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Summary

The question of whether a positive semidefinite polynomial can be written as a sum of

squares of rational functions was posed by Hilbert in the early 1900s, and this question,

together with some related questions regarding positivity of polynomials have been of in-

terest to many. Pólya gave a constructive proof with certain conditions: if the polynomial

p is both positive definite and even, then for sufficiently large N , p · (
∑

x2
i )

N has positive

coefficients. (
∑

x2
i )

N is termed as a uniform denominator, and we are interested in several

related questions to Pólya’s theorem, such as: are there polynomials which can be written

as a sum of rational functions but not with a uniform denominator? An effective bound

for the exponent N has been given by Reznick, but can this result be extended for positive

semi-definite polynomials? What about real-valued positive semi-definite bihomogeneous

polynomials on Cn?

We conduct a survey of results on the relations among certain subsets of real and

complex positive semi-definite polynomials which are relevant to the above questions. In

particular, we determine the minimum degree at which we have strict inclusion for number

of variables up to 4, and collate them in tabular form. We also modify existing results of

Reznick for effective aspects of real-valued bihomogeneous positive definite polynomials.

Lastly, we obtain necessary as well as sufficient conditions for Pólya semi-stability of

vii



viii Summary

positive semi-definite polynomials with effective estimates.



Statement of Author’s Contribution

Chapter 2 is a literature survey of the relations among certain subsets of positive semi-

definite polynomials, and presented in tabular forms. As far as we know, this is the first

time such tables have been compiled.

Chapter 3 contains modifications to known results by Bruce Reznick, and they are new.

As for Chapter 4, Section 4.1 to Section 4.5 have been included in a joint paper by the

author and A/P To Wing Keung, which has been accepted by Journal of Complexity.

The author also illustrates an application of the results of Section 4.1-4.4 in Section 4.6

for certain positive semi-definite real-valued bihomogeneous polynomials.
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Chapter 1
Introduction

1.1 Overview

In 1900, Hilbert asked whether a real positive semi-definite (psd) polynomial in n

variables can be written as a sum of squares of rational functions, and this was known

as Hilbert’s 17th problem. It was well-known by the late 19th century that the set of

real homogeneous polynomials (forms) that are positive semi-definite is equal to the set

of real forms that can be represented as a sum of squares of polynomials (sos) when the

number of variables is 2 or when the degree of the polynomials is 2. Hilbert also proved

that every real positive semi-definite form of degree 4 in 3 variables can be written as a

sum of three squares of quadratic forms, hence leading to his question above.

In 1920s, Artin solved Hilbert’s 17th problem in the affirmative by a non-constructive

method, and later Pólya [18] presented a proof in a special case: if p is both positive

definite and even, then for sufficiently large N , p · (
∑

x2
i )

N has positive coefficients, i.e.,

it is a sum of squares of monomials. This implies that p is a sum of squares of rational

functions with uniform denominator (
∑

x2
i )

N .

The above leads to some closely related questions: Are there real psd polynomials

which can be written as a sum of rational functions but not with the uniform denominator

1



2 Chapter 1. Introduction

(
∑

x2
i )

N? What about a psd polynomial that is not a sum of squares of polynomials? If

we were to extend the results for real positive semi-definite polynomials to their complex

analogues, that is, real-valued bihomogeneous psd polynomials, what will they be? What

is the minimum degree for which we have strict inclusion for the set of sos in the set of

psd polynomials in n variables?

Chapter 2 gives a survey of the literature on current results of the above questions,

and we present them in a tabular form (Table 2.1). We also construct examples for

the cases where we have strict inclusions. We investigate the relationships between the

following sets: the set of psds, the set of psds which can be written as a sum of rational

functions, the set of psds which can be written as a sum of rational functions with uniform

denominator (
∑

x2
i )

N , and the set of sos. Table 2.1 presents the above inclusions for the

cases n = 2, 3 and for n ≥ 4.

For Table 2.2, if set A is a strict subset of set B in Table 2.1, we show, with examples,

the minimum degree for which there is a polynomial p that belongs to set B but not A.

We show the minimum degree for the cases n = 2, 3, 4, for the above-mentioned sets of

psd polynomials as in Table 2.1, in both real and complex n variables. The case (ii) of

Table 2.2, where we investigate the minimum degree at which there exists an example in

4 real variables that is a psd which can be written as a sum of rational functions but not

with uniform denominator, is an exception as we are unable to give a conclusion to the

exact degree.

For a positive definite form p of degree d, Reznick [23] has proved effectively that

(
∑

x2
i )

Np is a positive linear combination over R of a set of (2N + d)-th powers of linear

forms with rational coeffcients, and hence it is also a sos. The restriction to positive

definite forms is necessary, as there exist psd forms p in n ≥ 4 variables such that (
∑

x2
i )

Np

can never be a sum of squares of forms for any N , due to the existence of bad points, which

was studied by Delzell [8]. In a paper by Reznick [25], he showed that there is no single

form h so that if p is a psd form, then hp is sos. Furthermore, there is not even a finite

set of forms so that if p is a psd form, then any h from this finite set of forms will ensure
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that hp is sos. The proofs for these two results require the existence of forms which are

psds but not sos. Hence if we are able to show the existence of forms which are positive

definite but not sos, then the above results will hold for positive definite forms. This is

shown in Section 3.1, for the case of real variables as well as their complex analogues.

For a real positive definite form p of degree m in n variables, Reznick [23] has shown

that if

N ≥ nm(m− 1)

(4 log 2)ε(p)
− n + m

2
, (1.1)

where ε(p) is a measure of how ‘close ’p is to having a zero, then (
∑

x2
i )

Np is a sum of

(m + 2N)-th powers of linear forms, and hence sos. Then using the method by Reznick

[23], To and Yeung [30] have shown that for a real-valued bihomogeneous positive definite

polynomial of degree m in n complex variables, if

Nc ≥
nm(2m− 1)

ε(p) log 2
− n−m, (1.2)

then ||z||2Ncp is a sum of 2(m+Nc)-th powers of norms of homogeneous linear polynomials.

For a real-valued bihomogeneous positive definite polynomial in n complex variables, p

can be written as a difference of squared norms, i.e., p = ||g||2−||h||2. Furthermore, there

exists some real constant c < 1 such that ||h||2 ≤ c||g||2. Using this, we modify the proof

of ([23], Theorem 3.11) in Section 3.2 of this thesis and see that the bound Nc can be

slightly improved for some values of c.

Lastly, in an attempt to find an effective bound for the exponent N for a real-valued

bihomogeneous psd polynomial p in n complex variables such that ||z||2Np is a sos, we turn

our attention to Pólya’s theorem, which says that if f is real, homogeneous and positive

definite on the standard simplex ∆n, then for sufficiently large N , all the coefficients of

(x1 + · · · + xn)Nf are positive. Such a polynomial f is said to be Pólya stable. In 2001,

Powers and Reznick [20] have found an effective bound for N , and more recently also for

the case when p has simple zeros (zeros only at the vertices of ∆n), in [21] and [22].

Pólya’s theorem and Powers and Reznick’s effective bound can be extended to a result

for certain psd bihomogeneous polynomials in Cn, where their real analogues satisfy the
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conditions of Pólya’s theorem.

In Chapter 4 of this thesis, we show the necessary conditions (Theorem 4.2.2) for a

positive semi-definite real polynomial p to be Pólya semi-stable, as well as the sufficient

conditions with effective estimates (Theorem 4.3.10). We also show that these necessary

and sufficient conditions coincide for the case when the set of zeros of p is finite and the case

when n = 3, hence obtaining a characterization of such Pólya semi-stable polynomials.

Section 4.5 also shows an application of Theorem 4.3.10 for a general simplex. The

contents of the sections 4.1-4.5 have been written in the paper ‘Effective Pólya semi-

positivity for non-negative polynomials on the simplex ’. This paper is a joint effort

between the author and Associate Professor To Wing Keung, and it has been accepted

for publication in Journal of Complexity.

Similar to the extension of Pólya’s theorem for certain bihomogeneous psd polynomials

in Cn, we can extend the necessary and sufficient conditions with effective estimates in

Chapter 4 to a result for certain bihomogenous psd polynomials in Cn. This will be the

content of the last section, Section 4.6.

1.2 Some Notations and Definitions

Let Z≥0 denote the set of non-negative integers. For positive integers n and d, we consider

the index set I(n, d) := {γ = (γ1, · · · , γn) ∈ Zn
≥0 | |γ| = d}, where |γ| = γ1 + · · ·+ γn. A

homogeneous polynomial (form) f of degree d in Rn is given by

f(x1, · · · , xn) =
∑

γ∈I(n,d)

aγx
γ, (1.3)

where each aγ ∈ R, and xγ := xγ1

1 xγ2

2 · · ·xγn
n . A homogeneous polynomial is known as a

form, and the set of homogeneous polynomials on Rn of degree d is denoted by Hd(Rn).

Also, we denote by Hd(Cn) the complex vector space of homogeneous holomorphic poly-

nomials on Cn of degree d. A real-valued bihomogeneous polynomial on Cn of degree d
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in z and z̄ is of the form

p(z) =
∑

I,J∈I(n,d)

cIJzI z̄J (1.4)

where cIJ are complex coefficients such that cIJ = cJI and the set of such polynomials is

denoted by BHd(Cn).

The cone of positive semidefinite forms in Hd(Rn) is denoted by

Pd(Rn) = {p ∈ Hd(Rn) | p(x) ≥ 0 ∀x ∈ Rn}, (1.5)

and the cone of real-valued positive semidefinite bihomogeneous polynomials on BHd(Cn)

is similarly denoted by

Pd(Cn) = {p ∈ BHd(Cn) | p(z) ≥ 0∀z ∈ Cn}. (1.6)

For positive definite forms in Hd(Rn) (resp. BHd(Cn)), we have

PDd(Rn) = {p ∈ Hd(Rn) | p(x) > 0∀x ∈ Rn}, (1.7)

PDd(Cn) = {p ∈ BHd(Cn) | p(z) > 0∀z ∈ Cn}. (1.8)

The sets of sum of squares (sos) and sum of squares of rational functions in Hd(Rn) are

denoted by

Σd(Rn) = {p ∈ Hd(Rn) | p =
∑

k

h2
k}, (1.9)

PQd(Rn) = {p ∈ Hd(Rn) | (
∑

j

g2
j )p =

∑
k

f 2
k}. (1.10)

for hk, fk, gj ∈ Hd/2(Rn). Similarly, the set of sums of squared norms and the quotients

of squared norms in BHd(Cn) are denoted by

Σd(Cn) = {p ∈ BHd(Cn) | p =
∑

k

|hk|2}, (1.11)

PQd(Cn) = {p ∈ BHd(Cn) | (
∑

j

|gj|2)p =
∑

k

|fk|2}. (1.12)

for hk, fk, gk ∈ Hd(Cn).

We also denote

PQDd(Rn) = {p ∈ Hd(Rn) | (
∑

i

x2
i )

Np =
∑

k

h2
k} (1.13)
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to be the set of sums of squares of rational functions with uniform denominator, and

similarly, the set of quotients of squared norms with uniform denominator is denoted by

PQDd(Cn) = {p ∈ BHd(Cn) | (
∑

i

|zi|2)Np =
∑

k

|fk|2}. (1.14)

We note that all the sums mentioned are finite sums.



Chapter 2
Subsets of the Set of Positive Semi-definite

Polynomials

In the first section of this chapter, we consider the inclusion of the subsets of the set of

positive semi-definite homogeneous real (resp. complex) polynomials with respect to the

number of variables n. The four subsets (defined in Section 1.2) are

• the set of positive semi-definite forms Pd(Kn),

• the set of forms in Pd(Kn) that are sums of squares of rational functions (resp.

quotients of squared norms) PQd(Kn),

• the set of forms in Pd(Kn) that are sums of squares of rational functions with uni-

form denominators (resp. quotients of squared norms with uniform denominators)

PQDd(Kn), and

• the set of forms in Pd(Kn) that are sums of squares of monomials (resp. sum of

squared norms) Σd(Kn).

Here K = R or C.

In the second section, we again consider the inclusion of the above mentioned subsets

and select the cases in which we have strict inclusions. We then determine the minimum

degree md at which examples occur.

7



8 Chapter 2. Subsets of the Set of Positive Semi-definite Polynomials

2.1 Table of subsets of PSD - w.r.t variables

The table below shows the inclusion of subsets of the set of positive semi-definite forms

(in n real and complex variables), with ‘E’ signifying that the two sets in the leftmost

column are the same set, while ‘S’ means that we have strict inclusion for the two sets in

the leftmost column. The symbol R indicates that we are looking at real polynomials for

a column, while C indicates that we are looking at real-valued bihomogeneous complex

polynomials. The letters in parenthesis in the table indicates the part of the proof for

each entry. For example, ‘PQDd ⊂ PQd, n = 3, C, S (g) ’ means that for 3 complex

variables, PQDd(C3) is a proper subset of PQd(C3) and the proof is in part (g).

n = 2 n = 3 n ≥ 4

R C R C R C

PQd ⊂ Pd E (a) S (b) E (a) S (b) E (a) S (b)

PQDd ⊂ PQd E (c) E (d) E (e) S (g) S (e) S (h)

Σd ⊂ PQDd E (c) S (f) S (i) S (j) S (k) S (l)

Table 2.1: Inclusion table for subsets of PSDs - w.r.t variables

Proof. (a) This is basically Hilbert’s Seventeenth problem which was solved affirma-

tively by Artin in the 1920s. Hence for n ≥ 2, all positive semidefinite forms must

be a sum of squares of rational functions for real variables.

(b) For n = 2, the Hermitian function

p(z1, z2) = (|z1|2 − |z2|2)2 (2.1)

is a positive semi-definite form in P2(C2), but not a quotient of squared norms.

Clearly, since p is a square it is greater than or equal to zero. There are two methods

to see why p is not a quotient of squared norms. Firstly, based on the fact that if

a Hermitian function P is a quotient of squared norms, then the zero set of the
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function must be a complex analytic set, and it is easy see that the zero set of p is a

circle which is not a complex analytic set, implying that p is not a quotient of squared

norms. Secondly, we can use the jet pullback method introduced by D’Angelo [12].

Choose the curve z(t) to be t → (1, 1 + t), then z ∗ p = 2|t|2 + t2 + t̄2 + · · · . The

presence of terms in z ∗ p of lowest order 2 other than 2|t|2 causes the jet pullback

property to fail, and hence p is not a quotient of squared norms.

For n = 3, the Hermitian function

q(z1, z2, z3) = |z1|4|z2|2 + |z1|2|z2|4 + |z3|6 − 3|z1z2z3|2 ∈ P3(C3), (2.2)

is positive semi-definite, by using the arithmetic geometric mean inequality. How-

ever, it is not a quotient of squared norms as there exists a curve given by z(t) :

t→ (t, t + t2, t) such that z ∗ q = 2|t|8 + t2|t|6 + t̄2|t|6 + · · · violates the jet pullback

property.

