarize the

following two basic advantages over any other existing proethods:

1. Some inductive proof methods are based on fitting in trevalble inductive proofs into
an induction schemawhich is usually syntax-based. Instead, we employ no itidoc
schema. We detect the point where we apply the inductionthgss using subsumption.
In other words, we discover the induction schema dynanyiaging indefinite steps of

complete left unfolds. This approach is more complete anonaatable.

2. We provide a generalization step (theT rule) which adds into the completeness of our

proof method.

Most related to our proof method are the works of Kanamorifaujda [118], and Kanamori
and Seki [119]. Our rhs unfold corresponds to dedinite clause inferend®Cl) step, while our
complete |hs unfold correspondstiegation as failure inferencéNFI) of [119]. However, the
main difference is in the application of induction. Here #pplicability of induction, however,
is limited by the lack of a generalization step (allowed by ouT rule) and the necessity of its
application in a single unfold step. A use of a kind of struatinduction in a similar framework
to Fujita and Seki’s is demonstrated by Fribourg in [74].

Stickel proposes a Prolog-based theorem prover that is lebenjor for first-order predicate
calculus, calledProlog Technology Theorem Provd@®TTP) [187]. The proof process is basically
Prolog's refutation, that is, finding a counterexample taarg. Stickel proposes several exten-
sions to Prolog for this purpose, includingreodel elimination reductio(ME reductior). Here,
when reduction is applied to a literal, the original liteisastored. Whenever a new goal which is
contradictory to a stored literal is found, we stop becab&edonstitutes a refutation. Stickel's

approach is similar to ours when we prove the assefioX), ..., pn(X) = O. The part of PTTP
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that is akin to our induction is the detection when there i®eturrence of the same literal (a
kind of subsumption test), in which case, the system backsraOur proof method, however,
does not deal with negative literals because transitiotesys modeled in CLP do not normally
have negative literals.

Hsiang and Srivas propose an inductive proof method forogrpftograms [102, 103]. The
main feature of the proof method is a semi-automatic getoeraif induction schema (in the
sense, this objective is similar to those of Kanamori anit&[§18]). The assertion to be proved
is encoded in a predicape op. The generation of inductive assertion is done by genegdlia
reduct of the goals (unfolding). The termination of the udifog is implemented by a marking
mechanism on the variables. Whenever an input variablesstaritiated during an unfold (in
other words, we need to make a decision about its value)mtiked. In a sense, this is similar
to the use obomblistin the Boyer-Moore prover [22]. As is the case with Boyer-Meprover,
the induction is structural. However, the method lacks agaization step. Moreover, it requires
the user to distinguish a setimfput variables to structurally induct on.

The work of Craciunescu [36] is on proving the equivalenc€bP programs using either
induction or coinduction. The notion of coinduction heredifferent from ours. While our
coinduction is deastfixpoint induction, the coinduction of Craciunescu igm@atestfixpoint
induction. Greatest fixpoint induction can be used for reampabout possible infinite computa-
tions that have no start [143]. For each induction and caitida, Craciunescu presents separate
sets of proof rules (although most rules are shared). Hepatses that each method is as power-
ful as another. In his proof framework, a CLP program is fi@hsformed into a CLPprogram,
which is its Clark completion (Section 2.7). The proof ruiesludeLu and Ru-like rules of
the CLP/ program. The inductive proof of Craciunescu is similar te iiductive proof of our
proof method, although both have been developed indepégpdelowever, in contrast to ours,
Craciunescu does not report any completed mechanization.

Also related are verification methods which are based onldifédd logic program transfor-
mation (of Tamaki and Sato, see [170] for an outline), notéid work of Pettorossi and Proietti
in proving equivalence [157], and the work of Roychoudhurglewhich is a proof method for
equivalence assertions on parameterized systems refgésenlogic programs [171, 172, 170].
For this purpose, Roychoudhury et al. develop a more genetain of unfold/fold, which is

implemented as the SCOUT system.
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Equivalence is useful to prove liveness properties, anarittee handled by our proof method
by proving both ways of the implication. The SCOUT system atso be extended to prove
implication [172], but the machinery for proving equivatenmay not be suitable for this task
because of different correctness criteria. Equivalenoefirequiredotal correctnesswhere the
transformed program has the same least model as the original

We may also compare our proof method with unfold/fold transfation systems, by consid-
ering it as a transformation system which transforms anrisséviewed as a Horn clau®g into
a set of others. Now, the correctness criteria for our “ti@msation” system is that the resulting
assertions, if they are consistent with the program, womloly the consistency of the original
assertion. In a sense, the resulting assertions are “grboti@n the original. This has the impli-
cation that they have a “least model” tlmbsumethe original. This weaker correctness allows
for arbitrary generalization (widening) step, as is madssfide by ourcuT rule, such as the
intermittent abstraction discussed in Section 5.8.2.

We note that the aforementioned weaker correctness oriterinot the same as the notion of
partial correctnes®f unfold/fold transformation, where a transformed progtzas a least model
which issubsumed bthe original program. Therefore, although theT rule has some resem-
blances in its mechanical aspects wgibal replacemenin unfold/fold transformation [170], its
purpose is to strengthen a “clause” (assertion) insteagpdcing it with an equivalent or weaker
one as with the goal replacement technique.

The work of Pettorossi et al. [158] is on proof method for elbgirst-order formula given
a theperfect model semantig¢see the survey [4]) of a stratified CLP program. The method is
based on unfold/fold transformations. Compared to presAmorks such as [171], it is more gen-
eral in that it handles first-order formula instead of speddrm of equivalence or implication.
Compared to techniques employed in theorem proving, theoasiargue that the idea provide
a way to eliminate existential quantification through peogrtransformations. The elimination
here is of variables appearing only in clause bodies.

Since this proof method allows for the proof of stratifiedgmam, it is more general than
ours since we handle only positive programs (CLP prograntisowt negation). In our proof
method, we do not provide any method for eliminating exiséguantification of variables in

the premise of an assertion. This is because such quandfigatactually a universal one, since

3This is possible assuming the rhs of an assertion is a coijumand does not contain existentially-quantified
variables. An existential quantification is essentiallpassibly infinite) disjunction, and a disjunctive rhs wogide
us a non-Horn clause.
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the premise is the negated part of the assertion. To elimitheg existential quantification of
the conclusion, we use substitution in the rule. The method of Pettorossi et al. also has the
limitation to real constraints due to unfold/fold techreqused to eliminate existential quantifiers.
In contrast, we our proof method does not have the correspgtfichitation.

As an induction-based technique, our proof method is relatéxpoint induction152] for
proving properties of the least fixpoint of monotonic funas, such as recursive programs. A
complementary technigue which is also discussed in [152]beaused to reason about greatest
fixpoint, which is related to the proof method of Gupta et 4B(Q] and the greatest fixpoint
induction of Craciunescu mentioned above.

We finally compare our proof method with the well-known Bosoore prover [22, 23]
for functional programs. To detect the applicability of iretion hypothesis, the Boyer-Moore
prover uses a heuristic [24]. The technique basically det@e argument of an unfolded atom
becoming specialized, denoting a decreasing measure 82 Ur constraint subsumption is
different, in which the detection is on all arguments of théolded atoms, instead of just one of
the argument. This solves tREVERSEL problem in [22], where the Boyer-Moore prover fails to

detect the applicability of induction hypothesis.
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1] s(X,Y),s(Y,Xs) = s(X,Xt)
2 | S(X,Xs) = s(X,?Y),s(?Y, Xs)
3a| s(w, Xs) = s(w, Xt) Lul
3b| X #w p(X)=1,X=Y,s(Y,Xs) = (X, Xt) Lu 1
3c| X#w,p(X)=0,s(h(X),Z),s(Z,Y),s(Y,Xt) = (X, X¢) Lul
-0 DP 3a
-0 DP 3b
4| -0 AP 1,3c
5a| X =Xi = wkE=s(X,?Y),s(?Y, X¢) LU 2
5b | X # w, p(X) =1, Xs =X = s(X,?Y),s(?Y, X¢) LU 2
5¢c | X # w, p(X) =0,s(h(X),Z),s(Z,Xs) = (X, ?Y),s(?Y,Xt) LU 2
6| X=Xi=wEX=? =w,s(?,X;) RU 5a
7T X=Xi=E=X=X=w72% =X = RU 6
8| -0 DP7
9| X#£wpX)=LXi =XEX#wpX)=1X=2,s(?,Xt) RU5b
10| X #w, p(X) = 1 =X
E X #wp()_lx =N,NZwp()=1X =% RU9
11| -0 DP 10
12 | -O AP 2,5¢C
4s.1| X # w, p(X) = 0,s(h(X),Z),s(Z,Y),s(Y, X¢)
‘ =9S(Z,Y),s(Y, Xt) AP 1,3c
4s.2| -0 DP4s.1
4r.1| X # w, p(X) =0,s(h(X),Z),s(Z, %) Es(X,Xt) AP1,3c
4r.2 | X # w, p(X) =0,s(h(X),Z),s(Z,X¢)
= X # w, p(X) =0,s(h(X),?Y),s(?Y,X;) RuU4rl
4r.3| -0 DP4r.2{Y — Z}
12s.1| X # w, p(X) = 0,s(h(X),Z),s(Z,Xt) = S(Z,X;) AP 2,5¢C
12s.2| -0 DP12s.1
12r.1| X # w, p(X) = 0,s(h(X),Z),s(Z,W),s(W, X¢)
Es(X,?Y),s(?Y, Xt) AP 2,5C
12r.2 | X # w, p(X) =0,s(h(X),Z),s(Z,W),s(W, Xt)
EX#w p(X)=0,s(h(X),J),s(J,?Y),s(?Y,X;) Rul2r.l
12r.3| -0 DP12r.2
{U—2Z)Y — W}

Figure 5.25: Proof of Example 12 of [135]
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Chapter 6

Basic Algorithm for Non-Recursive
Assertions Based on Dynamic

Summarization

In this chapter we propose an algorithm based on our prodi@detvhich accommodates pro-
gram verification and analysis. The main component of thlgergthm is an efficient exact sym-
bolic propagation usingynamic summarizationThe dynamic summarization technique refor-
mulated as computation @fraig interpolantg37] has been presented in [112] in the context of
dynamic programming search.

This chapter is structured as follows. In Section 6.1 we firsisent a number of simple
algorithms based on our proof rules. We then introduce tineegot of dynamic summarization
in Section 6.2 to make exact propagation more efficient. Himachic summarization technique
can also be used to discover a safety property of a programfinaly present our general
algorithm in Section 6.3.

We note that in this chapter we mainly deal with the proof af-mecursive assertions. They
are of the formp(...), o = W, where@ andy are constraints. We will deal more specifically with

the automated proof of recursive assertions in Chapter 7.

6.1 Simple Algorithms for Program Verification and Analysis

In this section we provide some simple algorithms to easeedves to the development of our

proposed main algorithm in Section 6.3. The implementatibsome of the algorithms men-

166



program

provg0,G =H)
end program

proc provegA, G = H)
(1) if (G = H is provable, or

thereisAc A
(2) such thalAr> (G = H)) then
return Success
end if
A:=AU{G}=H}
F :=unfold(G)

if (F # 0) then

foreach(ge F) do
prove(A, g =H)

end for
return Success

end if

abort

end proc

Figure 6.1: Straightforward Algorithm

tioned here will be discussed in Chapter 8.

A straightforward implementation of the proof rules of Sewt5.4 is shown in Figure 6.1.
When provingG = H, the objective is to compute a (complete) unfold tree flémhose frontier,
sayGy,...,Gy, is such that for each 4 i < n, we can provés; = H directly, or via coinduction
(AP). A canonical algorithm for left unfoldingL{) is thus obtained by performing unfolding
step by step, and at each step, checking the new fronties go@linstH and for coinduction,
terminating when there are no more unresolved frontierggod@he order in which unfolding
is performed, i.e. the choice of which frontier goal to udfolext can be arbitrary. We use a
depth-first strategy in Figure 6.1.

The proof ofG = H in Line (1) and the proof oAr> (G = H) in Line (2) of Figure 6.1 can
only be done directly (usingp and constraint solving), since in this chapter we deal ornitia w
assertiong(...), = Y. In Chapter 7 we will consider more general assertions.

As has been discussed in Section 5.6, we sometimes encamdrligation which has al-
ready been proved in some other part of the proof tree. Incdse, we may immediately es-
tablish the redundant obligation. This generalizes pathittl entailment and is best supported
via a global tabling mechanism. Here whenever we encountebbgation that is redundant to

one already stored in the table, we stop (rettuccess Otherwise, we add it into the table and
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program
Table:=0
provg G = H)

end program

proc provgG = H)
(1) if (G = H is provable, or
there isA € Table

(2) such thalAr> (G =H)) then
return Success
end if
Table:= TableU{G =H}
F :=unfold(G)

if (F # 0) then
foreach(ge F) do
prove(g = H)
end for
return Success
end if
abort
end proc

Figure 6.2: Algorithm with Global Tabling

unfold (applyLu) further. We display the pseudocode of this algorithm iruiFég6.2.

So far we have not discussed how theT rule is implemented. Recall that tleauT rule is
used in the intermittent abstraction proof method (Sedi8tR), the program verification method
(Section 5.8.3) and also in reduction by the use of relatafetg (e.g., symmetry) assertions
(Section 5.6). The use @fuT rule in these cases differ. In the case of intermittent abttn and
program verification, whenever we can replace the asse®ipnH with the assertiols’ = H
whereG = G’ holds, we never again consider proviBg= H. On the other hand, in the case of
symmetry reduction we only make an attempt at repla@ng H with G’ = H. In caseG' = H
cannot be immediately concluded (wa), we revert back to provin@ |= H. These two different
cases induce two different algorithms for implementingr.

For the relative safety case, before we test whe@her H holds in the functiorprove we
first try to apply a set of independently proved assert®ns G’ (which always includé& = G)
to G, which we use to generaliz8 to G”, and then try to prov&” = H instead bypp or AP,
failing which, we continue to unfol® = H. The resulting algorithm is shown in Figure 6.3.

We show our algorithm for the case of intermittent abstoacind program verification in

Figure 6.4. Comparedto 6.3, itincludes a small additiomdf eonditional at(1). The additional
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program
Table:=0
proveG = H)

end program

proc provgG = H)
(1)  foreach(G" € {G'|G=G'})do
(2) if (G” E=H is provable, or
there isA € Table
(3) such thalAr> (G” = H)) then
return Success
end if
end for
Table:= Tableu{G =H}
F :=unfold(G)
if (F # 0) then
foreach(ge F) do
prove(g = H)
end for
return Success
end if
abort
end proc

Figure 6.3: First Algorithm Using WT and Global Tabling

if conditional is located after the test for direct proof®&f= H, but before the table checking.
This is because whe@ = G, the direct proof ofG = H is often easier tha@’ = H (e.g., when
G = 0). The predicatabstractionpoint(G) tests whetheG matches some criteria where we
can applycurT. If abstractionpoint(G) holds, and there i&' in an assertios = G’ supplied,
and already proved independently by the user, then we agntiith provingG’ |= H instead of

G E H by assignings’ to G in (2).

6.2 Dynamic Summarization

In this section we discuss an optimization technique tofyguiograms using depth-first search
strategy. This technique can be extended into one for @xigabounds (e.g., time, energy con-
sumption, etc.) from a program. It is mainly intended as atindpation of the algorithm in
Figure 6.4. We note that in Figure 6.4, the algorithm perfoaxact symbolic traversal between
abstraction points where the unfoldings(applications) are not interleaved withuT. Here we

optimize the symbolic propagation. This optimization whlén become a primary component of
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program
Table:=0
proveG = H)

end program

proc provgG = H)
if (G=H is provableg then
return Success

end if
(1) if (abstractionpoint(G) andG = G') then
(2) G:=0C

end if

if (There isA € Table
such thalAr> (G = H)) then
return Success
end if
Table:= Tableu{G =H}
F :=unfold(G)
if (F # 0) then
foreach(ge F) do
prove(g = H)
end for
return Success
end if
abort
end proc

Figure 6.4: Second Algorithm Using GT and Global Tabling

our main algorithm in Section 6.3.

The idea is based on strengthening an assef®i¢a H, proved via a proof tred into a
stronger assertio®’ = H’ which can also be proved using the same proof Tre€he stronger
assertiorG’ = H’ has more chance of making other obligations redundant (@yn@ancy dis-
cussed in Section 5.6) than the origital= H.

Before proceeding to the main discussion, we note that sxgction we will discuss proof
trees explicitly, and when referring to a proof tree we woeidploy the terms parent, child,

sibling, ancestor, and descendants, which are defined at usu
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(0) if (a=1)then
(1) skip
end if
(2) if (b=1)then
(3) c:=0
end if
(4y if (c=1)then
(5) X = X+1
end if

Program 6.1: Simple If Sequence Program

6.2.1 First Example

We start with an example Program 6.1 and its CLP model Prog&n These programs are

already presented in Section 5.8.4, but repeated here. @sibfe incomplete proof of
p(0,X,AB,C,X;),X >0 X; >0

using depth-first strategy is shown as a tree in Figure 6.8revhssertion number indicates the
order in which the assertions are produced by applicatibns)cor bp. An arrow augmented
with with LU or DP indicates that the target assertion is obtained througlpplication ofLu or

DP respectively from the source assertion. Note that a compledof would have assertion 2b
expanded.

In Figure 6.5, whenever an assertiGr= H is established via a left unfolding using some
clausek which is then followed bybp, the question is what is a strongér): H that we can
use as a replacement such that the same left unfold usingextdollowed by DP still proves
G = H. Typically, G is a generalization & andH implies, or simplyH. Now, this generalization
of G into G necessitates the generalization of ancestor goals asside only more general
ancestor goals can be left-unfoldedGoMore concretely, whe = H is derived fromG’ = H
whereG e unfold(G'), the generalizatios would induce a generalization & of G’ such that
G € unfold(G).

Recall that our redundancy check (Section 5.6) is based tableshing subsumption. The
purpose of generalization is to obtain more chance for supsion.

Here we exemplificonstraint deletioras an algorithm that we use for generalizing goals. At
eachpp proof, we delete constraints that are not necessary tolisstdbe proof. For example,

at assertion 6a in Figure 6.5, we can delete all constrairtthe underlined’ = 0 andC’ = 1.
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Other constraints are not necessary to establish the pyobPlvhich produces 7. This has the
consequence that at assertion 5, ddly= 0 is required to ensure that the proof at 6a succeeds.
Similarly, at assertion 8 we can delete all constraintsXut 0 andX = X;. This means that at

6b onlyX > 0 is important. Further, at ® > 0 is required to ensure that the proof at 8 succeeds.
The set of important constraints at 5 is now consist& of 0 andC’ = 0. In this manner, we can
actually strengthen assertion 5 impo4, X, A, B,C’, X;),X > 0,C' = 0 = X; > 0 by deleting all
constraints in its Ihs goal exce}t> 0 andC’' = 0.

Now, using information obtained form its children, we caresgthen assertion 3 into

p(2,X,A,B,C,X),X >0 = X; > 0.

Assertion 3 is now stronger than 2b, that is,

(p(Z,X,A, B,C,Xf),x > 0|: Xf > O) D(p(Z,X,A,B,C,Xf),X > OaA# 1 |: Xf > 0)

Therefore, 2b is now redundant. In this way we obtain moremddncy than normally possible,
hence reducing the proof size.

