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Abstract

Statistical shape models which represent the shape variations within a pop-

ulation are used in a variety of applications of medical image analysis, such as

model-guided segmentation, statistical shape analysis and probabilistic atlasing.

In this thesis, we propose a novel statistical shape model based on the shape

representation using subdivision surface wavelets. It has three highly desirable

properties of a statistical shape model: compact shape representation, multi-scale

shape description and spatial-localization of the shape variation.

We also develop a new model-guided segmentation framework utilizing this

Statistical Surface Wavelet Model (SSWM) as a shape prior. In the model building

process, a set of training shapes are decomposed through the subdivision surface

wavelet scheme. By interpreting the resultant wavelet coefficients as random vari-

ables, we compute prior probability distributions of the wavelet coefficients to

model the shape variations of the training set at different scales and spatial loca-

tions. With this statistical shape model, the segmentation task is formulated as an

optimization problem to best fit the statistical shape model with an input image.

Due to the localization property of the wavelet shape representation both in scale

and space, this multi-dimensional optimization problem can be efficiently solved

in a multiscale and spatially localized manner. We have applied our method to

segment cerebral caudate nucleus and putamen from MR (Magnetic Resonance)

scans of both healthy controls (27 cases) and patients with schizophrenia (38

cases). The experiment results have been validated with manual segmentations.

The results show that our segmentation method is robust, computationally effi-

v



ABSTRACT

cient and achieves a high degree of segmentation accuracy. After that, a com-

parative statistical shape analysis of the caudate nucleus between schizophrenia

patients and normal controls is performed as well. In the statistical group mean

difference hypothesis testing between schizophrenia patients and healthy controls

regardless of gender, race and handedness, significant shape difference between

the two groups is suggested. In order to exclude the unknown affects of gender,

race and handedness to the shape analysis, the same hypothesis testing is also

conducted on two sub-groups which only consists of right-handed Chinese male.

However, in this test, no significant shape difference between the two groups is

clearly suggested. Considering the relative insufficient subjects in this analysis

(only 17 schizophrenia patients and 8 healthy controls), a further study based on

more datasets is necessary.
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Chapter 1

Introduction

There exists of a large number of objects with different shapes — from the

non-life-form: planets, molecular and atom to the life-form: anatomical struc-

tures, tissues and cells. The shape of an object lies at the interface between vision

and cognition [1]. Therefore, the analysis of the shape is usually the first step we

take to get a profound understanding of the objects we are investigating. This is

especially true in biology and medical researches, because the shape or shape vari-

ations of anatomical structures is closely related to their physiological functions.

The branch that deals with the shape and structure of organisms has become an

important sub-domain, Morphology. The morphology study in medicine is usu-

ally based on the biomedical images generated from CT, MR scan, X-ray, PET,

etc. Originally, only simple measurement of size, area, volume, orientation and

symmetry of the individual anatomical structures are used. However, the changes

in these metrics are only general features, because although they might explain

the atrophy or dilation caused by illness, the morphological changes at specific

locations are not sufficiently reflected in these global metrics. Therefore, full geo-

metrical information, especially the local shape information should be taken into

account. At the same time, the analysis based on a single object can’t answer some

of the key questions in medical morphology study. For example, what is the shape

of the human brain surface? It is quite difficult to answer this question, because
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CHAPTER 1. INTRODUCTION

the shape differs from person to person. Instead of giving a single and fixed brain

surface atlas, it is much more appropriate to give a probabilistic brain surface atlas

which indicates the different variation modes at different locations among different

groups of peoples. Another example is how to discriminate between the normal

morphological variations of brain structures and the pathological variations caused

by neurological diseases, for instance, schizophrenia? The answers can only come

from the statistical and quantitative comparison and analysis between healthy

and diseased subjects. Thus, Statistical Shape Analysis (SSA), which no longer

analyzes only single or several subjects but a quite large population, has become

of increasing interest to the medical imaging community.

1.1 Statistical Shape Analysis (SSA) and Statis-

tical Shape Model (SSM)

Given a population, there are generally pronounced anatomical variations

among the subjects. Statistical shape analysis of medical images aims to study the

various statistical quantities of these variations. The main objective of statistical

shape analysis is to provide a probabilistic description of shapes, a quantitative

measurement of shape variation and a classification of shapes according to the

variation mode. Statistical shape analysis is, therefore, potentially capable of pre-

cisely locating the pathological variations or understanding and quantifying how

the factors, such as diseases, aging, gender and races et al., affect these morpho-

logical changes. However, before statistical shape analysis can be conducted, it

is necessary to have a standard shape description in which shapes from different

subjects are comparable and a framework to perform the comparison and statis-

tical analysis of the shape variance. Thus, such a mathematical framework, the

so-called Statistical Shape Model (SSM), which provides these essentials, is the

pivotal problem in statistical shape analysis. Statistical shape analysis, in fact,

can be regarded as a process of building the statistical shape model.

2



1.1. STATISTICAL SHAPE ANALYSIS (SSA) AND STATISTICAL SHAPE MODEL (SSM)

Usually, there are 3 major steps in the construction of a statistical shape

model (or performing statistical shape analysis): (1) image data preparation; (2)

shape representation; (3) statistical analysis. In the remaining part of this section,

we will give a brief introduction to these main steps.

1.1.1 Image Data Preparation

The construction of a statistical shape model starts from the data collection

and preparation. Firstly, a considerable number of planar or volumetric scans for

the subject in the study are acquired. Then, the anatomical structures of interest

are segmented, either manually or using automatic algorithms designed for this

task [2–7]. As an example, Fig. 1.1(a) shows one 3D MR scan of a human head.

Fig. 1.1(b) shows the manual segmentation of the caudate nucleus in a sagittal

slice. Fig. 1.1(c) shows several finally segmented caudate nucleus from scans of

different subjects. Although the segmented examples in Fig. 1.1(c) look very

similar, their shape and volume difference can be detected even through the visual

inspection. However, far beyond the detection of the differences, the goal in the

morphology and pathology studies is to not only localize morphological differences

using shape information but also to quantify them for assessing the severity of the

disorder, effectiveness of the treatment or correlating them with symptoms. To

achieve the quantitative analysis of morphological variations, shapes of different

subject must be compared between each other. Therefore, instead of representing

the shape in voxels, an uniform shape representation is needed, in which different

shapes are comparable.

1.1.2 Shape Representation

Usually, tens, hundreds, or even thousands of examples are analyzed in the

statistical shape analysis or used to build a statistical shape model. Therefore,

in order to make the shape of different objects comparable, the segmented ob-

jects are transformed into other shape representations (usually in vector form).

3



CHAPTER 1. INTRODUCTION

(a) (b)

(c)

Fig. 1.1: Data preparation. (a) The volumetric MR image. (b) The manual segmentation
of caudate nucleus in one sagittal slice. (c) Three segmented caudate nucleus in
volumetric binary image form (from IBSR [8]).

A great number of shape descriptors have been proposed over the years for this

purpose. For example, the simplest and straightforward method is to represent

the shape by the same number of sample points on the object boundary [2, 9].

Another approach is to describe the object boundary through modal decompo-

sition [3, 5, 10, 11]. Different from the shape representation methods by direct

outlining the object boundary, deformation fields [6, 12, 13] were also used as shape

representations in building statistical shape models. The shape representation is

the crucial problem in statistical shape model building, because the property of

the shape representation directly determines the capability and properties of the

resulting statistical model and statistical shape analysis. A detailed comparison

of the existing shape representation methods used in statistical shape models is

given in Chapter 2.
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1.2. STATISTICAL SHAPE MODEL AND MODEL-GUIDED SEGMENTATION

1.1.3 Statistical Analysis

Once the shape of segmented objects have been transformed into the vector-

form shape representation, they are now comparable and statistical analysis can

be performed on these shape vectors to find the statistical features of a dataset.

Generally, this is typically done by applying Principal Component Analysis (PCA)

to the dataset. The mean shape vector is then considered a “typical” shape, and

the principal components are computed to capture the variation within the set

and used to represent new input shape. If there are two or more comparative

populations, comparative or discriminative analysis will be conducted to find the

shape differences between these populations. Finally, if significant shape difference

exist between populations, a shape classifier (FLD [14] or SVM [15, 16]) in the

shape vector space can be trained to separate the different populations.

1.2 Statistical Shape Model and Model-Guided

Segmentation

In last section, we have explored the 3 main steps of building a statistical

shape model or performing statistical shape analysis. It is obvious that the pre-

cise segmentation of the object in data preparation is a prerequisite step. The

accuracy of the segmentation determines the quality of the subsequent statistical

shape model or statistical shape analysis. In fact, segmentation is absolute pre-

requisite and necessary for a variety of applications: i.e. pre-operative evaluation

and surgery planning [17], radiotherapy treatment planning [18] and monitoring

of disease progression or remission [19]. While this task has traditionally been

tackled by human experts, the drawbacks of manual segmentations, such as time-

consuming, lack of reproducibility and subjective biases, make an automatic or

semi-automatic method highly desirable. However, because of the highly variable

nature of the shapes of anatomical structures, an accurate automated segmenta-

5



CHAPTER 1. INTRODUCTION

tion method is a true challenge. Low level segmentation algorithms (region grow-

ing [20], edge detection [21], snake [22]) may be used to assist the human operator,

but reliable results could hardly be expected without human intervention because

of the many difficulties [3, 23]: input images are noisy (very low SNR (signal-to-

noise ratio)), not very well contrasted, surrounding structures with similar shape

or intensity, the target structure are fairly variable in shape and intensity, etc..

Therefore, to overcome these difficulties, high level model-guided methods have

been proposed [2–4, 10]. In these methods, the statistical shape model was used

as probabilistic template to introduce the prior knowledge into the automatic seg-

mentation process. Compared to other fixed shape template/model, the statistical

shape model is much more suitable for this purpose, because it contains all the

known variations of the structures.

1.3 Thesis Contributions

Although 2D statistical shape model based on the first generation wavelet [11,

24] has been proposed and shown to be a better choice for statistical shape analysis

especially for spatial localized shape variations, the rigorous requirements in the

explicit surface parameterization required by the first generation wavelets scheme

are the main obstacles of the extension of this method to 3D surface.

In order to address this problem, the main purpose of this thesis is to de-

velop a novel statistical shape model for the genus-zero object (the most common

topology of biological objects) based on the subdivision surface wavelet transform,

termed Statistical Surface Wavelet Model (SSWM). And besides, a framework of

using SSWM for model-guided segmentation and comparative shape analysis will

be proposed. Our new model adopts a newly developed surface wavelet scheme

based on the lifting scheme [25]. This scheme can perform wavelet transforms

on irregular grids. Thus, as a result, the SSWM doesn’t need the surface to be

explicitly parameterized, so that it can perform the shape analysis directly on

6



1.3. THESIS CONTRIBUTIONS

the surface mesh with certain subdivision connectivity. Therefore, a method to

prepare the surface mesh with correspondence in certain mesh-connectivity which

is required by the wavelet scheme will also be presented in the thesis.

Because of the adoption of wavelet basis, the SSWM is expected to pos-

sess all the following three highly desirable properties simultaneously: compact

shape representation, multi-scale shape description, and spatial-localization of the

shape variation. These good properties will be advantageous in applications us-

ing statistical shape models, such as statistical shape analysis and model-guided

segmentation. Firstly, we will use this model to investigate a shape population

consisting of 18 caudate nuclei. The model is designed such that shape analysis

can be focused on scale and spatial location on the surface. Such a multiscale

and spatially localized shape analysis, which is not possible in previous models,

can be very useful as diseases, such as cancer, may only affect a small portion of

an organ. Furthermore, the resultant multiscale and spatially localized statisti-

cal shape model can be used in model-guided segmentation. In the segmentation

process, fitting the model to the image is, in general, an optimization problem.

However, too many input parameters to an optimizer at a time will lead to ex-

tremely high computational cost. In the previous models, because of the lack of

spatial localization in shape space, all the model parameters in one scale level

have to be inputted together for optimization. In some cases, this even causes the

optimization computationally impracticable. In contrast, the SSWM can be fitted

with the image in a divide-and-conquer manner. The whole model fitting problem

is solved by optimizing the model parameter one by one, since each of them only

defines the shape at certain scale and spatial location. This is expected to result

in a much more efficient and robust model-guided segmentation method.

7



CHAPTER 1. INTRODUCTION

1.4 Outline of the Thesis

The remaining part of the thesis is arranged as follows. Firstly, in Chap-

ter 2, a review of related work is presented. The focus is on the existing shape

representations and their properties relevant to the problem of statistical shape

model and statistical shape analysis. The purpose of this chapter is to provide

a general overview of commonly used shape representations, as well as guidelines

for choosing a shape representation for the statistical shape model building and

model-guided segmentation purpose.

In the following chapters, a new statistical shape model based on the sub-

division surface wavelet shape representation will be proposed and applied in

model-guided segmentation of the caudate nucleus. Since the whole process is

quite complex, to help to put things together, an outline of the thesis is given in

Fig. 1.2. The left column indicates the steps in the process. The representative

results in the steps are shown in the middle column. The right column indicates

the Sections where details of the steps will be addressed. The dotted line indicates

the partition between model training and model application.

Chapter 3 explains our choice of the subdivision surface wavelet for shape

representations and presents the scale and space localization properties of the re-

sultant Statistical Surface Wavelet Model (SSWM). In this chapter, the other two

key problems in statistical shape model building, i.e. establishing correspondence

between surfaces of different subjects and surface re-meshing, are covered in Sec-

tion 3.2. After that, in Section 3.3, as an example, a SSWM depicting the shape

variations of the caudate nucleus will be constructed based on 18 MR scans from

The Internet Brain Segmentation Repository (IBSR) [8]. Next, in Chapter 4, the

acquired SSWM is used in model-guided segmentation as a shape prior. By uti-

lizing the “double localization” property of wavelet basis, a multiscale and spatial

localized algorithm is proposed to optimize the model fitting objective function.

The segmentation experiments of caudate nucleus and putamen were conducted

on the MR images from both the schizophrenia and healthy controls. The results

8



1.4. OUTLINE OF THE THESIS

Fig. 1.2: Outline of the thesis

were validated by comparing with the manual segmentations. In Chapter 5, we

give the results of comparative shape analysis of caudate nucleus between two

groups, schizophrenia patients and healthy controls. In Chapter 6, the thesis con-

cludes with a discussion of the lessons learned from the presented experiments and

future research directions enabled by the results of this work.

9



Chapter 2

Related Work

As mentioned in Section 1.1.2, shape representation (or shape descriptor) is

the pivotal problem in building a statistical shape model, performing statistical

shape analysis or model-guided segmentation. This chapter reviews the existing

shape representations and their relevant properties. We limit our review to include

only shape representations that have been used in medical image analysis and

model guided-segmentation, while leaving out some shape representations used in

computer vision or other applications. The purpose of this chapter is to provide a

brief overview of existing shape representations and a necessary background for the

discussion on our novel statistical shape model based on the surface wavelet shape

representation in next chapter. In order to derive properties that are needed for a

shape description suited for shape analysis or building a shape prior for automatic

segmentation, selected properties of shape descriptions are investigated as well.