For n = 4, the Hermitian function

r(z1, z2, z3, z4) = |z1|4|z2|2|z4|2 + |z1|2|z2|4|z4|2 + |z3|6|z4|2 − 3|z1z2z3z4|2 ∈ P3(C4),

(2.3)

is psd as well, since r = |z4|2q where q is as in (2.2) and |z4|2 is nonnegative. Again,

it is not a quotient of squared norms as there exists a curve given by z(t) : t →

(t, t + t2, t, t) such that z ∗ r = 2|t|10 + t2|t|8 + t̄2|t|8 + · · · violates the jet pullback

property. Clearly, for n ≥ 4, the Hermitian function

rn(z1, · · · , zn) = |z1|4|z2|2|z4|2 · · · |zn|2 + |z1|2|z2|4|z4|2 · · · |zn|2 (2.4)

+|z3|6|z4|2 · · · |zn|2 − 3|z1z2z3z4 · · · zn|2 (2.5)

is positive semi-definite, since rn = |z4|2 · · · |zn|2q where q is as in (2.2) and |z4|2 · · · |zn|2

is nonnegative. It is not a quotient of squared norms by the jet pullback property,

since there exists a curve given by z(t) : t → (t, t + t2, t, t, · · · , t), (where there are

(n − 1) t terms) such that z ∗ r = 2|t|2n+2 + t2|t|2n + t̄2|t|2n + · · · violates the jet

pullback property.
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(c) If p(x, y) ∈ Pd(R2), then let f(t) = p(t, 1) ≥ 0 for all real t, so that the roots of

f can be seen to be either real with even multiplicity, or complex conjugate pairs.

Hence f(t) = A(t)2(Q(t) + iR(t))(Q(t)− iR(t)) = (A(t)Q(t))2 + (A(t)R(t))2. Upon

homogenization of f , p(x, y) is also a sum of two polynomial squares. This shows

that Pd(R2) = Σd(R2). Clearly, such forms in Pd(R2) can be written as a sum of

squares of rational functions with (
∑

x2
i )

N = 1 as the denominator, for N ≥ 1.

(d) We refer to Theorem 2 of D’Angelo’s paper [13]:

([13], Theorem 2). Let R be a positive semi-definite Hermitian symmetric polyno-

mial in one complex variable. Then R is a quotient of squared norms if and only if

one of the following three distinct conditions holds:

(1) R is identically zero.

(2) R is positive definite and a quotient of squared norms, · · ·

(3) The zero set of R is finite, and

R(z) =
N∏

j=1

|z − wj|2kjr(z)

where r is postive definite and a quotient of squared norms.

The above theorem considers the case when n = 1, but is equivalent to the result in

the bihomogeneous case when n = 2. Given a positive semi-definite polynomial R,

if it is a quotient of squared norms, then we can have the factorized representation

in point (3) of the theorem. By point (3) of Theorem 2, r(z) is positive definite and

a quotient of squared norms. Hence by an earlier result of Catlin and D’Angelo (see

Theorem 0 of [13]), for positive definite r(z), there is an integer k and a holomorphic

homogeneous polynomial vector-valued mapping A such that

r(z) =
||A(z)||2

||z||2k
(2.6)

We multiply R with uniform denominator ||z||2d for some integer d ≥ k, and obtain:

||z||2dR(z) =
N∏

j=1

|z − wj|2kjr(z)||z||2d. (2.7)
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We combine (2.6) and (2.7), and we have:

||z||2dR(z) =
N∏

j=1

|z − wj|2kj

( ||A(z)||2

||z||2k

)
||z||2d

=
N∏

j=1

|z − wj|2kj ||A(z)||2||z||2(d−k).

Since the product of sos is sos, and |z − wj| has even powers, the right hand side

of the above equation is sos. This gives the result that for n = 2, all positive

semi-definite forms that are quotient of squared norms have uniform denominators.

(e) By Artin’s result [1], any positive semi-definite form can be written as a sum of

squares of rational functions for real variables. For n = 3, it is a consequence of [6]

that there are no bad points for a form h, such that for any positive semi-definite

form f , h2f is a sos. Hence by Scheiderer ([7], Cor 3.12), such a form hN can be the

uniform denominator (
∑

x2
i )

N . This enables us to see that all positive semi-definite

forms that can be written as a sum of squares of rational functions are forms with

uniform denominators.

On the other hand, for n = 4, such bad points are known to exist. Take for example,

p(x, y, z, w) = w2(x4y2 + x2y4 + z6 − 3x2y2z2) ∈ P8(R4).

It can be shown that (1, 0, 0, 0) is a bad point for p(x, y, z, w), i.e, there does not exist

any form h such that h2p is a sos. Specifically, it can be shown that p(x, y, z, w) ·

(x2 + y2 + z2 + w2)r is not a sos for any r. In a similar manner, for a n variable real

polynomial

P (x, y, z, x1, · · · , xn−3) = (x1 · · ·xn−3)
2(x4y2 + x2y4 + z6 − 3x2y2z2),

(1, 0, · · · , 0) is a bad point, and there does not exist any form h such that h2P is

sos. Specifically, the uniform denominator (
∑

x2
i ) with any exponent r multiplied

with P is also not sos. Hence for n ≥ 4, PQDd(Rn) is a proper subset of PQd(Rn).
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(f) The following is an example of a polynomial in PQD4(C2) but not in Σ4(C2):

rb(z1, z2) = (|z1|2 + |z2|2)2 − b|z1|2 |z2|2, (2.8)

which is similar to an example given by D’Angelo [12]. We write x = |z1|2 and

y = |z2|2, and obtain rb = (x + y)2 − bxy. Clearly, rb is non-negative when b ≤ 4

and positive away from the origin when b < 4. By point (d) of Table 4.1, if rb is

bihomogeneous and positive definite, then it is a quotient of squared norms with

uniform denominator. We can also show that rb is not a quotient of squared norms

when b = 4. To do so, we show that the jet pullback property fails when b = 4. Let

z(t) = (1 + t, t), then

z ∗ rb(t, t̄) = (|1 + t|2 + |t|2)2 − 4|t|2|1 + t|2 = 2|t|2 + t2 + t̄2 + · · · .

Inspection of the coefficient of the term |z1z2|2 will show that rb is sos when b ≤ 2.

Hence for 2 < b < 4, rb is a positive semidefinite polynomial that can be written as

a quotient of squared norms with uniform denominator but not as a sos.

(g) We claim that PQDd(C3) is a proper subset of PQd(C3), and consider the following

example which is an element in PQd(C3) but not an element in PQDd(C3).

p(z) = p(z1, z2, z3) = |z3|2
(
(|z1|2 + |z2|2)2 − b|z1z2|2

)
= |z3|2(rb(z))

where 2 < b < 4, and rb(z) is as defined in (2.8). From point (f), rb is a quotient of

squared norms but not sos. Then p(z) is also a quotient of squared norms but not

sos. Suppose p(z) is a quotient of squared norms with uniform denominator, which

means

(|z1|2 + |z2|2 + |z3|2)N · p(z) =
∑

i

|hi|2

for some N ∈ N, hi ∈ H3+r(C3). Let the monomial in each |hi|2 with |z3|2+2N be

|ĥi|2|z3|2+2N . By comparing coefficients of |z3|, we have

|z3|2+2N · p(z) =
∑

i

|ĥi|2|z3|2+2N
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This implies p(z) is sos which is a contradiction. Hence p(z) is a quotient of squared

norms but not a quotient of squared norms with uniform denominator.

(h) We consider the following polynomial

p(z1, z2, z3, z4) = |z4|2
(
Mc(z1, z2, z3)

)
= |z4|2

(
|z1|4|z2|2 + |z1|2|z2|4 + |z3|6 − (3− ε)|z1z2z3|2

)
(2.9)

where 0 < ε < 3, and Mc is a complex analogue of Motzkin’s polynomial with

a modification in the coefficient of |z1z2z3|2. By arithmetic-geometric inequality

a + b + c ≥ 3(abc)
1
3 , we let (a, b, c) = (|z1|4|z2|2, |z1|2|z2|4, |z3|6), and obtain

|z1|4|z2|2 + |z1|2|z2|4 + |z3|6 ≥ 3|z1z2z3|2 > (3− ε)|z1z2z3|2 (2.10)

Hence Mc is positive semi-definite and p is positive semi-definite as well because

|z4|2 is non-negative. Next, if we were to write p as a difference of squared norms,

we have p = ||g||2 − ||h||2, where ||g||2 = |z1|4|z2|2 + |z1|2|z2|4 + |z3|6, and ||h||2 =

(3 − ε)|z1z2z3|2. By (2.10), clearly there exists a constant 0 < c < 1 such that

||h||2 ≤ c||g||2. This is equivalent to saying there exist a constant C (which can be

written in terms of c) such that

||g||2 + ||h||2

||g||2 − ||h||2
≤ C, (2.11)

for all points of C3 which are not zeros of p. Hence by Varolin’s result [9], Mc is a

quotient of squared norms which implies p is a quotient of squared norms as well.

Then we will show that although p is a quotient of squared norms, there is no integer

r such that the uniform denominator is ||z||2r. We prove by contradiction. Suppose

p · (|z1|2 + |z2|2 + |z3|2 + |z4|2)r =
∑
|hi|2 is sos for some r ∈ N, hi ∈ H4+r(C4). Then

the component of p · (|z1|2 + |z2|2 + |z3|2 + |z4|2)r with the highest degree of |z4| is

|z4|2r+2Mc(z1, z2, z3). Let the monomial in each |hi|2 with |z4|2r+2 be |ĥi|2|z4|2r+2.

By comparing coefficients, we have

|z4|2r+2Mc(z1, z2, z3) =
∑

i

|ĥi|2|z4|2r+2



14 Chapter 2. Subsets of the Set of Positive Semi-definite Polynomials

This implies that we have Mc(z1, z2, z3) as a sos. To see that Mc is not sos, simply set

|zi|2 to x2
i , and by the term inspection method in the real case which shows that the

Motzkin polynomial is not sos, similarly, we have 0 > −(3− ε) =
∑

k F 2
k ([24], page

7). Hence Mc is not sos, and by contradiction, p does not have a representation as

a quotient of squared norms with the uniform denominator. By similar arguments,

we can generalize the above counterexample p(z) for n ≥ 4:

pn(z1, z2, z3, z4, · · · , zn)

= |z4 · · · zn|2
(
Mc(z1, z2, z3)

)
= |z4 · · · zn|2

(
|z1|4|z2|2 + |z1|2|z2|4 + |z3|6 − (3− ε)|z1z2z3|2

)
By above, since Mc is a quotient of squared norms, then pn is also a quotient of

squared norms. However, ||z||r is not the uniform denominator for pn for all r. We

prove by contradiction. Suppose

p · (|z1|2 + |z2|2 + |z3|2 + |z4|2 + · · ·+ |zn|2)r =
∑
|hi|2

is sos for some r ∈ N, hi ∈ Hn+r(Cn). Then the component of p · (|z1|2 + |z2|2 +

|z3|2 + |z4|2 + · · · + |zn|2)r with the highest degree of |zk| is |zk|2r+2Mc(z1, z2, z3),

for 4 ≤ k ≤ n. Let the monomial in each |hi|2 with |zk|2r+2 be |ĥi|2|zk|2r+2. By

comparing coefficients, we have

|zk|2r+2Mc(z1, z2, z3) =
∑

i

|ĥi|2|zk|2r+2

Hence we have Mc(z1, z2, z3) as a sos, which has been shown to be false. In con-

clusion, there are counterexamples in n ≥ 4 variables where they are quotient of

squared norms but not with uniform denominator.

(i) For a fixed degree d, as the sets Pd(R3), PQd(R3) and PQDd(R3) are equal by points

(a) and (e) of Table 4.1, we only need to show an example which is positive semi-

definite but not sos to justify the claim that Σd(R3) is a proper subset of PQDd(R3).
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The counter example is the celebrated Motzkin’s polynomial:

M(x, y, z) = x4y2 + x2y4 + z6 − 3x2y2z2. (2.12)

This polynomial has been shown in [24], by arithmetic-geometric inequality and

term inspection to be positive semi-definite but not sos.

(j) Consider the polynomial

Mc(z1, z2, z3) = |z1|4|z2|2 + |z1|2|z2|4 + |z3|6 − (3− ε)|z1z2z3|2

in (2.9), where 0 < ε < 3. In point (h) of Table 4.1, we have already shown that Mc

is not sos, hence we only need to show that Mc is a quotient of squared norms with

uniform denominator, that is

(|z1|2 + |z2|2 + |z3|2)mMc(z1, z2, z3) (2.13)

is sos for some integer m. We do the following substitution: x = |z1|2, y = |z2|2 and

z = |z3|2, then we check that the resulting polynomial of (2.13) in x, y and z:

(x + y + z)m(x2y + xy2 + z3 − (3− ε)xyz) (2.14)

has nonnegative coefficients for some integer m. Using Matlab, Figure 2.1 shows

the graph of m against ε, while Figure 2.2 shows the graph of log(m) against log(ε)

with values of ε near 0, with best fitted linear line y = −1.0163x + 2.6468. Hence

we have approximately,

m =
e2.6468

ε1.0163
(2.15)

For example, the form in (2.14) with ε = 0.1 and m = 146 has nonnegative

coefficients and hence is a sos, which implies that Mc,ε=0.1 is a quotient of squared

norms with uniform denominator but not a sos.

(k) From Parrilo’s thesis [19], we see that Motzkin’s example when multiplied with the

uniform denominator (x2 + y2 + z2) has the following explicit decomposition into
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Figure 2.1: Graph of m against ε Figure 2.2: Graph of log(m) against

log(ε)

sum of squares:

(x2 + y2 + z2)M(x, y, z)

= (x2 + y2 + z2)(x4y2 + x2y4 + z6 − 3x2y2z2)

= y2z2(x2 − z2)2 + x2z2(y2 − z2)2 + (x2y2 − z4)2 +
1

4
x2y2(y2 − x2)2

+
3

4
x2y2(x2 + y2 − 2z2)2 (2.16)

To obtain a form in 4 real variables such that when multiplied with the uniform

denominator, it is a sos, we simply substitute z2 = t2 + s2 into (2.16), and obtain

the following sum of squares:

(x2 + y2 + t2 + s2)M4(x, y, t, s)

= (x2 + y2 + t2 + s2)(x4y2 + x2y4 + (t2 + s2)3 − 3x2y2(t2 + s2))

= y2(t2 + s2)(x2 − t2 − s2)2 + x2(t2 + s2)(y2 − t2 − s2)2

+(x2y2 − (t2 + s2)2)2 +
1

4
x2y2(y2 − x2)2 +

3

4
x2y2(x2 + y2 − 2t2 − 2s2)2

(2.17)

Clearly, M4(x, y, t, s) as defined in (2.17) is positive semi-definite. This can be

seen by applying arithmetic-geometric inequality a+b+c
3
≥ (abc)

1
3 to (a, b, c) =

(x4y2, x2y4, (t2 + s2)3). Next, we claim that M4 is not sos. Suppose not, then
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M4 =
∑

h2
i (x, y, t, s) for some hi. Let s = 0 and assume that the rest of the vari-

able are nonzero. Clearly, M4(x, y, t, 0) = M(x, y, z) =
∑

h2
i (x, y, t, 0), implying

that Motzkin’s example in three variables M(x, y, z) is sos. Hence we get a contra-

diction. Then M4(x, y, t, s) is positive semi-definite which is not sos but a sum of

squares of rational functions with uniform denominator.