Note however that this method is opportunistic becausectemtumay not be applicable even
after applying constraint deletions. For example, in Fegéub, we notice that 4b is not redundant
to 5in the way 2b is redundant to 3. Hence, we need to expangltioé subtree of 4b.

We note that our technique for goal generalization hereepves the original proof tree.
For comparison, abstractions such as one introduced byntemiittent abstraction technique
(Section 5.8.2) in general introduces new proof pathsddaljpurious pathk that are nonexistent
without generalization. Also, this technique is applieabhly to depth-first backtracking proof

algorithms.

6.2.2 Summarization

Recall the definition of assertion entailment (DefinitioR)Sn Chapter 5. The concept of asser-
tion entailment is required in a proof of some assertiX), o(X) |= H(X), where we want its
proof tree to also generate a stronger assef¢a H as a replacement, which we then record
in the global table as proved. The stronger assertion has oiance to establish as redundant,
other assertion in the proof tree. As shown in Figure 6.5,asertion 2b is not redundant to

the original obligation 3 which ip(2,X,A,B,C,Xt),X > 0,A=1 | Xf > 0, but 2b becomes
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4,X,AB,C,X;
4,X,A B,C,X;
5,X,A,B,C,X;) : -
Q,X,A B,C,X).

5,X,A,B,C,X;),C= 1.
Q,X,A,B,C,X;),C# 1.
Q,X +1,A,B,C,X;).

0,X,A B,C, X p(1,X,A,B,C,X;),A= 1.
0,X,A B,C, X p(2,X,A,B,C,X;),A# 1.
1,X,A,B,C,X; p(2,X,A,B,C, Xs).
2,X,A,B,C,X;) :- p(3,X,A,B,C,X;),B=1.
T~ p(4,X,A,B,C,X),B# 1.
p(4,X,A,B,0,X;).
p(
p(
p(

p( )
p( )
p( )
p( )
p(2,X,A,B,C,X;) :
p(3,X,A,B,C, X¢) :-
p( )
p( )
p( )
p( )

Program 6.2: Simple If Sequence Program CLP Model

redundant after 3 is strengtheneda@, X, A,B,C, X¢),X > 0 = X; > 0.

We are now ready to provide a definition feummarization

Definiton 6.1 (Summarization). Given an assertioAthat is proved by a proof treg another
assertiorSis asummarizatiorof A with proof treeT whenScan be proved to hold by the same

proof treeT, andSr> A.

As in the example above, the summarization of 3 whiclp(, X,A,B,C,Xs),X > 0,A =
1E Xs > 01is p(2,X,A,B,C,Xs),X > 0 = X; > 0. The summarization can still be proved
by the proof tree of 3 and is stronger than 3, i.@(2,X,A,B,C,X;),X >0 Xt > 0) >
(p(2,X,A,B,C,Xs),X > 0,A=1F X; > 0). The subsequent sections will deal with the compu-

tation of summarizations.

6.2.3 Incremental Propagation of Strengthened Assertion

Suppose that we have a progrémwvith clauses; to Kk,. By an application of.u, an assertion
p(X),(X) |= H(X) is unfolded into a number of assertions, each proved separdthere are
five ways in which a child assertion is proved, representethéyroving of the following child

assertiong\; to As :

1. AssertionA :
p(X) :-

B(X). ®(X) = H

B(X), and a direct proof using the assertion.

(X) is obtained by a left unfold using constraint fagt:

2. AssertionA; : p(X),8(X,X"),@(X) = H(X) is obtained by left unfold using non-fact

clausexy : p(X) :- &(X,X'), p(X') and is then proved by direct proo.
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1. p(0,X,A,B,C,X),X > 0}=X; >0

LU # yLU
2a.p(1,X,A,B,C,Xf),X >0,A=1EX; >0 2b.p(2,X,AB,C,X;),X>0A#1}=X;>0

LU
3.p(2,X,A,B,C,X;),X >0,A=1=X; >0

LU # LU
4a.p(3,X,A,B,C,X;),X >0,A=1,B=1=X; >0 l

LU ¢ 4b. p(4,X,A,B,C,Xs),X > 0,A= 1B¢1|:xf>o
5. p(4,X,A,B,C",X;),X>0,A=1,B=1,C'=0=X; >0

LU # LU
6a.p(5,X,A,B,C’,X;),X >0,A=1B=1,C' =0,C = 1|:xf>ol

%op 6b. p(Q,X,A B,C',X¢),X > 0,A= 1B 1,C'=0=X; >0
7.0 ‘LU
8.X>0,A=1B=1C =0X= xf|:xf>o
‘DP
9. -0

4b. p(4,X,AB,C. X)), X >0,A=1B#A1|=Xt >0 |

LU #
10a.p(5,X,A,B,C,X;),X >0 A=1B#1C=1=X; >0 lLU

LU ¢ 10b. p(Q,X,A,B,C,X),X >0,A=1B#1C=0=X; >0
11. p(Q,X",A,B,C,X¢),X =X +1,X>0A=1B#1C=1=X >0 hu

LU ¢ 14.X>0A=1B#1C=0X=X; =X >0
12X =X+1X>0A=1B#1,C=1X=X; =Xt >0 ¢DF,

13.ﬂéDP 15.-0

Figure 6.5: Optimized Proof Tree of Simple If Sequence Program

3. AssertionAs : p(X’),p(X,X"),e(X) = H(X) is obtained by left unfold using non-fact

clausexz: p(X) :- p(X,X’),p(X), and is then proved either by
(a) further left unfold (u),
(b) applying induction hypothesis), or,
(c) application ofcuT resulting in a proof of stronger asserti@where St Az (cf.

Section 6.2.2).

Here, for example, the same unfold step usingcan actually be used to prove a stronger
assertion than the origingl(X),p(X) = H(X). For example, had the original assertion been
p(X) k= B(X), we unfold this using the CLP clause to B(X) = B(X), which still holds. Notice
that

(P(X) = B(X)) > (P(X), ®(X) = H(X))
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becaus@(X),p(X) = H(X). (That is, sincep(X) = B(X), we replace3(X) with p(X) resulting
in p(X),e(X) = H(X).) In fact, p(X) |= B(X) is the strongest assertion which can be proved by
an unfold step using;.

We next demonstrate that for each unfold usingk,, or K3, there is a theoretical strongest
assertion that can be proved. Due to the existence of thegasbassertion, the same unfold step
can be used to prove anything weaker, including the originaled assertion. Since the original

assertion may not be the strongest assertion, this ope®dneo its strengthening.

Proposition 6.1. The strongest assertion that can be established by a leftdusifiep using a
constraint facky : p(X) :- B(X) is p(X) = B(X).

Proof. Suppose thap(X),p(X) |= H(X) is established by a left unfold usingX) : - B(X),
that is, B(X),o(X) = H(X). Hence,B(X) = (@(X) = H(X)), and thereforé p(X) = B(X)) >
(P(X), @(X) E H(X)). O

The unfold using; is handled by the next proposition.

Proposition 6.2. The strongest assertion that can be directly proved afteftauhfold us-
ing the clausexs : p(X) :- &(X,X'),p(X"), where the result is proved usimp is p(X) =
3(X,2X"), p(2X)).

Proof. Suppose thap(X),@(X) = H(X) is directly proved after a left unfold using the clause
p(X) :- 3(X,X’), p(X). This means than(X’),5(X,X),@X) |= H(X), hencep(X’),5(X,X’) =
(@(X) = H(X)). Therefore(p(X) |= 5(X, 2X), p(?X)) > (p(X), ®X) = H(X)). D

The unfold using<s is handled by the next proposition. We assume that the uméddit
Az p(X'),p(X,X"),(X) = H(X) has been strengthened to assergorp(X),@ (X) = H/(X')
and we want to know what is the strongest assertion whicHtsdss after left unfold using the

same clausgs.

Proposition 6.3. Suppose that an asserti&n p(X’),@(X’) = H'(X') has been established.

The strongest assertion that is left unfolded to an assdtiwhereSr> B using the clauses :

P(X), (W p(X,¥) = @ (Y)) = p(X,7Z),H'(%Z) (6.1)
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Proof. First notice that (6.1) is equivalent to

P(X) = (7Y :p(X,¥) = ¢(V)) = (3Z2:p(X,2),H'(2))
= p(X) = (3 ~(=p(X, V) Ve (Y)) Vv (3Z: p(X,2),H'(2))
= p(X) = (3 1 =(=pX, V) V@ (Y)) v (p(X,Y),H'(Y)))
= pX) Ep(X, ), (¢(H) = H'(F))

Suppose that an assertip(X), @(X) = H(X) is unfolded into assertidB: p(X'),p(X,X"), (X) =
H (X) using the clauses.
Now, assertiorS> B holds. Then sincgcan be written ag(X') = (¢ (X') = H/(X’)), while

B can be written ap(X’) = (p(X,X') = (@(X) = H(X))), necessarily

11—l
%32
o X
x =
= e
| X
=
b L
T %
<=
g
§ —_~
¢
i3
T
X

This means that (6.1) is stronger thafX), @(X) = H(X). O

Case 3(a) is covered by Proposition 6.3 wiséma summarization oz, case 3(b) is covered
whenSis an already proved assertion, and case 3(c) is vi@#isra replacement assertion Af,
where application of UT establisheSr> As.

When our CLP clauses represent the transitions of a statsiticn system, the computation

of (6.1) fromA: p(X'), @ (X') = H'(X') can be considered as:

e for the Ihs of (6.1), computing weakest preconditiof7] of a transition relatiop(X, X')

represented as a CLP clause, and
e for the rhs of (6.1), a strongest postcondition (see Se&i8r2) of its inverse transition.

We repeat here thaip(t,¢) is defined to be the most liberal condition, from which a trans
tion step defined by the fragmemntay reach a conditiog/ (X) on the program variables More

formally, whenp represents the transition relation defined 9],

wp(t, @) = (WX p(X,X) = g(X){X— X'}).
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Weakest precondition complements the strongest postiiomdire have discussed in Section
5.8.1. Now, the strongest postcondition of an invgrsé of the transition relatiop (that is,

p~1(%,X) if and only if p(%, X)) defined byt, given the conditioH’ (%) is
spit L H) = (3K : p(X, %) AH' (R){K— K1),

In the abovet~! denotes the “inverse” or “backward” fragment defining transition relation

p~L. From these, we can write (6.1) as

P(X), wp(t, @) |= sp(t ™%, H').

As we have seen, left unfold using different CLP clauseslrésuifferent strengthening
of the unfolded assertiop(X),(X) = H(X). Suppose that there areclauses/unfolds, and
thereforen strongest assertions(X), @ (X) = Hi(X) for 1 < i < n. The strongest assertion is
in general not computable and often inefficient to computend# instead of the strongest as-
sertionp(X), @ (X) |= Hi(X), we compute a weakes(X), ¢(X) |= H/(X) where(p(X),@(X) =
Hi(X)) > (p(X), @ (X) = H!/(X)). However, in order to still be useful as a strengthening of the
unfolded assertion, we require ta(X), ¢(X) = H/ (X)) > (p(X),®(X) = H(X)). That s, it is
actually stronger than the original assertion.

Based on our discussions so far, the strengthening of theldetf assertiop(X), @(X) =

H(X) can now be written as the disjunction

n

V (p(X), d(X) | H (X)) (6.2)

i=1

Recall that our purpose in computing the strengtheningaifitifolded assertiop(X), o(X) =
H(X) is such that its proof is more likely to make the proving ofestlassertions redundant.
Therefore we need to memo (6.2) in computer memory. Howsteiing a disjunction of asser-
tions can be inefficient (it can be exponential to the depttihefsubtree). We therefore propose
to store a single assertion instead.

In the following proposition, we state how we may construstragle summarization of the

original obligation out of the stronger assertions retdrbg the unfold children.
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Proposition 6.4. Suppose that we managed to prove an asse&iop(X),X) = H(X) by
first applyingLu using all theky, .. .,k clauses of a CLP program. Now(X), @ (X) = H/(X)
is an assertion which can be proved by an unfold using cleusely, for 1< i < n. An assertion

p(X),@'(X) = H”(X) such that
o ¢'(X) = AL1¢(X)

o H'(X) < VI, H/(X), and
o SEA

iSs a summarization oA.

Proof. The condition thaBr> A for summarization is satisfied by definition. Now we demon-
strate that the proof tree éfcan be used to provalso. Note that forany £ i <n, (p(X),d (X) =
H/(X)) > S This is because’(X) = @(X) andH/(X) = H”(X) for all 1 <i < n. ThereforeS
can be proved by left unfold using any rule fremto K. O

In the next section we formalize the computing of summaiorest via constraint deletion,

which has been exemplified in Section 6.2.1.

6.2.4 Constraint Deletion
Deletion Functions

Here we first propose black-box primitives of an efficientgiralgorithm which employs con-
straint deletion to strengthen assertions. An essengateht of the algorithm is the storing and
manipulation of sequence of constraints correspondinigganhfold path.

We first define a functiordel A,C) which, when given an assertignand a claus€, com-
putes a stronger assertion thAmsing constraint deletion technique, based on the infaamat
obtained by left unfold using clausk Here we also consider the three cases mentioned in Sec-
tion 6.2.3.

For the unfold using constraint fat, the value otdelA,C) = cdel (A,C), where the value

of cdel is given as follows:

Cdeh(( ( ) C1,.. Caaca+1>"'7cb |: H)vKl) —
P(X),Cat1,---,Co = O if B(X),Cas1,...,Co = O (6.3)
P(X),Cast,- .-, Cp = H if B(X),Cat1,...,Co =H andH,cy,...,cal=H.
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Note that in this definition we do not specify how to computgoalH . This will be the subject
of the next section. In particulaHl can be simplyH, as in the proof of our first example in
Section 6.2.1.

Before discussing thedelfor the second case, we first introduce a restriction that mbg o
consider left unfold using, where the Ihs of the resulting, evaluates tal. That is, p(X’),
3(X,X"),(X) = H(X) is directly proved by our algorithm only whe{X, X"), (X) |= O.

The value ofcdelA,C) for this case is given by the functiadeb(A, C) defined as follows.

cdeb((P(R),C1, -, Car Car s - o = H), Ka) = 6

P(X),Cast,-..,Cp = O whered(X,X'),Cas1,...,Cp =0
We now consider cases 3(a), 3(b), and 3(c) separately.
For case 3(a), wherAgz is proved by further left unfold, we define the followirglek )

function:

Cdeb(a)((p(x), Cla sy Ca, Ca+1, LR 7Cb ): H)v Kl’.i) -
p(X),Cat1,.-.,Cp = H where

1. sumnp(R'), pi(X,X'),c1,. o, G = H) = (X)) ex, . g b= HY(R)
where{cy,...,ca} N{ey,...,eq} =0,
2. pi(x‘?)h(l/)aH/()h(’/)}:l:i, and

(6.5)

3. H,cy,...,cal=H.

The functioncdegy) above uses the functiosummwhich we will define later. For now, it
suffices to say thasumnip(X'),pi(X,X'),c1,...,cp = H) is only defined when its argument
p(X'),pi(X,X"),c1,...,cp = H is provable starting with a left unfoldLg), and it returns a
stronger assertiop()?),el,...,ed = H" which can also be proved given the CLP progrBm
such that{ey, ...,e} C {pi(X,X'),cy,...,cp} andH’ = H.

We now discuss the case 3(b) where the valuedsfl is given by the functiorcdek,) as
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follows.

cdeb)((p(X),C1,...,Ca;Cat1,---,Co = H),K3) =
P(X),Cas1,---,Cp = H where
1. anassertios: p(Y),@}=H'(Y) is proved or assumed and
0 renames awag from p(X’), p(X,X’),c1,...,cp = H, (6.6)
2. p(
3. p(X,X"),H(Y)8,X'=Y =H (residual assertion), and

>

X),Cart, .-, Co = @0, X =V (subsumption)

4. H,C]_,...,Ca):H.

We now consider case 3(c). Here the valueaé|A,C) is given bycdeg)(A,C) as follows.

1. anassertio: Gs = Hsis proved,
0 renames awagfrom Az : p(X'),p(X,X’),cy,...,c =H, and 6.7
Y Cvar(S8) andZ C var(Az) s.t.|Y| = |Z].

2. p(X),p(X,X"),Cat1,...,Cp = GsB,Y = Z (subsumption)

3. p(X,X"),Hs8,Y =Z =H (residual assertion), and

4. H,cy,...,cal=H.

cdebc) is similar tocdeb,). The difference is only in the way subsumption test is done.

We now define the functiosumngA), given an assertioA. The function is only defined
whenA is provable using one application ot followed by arbitrary applications afu, DP,
AP, andru, and following our restriction mentioned above, that wearawseDP to conclude a
proof obligation unless either the lhs of the assertionuatals tod or the assertion is obtained
by a left unfold using a constraint fact.

Suppose thaf: p(X),@X) = H(X) is completely unfolded by applyingu rule using all
clausexs, ...k, of a CLP program. Suppose thadelA k;) is p(X),@(X) |= Hi(X) for 1 <
i < n. Following from our discussions above, we know tiggtX) can be viewed as a set of
constraints which is a subset@fX).

We define:

~

sumntA) = p(X), @ (X)  H(X), (6.8)

i=1
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whereH (X) < I, Hi(X) andH (X) = H(X). Note that again here we leave open how we may

computeH.

Correctness

We will now prove thecorrectnessandusefulnesgemmas of the functions defined above. Later
in this section we will establish thaumntA) is a summarization oA (according to Definition

6.1 on Page 173).

Definiton 6.2 (Correctness). Cdely(A,K) is correctfor eitherx = 1, 2, 3(a), 3(b), or 3(c)

when it can be established by left unfolding using the clause

Definiton 6.3 (Usefulness). Cdely (A, k) is usefulfor eitherX = 1, 2, 3(a), 3(b), or 3(c) when
cdely (A k) > A.

Lemma 6.1. Cdek (A Kj) is correct and useful.

Proof. Suppose thahis p(X),cy,...,Ca,Car1, - -,Cp = H andcdek (A, k1) is given as in (6.3).

We consider two cases:

1. B(X),Cat1,.-.,Cp = O. In this casecdel (A K1) = p(X),Car1,-..,Cp = O. Since this can
be established by a left unfold step usinghen necessarilfp(X) |= B(X)) > cdeh (A, K1).
In order to prove the usefulness, we assume &b, ca.1,...,Cp = O, i.e., cdeh (A K1)

holds, and we provA. It is easy to see that

(@) p(X),c1,...,CaCar1,---,Co = P(X),Cas1,-.-,Cp.

(b) O=H.
Combining the above 2 witbdeh (A, k1) by modus ponens we establish

2. B(X),Cas1,...,0p = H andH |= H. In this casecdeh (A k1) = p(X),Cas1,...,0p = H is
correct since it can be proved by left unfold using clakiseherefore necessarilyp(X) =

B(X)) > cdeh(A,k1). For the usefulness, we assume ttdeh (A, k1) holds and we derive

A. Here itis easy to see froodeh (A, K1) that

p(X),C1,...,Ca;Cast,---,Co = H,C1,...,Ca.
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SinceH,cy,...,ca |= H, we getA. This establishesdeh (A k1) > A. O
Lemma 6.2. Cdeb(A,Ky) is correct and useful.