This investigation leads to a list of properties that outlines the requirements for

an ideal shape description scheme for statistical shape model.

2.1 The Classification of Shape Descriptions

There are a large variety of existing geometric representations of shape as

illustrated in Fig. 2.1. Depending on their underlying structure, they can be

10



2.2. FREE-FORM SHAPE DESCRIPTIONS

Fig. 2.1: Different geometric representation of shape models

partitioned into 2 classes: free-form and parametric. Both can be used in the

construction of statistical shape model and model-guided segmentation, but with

different pros and cons. In the next few sections, these different shape represen-

tations will be explored by explaining the main idea of the methods.

2.2 Free-Form Shape Descriptions

Free-form shape descriptions are based on explicit or implicit listing of points

or patches on the object boundary, which do not assume any specific global struc-

ture. The only constraints are local continuity and smoothness. Therefore, they

provide considerable flexibility to represent arbitrarily complex shapes. The main

drawback of this kind of models is that they are not very concise and lack of

overall shape information, because of the use of local primitives (points, facets)

on shape boundary.

11
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2.2.1 Point Distribution Model (PDM)

The most representative free-form shape representation method is the Points

Distribution Model (PDM), in which the shape is represented by an explicit list

of sample points on shape boundary. There are several application of this shape

representation in statistical shape analysis, for example, Bookstein in 2D [26–

28], Cootes [2, 9, 29] and Rangarajan [30] in 3D. Since only a number of points

are selected to represent the shape, shape information between these points is

unknown.

Based on this shape representation, an elastic deformable model was intro-

duced by Kass et al. [22] to find the boundary of object. In this so-called “snake”

method, the shape model deforms from an initial position to fit the edge features

in an image. The points on the boundary are represented parametrically as:

v(t) = (x(t), y(t)) (2.1)

where the parameter t ∈ [0, 1] is proportional to the arc-length.

The behavior of the snake is driven by minimization of a cost function that

combines image, internal and constraint energies:

E = αEimage + βEint + γEcon (2.2)

The image energy guides the model to match the edge feature and is derived by

integrating over the boundary with an image edge map [31]. The internal energy

constrains the model shape to be smooth and is defined as the integral of the

first and second order derivative of the boundary, which control the tension and

rigidity of the boundary respectively. The constraint energy is introduced to allow

user interaction. Later, many modifications of the original snake algorithm were

proposed, such as [23, 32]. However, the main drawback of this method is that it

is very sensitive to the model initialization.

12
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2.2.2 Discrete Mesh

This method represents the shape as a set of discrete geometric entities, usu-

ally triangulation or quadrilateral facets. They are widely used techniques in

computer graphics, but are rarely used for shape analysis. The first application

of this method in building deformable shape model was done by Delingette who

introduced the simplex mesh model [33]. A simplex mesh is a discrete shape rep-

resentation with a constant vertex connectivity. Each vertex of a 2-simplex mesh

is connected to three neighbors. Therefore, 2-simplex meshes are used to represent

surfaces. The mesh is adaptive in its density and topology. It has been applied

in segmentation by deforming the mesh according to the potential field defined

by the object boundary. Approaches for volumetric and shape measurement of

simplex mesh have been developed as well. However, since the problem of finding

corresponding points on different surfaces remains unsolved for this kind of mesh,

no statistical shape analysis work using this model has been done so far.

2.2.3 Distance Transform/Level Set

This method was developed by Osher and Sethian firstly in 2D [34] and

has been extended to surfaces [35]. The main idea of level sets is to embed the

deformable shape representation in higher dimension space. For example, in 3D,

a surface is represented as the zero level set of a function Ψ : R3 → R:

S = {p ∈ R3|Ψ(p) = 0}

Usually, the function Ψ is chosen as distance transform [36], which is a function

that for each point in the image is equal to the distance from that point to the

boundary of the object. In the signed variant of the original distance transform,

the values of the distance transform negates outside the object, in order to elimi-

nate the singularity at the object outline and make the value change linearly when

crossing the boundary. In this way, the boundary is modeled implicitly as a zero

13
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level-set of the distance transform. The distance transform can be computed from

a binary segmentation of the object. The main advantage of level set method is to

naturally change the topology of surface (or contour) in the deformation process.

The model may split into several components or merge from several components

while still remains only one function. Its drawback is the computational cost, since

a higher dimension space is used for representing the surface. Moreover, because

of its implicit representation of the shape, it is hard to define the correspondence

required in building the statistical shape model. Therefore, when it is used for

segmentation, the incorporation of prior knowledge is usually through indirect

methods, such as intensity statistics [6], inter-objects constraints [37].

2.3 Parametric models

Different from the free-form models using representation in image space, para-

metric models capture the overall shape in a small number of parameters acquired

by decomposing the shape by a set of basis functions or a serial of harmonics with

different scales. The shape representation becomes more accurate as higher scale

bases are added to the representation. In practice, it is desired to reduce as much

as possible the number of bases used in order to obtain a compact representa-

tion. However, it is known that a few bases usually allow the representation of

rather complex shapes. Therefore, parametric model provides a concise represen-

tation of shape. Moreover, the parametric models offer a straightforward way for

the inclusion of prior shape knowledge, because probability distributions of the

parameters can be easily incorporated to bias the model to a particular overall

shape while allowing for deformations in certain degree. More importantly, since

they are more concise representations of the shapes, the optimization problem of

matching a model to an image data can be solved in a lower dimensional space.

Next, several existing parametric shape models will be reviewed.

14
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2.3.1 ASM (Active Shape Model)

This method was developed by Cootes and Taylor [2]. In their work, a shape

is still represented by using the point distribution model (PDM). However, beyond

that, from a training set, a mean shape is formed by averaging the corresponding

points’ coordinates (after normalization to exclude size, orientation and position)

over all members in the training set. Then, through the principal component

analysis on the training set, eigenvectors which represent the eigen shape variation

modes are computed and new shapes are modeled by the mean shape plus a linear

combination of these eigenvectors. These weights of the linear combination are,

in fact, the parameters for shape representation. However, as the training set is

usually small in size, relative to the dimensionality of the shape space, the possible

ways to deform such a shape model are limited to a linear subspace of the complete

shape space. Moreover, the representation of shape is still composed of a set of

discrete points. Thus, we know the geometry of a shape only at a finite set of

points. When a high degree of precision is required on the shape, a corresponding

dense sampling is needed. Thus, this shape model can be verbose and thus not

efficient for computation.

2.3.2 Superquadrics

Another approach to parametric surface description is superquadrics, intro-

duced in [38]. The most widely used superquadrics are ellipsoids:

v(a1, a2, a3, a4, ε1, ε2, u, v) = a


a1C

ε1
u C

ε2
v

a2C
ε1
u S

ε2
v

a3S
ε1
u

 −π/2 ≤ u ≤ π/2

−π ≤ v ≤ π
(2.3)

where Sε
ω = sgn(sinω)| sinω|ε and Cε

ω = sgn(cosω)| cosω|ε and a1, a2, a3 ≥ 0

are scale parameters defining the aspect ratios and ε1, ε2 ≥ 0 are “squareness”

parameters. Fig. 2.2 shows some superquadric ellipsoids for varying squareness
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1ε =1

2 3ε =

2 2ε =

2ε =1
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Fig. 2.2: Shapes of superquadric ellipsoids with a1, a2, a3 = 1 for different squareness pa-
rameters ε1 and ε2

parameters.

As we can see in Fig. 2.2, superquadrics alone are not able to represent com-

plex shapes. Therefore, many extensions were proposed. For example, Bardinet et

al. and Vemuri [39, 40] deform the superquadrics by applying free-from deforma-

tions, which bend the original superquadrics to represent more complex shapes.

However, because in these extended approaches, the parametric net on the su-

perquadric surfaces is distorted due to the deformation, and therefore, not suited

for the approximation of corresponding points on different surfaces. For this rea-

son, superquadrics models are rarely used for building statistical shape model.

2.3.3 Fourier Models

The Fourier model was proposed by Staib and Duncan in 2D [10]. They

proposed using a Fourier representation for parameterized deformable contours.
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A Fourier representation for a closed contour is expressed as:

S(t) =

 x(t)

y(t)

 =

 a0

c0

+
∞∑

k=1

 ak bk

ck dk

 cos 2πkt

sin 2πkt

 (2.4)

where S(t) (t ∈ [0, 1]) is a parameterized closed curve in 2D. x(t) and y(t) are

the parametric function for x and y coordinates respectively. ak, bk, ck, dk, (k =

1, 2, 3, · · · ) are Fourier coefficients computed by:

a0 = 1
2π

∫ 2π

0

x(t)dt c0 = 1
2π

∫ 2π

0

y(t)dt

ak = 1
π

∫ 2π

0

x(t) cos ktdt bk = 1
π

∫ 2π

0

x(t) sin ktdt

ck = 1
π

∫ 2π

0

y(t) cos ktdt dk = 1
π

∫ 2π

0

y(t) sin ktdt

(2.5)

These coefficients follow a scale ordering, where low index coefficients describe

large scale properties and higher indexed coefficients describe more detailed shape

information. After truncating the coefficients series according to the level of de-

tail requirement of specific application, the coefficients can be mapped to form a

coefficient vector which can serve as a shape descriptor.

In order to model a group of shapes that have the same topological structures

but may differ slightly due to deformation, they interpret the Fourier coefficients as

random variables (Gaussian). Therefore, the parameter vector is now a deformable

stochastic Fourier shape descriptor. The prior knowledge of the shape is stored in

the probability distributions of these parameters in the Fourier descriptor:

Pr(p) =
N∏

i=1

Pr(pi) =
N∏

i=1

1

σi
√

2π

e
− (pi−mi)

2

2σ2
i (2.6)

where, p = [p1p2 · · · pN ] is the parameter vector of the Fourier shape descriptor.

mi and σi are the mean and variance of random variable respectively.

Next, in order to apply the prior knowledge of shape in the process of bound-

ary finding, they formulate the problem using a maximum posterior criterion

based on Bayes rule. In the boundary finding or segmentation problem, the input
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is an image I(x, y). tp is an image template corresponding to a particular value of

parameter vector p. Therefore, the goal is to locate the object which is depicted

by tp in the image. This decision should be made both on the prior shape infor-

mation of the object we are looking for and the image information. In terms of

probabilities, if we want to decide to which template tp and image I correspond,

we have to evaluate the probability of the template, given the image Pr(tp|I), and

find the maximum over p. This can be expressed using Bayes rule:

Pr(tmap|I) = max
p

Pr(tp|I) = max
p

Pr(I|tp) Pr(tp)

Pr(I)
(2.7)

where, tmap is the maximum of a posterior solution, Pr(tp) is the prior probability

of the template tp, and Pr(I|tp) is the conditional probability of the image given

the template. By taking logarithm and eliminating Pr(I), which is the probability

of the image data that will be equal for all p. Thus, it suffices to maximize

M(I, tmap) = max
p
M(I, tp) = max

p
[ln Pr(tp) + ln Pr(I|tp)] (2.8)

This form of objective function shows the trade-off that will be made between

prior information Pr(tp) and image-derived information Pr(I|tp). Till now, we can

see that the problem of finding the boundary or segmentation has transformed to

an optimization problem of searching in the vector space to find an appropriate

p which can maximize Eq. (2.8). Upon the success of using deformable Fourier

models in 2D, Staib and Duncan [3] extended this method into 3D. In 3D, a surface

can be represented explicitly by 3 functions of 2 index parameters:

S(x, y, z) = (x(u, v), y(u, v), z(u, v)) (2.9)

In order to represent surfaces, a basis for functions of 2 variables is used:

φ = {1, cosmu, sinmu, cos lv, sin lv, cosmu cos lv, sinmu cos lv,

cosmu sin lv, sinmu sin lv, · · · } (2.10)
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where, m, l = 1, 2, · · · . Each function is then represented by:

f(u, v) =

K1−1∑
m=0

K2−1∑
l=0

λm,l [am,l cosmu cos lv + bm,l sinmu cos lv+

cm,l cosmu sin lv + dm,l sinmu sin lv + · · · ] (2.11)

where λm,l =


1 for m = 0, l = 0

2 for m > 0, l = 0 or m = 0, l > 0

4 for m > 0, l > 0

and the series is truncated at K1 − 1 and K2 − 1. If using complex basis φ ={
1, ei(mu+lv), · · ·

}
(m, l = 1, 2, · · · ), the surface function 2.9 can be represented as:

x(u, v) =

K1−1∑
m=−(K1−1)

K2−1∑
l=−(K2−1)

gx
m,le

i(mu+lv)

y(u, v) =

K1−1∑
m=−(K1−1)

K2−1∑
l=−(K2−1)

gy
m,le

i(mu+lv)

z(u, v) =

K1−1∑
m=−(K1−1)

K2−1∑
l=−(K2−1)

gz
m,le

i(mu+lv) (2.12)

where gx
m,l, g

y
m,l and gz

m,l are the coefficients of the corresponding harmonic indexed

by m and l. Re-arrange them into a vector form:

g = [gx
m,l g

y
m,l g

z
m,l] (m, l = 0,±1,±2, · · · )

g is then a shape descriptor. The remaining part of the work in 3D is quite

similar with the application in 2D. That is, the boundary finding problem is

transformed into a MAP (maximum a posterior) problem. And then by searching

the parameter space of g, the maximum is found. The corresponding g at which

the objective function is maximized will be the boundary we are searching for.
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2.3.4 SPHARM

SPHARM stands for spherical harmonics shape descriptor [41]. In this model,

the surface is represented as a weighted sum of spherical harmonics which are

orthogonal over the sphere: Y m
l (θ, φ), −l ≤ m ≤ l, θ ∈ [0, π], φ ∈ [0, 2π).

Specifically, the basis functions are defined as [42]:

Y m
l (θ, φ) =

√
2l + 1

4π

(l −m)!

(l +m)!
Pm

l (cos θ)eimφ (2.13)

Y −m
l (θ, φ) = (−1)mY m∗

l (θ, φ) (2.14)

where Y m∗
l (θ, φ) denotes the complex conjugate of Y m

l (θ, φ) and Pm
l denotes the

associated Legendre polynomials:

Pm
l (w) =

(−1)m

2ll!
(1− w2)

m
2
dm+l

dwm+l
(w2 − 1)l (2.15)

Table 2.1 gives the first few spherical harmonics up to degree 3. Fig. 2.3 shows

the absolute value of the real parts of spherical harmonic basis functions up to

degree 3.

In this model, in order to extend spherical harmonics to describe more general

shapes, the points on the surface are firstly mapped to the unit sphere [41, 44].

