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Summary 

Meshfree method is a new promising numerical method after the finite element 

method (FEM) has been dominant in computational mechanics for several decades. 

The feature of mesh free has drawn a lot of attention from mathematicians and 

researchers. Development of meshfree method has achieved remarkable success in 

recent years. Among the meshfree methods, the progress of the development of 

meshfree strong-form method is still very sluggish. As compared to meshfree 

weak-form method, the relevant research works dedicated to meshfree strong-form 

method are still not abundantly available in the literature. Nonetheless, strong-form 

meshfree method possesses many attractive and distinguished features that facilitate the 

implementation of the adaptive analysis.  

In this study, the two primary objectives are: 

(1) To provide remedies to stabilize the solution of strong-form meshfree method 

(2) To extend strong-form meshfree method to adaptive analysis 

Radial point collocation method (RPCM) is a strong-form meshfree method 

studied in this work. Instability is a fatal shortcoming that prohibits RPCM from being 

used in adaptive analysis. The first contribution of this thesis is to propose several 

techniques that can be employed to stabilize the solution of RPCM before it can be used 

in adaptive analysis. Stabilized least-squares RPCM (LS-RPCM) is the first proposed 

meshfree strong-form method that uses stabilization least-squares technique to restore 

the stability of RPCM solution. In the stabilization procedure, additional governing 



   Summary 

 x

equation is suggested to be imposed along Dirichlet boundaries in order to achieve 

certain degree of equilibrium. 

Next, another new least-square RPCM (LS-RPCM) with special treatment on the 

boundaries is proposed. According to the literature reviews and my close examination, 

the cause of the instability is due to the existence of Neumann boundary condition and 

“strong” requirement of the satisfaction of boundary conditions. Hence, more 

collocation points (not nodes) are introduced along the boundaries to provide a kind of 

“relaxation” effect for the imposition of the boundary conditions. 

In addition, regularization technique is suggested to restore the stability of the 

RPCM solution. Although regularization technique is a well-known technique that is 

widely used in the ill-posed inverse problems, it is a very new idea to adopt the 

regularization technique in the forward problem. The stability of RPCM solution has 

been effectively restored by the Tikhonov regularization technique as demonstrated in 

the regularized least-squares radial point collocation method (RLS-RPCM). 

Besides the strong-form method, a very classical subdomain method is also 

presented in this thesis. Unlike the strong-form method that satisfies the governing 

equation on the nodes, subdomain method allows the governing equation to be satisfied 

in an average sense in the local subdomain. Through the valuable experiences gained in 

the meshfree methods, meshfree techniques are integrated in the subdomain method. 

The subdomain that incorporates with the meshfree techniques has demonstrated great 

numerical performance in term of accuracy and stability. 
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The second significant contribution of this work is the development of an error 

estimator for strong-form meshfree method. Most of the existing error estimators for 

adaptive meshfree method are an extension of the conventional error estimators for 

FEM which is formulated in term of weak-form. Thus, developing a robust, effective 

and feasible error estimator for strong-form method is a primary task before meshfree 

strong-form can be extended to adaptive analysis. A novel residual based error 

estimator is proposed in this thesis. In fact, this versatile error estimator has been shown 

not only feasible for strong-form method but also for weak-form method. Furthermore, 

the residual based error estimator is also applicable for many numerical methods 

regardless of the use of mesh. 

As an error estimator that is feasible for strong-form meshfree method is available 

and stability of the RPCM solution is restored, all the presented meshfree strong-form 

methods and subdomain method have been successfully extended to adaptive analysis. 

All the presented adaptive meshfree methods have been shown to be very simple and 

easy to implement due to the features of mesh free. Neither remeshing nor complicated 

refinement technique is needed in the adaptation. 

Last of all, a very thorough study on the effects of the number of local nodes for 

meshfree methods based on local radial basis functions (RBFs) is undertaken. As local 

RBFs are used in the RPIM approximation in this present work, a comprehensive study 

for local RBFs is very important. Although the effects of shape parameters have been 

greatly discussed in literature, the effects of the number of local nodes for meshfree 

methods based on local RBFs are still not well studied. The final significant 
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contribution of my work is to provide an insight and comprehensive study in this aspect. 

Many meshfree methods that use local RBFs are studied on the effects of the number of 

local nodes and decisive conclusions for using local RBFs are drawn in the study. 

Approximation using local RBFs has demonstrated incredible advantages in my 

investigation.  
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Nomenclature 

a  Coefficient vector 

A Area of the domain 

b  Body force vector 

B  Strain matrix 

cd  Characteristic length (average nodal spacing) 

div  Divergence operator 

D  Elasticity matrix for linear elastic material 

E Young’s modulus 

ne  Error norm 

e  Energy norm for error 

f  Force vector 

rF  Regularized force vector 

G Shear modulus 

I Moment of inertia of section 

K Stiffness matrix 

rK  Regularized stiffness matrix 

( ), ( )L B 　 Differential operator 

n Vector of unit outward normal  

n Number of supporting nodes 

N Total number of field nodes 

( )P x  Polynomial basis function 

mP  Polynomial moment matrix 

q Shape parameter of MQ radial basis function 

r Distance 
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ResT  Residual at the Delaunay cell T 

( )R x  Radial basis function 

QR  Moment matrix of radial basis function 

( )is x  Interpolation value at ix  

T Delaunay cell 

t  Specified traction vector 

U  Displacement vector 

sU  Displacement vector of local support domain 

u  Specified displacement vector 

u  Field function 

ru  Field function on regularization point 

hu  Approximation of field function u 

[ ]Tx y z=x 　  Cartesian coordinate 

α  Stabilization factor 

rα  Regularization factor 

cα  Parameter of MQ radial basis function 

Γ  Boundary of problem domain 

uΓ  Dirichlet boundary  

tΓ  Neumann boundary 

δ  Kronecker delta 

lΔ  Length of the edge of subdomain 

ε  Strain tensor 

iη  Local error estimator based on interpolation variance. 

Lη  Local error estimator based on residual 
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Gη  Estimated global residual norm 

MLη  Maximum value of Lη  in the entire problem domain 

MGη  Maximum value of Gη  throughout the adaptation 

lκ  Refinement coefficient 

gκ  Tolerant coefficient of the estimated global residual norm 

iϕ  Shape function component 

Φ  Shape function vector 

υ  Poisson’s ratio 

σ  Stress tensor 

Ω  Problem domain 
TΩ  Local domain of Delaunay cells 

sΩ  Local subdomain 
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Chapter 1 
 
 
Introduction 
 

1.1 Background 

1.1.1 Motivation of Meshfree Methods 

Finite element method (FEM) is one of the most successful and dominant 

numerical methods in the last century. Although the advent of FEM can be traced back 

as early as the 60s [3,15], the development of FEM only became progressive after the 

technology of digital computer is more advanced and popular. The FEM has achieved 

remarkable success and it has been widely used in various fields such as engineering 

and sciences. Nowadays, many FEM commercial software e.g. ABACUS, ANSYS, 

PATRAN etc are available to help engineers and scientists to solve their problems. 

However, while the problem of computational mechanics becomes more challenging, 

the conventional FEM that relys very much on the mesh is no longer able to deal with it 

easily. 

Using meshes is a salient feature of the FEM, mesh is known as the connectivity of 

the nodes in a predefined manner. Due to the use of the mesh, the FEM has encountered 

several limitations as follows. 
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(1) High computational cost for meshing 

Creating mesh is a prerequisite of FEM. The problem domain has to be 

modelled using mesh at the beginning step. Although linear triangular element 

can be created easily, the accuracy of FEM solution is low. To obtain better 

FEM solution, higher quality mesh, for example, quadrilateral mesh has to be 

used. However, the meshing procedure for high quality mesh can be very 

complicated and costly. For large scale problem, the cost for constructing the 

mesh can be the major cost of the entire computation. 

(2) Low accuracy in the derivatives of the primary field functions 

As FEM is derived from the variational principle and regarded as a weak-form 

method, only weak-solution can be obtained. The weak-solution can only 

guarantee the solution of the primary field function is continuous, but not its 

derivatives. Hence, some important quantity in mechanics, for instance, stress, 

is suffering from low accuracy due to the discontinuous solution of the 

derivative of the primary field function. To obtain a better FEM solution for 

stress, special post-processing treatments are required. 

(3) Difficulties in the implementation of adaptive analysis 

Adaptive analysis is a very important study in computational mechanics. 

During the adaptation, refinement or coarsening process has to be executed to 

improve the model of the problem. Remeshing process is also necessary at each 

adaptive process. Due to the use of mesh, the refinement or coarsening process 
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can very cumbersome and expensive. Remeshing process in not only costly but 

also difficult for those high order element, i.e., quadrilateral element. 

(4) Limitation in several challenging and complicated computational mechanics 

problems 

a) FEM solution is suffering from low accuracy in high deformation 

problem as the mesh is severely distorted. 

b) Simulation of failure process, e.g., crack growth, is very difficult to be 

investigated by FEM as interface of the elements are not coincide. 

c) FEM is also not suitable to be used for the study of explosion problem as 

element of the FEM can not be broken during the computation. 

From the above reasons, the difficulties caused by the use of mesh restrict the 

application of the FEM. A new class of numerical method, meshfree method, 

which is formulated without using the mesh, is therefore in great demand.  

1.1.2 Features of Meshfree Methods 

The motivation of the meshfree methods has been clearly stated in the last section. 

Furthermore, close examination has revealed the difficulties caused by the use of mesh 

in the FEM. To get rid of the mesh, a new class of the numerical method, meshfree 

method, is devised. In this section, general features of meshfree methods will be 

discussed as follows. 

Although the definition of mesh free is still an open issue, generally, the meshfree 
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methods should possess the following features: 

(1) No mesh or nodal connectivity is needed in the formulation procedure. 

(2) The shape function is not constructed based on mesh. Great flexibility should 

be provided in the nodal selection for constructing shape functions. 

(3) Although background mesh is needed in some meshfree methods, the 

implementation of adaptive analysis and boundary moving problems should 

be done with ease. 

(4) Meshfree methods should provide a better accuracy for the solution of the 

derivative of the primary field function such as stress. 

(5) Meshfree methods should be able to provide solution with higher accuracy for 

high deformation problem. The accuracy of the meshfree method’s solution is 

not severely affected from mesh distortion. 

Although meshfree methods have achieved remarkable progress, there is still a 

room for improvement. Some of the most frequently addressed concerns for the 

existing meshfree methods are listed as follows. 

(1) Generally, the computational cost of the meshfree methods is high. As the 

shape functions are usually constructed with more nodes, the cost of 

constructing the shape function is more expensive. Solving simultatneous 

equations with wider bandwidth coefficient matrix also incurs higher 

computational cost. 
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(2) At current stage, a lot of the meshfree methods are still can not totally get rid 

of mesh. Background mesh is still somehow needed in the computation, e.g., 

element-free Galerkin (EFG) method [9] etc. 

(3) If meshfree methods use shape functions which does not possess Kronecker 

Delta property, e.g., Meshless Local Petrov-Galerkin (MLPG) Method [2], 

Diffuse Element Method (DEM) [79], the imposition of the essential 

boundary condition is not straightforward. Additional technique such as 

penalty approach is required. 

Still, it is one of the very promising method to overcome some of the problems 

which caused by the use of mesh. The attractive features of meshfree methods are 

drawing a lot of attention and gaining many efforts from researchers and scientists.  

1.2 Literature review 

As the problems of computational mechanics grow more and more challenging, 

the conventional numerical methods that based on regular mesh or grid, for instance, 

finite element method (FEM), finite difference method (FDM) and finite volume 

method (FVM), are no longer suited well. The demand of new class of numerical 

method that is formulated without the reliance of mesh or grid becomes more 

significant. This motivation drives the leap of the meshfree methods in the last three 

decades. Meshfree method has become one of the hottest research topics in the 

computational mechanics community and many meshfree methods have been well 

established and discussed. 
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The pioneering research work of the meshfree methods can be traced back to many 

decades ago. The smooth particle hydrodynamics (SPH) method [64] proposed by 

Lucy in 1977 is always regarded as one of the earliest contribution to development of 

the meshfree method. The initial idea of SPH method is to study the astrophysical 

phenomena without boundaries such as exploding stars and dust cloud. Monaghan and 

his co-workers have also dedicated great contribution to extend the application of SPH 

method [21,76-77]. A comprehensive discussion of the recent research works of SPH 

method can be found in Ref. [54]. 

Besides the SPH method, the collocation method is another well-known meshfree 

method which has great influence to the development of meshfree methods. As early as 

80s, to get rid of the regular grids in the formulation of finite difference method (FDM), 

many research works have been devoted to establish a collocation method based on 

arbitrary scattered nodes. General finite difference method (GFDM) is therefore well 

discussed and proposed by many researchers, which includes the works by Girault [22], 

Perrone [82], Liszka and Orkizs [37,38] etc. 

The purpose of this section is just to provide a brief history of meshfree methods. 

More comprehensive overview of the development of meshfree methods is abundantly 

available in literature [8,40,46]. 

1.2.1 Classification of Meshfree Methods 

As meshfree method is developing progressively, it is very important to classify 

the meshfree methods into different categories for better understanding. Indeed, there 
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are many ways to classify the meshfree methods. In this section, various types of 

classification will be briefly introduced. 

The first type of classification categorizes the meshfree methods according to the 

interpolation or approximation function. Popular approximations include SPH 

approximation [21,64], RKPM approximation [58-60], MLS approximation [9,79], 

partition of unity methods [5,73] etc.  

There is another type of classification that categorizes the meshfree methods 

according to the domain representation. This type of classification categorizes the 

meshfree method into two categories: domain-type and boundary-type of meshfree 

methods. In domain-type of meshfree methods, both problem domain and boundary are 

will represented by field nodes. Examples of this type of meshfree methods includes 

element-free Galerkin (EFG) method [9], point interpolation method (PIM) [41], local 

radial point interpolation method (LRPIM) [42], SPH method [64] etc. On contrary, 

only boundary is represented by field nodes in the boundary-type of meshfree methods, 

for example, boundary node method (BNM) [78], boundary point interpolation method 

(BPIM) [25], boundary radial point interpolation method (BRPIM) [26]. 

In this thesis, meshfree methods are classified according to the formulation 

procedure is adopted. They can be largely categorized into three different categories, 

namely meshfree weak-form method, meshfree strong-form method and meshfree 

weak-strong form method. The details of the different categories are given in the 

following section. 
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1.2.2 Meshfree Weak-form Methods 

Meshfree method formulated based on the weak formulation is known as a 

meshfree weak-form method. Due to the success of variational principle used in the 

finite element method, the meshfree weak-form method is the most well established 

and dominant meshfree method. As compared to meshfree strong-form method, 

meshfree weak-form method is able to provide more stable and accurate solution. 

However, meshfree weak-form methods is not regarded as a truly mesh free method, 

since background cells are somehow still needed globally or locally. Typical meshfree 

weak-form methods include diffuse element method (DEM) [79], element-free 

Galerkin (EFG) method [9], meshless local Petrov-Galerkin (MLPG) method [2], local 

point interpolation method (LPIM) [41], local radial point interpolation method 

(LRPIM) [42,56,91], linear conforming point interpolation method (LC-PIM) [97], 

linear conforming radial point interpolation method (LC-RPIM) [36, 53] etc.  

1.2.3 Meshfree Strong-form Methods 

Meshfree strong-form method has a longer history of development in meshfree 

methods. Meshfree method that is formulated based on the strong formulation is known 

as meshfree strong-form method. This class of meshfree method directly discretizes the 

partial differential equations (PDEs) and boundary conditions at nodes by collocation 

technique. Therefore, the computational efficiency of strong-form method is highest 

among the other classes of meshfree methods. It is always regarded as a truly mesh free 

method as no mesh is needed throughout the formulation. However, the instability issue 
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is always the greatest concern for strong-form methods. The earliest research works 

dedicated to the meshfree strong-form methods includes SPH method [21,64], GFDM 

[22,37,38,82]. Other meshfree strong-form methods include finite point method [80,81] 

and hp-cloud method [39]. Recently, Liu et al have proposed strong-form collocation 

method based on local RBFs, namely radial point collocation method (RPCM) [62-63]. 

1.2.4 Meshfree Weak-Strong Form Methods 

As its name implies, meshfree weak-strong form (MWS) method is formulated 

based on both weak and strong formulations. To overcome the instability problem in 

the strong-form method caused by Neumann boundary conditions, the weak 

formulation is applied along the boundary of the problem domain while the strong 

formulation is still remained for the field nodes in the interior domain. This idea of 

coupling both weak and strong formulation is originally suggested by Liu and Gu [43]. 

Through such procedure, the background cells are kept to minimum and only applied 

along boundary. The MWS method has been successfully developed to solve for many 

solid mechanics and fluid mechanics problems [22,44,55]. 

1.3 Motivation of the Thesis 

Among these three major categories of meshfree methods, meshfree strong-form 

methods possess the most attractive features that facilitate the implementation of 

adaptive analysis. The advantages of meshfree strong-form methods for adaptive 

analysis include: 
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(1) The formulation procedure of meshfree strong-form methods is very 

simple and straightforward. Neither formulation procedure nor 

construction of shape function requires numerical integration. It is the 

most efficient meshfree method. 

(2) The truly mesh free feature eases the refinement or coarsening 

procedure in adaptive analysis. Nodal can be inserted or removed 

without worry of the nodal connectivity. 

(3) Remeshing process is needed in adaptive analysis for conventional 

numerical methods relying on the mesh. Since meshfree strong-form 

method is a truly mesh free method, the costly and cumbersome 

remeshing procedure is therefore eliminated. 

Nevertheless, the development of meshfree strong-form methods still remains 

very challenging. Currently, most of the reliable strong-form methods are still very 

much relying on the structured grids and are restricted only for regular domain. Finite 

difference method (FDM) is considered as the most classical, reliable and earliest 

strong-form method [17,85]. However, while dealing with more geometrically complex 

and practical problems, the FDM that relys on the structure grids has encountered great 

difficulty. A strong-form meshfree method that is formulated without relying on the 

structured grid is therefore very attractive. Although methods like GFDM 

[22,37,38,82,88] claims that it can be used for irregular domain and unstructured grids, 

a proper stencil (nodal selection) is somehow still needed for function approximation. 
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The cumbersome and inflexible procedure of nodal selection constrains the strong-form 

methods from being used in the adaptive process as nodal distribution during the 

adaptation can be highly irregular and hence difficult to form ‘proper’ stencils. 

In addition, instability problem is another crucial issue that limits the applications 

of strong-form methods, especially in adaptive analyses. The strong-form solution is 

usually not stable and less accurate than the weak-form solution. Without an effective 

stabilization measure, it is impossible to use meshfree strong-form method in adaptive 

analyses. Although researchers have provided several suggestion such as, adding 

derivatives term to the primary field variable [99], introducing auxiliary collocation 

points [98], coupling weak and strong formulation [43,44,27], augmenting additional 

term to the original governing equation [81], the stabilization effect is yet to be satisfied 

and the implementation of these procedures can be complicated for adaptive analysis.  

1.4 Objectives of the Thesis 

Compared to the meshfree weak-form method, the development of strong-form 

method is relatively sluggish. Available literature for strong-form meshfree methods in 

adaptive analysis is very little. As instability is still the fatal shortcoming of 

strong-form methods, it is impossible to extend strong-form methods to adaptive 

analysis without an effective measure to restore the stability of the solution. In this 

work, several techniques are proposed to restore the stability of the strong-form 

solution. As stable and accurate solution can be obtained, the features of strong-form 

method can then facilitate an easier implementation of adaptive analysis. 
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Error estimator is another important study of this thesis. Currently, most of the 

well established error estimators in the adaptive analysis are only available for 

weak-form methods. Developing a novel error estimator that can be used for 

strong-form adaptive analysis is crucial and in great demand. A very robust, versatile 

and effective error estimator has to be developed for the adaptive strong-form method. 

By incorporating a good error estimator, an efficient adaptive analysis can then be 

achieved by strong-form meshfree methods. 

As strong-form methods studied in this thesis are based on the local radial basis 

function (RBFs), hence a thorough study of the local RBFs is very important. RBFs are 

very well-known for its excellent performance in scattered data interpolation and curve 

fitting and it is very commonly used in the mathematics community. The earliest works 

of the strong-form collocation method based on RBFs can be traced back to early 90s. 

Kansa is considered one of the pioneers who use RBFs for solving PDEs by collocation 

technique [65]. In contrast to the conventional RBFs that use global nodes, Liu et al 

have dedicated a series of research works that are based on local RBFs recently. The 

study of the dimensionless shape parameters of the local RBFs have been already well 

studied in literatures [40,46,92], however, the effects of the number of local nodes for 

RBF is not thoroughly investigated. The influences of the local nodes can be very 

significant to the accuracy and stability of the solution. A comprehensive and insightful 

study on the effects of the number of local nodes will be investigated in this work. 
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1.5 Organization of the Thesis 

This thesis consists of ten chapters and is organized as follows. 

In Chapter 1, background and literature review of the research work are provided. 

The motivation and the objective of this thesis are clearly described in this chapter.  

Function approximation plays crucial roles in the meshfree methods. In Chapter 2, 

five types of commonly used function approximation: smooth particle hydrodynamics 

(SPH), reproduced kernel particle method (RKPM), moving least-square (MLS), 

polynomial point interpolation method (PPIM) and radial point interpolation method 

(RPIM) are introduced. As PPIM and RPIM approximations are adopted throughout 

this work, greater details of the formulation and properties are given. 

All the proposed strong-form methods in this work are extended to adaptive 

analysis. Error estimators, adaptive strategy and refinement procedure for adaptive 

strong-form meshfree method are well described in Chapter 3. A new error estimator, 

residual based error estimator, is proposed and introduced in this chapter.  

The focus of this thesis is on the development of strong-form meshfree methods. 

Sereval stabilization procedures are proposed to stabilize the solution of a strong-form 

meshfree method, radial point collocation method (RPCM). Therefore, a close 

examaination is conducted for RPCM. Chapter 4 presents the detailed formulation 

procedure and the several issues of the RPCM. 

Chapter 5 to Chapter 7 provide meshfree strong-form methods that use different 
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techniques to restore the stability of RPCM solution. In Chapter 5, a stabilized 

least-squares RPCM is introduced. In the formulation of stabilized least-squares RPCM, 

additional governing equations are satisfied along the Dirichlet boundaries. Next, in 

Chapter 6, least-square technique with special treatment for boundaries is adopted to 

establish a least-square RPCM (LS-RPCM). Additional collocation points are allocated 

along the boundaries (Neumann and Dirichlet boundaries). As the number of 

discretized equations is more than the number of unknown variable, a simple 

least-square technique is adopted to solve for the resultant algebraic equations. Last, 

regularization technique that often be used in the inverse problem is adopted to stabilize 

the RPCM solution for the forward problems. A regularized least-square RPCM 

(RLS-RPCM) is presented in Chapter 7.  

Chapter 8 presents a subdomain method based on the RBFs. In this chapter, the 

meshfree shape function (RPIM shape function) is integrated into the classical 

subdomain method to present a subdomain method based on the local RBFs. By 

applying the Green’s theorem, only boundary integral is involved in the formulation 

procedure. Excellent accuracy and great stability can be obtained in the sundomain 

method, and it has been successfully extended to adaptive analysis as well. 

From Chapter 5 to Chapter 8, four different meshfree methods based on the local 

RBFs are presented. Hence, study of the local RBFs is not only essential but also very 

important. In literature, the study of the dimensionless shape parameters of RBFs is 

abundantly available. However, the study on the effects of the number of local nodes 

for meshfree methods based on RBFs is still lacking in the literature. Thus, a 



Chapter 1  Introduction 

 15

comprehensive and insightful study on the effect of the number of local nodes for the 

meshfree methods based on RBFs is provided in Chapter 9. 

Last, Chapter 10 presents the conclusive remarks and some recommendations for 

the future works. 
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Chapter 2  
 
 
Function Approximations 
 

2.1 Introduction 

Function approximation plays a very important and crucial role in the meshfree 

methods. Considering a problem that is governed by PDEs and given boundary 

conditions, the unknown field function has to be first approximated by trial function 

before the discretized system equations can be formed and solved. The quality of the 

numerical solution highly depends on the function approximation. 

In the finite element method (FEM), the function approximation is based on the 

predefined connectivity or mesh. However, this type of element based approximation 

incurs several shortcomings as mentioned in Chapter 1. On the contrary to the FEM, 

meshfree methods adopt function approximation that does not rely on mesh.  

In the following sections, five most commonly used approximations in meshfree 

methods are introduced. They are smooth particle hydrodynamics (SPH) 

approximation, reproducing kernel particle method (RKPM) approximation, moving 

least-squares (MLS) approximation, polynomial point interpolation method (PPIM) 

approximation and radial point interpolation method (RPIM) approximation. As SPH, 
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RKPM and MLS approximations are not used in this study, only a brief introduction is 

given. Details for their formulations can be referred by the respective references. In this 

thesis, PPIM and RPIM approximations are mostly used and hence more 

comprehensive details are provided. 

2.2 Smooth Particle Hydrodynamics (SPH) Approximation 

The smooth particle hydrodynamics (SPH) method [64,21] is always regarded as 

one of the earliest developed meshfree methods. In contrast to many conventional 

shape functions, for instance, FE shape function, the SPH shape function is represented 

in an integral form. In the formulation of SPH approximation, the field function u  at 

an interest point x  can be expressed in the following integral form. 

( ) ( ) ( ),hu u W h d
ξ

ξξ ξ
Ω

= − Ω∫x x
)

, (2.1)

where W
)

 is known as a kernel or weight or smoothing function, h denotes the 

smoothing length, and ξΩ  is known as the influence domain in SPH approximation. 

Monaghan had listed 5 conditions to be satisfied by the kernel function in his 

paper [74] as below. 

1. ( ), 0W x hξ− >
)

 over ξΩ  (2.2)

2. ( ), 0W x hξ− =
)

 outside ξΩ  (2.3)
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3. ( ), 1W x h d
ξ

ξξ
Ω

− Ω =∫
)

 (2.4)

4. W
)

 is a monotonically decreasing function (2.5)

5. ( ) ( ), 0W s h s as hδ→ →
)

 (2.6)

The most frequently used kernel functions can be found in Ref. [8,54,74-76]. 

Besides abundant research works that are dedicated by Monaghan [74-76], more 

comprehensive discussions on the properties of the SPH approximation and the recent 

development of the SPH method can also be found in the paper of Belyschko et al [8] 

and the book of Liu and Liu [54]. 

2.3 Reproducing Kernel Particle Method (RKPM) 

Approximation 

Reproducing kernel particle method (RKPM) is another well-known meshfree 

method proposed by Liu et al [58-60]. In the formulation of RKPM approximation, the 

field function u is approximated and represented in an integral form. By adding a 

correction function into the SPH approximation given in the Eq. (2.1), the integral 

representation of a field function u can be shown as 

( ) ( ) ( ) ( ), ,hu u C W h d
ξ

ξξ ξ ξ
Ω

= − Ω∫x x x
) )

, (2.7)

where ( ),C ξx
)

 is the correction function. 
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Example of correction function for one dimensional case is given as follows. 

( ) ( ) ( )( )1 2,C c cξ ξ= + −x x x x
)

, (2.8)

where ( )1c x  and ( )2c x  are the coefficients. Both coefficients can be obtained by 

enforcing the corrected kernel to reproduce the field function [58]. 