For n ≥ 4, the same argument for the case n = 4 applies, and we have

(x2 + y2 + z2
1 + · · ·+ z2

n−2)Mn(x, y, z1, · · · , zn−2)

= (x2 + y2 + z2
1 + · · ·+ z2

n−2)(x
4y2 + x2y4 + (z2

1 + · · ·+ z2
n−2)

3

−3x2y2(z2
1 + · · ·+ z2

n−2))

= y2(z2
1 + · · ·+ z2

n−2)(x
2 − z2

1 − · · · − z2
n−2)

2

+x2(z2
1 + · · ·+ z2

n−2)(y
2 − z2

1 − · · · − z2
n−2)

2 + (x2y2 − (z2
1 + · · ·+ z2

n−2)
2)2

+
1

4
x2y2(y2 − x2)2 +

3

4
x2y2(x2 + y2 − 2z2

1 − · · · − 2z2
n−2)

2.

Clearly, Mn is a positive semi-definite polynomial which is not a sos, but a sum of

squares of rational functions with uniform denominator.

(l) Consider the polynomial

M4c(z1, z2, z3, z4) = |z1|4|z2|2 + |z1|2|z2|4 +(|z3|2 + |z4|2)3− (3− ε)|z1z2|2(|z3|2 + |z4|2)

which is a generalized form of Mc in point (j) of Table 4.1. Clearly, M4c is also not

sos, and we only need to show that Mc is a quotient of squared norms with uniform

denominator, that is

(|z1|2 + |z2|2 + |z3|2 + |z4|2)mM4c(z1, z2, z3, z4)

is sos for some integer m. Again, we do the following substitution: x = |z1|2,

y = |z2|2, z = |z3|2 and w = |z4|2, and show that

(x + y + z + w)m(x2y + xy2 + (z + w)3 − (3− ε)xy(z + w))
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has nonnegative coefficients for some integer m. Using Matlab, we obtain (2.15) as

in point (j), and see that exponent m of the uniform denominator has an exponential

relationship with ε as ε approaches 0. In fact, the polynomial M4c can be generalized

to n variables:

Mnc(z1, z2, z3, · · · , zn)

= |z1|4|z2|2 + |z1|2|z2|4 + (|z3|2 + · · ·+ |zn|2)3 − (3− ε)|z1z2|2(|z3|2 + · · ·+ |zn|2)

and the same argument follows. Hence for n ≥ 4, there exist examples of positive

semi-definite forms that are quotient of squared norms with uniform denominator

but not sos.

2.2 Table of subsets of PSD - w.r.t degree

We consider further the cases in Table 4.1 where the inclusion is strict and obtain the

minimum degree dmin where set A is a proper subset of set B, i.e., suppose A is a proper

subset of B, then we determine the minimum degree at which a polynomial p is an element

of B but not an element of A. The key to the following table is: for n real (resp. complex)

variables, each entry in the table shows the minimum degree dmin for A $ B and the part

of the proof in parenthesis, where A and B are sets in the leftmost column. The word

‘Equal’ indicates that the two sets are equal. We remark that part (ii) is the only case

that is not determined precisely, i.e., we do not know whether dmin is 4 or 6.

Proof. (i) We are interested in complex polynomials in z = (z1, · · · , zn) (n variables)

that are real-valued. This is equivalent to saying that the matrix of coefficients of

such a polynomial is Hermitian. For d = 1 and for all n, we show that the set of psds

is equal to the set of Σ1 for complex polynomials that are real-valued. For every

Hermitian matrix H, it is a known fact that it can be orthogonally diagonalized –

H = UCU∗, with U as a unitary matrix where the column vectors are orthogonal



2.2 Table of subsets of PSD - w.r.t degree 19

n = 2 n = 3 n = 4

R C R C R C

PQd ⊂ Pd Equal (i) 2 Equal (i) 2 Equal (i) 2

PQDd ⊂ PQd Equal Equal Equal (i) 2 (ii) 4 or 6 (i) 2

Σd ⊂ PQDd Equal (i) 2 (iii) 6 (i) 2 (iii) 4 (i) 2

Table 2.2: Inclusion table for subsets of PSDs - w.r.t degree

eigenvectors of H, and C is a real diagonal matrix. If p is a real-valued positive

semidefinite bihomogeneous polynomial in n complex variables, then we can write

p = zHz∗ where z is a row vector. Then it is clear that a change of basis (under

the unitary transformation U) will enable us to write p as a difference of squared

norms – p =
∑

i |fi|2−
∑

j |gj|2, where fi, gi are orthogonal linear polynomials. This

implies that fi and gj have common zeros, otherwise p is not positive semi-definite.

However, since fi and gi are orthogonal they would not have common zeros. Hence

p is a sum of squared norms.

We note that since P1(Cn) = Σ1(Cn) for all n, and we have the following examples

for n = 2, 3, 4 with degree 2 respectively, the containment PQd ⊂ Pd is strict in the

first row of Table 2.

p2(z1, z2) = (|z1|2 − |z2|2)2,

p3(z1, z2, z3) = |z3|2(|z1|2 − |z2|2)2,

p4(z1, z2, z3, z4) = |z3z4|2(|z1|2 − |z2|2)2,

with z3 and z4 as constants in p3 and p4, the argument is the same as Table 4.1

(b), showing that PQ2(Cn) is a proper subset of P2(Cn) for n = 2, 3, 4 respectively.

Also, there are forms for n = 3 and n = 4, d = 2, which show that the containment
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PQD2(Cn) ⊂ PQ2(Cn) is strict in the second row of Table 4.2. They are

r3b(z1, z2, z3) = |z3|2(|z1|2 + |z2|2)2 − b|z3|2|z1z2|2, and

r4b(z1, z2, z3, z4) = |z3z4|2(|z1|2 + |z2|2)2 − b|z3|2|z1z2|2,

where 2 < b < 4, and the argument follows from point (f) of Table 4.1. For

the last row in Table 4.2, the following forms for n = 2, 3, 4 with degree d = 2

respectively show that the containment Σ2(Cn) ⊂ PQD2(Cn) is strict. For n = 2,

let rb = (|z1|2 + |z2|2)2 − b|z1z2|2, 2 < b < 4. The argument in Table 4.1 (h) tells us

that it is a positive semi-definite form with a representation as a quotient of squared

norms but not a sos. Next, for n = 3, let

Rb = (|z1|2 + |z2|2 + |z3|2)2 − b|z1z2|2 = rb + 2|z3|2(|z1|2 + |z2|2) + |z3|4,

where 2 < b < 4. Similar to the argument in Table 4.1 (h), Rb is non-negative when

b ≤ 4 and positive definite when b < 4. Hence it is a quotient of squared norms with

uniform denominator when b < 4. It is also not a quotient of squared norms when

b = 4 by jet pullback property with z(t) = (1 + t, t, 1). Inspection of the coefficient

of the term |z1z2|2 will also show that Rb is not sos when b > 2. Lastly, for n = 4,

let R4b = (|z1|2 + |z2|2 + |z3|2 + |z4|2)2 − b|z1z2|2. The argument is the same as the

n = 3 case.

(ii) For d = 2, any positive semi-definite n-ary quadratic form p can be diagonalized as

a sum of rank(p) ≤ n squares of linear forms. We also have a counterexample for the

strict containment PQD6 ⊂ PQ6, which is Table 4.1 part (e), with w as a constant.

As there are no known examples for n = 4, we are unsure at the moment whether

the containment PQD4 ⊂ PQ4 is strict. Hence the minimum degree is either 4 or

6.

(iii) It is clear that for a positive semi-definite polynomial to be a sos, the degree has to be

even. It is also easy to prove that Σn,2 = Pn,2. By 1888, Hilbert gave the result that
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Σ3,4 = P3,4 is the only case in which they are equal, and there are counterexamples

in P3,6 and P4,4 in which they are not sos. A famous one for n = 3 is Motzkin’s

polynomial M(x, y, z), and we can observe that it is a quotient of sos with uniform

denominator by the explicit decomposition of (x2+y2+z2)(x4y2+x2y4+z6−3x2y2z2)

into a sos in Table 4.1 part (k). For n = 4, we have the following example by Choi

and Lam [3]:

x2y2 + x2z2 + y2z2 + w4 − 4wxyz

which is positive semi-definite by arithmetic-geometric inequality but not sos. A

survey of such examples and history can be found in the survey paper [24]. The soft-

wares Yalmip (http://control.ee.ethz.ch/∼joloef/wiki/pmwiki.php) or SOSTOOLS

(http://www.cds.caltech.edu/sostools/) will also show the existence of a sos decom-

position of (x2 + y2 + z2 + w2)2(x2y2 + x2z2 + y2z2 + w4 − 4wxyz).





Chapter 3
Uniform denominators and their effective

estimates

In this chapter we consider some modifications to theorems in two papers by Reznick and

write the complex analogues for these results.

3.1 On the absence of a uniform denominator

3.1.1 For real variables

Reznick [25] gave the following theorem and corollary for positive semidefinite forms p:

Theorem 1. Suppose the set Pd(Rn) \ Σd(Rn) is not empty. Then there does not exist a

non-zero form h so that if p ∈ PDd(Rn) then hp is sos.

Corollary 2. Suppose the set Pd(Rn) \ Σd(Rn) is not empty. Then there does not exist

a finite set of non-zero forms H = {h1, · · · , hN} so that p ∈ Pd(Rn) then hkp is sos for

some hk ∈ H.

We can see that the above theorem and corollary can be adapted so that it applies to

p ∈ PDd(Rn), and the proof is the same as the one given in [25]. It is clear that we only

need to verify that PDd(Rn)\Σd(Rn) is non-empty, which is shown by the example below.

23
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Example 3.1.1. Motzkin’s example x4y2+x2y4+z6−3x2y2z2 is well-known as a positive

semi-definite form but not a sos. To modify this example so that it is positive definite,

we add ε(x6 + y6) to Motzkin’s example, where ε > 0. Firstly, p = x4y2 + x2y4 + z6 −

3x2y2z2 + ε(x6 + y6) is positive definite since ε(x6 + y6) ≥ 0, and the zero set of p is trivial

as it contains only the origin. Next, we want to show that p is not a sos. We prove by

contradiction. Assume that p is a sos, that is, p =
∑

k h2
k(x, y, z) would hold for suitable

hk ∈ H3(R3). Similar to the proof in ([24], p. 257), we write p as a ternary sextic, and hk

as follows:

hk(x, y, z) = Akx
3 + Bkx

2y + Ckxy3 + Dky
3 + Ekx

2z

+Fkxyz + Gky
2z + Hkxz2 + Ikyz2 + Jkz

3

The coefficient of x6 is ε, hence the corresponding coefficient in
∑

k h2
k,

∑
k A2

k is bounded

by ε. Hence, for all k, Ak ≤ ε. Next, the coefficient of x4z2 in p is zero, hence for
∑

k h2
k,∑

k(E
2
k + 2AkHk) is zero. Since each Ak is bounded by ε, for arbitrary value of Hk, Ek

must also be small for all k. Continuing, we compare the coefficients of x2z4 in
∑

k h2
k

and p, where we obtain
∑

k(2EkJk + H2
k) = 0. Here we observe that Ek is small, and Jk

is bounded by 1, hence Hk is small.

Using similar arguments, when taking a small value for ε such that Hk, Ik, Ek and Gk are

small as well, we compare the coefficient of x2y2z2 in
∑

k h2
k and p. We have:

∑
k

2CkHk + 2BkIk + 2EkGk + F 2
k = −3.

By the above, if Hk, Ik, Ek and Gk are small, then we see that
∑

k F 2
k < 0. This is a

contradiction, hence p is not a sos.

In conclusion, Example 4.1.1 shows that PDd(Rn)\Σd(Rn) is non-empty, and we have

Theorem 1 and Corollary 2 of [25] for p ∈ PDd(Rn).
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3.1.2 For complex variables

We also show the complex analogue of Theorem 1 and Corollary 2 as in Section 4.1.1,

along the lines of the proof in [25].

Theorem 3.1.2. Suppose the set Pd(Cn) \ Σd(Cn) is not empty. Then there does not

exist a non-zero form h so that if p ∈ PDd(Cn) then hp is sos.

Proof. We prove by contradiction. Suppose such a non-zero form h exists, and hence

there exists a point w ∈ Cn such that h(w) 6= 0. By making an invertible linear change

of variables, take w = (1, 0, · · · , 0). Without loss of generality, it can be assumed that

h(z1, 0, · · · , 0) = α|z1|2m, where |α| > 0 and m is even. Let p ∈ PDd(Cn) \Σd(Cn). Then

by assumption,

h(z1, z2, · · · , zn)p(z1, rz2, · · · , rzn)

is an sos for r ∈ N. The change of variables zi → zi/r for i ≥ 2 gives

h(z1, r
−1z2, · · · , r−1zn)p(z1, z2, · · · , zn)

as an sos as well. Clearly,

lim
r→∞

h(z1, r
−1z2, · · · , r−1zn) = h(z1, 0, · · · , 0) = α|z1|2m

and since Σm+d(Cn) is a closed cone, then

lim
r→∞

h(z1, r
−1z2, · · · , r−1zn)p(z1, z2, · · · , zn) = α|z1|2mp(z1, z2, · · · , zn)

is an sos. Hence p ∈ Σd(Cn), which is a contradiction.

Corollary 3.1.3. Suppose the set PDd(Cn) \Σd(Cn) is not empty. Then there does not

exist a finite set of non-zero forms H = {h1, · · · , hN} so that if p ∈ PDd(Cn), then hkp is

sos for some hk ∈ H.

Proof. Suppose there exists a finite set of non-zero forms H, and by assumption, for

each k ≤ N , there exists a non-zero p ∈ PDd(Cn) \ Σd(Cn) where hkp is sos, that is,
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hkp =
∑

j |fj|2 for some homogenous holomorphic polynomial fj(z). Since p is positive

definite, by Catlin and D’Angelo’s result ([5], Theorem 2), there exists an integer m such

that ||z||2mp is a squared norm. Hence p can be represented as a quotient of squared

norms of holomorphic homogeneous polynomials, that is,

p =

∑
i |gi|2

||z||2m

for some gi(z) ∈ Hm+d(Cn). Then clearly, hk can be represented as follows:

hk =

∑
j |fj|2

p
=

∑
j |fj|2∑
i |gi|2

||z||2m

=
||z||2m

∑
j |fj|2∑

i |gi|2

By above, each hk is a quotient of squared norms (also positive semi-definite), and there

exist a squared norm ||Gk||2 so that ||Gk||2hk is sos. We define h =
∏

k ||Gk||2hk, and see

that

hp =
( ∏

l 6=k

||Gl||2hl

)
· ||Gk||2 · hkp

This shows that hp is a product of sos factors and hence is sos for every p ∈ PDd(Cn).

This contradicts Theorem 4.1.2 and hence proving the non-existence of the finite set of

non-zero forms H in this corollary.

