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Summary

Event detection in team sports video is a challenging semantic analysis problem.

The majority of research on event detection has been focusing on analyzing au-

diovisual signals and has achieved limited success in terms of range of event types

detectable and accuracy. On the other hand, we noticed that external information

sources about the matches were widely available, e.g. news reports, live com-

mentaries, and Web casts. They contain rich semantics, and are possibly more

reliable to process. Audiovisual signals and external information sources have

complementary strengths - external information sources are good at capturing

semantics while audiovisual signals are good at pinning boundaries. This fact

motivated us to explore integrated analysis of audiovisual signals and external

information sources to achieve stronger detection capability. The main challenge

in the integrated analysis is the asynchronism between the audiovisual signals and

the external information sources as two separate information sources. Another

motivation of this work is that video of different games have some similarity in

structure yet most exiting systems are poorly adaptable. We would like to build

an event detection system with reasonable adaptability to various games having

similar structures. We chose team sports as our target domains because of their

popularity and reasonably high degree of similarity.

As the domain model determines system design, the thesis first presents a domain

model common to team sports video. This domain model serves as a “template”

that can be instantiated with specific domain knowledge and keep the system de-

sign stable. Based on this generic domain model, two frameworks were developed

to perform the integrated analysis, namely the late fusion and early fusion frame-

works. How to overcome the asynchronism between the audiovisual signals and

external information sources was the central issue in designing both frameworks.

In the late fusion framework, the audiovisual signals and external information

sources are analyzed separately before their outcomes get fused. In the early

fusion framework, they are analyzed together.
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Key findings of this research are (a) external information sources are helpful in

event detection and hence should be exploited; (b) the integrated analysis per-

formed by each framework outperforms analysis of any single source of informa-

tion, thanks to the complementary strengths of audiovisual signals and external

information sources; (c) both frameworks are capable of handling asynchronism

and give acceptable results, however the late fusion framework gives higher accu-

racy as it incorporates the domain knowledge better.

Main contributions of this research work are:

• We proposed integrated analysis of audiovisual signals and external infor-

mation sources. We developed two frameworks to perform the integrated

analysis. Both frameworks were demonstrated to outperform analysis of any

single source of information in terms of detection accuracy and the range of

event types detectable.

• We proposed a domain model common to the team sports, on which both

frameworks were based. By instantiating this model with specific domain

knowledge, the system can adapt to a new game.

• We investigated the strengths and weaknesses of each framework and sug-

gested that the late fusion framework probably performs better because it

incorporates the domain knowledge more completely and effectively.
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Chapter 1

INTRODUCTION

1.1 Motivation to Detecting Events in Sports

Video

Rapid development in computing, networking, and multimedia technologies have

resulted in the production and distribution of large amount of multimedia data,

in particular digitized video. The whole video archive is a treasure for both en-

tertainment and professional purposes. Consumption of this treasure necessitates

efficient management of the archive. Although management by human labor has

been a feasible solution and has been in practice for years, the need for automatic

management by computers is getting imminent, because:

• the volume of video archive is growing fast towards being prohibitively huge,

due to wide use of personal video capturing devices;

• convenient access to video archive by personal computing devices such as

laptops, cell phones and PDAs makes user needs diverse, thus serving these

needs goes beyond the capacity of human labor.

The earliest automatic management systems organized video clips based on manu-

ally entered text captions. The brief description by caption brought some benefits,
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namely requiring simple and efficient computation for retrieving video clips. How-

ever, beyond the limits of brief text description, such representation often could

not distinguish different parts of a video clip, nor could it support detailed analysis

of the video content. Therefore this scheme failed to serve humans’ needs regard-

ing “what is in the video”. Subsequently content-based systems were developed.

Early content-based systems indexed and managed video contents by low-level fea-

tures, such as color, texture, shape and motion. Metric similarity based on these

features enabled detection of shot boundaries [34], identification of key frames [34],

video abstraction [37] and visual information retrieval with examples or sketches

as queries [19]. These system essentially view video content in the perspective

of “what it looks/sounds like”. However, human users would like to access the

content based on high-level information conveyed. This information could be who,

what, where, when, why, and how. For example, human users may want to re-

trieve video segments showing Tony Blair [23], or showing George Bush entering

or leaving a vehicle [23]. In other words, human users would like to index and

manage the video based on “what it means”, or semantics. Low-level processing

cannot offer such capabilities; higher level processing that can provide semantics

is demanded. Major research fields involving semantic analysis are listed below:

• Object recognition aims to identify an visible object such as a car, a soccer

player, a particular person, or a textual overlay. This task may also involve

the separation of foreground objects from background.

• Movement/gesture recognition detects movement of an object or of the cam-

era from a sequence of frames. The system may compute metrics describing

the movement, such as panning parameter of the camera [86], or classify the

pattern of movement into a predefined category, such as the gesture of smile.

• Trajectory tracking, whereby the computer discovers the trajectory of a mov-

ing object, either in an offline or online fashion.

• Site/setting recognition determines if a segment of video is taken in a specific

setting such as in a studio or more generally indoor, on a beach or more

generally outdoor, etc.
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• Genre classification, whereby the computer classifies the whole video clip or

particular parts into a set of predefined categories such as commercial, news,

sports broadcast, and weather report, etc.

• Story segmentation aims to identify temporal units that convey coherent and

complete meaning from well structured video e.g. news [21]. In some video

that are not well structured e.g. movie, a similar notation scene segmentation

refers to identifying temporal units that are associated to a unified location

or dramatic incident [90].

• Event1 annotation finds video parts depicting some occurrence e.g. aircraft

taking off and people walking, etc. Sometimes this task and object/setting

recognition are collectively called concept annotation.

• Topic detection and tracking finds temporal segments coherent on a topic

each, identifies the topics and reveals evolution among topics [46].

• Identification of interesting parts, wherein the computer identifies parts of

predefined interest as opposed to those less interesting. The task can be

further differentiated with regard to whether the interesting parts are cat-

egorized, e.g. highlight extraction (not categorized) vs. event recognition

(categorized) in sports video analysis.

• Theme-oriented understanding or assembling, whereby the computer tries to

understand the video in terms of overall sentiment being conveyed such as

humor, sadness, cheerfulness, etc. Or the computer assembles a video clip

that strikes human viewers with sentiments from shorter segments [65] [92].

The tasks listed above infer semantic entities from audiovisual signals embedded

in the video. The semantic entities are at various levels. For example, events and

themes are at a relatively higher level than objects and motions are. Inference of

1The term event here means differently than the other occurrences of “events” in the thesis.
This “event” refers to anything that takes place.
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higher level entities may need help from inference of lower level entities. Inference

of semantic entities leads to development of further analysis, such as:

• Content-aware streaming wherein video is encoded in a way that streaming

is viable with limited computing or transmitting resources. Usually encoding

scheme is based on categorization of individual parts in terms of importance,

which in turn involves knowledge of the video content to some extent.

• Summarization giving a shorter version of the original version and maintain-

ing the main points and ambiance.

• Question answering answering users’ questions with regards to some specific

information, possibly accompanied with associated video content.

• Video retrieval providing a list of relevant video documents or segments in

response to a query.

Sports video is a popular genre with large audience worldwide. Telecast of big

sports events, such as the Olympic Games and the FIFA World Cup have billions

of audience all over the world. Besides these global events, millions of people are

also attracted to matches in renowned leagues such as the English Premier League

(EPL) or in tournaments such as WTA tour. Sports video has a large production

volume and occupies a significant portion of the whole video archive. Some games

such as soccer and basketball are held in the form of leagues at regional and

national, sometimes even international levels. Some other games such as tennis

and golf are held in the form of tournaments. These leagues and tournaments have

scheduled matches every week. These matches, along with those held in sporadic

events over a wide range of games, may total hundreds a week. These matches are

covered by dozens of sports channels and aired in thousands of hours of programs

worldwide. The whole bulk of sports video is a treasure for both entertainment

pursuers and sports professionals. For either group of users, the consumption of

video content necessitates effective management of video, which can be facilitated

by semantic analysis. Semantic analysis helps to parse the video content into
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meaningful units, index these units in a way similar to human understanding, and

differentiate the contents with regards to importance or interestingness.

A suitable indexing unit for sports video would be an event. This is because: (a)

events have distinct semantic meanings; (b) events are self-contained and have

clear-cut temporal boundaries; and (c) events cover almost all interesting or im-

portant parts of a match. Event detection aims to find events from a given video,

and this is the basis for further applications such as summarization, content-aware

streaming, and question answering. This is the motivation for event detection in

sports video.

1.2 Problem Statement

Generally, an event is something that happens (source: Merriam-Webster dictio-

nary). In analysis of team sports video, event and event detection are defined as

follows.

Definition 1 Event

An event is something that happens and has some significance according to the

rules of the game.

Definition 2 Event detection

Event detection is the effort to identify a segment in a video sequence that shows

the complete progression of the event, that is, to recognize the event type and its

temporal boundaries.

In fact, as semantic meaning is differentiated for each event, “event recognition”

may be a more accurate term. However, this thesis still follows the convention and

uses “event detection”. An event detection system should satisfy these require-

ments: 1) the events detected are a fairly complete coverage of happening that
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viewers deem important; and 2) the event segments cover most relevant scenes

and not too lengthy with natural boundaries.