The surface in R3 are then represented by three coordinate functions defined on

the unit sphere: (x(θ, φ), y(θ, φ), z(θ, φ)). This appropriate mapping [41, 44] is

determined by iteratively solving a constrained optimization problem based on

the diffusion equation. Next, to express a surface using spherical harmonics, the
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Table 2.1: Analytic expressions of the first few spherical harmonics up to degree 3, in
both polar (I) and Cartesian (II) form. x, y, z, and r are related to θ, and φ,
through the usual spherical-to-Cartesian coordinate transformation. Part III
of the table gives the common normalizing constants, e.g. Y 0

1 =
√

3/4π cos θ =√
3/4πz/r

l m=0 m=1 m=2 m=3

I

0 1
1 cos θ eiφ sin θ
2 −1 + 3 cos2 θ eiφ cos θ sin θ e2iφ sin2 θ
3 −3 cos θ+5 cos3 θ eiφ(1−5 cos2 θ) sin θ e2iφ cos θ sin2 θ e3iφ sin3 θ

II

0 1
1 z/r (x+ iy)/r
2 (−1 + 3z2)/r2 (x+ iy)z/r2 (x+ iy)2/r2

3 (−3z + 5z3)/r3 (x+ iy)(1− 5z2)/r3 (x+ iy)2z/r3 (x+iy)3/r3

III

0 1/
√

4π

1
√

3/4π −
√

3/8π

2
√

5/16π −
√

15/8π
√

15/32π

3
√

7/16π −
√

21/64π
√

105/32π −
√

35/64π

three coordinate functions are decomposed:


x(θ, φ)

y(θ, φ)

z(θ, φ)

 =



∞∑
l=0

l∑
m=−l

cmxlY
m
l (θ, φ)

∞∑
l=0

l∑
m=−l

cmylY
m
l (θ, φ)

∞∑
l=0

l∑
m=−l

cmzlY
m
l (θ, φ)


(2.16)

Let cml = (cmxl, c
m
yl , c

m
zl)

>. Then, the SPHARM expansion of the surface is:

V(x(θ, φ), y(θ, φ), z(θ, φ)) =
∞∑
l=0

l∑
m=−l

cml Y
m
l (θ, φ) (2.17)

This representation can then be used in deformable boundary finding (model-

guided segmentation) [4, 5] in the similar way as discussed in the Fourier model

in Section 2.3.3.
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Fig. 2.3: Absolute value of the real parts of spherical harmonic basis functions up to degree
3. The figures are generated by SPHARM Generator [43]

.

2.3.5 Wavelets Based Model in 2D

Another possible set of basis functions for modal decomposition parametric

model is wavelets [45, 46]. In contrast to Fourier basis functions, wavelets have

compact support both in the frequency (scale) and in the spatial domain. The

wavelet transform of the input signal is computed using a filter bank that splits a

signal into subsampled low pass and high pass bands. This procedure is iteratively

repeated for the output of low pass band. The classical wavelets are obtained

by dilating and translating a fixed function, the mother wavelet. Using discrete
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wavelet transform (DWT) as an example, the DWT is a basis transform between

certain spaces spanned by dilated and translated versions of a wavelet ψ and a

scaling function φ:

ψj
i (x) = ψ(2jx− i) and φj

i (x) = φ(2jx− i) (2.18)

A function f is initially represented in a basis of scaling functions at a high level

of resolution, denoted by the index jε:

f(x) =
∑
i∈Z

sjε

i φ
jε

i (x)

Next, a basis transform decomposes this representation into a high-frequency part,

based on wavelets, and a low frequency part, based on coarser scaling functions

at level jε − 1:

f(x) =
∑
i∈Z

wjε−1
i ψjε−1

i (x) +
∑
i∈Z

sjε−1
i φjε−1

i (x)

This decomposition steps are recursively applied to the part represented by scaling

functions until a base level j = 0 is reached. The function f is finally represented

as:

f(x) =

jε−1∑
j=0

∑
i∈Z

wj−1
i ψj−1

i (x) +
∑
i∈Z

s0
iφ

0
i (x)

By replacing the Fourier basis functions with wavelet basis functions, Chang et

al. [24] and Davatzikos et al. [11] proposed wavelet descriptor for 2D boundary

finding. In their work,the object boundary was parameterized and represented as 2

parametric coordinates functions, S(x(t), y(t)). By applying DWT decomposition,

these 2 parametric functions were decomposed:

S(t) =

 x(t)

y(t)

 =


N−1∑
j=0

∑
i∈Zj

aj
iψ

j
i (t) +

∑
i∈Zj

b0iφ
0
i (t)

N−1∑
j=0

∑
i∈Zj

cjiψ
j
i (t) +

∑
i∈Zj

d0
iφ

0
i (t)

 (2.19)

23



CHAPTER 2. RELATED WORK

−6 −4 −2 0 2 4 6
−1.5

−1

−0.5

0

0.5

1

1.5
Fourier basis

(a)

−4 −3 −2 −1 0 1 2 3 4
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Morlet wavelet

(b)

Fig. 2.4: Fourier basis function vs. Wavelet basis function. (a) the Fourier basis function.
(b) the Morlet wavelet

where N is the number of decomposition scales and Zj = {0, 1, · · · , 2|j|−1}. Using

this new shape descriptor, the boundary finding problem was formed into a MAP

(maximum a posterior) problem, and convincing results were achieved.

Moreover, because the wavelet descriptor uses a set of basis functions with

local support (Fig. 2.4(b) shows one example of Morlet wavelet [47].). Therefore,

the shape descriptor based on wavelet decomposition provides a scheme to model

local as well as global deformation. To demonstrate this ability, after changing

the value of a certain coefficient of the wavelet descriptor, the object boundary

is reconstructed and shown in Fig. 2.5(b), in which we can see that only part of

the boundary is affected. However, because the basis functions of the Fourier de-

scriptor are the sinusoids which are periodic and global supported (not sufficiently

localized in space as shown in Fig. 2.4(a)), so that a change of one coefficient will

affect the entire outline of the reconstructed boundary as shown in Fig. 2.5(a).

Therefore, Fourier deformable model is not efficient in describing shapes with only

local deformation. By comparing Fig. 2.5(a) and Fig. 2.5(b), the superior local

deformation property of the wavelet descriptor can be easily seen.
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(a) (b)

Fig. 2.5: Shape descriptors: globally supported vs. compactly supported. (a) boundary
reconstructed from Fourier descriptor. (b) boundary reconstructed from wavelet
descriptor. (adopted from [24])

2.4 Comparison Between Different Models

After introducing the related work in shape representation, it is worthwhile

to compare these existing statistical/deformable shape models, before our new

model is proposed.

2.4.1 The Selected Properties of a Shape Model

To make the comparison clearer, firstly, a selection of general shape descrip-

tion properties that can be used to evaluate most shape description methods are

listed:

A. Multiscale shape representation

When the anatomical objects are segmented by human expert’s interaction

delineation, because of the presence of noise, partial volume effects, intensity in-

homogeneities and other artifacts, the manual segmentation can’t be considered

as error-free, especially in the small scales. Therefore, a too detailed description

is in fact not appropriate, since it reconstructs the objects to an unnecessarily

high degree of precision based on the non-accurate manual segmentation. On the

other hand, it is also desirable to be able to precisely detect shape changes, so

that a representation of anatomical structures in details is also needed. Thus, the
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choice of scale can be interpreted as balancing the trade-off between the efficiency

of description and accuracy when locating the shape variance. Moreover, if the

shape descriptor can represent the shape in a hierarchical way, this feature will

result in a hierarchical segmentation process in model-guided segmentation.

B. Efficient shape description

The efficiency of a shape description is defined as the amount of information

required to describe the shape at certain specified description accuracy. A shape

description is called efficient if objects are described with a given accuracy by

concise sets of parameters or features. Implicit or explicit list of points or mesh

facets will only result in a verbose description of the shape. Therefore, a more

compact representation is desired to reduce the dimension of the shape model.

C. Spatial localization

This property refers to whether a representation captures the object as a

set of coefficients of basis functions with locality. If a description is lacking of

this locality, the local shape deformations will not result in changes of only part

of coefficient set but rather in changes over the whole set of coefficients. Thus,

changes of the coefficients cannot be interpreted intuitively. Therefore, for the

parametric models, the support of the basis function is better to be localized.

D. Continuous shape description

The shape should be defined continuously other than only known at discrete

locations.

E. Adaptive topology

This feature refers to the ability of the shape model to change topology adap-

tively in the deformation process. Although the topologies of most of the biological

structures are consistent from person to person, there do exist some structures,

for example vasculature, have different topologies on different persons.

F. Easy to establish appropriate correspondence

Correspondence which defines the homology of points between different ob-

jects, is extremely important in order to compare shapes and generate statistics.
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Fig. 2.6: Problematic correspondence. (a) boundary of object 1; (b) boundary of object
2; a and a′ are two corresponding points on these two boundaries. (c) the result
of Procrustes alignment. P is a point on the distance map where the value of the
distance transform is determined as the distance −|aP | and −|bP | respectively
in 2 distance maps. So, when the average distance map at P is computed, point
a and b are, in fact, treated as two corresponding points.

For the shape models which represent the object boundary directly, the correspon-

dence is usually established by finding the corresponding anatomical landmarks

on different objects either by manual labeling or by some automatic computation.

However, for some shape models which are not based on the direct description of

object boundary, the defining of correspondence may be problematic. For example,

in the distance transform/level set model, it is quite hard to establish appropriate

correspondence between the distance maps. We use a 2D case as an example to

illustrate. Fig. 2.6(a) and Fig. 2.6(b) shows the boundaries of two objects in the

training set. a and a′ are the two corresponding points on these two boundaries.

However, after these two boundaries are Procrustes aligned (Fig. 2.6(c)), at point

P , the corresponding point of a on the distance map is actually defined as point

b. Therefore, because of this reason, the correct mean shape can not be acquired

by averaging the distance maps.
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Table 2.2: Comparison between different shape models. A-F represent the 6 most desir-
able properties discussed in Section 2.4.1: A. Multiscale shape representation;
B. Efficient shape description; C. Spatial localization; D. Continuous shape
description; E. Adaptive topology; F. Easy to establish appropriate correspon-
dence. ’

√
’ denotes that the model has the desirable property, otherwise ’×’

denotes not.

A B C D E F
PDM × ×

√
× ×

√

Level Set × ×
√
×
√
×

Discrete Mesh × ×
√
× ×

√

ASM ×
√
× × ×

√

SPHARM
√ √

×
√
×
√

Fourier descriptor
√ √

×
√
×
√

Wavelet descriptor
√ √ √ √

×
√

2.4.2 Comparison Between Different Shape Descriptions

Having discussed the desirable properties of shape representations used for

building statistical shape model in the previous section, different shape models can

be compared based on these properties. The comparison results are summarized

in Table 2.2.

From Table 2.2, we can see that the parametric models are superb than

free-form models in most of the comparisons. The parametric models usually

provide efficient, multiscale and continuous shape representations which can not

be achieved by free-form models. The level set model is one special free-form

model, in which the shape is not represented explicitly but implicitly embedded

as a zero level set of the distance transformation. Therefore, it has the ability

to change the topology adaptively during the deformation and is quite useful to

segment objects, such as vasculature, with variable topology. However, because

the topology of most biological objects is only a sphere [5], this property is not

necessary for the analysis of most biological objects.

The Active Shape Model (ASM) [2] is a special case of parametric models,

because although its shape representation is in a parametric form (a linear com-
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bination of eigenvectors of training set), it still uses an explicit list of points on

the boundary to describe the shape. Thus, we know the geometry of a shape only

at a finite set of points. When a high degree of precision is required on the shape,

a corresponding dense sampling is needed. This shape model can be verbose and

thus not efficient for computation. Moreover, as the training set is usually small

in size, relative to the number of sample points on the surface, the possible ways

to deform such a shape model are limited to a linear subspace of the complete

shape space.

The comparison between wavelet-based model and other parametric mod-

els shows that, besides the common advantages of parametric models (multi-

scale, efficient and continuous) the wavelet model gives the extra valuable spatial-

localization property because of its compactly supported basis functions. The

spatial-localization property can lead to the important ability of modeling the

locale shape variations and performing a spatially localized model-image fitting.

2.5 Extend the Wavelet Model to 3D

Compared with Fourier or spherical harmonics, as we can see, wavelet basis

has many advantages both in spatially localized shape variation representation

and the later model-image fitting process. Hence, a wavelet shape model in 3D

for model-guided segmentation and statistical shape analysis will be highly de-

sirable. However, to extend the existing wavelet model from 2D boundary to

3D surface is severely hampered, because the classical wavelet used in [11, 24] is

a scaled and translated copy of a single unique function (mother wavelet), but,

this shift-invariant theory breaks down when representing functions defined on a

bounded surface. Another barrier preventing the extending of classical wavelets

scheme to 3D surface is the rigorous requirements in the explicit parametriza-

tion on 3D bounded surfaces. We need, firstly, a surface parametrization that

provides the correspondences between objects in the training set. Secondly, the
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first-generation wavelets require the surface to be parameterized by regular grids.

Since the topology of anatomical structures is usually a sphere, we need two pa-

rameters, longitude and latitude to characterize such a surface. However, in doing

so, distortions are inevitably generated at the south and north poles.

To address this issue, we propose a novel Statistical Surface Wavelet Model

(SSWM) and a corresponding model-guided segmentation method based on a re-

cently introduced wavelet decomposition and synthesis scheme [48] defined directly

on the subdivision surface mesh. It has many desirable properties for building a

shape model, performing model-guided segmentation and statistical shape analy-

sis. Details of this wavelet scheme and how to use it for statistical shape model

building is discussed in next chapter.

2.6 Recent Related Work

Near the end stage of this thesis work, we also found two closely related works

were published very recently. Both are based on the spherical wavelets [49], an-

other subdivision surface wavelet scheme defined exclusively on the unit sphere.

Using the spherical wavelets, in [50, 51], the author proposed a multiscale and

spatially localized analysis method of the cortical surfaces reconstructed from the

MR images of a set of subjects, which is impossible for the other global basis set,

such as spherical harmonics. The work in [52–54] ismore related to ours. They also

developed a model-guided segmentation framework to utilized the “double local-

ization” property of wavelets. So it is worthwhile to compare these two methods.

In general, there are 3 main differences. Firstly, our wavelets are defined on a

different subdivision scheme based on the Catmull-Clark subdivision [48] which is

capable of representing any two-manifold geometries as well as functions defined

on these, whereas the mentioned work is on a triangulated subdivision wavelets

defined on the unit sphere. Secondly, our model contains the complete biological

variation, inclusive of the shape variations and variations in similarity transform
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(translation, rotation and scaling). As what will be mentioned in Section 3.2.3,

such a prior model integrating similarity transform is much more robust than a

pure “shape” model [4, 5]. This is because a pure “shape” model loses the corre-

lation between the position and the shape of the anatomical structure. Therefore,

with our model, unlike that in the mentioned work, we do not need the additional

step of a pre-optimization of the pose parameters to initialize the model. Lastly,

the mentioned work employed a local search gradient descent algorithm. In con-

trast, we capitalize fully on both the frequency and spatial localization properties

to develop a simple and efficient equal sampling algorithm which is robust, in

particular, for cases where there are local optimums near to initial positions.
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Chapter 3

Statistical Surface Wavelets

Model (SSWM)

In this chapter, we introduce a novel statistical shape model—The Statistical

Surface Wavelet Model (SSWM). The main purpose of this model is to extend

the wavelet-based statistical shape modeling method to 3D surfaces using the

second generation wavelets defined on the subdivision surface mesh, which has

many advantages over the other methods. In this chapter, we will first introduce

the surface wavelet decomposition scheme we adopted. After that, the other two

pivotal issues in the statistical shape model building, i.e. correspondence finding

and re-meshing will be discussed. Lastly, a SSWM of the caudate nucleus used

for model-guided segmentation is built based on a training set using the proposed

method.