It has been shown that correction kernel has effectively improved the 

approximation near the boundaries as well as providing 1C  consistency. More details 

of the RKPM approximation are abundantly available in literature [58-60]. 

2.4 Moving Least-Squares (MLS) Approximation 

Moving least-squares (MLS) approximation is one of the most popular 

approximations widely be used in the meshfree methods. It is originaly used for data 

fitting and surface construction in the mathematic community [24,34,72]. Nayroles et 

al [79] were the pioneers who adopted MLS approximation in the meshfree methods. 

Other meshfree methods that use MLS approximation include EFG [9], FPM [81] etc. 

In the formulation of MLS approximation, a field function u  at any interest point 

x  can be approximated in the following form: 

( ) ( ) ( ) ( )
1

m
h T

i i
i

u p a
=

= =∑x x P x a x , (2.9)

where m is the number of basis used in the approximation, ( )ip x  is the basis function 

and ia  is the corresponding coefficient. 

The coefficients vector in the Eq. (2.9) can be obtained by minimizing the 
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weighted 2L  norm of the residual as 

0J∂
=

∂a
, (2.10)

where weighted 2L  norm of the residual is known as, 

( ) ( )

( ) ( ) ( )

2

1

2

1
.

n
h

i i i
i
n

T
i i i

i

J w u u

w u

=

=

⎡ ⎤= − −⎣ ⎦

⎡ ⎤= − −⎣ ⎦

∑

∑

x x x

x x P x a x

)

)
 

(2.11)

where n is the number of supporting nodes and iw)  is the weight function. One should 

note that the number of supporting nodes is equal or greater than the number of basis in 

the approximation, n m≥ . 

Eq. (2.10) leads to the following linear relationship between a and sU , 

T T
m m m s=P WP a P WU
) )

, (2.12)

where  

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

1 1 2 1 1

1 2 2 2 2

1 2

m

m
m

n n n n n m

p p p
p p p

p p p
×

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

x x x
x x x

P

x x x

L

L

M M O M

L

, 

(2.13)

1 2[ ]n n ndiag× =W w w w
) ) ) )

L , (2.14)

1 1 2[ ]T
m m× =a a a aL . (2.15)

Hence, the coefficients vector can be solved as 
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1T T
m m m s

−
⎡ ⎤= ⎣ ⎦a P WP P WU

) )
, (2.16)

and the MLS approximation can be expressed in the following form in term of the MLS 

shape functions: 

( ) ( ) ( ) ( ){ } ( )1 2
Th T

n s su φ φ φ= = Φx x x x U x UL , (2.17)

where  

( ) ( )
1T T T

m m m

−
⎡ ⎤Φ = ⎣ ⎦x P x P WP P W

) )
, (2.18)

The details description of MLS approximation can be found in the Ref. [34,40,46]. 

High continuity shape functions and high flexibility in nodal selection are the 

great advantages of using MLS approximation. However, as least-squares procedure is 

used in the function approximation, the MLS shape function does not possess 

Kronecker delta property, which can cause difficulties in the imposing of Dirichlet 

conditions.  

2.5 Polynomial Point Interpolation Method (PPIM) 

Approximation 

Polynomial function is one of the earlier basis function used in the interpolation 

scheme. As its name implies, polynomial function is used as a basis function in the 

polynomial point interpolation method (PPIM) approximation.  
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2.5.1 Formulation of Polynomial Point Interpolation Method 

Consider a smooth and continuous field function u in a problem domain Ω . The 

approximated field function hu  at any interest point x  can be represented in the form 

given in Eq. (2.9), 

( ) ( ) ( )
1

m
h T

i i
i

u p a
=

= =∑x x P x a . (2.9)

In the PPIM approximation, ( )iP x  is the monomial of the polynomial function in the 

Euclidean space and ia  is the corresponding coefficient.  

Completed polynomial basis function is usually preferred in the PPIM 

approximation. For examples, completed polynomial basis functions used in 

one-dimensional and two-dimensional space: 

( ) [ ]1 , 2, 1T x m p= = =p x ,                        (1D) (2.19)

( ) 2 21 , 6, 2T x y x xy y m p⎡ ⎤= = =⎣ ⎦p x ,         (2D) (2.20)

where p is the order of polynomial and m is the number of monomials. Pascal’s 

triangles [100] can be utilized to determine the basis of the approximation. Pascal’s 

triangles used for two-dimensional space are given in Figure 2.1. 

To obtain the undetermined coefficient ia , the approximation function in Eq. (2.9) 

is enforced to pass through the field value at each supporting nodes and it can be 

expressed as the following matrix form. 
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s m=U P a , (2.21)

where sU  denotes the vector of field value at supporting nodes,  

{ }1 2 3

T

s nu u u u=U L , (2.22)

mP denotes the moment matrix, 

( )
( )
( )

( )

1 1 1 1 1

2 2 2 2 2

3 3 3 3 3

1
1
1

1

n

n

m n

n n n n n n

x y x y p
x y x y p
x y x y p

x y x y p

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

x
x

P x

x

L

L

L

M M M M O M

L

, (2.23)

and a denotes the vector of coefficient of monomials, 

{ }1 2 3

T

na a a a=a L . (2.24)

The unknown coefficients can be easily obtained as 

1
m s
−=a P U , (2.25)

if 1
m
−P  is not singular. One should note that to form a square moment matrix mP , the 

number of supporting nodes must be equal to the number of monomials in the 

polynomial function, 

n m= . (2.26)

Substituting the Eq. (2.25) into Eq. (2.9) yields to the following expression,  
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( ) ( )

( )

( )

1

1

h T
m s

n

i i
i

s

u

uφ

−

=

=

=

=

∑

x P x P U

x

Φ x U ，

 (2.27)

where ( )Φ x  is a vector of shape functions defined as 

( ) ( ) ( ) ( ) ( ) ( ) ( ){ }1
1 2 3

T
m nφ φ φ φ−= =Φ x P x P x x x x xL , (2.28)

and ( )iφ x  is the PPIM shape function for supporting node i. 

The derivatives of the approximated field function can be easily expressed in term 

of the derivatives of shape functions, because PPIM shape function is in the form of 

polynomial function. For instance, the first derivative of the approximated field 

function respect to x can be expressed as 

( ) ( ) ( ) ( )1
, ,

h T
x m x su

x
−∂

= =
∂

x P x P x Φ x U . (2.29)

2.5.2 Properties of PPIM Shape Function 

Apparently, construction of PPIM shape function is very simple and 

straightforward as shown in the above section. In addition, the PPIM shape function has 

also possesses numerous attractive properties as follows [40,41,45,46]. 

(1) Kronecker Delta property 

The shape function possesses Kronecker Delta property, 

( ) 1 , 1,2, ,
0 , , 1, 2, ,i j

if i j j n
if i j i j n

φ
= =⎧

= ⎨ ≠ =⎩
x

L

L
. (2.30)
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The possession of Delta property is because the PPIM shape function is 

obtained by enforcing the approximation to pass through the field value at 

each supporting node. With this important property, Dirichlet boundary 

conditions can be handled very easily.  

(2) Reproducibility of polynomial function 

As PPIM shape function is in the form of polynomial function, it can 

reproduce any polynomial function that is included in the basis functions. 

(3) Partition of unity 

PPIM shape function also has the property of partition of unity, 

( )
1

1
n

i
i
φ

=

=∑ x . (2.31)

This can be easily proved by assuming all nodal values equal to a constant,  

{ }T
s c c c c=U L , (2.32)

and the PPIM approximation can be shown as 

( ) ( ) ( )
1 1

n n
h

i i i
i i

u u c cφ φ
= =

= = ⋅ =∑ ∑x x x , (2.33)

which leads to the conclusion of Eq. (2.31). 

(4) Compact support 

As PPIM shape function is only constructed using vicinity nodes of the 

point of interest, it is considered as a compact support shape function. 
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(5) No weight function 

Unlike other meshfree approximations, for instance, MLS, no weight 

function or kernel function is used in the construction of PPIM shape 

function.  

2.5.3 Techniques to Overcome Singularity in Moment Matrix 

Although PPIM shape function possesses many attractive properties, guarantee of 

the invertible moment matrix still remains the most challenging issue to be resolved 

[40,45,46]. The construction of PPIM shape function is not flexible and robust. As 

mentioned in the above section, the number of supporting nodes must be equal to the 

number of monomial in the polynomial used in the approximation. Such strict criterion 

causes great difficulty for nodal selection. Furthermore, the inappropriate selection of 

monomial or supporting nodes will result in non-invertible moment matrix.  

For instance, consider six nodes listed in Table 2.1 are selected to construct the 

PPIM shape function with completed 2nd order polynomial bases in a two-dimensional 

space. The moment matrix can therefore be formed as 

1 0 0 0 0 0
1 0.5 0 0.25 0 0
1 1 0 1 0 0
1 0 1 0 0 1
1 0.5 1 0.25 0.5 1
1 1 1 1 1 1

m

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

P . (2.34)

The moment matrix given in Eq. (2.34) is easily shown singular and hence fails to 

construct the PPIM shape function as shown in Eq. (2.28). 
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To overcome the singular moment matrix mP , Liu and Gu have proposed a matrix 

triangularization algorithm (MTA) [45] to efficiently select the proper enclosure of 

nodes and monomials. The MTA provides a versatile procedure to exclude the nodes 

and removes the monomials that cause singular moment matrix mP . As singularity 

problem is overcome through the MTA procedure, invertible moment matrix can be 

formed and hence PPIM shape function can be constructed. 

Besides the MTA procedure, weighted least-squares (WLS) method is also a very 

common technique to avoid the singular moment matrix mP  in the procedure of 

forming the shape function. As mentioned in the previous section, in the formulation of 

MLS approximation, weight function is introduced to an overdetermined moment 

matrix mP  and shape functions are constructed through seeking the minimal of 

residual. Of course, augmenting the polynomial basis with radial basis functions (RBFs) 

in the approximation is also a very good idea to construct shape function using arbitrary 

field nodes. The details of such approximation are given in the following section. 

2.6 Radial Point Interpolation Method (RPIM) 

Approximation  

Radial basis functions (RBFs) are very well-known for its excellent performance 

in interpolation and scattered data fitting [19,31,83]. It has been widely used in the 

mathematics community for many decades. The intensive reviews of the RBFs can be 

found in Refs. [40,46,83]. 
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2.6.1 Formulation of Radial Point Interpolation Method 

First, assume that a field function u  is smooth and continuous, and it is in a 

problem domain Ω  which is represented by a set of arbitrary scattered nodes. In the 

radial point interpolation method (RPIM) approximation, where radial basis functions 

are augmented with polynomial functions, the field function u  at any interest point 

x  can be approximated in the following form: 

( ) ( ) ( ) ( ) ( )
1 1

n m
h

i i i j j
i j

u a R b p
= =

= − + = +∑ ∑x x x x R x a P x b , (2.35)

where n is the total number of supporting nodes selected from the surrounding of the 

point of interest x , m is the number of monomials in the polynomial function, ( )iR ⋅  

is the radial basis function and ( )jp x  is the monomials in polynomial function for 

augmentation. ia  and jb  are the undetermined coefficients of radial basis functions 

and monomials of polynomial function respectively. The vectors in Eq. (2.35) are 

defined as 

( ) ( ) ( ) ( )1 1 2 2 n nR R R⎡ ⎤= − − −⎣ ⎦R x x x x x x xL , (2.36)

( ) ( )1 mx y p⎡ ⎤= ⎣ ⎦P x xL , (2.37)

{ }1 2
T

na a a=a L , (2.38)

{ }1 2 3
T

mb b b b=b L . (2.39)

By enforcing the interpolation in Eq. (2.35) passes through field value at 
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supporting nodes, the following expression can be obtained as  

s Q m
⎧ ⎫

⎡ ⎤= ⎨ ⎬⎣ ⎦
⎩ ⎭

a
U R P

b
, (2.40)

where sU  is the vector of field values at supporting nodes 

{ }1 2
T

s nu u u=U L , (2.41)

and  

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

1 1 1 1 1 2 1 1

2 2 1 2 2 2 2 2

1 2

n

n
Q

n n n n n n n n n

R R R

R R R

R R R
×

⎡ ⎤− − −
⎢ ⎥

− − −⎢ ⎥
= ⎢ ⎥
⎢ ⎥
⎢ ⎥− − −⎣ ⎦

x x x x x x

x x x x x x
R

x x x x x x

L

L

M M O M

L

, (2.42)

( )
( )

( )

1 1 1

2 2 2

1
1

1

n

n
m

n n n n n m

x y p
x y p

x y p
×

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

x
x

P

x

L

L

M M M O M

L

. (2.43)

In order to guarantee an unique approximation, the polynomial term has to be 

satisfied an additional orthogonal condition [31,66], 

0T =P a . (2.44)

The combination of Eq. (2.40) and Eq. (2.44) yields to the following form as 

00
Q ms
T

m

⎡ ⎤⎧ ⎫ ⎧ ⎫ ⎧ ⎫
= =⎨ ⎬ ⎨ ⎬ ⎨ ⎬⎢ ⎥

⎩ ⎭ ⎩ ⎭ ⎩ ⎭⎣ ⎦

R PU a a
G

P b b
. (2.45)

One should note that the moment matrix corresponding to the RBFs, QR , is symmetric, 

as a result, the matrix G  is also a symmetrical matrix. A unique solution for the 
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unknown vectors of coefficients a  and b  can be obtained as 

1

0
s−⎧ ⎫ ⎧ ⎫

=⎨ ⎬ ⎨ ⎬
⎩ ⎭ ⎩ ⎭

a U
G

b
, (2.46)

if the inverse of G  is exists. 

Several research works [83,86,93] already show the inverse of QR  is usually 

exists. As the order of the polynomial function is much lower than the number of 

radial basis, the singularity problem of G  matrix is therefore not encountered. 

However, the condition of QR  can be ill if too many supporting nodes are used for 

approximation [46,66]. 

2.6.2 Property of RPIM Shape Function 

Radial Basis functions (RBFs) are getting more famous and widely be used in 

many meshfree methods. It is not only simply because RBFs are very flexible for 

interpolating scattered data, but also due to many distinguished properties gained in the 

constructed shape functions. These properties are well studied and examined in the 

Liu’s book [40, 46] and many research papers [91,92]. Some of the important RPIM 

shape functions properties are introduced in this section as follows. 

(1) Kronecker Delta property 

RPIM shape function possesses Kronecker Delta property. With such 

unique property, the imposition of Dirichlet boundary conditions in 

meshfree method becomes very straightforward. No special treatment such 
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as penalty technique has to be applied. 

(2) Partition of unity 

RPIM shape function possesses property of unity as given in Eq. (2.31) if the 

linear polynomial terms ( 3m = ) or higher terms are included in the 

approximation shown in Eq. (2.35). 

(3) Reproducibility of polynomial function  

RPIM shape function can ensure the reproduction of polynomial function. If 

k order of polynomial function is augmented with RBF in the approximation 

given in the Eq. (2.35), RPIM shape function can reproduce the same order 

of polynomial. One should note that without augmented with the 

polynomial term, approximation using pure RBFs can not reproduce even 

linear polynomial function. 

(4) High continuity 

Because of the high continuity of RBFs, RPIM shape function can also 

obtains higher derivatives. 

(5) Compact support 

With only surrounding nodes of the point of interest are selected for local 

approximation, RPIM shape function is considered as a kind of compact 

support shape function. 

(6) No weight function 
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Similar to the PPIM shape function, no weight function is required in the 

derivation of RPIM shape function. 

A very comprehensive study of RPIM properties can also be found in Refs. [40, 

46,91].  

2.6.3 Radial Basis Functions 

There are plenty types of radial basis function (RBF) are available and widely 

used in the mathematics community. The characteristics of the RBFs have been well 

studied in many literature [31,65,83]. Some of the most commonly used RBFs in 

meshfree methods are listed in Table 2.2. In this thesis, a very classic type of RBF, 

Multi-Quadratic (MQ) [31], with dimensionless shape parameters are adopted in 

RPIM approximation and it can be expressed in the following form as 

( ) ( )22
q

i i c cR r dα⎡ ⎤= +⎣ ⎦x , (2.47)

where ir  is the Euclidean norm of the point of interest x  and node i, 

2ir = − ix x , (2.48)

and cd  is the characteristic length, cα  and q  are the dimensionless shape 

parameters of MQ-RBF. The characteristic length is also known as an “average” nodal 

spacing in the local domain. For instance, in the two-dimensional space, it is known 

as 
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1
s

c

A
d

n
=

−
, (2.49)

where sA  is the area of support domain and n  is the number of supporting nodes in 

the support domain.  

2.6.4 Implementation Issues of RPIM Approximation 

There are several implementation issues of RPIM shape function have to be noted.  

(1) Singularity of Moment Matrix 

Unlike PPIM approximation, usually, there is no singularity problem 

encountered in RPIM approximation. Mathematicians have already shown the 

moment matrix of radial basis function QR  in Eq. (2.42) is usually invertible 

in their works [83,86,93]. If the order of polynomial function m  used in Eq. 

(2.35) is much lower than the number of radial basis n , nm << , the inverse 

of moment matrix G  in Eq. (2.46) is also hardly to be singular [40,46].  

(2) Augmentation of polynomial functions 

In RPIM approximation, the polynomial terms used in the approximation 

plays very important role. As mentioned in section 2.6.2, pure RBF 

approximation can not reproduce polynomial function. Introducing additional 

polynomial terms in the approximation has bought several advantages and 

results in favourable properties of RPIM shape functions [40,46,92]. The use 

of polynomial function not only reduces the effects of dimensionless shape 
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parameters on the approximation but also provides better stability. In general, 

the accuracy of the numerical solution is also improved or at least no 

undesirable effect. Adding up to linear polynomial function will also ensure 

the 1C  consistency for meshfree weak-form method. In this thesis, 

polynomial with completed second order, 6m = , is adopted in the RPIM 

approximation. 

(3) Values of dimensionless shape parameters of RBFs 

Determination of appropriate shape parameters is a very important study for 

RBFs. The shape parameters definitely have certain significant effects on the 

numerical solution. Therefore, determining the optimal shape parameters for 

RBFs is always the primary task for RPIM approximation. However, the 

focus of the thesis is not on the study of RBFs and their optimal dimensional 

shape parameters. As thorough studies of dimensionless shape parameters 

have been conducted by Liu et al [40,46,91,92], recommended values for 

shape parameters of MQ-RBF: 3.0cα =  and 1.03q =  are used throughout 

this work. 

2.6.5 Comparison between RPIM and PPIM Shape Functions 

This thesis is mainly focusing on the development of meshfree strong-form 

methods. In contrast to meshfree weak-form methods that are derived from the 

variational principle, the function approximation plays even more crucial role in the 

meshfree strong-form methods. In this section, a comparison between the RPIM and 
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PPIM shape functions is therefore made. 

Comparing with RPIM approximation, PPIM approximation has some advantages 

as follows. 

(1) Cheaper computational cost 

As compared to the RPIM approximation, PPIM approximation requires less 

number of supporting nodes to construct their shape functions. As a result, the 

size of the moment matrix of PPIM is much smaller and hence lower 

computational cost is needed. In addition, since the shape function is in the 

form of polynomial, obtaining the derivatives of PPIM approximation is very 

simple and straightforward.  

(2) No shape parameters 

In the PPIM formulation, no shape parameter is involved. In contrast, the 

RPIM approximation is required to determine the shape parameters for RBFs 

in order to obtain good approximation. 

(3) Well established theory 

Polynomial function has been very well-known and widely used in many 

different areas. Good understanding of polynomial function has been well 

established.  

Nevertheless, RPIM approximation is still much widely used in meshfree methods. 

In this work, RPIM approximation is adopted in various strong-form meshfree methods. 
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The reasons are very obvious as listed in the following. 

(1) Flexibility in nodal and basis selection 

In the RPIM formulation, the selection of supporting nodes and basis function 

are much flexible. Unlike the PPIM, the number of supporting nodes in the 

RPIM approximation can be any number, as long as the number of radial basis 

is much more than the number of monomials, mn >> , as shown in Eq. (2.35). 

(2) Non-singularity moment matrix 

Singularity problem is the most critical problem in the construction of PPIM 

shape function. Inappropriate selection nodes and basis can cause singular 

moment matrix easily. This is one of the fatal shortcomings, which prohibits 

PPIM shape functions from being used in the adaptive analysis. As moment 

matrix in the RPIM formulation is always invertible, it makes RPIM 

approximation more robust and suitable for arbitrary scattered nodes. 

(3) Less sensitive to nodal distribution 

In the PPIM formulation, unfavourable nodes distribution can cause the 

moment matrix singular easily. However, RPIM shape function is more robust 

to the nodal distribution. Such important feature benefits the meshfree 

methods in the adaptive analysis where nodal distribution can be severely 

scattered throughout the domain sometime.  

(4) Good accuracy 
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A vast number of research works has shown RPIM approximation is a very 

good approximation [40,42,46,56,91,92,etc]. RPIM shape function can be 

used to approximate the field function and their derivatives in very high 

accuracy. Excellent numerical performance is also exhibited in many meshfree 

methods that use RPIM approximation.
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Point x y 

1 0 0 

2 0.5 0 

3 1 0 

4 0 1 

5 0.5 1 

6 1 1 

Table 2.1 Coordinate of the six nodes selected for constructing moment matrix. 
 

Type of RBF Expression Shape Parameters 

Multiquadrics (MQ) ( ) 2 2[ ( ) ]q
i i c cR r dα= +x  cα , q  

Gaussian (EXP) ( )
2

exp
i

c
c

r
d

iR
α

⎛ ⎞
− ⎜ ⎟

⎝ ⎠=x  cα  

Thin plate spline (TPS) ( )i iR rη=x  η  

Logarithmic ( ) logi i iR r rη=x  η  

Table 2.2 Typical conventional form of radial basis functions. 
 

 

Figure 2.1 Pascal triangle of monomials for two dimensional spaces. 
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Chapter 3  
 
 
Adaptivity 
 

3.1 Introduction 

Adaptivity has been recognized as an important study in the contemporary 

computational mechanics. Meshfree method, especially meshfree strong-form method, 

possesses many attractive and distinguished feastures that facilitate an easier 

implementation for adaptive analysis. Due to the feature of mesh free, meshfree 

strong-form method does not require successive remeshings during adaptation. The 

tremendous cost incurs due to the cumbersome remeshing procedure can therefore be 

eliminated. Furthermore, as connectivity is not involved in the strong formulation, the 

refinement and coarsening process in adaptation is rather simple and straightforward.  

Nevertheless, adaptive strong-form method is still encountering several 

challenges. Besides the stability issues in the strong-form method, an effective and 

robust error estimator that is feasible for strong-form method is also needed. Currently, 

most of the existing error estimators are an extension from the well established error 

estimators for the FEM. Such error estimators are suitable for weak-form method but 

not strong-form method. Available error estimator for strong-form method is very 

limited. In this chapter, two error estimators that can be used for strong-form method 
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are introduced. 

There are many important aspects in the study of adaptivity; however, it is 

impossible to cover all aspects in this thesis. Thus, this work is only focusing on the 

development of error estimator and ‘h-refinement’ scheme. A very robust and effective 

residual based error estimator is proposed in this work and a simple ‘h-refinement’ is 

employed in the adaptation. Although the adaptative strategy introduced in this work is 

quite simple, the adaptative analysis has been shown very efficient and accurate in 

many numerical examples. Indeed, simplicity is an advantage of using meshfree 

strong-form method in the adaptive analysis.  

3.2 Definition of Errors 

Accuracy of solution is always the greatest concern in the numerical study. Before 

one proceeds further, it is necessary to define the error used in this thesis. In the present 

study, error is defined as a difference between exact solution and approximated solution. 

For instance, the error of displacement is known as 

appro exact
ue u u= − , (3.1)

where approu  is the approximated solution of displacement and exactu  is the exact 

solution of displacement. However, the error given in Eq. (3.1) is quite misleading as it 

is expressed in a local manner. The local error can not reflect the overall accuracy of 

solution. For examples, the error of numerical solution at the small high stress 

concentration region is usually large; however, the solutions at the majority domain are 
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still acceptable. For this reason, the below scalar norms are defined for better 

measurements of error. 

The following error norm is one of the norms adopted in this thesis: 

( )
( )

2

2

appro exact

n exact

−
=
∑
∑
u u

e
u

. (3.2)

Another norm that often used in this thesis, energy norm, is expressed in an integral 

form. The energy norm is defined for error as [100]: 

( ) ( ) ( )
1 1
2 2TT appro exact appro exactL d L d

Ω Ω

⎡ ⎤ ⎡ ⎤
= Ω = − − Ω⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦
∫ ∫e e e u u u u , (3.3)

where ( )L  is a differential operator. 

In the solid mechanics problem, the above energy norm is also known as 

( ) ( )

( ) ( )

1
2

1
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,

Tappro exact appro exact

Tappro exact appro exact

d

d

Ω

Ω

⎡ ⎤
= − − Ω⎢ ⎥
⎣ ⎦

⎡ ⎤
= − − Ω⎢ ⎥
⎣ ⎦

∫

∫

e ε ε D ε ε

ε ε σ σ

 
 

(3.4)

where ε  denotes the strain tensor, σ  denotes the stress tensor and D  is the elasticity 

matrix for elastic material. One should note that the strain energy of an elasticity system 

is also known as 

1 1
2 2

T Tenergy d d
Ω Ω

= Ω = Ω∫ ∫ε Dε ε σ . (3.5)
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In this thesis, the norms defined in above will be adopted for quantifying the error of the 

numerical solution. 

3.3 Error Estimators 

Error estimator plays a very curcial role in the adaptivity. The refinement or 

coarsening process can only carried out based on the error estimation. Establishing a 

robust, accurate and effective error estimator without the knowledge of exact solution is 

a great challenge. Without a good prediction of error in the adaptive analysis, efficient 

adaptive scheme is impossible to be achieved. 

For finite element method (FEM), the most well established error estimators used 

in the adaptive analysis can be generally categorized into two types: recovery based 

error estimator and residual based error estimator. The recovery based error estimator is 

first introduced by Zienkiewicz and Zhu in 1987 [101]. It is obtained through recovery 

process and always be expressed in term of energy. Following the work of Zienkiewics 

et al, many other recover based error estimators have been proposed 

[10,94,95,102-104]. Besides recovery based error estimator, residual based error 

estimator is another most common type of error estimators. In fact, residual based error 

estimator is proposed much earlier than recovery based error estimator. In 1978, 

Babuska and Rheinboldt first introduced the residual based error estimator in their 

work [6]. As its name implies, this type of error estimator make use of the residual to 

approximate the accuracy of the numerical solution. Many research works related to the 

residual based error estimators have also been published [1,13,84]. 
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Most of the above mentioned error estimators can be further extended for 

meshfree weak-form method. For example, Duarte and Oden have adopted residual 

based error estimator [6] in the hp-meshless method [18]. Chung and Belytschko have 

also proposed an error estimator that based on the stress projection [14] and expressed 

in term of energy norm, which is similar to the work of Zienkiewics in certain respect 

[101]. Nonetheless, none of the above mentioned error estimators are feasible to be 

used for strong-form methods. Establishing a novel and reliable error estimator that is 

customized for meshfree strong-form methods becomes the primary task before 

meshfree strong-form method can be extended to adaptive analysis. In this thesis, two 

errors estimator, interpolation variance based error estimator and residual based error 

estimator, are proposed for the adaptive meshfree strong-form methods.  