This thesis addresses the problem of detecting events in full-length broadcast team

sports videos.

Definition 3 Team sports

Team sports are the games in which two teams move freely on a rectangular field

and try to deliver the ball into their respective goals.

Examples of this group of sports are soccer, American football, and rugby league,

etc. The reason why we choose this group of sports is: (a) they appeal to a

large audience worldwide, and (b) they offer a balance between commonality and

specialty, which serve our purpose of demonstrating the quality of our domain

models well.

1.3 Summary of the Proposed Approach

The majority of research on event detection has been focusing on analyzing au-

diovisual signals. However, as audiovisual signals do not contain much semantics,

such approaches have achieved limited success. There are a number of textual

information sources such as match reports and real time game logs that may be

helpful. This information is said to be external as it does not come with the

broadcast video. External information sources may be categorized to compact or

detailed regarding to the level of detail.

We proposed integrated analysis of audiovisual signals and external information

sources for detecting events. Two frameworks were developed that perform the

integrated analysis, namely the late fusion and early fusion frameworks.

The late fusion framework has two major steps. The first is separate analysis
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of the audiovisual signals and external information sources, each generating a

list of video segments as candidate events. The two lists of candidate events,

which may be incomplete and in general have conflicts on event types or temporal

boundaries, are then fused. The audiovisual analysis consists of two steps: global

structure analysis that helps indicate when events may occur and localized event

classification that determines if events actually occur. The text analysis generates

a list of candidate events called text events by performing information extraction

on compact descriptions and model checking on detailed descriptions.

In contrast to the late fusion framework, the early fusion framework processes

the audiovisual signals and external information sources together by a Dynamic

Bayesian Network before any decisions are made.

1.4 Main Contributions

• We proposed integrated analysis of audiovisual signals and external infor-

mation. We developed two frameworks to perform the integrated analysis.

Both frameworks were demonstrated to outperform analysis of any single

source of information in terms of detection accuracy and the range of event

types detectable.

• We proposed a domain model common to the team sports, on which both

frameworks were based. By instantiating this model with specific domain

knowledge, the system can adapt to a new game.

• We investigated the strengths and weaknesses of each framework and sug-

gested that the late fusion framework probably performs better because it

incorporates the domain knowledge more completely and effectively.
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1.5 Organization of the Thesis

The rest of the thesis is organized as follows.

1. Chapter 2 reviews related works, including those on event detection in sports

video, on structure analysis of temporal media, on multi-modality analysis,

on fusion of multiple information sources, and on incorporation of domain

knowledge.

2. Chapter 3 describes properties of team sports video and common practices

for both frameworks. This chapter describes the domain model, audiovisual

signals and external information sources, steps for unit parsing, extraction

of commonly used features, and the experimental data.

3. Chapter 4 describes in detail the late fusion framework with experimental

results and discussions.

4. Chapter 5 describes in detail the early fusion framework with experimental

results and discussions.

5. Chapter 6 concludes the thesis with key findings, conclusions and possible

future works.
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Chapter 2

RELATED WORKS

This Chapter reviews works on event detection from sports video (reported in

Section 2.1) as well as other works on multimedia analysis in general (reported in

Sections 2.2 - 2.5). The second group of related works may offer enlightenment to

our problem. In particular, these include structure analysis on temporal media,

multi-modality analysis, fusion of multiple information sources, and incorporation

of domain knowledge.

2.1 Related Works on Event Detection in Sports

Video

Semantic analysis of video of various sports has been actively studied, e.g. soccer

[98], swimming [17], tennis [26], and others. As a basic and integral semantic

entity, event in sports video serves as a suitable unit that facilitates higher level

manipulation, e.g. annotation [17], browsing, retrieval and summarization. Much

research effort has been made to detect events from sports videos [26] [112]. As

detection of some other high-level entities may offer enlightenment to detection of

events, this Section also includes reviews of such works as well, for example, on

activity categorization, highlight extraction, atomic action detection, etc.
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Compared to other video genres such as news and movie, sports video has well-

defined content structure and domain rules:

• A long sports match is often divided into a few segments. Each segment

in turn contains some sub-segments. For example, in American football, a

match contains two halves, and each half has two quarters. Within each

quarter, there are a number of plays. A tennis match is divided first into

sets, then games and points.

• Broadcast sports videos usually have production artifacts such as replays,

graphic overlays, and commercials inserted at certain times. These help

mark the video’s structure.

• A sports match is usually held on a pitch with specific layout, and captured

by a number of fixed cameras. These result in some canonical scenes. For

example, In American football, most plays start with a snap scene wherein

two teams line up along the lines of scrimmage. In tennis, when a serve

starts, the scene is usually switched to the court view. In baseball, each

pitch starts with a pitching view taken by the camera behind the pitcher.

The above explanation suggests sports videos are characterized by distinct domain

knowledge, which may include game rules, content structure and canonical scenes

in videos. Modeling the domain knowledge is central to event detection. Actually

an event detection effort is essentially an effort to establish and enforce the domain

model.

2.1.1 Domain Modeling Based on Low-Level Features

Early works attempted to handcraft domain models as distinctive patterns of

audiovisual features. The domain models were results of human inspection of the

video content and were enforced in a heuristic manner.

Gong et al. [33] attempted to categorize activity in a soccer video to classes such
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as “top-left corner kick” and “shot at left goal”, which in a coarse sense can be

viewed as event detection. They built models on play position and movement of

each shot. The models were represented in the form of rules, e.g. “if the play

position is near the left goal-area and the play movement is towards the goal, then

it is a shot at left goal.” The play position was obtained by comparing detected

and joined edges to templates known a priori. The play movement was estimated

by minimum absolute difference (MAD) [27] on blocks. It is noteworthy that

some categories of activity were at a lower level than events were, e.g. “in the

left penalty area”. This seems to suggest that while play position and movement

could describe spatial properties well, they were not capable of differentiating a

wide range of events.

Tan et al. [86] detected events in basketball video such as fast breaks and shots

at the basket. The model for fast break was “video segments whose magnitude

of the directional accumulated pan exceeds a preset threshold”. And one model

for shot at the basket was “video segments containing camera zoom-in right after

an fast break or when the camera is pointing at one end of the court”. The

camera motion parameters such as magnitude of pan or zoom-in were estimated

from motion vectors in MPEG video streams. Some more descriptors could be

further derived, such as the directional accumulated pan over a period of time

and duration of a directional camera motion. Note that the method’s detection

capability was also limited. Fast break and full court advance were differentiated

by an ad hoc threshold. Some events that lack distinctive patterns in camera

motion such as rebounds and steals could not be detected.

Li et al. [56] aimed to detect plays in baseball, American football and sumo

wrestling videos. These three games have common characteristics in structure:

important actions only occur periodically in game segments that are interleaved

with less important segments. The game segments containing important actions

are called plays. Recurrent plays are characterized by relatively invariant visual

patterns for one game. This made play to be modeled as “starting with a canonical
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scene and ending with certain types of scene transitions”, though the “canonical

scenes” and “certain scene transitions” are game-specific. For baseball, the canon-

ical starting scene was modeled as a pitching scene that conforms to certain spatial

distribution of colors and spatial geometric structures induced by the pitcher and

some other people (the batter, the catcher, and the umpire). For American foot-

ball, the canonical starting scene was modeled as a snap scene that has dominant

green color with scattered non-green blobs, and has little motion, plus parallel lines

on a green background. For sumo wrestling, the canonical scene was one contain-

ing two symmetrically distributed blobs of skin color on a relatively uniform stage.

Ending scene transitions could be something like a hard-cut in a temporal range.

Heuristic search for these canonical scenes and scene transitions was performed

to find starts and ends of plays. Though the method could reportedly find plays

with over 90% F1 values, it could not differentiate events - plays characterized

with certain outcomes.

Sadlier et al. [76] aimed to extract highlights from a wide range of sports videos:

soccer, gaelic, rugby and hockey, etc. Since the task was to differentiate seman-

tic significance, i.e. highlights vs. less interesting parts, we can also view it an

event detection task in a coarse sense. Based on the assumption that commenta-

tors/spectators exhibit strong vocal reaction to momentary significance, the model

here is that portions with high amplitude in soundtrack may be highlights. High-

lights are those portions where sums of scalefactors from subbands 2 - 7 are large

enough. These subbands account for the frequency range of 0.625kHz - 4.375kHz,

which approximate the frequency range of human speech. Similar to Li et al. [56],

the method could only tell highlights from less interesting parts, but could not

differentiate events further, such as goals in soccer.

2.1.2 Domain Models Incorporating Mid-Level Entities

The reviews in 2.1.1 suggest that domain models based on low-level features were

not descriptive enough. As events in games involve interactions among players

or between a player and an object, it would be desirable to incorporate players
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and objects into the models. Given that players and objects have some semantic

significance and they are not events yet, we call them mid-level entities. It is

expected that mid-level entities would enrich models’ descriptiveness, as events can

be modeled by spatiotemporal relationships of mid-level entities. Besides players

and objects, mid-level entities also include those that semantically abstract visual

or audio content of a portion, e.g. replays and cheering.