Remark 3.1.4. Since the above set H does not exist for PDd(Cn), then consequently

such a set does not exist for Pd(Cn) since PDd(Cn) ⊂ Pd(Cn).

3.2 Effective estimates for complex variables

Let p ∈ PDm(Cn). Then To and Yeung [30] have given an effective bound so such that

||z||2sp(z) ∈ Σm+s(Cn), (3.1)

for any integer s ≥ so, adapted from the methods of Reznick [23]. Explicitly, the bound

is

so :=
nm(2m− 1)

(log 2)ε(p)
− n + m, (3.2)
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where

ε(p) :=
inf{p(u) | u ∈ S2n−1}
sup{p(u) | u ∈ S2n−1}

∈ R+. (3.3)

For z = (z1, z2, · · · , zn) ∈ Cn, by writing zi = xi +
√
−1yi, 1 ≤ i ≤ n, we obtain

an identification Cn ' R2n given by (z1, · · · , zn) ←→ (x1, · · · , xn, y1, · · · , yn). In this

section, by the above identification, we modify Theorem 3.11 of [23] to obtain a slightly

improved bound compared to (3.2) for complex variables. Firstly, we need the following

remark and lemma:

Remark 3.2.1. A complex polynomial p ∈ BHd(Cn) can be written as a difference of

squares of norms, i.e,

p =
∑
|gi|2 −

∑
|hi|2 = ||g||2 − ||h||2,

where g = (g1, · · · , gj) and h = (h1, · · · , hk) are tuples of holomorphic homogeneous

polynomials. If p is positive definite, it can be seen that ||h||2 ≤ c||g||2, for some real

constant c < 1. For u ∈ S2n−1, it is easy to see that

1. (1− c) max ||g(u)||2 ≤ max p(u) ≤ max ||g(u)||2

2. (1− c) min ||g(u)||2 ≤ min p(u) ≤ min ||g(u)||2

Combining the two points above will give the following:

(1− c)ε(||g||2) ≤ ε(p) ≤ 1

1− c
ε(||g||2) (3.4)

We recall that ∆(p(x)) =
∑

i
∂2

∂x2
i
, the Laplacian that is the sum of all unmixed second

partial derivatives.

Lemma 3.2.2. Let p = ||g||2 − ||h||2. Then for all l, ∆l(||g||2) ≥ 0 and ∆l(||h||2) ≥ 0.
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Proof. We have ||g||2 =
∑

i |gi|2, and we let gi = ui + ivi where ui and vi are the real and

imaginary parts of gi respectively. Then

∆(||g||2) =
∑

i

∆(|gi|2) =
∑

i

∆(u2
i + v2

i )

=
∑

i

2n∑
j

∂2

∂x2
j

(u2
i + v2

i )

=
∑

i

2n∑
j

∂

∂xj

(
2ui

∂ui

∂xj

+ 2vi
∂vi

∂xj

)
=

∑
i

2n∑
j

(
2(

∂ui

∂xj

)2 + 2ui
∂2ui

∂x2
j

+ 2(
∂vi

∂xj

)2 + 2vi
∂2vi

∂x2
j

)
Since gi is holomorphic, ui and vi are harmonic with respect to each pair of variable x2k−1,

x2k, and hence

∂2ui

∂x2
2k−1

+
∂2ui

∂x2
2k

= 0 and
∂2vi

∂x2
2k−1

+
∂2vi

∂x2
2k

= 0, ∀k.

Hence,

∆(||g||2) =
∑

i

2n∑
j

2
(
(
∂ui

∂xj

)2 + (
∂vi

∂xj

)2
)
≥ 0

Similarly, ∆(||h||2) ≥ 0. Since ∆(||g||2) is a squared norm, then by induction, ∆l(||g||2)

is also a squared norm. Hence ∆l(||g||2) ≥ 0 and ∆l(||h||2) ≥ 0.

Before we give the modification of Theorem 3.11 from [23], as aforementioned, by the

identification of Cn ' R2n, we replace p(z, z̄) ∈ BHd(Cn) by p(x) ∈ P2d(R2n). Also, we

need the following theorem, which is Theorem 3.9 from [23].

Theorem 3.2.3. If p ∈ H2d(R2n) and s ≥ 2d, then

Φ−1
s (p) =

1

(s)2d22d

∑
l≥0

(−1)l

22ll!(n + s− 1)l

∆l(p)Gl
2n (3.5)

where Gl
2n(x1, · · · , x2n) = (x2

1 + · · ·+ x2
2n)l.

Now, we give the modification to Theorem 3.11 of [23].
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Theorem 3.2.4. Suppose p ∈ PD2m(R2n). If

s ≥ nm(2m− 1)

sinh−1( 1√
1−c2

(K − c
√

1 + K2))
− n + m, (3.6)

where K = (1 − c)ε(||g||2) + c, c and ε(||g||2) are as in Remark 4.2.1, then Φ−1
s (p) ∈

P2m(R2n).

Proof. Since ε(||g||2) = ε(λ||g||2), we scale ||g||2 such that 1 ≥ ||g(u)||2 ≥ ε(||g||2) for

u ∈ S2n−1. We want to show that Φ−1
s (p) ≥ 0. By Theorem 4.2.3, we have

I :=
(
(s)2m22mΦ−1

s (p)
)
(u)

= p(u)−
∑
l≥1

(−1)l∆l(p)(u)Gl
2n(u)

22ll!(n + s− 1)l

≥ ε(p)− ∆(||g||2 − ||h||2)(u)

22(n + s− 1)
+

∆2(||g||2 − ||h||2)(u)

242!(n + s− 1)2

+ · · · (since G2n(u) = 1)

≥ (1− c)ε(||g||2)− ∆(||g||2)(u)

22(n + s− 1)
− ∆2(||h||2)(u)

242!(n + s− 1)2

+ · · ·

(by Remark 4.2.1 and Lemma 4.2.2)

≥ (1− c)ε(||g||2)−
m∑

l≥1

(2n)2l−1(2m)4l−2Mg

24l−2(2l − 1)!(n + s− 1)2l−1

−
m∑

l≥1

(2n)2l(2m)4lMh

24l(2l)!(n + s− 1)2l

(3.7)

where
∣∣∣||g||2(u)

∣∣∣ ≤ Mg = 1 and
∣∣∣||h||2(u)

∣∣∣ ≤ Mh, and the bounds for ∆l(||g||2)(u) and

∆l(||h||2)(u) are from Theorem 4.14 of [23]. Next, we apply the following inequalities to

(3.7):

(2m)4l ≤ (2m)2l(2m− 1)2l,

(2m)4l−2 ≤ (2m)2l−1(2m− 1)2l−1, and

(n + s− 1)l ≥ (n + s− l)l ≥ (n−m + s)l. (3.8)

Thus we have

I ≥ (1− c)ε(||g||2)−Mg

m∑
l≥1

1

(2l − 1)!

(nm(2m− 1)

(n−m + s)

)2l−1

−Mh

m∑
l≥1

1

(2l)!

(nm(2m− 1)

(n−m + s)

)2l

(3.9)
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Let A = nm(2m−1)
(n−m+s)

. By letting the sum go to infinity, we have strict inequality:

I > (1− c)ε(||g||2)−Mg

∞∑
l≥1

A2l−1

(2l − 1)!
−Mh

∞∑
l≥1

A2l

(2l)!

≥ (1− c)ε(||g||2)−Mg sinh(A)−Mh

[
cosh(A)− 1

]
(By Taylor series of sinh and cosh)

≥ (1− c)ε(||g||2)− sinh(A)− c
[
cosh(A)− 1

]
(3.10)(

since Mg is scaled to 1, c||g||2 ≥ ||h||2, we have cMg ≥Mh, hence −Mh ≥ −c.
)

From the lower bound of s as given in (3.6), we can rearrange, using the trigonometric

identity cosh2(x)− sinh2(x) = 1, to get:

A =
nm(2m− 1)

(n−m + s)
≤ sinh−1

(
(1− c)ε(||g||2) + c

)
− tanh−1(c) (3.11)

By using trigonometric identity sinh(θ + A) = sinh(θ) cosh(A) + cosh(θ) sinh(A) where

θ = tanh−1(c), we have

sinh(θ + A) = sinh(A) + c cosh(A) (3.12)

Substitute (3.12) into (3.10), we have

I ≥ (1− c)ε(||g||2)− sinh(θ + A) + c ≥ 0

where the last inequality can be seen by substitution of (3.11). Hence Φ−1
s (p) ∈ P2m(R2n).

With this theorem replacing Proposition 2.2.3 of [30] ([23], Proprosition 3.11), the

proof of (3.1) will follow accordingly.

Remark 3.2.5. We would like to compare the bound s1 in (3.6) with the following two

bounds, for n complex variables and degree m in z and z̄:

s2 ≥
nm(2m− 1)

ε(p) ln(2)
− n + m, (3.13)
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s3 ≥
nm(2m− 1)

ln(1 + ε(p))
− n + m, (3.14)

where s2 is the bound from [30], and s3 is simply a variation of the denominator in s2.

As the three bounds s1, s2, and s3 are different only in the denominator, we shall plot

only the denominator to see which bound is larger. Here we write ε(p) = (1 − c)ε(||g||2)

for all three bounds for purpose of comparison. The plots in Figure 3.2.5 show that the

denominator of s1 is larger than the denominators of s2 and s3 for small c. Graphically,

Figure 3.1: s1 and s2, all three bounds, s1 and s3

we can observe that as ε(||g||2) (x-axis) increases, the denominator of s1 is larger than

denominators of s2 and s3 for increasing values of c (y-axis). This implies that s1 has a

lower bound, for these values of c. For example, when ε(||g||2) = 0.6, s1 is greater than

s2 and s3 for 0 < c < 0.32, whereas, when ε(||g||2) = 0.8, s1 is greater than s2 and s3 for

0 < c < 0.41.





Chapter 4
Effective Pólya Semi-stability for

Non-negative Polynomials on the Simplex

Let f ∈ R[x1, · · · , xn] be a homogeneous polynomial which is positive on the standard

simplex

∆n := {x = (x1, · · · , xn) ∈ Rn | xi ≥ 0, i = 1, · · · , n;
n∑

i=1

xi = 1},

i.e., f(x) > 0 for all x ∈ ∆n. Pólya [18] showed that there exists a positive integer No

such that all the coefficients of

(x1 + · · ·+ xn)Nf(x1, · · · , xn) (4.1)

are positive for all positive integers N ≥ No. As such, we simply say a polynomial f is

Pólya stable if it satisfies the above property. Powers and Reznick [20] gave an explicit

lower bound for No (see related works in [2], [10], [11], [15], [16], [17], [28]), and Catlin and

D’Angelo ([4], [5]) have generalized it to a result for several complex variables. Pólya’s

theorem and the effective estimates of No in [20] has a wide range of applications in the

works ([14], [26], [27], [29]), among others (see [21] for a description of these applications

and the aforementioned related works). Powers and Reznick have further investigated

33
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([21] and [22]) analogous properties of f when f is non-negative on ∆ with corner zeros.

Hence we would like to investigate analogous properties of f when f is not necessarily

positive on ∆n.

In this chapter, we consider homogeneous polynomials f ∈ R[x1, · · · , xn] which are

non-negative on ∆n, and obtain necessary and/or sufficient conditions for such an f

to be Pólya semi-stable, that is, for some positive integer No, all the coefficients of

(x1 + · · · + xn)Nf are non-negative for all integers N ≥ No. We are also interested

in obtaining effective estimates on No. We explain our approach as follows: First we see

that one only needs to consider those polynomials f such that Z(f)∩∆n consists of faces

of ∆n. Note also that any polynomial f admits a unique decomposition into “positive”and

“negative”parts according to the signs of the coefficients of its monomial terms. Roughly

speaking, the necessary (resp. sufficient) conditions for Pólya semi-stability amount to

the following: for each face in Z(f) ∩ ∆n and each negative monomial term of f , there

exists a corresponding positive monomial term of f with lower (resp. strictly lower) van-

ishing orders along the face. The main difficulty in deriving the effective estimate for No

lies in the coefficients of those monomial terms of (4.1) whose exponents, upon suitable

normalizations, are close to Z(f)∩∆n. The sufficient conditions allow us to handle these

coefficients by using an iterative process involving induction on the dimensions of the

faces in Z(f) ∩∆n.

The first section in this chapter consist of some preliminaries such as notations and

definitions. Our second section in this chapter gives some necessary conditions for such an

f to be Pólya semi-stable. These necessary conditions are expressed in terms of vanishing

orders of the monomial terms of f along the faces of ∆n (see Theorem 4.2.2 for the precise

statement).

Next, Section 4.3 gives sufficient conditions for such an f to be Pólya semi-stable,
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and we also obtain explicit lower bound on No under such conditions. These sufficient

conditions are given in Theorem 4.3.10. Using these results, in Section 4.4 we obtain a

simple characterization of the Pólya semi-stable polynomials in the low dimensional case

when n ≤ 3 as well as the case (in any dimension) when the zero set Z(f) of f in ∆n

consists of a finite number of points (cf. Corollary 4.4.1 and Corollary 4.4.3). In Section

4.5, we give an application of our results to the representations of non-homogeneous

polynomials which are non-negative on a general simplex (cf. Corollary 4.5.1). Lastly,

Section 4.6 shows that the necessary as well as sufficient conditions obtained in Theorem

4.2.2 and Theorem 4.3.10 can be extended to certain complex analogues of the positive

semidefinite forms on Rn.

The contents of sections 4.1-4.5 have been written in the paper ‘Effective Pólya semi-

positivity for non-negative polynomials on the simplex ’. This paper is a joint efffort

between the author and Associate Professor To Wing Keung, and it has been accepted

for publication in the Journal of Complexity.

4.1 Preliminaries

Let Pd(∆n) be the set of homogeneous polynomials in Hd(Rn) which are non-negative on

∆n, i.e.,

Pd(∆n) := {f ∈ Hd(Rn) | f(x) ≥ 0 ∀x ∈ ∆n}.

The set of polynomials in Hd(Rn) that have only non-negative coefficients is denoted by

Σ+
d (Rn) := {f ∈ Hd(Rn) | f(x) =

∑
γ∈I(n,d)

aγx
γ with each aγ ≥ 0}.

Note that we always have Σ+
d (Rn) ⊂ Pd(∆n). For each f =

∑
γ∈I(n,d)

aγx
γ ∈ Hd(Rn), we let

Λ+ := {α ∈ I(n, d) | aα > 0},

Λ− := {β ∈ I(n, d) | aβ < 0},
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and we write bβ = −aβ > 0 for each β ∈ Λ−. Then it is easy to see that f admits the

following unique decomposition into ‘positive’ and ‘negative’ parts given by

f = f+ − f−, where

f+ :=
∑

α∈Λ+

aαxα and f− :=
∑

β∈Λ−

bβxβ. (4.2)

Note that both f+, f− ∈ Σ+
d (Rn), and we have f ∈ Pd(∆n) if and only if f+(x) ≥ f−(x)

for all x ∈ ∆n.