Proof. Suppose thad is p(X),cy,...,Ca,Car1,--.,C = H, andcdeb(A k2) = p(X),Cat1,- .-,
Cp |= O whered(X, X'),Car1, .- ., Cp |= O. CdelA k) is correct because by left unfolding it using
K2 we getp(X’),8(X,X’),Cat1, .. .,Cp = O which holds sinc&(X,X’),Cay1,...,0p = O.

Also, cdeb(A,K2) is useful since, first of all it is easy to see that

1. p()z)acla---7Ca;Ca+la---7Cb |: p()'Z),CaJrl,...,Cb.
2. O=H.

Now, usingcdeb(A, K2) we deriveA by modus ponens using the above 2 assertions.
Lemma 6.3. Cdebk)(A,K3) is correct and useful.

Proof. Suppose thahis p(X),cy,...,Ca,Car1,- -, Co = H andcdeb@y(A K3) = p(X),Cas1, - - -
Co |= H. We now left unfoldcdeba)(A, k3) usingks resulting inp(X'), pi(X,X’),Cat1,-.-,Co |=
H. Since{cy,...,Cca} N{e1,...,e4} = 0 then necessariljey,...,eq} C {pi(X,X'),c1,...,Co},
thereforep(X'), pi(X,X"),Cas1,--.,00 = P(X'),€1,...,€q, and thereforep(X’), pi(X,X’), Car 1,
.,C = p(X),pi(X,X'),e,...,e5. Now sincep(X'),ey,. .., e = H'(X') we have thap(X’),
pi(X,X'),er,...,e = p(X,X),H(X"). By modus ponens we establigiX’),pi(X,X'),Car1,
...,0p = p(X,X'),H'(X"), and sincep(X,X’),H’(X’) |= H, again by modus ponens we finally
establishp(X'), pi(X,X’),Cas1,...,Cp = H.

On the usefulness, it is easy to see that frouek)(A k3) we have thatp(X),cy, ..., Ca,
Cat1,---,Co = H,C1,...,Ca. And sinceH, cy,. .., ca = H, we deriveA, and thereforedeba)(A, k3)

>A. O
Lemma 6.4. Cdebp)(A, K3) is correct and useful.

Proof. Suppose thakis p(X),c1,...,Ca,Cat1,- - -,Ch = H andcdebp)(A K3) = (p(X), Cas1, - - -,
Co = H). Unfolding cdebp)(A, k3) we getp(X'), p(X,X'),Cas 1, - - -, Cp = H. Due to condition no.
2in (6.6), we have thgn(X'),p(X,X'),Cas1, .- .,C = P(X’), p(X,X’), @8, X’ = Y. By modus po-
nens using assertid®we have thap(X'),p(X,X’),Cat1,...,Cp = p(X,X'),H'(Y)8, X’ =Y. By
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another modus ponens using condition no. 3, we havepbét), p(X,X’),Cat1,...,Co = H,
which is the left unfold otdeb)(A, K3).
For the usefulness, it is easy to see frodekp)(A,K3) that p()?),cl,...,ca, Cat1,---,Cp &

H,cy,...,Ca. And sinceH, ¢y, ... Ca |= H, thereforeA holds, and thereforedeb,(A, k3) > A. O
Lemma 6.5. cdeb)(A,Kz) is correct and useful.

Proof. The proof is similar to the proof of Proposition 6.4.

Suppose thakis p(X),cy, .. ., Ca, Cat1,- - -, Co = H andcdebey(A, K3) = (p(X),Cai1,---,Co =
H). Unfolding cdebq)(A, k3) we getp(X'),p(X,X),Cas1, .- .,Cp = H. Due to condition no. 2 in
(6.7), we have thap(X'),p(X,X'),Car1, - .,6 = p(X'),p(X,X’),Gs8, Y = Z. By modus ponens
using assertios we have thap(X’),p(X,X’),Car1,...,C = p(X,X’),Hs8,Y = Z. By another
modus ponens using condition no. 3, we have f&t), p(X,X'),Cas 1, .. .,C = H, which is the
left unfold of cdekc)(A, K3).

For the usefulness, it is easy to see frodek)(A, k3) that p()?),cl,...,ca, Catl,--+,Cb &

H,cy,...,Ca. And sinceH, ¢y, ..., Ca = H, we deriveA, and thereforedeb (A, k3) > A. O
Theorem 6.1 (Summarization by Deletion). SumnfA) is a summarization oA.

Proof. From Definition 6.1, here we need to establish the followimg:t

1. ThatSumniA) can be proved by the same left unfold as is appliel and hence proved

by the same subtree.
2. ThatSumnfA) > A.

From Lemmas 6.1, 6.2, 6.3, and 6.4, we know ttdgl A, K;) is correct for 1< i < n. Now,
for any 1< i < n, obviouslyp(X),U}_; ¢;(X) = p(X), @ (X). MoreoverH;(X) = H(X). Hence,
for all 1 <i < n, cdelA k) >sumntA). SincecdelAk;) is correct for all 1< i < n, then
sumnjA) can be proved by the same left unfold using. . ., K.

We now provesumntA) > A. We now demonstrate how we may obtairfrom sumnfA).
Obviously p(X),e(X) = p(X),U™; @(X) since for all 1< i < n, @(X) C ¢(X). Using this and
sumntA) and by modus ponens we have tpéK), o(X) = H(X), and sinceH (X) = H(X), we

obtainA. O
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6.2.5 Information Discovery via Dynamic Summarization

In the previous section we have described the constraietideltechnique to generalize Ihs of
an assertion in order to obtain a candidate for summarizatibich is more informative than the
original assertion. Generalization of the Ihs can be calipli¢gh a specialization of the rhs of an
assertion for the same purpose, and this is the focus ofdhifos.

Also in the previous section we have assumed the existereéuniction which would auto-
matically producéd from an unfold ofp(X),c1, ..., Ca,Cat1,...Cp = H such that cy,...,ca =
H. We can viewH,cy, ..., as a specialization dfi. In normal safety proof, as in our example
in Section 6.2.1H is simplyH, but we can be more flexible depending on the given problem.
One such problem is the proof of execution time bound, whielwifl use as our main example.
The proof will become essentially a discovery process ofithe bound.

Users may initially guide the information that they want tdaract by providing an initial
Ihs H with existentially quantified variables. For example, wienwish to discover the timing

bound of a program, we run a dynamic summarization-basexditigh with input the assertion
p(0,X,T,T¢),X), T =0=T; — T <?Bound

Here,T represents the current execution time of the program Tamgla final variable represent-
ing the execution time at the end of the program. We assunméiarogram indeed terminates,
and there is an actual value fBr

Now suppose that a sequence of left unfolds updates the asgestion into the following
assertiorA at depthk (assuming the increment of variableis 1 with each unfold), which is to

be unfolded using a constraint fact:
p(I, XK, T T1),0(X),.... T=0,T' =T+1,T"=T'+1,..., T*=TK 41 = T; = T <?Bound
Again suppose that in the program we have the constrainkfact
p(ILX,T,T¢) :- T=Ts.
The result of left unfold ofA using this clause is the assertion
T=Tr,@X),....T=T+1LT' =T +1,... . T*=T14+1=T; - T <2Bound
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Computing the functiordeh (A, k1) whereH = H results in the following assertiol :
p(L R TR T, T =T+1 T =T +1,..., T*=T“ 4 1= T; - T <?Bound

Here, the constraints sequente= 0, (p()~(), ..., in Alis not necessary for the assertion to hold,
hence they are deleted frofn The assertio®' is already a correct candidate for summarization

of A, however, we can produce more informative candidate by th@fimg procedure:

e We first produced such thatH, T/ = T+ 1T/ =T'+1,... . T*x=TK 11T, -T <
?Bound In the special case of proving timing bourtdi can be easily determined to be the

boundT; — TK < 0 betweenT; andT.

e We then examine the assertidhwith its rhs replaced witfs — TK <0
p(L X T T, T =T+ T =T +1,... . T =T '+ 1T - T*<0.

Now, the constrainty’ =T+ 1,T” =T'+1,..., T*=T*14+1 are no longer necessary

to imply the rhs, and can be further removed, resulting infimal candidated” :
p(I, XK, TX TH) E T —TK < 0.

It is easy to see thad” satisfies all the properties aflel (A k1) (6.3), and it is more

informative than’, i.e., A” > A'.

We now deal with the question of propagating the candidatensarization to the ancestors.
Let us considecdek,) (casesdeky) andcdek) are similar). Consider an immediate ancestor

of A, which we callB :
p(m X TR 1), X),...,. T/ =T+, 7" =T'+1,..., T =T* 24 1=T; — T <?Bound

Here we want to generate a candidate summarizatidhfodm A”. Suppose thaB is unfolded

to A by the clause&s, :
p(mX,T,Tf) :- X=XT'=T+1p(,X,T,Ty).

First we consider the |hs afdeb)(B, k2). SinceA” does not require all constraints@iX), .. .,
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T =T+1T"=T+1,..., Tk=T¥ 111 we can delete all of these froB1 We next consider
the rhs ofcdeka)(B,K2). Again here we want to produceth but now two conditions must hold

(conditions 2 and 3 of (6.5)):

1. Xk =XK Tk =Tk 141 T —T*<0EH, and

2.H,@X),....T/=T+1,T/'=T+1,..., T« =Tk2 1 = T; - T <?Bound

For our special problem, it is easy to determine sHcto beT; — T¥1 < 1. Hence, we have a

candidate summarizatidsy :
p(m X TR T =Ty —Th 1< 1

The remaining problem is on computing a single assertiorchvis a summarization ds,
i.e.,sumn{iB) according to (6.8). Suppose th&atan be unfolded using another clawsewhich

produces a candidate summarizati®gas follows:
pm X T T T - TR <2
Both B; andB; have the same Ihs. One of the correemn{B) is
pm X LT T ET -TH T <2vT TR <1

Unfortunately, in this case the rhs contains a disjuncti@imich can be of exponential size as
summarizations are propagated to the ancestors. From $ttiopd.4, however, we know that it
is enough to use an expression which is a cover of the disamdin our special case of timing
bound discovery, this is always one of the disjuncts, whicthie above case & — Tk"1 < 2.
We therefore obtaisumntiB) = B,. As it is here, in its most generality, we derive a disjunction
at the rhs, but it can often be simplified.

We note that although, this technique discovers boundspés chot discover the tightest
bound. For instance, the most that we can guarantee is tthigtdvers some timing bound and
not theworst-case execution tin{8VCET). The problem is that when we consider an assertion
to be proved is redundant to a summarization stored in the,tils not necessarily the case that
the path that gives rise to the timing bound of the summadrzas also feasible in the redundant

assertion. As the result of redundancy test, we may get aweaartsound for the redundant
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proc summarizéG = H)
Tablé-,NotDoné := 0,0
Summarization:= recursesumni0d,G = H)
return SummarizatiorNotDoné

end proc

proc recursesumnfA", G |= H)

LR:=T,L
foreach(k € ') do
g := unfold(G)

if (abstractionpoint(g)) then
if (Se Tables.t.Sx>p(g=H)) then
(G'=H’) := cdebp)(G E H,K)
else
chooseSs.t.S> (g =H)
NotDoné := NotDoné U {S}
(G'=H’) := cdeg)(G=H,K)
end if
elseif (S A-s.t.S>p(g=H)) then (G =H’) := cdeb)(G = H,K)
else if (Se Tablé s.t.Sr>p (g = H)) then (G =H’) := cdeb)(G = H,K)
else if (k is non-fact andyis O) then (G' =H’) := cdeb(G = H,K)
else if (k is fact) then
if (g=H is provable then (G'=H’) = cdek(G | H,K)
else abort end if

else
(G = H') := recursesumnfA" U{G |=H},g=H)
end if
L,R := intersectL,G'),closurdR H')
end for

Table- := TabléU{L =R}
return (L =R)
end proc

Figure 6.6: Summarizé’>rocedure

assertion which is actually an over approximation.

Other than the discovery of timing bound or bounds on resousage in general, the tech-

nique explained in this section can potentially be extendedetrieving various information

about a program.

6.3 The Basic Compositional Algorithm

Before we present our main algorithm, we first provide an rdlgomn which performs traver-
sal with dynamic summarization, in the form siimmarizeprocedure shown in Figure 6.6.

Summarizas simply a wrapper to the procedurecursesumm The procedure accesses two
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proc prove(G = H)
Table NotDone:=0,0
(G =H’),NotDoné := summarizéG = H)
Table:= TableU{G' = H’}
NotDone := NotDoneJ NotDoné
while (NotDone# 0) do
(GEH) = pop(NotDong
(G = H’),NotDoné := summarizéG = H)
Table:= TableU {G' =H’}
NotDone := NotDoneJNotDoné
end do
return Success
end proc

W N P O

o~~~ o~~~ o~~~
T oo D=

Figure 6.7: Compositional Algorithm

kinds of table represented as the two variafkEsieandTable-. Tableis defined in the main pro-
gram (to be shown later), and is a global table for the whabgmm. It stores proved assertions
at abstraction points On the other handlablée- is the local table for the current execution of
summarizewhere strengthening of proved assertions which are notaadistn points are stored.

We now explainrecursesummin more detail. Recursesumns called with two arguments:
At represents the current assumed assertions to be usedductiam, ands = H is the assertion
which is to be proved and its strengthening produced.3Ave reset the two variabldsandR.

L stores the current computed lhs of the summarization, vitdiores the rhdl. is initialized to
T, while Ris initialized to L. L = Ris eventually to be returned to the caller, and its final value
is computed incrementally.

The algorithm basically attempts to perform left unfoldngseach CLP clausein the pro-
graml and update the summarizatibri= R. To denote an unfold using a particularhere we
define a functiomnfold®, such thaUnfoId[‘)(X)(G) =G'whend : - G =resoly, (0 :- G,K).
Note thatunfold, ) (G) = {unfold;(i)(G)]K € '}. We simply writeunfolcfj(;() asunfold® when
the unfolded atonp(X) is clear.

After unfolding usingk, the procedure may encounter abstraction points (the dondit
(5) holds). Here there are two cases: the summarization of tsteaaition point is already kept
in the global table, in which case we generate a summarizasingcdek,). Otherwise, we
include some stronger assertigin NotDoné. NotDoné is a set which stores all encountered
abstraction points whose assertions are not yet provesitdtbe passed to the main program.

The procedure may also encounter a point where we apply ediioch (Line (11)). It is
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also possible that the unfolded assertion is redundant torangrization in theTableé- (Line
(12)). Line (13) handles the case when tkés not a fact, yeg evaluates taJ. Line (15)—(16)
handle the case wheqis a fact. If none of the above cases apply, we have not yet dlglerto
produce a summarization, in which case we need to go deeflee jproof tree by recursing on
recursesumm(Line (17)).

At Line (18) we generaté. = R incrementally using 2 proceduresitersectand closure
The functionintersectL,G’) computes some conditiofp such thatp = (LA G'). In the case
of constraint deletionntersectL,G’) simply returns the union of the conjunctslirandG. On
the other handclosurdR,H’) computes a conditiow such that RV H’) = @. We may adopt
an implementation where in cageis O thenclosuréR,H’) is H' and similarly wherH’ is O
thenclosurgR,H’) is R. In case we attempt to discover timing bounds, wRes the constraint
T — T < a andH’ is the constrainT; — T <3, closurd R, H') = T; — T < maxa, ). In case
we are proving a safety condition and neitfienor H’ is O, thenR = H’ = closurdR H’). In
this way we have an iterative computationsoimniG = H ), whose formal definition we give in
Section 6.2.4.

At Line (19) the procedure updates the local table by adding the new sueatianL = R
and returns the assertion at Li{20).

We show the pseudocode of our main algorithm in Figure 6. dlgorithm calls the pro-
ceduresummarizéG = H) which returns a strengthening & = H’ of G = H and a set of
assertions that are not yet proved in theldetDoné, which is then added to the sebtDone
The program iterates untdotDoneis an empty set.

We now exemplify a compositional proof using our algorithfere we return to our example
Program 6.1, which has been proved compositionally in 8e&i8.4, and proved using dynamic
summarization in Section 6.2.1. Here we again prove the plgrhut using both composition
and dynamic summarization.

We show the proof tree in Figure 6.8. We also def{de as a breakpoint of two frag-
ments as in Section 5.8.4, but now we reason on each fragnsamd dynamic summariza-
tion. Here, we assume that the user have specified that aestiasss = H whose Ihs satisfies
p(4,X,A,B,C,Xs), X > 0 is an abstraction point, and that4, X,A,B,C,X;),X > 0 X; >0

needs to be proved. We start the execution of our algoriththé&gall

provg p(0,X,A,B,C, X¢),X > 0= X; > 0).

189



1. p(4,X,AB,C,X{),X > 0= X > 0

LU ‘*
2a.p(5,X,A,B,C,X;),X>0,C=1} X; >0 lLU

T 2b. p(Q,X,A,B,C,X{),X >0,C=0fX; >0
3. p(Q, X', AB,C,X{),X' =X+1X>0,C=1FX; >0 jLu

T 6.X>0,C=0,X=X; =X; >0
4.X' =X+1,X>0,C=1X =X =X >0 | op

‘DP 7.-0

5.0
1. p(0,X,A,B,C,X),X > 0= X; >0

LU ‘* yLU
2a.p(1,X,A,B,C,X{),X >0,A=1}=X; >0 2b.p(2,X,AB,C,X),X >0,A%1}=X; >0

LU
3. p(2,X,A,B,C,X{),X >0,A=1FX; >0

LU ‘* LU
4a.p(3,X,AB,C,X{),X>0,A=1B=1FX; >0 l

T 4b. p(4,X,AB,C,X{),X > 0,A=1B#£1EX; >0
5. p(4,X,A,B,C',X{),X > 0,A=1,B=1,C' =0} X; >0 LCUT

cuT 8.Xi >0,A=1B#£1}=X; >0
6.Xi >0,A=1,B=1C =0=X; >0 joP

DP 9. -0

7.0

Figure 6.8: Optimized Compositional Proof of Simple If Sequence Progra

The procedur@rovewould then call

summarizép(0,X,A,B,C, Xs),X > 0 = X; > 0).

which initiates a traversal of the lower proof tree in Fig6t8 in depth-first manner. Nodes 5
and 4b of the proof tree are abstraction point, assumingaf#aiX,A,B,C,X;),X >0 Xt >0
is not yet proved, this is then handled by Lin@—(11) in Figure 6.6. In this case, th&that
we choose in Lin€9) is p(4,X,A,B,C,X;),X > 0 |= X; > 0. This unproved assertion is added
to the NotDoné set, and at the end of the executionsoimmarizes returned toproveto be
included inNotDone Provethen iterates over the contentshddtDoneand prove each by again
calling summarizéLines (4)—(8) in Figure 6.7). Sincg(4,X,A,B,C,X¢),X > 0= X; > 0isin

NotDone it is therefore processed here by the call

summarizép(4,X,A,B,C,X),X > 0 = Xt > 0)

which produces the traversal of the upper tree in Figure l8s traversal produces no more

assertion ilNlotDone and hence after the return frosnmmarizehe program terminates.
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We note that here we obtain a proof which is smaller than bahrE 5.14 (Section 5.8.4)
and Figure 6.5 (Section 6.2.1). Due to compositionalitis mot necessary to repeat the proof
of the upper tree at 5 and 4b of the lower tree, and due to suiratian, 2b of the lower tree

becomes redundant to 3.
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Chapter 7

Toward a Basic Algorithm for

Recursive Assertions

Here we discuss the verification of two kinds of recursiveegtgans we have previously men-
tioned: relative safety assertions and general recurggertions we encounter in array and
pointer data structure verification. The proof of relatiedety assertions we have discussed
so far is automatable, and we provide the basic algorithreti@n 7.1. We also provide dis-
cussions on how general recursive assertions in data @teuetrification can be automated in

Section 7.2.