Sudhir et al. [84] attempted to detect a rich set of tennis events: baseline-rallies,

passing-shots, serve-and-volley, and net-game. Included in the domain model was

a court model based on perspective geometry and an rule-based inference engine.

The court model helped in transforming players’ positions on the frame to the

real world. And the transforming was performed over time. The inference engine

then used this spatiotemporal information to tell the event. The rules in the

inference engine were handcrafted like “if both players’ initial and final positions

in a play are close-to-baseline then this play is a baseline-rally”. It can be seen that

the rules made use of spatiotemporal relationships between players and baselines.

Court lines on the frame were detected using a series of techniques: edge detection,

line growing, and missing lines reconstruction. A point on the frame is projected

to the real world court with the help of the court model. Players were tracked

heuristically by template matching.

Nepal et al. [66] detected goals in basketball videos. The models involved two

mid-level entities - cheering and scoreboard and one low-level cue - change in

direction. Models were built on their temporal relationships and take on the form

of rules. For example, one model was “goal → [10 seconds] → change in direction

+ [10 seconds]→ cheering”. All low-level cues and mid-level entities were detected

heuristically. Specifically, cheering was found by looking for high energy segments

in the soundtrack; scoreboard was found by looking for areas with sharp edges

that entailed high AC coefficients in DCT blocks; and change in direction was

found from motion vectors in a way similar to [56].
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Yu et al. [110] aimed to detect atomic actions in soccer: passing and touching of

the ball, and further to derive goals. Detection of passing and touching was based

on ball trajectory and heuristic rules. Detection of goals involved detection of

goalpost besides ball trajectory. Thus the ball, ball trajectory and the goalposts

were the mid-level entities.

Bertini et al. [6] [17] built domain models of events in a rigorous fashion - they used

finite state machines (FMM). The nodes represent states during the development

of events, and the edges represent the transitions between the states1. Transitions

are defined in terms of spatiotemporal relations between players and objects or

between objects, for example, “ball moves away from goalpost”. FMM may be

superior to if-then rules as it is capable of describing more complex logic such as

more diversions and/or loops, allowing it to enjoy some flexibility and maintain

rigorousness.

Ekin et al. [30] and Duan et al. [26] used mid-level entities, namely audio keywords

and shot types e.g. close-up or replay to describe games’ temporal structures with

regards to when events can possibly occur.

Mid-level entities also helped in enhancing robustness against variation in low-level

features and in improving adaptability of high-level analysis, as in [26].

As expected, the incorporation of mid-level entities makes domain models supe-

rior to earlier ones. This is because models’ expressiveness has been enhanced

by spatiotemporal relationships of mid-level entities [84]; mid-level facilitates the

modeling of hierarchical semantic entities [110]; mid-level entities help in describ-

ing video structures [26]; spatiotemporal relationships of mid-level entities make

models more rigorous [6]; and abstraction brought by mid-level entities alleviates

data sparseness problem and makes the systems more robust.

1The citation uses different terms from the original ones in the article to remain consistent
with the other parts of the thesis. Original term referring to the edge is event, and the “event”
of this thesis is referred to as highlight.
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The following Section reviews briefly how typical mid-level entities are detected.

They may be detected by heuristic or machine learning methods.

Camera motion parameters. Zhang et al.’s pioneering work on camera motion cat-

egorization [114] analyzed motion vectors in MPEG streams heuristically. They

differentiated pans or tilts from modal motion vectors, and zooms from opposite

motion vectors at the two ends of macroblock columns. To estimate quantitatively

camera’s rotational, zooming, and/or translational motion, a transformation ma-

trix is usually built that links an image point and its correspondence resulting

from the motion. This transformation matrix is made up of camera motion pa-

rameters. By determining the matrix with a number of point correspondences,

the parameters are determined. Baldi et al. [15] and Assfalg et al. [6] attempted

to track salient image locations e.g. corners in this framework. However, locating

and matching a pair of salient image locations are difficult. To circumvent this

difficulty, Tan et al. [86] used pairs of macroblocks in MPEG streams linked by a

motion vector as samples of the transformation.

Graphic or textual overlay. Graphic or textual overlay are generally done by

detecting high contrast areas, which is translated to high AC components in DCT

blocks, e.g. Zhang et al. [115] and Nepal et al. [66]. For uncompressed video,

general edge detection techniques were used, such as sobel filtering and radon

transform [88]. Zhang et al. [113] [112] further recognized the content of the

overlay by a series of techniques: segmentation of characters from background

by binarization and grouping, and recognition of segments by Zernike moments.

Babaguchi et al. [14] and Zhang et al. [112] utilized state transition graphs

encoding game rules to further improve recognition accuracy.

Ball and ball trajectory. Early works on ball detection mainly relied on object

segmentation subject to heuristic constraints, e.g. on color and shape [33]. The

results had been generally poor. Yu et al. [109] [111] [110] also evaluated if a
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candidate ball trajectory conformed to characteristics of a ball trajectory. In this

way, more constraints were put in effect. Verification of candidate trajectories was

based on Kalman filter.

Court lines. Court lines are mostly detected as edges and would usually undergo

growing and joining steps. Gong et al. [33] employed Gaussian-Laplacian edge

detector. Differently, a heuristic method was reported by Sudhir et al. [83]. They

formed lines by joining pixels that satisfy color criteria in a certain direction.

Salient objects. Most common objects in this group are goalposts, mid-field line

and penalty-box in soccer. Detection of such objects are usually based on edge

detection subject to color and shape constraints. Yu et al. [110] detected goal-

posts by a set of heuristic criteria on the directions, widths and lengths of edges.

Wan et al. [89] applied Hough transform to edges and employed some postpro-

cessing, including verification of goal-line orientation and color-based region (pole)

growing.

Field zone. Gong et al. [33] recognized field zones by detecting line segments,

joining and matching them to templates. Assfalg et al. [6] classified the field zone

by naive Bayes classifiers based on attributes of the visible pitch region and lines,

including region shape, region area, region corner position, line orientation and

mid-field line position. Wang et al. [91] classified the field zone by a Competition

Network and used these attributes: field-line positions, goalpost position and mid-

field line position.

Players’ positions. Sudhir et al. [84] proposed a method to detect and track

players in tennis video. By compensating motion, they produced a residue of the

current frame over the preceding one. Then they took largest connected blobs

in dense areas of the residue as players. To track a player, they conducted a full

search around the area where the player had last been detected using minimum

absolute difference algorithm. Assfalg et al. [6] used adaptive template matching
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to find players’ positions on the frame. Firstly candidate blobs were segmented

from the pitch by color differencing, then templates were constructed with certain

color distribution and shape adapted to the blobs’ size. Finally they could tell

by template matching if a blob was a player. Ekin et al. [30] developed a similar

color-based template matching technique to detect the referee as well. Detecting

players’ positions usually comes with relating the positions to certain parts of a

court or a pitch. This entails mapping a position between the coordinates system

in the real world and that on the image domain. Such mapping is usually based

on a camera geometry model. Sudhir et al. [83] mapped tennis court lines from

the real world to the image domain, and told if a given player’s position was close

to a court line. Assfalg et al. [6] modeled the mapping by a homography matrix

containing eight independent entries and determined the entries with four line

correspondences.

Replay. Some works detected replays that are characterized by slow motion.

Among them, Pan et al. [69] used HMM and Ekin et al. [30] used measure

of fluctuations in frame difference, respectively. This algorithm did not give satis-

factory boundaries of replays because it treated the boundaries as ordinary gradual

transitions. Babaguchi et al. [12] and [70] detected replays by the editing effects

immediately before and after replays. Babaguchi et al. [12] manually built models

of such effects in terms of color and motion characteristics, and model-checked

each frame. Pan et al. [70] used the relatively invariant logo as the editing ef-

fect. The method was to have several probabilistic measures of distance between

a frame and the logo frame and fuse the measures by the Beyes’s rule.

Audience. In view that audience is characterized by richness in edge, audience

detection algorithms has generally been based on edge detection. Lee et al. [53]

identified presence of audience in basketball video by detecting richness of edge

from compressed MPEG stream: first DCT coefficients in one block of an I frame

were projected in the vertical and horizontal directions by synthetic filters, then

projected components in the same direction added up. If either sum was significant
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enough, the block would be declared as an edge segment and its direction was

determined by comparing the vertical and horizontal sums. A frame’s richness of

edge was defined as the total length of edge segments. If a sequence of I frames

had richness larger than a threshold, it would be declared to have audience scenes.

Cheering. Detection of cheering has been based on detection of high-energy seg-

ments in the soundtrack. Nepal et al. [66] used sum of scalefactors of all subbands

in MPEG streams as the criterion of high energy.

Excited commentator’s speech. Some works, e.g. Sadlier et al. [76] took an ap-

proach similar to that described in [66] to detect cheering, with scalefactors re-

stricted in frequency range of human speech. Rui et al. [75] employed a more

sophisticated approach. They first identified speech segments by heuristic rules

involving Mel-scale Frequency Cepstrum Coefficients (MFCC) and energy in the

frequency range of human speech. Then they did a classification using pitch and

energy features and some machine learning algorithms (parametric distribution

estimation, KNN, and SVM) to tell if a speech segment was excited. Tjondrone-

goro et al. [88] recognized help of lower pause rate and temporal constraints in

detecting excitement besides pitch and energy features.