3.3.1 Interpolation Variance Based Error Estimator 

The first error estimator adopted for the meshfree strong-form method in this 

thesis is first introduced by Iske et al [7,29]. The local error estimates proposed by Wu 

and Schaback [96] for RBFs interpolation of scattered data is adopted in his adaptive 

work for detecting the discontinuities in scattered data approximation. In my work [51], 

this error estimator is employed in the adaptive analysis using stabilized least-squares 

radial point collocation method (LS-RPCM) which given in Chapter 6. 

3.3.1.1 Formulation of Interpolation Variance Based Error Estimator 

In the work of Iske, the definition of the error estimator given in Ref. [7] is known 

as 
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( )i i iu sη = − x , (3.6)

where iu  is the field value at node i and ( )is x  is the interpolation value of node i 

computed by a set of supporting nodes except node i, \i iX x , where 

{ }1 2, ,i n=X x x xL  is the set of supporting nodes for ix . In my work [51], the 

definition of the error estimator is further extended as 

( )s s
i i iu uη = − x , (3.7)

where s
iu  denotes the primary field variable or the function of the field variable at node 

i, for instance, effective stress σ ; su  denotes interpolation value of the primary field 

variable or the function of field variable for node i computed using a set of supporting 

nodes except node ix , \i iX x . 

The local error estimator iη  reflects the local reproduction quality of the 

interpolation around node ix . One should note that iη  will vanish if the field variable 

is linear around node ix . The small variance between s
iu  and ( )S

iu x  indicates the 

numerical solution is a good approximated solution. Thus, no refinement is required to 

perform around node ix . In contrast, if value of iη  is very large, it indicates that the 

quality of reproduction is not good enough. Thus, refinement process is required to 

insert additional nodes around node ix . 

3.3.1.2 Remarks 

One should note that this error estimator is determined at nodes and it is based on 
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the variance between the interpolation value and nodal value. The implementation cost 

is very low as nodal selection for constructing the shape functions at nodes already 

available during discretization of the governing equation. Most importantly, unlike the 

conventional error estimators used for weak-form methods, the interpolation variance 

based error estimator does not require any mesh to compute the physical quantity, such 

as energy norm. This unique feature makes this error estimator feasible in the adaptive 

meshfree strong-form method. 

In my paper [51], the interpolation variance based error estimator has successfully 

implemented in the adaptive analysis. Incorporating with a stabilized least-squares 

radial point collocation method (LS-RPCM), the interpolation variance based error 

estimator has demonstrated good performance in adaptive analysis. Numerical 

examples will be presented in the following chapter for stabilized LS-RPCM. 

3.3.2 Residual Based Error Estimator 

In this thesis, a novel error estimator is proposed and applied in many adaptive 

meshfree methods [67-69,97]. This error estimator is formulated based on the residual 

of the discretized strong-form governing equation. To discretize the strong-form 

governing equation, RPIM approximation that based on well-known RBFs is used. Due 

to the higher order continuous feature of RPIM shape function, the higher derivatives of 

the field function in the strong-form governing equation can be obtained easily.  

The proposed residual based error estimator is quite a versatile error estimator. It is 

not only feasible for numerical method formulated based on mesh, e.g. finite element 
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method, but also feasible for meshfree methods where the conventional FEM error 

estimators can not be used. Furthermore the present error estimator is also applicable 

for numerical method that formulated based on both strong and weak formulation in the 

adaptive analyses. 

3.3.2.1 Formulation of Residual Based Error Estimator 

In this work, an error estimator that is formulated based on the residual of the 

strong-form governing equation is proposed. In fact, this residual based error estimator 

provides some physical interpretation. This is actually an indicator for the equilibration 

in the local domain and hence the quality of the approximated solution can be reflected 

in this measure. 

Considering a system is governed by the following partial differential equation 

(PDE) as 

( ) 0=+ fuL , in the problem domain Ω , (3.8)

where )(L  is a differential operator and u  is the field function in the domain. The 

residual based error estimator is defined as  

( ) fuLRes h
L +== Τ:η ,  (3.9)

where TΩ  denotes the local domain and ΤRes  is the residual of strong-form 

governing equation that measured in the local domain TΩ  using the numerical 

solution hu . The residual of the strong-form governing equation is known as follows: 
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( )
2

:T h

L
Res L u f= + . (3.10)

One can use Delaunay diagram to construct the local domain easily. Each 

Delaunay cell represents a single local domain for the measure of residual. One point 

Gauss integration scheme is used for the evaluation of the residual in Eq. (3.9). Thus, 

the local error estimator can further be simplified as 

TResL ×= Τη ,  (3.11)

where T  is the area of the respective Delaunay cell. Furthermore, the estimated 

global residual norm is defined as  

( ) 2
1

2ReRe
2

⎥
⎦

⎤
⎢
⎣

⎡
Ω== ∫

Ω

dss T

L

T
Gη ,  (3.12)

which Gη is the 2L  norm of the residual in the entire problem domain. 

This is very important to know that in the conventional residual based error 

estimator [4] used in the FEM is measured in term of the traction jump along the edges 

between two elements. However, this idea is not feasible for the meshfree strong-form 

method where mesh is not used. 

3.3.2.2 Numerical Examples: 

To show the proposed error estimator is robust and effective, four examples are 

given here. Problems studied in these examples include the Poisson problem and 

elastostatics problems. In the first numerical example, the residual based error 
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estimator has been shown successfully be applied in the adaptive meshfree strong-form 

method. As more examples for adaptive strong-form methods can found in the 

following chapters, only one example for adaptive strong-form method is provided. 

Three more examples have been given here to show the present error estimator is also 

feasible for conventional FEM. 

Example 1: 

In the first example, the residual based error estimator is used in an adaptive 

meshfree strong-form method. The meshfree strong-form method used in the adaptive 

analysis is known as regularized least-square radial point collocation method 

(RLS-RPCM). As RLS-RPCM is a truly meshfree method, no mesh is used in the 

formulation. The details of the formulation procedure can be found in Chapter 7. A 

benchmark elastostatics problem, a thick wall cylinder subject to an internal pressure, is 

studied in this example. The material properties and geometries are given as: internal 

radius 1=a , external radius 5=b , Young’s modulus 7101×=E , Poisson’s ratio 

0.3υ =  and internal pressure MPaP 1= . The analytical solution of this problem can 

be found in Ref. [16].  

The governing equation of the elastostatics problem is well-known as 

0, =+ ijij fσ  in Ω . (3.13)

The Neumann boundary conditions are given as 
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ijij tn =σ  on tΓ . (3.14)

And Dirichlet boundary conditions are known as 

ii uu =  on uΓ . (3.15)

As this problem is symmetric, only quarter of the problem is investigated. Symmetric 

boundary conditions are imposed along the left and bottom edges.  

In this example, only fifteen nodes are used to construct the shape functions. The 

local refinement coefficient and global residual tolerance are predefined as 1.0=lκ  

and 0.1gκ =  respectively. The adaptive analysis starts with 121 regularly distributed 

nodes in the domain and stops at the 4th step with 809 nodes irregularly distributed in 

the domain. The estimated global residual norm at each step is plotted in Figure 3.1. 

From the nodal distributions shown in Figure 3.2, one can observe that most of the 

nodes are inserted close to the internal circumference where the stresses are highly 

concentrated. The error norm of displacements has been greatly reduced from 14.78% 

to 0.37% as shown in Figure 3.3. The energy norm has also been reduced drastically as 

shown in the Figure 3.4. 

The initial and final solutions of displacements and stresses along the edge are also 

plotted in Figure 3.5 and Figure 3.6. These plots show the adaptive scheme has 

effectively refines the critical domain based on error estimator and hence the solutions 

are improved significantly. The residual based error estimator has been demonstrated 

successfully be applied in the adaptive meshfree strong-form method, good 
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performance is observed. 

Example 2: 

The second numerical example is a Poisson problem with a steep gradient solution. 

An adaptive analysis of FEM using linear triangular element is studied for the 

following Poisson equation.  

( ) ( ) ( ) ( )( )
( ) 2222

2222222222
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110001

11000200021100012000
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with Neumann boundary conditions 
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(3.17)

And Dirichlet boundary conditions are given as  

( )1tan 1 −= −u , 00: ==Γ∈ yandxux . (3.18)

The exact solution of this problem is known as 

( )11000tan 221 −= − yxu . (3.19)
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The three dimensional plot of the exact solution is shown in Figure 3.7. Steep gradient 

can be observed in the plot. 

In this example, the local refinement coefficient and the global residual tolerance 

are set as 05.0=lκ  and 05.0=gκ  respectively. Sixteen nodes are used to contruct 

the RPIM shape function. The adaptation takes 6 steps to complete from a regularly 

nodal distribution with 100 nodes at initial step and end up with 1062 nodes scattered 

throughout the domain. The meshes at first, second, 4th and final steps are shown in 

Figure 3.8. From the mesh of the final step, it is obvious that the region with high 

gradient has been refined as shown in Figure 3.9. The estimated global residual norm 

has been reduced gradually at each adaptive, see Figure 3.10. For comparison purpose, 

the accuracy of the adaptive analysis is compared with the uniform refinement scheme 

in Figure 3.11. The convergent rate of our adaptive scheme is much higher than the 

uniform refinement scheme. This example clearly exhibits the motivation of the 

adaptive analysis. And the present error estimator is shown robust and effective for 

solving problem with high gradient solution in this example.  

Example 3: 

A benchmark elastostatics problem is studied in Example 3. An infinite plate with 

hole subjected to a uniaxial traction in the horizontal direction is considered as a plane 

strain problem here. The dimension and material properties are given as: mb 0.2=  and 

ma 2.0= , Young’s modulus 3101×=E  and Poisson’s ratio 3.0=υ . Due to symmetric, 

only a quarter of the plate is analysed, see Figure 3.12 
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In this problem, symmetric conditions are applied along the left and the bottom 

edges of the model and analytical tractions are applied along the rest of the edges. The 

analytical solution of this problem can be found in Ref. [90]. 

Finite element method (FEM) with linear triangular element is used in this 

adaptive analysis. The local refinement coefficient and global residual tolerance are 

preset as 1.0=
l

κ  and 01.0=
g

κ  respectively. The entire adaptation takes nine steps to 

complete. The mesh at first, third, sixth and final steps are given in Figure 3.13. From 

the meshes distribution of the final step, one can notice that the region where the 

stresses are concentrated is refined the most.  

For comparison, this problem is studied using uniform refinement scheme as well. 

From the numerical solutions of the displacements and energy norm, it can be observed 

that the proposed error estimator with simple h-refinement scheme is able to provide a 

better convergent rate than the uniform refinement scheme as shown in Figure 3.14 and 

Figure 3.15. The accuracy of the numerical solution is efficiently improved through 

our adaptive approach. The present error estimator has demonstrated its excellence 

performance to identify the region where stresses are concentrated and hence leads the 

simple refinement scheme to achieve a better solution. 

Example 4: 

In this example, a crack panel shown in Figure 3.16 is studied. This problem is 

considered as a plane strain problem and the material properties are known as Poisson’s 

ratio 3.0=υ , Young’s modulus 7103×=E . The dimension of the cracked panel is 
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given in Figure 3.16, where ma 5.0= .  

The cracked panel is subjected to a load along the boundaries which described as  

⎟
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where IK  is stress intensity of mode I. Due to symmetric, only half of the model is 

analysed, see Figure 3.16 (b).  

In this example, the adaptive analyses of FEM using both conventional residual 

based error estimator and the present error estimator that using local RBFs are studied. 

The initial mesh for FEM is given in Figure 3.17. Linear triangular element is used in 

the FEM. 

The conventional residual based error estimator is adopted from Babuska’s work 

[4] as 

( ) ∑
∈

+=
TE

TL T
l

ll 2222

2
1 JfΠη , (3.23)

where triangle element hT Τ∈ , TE  is the edges of the element T , f  is the residual in 

the element and 
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ΩΠ d
T T

T ∫⋅= ff 1: . (3.24)

For each edge of the element, l , lJ  is the traction jump along the element interfaces. 

The final mesh of the adaptive analysis using both conventional and present error 

estimator are shown in Figure 3.18 and Figure 3.19 respectively. From the final mesh 

given in Figure 3.18 and Figure 3.19, one can notice that the distributions of the 

meshes of the FEM using two different estimators are very similar. The present error 

estimator using local RBFs is able to identify the singularity point at the crack tip and 

leads the refinement scheme effectively to achieve a better discretization during the 

adaptive analysis.  

From the error norms of displacement and energy norm, both estimators provide 

excellent performance as shown in Figure 3.20 and Figure 3.21. A uniform refinement 

scheme is also carried out for comparison. From error norms given in Figure 3.20 and 

Figure 3.21, the motivation of the adaptive analysis is clearly demonstrated. The 

adaptive analysis using both error estimators achieve much better accuracy with very 

lesser mesh as compared to the uniform refinement scheme. The performance of 

present error estimator is as good as the conventional residual based error estimator. 

However, from the view of computational cost, the present error estimator is found 

more cost effective than the conventional estimator as shown in Figure 3.22. It is 

because the procedure of measuring the traction jump along the interface between 

elements is more expensive than the direct integration of the residual in the local 



Chapter 3  Adaptivity 

 55

domain. The direct integration using one Gauss point scheme is shown robust, effective 

and reliable to evaluate the present error estimator. Most importantly, conventional 

residual based error estimator is not feasible for meshfree strong-form methods as mesh 

is not available. 

3.3.2.3 Remarks 

The residual based error estimator has been shown as a simple, robust and 

versatile error estimator in the above examples. Excellence performance of the present 

error estimator in adaptive analyses is observed. The present error estimator has 

demonstrated that it can be used to reflect the local error effectively. By integrating with 

a simple adaptive strategy, the present error estimator can efficiently leads the 

adaptation to a better discretization with simple refinement scheme. As compared to 

recovery [10,94,95, 101-104] and conventional residual [4] based error estimators, the 

present error estimator has been shown very more versatile, simple and easy to be 

implemented in adaptive analysis. To conclude, the advantages of the residual based 

error estimator using local RBFs are summarized as follows. 

1. The formulation of the present estimator is simple and straightforward 

and the computational cost is lower than the conventional residual based 

error estimator.  

2. The implementation of the present estimator is very simple. It is very 

convenience to embrace the present error estimator with existing codes of 

any numerical method, e.g. finite element method. 
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3. RPIM approximation is very robust for approximation of the higher 

derivatives of field function using scattered nodes. In contrast, the PPIM 

approximation is often breakdown due to the singular moment matrix 

[45,91]. 

4. Unlike the recovery based error estimator, the present error estimator 

does no involve recovery process. The cost for recovery process is 

therefore avoided. 

5. Compared to recovery based error estimator, the knowledge for recovery 

points is not required. For meshfree methods, obtaining recovery points 

may not be feasible. 

6. As conventional residual based error estimator is involved in evaluating 

the traction jump of the element interface [4], it is not applicable for 

meshfree methods where element does not exist in their formulation 

procedure. 

7. This error estimator can be applied for solving various types of PDEs. It 

is not restricted to a particular problems only. 

8. It is obvious that the present error estimator is very versatile. It is not only 

feasible for numerical method that formulated relying on mesh, for 

instance, finite element method, but also for the meshfree methods. It is 

also suitable to be used for both weak and strong formulation procedures 

as well. 
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9. From the numerous numerical examples, the error estimator is shown 

robust, effective, versatile and simple. 

In the following chapters, this residual based error estimator will be adopted for 

various strong-form meshfree methods in adaptive analysis. 

3.4 Adaptive Strategy 

The adaptive strategy adopted in my work is very simple and straightforward. 

Indeed the simplicity of the implementation of adaptive analysis should thank to the 

features of mesh free. Prescribed refinement and stopping criteria are provided in the 

beginning of the adaptive analysis. If the refinement criterion is met, additional node 

will be inserted into the domain follows the refinement procedure. Adaptive analysis is 

a kind of autonomous programme; it will proceed adaptively till the given stopping 

criterion is satisfied. The details of the refinement and stopping criteria are given as 

follows. 

3.4.1 Local Refinement Criterion 

After the error estimator is measured in the entire domain, the maximum value of 

the local error estimator can be found and denoted by MLη . The local refinement 

procedure will be carried out only if the following criterion is met. 

MLlL ηκη > ,  (3.25)

where Lη  is the local error estimator and lκ  is local refinement coefficient.  
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3.4.2 Stopping Criterion 

In this work, the global residual norm given in Eq. (3.12) is used as an indicator for 

stopping the adaptation. The adaptation will be stop if the following stopping criterion 

is met as 

MGgG ηκη < ,  (3.26)

where gκ  is the tolerant coefficient of the estimated global residual norm and MGη  is 

the maximum estimated global residual norm throughout the adaptation process. 

Take note that both values, lκ  and gκ  are in the range of 0 and 1, 1,0 ≤≤ gl κκ . If 

0=lκ , refinement criteria is always met, uniform refinement will be carried out. On the other 

hand, if 1=lκ  no refinement process will be carried out as criteria can never be met. Similarly, if 

0=gκ , adaptive analysis will be carried on forever. If 1=gκ , adaptive analysis will only be 

carried out one step. 

3.5 Refinement Procedure 

For finite element method, the adaptative refinement procedures can generally fall 

into three categories which are h-refinement, r-refinement and p-refinement. In the 

adaptive h-refinement, mesh is enhanced by subdivision, whereas r-refinement only 

involved in nodal reposition, and p-refinement is achieved by increasing the order of 

approximation. 

In this thesis, only ‘h-refinement’ scheme is considered. Instead of enhancing the 

mesh by subdivision, nodal is simply inserted in the domain during refinement process. 
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Compared to the FEM, the present ‘h-refinement’ procedure is much simple and 

straightforward. As no mesh is used, no hanging nodes issue is arisen in the 

‘h-refinement’ process for meshfree strong-form method. The expensive remeshing 

procedure is also eliminated. The ‘h-refinement’ procedures for two error estimators 

introduced in this thesis are different. The details of the refinement procedure for each 

error estimator are described in the following. 

3.5.1 Refinement Procedure for Interpolation Variance based Error 

Estimator 

In this procedure, Voronoi diagram is used to locate the position for the additional 

nodes as shown in Figure 3.23. At each adaptive step, a Voronoi diagram will be 

constructed based on the current nodal distribution. Every node in the problem domain 

is corresponding to a Voronoi cell. The error estimator is first evaluated at node and 

additional nodes will be inserted at the vertices of the cell corresponding to the node if 

the predefined refinement criterion is met. After the new nodal distribution is formed, a 

numerical solution will then be computed. The adaptation will proceeds until none of 

the nodes meet the refinement criterion. 

3.5.2 Refinement Procedure for Residual based Error Estimator 

In the refinement procedure for residual based error estimator, additional nodes 

will be inserted into the corresponding local domain if the refinement criterion is met. 

This refinement procedure is very straightforward. For Delaunay cell in the internal 
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domain, an additional node will be inserted in the centre of the Delaunay cell if 

refinement criterion is met. 

However, afor Delaunay cell located along the global boundary, special 

refinement procedure is adopted. Instead of inserting node at the centre of the cell, 

nodes are added in the middle of the three edges of the corresponding cell. This 

procedure ensures the additional nodes will be inserted on the global boundaries as well 

and hence a better nodal distribution can be formed. The demonstration of the 

refinement procedure for internal and external cells is illustrated in Figure 3.24.  
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Figure 3.1 Estimated global residual norm at each adaptive step. 
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Figure 3.2 Nodal distribution of the model of cylinder at each adaptive step. 
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Figure 3.3 Error norm of displacements at each adaptive step. 
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Figure 3.4 Energy norm for error at each adaptive step. 
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Figure 3.5 Displacements in y-direction along 0x =  at each adaptive step. 
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Figure 3.6 Normal stress xxσ  along 0y =  at each adaptive step. 
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Figure 3.7 Exact solution of a Poisson problem with steep gradient. 

 
 

 

Figure 3.8 Meshes at first, second, fourth and final step. 
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Figure 3.9 Contour plot of the gradient of field function and the meshes at the final step. 

 
 

 

Figure 3.10 Estimated global residual norm at each adaptive step. 
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Figure 3.11 Convergent rate of the solution for uniform refinement and present adaptive 

analysis. 

 
 

 

Figure 3.12 A quarter model of an infinite plate with hole. 
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Figure 3.13 Meshes at first, third, sixth and final of the adaptive step. 

 
 

 

Figure 3.14 Convergency of the error norm of displacements. 
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Figure 3.15 Convergency of the energy norm. 

 
 

(a) (b) 

Figure 3.16 (a) A full model and (b) a half model of the crack panel. 
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Figure 3.17 Initial meshes of the crack panel model for the adaptive analysis. 

 

 

Figure 3.18 Meshes of the final step in the adaptive analysis using conventional residual 

based estimator. 

 

 

Figure 3.19 Meshes of the final step in the adaptive analysis using present estimator. 
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Figure 3.20 Comparison of the convergency in term of the error norm of displacements. 

 
 

 

Figure 3.21 Comparison of the convergency in term of the energy norm. 
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Figure 3.22 Comparison of the efficiency of the error estimators in term of energy norm. 

 

  

(a) (b) 

  

(c) (d) 

Figure 3.23 The (a) Initial nodal distribution in the domain, (b) Voronoi diagram is constructed, 

(c) additional nodes are inserted on the vertex of cell and (d) new nodal 

distribution is formed. 
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Additional Nodes for Refinement

Interior Cell Boundary Cell

 

Figure 3.24 Additional nodes inserted at internal and external Delaunay cells in the refinement 

process. 
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Chapter 4  
 
 
Radial Point Collocation Method (RPCM) 
 

4.1 Introduction 

Meshfree strong-form method has a relatively longer history than weak-form 

meshfree method. In the meshfree strong-form methods, collocation technique is 

employed to discretize the governing partial differential equations (PDEs). Typical 

strong-form methods has already well introduced in the first chapter of this thesis. 

Among the strong-form methods, finite different method (FDM) [17] is considered as 

one of the most classical and earliest works. Many engineering problems have been 

solved using FDM since it was proposed. However, the constraint of using regular or 

strucute grids is the major shortcoming of FDM. While engineers are trying to solve 

for problems with more complicated and irregular domain, FDM requires 

cumbersome procedure to adapt to the irregular grid [38,39]. This shortcoming limits 

the application of FDM in solving practical engineering problems.  

In early 90s, the well-known radial basis functions (RBFs) were first introduced 

in the meshfree strong-form methods. Kansa is one of the pioneers who use RBFs in 

the meshfree strong-form collocation method [65]. As RBFs are able to interpolate 
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scattered data, such feature provides great flexibility in term of the nodal distribution 

and hence gets rid of regular grids. Recently, Liu et al have revised the conventional 

RBFs scheme and proposed a novel RBFs scheme using local nodes. Instead of using 

all the nodes in the domain for function approximation, on the contrary, only local 

nodes, the neighbouring nodes of the interest point are selected to approximate the field 

function and its partial derivatives.  

In my work, the strong-form collocation method using local RBFs and 

collocation technique is called radial point collocation method (RPCM). 

4.2 Formulation of RPCM 

Consider a problem shown in Figure 4.1 is governed by the following PDEs: 

( )L u f=  in domain Ω , (4.1)

with Neumann boundary conditions 

( )B u g=  on boundary tΓ , (4.2)

and Dirichlet boundary conditions 

u u=  on boundary uΓ , (4.3)

where ( )L , ( )B  are the differential operators and u  is the primary field variable. 

Assume that the above equations, Eq. (4.1)-(4.3), can be collocated at the field 

nodes inside the domain and on the boundaries respectively, the discretized governing 
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system equations can be shown as follows. 

( ) ii fuL =  in Ω , (4.4)

with Neumann boundary conditions 

( ) ii guB =  on tΓ , (4.5)

and Dirichlet boundary conditions 

ii uu =  on uΓ , (4.6)

where subscript “i” denotes the collocation point. 

In the radial point collocation method (RPCM), RPIM approximation is used to 

approximate the field function using local nodes. As shown in Figure 4.1, the local 

support domain is formed by the surrounding nodes of the collocation point. The 

resultant algebraic equations can then be assembled and expressed in the following 

matrix form as 

FKU = , (4.7)

where K is the coefficient matrix, F is the force vector and U is the vector of unknown 

nodal values. The vector of unknown nodal values can then be easily solved as  

FKU 1−= , (4.8)

if K is not singular and well-conditioned. It is important to note that the coefficient 
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matrix of the collocation method is generally unsymmetric. 

4.3 Issues in RPCM 

Meshfree strong-form method possesses many attractive and distinguished 

features. As strong-form method is formulated without relying on the mesh, it is 

always regarded as a truly mesh free method. However, this is not easy to construct 

shape functions using arbitrary scattered nodes. RPIM approximation is a good 

candidate to be used for constructing shape functions in the strong-form collocation 

method. Besides great flexibility for irregular grids, the RPIM shape function also 

possesses the Kronecker Delta property. Dirichlet boundary conditions can be 

imposed directly. Furthermore, as compared to PPIM approximation, RPIM 

approximation is more robust as the moment matrix is always invertible. All those 

properties of RPIM approximation exhibited in Chapter 2 make radial point 

collocation method (RPCM) a very promising meshfree strong method. 

However, through the thorough study of RPCM, some crucial issues have been 

found and prohibited RPCM from being a good meshfree strong-form method. First, 

in the conventional RBF scheme [65,66], all nodes are used to approximate any 

interest point in the domain. It simply means that a full coefficient matrix is formed 

and hence limits its application to the large scale problem. Furthermore, the condition 

of the full coefficient matrix of meshfree collocation method based on global RBFs is 

often ill [66]. The idea of local RBFs is a very natural choice and it has been proposed 

by Liu et al [42,51,56,91] to avoid these undesired properties caused by the global 
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RBFs. In the local scheme, the coefficient matrix is sparse matrix rather than full matrix. 

The computational cost is drastically reduced. Furthermore, ill-conditioned coefficient 

matrix caused by the global scheme is also avoided. The idea of local RBF scheme has 

been devoted to many research works in meshfree methods and significant results have 

been obtained [42,51,56,62,63,67,91 etc]. 

Stability is another key issue to be concerned in the RPCM. From many of my 

studies [40,46,62,63,67], the RPCM solution is found unstable while dealing with the 

Neumann boundary conditions in higher dimensional space. In one dimensional space, 

RPCM has always demonstrated well numerical performance. However, RPCM does 

not always works in the two dimensional space. Although RPCM is still able to 

provide excellence result without the presence of Neumann boundary conditions, the 

solution of RPCM becomes unstable whenever Neumann boundary conditions take 

place. In the following section, numerical examples will be presented to illustrate all 

these issues in RPCM. 

The following are some of the existing strategies or techniques that have been 

proposed to deal with the Neumann boundary conditions: 

(1) Special grids arrangement on the Neumann boundaries 

Regular grids are suggested to be arranged along the boundaries 

such that standard finite difference scheme can adopted. Liszka et al 

also proposed to have more dense nodal distribution along the 

boudaries region [39]. 
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(2) Adding ficticous nodes 

Adding fictitous nodes outside the domain and close to the 

boundaries is another suggested option to deal with the Neumann 

boundaries [66]. Such procedure has already widely adopted in the 

conventional FDM. Zhang et al also suggested employing more 

auxillary nodes inside the domain; however, the procedure does not 

very effectively improve the stability [98].  