7.1 Algorithm for Proving Relative Safety

We devise an algorithm for proving relative safety in Figdre. Itis based on our straightforward
algorithm in Figure 6.1. Similar to Figure 6.1, it uses theafeassumed assertions only instead
of global tabling, but different from it, it allows for appktion of cuT rule in order to check
whether an assertion is related by a relative safety prpgpen., symmetric) to another in the set
of assumed assertions.

Since the proof of a relative safety assertion can emplograttlative safety assertions that
are proved separately, we allow the invocation of the procsprovewith a nonempty assumed
assertionsA at (1). In addition, the proof of a relative safety assertion using groof method
requires the application &u rule. The checking o&” = H at(2) would require a search process
that uses only theu andppP rules. G” = H is established when after a number of applications

of RU we are able to conclude the final obligation usimg The right unfold viaru here can
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program
(1)  provgA,G|=H)
end program

proc proveA, G = H)
for each (G € {G'|GE=G'}) do
(2) if (G” = H is provable, or
there isA € A
(3) such thalAr> (G” = H)) then
return Success
end if
end for
A:=AU{GEH}
F :=unfold(G)
if (F #0) then
foreach(geF) do
prove(A, g = H)
end for
return Success
end if
abort
end proc

Figure 7.1: Relative Safety Prover Algorithm

be done either by depth-first or breadth-first strategy. tifisn useful to give a bound on the
depth of the right unfolding since it is possible that furthight unfolding beyond certain depth
is futile. The proof process has to progress by more stepsfpbtihfold (u) when the right

unfolding has reached its depth bound without finding a proof

7.2 Toward Automation of Data Structure Proof

Our main compositional algorithm of Figure 6.7 for programalgsis and verification can also be
used for verifying programs with pointer data structureswiver, in this case, the proof is not
completely automatic. For explanation, we provide a simgligorithm for proving data structure
property in Figure 7.2. It is similar to the algorithm in Figw6.4 for intermittent abstraction and
global tabling, and in fact Figure 6.4 is also a correct atpar for data structure verification, but
in Figure 7.2 we opt to simply use the set of assumed asssrtidrich is enough for our purpose
instead of global table. We note that our sample data streigpiwofs in Chapter 5 and appendix
Section B.1 have been done without the redundancy checks pwasible by global tabling.

Figure 7.2 is not completely automatic because at the mothentperations afl), (2),
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program

provg0,G = H)
end program

proc proveA, G = H)
(1) if (G = H is provablg then
return Success
end if
(2) if (abstractionpoint(G) andG |= G') then
G =G
end if
if (ThereisAe A
(3) such thalAr> (G =H)) then
return Success
end if
A:=AU{G}=H}
F :=unfold(G)
if (F # 0) then
foreach(ge F) do
prove(A,g = H)
end for
return Success
end if
abort
end proc

Figure 7.2: Simple Algorithm for Proving Data Structure Property

and(3) are not fully automatic. The test at each of these points i®aff general recursive
assertion with constraints on arrays, which often requiigdst unfolding Ru rule) due to the
atoms in the rhs of the assertion, or seemingly arbitrangg®ization viacuT rule. To be more
specific, suppose that we want to pravgX1),. .., pm(Xm), @ = q(Y), . Here, often we need
to generalize the lhs, such as by removing some literals.plingose of this is so that we may
conclude the proof later by the application of coinductian)(

Fortunately, in the domain of recursive data structurefieation, the proof steps of general
recursive assertions are not completely arbitrary. Herpnareide a strategy that would work for
our examples.

We assume that a general recursive assertion has the form

pl()zl)v EARE) pm()N(m)v () ): Q(?), g,

where@ and are constraints. This form with only one atom at the rhs isegairenough since
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GEai(...),q(...),...,an(...), can be proved by separately proviég= qi(...), G | (.. .),

..., andG = gn(...). We also assume that n@(X), for 1 <i < mis a predicate of program
model (the predicatp we have been using so far). The above general recursivdiaassn be
encountered as a subsumption test for applyipghe residual obligation after an application of
AP, or after applying.u rule using a constraint fact.

Given the above general recursive assertion, we perforrfotlogving steps:

1. First we try to prove the assertion directly by applicataf bp, or by a humber of ap-
plications ofrRu, which is followed by a singl®p. If this prove succeeds, we return to
the caller, reporting a success. Here we may also utilizarsgipn principle (SEP) and/or
array index principle (AIP) to simplify the assertions. Wieo also need to discover a
substitution to existential variables of the rhs of the a&m®to allow the application of
DP. Itis straightforward to implement an incomplete autordateocedure for this purpose

which is based on unification.

2. We try to applyap if there is an ancestor of this assertion in the proof treé wie same

multiset of predicates in the lhs goal. Any applicatiomefinvolves the following two:

(a) Subsumption test.

(b) Proof of the residual assertion.

Both are proved independently, and each is also a proof afrgérecursive assertion. If

we succeed with both proofs, we signal a success to the.caller

3. If with the above cases we are unable to establish a praotiempt to perform more left
unfold (LU). In the recursive data structure verification, we can ineggeane restriction on

the way we perform the unfolds.

Since we are dealing with predicates defining recursive stati@tures which are typically
simple (trees, lists, etc.), in most cases, each atom nedg®e level of unfold. There-
fore, an atomp;, where 1< i < nwhich is a result of previous left unfold can be given
lower priority to be unfolded at the current stage of the fprobhis results in fair atom
selection in the unfold. That is, if the proof does not codelearlier, all atoms in the

initial obligation will eventually be unfolded.

Here there are two cases:
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(a) In case no more unfold possible, signal failure to théecand terminate the whole

proof process.

(b) Otherwise, try to unfold the goal, and for each child gogppeat from step 1.
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Chapter 8
Implementation and Experiments

8.1 Basic Implementation in CLP(R)

In this section we discuss the implementations of the allgms given in Chapters 6 and 7 in the

CLP(R) programming language [110, 94].

8.1.1 \Verification Run with SLD Resolution

Let us start with an implementation of the CLP program thatweat to reason about, whose
general form is Program 8.1. From the discussion in Sectibr22we know that we can al-
ready perform some reasoning on the program using SLD rézoluFor example, proving

p(X),6(X) k= O is the same as posing the query clause
o - p()Z),q)()’Z)

For example, we may pose the quéry: - p(2,2,X,Y). to Program 3.15 (Page 62) in order to
establishp(2,2,X,Y) = O.

In this case standard CLP resolution already implemeatandDp proof rules, because one
step of resolution corresponds to generation of resolvesitsy all program rules. Phere is
manifested by the checking of the satisfiability of a confiort (sequence) of constraints. In
case we encounter a goal clause: - ¢, where the goab is just a satisfiable sequence of

constraints, a reasonable CLP system would automatiaggrt a refutation.

Example 8.1. For example, let us again refer to the proofpg®, 2, X,Y) = O (Figure 5.9) in

Section 5.6. First note that in one step the resolvents aftieeyC : - p(2,2,X,Y) (name this
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p(R) - an(%.K), p(X)
p(X) 1~ Pa(X).
p(X) :- Bm(X)

Program 8.1: First Engine

1| p(X),X=2Y+1EDO

2a| 0=2Y+1=0 Lul
2b| p(X—-2),X=2Y+10O LUl
3| -0 DP2a
4| -0 AP 1,2b

4s.1| p(X—2),X =2Y +1
Ep(X—2),X—2=2x7Z+1 AP12b
4s.2| -0 DP4s.1

4r1|0,X=2Y+1=0 AP1.2b
4r2| -0 DP4r.1

Figure 8.1: Proof of p(X),X =2Y+1|=0O

clausexg) produced using the clauses of Program 3.15 are

O:- p(1,2,X,Y),(Y=0VX<Y). Kg= reSO|\b(272’xyy)(K8, K3)
O:- p(2,1,X,Y),(X=0VY <X). Kip= resolvp(2727X7Y>(K8,K6)

Obviouslykg is the obligation 2a in Figure 5.9, while is the obligation 2b in Figure 5.9.

Example 8.2. As another example, let us prove the assentiof), X = 2Y +1 = 0 on Program
5.1 (Section 5.1). The proof is shown in Figure 8.1. GivenglPam 5.1, we pose the query

O - p(X),X=2Y+1 (call this claus&s), which has the following two resolvents:

O:- 0=2Y+1 Kg = I’eSO|\4)(x)(K3, Kl)

O - p(X—=2),X=2Y+1 Ks=resolx)(Ks,K2)

Here,K4 is the obligation 2a in Figure 8.1, arg is the obligation 2b in Figure 8.1. Assuming the
existence of an automated integer constraint solver, waioaplify the expression & 2Y +1 in

K4 into O hence producin@ : - O. This corresponds to a direct proa®) step producing the
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obligation 3 in Figure 8.1.

8.1.2 Checking Assertion Entailment

To implementaP or use the redundancy principle, we implement the globdinglmentioned
in Section 6.1 (Figure 6.2). Here we need to test for asseeiailment, which we perform in
the following way. Assume two assertio@= O andH = O, whereH |= O is stored in the
table. We consider the go@ to be subsumed b whenG andH are renamed apart, the goal
Gis p(X),G, the goalH is p(Y),H’, andG' = H’,X = Y. In our implementation, which will
be detailed later, the subsumed and subsuming g8as@H respectively) are always renamed

apart. NowG' = H’, X =Y is equivalent to

(Avar(G) —var(X) : G) = (Qvar(H') —var(Y) : H'), X =Y. (8.1)

The expressiorfdvar(G') — X : G') is aprojectionof G’ into the variableX. Similarly, (3var(H’) —
Y : H') is a projection o’ into the variable¥ . Such projections are computed automatically

and efficiently by CLPR). The residual obligation here is = O which is trivial.

Example 8.3. For example, in the mutual exclusion proof of the two-praedaakery algorithm
(Figure 5.9), we already assume the existence of a conss@liver capable of computing pro-

jections. Now let us compute;1 from kg as follows:

O - p(0,2,X,Y),(Y=0VX<Y),X=Y+1 Ki1=resolixy)(Ke,K2)

Since the variableX no longer appears in the arguments of the afgi® 2, X",Y), CLP(R)

automatically projects it out and instead process the mimspls clause

O :- p(0,2,X"Y),Y =0. Simplify k13 with constraint solving.

This clause corresponds to the obligation 3a in Figure 5.9.

8.1.3 Storing in Global Table

To implement the global tabling mechanism, we need a waydre sassertions persistently.

Notice again that to establish subsumption we test whetherhis subsumed by a goal already
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storgX) :- dumgX,X’,S),negateall(S S),asserft(X’,S)).

negateall([],[]).
negateall ([C|R],[C'|R]) :- negatéC,C’),negateall (R R).

Program 8.2: Store

stored in the table (Formula (8.1)), which is equivalenti® ensatisfiability of

(3var(G') —var(X) : G') A (3var(H') —var(Y) : =H'),X =Y. (8.2)

The subsumption test that we implement is actually the isfidiility test of (8.2). For effi-
ciency, it is therefore desirable not to simply to store ased#on, but to store the negation of
the constraints partH’ of its lhs such that-H’ need not be recomputed whenever we test for
subsumption.

For negating and storing a goal, we implement stare procedure shown as Program 8.2.
Our store procedure uses CLR()’s built-in dumpprocedure to extract the constraints on the
variablesX into a list of syntactic constrainon the variableX’. We then compute the syntactic
negation by thenegateall procedure, and then store the negation in the persistemg sging
CLP(R)’s assertbuilt-in procedure. Note that in (8.2)' can be a sequence (conjunction) of
constraints, sag1, ..., ¢n. Negateall computes the lisip’, . .., ¢r], whered] is a negation o;,

for 1 <i < n. The meaning of this list is the disjunctiaff_, ¢;.

8.1.4 Algorithm with Table Checking and Storing

It is best to combine the table checking and storing into glsiprocedure, as shown in Program
8.3. In thecheckand storeprocedure, we first test whether a set of constraints is ritsued
by the table. If this is the case, we then executestioee procedure to store it in the table. The
actual subsumption test is implemented inshbsumegrocedure by testing whether there is an
itemt(X,S) in the table, wher&is a negated constraints list withas the variables, and where
all constraints irSis unsatisfiable. Recall that the meanindgsa$ a disjunction of its elements.
Hence, the unsatisfiability @ requires unsatisfiability of each of its elemerd._unsatiterates
through the elements &and checks for the unsatisfiability of each. Taisfiableprocedure,
whose code is not shown here, is a syntactic constraint &alu

Our remaining task is to putheckand.storein the appropriate places in Program 8.1. We
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checkandstorgX) : - not subsume), storgX).
subsumetK) : - t(X,S),all_unsats).

all_unsat])).
all_unsat[C|R]) : - not satisfiabléC),all_unsatR).

Program 8.3: Checkand.Store

p(X) :- checkandstorgX),q(X).

q(X) - ay(X,X’), p(X’).
4(%) - an(%,%"), p(K).
axX) - Ba(X).
q(X) Bm(X).

Program 8.4: Second Engine

refer again to our algorithm in Figure 6.2, where table chegks the first routine executed
in the procedurgrove which is then followed by the storing. Accordinglyg, must first call
checkand storebefore executing the unfolds. In Program 8.4 we therefofiael@ new proce-
dureq, which actually executes the unfolds and recursively qalig/e then modifyp to first call
checkand.storebefore callingg to execute further unfolds.

Program 8.4 is already a complete implementation of thereihgo in Figure 6.2 for proving
G |= O. In order to separate the verification machinery from the lemolso that we can use the
same engine for separate problems, we separate the praejeemdent constraints, ..., o,

andfy, ..., Bn into predicatesransandinit in Program 8.5.

8.2 Specialization to Programs

An important application of our proof method is for reas@nabout programs and timed au-
tomata. As we have discussed in Chapter 3, programs haveapnogoints, similarly timed
automata have location identifiers which are nonnegatitegaers. We usually assign program
point variables to the leftmostarguments op, wheren is the number of concurrent processes
or automata.

When running our prover engine on program or timed automatbl@ms, all goals always
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trans(X,X') : - oq (%, X0).
trans(X, X') (R, K1),

init(X) :- Bu(X).

init(X) :-E Bm(X).

p(X) :- checkandstorgX),q(X).

q(X) :- trang(X,X), p(X).
q(X) :- init(X).

Program 8.5: Third Engine

have the program point argumemg®und that is, they have known integer values. Therefore in
the subsumption check logically formalized by (8.2), wechaet have constraints on program

points or timed automata locationsht since we would only test for subsumption of goals with
the same program point values. This improves, or will paddigtimprove, the efficiency of our

implementation for the following reasons:

e We can avoid negating the groundings of program points atioos, which would im-

prove the efficiency of our algorithm.

e CLP(R) indexes clauses based on the numeric value of its firstr{fest) argument. There-
fore, having the first argument of the table clausesProgram 8.2 to be numeric is im-

portant for efficiency of table checking.
e We could potentially implement more efficient problem-sfieindexing mechanisms.

To accommodate the new table storing and subsumption aiggakie modify the predicates
we have introduced before, by separating the program p&iots the rest of the arguments.
We show the modified predicates as Program 8.6. In the ptedittans and init, we now
separate the first ground valugs.”., 7, ...,7,51,...,5n In the other predicates we separate
the arguments intd andX. The negation of constraints gtoreonly involves constraints on the
argumentsX, and notL. In subsumedve simply match the ground values bfwith which the

procedure is called with the table without testing for uisdbility (of say,L = 1AL # 1).
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trang(f, X, 77, X') - ag(X,X).

X

trans(Fn,X,f{],):Z’) - an(X,X).

init(51,X) - Bu(X).

init(&n, X) - Bm(X).

checkandstorgL,X) : - not subsumed., X), storg(L, X).
subsumel,X) :- t(L,X,9),all_unsats).

storgL,X) :- dumgX,X’,S),negateall(S,S),assertt (L, X', S)).

q(L,X) :- trang(L, X, L', X"), p(L, X).
q(L,X) :- init(L,X).

Program 8.6: Fourth Engine
8.3 Handling Program Data Types

The domains of variables in CLR() are only functors and real numbers. In this section we
discuss various possible variants of implemensitggeandsubsumedepending on the intended

data type of the verification problem at hand.

8.3.1 Tabling Integer in CLP(R)

As we have mentioned in Section 5.10.1, there is an inherexanipleteness when verifying
integer problems due to our use of CIZ9)( However, there is a technique that we can employ
to increase precision. The solution here is that in the implatation oihegate(Program 8.2) we
should never negate constraints on integer variablesitb istequality.

All said, other than not affecting the soundness of verificatesult, we also believe the
problem considered here has a rare occurrences. Therki®tethnique is not yet implemented

in our actual prover prototype.

Example 8.4. Suppose that during the run of the prover we obtain earleegtalp(15,X), X <

5 = O, which we store in the table (usiragserj after negating > 5 to X < 5, as the constraint
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fact

t(15,[X > 5)).

A problem occurs wheiX is intended to be an integer variable: Suppose that in anptre of
the tree we prove the assertion

p(15,X),X < 6 = O0.

SinceX is an integer variable, the lhs goal should be subsumed bisrgoal ofp(15,X), X <
5kE=0.

The prover engine checks whether the last assertion hasthbkd or not by executing
the callsubsumefl5, X) from within checkand store This leads to the execution of the goal
X < 6,all_unsaf[X > 5]). In real domainX < 6 A X > 5 has solutions, therefosdl_unsatand
subsumedail, and the assertiop(15,X), X < 6 |= O is wrongly considered by our implementa-
tion to be not subsumed by CLRY.

The solution here is that instead of storiri@5, [X > 5]) in the table, we should have stored

t(15,[X > 6]), that is, we do not negate the constraint to strict inequality

8.3.2 Subsumption of Functors in CLP)

We need to handle functors to verify problems such as thedtatt example in Section 3.7. For
this, we need to modify how the table is constructed and ussdbhsumption check. An obvious
way to store a term in the table is by storing it as is, as shawProgram 8.7 (no “negating” as
in Program 8.2).

For the subsumption check, note that a t@rms subsumed by another tefdwhen there is
a substitutioro of the variables oS such thatSo = T. Our task is therefore to generate one such
substitution. This is implemented in our new versiorsabsumedn Program 8.7.Subsumed
calls all_subsumegdwhich further callssubsumediux Subsumedux uses CLPR)’s var and
= .. built-in predicates.Var is used to test whether a variable has a constant valuatiootor

while = .. is used to decompose a term into a list containing its headandnents.

8.3.3 Tabling Finite Domain Data in CLP(R)

The main use of this type is to be able to handle finite integestraints such as # a in the
transition definitions, wher¥ is of finite subset of integers artda constant in the domain of

K without translating it into the disjunctiod < a v K > a. The problem with disjunction is
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storgX) :- asserft(X)).
subsumegX) : - t(Y),subsumedll(X,Y).

all_subsumed(], []).
all_subsume@X|R],[Y|9) : -
subsumeaux(X,Y),all_subsume(R,S).

subsumeagux(A,B) : - var(B),!,A=B.

subsumeaux(A,B) : - notvar(A),
A=_.[HIR,B=_.[H|S,
all_subsume(R,S).