Game-specific sounds. Besides cheering and excited commentator’s speech, there

are other sounds that may serve as mid-level entities, e.g. batting sound in tennis

and whistle in soccer. Rui et al. [75] detected batting sound by energy features

and template matching algorithm. To detect whistles, Tjondronegoro et al. [88]

used power spectral density (PSD) within whistle’s frequency range and heuristic

thresholds. Xu et al. [103] classified a number of game-specific sounds, including

cheering, commentator’s speech (excited and plain), various whistling, and etc.

They used a series of SVM classifiers and a set of audio features: zero-crossing rate

(ZCR), spectral power (SP), mel-frequency cepstral coefficients (MFCC), linear

predication coefficients (LPC) and short time energy (STE).
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Handcrafted domain models have been reported successful in their test scenarios,

as they are precise, easy to implement and computationally efficient. However,

models are laborious to construct and are seldom reusable, and they are not able

to handle subtle events that do not have a distinctive audiovisual appearance, such

as yellow/red card events in soccer. Because of these limitations, only a subset of

events in a domain can be detected using this approach.

As more features are incorporated, representation of domain knowledge by hand-

crafted domain models may be inefficient and difficult. Instead, representation of

domain knowledge by data driven techniques have been fostered. Zhou et al. [117]

employed decision tree to model affinity between scenes of basketball video and to

classify them by features’ thresholds. They used low-level features from motion,

color and edge. Rui et al. [75] moderated the probability that excited commen-

tator’s speech indicated baseball event by a confidence level. And the confidence

level was derived from conditional probabilities of labeled data (baseball hits).

Intille et al. [47] modeled and classified American football plays using trajecto-

ries of players and ball via Bayes networks; anyway, the mid-level entities were

entered manually and were not automatically extracted from the video stream.

Zhong et al.’s work [116] involved template adaptation. This was accomplished

by clustering color-represented frames from the given video. Han et al. [35] used

maximum entropy criterion to find appropriate distributions of events over the

feature space. The features were a mixture of low-level audiovisual cues derived

from color, edge, camera motion, and mid-level entities including player presence,

words from closed caption and audio genre. Sadlier et al. [77] attempted to map

each shot’s features to whether the shot exhibits an event by SVM classifiers.

They also employed a mixture of low-level features (speech band energy and mo-

tion activity) and some mid-level entities (detection of crowd, graphic overlay and

orientation of field lines). These methods have a common characteristic: a data

point is associated with a temporal unit of the stream, e.g. a video shot or an au-

dio clip, and data points are processed independently with sequential relationships

unconsidered.
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Another group of works recognize the role of sequential relationships in indicating

semantics and capture them by temporal models such as Hidden Markov Model

(HMM). Assfalg et al. [7] modeled penalty, free-kicks and corner-kicks each with

a HMM on features derived from camera motion. Leonardi et al. [54] built a

controlled Markov chain model (CMC) to model goals. The model was two HMMs

concatenated each having its own probability distributions; transition from the

first one to the second was triggered by an external signal, a hard-cut in the

scenario of the paper.

Besides aforementioned works that aimed to classify events modeled by individual

HMMs, there are works trying to capture sequential relationships between events

(or other semantic entities) as well. Xu et al. [102] and Xie et al. [97] [99] [101]

modeled the individual recurrent events in a video as HMMs, and the higher-level

transitions between these events as another level of Markov chain. Kijak et al.

[51] attempted to describe tennis’s complete structure of set - game - point by a

hierarchical HMM with bottom-level HMM reflective of match progress (missed

first serves and rallies) or editing artifacts (breaks and replays). Another purpose

of using hierarchical HMM [51] was to identify boundaries of events, as the bound-

aries align with transitions of one-level-higher node. A majority of this group of

works aim to discover recurrent structures from sports video, and will be reviewed

in more detail later in “2.2 Related Works on Structure Analysis of Temporal

Media”.

Note that the establishment of domain models by machine learning may be facil-

itated/supplemented by handcrafted domain models. The most obvious scenario

is that of choosing a set of representative descriptors (including low-level cues and

mid-level entities) and machine learning algorithms. Further scenarios could be

adaptation of algorithms made specific to domain constraints, as exemplified in

[75]. Such supplementation would poise the machine learning algorithms towards

the essential problem and reduce the need for training samples. More detailed
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review on this aspect will be given in “2.5 Related Works on Incorporating Hand-

crafted Domain Knowledge to Machine Learnt Models”.

2.1.3 Use of Multi-modal Features

As researchers began to realize that information from different modalities is com-

plementary and with growing computing power, there is an increasing interest in

multi-modal collaboration for event detection (actually this is true for virtually

for all semantic analysis tasks). Commonly used modalities are video, audio and

text. Sources for text are textual overlay [112], transcripts from automatic speech

recognition (ASR) [5], closed caption [14] [8] [12] [9] [10] [62] [67] [13] [11] and

the web [13]. Zhang et al.[112] and Ariki et al.[5] both aimed to detect baseball

events. Zhang et al.[112] made use of both textual overlay and image informa-

tion. Textual overlay showed score changes and the system inferred occurrences of

events based on game rules. Image analysis found boundaries of pitching segments

as a universal event container by algorithms similar to those described in [116].

Ariki et al.[5] adopted a similar approach; they used image and speech instead.

Image analysis segments the video sequence to pitching segments; speech analysis

located diverse events by keywords matching. Textual overlays and speech tran-

scripts would provide rich semantics if accurately recognized, however, they are

not always available. Babaguchi et al. presented a range of methods to use closed

caption along with audio and visual streams in semantic analysis of American

football video [14] [8] [12] [9] [10] [62] [67] [13] [11] [68]. Closed caption is hu-

man transcribed speech plus other relevant information such as time stamps and

speaker identification. In sports video, it usually contains commentators’ speech.

It is generally reliable compared to machine recognized textual overlay or speech.

Miyauchi et al. [62] first used textual cues from closed caption to roughly locate

events, then performed a screening by a learning-based classifier working on audio

features, and lastly identify events’ boundaries by video cue. Nitta et al. [67] [68]

segmented American football videos on accompanying closed caption streams, then

refined boundaries by relating to video shots. Babaguchi et al. [13] summarized

several methods of inter-modal collaboration. The paradigm was closed caption
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assuming primary role to indicate events and rough occurrence time, and audio-

visual analysis assuming secondary role to refine events boundaries. Their work

seemed to suggest that some assumptions were made: (1) closed caption contains

sufficient detail, and (2) the temporal correspondence between closed caption and

other modalities is relatively consistent. For the particular game of American

football, these assumptions hold. Play in American football match is in inter-

mittent segments and outcome of each segment is predicable, thus closed caption

contains sufficient detail and has relatively consistent temporal lag behind the vi-

sual stream. However this may not be true for continuous games, such as soccer.

During a soccer match, commentators may skip much detail due to unpredictabil-

ity of match progress and the temporal lag may vary. Therefore a more useful

approach would be one that assumes less. Babaguchi et al. [13] also suggested

using external metadata on the Web. However, the described method assumed

that the time recorded in the metadata was accurate and recognition of textual

overlay for time was reliable, which limited the applicability of the method.

Table 2.1 gives a side-by-side view of some existing systems developed for detecting

events in sports video.
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n
n
is

F
o
u
l,

fr
ee

k
ic

k
,

p
en

a
lt
y,

co
rn

er

k
ic

k
,

sh
o
t,

g
o
a
l

(f
o
r

so
cc

er
)

g
a
m

e,

d
eu

ce
,
p
o
in

t,
se

rv
e,

re
se

rv
e,

re
tu

rn
,

a
ce

,
fa

u
lt

,
d
o
u
b
le

fa
u
lt

,
ta

k
e

th
e

n
et

,

ra
ll
y

(f
o
r

te
n
n
is

)

M
o
ti

o
n
,

co
lo

r,
te

x
-

tu
re

,
sh

o
t

le
n
g
th

U
se

o
f

m
id

-l
ev

el
se

m
a
n
ti

c
en

ti
ti

es
.

L
o
w

-l
ev

el
to

m
id

-l
ev

el
m

a
p
p
in

g
b
y

st
a
ti

st
ic

a
l

le
a
rn

in
g
;

m
id

-l
ev

el
to

h
ig

h
-l
ev

el
m

a
p
p
in

g
b
y

re
a
so

n
in

g

b
a
se

d
o
n

ev
en

t
m

o
d
el

s.