(3) Special discretization scheme 

Special discretization scheme, for instance, Hermite-type collocation 

scheme, is proposed [99]. In the Hermite-type collocation scheme, 

derivative variables are included in the interpolation. Onate et al has 

also suggested augmenting additional stabilization term into the 

equations for the boundaries nodes [81]. 

(4) Coupling with weak formulation 

Meshfree weak-strong-forms (MWS) method is first proposed by 

Liu and Gu [44]. As weak solution is much stable, weak formulation 

is therefore applied for nodes along the Neumann boudaries. 

Majority of the nodes located inside the domain are still formulated 

in the strong formulation. 

Nevertheless, there is still a room for improvement. Most of the proposed 

strategies or techniques are either not practical to be extended to adaptive analysis or 
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not effectively restore stability. Hence, an effective and practical stabilization 

procedure for strong-form meshfree method is still very desired. 

4.4 Numerical Examples: 

Several examples are given to demonstrate the excellence performance of RPCM 

in the one dimensional problem and Dirichlet problems. On the other hand, the 

shortcoming of RPCM is also revealed here. 

4.4.1 Example 1: One Dimensional Poisson Problem 

In the first example, a one dimensional Poisson problem is studied. A very steep 

gradient solution is found in the middle section of the one dimentional domain. 

Excellent performance of adaptive RPCM is demonstrated in the one dimensional 

adaptive analysis. A Poisson problem is governed by the following ordinary differential 

equation (ODE), 

( )
( )[ ]22

2

2

2

11

12

−+

−−
=

ax

axa
dx

ud , [ ]1,1: −∈Ωx , (4.9)

where a is gradient of the solution. Dirichlet boundary condition is imposed at the left 

end, 

( )1tan 1u a−= − +  at 1−=x , (4.10)

and Neumann boundary condition is imposed at the right end, 
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( )211 −+
=

ax
a

dx
du  at 1=x . (4.11)

The exact solution for the above ODE is known as 

( )1tan 1 −= − axu . (4.12)

From the exact solution, Eq. (4.12), one can know that the gradient of the field 

function u depends on the value of a. In this example, an extremely large value of 

410=a  is deliberately selected for the purpose of examining the robustness of the 

RPCM and the residual based error estimator in one dimensional space. The exact 

solution of the field function u and its derivative are plotted in Figure 4.2.  

Only six supporting nodes are used to construct the shape functions for this one 

dimensional problem. An extremely low global residual tolerance is set as 

7105 −×=gκ  and local refinement coefficient is given as 1.0=lκ . The entire analysis 

takes 39 steps to complete and the nodal distributions at first, 10th, 25th and final steps 

are plotted in Figure 4.3. The adaptive strategy is shown simple and yet effective. One 

can observe that the adaptive RPCM is able to capture and refine the high gradient 

region. Majority of the nodes have been inserted at the high gradient region as shown in 

Figure 4.3. 

The final solution of RPCM in the adaptive analysis using the RPCM is shown in 

Figure 4.4. The approximated solutions obtained by RPCM are in good agreement with 

the analytical solutions. The estimated global residual norm and the error norms of the 
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RPCM solutions have been tremendously reduced through our adaptive scheme as 

shown in the Figure 4.5. The numerical solutions for the field function and its gradient 

are significantly improved by our adaptive approach as shown in Figure 4.3. 

4.4.2 Example 2: Two dimensional Poisson Problem with Dirichlet 

Boundary Conditions 

In the second example, RPCM is extended to the following Poisson problem in 

two dimensional space as below. 

yxu
y

u
x

ππ sinsin2

2

2

2

=
∂
∂

+
∂
∂ , in [ ] [ ]1,01,0 ×=Ω . (4.13)

This problem is considered as a Dirichlet problem and the Dirichlet boundary 

conditions are given as  

0u = , along the boundary Γ . (4.14)

Analytical solution of this Poisson problem is known as  

yxu ππ
π

sinsin
2

1
2−= , (4.15)

and plotted in Figure 4.6. 

This Poisson problem is solved by RPCM using 11 11×  regularly distributed 

nodes as shown in Figure 4.7. Ten supporting nodes are used to construct the RPIM 

shape functions. The error norm of the numerical solution is only 0.82% . The solution 

of RPCM along 0.5y =  is plotted in Figure 4.8 and it is shown in great agreement 
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with the analytical solution. 

4.4.3 Example 3: Standard and Higher Order Patch Tests 

The third numerical example is standard and higher order patch tests. 

Standard Patch Test: 

RPCM is examined in a standard patch test using two patches as shown in Figure 

4.9. Figure 4.9 (a) shows a patch of 25 regularly distributed nodes and Figure 4.9 (b) 

shows a patch of 25 irregularly distributed nodes. The dimension of both patches is 1.0 

unit by 1.0 unit and the material properties are taken as 0.1=E  and 25.0=υ . In the 

standard patch test, the displacement is prescribed on the boundaries by a linear 

function of x and y: 

iii yxu +=  and iii yxv −= . (4.16)

Satisfaction of the patch test requires that the displacements of any interior nodes 

be given by the same linear functions. In the patch test, ten supporting nodes are used to 

construct the shape functions. As shown in Table 4.1, both patches have passed the 

standard patch test to machine accuracy. The detailed procedure of the standard patch 

test can be found in Ref. [100]. 

Higher Order Patch Test: 

In the higher order patch test, two patches shown in Figure 4.10 are subjected to 

two cases of loading at the right end. There are 35 nodes regularly distributed in patch 

C and irregularly distributed in patch D as shown in Figure 4.10. The dimension of 
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both patches is 3.0 units by 6.0 units and the material properties are given as 0.1=E  

and 25.0=υ . In the higher order patch test, twelve supporting nodes are used to 

construct the shape functions. 

Two different cases of boundary conditions are examined in this test. In case one, a 

uniform axial traction of unit intensity is applied along the right end of the cantilever 

beam. The exact solution of the displacements for this problem is: 

u x=  and / 4v y= − . (4.17)

Whereas, in case two, a linearly varying normal traction in the horizontal direction, 

5.1/yxx =σ , is applied along the right end of the cantilever beam. The exact solution 

of displacements for this problem is: 

/1.5u xy=  and ( )2 2 / 4 / 3v x y= − + . (4.18)

The accuracy of the solution is very much related to the condition of the 

constructed stiffness matrix. In the standard patch test, the condition number of 

constructed stiffness matrix is in the order of 210 . However, in the higher order patch 

test, the condition number of the constructed stiffness matrix is in the order of 810 . The 

order of the condition number is not only depending on the approximation but also the 

boundary conditions and the nature of the problem. As FKU 1−= , we can 

have FK 1 Δ=Δ− −u . Therefore, let the error 1810−≈ΔF , if the condition of 1K −  

is in the order of 210 , the accuracy of U  can be achieved at order of 1610− . In the 

higher order patch test, 1K −  is in the order of 810 , therefore accuracy can only be 
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achieved at 1010− . Therefore, the solution of higher order patch test is considered as 

pass if the accuracy reaches to the order of 1010− , as shown in Table 4.2. The detailed 

procedure of the higher order patch tests can be found in Ref. [100]. 

One can notice that RPCM passes both standard and higher order patch tests. As 

the solution for both patch tests are in the form of polynomial (see Eq. (4.16)-(4.18)), 

RPCM can reproduce the field function without any discretization error. Therefore, 

RPCM can pass both patch tests to the machine accuracy.  

4.4.4 Example 4: Elastostatics Problem with Neumann Boundary 

Conditions 

This problem is presented to demonstrate the instability problem encountered by 

RPCM. In this numerical example, a benchmark plane stress solid mechanics problem 

is studied. A cantilever beam with unit thickness is subjected to a parabolic shear stress 

at the right end as shown in Figure 4.11. The material properties and geometrics are 

given as: Young’s modulus 7103×=E , Poisson’s ratio 3.0=υ , length of the 

cantilever mL 0.48= and the height mH 0.12= . The loading is known as 

( )22 4/
2

yH
I

P
xy −−=τ  , where I is the moment of inertial of the cross section of the 

cantilever and NP 1000= .  

The well-known equilibrium equations for solid mechanics problem is known as 

, 0ij j ibσ + = in Ω . (4.19)

Neumann boundary conditions are known as 
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ijij tn =σ  on tΓ . (4.20)

And Dirichlet boundary conditions are known as 

ii uu =  on uΓ . (4.21)

The analytical solution of this problem can be found in the Ref. [90]. 

As mentioned in the previous section, Neumann boundary conditions are found as 

the cause of instability. To demonstrate this argument, the cantilever is first modelled 

by 951 randomly distributed nodes in the problem domain. Another 12 nodes are added 

into the first model to make the second model with 963 nodes, which is the fact latter 

that the model is quite similar to the first model. As analytical solution is known, the 

Dirichlet boundary conditions are first imposed based on the analytical solution of 

displacements along all the boundaries. One can observe that the results of deflection 

along 0x =  for both models remain good and close to each other as shown in Figure 

4.12.  

However, if the Dirichlet boundary conditions are only imposed on the left edge 

and Neumann boundary conditions are imposed on the rest of the edges of the 

cantilever, RPCM solutions for these two similar models are totally different as shown 

in Figure 4.13. This example clearly reveals the inherited instability problem of 

RPCM. 
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4.5 Remarks: 

The radial point collocation method (RPCM) has been introduced in detailed at 

the beginning of this chapter. From the numerous examples given in the last section, 

the issues in RPCM have been well demonstrated. In the first example, the RPCM has 

been shown as a good strong-form meshfree method for one dimensional problem and 

it has been successfully extended to adaptive analysis using residual based error 

estimator. Good accuracy and stable solution can been obtained by RPCM in one 

dimensional space. RPCM has also been demonstrated as an excellent strong-form 

meshfree method for solving Dirichlet problem in the higher dimensional space. 

Without the involvement of Neumann boundary condition, the RPCM provides great 

accuracy in the two dimensional problems as shown in Example 2 and Example 3. As 

Neumann boundary conditions exist in the Example 4, the instability problem 

encountered by RPCM is evidently revealed. Two very similar models can produce 

very different solutions. 

Although RPCM possesses many attractive features that facilitate the 

implementation of adaptive analysis, it will never be success without an effective 

measure to overcome the instability problem. In the following chapters, number of 

techniques is suggested for RPCM and hence further extends RPCM to adaptive 

analysis. 



Chapter 4  Radial Point Collocation Method 

 87

Patch Error norm of u Error norm of v 

Patch a 15100282.2 −×  15109341.1 −×  

Patch b 15106257.1 −×  15105125.1 −×  

Table 4.1 Error norm of RPCM for linear patch test. 
 

 Case 1  Case 2 

Patch u v  u v 

Patch c 12108140.6 −×  10100732.2 −×  11100052.6 −×  8105908.1 −×

Patch d 10109131.3 −×  8105908.1 −×  10105852.2 −×  10102225.3 −×

Table 4.2 Error norm of RPCM for higher order patch test. 
 

 

Figure 4.1 A problem governed by PDEs in domainΩ . 
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Figure 4.2 The exact solution of one dimensional Poisson Problem for field function and it first 

derivative. 
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Figure 4.5 The number of field nodes, global residual norm and error norms of solutions at 

each adaptive step. 
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Figure 4.6 The analytical solution of the Poisson problem. 

 

 

Figure 4.7 Nodal distribution of 11 11×  regularly distributed nodes in the :[0,1] [0,1]Ω × . 

 

 

Figure 4.8 The solution of RPCM along 0.5y =  for the Poisson problem. 
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Figure 4.9 (a) Patch A with regular distributed nodes and (b) Patch B with irregularly 

distributed nodes 

 

 
(a) 

 
(b) 

Figure 4.10 (a) Patch C with regularly distributed nodes and (b) Patch D with irregularly 

distributed nodes. 
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Figure 4.11 A cantilever beam subjected to a parabolic shear traction at the right end. 

 

 
Figure 4.12 Deflection of the cantilever beam for model with 951 and nodes 963 without the 

Neumann boundary condition. 
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Figure 4.13 Deflection of the cantilever beam for model with 951 and nodes 963 with the 

Neumann boundary condition. 
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Chapter 5  
 
 
A Stabilized Least-Squares Radial Point 
Collocation Method (LS-RPCM) 

 

5.1 Introduction 

In Chapter 4, the radial point collocation method (RPCM) has been discussed in 

detailed. The solution of RPCM is unstable whenever Neumann boundary conditions 

exist. Thus, it is impossible to implement adaptive analysis using RPCM without an 

effective measure to stabilize the solution.  

In this work, a stabilized RPCM is proposed for adaptive analysis using 

least-squares stabilization technique [48,51]. The key idea of this work is to incorporate 

stabilization technique that based on least-squares procedure into the RPCM in order to 

obtain stable solutions. Through this stabilization measure, the stability of RPCM can 

be restored so as to perform adaptive analysis. Good stiffness matrix properties such as 

symmetric and positive definite (SPD) are also gained via the least-squares stabilization 

procedure, and the feature of simplicity in the formulation procedure is still retained. 

The SPD properties also help to solve the resultant set of algebraic equations more 

efficiently and accurately using better linear equation solver such as the Cholesky 
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solver. Many advantages have been gained from the least-squares stabilization 

procedure with only a little additional computational cost. 

As the stability is restored, the stabilized LS-RPCM has then been successfully 

applied to adaptive analyses. Interpolation variance based error estimator that 

suggested by Iske et al. [7,29] is adopted in the adaptive analysis study. In the 

refinement procedure, Voronoi diagram is used to identify the position for the 

additional nodes. Due to mesh free feature, the refinement process for adaptive RPCM 

can be performed easily by inserting additional nodes into the problem domain without 

worry about the nodal connectivity. 

5.2 Stabilized Least-squares Procedure 

As instability can arise in the RPCM, stabilization technique is essential to 

stabilize the solution, which is especially crucial for the success of implementing the 

RPCM in the adaptive analysis. In this work, a least-squares stabilization technique is 

employed in the following procedure to restore the stability and local nodes are still 

used in the formulation. 

Follow the procedure in RPCM, the governing equations can be discretized at 

interior nodes and also at nodes on the Dirichlet boundary, and Neumann boundary 

conditions can be discretized on the Neumann boundary nodes to form Eq. (4.7), 

( ) ii fuL = . After each equation is normalized by the value of the largest element in the 

corresponding row, and Eq. (4.7), becomes 
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oo FUK = . (5.1)

where oK  is the normalized stiffness matrix and oF  is the normalized force vector. 

The normalized stiffness matrix and force vector in Eq. (5.1) can be decomposed 

in the following form. 

11 12

21 22

0 0
0 0

EBC EBC
o

EE EE

⎡ ⎤⎡ ⎤
= + ⎢ ⎥⎢ ⎥
⎣ ⎦ ⎣ ⎦

K K
K

K K
 (5.2)

and 

EBC
o

EE

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

F
F

F
. (5.3)

where EBC
11K , EBC

12K  and EBCF are the element of oK  which corresponding to the 

governing equations on the Dirichlet boundary nodes and EE
21K , EE

22K  and EEF  are 

the element of oK  which corresponding to the governing equations on the interior 

nodes and the Neumann conditions on the Neumann boundary nodes. EBC
11K  and EE

21K  

are those submatrices corresponding to the degrees of freedom (DOFs) of the nodes on 

the Dirichlet boundary. 

Therefore, Eq. (5.1) becomes 

11 12

21 22

0 0
0 0

EBC EBC EBC EBC

EE EE EE EE

⎧ ⎫⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤⎪ ⎪+ =⎨ ⎬⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥
⎪ ⎪⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎩ ⎭

K K U F
K K U F

. (5.4)

where EBCU  is the vector of field variables (such as the nodal displacements) on the 
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Dirichlet boundary and EEU  is the vector of field variables on the non-Dirichlet 

boundary. 

By introducing a stabilization factor α  to the governing equations corresponding 

to the Dirichlet boundary nodes, the following equation is obtained. 

11 12

21 22

0 0
0 0

EBC EBC EBC EBC

EE EE EE EE

α
α

⎧ ⎫⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤⎪ ⎪+ =⎨ ⎬⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥
⎪ ⎪⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎩ ⎭

K K U F
K K U F

. (5.5)

Note that mathematically, Eq. (5.5) is not changed, as α  is multiplied on both 

sides of these equations. The value of α should lie between zero and 1. 

10 ≤≤ α . (5.6)

Note that how to determine α  is still an open issue. In this work, it is determined 

through numerical trials. The main purpose of introducing α  is for the stabilization of 

the solutions, therefore it should be generally small. Based on the large number of 

numerical tests, 05.0=α  has been found working well for all the problems studied in 

this work. 

The above equation, Eq. (5.6), can be written in a concise form of  

α α=K U F . (5.7)

A functional Π  can be defined in the form of 

{ } { }Tα α α αΠ = − −K U F K U F . (5.8)
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where Π  is  the L2 norm of the residuals obtaining in Eq. (5.8). 

{ } 0
Tα α α∂Π ⎡ ⎤= − =⎣ ⎦∂

K K U F
U

. (5.9)

In seeking the minimal of the functional Π , one can have 

T Tα α α α⎡ ⎤ ⎡ ⎤=⎣ ⎦ ⎣ ⎦K K U K F . (5.10)

By substituting Eq.(5.2) and Eq.(5.3) into Eq. (5.10), the following equation is 

obtained 

21 21 21 22 11 11 11 122

22 21 22 22 12 11 12 12

21
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T T T T EEEE EE EE EE EE EE EE EE
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⎡
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F K F
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(5.11)

Dirichlet boundary conditions can then be imposed directly as 

EBC =U U . (5.12)

where U  is the specified field variables (e.g. nodal displacements) on the Dirichlet 

boundary. The system equations finally become the following matrix form. 

0 0 0
2

22 21 22 22 12 11 12 12

2

2
22 12

T T T TEE EE EE EE EBC EBC EBC EBC EE

T TEE EE EBC EBC

α

α

α

⎧ ⎫⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎪ ⎪⎢ ⎥ ⎢ ⎥+ ⎢ ⎥⎨ ⎬⎢ ⎥ ⎢ ⎥⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎢ ⎥⎪ ⎪ ⎣ ⎦⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦⎩ ⎭
⎡ ⎤
⎢ ⎥
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I U

K K K K K K K K U

U

K F K F

 
(5.13)
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Hence, the unknown EEU  can then be obtained by solving the following 

2
22 22 12 12

2 2
22 12 22 21 12 11

T TEE EE EBC EBC EE

T T T TEE EE EBC EBC EE EE EBC EBC

α

α α
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(5.14)

or 

FUK ˆˆ = . (5.15)

where  
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22
ˆ αα . (5.17)

It is clear that stiffness matrix K̂  in Eq. (5.16) is symmetric and positive definite 

(SPD) through the least-squares stabilization procedure. Unknown EEU  can be then 

obtained using a standard linear equation solver, such as the Cholesky solver.  

Note that in the least-squares stabilization procedures, Dirichlet boundary 

conditions are fully satisfied. Governing equations are partially satisfied with a weight 

of the stabilization factor α  on the Dirichlet boundary. 
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5.3 Numerical Examples 

Stabilization factor used in the least-squares procedure for the presented numerical 

examples is 05.0=α . For the examples of adaptive analysis, the interpolation 

variance based error estimator proposed by Iske et al [7,29] is adopted in the adaptive 

scheme. The details of formulation of the error estimator are well given in Chapter 3. In 

the refinement procedure, the Voronoi diagram is used to locate the position for the 

additional nodes as shown in Figure 3.23. At each adaptive step, a Voronoi diagram 

will be constructed based on the current nodal distribution. Every node in the problem 

domain is corresponding to a Voronoi cell. If the predefined refinement criterion is met 

at the node, additional nodes will be inserted at the vertices of the cell. The adaptive 

process will be carried on until none of the nodes meet the refinement criterion. 

In the given numerical examples in this chapter, polynomial with completed 

second order, 6=m , is adopted in the RPIM approximation and shape parameters of 

MQ-RBF are known as 0.3=cα  and. 03.1=q . 

5.3.1 Example 1: A Cantilever Beam Subjected to a Parabolic Shear 

Stress at the Right End 

The main purpose of this example is to validate the feasibility of the least-squares 

stabilization technique for stabilizing the solution of RPCM. A cantilever beam 

subjected to a parabolic shear stress at the right end is examined in this example as 

shown in Figure 4.11, and is considered as a plane stress elastostatics problem here. 

The dimension of the cantilever beam and the material properties are given as length 
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mL 0.48= , height mD 0.12= , Young’s modulus 27 /103 mNE ×= , Poisson’s ratio 

3.0=υ . The shear stress loading applied along the right end is known as (integration of 

the distributed traction) NP 1000= . There are 273 nodes are used in the model of 

cantilever beam as shown in Figure 5.1. 

The PDEs that govern the two dimensional elastostatics problem are given in Eq. 

(4.19) to Eq. (4.21). In this problem, Dirichlet boundary conditions are imposed on the 

left edge and Neumann boundary conditions are imposed on the rest of the three edges. 

Analytical solution for this problem can be found in the Ref.[90]. 

Beside validating the feasibility of the least-squares stabilization technique, the 

solution obtained by the stabilized LS-RPCM is also compared with the RPCM, FEM 

and analytical solution. The model shown in Figure 5.1 is solved by the stabilized 

LS-RPCM, RPCM and FEM. In the FEM, 4-node standard element is adopted and 3 by 

3 gauss integration points are used in the numerical integration scheme. Twenty 

supporting nodes are used to construct the shape functions for the stabilized LS-RPCM 

and RPCM. 

The deflection of the cantilever beam along the bottom edge plotted in Figure 5.2 

shows RPCM are inaccurate, however after stabilized through the least-squares 

stabilization procedure, the solution of deflection has been improved very much. In this 

problem, the stabilized LS-RPCM not only provides accurate solution in term 

displacements but also in term of stresses. In addition, the FEM requires post 

processing procedure to produce better results as it is suffering from discontinuity in 
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stresses, whereas stabilized LS-RPCM has no difficulty to obtain continuous stresses. 

As shown in Figure 5.3, the shear stress xyτ  and normal stress yyσ  computed by the 

stabilized LS-RPCM are smoother than the FEM. From this point of view, the stabilized 

LS-RPCM does perform better than the FEM in computing the stresses. 

To further illustrate the instability solution of the RPCM that is suffering from the 

existence of Neumann boundary conditions, four similar sets of nodal distribution are 

give in Figure 5.4. The deflections of cantilever beam along the bottom edge are 

plotted in Figure 5.4 (a) to Figure 5.4 (d) for the 4 different nodal distributions. 

Although there are only slight variations in the nodal distributions, the results obtained 

by the RPCM are varied very much. In Figure 5.4 (b), a fluctuation in deflection of 

cantilever beam is observed near the left edge. On the other hand, the stabilized 

LS-RPCM has shown clearly in Figure 5.4 for its capability to provide very stable and 

accurate results. The deflections obtained by the stabilized LS-RPCM for this four 

similar sets of nodal distributions is very consistence as shown in Figure 5.4. 

Observing from Figure 5.4, it is evidently clear that the least-squares stabilization 

technique has been successfully stabilize the solution. 

To have better understanding of the computational cost for the stabilized 

LS-RPCM, a cost analysis is conducted in this example. In general, the FEM and 

RPCM require lesser CPU running time than stabilized LS-RPCM. For instance, the 

FEM requires 2.2680 seconds and the RPCM is 13.0988 seconds for solving the 

cantilever beam problem using model shown in Figure 5.1, whereas the stabilized 

LS-RPCM takes 18.1962 seconds to obtain the solution. Note that although FEM is 
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more efficient, but mesh is required. On the other hand, the RPCM can not promise a 

stable solution also. 

The CPU times required for the stabilized LS-RPCM and RPCM in this example 

has little difference, and the reason is revealed by the following analysis of complexity 

of the two methods. The operations needed for creating the stiffness matrix oK  are 

basically the same for both the stabilized LS-RPCM and RPCM. The total cost 

difference is mainly due to the cost of solving the system equations. In the stabilized 

LS-RPCM, the matrix multiplication KKT  requires 24Np  operations, where K  is 

banded matrix of NN ×  and bandwidth p . The bandwidth of KKT  becomes 

12 −p  and therefore the operations for Cholesky solver is 24Np . Hence, the total 

operations required by stabilized LS-RPCM is estimated as 28Np . In the RPCM, the 

operations required for the Gaussian Elimination with partial pivoting (asymmetric K ) 

is 24Np . Therefore the stabilized LS-RPCM takes twice CPU time in the worst case 

for any DOFs to solve the system equations. In our tested examples, however, the CPU 

times for both methods are very close. This is because the amount of the “overheads” 

computation is quite significant compared to the equations solving, and the 

“overheads” CPU time is largely the same for both methods. 

5.3.2 Example 2: Poisson Problem with Neumann Boundary 

Conditions 

An adaptive analysis is conducted using the stabilized LS-RPCM for solving the 

Poisson’s equation in this example. Consider a Poisson problem as below, 
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yxu
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The problem domain is [ ] [ ]1,01,0 ×=Ω , with Neumann boundary conditions 

y
x
u π

π
sin

2
1

=
∂
∂    along 1=x , (5.19)

and Dirichlet boundary conditions 

0u =    along 0=x , 0=y  and 1=y . (5.20)

The analytical solution for this Poisson problem is known as 

yxu ππ
π

sinsin
2

1
2−= . (5.21)

The adaptive analysis starts with regular distribution of 66×  nodes at the initial 

step. Ten supporting nodes are used to construct the shape functions. Tolerant values for 

the error estimator are given as 2.01 =κ  and 0025.01 =κ . 

In Figure 5.5, nodal distributions at each adaptive step are shown. Starting with 36 

regularly distributed nodes, the computation ends at 5th step with 278 nodes, the overall 

error norm of field variable u  has been gradually improved from 7.25% to 0.36% as 

shown in Figure 5.6 and Table 5.1. One should note that due to the smooth nature of 

the problem, the nodal distribution in the final stage is largely uniform for this problem. 
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5.3.3 Example 3: Infinite Plate with Hole Subjected to an Uniaxial 

Traction in the Horizontal Direction 

In this example, a 2D elastostatics plane strain problem is studied. An infinite plate 

with circular hole is subjected to a uniaxial traction in horizontal direction. The 

dimension and material properties are given as ma 2.0= , mb 0.2= , Young’s modulus 

23 /101 mNE ×= , Poisson’s ratio 3.0=υ . The governing equations used for this 

problem are given in Eq. (4.19) to Eq. (4.21). Due to symmetric, only quarter of the 

problem domain is modelled as shown in Figure 5.7. Symmetric conditions are 

imposed along the left and the bottom edges. The prescribed values of stresses along the 

top and right edge are given by the analytical solution given in Ref. [90].  

The adaptive analysis starts with irregular distribution of 145  nodes at the initial 

step. To evaluate the error estimator, Von Mises stress is used to compute the 

interpolation variance. Thirty supporting nodes are used to construct the shape 

functions. The tolerant values for error indicator are 035.01 =κ and 0025.02 =κ . 