Program 8.7: Storeand Subsumedor Handling Terms

that it results in more branchings in the proof tree, whichgainst our effort to keep the proof
tree as small as possible. For example, in the Fischer’'sahaigelusion algorithm example in
Section 4.5.2, we have an if conditional which conditionngreequality. Since CLPR) has no

representation for inequality constraint, the actual C® Pifnplementation of the sixth clause in

Program 4.20 are the two clauses

p(O, L2,T1 + 1, T2, K) L. p(3, L2,T1,T2, K),Tl < T2, K<1
P(O,L2, T1+1,T2,K) - p(3,L2, T, T2,K), Tt < Tp,K > 1.

These two rules would result in branching in the proof trexssibly enlarging its size. Similar
case can be found in Szymanski’'s algorithm (also in Sectid} where there are if conditionals
with equality condition. The failure (“else”) path of theraditional therefore has inequality as
its guard.

To solve this problem we introduce special terms of the fovam(List), which we callroom
terms, whereList is a list of 0, 1, or “any” value, which in CLE) is denoted by?, with the
convention that only one element with value 1 is allowed, imnchse when there exists a 1, no
_is allowed in the list, and the list cannot be all 0. Theref@m®ns such asoom([0,1,0]) and
room([_,0,0]) are well formed, while terms such exom([0, 0, 0]) or room([1,1, ]) are not.

Each element oList represents an element of a finite domain. For example, indime t
room([as, &, a3]), a1, az, andag may correspond to the colors “red,” “green,” “blue,” or the

numbers “5,” “3,” “4,” respectively, depending on the inestation given by the user. Suppose

1The naming is inspired by the flag variablasx, in two-process Szymanski’s mutual exclusion algorithmahhi
point to some finite number of “waiting rooms.”
2_can be understood to be some fresh, otherwise unconstnziniedle.
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that we adopt the numeric interpretation. The teoom([0,1,0]) now represents exactly the
number “3.” For this to be so, the element of the list whichrespond the object “3" is setto 1
while the rest of the elements are set to O.

We use our term not only to represent a value, but also a selwévin the finite domain. To
represent a set of values that does not include “3,” we needhawhich abstract®om([1, 0, 0])
(representing “5") andoom([0,0,1]) (representing “4"). The term iom([_,0,_]), denoting
“not 3.” Note that now the middle element of the list which remponds to “3” is 0, while the
rest are given (“any” value). Here we do not need to use disjunction to repnéan inequality.

We now explain how to store and use room terms for subsumplieoks efficiently. For this
purpose, similar to numeric variables, we also pre-proaas®m term by “negating” it before
storing, such that the subsumption check can be done sinmyplynification (defined on Page
2.5.2).

We first define an asymmetrizegationmapping of list elements{0 — _,1+— 0,_+~ 0},
which implementation for negating room terms is shown agzm 8.8. When the calbom.ne-
gateg(A, B) succeeds given room terfas input, we calB to be the room negation &f (but not
the vice versa due to the asymmetry of the mapping). In addid mapping list elements,
room.negatealso adds the constraint that the sum of all non-ground elesnie the list of room
termB is 1. For example, the termoom([X,0,Y]),X+Y = 1, whereX andY are non-ground
(“any”), is the room negation abom([0, 1,0]) (but again, not the vice versa).

Other predicates defined in Program 8.8 incluoem.negateall which construct the nega-
tions of room terms in a list, amibneunifiableto test of non-unifiability of corresponding room
terms of two lists.

We now specify a subset of the program variables with finitaaios, and we accommodate
these into a new version of our prover engine, shown as Rrogra. In Program 8.9 we denote
a list of room term variables by, F’, or G.

We need the following result:

Proposition 8.1. Correctness of Room Term Subsumption.The termroom(List;) is not
unifiable withroom(Listy), whereroom(Listy) is the room negation abom(Lists), if and only

if the set of values represented lyom(List;) is included in the set of values represented by

room(Lists).
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room.negatéroom(L),room(L")) : -
roomnegateaux(L,L’,1).

roomnegateaux([],[],0).

[
room.negateaux([A|R],[0|F,X) : - var(A),! , roomnegateaux R, S X).
room.negateaux([O|R], [A|F,A+X) : - roomnegateaux R, S X).
room.negateaux[1|R],[0|F,X) : - roomnegateauxR,S X).

room.negateall ([], []).
roomnegateall ([X|R],[Y|S) : - room.negatéX,Y),roomnegateall(R,S).

noneunifiablg[], []).
noneunifiablg [X|R],[Y|S) :- not X=Y,noneunifiablgR,S).

Program 8.8: RoomNegate RoomNegateAll, andNone Unifiable

Proof. First we prove the only if case. Note that sino@m(Listy) is a room negation of
room(Listg), List, does not contain a 1. Hence, the teroom(List;) is not unifiable with
room(Listz) if and only if List; has a 1 at position, while List, has a 0 at the same position.
The 0 at position of List, can only be a result of room-negating either 1. In either case, the
set of values represented lmom(List3) necessarily include those representeddnym(List; ).

Next we prove the if case by contraposition thabidm(List; ) is unifiable withroom(List,),
then necessarily the set of objects representembos(List;) is not included in the set of ob-
jects represented bpom(Lists). Note thatList, contains only Os and sonke> 1 non-grounds,
01,..-,0k suchthag; +...+ gk = 1.

The only case when the above is violated is when given theum.@efined on Page 34)
p of room(List;) androom(Listy) is such tharoom(List; )i = room(Listy)u = room([0, ..., 0]).
To see this, first we suppose that the result of unificatiortaioga a_. Then necessarily both
List; and List, contain_ at the same position. Sinceis a room negation of 0, this means
room(List;) represents some objects not representeddy(Lists). Next, suppose that the result
of unification contains a 1. Then necessakilst; contains a 1 at that position whilést, contains
a_ at the same position. Sincds a negation of 0, then the object representeddayn(List; )
cannot be included in the set of objects representeddyy Lists).

However, the unification with the resutiom(List;) = room(Listz) = room([0,....,0Q]) is not
possible sinck > 1 andg;+...+gk=1.0

Using the above theorem, it is thus possible to check whetigeset of values represented

by room(List;) encountered during search, is subsumed by the set of vadypessented by
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checkandstorgL,X,F) :- not subsumed., X, F),storgL, X,F).
subsumet,X,F) :- t(L,X,G,S),noneunifiablgF,G),all_unsatS).

storgL, X, F) :- dumgX,X',S),negateall(S S),
roomnegateall(F,F’),assertt(L,X",F’,S)).

Program 8.9: Fifth Engine

room(Listz) encountered earlier by checking non-unifiabilityrodm(List; ) to room(Listy).
Sometimes in the proof tree some ill-formed room terms candmstructed. An example
of the problem is whemoom(]0,0,0])2 is generated due to unification aom([0,_,_]) with
room([,0,_]), and then withroom([_,_,0]) in a single search path. Either in the position of
room(List;) (the term to be compared with a previously encountered awepom(List3) (the
term previously encountered to be compared with) mentiamPdoposition 8.1, the subsumption
check always detects unifiability. This problem can be sblwsing the mechanism for axiom
checking to be introduced in Section 8.6, where for all \@&a of room term data type, we add

the requirement that the occurrence of 1s is exactly one.

8.4 Implementing Intermittent Abstraction

Here we discuss an implementation of the algorithm of Figuefor program analysis and
verification, specialized to predicate abstraction. InuFég6.4, before testing for subsumption
we test whether the constraints on the varialtlesd X is an abstraction point (the condition

abstractionpoint(G)). In this case, we replacé with new variables having weaker constraints.

SWhen we must provide an intuitive interpretation, this hascavalue’ interpretation.
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abstractl, X, X’) : - oncdabstraci(X,X’)).

abstractL, X, X).

abstraci(X,X') :- not—=¢1(X),d1(X),abstracp(X,X’).
abstraci (X, X') :- not¢a(X), ~¢1(X’),abstrac(X, X’).
abstracg (X, X’) :- abstrach(X,X').

abstrack_1(X,X") :- not=¢y_1(X),dpx_1(X'),abstrack(X,X’).
abstrack_1(X,X) :- notdx_1(X), ~ok-1(X’),abstrack(X, X).
abstrack_1(X,X’) : - abstrack(X,X").

abstracg(X,X') : - dr(X').
abstrack(X,X’) :- notdx(X), ~d(X).
abstracg (X, X).

Program 8.10: AbstractandAbstracy to Abstrack

p(L,X,F,) :- abstractL,X,X’),checkandstorgL,X’,F),q(L,X’,F).
(L,X,F) :- trang(L,X
L XFE L,

F,L X R, p(l, X" F").
JXOF) - init( ).

X,F

Program 8.11: Sixth Engine

In our implementation, an abstraction point is determimechfthe values of program points
or automata locations alone. We show our abstraction reatsProgram 8.10, where program
point values are denoted using the first argunfeot abstract When abstractis called, the
program point values must mat€hWe useabstractonly for abstracting numeric constraints,
and not finite-domain constraints, since abstraction ofefidomain constraints are not required
in our experiments.

Abstractcallsabstract, abstracy in turn callsabstrack, where constraints are actually ab-
stracted. Recall thatin Section 5.8.2, we are given a seedfigate®, ..., ¢x. Then we abstract
a set of constraintgto a conjunctiorp’, ..., ¢, whered; is ¢; when we can decide that= ¢;,
—¢; when we can decid@ = —¢;, or -O when we can decide neither. We straightforwardly
implement this as the procedurasstract (for 1 <i < k) in Program 8.10.

Program 8.11 updates tipgprocedure in Program 8.9 by adding a calatustract
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permutél, X, F,L',X",F’) :- not—¢1(L),as(L,X,F,[’, X,

—
X
Th

/
’

).

13

X

permutél, X, F,L/, X",F’) :- not—dy(L),ax(L,X,F,L",X",F").

permutél, X,F,L,X,F).

checkand.storg(L, X If) - permutéL X,F,L",X",F"),
not subsumed’, X', F’), storg(L’, X', F').

Program 8.12: Permuteand NewCheckand Store
8.5 Implementing Reduction

The symmetry and serializability assertions in Sectioredl.&ake the form
p(L,X,F),¢(D) = p(L, X', F"), a(L, X, F, T
In general we are given a number of assertions, say

P(L,X,F),01(D) F p(L', X', ), an (DX, F, L X F).

Suppose that the current assertion to be provediisX, F), (L, X,F) = O, whereg(L, X, F) is
a sequence of non-atom constraints. According to the algorof Figure 6.3, In order to use a

symmetry or serializability assertion, we perform thedaling steps:
1. Testwhethe(3X : (L, X,F)) implies¢(L). This establishe§ |= G’ at (1) in Figure 6.3.

2. Check that the assertion

can be directly proved(®) in Figure 6.3) or its Ihs goal subsumed by another assention i

the table (3) in Figure 6.3).

By simply following the algorithm of Figure 6.3, we can impient a naive proof engine with
symmetry reduction by modifyingheckand storeas shown in Program 8.12.
Recall, however, that we only encounter assertions (goatk)ground program points. We

can therefore replace each tesitt ¢; (L) with ¢;(L) for 1 <i < k. This is because wheh is
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permutél, X, F,L/, X", F’) - ¢1(0),a1(L, X, F, L', X F).

permutél, X, F,L/, X",F’) - ¢x(0),ax(L,X,F

permutél, X,F,L,X,F).

UREN.

Program 8.13: Second Version oPermute

ground, the3X,F : (L, X,F)) = ¢i(L) if and only if (3X,F : @(L,X,F)) Adi(L). The updated
permuteis shown as Program 8.13.

We note here that the permutation of variable-value pairdis®ussed in Section 4.5.2 is en-
coded inay,...,0x. Given a room term, sapom([0, 1,0]), representing a number “1,” we may
permute the elements of its list such that it representsrdifft element of finite domain. For ex-
ample, exchanging the 1 with the second @iom([0, 1,0]) results in a room termoom([0, 0, 1])
representing “2.” In this way we can encode the symmetryticeian the two-process Fischer’s

mutual exclusion algorithm (Example 4.13 on Page 100) as

permutély, Lo, Ty, T, K, Lo, Ly, Tp, Ty, K') - -

K =room([X,A,B]),not X=1,K’ = room([0, B, A)).
permutély, Lo, T1, To, K, Lo, L1, T, Ty,K') :-

K =room([X, A, B]),not X=0,K’ = room([1, A B]).
permutély, Ly, T1, T2, K, Ly, Lo, Ty, T2, K).

Here,room([1,0,0]), room([0, 1,0]), androom([0, 0, 1]) represent “0,” “1,” and “2,” respectively.
Unfortunately, the implementation given as Program 8.1 igeneral inefficient. To see
why, suppose that we have a CLP model of a concurrent progigimiNasymmetric processes.
Then this means that there &eways to exchange the processes to obtain a symmetric progra
state. Hence in Program 8.13ermutehask = N! clauses, and for each assertion in the proof
tree these clauses indu€¥N!) table checks! In general, computing whether an encountered
goal is equivalent (via symmetry) to another goal (storeth@ntable) is at least as hard as graph
isomorphism problem [29, 107, 58, 59]. This is cal@dit problemin [28], where it is equated
to the more general problem of finding a set stabilizer of @&satcoset (SSC problem{rbit is
the term used for an equivalence class of states inducedhbmeiry.
To partially solve this problem, we usermalizationof goals. Recall the discussion in

Section 4.5 that symmetry divides the collecting semandicd therefore goals, into a number of
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checkandstorgL,X,F) :- normalizél,X,F,[’', X F),

not subsumed’, X', F'), storgL’, X', F").

Program 8.14: New Version ofCheckand. Store

disjoint equivalence classes. The problem s, given a@otiere are possibIj! representatives
in its equivalence class, making simple search for the corepresentative highly inefficient.
In order to make the number of choices smaller, we need to bre perticular about possible
representatives. Recall that in the proof tree we only enmassertionp(, X, F), o(X,F) = O
wherel is list of ground values. Here we restrict possible repregames to only those whetle
is sorted. We therefore need only to compute sheedform of goals. We may say that here
we normalize a goal into its sorted form. The problem is pytimitigated since even the worst
sorting procedure is still of polynomial complexity. Althgh we still have not escaped from the
orbit problem since there aid! solution in sorting a goal wherleis the list of lengthN of the
same number, in many other cases there are only a small nwhpessible sorted forms. To
mitigate the orbit problem even further, we limit the possitort outcomes to a fixed number (7
in our experiments). This decreases the chance for suatessisumption due to symmetry, but
it makes the engine runs faster.

The above normalization using sort function is for perniatetl symmetry (and cases of not-
quite symmetry with some modifications). Sorting is notali¢ for rotational (cyclic) symmetry
(e.g. in dining philosophers’ problem) since it can resmlaigoal not equivalent by symmetry.
Fortunately, normalization is not hard for cyclic symmetityce for such problems normalization
is a cyclic shift which is linear to the length of program pdist r(cf. [28]). A possibly more
efficient normalization function (generating more spedctiiege of possible representatives) that
shifts until the smallest element comes first in the list canlévised.

Neither sorting nor cyclic shift explained above is necgssdinen using serializability asser-
tions. For not-quite-symmetry assertions, we took a caagige approach that does not perform
sorting for any goal which permutation cannot be done or &sitdy irreversible.

Program 8.14 is the new version dfieckand store where it calls a black box predicate
normalize(instead ofpermuté which performs normalization according to the kind of syetm

or serializability assertion used.
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8.6 Axioms

In order to obtain a proof faster, we may want to allow the tsapecify a set chxiomsto help
the prover. Axioms are independently proved tradition&tyaassertions, which are introduced
into the proof process via an application of our versatile rule.

Let us now elaborate the use of axioms further by using as ampbe the two-process
bakery mutual exclusion algorithm (Section 3.3). Represg@mn of this problem innit and
transpredicates is shown as Program 8.15, where we rewrite thenditonsY =0V X <Y and
X =0VY < X into separate rules, since this is the way CRPfandles disjunctions.

Previously we have proved that mutual exclusion holds intiS&ed.6, where the proof
uses the assumption that the variab¥eandY are of positive integer domain. Unfortunately,
our CLP®) implementation uses variables in real domain. This resalnontermination of
the proof process when we naively use our prover engine. Tmde specific, in proving
p(2,2,X,Y) = O (the mutual exclusion property), the following unfold seqae would be pos-

sible in the real numbers domain:

p(2,2,X,Y) O
|
p(1,2,X,Y),X <Y =0
!
p(1,L,X,Y),X<0Y=0FEO
|
P(L,0,X,Y),X=-1Y=0F0O
|

In fact, the above sequence is a prefix of an infinite one. Hewave know that the values af
andy of the bakery algorithm are never negative. We may reprakenfact using the assertion
p(L1,L2,X,Y) =X >0,Y > 0. Now, when this assertion holds, by theT rule we may replace
the assertiop(1,1,X,Y),X < 0,Y = 0 = O above withX > 0,Y > 0,X < 0,Y = 0 |= O which
holds immediately (proved byp), and we can then stop the unfold sequence.

Timed automata models, in particular, require that thelckaiues are not negative. This

has no consequence in a bottom-up reasoning, since clamksasth non-negative value, and
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init(0,0,X,Y) :- X=0,Y =0.

trang(0,L2, X,Y,1,Lo, Y +1Y).
trang(1, Lo, X,Y,2,L2,X,Y) : -
trang(1,L2, X,Y,2,L2, X,Y) : -
trans(z, Lo, X,Y,0,L,, O,Y).

=0.
<Y.

trans(L1,0,X,Y, L1, 1, X, X +1).
trans(L1,1,X,Y,L1,2,X,Y) :- X=0.
trangL1,1,X,Y,L1,2,X,Y) - Y <X.
trangL1,2,X,Y,L1,0,X,0).

Program 8.15: 2-Process Bakery Algorithm Problem in CL&)Y

e

F) o rangLXF DX F p( X ).
F L,

F,
KB 1= init( ).

X,F

Program 8.16: Seventh Engine

can only be incremented or reset to zero. However, we musttiohally ensures the property
using an axiom in a top-down reasoning using backward CLPetmagl since clock variables are
actually decremented from a goal to the next, in which it isgiole to obtain a set of constraints
that implies negative values for some of the clocks.

We note that the application of non-negative clock axiomanalogous to th8order-Line
operation on time regions in an early timed automata vetifindramework of Yi et al. which is
based on backward pre-image computation [200].

We assume that axioms are always of the fquth, X,F) = ¢(L,X,F), whered(L,X,F)
is a sequence (conjunction) of constraints. Now assumethieahegation oﬂ)(I:,f(, If) is the
disjunctiongy (L, X, F) V... v (L, X,F). We encode this using theegaxpredicate in Program
8.16, and checking of axiom is now encoded in the clauge as a test of failure of the call to

negax
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8.7 Proving Relative Safety Assertions

So far we have only presented prover engines for provingtisss of the formp(X), o(X) =
W(X), whereg(X) andy(X) are constraints. We now describe the implementation teclesi

for proving relative safety assertions, which are of therfor
p(LL, X R, 0(Cy) = p(Lr, Xr, Fr), a (L, X P, Dr, Xr, Fr).-

A prover for this problem would essentially generate a leg @nd at each newly encountered
node, try to perform rhs unfold. Here instead of simply cotimqgua goal from another as pre-
viously (where any assertion is of the fo&= O), we propagate the whole assertion. This is
because the effect afu application on the variabldfs_, >~(L, andF_ need to be reflected on the
variables g, Xg, andXg, respectively. Similarly, the table no longer stores jusbalgassuming
all assertions are of the for@ = O), but instead both |hs and rhs goals of assertions.