7
0
%

1
0
0
%

o
n

se
g
-

m
en

ts

U
se

o
f

m
id

-l
ev

el

se
m

a
n
ti

c
en

ti
-

ti
es

a
ll
ev

ia
te

s

d
a
ta

sp
a
rs

en
es

s

a
n
d

en
h
a
n
ce

s

ro
b
u
st

n
es

s
a
n
d

a
d
a
p
ta

b
il
it
y

S
ti

ll
n
o
t

fu
ll

ra
n
g
e

o
f

ev
en

t

ty
p
es

L
i

et

a
l.
[5

6
]

B
a
se

b
a
ll
,

A
m

er
ic

a
n

fo
o
tb

a
ll
,

su
m

o

w
re

st
li
n
g

A
te

m
p
o
ra

l
u
n
it

ca
ll
ed

p
la

y

C
o
lo

r,
sp

a
ti

a
l

d
is

tr
ib

u
ti

o
n

o
f

co
lo

r,
m

o
-

ti
o
n
,
sh

a
p
e

A
p
la

y
is

m
o
d
el

ed
a
s

st
a
rt

in
g

w
it

h

a
ca

n
o
n
ic

a
l

sc
en

e
a
n
d

en
d
in

g
w

it
h

so
m

e
ci

n
em

a
to

g
ra

p
h
ic

p
a
tt

er
n

9
5
%

9
8
%

o
n

p
la

y
s

E
a
sy

to
im

p
le

-

m
en

t
a
n
d

h
ig

h
a
c-

cu
ra

cy

C
a
n
n
o
t

d
is

ti
n
-

g
u
is

h
b
et

w
ee

n

ev
en

t
ty

p
es

w
it

h
in

a
p
la

y

S
a
d
li
er

et

a
l.
[7

6
]

S
o
cc

er
,

G
a
el

ic

fo
o
tb

a
ll
,

ru
g
b
y

a
n
d

h
o
ck

ey

T
o

d
is

ti
n
g
u
is

h

h
ig

h
li
g
h
ts

fr
o
m

le
ss

in
te

re
st

in
g

p
a
rt

s

A
u
d
io

v
o
l-

u
m

e

B
y

ru
le

-
h
ig

h
li
g
h
ts

a
re

a
ss

o
ci

a
te

d

w
it

h
h
ig

h
a
u
d
io

v
o
lu

m
e

5
0
%

7
5
%

E
a
sy

to
im

p
le

-

m
en

t

C
a
n
n
o
t

d
is

ti
n
-

g
u
is

h
b
et

w
ee

n

th
e

ev
en

t
ty

p
e

o
f

a
h
ig

h
li
g
h
t
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S
u
d
h
ir

et

a
l.
[8

4
]

T
en

n
is

B
a
se

li
n
e-

ra
ll
ie

s,

p
a
ss

in
g
-s

h
o
ts

,

se
rv

e-
a
n
d
-v

o
ll
ey

,

a
n
d

n
et

-g
a
m

e

E
d
g
e,

co
lo

r
O

b
je

ct
s
o
n

th
e

fr
a
m

es
a
re

p
ro

je
ct

ed

to
re

a
l-
w

o
rl

d
co

u
rt

b
y

g
eo

m
et

ri
ca

l

te
ch

n
iq

u
es

.
E

v
en

t
m

o
d
el

s
a
re

sp
ec

i-

fi
ed

in
te

rm
s
o
f
sp

a
ti

o
te

m
p
o
ra

l
re

la
-

ti
o
n
sh

ip
s

b
et

w
ee

n
o
b
je

ct
s.

E
v
en

ts

a
re

d
et

ec
te

d
b
y

m
o
d
el

-c
h
ec

k
in

g
.

u
n
re

p
o
rt

ed
D

et
a
il
ed

a
n
d

ex
p
li
ci

t
m

o
d
el

-

in
g

o
f

d
o
m

a
in

k
n
o
w

le
d
g
e

A
cc

u
ra

cy
o
f

ev
en

ts
is

su
b
-

je
ct

ed
to

a
cc

u
-

ra
cy

o
f

o
b
je

ct

d
et

ec
ti

o
n

N
ep

a
l

et

a
l.
[6

6
]

B
a
sk

et
b
a
ll

G
o
a
l

M
o
ti

o
n
,

te
x
-

tu
a
l

o
v
er

la
y,

a
u
d
io

en
er

g
y

E
v
en

t
m

o
d
el

s
a
re

sp
ec

ifi
ed

in
te

rm
s

o
f

cr
o
w

d
ch

ee
r,

sc
o
re

b
o
a
rd

o
r

ch
a
n
g
e

in
m

o
ti

o
n
.

T
h
es

e
m

id
-l
ev

el

se
m

a
n
ti

c
en

ti
ti

es
a
re

o
b
ta

in
ed

fr
o
m

th
e

lo
w

-l
ev

el
fe

a
tu

re
s

b
y

h
eu

ri
st

ic

ru
le

s.

5
0
%

1
0
0
%

M
o
d
el

s
a
re

ea
sy

to
u
n
d
er

st
a
n
d

a
n
d

to
im

p
le

-

m
en

t.

L
im

it
ed

ra
n
g
e

o
f

ev
en

t
ty

p
es

d
e-

te
ct

a
b
le

Y
u

et

a
l.
[1

1
0
]

S
o
cc

er
G

o
a
l,

to
u
ch

in
g
,

p
a
ss

in
g
,

ju
st

-

m
is

si
n
g

M
o
ti

o
n
,

co
lo

r,
te

x
tu

re

G
o
a
ls

a
re

o
b
ta

in
ed

fr
o
m

m
id

-l
ev

el

re
a
so

n
in

g
b
a
se

d
o
n

b
a
ll
,

b
a
ll

tr
a
-

je
ct

o
ry

,
a
n
d

g
o
a
lp

o
st

s.
B

a
ll

a
n
d

B
a
ll

tr
a
je

ct
o
ry

is
o
b
ta

in
ed

b
y

K
a
lm

a
n

fi
lt

er
-b

a
se

d
m

et
h
o
d

a
lo

n
g

w
it

h
so

m
e

h
eu

ri
st

ic
co

n
st

ra
in

ts
.

G
o
a
lp

o
st

s
a
re

d
et

ec
te

d
b
y

ed
g
e

a
n
a
ly

si
s.

7
7
%

1
0
0
%

o
n

se
g
-

m
en

ts

R
el

ia
b
le

b
a
ll

tr
a
-

je
ct

o
ry

is
d
es

ir
ed

a
s

a
d
es

cr
ip

ti
v
e

cu
e

w
h
ic

h
m

a
y

fa
-

ci
li
ta

te
d
et

ec
ti

o
n

o
f

a
w

id
er

ra
n
g
e

o
f
ev

en
t

ty
p
es

.

A
lg

o
ri

th
m

m
a
y

n
o
t

b
e

ro
b
u
st

en
o
u
g
h
.

B
er

ti
n
i
et

a
l.
[1

7
]

S
w

im
m

in
g

R
a
ce

st
a
rt

,
ra

ce
a
r-

ri
v
a
l,

tu
rn

in
g

M
o
ti

o
n
,
ed

g
e,

sh
a
p
e,

co
lo

r

F
ie

ld
zo

n
es

a
re

o
b
ta

in
ed

fr
o
m

re
-

g
io

n
a
n
d

li
n
e-

a
ss

o
ci

a
te

d
fe

a
tu

re
s

b
y

n
ä
ıv

e
B

a
y
es

cl
a
ss

ifi
er

s.
E

v
en

ts

a
re

d
et

ec
te

d
b
y

m
o
d
el

ch
ec

k
in

g
in

te
rm

s
o
f

m
o
ti

o
n

p
a
tt

er
n

a
n
d

fi
el

d

zo
n
e.

7
0
%

8
5
%

o
n

se
g
-

m
en

ts

M
o
d
el

s
a
re

v
ig

-

o
ro

u
sl

y
b
u
il
t

a
n
d

a
re

ea
sy

to
im

-

p
le

m
en

t;
g
en

er
-

a
ll
y

a
cc

u
ra

te
.

M
o
d
el

s
a
re

la
b
o
-

ri
o
u
s

to
m

a
n
u
a
ll
y

b
u
il
d
.



25

A
ss

fa
lg

et

a
l.
[6

]

S
o
cc

er
F
o
rw

a
rd

p
a
ss

,

sh
o
t

o
n

g
o
a
l,

tu
rn

o
v
er

,
co

rn
er

-

k
ic

k
,

fr
ee

-k
ic

k
,

p
en

a
lt
y,

k
ic

k
o
ff
,

co
u
n
te

ra
tt

a
ck

M
o
ti

o
n
,
ed

g
e,

sh
a
p
e,

co
lo

r

F
ie

ld
zo

n
es

a
re

o
b
ta

in
ed

fr
o
m

re
-

g
io

n
a
n
d

li
n
e-

a
ss

o
ci

a
te

d
fe

a
tu

re
b
y

n
ä
ıv

e
B

a
y
es

cl
a
ss

ifi
er

s.
P

la
y
er

s

a
re

o
b
ta

in
ed

b
y

m
a
tc

h
in

g
to

te
m

-

p
la

te
sp

ec
ifi

ed
in

co
lo

r-
co

h
er

en
t

b
lo

b
s

a
n
d

p
a
rt

ic
u
la

r
sh

a
p
e.

P
la

y
-

er
s

a
n
d

o
b
je

ct
s

o
n

th
e

im
a
g
e

a
re

p
ro

je
ct

ed
to

th
e

re
a
l-
w

o
rl

d
fi
le

d

m
o
d
el

to
fa

ci
li
ta

te
re

a
so

n
in

g
b
a
se

d

o
n

ru
le

s.
E

v
en

ts
a
re

d
et

ec
te

d
b
y

m
o
d
el

ch
ec

k
in

g
.