For each index set I $ {1, 2, · · · , n}, one has an associated face FI of ∆n given by

FI := {x = (x1, · · · , xn) ∈ ∆n | xi = 0 for all i ∈ I}.

We also call FI a k-face of ∆n, where k = n − |I| − 1. Here |I| denotes the cardinality

of the set I. In particular, a 0-face is simply a vertex of ∆n. We can identify FI as the

standard simplex ∆k+1 of Rk+1 by setting the coordinates xi = 0 for i ∈ I. Note that

the boundary of the simplex ∆n in the hyperplane x1 + · · · + xn = 1 in Rn consists of n

(n − 2)-faces. Clearly, the boundary of each i-face (identified as ∆i+1) consists of i + 1

(i− 1)-faces.
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Figure 4.1: ∆3, with three faces shown
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Example 4.1.1. Figure 4.1 shows ∆3 with axes x1, x2 and x3. The boundary of ∆3

clearly consists of the lines

x1 + x2 = 0; x2 + x3 = 0; x1 + x3 = 0

and each of them is ∆2. The three vertices (0, 0, 1), (1, 0, 0) and (0, 1, 0) are also simplexes.

For x2 = 0, we see that F{2} is the line x1 + x3 = 0 by definition. Also, another face is

F{1,2} which is the the vertex (0, 0, 1), with x1 = x2 = 0, as shown in Figure 2.1.

It is also easy to see that faces of ∆n satisfy the following properties:

(i) If I ⊂ J , then FI ⊃ FJ .

(ii) FI ∩ FJ = FI∪J .

Proof. (i) Given I ⊂ J for indexes I and J with |I| = k and |J | = l. We have {1, · · · , n} =

I ∪ {i1, · · · , in−k} and {1, · · · , n} = J ∪ {j1, · · · , jn−l}. Clearly,

I ′ = {i1, · · · , in−k} ⊃ {j1, · · · , jn−l} = J ′

by the inequality k < l. Since ∆n−l ⊂ ∆n−k, we have FI ⊃ FJ .

(ii) FI ∩FJ can be described by the equation
∑

xm = 1, for all m /∈ J , m /∈ I. Hence the

index for FI ∩ FJ is I ∪ J .

For each fixed f =
∑

γ∈I(n,d)

aγx
γ ∈ Hd(Rn), we denote its zero set by

Z(f) := {x ∈ Rn | f(x) = 0}, so that

Z(f) ∩∆n = {x ∈ ∆n | f(x) = 0}.

To facilitate the comparison of vanishing orders of monomial terms of f along faces of

∆n, we introduce the following definition.

Definition 4.1.2. Let α = (α1, · · · , αn) and β = (β1, · · · , βn) be n-tuples in Zn
≥0, and let

I ⊂ {1, 2, · · · , n}. Then we say that

β �I α if and only if βi ≥ αi for all i ∈ I. (4.3)
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Moreover, we say that

β �I α if and only if β �I α and there exists i0 ∈ I such that βi0 > αi0 . (4.4)

Definition 4.1.3. Let f ∈ Hd(Rn). Then f is said to be Pólya semi-stable if (x1 + · · ·+

xn)Nf has only non-negative coefficients for all sufficiently large positive integers N , i.e.,

there exists a natural number No such that

(x1 + · · ·+ xn)Nf ∈ Σ+
N+d(R

n),

for all N ≥ No.

Remark 4.1.4. Since x1 + · · · + xn = 1 on ∆n, it is easy to see that if f ∈ Hd(Rn)

is Pólya semi-stable, then f ∈ Pd(∆n). Thus, in discussing necessary and/or sufficient

conditions for f ∈ Hd(Rn) to be Pólya semi-stable, we only need to consider the case

when f ∈ Pd(∆n).

4.2 Necessary conditions for Pólya semi-stability

Lemma 4.2.1. Let g ∈ Σ+
d (Rn). Then Z(g) ∩ ∆n consists of a finite union of faces of

∆n. More precisely, we have

Z(g) ∩∆n =
⋃

I∈Φg

FI ,

where Φg := {I $ {1, · · · , n} | α �I (0, · · · , 0) ∀α ∈ Λ+}.

Proof. Since g ∈ Σ+
d (Rn), we may write g =

∑
α∈Λ+ aαxα (i.e., we have Λ− = ∅). First

we show that Z(g) ∩ ∆n ⊃
⋃

I∈Φg
FI . Let x ∈

⋃
I∈Φg

FI . Then x ∈ FI for some I ∈

Φg. For any α = (α1, · · · , αn) ∈ Λ+, it follows from the definition of Φg that α �I

(0, · · · , 0), which implies that αi > 0 for some i = i(α) ∈ I. It follows readily that

aαxα = aαxα1
1 · · ·x

αi
i · · ·xαn

n = 0. By varying α ∈ Λ+, we conclude that g(x) = 0. Thus

we have Z(g) ∩ ∆n ⊃
⋃

I∈Φg
FI . Next we proceed to show that Z(g) ∩ ∆n ⊂

⋃
I∈Φg

FI .

Let x = (x1, · · · , xn) ∈ Z(g)∩∆n, so that g(x) = 0. Since aαxα ≥ 0 with aα > 0 for each



4.2 Necessary conditions for Pólya semi-stability 39

α ∈ Λ+, it follows that xα = 0 for each α ∈ Λ+. Thus, for each α = (α1, · · · , αn) ∈ Λ+,

there exists i = i(α) with 1 ≤ i ≤ n such that xi = 0 and αi > 0. Let I = {i | xi = 0}.

Then it follows readily that I 6= ∅, x ∈ FI , and α �I (0, · · · , 0) for all α ∈ Λ+ (which

implies that I ∈ Φg). By varying x, we have Z(g) ∩∆n ⊂
⋃

I∈Φg
FI .

Let f = f+ − f− =
∑

α∈Λ+

aαxα −
∑

β∈Λ−

bβxβ ∈ Pd(∆n) be as in (4.2). For each N ≥ 0

and γ ∈ I(n, N + d), we denote by AN
γ the coefficient of xγ in (x1 + · · ·+ xn)Nf , so that

we have

(x1 + · · ·+ xn)Nf =
∑

γ∈I(n,N+d)

AN
γ xγ. (4.5)

Furthermore, we denote the coefficient of xγ in (x1+· · ·+xn)Nf+ (resp. (x1+· · ·+xn)Nf−)

by AN,+
γ (resp. BN,−

γ ), so that we have

(x1 + · · ·+ xn)Nf+ =
∑

γ∈I(n,N+d)

AN,+
γ xγ, and

(x1 + · · ·+ xn)Nf− =
∑

γ∈I(n,N+d)

BN,−
γ xγ.

Clearly, for each N and γ, we have

AN
γ = AN,+

γ −BN,−
γ . (4.6)

Similarly, for each α ∈ Λ+ and β ∈ Λ−, we also write

(x1 + · · ·+ xn)N · aαxα =
∑

γ∈I(n,N+d)

AN,α
γ xγ,

(x1 + · · ·+ xn)N · bβxβ =
∑

γ∈I(n,N+d)

BN,β
γ xγ.

One easily sees that each AN,α
γ ≥ 0 and BN,β

γ ≥ 0. Moreover, one has

AN,+
γ =

∑
α∈Λ+

AN,α
γ and BN,−

γ =
∑

β∈Λ−

BN,β
γ . (4.7)

From the calculations by Pólya and given in ([20], p. 223), it follows that for each

α = (α1, · · · , αn) ∈ Λ+, β = (β1, · · · , βn) ∈ Λ− and γ = (γ1, · · · , γn) ∈ I(n,N + d), one
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has

AN,α
γ =

N !(N + d)d

γ1! · · · γn!
· aα ·

n∏
i=1

( γi

N + d

)(γi − 1

N + d

)
· · ·

(γi − (αi − 1)

N + d

)
, (4.8)

BN,β
γ =

N !(N + d)d

γ1! · · · γn!
· bβ ·

n∏
i=1

( γi

N + d

)(γi − 1

N + d

)
· · ·

(γi − (βi − 1)

N + d

)
. (4.9)

The following theorem gives the necessary conditions for a polynomial to be Pólya

semi-stable.

Theorem 4.2.2. Let f ∈ Pd(∆n) be Pólya semi-stable. Then f satisfies the following

two properties:

(Z1) Z(f) ∩∆n consists of a finite union of faces of ∆n, and

(Z2) For each face FI ⊂ Z(f) ∩ ∆n and each β ∈ Λ−, there exists α = α(β, I) ∈ Λ+

depending on β and I such that β �I α.

Proof. Let f ∈ Pd(∆n) be Pólya semi-stable. Then there exists N ∈ Z≥0 such that

(x1 + · · ·+ xn)Nf ∈ Σ+
N+d(R

n).

Since
∑

xi = 1 on ∆n, it follows that

Z((x1 + · · ·+ xn)Nf) ∩∆n = Z(f) ∩∆n.

Together with Lemma 4.2.1 (applied to (x1+· · ·+xn)Nf), it follows readily that Z(f)∩∆n

is a finite union of faces of ∆n. Hence f satisfies (Z1). Next we prove (Z2) by contradiction.

Suppose (Z2) does not hold. Then there exist a face FI ⊂ Z(f) ∩ ∆n and β ∈ Λ− such

that

β �I α for all α ∈ Λ+, (4.10)

i.e., there exist i0 = i0(α, β, I) such that αi0 > βi0 . Now we fix an integer i1 ∈

{1, 2, · · · , n} \ I. For each positive integer N ≥ 1, we let γ = γ(N) = (γ1, · · · , γn)

be defined by

γi :=

 βi if i 6= i1,

N + βi1 if i = i1.
(4.11)
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It is easy to see that γ ∈ I(n, N +d). For each α ∈ Λ+, since there exists i0 ∈ I such that

αi0 > βi0 = γi0 , it follows that one of the factors in (4.8) is zero, i.e., we have AN,α
γ = 0.

Together with (4.7), it follows that we have

AN,+
γ = 0. (4.12)

On the other hand, it follows from (4.11) that γj ≥ βj for all 1 ≤ j ≤ n. Together with

(4.9), it follows that BN,β
γ > 0. Since we also have BN,β′

γ ≥ 0 for any other β′ ∈ Λ−, it

follows from (4.7) that we have BN,−
γ > 0. Together with (4.12) and (4.6), it follows that

AN
γ < 0. Thus for each N ≥ 1, we have constructed a γ = γ(N) ∈ I(n, N + d) such that

AN
γ < 0, which contradicts the Pólya semi-stability of f . Hence f satisfies (Z2).

We construct a polynomial in P3(∆4) which satisfies (Z1) and (Z2) but is not Pólya

semi-stable. This illustrates that the necessary conditions (Z1) and (Z2) in Theorem 4.2.2

for Pólya semi-stability are not sufficient conditions for Pólya semi-stability.

Example 4.2.3. Let f ∈ R[x, y, z, w] be given by

f(x, y, z, w) := x3 + xy2 + xz2 + xw2 + x2y + y3 + yz2 + yw2 − 2xzw − 2yzw

= (x + y)(x2 + y2 + (z − w)2).

Clearly, f ∈ P3(∆4). It can be easily seen that

Z(f) ∩∆4 = {(x, y, z, w) ∈ ∆4 | x = y = 0} = F{1,2}.

Hence f satisfies (Z1). Moreover, the three faces of ∆4 in Z(f) ∩ ∆4 are FI = F{1,2},

FJ = F{1,2,3} and FK = F{1,2,4}. We list the 4-tuples in Λ+ and Λ− as follows:

Λ+ = {(3, 0, 0, 0), (1, 2, 0, 0), (2, 1, 0, 0), (0, 3, 0, 0),

(1, 0, 2, 0), (1, 0, 0, 2), (0, 1, 2, 0), (0, 1, 0, 2)}.

Λ− = {(1, 0, 1, 1), (0, 1, 1, 1)}.
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Clearly, for each β ∈ Λ− and each I, J or K, there exist α(I), α(J), α(K) ∈ Λ+ (depending

also on β) such that β �I α(I), β �J α(J) and β �K α(K). As an example, when

β = (1, 0, 1, 1), it is easy to check that one may let

α(I) = (1, 0, 2, 0), α(J) = (1, 0, 0, 2) and α(K) = (1, 0, 2, 0).

The case when β = (0, 1, 1, 1) is similar and will thus be left to the reader. Hence we see

that the polynomial f ∈ P3(∆4) satisfies (Z2). On the other hand, for each even positive

integer N = 2m, we let γ = (1, 0, m + 1, m + 1) ∈ I(4, N + 3) and consider the associated

monomial AN
γ xzm+1wm+1 in (x + y + z + w)Nf . Then the terms in f contributing to this

monomial are xz2, xw2 and −2xzw, and we have

AN
γ =

(2m)!

0!0!(m− 1)!(m + 1)!
+

(2m)!

0!0!(m + 1)!(m− 1)!
− 2 · (2m)!

0!0!m!m!

= − 2 · (2m)!

m!(m + 1)!
< 0.

Hence f is not Pólya semi-stable.

4.3 Sufficient conditions for Pólya semi-stability with

effective estimates

In this section, we establish the sufficient conditions for Pólya semi-stability with effective

estimates. Let f be in Pd(∆n) satisfying (Z1) and the following condition:

(Z2′) For each face FI ⊂ Z(f) ∩ ∆n and each β ∈ Λ−, there exists α = α(β, I) ∈ Λ+

depending on β and I such that β �I α.

In subsection 4.3.1, we will show that AN
γ ≥ 0 for all sufficiently large N and all γ ∈

I(n, N +d) such that γ
N+d

is sufficiently close to Z(f)∩∆n, where AN
γ is as in (4.5). This

will be achieved by an iterative process which involves induction on the dimensions of the

faces in Z(f)∩∆n. In subsection 4.3.2, we will handle those γ’s such that γ
N+d

stays away

from Z(f)∩∆n. Lastly, we establish the sufficient conditions for Pólya semi-stability with

effective estimates.
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4.3.1 γ
N+d being sufficiently close to Z(f) ∩∆

Lemma 4.3.1. Let f ∈ Pd(∆n) be such that f satisfies (Z1). Then we have

Z(f) ∩∆n = Z(f+) ∩∆n. (4.13)

Proof. For any x ∈ Z(f+) ∩ ∆n, since f ∈ Pd(∆n), we have 0 = f+(x) ≥ f−(x) ≥ 0,

and thus f+(x) = f−(x) = 0. Hence f(x) = 0 and x ∈ Z(f) ∩ ∆n. Thus we have

Z(f+) ∩∆n ⊂ Z(f) ∩∆n. Conversely, since f satisfies (Z1), we may write Z(f) ∩∆n =⋃
I∈Φ FI for an index set Φ. Recall from section 4.1 that for each face FI ⊂ Z(f)∩∆n with

the associated index I ⊂ {1, 2, · · · , n}, FI can be identified with the standard simplex ∆k

of Rk with k = n − |I| by setting the coordinates xi = 0 for all i ∈ I. Then one easily

sees that the restriction f |Rk ∈ Hd(Rk), and f |Rk vanishes on ∆k
∼= FI . Together with

the homogeneity of f |Rk , it follows that f |Rk vanishes on the non-empty open cone in Rk

defined by ∆k. Hence f |Rk is the zero polynomial, and it follows that f+|Rk = f−|Rk = 0.