The adaptive analysis takes five steps to complete. Nodal distribution at each 

adaptive step is plotted in Figure 5.8. Starting with 145 regularly distributed nodes, the 

computation ends at fifth step with 765 nodes, and the error norm of effective stress has 

been gradually reduced from 72.55% to 1.08% as shown in Figure 5.9. The error norm 

of the displacements is found drastically reduced adaptively. Figure 5.10 and Table 5.1 

show the error norm of displacements achieve 0.44% from 66.33% at the beginning 

step. From numerical solution of displacement yu  and normal stress xxσ  along the y 
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axis on the left edge plotted in Figure 5.11 and Figure 5.12, one can notice that the 

solutions obtained by the stabilized LS-RPCM is in good agreement with the analytical 

solutions. Apparently, the proposed adaptive strategy has achieved remarkable success 

in improving the solutions by effective refinement. The initial solutions of 

displacement and stress shown in Figure 5.11 and Figure 5.12 have been greatly 

improved. 

5.3.4 Example 4: A L-shaped Plate Subjected to a Unit Tensile 

Traction in the Horizontal Direction 

In the last example, a L-shaped plate subjected to a unit tensile traction in the 

horizontal direction is investigated. This example is a typical problem used for 

examining the effectiveness and efficiency of the adaptive scheme. The model of the 

L-shaped plated is given in Figure 5.13. As there is a singularity point (point A), an 

adaptive scheme is required to identify the singularity point and to refine the critical 

region. 

This problem is considered as a plane stress case with material properties 

2/1 mGNE = , 3.0=υ  and the geometry of the L-shaped plate is shown in the Figure 

5.13. The coefficient of refinement and global residual tolerance are preset as 

05.01 =κ  and 0005.02 =κ . In this example, sixteen local nodes are used to construct 

the shape function. The nodal distributions from first to 15th steps are all plotted in 

Figure 5.8 and show the adaptive scheme able to detect the singularity point and refine 

the surrounding area accordingly. For justification purpose, a model which consists of 
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7902 nodes as shown in Figure 5.15 is solved by ANSYS as a reference solution. The 

normal stress yyσ  and shear stress xyτ distributions at the 15th step have been given in 

Figure 5.16 and Figure 5.17 respectively and shown in good agreement with reference 

solution. 

5.4 Remarks 

In this chapter, least-squares stabilization is introduced to overcome the instability 

problem that encountered in the RPCM. By incorporating the present least-squares 

stabilization technique, not only stability is restored but it also lead to a SPD coefficient 

matrix. Yet, the formulation procedure of the stabilized least-squares RPCM is still kept 

simple and straightforward. With the SPD properties, the resultant set of algebraic 

equations can be solved more efficiently and accurately using standard linear equation 

solver such as Cholesky solver. Good numerical perform is observed in the numerical 

examples given in this chapter. Since the stability issue is resolved, the unique features 

of the strong-form method can facilitate the implementation of adaptive analysis. The 

success of the adaptive analyses shows also that the simple adaptive scheme based on 

stabilized LS-RPCM is feasible and effective. 

Nevertheless, there is still some room for improvement. Currently, the stabilized 

LS-RPCM is restricted for linear problems only, it may further be extended for solving 

non-linear problems, but the efficiency issues related to the use of least-squares 

formulation need to be resolved.
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Step Number of 
field nodes 

Exact error norm

1 66 7.25% 
2 59 3.61% 
3 89 2.02% 
4 170 0.74% 
5 278 0.36% 

Table 5.1 Exact error norm of the solution obtained by the stabilized LS-RPCM at 

each adaptive step for the Poisson problem. 

 
Step Number of 

field nodes 
Exact error norm 
of displacement 

1 145 66.33% 
2 256 11.10% 
3 345 2.94% 
4 539 1.62% 
5 765 0.44% 

Table 5.2 Exact error norm of the displacement obtained by the stabilized LS-RPCM 

at each adaptive step for the infinite plate with hole subjected to uniaxial traction. 
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Figure 5.1 A model of cantilever beam with 273 regularly distributed nodes. 

 

 

Figure 5.2 Comparison of the deflection of the cantilever beam computed by LS-RPCM, 

RPCM and FEM along the bottom edge. 
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(a) (b) 

Figure 5.3 Comparison of the (a) shear stress τxy and (b) normal stress σyy of the cantilever 

beam computed by stabilized LS-RPCM, RPCM and FEM along the bottom edge. 

 

  

(a) (b) 

  

(c) (d) 
Figure 5.4 Deflection of cantilever beam along bottom edge along mx 24=  computed by 

stabilized LS-RPCM using 4 different set nodal distributions, (a) 273 nodes, (b) 

287 nodes, (c) 308 nodes and (d) 325 nodes. 
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Figure 5.5 Nodal distribution at each adaptive step for Poisson problem. 
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Figure 5.6 Exact error norm at each adaptive step for Poisson problem. 
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Figure 5.7 A quarter model of an infinite plate subjected to uniaxial traction in the horizontal 

direction. 
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Figure 5.8 Nodal distribution of the infinite plate with circular hole at each adaptive step. 
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Figure 5.9 Error norms of Von-Mises stress computed by stabilized LS-RPCM at each 

adaptive step. 
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Figure 5.10 Error norm of displacements computed by stabilized LS-RPCM at each adaptive 

step. 

 



Chapter 5 A Stabilized Least-Square Radial Point Collocation Method 

 114

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-10

-8

-6

-4

-2

0

2

4
x 10-4

y-axis at x=0

u y

uy along the left edge

Initial
Final
Analytical

 

Figure 5.11 Displacement yu  along 0x =  computed the stabilized LS-RPCM at final step. 
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Figure 5.12 Normal stress xxσ  along 0x =  computed the stabilized LS-RPCM at final step.
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Figure 5.13 L-shaped plate subjected to a unit tensile stress in the horizontal direction. 
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Figure 5.14 Nodal distribution at each adaptive step for the L-shaped plate problem. 

 

 

Figure 5.15 A model of L-shaped plate with 7902 nodes in ANSYS for references solution. 
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(a) (b) 

Figure 5.16 Normal stress yyσ  distribution of L-shaped plate computed by (a) the LS-RPCM 

and (b) the reference solution. 

 

  

(a) (b) 

Figure 5.17 Normal stress yyτ  distribution of L-shaped plate computed by (a) the LS-RPCM 

and (b) the reference solution. 

 



Chapter 6  A Least-Square Radial Point Collocation Method (LS-RPCM) with Special Treatment for Boundaries 

 119

Chapter 6  
 
 
A Least-Square Radial Point Collocation 
Method (LS-RPCM) with Special 
Treatment for Boundaries 

 

6.1 Introduction 

In this chapter, a least-square radial point collocation method (LS-RPCM) with 

special treatment for boundaries is presented [68]. Aiming to solve for the instability 

problem in the conventional RPCM using local nodes, a simple and yet effective 

procedure that uses the well-known least-square technique has been proposed to restore 

the stability.  

From the intensive numerical studies for solid mechanics problems, the 

strong-form solution is found oscillating heavily on the boundary of the problem 

domain. It is believed that such oscillation is caused by the “strong” requirement for the 

approximated field variable to satisfy governing equations and boundary conditions 

“exactly” at all the nodes. Based on the observation and understanding on the 

oscillation phenomenon, a novel and simple procedure called least-square procedure 

with special treatment for boundaries is proposed based on the strong formulation. In 
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this formulation procedure, additional collocation points (not nodes) are inserted only 

on the boundary. A common technique, least-square technique, is then adopted to 

provide certain “relaxation” effect upon the strong formulation. 

In this chapter, the intensive numerical study will show stable and accurate 

solution can be obtained from the present procedure. Furthermore, the LS-RPCM with 

special treatment for boundaries is also successfully implemented in adaptive analyses. 

The present formulation of LS-RPCM remains simple and straightforward. No 

integration procedure is needed throughout the formulation. Great stability and 

advantages of the LS-RPCM are well demonstrated in the numerical examples. 

6.2 Least-square Procedure with Special Treatment for 

Boundaries 

As meshfree strong-form methods can not ensure the solution is stable, it is 

difficult to use them in the adaptive analysis. In this work, a simple and yet effective 

procedure, least-square procedure with special treatment on the boundaries, is proposed 

to obtain stable solutions [68]. 

Through observation, Neumann boundary condition is the causes of the instability. 

The conventional RPCM is always performing well for solving one dimensional 

problem and Dirichlet problem. However, the solution of conventional RPCM becomes 

unstable while Neumann boundary condition exists. Oscillation phenomenon is 

observed on the boundary. It could be due to the ‘strong’ requirement of satisfaction of 

the Neumann boundary condition in the strong formulation. To provide a kind of 



Chapter 6  A Least-Square Radial Point Collocation Method (LS-RPCM) with Special Treatment for Boundaries 

 121

‘relaxation’ effect, least-square approach is a natural choice to be adopted.  

In the present formulation, the boundaries of the domain are specially treated. 

Additional collocation points (not nodes) are added along the boundaries and allocated 

in between the boundary nodes as shown in the Figure 6.1. The Neumann and Dirichlet 

boundary conditions in the form of Eq (4.2) and Eq. (4.3) can be collocated at the 

additional collocation points along the boundaries respectively. The additional 

algebraic equations can be assembled and expressed in the matrix form as follows: 

⎥
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(6.1)

where '' NN FUK =  and '' DD FUK = are the additional sets of algebraic equations for 

additional collocation points on the Neumann and Dirichlet boundaries respectively. 

Both equations are constructed by discretizing the respective boundary conditions on 

the collocation points along the boundary. In this case, IK ='D  is the identity matrix 

and UF ='D  is the given nodal value. Augmented the additional algebraic equations to 

the original system equations, one can obtain an “over-posed” problem [47], 
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0~~ =− FUK . (6.2)

As the number of algebraic equations is more than the number of unknown 

variable U, a common least-square technique using QR-algorithm is applied to solve 

for the vector of unknowns U by minimizing the residual in Eq. (6.2). Before the set of 

equations is solved, to have equal weight for each algebraic equation, each equation 

should be normalised by the value of the largest entry in the corresponding row of the 

coefficient matrix K~ . The normalized algebraic equations can be expressed in the 

following matrix form, 

FUK ˆˆ = , (6.3)

where K̂  denotes the normalized coefficient matrix and F̂  denotes the normalized 

force vector. In the conventional RPCM, although the boundary conditions are fully 

satisfied at the boundary nodes, stable solution can not be ensured. From my study 

[49-52,67], the cause of instability could be due to the imposition of Neumann 

boundary conditions. By introducing more collocation points along the boundaries, the 

least-square procedure is expected believed that able to provide certain degree of 

“relaxation” upon the strong formulation and hence a more stable solution can be 

obtained. The key point of the least-square procedure is that having additional 

collocation points along the boundary is enough to stabilise the solution. Introducing 

additional collocation points in the internal domain may help but it is not necessary. 

This finding is in line with the principle of the MWS method [27,55].  
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In the formulation procedure of MWS method, the formulation procedure is 

constructed using strong formulation except on the boundaries. Weak formulation is 

used for boundary nodes to provide a better stability. In the paper of MWS method 

[27,55], instability is believed to be caused by the Neumann boundary conditions. By 

applying weak formulation procedure, it helps to relax the strong requirement along the 

Neumann boundary. 

6.3 Numerical Examples 

Incorporating with the residual based error estimator, the least-square radial point 

collocation method (LS-RPCM) with special treatment for boundaries is extended to 

adaptive analysis. The details of the residual based error estimator and the adaptive 

strategy adopted in this work are well described in Chapter 3.  

As LS-RPCM with special treatment for boundaries is a truly mesh free method, 

the implementation of the adaptive analysis is very simple and straightforward. Simple 

h-refinement scheme based on the Delaunay diagram is employed in this work. Due to 

mesh free feature, additional nodes can be simply just inserted into the domain in this 

h-refinement procedure without worry about the connectivity. 

In the given numerical examples in this chapter, polynomial with completed 

second order, 6=m , is adopted in the RPIM approximation and shape parameters of 

MQ-RBF are known as 0.3=cα  and. 03.1=q . 
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6.3.1 Example 1: Infinite Plate with Hole Subjected to a Uniaxial 

Traction in the Horizontal Direction 

In the first example, a benchmark plane strain solid mechanics problem is studied 

to reveal the instability problem encountered by RPCM. An infinite plate with circular 

hole subjected to a unit traction P in the horizontal direction is investigated. Due to 

symmetry, only quarter of the problem is modelled as shown in Figure 5.7. Symmetric 

boundaries conditions are imposed along the left and bottom edges. The geometry and 

material properties are given as: 2.0=a , 0.2=b , Young’s modules 3101×=E  and 

Poisson’s ratio 3.0=υ . The governing equations and boundaries conditions that 

govern the elastostatics problem are given in Eq. (4.19) to Eq. (4.21). The analytical 

solution of this problem can be found in Ref. [90]. 

To demonstrate the instability problem of the RPCM, two similar sets of nodal 

distribution are studied, see Figure 6.2. Model A is made up of 435 nodes and eighteen 

nodes are added into Model A to form Model B. Although only little difference between 

Model A and Model B, the RPCM solutions based on these two models are 

tremendously different. The numerical solutions of the displacements and the stresses 

along the left edge are plotted in Figure 6.3 and Figure 6.4. It is clear that the solution 

computed by the RPCM is unstable. Both solutions of displacements and stresses for 

Model A and Model B are significantly different. As compared to the RPCM, the 

solutions obtained by the LS-RPCM with special treatment for boundaries are very 

stable and much more accurate.  
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In the original RPCM formulation procedure, the boundary conditions are fully 

satisfied on the boundary nodes. On the contrary, boundary conditions are satisfied in a 

least-square sense in the present formulation. In this example, 0=yyσ  is the Neumann 

boundary condition along the top edge. From Figure 6.5, one can observe that although 

the boundary condition along the top edge ( 0=yyσ ) is fully satisfied by the RPCM at 

the boundary nodes, the value of  yyσ  is frustrating along the top edge. Except at the 

boundary nodes, the interpolation value of yyσ  can be varied significantly from zero 

(the exact condition) along the top edge as shown in Figure 6.5. In the present 

formulation, the least-square procedure with special treatment on the boundaries 

provides a kind of ‘relaxation’ effect against the ‘strong’ requirement of the boundary 

conditions in strong formulation. Good approximated solutions obtained by the 

LS-RPCM are clearly shown in Figure 6.4.  

6.3.2 Example 2: Cantilever Beam Subjected to a Parabolic Shear 

Traction at the End 

To examine the computational efficiency of the LS-RPCM, a benchmark 

elastostatics plane stress problem is studied. A cantilever beam with unit thickness is 

subjected to a parabolic shear stress at the right end as shown in Figure 4.1. The 

material properties and geometrics are given as: Young’s modulus 7103×=E , 

Poisson’s ratio 3.0=υ , length of cantilever mL 0.48= and the height mH 0.12= . 

The loading is known as ( )22 4/
2

yH
I

P
xy −−=τ  , where I is moment of inertial of the 

cross section of cantilever and NP 1000= . Analytical solution can be found in Ref. 
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[90]. 

In this example, solutions for four sets of regular nodal distribution: 115× , 219× , 

4117×  and 8133× , are computed. Sixteen supporting nodes are used to construct the 

shape functions. From Figure 6.6, it shows the computational time required for the 

LS-RPCM is higher that the RPCM and the FEM. It is due to the use of the least-square 

procedure in the LS-RPCM.  

The convergent rates of the error norm of displacements and energy norm are 

approximately about 2.29 and 2.06 respectively as shown in Figure 6.7 to Figure 6.9. 

The accuracy of the LS-RPCM for displacements is comparable with FEM as shown in 

Figure 6.7. In term of the accuracy of the stresses and the convergent rate of the energy 

norm, LS-RPCM performs better than FEM as shown in Figure 6.8 and Figure 6.9. 

From the efficiency rate in term of energy norm plotted in Figure 6.10, LS-RPCM 

has been shown as the best among these three methods. Although RPCM seems 

performing well in the regular nodal distribution in Figure 6.7 to Figure 6.9, the 

instability issue is still fatal shortcoming that prohibits RPCM from being used in 

adaptive analysis. 

This example is also further extended to adaptive analysis. The LS-RPCM is 

incorporated with the residual based error estimator to performance adaptive analysis 

subsequently. Sixteen nodes are used to construct the shape functions. The local 

refinement coefficient and the global residual tolerance are predefined as 1.0=lκ  and 

0.2gκ =  respectively. The adaptive analysis starts with 55 nodes regularly distributed 
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in the problem domain and is ended at 4th step with 1252 nodes irregularly distributed in 

the problem domain as shown in Figure 6.11.  

As shown in Figure 6.12, the estimated global residual norm is gradually reduced 

at each adaptive step. Excellent stability of LS-RPCM is demonstrated. The error norm 

of displacements and energy norm at each adaptive are also reduced gradually and 

plotted in Figure 6.13 and Figure 6.14. It is evidently clear that the accuracy of both 

displacements and stresses have been greatly improved through our effective adaptive 

scheme. 

6.3.3 Example 3: Poisson Problem with Smooth Solution 

A simple Poisson problem is solved by the adaptive LS-RPCM. Consider the 

following Poisson equation, 

yxu
y

u
x

ππ sinsin2

2

2

2

=
∂
∂

+
∂
∂ ,   in [ ] [ ]1,01,0 ×=Ω , (7.4)

with Neumann boundary conditions 

y
x
u π

π
sin

2
1

=
∂
∂ ,   along 1=x , (7.5)

and Dirichlet boundary conditions 

yxu ππ
π

sinsin
2

1
2−= ,   along 0=x , 0=y  and 1=y , (7.6)

The adaptive analysis starts with regular distribution of 5 5×  nodes at the initial 

step. Ten supporting nodes are used to construct the shape functions. In this adaptive 
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analysis, the tolerant values for the error estimator are predefined 0.1lκ =  and 

0.1gκ =  respectively. 

Starting with 25 regularly distributed nodes, the computation ends at 6th step with 

2976 nodes. The nodes are progressively inserted to the problem domain according to 

the adaptive strategy. Nodal distribution at each adaptive step can be found in Figure 

6.17. Due to the smooth nature of the problem, the nodal distribution in the final step is 

largely uniform for this problem. Figure 6.16 show estimated global residual norm has 

been gradually reduced during adaptation and good numerical performance is observed 

in this adaptive study. The overall error norm of field variable u has been drastically 

improved from 6.33% to 0.10% as shown in Figure 6.18. From Figure 6.19 and Figure 

6.20, the solution of u  and u
x

∂
∂  along 0y =  have been shown greatly be improved 

from the initial solution. The solution of the final step is much closer to the analytical 

solution as compared to the solution of initial step. It shows the adaptive strategy has 

efficiently improved the solutions of field function and its derivatives. 

6.3.4 Example 4: A Thick Wall Cylinder Subjected an Internal 

Pressure 

The forth example is a plane strain solid mechanics problem. A thick wall cylinder 

subjected an internal pressure as shown in Figure 7.5 is studied. The material 

properties and geometries are given as: internal radius 1=a , external radius 5=b , 

Young’s modulus 7101×=E , Poisson’s ratio 3.0=v  and internal pressure 

MPaP 1= . The analytical solution of this problem is well-known and can be found in 
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Ref. [16].  

Due to symmetric, only quarter of the problem is modelled as shown in Figure 7.5. 

Symmetric boundary conditions are imposed along the left and bottom edges. In this 

example, only eighteen nodes are used to construct the shape functions. In the adaptive 

analysis, the local refinement coefficient and the global residual tolerance are 

predefined as 0.05lκ =  and 0.05gκ =  respestively. The adaptive analysis starts with 

121 regularly distributed nodes in the domain and stops at the 4th step with 1933 nodes 

irregularly distributed in domain. Obviously, from nodal distribution plotted in Figure 

6.21, one can notice that the refinement procedure has effectively been carried out 

where the stresses are concentrated. The estimated global residual norm at each step 

given in Figure 6.22 shows the residual is gradually reduced in the adaptation. The 

error norm of displacements has been tremendously reduced from 8.46% to 0.13% as 

shown in Figure 6.23. The energy norm has also been reduced drastically as illustrated 

in the Figure 6.24. 

For justification purpose, LS-RPCM solution for displacements and stresses along 

the left edge are plotted and compared with analytical solution as shown in Figure 6.25 

and Figure 6.26. These plots evidently show the adaptive scheme has effectively 

refined the critical domain based on error estimator and hence the solutions are 

improved gradually. The numerical solutions of the displacements and stresses at initial 

step are greatly improved and the solutions at the final steps are in very good agreement 

with the analytical solutions. 
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6.3.5 Example 5: A Reservoir Full Filled with Water 

In this example, the wall of a reservoir full filled with water is analysed by 

adaptive LS-RPCM. The geometry of the wall is irregular as given in Figure 6.27. The 

material properties of the wall are given as Young’s Modulus 7101×=E  and 

Poisson’s ratio 3.0=υ . The bottom of the wall is fixed and the curvy edge of the wall 

is subjected to a hydrostatic pressure ( )MPayHP −−= 9800 . 

As analytical solution is not available in this case, FEM solution computed using a 

very fine mesh (59,400 linear triangular elements) model will be considered as a 

reference solution. In the adaptive analysis, the local refinement coefficient and the 

global residual tolerance are predefined as 0.2lκ =  and 0.015gκ = respectively. 

As shown in Figure 6.28, the adaptive analysis starts with 121 regularly 

distributed nodes and stops at 19th step with 1519 nodes. The residual based error 

estimator has been shown effectively identifying the stress concentrated regions. The 

estimated global residual norm is gradually reduced throughout the adaptive process as 

shown in Figure 6.29. As the singularity points exist in the solution, the residual norm 

is not progressively reduced at beginning of the adaptation due to the number of nodes 

is not enough to model the problem. However, the estimated global residual norm is 

reduced very drastically when number of field nodes is more than 500 nodes. One can 

observe that this error estimator reflects the error of the approximated energy very well 

in Figure 6.30.  

Figure 6.31 shows the numerical solutions of displacements have been adaptively 
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improved. The contour plots for stresses are also given in Figure 6.32 to Figure 6.33, 

and have also shown the final solutions of the stresses obtained by LS-RPCM are in 

very good agreement with the reference solutions. For justification purpose, LS-RPCM 

solutions of stresses along the curvy edge are also plotted and compared with references 

solutions in Figure 6.35, and it has shown LS-RPCM solutions of the stresses at final 

step very tally with reference solutions as well. 

6.4 Remarks 

In this chapter, a least-square radial point collocation method (LS-RPCM) with 

special treatment for boundaries is proposed. By having additional collocation points 

on the boundaries, it provides a ‘relaxation’ effect that reduces the ‘strong’ requirement 

for the boundary conditions in the strong formulation. More collocation points included 

in the interior domain have also been tried out, however it may help but it is not 

necessary. Such finding is quite in line with the conclusion drawn in meshfree 

weak-strong (MWS) method [27, 55]. Number of numerical examples has shown that 

stable solutions can be obtained through the simple and yet effective least-square 

procedure. 

As stable solution can be achieved, the LS-RPCM with special treatment for 

boundaries has well demonstrated its advantages in adaptive analysis. The residual 

based error estimator is also shown robust and efficient. h-refinement procedure using 

Delaunay diagram is demonstrated as a simple and yet a versatile refinement procedure 

to insert additional nodes during adaptation. Numerical examples have shown the 
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LS-RPCM not only obtained stable and accurate result but also successfully 

implemented for adaptive analysis which conventional RPCM can not perform. 

Although least-square technique is also introduced in Chapter 5, the present 

formulation procedure is very different. Compared to the stabilized least-squares 

method introduced in Chapter 5, the present formulation is much simple and 

straightforward. No stabilization factor has to be determined in the present formulation. 

The computational cost of the present formulation is also lower. 
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Figure 6.1 Field nodes and additional collocation points in a problem domain and on the 

boundaries. 

 

(a) (b) 

Figure 6.2 Model of an infinite plate with hole with (a) 435 nodes and (b) with additional 18 

nodes to the model of 435 nodes. 
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(a) (b) 

Figure 6.3 Displacement in y-direction along 0x =  for (a) Model A and (b) Model B. 

 

(a) (b) 

Figure 6.4 Normal stress xxσ  along 0x =  for (a) Model A and (b) Model B. 
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Figure 6.5 Normal stress yyσ  along the top edge: the result obtained using RPCM is 

oscillating on the boundary. 
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Figure 6.6 Comparison of CPU times among RPCM, LS-RPCM and FEM. 
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Figure 6.7 Comparison of error norm of displacements among RPCM, LS-RPCM and FEM. 
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Figure 6.8 Comparison of error norm of stresses among RPCM, LS-RPCM and FEM. 

*For RPCM and LS-RPCM, stresses are sampled at the node; for FEM, stresses are sampled at the center of the 

element. 
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Figure 6.9 Comparison of energy norm among RPCM, LS-RPCM and FEM. 
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Figure 6.10 Comparison of efficiency in term of energy norm among RPCM, LS-RPCM and 

FEM. 
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Figure 6.11 Nodal distribution of the model of cantilever beam at each adaptive step. 
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Figure 6.12 Estimated global residual norm at each adaptive step. 
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Figure 6.13 The error norm of displacements at each adaptive step. 
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Figure 6.14 The energy norm at each adaptive step. 
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Figure 6.15 Three dimensional plot of the exact solution of Poisson problem. 
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Figure 6.16 The estimated global residual norm at each adaptive step. 
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Figure 6.17 The nodal distribution at each adaptive step. 
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Figure 6.18 The error norm at each adaptive step. 



Chapter 6  A Least-Square Radial Point Collocation Method (LS-RPCM) with Special Treatment for Boundaries 

 142

0 0.2 0.4 0.6 0.8 1
-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

x-axis

u

u along y=0.5

Initial
3rd step
Final

 

Figure 6.19 The LS-RPCM solution of the field functions along 0.5y =  at initial and final 

steps. 
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Figure 6.20 The LS-RPCM solution of the 
u
x
∂
∂

 along 0.5y =  at initial and final steps. 
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Figure 6.21 Nodal distribution of the model of hollow cylinder at each adaptive step. 
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Figure 6.22 Estimated global residual norm at each adaptive step. 
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Figure 6.23 Exact error norm of displacements at each adaptive step. 
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Figure 6.24 Energy norm at each adaptive step. 
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Figure 6.25 The displacement in y-direction along 0x =  at initial and final step. 
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Figure 6.26 The normal stress xxσ  along 0x =  at initial and final step. 
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Figure 6.27 The model of the reservoir full filled with water. 

 

Figure 6.28 The nodal distribution of the model of reservoir during adaptation. 



Chapter 6  A Least-Square Radial Point Collocation Method (LS-RPCM) with Special Treatment for Boundaries 

 147

102 103
103

104

105

Total number of fie ld nodes

Es
tim

at
ed

 g
lo

ba
l r

es
id

ua
l n

or
m

Estimated global residual norm at each adaptive step

 

Figure 6.29 The estimated global residual norm at each adaptive step. 
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Figure 6.30 The approximated energy at each adaptive step. 
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(b) 

Figure 6.31 The displacements (a) xu  and (b) yu  along the curvy edge. 
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Figure 6.32 Contour plot of normal stress xxσ  at final step. 