7
5
%

1
0
0
%

o
n

se
g
-

m
en

ts

M
o
d
el

s
a
re

v
ig

-

o
ro

u
sl

y
b
u
il
t

a
n
d

a
re

ea
sy

to

im
p
le

m
en

t;
g
en

-

er
a
ll
y

a
cc

u
ra

te
;

p
o
si

ti
o
n
-b

a
se

d

re
a
so

n
in

g
ca

n

b
e

u
se

d
in

o
th

er

fi
el

d
sp

o
rt

s.

M
o
d
el

s
a
re

la
b
o
-

ri
o
u
s

to
m

a
n
u
a
ll
y

b
u
il
d
.

Z
h
o
u

et

a
l.
[1

1
7
]

B
a
sk

et
b
a
ll

L
ef

t
o
ff
en

se
,

ri
g
h
t

o
ff
en

se
,

le
ft

fa
st

b
re

a
k
,

ri
g
h
t

fa
st

b
re

a
k
,

le
ft

sc
o
re

,

ri
g
h
t

sc
o
re

,
le

ft

d
u
n
k
,
ri

g
h
t

d
u
n
k

M
o
ti

o
n
,

co
lo

r,
ed

g
e

D
ec

is
io

n
tr

ee
a
s

th
e

o
v
er

a
ll

fr
a
m

e-

w
o
rk

7
0
%

8
9
%

P
ri

n
ci

p
le

d
a
p
-

p
ro

a
ch

th
a
t

g
en

er
a
te

s
ru

le
s

a
u
to

m
a
ti

ca
ll
y

a
n
d

re
q
u
ir

es
li
tt

le

fe
a
tu

re
se

le
ct

io
n

L
im

it
ed

ra
n
g
e

o
f

ev
en

t
ty

p
es

d
e-

te
ct

a
b
le

R
u
i

et

a
l.
[7

5
]

B
a
se

b
a
ll

H
ig

h
li
g
h
t,

b
a
se

b
a
ll

h
it

A
u
d
io

en
er

g
y
-

re
la

te
d

fe
a
tu

re
s,

p
h
o
n
em

e-

le
v
el

fe
a
tu

re
s,

en
tr

o
p
y
-

re
la

te
d

fe
a
tu

re
s,

p
ro

so
d
ic

fe
a
tu

re
s

L
ea

rn
in

g
-b

a
se

d
cl

a
ss

ifi
er

(S
V

M
,

k
N

N
,
G

a
u
ss

ia
n

fi
tt

in
g
)
to

d
et

ec
t
ex

-

ci
te

d
sp

ee
ch

es
;

te
m

p
la

te
m

a
tc

h
in

g

to
d
et

ec
t

ca
n
d
id

a
te

h
it

s;
fu

si
o
n

(

w
ei

g
h
te

d
,
p
ro

b
a
b
il
is

ti
c)

to
g
en

er
a
te

h
ig

h
li
g
h
ts

.

6
0
%

7
0
%

o
n

se
g
-

m
en

ts

A
u
d
io

fe
a
tu

re
s

a
re

le
ss

ex
p
en

-

si
v
e

to
co

m
p
u
te

;

a
cc

u
ra

cy
is

a
c-

ce
p
ta

b
le

;
fu

si
o
n

sc
h
em

es
p
ro

v
id

-

in
g

in
si

g
h
ts

L
im

it
ed

ra
n
g
e

o
f

ev
en

t
ty

p
es

d
e-

te
ct

a
b
le
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Z
h
o
n
g

et

a
l.
[1

1
6
]

T
en

n
is

,

b
a
se

b
a
ll

S
er

v
e

(t
en

n
is

),

p
it

ch
(b

a
se

b
a
ll
)

C
o
lo

r,
ed

g
e,

m
o
ti

o
n

M
o
d
el

ch
ec

k
in

g
w

it
h

co
m

p
o
n
en

ts

(o
b
je

ct
s)

a
cq

u
ir

ed
in

d
a
ta

-d
ri

v
en

te
ch

n
iq

u
es

9
0
%

9
5
%

o
n

se
g
-

m
en

ts

O
b
je

ct
s

b
ei

n
g

a
c-

q
u
ir

ed
in

d
a
ta

-

d
ri

v
en

te
ch

n
iq

u
es

h
a
v
e

re
a
so

n
a
b
ly

h
ig

h
a
d
a
p
ta

b
il
it
y

H
a
rd

to
d
et

ec
t

ev
en

t
ty

p
es

w
it

h

su
b
tl

e
a
u
d
io

v
i-

su
a
l
a
p
p
ea

ra
n
ce

H
a
n

et

a
l.
[3

5
]

B
a
se

b
a
ll

H
o
m

e
ru

n
,

o
u
tfi

el
d

h
it

,
o
u
tfi

el
d

o
u
t,

in
-

fi
el

d
h
it

,
in

fi
el

d
o
u
t,

st
ri

k
e

o
u
t,

w
a
lk

C
o
lo

r,
ed

g
e,

m
o
ti

o
n
,

m
el

-c
ep

st
ra

l

co
effi

ci
en

ts

(a
u
d
io

),

k
ey

w
o
rd

s

(t
ex

tu
a
l)

M
a
x
im

u
m

en
tr

o
p
y
-b

a
se

d
cr

it
er

io
n

to
fi
n
d

a
p
p
ro

p
ri

a
te

d
is

tr
ib

u
ti

o
n
s

o
f

ev
en

ts
o
v
er

th
e

fe
a
tu

re
sp

a
ce

5
0
%

8
7
%

A
p
ri

n
ci

p
le

d

d
a
ta

-d
ri

v
en

a
p
-

p
ro

a
ch

to
a
cq

u
ir

e

(i
m

p
li
ci

t)
ev

en
t

m
o
d
el

s
a
n
d

re
le

v
a
n
t

fe
a
tu

re
s

A
cc

u
ra

cy
is

y
et

to

b
e

sa
ti

sf
a
ct

o
ry

S
a
d
li
er

et

a
l.
[7

7
]

S
o
cc

er
,

g
a
el

ic

fo
o
tb

a
ll
,

h
o
ck

ey
,

ru
g
b
y

H
ig

h
li
g
h
t

A
u
d
io

en
-

er
g
y,

m
o
ti

o
n
,

ed
g
e

a
s

w
el

l

a
s

m
id

-l
ev

el

se
m

a
n
ti

c
en

-

ti
ti

es
-
cr

o
w

d
,

g
ra

p
h
ic

o
v
er

la
y

S
V

M
M

ea
su

re
d

in
cu

rv
e

o
f

p
re

-

ci
si

o
n

a
s

re
ca

ll

in
cr

ea
se

s:

p
re

ci
-

si
o
n

a
t

6
5
%

7
4
%

fo
r

re
ca

ll

a
t

9
0
%

.

A
p
ri

n
ci

p
le

d
a
p
-

p
ro

a
ch

ta
rg

et
in

g

a
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2.1.4 Accuracy of Existing Systems

Accuracy wise, there is no simple scheme to compare existing systems. This is

because they addressed different detection targets, worked on diversified data sets

or domains, and were subjected to different scenarios. Anyway, a rough picture

can still be derived. As an example system of handcrafted domain model based on

low-level features, Tan et al. [86] attempted at two groups of events of basketball,

(a) fast breaks and full court advances combined and (b) shots at the basket. From

four minutes-long video clips, they reported an F12 value over 0.90. However, it is

noteworthy that this method was capable of detecting only a few event types and

left out a wide range of events such as rebounds and steals. Assfalg et al. [6] and

Duan et al. [26] represented systems of handcrafted domain models involving mid-

level entities. They could detect quite a range of soccer events and tennis events3.

For soccer events, Assfalg et al. [6] tested on over 100 clips lasting from 15s to 90s.

They reported F1 values of 0.65 ∼ 0.96. Duan et al. [26] tested on 3 full soccer

matches and a couple of tennis video clips. They obtained F1 values of 0.67 ∼ 0.95

for soccer and 0.77 ∼ 0.95 for tennis. Note that this group of methods still fail to

detect events that do not have distinctive audiovisual patterns, e.g. substitution

in soccer. Decision tree-based method [117] could detect the most remarkable

basketball events and reported F1 values of 0.78 ∼ 0.81 on a few dozens of pre-

segmented clips. Maximum entropy-base method [35] detected a wide range of

events4 on 32 hours of videos and obtained F1 values of 0.48 ∼ 0.88. SVM-based

method [77] differentiated video clips as “eventful” or “non-eventful”, i.e. detected

all events combined. They drew a plot of content rejection ratio (CRR) against

event retrieval ratio (ERR) which are equivalent to precision against recall. The

F1 values on dozens of clips were 0.75 ∼ 0.81 across a range of games (rugby,

soccer, hockey, and gaelic football). HMM-based method [7] detected penalty,

2F1 is a notation borrowed from information retrieval community, defined as
F1 = 2 · Precision ·Recall/(Precision + Recall)

3Their target soccer events were goals, shots, penalties, free kicks, corner kicks, and foul and
offside combined; target tennis events were serve, re-serve, return, ace, fault, double fault, take
the net and rally.

4Their target events were home run, outfield hit, outfield out, infield hit, infield out, strike
out, walk and junk.
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free kick, and corner kick from dozens of soccer video clips and reported F1 values

of 0.66 ∼ 0.76. Hierarchical HMM-based method [97] could achieve play - break

segmentation accuracy of 0.75 on dozen-minute long soccer video. Collaborations

based on audiovisual signals and textual information have reported F1 values of

0.90 on a wide range of events [68], and 0.85 ∼ 0.98 [5].