Thus, FI ⊂ Z(f+) ∩∆n. By varying I ∈ Φ, we see that Z(f) ∩∆n ⊂ Z(f+) ∩∆n.

Let f = f+−f− =
∑

α∈Λ+

aαxα−
∑

β∈Λ−

bβxβ ∈ Pd(∆n) be as in (4.2). Note that if f− = 0,

then f ∈ Σ+
d (Rn), and thus f is necessarily Pólya semi-stable. Therefore, when considering

sufficient conditions for Pólya semi-stability, we will always assume that f− 6= 0 (and thus

also f+ 6= 0). Then we have

amax := max
α∈Λ+

aα > 0, amin := min
α∈Λ+

aα > 0, and bmax := max
β∈Λ−

bβ > 0. (4.14)

Also, we define

c = c(f) := sup
x∈∆n\Z(f)

f−(x)

f+(x)
≤ 1. (4.15)

For any f ∈ Pd(∆n satisfying (Z1), we let k = k(f) be the maximum dimension of the

faces of ∆n that lie in Z(f) ∩∆n, i.e.,

k := n− 1−min{|I| | FI ⊂ Z(f) ∩∆n} ≤ n− 2. (4.16)
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Let FI be the face of ∆n associated to an index set I ⊂ {1, 2, · · · , n}. For r > 0 we

consider the following tubular neighbourhood of FI in ∆n given by

FI(r) := {x = (x1, · · · , xn) ∈ ∆n | xi ≤ r ∀i ∈ I}. (4.17)

From now on, we fix an f ∈ Pd(∆n) such that f satisfies (Z1) and (Z2′). By (Z1), we may

write

Z(f) ∩∆n = F̃0 ∪ F̃1 ∪ · · · ∪ F̃k, (4.18)

where k is as defined in (4.16), and for each 0 ≤ ` ≤ k, F̃` is the finite union of the `-faces

in Z(f) ∩∆n. For each 0 ≤ ` ≤ k, we let Φ` be the set of indexes corresponding to the

`-faces in Z(f)∩∆n, so that we have F̃` =
⋃

I∈Φ`

FI . For r > 0, we also denote the following

tubular neighborhoods of the F̃`’s as well as that of Z(f) ∩∆n in ∆n by

F̃`(r) : =
⋃

I∈Φ`

FI(r), and

Z̃(f)(r) : =
k⋃

`=0

F̃`(r). (4.19)

To carry out the iterative process, we define two finite sequences of numbers {εi}0≤i≤k

and {N`}0≤`≤k recursively (see (4.27) below), so that for all N ≥ N` and all γ ∈ I(n, N+d)

such that γ
N+d
∈ F̃`(ε`), one has AN

γ ≥ 0, where AN
γ is as in (4.5). First we consider the

case when ` = 0 in the following lemma.

Lemma 4.3.2. Let

ε0 :=
amin

|Λ−|bmax + ndamin

, and N0 :=
2d

ε0

− d. (4.20)

Then for any N ≥ N0 and any γ ∈ I(n, N + d) satisfying γ
N+d
∈ F̃0(ε0), we have AN

γ ≥ 0.

Here |Λ−|, amin and bmax are as in (4.14).

Proof. We fix a positive integer N ≥ N0 and a γ ∈ I(n, N + d) satisfying γ
N+d
∈ F̃0(ε0).

Recall from (4.19) that F̃0(ε0) =
⋃

I∈Φ0
FI(ε0). Thus we have γ

N+d
∈ FI(ε0) for some

I ∈ Φ0. Note that |I| = n−1, since FI is a 0-face (vertex) of ∆n. Upon permuting the xi’s
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if necessary, we will assume without loss of generality that I = {1, 2, · · · , n−1}. Then for

each β = (β1, · · · , βn) ∈ Λ−, it follows from (Z2′) that there exists α = (α1, · · · , αn) ∈ Λ+

and i0 satisfying 1 ≤ i0 ≤ n− 1, depending on β, and such that

βi0 > αi0 , and βi ≥ αi for 1 ≤ i 6= i0 ≤ n− 1. (4.21)

Note that it follows from (4.21) that we necessarily have βn < αn. We estimate BN,−
γ

by bounding each BN,β
γ . For this purpose, we will only consider those BN,β

γ ’s which are

positive. Note that for such BN,β
γ 6= 0, it follows from (4.9) that we must have γi ≥ βi for

all 1 ≤ i ≤ n. Formally it follows from (4.8) and (4.9) that

BN,β
γ

AN,α
γ

=
bβ

aα

[ n−1∏
i=1
i6=i0

βi−1∏
j=αi

γi − j

N + d

]
·
[ βi0

−1∏
j=αi0

γi0 − j

N + d

]
· 1

αn−1∏
j=βn

γn − j

N + d

, (4.22)

where for each 1 ≤ i 6= i0 ≤ n− 1, the factor
∏βi−1

j=αi

γi−j
N+d

is understood to be 1 if αi = βi.

Since βi ≤ γi ≤ N + d for each i and γi

N+d
≤ ε0 for 1 ≤ i ≤ n − 1 (in particular, one has

γi0
−(βi0

−1)

N+d
≤ ε0), it follows that one has

0 ≤
[ n−1∏

i=1
i6=i0

βi−1∏
j=αi

γi − j

N + d

]
·
[ βi0

−1∏
j=αi0

γi0 − j

N + d

]
≤ ε0. (4.23)

Note that since FI ⊂ Z(f) ∩∆n, it follows from Lemma 4.3.1 that aαxα vanishes on FI .

This implies that one has αn ≤ d− 1. Since γ ∈ I(n,N + d) and γ
N+d
∈ FI(ε0), it follows

that for each βn ≤ j ≤ αn − 1 < d− 1, one has

γn − j

N + d
≥ N + d− γ1 − · · · − γn−1

N + d
− d

N + d

≥ N

N + d
− (n− 1)ε0 (since

γi

N + d
≤ ε0 for 1 ≤ i ≤ n− 1)

≥
2d
ε0
− d
2d
ε0

− (n− 1)ε0 (since N ≥ N0 =
2d

ε0

− d)

= 1− (n− 1

2
)ε0 > 0, (4.24)

where the last inequality follows readily from (4.20). Recall that the Bernoulli inequality

implies that (1− x)m ≥ 1−mx ≥ 0 for any non-negative integer m and any x such that
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x < 1
m

. It is also easily seen from (4.20) that (n − 1
2
)ε0 < 1

d−1
. Together with (4.24), we

have

αn−1∏
j=βn

γn − j

N + d
≥

(
1− (n− 1

2
)ε0

)d−1

≥ 1− (d− 1)(n− 1

2
)ε0

≥ 1− ndε0 > 0, (4.25)

where the inequality 1−ndε0 > 0 follows readily from (4.20). Together with (4.14), (4.22),

(4.23), (4.25), and noting that AN,α
γ ≤ AN,+

γ , we have

BN,β
γ

AN,+
γ

≤
BN,β

γ

AN,α
γ

≤ bmax · ε0

amin(1− ndε0)
. (4.26)

Upon summing (4.26) over each β ∈ Λ−, we have

BN,−
γ

AN,+
γ

≤ |Λ−| · bmax · ε0

amin · (1− ndε0)
= 1,

where the last equality follows from (4.20). Hence BN,−
γ ≤ AN,+

γ , and we have AN
γ ≥ 0.

Next we define two sequences of numbers {ε`}0≤`≤k and {N`}0≤`≤k recursively as fol-

lows: Let ε0 and N0 be as in (4.20). For 1 ≤ ` ≤ k, let

ε` := min
{
ε`−1,

amin · εd−1
`−1

2d−1|Λ−|bmax

}
and N` :=

2d

ε`−1

− d. (4.27)

It is easy to see that ε0 ≥ ε1 ≥ · · · ≥ εk, while N0 ≤ N1 ≤ · · · ≤ Nk.

Proposition 4.3.3. For a given fixed integer ` satisfying 0 ≤ ` ≤ k, let N` and ε` be

as in (4.27). Then for any positive integer N ≥ N` and any γ ∈ I(n,N + d) satisfying

γ
N+d
∈ F̃`(ε`), we have AN

γ ≥ 0.

Proof. We prove this proposition by induction on `. This proposition in the case when ` =

0 was proved in Lemma 4.3.2. Next we make the induction hypothesis that Proposition

4.3.3 holds for the cases when the running indexes take the values 0, 1, · · · , ` − 1. Now

we let N be a positive integer such that N ≥ N` and we let γ ∈ I(n, N + d) be such
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that γ
N+d
∈ F̃`(ε`). Write F̃`(ε`) =

⋃
I∈Φ`

FI(ε`) as in (4.19). Then γ
N+d
∈ FI(ε`) for some

I ∈ Φ`. Since FI ⊂ Z(f) ∩ ∆n, it follows readily that FJ ⊂ Z(f) ∩ ∆n for any J ⊃ I.

Thus we have
⋃
J%I

FJ(ε`−1) ⊂
`−1⋃
j=0

F̃j(εj). In particular, since N ≥ N` (and thus N ≥ Nj

for all j < `), it follows from the induction hypothesis that we must have AN
γ ≥ 0 if

γ
N+d
∈

⋃
J%I

FJ(ε`−1). It remains to consider the case when γ
N+d
∈ FI(ε`) \

⋃
J%I

FJ(ε`−1). It

is easy to check that

FI(ε`) \
⋃
J%I

FJ(ε`−1) = {x ∈ ∆n | xi ≤ ε` for i ∈ I, and xi > ε`−1 for i /∈ I}. (4.28)

As in the proof of Lemma 4.3.2, we estimate BN,−
γ by bounding each non-zero BN,β

γ , which

from (4.9), must satisfy the inequality γi ≥ βi for each 1 ≤ i ≤ n. Recall also that for

each β ∈ Λ−, it follows from (Z2′) that there exists α = α(β) ∈ Λ+ and i0 ∈ I such that

βi0 > αi0 and βi ≥ αi for all i ∈ I. Formally and as in (4.22), it follows from (4.8) and

(4.9) that

BN,β
γ

AN,α
γ

=
bβ

aα

[ ∏
i∈I
i6=i0

βi−1∏
j=αj

γi − j

N + d

]
·
[ βi0

−1∏
j=αi0

γi0 − j

N + d

]
·

∏
i/∈I

βi−1∏
j=0

γi − j

N + d∏
i/∈I

αi−1∏
j=0

γi − j

N + d

(4.29)

As in (4.23), it follows from the inequalities βi ≤ γi ≤ N + d, 1 ≤ i ≤ n, and
γi0

N+d
≤ ε`

that one has

0 ≤
[ ∏

i∈I
i6=i0

βi−1∏
j=αj

γi − j

N + d

]
·
[ βi0

−1∏
j=αi0

γi0 − j

N + d

]
·
∏
i/∈I

βi−1∏
j=0

γi − j

N + d
≤ ε`. (4.30)

For each i /∈ I and each 0 ≤ j ≤ αi − 1 < d, it follows from (4.28) that γi > ε`−1, and

thus as in (4.24), we have

γi − j

N + d
≥ ε`−1 −

d

N + d

≥ ε`−1 −
d
2d

ε`−1

(since N ≥ N` =
2d

ε`−1

− d)

=
ε`−1

2
. (4.31)
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As in Lemma 4.3.2, since FI ⊂ Z(f) ∩∆n, it follows that there are at most d− 1 factors

in the product
∏
i/∈I

αi−1∏
j=0

γi − j

N + d
. Together with (4.29), (4.30), (4.31) and as in (4.26), we

have

BN,β
γ

AN,+
γ

≤
BN,β

γ

AN,α
γ

≤ bmax

amin

· ε` ·
1( ε`−1

2

)d−1
=

2d−1bmaxε`

aminε
d−1
`−1

. (4.32)

Then by summing (4.32) over β ∈ Λ−, we have

BN,−
γ

AN,+
γ

≤ |Λ−| · 2
d−1bmaxε`

aminε
d−1
`−1

≤ 1, (4.33)

where the last equality follows from (4.27), and it follows that we have AN
γ ≥ 0.

Lemma 4.3.4. For each 0 ≤ ` ≤ k, we have

ε` ≥ min
{( amin

2d−1|Λ−|bmax

) (d−1)`−1
d−2

, 1
}
· ε(d−1)`

0 (4.34)

(The exponent (d−1)`−1
d−2

is understood to be equal to ` when d = 2).

Proof. First we remark that the inequality in (4.34) in the case when ` = 0 is obvious. It

is easy to see from (4.20) and (4.27) that ε` < 1 for all 0 ≤ ` ≤ k. Let κ := amin

2d−1|Λ−|bmax
.

Then for 1 ≤ ` ≤ k, we have, from (4.27),

ε` = min{κ · εd−1
`−1 , ε`−1}

≥ min{κ, 1} · εd−1
`−1 (since ε`−1 ≤ 1)

≥ min{κ, 1} ·
(

min{κ, 1}εd−1
`−2

)d−1

(by iterating the above inequality)

≥ · · ·

≥ min{κ, 1}1+(d−1)+···+(d−1)(`−1) · ε(d−1)`

0

= min
{
κ

(d−1)`−1
d−2 , 1

}
· ε(d−1)`

0 .

In summary, we have
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Proposition 4.3.5. Let f be in Pd(∆n) satisfying (Z1) and (Z2’). Let

εZ := min
{( amin

2d−1|Λ−|bmax

) (d−1)k−1
d−2

, 1
}
· ε(d−1)k

0 and NZ :=
2d

εZ

− d. (4.35)

Then for any positive integer N ≥ NZ and any γ ∈ I(n, N +d) satisfying γ
N+d
∈ Z̃(f)(εZ),

we have AN
γ ≥ 0.

Proof. From Lemma 3.4 and (4.27), we easily see that εZ ≤ εk ≤ · · · ≤ εk−1 ≤ ε0, and

thus NZ ≥ N` for each 0 ≤ ` ≤ k. Then the proposition follows readily from Proposition

3.3 and the inclusion Z̃(f)(εZ) ⊂
⋃

0≤`≤k F̃`(ε`).

4.3.2 γ
N+d being away from Z(f) ∩∆

Next we consider those γ ∈ I(n,N + d) for sufficiently large N and such that γ
N+d

stays

away from Z(f) ∩∆n.

Definition 4.3.6. We define a metric on ∆n by the following:

dist(y, z) = ||y − z||, ∀y, z ∈ ∆n (4.36)

where || · || is the Euclidean norm. Then the distance between a point x and a set of

points say S is

dist(x, S) = inf
z∈S

dist(x, z) = inf
z∈S
||x− z||. (4.37)

Proposition 4.3.7. Suppose f ∈ Pd(∆n) satisfies (Z1) and (Z2′). For every ε > 0, there

exists δ > 0 such that if dist(x, Z(f) ∩∆n) < δ, then

f−(x)

f+(x)
< ε. (4.38)

In particular, we have c < 1, where c = c(f) is as defined in (4.15).