We show the basic skeleton of our relative safety prover agr@m 8.17. The main differ-

ences with our previous provers are:

1. Instead of propagating constraintsiarX, F, we propagate constraints @n, X., F., Lg,
Xgr, andFg.

2. Instead of global tabling, we use a list of assumed asseitias advocated by our first
algorithm of Figure 7.1. This is because we suspect thatneahcy is much less likely

to occur compared to hypothesis applicatiar); Therefore it is more efficient to simply

check for ancestor assertions than all of the previouskiyedsassertions in the proof tree.

3. We replace direct subsumption check in the bodghafckand storeinto a proof via right
unfold (RU). Here we perform the right unfolding in a depth-first manbgriterative
deepening. We start with no right unfold (that is, unfold odevel 0). If subsumption
does not hold, we attempt to prove by rhs unfolding up to l&yelind so on, until certain

finite depth, specified by the user.

Note that in proving relative safety assertions, prograidthe listsL; andig) may not
be ground. Therefore the definition pérmutefor Program 8.17 should be the one given in
Program 8.12, and not Program 8.13. The capjéomuteis to make use of other relative safety

assertions in the proof.
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checkand_store( Lo, X, R

permutéLL,XLFL R
not rlghLunfoId( X,_ FL’,I: , XR, Fr, A),
)

I—.J"

R,)BR,lfR,A) .- Il’llt(|:|_~,)2|_zl'f|_2 L . o
RavaFRu ) o tranqLL,XL,FL, {_axﬁaFli) (L XL L/L axRuFRaA)'

Program 8.17: Relative Safety Prover
8.8 Implementing Dynamic Summarization

We now explain how we implement the dynamic summarizatieroduced in Chapter 6. We
note again that dynamic summarization is applied only orayatic fragments of programs. Our
implementation, however, can analyze sequential progwithdoops. Here we view terminating
loops with counter as acyclic because each iteration ofrait@ting loop is different from one
another by the loop counter. We implement a version of dynasummarization which uses
constraint deletion as described in Section 6.2.4. Becthesactual implementation is rather
involved, here we will not display the concrete code butdnsdt provide an overview of the
techniques used.

In order to perform constraint deletion, our CLP impleméntamaintains a list of explicit
constraints collected on an execution trace. Other tha ithélso maintains #ag list of the
same length as the constraints list. An element of the flagtia particular position denotes
whether the constraint at the same position can be deletadtonWhen the element is.” it
means that the constraint can be deleted. An “0” denotegtieatonstraint cannot be deleted.
The whole contents of the flag list is initially set ta™Whenever a new constraint is added in a
left unfold step, the flag list is lengthened by adding.a “

We implement a procedufiter to implement the functionsdeh, cdeb, cdebk,), andcdeb),
of Section 6.2.4Filter linearly scans the constraint list to find constraints thiatta be kept to
ensure that the whole conjunction still preserves the isfidiility or the desired postcondition
(for cdel andcdeb), subsumption (focdeky)), or provability by stronger assertion (fodebkc)).

It does this by evaluating the whole constraint list withthe constraint at position If the de-

sired condition still holds, it removes this constraintrfréhe list and advances to positibs 1.
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Otherwise, it retains the constraint and mark the flag ligh@tsame position with an “o.”

Recall that the functiosdeb) in Section 6.2.4 basically returns a potential summanozati
of an assertion in the proof tree wrt. the summarizationfefassertions to which it has been
left-unfolded. It is indirectly implemented also filter. We note that the flag list of a child node
is actually an extension of the flag list of its parent. Modifythe flag list at the child level (as
an implementation ofdek, cdeb, cdek,), andcdegc) also updates the flag list of the parent.
This is how we propagate the deletable constraints of a roide ancestors.

Computing the final summarization of an assertion is donerbfjcation of the flag lists
returned from the processing of its immediate left-unfdiddren. Since the unification of “0”
and “." is “0,” any constraint that is required in a particular utidfloranch will also be marked as
required for the assertion.

Finally, we note that for efficiency we always retain conisiof the formX = X’, say of a
statement that does not modify a variaklsuch that they need not be considered explicitly. This

is also because they do not contribute to unsatisfiabilitygidal or preservation of postcondition.

8.9 On the Implementation of Arrays

We do not implement array reasoning in our current provetgbype. Handling array requires
more complete and complex constraint solving. Here we gepeays to propagate array con-

straints in future versions of the prototype with respecdhtofollowing two problems:

1. Array referencé\[l] is not parsed by CLE). Therefore, to represent the value of array
referenceA|l] using a variable, sa){, and carry the relation in the proof tree. We denote
AJl] = X using the termaref(X,A, 1), called anarray reference termin traversing a path

in the proof tree, we accumulate array reference terms st.a i

Program 8.18 contairiait andtrans predicates of the bubble sort program (Program 3.5)
given in Section 3.1.5. It is a rather straightforward ttatisn of Program 3.6 (Page 52),

where the clausk; in Program 3.6 corresponds to clausén Program 8.18.
Notice that we use array reference terms in cladgedg, andA1g, since array references

of the formA[J] andA[J + 1] appear in clausess, K9 andk1g of Program 3.6.

2. Array update expressiof, |, X) cannot be parsed by CLR( as well. To represent an
array update expressida, |, X) we use thearray update term aupd\, |, X). The use is

demonstrated in clauggg of Program 8.18.
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init(8,A,1,J,N,AN,L). A
trans(0,A,1,J,N, A¢,Ny,L, 1,A,0,J,N, As, N, L). A2
trans(1,A,1,J,N,A¢,N,L,8,A 1,3, N,As, N, L) :
trans(1,A,1,J,N, A¢,Ni, L, 2,A 1,3, N, As, N, L)
trans(2,A,1,J,N,A¢,N¢, L, 3,A 1,0,N, As, N, L)

trans(3,A,1,J,N,A¢,Ns, L, 7,A 1, 3,N,A;,N;, L) o - J>N—1—1. A6
trans(3,A,1,J,N,A¢,Ns, L, 4, A 1,3, N, Ar,N;, L) - J<N—1—1. A7
trans(4,A,1,J,N,A¢,Ni,L,6,A 1,3, N, As, Ny, [aref(X, A, J + 1), aref(Y, A, J)[L]) :

X>Y. As
trans(4,A1,J,N,As,N¢, L, 5 A 1,J, N, As, N¢, [aref(X, A, I+ 1),aref(Y,A J)|L]) : -

X <Y. Ao
trans(5,A,1,J,N, A¢,N¢, L, 6, A" 1,J,N, A¢,N¢, [aref(X,A,J+ 1), aref(Y,A, J)[L]) :-

A =aupdaupdA,J+1,Y),J,X). Ao

Program 8.18: Init andTransof Bubble Sort CLP Model

Both array update and reference terms can be accumulatedrfdshen solved at the last
obligations in the proof tree when no more left unfoldi} is possible, or they can be solved at
various points in the proof tree. We may solve them using @mgntations of (AIP) and (SEP)

principles introduced in Section 5.9.

8.10 Experimental Results

We implement our proof engines as regular CRP(110] programs, making use of its meta-level
facilities. In this section we discuss four kinds of expegitts using our prototypes: proving
traditional safety using intermittent predicate abstoagtproving of relative safety assertions,
proving of traditional safety with reduction using symnyeénd serializability assertions, and
proving of traditional safety assertions using dynamic suamization. The experiments reported
in this section are all conducted on on a 2.8 GHz Pentium 4 mackith 512MB of RAM
running Linux, except for TSA problems in Section 8.10.3,ickhwe ran on Pentium 4 Xeon

cluster with 2.0GB RAM and minimum CPU clock speed set to 2¥G

8.10.1 Experiments on Intermittent Abstraction

We first show an example that demonstrates, in a predicateatisn setting, that intermittent
abstraction requires fewer predicates than when absiraistiapplied at every point in the proof
tree. Let us consider a looping program written in C (Prog8ah®). We note that the C program

can be straightforwardly translated into its CLP model,ilsinto the way we translate programs
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int min() {
int i=0, j, x=0;
while (i<50) {
i ++ j=0;
while (j<10) { x++ j++ }
while (x>i) { x--; }
I

Program 8.19: Program with Loop

in our simple programming language into CLP in Chapter 3. @iogram’s postconditior > 50
can be proved by providing an invariant i A1 < 50 before the first statement of the loop body
of the outer while loop. For predicate abstraction, we siedpihe predicates= i, i < 50, and
respectively their negations+# i, i > 50 for that program point to our verifier. We then ran our
prover engine with the intermittent abstraction. As thailtgshe execution finished in less than
0.01 seconds. When we did not provide an abstraction, theugge finished in 20.34 seconds.
Here intermittent abstraction required fewer predicatd& also ran the same program with
BLAST and provided the predicates=i andi < 50 (BLAST automatically also included their
negations). BAST finished in 1.33 seconds, and in addition, it also produceat®8r predicates
through refinements. Running it again with all these prddicgiven, BAST finished in 0.28
seconds.

Further, we also ran our prover on a “sequential” versionhef bhakery mutual exclusion
algorithm (Program 3.14 in Section 3.3.1), whose two-pssa@rsion is shown as Program 8.20.
In Program 8.20 we use if the condition8LAST_NONDET which is compiled by BAST into
nondeterministic branching. Program 8.20, including tbadeterministic branching, is also
straightforwardly translated into CLP. For this experitn&a performed runs with two, three, and
four process versions of the sequentialized bakery alyaritVhenN is the number of processes,
each of the version has tie variablespg, where 1< i < N, each denoting the program point
of process as in Program 3.142¢ can only take a value frof0,1,2}. Each of the two, three,
or four process versions also hsvariablesx;, each denoting the “ticket numberX fr y in
Program 3.14) of a process.

Here we needed an abstraction to terminate the analysis #iecbakery algorithm is has
an infinite state space. Here we verified mutual exclusicet, if) no two processes are in the
critical section pg = pc; = 2 wheni # |) at the same time. Here we performed three sets of
runs, each consisting of runs with two, three and four preegsin all three sets, we use a basic

set of predicatest; =0, x; > 0, pGg =0, pG = 1, pG = 2, wherei = 1,...,N andN the number
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int main()
{
(0) int pcl=0, pc2=0;
unsi gned int x1=0, x2=0;
(1) while (1) {
(2) if (pcl =1 || pc2==1) {
(3) [* Abstraction point 1 */; }
(4 if (pcl==0 || pc2==0) {
(5) [* Abstraction point 2 */;
} else if (pcl==2 && pc2==2) {(6) ERROR }
(7) i f (__BLAST_NONDET) {
(8) it (pc1==0) {
(9) x1=x2+1; pcl=1;
} else if (pcl==1 &&
(x2==0 || x1<x2)) {
(10 pcl=2;
} else if (pcl==2) {
(11) pcl=0; x1=0;
t
} else {
(12) if (pc2==0) {
(13) x2=x1+1; pc2=1;
} else if (pc2==1 &&
(x1==0 || x2<x1)) {
(14) pc2=2;
} else if (pc2==2) {
(15) pc2=0; x2=0;
1333

Program 8.20: Sequential 2-Process Bakery

of processes, and also their negations.

e Set 1. Use of abstraction at every state with full predicateet. We perform abstraction
at every state encountered during search. In addition toakie predicates, we also require
the inclusion of the predicates shown in Table 8.1 (a) (aait tiegations) to avoigpurious
counterexamplesvhich are counterexample traces resulting from coardeaait®n which

do not exist in the actual run of the program.

e Set 2: Intermittent abstraction with full predicate set. We use intermittent abstraction
on our prototype implementation. We abstract only whendone process pg = 1 holds.

The set of predicates is as in the first set.

e Set 3: Intermittent abstraction with reduced predicate set We use intermittent ab-
straction on our tabled CLP system. We only abstract whertbeee areN — 1 processes

at program point 0 (in the two-process sequential versigh riteans eithepc, = 0 or
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Bakery-2| x1 < x2 Time (in Seconds)

Bakery-3| X1 < X2, X1 < X3, X2 < X3 CLP with Tabling BLAST
Bakery-4| X1 < X, X1 < X3, X1 < X4 Setl | Set2| Set3
Xo < X3, X2 < Xg, X3 < X4 Bakery-2| 0.02 | 0.01 | <0.01| 0.17
Bakery-3| 0.83 | 0.14 | 0.09 2.38
Bakery-4| 131.11| 8.85 | 5.02 | 78.47

(a) Additional Predicates (b) Timing Comparison

Table 8.1: Results of Experiments Using Abstraction

pc, = 0). For aN-process bakery algorithm, we only need the basic predicatd their

negations without the additional predicates shown in T8hlda).

We also compare our results with. BST. We supplied the same set of predicates that we
used in the first and second sets toABT. Again, in BLAST we do not have to specify their
negations explicitly. Interestingly, for the four-prosdsakery algorithm BAST requires even
more predicates to avoid refinement, whichyxare- X3+ 1, xo = X3+ 1, X1 =X+ 1, 1 < Xg, X3 <
X3, X2 < X3 andx; < Xo. We suspect this is due to the fact that precision in prediglaséraction-
based state-space traversal depends on the power of theyimgl¢heorem prover. We have
BLAST generate these additional predicates it needs in a preanththen run BAST using
them. Here since we do not runLBsT with refinement, théazy abstractiortechnique [97] has
no effect, and BAST uses all the supplied predicates to represent any abstadéet s

For these problems, using our intermittent abstractiom V@LP tabling is also markedly
faster than both full predicate abstraction with CLP and\8t. We show our timing results in
Table 8.1 (b) (smallest recorded time of three runs each).

The first set and BAST both run with abstraction at every visited state. The tindiffgrence
between them and second and third sets shows that perfoai#tigaction at every visited state is
expensive. The third set shows further gain over the secdwahwe understand some intricacies

of the system and able to employ abstraction more carefully.

8.10.2 Experiments on Relative Safety

Here we discuss the run results of our prototype implememsitfor proving relative safety
assertions, which we have discussed in Section 8.7.

Experimental results in proving relative safety assegiare shown in Table 8.2. Problem-
NameN, N denotes the number of processes, excepPimd/ConsN whereN denotes that

there areN produce and consume operations. For each problem we venifiyrdoer of relative
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Problem No. of Right Iter. Hypothesis | Time (s)
Assertions| Depth Bound| Nodes| Applications
Bakery-2 1 00 9 9 0.00
Bakery-3 2 00 44 44 0.04
Bakery-4 3 00 147 147 0.30
Bakery-5 4 00 424 424 2.11
Bakery-6 5 00 1145 1145 13.23
Bakery-7 6 00 3486 3486 81.38
Philosopher-3 1 o 19 19 0.01
Philosopher-4 1 00 25 25 0.01
Priority 1 3 39 20 0.05
Priority 1 4 30 17 0.05
Priority 1 5 23 13 0.05
Szymanski-2 8 3 1470 63 7.53
Szymanski-2 8 4 1276 71 13.21
Szymanski-2 8 5 1107 87 20.35
Prod/Cons-2 2 10 17 12 0.59
Prod/Cons-3 2 10 42 24 2.43
Prod/Cons-4 2 10 303 134 11.37
Prod/Cons-5 2 10 1487 619 70.84

Table 8.2: Relative Safety Proof Experimental Results

safety assertions. The “Nodes” and “Time” nhumbers are fgakce and time in proving all of
the assertions of each problem. “Right Iter. Depth Bounduicm in the table represents the
maximal right unfold depth.

As we have discussed in Section 8.5, the total number of syrgrassertions to be proved
in fully symmetric systems is of order factorial to the numbé processes in the worst case.
However, it is actually enough to prove just a subset of tlessertions, which are those that
constitute exchanges of two adjacent positions, sincea agsrtions can be immediately derived
from this subset. The size of this subset is linear to the rrmbprocesses, and since the number
of transitions is also linear to the number of processes xped the proof size of symmetry for
fully permutable systems to be of cubic order to the numbegrrotesses. To see this, first note
that for fully symmetric programs, we only need one leveladt Bnd right unfolds. In effect
the proof of each assertion is a comparison of transitiottis @ne another, which is of quadratic
complexity to the number of processes. This is then muétiblby the number of assertions
obtaining the cubic order. As we see from Table 8.2, howeawer,runs of bakery algorithm
has more than cubic complexity. This is because the numbeamditions itself increases more
than linearly to the number of processes due to need of emgatisjuncts inawait guards as

separate CLP clauses. For dining philosophers, there myalanly one assertion, which is one
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Our Implementation Delzanno- XMC/RT
Problem No Assertion W/ Assertion Podelski
# Stored| Time | # Stored| Time #Facts | # Answers|[ Time
Bakery-2 15 0.00 8 0.00 13
Bakery-3 296 0.08 45 0.01 109
Bakery-4 4624 5.90 191 0.21 963
Bakery-5 o0 co 677 2.76
Bakery-6 o 00 2569 45.82
Bakery-7 00 00 11865 | 971.84
Peterson-2 105 0.03 10 0.00
Peterson-3 20285 | 107.53 175 0.14
Peterson-4 Y [ 3510 11.38
Lamport-2 143 0.01 72 0.01
Lamport-3 4255 0.89 707 0.25
Lamport-4 00 00 5626 4.44
Priority 8 0.00 8 0.00
Szymanski-2 240 0.08 84 0.02
Szymanski-3 10883 | 35.43 3176 291
Philosopher-3 882 0.46 553 0.30
Philosopher-4 4293 24.44 2783 8.48
Prod/Cons-2 64 0.00 43 0.00
Prod/Cons-3 104 0.01 59 0.01
Prod/Cons-4 154 0.01 75 0.01
Prod/Cons-5 214 0.02 91 0.01
Prod/Cons-10 664 0.10 171 0.02
Prod/Cons-20 2314 1.90 331 0.04
Fischer TSA-4 875 1.66 72 0.03 632 0.82
Fischer TSA-5 6872 | 203.47 165 0.13 6330 8.91
Fischer TSA-6 o0 o 325 0.42 75972 187.16
Fischer TSA-7 0 00 591 1.41 00 00
Fischer TSA-8 0 00 1016 6.17 [ o
Fischer TSA-9 00 o0 1649 37.79 00 00
Fischer TSA-10 o0 co 2536 322.76 00 00
Fischer TSA-11 co o 3759 | 3176.60 00 00
Philosopher TSA-3 147 0.16 89 0.10 422 0.16
Philosopher TSA-4 640 2.40 322 1.11 00 00
Philosopher TSA-3 5776 | 188.84| 2340 58.29 00 00

Table 8.3: Traditional Safety Proof Experimental Results

position right circular shift since other cyclical transjtans can be derived from this. Hence for
rotational symmetry, the cost is of order quadratic to thmber of processes (just the number of
transitions comparison), which is confirmed by the tabler. stmple priority mutual exclusion

and 2-process Szymanski's algorithm, we also notice a dserin the number of left tree size

when we increase the right unfold depth bound, although:tkelgion time also increases most

likely due to the need to examine larger program.