2.1.5 Adaptability of Existing Domain Models

Another aspect to look at in an event detection system is how much effort in the

adaptation is required in order for the system to work on a different data set or

further on a different domain, i.e., adaptability. Adaptability is more than about

saving labor in building systems for different domains, it is also a test of domain

model quality. Highly constrained domain model may produce good results on a

small data set by taking advantage of biased distribution but would not generalize

well. A quality domain model captures the essence of the domain knowledge

that is coherent over large data sets. Therefore a quality domain model would

maintain reasonably good results under fewer constraints. Adaptability measures

this quality of generalization. Most existing systems worked on single domains,

nevertheless there have been a few addressing a range of domains. Li et al. [56]

proposed a model template for detecting plays in several sports: American football,

baseball, and Wrestling. However, the model template served more as a guideline

than as a concrete framework and the features were sport-specific. Moreover, it

was only capable of differentiating plays from non-plays, rather than classifying

among event types. Bertini et al. [17] used modal checking to detect events in

soccer and swimming. The features were common across event types and sports,

but the models were event type-specific, and required substantial human efforts

to develop.

2.1.6 Lessons of Domain Modeling

To sum up, existing representation schemes of domain knowledge for sports video

analysis need further improvement. Handcrafting domain models based on audio-

visual descriptors (low-level cues and mid-level entities) has several drawbacks: (a)
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because the process is not principled, it can hardly be reproduced; (b) it may fail

to reveal non-intuitive domain models, especially in high dimensionality scenarios;

and (c) because the process is not principled, quality of output domain models

is hard to evaluate. The major drawback of machine learning methods is that

they may be misled by biased data sets. Training samples provided to machine

learning techniques are oftentimes limited compared to those needed, hence they

bring biases. Furthermore, handcrafting and machine learning techniques share

a common drawback, namely they can only represent events with distinctive and

consistent audiovisual patterns. Events that do not have this characteristic such as

substitution in soccer is beyond their capability. This is because the information

input to them - audiovisual signals - are at low level. The aforementioned review

suggests that audiovisual signals-based domain models (including handcrafted and

machine learnt) have limited detection capabilities in terms of accuracy and range

of detectable events. Introduction of textual information may be a remedy, as

text is more consistent in indicating semantics. Domain models that incorporate

semantics derived from text and analysis of audiovisual signals may enlarge the

range of detectable events and increase accuracy.

The aforementioned review of efforts in building domain models may suggest that

a quality domain model should be one that possesses the following properties.

• It is descriptive, i.e. it is distinctive and consistent in indicating events;

• It generalizes well, i.e. maintains reasonably good results under relatively

few constraints;

• It follows a principled manner to build and to enforce.

The review also suggests some guidelines may be helpful in building a quality

domain model:

• Judicious choice and combination of handcrafted domain knowledge and

machine learnt domain model;
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• Use of both audiovisual signals (depicting low-level appearance) and textual

information (capturing high-level semantics) from reliable sources.

2.2 Related Works on Structure Analysis of Tem-

poral Media

Structure is an integral part of domain knowledge. It is a global representation and

often provide coarse depiction of the media document. Structure analysis discovers

underlying structure, which may pave the way for more detailed analysis. Our

approaches address structure analysis of team sports video (readers are referred

to “Section 1.3 Summary of Proposed Approach”). This Section gives a review

of related works on structure analysis of temporal media. Such works include

segmenting text by topics and segmenting video sequence to shots, stories or plays.

Note that although individual works may be specific to different forms of media

- video, audio or text, their generalization in mathematical terms may be helpful

to our task.

Early works performed structure analysis in a heuristic way. Some text segmenta-

tion algorithms exploit a variety of linguistic features that mark topic boundaries,

such as referential noun phrases [71]. In the case of video analysis, this means

looking for canonical audiovisual cues for demarcation. Li et al. [56] tried to seg-

ment plays in American football video. They found starts of plays by snap scenes

wherein two teams line up along the lines of scrimmage, and located ends of plays

by shot cuts. Xu et al. [104] and Ekin et al. [29] devised rules to identify plays and

breaks based on temporal arrangement of shot types (global view, medium view

and close-up). Works on video segmentation with textual information have also

exploited canonical cues. Merlino et al. [61] detected news stories from video by

locating cue frames such as “Hello, I am <Person’s name>” in closed caption and

verifying by audiovisual cues such as silence and black frames. Haupmann et al.
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[39] segmented news stories by detecting commercials and topic change markers

“>>>” in closed caption.

There are more principled methods for video and text segmentation. Some works

exploit the fact that segments are more cohesive within themselves than when

they transit to another segment. This has been reflected in text segmentation and

video shot segmentation works. In text, topic segments are lexically cohesive; and

in video, shots are visually similar. As a conventional practice in text segmenta-

tion [42] [46] [32], a similarity value reflecting lexical cohesiveness is computed at

each gap that could possibly be a segment boundary. A plot of this value shows

how lexical cohesion change over time. A local minimum resulting from a sharp

change in lexical cohesion is regarded as a boundary. Hearst et al. [42] and Galley

[32] defined the lexical cohesion at a gap as the cosine similarity of two vectors

representing the two windows before and after the gap. Hearst et al. [42] defined

the vector element as count of a registered term in the window, and Galley [32]

defined it as a score associated with a registered lexical chain. In video shot seg-

mentation, similarity of two adjacent frames formed the plot and local minimums

resulting from sharp changes in the plot were regarded as shot boundaries [50].

To detect gradual transitions, multi-resolution analysis were proposed that also

computed similarity on larger scales. This approach has been applied to both text

and video segmentation [57] [58].

Similarity-based segmentation may be extended to beyond adjacent units so that

neighboring similar units may fall into the same segment. Yeung et al. [108] seg-

mented video to stories by time-constrained clustering of visually similar shots.

Shot similarity was defined based on difference metric reflecting color histogram in-

tersection and pixel correlation between keyframes. Hierarchical clustering based

on complete-link grouped visually similar shots to scenes. Sequential relations

between shots rendered a scene transition graph, whose edges represented link-

ing strength between scenes. Weak links were identified and regarded as story

boundaries.
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Similarity-based methods look at pair-wise similarities for abrupt changes that

may mark boundaries. There is not a global picture of the whole media sequence.

By contrast, Phung et al. [73] [72] [74] proposed a few functions to project all units

into a plot and found segment boundaries based on the ebb and flow of each func-

tion. For their target genre of instructional video, they devised thematic function

and density function to capture film makers’ means of guiding viewers’ attention.

They hypothesized that these functions could reflect changes in topics and sub-

topics, respectively. Based on film-making grammar of instructional video, the

expressive functions were defined as combinations of film-making artifacts such as

shot length, motion activity, and frequency of narrator’s appearance.

Segmentation can also be reviewed as a classification - whether a candidate point

is a boundary? In this view, machine learning algorithms for classification were

employed. For example, Hsu et al. [43] tried to compute the posterior probability

of a point being a boundary given a number of features using maximum entropy

model. The features were acoustics, speaker identification, presence of face(s),

textual overlays, motion, A/V combination, and cue phrase. They reflected local

characteristics surrounding the point under examination. Thus each point was

viewed as an independent sample drawn from the distribution to be estimated.

This practice was similar to that in [35]. The author also smoothed the posterior

probabilities of candidate points by dynamic programming in the hope of modeling

transition probabilities.

The aforementioned methods could not reflect recurrent nature of video structure.

In recognition of HMMs’ capability of modeling recurrence, they were employed.

There have been three flavors of using HMMs. The first is modeling segments with

individual HMMs. HMMs are first trained using full-fledged segments, they are

then applied to classify fixed-length windows to labels and finally HMM labels are

concatenated by dynamic programming [98] [101]. This practice has a weakness,

namely that the test segments are temporally constrained and may not match
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models trained from full-fledged samples. The second approach was to model

the whole video sequence using a HMM with certain states or state transitions

marking critical points of structures [56] [55] [18]. Strictly speaking, this practice

involves assigning labels to states, thus the states are no longer “hidden”. The

third approach modeled segments with individual HMMs, and also modeled tran-

sition among segments with a higher-level HMM, i.e. using a hierarchical HMM

(HHMM). In this way, individual segments are free to end in the test sequence

and states can be kept hidden [97] [101] [102] [51]. There are also other variants of

HHMM that differ on whether learning is supervised or unsupervised and whether

HHMM network structure is adaptable [97] [99].

2.3 Related Works on Multi-Modality Analysis

Humans understand multimedia documents by receiving information from multi-

ple modalities. Imagine a silent telecast of a soccer match or merely soundtrack

containing commentators’ speech and stadium noise but with no pictures. Infor-

mation of different modalities are complementary and analysis on multiple modal-

ities is expected to outperform that on any single modality. Much effort has been

devoted to analyzing multi-modal information in a range of tasks: annotation [2],

retrieval [48] and search [41] [4] etc. Though these tasks all center around semantic

analysis, they vary slightly in requirement or priority. To simplify discussion, we

will focus on semantic inference from multi-modal information, i.e. annotation.