Proof. Since f satisfies (Z1), we may write Z(f) ∩ ∆n = F̃0 ∪ F̃1 ∪ · · · ∪ F̃k with each

F̃` =
⋃

I∈Φ`
FI as in (4.18). Suppose we have a sequence of numbers δ0, · · · , δk, and we

take δ = min{δ0, · · · , δk}. Then for a given point x,

dist(x, FI(δ)) ≤ dist(x, FI(δ`)) (4.39)
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where FI is an `-face of Z(f)∩∆n. From the decomposition of the tubular neighborhoods

of Z(f) ∩∆n in (4.19), it is easy to see that to prove (4.38), it suffices to show that for

any given ε > 0, there exist positive numbers δ`, 0 ≤ ` ≤ k, such that

f−(x)

f+(x)
< ε ∀x ∈ F̃`(δ`) \ Z(f). (4.40)

Let ε > 0 be a given number. To prove (4.40) by induction on `, we define the δ`’s

recursively as follows: Set

δ0 : =
aminε

|Λ−|bmax + ndaminε
, and

δ` : = min
{
δ`−1,

aminεδ
d−1
`−1

|Λ−|bmax

}
for 1 ≤ ` ≤ k. (4.41)

First we consider the case when ` = 0. Take x = (x1, · · · , xn) ∈ F̃0(δ0) \ Z(f). Then

x ∈ FI(δ0) for some I ∈ Φ0. Upon permuting the xi’s if necessary, we will assume without

loss of generality that I = {1, · · · , n−1}, and thus we have 0 ≤ xi ≤ δ0 for 1 ≤ i ≤ n−1,

which implies that xn ≥ 1 − (n − 1)δ0. For any β = (β1, · · · , βn) ∈ Λ−, it follows from

(Z2′) that there exists α = (α1, · · · , αn) ∈ Λ+ and i0 with 1 ≤ i0 ≤ n − 1 and satisfying

(4.21), and in particular, one has βn < αn. Then similar to (4.22), (4.23) and (4.25), we

have

bβxβ

f+(x)
≤ bβxβ

aαxα
=

bβ

aα

·
( n−1∏

i=1
i6=i0

xβi−αi

i

)
· xβi0

−αi0
i0

· 1

xαn−βn
n

≤ bmax

amin

· 1 · δ0 ·
1

(1− (n− 1)δ0)d−1

≤ bmaxδ0

amin(1− (d− 1)(n− 1)δ0)
(by Bernoulli inequality). (4.42)

Upon summing (4.42) over β ∈ Λ−, we have

f−(x)

f+(x)
≤ |Λ−| · bmaxδ0

amin(1− (d− 1)(n− 1)δ0)
<
|Λ−|bmaxδ0

amin(1− dnδ0)
= ε, (4.43)

where the last equality follows from a simple calculation using (4.41), and thus (4.40)

holds for the case when ` = 0. Now we make the induction hypothesis that (4.40) holds
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for the cases when the running index takes the values 0, 1, · · · , `−1. Then to prove (4.40)

for the case when the running index is `, it follows from the induction hypothesis and the

arguments in the beginning of the proof of Proposition 4.3.3 that we only need to consider

those points x = (x1, · · · , xn) ∈
(
FI(δ`) \

⋃
J%I FJ(δ`−1)

)
\ Z(f) for some I ∈ Φ`, so that

as in (4.28), one has xi ≤ δ` for i ∈ I and xi > δ`−1 for i /∈ I. Then for each β ∈ Λ− (and

a corresponding α = α(β) ∈ Λ+ arising from (Z2′) as mentioned above), a consideration

similar to (4.42) (cf. also (4.29), (4.30), (4.31) (4.32)) leads readily to the following:

bβxβ

f+(x)
≤ bβxβ

aαxα
<

bmax

amin

· δ` ·
1

δd−1
`−1

. (4.44)

Upon summing (4.44) over β ∈ Λ−, we have

f−(x)

f+(x)
< |Λ−| · bmaxδ`

aminδ
d−1
`−1

≤ ε, (4.45)

where the last inequality follows from (4.41). This finishes the proof of (4.38). Finally, it

follows from (4.18) that the function g defined by

g(x) :=
f−(x)

f+(x)
, x ∈ ∆n \ Z(f) ∩∆n,

extends to a continuous function on the compact set ∆n, which we denote by the same

symbol, such that g(x) = 0 on Z(f) ∩∆n. By the extreme value theorem, we may take

c = g(x0) for some x0 ∈ ∆n \ Z(f) ∩ ∆n. Then f(x0) > 0 and thus f+(x0) > f−(x0),

which implies c = g(x0) < 1.

Lemma 4.3.8. Let 0 ≤ r ≤ 1, and suppose f ∈ Pd(∆n) satisfies (Z1). Then for any

x ∈ ∆n \ Z̃(f)(r), we have

f+(x) ≥ aminr
d.

Proof. For any fixed x = (x1, · · · , xn) ∈ ∆n \ Z̃(f)(r), we let J = {j | xj < r}. If J 6= ∅

and the associated face FJ of ∆n is a subset of Z(f)∩∆n, then we have x ∈ F̃|J |(r) which

contradicts x /∈ Z̃(f)(r). Thus, J = ∅, or FJ 6⊂ Z(f) ∩ ∆n = Z(f+) ∩ ∆n, where the

last equality follows from Lemma 4.3.1. In either case, it follows readily that there exists
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α = (α1, · · · , αn) ∈ Λ+ such that αj = 0 for each j ∈ J . In other words, one has xi ≥ r

whenever αi > 0. Hence, we have

f+(x) ≥ aαxα1
1 · · ·xαn

n ≥ aminr
d.

Similar to ([20], p. 223), for any given real number t, we introduce the following

polynomials associated to f+ and f− respectively given by

f+
t (x) :=

∑
α∈Λ+

aα

n∏
i=1

xi(xi − t) · · · (xi − (αi − 1)t) and (4.46)

f−t (x) :=
∑

β∈Λ−

bβ

n∏
i=1

xi(xi − t) · · · (xi − (βi − 1)t), (4.47)

where x = (x1, · · · , xn). From now on, we will always let t = 1
N+d

. Then from (4.8), one

easily sees that

AN,+
γ =

N !(N + d)d

γ1! · · · γn!
f+

t (
γ

N + d
) and AN,−

γ =
N !(N + d)d

γ1! · · · γn!
f−t (

γ

N + d
). (4.48)

Proposition 4.3.9. Suppose f ∈ Pd(∆n) satisfies (Z1) and (Z2′). Let R be any given

real number satisfying 0 < R < 1, and let

NR :=
d(d− 1)amax

2(1− c)aminRd
− d. (4.49)

Then for any positive integer N ≥ NR and any γ ∈ I(n, N + d) satisfying γ
N+d

∈ ∆n \

Z̃(f)(R), we have AN
γ ≥ 0.

Proof. For any given 0 < R < 1 and any N ≥ NR, we let γ = (γ1, · · · , γn) ∈ I(n, N + d)

be such that γ
N+d
∈ ∆n \ Z̃(f)(R). Then by (4.6) and (4.48), we have

γ1! · · · γn!

N !(N + d)d
AN

γ = f+
t (

γ

N + d
)− f−t (

γ

N + d
)

=
(
f+(

γ

N + d
)− f−(

γ

N + d
)
)
−

(
f+(

γ

N + d
)− f+

t (
γ

N + d
)
)

+
(
f−(

γ

N + d
)− f−t (

γ

N + d
)
)
. (4.50)
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By Lemma 4.3.7 and (4.15), we have

f+(
γ

N + d
)− f−(

γ

N + d
) ≥ (1− c)f+(

γ

N + d
) ≥ (1− c)aminR

d. (4.51)

From (4.46), it is easy to see that

f−(
γ

N + d
)− f−t (

γ

N + d
) =

∑
β∈Λ−

bβ

[ n∏
j=1

( γj

N + d

)βj

−
n∏

j=1

βj−1∏
k=0

(γj − k

N + d

)]
(4.52)

Note that if βj > γj for some j, then we have
∏βj−1

k=0

(
γj−k

N+d

)
= 0, since one of the factors

in the product is zero. It follows readily that we have
(

γj

N+d

)βj

≥
∏βj−1

k=0

(
γj−k

N+d

)
for each

β = (β1, · · · , βn) ∈ Λ− and each 1 ≤ j ≤ n. Hence we have

f−(
γ

N + d
)− f−t (

γ

N + d
) ≥ 0. (4.53)

Then following the argument in ([20], p. 223-224), we have

f+(
γ

N + d
)− f+

t (
γ

N + d
)

=
∑

α∈Λ+

aα

[ n∏
j=1

( γj

N + d

)αj

−
n∏

j=1

αj−1∏
k=0

(γj − k

N + d

)]
(as in (4.52))

≤ amax

∑
α∈I(n,N+d)

d!

α1! · · ·αn!

[ n∏
j=1

( γj

N + d

)αj

−
n∏

j=1

αj−1∏
k=0

(γj − k

N + d

)]

= amax ·
[
1−

d−1∏
m=0

(
1− m

N + d

)]
≤ amax ·

d(d− 1)

2(N + d)
, (4.54)

where the second last line follows from the multinomial theorem and the iterated Vandermonde-

Chu identity as given in ([20], p. 224), and the last line follows from the well-known

inequality that
∏

(1 − w`) ≥ 1 −
∑

w` if 0 ≤ w` ≤ 1. Finally, upon combining (4.50),

(4.51), (4.53) and (4.54), we have

γ1! · · · γn!

N !(N + d)d
AN

γ ≥ (1− c)aminR
d − d(d− 1)amax

2(N + d)
+ 0

≥ (1− c)aminR
d − d(d− 1)amax

2(NR + d)
(since N ≥ NR)

= 0 (by (4.49)).
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The next theorem gives the sufficient conditions for f ∈ Pd(∆n) to be Pólya semi-stable

with effective estimates as follows:

Theorem 4.3.10. Let f ∈ Pd(∆n). Suppose f satisfies (Z1) and (Z2’). Then there exists

an effective constant No = No(n, d, bmax

amin
, amax

amin
, c, k, |Λ−|) such that (x1 + · · · + xn)Nf ∈

Σ+
N+d(Rn) for all positive integers N ≥ No (cf. (4.14), 4.15), 4.16)). In particular, f is

Pólya semi-stable. Explicitly, let

µ := max{
(2d−1|Λ−|bmax

amin

) (d−1)k−1
d−2

, 1}
(
nd +

|Λ−|bmax

amin

)(d−1)k

. (4.55)

Then No can be given by

No := max{2dµ,
d(d− 1)amaxµ

d

2(1− c)amin

} − d. (4.56)

Proof. Let f be in Pd(∆n) satisfying (Z1) and (Z2’), and let εZ , NZ be as in Proposition

4.3.5. Let NR be as in Proposition 4.3.8, and set R := εZ . Then it is easy to see from

(4.55), (4.20) and (4.35) that µ = 1
εZ

. Together with (4.56), (4.35) and (4.49), it follows

readily that one has

No = max{NZ , NR}.

For any positive integer N ≥ No and any γ ∈ I(n,N + d), let AN
γ be as in (4.6). If

γ
N+d

∈ Z̃(f)(εZ), then by Proposition 4.3.5, we have AN
γ ≥ 0. On the other hand, if

γ
N+d
∈ ∆n \ Z̃(f)(εZ), then we also have AN

γ ≥ 0 by Proposition 4.3.8. Hence (x1 + · · ·+

xn)Nf ∈
∑+

N+d(Rn). This finishes the proof of Theorem 4.3.9.

Remark 4.3.11. (i) The bound No in Theorem 4.3.10 is obtained by taking maximum

of two values. The first value can be considered as arising from the zero set Z(f) of

f , while the second value can be considered as arising from the strict positivity of f

in the complement of some tubular neighbourhood of Z(f)∩∆n in ∆n, reminiscent

of the strictly positive case in [18] and [20].
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(ii) One can drop the dependence of No on the parameteres k and |Λ−| by replacing

them by max{n−3, 0} and
(

n+d−1
d−1

)
−1 respectively in (4.55) and (4.56). To see this,

we first note that the value of the expression for No increases with the values of k,

|Λ−| and d. Since Λ+ 6= ∅, it follows that one always has |Λ−| ≤
(

n+d−1
d−1

)
− 1. Also,

we always have k ≤ n − 2 as in (4.16). On the other hand, an (n − 2)-face of ∆n

corresponding to the equation xi = 0 lies in Z(f) ∩∆n if and only if xi is a factor

of each monomial term of f (cf. Lemma 4.3.1). Thus, when n ≥ 3 and k = n − 2,

by factoring out all the common factors of the monomial terms of f , one may write

f = xσ1
1 · · ·xσn

n f̂ with σ1, · · · , σn ∈ Z≥0 and such that Z(f̂)∩∆n consists of faces of

dimensions ≤ n − 3, i.e., k(f̂) ≤ n − 3. Note that (x1 + · · · + xn)f ∈ Σ+
N+d(Rn) if

and only if (x1 + · · ·+ xn)f̂ ∈ Σ+
N+d−σ1−···−σn

(Rn). Thus the value of No = No(f) in

Theorem 4.3.10 can be replaced by that of No(f̂), which means that in (4.55) and

(4.56), d is replaced by d− σ1 − · · · − σn, k is replaced by k(f̂) ≤ n− 3, while the

values of the other parameteres remain unchanged.

The following example illustrates a polynomial which is Pólya semi-stable, and satisfies

(Z1) but does not satisfy (Z2’). This implies that the sufficient conditions (Z1) and (Z2’)

are not necessary conditions for Pólya semi-stability.

Example 4.3.12. Let

p(x1, x2, x3, x4) = x2
1x3x4 + x2

2x3x4 + x1x2x
2
3 + x1x2x

2
4 − x1x2x3x4 (4.57)

be a polynomial in P4(R4). Clearly, by arithmetic-geometric inequality, p is positive semi-

definite. Also, by the expansion of (x1 + x2 + x3 + x4)p(x1, x2, x3, x4), we can see that all

the coefficients of (x1 +x2 +x3 +x4)p(x1, x2, x3, x4) are non-negative. Hence p(x) is Pólya

semi-stable. The zero set of p(x) is

{(x1, x2, x3, x4) ∈ ∆4 | x1 = x2 = 0; x3 = x4 = 0; x1 = x3 = 0;

x1 = x4 = 0; x2 = x3 = 0; x2 = x4 = 0; } (4.58)



56 Chapter 4. Effective Pólya Semi-stability for Non-negative Polynomials on the Simplex

and we have

Λ+ = {(2, 0, 1, 1), (0, 2, 1, 1), (1, 1, 2, 0), (1, 1, 0, 2)}, (4.59)

Λ− = {(1, 1, 1, 1)}. (4.60)

Clearly, there exists a face FI and β ∈ Λ− such that β 6�I α for all α ∈ Λ+. Take F{3,4},

and we can see that (1, 1, 1, 1) 6�{3,4} α for all α ∈ Λ+. Hence p(x) does not satisfy (Z2’),

and (Z2’) cannot be a necessary condition for Pólya semi-stability.