8.10.3 Experiments on Traditional Safety with Reduction

Our last experiment is on automatically proving traditiosefety assertions of the for@ = O

with or without reduction via relative safety assertions.
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Problem % Reduction
Type Space| Time
Bakery 76% | 78%
Peterson 95% | 99.9%
Lamport 67% | 65%
Szymanski 68% | 83%
Philosopher 36% | 53%
Prod/Cons-1and-20 | 87% | 94%
Fischer TSA 95% | 99%
Philosopher TSA | 50% | 53%

Table 8.4: Percent Reduction

The results are shown in Table 8.3. In the table, “# Storedbties the number of assertions
stored in the table, as an indicator of the size of the segrabes and times are in seconds. We
ran the bakery, Peterson’s, Lamport’s fast mutual exciysgzymanski's, and the TSA version
of the Fischer’s algorithms proving mutual exclusion. Nibtat we do not prove the symmetry
assertions of some of the problems (e.g., Szymanski-3)theodining philosophers’ problems
(both the program and TSA versions), we prove that thereatdyenmore thaiN /2 philosophers
simultaneously eating. For the producer-consumer prolflnogram 4.26), eacpro;() incre-
ments a variable, andcon;j() decrements it. Here we verify that the valuexofan never be
more than R&l.

Bakery algorithm has infinite reachable states, and thexefmnnot be handled by finite-state
model checkers. Here we compare our search space with thiéssresthe CLP-based system
of Delzanno and Podelski as reported in [46]. As also notedélzanno and Podelski, the
problem does not scale well to larger number of processesiding symmetry, we have pushed
its verification limit to 7 processes without abstraction.

We compare our results for TSA problems with the run of singleample on XMC/RT [156].
The XMC/RT system is implemented on XSB [175, 176], and ze#i built-in tabling based on
SLG resolution, as well as a DBM library. In our experimenig, only considered reachability
analysis in XMC/RT. XMC/RT has a prover engine that generatepossible execution traces
(answers) in a bottom-up manner and checks for violatingega With XMC/RT we count the
number of such traces generated. For the Fischer’s algariththout symmetry reduction the
space complexity of our implementation seems to be sinolxiMC/RT, although the time com-
plexity seems to be much worse. Of course, our runs can balgggdy symmetry reduction,
as shown in the table.

In Table 8.4 we summarize the effectiveness of the use ofiatyaf relative safety asser-
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tions. The use of symmetry assertion effectively reduces#arch space of perfectly symmetric
problems (bakery, Peterson’s, Lamport’s fast mutex, TSgeler’s algorithm, dining philoso-
phers, both program and TSA versions). Notice also thagttieation for Szymanski’s algorithm
is competitive with perfectly symmetric problems, showihgt “not-quite” symmetry reduction
is worth pursuing. The use of rotational symmetry in botrsiars of the dining philosophers’
problem is, expectedly, less effective due to the fact tivautar shift is more restrictive than
full permutation. We also note that we managed to obtain ataukial reduction of search space
for the producer/consumer problem. Reduction in time rdughrresponds to those of search
space.

We note here that the TSA verification tool RED also has symmetiuction capability, both
for full permutational symmetry and cyclic symmetry. It hr@sceeded our result for Fischer's
algorithm run at 13 processes [197]. However, RED losesisicecfor problems with cyclic
structure [198]. In contrast, our engine does not lose pi@tidue to symmetry.

Finally, comparing Table 8.2 and 8.3, it can be seen thatribef pf relative safety assertions
are no easier than the proof of traditional safety assestidinis is because of the need to per-
form rhs unfold when proving relative safety. We may consfdeure optimizations for proving
relative safety, such as storing of right unfold goals inpesate table for reuse without redoing

the right unfolding.

8.10.4 Experiments on Dynamic Summarization

We also implement a prototype which is optimized using dyicasummarization. For the ex-
periments, we use sample programs freorst-case execution tin(@/CET) benchmark suites,
where we prove (via discovery) a timing bound of each program

The experimental results are shown in Table 8.5 (time iséosés). We note that the encoder
and decoder problems are taken from ADPCM encoder and deapgeared in [167]. The sqrt
and qurt programs are from SNU RT Benchmark Suite [185], Aedannecomplex program
is from Malardalen Benchmark Suite [132]. We also ran our prover orreexc bubble sort
program and another version of bubble sort where each eleshtdre array has a binary domain.

From Table 8.5, the amount of reduction obtainable by dynasuimmarization seems to
be inversely correlated to the amount of unsatisfiable geat®untered in the proof tree. The
encoder example has a structure with interdependence eésegs of if statements. In the binary

bubble sort, the limitation in the possible elements predudanitations on the number possible
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No Optim. Optimized | % Space (Time)
Problem Spc. Time| Spc. Time Reduction
encoder 494 091 | 252 0.41| 48.99% (54.95%
decoder 344 0.31| 38 0.02| 88.95% (93.55%

sqrt 923 4.25| 91 0.38| 90.14% (91.06%
qurt 1104 14.47) 273 2.52| 75.27% (82.58%

jannecomplex| 1517 17.93| 410 2.13| 72.97% (88.12%

bubble sort (5)| 1034 94.49 58 0.58 | 94.39% (99.39%
binary 381 10.88| 170 4.00| 55.38% (63.24%

bubble sort (4)

Table 8.5: Experimental Results of Dynamic Summarization

swaps. This in turn increased the number of unsatisfiablésgd#r both of these examples,
the amount of reductions obtained were not as high as the eianples, for which dynamic

summarization performed well.

8.11 Related Work

A tabling mechanism exists for logic programs, which ised8LGresolution [26] and is imple-
mented in the XSB logic programming system [175]. The XSBeaystables both the formula
and the answers of the formula. In our tabling mechanism, iy leeep derived formulas with-
out keeping its answer constraints.

To mitigate the orbit problem, Emerson and Trefler proposespproach usingeneric rep-
resentativeg54], for example, in a symmetric mutual exclusion algamtlvith process loca-
tionsN, T andC (representinqion-critical, trial andcritical section respectively), the states
(N,N,T,C), (N,C,T,N) and (T,N,N,C) are equivalent and can be represented in a generic
manner ag2N, 1T,1C). This is exploited further by Emerson and Wahl to mitigate thbit
problem [62]. Emerson and Wahl propose a transformatiom@forogram to be verified into
a program with counters: For example, a transition of anycament process froml to T is
transformed into a new global transition with the decreneémihe counteny and the increment
of the countemr of the new program, wherey is the total number of processes in stale
while nr is the total number of processes in stéiteThe property to be verified is also similarly
transformed. The transformed program is shown to be biairtul the original program. In this
way, the states of the transformed program are exactly therggerepresentatives, and hence the
computing of representative using orbit relation durirayérsal is not necessary.

We also mention the work of Tang et al. [190] is on using symmynfedr unbounded SAT-
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based model checker. The model checking approach is howsidre:

1. Before the model checking process, for each ortgyrametry-breaking constrairg gen-
erated. When it is conjuncted with a newly encountered feonthis symmetry-breaking
constraint will filter out those states that are necessarifjossible to be representatives.
Hence, what are stored in the BDDs are all the possible reptatives. For example
the symmetry-breaking constraint would specify that otfes withx; = 1, x, = 2, and
x3 = 3 can be representative for all permutationsnfxy, X3, where exactly one of them

has the value 1, 2, or 3.

2. The model checker only stores those states that are o$sibe a representative of its

orbit.

The symmetry-breaking constraint can be adjusted to be wmmstrained, resulting in more
reduction in state space (but possible harder to computeseptatives), or less constrained,

resulting in more states stored in the BDD.
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Chapter 9

Conclusion

In this thesis we propose a CLP-based framework that accatatas both program analysis and
program verification approaches. Our framework is centered general verification condition
computation algorithm which performs abstraction intetenitly. This allows for composition-
ality and simpler yet accurate abstraction than normalrabisinterpretation. Our first primary
contribution is that the algorithm is optimized between #bstraction points using a dynamic
summarization technique.

There are three formal foundations of our framework inaigdi

1. modeling of programs and high-level specifications in @itfere we model the computer

memory as an array,

2. assertions to specify traditional safety (invarianoe)uding recursive data structure prop-

erties as well as relative safety (non-behavioral/stmatfproperties), and
3. a proof method for proving the assertions.

Our framework handles traditional safety proof includingqgf of recursive pointer data
structures. The precision of the verification is helped kgrmittent abstraction. Our other
contribution is the proof of relative safety assertionseihaccommodates symmetry properties
not handled by existing approaches, as well as commutativit serializability properties. We
use these relative safety properties for reduction in psod.

We also provide a general algorithm for program analysisvanification based on our proof
method. We discussed the implementations of some simpliamnia of our general algorithm in

CLP(R) and provide the experimental results.

228



As future work, our framework is to be extended with the veadifion of liveness properties
such as termination of programs. This is made possible byatttethat the proof tree in our
framework also represents possible execution traces girtigram. A feasible approach to live-
ness verification is by a form of discovery of well-foundes®ién the proof tree. In handling
liveness, the concept dhirnesswill become important. In the modeling side, a possible tech
nique to represent fairness in the CLP model is by providingréable representing a counter
which has an positive indefinite but not infinite value. Sitte counter is always decreased yet
stays positive, it will eventually reach 0, which, when dt¢el, affects further execution of the
program.

We note that the above proposed modeling of fairness carbalssed to model Bchi au-
tomata in CLP, since Bchi automata, in addition to modeling behavior (statediteons), also
model eventuality of states. This would provide a way to nhaa& only behavioral specifica-
tions such as timed automata and statecharts, but alsdispgons with inherent liveness such
aslive sequence charte.SCg [90]. In this way we would be able to cover more formal speci-
fication languages. The simulation of specifications inéHaaguages is important for systems
development, and it therefore can also be a topic for futunkw

Throughout this thesis, we have always assumed that atistrés provided by the user. As
future work, it is also possible to consider automated gaiwar of abstractions. One possible
direction is work on loop invariant discovery. The idea istart from the execution context of a
loop. The algorithm iteratively generalizes the contextluinfinds a suitable loop invariant.

In Chapter 6 we have discussed that it is also possible tohgsdynamic summarization
technique to infer information from program. This can beeexied in the future toward an
algorithm for general resource (e.g., time) analysis. \WWasgrthe technique presented in this
thesis can discover at most a bound on resource usage dhigdae can be advanced to discover

an exact bound on resource usage.
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Appendix A

Additional Modeling Examples

A.1 Modeling Real-Time Synchronization

Await statement which is introduced in Chapter 3 is usefulsfigmchronization Another com-
monly encountered synchronization mechanism in conctusetings is bysignalsor interrupts
The common mechanism of signaling is that a process firsaoeslts interest in a signal speci-
fiable by a signal identifier, and then it goes to sleep or perfother tasks. We say that the
processwvaits for the signal. The signal can then be generated by anotbeegs when certain
conditions are met or certain set of tasks are completed. g€nheration of the signal triggers
the waiting process after a small amount of time, which theakas from its sleep or terminates
what it is currently executing, and starts to execute a m&fipd piece of code (callesignal
handleror interrupt service routing

Signaling can be thought as another level of abstractioneabasy waiting, since it is ac-
tually implemented in digital computers as busy waitingtfog raising of the signal. However,
usually the busy waiting in signaling is implemented by acigleed hardware separated from

the CPU such that no CPU time is lost executing a loop.

A.1.1 Waiting Time

There is a modeling issue with regard twait statement introduced in Section 3.3. This is
because it may take an indefinite amount of time before iteseds. An implementation of an
await statement in real programming languages would have usedtopgsystem facilities to
check from time to time whether the condition is satisfied af, mvhich is the so-calletbusy

waiting. The checking is not necessarily periodic, but the opegatirstem’s scheduling mecha-
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nism would guarantee that the checking of the conditionevidintually be performed. Assuming
a dedicated operating system, it is possible to provideahge of time difference between one
check with another.

Suppose that the condition of an await statement is peddigichecked everg time units,
whereg| < € < g, and we have a program with two processes, and Process lroata@wait
statement of the form

(I)await (boolexpy

Then we translate the above statement into the following@wP clauses:

p(l1,12,X, T}, T2) : -

—boolexpB, Ty < Tp, Ty +& < T{ < Ty +&n, p(l1, 12, X, Ty, To).
p(nextlabel(ly),l2, X, T}, T2) : -

boolexpB, Ty < To, Ty +& < T/ < Ty +&n, p(l1, 12, X, Ty, T2).

The first clause is the case when the condition does not haldrenbusy waiting loop has to
iterate one more time, while the second clause is the casa thieetest succeeds and control

advances to the statement at the next program point.

A.1.2 The Modeling

We now allow a concurrent program text to use three new stiesn

kill (Posint) Variable := Expr
signal (Posint)

signal sleep(Posint)

The syntactic elemerosint denotes an expression that evaluates to a positive integia)ly
simply a constant.

To represent the state of a signal in the CLP model, we usecdisignalld, S R), where
the argumentd, SandR are signal identifier, signal status and number of procesagmg for
the signal, respectively. The signal status is eitlyeor down denoting whether the signal is
raised or not.

We now explain the CLP model of the three statements abowaurlexplanation, we assume

a two-process concurrent program, each with its correspgradock variable. This setting can
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be trivially generalized to more than two processes.
(I2) kill (id) x¢ := expris used to generate a signal, and atomically assign the &sipre
exprto the variablex. Assuming that it is executed by Process 2, we translate thveatiatement

into the following backward CLP clauses:

p(L1, m,signalid, up,R), Xq,..., X, ..., %, S1,$, Ty, Ty) : -
p(L1,l2,signalid,downR), X1,..., X, ..., %0, S1, S, T1, T2),
X, =exp®,To+& <T; < Tr+é&p.
p(L1,nextlabel(l2),signalid,down0), Xy, ..., X, S, S, T1, T2) : -
p(L1,m,signalid,up,0), Xy, ...,%n,S1, S, T1, T2).

The first clause models the rising of a signal. Notice the gedromsignaliid,downR) to
signalid,up,R). This signal sending takesamount of time, where, < € < g,. The program
pointm denotes avait locationof Process 2, where its value is different from program goant
other wait locations of Process 2. The variafgslenotes the signal id Process 1 is currently
waiting on, similarly withS, for Process 2. In the above clauses, these are unchahgaad T,
are both clock variables.

The basic idea is that when a signal is raised, all other gsmsethat wait for the signal are
notified, and each of them acknowledges the receiving ofitirebkby decrementing by one the
number of waiting process (the third argumensigial). When the number of waiting processes
reaches 0, the signal flag can be lowered, which is modeledebgdcond CLP clause above. In
this way, all processes that are waiting for the signal magetbeen serviced before the process
executing theill statement proceeds to execute the next statement.

(1) signal (id) is used to declare that the current process is waiting fograasi It basically
increments the third argument signal functor. In our two-process program, we assume that
Process 1 executes this statement. In the backward CLP robthed program, the statement is

translated into two clauses, of which the first one is:

p(nextlabel(l1), Ly, signalid,downR+1), X1, ..., %, S, $,T{,T2) : -
p(l1,L2,signalid,downR), Xy, ..., X, S1, S, T1, T2),
S =id,Ti+& <T/ <T;+e&n.

Notice that we se§; to the signal id, denoting that Process 1 is now waiting fat #ignal. The

execution of the statement also consumes some time, whieithis [g, €p).
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The second clause handles the case when the signal is radd®t@cess 1 must jump to a

signal handler.

p(m, Lo, signalid,up,R), Xy, ..., X%, 8,9, T{,T2) : -
p(L1,Lo,signalid,up,R+1),X1,..., %X, S1, S, T1, T2),
S =0Ti+g <T{ <Ty1+&n

In the above clauseis the start program point of the signal handler apés a variable denoting
any program point of Process 1. The clause models the denteftde third argument cfignal
functor, to declare that the process has been serviced.avereince Process 1 should no longer
wait for signalld, it sets the value o§; to 0, to declare that Process 1 now waits for no signal
(recall that a signal id is always a positive integer).

(1) signal sleep(id) is used to declare that Process 1 waits for a sighahnd then it im-
mediately goes to sleep, waiting for the signal to be raiftad translated into the following two

backward CLP clauses:

p(m, Lo, signalid,downR+1),X1,..., %Xy, T1, T2) : -
p(l1,L2,signalid,downR), Xy, ..., Xn, Tz, T2).
p(nextlabel(l1), L, signaliid,up,R), X1,..., X, T{, ) : -
p(m, Ly, signalid,up,R+1), Xy, ..., X%, T1, T2),
T+8 <T/ <+ Th+g <T.

The first clause models the registering of Process 1 waitnghie signald, while signalid is
still down. Here we increasi by 1 in the tuple to denote that one more process is waiting for
signalid. With this Process 1 also moves to program pamniVe assume that the value wfis
two more than the maximum program point value in the progeth t

The second clause models the awakening of the sleepingdar@cdue to the rising of the
corresponding signal by Process 2. Here, while sighialup, we reduce the number of processes
that is waiting for the signal frorR+ 1 to R. An important thing here is that Process 1 would
have waited for indefinite amount of time, when the signadised. Therefore the correct clock
value when the Process 1 awakes must be the same as the digelo¥/Rrocess 2. But here we
add some delays in the execution, whedg < d < &,. Moreover, there is a minimum amount of
time spent in sleep, at least for the execution time of thestant itself, which ig;.

We now show the flexibility of the above language construttmodeling various synchro-
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train gate
— controller
T

signal sleep(id)

Figure A.1: One-Way Synchronization

nization paradigms found in the literature.

One-Way Synchronization. This mode of synchronization is useful to model an environ-
ment acting on a system. Such modeling of environment istaddp Esterel synchronous lan-
guage [87], where the environment “drives” the system byttamgisignals one-way. An example
of a train (environment in this case) sending a synchronogsveay message to a railway gate
controller (the system) is shown using UML sequence diagraligure A.1. Note that solid ar-
rows as in UML sequence diagrams denote a synchronous neeSdagself-call annotated with
“signal sleep(id)” represents the registering of the interest in the signahieygate controller.
This is the activity modeled by the first CLP clause of the CL&daling ofsignal sleep. The
train may then trigger the signal, say when it is approacttieggate. This is the sending of the
message annotated wikiil (id). Correspondingly, the gate controller accepts the messagje a
starts to lower the crossing gate. The message acceptartbe ggte controller is modeled by
the second clause of the CLP modekajnal sleep(id).

Time-Triggered Protocol (TTP). TTP is used to implemerifime-Triggered Architecture
(TTA) [122]. TTA is becoming the standard architecture for madembedded real-time systems
due to its high predictability obtained through a globalipeic clock'.

Time-triggered architecture was proposed by Kopetz [1@#jdrease the timing predictabil-
ity of distributed real-time systems. It is basically a maldare for distributed real-time systems,
which takes advantage of a priori known information to easard real-time constraints. As we
have mentioned, TTA is based on a communication protoctdd#he Time-Triggered Protocol

(TTP). The TTP is basically a Time-Division Multiple Accg§DMA) protocol which transmits

INote that TTA/TTP does not actually require that the timéetiénce between synchronization points to be peri-
odic [122]. The important thing is that a synchronizatiofl eventually occur after some time.
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i
consumefx) %a/er produce(y)
- kill (id)x =y kill (id)x ==y |
t
signal sleep(id) signal sleep(id)
L Kill (id)x =y kil (id)x =y |
signal sleep(id) signal sleep(id)

Figure A.2: Time-Triggered Protocol

messages from a node (time server) within some fixed time slia round-robin fashion.