3.1 The Shape Representation Based on Subdi-

vision Surface Wavelets

In this section, we will first introduce the subdivision surface wavelet

scheme we adopted in our proposed statistical shape model, Generalized B-Spline

Subdivision-Surface Wavelets [48]. Next, as shape representation in statistical
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shape model building, the new shape representation based on subdivision surface

wavelets will be compared with other shape representation methods with different

basis functions.

3.1.1 The Related Work

Wavelet, because of its many advantages in level of details analysis, has been

applied in many domains since 1980s. However, there was no surface wavelet

scheme for computer graphics reported until a later time. Wavelets representing

surfaces of arbitrary topology were originally explored by Lounsbery et al. [55, 56].

Starting with a subdivision surface scheme, like Catmull-Clark [57] or Loop [58]

subdivision, wavelet transforms were constructed using the recursively generated

basis functions as scaling functions. However, these wavelet constructions have the

disadvantage that the transform is based on a global system of equations. Only

the inverse transform can be generally computed in linear time (in terms of num-

ber of vertices) based on local operations. On the other hand, as we know, the

model-guided boundary finding problem is often formulated as an optimization

problem. The wavelets decomposition process and synthesis process are repeated

many times in the optimization stage. Therefore, this kind of application is sensi-

tive to the computational cost of the surface wavelets decomposition and synthesis.

Hence, this method is not suitable for the shape representation purpose in building

a statistical shape model and used for model-guided segmentation.

Later, another subdivision-surface wavelet constructed for functions defined

on triangulated spherical domains were introduced by Schröder and Sweldens [49].

In this method, subdivisions and wavelets are smoothly joined together by the Lift-

ing Scheme [25], an efficient technique for constructing second generation wavelets.

Schröder and Sweldens [24] showed an example of constructing lifting wavelets on

the sphere. This method has linear time decomposition and synthesis. However,

their approach is used for constructing functions on the given sphere domain rather

than representing the underlying domain geometries (other than sphere).
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Until recently, Bertram et al. [48] introduced a new biorthogonal wavelet de-

composition and synthesis scheme based on generalized B-subdivision surfaces.

This method also uses Lifting Scheme [25], but is capable of representing two-

manifold geometries as well as functions defined on the two-manifold. More im-

portantly, both its decomposition and synthesis are linear to the number of points

on the mesh.

3.1.2 The Generalized B-spline Subdivision-Surface

Wavelets

The subdivision-surface wavelet we used [48] is a second-generation wavelets

scheme. It is based on the hierarchical mesh connectivity defined by Catmull-

Clark subdivision [57]. Fig. 3.1 shows an example, where we call the initial mesh

sub-mesh(right) and the mesh resulting from subdivision super-mesh(left), since

it contains more vertices. A mesh is refined (from sub-mesh to super-mesh) by

inserting a new vertex inside every face and on every edge and by connecting these

vertices to quadrilaterals. Vertices in a super-mesh correspond to a face (polygon),

an edge, or a vertex in the sub-mesh and are denoted by f , e, and v, respectively.

A decomposition step can be considered as an operation applied to a super-mesh

that computes v′ vertex positions for an approximating sub-mesh and replaces the

remaining e and f vertices by difference vectors (e′ and f ′) which represent details

that are missing in the sub-mesh. The v′ vertices represent coefficients for scaling

functions, e′ vertices represent wavelet coefficients corresponding to edges, and f ′

vertices represent wavelet coefficients corresponding to faces. The reconstruction

(synthesis) is then a step of reconstructing the super-mesh from the sub-mesh by

adding the detail shape information contained in the wavelet coefficients e′ and

f ′.

If we denote the set of all vertices contained in the mesh after j subdivisions

as V(j). When we obtain a finer resolution mesh V(j + 1) through subdivision,

we denote the e vertices and f vertices added to the subdivision as the vertex set
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’

’’

Fig. 3.1: Wavelet transformation on Catmull-Clark subdivision mesh. f , e, and v represent
the vertices in a super-mesh which correspond to a face (polygon), an edge, or
a vertex in the sub-mesh, respectively. v′ is the vertex on the approximating
sub-mesh. e′ and f ′ are the difference vectors which represent details that are
missing in the sub-mesh.

(a) (b) (c)

Fig. 3.2: Basis functions on a sphere. (a) Scaling function. (b) Wavelet function corre-
sponding to an edge. (c) Wavelet function corresponding to a face.

W(j). The complete set of vertices in the finer resolution j + 1 is V(j + 1) =

V(j)∪W(j). Let S be a surface and x(x, y, z) ∈ R3 a vertex on S. Using wavelet

transform described above, S can be represented by a weighted summation of a

set of scaling and wavelet functions (shown in Fig. 3.2) defined on the surface with

different scales and locations:

S(x) =
∑
j≥0

∑
m∈W(j)

wj
m ·Ψj

m(x) +
∑

n∈V(0)

v0
n · Φ0

n(x) (3.1)
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where, Φ0
n is the scaling function of the coarsest scale at vertex n, Ψj

m is the

wavelet function of scale j at vertex m, and v0
n and wj

m are the corresponding

coefficient vectors of these basis functions. In 3D, v0
n and wj

m are column vectors

with 3 elements and each element represents one of the coordinates x, y, z. For

detail of the transformation please refer to Appendix A.

3.1.3 Surface Wavelets as Shape Descriptor

The set consisting of all the wavelets coefficient vectors in (3.1):

C = {v0
n,w

j
m|j = 0, 1, 2, · · · ;n ∈ V(0);m ∈W(j)} (3.2)

is, in fact, a shape descriptor, because from it the shape can be reconstructed

exactly.

As mentioned in Section 2.4, the ability to represent the object surface at

different scale levels is quite crucial for a shape model used in medical image anal-

ysis. To get the shape representation at different resolution is very simple using

the subdivision surface wavelet shape model—just omitting the wavelet coeffi-

cients in the unwanted scale levels. Fig. 3.3 shows an example of a multiresolution

shape representation of cerebral lateral ventricle. As we can see, from Fig. 3.3(b)

to Fig. 3.3(f), more and more detailed shape information is added to the repre-

sentation.

Beside the multiscale shape representation, the wavelet based shape model

provides another superb spatial-localization property because of the compactly

supported basis functions (shown in Fig. 3.2). To demonstrate this advantage

clearly, we can also use the cerebral lateral ventricle as an example. In Fig. 3.4(a),

the original surface is shown. Next, this surface is decomposed and represented by

a set of spherical harmonics coefficients. After that, a simulated shape variation is

generated by changing the spherical harmonics descriptor coefficient of degree 17

order 1 and the result is shown in Fig. 3.4(b). As we can see, because the globally
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supported basis function of spherical harmonics (shown in Fig. 2.3), the change of

only one coefficient has changed the entire outline of the shape. Since this shape

representation does not provide spatially localized shape information, there are 2

disadvantages when it is used in building a statistical shape model. Firstly, as we

know that some diseases, such as cancer, may only affect the shape of some part

of an organ. With these models without spatial-localization, from the variation

of coefficients we could not know the location of the shape variations. Secondly,

since the coefficients in the same scale level are correlated, all the coefficients in

one scale must be optimized together in the model-guided segmentation process.

However, in contrast to spherical harmonics shape descriptor, the change

of one coefficient in the wavelet shape descriptor only change the shape within

the scale level and location where the shape is defined by the chosen coeffi-

cient, whereas the remaining part of the surface keeps unchanged (as shown in

Fig. 3.4(c)). Inversely, if any shape variations are detected by comparing the

wavelet coefficients, the scale and location information about the shape variation

can be deduced directly from the wavelets coefficients.

Since the shape representation of surface wavelets has so many advantages, we

will propose a novel statistical shape model based on this shape representation in

the next sections. But before that, other 2 key problems in building a statistical

shape model, correspondence finding and re-meshing, have to be discussed and

solved.

3.2 The Correspondence Finding and Re-

meshing Problem

Correspondence finding and re-meshing are two common and very important

problems in building a statistical shape model. Fig. 3.5 shows an example training

set used for the construction of a statistical shape model of the caudate nucleus.

As we can see, the binary volumetric images consist of different number of vox-
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(a) (b)

(c) (d)

(e) (f)

Fig. 3.3: Multiscale representation of the cerebral lateral ventricle using the subdivision
surface wavelets: (a) the original shape; (b)-(f): shape reconstruction up to scale
level 0,1,2,3 and 4, respectively.

(a)

(b) (c)

Fig. 3.4: spatially localized shape representation: (a) the original shape; (b) a variation
generated by changing SPHARM descriptor coefficient of degree 17 order 1; (c)
a variation generated by changing a wavelet coefficient corresponding to an edge
at scale level 2.

els and are in different orientation, translation and scale. Therefore, before any

comparison between them can be performed, the corresponding pairs of points

on different surfaces must be defined. Moreover, in our work, since the wavelet

transform can only be conducted on mesh with the required mesh connectivity, a

preparation step—re-meshing is also necessary. After re-meshing, the points on
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Fig. 3.5: Segmented binary volumetric data.

t=0 t=0t=0

Fig. 3.6: Correspondence finding in 2D boundary through parameterization. t is the pa-
rameterization variable. The points on different object boundaries with the same
t value in parameterization are defined as corresponding points.

the re-meshed surfaces with the same mesh vertex index must be the correspond-

ing points. So, in fact, correspondence finding and re-meshing are two closely

correlated problems. In this section, our method of solving these two problems in

a single framework is discussed. Before that, some related work in correspondence

finding will be introduced firstly.

3.2.1 Related Work

Correspondence finding, in general, is a difficult problem. While shape fea-

tures provide the basis for such a correspondence, this problem remains a difficult

one due to the ambiguity in finding the landmarks when the surfaces are complex

and variable. Moreover, because the number of the reliably identifiable landmarks

is too small to describe a shape (especially for surfaces, usually hundreds or thou-

sands points are needed), manual landmarking becomes impractical. In addition,

the lack of ground truth of the correspondence remains a problem for evaluating

these methods.

A number of methods have been developed to match contours and surfaces to

determine the correspondences. The classic approach is the iterative closest point
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(ICP) method [59]. This method minimizes the distance from points in one surface

(contour) to the closest point in another surface. The main problem in this method

is that the corresponding point on another surface is probably not a mesh vertex

but a point inside a mesh facet. Recently, many improved automated approaches

were proposed. These approaches formulate the correspondence problem as that

of defining a parameterization for each surface (contour) in the training set and

assume correspondence between equivalently parameterized points (as shown in

Fig. 3.6). Kotche et al. [60] proposed to use an optimization process to assign the

best correspondence across all objects of the training population. It is based on the

assumption that the correct correspondences are, by definition, those that build

the optimal average model given the training population. For that purpose they

proposed to use the determinant of the covariance matrix (DetCov) as an objective

function. Later, based on the idea of the DetCov method, Davies proposed a

different objective function [61] for the optimization process using the Minimum

Description Length (MDL [62]) principle. Another approach was proposed by

Wang et al. [63] based on manually initialized subdivision surfaces. This method

is semi-automatic starting from a set of pre-defined anatomical landmarks which

is triangulated in a standardized manner. The correspondences between points

other than the pre-defined landmarks are defined by further refined subdivision

surfaces. An evaluation of the different 3D correspondence methods for statistical

model building is available in [64].

As discussed in Section 2.3.4, the Spherical Harmonic (SPHARM) descrip-

tion [41] is a parametric surface description using spherical harmonics as basis

functions. Correspondence finding using SPHARM is a method which solves the

correspondence problem not in the shape space but in the spectral space of spher-

ical harmonics through a normalization process using the rotation-invariant prop-

erty of spherical harmonics to exclude translation, rotation, and scaling. In our

work, for the genus-zero object, we adopt this method to define the correspon-

dence. The reason why we choose this method is that from the results of SPHARM
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normalization, a set of normalized spherical harmonics coefficients, we can acquire

the required mesh connectivity directly by reconstructing the surfaces using a re-

sampling grid on unit sphere with Catmull-Clark subdivision connectivity. Next,

an example will be given to explain how this method works.

3.2.2 Correspondence Finding and Re-meshing Through

SPHARM Normalization

In this section, we will use an example to illustrate the correspondence find-

ing and re-meshing method we adopted. Because lateral ventricle has a more

complex and tortuous shape, it is more difficult to get a good spherical map-

ping (critical part of the correspondence finding problem) onto the unit sphere.

Therefore, we use lateral ventricle as the example to show the effectiveness of the

correspondence finding method. Our work uses anatomical objects obtained from

MR images. After binary volumetric data of the interested structure is obtained

through a segmentation process, the outermost facets of the voxels are extracted

as the surface mesh of the anatomical object. Fig. 3.7(a) and Fig. 3.7(b) gives two

such examples of the extracted surface meshes of lateral brain ventricle. In the

following, we describe the three steps in the SPHARM normalization correspon-

dence finding method: (1) unit sphere mapping, (2) SPHARM expansion, and (3)

SPHARM normalization.

Unit-sphere mapping aims to create a continuous and uniform mapping

from the object surface to the surface of a unit sphere. This mapping is formu-

lated as a constrained optimization problem with the goals of topology and area

preservation and distortion minimization [41, 44] (executable of this algorithm

is available from [65]). The result is a bijective mapping (shown in Fig. 3.7(c)

and Fig. 3.7(d)) between each point V(x, y, z) on a surface and two spherical
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coordinates θ and φ on a unit sphere:

V(x, y, z) =


x(θ, φ)

y(θ, φ)

z(θ, φ)

 (3.3)

where x, y and z denote the Cartesian object space coordinates and θ and φ are

the two spherical coordinates. When the free variables θ and φ run over the whole

sphere, V(x, y, z) runs over the whole surface of the input object.

SPHARM expansion expands the object surface into a set of SPHARM

basis functions Y m
l , where Y m

l denotes the spherical harmonic of degree l and

order m. The spherical harmonics are defined as:

Y m
l (θ, φ) =

√
2l + 1

4π

(l −m)!

(l +m)!
Pm

l (cos θ)eimφ (3.4)

where Pm
l (cos θ) are associated Legendre polynomials (with argument cos θ), and

l and m are integers with −l ≤ m ≤ l. After the unit sphere mapping, the

Cartesian object space coordinates x, y and z of the points on the surface are

functions of variables θ and φ defined on the unit sphere. Thus, each of them can

be decomposed with the SPHARM basis functions:


x(θ, φ)

y(θ, φ)

z(θ, φ)

 =



∞∑
l=0

l∑
m=−l

cmxlY
m
l (θ, φ)

∞∑
l=0

l∑
m=−l

cmylY
m
l (θ, φ)

∞∑
l=0

l∑
m=−l

cmzlY
m
l (θ, φ)


(3.5)

Let cm
l = (cmxl, c

m
yl , c

m
zl)

>. Then, the surface SPHARM expansion is:

V(x(θ, φ), y(θ, φ), z(θ, φ)) =
∞∑
l=0

l∑
m=−l

cm
l Y

m
l (θ, φ) (3.6)

Given these coefficients cm
l , by re-sampling on the unit sphere to specify θ and φ
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in the right side of Eq. (3.6), inversely, we can reconstruct the surface. And using

more coefficients leads to a more detailed reconstruction.