Next we construct a family of polynomials {hε} ⊂ P4(∆4) to illustrate that the growth

order of No with respect to c in Theorem 4.3.10, namely, No ∼ 1
1−c

as c → 1, is sharp.

Each hε will be such that Z(hε)∩∆4 consists of a union of 0-faces and 1-faces of ∆4, i.e.,

k = 1.

Example 4.3.13. For 0 < ε < 4, consider the polynomial in R[x, y, z, w] given by

hε(x, y, z, w) := x2yz + xy2z + xyz2 + w4 − (4− ε)xyzw.

By the arithmetic-geometric mean inequality, one easily sees that hε ∈ P4(∆4), and one

has Z(hε) ∩ ∆4 = {(x, y, z, w) ∈ ∆4 | x = w = 0} ∪ {(x, y, z, w) ∈ ∆4 | y = w =

0} ∪ {(x, y, z, w) ∈ ∆4 | z = w = 0}. Hence hε satisfies (Z1). Clearly there are three

1-faces FI1 , FI2 , FI3 and three 0-faces FI4 , FI5 , FI6 in Z(hε) ∩∆4 with associated indexes

given by

I1 = {1, 4}, I2 = {2, 4}, I3 = {3, 4},

I4 = {1, 2, 4}, I5 = {1, 3, 4}, I6 = {2, 3, 4}.

We list the 4-tuples in Λ+ and Λ− as follows:

Λ+ = {(2, 1, 1, 0), (1, 2, 1, 0), (1, 1, 2, 0), (0, 0, 0, 4)}.

Λ− = {(1, 1, 1, 1)}.

Let β = (1, 1, 1, 1). It is easy to see that for each face FIi
, there exists α(Ii) ∈ Λ+

such that β �Ii
α(Ii), i = 1, · · · , 6 (as an example, one may take α(I4) = (1, 1, 2, 0)).



4.4 Characterization of Pólya semi-stable polynomials in some cases 57

Hence hε satisfies (Z2′). One can also easily check that n = 4, d = 4, |Λ−| = 1, k = 1,

amin = amax = 1, bmax = 4 − ε, c = 1 − ε
4
. For 0 < ε < 3, the constant No in Theorem

4.3.10 is then given by

No = max
{
64(4− ε)(20− ε)3,

6 · 84 · (4− ε)4(20− ε)12

ε

}
− 4.

As ε → 0 (or equivalently c → 1), No is asymptotically ∼ 6·84·44·2012

ε
(or equivalently

6·84·43·2012

1−c
). Thus No has growth order No ∼ 1

1−c
as c→ 1. Let N = 4m for some positive

integer m. Then the coefficient of xm+1ym+1zm+1wm+1 in (x + y + z + w)Nhε is

AN
(m+1,m+1,m+1,m+1) =

(4m)!

(m!)4

( 3m

m + 1
+

m(m− 1)(m− 2)

(m + 1)3
− (4− ε)

)
≤ (4m)!

(m!)4

( 3m

m + 1
+

m

m + 1
− 4 + ε

)
=

(4m)!

(m!)4

(
ε− 4

m + 1

)
.

Thus if (x + y + z + w)Nhε ∈ Σ+
N+4(R4), we must have ε − 4

m+1
≥ 0, which implies that

N = 4m ≥ 16
ε
− 4 (or equivalently 4

1−c
− 4), and hence the minimum growth order of N

is at least 1
1−c

, as c → 1. Therefore the growth order of No in Theorem 4.3.10, namely

No ∼ 1
1−c

, is sharp.

Remark 4.3.14. Powers and Reznick [21] have earlier constructed a similar family of

polynomials such that the zero set of each polynomial in ∆n consists of only 0-faces, and

for which one can easily check that the minimum growth order of N is also at least 1
1−c

.

4.4 Characterization of Pólya semi-stable polynomi-

als in some cases

In this section, we use Theorem 4.2.2 and Theorem 4.3.10 to deduce our characterization

of Pólya semi-stable polynomials in the case when Z(f) ∩∆n consists of a finite number

of points and as well as the case when n = 3.
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Corollary 4.4.1. Let f ∈ Pd(∆n) be such that |Z(f) ∩ ∆n| is finite. Then f is Pólya

semi-stable if and only if f satisfies (Z1) and (Z2). (Note that in this case, Z(f) ∩ ∆n

necessarily consists of a union of vertices of ∆n.)

Proof. Let f ∈ Pd(∆n) be such that |Z(f)∩∆n| is finite and f satisfies (Z1), so that Z(f)∩

∆n consists of 0-faces of ∆n. It is obvious that Corollary 4.4.1 will readily follow from

Theorem 4.2.2 and Theorem 4.3.10 if one can show that such an f satisfies (Z2) if and only

if it satisfies (Z2′). Clearly if f satisfies (Z2′), then it satisfies (Z2). Conversely, suppose

f satisfies (Z2) but not (Z2′). Then it follows that there exists α = (α1, · · · , αn) ∈ Λ+,

β = (β1, · · · , βn) ∈ Λ− and a 0-face FI ⊂ Z(f)∩∆n such that β �I α, but β �I α. Upon

permuting the coordinates of ∆n if necessary, we will assume without loss of generality

that I = {1, · · · , n − 1}. Then we have βi ≥ αi for all 1 ≤ i ≤ n − 1, but there does

not exist i0 with 1 ≤ i0 ≤ n− 1 such that βi0 > αi0 . Hence we must have βi = αi for all

1 ≤ i ≤ n− 1. Since |α| = |β| = d, it follows that βn = αn. Thus we have α = β, which

is a contradiction, since the sets Λ+ and Λ− are disjoint by construction.

Remark 4.4.2. In the case when |Z(f) ∩ ∆n| is finite, Powers and Reznick ([21] and

[22]) showed the characterization of Pólya semi-stable polynomials with ‘simple zeros’ at

vertices of ∆n (with effective estimates). It is easy to see that such a polynomial with

simple zeros at vertices of ∆n necessarily satisfies (Z1) and (Z2′) but not vice versa (see

[21] for the definition of ‘simple zeros’).

When n = 2, it is easy to see that f ∈ Pd(∆2) is Pólya semi-stable if and only if f can

be expressed in the form

f(x1, x2) = xσ1
1 xσ2

2 f̂ ,

with σ1, σ2 ∈ Z≥0 and such that f̂(x) > 0 on ∆2. When n = 3, Theorem 4.2.2 and

Theorem 4.3.10 lead to a simple characterization of Pólya semi-stable polynomials as

follows:

Corollary 4.4.3. Let f ∈ Pd(∆3). Then f is Pólya semi-stable if and only if f can be
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expressed in the form

f(x1, x2, x3) = xσ1
1 xσ2

2 xσ3
3 f̂ , (4.61)

for some σ1, σ2, σ3 ∈ Z≥0 and an f̂ ∈ Pd−σ1−σ2−σ3(∆3) such that |Z(f̂) ∩∆3| is finite and

f̂ satisfies (Z1) and (Z2).

Proof. First we remark that if f ∈ Pd(∆3) is factored into the form f = xσ1
1 xσ2

2 xσ3
3 f̂ as

given in (4.61), then it is easy to see that f is Pólya semi-stable if and only if f̂ is Pólya

semi-stable. The ‘if’ part of Corollary 4.4.3 then follows as a direct consequence of the

above remark and Corollary 4.4.1 (applied to f̂). Conversely, suppose f ∈ Pd(∆3) is

Pólya semi-stable. Then by factoring out all the common factors of the monomial terms

of f , one can write f = xσ1
1 xσ2

2 xσ3
3 f̂ with σ1, σ2, σ3 ∈ Z≥0 and such that the monomial

terms of f̂ have no common factors. By the aforementioned remark, f̂ is necessarily Pólya

semi-stable, and thus by Theorem 4.2.2, f̂ satisfies (Z1) and (Z2). Moreover, it follows

from a simple dimension consideration that Z(f̂) ∩∆3 necessarily consists of a union of

0-faces and 1-faces of ∆3. Since the monomial terms of f̂ have no common factors, it

follows that Z(f̂)∩∆3 cannot contain any 1-faces. Hence Z(f̂)∩∆3 consists of a union of

0-faces, and thus it is a finite set. This finishes the proof of the ‘only if’ part of Corollary

4.4.3.

4.5 Application to polynomials on a general simplex

Following the methods of Powers and Reznick ([20], Theorem 3), we proceed to show the

upper bound for the degree N of a representation of a non-negative polynomial f on a

general simplex S as a positive linear combination of powers of the barycentric coordinates

of S.

Let S be a general n-simplex in Rn and let {v0, · · · , vn} be the set of vertices of S. If

for some point x ∈ S, we have

(λ0(x) + · · ·+ λn(x))x = λ0(x)v1 + · · ·+ λn(x)vn, (4.62)
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and
∑n

i=0 λi(x) = 1, then {λ0, · · · , λn} is the set of barycentric coordinates of S. We can

also see that {λ0, · · · , λn} is a set of linear polynomials in x and we also have λi(vj) = δij.

Let f ∈ R[x1, · · · , xn] be a (non-homogeneous) polynomial of degree d in Rn. Then we

can find a homogenization f̃ ∈ R[y0, · · · , yn] of degree d such that f̃(λ0, · · · , λn) = f(x).

f̃ can be constructed as follows: Given f(x) =
∑

|α|≤d aαxα, then we rewrite as

f(x) =
∑
|α|≤d

aα

( n∑
i=0

viλi(x)
)α( n∑

i=0

λi(x)
)d−|α|

(4.63)

and we have

f̃(y0, · · · , yn) =
∑
|α|≤d

aα

( n∑
i=0

viyi

)α( n∑
i=0

yi

)d−|α|
. (4.64)

If f is non-negative on S, then it is easy to see that f̃ ∈ Pd(∆n+1). An immediate

consequence of Theorem 4.3.10 is the following:

Corollary 4.5.1. Let S be a general n-simplex in Rn, {v0, · · · , vn} be the set of vertices

of S, and {λ0, · · · , λn} be the set of barycentric coordinates of S. Let f ∈ R[x1, · · · , xn]

be of degree d and non-negative on the simplex S, and let f̃ ∈ R[y0, · · · , yn] be the

homogenization of f . Suppose f̃ satisifes (Z1) and (Z2’). Then f admits a representation

of the form

f =
∑
|α|≤N

aαλα0
0 · · ·ααn

n (with each aα ≥ 0) (4.65)

for some N ≤ No, where No = No(f̃) is as given in Theorem 4.3.10.

Proof. We can apply Theorem 4.3.10 to f̃ which satisfies (Z1) and (Z2’) by assumption,

and see that there exists N such that (
∑

yi)
N f̃(y) has non-negative coefficients,

(
∑

yi)
N f̃(y) =

∑
|β|=N

bβyβ, (4.66)

where bβ ≥ 0 for all β. Substituting λi for yi gives f(x) on the left hand side of (4.66),

and a representation of degree N on the right hand side.

Remark 4.5.2. Using the approach in ([20], p. 226) which treated the case of positive

polynomials on a convex compact polyhedron, we might ask whether the above Corollary
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4.5.1 can be generalized to the case of polynomials which are non-negative on a convex

compact polyhedron. However, no such generalization is possible, as the example by

Handelman ([11], pg 57) shows.

4.6 Generalization for certain bihomogeneous poly-

nomials

Let p(z) be a real-valued bihomogeneous complex polynomial which has the following

representation:

p(z) =
∑

α

aα

n∏
i=1

|zi|2αi , (4.67)

where aα ∈ R for each α = (α1, · · · , αn) and the associated real polynomial p̃ of p is

defined as

p̃(x) :=
∑

α

aα

n∏
i=1

xαi
i . (4.68)

In other words, p̃ is obtained from p by replacing each |zi|2 is replaced by xi in (4.67).

Example 4.6.1. Let p(z1, z2, z3) = |z1|4|z2|2 + |z1|2|z2|4 + |z3|6−3|z1z2z3|2. Clearly, it is a

real-valued bihomogeneous complex polynomial of the representation in (4.67). Moreover,

the associated real polynomial is p(x1, x2, x3) = x2
1x2 + x1x

2
2 + x3

3 − 3x1x2x3.

Proposition 4.6.2. Let p(z) be a positive semi-definite bihomogeneous real-valued com-

plex polynomial on Cn which satisfies (4.67). Then p ∈ PQDd(Cn) if and only if p̃ is

Pólya semi-stable.

Proof. If p̃ is Pólya semi-stable, then it is clear to see that (
∑

xi)
N p̃ ∈

∑+
N+d(Rn) for

sufficiently large N , and the substitution of xi by |zi|2 enables us to see that the associated

real-valued bihomogeneous complex polynomial p is in PQd(Cn), by definition. On the

other hand, suppose p ∈ PQDd(Cn), and this means

(
n∑

i=1

|zi|2)Np(z) =
∑

j

bj|gj|2 (4.69)
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where gj are of the form gj =
∑

β cj,βzβ, bj are all non-negative real numbers and N is

some sufficiently large integer. By expanding each |gj|2 in (4.69), we have

(
n∑

i=1

|zi|2)Np(z) =
∑

j

bj(
∑

β

cj,βzβ)(
∑

β

cj,βzβ). (4.70)

From (4.67), it is clear that we may write

(
n∑

i=1

|zi|2)Np(z) =
∑

γ

Aγ

n∏
i=1

|zi|2γi , (4.71)

where each Aγ ∈ R. Then on comparing the coefficients of
∏n

i=1 |zi|2γi in (4.70) and

(4.71), we have Aγ =
∑

j bj(
∑

γ |cj,γ|2), which is clearly non-negative. On replacing each

|zi|2 with xi in (4.71), we obtain

(x1 + · · ·+ xn)N p̃(x) =
∑

γ

Aγx
γ (4.72)

hence showing that p̃(x) is Pólya semi-stable.

Corollary 4.6.3. Let p(z) be a positive semi-definite bihomogeneous real-valued complex

polynomial on Cn which can be expressed as in (4.67). Suppose the associated real

polynomial p̃ of p satisfies (Z1) and (Z2’), then p ∈ PQDd(Cn).

Proof. Since p̃(x) satisfies (Z1) and (Z2’), then by Theorem 4.3.10, it is Pólya semi-stable.

By Proposition 4.6.2, we have p ∈ PQDd(Cn). Furthermore, (
∑n

i=1 |zi|2)Np(z) is a sum

of squared norms for all N ≥ No, No as defined in Theorem 4.3.10.

Example 4.6.4. Consider the polynomial Mc(z1, z2, z3) = |z1|4|z2|2+|z1|2|z2|4+|z3|6−(3−

ε)|z1z2z3|2, 0 < ε < 3, which was introduced in Section 2.1 (j). From the proof in Chapter

2, we have shown Mc to be a quotient of squared norms with uniform denominator. Now,

we consider the associated real polynomial M̃c of Mc, and we have

M̃c = x2
1x2 + x1x

2
2 + x3

3 − (3− ε)x1x2x3. (4.73)

It is clear that M̃c satisfies (Z1) and (Z2’), hence by Corollary 4.6.3, we can conclude that

Mc is a quotient of squared norms with uniform denominator, which coincides with the

results in Chapter 2.
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