 

 

Figure 6.33 Contour plot of normal stress yyσ  at final step. 
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Figure 6.34 Contour plot of shear stress xyτ  at final step. 
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Figure 6.35 Stresses along the curvy edge at the final adaptive step. 
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Chapter 7  
 
 
A Regularized Least-Square Radial Point 
Collocation Method (RLS-RPCM) 

 

7.1 Introduction 

To stabilize the solution of radial point collocation method (RPCM), a new 

stabilization procedure, regularized least-squares procedure, is employed to stabilize 

the solution of the RPCM in this chapter [67]. Regularization technique that commonly 

used for stabilizing the solution of ill-posed inverse problem [47] is now employed in 

the forward problem for restoring the stability of the RPCM solution. A new 

regularized least-squares radial point collocation method (RLS-RPCP) [67] is 

introduced in this chapter. Since the stability is restored, the attractive features of the 

strong-form meshfree method can then be utilized to facilitate an easier implementation 

of adaptive analysis. 

With all these key ingredients of techniques: stabilization, error estimator and 

nodal refinement, the RLS-RPCM can perform adaptive analysis effectively to obtain 

solutions with better accuracy efficiently and automatically. In this work, RLS-RPCM 

not only is a stable strong-form meshfree method but also regarded as a truly mesh free 
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method as: (1) no mesh is needed for constructing shape functions, and (2) no 

background mesh is needed in the present formulation. Hence the formulation 

procedure is simple and straight forward, integration is not required in the formulation 

procedure which makes it a good candidate for adaptive analysis.  

7.2 Regularization Procedure 

Regularization technique is a very common technique used for stabilizing the 

solutions of the ill-posed inverse problems [47]. In this work, instead of using the 

regularization technique for inverse problems, this technique is employed to stabilize 

the solutions of the RPCM for the forward problems. In the regularization procedure, 

Tikhonov regularization technique [47,89] is adopted. Regularization matrix and vector 

are formed by making use of the governing system equations and boundary conditions 

as a priori information. The detailed regularization procedure is given as follows.  

7.2.1 Regularization Equations 

To form the regularization matrix and vector, priori information is required. 

Consider a problem governed by a set of PDEs as given in Eq. (4.1) to Eq. (4.3), the 

PDEs can be used as a set of regularization equations to construct the regularization 

matrix and vector. These regularization equations can be collocated at the 

regularization points respectively as shown in Figure 7.1. Therefore, the following 

equations can be obtain: 
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( ) rr fuL = ,   in Ω , (7.1)

with Neumann boundary conditions 

( ) rr guB = ,   on tΓ , (7.2)

and Dirichlet boundary conditions 

rr uu = , on   uΓ , (7.3)

where subscript “r” denotes the regularization point. 

The regularization points in the internal problem domain are the same as the 

interior field nodes. On the other hand, regularization points along the boundaries are 

allocated in between the boundary nodes as shown in Figure 7.1. 

After collocating the regularization equations at their respective regularization 

points using RPIM approximation, a set of resultant algebraic equations can be formed 

and expressed as the following matrix form  

rr FUK = , (7.4)

where rK  is the regularization matrix and rF  is the regularization vector. Note that 

the total number of algebraic equations is same as the total number of the unknown 

nodal values in the problem domain. 
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7.2.2 Regularization Least-square Formulation 

Firstly, a functional Π  is defined as follows [89], 

{ } { } { } { }T T
r r r r rαΠ = − − + − −KU F KU F K U F K U F , (7.5)

where rα  is the regularization factor which determine the degree of regularization. 

The first term of Eq. (7.5) is the L2 norm of the residual of governing equations, and the 

second term is the L2 norm of the residual of regularization equations. Hence, 

functional Π  is the total sum of the both residuals in the system. 

Seek for the minimal Π  with respect to the unknown vector U , the following 

equation can be obtained, 

{ } { }2 2 0T T
r r r rα∂Π

= − + − =
∂

K KU F K K U F
U

. (7.6)

The above equation can be rearranged and leads to the following equation, 

T T T T
r r r r r rα α⎡ ⎤+ = +⎣ ⎦K K K K U K F K F  

or 

ˆ ˆKU = F  

 

 

(7.7)

where K̂  is the regularized coefficient matrix and F̂  is the regularized force vector. 

The vector of unknown nodal values can be solved as 

1ˆ ˆ−U = K F , (7.8)

if K̂ is invertible and well-conditioned. 
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7.2.3 Determination of Regularization Factor 

From Eq. (7.7) one can notice that the regularization factor rα  directly affects the 

regularized coefficient matrix and force vector. The degree of regularization solely 

depends on the values of regularization factor, hence the determination of an 

appropriate regularization factor is very crucial. The value of regularization factor, rα , 

should be positive and ranged from zero to infinity. When 0rα = , the effect of 

regularization is vanished, RLS-RPCM is reduced to the original RPCM. If rα  is 

equal to infinity, the effect of regularization is also vanished as the solution is solely 

based on the Eq. (4.7). Without regularization effect takes part, both solutions can not 

be stable. The appropriate rα  should provide a minimum residual for both terms in Eq. 

(7.5) [30,49]. 

From my previous work [49], only the governing equation, Eq. (4.1), is used for 

constructing the regularization matrix for the regularization points along the boundary 

only. With such regularization scheme, L-curve approach [30] was required to 

determine an appropriate regularization factor. L-curve is constructed by plotting the 

residual norm of discretized regularization equations, TRU − , against residual norm 

of discretized original equations, FKU −  at different regularization factor value,. In 

Hanse’s paper [30], the procedure of constructing L-curve is given. The idea of plotting 

L-curve is to determine a regularization factor that gives both residual norms at an 

optimal small value. The determination process could be tedious and an additional 

computational cost was incurred. In the later work, other regularization schemes based 



Chapter 7 A Regularized Least-Square Radial Point Collocation Method 

 156

on different regularization equations are proposed [50,52]. 

In this chapter, due to the special regularization equations and regularization 

points used in the present scheme, the determination of regularization factor can be 

avoided [67]. As one knows, the vector of unknown nodal values U  can actually be 

solved either by Eq. (4.7) or Eq. (7.4), however, none of the solutions is stable. By 

solving the same status problem with two different sets of discretized equations, the 

regularization procedure provides a compromise solution to satisfy both sets of system 

equations with minimum residual. Hence, 1rα =  is a logical choice to be used in this 

formulation. 

7.3 Numerical Examples 

To further extend the RLS-RPCM to adaptive analysis, a novel residual based 

error estimator is first introduced in this work. By determining the residual of the 

strong-form governing equation, the residual is able to provide a very reliable and 

effective error indicator to reflect the quality of the local approximation and the global 

accuracy of the solution. 

As mentioned many times in this thesis, the RPCM is a truly meshfree method, 

node insertions can be easily implemented without worry about the nodal connectivity. 

Simple nodal h-refinement scheme based on the Delaunay diagram is employed in this 

work. In contrast to the conventional h-refinement scheme for adaptive FEM in which 

the element is enriched, the additional nodes can be simply just inserted into the domain 

in this h-refinement scheme. 
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For the examples of adaptive analysis, adaptive strategy given in Chapter 3 is 

adopted. In the refinement procedure, the Delaunay diagram is used to locate the 

position for the additional nodes as shown in Figure 3.24. If the predefined refinement 

criterion is met at the node, additional nodes will be inserted at the center of the 

Delaunay cell. The adaptive process will be carried on until global residual norm meet 

the stopping criterion. 

In the given numerical examples in this chapter, polynomial with completed 

second order, 6=m , is adopted in the RPIM approximation and shape parameters of 

MQ-RBF are known as 0.3=cα  and. 03.1=q . 

7.3.1 Example 1: Cantilever Beam 

The first example is a benchmark solid mechanics problem. A cantilever beam 

with unit thickness subjected to a parabolic shear stress at the right end as shown in 

Figure 4.11 is studied and considered as a plane stress problem. This example is used to 

demonstrate the instability problem encountered by the RPCM and shows the solution 

of the RPCM can be effectively restored by the proposed regularization procedure. The 

material properties and geometrics are given as: Young’s modulus 7103×=E , 

Poisson’s ratio 3.0=υ , length of cantilever mL 0.48= and the height mH 0.12= . 

The loading is known as ( )22 4/
2

yH
I

P
xy −−=τ  , where I is moment of inertial of the 

cross section of cantilever and NP 1000= . The equilibrium equation and boundary 

conditions that have to be satisfied in the problem domain are given in Eq. (4.19) to Eq. 

(4.21). The analytical solution of this problem can be found in Ref. [90]. 
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In this problem, the Dirichlet boundary conditions are imposed on the left edge 

and Neumann boundary conditions are imposed on the rest of the edges of the 

cantilever. Two very similar nodal distributions shown in Figure 7.2 are used for 

computing the numerical solution. The RPCM solutions for these two similar models 

are totally different as shown in Figure 7.2. This example evidently reveals the 

inherited instability problem in the conventional collocation method such as RPCM. 

Therefore, an effective stabilization measure is a prerequisite for RPCM before it can 

be used for the adaptive analysis. The results for both models using the regularized 

least-squares RPCM (RLS-RPCM) are shown in Figure 7.2. The solutions obtained by 

the RLS-RPCM with two models are good and close to each other. The deflection of the 

cantilever obtained by RLS-RPCM is also much closer to analytical solution as 

compared to RPCM. 

To provide an overview of the computational cost and the accuracy of 

RLS-RPCM, the solution of RLS-RPCM is compared with FEM and RPCM. Four sets 

of regularly distributed nodes are used in this example, which are 725× , 1349 ×  and 

2597 ×  nodes. Linear triangular mesh is used in FEM and 9 nodes are used for RPCM 

and RLS-RPCM to construct their shape functions. The convergence rate and the 

computational time of three different numerical methods are shown in the Figure 7.3 

and Figure 7.4. The convergence rate of FEM and RLS-RPCM is 1.95 and 2.39 

respectively. One can found that the accuracy of RLS-RPCM is comparable with FEM. 

The accuracy of the solutions obtained by RPCM for displacements is lower than other 

methods. However, the computational time of RLS-RPCM is slightly higher 
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thanRPCM. 

Although RLS-RPCM requires a little more computational time than FEM, 

RLS-RPCM possesses many attractive features to facilitate an easier implementation of 

adaptive analysis. No special technique is required in the refinement procedure and no 

remeshing is required at each adaptive step. A truly meshfree method not only avoid the 

mesh related problem but also facilitate a simple adaptive scheme. Without the 

stabilization procedure, it is impossible to use RPCM in adaptive analysis. 

7.3.2 Example 2: Hollow Cylinder with Internal Pressure 

The second example is also a benchmark solid mechanics problem. A thick wall 

cylinder subjected to a constant internal pressure is studied. The material properties and 

geometries are given as: internal radius 1=a , external radius 5=b , Young’s modulus 

7101×=E , Poisson’s ratio 0.3υ =  and internal pressure MPaP 1= . The analytical 

solution of this problem is well-known and can be found in Ref. [16].  

As this problem is symmetric, only quarter of the problem is modelled as shown in 

Figure 7.5. Symmetric boundary conditions are imposed along the left and bottom 

edges. In this example, only eighteen local nodes are used to construct the shape 

functions. The local refinement coefficient and the global residual tolerance are 

predefined as 0.05lκ =  and 0.05gκ =  respectively. The adaptive analysis starts with 

121 regularly distributed nodes in the domain and stops at the 4th step with 1716 nodes 

irregularly distributed in domain. Nodal distribution at each adaptive step is plotted in 

the Figure 7.6. As the stresses are more concentrated close to the internal 
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circumference, more nodes are found to be inserted in this region. From Figure 7.7, one 

can observe that the estimated global residual norm is gradually reduced in the 

adaptation. The error norm of displacements has been greatly reduced from 7.82% to 

0.62% as shown in Figure 7.8. Furthermore, the error norm of stresses shown in the 

Figure 7.9 has also been reduced drastically from 14.32% to 0.57%.  

The displacements and stresses along the left edge are plotted and compared with 

analytical solution as shown in Figure 7.11 and Figure 7.12. As problem domain is 

only represented by 121 nodes, solutions with high accuracy are not possible to be 

obtained as the exact solution is not a smooth function over the entired domain. These 

plots have shown that the adaptive scheme has effectively refined the critical region 

based on the error estimator and hence the solutions are improved. The numerical 

solutions of the displacements and stresses at the final steps are in very good agreement 

with the analytical solutions. 

7.3.3 Example 3: Bridge with Uniform Loading on the Top 

In this example, an adaptive analysis for a bridge with irregular geometry is 

studied. A half model of the bridge is analysed. Due to symmetric, and a plane strain 

problem is considered. The top of the bridge is subjected to a constant pressure 

2/1000 mNP = . The dimension of the bridge is shown in Figure 7.13 and the material 

properties are given as: Young’s modulus 9104 ×=E  and Poisson’s ratio 15.0=υ .  

In the adaptive analysis, the local refinement coefficient is preset as 0.05lκ =  

and the global residual tolerant is predefined as 0.05gκ = . The initial nodal 
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distribution first starts with 246 nodes in the problem domain and the adaptive process 

is terminated at the 7th step with 1529 nodes as shown in Figure 7.14. Only eighteen 

local nodes are used for the local function approximation. From the nodal distribution 

given in Figure 7.14, the adaptive strategy is shown efficiently refining the region 

where stresses are concentrated. 

The estimated global residual norm is gradually reduced at each adaptive step as 

given in the Figure 7.15. As no analytical solution is available in this case, reference 

solutions for displacements and stresses are obtained using ANSYS with very fine 

quadrilateral mesh as given in Figure 7.16. The displacements in y direction along the 

left edge and top edge of the bridge are plotted in Figure 7.17 for justification purpose. 

The solutions obtained by RLS-RPCM are greatly improved from the initial step 

through the adaptation and lead to the solution of the final step which is in very good 

agreement with the references solutions. Besides the displacements, the normal stresses 

xxσ  and yyσ  along the left edge are also plotted in Figure 7.18. The stresses obtained 

by RLS-RPCM are also in very good agreement with the reference solutions. Through 

the proposed adaptive scheme, one can see that the accuracy of the solutions for 

displacements and stresses have been gradually improved in Figure 7.17 and Figure 

7.18.  

7.3.4 Example 4: Poisson Problem with High Gradient Solution 

In this example, a well-known Poisson problem is studied. An adaptive analysis 

is conducted for Poisson problem which solution has sharp peak. The Poisson 
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equation is defined as 

( ) ( )[ ]
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in domain of Ω ]1,0[]1,0[: × , with Neumann boundary conditions, 

0=
∂
∂
n
u , along 0: =xtΓ  and 0=y , (7.10)

and with Dirichlet boundary conditions, 

0=u , along 1: =xtΓ  and 1=y . (6.11)

The analytical solution for this problem is known as 
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The plots for the exact solution of the field function u  are given in the Figure 

7.19, and the gradient of the field function, u
x
∂
∂

, along 0.5y =  is also plotted in 

Figure 7.20. High gradient can be observed in the centre of the domain from these two 

figures. 

In this case, local refinement coefficient and global residual tolerant are 

predefined as 0.05lκ =  and 1.0=gκ  respectively. The adaptive analysis first starts 

with 100 regularly distributed nodes and stops up at 7th step with 6962 nodes in the 

problem domain. Nodal distribution at first, 3rd, 5th and final adaptive steps is plotted in 

Figure 7.21. Due to the presence of sharp peak, most of the nodes are inserted at the 

high gradient region as shown in Figure 7.22. From Figure 7.23, one can observe that 
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the estimated global residual norm is reduced gradually. While estimated global 

residual norm is reduced in the adaptive process, the error norm of the field function is 

also gradually reduced from 22.88% to 1.90% as shown in Figure 7.24.  

The approximated values of field function u along 5.0=y  at initial and final 

steps are plotted with analytical solution as shown in Figure 7.25. It is evidently 

showing the proposed adaptive scheme is effective to improve the accuracy of the 

solution for field function u. Similarly, the derivative of the approximated field function 

at initial and final steps is also plotted. It has shown that not only that the approximated 

field function but also the approximated field function derivatives are in very good 

agreement with analytical solutions in the Figure 7.26. The solutions of the 

approximated field function and its derivative are gradually improved through our 

adaptive scheme with RLS-RPCM. 

7.3.5 Example 5: Poisson Problem with Multiple Peaks Solution 

In this example, another Poisson problem which solution has multiple peaks is 

considered. The purpose of this example is to show the robustness of the simple error 

estimator for multi peaks solution in a problem domain. The Poisson equation is 

considered as follows: 

( )xyyxu πππππ 2sin2cos2sin2cos2 2222 +=∇ , in Ω [ ] [ ]1,11,1: −×− , (7.13)

with Neumann boundary conditions 
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0=
∂
∂
n
u , along 1;1: == yxtΓ , (7.14)

and with Dirichlet boundary conditions 

0=u , along 1;1: −=−= yxuΓ . (7.15)

The exact solution of field function u  is known as 

yxu ππ 22 sinsin= . (7.16)

The three dimensional plot of the exact solution is plotted in Figure 7.27, four peaks 

can be observed. 

In this example, ten local nodes are used for the local function approximation. The 

local refinement coefficient is predefined as 1.0=lκ  and global residual tolerant 

value is predefined as 01.0=gκ . The adaptive analysis begins with 100 regularly 

distributed nodes and ends at 12th step with 10764 nodes. Nodal distribution at several 

steps during adaptation is plotted in Figure 7.29. As there are four peaks exist in the 

problem domain, one can observe four rings of dense nodal distributions appeared at 

the final step as shown in Figure 7.30. 

From Figure 7.31, it can be noticed that the error norm of the field variable is 

drastically reduced from 324% to 0.62% in 12 steps. The nodal values u  along 

5.0=y  at first, 4th, 8th and final step are also plotted in the Figure 7.32. Apparently, 

the accuracy of the solution for u  is greatly improved through the adaptive scheme. 

Not only the approximated field function is improved, solution of the approximated 
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derivative of the field function is also significantly improved as shown in Figure 7.33. 

Once again, the accuracy of RLS-RPCM solution has been shown effectively be 

improved by the proposed adaptive scheme. 

7.4 Remarks 

In this chapter, regularization technique which often be used for the ill-posed 

inversed problems is adopted to stabilise the solution of RPCM for forward problems. 

Through vast numerical examples, the regularization procedure has been demonstrated 

successfully stabilising the solution of RPCM for the forward problems. As stable and 

accurate solution can be obtained by RLS-RPCM, the features of meshfree strong-form 

methods can therefore be utilized to facilitate an easier implementation of adaptive 

analysis. The expensive computational cost of remeshing process can be avoided 

because RLS-RPCM is a truly mesh free method. Simple refinement scheme using 

Delaunay diagram can also be used without worry of nodal connectivity. 

However, RLS-RPCM requires slightly higher computational cost compared to 

the RPCM. The small additional cost incurred by the regularization procedure is to 

acquire the crucial stability and accuracy in the solution. Nevertheless, this small 

amount of additional cost is usually insignificant in the adaptive analysis.
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Figure 7.1 Regularization points scattered in the problem domain and on the boundaries 

 

Figure 7.2 Deflection of the cantilever beam along 0y =  with two similar sets of nodal 

distribution. 
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Figure 7.3 Comparison of convergence rate among the FEM, RPCM and RLS-RPCM. 

 

 

Figure 7.4 Comparison of computational time among the FEM, RPCM and RLS-RPCM. 
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Figure 7.5 A quarter model of hollow cylinder with internal pressure. 
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Figure 7.6 Nodal distributions at each adaptive step. 
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Figure 7.7 The estimated global residual norm at each adaptive step. 
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Figure 7.8 Exact error norm of displacements at each adaptive step. 
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Figure 7.9 Exact error norm of stresses at each adaptive step 
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Figure 7.10 Energy norm at each adaptive step. 
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Figure 7.11 Displacements in y-direction along the left edge at initial and final steps. 
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Figure 7.12 The normal stress xxσ  along the left edge at initial and final steps. 
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(a) (b) 

Figure 7.13 (a) A full model and (b) the a model of a bridge subjected to a constant pressure 

on top. 
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Figure 7.14 Nodal Distribution at 1st, 3rd, 5th and 7th steps in the adaptation for the bridge 

problem. 
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Figure 7.15 Estimated residual norm at each adaptive step for the bridge problem. 
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Figure 7.16 Model of the bridge used in ANSYS for reference solution. 
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(b) 

Figure 7.17 Displacement yu  obtained by RLS-RPCM (a) along the left edge and (b) on top 

of the bridge at initial and final steps. 
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(b) 

Figure 7.18 Normal stress (a) xxσ  and (b) yyσ  obtained by RLS-RPCM along the left edge 

at initial and final steps 
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Figure 7.19 Solution of Poisson problem with high gradient. 
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Figure 7.21 Nodal distribution at initial, 3rd, 5th, final steps. 
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Figure 7.22 Enlarged view of the nodal distribution at final step. 
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Figure 7.23 Estimated global residual at each adaptive step. 
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Figure 7.24 Exact error norm of u  at each adaptive step. 
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Figure 7.25 The solution of u along 0.5y =  at initial and final steps. 
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Figure 7.26 The solution of 
u
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∂
∂

, along 0.5y =  at initial and final steps. 
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Figure 7.27 The exact solution of Poisson problem with multiple peaks. 
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Figure 7.28 The estimated global residual norm at each adaptive step. 
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Figure 7.29 The nodal distribution at initial, 4th, 8th and final steps. 
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Figure 7.30 Enlarged view of the nodal distribution at final step. 
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Figure 7.31 The exact error norm at each adaptive step. 
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Figure 7.32 The solution of u along 0.5y =  at initial, 4th, 7th, 9th and final steps. 
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Figure 7.33 The solution of 
u
x
∂
∂

 along 0.5y =  at initial, 4th, 7th, 9th and final steps. 
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Chapter 8  
 
 
A Subdomain Method Based on Local 
Radial Basis Functions 

 

8.1 Introduction 

Subdomain method is a very classical numerical method. Compared to the 

strong-form method, subdomain method doest not required the governing equations to 

be satisfied at node. In contrast, subdomain method enforced the satisfaction of the 

governing equation in an average sense over a subdomain. In the subdomain 

formulation, each node possesses of its own local domain, called subdomain. The 

average of the residual is enforced to be zero in the subdomain of the nodes rather than 

at nodes. 

In present subdomain method, the domain integration of the residual is converted 

into boundary integration by applying Green’s Theorem. Boundary integration is one of 

the best candidates to obtain the average of the residual for local subdomain. As 

compared to domain integration, boundary integration is performed at lower order of 

dimension. For instance, one dimensional integration is only required for two 

dimensional problem domain. Boundary integration procedure is also simple and 
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straightforward. Furthermore, as most of the subdomain boundaries are interference, 

the cost of the computation can also be further reduced. Lastly, the Neumann boundary 

also can be embraced in the formulation naturally and make subdomain method a very 

stable method. This is a very distinct from conventional weak formulation (weak-form) 

methods which are formulated in the domain integration form, e.g., Element-free 

Galerkin method [9], Local Petrov-Galerkin Method [2]. 

In this chapter, meshfree techniques are integrated into the classical subdomain 

method to form a new subdomain method. Throughout the experiences gained in the 

meshfree method, the RPIM approximation that often be used in the meshfree method 

is suggested to be employed in the present subdomain method. In the present 

formulation, subdomain procedure can provide a very stable solution; furthermore, the 

RPIM approximation provides incredible flexibility to construct the shape function 

using arbitrary scattered nodes.  

Delaunay diagram is a set of triangular cells that is formed by a given set of nodes 

in the problem domain through triangularion. It is very popular in domain discretization 

[28] due to its applicability to complex domain. In this work, Delaunay diagram 

provides a background mesh to facilitate the construction of subdomain for each node. 

As the algorithm of Delaunay triangulation is well established, the implementation is 

very easy and with low computational cost. 

Incorporating with the residual based error estimator and adaptive strategy 

introduced in Chapter 3, the present method is then further applied in adaptive analysis. 



Chapter 8 Subdomain Method Based on Local Radial Basis Functions 

 186

By measuring the residual of the strong-form governing equation, the adaptation can 

then proceeds based on the determined error estimator. In the simple h-refinement 

process, additional nodes will be inserted in the domain if the local error estimator 

exceeds the predefined criterion. To have a better nodal distribution after nodes are 

inserted in the domain, a nodal smoothing procedure is also adopted to reposition the 

nodes in a better manner. In the smoothing procedure, nodes are relocated to the centre 

of its first layer of surrounding nodes as demonstrated in Figure 8.1. Such procedure 

can ensure no two nodes are too close to each other. Highly random nodal distribution 

can therefore be avoided and hence the accuracy of solution is improved.  

From the numerous given examples, solutions of the present subdomain method 

are shown accurate and stable. The residual based error estimator is effectively reflects 

the error of the local solution. Simple h-refinement and nodal smoothing procedure has 

demonstrated that high accuracy solution can be obtained efficiently in adaptive 

analysis. 

8.2 Formulation of Subdomain Method 

Now, consider the following governing equation given in Eq. (4.11) as  

0=+ fLu . (4.11)

In the strong formulation, Eq. (4.11), is fully satisfied at the field nodes located in the 

internal domain. As mentioned often in this thesis, such a ‘strong’ enforcement can 

often lead to unstable behaviour. In the present subdomain method, Eq. (4.11) is 
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satisfied in an average sense over a local subdomain. In this situation, Eq. (4.11) is not 

satisfied at nodes. The residual of the governing equation at node i is known as 

( ) ( ) 0i i iR u L u f= + ≠ ,   ( 1, ,i N= L ), (8.1)

where N is the total number of field nodes in the problem domain. 

In the subdomain method, seeking a solution that average of the residual in the 

local domain is equal to zero leads to the following expression.  

( ) 0∫
Ω

=Ω∂
i

iuR , (8.2)

where iΩ  is the subdomain of node i. In terms of stability, subdomain formulation 

behaves much better than the simple collocation but instability is still observed in the 

Ref. [46]. 

In the present subdomain method, Green’s Theorem is resorted to convert the 

domain integral form in Eq. (8.2) into a contour integral form. For an easier description, 

the deriving of the subdomain method formulation is demonstrated using solid 

mechanics problem in this context. For a solid mechanic problem, the well-known 

governing equation is the set of equilibrium equations given in the following 

expression, 

0=+bσdiv , (8.3)

where σ  is the stress tensor that is obtained using the assumed displacement field u, 

and b  is the vector of body force. The average of the residual (force) in the subdomain 
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can then be written as 

( ) 0=Ω∂+∫
Ωi

div bσ , (8.4)

where iΩ  is the subdomain of ith node. By applying the Green’s Theorem to the first 

term of Eq. (8.4), the local integration of the residual can be expressed in the following 

form. 

∫ ∫
Γ Ω

=Ω∂+Γ∂⋅
i i

0bnσ , (8.5)

where n  is the vector of unit outward normal on the boundary. Note from Eq. (8.5) 

that differential operators on the stress tensor have been removed and hence the order of 

differential operation to the assumed displacement vector is reduced, which helps 

decisively the stability of the present subdomain method. 