SPHARM normalization is a very similar process as Fourier descriptor

normalization [66]. It removes translation, rotation, and scaling in objects to

generate a normalized set of SPHARM coefficients, which are comparable across

different objects. In brief, rotation invariance is achieved by aligning the degree 1

reconstruction, which is always an ellipsoid. The parameter net on this ellipsoid

is rotated to a canonical position such that the north pole is at one end of the

longest main axis, and the crossing point of the zero meridian and the equator

is at one end of the shortest main axis. In the object space, the ellipsoid is

rotated to make its main axes coincide with the coordinate axes, putting the

shortest axis along x and longest along z. Scaling invariance is achieved by dividing

all the coefficients by a scaling factor, and translation invariance is achieved by

ignoring degree 0 coefficient. After the above steps, a set of normalized coefficients

c
′m
l = (c

′m
xl , c

′m
yl , c

′m
zl )>, (−l ≤ m ≤ l, m = 0, 1, 2...) can be obtained to form

a normalized shape descriptor for each object surface, in which corresponding

surface points can be defined using parameter θ and φ. That is, points on two

surfaces with the same spherical coordinates θ and φ are corresponding points.

The above three steps are the standard steps in SPHARM normalization [41].

But after these steps, in order to get the required mesh connectivity, we add the

re-meshing as a following step to reconstruct the surface meshes from these nor-

malized coefficients c
′m
l by specifying the values of θ and φ in the right side of (3.6).

Since in the above SPHARM normalization process, translation, rotation and scal-

ing factors has been excluded, surface reconstruction using a standard re-sampling

grid on the unit sphere with Cutmall-Clark subdivision mesh connectivity (as

shown in Fig. 3.8) will result in reconstructed surfaces with the same mesh con-

nectivity. And in the reconstructed surfaces, the points on different meshes with

the same mesh index are the corresponding points because they have the same

values of θ and φ. Fig. 3.7(e) and Fig. 3.7(f) shows the normalized and re-meshed
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(a) cerebral lateral ventricle 1 (b) cerebral lateral ventricle 2

(c) unit sphere mapping of ventricle 1 (d) unit sphere mapping of ventricle 2

(e) normalized and re-meshed surface of ventri-
cle 1

(f) normalized and re-meshed surface of ventri-
cle 2

Fig. 3.7: The SPHARM normalization and re-meshing.

surfaces of the two cerebral lateral ventricles shown in Fig. 3.7(a) and Fig. 3.7(b),

respectively.
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Fig. 3.8: The sampling grid with Catmull-Clark subdivision mesh connectivity.

3.2.3 Talairach Coordinates and a Shape Prior Integrating

Similarity Transform Information

After the steps described in last section, the surface mesh has been re-meshed

and the correspondence between different surfaces has been established as well.

As mentioned, for each shape, the SPHARM normalization removes its transla-

tion, rotation and scaling, or collectively its similarity transform. As such, it also

removes the correlation between the similarity information and the shape of the

anatomical structure (in the original images). This effect is clearly visible through

comparing the coordinates labels of the bounding box in Fig. 3.7(a) and Fig. 3.7(b)

with that in Fig. 3.7(e) and Fig. 3.7(f), respectively. Note that the surface mesh

has been moved so that the center of mass coincide with the coordinate origin.

The orientation of the surface is also rotated to coincide with the direction of y

axis. However, it was observed in [5] [4] that a prior model integrating similar-

ity transform is much more robust than a pure “shape” model in model-guided

segmentation. Therefore, in our framework, we use a simple principal component

alignment method to register a surface obtained from the SPHARM normaliza-
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tion with its original surface obtained directly from the input binary segmented

image to restore its similarity transform information in the standard stereotactic

coordinate system.

Here, this standard stereotactic coordinate system we adopted is the Talairach

coordinate system [67]. It was proposed by Talairach and Tournoux for global

alignment of the head image data sets. Basic landmarks used to establish Talairach

coordinate system are the inter-hemispheric commissures in the mid-sagittal plane,

the so-called anterior and posterior commissures (AC/PC) (see Fig. 3.9(a)). As

shown in Fig. 3.9(a)-Fig. 3.9(d), in this coordinate system, the origin is set at the

AC point. Axis y traverses the brain through AC-PC line from back (negative

values) to front crossing the two feature points. Also in the mid-sagittal plane,

axis z is perpendicular to y and points from bottom to top. The third axis x,

pointing from left to right, is defined to be orthogonal to the other two such that

they build a right handed coordinate system. For each data set, once Talairach

coordinate system is established, it is transformed into this canonical coordinates

by 3D rotation and scaling.

Therefore, to transform the images in the training set into the T-T coordinate,

we need to determinate the mid-sagittal plane and the position of the AC/PC line

in every training samples. Currently this process is done manually. To derive the

position of the mid-sagittal plane, firstly, the position of three points lying on the

inter-hemispheric plane are specified. Then, the plane defined by the these three

points—the mid-sagittal plane is computed. Having determined the plane, then,

locations of the AC and PC are marked. Lastly, a translation vector and a rotation

matrix are computed to transform the coordinate system in every training sample

into the Talairach system. In the future, the determination of the symmetry mid-

sagittal plane and the AC/PC line can be replaced by automatic methods [68–72].

After defining the Talairach coordinates system, the next step is to register

the SPHARM normalized surface mesh (as shown in Fig. 3.7(e) and Fig. 3.7(f))

with the corresponding original surface of binary volumetric image (as shown in
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Fig. 3.7(a) and Fig. 3.7(b)) to restore the similarity transform information. Since,

in fact, the two surfaces to be registered are representing the same shape (only with

different rotation, scaling and translation), a simple rigid principal component

alignment method is sufficient to register these two surfaces. Firstly, we move the

center of mass of the SPHARM normalized surface to coincide with the center of

mass of the original surface. Next, the three principal axes (eigenvectors of the

points on the surface) of both the SPHARM normalized surface and the original

surface are computed and aligned respectively by rotation and scaling. The results

of this registration step is shown in Fig. 3.10.

After all the steps discussed above, all the procedures of mesh preparation

has been finished. The final results are illustrated in Fig. 3.11. As we can see that

the surface meshes have acquired the desired three properties: 1) re-meshed with

required connectivity and ready to perform the wavelet transformation; 2) corre-

spondence between each other established; 3) similarity transform information is

restored.

With the mesh preparation method discussed above, in next section, a sta-

tistical surface wavelet shape model of caudate nucleus is built.

3.3 The Training of Statistical Surface Wavelet

Model

In this section, we will build a statistical surface wavelet shape model of

caudate nucleus based on 18 samples of caudate nucleus available from the Internet

Brain Segmentation Repository (IBSR) [8]. Fig. 3.12 shows the 18 samples of

caudate nucleus. Note that the shape has been normalized by the method provided

in Section 3.2.
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(a) Position of the anterior commissure (AC)
and the posterior commissure (PC) on a post
mortem mid-sagittal brain slice.

(b) sagittal view

x

z

(c) coronal view (d) axial view

Fig. 3.9: The Talairach coordinate.

3.3.1 Decompose the Shapes in the Training Set

Having solved the correspondence issue and obtained the required subdivision

mesh by re-meshing, we can now perform wavelet analysis on the surface mesh

directly with the scheme introduced in (3.1). The output is a serial of wavelet

coefficient vectors v0
n and wj

m.

For our training set from IBSR, after decomposing the prepared surface

meshes in the training set with this wavelet scheme, we found that |wj
m| < 0.5mm

for j ≥ 3. However, the minimum voxel size in IBSR is 0.8371× 0.8371× 1.5mm,
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(a) cerebral lateral ventricle 1, view 1 (b) cerebral lateral ventricle 1, view 2

(c) cerebral lateral ventricle 2, view 1 (d) cerebral lateral ventricle 2, view 2

Fig. 3.10: Registration to restore the similarity transform information. (a) and (b): the
registration results of cerebral ventricle 1 shown in 2 views. (c) and (d): the
registration results of cerebral ventricle 2 shown in 2 views. The green mesh
is the re-meshed surface with correspondences. The red mesh is the surface of
the original segmented binary image data (previously shown in Fig. 3.7(a) and
Fig. 3.7(b)).

(a) prepared surface mesh of ventricle 1 (b) prepared surface mesh of ventricle 2

Fig. 3.11: The re-meshed surfaces with correspondence and similarity transform informa-
tion. The corresponding points are labeled with the same markers.

49



CHAPTER 3. STATISTICAL SURFACE WAVELETS MODEL (SSWM)

Fig. 3.12: The 18 samples of the caudate nucleus (normalized) from the Internet Brain
Segmentation Repository (IBSR). Above the dashed line: left caudate nucleus;
Below the dashed line: right caudate nucleus
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and we can thus omit wj
m for j ≥ 3. Hence, we only use the first 4 scale levels,

for a total of |V(0)|+ |W(0)|+ |W(1)|+ |W(2)| = 8 + 18 + 72 + 288 = 386 coef-

ficient vectors to describe each shape. Suppose we have N shapes in the training

set. With the wavelet decomposition method described above, the ith shape of

the training set can be represented as: Ci = [c1
i , · · · , cM

i ]>. Here, cj
i , i = 1, ..., N ,

and j = 1, ...,M stands for the jth coefficient vector of the ith shape. In our case,

N = 18 and M = 386.

3.3.2 Computing the Statistical Surface Wavelet Model

After decomposing the training set and using Ci, i = 1, ..., N to represent the

ith shape, we can first compute the mean shape as: C = 1
N

∑N
i=1 Ci. Fig. 3.13

shows the mean shape c of our training set. The mean shape will later be used

as the initial guess when performing segmentation of an unknown input image.

Also, the spatial distribution of the shape deviations from the mean shape can

be computed. This is shown in Fig. 3.13 with different colors representing the

different extent of deviations. From this figure, we can see that the tail of the

caudate nucleus is the most variable part, while the middle body part is relatively

stable.

Beside the mean shape, we can perform statistical shape analysis at different

scales since the shape model is multiscale. By performing a principal component

analysis on each specified scale level, we can understand the most significant vari-

ation of the shape in that scale level as shown in Fig. 3.14 and Fig. 3.15. Note that

the variation scale changes from coarse to detail from Fig. 3.14(a) to Fig. 3.14(d)

and from Fig. 3.15(a) to Fig. 3.15(d). The ASM model [2], because of its discrete

shape representation using PDM (points distribution model), can’t provide this

kind of multiscale shape analysis capability. Models based on the Fourier [3, 10] or

spherical harmonics [4, 5] basis can produce similar results as shown in Fig. 3.14

and Fig. 3.15. However, due to their global supported basis function, they don’t

have the ability to focus the shape analysis only on part of the surfaces at every
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(a) Left caudate nucleus. upper row: view 1, lower row: view2, left: the mean shape, right: color
coded shape variation distribution

(b) Right caudate nucleus. upper row: view 1, lower row: view2, left: the mean shape, right:
color coded shape variation distribution

Fig. 3.13: Mean shape and shape variation distribution: (a) left caudate (b) right caudate.
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scale. In contrast, because of the spatial-localization property of SSWM, we now

can go further to perform shape analysis not only at a specified scale level, but

also at a specified location on the surface. To do so, using the SSWM, the method

is quite straightforward. Instead of doing a principal component analysis on all

the wavelet coefficients corresponding to the specified scale level, we only perform

the analysis on the wavelet coefficients of the specified scale level corresponding

to some region of interest on the surface.

Because of the multiscale and spatial-localization property of wavelet basis,

every wavelet coefficient vector only defines the shape at a specified scale and

spatial location. Therefore, statistical analysis can be applied on every coefficient

vector separately to obtain the multiscale and spatially localized statistical infor-

mation. The 3 elements in the coefficient vector cj
i represent the shape variations

in the directions of the coordinate axes x, y, and z. However, the directions x, y

and z do not necessarily indicate the most significant modes of the shape vari-

ation. Therefore, we use principal component analysis (as discussed in the next

paragraph) to find the principal shape variation mode defined by each coefficient

vector.

Let Cj = [cj
1, · · · , c

j
N ]> be the corresponding jth wavelet coefficients from the

N samples in the training set. cj = 1
N

∑N
i=1 cj

i is the mean of the jth coefficient

vector. Then the covariance matrix of the jth coefficient vector is:

Σj =
1

N − 1

N∑
i=1

(cj
i − cj) · (cj

i − cj)> (3.7)

Eigenanalysis of this covariance matrix produces the eigenvalues and eigenvec-

tors. These eigenvectors define a new orthogonal basis. Using this basis, the jth

coefficient vector of a new shape can be expressed as:

cj = cj + Ujbj (3.8)

where Uj is a 3 × 3 matrix in which the columns are the eigenvectors which
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(a)

(b)

(c)

(d)

Fig. 3.14: The most significant variation mode of left caudate in different scale levels: (a)
level 0; (b) level 1; (c) level 2; (d) level 3. Upper row from left to right: mean+σ,
mean + 2σ, mean + 3σ. Lower row from left to right: mean − σ, mean − 2σ,
mean− 3σ. (mean is the mean shape. σ is the standard shape deviation away
from the mean shape at the specified scale level.)
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(a)

(b)

(c)

(d)

Fig. 3.15: The most significant variation mode of right caudate in different scale levels:
(a) level 0; (b) level 1; (c) level 2; (d) level 3. Upper row from left to right:
mean + σ, mean + 2σ, mean + 3σ. Lower row from left to right: mean − σ,
mean − 2σ, mean − 3σ. (mean is the mean shape. σ is the standard shape
deviation away from the mean shape at the specified scale level.)
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denote the eigenmodes of the jth coefficient vector’s variation (that is the eigen-

modes of shape variation at the location and scale defined by cj); vector bj =

[bj(1), bj(2), bj(3)]> is the coordinate of cj in the new orthogonal basis. It de-

scribes the deviation of cj from the mean value cj. Without loss of generality,

bj(1), bj(2), bj(3) correspond to eigenvalues λj
1, λ

j
2, λ

j
3 respectively in non-increasing

significance of the variation. We define:

B = [b1, ...,bM ] (3.9)

Then, matrix B contains parameters which describe the new shape and are, in

fact, the parameters to be optimized later in the segmentation process.

Because of the randomness of the shape variation, B can be interpreted as

random variables. However, there is no particular distribution to describe these

parameters and only mean and standard deviation are known about the distribu-

tion. Because Gaussian is the natural form of a probability density and, with a

given variation, the Gaussian is the one with the maximum entropy [10], a mul-

tivariate Gaussian can be assumed. A further independence assumption of this

multivariate Gaussian can also been adopted, which is a common and reasonable

relaxation in the parametric models (see, for example, [10] [3]). Here, the in-

dependence assumption comes from the orthogonality of wavelet basis functions

and the orthogonality of the eigenvectors in the principal component analysis.