Figure A.2 is a UML sequence chart depicting one full perib@ dime-triggered protocol
communication. In such protocol, we always havénge serverwhich broadcasts a signal at
every specified periotl In addition to a time server, in Figure A.2 there are also alpcer
and consumer which capture the signal. The producer predue@lue which is stored in the
variabley, while the consumer uses the value given as the varialbheT TP, the exchange of data
only happens at period boundary, and they occur “instanizsig” To model this, the atomic
assignment irkill statement is handy. In Figure A.2, whenever the signal enrishey is
assigned tx, modeling an instantaneous data transfer from the prododéetconsumer. The
waiting until the period expires at the time server can beemgnted using a delay statement.

Execution steps of synchronous languages such as Estéletdfh also be modeled in a
similar manner. We can see the analogy of TTP with Esterelisamtics where the effect of a
signal is only noticed within time region. Essentially TTArcbe used as an implementation
platform for synchronous languages such as Esterel.

Symmetric Synchronization (Barrier). Synchronization barrie(see e.g., [115, 72]) is a
well-known technique to synchronize a number of paralleicpsses. According to [72], “A
barrier is a particular point in a distributed computation that gymocess in a group must reach
before any process can proceed further.”

Barriers can be implemented using the constructs we haaainted so far. The basic mech-
anism is exemplified by the sequence diagram shown in Figue Awo processes, Process 1

and 2 that are to be synchronized at some point have to reaetincgtages of computation. We
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Process 1 Process 3 Process 2

await (Xx=1Ay=1)

y =1
L signal sleep(id) _ TD signal sleep

(id)

T

y =
kill (id)

En

kill (id)

Figure A.3: Symmetric Synchronization (Barrier)

assume that when Process 1 has reached the stage it assignsSimilarly, Process 2 would as-
signyto 1. Here we assume that initially the valuex@indy are both 0. After the assignments,
both processes goes to sleep by execusiggal sleep(id).

Some time after the assignments, Process 3, which haveopstyiexecute@wait (X = 1 A
y = 1), becomes aware that Process 1 and 2 have set the valwesidy respectively to 1. This
detection is depicted in Figure A.3 by the two sloped hatbas, which denot@asynchronous
communication. Process 3 then resets bodmd theny to 0. We assume that enough time has
passed such that Process 1 and 2 are already asleep waiitihg fignal (perhaps by introducing
sufficient delay). At this point both Process 1 and 2 havetredthe barrier. Process 3 then raises

theid signal, which at the same time awakens both Process 1 andodtinge their executions.
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Appendix B

Additional Proof Examples

B.1 Complete Proof of List Reverse Program

The assertion that we prove here is the following:
p(O,H,I,J,H¢,J¢),alist(H,1),J =0 = reverséH,|,0,H¢,Js ), alist(H¢, Jr ).

The main proof is shown in Section B.1.1.
The proof requires an introduction of loop invariant in artiefind a recursion in the unfold-
ing of the loop. We therefore generalize the Ihs of obligaficusing thecuT rule into obligation

2. The use otuT requires us to prove

p(O,H,1,J3,H¢,J¢),alist(H,1),Ho=H,lp=1,J=0
E p(O,H,1,3,H¢,Js), reverséHo, lo, 1, H,J),alist(H, J),alist(H, ), no_shargH, J, 1).

((5.14) on Page 151). The proof is shown in Section B.1.2.

From obligation 2 further proof will branch into two obligahns. One of the branch 3a
denotes the program’s execution path that exits the loojievie branch 3b denotes the path
that enters the loop body, and eventually reaci®@sagain at assertion 6, which is proved by
coinduction AP application). The application afp at 6 requires the proof of the side condition.
The subsumption test is obligation 7s.1 and the residuaaitibn is 7r.1.

We assume that 7s.1 is directly proved (wB), however, we are obliged to establish the
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following assertions:

A. reverséHo,lo,l,H,J),alist(H,J),alist(H,I),no_shargH,J, 1),
| £0,H = (H,14+1,3),l' =H[l +1],J = | |=reverséHo, lo,1",H’, ).
B. reverséHy,lo,l,H,J),alist(H,J),alist(H,l),no_shargH,J,I),
| £0,H = (H,1+1,3),' =H[I +1],J =1 = alist(H’, ).
C. reverséHo,lo,l,H,J),alist(H,J),alist(H,l),no_shargH,J, 1),
| #0,H = (H,1+1,3),1' =H[I +1],7 = | |=alist(H’,I).
D. reversé¢Ho,lo,l,H,J),alist(H,J),alist(H,l),no_shargH,J, 1),
I #0,H = (H,1+1,3),I’=H[l +1], = | =noshardH’,J,I").

The proofs of A, B, C, and D are given in Sections B.1.3, B.B.4,5, and B.1.6, respectively.
The proof of B also requires that E be established (Secti@r7B. The proof of D requires
that F is established (proof in Section B.1.8), which in tuequires that G (proof in Section
B.1.9) is established.
The proofs of B, C, and D uses the separation principle (SEepdsed in Section 5.9.1.
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B.1.1 Main Proof of Linked List Reverse

1
1/

2

3a

3b

(€]

7

p(0,H,1,J,H¢,J¢),alist(H,1),J = 0 |=reverséH, |,0,H¢, Js ), alist(H¢, J)

p(0,H,1,J,H¢,J¢),alist(H,1),Ho=H,lp=1,J=0

= reverséHo, lo, Hs, J¢ ), alist(Hs, J¢ ) Simplified 1
p(O,H,I,J,H¢,Js),reverséHo, lo,H,J), alist(H,J),alist(H,1),no_shargH, J, 1)
= reverséHo, lo,0,H¢, Jr ), alist(H¢, Jr) cut?

p(Q,H,1,J,Hs,Js), reverséHo, lo, I, H,J),alist(H, J), alist(H, I ),
no_shargH,J;1),1 =0
= reverséHo, lo,0,H¢, J), alist(H¢, J¢) LU 2
p(1,H,1,J,H¢,J¢), reverséHo, lo, I, H,J),alist(H, J), alist(H,1),
no_shardH,J,1),1 A0

= reverséHo, lo,0,Hs, Js ), alist(Hs, Js) LU 2
reverséHo, lo, 0, H¢, J; ), alist(H¢, J; ), alist(H¢, 0), no_shargHs, J¢, 0)
= reverséHo, lo,0,H+, Js), alist(Hs, Js) LU 3a
-0 DP4

p(O,H’,1",J' /H¢,J¢), reverséHo, lo, I, H, J),alist(H,J), alist(H,I),no_shargH,J,I)

| £0,H = (H,I +1,3),I’ =H[1 +1],J =1
= reverséHo, lo,0,Hs, Js), alist(Hs, Js) LU 3b
-0 AP 2,6

7s.1| p(O,H’,1I",J /H¢,J¢),reverséHo, lo,1,H,J),alist(H,J),alist(H,1),no_shargH, J,I)

| #£0,H = (H,1 +1,3),I' =H[I +1],J =1
= p(O,H’, 1”3 H¢, J¢), reverséHo, lo,H’, '), alist(H’,J'),
alist(H’,1”), no_shargH’,J',1") AP 2,6

7s.2| -0 See A,B,C,D

7r.1| reversgHo, lo,0,Hs,Js),alist(Hs, Js ), reverséHo, lo, | ,H, J), alist(H, J), alist(H, I ),

noshargH,J,1),1 £0,H = (H,1 +1,3),1’ =H[I +1],J =
= reverséHo, lo,0,Hs, Js), alist(Hs, Js) AP 2,6

7r2| -0 DP7r.1

B.1.2 Proof of CuT Side Condition for Linked List Reverse

2.1

2.2

2.3

2.4

2.5

p(0,H,I,J,H¢,J¢),alist(H,1),Ho=H,lp=1,J=0
E p(O,H,1,3,H¢, ¢ ), reverséHo, lo, 1, H,J),alist(H,J),alist(H, ),
no_shareH,J, 1)

p(0,H, 1,3, Hs,Jf),alist(H,1),Ho=H,lp=1,J=0

E p(O,H,1,3,H¢,J¢),alist(H, J),alist(H,1),no_shardH, J, 1),

Ho=H,lp=1,J=0

p(0,H,I,J,H¢,J¢),alist(H,1),Ho=H,lo=1,J=0

= p(O,H,1,3,Hs,J¢),alist(H,1),noshardH,J,1),Ho=H,lp=1,J=0
p(0,H,1,J,H¢,J¢),alist(H,1),Hp=H,lp=1,J=0

E p(0,H,1,3,H¢,J¢),alist(H,l),Ho=H,lp=1,J=0
-0
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B.1.3 Proof of Assertion A

A.1 | revers€Ho,lo,l,H,J),alist(H,J),alist(H,I),noshargH,J,1),l # 0
H =(H,1+1,3),I'=H[ +1],J =1
= reverséHo, lo,1’,H’,J').

A.1" | reverséHo, lo,1,H,J),alist(H,J),alist(H,1),no_shargH,J,1),l # 0

= reverséHo, lo, H[I +1], (H,1 +1,J),1). Simplified A.7
A.2 | reverséHo, lo,1,H,J),alist(H,J),alist(H,1),no_shardH,J,1),l #0

= reverséHo, lo,1,H,J) RUA.T
A3 | -0 DPA.2

B.1.4 Proof of Assertion B

B.1 | reverséHo, lo,1,H,J),alist(H,J),alist(H,1),no_shargH,J,1),l # 0O,

H =(H,I+1,J),l'=H[I +1],J = alist(H’,J)
B.1' | reverséHo, lo,1,H,J),alist(H,J),alist(H,1),no_shargH,J,1),l #0
= alist((H,1 +1,J),1) Simplified B.1
B.2a| revers¢Ho, lo,l,H,J),alist(H,J),alist(H,1),1 #0,J=0
= alist((H,1+1,3),1) Lu B.7

B.2b | reversé¢Ho,lo,l,H,J),alist(H,J),alist(H,I),
no_reach(H,J,l),noshargH,H[J+1],1),1 #0,J#0
= alist((H,1+1,J),1) Lu B.7

B.3 | reverséHy, lo,1,H,J),alist(H,J),alist(H,1),l #0,J=0
=1 #0,alist((H,1 +1,J), (H,1 +1,3)[I +1]),

noreach((H,1 +1,3),1,(H,1 +1,3)[ +1]) RU B.2a
B.4 | reverséHo, lo,l,H,J),alist(H,J),alist(H,I),l #0,J=0
=1 #0,alist((H,1 +1,J),J),no_reach((H,1 +1,J),1,J) AIPB.3
B.5 | reverséHo, lo,I,H,J),alist(H,J),alist(H,I),l #0,J=0

= no_reach((H,I +1,J),1,J),1 #0,J=0 RUB.4
B.6 | reverséHo, lo,l,H,J),alist(H,J),alist(H,I),l #0,J=0

EI1#0J=0 RUB.5
B.7 | -O DPB.6

B.8 | reverséHo, lo,1,H,J),alist(H,J),alist(H, 1),
no_reach(H,J,1),noshargH,H[J+1],1),1 #0,J#0

Ealist((H,l +1,3),(H,1 +1,J3)[I +1]),

no_reach((H,l +1,J),1,(H,1 +1,J)[I +1]) RU B.2b

B.9 | reverséHo, lo,l,H,J),alist(H,J),alist(H, ),
no_reachH,J,l),noshardH,H[J+1],1), #0,J#0

= alist((H,1 +1,J3),J),no_reach((H,1 +1,J),1,J) AIP B.8
B.10 | reverséHo,lo,l,H,J),alist(H,J),alist(H,I),
no_reach’H,J,1),no_shargH,H[J+1],1),l #0,J#0

= alist(H,J),noreach((H, I +1,J3),1,J) SEP B.9
B.11| —O DPB.10 with E.1
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B.1.5 Proof of Assertion C

Cl

Cc.Y

c.2

C3

CA4

B.1.6

D.1

D.7

D.2

D.3

D.4

D.5

reverséHo, lo,l,H,J),alist(H,J),alist(H,l),no_shargH,J, 1)
| #0,H = (H,1+1,3),I' =H[I +1],7 = ):allst(H’ )
reverséHo, lo,l,H,J),alist(H,J),alist(H,|),no_shargH,J,1),l # 0
= alist((H,1 +1,J),H[l +1]) Simplified C.1
reverséHo, lo,l,H,J),alist(H,J),alist(H,H|[l +1]),no_reachH, I, H[l + 1)),
no_shargH,J,1),1 # 0 = alist((H,1 +1,J),H[l +1]) Lu C.7
revers¢Ho, lo,1,H,J),alist(H,J),alist(H,H[l 4+ 1]),no_reach(H, 1, H[l + 1)),
no_shargH,J,1),l #0 = alist(H,H[l +1]) SEP C.2
-0 prpC.3

Proof of Assertion D

reverséHo, lo,1,H,J),alist(H,J),alist(H,1),no_shargH, J, 1),
| £0,H = (H,1+1J),I'=H[I +1],J =1
= no_shardH’,J',1")

D.6

reverséHo, lo,l,H,J),alist(H,J),alist(H,l),no_shargH,J,1),l £ 0
= no_sharg (H,1 +1,3),1,H[l +1]) Simplified D.1
revers¢Ho, lo,1,H,J),alist(H, J),alist(H,H[l 4+ 1]),no_reach(H, |, H[l +1]),
no_sharégH,J,1),1 #0
= no_shard (H,1 +1,J3),1,H[l +1]) LuD.T
revers€Ho, lo,1,H,J),alist(H,J),alist(H,H[l +1]),no_reachH, 1, H[l + 1)),
no_shardH,J,1),l #0
= noreach((H, I +1,J),1,H[I +1]),
nosharg(H,l +1,J),(H,I +1,3)[I +1],H[I +1]), #0 RuD.2
reverséHo, lo,l,H,J),alist(H, J),alist(H,H|[l +1]),no_reachH, I, H][l +1]),
no_shargH,J,1),1 #0
= no_reach((H, I +1,J),1,H[I +1]),
no_sharg(H,l +1,J),3,H[l +1]),I #0 AIPD.3
revers¢Ho, lo,1,H,J),alist(H, J),alist(H,H[l 4+ 1]),no_reach(H, |, H[l +1]),
no_shargH,J,1),1 #0
= no_reach((H,1 +1,J),1,H[l + ])
nosharéH,J, H[l +1]),1 # SEPD.4
-0 ppD.5 with F.1
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B.1.7

E.l

Proof of Assertion E

no_reach(H,J,l),noshargH,H[X+1],1),X #0,1 #0
= no_reach((H,l +1,J),1,X)

E.2a

E.2b

E.3

E.4

E.5
E.6

no_reach(H,J,1),H[X+1] =0,X#0,1 #0
= no_reach((H,l +1,J),1,X) LUE.1
no_reachH,J,l),noreachH,H[X 4 1],1),no_shargH,H[H[X + 1]+ 1],1),
X #£0,1 £0,H[X+1]#£0

= no_reach((H,1 +1,J),1,X) LUE.1
no_reach(H,J,1),X # 0,1 #0,H[X+1] =0

= no_reach((H,1 +1,J3),1,H[X+1]),X #0 RUE.2a
no_reach(H,J,1),X # 0,1 #0,H[X+1] =0

EX#0H[X+1 =0 RUE.3
-0 DPE.4
-0 APE.1,E.2b

E.6s.1| noreachH,J,1),noreachH,H[X +1],1),no_shargH,H[H[X +1] +1],1),

X#£0,1 £0,H[X+1]#£0
= no_reach(H,J,1),nosharéH,H[H[X + 1] + 1],1),

H[X+1] #0,1 #0 APE.1,E.2b
E.6s.2| -0 DPE.6s.1
E.6r.1| noreach(H,J,l),noreachH,H[X +1],1),no_reach((H, I +1,J),I,H[X +1]),
X#0,l #0,H[X+1]#0
= no_reach((H,l +1,J),1,X) APE.1,E.2b
E.6r.2| noreach'H,J,1),no_reach(H,H[X + 1],1),no_reach((H, I +1,3),1,H[X +1]),
X#0,l #0,H[X+1]#0
= X # 0,noreach((H,1 +1,J3),I,HX+1]) RuE.6r.1
E.6r.3| -0 DPE.6r.2
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B.1.8 Proof of Assertion F
F.1| noshargH,J,1),noreachH,1,H[l +1]),1 #0
= no_reach((H,1 +1,J),1,H[l +1]),no_shargH,J, H[l +1]),| #0
F.2a| no_reachH, I, H[l +1]),1 ;éOJ 0
= no_reach((H,1 +1,J),1,H[l +1]),no_shargH, J, H[l +1]),
1 £0 LUF.1
F.2b| noreach(H,J,1),noshargH,H[J+ 1],1),no_reach(H, I, H[l +1]),1 #0,J#0
=noreach((H,1 +1,J),1,H[l +1]),no_shargH, J, H[l +1]),
1 #£0 LUF.1
F.3 | nooreachH,I,H[l +1]),1 #0,J=0
= noreach((H,I +1,3),1,H[l +1]), #0,J=0 RU F.2a
F.4| -0 DPF.3
with G.1
F.5 | nooreach(H,J,H[l +1]),noshargH,H[J+1],1),no_reach(H, I, H[l 4 1]),
| £0,J#£0,1 £J
= no_reach((H,1 +1,J3),1,H[l +1]),no_shargH,J,H[l +1]),
1 £0 LU F.2b
F6| -0 AP F.1,F5

F.6s.1| noreachH,J,H[l +1]),no_shardH,H[J+1],1),no_reachH, I, H[l +1]),

| £0,J#£0,1 #£J
= nosshargH,H[J+1],1),noreachH,l,H[I +1]),1 #0 APF.1,F.5
F.6s.2| -0 DPF.6s.1
F.6r.1| noreach(H,J,H[l +1]),no_reach((H,| + 1,H[J+1]),1,H[l +1]),
no_reachH,I,H|[l +1]),no_shardH,H[J+ 1], H[l +1]),| #0,J# 0,1 #J
= noreach((H,1 +1,J),1,H[l +1]),no_shargH, J, H[l +1]),
1£0 APF.1,F.5
F.6r.2| noreach(H,J,H[l +1]),no_reach((H,| +1,H[J+1]),1,H[l +1]),
no_reach'H,1,H[l +1]),no_shargH,H[J+1],H[l +1]),1 # 0,3 #0,1 #J
= no_reach((H, I +1,J),1,H[l +1]),noreachH,J,H[l +1]),
no_shargH,H[J+ 1], H[l +1]),l #0,J#0 RU F.6r.1
F.6r.2| -0 DP F.6r.2
with G.1
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B.1.9 Proof of Assertion G

G.1| noreachH,I,X) = noreach((H,I +1,J),1,X)

G.2a| X=0Fnoreach(H,I +1,J3),1,X) LUG.1
G.2b| noreach(H,I,H[X +1]),X # 0,1 # X = no_reach(H,1 +1,J),1,X) Lu G.1
G3|X=0FX=0 RUG.2a
G.4| -O DPG.3

G.5| -0 AP G.1,G.2b

G.5s.1] noreachH, I, H[X +1]),X # 0,1 # X |= noreachH, |, H[X+1]) APG.1,G.2b
G.5s.2| -0 DPG.5s.1

G.5r.1| noreach((H,l1 +1,J),1,H[X+1]),X # 0,1 # X

= noreach((H,l +1,J),1,X) AP G.1,G.2b
G.5r.2| noreach((H,I +1,J3), I, H[X+1]),X # 0,1 #X

Enoreach((H,I +1,J3),I,H[X+1]),X #0,l #X RuG.5r.1
G.5r.3| O DP G.5r.2
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