For all the nodes in the internal domain, Eq (8.5) is directly used to generate the 

algebraic equations. If the node is located on the Neumann boundary, Eq (8.5) can 

further be derived as 

∫ ∫ ∫ ∫∫
Γ Γ Γ ΩΩ

=Ω∂+Γ∂⋅+Γ∂⋅=Ω∂+Γ∂⋅
i i

t
i ii

int

0bnσnσbnσ , (8.6)

where int
iΓ  is the local boundaries that lies inside domain and t

iΓ  is the local 

boundaries that intersect with the global Neumann boundaries. The Neumann boundary 

conditions can therefore be imposed as 
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∫ ∫ ∫
Γ Γ Ω

=Ω∂+Γ∂+Γ∂⋅
int

0
i

t
i i

btnσ , (8.7)

where t  denotes the vector of traction that is given along the Neumann boundaries. 

Note that Eq. (8.5) can be viewed as a special case of Eq.(8.7) when t
iΓ  vanishes and 

int
iΓ  becomes the i

iΓ  for iΩ  of the ith interior node. The discretized form of the Eq. 

(8.7) can be expressed in matrix form as 

ijij FuK = , (8.8)

where  

∫
Γ

Γ=
int

i

djij NDBK , (8.9) 

∫∫
ΩΓ

Ω−Γ−= dd
t

i

i btF . (8.10)

In Eq. (8.9), the matrix N, the strain matrix jB  can be given as 

⎥
⎦

⎤
⎢
⎣

⎡
=

xy

yx

nn
nn

0
0

N , (8.11)
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=
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j

j

j

φφ

φ

φ

0

0

B , (8.12)

where yx nn ,  are the component of unit outward normal on the subdomain’s 
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boundaries int
iΓ  in the x and y directions, jφ  is the shape function of node j and D 

denotes the elasticity matrix for solid material.  

The imposition of Dirichlet boundary conditions is straightforward. As RPIM 

shape function possesses delta property, no special treatment is required. Dirichlet 

boundary conditions can be simply enforced as usual practice in the well-known finite 

element method. 

ii uu = . (8.13)

The final system equation can then be assembled in the matrix form as 

FKU = , (8.14)

where K denotes the coefficient matrix (often called as stiffness), F denotes the force 

vector and U is the vector of unknown nodal displacements. Finally, the unknown nodal 

displacements can be solved as  

UFK =−1 . (8.15)

Construction of Subdomain 

The subdomain used in the formulation is a local domain for averaging the 

residual of the discretized governing equations to be zero. To construct the subdomain, 

one should ensure the “global conservation (or equilibrium) requirement” that is the 

union of all subdomains must be equal to the global domain. In other words, global 

domain has to be fully covered by all subdomains without gap or overlapping. In this 
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work, Delaunay diagram is provided as a background mesh to facilitate the construction 

of subdomain as shown in Figure 8.2. Consider node i located in the interior domain as 

shown in Figure 8.3 (a), a set of Delaunay cells can be found to enclose node i. Figure 

8.3 (b) shows the subdomain of node i, iΩ  , is formed by several sections (dash line) 

that passing the centre point of the surrounding cells (marked as a ‘+’) to the middle 

point of the adjacent edges of the corresponding cells.  

For node located on Neumann boundary tΓ , it can also be surrounded by several 

cells as shown in Figure 8.4 (a). Follows the similar procedure of forming the 

subdomain for interior node, the subdomain of the node located on Neumann boundary 

can be formed as shown in Figure 8.4 (b). In this case, part of the boundaries of the 

local subdomain intersects with the global Neumann boundaries.  

For some meshless subdomain methods, the subdomain is claimed to be 

constructed in arbitrary shape. In common practice, regular shape likes circle or 

rectangular local domain is preferred. The size of the regular subdomain usually 

depends on the nodal space. However, this type of subdomain constructed based on the 

Euclidean norm is apparently not robust. It usually either fails to cover the entire 

domain or is in a very large size. This is definitely not favoured while subdomain 

method is extended to adaptive analysis. In this work, the advantage of using Delaunay 

diagram is obvious. Delaunay diagram can is utilized to ensure the global conservation 

requirement. No matter how random the nodes are scattered, the subdomains are 

always covered the entire domain with small size. This is particular important in the 

adaptive analysis where nodes are usually distributed very randomly. 
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Numerical Integration 

Numerical integration is one of the key issues in the subdomain method. In this 

work, Gauss integration is adopted to perform the numerical contour integration. From 

our experience, one Gauss point is good enough to provide solution with high accuracy. 

Integration scheme with more Gauss points does not significantly improve the accuracy 

of solution. 

The contour integration for subdomain of node i can then be evaluated 

numerically as  

( ) ( ) i
g

nl

g

ii lxx
gg

i

Δ⋅⋅=Γ∂⋅ ∑∫
=Γ 1

nσnσ ,  (16)

where nl is the number of sections, i
gx  is the mid point of section and i

glΔ is the length 

of the corresponding section. 

8.3 Numerical Examples 

In the below numerical examples, the local nodes used in the RPIM approximation 

are not selected based on Euclidean norm. A concept of layers is introduced in the nodal 

selection. Two layers of supporting nodes are selected for approximation at any interest 

points. The nodal selection based on layers will be illustrated in more details in Chapter 

9. 

In the numerical examples of adaptive subdomain method based on local RBFs, 

residual based error estimator introduced in Chapter 3 is adopted here. In addition to the 
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h-refinement scheme, a mesh smoothing procedure is also adopted to provide a better 

nodal distribution and hence the accuracy is improved. 

In the given numerical examples in this chapter, polynomial with completed 

second order, 6=m , is adopted in the RPIM approximation and shape parameters of 

MQ-RBF are known as 0.3=cα  and. 03.1=q . 

8.3.1 Example 1: Standard and Higher order Patch Tests 

The first example is standard and higher order patch tests. In the standard patch 

test, two different patches with 25 nodes regularly and irregularly distributed in the unit 

square domain are used as shown in Figure 4.9. A linear function of displacements is 

imposed at the boundary nodes. Results given in Table 8.1 show the proposed 

subdomain method passes the standard patch test. The present method is then subjected 

to the higher order patch tests. Two different patches with 35 regularly and irregularly 

nodal distribution in the 63× rectangular domain as shown in Figure 4.10 are used for 

higher order patch tests. The patches are subjected to a constant loading applied on the 

right end edge in the first case. Whereas the patches are subjected to a loading that 

linearly varied along the right end in the second case. As listed in Table 8.2, the present 

subdomain method passes the high order patch tests to machine accuracy. The details of 

the patch tests procedure can be found in Ref. [90]. 

8.3.2 Example 2: Connecting Rod Subjected to Internal Pressure 

In Example 2, a problem domain with more complicated geometry and multi 
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cavities is analyzed. An automobile part, connecting rod, is subjected to a uniform 

pressure in the half section of the cavity CD as illustrated in Figure 8.5. The problem is 

assumed as a plane strain elastostatics problem. Loading and the material properties are 

given as: pressure PaP 6101×= , Young’s modulus 10101×=E  and Poisson’s ratio 

3.0=υ . As no analytical solution is available, FEM solution with 85934 quadrilateral 

elements solving by ANSYS is provided as a reference solution. 

In this example, the elastostatics problem is solved by the present subdomain 

method using 4 different sets of nodes given in Figure 8.6. Figure 8.7 shows 

approximated energy of the present subdomain method is approaching to the reference 

solution while more nodes are used in the modeling. The subdomain method based on 

local RBFs provides very accurate solution in term of displacements and stresses. The 

displacements in x-direction along the line AB are plotted in Figure 8.8, and show good 

agreement with reference solution. Furthermore, Figure 8.9 and Figure 8.10 also show 

the normal stresses obtained by the present method are also in good agreement with 

reference solutions. From Figure 8.8 to Figure 8.10, it can be noticed that even with as 

little as 339 nodes only, accurate solutions in term of both displacements and stresses 

can be obtained by the present method. 

8.3.3 Example 3: A Cantilever Beam Subjected to a Parabolic Shear 

at End  

To examine the numerical performance of the present subdomain method, a 

benchmark problem is studied in Example 3. A cantilever beam subjected to parabolic 
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shear stresses at the end, as shown in Figure 4.11, is studied. The dimension of 

cantilever beam is known as length mL 0.48=  and height mH 0.12= , and the 

material properties are given as Young’s modulus 7103×=E and Poisson’s ratio 

3.0=υ . The loading at the end of the beam is known as NdyP xy 1000== ∫τ . 

Analytical solution of this problem can be found in Ref. [90]. The governing equations 

of the solid mechanics problem are known as listed in Eq. (4.19) to Eq. (4.21). In this 

example, Dirichlet boundary conditions are imposed along the left edge and Neumann 

boundary condition is applied along the rest of the edges. 

To study the convergent rate of the solution, the problem is modelled and solved 

by using four different sets of regular distributed nodes: 134× , 257× , 4913×  and 

9725× . The error norm of displacements, energy norm and computational cost of the 

subdomain method are all listed in Table 8.3. For comparison purpose, solutions of 

FEM with triangular element are also provided. From the error norm of displacements 

and energy norm plotted in Figure 8.11 and Figure 8.12, one can notice that the 

proposed subdomain method provides much more accurate solution than FEM. In 

addition, the convergent rate of energy norm of the present method is also higher than 

FEM. Although the subdomain method based on local RBFs required higher 

computational time than FEM generally in Figure 8.13, the present subdomain method 

is still more efficient than FEM as shown in the Figure 8.14.  

8.3.4 Example 4: Adaptive Analysis of Elastostatics Problem  

Another benchmark elastostatics problem, an infinite plate subjected to uniaxial 
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traction in the horizontal direction, is studied in this example. Due to symmetric, only a 

quarter of the problem is modelled, and the geometry of the plate is known as: 2.0=a  

and 0.2=b  as shown in Figure 5.7. This problem is considered as plane strain 

problem and the material properties are given as: Young’s modulus 3101×=E  and 

Poisson’s ratio 3.0=υ .  

The adaptive analysis is conducted for this problem with refinement coefficient 

and global residual tolerance as 0.05lκ =  and 0.05gκ =  respectively. The entire 

adaptive analysis takes four steps to complete and ended up with 970 nodes from 121 

nodes initially as shown in Figure 8.15. During the adaptation, problem domain is 

refined based on our adaptive strategy. Figure 8.16 shows the estimated global residual 

norm has been gradually reduced at each adaptive step. As analytical solution is 

available [90], the solution of the subdomain method at each adaptive step can be easily 

justified. Both error norms of displacements and energy norm have been adaptively 

improved as shown in Figure 8.17 and Figure 8.18 respectively. The approximated 

stresses along the left edge show good agreement with the analytical solution. One can 

also notice clearly in Figure 8.19 and Figure 8.20 that the solution of stresses is 

improved significantly. The solutions of the normal stresses, xxσ  and yyσ , of the final 

steps are much closer to the analytical solution than the initial solutions. 

8.3.5 Example 5: Adaptive Analysis of Short Beam Subjected to 

Uniform Loading on the Top Edge  

A short beam subjected to a uniform loading on the top edge is studied and 
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considered as a plane strain problem in Example 5. The dimension of the short beam is 

indicated in Figure 8.21 and the material properties are known as: Young’s modulus 

0.1=E  and Poisson’s ratio 3.0=υ . Loading applied on the top edge is given as 

0.1=P . As the exact solution is not available, a reference solution given in the Ref. [1] 

is adopted. The displacement in y-direction of point A is known as -2.875323 and the 

energy norm is given as 3794663.1=u .  

Since there are two singularity points exist at the two corner of the beam near to 

the wall, region around singularity points are expected to be refined. In this example, 

the local refinement coefficient and global residual tolerance are predefined as 

0.02lκ =  and 0.02gκ =  respectively. The adaptive analysis takes 9 steps to complete, 

and nodal distributions at initial, third, fifth and final steps are plotted in Figure 8.22. 

From the final distribution, the residual based error estimator has demonstrated its 

robustness of identifying the all singularity points exist in the problem domain. Region 

around the singularity points has been refined with more nodes. 

With the robust error estimator and effective adaptive strategy, the accuracy of the 

proposed subdomain method based on local RBFs is improved significantly and 

efficiently. The displacements and energy norm plotted in Figure 8.23 and Figure 8.24 

evidently shows the solution of the present method is progressively approaching the 

reference solution. The purpose of adaptive analysis is clearly demonstrated here. 

Compared to the uniform refinement scheme, the adaptive scheme shows much better 

convergency.  
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8.3.6 Example 6: Adaptive Analysis of Bridge Subjected to Uniform 

Loading on the Top Edge  

A bridge with uniform loading on top is studied and analyzed by the proposed 

adaptive subdomain method in Example 6. The geometry of the bridge is shown in 

Figure 7.13 (a) and the loading is given as 1000=P . As the problem is symmetric, 

only the right half of the bridge is modelled and assumed as a plane strain problem. For 

justification purpose, a FEM solution provided by ANSYS with a model of 30251 

quadrilateral meshes is considered as a reference solution.  

The refinement coefficient and global residual tolerance are predefined as 

05.0=lκ  and 05.0=gκ  respectively. The adaptive analysis starts with only 32 nodes 

and terminated at 5th step with 1100 nodes irregularly distributed in the domain as 

shown in Figure 8.26. Figure 8.25 indicates the estimated global residual norm is 

gradually reduced after the domain is refined by inserting additional nodes in the 

domain based on the refinement criterion. Clearly, Figure 8.27 shows our adaptive 

strategy has effectively improved the approximated energy toward the reference 

solution. In addition, the contour plots of the approximated stresses in the entire domain 

are also shown in Figure 8.28. To justify the solutions, the displacements and the 

normal stresses along the left edge at initial and final steps are also plotted in Figure 

8.29 and Figure 8.30 against reference solution. It has also evidently shown the 

adaptive scheme is effective to improve the accuracies of both displacements and 

stresses. Apparently, the solution at final step of the adaptive analysis is better than the 
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initial step. 

8.3.7 Example 7: Adaptive Analysis of Crack Problem 

In this example, a crack panel shown in Figure 3.16 is analyzed adaptive 

subdomain method. This problem is considered as a plane strain problem and the 

material properties are known as Poisson’s ratio 3.0=υ , Young’s modulus 7103×=E . 

The dimension of the cracked panel is given in Figure 3.16, where ma 5.0= . Due to 

symmetric, only half of the model is analysed, see Figure 3.16 (b). The cracked panel is 

subjected to a load along the boundaries which described as in Eq, 3.20 to Eq. 3.22,  

⎟
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⎜
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where IK  is stress intensity of mode I.  

In this example, two layers of supporting nodes are used for approximation. The 

refinement coefficient and global residual norm tolerant are given as 1.0,1.0 == gl κκ . 

For comparison purpose, subdomain method and FEM using linear triangle element 

with uniform refiment scheme are conducted.  

The adaptive analysis using subdomain method takes eight steps to complete. The 

number of nodes increased from 231 to 770 nodes at the last step. From the nodal 
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distribution given in Figure 8.31, one can observe that nodes have been increased 

intensively at the crack tip where the singularity point is. The global residual norm has 

been tremendously reduced from 0.0879 to 0.0068 as shown in Figure 8.32. The 

displacement and energy norms plotted in Figure 8.32 and Figure 8.33 have shown 

adaptive subdomain has achieved great success. The displacements norm is reduced 

from 15.78% to 0.98% and the energy norm has dropped from 910138.1 −×  to 

1110000.1 −× . Computed energy at each adaptive step given in Figure 8.34 also shows 

better convergency than uniform refinement scheme, the solution of adaptive 

subdomain method with 770 nodes is much better than 10000 nodes. 

8.4 Remarks 

In this chapter, a popular meshfree shape function, RPIM shape function, is 

integrated into the formulation of classical subdomain method. Subdomain method 

based on local RBFs has shown great accuracy and stable solution in the given 

numerical examples. Compared to FEM using triangular element, present subdomain 

method, that uses Delaunay diagram as a background mesh, provides much better 

solution in term of both displacements and stresses. Incorporated with the robust 

residual based error estimator and effective adaptive strategy, the present adaptive 

subdomain method has demonstrated remarkable numerical performance in adaptive 

analysis. The proposed adaptive strategy is shown simple, but yet robust and efficient. 

Numerous examples in elastostatics have shows high accuracy solution can be achieved 

efficiently by the proposed adaptive subdomain method based on local RBFs. 
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Linear patch test Error norm 

Regular nodal distribution -161.8035 10×  

Irregular nodal distribution -164.4798 10×  

Table 8.1 Error norms of the subdomain method for linear patch test. 

 

Error norm 
Higher order patch test 

Case 1 Case 2 

Regular nodal distribution -152.6738 10×  141.4136 10−×  

Irregular nodal distribution -155.2851 10×  169.8631 10−×  

Table 8.2 Error norms of the subdomain method for higher order patch test. 

 

Displacements error Energy norm Total 

number of 

nodes 

FEM3N Present FEM3N Present 

52 26.2910% 2.9424% 1.3216 0.3429 

175 8.3546% 0.1313% 0.7691 0.1271 

637 2.2404% 0.0401% 0.4013 0.05989 

2425 0.5709% 0.0202% 0.2029 0.03190 

Table 8.3 Error norm of displacements, energy norm and computational time of the subdomain 

method and FEM. 
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Original Position
After Reposition

 

Figure 8.1 Reposition of an interior node to the centre of its first layer of supporting nodes. 

 

 

Figure 8.2 Subdomains constructed by the background mesh formed using Delaunay 

Diagram. 
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(a) (b) 

Figure 8.3 (a) Node i in the interior domain and (b) its subdomain. 

 

  

(a) (b) 

Figure 8.4 (a) Node i on the Neumann boundary and (b) its subdomain. 
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Figure 8.5 The model and dimension of the connecting rod. 

 

  

(a) (b) 

  

(c) (d) 

Figure 8.6 The models of connecting rod with (a) 339, (b) 1092, (c) 2979 and (d) 4541 nodes.
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Figure 8.7 The approximated energy obtained by the subdomain method with different field 

nodes. 

 

 

Figure 8.8 The displacements in x-direction obtained by subdomain method along AB with 339 

and 4106 nodes in domain. 
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Figure 8.9 The normal stress xxσ  obtained by subdomain method along AB with 339 nodes 

and 4106 nodes in domain. 
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Figure 8.10 The normal stress yyσ  obtained by subdomain method along AB with 339 nodes 

and 4106 nodes in domain. 
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Figure 8.11 The convergent rate in term of the error norm of displacements for the FEM 

(3-nodes element) and subdomain method. 
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Figure 8.12 The convergent rate in term of the energy norm for the FEM (3-nodes element) 

and subdomain method. 
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Figure 8.13 The comparison of the computational cost for the FEM (3-node element) and 

present method. 
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Figure 8.14 Efficiency in term of energy norm of the present method. 
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Figure 8.15 The nodal distribution at each adaptive step. 
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Figure 8.16 Approximated global residual norm at each adaptive step. 
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Figure 8.17 Error norm of displacements at each adaptive step. 
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Figure 8.18 Energy norm at each adaptive step. 
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Figure 8.19 The normal stress xxσ  obtained by the subdomain method along left edge at 

initial and final adaptive steps. 
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Figure 8.20 The normal stress yyσ  obtained by the subdomain method along left edge at 

initial and final adaptive steps. 
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Figure 8.21 Model of a short beam subjected to a uniform loading on top edge. 
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Figure 8.22 Nodal distribution for the model of short beam at each adaptive step. 
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Figure 8.23 The displacement of Point A at each adaptive step. 
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Figure 8.24 The approximated energy obtained by subdomain method at each adaptive step.
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Figure 8.25 The estimated global residual norm at each adaptive step. 
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Figure 8.26 The nodal distribution at each adaptive step. 
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Figure 8.27 The approximated energy at each adaptive step. 

 

 

Figure 8.28 Contour plot of the approximated stresses obtained by present method at final 

adaptive step. 
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(b) 

Figure 8.29 Normal stresses (a) xxσ  (b) yyσ  along the left edge at initial and final steps. 
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Figure 8.30 Displacements along the left edge at initial and final steps. 

 

 

Figure 8.31 Nodal distributions at 1st, 3rd, 6th and final step. 



Chapter 8 Subdomain Method Based on Local Radial Basis Functions 

 218

 

Figure 8.32 Global residual norm at each adaptivel steps. 

 

 

Figure 8.33 Displacements norm at each adaptivel step. 
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Figure 8.34 Energy norm at each adaptive step. 

 

 

Figure 8.35 Energy at each adaptive step. 
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Chapter 9  
 
 
Effects of the Number of Local Nodes for 
Meshfree Methods Based on Local Radial 
Basis Functions 

 

9.1 Introduction 

All the proposed meshfree methods proposed in this thesis are using RPIM 

approximation to construct their shape functions. Radial basis functions (RBFs) 

augmented with polynomial function is used in the RPIM approximation to 

approximate the local field function. As mentioned in the Chapter 2, RBFs are 

well-known in the mathematic community for its excellent numerical performance in 

approximation. Its have also been widely used for scattered data fitting and 

interpolation [19,31]. RBFs have been shown not only very good for interpolation 

purpose but also for the partial derivative approximation. Such feature is very attractive 

to meshfree methods for constructing their shape functions using arbitrary distributed 

nodes. Kansa is one of the pioneers who extend the application of RBFs in meshfree 

methods. In the early 90s, Kansa et al first introduced RBFs in the meshfree collocation 

method for solving partial differential equations (PDEs) [65,66]. Since then many 
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meshfree methods based on RBFs are proposed [23,32,33,93].  

However, in the conventional meshfree method based on RBFs, field function and 

its partial derivatives are approximated using global nodes. It means that to 

approximate a field function or its partial derivatives at any interest point, all the nodes 

in the domain have to be used. The global RBFs will result in the following two critical 

drawbacks. First, the moment and coefficient matrices are full matrix. It is definitely 

undesired as computational time for solving the PDEs is huge. Compared to the 

existing dominant numerical methods such as, finite difference method (FDM), finite 

element method (FEM), which coefficient matrix are banded, the collocation meshfree 

methods based on global RBFs are not computational efficient.  

Second, the condition of the coefficient matrix of the collocation meshfree method 

based on global RBFs is often ill. In the later work by Kansa, he had revealed the 

ill-conditioning problem encountered by global RBFs [66]. Remedies and suggestions 

such as matrix precondition, truncated interpolation scheme, multizone methods etc [66] 

had been proposed to prevent the ill-conditioning problem. Nevertheless, these 

remedies are rather expensive and not very effective. Global RBFs are still not practical 

for solving real life problems at this stage.  

Recently, Liu et al have revised the conventional RBFs interpolation scheme and 

proposed a novel RBFs interpolation scheme using local nodes. Instead of using all the 

nodes in the problem domain for function approximation at any interest point, only 

local nodes (neighbouring nodes) of the interest point are selected to approximate the 
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field function and its partial derivatives. The idea of local RBFs has been devoted to 

many research works in meshfree methods and good results have been obtained 

[25-27,41-44,49-52,61-63,67-69]. 

As local RBFs is a promising scheme and many related research works have been 

published, the effects of the number of local nodes has to be studied. However, to my 

best knowledge, only the shape parameters of the local RBFs are thoroughly studied in 

literature [40,46,92]. A comprehensive study on the effects of the number of local nodes 

is still very demanding. In this chapter, the effects of the number of local nodes for 

meshfree methods based on RBFs are investigated. The study has been extended to 

both strong and weak formulation meshfree methods. A comparison between global 

and local RBFs is shown in paper through enormous examples in various meshfree 

methods. 

9.2 Nodal Selection 

Before the effects of the number of local nodes are studied, one should first 

understand how to select local nodes appropriately and what is the minimum number of 

nodes is required. From a computational cost point of view, as little as possible the 

number of nodes should be used, but provided the moment matrix G in Eq. (2.45) is not 

singular. Furthermore, as long as the field function in local domain is smooth and well 

modelled by local nodes, the number of local nodes can be varied from point to point in 

the global domain. It should be depending on the nodal distribution and the number of 

monomials used in the radial point interpolation scheme. In this work, two rules of 
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thumb for nodal selection are given: 

(1) The number of local number must be greater than the number of 

monomials in Eq.(2.35), mn >> , such that the moment matrix G is 

invertible. 

(2) The collocation point should not be located on the local boundary, 

except global boundary. Figure 9.1 (a) shows the appropriate local 

nodes for radial point interpolation at a collocation point and Figure 

9.2 (b) illustrates the inappropriate selected local nodes. The 

coefficient matrix has high chances of suffering from rank deficiency 

if the selected local nodes bias on one side of the collocation point as 

shown in Figure 9.2 (b). 

Conventionally, the local nodes are chosen based on the Euclidean distance from 

the point of interest. Only nodes located in the neighbourhood of the interest point are 

favourable and should be selected. Those nodes further away from the interest point are 

intrinsically having no effect on the local approximation and hence be eliminated. In 

common practice, the number of nodes is two to three times of the number of 

monomials used in the radial point interpolation, mn 3~2≈ .  

However, nodal selection based on the Euclidean distance is only feasible for 

problem which is modelled by regularly distributed nodes. Nodal selection based on the 

Euclidean distance is still not robust enough if the nodes are very randomly scattered in 

the domain. There are high chances that moment matrix G in Eq.(2.35) could be 
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singular, even the number of local nodes is greatly increased, say mn 3>> , rule (2) is 

still can not be guaranteed. Such problem always arises in the adaptive analysis. 

To avoid the awkward scenario happens, the number of local nodes should not be 

fixed and nodal selection should not solely depends on the Euclidean distance. Thus, 

nodal selection based on the concept of layer is proposed. In this work, every node can 

be seemed as being surrounded by numbers of layers of supporting nodes. If the order 

of the PDEs is k, then the same number of layers of nodes is used in nodal selection. 

This concept of layers has been very successfully implemented in my works [70,71] 

and it has been shown very robust, efficient and feasible, even for randomly scattered 

nodes. 

9.3 Concept of Layer 

As all problems studied in this work are second orders PDEs, double layers of 

nodes are used. The immediate layer of supporting nodes can be formed by Delaunay 

diagram as shown in Figure 9.2 (a). Let nxxx ,,, 21 L  be a set of n distinct nodes in the 

problem domain denoted by { }kx  and iT  is the cell of Delaunay which contains three 

nodes in the problem domain to form that particular cell. Say node P in Figure 9.2 (a), 

any Delaunay cell which consists of node P, all the nodes of that particular cell will 

become a member of the set of immediate layer of supporting nodes for node P.  

i P p iT if T⊂ ∈s x , (9.1)

where Ps  is the set of the immediate layer of supporting nodes for node P. The second 
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layers of supporting nodes are those nodes in their corresponding immediate layers of 

the first layer’s nodes as shown in Figure 9.2 (b). With such scheme, one can ensure 

that no ‘extrapolation’ happens during the construction of shape functions except the 

boundary nodes. No matter how randomly the nodes scattered in the problem domain, 

the moment matrix G is always invertible. Therefore, this is a very robust nodal 

selection scheme for adaptive analysis. In the examples given in this paper, scheme 

with double layer of nodes has been shown cost effective in computation with good 

accuracy. Similar idea of layer is also found in Ref. [87]. 