With these two “orthogonality”, the definition of our model does not imply any

dependency between parameters bj(k). The correlations between bj(k) are, actu-

ally, additional information, and the independence assumption only ignores these

additional information but not assuming more information. Because bj actually

indicates the deviation of the coefficient from the mean value, the mean of the

assumed Gaussian distribution is 0. The standard deviation can be estimated and

denoted by: σj(k)(k = 1, 2, 3 and j = 1, ...,M). Thus, the assumed independent
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3.3. THE TRAINING OF STATISTICAL SURFACE WAVELET MODEL

multivariate Gaussian is defined as:

Pr(B) =
M∏

j=1

3∏
k=1

1

σj(k)
√

2π
e
− (bj(k))2

2σj(k) (3.10)

Till here, cj, Uj, σj(k), j = 1, ...,M and k = 1, 2, 3 together constitute a statistical

shape model which bias the object shape to a particular range of variation.

In order to illustrate the spatial localization property of this wavelet statis-

tical shape model, in every scale level, we can choose one coefficient vector and

show the most significant variation (corresponding to bj(1)) of this chosen coeffi-

cient by changing bj in (3.8). The results are shown in Fig. 3.16 and Fig. 3.17.

It is very clear that when one coefficient is changed, the shape only varies locally

at the specified scale, while the other parts of the shape remain unchanged. Such

a multi-scale and spatial localized shape representation can be very useful in the

segmentation process, because the model parameters can be optimized one by one

instead of altogether at one time. This divides the complex multi-dimensional

optimization problem into many small and simple one-dimension optimization

problems. Therefore, this feature will lead to a more efficient model-guided seg-

mentation method which will be discussed in next chapter.
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(a)

(b)

(c)

(d)

Fig. 3.16: The most significant variation mode of the left caudate nucleus at one chosen
spatial location in different scale levels. (a) Level 0. (b) Level 1. (c) Level 2.
(d) Level 3. The red dashed line denotes the region where the shape is defined
by the chosen coefficient. Upper row from left to right: bj = [σj(1), 0, 0]>,
[2σj(1), 0, 0]>, [3σj(1), 0, 0]>, respectively. Lower row from left to right: bj =
[−σj(1), 0, 0]>, [−2σj(1), 0, 0]>, [−3σj(1), 0, 0]>, respectively.
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(a)

(b)

(c)

(d)

Fig. 3.17: The most significant variation mode of the right caudate nucleus at one chosen
spatial location in different scale levels. (a) Level 0. (b) Level 1. (c) Level 2.
(d) Level 3. The red dashed line denotes the region where the shape is defined
by the chosen coefficient. Upper row from left to right: bj = [σj(1), 0, 0]>,
[2σj(1), 0, 0]>, [3σj(1), 0, 0]>, respectively. Lower row from left to right: bj =
[−σj(1), 0, 0]>, [−2σj(1), 0, 0]>, [−3σj(1), 0, 0]>, respectively.
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Chapter 4

SSWM-Guided Segmentation

Segmentation of anatomical structures from magnetic resonance imaging

(MRI) or computed tomography (CT) data sets is the first and basic step in

many medical image applications, such as diagnosis, therapy evaluation, surgical

planning and navigation. Because manual segmentation is time-consuming and

lacks reproducibility, the development of automated or semi-automated techniques

is highly desirable. In general, the development of computer-assisted segmenta-

tion methods is challenging due to many difficulties. For example, the intensity

based methods are likely to fail if the distribution of intensity values of the struc-

ture of interest overlaps with those of the surrounding structures. Moreover, in

medical images, the object boundaries are often smeared due to low image con-

trast or even missing when blended with other surrounding structures with similar

intensity values. Therefore, boundary-based non model-guided methods such as

“snake” [22] may “leak” and result in a poor segmentation. We use the caudate

nucleus as an example to illustrate this difficulty in segmentation. The caudate

nucleus is a nucleus located within the basal ganglia of the brain (see Fig. 4.1),

originally thought to primarily be involved with control of voluntary movement

and is now known to be an important part of the brain’s learning and memory

system [73]. However, some part of the boundary of the caudate is ofter smeared

by the surrounding gray matter structures, the putamen and the accumbens-area
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in MR images (as shown in Fig. 4.2). Therefore, the model-free techniques often

cause serious leakage at these areas.

To overcome these difficulties, a model with prior knowledge of the target

object can be very helpful. A number of statistical shape models as indicated in

Chapter 2 have been proposed for this purpose. Our proposed SSWM can also be

used in the model-guided segmentation. Moreover, because of its superior “double

localization” property, our model will result in a multiscale and spatial localized

optimization algorithm. This is a valuable advantage over other models, because,

as we know, detailed contours and especially surfaces often require a large number

of coefficients to capture and these coefficients need an optimization process to

determine. Hence, the dimensionality of the optimization problem is usually of the

order of several tens to a few hundreds, with the latter to be more realistic. Not

every optimization method is able to handle that many free parameters. Possible

choices reach from deterministic techniques like conjugate gradient optimization to

stochastic methods such as genetic algorithms. For the gradient-based algorithms,

they are often sensitive to the initial location because of the many local minimals.

The stochastic methods are usually quite time consuming and can only converge

and find the right minimal at certain probability. However, with our new SSWM

model, this multivariant optimization problem in model-guided segmentation can

be divided into many univariate problems and solved in a much more efficient

manner.

Having built the statistical surface wavelet shape model of the caudate nucleus

in Chapter 3, next in this chapter, we will perform model-guided segmentation

by deforming the model to fit with the input image. This deformation process is

driven by the optimization (Section 4.2) of an objective function (Section 4.1).
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(a) axial (b) sagittal

(c) coronal (d) 3D visualization

Fig. 4.1: The caudate nucleus shown in axial, sagittal and coronal slices of a MR image.

4.1 The Segmentation Objective Function

Let B = [b1, ...,bM ] be a shape template in the form of (3.9) and G(x, y, z) be

an input image. In order to segment the object from the image, some preprocessing

of the image is needed. We calculate a Canny gradient magnitude image (as shown

in Fig. 4.4(a)) after applying a Gaussian smoothing (σ = 3 voxels). The reason of

performing the smoothing is to suppress the noise and to increase the capturing

range. Next, this gradient magnitude image is also normalized to an intensity

value range of [0, 1]. Let I(x, y, z) denote the preprocessed image (such as the one
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Fig. 4.2: The difficulties of segmentation of caudate nucleus

shown in Fig. 4.4(a)) in which a bigger intensity value indicates a stronger edge

feature in the original image G(x, y, z).

The model-guided segmentation problem can be formulated as an optimiza-

tion problem:

max
B

E(B, I) = max
B

[EI(B, I) + αEp(B)] (4.1)

The first term EI(B, I) is the image-driven term that measures the fitness between

the shape template B and image I. It drives the deformation of the shape template

to match better with the edge information in I. It is computed as:

EI(B, I) =
∑
x∈A

I(x)∆x (4.2)

whereA (see Fig. 4.3) is the surface defined by B; x is a point on the surfaceA; ∆x

is the surface element (see Fig. 4.3); and I(x) is the edge map intensity at point x.

The second term Ep(B) is the prior information term which drives the template

deformation to the most probable shape according to the prior knowledge. Since
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B is the assumed independent multivariate Gaussian, the second term can be

defined as:

Ep(B) = lnPr(B) (4.3)

Substituting Pr(B) in (3.10) into (4.3) gives:

Ep(B) = ln

(
M∏

j=1

3∏
k=1

1

σj(k)
√

2π
e
− (bj(k))2

2σj(k)

)

=
M∑

j=1

3∑
k=1

[
ln

(
1

σj(k)
√

2π

)
− (bj(k))2

2σj(k)

]
(4.4)

Note that α in the objective function is a weighting factor to balance the

importance between EI(B, I) and Ep(B). For input image of low contrast, a large

α is preferred to bias segmentation towards prior model, while for input image

of good contrast, a small α is suffice to rely more on the image information. In

practice, α is to be calibrated first through experimentation on images obtained

from the same source.

4.2 Optimization of the Objective Function

In general, the optimization problem in model-guided segmentation is a global

optimization problem. Due to the existence of edge features of surrounding ob-

jects, the objective function has many local maximals. One needs to ensure that

the global maximum is close to the initial guess of the solution in order to use lo-

cal optimization algorithms, such as gradient descent, direction set and conjugate

gradient [53][10][3][24]. On the other hand, with our wavelet model, this is not

much of an issue. Because of the localization property of the wavelet model both

in frequency and spatial location, the objective function can be optimized in a se-

rial fashion—every time only one parameter from {bj(k)|j = 1, ...,M ; k = 1, 2, 3}
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surface

xΔ

x

Fig. 4.3: The surface A and the surface element.

needs to be optimized. This means that there is only one 1-dimensional optimiza-

tion problem to be solved each time. Therefore, we adopt the equal sampling

method to solve this relatively simple 1-dimensional optimization problem. For

every parameter bj(k), within the ±2 standard deviation, the objective function

is evaluated at equidistant sampling points to find the maximum. The larger the

number of sampling of points, the more accurate the maximum can be found. The

number of sampling points is decided proportionally by the width of the searching

scope defined by ±2 standard deviation. For example, if the range defined by the

±2 standard deviation is 10mm wide and the resolution of the original image is

1mm, 10 sampling points (1mm spacing between each other) will be enough.

When there are p parameters to be optimized in one scale level, and for every

parameter there are l number of sampling points, the computational complexity of

our optimization in this scale level is then O(pl). In contrast to other shape models

with only frequency localization (such as [3][4]), an equal sampling optimization

method has, in general, computational complexity of O(lp). This is because in
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these cases, all the parameters (which are correlated to each other) in a scale level

have to be optimized altogether. Here, the number of parameters p in one scale

level is usually tens or hundreds, for these models, such an optimization method

is thus computationally expensive and may be even unaffordable.

4.3 The Segmentation Results

We have applied our method to the segmentation of cerebral caudate nuclei.

The 18 samples in IBSR [8] are used as the training set to obtain a statistical

surface wavelet model with 4 scale levels (as shown in Chapter 3). To segment

an input image, we first locate the Talairach landmarks manually to define the

Talairach coordinate system for the input image. Next, the model to segment

the input image is initialized to the mean shape (Fig. 3.13) at the start of the

optimization (as shown in Fig. 4.4(b)). Note that in this example in Fig. 4.4, the

initial position is quite far away from the target, but close to the “misleading” edge

of lateral ventricle. Each successive parameter optimization is done in a multiscale

manner starting from the coarsest level to the finest level. Within every level,

the parameters in this level are optimized sequentially one by one. Because of

the spatial localization of the wavelet model, optimization of one parameter only

results in the deformation of a subpart of the surface, without affecting previously

fitted parts. So, a sequential approach can fit the whole model to the input image,

scale by scale and part by part. This is clearly visible in Fig. 4.4(b)-Fig. 4.4(e).

Fig. 4.4(f) shows the final segmentation result after optimization in 4 scales in an

axial 2D slice, where more detailed shape information is found. In Fig. 4.5 and

Fig. 4.6, another example of segmentation process are shown in 3D in two views

(superior and lateral). From the figures, we can see clearly how the model deform

gradually scale by scale and part by part to fit with the target shape.

In our experiment, we also observe the usefulness of a prior model such as

our statistical surface wavelet model. For the coronal slice shown in Fig. 4.10,
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(a) (b)

(c) (d)

(e) (f)

Fig. 4.4: The model deformation process shown in axial 2D intersections at the coarsest
level. (a) The preprocessed image. (b) The model initialization. (c)-(e) 3 interim
steps of optimization at scale level 0. (f) Final result after optimization up to
scale level 3.

the caudate blends with the putamen and accumbens-area and there is thus no

reasonable “edges” detected among them. It is highly improbable to obtain a

good segmentation without the guidance of a statistical model.

In order to test the generality of the model, besides 36 normal cases of MR

scans, 29 additional cases with schizophrenia are also used to test our method. For

all these 65 MR scans, our proposed method (implemented in C++) successfully
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(a) deformation process in Level 0

(b) result after Level 1 (c) result after Level 2 (d) result after Level 3

Fig. 4.5: The model deformation process shown in 3D at superior view. The manually
segmentation is shown in light blue and the model is shown in light grey.
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(a) deformation process in Level 0

(b) result after Level 1 (c) result after Level 2 (d) result after Level 3

Fig. 4.6: The model deformation process shown in 3D at left lateral view. The manually
segmentation is shown in light blue and the model is shown in light grey.
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segmented the left and right caudate within 3 minutes on a P4 2.4GHz Windows

XP system. To validate the segmentation result, we compared the results with the

results obtained through manual segmentation. By using the Valmet software [74],

three metrics are used to measure the segmentation errors.

The first is the volumetric Overlap ratio. In this metric, two binary images are

analyzed voxel by voxel to calculate false positives, false negative, true positive

and true negative voxels. Here we accepted the measure of the intersection of

two subjects and divided by the union, (A ∩ B)/(A ∪ B). This measure gives a

score of 1 for perfect agreement and 0 for complete disagreement. Because most

of the error occurs at the boundary of objects, small objects are penalized and

get a much lower score than large objects. Since caudate is a small structure,

this is a strict metric for caudate segmentation. The second metric used is the

Hausdorff distance which defines the largest difference between two objects. Given

two objects A and B, the Hausdorff distance between them is defined as:

DH(A,B) = max{max
p∈A
{min

q∈B
d(p, q)},max

q∈B
{min

p∈A
d(p, q)}} (4.5)

where p and q are points on A and B, respectively. d(p, q) is the Euclidean

distance between p and q. From the definition, we can see that the measure is

extremely sensitive to outliers and does not reflect properties integrated along

the whole surface and only give the “worst case distance”. So, in order to have

an overall measure of surface distance, we adopted the third metric, the average

surface distance which tells how much on average the two surfaces differ. This

measure integrates over both outside and inside errors on a surface and divide by

the number of boundary points. This absolute average distance, as opposed to

binary overlap ratio, does not depend on the object size. The validation results

in the above three metrics are summarized in Fig. 4.8 (left caudate nucleus) and

Fig. 4.9 (right caudate nucleus). From these figures, we can see that our proposed

method is robust and achieves a high accuracy. In order to see the distribution

of segmentation errors on the surface, validation results of 4 scans are shown in
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Max Outside (2.32mm)

Max Inside (1.83mm)

Distance Outside

Distance Inside

0

(a) example 1

Max Outside (2.42mm)

Max Inside (2.01mm)

Distance Outside

Distance Inside

0

(b) example 2

Max Outside (3.02mm)

Max Inside (1.75mm)

Distance Outside

Distance Inside

0

(c) example 3

Max Outside (2.55mm)

Max Inside (1.27mm)

Distance Outside

Distance Inside

0

(d) example 4

Fig. 4.7: Four examples of validation results shown in color-coded map. The pictures are
generated by the software Valmet [74]

Fig. 4.7 as examples, where we can see that most of the segmentation error was

generated at the area adjacent to accumbens-area.

Besides the caudate nucleus, we also test our proposed segmentation frame-

work on putamen which is a structure in the middle of the brain (as shown in

Fig. 4.2). Putamen and the caudate nucleus form the dorsal striatum. It is known

that putamen plays a role in reinforcement learning [75]. For putamen segmenta-

tion, the prior model training and the segmentation process is the same as that of

caudate nucleus. For both left and right Putamen, we have totally 130 cases. In

most of them, we get good results. However, due to the higher variability of puta-

men and the more complicated surroundings of it, we encountered the following

two scenarios in segmentation.

Scenario A(16 cases): The edge information is missing at some part of

the boundary. Therefore, the model is attracted by the surrounding structure’s

stronger edge feature. Fig. 4.11(a) shows a typical edge-map in this scenario. We
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(a) overlap ratio(%). Before deformation: 65.8±10.8/After deformation: 94.5±1.6
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(b) average surface distance(mm). Before deformation: 1.27±0.40/After deformation: 0.29±0.09
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(c) Hausdorff distance(mm). Before deformation: 5.39±1.23/After deformation: 4.23±1.16

Fig. 4.8: Segmentation results of 65 left caudate. Bars in blue illustrate the measure at
initialization and in red after deformation

can see that part of the putamen’s edge is totally invisible (the part is indicated

as a red curve in Fig. 4.11(b)). However, the surrounding structure has a very

strong edge feature (indicated as a green curve in Fig. 4.11(b)) and has a similar
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(a) overlap ratio(%). Before deformation: 68.9±11.2/After deformation: 94.8±1.5
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(b) average surface distance(mm). Before deformation: 1.17±0.39/After deformation: 0.27±0.08
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(c) Hausdorff distance(mm). Before deformation: 5.35±1.33/After deformation: 4.04±1.23

Fig. 4.9: Segmentation results of 65 right caudate. Bars in blue illustrate the measure at
initialization and in red after deformation

shape. Therefore, the model is attracted to this false edge and results in a bad

segmentation as Fig. 4.11(c) shows. In this situation, prior knowledge can’t help,

because the deformation to the false edge does not exceed the deformation range (2
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CHAPTER 4. SSWM-GUIDED SEGMENTATION

putamen

accumbens area

Fig. 4.10: The separation between caudate, putamen and accumbens-area using the prior
knowledge.

(a) an axil slice (b) the missing edge (c) the wrong result

Fig. 4.11: The scenario A in putamen segmentation, in which the edge information is miss-
ing at some part of the boundary and the model is attracted by the surrounding
structure’s stronger edge feature.

standard deviation) defined by the prior model. In some senses, the algorithm does

nothing wrong, since the real edge feature is missing, it just finds the most probable

substitute according to the prior knowledge. To summarize, the happening of this

scenario has three necessities: (a) the edge of putamen is missing; (b) the false

edge has the similar shape as that of the missing edge; (c) the false edge is within

the range of 2 standard deviation.

Scenario B(17 cases): Fig. 4.12(a) shows an example that using the prior

model trained based on the 18 IBSR [8] samples failed to segment. The reason of

this failure is that the training set does not contain this pattern of shape variation.

By selecting 3 cases from the 17 failed cases and adding them to the 18 IBSR
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4.4. THE SSWM SEGMENTATION SOFTWARE

(a) the segmentation result with the old
prior model (learnt from the 18 samples
of IBSR)

(b) the segmentation result with the
new prior model (learnt from the 18
samples of IBSR and 3 failed cases)

Fig. 4.12: The scenario B in putamen segmentation, which contains shape variation pat-
tern not included in the 18 samples of IBSR.

samples to form a bigger training set, we compute a new prior model. With the

new model, we can segment not only the previously succussed cases but also the

17 previously failed cases (as shown in Fig. 4.12(b)). This shows that all these 17

failed cases belong to the same shape variation pattern which is not contained in

the 18 samples of IBSR. Scenario B is actually within our expectation, because it

is not possible that 18 IBSR samples can contain all the possible variation patterns

and, therefore, we always need to update the prior model with the newly found

shape variation patterns.

The segmentation results of left and right putamen using this updated prior

model are summarized in Fig. 4.13 and Fig. 4.14, respectively. As we can see,

except some cases belong to Scenario A, the algorithm generates very good seg-

mentation results.

4.4 The SSWM Segmentation Software

The software to perform the SSWM-guided segmentation is developed in C++

using VTK (Visualization Toolkit) [76] and ITK (Insight Segmentation and Reg-

istration Toolkit) [77], and based on one ITK open source project, Deformable

Simplex Mesh Model [78]. Our SSWM segmentation software provides the GUI

for inspecting the input MR image and the segmentation results in sagittal, coro-
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(a) overlap ratio(%). Before deformation: 79.2±9.7/After deformation: 97.3±4.2
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(b) average surface distance(mm). Before deformation: 1.05±0.45/After deformation: 0.21±0.23
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(c) Hausdorff distance(mm). Before deformation: 3.82±1.30/After deformation: 2.68±0.97

Fig. 4.13: Segmentation results of 65 left putamen. Bars in blue illustrate the measure at
initialization and in red after deformation

nal and axial directions slide by slide. Screenshots of this software are shown in

Fig. 4.15. In Fig. 4.15(a), the prior model is just loaded and initially set to the

mean shape. The bottom left window of the GUI shows the current shape (red
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(a) overlap ratio(%). Before deformation: 78.9±7.8/After deformation: 95.6±4.2
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(b) average surface distance(mm). Before deformation: 0.99±0.34/After deformation: 0.27±0.27
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(c) Hausdorff distance(mm). Before deformation: 3.98±1.22/After deformation: 2.75±1.23

Fig. 4.14: Segmentation results of 65 right putamen. Bars in blue illustrate the measure
at initialization and in red after deformation

mesh) of the model. There are also three planes perpendicular to each other in

this window. These planes cut the mesh and volumetric image. The intersections

are shown in the other three windows (the red contours are the intersections of
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CHAPTER 4. SSWM-GUIDED SEGMENTATION

the mesh cut by these planes). We can see, in the example shown in this figure,

the initial shape is quite far away from the target shape. Fig. 4.15(b) shows the

segmentation results after optimization, in which the model has been fitted to the

boundary of caudate nucleus.

Because the software project is managed by Cmake (Cross Platform

Make) [79] and the GUI is written in FLTK (Fast Light Toolkit) [80] (with cross-

platform support), the program can be compiled and run on different platforms

(windows, linux/unix and OSX).

Another key issue in implementing the algorithm is the data-structure used

for subdivision wavelet transform. From Fig. 3.1, we see that in Catmull-Clark

subdivision, every time, one facet in sub-mesh is divided into four facets in super-

mesh. Therefore, the quadtree is the key data structure. Because the classic

implementation of quadtree based on pointers requires complex navigation be-

tween nodes within one tree or between tress to find the 1-ring/neighbourhood

and ancestors/children, we adopted a new technique of quadtree [81, 82] which

provides efficient traversal methods as well as efficient storage. It is based on an

efficient indexing scheme as a linear (pointerless) quadtree data structure. Such a

quadtree is stored using a one-dimensional array of nodes. This indexing scheme

has the property that the navigation between any pair of nodes can be com-

puted in constant time. Moreover, the navigation across multiple quadtrees can

be achieved at the same cost as well. The adoption of this data-structured boosts

the efficiency of our software greatly.

4.5 Conclusion

In this Chapter, a framework of model-guided segmentation using the statis-

tical surface wavelet model has been proposed. Experiment of using this method

to segment caudate nuclear on 36 normal cases and 29 cases with schizophrenia

has been conducted. After the results being validated with manual segmentations
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using three segmentation error metrics, the outcome shows that our segmentation

method is robust, computationally efficient and achieves a high degree of segmen-

tation accuracy. Moreover, because the multi-variant optimization can be divided

into many uni-variant optimization and solved by simple equal-distance sampling,

our segmentation method is quiet easy to implement.

In next chapter, based on the segmentation acquired in this chapter, we will

compute the comparative group statistics in normal and diseased group respec-

tively. The group mean difference hypothesis will be tested as well to find regions

with significant shape change between the 2 groups.
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CHAPTER 4. SSWM-GUIDED SEGMENTATION

(a) The prior model just loaded

(b) The segmentation results

Fig. 4.15: The software for statistical surface wavelet model (SSWM) guided segmentation.
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Chapter 5

Comparative Shape Analysis

In the previous chapter, a method of model-guided segmentation using SSWM

has been proposed and tested on 65 caudate nucleus from both schizophrenia pa-

tients and healthy controls. In this chapter, a comparative shape analysis between

the two shape groups will be conducted to find out whether there is significant

shape difference between the two groups, or in other words, whether the shape of

the caudate nucleus is affected by schizophrenia.

5.1 Selection of the Datasets

Generally, the 65 MR scans we segmented in the previous chapter can be

classified into two groups, 38 schizophrenia patients and 27 normal controls, which

are denoted by SPall and NCall, respectively. However, within these two groups, in

fact, subjects have other different properties, such as gender, handedness and race.

Because of the relatively unknown contributions of gender, handedness and race to

the shape analysis, the datasets have to be controlled by selecting subjects based

on only one particular value for these properties [83]. Here, we choose “male”,

“right-handed” and “Chinese” to have a bigger size of the datasets, since these

are the most common value observed. According to this selection criteria, we also

choose two sub-groups from SPall and NCall: (1) 17 schizophrenics represented
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CHAPTER 5. COMPARATIVE SHAPE ANALYSIS

by SPrhcm, and (2) 8 normal controls represented by NCrhcm, all of whom are

right-handed Chinese male. In the next section, comparative statistical shape

analysis of both left and right caudate nucleus is firstly conducted between SPall

and NCall, and then between SPrhcm and NCrhcm.

5.2 The Method and Results

Quantitative statistical morphologic analysis of individual brain structures is

firstly based on volumetric measurements. These volume changes are only intuitive

features as they might explain atrophy or dilation due to illness. However, on the

other hand, structural changes at specific locations are not sufficiently reflected in

the changes of volume measurements. Shape analysis has thus become of increas-

ing interest to the neuroimaging community due to its potential to precisely locate

morphological changes between healthy and pathological structures [13, 83–86].

Our analysis belongs to this category as well. The input of our analysis is the

re-meshed surfaces with correspondences, which are generated by processing the

binary segmented caudate nucleus using the mesh preparation method described

in Section 3.2.

Firstly, the analysis is conducted within two groups, SPall and NCall, on left

and right caudate nucleus, respectively. The group mean shape is computed for

each group by averaging the 3D coordinates of corresponding surface points across

the group, and the results are shown in Fig. 5.1. In order to illustrate the shape

difference between the mean shapes of SPall and NCall, at every sample point

on the surface, we compute a distance vector representing the direction of local

Euclidean surface distance from the mean shape of NCall to the mean shape of

SPall. In Fig. 5.2, these distance vectors on every points on the mesh are shown as

a distance map. From this figure, we can see that the most different parts between

the two mean shapes are the anterior head, posterior tail and superior body (for

the anatomical orientation of caudate nucleus, please refer to Fig. 4.1).
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5.2. THE METHOD AND RESULTS

Within every group, we can also show the shape variance at different loca-

tions by computing the covariance matrix of the 3D coordinates at every surface

points [65]. The eigenvectors of this covariance matrix (3× 3) are the eigen local

variation directions. The eigenvectors of these covariance matrix can be visualized

as ellipsoids as shown in Fig. 5.3, in which the three axes of ellipsoid represent

three eigenvectors respectively. We can see that, for both left and right caudate

nucleus, the variability is reduced in the body section compared to the anterior

head, and especially the posterior tail part.

The similar comparisons can be conducted between SPrhcm and NCrhcm as

well. Fig. 5.4 shows the mean shapes of group SPrhcm and NCrhcm. Fig. 5.5 shows

the distance map from the mean shape of NCrhcm to the mean shape of SPrhcm.

Fig. 5.6 shows the covariance ellipsoids within group SPrhcm and NCrhcm. From

these figures, similar results are found: anterior head and posterior tail are the

parts where there are more shape variance both within each group and between

two groups.

The next step in the comparative shape analysis is the testing for differences

between groups at every surface location. This can be done in 2 main fashions.

First method is by analyzing the magnitude of the local surface distance vector to

a template. For this option, a template needs to be first selected, usually this is the

common mean of the 2 groups [85]. The main disadvantage of this method is the

need to select a template, which introduces an additional bias into the statistical

analysis. The other method is by analyzing the spatial location of each point,

in which no template is necessary. Here, we choose the second method and use

a commonly accepted multivariate statistics, Hotelling T 2 two sample difference

metric [88] as a measurement of how 2 groups locally differ from each other. The

Hotelling T 2 is defined as:

t2 =
nxny

nx + ny

(x− y)′W−1(x− y) (5.1)

where nx and ny are the number of samples in the two groups, x and y are the
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(a) mean shape of the left caudate nucleus in NCall (shown in 2 views)

(b) mean shape of the left caudate nucleus in SPall (shown in 2 views)

(c) mean shape of the right caudate nucleus in NCall (shown in 2 views)

(d) mean shape of the right caudate nucleus in SPall (shown in 2 views)

Fig. 5.1: The mean shape of the left and right caudate nucleus in NCall and SPall. (this
figure and other figures in this chapter are drawn by software KWMeshVisu [87])

means of the two groups, and

W =

∑nx

i=1(xi − x)(xi − x)′ +
∑ny

i=1(yi − y)(yi − y)′

nx + ny − 2
(5.2)

is the unbiased pooled covariance matrix which is less sensitive to group differences

of the covariance matrix and the number of samples.

Using the Hotelling T 2 statistic, the group mean difference hypothesis is tested

by using the UNC Statistical Shape Analysis Tools [65] at significance level (α) of
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(a) left caudate nucleus (shown in 2 views)

(b) right caudate nucleus (shown in 2 views)

Fig. 5.2: Surface distance between the mean shape in NCall and the mean shape in SPall.
The vectors start at the mean shape of NCall and point to the mean shape of
SPall.

0.05. Our null hypothesis is that the distribution of the locations of each surface

point is the same for every subject regardless of the group. The result of this test

is a significance map that represents the significance of the local statistical shape

difference along the surface as shown in Fig. 5.7(a) and Fig. 5.7(c), where the

smaller the p-value the clearer the shape difference is suggested. Here, the signifi-

cance threshold is selected as 0.05. In these two figures, in some areas, significance

group mean shape differences are clearly suggested on both left and right caudate

nucleus. However, because of the multiple comparison problem [89], Fig. 5.7(a)

and Fig. 5.7(c) are just raw p-value map, and they are overly optimistic estimate

of the real significance. Therefore, a correction method based the permutation

tests [86, 90] is adopted to correct the above raw p-value map and to control the

false positive error. The corrected p-value maps are shown in Fig. 5.7(b) and
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(a) Covariance ellipsoid of left caudate nucleus in NCall (shown in 2 views)

(b) Covariance ellipsoid of left caudate nucleus in SPall (shown in 2 views)

(c) Covariance ellipsoid of right caudate nucleus in NCall (shown in 2 views)

(d) Covariance ellipsoid of right caudate nucleus in SPall (shown in 2 views)

Fig. 5.3: Covariance ellipsoid of left and right caudate nucleus in NCall and SPall.
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(a) mean shape of the left caudate nucleus in NCrhcm (shown in 2 views)

(b) mean shape of the left caudate nucleus in SPrhcm (shown in 2 views)

(c) mean shape of the right caudate nucleus in NCrhcm (shown in 2 views)

(d) mean shape of the right caudate nucleus in SPrhcm (shown in 2 views)

Fig. 5.4: The mean shape of the left and right caudate nucleus in NCrhcm and SPrhcm.