9.4 Numerical Examples 

In this work, a large number of numerical examples are presented to study and 

facilitate the understanding of the effects of number of local nodes for meshfree 

methods based on local RBFs. These meshfree methods include both strong and weak 

formulation methods. These examples are given to demonstrate the advantages of 

RBFs using local nodes. Comparison between global RBFs and local RBFs is made in 

this work. For simplification purpose, only multi-quadratic (MQ) RBF is studied. The 

shape parameters, 03.1=q  and 0.3=cα , are adopted from recommended values 

reported by Liu et al [40,46,92]. In the radial point interpolation, completed second 

order polynomial function, 6m = , is augmented with MQ-RBF. 

9.3.1 Examples 1: Curve Fitting 

The first example is presented to reveal the some important observations of the 
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local radial point interpolation. A square domain is modelled by a set of 121 regularly 

distributed nodes. Consider the following smooth field function as 

yxu ππ sinsin= , (9.2)

in the domain of [ ] [ ]1,01,0: ×Ω , the derivatives of the field function can be derived as 

yx
x
u πππ sincos=
∂
∂ , (9.3)

yx
x
u πππ sinsin2
2

2

−=
∂
∂ , (9.4)

yx
yx

u πππ coscos2
2

=
∂∂

∂ , (9.5)

as plotted in Figure 9.3. 

The derivatives of the given field function, 
yx

u
x
u

x
u

∂∂
∂

∂
∂

∂
∂ 2

2

2

,, , are approximated by 

radial point interpolation with different number of local nodes used. Their error norms 

are shown in Figure 9.4, and their corresponding computational times are also given in 

Figure 9.5. From Figure 9.4 and Figure 9.5, one can notice the local RBF is not only 

more accurate than global nodes but also tremendously reduces the computational time. 

In this example, the absolute error of the approximated derivates of the given field 

function, 
yx

u
x
u

x
u

∂∂
∂

∂
∂

∂
∂ 2

2

2

,,  are also plotted in Figure 9.6 to Figure 9.8. One can observe 

that the errors along the boundary points are relatively larger than the interior points. 

This is because the interpolation points on the boundary are no longer at the centre of 
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the local supporting domain and hence large error is found along the boundary. This 

observation is very much in line with the finding presented in the Refs. [40,46,62,92]. 

9.3.2 Examples 2: LC-RPIM (Weak-form Method) for Elastostatics 

Problem 

This example is the study on the effects of the number of local nodes for meshfree 

weak-form method based on RBFs. In the paper by Li et al [36], a meshfree weak-form 

method called LC-RPIM is proposed. In the formulation procedure of the LC-RPIM, 

local RBFs are used for function approximation.  

A benchmark solid mechanics problem, cantilever beam subjected to a parabolic 

shear stress at the end, is used to demonstrate the effects of the number of local nodes. 

The model of the cantilever beam is shown in the Figure 4.11, where mL 48=  and 

mD 12= . The material properties are given as Young’s modulus 7103×=E  and 

Poisson’s ratio 3.0=υ  and the loading is given as NdyP xy 1000−== ∫τ . 

The governing equations and the boundary conditions of solid mechanics 

problems are known [89] as listed in Eq. (4.19) to Eq. (4.21). In this example, Dirichlet 

boundary conditions are applied along the left edge and the loading is applied along the 

right edge.  

A model made up of 341 regularly scattered nodes is used in the LC-RPIM to 

study the effects of the number of local nodes. The error norms of displacements and 

energy norms plotted in Figure 9.9 and Figure 9.10 show solutions of the LC-RPIM 

based on local RBFs are as good as global RBFs. The increase of the local nodes does 
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not help to improve the accuracy of displacements, though the energy norm seems only 

slightly better while global nodes are used. The condition number of the stiffness matrix 

of LC-RPIM with local nodes is slightly lower that the global nodes as shown Figure 

9.11. Nevertheless, the extremely high computational cost of LC-RPIM based on global 

RBFs prevents it from solving practical problem. One can notice from Figure 9.12 that 

the computational time required by LC-RPIM is increasing exponentially with increase 

of the local nodes. Solving problem using LC-RPIM based on global RBFs becomes 

not practical as local nodes scheme is able to provide reasonable good results with only 

little computational time required. 

9.3.3 Examples 3: RPCM (Strong-form Method) for Torsion 

Problem 

In this example, the study on the effects of the number of local nodes is conducted 

for a meshfree strong-form method. Radial point collocation method (RPCM) [61-63] 

is a meshfree strong-form collocation method that using local nodes. In the RPCM, 

field function is approximated based on local RBFs. A linear elastostatics problem is 

studied in this example. A bar with triangular cross section as shown in Figure 9.13 (a) 

is subjected to a torsion moment. The material properties of the bar are known as: 

Young’s modules 7101×=E  and Poisson’s ratio 3.0=υ . 

The governing equation of torsion problem is well-known as [90] 

θϕϕ G
yx

22

2

2

2

−=
∂
∂

+
∂
∂ , (9.6)
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where ϕ  is the stress function, G is the shear modulus of the bar and θ  is the twisted 

angle. The relationship between the stresses and stress function is known as  

yz x
ϕτ ∂

=
∂

; yz x
ϕτ ∂

=
∂

, (9.7)

The boundary conditions of this torsion problem is known as 

0y x
y s x s s
ϕ ϕ ϕ∂ ∂ ∂ ∂ ∂

+ = =
∂ ∂ ∂ ∂ ∂

, (9.8)

and it shows the stress function ϕ  must be a constant along the boundaries of the cross 

section. ϕ  is arbitrary chosen as zero, and twisting angle is given as 1=θ . The 

analytical solution of this problem is given as [90] 

( ) ( )2 2 3 2 21 1 23
2 2 27

G x y x xy a
a

ϕ θ ⎡ ⎤= − + − − −⎢ ⎥⎣ ⎦
. (9.9)

In this example, the torsion problem is first modelled by 120 regularly distributed 

nodes as shown in Figure 9.13 (b). The error norms of the stress function obtained by 

the RPCM using different number of local nodes are plotted in Figure 9.14. Apparently, 

the RPCM using global nodes for function approximation is not a practical idea. In 

Figure 9.14, it has shown the accuracy of solution that using global RBFs is relatively 

low. In addition, Figure 9.15 also shows the computational cost is tremendously higher 

than the RPCM using local nodes. Furthermore, it can be seen in Figure 9.16 that the 

condition number of the coefficient matrix is increasing greatly while the number of 

local nodes increases. The condition number of the coefficient matrix of RPCM using 
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global nodes is the highest as shown in Figure 9.16. 

To study the convergent rate, the numerical solutions for 5 sets of nodes, 66, 120, 

231, 325, 496 are computed. For comparison purpose, the convergent rate of the RPCM 

with 25 local nodes, global nodes and double layer of nodes are plotted in Figure 9.17. 

The convergent rate of the error norm of RPCM using global nodes is the lowest among 

the three schemes and the accuracy is not as good as the RPCM using local nodes. The 

accuracy of the RPCM using double layer of nodes is the best among the three schemes 

and the convergent rate is also the highest. 

The computational time required by each schemes for these five sets of nodes are 

plotted in Figure 9.18 for comparison. Among these three schemes, the computational 

time of the RPCM using global nodes is the highest and increasing with much higher 

rate while the number of field nodes is increased. RPCM using two layers of nodes 

requires the least computational time. 

In this example, it can be noticed in Figure 9.19 that the condition number of the 

coefficient matrix of RPCM using global nodes is the largest and grows faster than 

RPCM using local nodes while total number of field nodes is increasing. 

In short, the efficiency plot shown in Figure 9.20 has strongly supported the 

argument that the local RBFs are the more practical, efficient and accurate compared to 

the global RBFs. The advantages of the function approximation using local RBFs are 

well demonstrated in this example. And the proposed scheme with double layers of 

nodes is the best among all schemes.  
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9.3.4 Examples 4: RLS-RPCM (Strong-form) for Elastostatics 

Problem 

In this example, a solids mechanics problem that solved by the regularized 

least-square radial point collocation method (RLS-RPCM) [67] using local nodes is 

investigated. The RLS-RPCM is a strong-form meshfree method, which regularization 

procedure is adopted to stabilize the solution of RPCM while dealing with Neumann 

boundary conditions. A benchmark solid mechanics problem, an infinite plate subjected 

to a horizontal uniaxial traction, 1=P , is studied. The geometry of the plate is shown 

in Figure 5.7, where 2.0=a , 0.2=b . The material properties of the plate are given as 

Young’s modulus 3101×=E  and Poisson’s ratio 3.0=υ . 

The governing equations and boundary conditions of solid mechanics problem are 

as listed in Eq. (4.11) to Eq. (4.13). In this example, due to symmetric, only the right top 

quarter of plate is modelled. Symmetric conditions are applied along the left and 

bottom edges of the model as shown in Figure 5.7. 

The effects of the number of local nodes for meshfree strong-form method are 

clearly revealed from the results as shown from Figure 9.21 to Figure 9.25. From the 

error norms of displacements and stresses plotted in Figure 9.21 and Figure 9.22, 

accuracy of RLS-RPCM solution based on global RBFs is extremely low. The poor 

accuracy could due to the ill-conditioned coefficient matrix as shown in Figure 9.21. 

The condition number of the coefficient matrix of the global scheme is as high as 

5.6179e+015. Another cause of poor accuracy may due to the interpolation for the 
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concave domain. As RBFs are not appropriate for concave domain, special technique is 

needed to overcome this difficulty. In practice, as geometry of problem can be rather 

complex, the global scheme of radial point interpolation is not as robust as local scheme. 

From a computational cost point of view, the CPU time required by the global scheme 

is too expensive as shown in Figure 9.29. This example clearly shows the global 

scheme is an impractical and expensive approach, reliable and accurate solution can not 

be guaranteed also. 

9.3.5 Examples 5: Adaptive RPCM for Dirichlet Problem 

To further demonstrate the efficiency of RPCM base on different number of local 

RBFs, an example of adaptive analysis is presented. In this example, a Poisson problem 

with high gradient solution is studied. The below Poisson equation is considered, 

( )2 1 2 2tan 1000 1u x y−∇ = − , [ ] [ ]: 0,1 0,1Ω × . (9.10)

The Dirichlet boundary conditions are imposed along the boundary, 

( )1tan 1u −= − , : 0 0x or yΓ = = ; (9.11)

( )1 2tan 1000 1u y−= − , : 1xΓ = ; (9.12)

( )1 2tan 1000 1u x−= − , : 1yΓ =  (9.13)

The analytical solution of this Poisson problem is known as  
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( )1 2 2tan 1000 1u x y−= − , (9.14)

Solution of field function and it derivatives are plotted in Figure 9.26. 

In this example, the adaptive analyses are carried out by three different schemes 

which are: 

(1) local RBFs with 25 nodes, 

(2) local RBFs with double layers of nodes, 

(3) global RBFs. 

All scheme are initiated with 2020×  regularly distributed nodes in the domain 

]1,0[]1,0[: ×Ω  as shown in Figure 9.27 (a). In this example, the local refinement 

coefficient and global residual tolerant are preset as 0.05Lκ =  and 0.05Gκ =  

respectively. The details of the adaptive strategy can be found in Chapter 3. For 

comparison, the final nodal distribution of each scheme is shown in Figure 9.27 (b)-(d). 

It can be seen that the final nodal distributions of the local scheme are better than the 

global scheme. In the local scheme, most of the nodes have been inserted at the critical 

region where the gradient of field function is high, however, not global scheme. The 

reason of ineffective refinement of the global scheme could due to the unstable 

numerical solution that affects the performance of the residual error estimator, and 

hence leads the refinement of the additional nodes to inappropriate position. 

All local schemes take 4 steps to complete the computation and done in a few 

minutes. The adaptive RPCM with 25 local nodes take 224 seconds and the adaptive 
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RPCM with two layers of nodes take only 177 seconds to complete entire analysis. For 

the RPCM using global nodes, solution is unstable due to the ill-conditioned coefficient 

matrix. The adaptive analysis takes more than 4 steps to complete; however, the 

solution is terminated up to the 4th step for convenience. The computational cost of the 

RPCM using global nodes is extremely expensive. The initial step already requires 

2836 seconds to complete and the computational time accumulated up to the 4th step is 

47.5611 hours. Therefore, from the efficiency plot in Figure 9.29, one can find that 

efficiency of the global scheme is tremendously poor. The efficiency of the adaptive 

RPCM using 25 local nodes and two layers of nodes are comparable to each other. Both 

schemes required much lesser time than global scheme and able to provide excellent 

accuracy. 

Furthermore, the high condition number of the coefficient matrix of global scheme 

is also clear shown in Figure 9.30. While the total number of field nodes is increased 

more than 1000 nodes, the condition number for global scheme is very ill, whereas the 

coefficient matrices of the local scheme are still in the good condition. Hence, the 

solution of RPCM using global nodes becomes very unstable as the coefficient matrix 

is almost singular. It again shows the global RBFs not only inefficient but also leads the 

discretized system to ill condition. This example evidently shows the purpose and the 

advantages of the local RBFs against the global RBFs for solving practical problem. 

9.5 Remarks 

In the first examples, RBFs are adopted for the curve fitting purpose. Apparently, 
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the radial point interpolation using global RBFs is shown computational expensive. In 

contrast, the radial point interpolation using local nodes can be very much cheaper but 

yet without compromising the accuracy of solutions. As long as the ‘local’ field 

function is smooth enough, good approximation can be achieved. Large interpolation 

error is observed along the boundaries, and this finding also in line with the observation 

in other literature [40,46,62] as shown in the second example. As the quality of the local 

radial point interpolation can be ensured, the reason for meshfree method based local 

RBFs is clear. 

In this work, various types of meshfree methods are used for investigation. A 

thorough study on the effects of the number of local nodes for different meshfree 

methods based on RBFs, which includes the meshfree weak-form method: LC-RPIM, 

and meshfree strong-form methods: RFDM, RPCM and RLS-RPCM. Through the 

collective results and the experiences gained in the numerical experiments through 

many of my previous works, the effect of the number of local nodes can be concluded 

and summarized into the following aspects. 

(a) Computational Cost 

No doubt, global RBFs scheme is very costly compared to local RBFs scheme. It 

is clearly demonstrated in all examples that the more the number local nodes, the higher 

the computational cost. Although the procedure of nodal selection is eliminated (as all 

field nodes are used) in the global RBFs, the computation of the inverse for the full 

moment matrix G in Eq. (2.46) still incurs huge computational cost. Secondly, global 



Chapter 9             Effects of the Number of Nodes for Meshfree Methods Based on Radial Basis Functions 

 236

RBFs result in a full coefficient matrix that cost the solving of the simultaneous 

algebraic equations to maximum. 

A rough comparison of the cost of solving simultaneous equations with sparse 

matrix versus full matrix is provides as follows. Simultaneous equations with sparse 

matrix approximately requires 24Np  operations to be solved by Gauss Elimination 

with partial pivoting, where N is the total number of degree of freedom (d.o.f) and p is 

the bandwidth of the matrix. Whereas, solving simultaneous equations with the full 

matrix requires 34N  operations approximately. The ratio of the operations required 

for global and local RBFs in solving simultaneous equations is roughly 2( / )N n , where 

n is the number of local nodes. This rough estimation is not yet taking the operations 

required for forming shape functions into the account. For instance, in Example 3, the 

computational time for RPCM based local RBFs using 25 nodes is 0.3906s and 4.3590s 

for RPCM based on global nodes. The approximated computational cost of the global 

scheme is about / 66 / 25 2.64N n = =  times of the local scheme. The actual ratio of 

the computational times between local and global scheme is 

4.3590 / 0.9063 4.8096 2.64= > . The actual computational time of the local scheme is 

much smaller than the approximated one. 

(b) Condition of the coefficient matrix and moment matrix 

Condition of the coefficient matrix is another important aspect to study. From 

observation, it is found that the stiffness matrix of the weak-form meshfree method is 

not sensitive to the number of local nodes. Whether local or global nodes are used, the 



Chapter 9             Effects of the Number of Nodes for Meshfree Methods Based on Radial Basis Functions 

 237

stiffness matrix remains in good condition as shown in the Example 2. It is because of 

the procedure of the weak formulation always produces a symmetric and positive 

definite matrix (SPD) stiffness matrix. On the contrary, the coefficient matrix of the 

strong-form meshfree method, a non-symmetric matrix usually, is very sensitive to the 

number of local nodes. According to the intensive study, the global RBFs always leads 

to an ill-conditioned coefficient matrix. Similar conclusion can be found in Kansa’s 

works [66]. Compared to global RBFs, one can notice that the local RBFs are always 

providing a coefficient matrix with better condition as demonstrated in Example 3-5. 

This is a very strong evidence to show local RBFs is more favourable for meshfree 

strong-form methods.  

The condition of the moment matrix is also another great concern which is 

influenced very much by the local nodes. While global RBFs is used in the domain with 

randomly distributed nodes for approximation, most likely some nodes are very close to 

each other and it will cause their corresponding rows the moment matrix not so linearly 

independent to each other. Consequently, the condition number of the moment matrix is 

generally very large and it leads to a very poor approximation for the derivatives. In 

contrast, the local RBFs only construct shape functions using local nodes, moment 

matrix is only formed for the local domain. Thus, the nodal distribution in the local 

domain is not as severely random as compared to the global domain. Additionally, the 

nodes in the local domain are much lesser than the global domain, and hence the 

condition of the moment matrix and the approximation of the derivatives of local RBFs 

are much better global RBFs.  
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(c) Accuracy 

No significant evidence shows global RBFs hold any prominent advantages 

against local RBFs. In the curve fitting problem illustrated in Example 1, one can find 

that the approximation of derivatives based local RBFs can be as accurate as global 

RBFs. In the example of meshfree weak-form method, solution of local RBFs scheme 

performs as good as the global RBFs with a cheaper computational cost. For 

strong-form meshfree methods and its adaptive analysis, local RBFs scheme has 

demonstrated excellence performance with incredible accuracy. Meshfree strong-form 

methods based on global RBFs is not a robust, efficient and reliable method.  

(d) Other aspects 

There are some other aspects to be considered such as geometry of the domain. As 

interpolation scheme based on the RBFs is not appropriate for concave domain, special 

technique is required to tackle this critical problem. Therefore, while dealing with 

concave global domain such as Example 3, good approximation can not be achieved. 

However, the local support domain for local RBFs can be seen as a convex domain to 

certain extent. Hence, it is more appropriate to use local RBFs generally.  

Not to mention, the storage required for the full matrix resulted in global RBFs is 

also another challenges. The computational cost and the problem of storage will get 

more expensive and severe when the scale of the problem becomes larger.  

From the above findings, concrete evidences are provided and show the 

performance of local RBFs scheme is more superior to global RBFs scheme. Hence, it 
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is more recommended to use local RBFs to construct the shape function or approximate 

the field function. 

 



Chapter 9             Effects of the Number of Nodes for Meshfree Methods Based on Radial Basis Functions 

 240

(a) (b) 

Figure 9.1 (a) Appropriate and (b) inappropriate selection of local nodes for local RBFs. 

 

(a) (b) 

Figure 9.2 (a) Immediate layer and (b) the second layer of supporting nodes. 
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Figure 9.5 Computational time of the interpolation scheme using different local nodes. 
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Figure 9.7 The absolute error distribution of 
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Figure 9.9 Error norms of displacements of the LC-RPIM using different number of local 

nodes. 
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Figure 9.10 Energy norms of the LC-RPIM using different number of local nodes. 
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Figure 9.11 Condition number of the stiffness matrix of the LC-RPIM using different number of 

local nodes. 
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Figure 9.12 Distribution of a set of 100 randomly scattered nodes in a square domain. 
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(a) (b) 

Figure 9.13 (a) Dimension of a triangular cross section bar, (b) a model of the bar with 120 

field nodes. 
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Figure 9.14 Error norm of the RPCM solution with different number of local nodes. 
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Figure 9.15 Computational time of the RPCM with different number of local nodes. 
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Figure 9.16 Condition number of the coefficient matrix of the RPCM with different number of 

local nodes. 



Chapter 9             Effects of the Number of Nodes for Meshfree Methods Based on Radial Basis Functions 

 248

102 103
10-4

10-3

10-2

10-1

Total No. Field Nodes

Er
ro

r N
or

m

Convergent rate of the error norm

Global Nodes
Local Nodes
Double Layer

R=1.1488

R=1.5603

R=1.6373

 

Figure 9.17 Comparison of the convergent rate in term of the error norm among the different 

schemes. 
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Figure 9.18 Comparison of the computational time among different schemes. 
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Figure 9.19 Comparison of the condition number of the coefficient matrices among different 

schemes. 
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Figure 9.20 Comparison of the efficiency among different schemes. 
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Figure 9.21 Error norm of the displacements obtained by RLS-RPCM. 
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Figure 9.22 Error norm of the stresses obtained by RLS-RPCM. 
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Figure 9.23 Computational time required for the RLS-RPCM with different number of local 

nodes. 
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Figure 9.24 Efficiency of the RLS-RPCM with different local nodes in term of energy norm. 
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Figure 9.25 Condition number of the coefficient matrix of RLS-RPCM using different number 

of local nodes. 

 

 

Figure 9.26 The plot of the field function u and its derivatives. 
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Figure 9.27 (a) The initial distribution, and the final nodal distribution for the adaptive RPCM 

using (b) global nodes, (c) 25 local nodes and (d) double layers of the local nodes.
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Figure 9.28 The comparison of the error norms of the field function at each adaptive step. 
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Figure 9.29 The comparison of the computational efficiency among different schemes. 
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Figure 9.30 The comparison of the condition number of the coefficient matrice among different 

schemes at each adaptive step. 
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Chapter 10  
 
 
Conclusion and Future Work 

 

10.1  Conclusion Remarks 

This study has focused on the development of meshfree strong-form methods. The 

developed strong-form methods have also been successfully extended to adaptive 

analysis. Through this study, the following conclusions are drawn: 

(1) Three stabilization procedures are proposed to restore the stability of 

RPCM solution before it can be applied in adaptive analysis. The first 

suggested stabilization procedure is known as stabilization least-squares 

procedure [51]. In the stabilization least-squares procedure, an additional 

governing equation is imposed on the Dirichlet boundaries with a 

stabilization factor α  to achieve certain degree of equilibrium on the 

Dirichlet boundaries. Good accuracy and stable solution is obtained 

through the proposed stabilization procedure. The stabilized 

least-squares radial point collocation method (LS-RPCM) has been 

successfully extended to adaptive analysis. However, the optimal value 

for the stabilization factor α  still remains open. In this work, a very 
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small number is recommended and 0.05α =  is used in this work. The 

advantages of strong-form meshfree method have been evidently shown 

in the large number of numerical examples. 

(2) As Neumann boundary condition is blamed for the cause of instability, a 

least-square procedure with special treatment for boundaries is proposed 

to stabilize the solution of RPCM [68]. In the second stabilization 

procedure, more collocation points (not nodes) are introduced on the 

boundaries to reduce the ‘strong’ requirement of satisfying the governing 

equation and boundary conditions, and hence a relaxation effect is 

provided. The well-known least-square technique is applied to solve for 

the over-determined algebraic equations. Although the boundary 

conditions and the governing equation are not fully satisfied on nodes, 

the solution of the LS-RPCM is stable and in good accuracy. As stability 

is restored, the LS-RPCM is also extended to adaptive analysis. 

Examples illustrated in this work have clearly shown that good result can 

be obtained in the adaptive LS-RPCM.  

(3) Regularization technique that commonly be used for solving ill-posed 

inversed problem is used to stabilize the solution of RPCM in this work 

[67]. The regularization procedure that adopts Tikhonov regularization 

technique is introduced in the regularization least-squares RPCM 

(RLS-RPCM). As special regularization equations and regularization 

points are suggested, no regularization factor has to be determined in the 
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RLS-RPCM. After stable and accurate solution is obtained through the 

proposed regularization procedure, RLS-RPCM has also successfully 

applied in adaptive analysis. A vast number of examples have shown 

adaptive RLS-RPCM is efficient and good numerical performance is 

demonstrated. 

(4) In addition to the strong-form meshfree methods, a classical subdomain 

method integrated with RPIM shape functions is proposed [71]. By 

applying the meshfree techniques in classical subdomain method, the 

present method has demonstrated good stability and accuracy. Numerous 

numerical examples have shown the subdomain method can be easily 

extended to adaptive analysis and good results can be obtained. 

Subdomain method has also been shown robust, stable and accurate as 

compared to stabilized RPCM. One of the main reasons may due to the 

formulation procedure that integrated Neumann boundary condition 

naturally. The residual in the subdomain is also kept to minimum. For 

strong form method, the problem domain is only represented by nodes 

and residual is kept to minimum at nodes only. Nevertheless, strong form 

method has also possesses several attractive features such as feature of 

free from domain discretization and integration. 

(5) Before all the meshfree strong-form method can be extended to adaptive 

analysis, a robust and effective error estimator that is customized for the 

strong-form method has to be developed. This is one of the most 
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challenging works in this thesis as most of the well established error 

estimator is only applicable for weak-form and based on mesh. The 

residual based error estimator proposed in this work is an excellent error 

estimator [69]. It has been shown effective and robust in the numerous 

numerical examples of various meshfree strong-form methods. In 

addition, this versatile error estimator has been successfully implemented 

in the adaptive FEM and adaptive subdomain method as well. As 

compared to the conventional error estimators used in the adaptive FEM, 

the present error estimator has also exhibited great advantages in terms of 

computational cost and efficiency. 

(6) RPIM approximation is used in all the strong-form methods and the 

proposed subdomain method to construct their shape functions. In RPIM 

approximation based on the local RBFs, RBFs has significantly 

influences to the solutions. Hence, a thorough study of the local RBFs is 

very important. Although the shape parameters of the local RBFs have 

been comprehensively studied in literature, the effects of the number of 

local nodes for meshfree methods are not intensively investigated. In this 

work, an insightful and comprehensive study on the effects of the number 

of local nodes for meshfree methods based on local RBFs is provided 

[70]. The local RBFs not only reduce the computational cost drastically, 

but also provide a more stable coefficient matrix, especially in the 

strong-form meshfree methods. Instead of suggesting how many local 
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nodes to be used, a concept of ‘layer’ is introduced to facilitate the nodal 

selection in the function approximation.  

10.2 Recommendation for future work 

Based on the presented work in this thesis, the following recommendations are 

given for future work: 

(1) All the examples given in this thesis are one or two dimensional problems. 

It is possible to extend the presented strong-form meshfree methods to 

solve for three dimensional problems. The proposed stabilization 

techniques are still applicable; however, some modifications are required. 

As the formulation of strong-form method is simple and straightforward, 

low computational cost is expected in the three dimensional cases. 

(2) It is also possible to extend my adaptive works to non-linear and dynamic 

problems. However, a more complicated adaptive strategy has to be 

devised. In the dynamics problems, as the field function is varying at 

different time, coarsening procedure is required to remove the 

unnecessary nodes in the problem domain. 

(3) Since knowledge of meshfree techniques has been gained through the 

experience in the past, it is possible to apply those techniques to the 

classical method, e.g., FEM, subdomain method. Besides the RPIM 

approximation, it is also possible to use PPIM approximation in the 

subdomain formulation with some special treatments on the boundaries.  
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(4) Although several stabilization techniques are suggested in the presented 

work, I believe that these proposed stabilization procedures are not the 

only possible approaches to provide a stable strong-form solution. As 

development of strong-form meshfree methods is still at the developing 

stage, more stabilization procedures or novel formulations may be 

proposed in the future. A stable strong-form solution is still very much 

desired and in great demand.  
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