Fig. 5.7(d), in which significance group mean difference area shrinks compared

with the raw p-value map. However, on both left and right caudate nucleus at the

anterior head, significant area is still visible. Based on these results, significant

group shape difference between NCall and SPall is clearly suggested. In order to

exclude the unknown affects of gender, race and handedness to this shape anal-

ysis, the same hypothesis testing is also conducted between NCrhcm and SPrhcm.

The raw p-value map is shown in Fig. 5.8(a) and Fig. 5.8(c), in which significant

areas are detected on both left and right caudate nucleus. But in the corrected p-
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(a) left caudate nucleus (shown in 2 views)

(b) right caudate nucleus (shown in 2 views)

Fig. 5.5: Surface distance between the mean shape in NCrhcm and the mean shape in
SPrhcm. The vectors start at the mean shape of NCrhcm and point to the mean
shape of SPrhcm.

value maps as shown in Fig. 5.8(b) and Fig. 5.8(d), no significant area is detected.

This results indicates that significant group shape difference between NCrhcm and

SPrhcm is not clearly suggested. Considering the relative insufficient subjects in

this analysis (only 17 in SP and 8 in NC), a further study based on more datasets

is necessary. We plan to do this research in the future.
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(a) Covariance ellipsoid of left caudate nucleus in NCrhcm (shown in 2 views)

(b) Covariance ellipsoid of left caudate nucleus in SPrhcm (shown in 2 views)

(c) Covariance ellipsoid of right caudate nucleus in NCrhcm (shown in 2 views)

(d) Covariance ellipsoid of right caudate nucleus in SPrhcm (shown in 2 views)

Fig. 5.6: Covariance ellipsoid of left and right caudate nucleus in NCrhcm and SPrhcm.
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(a) The raw (optimistic) significance map of the left caudate nucleus (shown in 2 views)

(b) The corrected significance map of the left caudate nucleus (shown in 2 views)

(c) The raw (optimistic) significance map of the right caudate nucleus (shown in 2 views)

(d) The corrected significance map of the right caudate nucleus (shown in 2 views)

Fig. 5.7: Group mean shape difference testing between NCall and SPall.
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(a) The raw (optimistic) significance map of the left caudate nucleus (shown in 2 views)

(b) The corrected significance map of the left caudate nucleus (shown in 2 views)

(c) The raw (optimistic) significance map of the right caudate nucleus (shown in 2 views)

(d) The corrected significance map of the right caudate nucleus (shown in 2 views)

Fig. 5.8: Group mean shape difference testing between NCrhcm and SPrhcm.
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Chapter 6

Conclusion and Future Work

This research investigated the possibility of utilizing the advantage of the

wavelets analysis in statistical shape analysis of 3D surfaces. Using a recently

developed technique, subdivision surface wavelet, a new statistical shape model

called SSWM (Statistical Surface Wavelet Model) was proposed. Due to the ability

of the adopted wavelet scheme to perform biorthogonal wavelet analysis directly

on the surface mesh with Catmull-Clark subdivision mesh connectivity, this model

avoids the difficulties caused by the explicit surface parameterization and extends

the wavelet-based shape analysis and statistical shape model building from 2D

to 3D successfully. Hence, besides the multiscale statistical shape analysis which

other methods, for example Fourier and Spherical Harmonics, can perform as

well, it has an advantage of being able to conduct a spatially localized multiscale

analysis. This means it can focus the shape analysis on a certain area of the

surface to a desired scale while the other part of the surface remains unchanged.

Such a statistical shape analysis was performed on 18 samples of caudate nucleus

from the IBSR [8] datasets. The analysis results clearly showed the different shape

variations in different scales at different spatial locations. This capability makes

it possible to find out which part of the organ will most likely be affected by the

disease.

A framework of using SSWM for automatic model-guided segmentation of

deep cerebral structures was also developed, in which SSWM was used as a shape

92



prior. In model-guided segmentation, the model-image fitting is actually a multi-

variable global optimization problem usually of the order of several tens to a few

hundreds free parameters. Hence, no analytical solution to this problem is avail-

able. Possible optimization algorithms are usually deterministic techniques like

conjugate gradient or stochastic methods such as genetic algorithms. By using

SSWM’s multiscale and spatially localized description of the shape, the model-

image fitting problem was successfully converted from one multi-variable optimiza-

tion problem to many single-variable optimization problems. In this divide-and-

conquer manner, the optimization problem can be solved much more efficiently

and reliably. We have tested our method on 65 MR images to segment caudate

nucleus and putamen using the SSWM priors trained from IBSR datasets. The

results were very encouraging. In all 65 samples, the proposed method success-

fully segmented the right and left caudate nucleus. The method also successfully

segmented most of the left and right putamens, except some cases in which the

boundary of putamen is partially missing (Scenario A, in Section 4.3). The com-

putation time for this automatic model-guided segmentation is about 3 minutes

on a P4 2.4G Windows XP system. By using the Talairach coordinate, our model

integrates the shape information together with the similarity transform informa-

tion and results in a more robust segmentation method which is not sensitive to

the model initialization. We also found that our method can separate caudate

and putamen correctly and doesn’t cause leakage as the other model-free methods

do. This is the clear evidence of the successful utilization of prior anatomical

knowledge. In the future, we will increase the size of the training set to get a

more comprehensive and accurate shape prior and test our method on more brain

structures.

Currently the proposed SSWM can only handle genus-0 closed surface. In

fact, this constrain is not imposed by the surface wavelet scheme [48] which

can process mesh surface with any genus as long as it is closed and has the re-

quired Catmull-Clark subdivision mesh connectivity. The reason why this frame-
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work can’t be extended to higher genus is because of the lack of an appropriate

correspondence-finding and re-meshing algorithm for the surface with a higher

genus. The correspondence-finding and re-meshing algorithm introduced in Sec-

tion 3.2 is only applicable to closed genus-0 surface. If this problem can be solved,

the proposed model can be extended without any change. Regarding the open

surface, the most convenient way is to patch the open area to make the surface

closed. Since the wavelets are spatially localized, the patch will only result in a

number of useless wavelets coefficients (which are corresponding to the patched

area). In the subsequent steps, these coefficients can just be omitted. However,

this patching method can not be used for other models, such as SPHARM [5] or

ASM [2], because without the spatial-localization property, the patch will affect

other coefficients of the model.

After the segmentation of caudate nucleus from 65 MR scans, a comparative

shape analysis between schizophrenia patient and healthy control was performed

in Chapter 5. Firstly, in the statistical group mean difference hypothesis testing

between schizophrenia and healthy controls regardless of gender, race and handed-

ness, significant shape difference between the two groups was clearly suggested. In

order to exclude the unknown affects of gender, race and handedness to the shape

analysis, the same hypothesis testing was also conducted on two sub-groups which

only consists of right handed Chinese male. However, in this test, no significant

shape difference between the two groups was clearly suggested. Considering the

relative insufficient subjects in this analysis (only 17 schizophrenia patients and

8 healthy controls), a further study based on more datasets is necessary and we

plan to do this research in the future.

In some other statistical shape analysis work on hippocampus [13, 83, 85], sig-

nificant shape difference between normal and schizophrenic was reported. There-

fore, because of the existence of this shape difference, in their work, a classifier

was finally trained to help the diagnosis of this disease. In the future study of

caudate nucleus, if shape difference is detected, we also plan to develop a shape
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classifier based on our SSWM to utilize the spatial localization property of our

model. It is known that feature selection is always a problem of classifier con-

struction and training in pattern recognition. In theory, having more coefficients

in the shape descriptor as input to the classifier can only improve or, at least, not

change the performance of the classifier. However, in practice, only some of the

coefficients in the shape descriptor are critical to the classification and the others

are less informative. Therefore, mis-estimation of the less informative coefficients

can actually degrade the performance of the classifier. This trend of actual losses

of accuracy resulting from additional input coefficients is known as the “peaking

effect” or “Hughes phenomenon” [91]. Thus, it is often helpful to select a subset of

the most useful coefficients from the shape descriptors. These selected coefficients

should describe the surface shape at spatial locations and scales where the most

significant shape difference between healthy controls and patients occurs. In order

to make such a “double” selection possible, the shape model used for classification

should be selective not only to scale but also to spatial locations. PDM is only

selective to the spatial location on the surface, but not to the scale. SPHARM is

multiscale, but because of its global supported basis function, it is only selective

to the scale. In contrast to the above 2 models, SSWM provides selectivity both

in scale and spatial location for feature selection. Therefore, when used as the

shape descriptor, SSWM can potentially improve the classification accuracy.
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Appendix A

Generalized B-spline

Subdivision-Surface Wavelets

The outline for constructing subdivision surface wavelets is to decompose

the subdivision rules into a series of reversible simple local operations and then

convert the forward and inverse subdivisions into wavelet transforms. Specifically,

the wavelet scheme we adopted in this thesis is defined on the Catmull-Clark

subdivision [57] surface, which is a generalization of uniform bicubic B-splines

to arbitrary control meshes. A mesh is refined by inserting a new vertex inside

every face and on every edge and by connecting these vertices to quadrilaterals.

Vertices in a supermesh correspond to a facet (polygon), an edge, or a vertex in

the submesh and are denoted by f , e, v, respectively.

For brevity to describe subdivision rules determining new vertex positions,

we use the index-free averaging operator xy introduced in [48, 92] to illustrate,

where x and y can represent either f , e or v. This averaging operator returns

for every vertex of type y the arithmetic average of all adjacent vertices of type

x. In particular, we use the following notation that is illustrated in Fig. A.1: vf :

centroid of each face; ef : centroid of e vertices of each face; ve: mid-point of each

edge; fe: midpoint of both adjacent f vertices of each edge; vv: centroid of all

adjacent v vertices; ev: centroid of all e vertices of incident edges; fv: centroid of
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Fig. A.1: The index-free notation for subdivision surface wavelet transform. vf denotes
the centroid of a facet, ef denotes the centroid of the associated e vertices, etc.

all f vertices of incident faces.

With the above index-free notation, Catmull-Clark subdivision is defined by

the rules:

f ′ ←− vf

e′ ←− 1
2
(ve + f ′e)

v′ ←− 1
nv

(f ′v + vv + (nv − 2)v)

(A.1)

where nv is the valence (number of incident edges) of vertex v. Here, the order of

vertex modifications is important because the result of an operation may define

the input of the subsequent operations.

Similarly, the vertex modification rules fore the generalized B-spline wavelet
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APPENDIX A. GENERALIZED B-SPLINE SUBDIVISION-SURFACE WAVELETS

analysis (forward transform) are defined as [48]:

v←− v + 1
4
fv − ev

e←− e− 1
2
fe

f ←− f + 4vf − 4ef

e←− e− 2ve

v←− 4v + 9
16

fv + 3ev

e←− 2e + 3
4
fe

(A.2)

And the vertex modification rules fore the generalized B-spline wavelet synthesis

(inverse transform) are defined as [48]:

e←− 1
2
e− 3

8
fe

v←− 1
4
v + 9

64
fv − 3

8
ev

e←− e + 2ve

f ←− f + 4vf + 4ef

e←− e + 1
2
fe

v←− v + 1
4
fv + ev

(A.3)
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Appendix B

Principal Component Analysis

(PCA)

PCA [93] is mathematically defined as an orthogonal linear transformation

that transforms the data to a new coordinate system such that the greatest vari-

ance comes to lie on the first coordinate (called the first principal component),

the second greatest variance on the second coordinate, and so on. PCA can be

used for dimensionality reduction in a data set by retaining those characteristics

of the data set that contribute most to its variance through keeping lower-order

principal components and ignoring higher-order ones. Such low-order components

often contain the ”most important” aspects of the data.

Fig. B.1 shows the PCA for a two-dimensional example dataset. Firstly, as

shown in Fig. B.1(a), in the original coordinate system, obviously, the variation

of the dataset is distributed almost evenly in both 2 axes x and y. Next, in

Fig. B.1(b), PCA computes the 2 principal component c1 and c2, which are 2

orthogonal directions explaining the variation in the dataset in a decreasing order.

By setting the mean of dataset, x = 1
N

∑N
i=1 xi as the new origin and c1 and c2 as

2 coordinate axes, a new coordinate system can be defined as shown in Fig. B.1(c).

In this new coordinate, since as much variability as possible is thereby represented

in c1, the data could be approximated by only ignoring the c2 axis and thus
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x

y

(a)
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c1
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Fig. B.1: Principal components analysis of 2D dataset. (a) the distribution of data in the
original coordinate system (b) the 2 principal component c1 and c2. (c) data
represented in the new coordinate system.

reducing the dimensionality.

The principal components are computed from the empirical covariance matrix

Σ of the dataset, which are defined as:

Σ =
1

N − 1

N∑
i=1

(xi − x) · (xi − x)> (B.1)

where N is the number of samples in the dataset, and xi − x is the deviation

of the M -dimensional sample xi from the arithmetic mean of the whole dataset

x = 1
N

∑N
i=1 xi.

The eigen variation modes uk, k = 1...min(M,N) are the unit eigenvectors

of the covariance matrix Σ and defined by:

Σuk = λkuk (B.2)

and

uT
k uk = 1 (B.3)

where λk are the eigenvalues of the matrix Σ in the order so that λk ≥ λk+1.

108



Rewriting (B.2) can get the set of linear equations has to be solved:

(Σ− λkI)uk = 0 (B.4)

where I is the identity. Note that the number of eigenvectors of a matrix is equal

to its rank. Accordingly, Σ has min(M,N) eigenvectors. The amount of variance

described by an eigenvector uk is proportional to the corresponding eigenvalue λk.

So the eigenvector corresponding to eigenvalues with the largest absolute value

describes the most significant modes of variability.

Because most of the variation can usually be explained by a relatively small

number of eigenmodes t. Considering a smaller number t < min(M,N) of eigen-

modes, they will describe a proportion of the total variance

λt =
t∑

k=1

λk (B.5)

The number t of the selected eigenmodes is chosen considering the overall

proportion of variance explained in the selected t eigenmodes or by selecting eigen-

modes with eigenvalues above a given minimum. After choosing t, any new object

can be approximated by a weighted sum of the first t eigenmodes and the mean

x:

x = x + Utbt (B.6)

where bt = (b1, b2, ..., bt−1, bt, )
> is the weight vector, and Ut = (u1, ...,ut) is the

eigenvector matrix.
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