Some example works in this field are [103] on video + audio (acoustic features) ,

[5] on video + audio (linguistic features from speech recognition) , and [112] on

video + textual overlay.

Multiple modalities as a whole have a few properties that may influence the design

of integrated analysis. First, the underlying modalities have diverse spatiotempo-

ral layouts. For example, video frames (images) are available every 1/25 or 1/30
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seconds, whereas speech occurs sporadically. Dictated by this property, features

from different modalities may have different temporal granularity and may not

have consistent spatiotemporal correlation. This gives rise to the issue of asyn-

chronism. Second, features from different modalities may have varying degrees of

correlation. For example, color histograms of a image may probably be more cor-

related than color histograms and acoustic features together in indicating a image

frame’s semantics. If features were to be grouped or consolidated to a smaller

number to tackle the curse of dimensionality, highly correlated features may need

to be put together. This gives rise to the issue of feature consolidation or reduction

[93]. Third, different modalities may have varying descriptiveness regarding se-

mantics. For example, reliable speech recognition is usually more descriptive than

audiovisual signals when it comes to objects or events [18] [20]. This gives rise

to the issue of fusion of classifiers. These issues have been the underlying factors

that a multi-modal framework designer has to address. We sort our reviews of ex-

isting multi-modal frameworks by pipeline that reflects designers’ overall thoughts

regarding the listed issues. Note that most existing multi-modal frameworks in-

volve fusion of features or classifiers. However, we will not focus on fusion schemes

in this Section, as this is the topic of Section 2.4. Largely speaking, multi-modal

frameworks fall in three types of pipelines - intertwined analysis, fusion of parallel

analysis, and unified analysis.

Intertwined analysis. This category of methods is characterized by the fact that

cues from single modalities only partially constrain the process of semantic infer-

ence. Often analysis on each modality is carried out in different step, therefore

there would be multiple steps, hence the analysis is called “intertwined”. Zhang

et al. [112] involves both textual overlay and video analysis. Analysis on textual

overlay detected score changes and inferred occurrence of tennis events based on

domain models, in particular, transition graph model. In the locality provided

by textual overlay detection, video analysis found boundaries of “pitch event seg-

ments” by matching images to templates of canonical pitching scenes. Ariki et al.

also worked on baseball video and took a similar pipeline. They found rough loca-
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tions of events by key phrases in automatic speech recognition (ASR) transcript,

and refined the event boundaries by visual cues.

Babaguchi et al. [14], [8] [10] [68] proposed a family of methods to utilize closed

caption and audiovisual signals to detect American football events. The paradigm

was a series of analysis on closed caption and on image sequence. Analysis on

closed caption found segments corresponding to events with the help of textual

event models (event-indicating chains of key phrases). Video shots in temporal

correspondence with these closed caption segments were regarded as candidate

event shots. Image analysis further calculated distance of these video shots to

pre-defined image models of events. Another group of papers by Babaguchi et al.

[9] [13] [11] used gamestats on the Web in place of closed caption. Gamestats are

more accurate in terms of indicating occurrence of events as well as their timing.

Thus determination of event boundaries is reduced to reading match time on the

textual overlay. They also developed a few spinoffs [62] [67] wherein mapping

between closed caption and event labels was established by supervised learning.

Fixed-length closed caption units were represented by key phrase vectors and were

labeled as positive or negative instances of an event by k-Nearest Neighbors (KNN)

in [62]. Closed caption segments broken up by speaker change or long pause were

represented by speech related features such as speaker identification and number

of sentences. Then closed caption segments were classified to one of the four

scenes: live, others-game-related, commercial, and others-game-unrelated using a

Bayesian network (BN). Finally a story was formed from a scene sequence [67].

Having rough locations of events or stories, the rest of the pipeline was largely

the same as the paradigm - to refine boundaries with the help of video shots’

boundaries. In view of possible accuracy loss incurred by KNN algorithm, there

was also a screening step described in [62] that used short-term energy (STE) as

the criterion.

Intertwined analysis captures correlations across multiple modalities in an explicit

manner. This approach would preserve obvious correlations well, however, it may
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fail to discover correlations that are subtle or rest on statistical basis in large data

sets. Due to this reason, this approach might not work well when the range of

semantics of interest gets beyond a selected few. Judicious design of pipeline would

help in taking advantage of reliable classifiers while containing poorly performing

ones. Asynchronism is tackled by separate processing on asynchronous modalities.

Fusion of parallel analysis. This pipeline is characterized by a number of parallel

analysis each of which works on a subset of all features available and provides

individual results. All such results are then fused in a dedicated fusion step. In an

effort to identify topical events from lecture videos showing slides, Syeda-Mahmood

et al. [85] detected video and audio events from image and audio streams respec-

tively, and used a probabilistic model to fuse them. The task of finding topical

events was defined as finding a span of time when both slides and the lecturer’s

speech were on a certain topic. With slides used in the lecture available, video

events were detected by identifying each slide being shown. A technique called

region hashing was employed to recognize drawn objects on slides by their spatial

layout, which in turn helped recognize the slide being shown. Audio events were

detected by recognizing indicative words appearing in slides from the lecturer’s

speech. The fusion was essentially to combine curves representing probabilities

of relevance as suggested by individual detectors. The authors defined integrated

probability of relevance from the individual ones and found topical events by ebb

and flow of the integrated value. Similarly, Rui et al. [75] arrived at the probabil-

ity that a baseball video segment was exciting from two probabilities associated

with excited commentator’s speech and hit, respectively. They experimented with

two fusion schemes, namely weighted sum with weights heuristically determined,

and conditional fusion based on statistics of training data.

Fusion of parallel analysis may be useful for detecting a wide range of concepts

over a large data set where a systematic approach is required and relevant features

may be too bulky to be processed together. High-level feature detection as part

of TRECVID organized by NIST [2] is such a task. It aims to detect dozens of
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concepts from over 300 hours of news video. Amir et al. [3] [4] build for each con-

cept three SVM classifiers involving different language models and visual features.

Decisions of the classifiers were later fused to generate the final list. Similarly,

Hauptmann et al. [41] fuse decisions from ASR- and timing-based classifiers.

Fusion of parallel analysis is usually implemented by machine learning techniques.

By splitting features to multiple classifiers, it allows a large number of features to

be considered but at different times. Thus it is suitable for detecting a wide range

of semantics and when little is known about salient features or patterns. This

approach handles synchronism with varying degree of correlation by processing

heterogeneous features separately. However, choosing a fusion scheme that is

consistently effective is hard[40].

Unified analysis. In the pipeline of this type, all features across modalities are

processed in a unified framework. The framework serves the fusing purpose and

produces the final results.

A straightforward scheme of unification is to concatenate all features into a grand

vector and apply some machine learning algorithms to this feature space [44]

[80] [18]. Chaisorn [18] represented video shots by a vector composed of features

describing image, textual overlay, audio, motion and temporal characteristics and

performed shot type classification by decision tree. Hsu et al. [44] and Snoek et al.

[80] experimented with inputting raw and wrapped multi-modal features to SVM

classifiers. This approach preserves all potential correlations between features from

different modalities. However, it has two major drawbacks. The first drawback

is that the number of features may grow out of control as a result of modality

merging. This is why the chosen features are usually of low dimension but highly

informative. For example, [18] used number of faces in the image, audio genre,

and whether textual overlay is at the center of the image; while [82] employed

ratio of pixels classified to a concept. To reduce dimensionality while preserving

correlations, Wu et al. [93] proposed a 2-step framework wherein features were
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first agglomerated to independent groups called modality (note the the term of

modality is different than conventional definition), and then classifiers associated

with different modalities were fused using SVM-based super-kernel fusion. The

second drawback is that features may not be on the same numerical scale as a

result of employing diverse underlying mechanisms and thus the feature space

may be distorted unless a good normalization scheme is in place.

Features may also be assimilated in a sequential manner - one feature at a time.

Some statistical models accommodate this learning scenario, including maximum

entropy models and boosting. Maximum entropy model [16] [35] [43] [81] [45]

[79] constructs an exponential log-linear function to approximate the posteriori

probability of an event (i.e., presence of a semantic concept) given a number of bi-

nary features. The maximum entropy principle ensures that the estimated model

describing posteriori probability agrees with the training data the best. The con-

struction process includes two main steps - parameter estimation and feature in-

duction. Parameter estimation indicates how much each active feature contributes

to the model. Feature induction selects the candidate feature which, when adjoined

to the set of active features, produces the greatest increase in likelihood of generat-

ing the training data. Maximum entropy method provides a nice scheme to select

features and to fuse them. Boosting approaches have been successfully used to

improve classification performance by fusing multiple weak classifiers [31]. When

each feature was treated as a weak classifier, boosting was introduced to multime-

dia classification [87]. Different from maximum entropy models, boosting is not

a generative model in that it does not estimate probabilistic models. However,

boosting does employ a fusion formula that is a linear combination of features.

Features’ associated weights suggest their contribution to reducing training er-

rors. Learning is an optimization process wherein features’ weights are updated

according to how much they could reduce the training errors. Both maximum

entropy model and boosting are algorithmically optimization processes, thus they

can be carried out in a sequential fashion. And sequentiality brings some impli-

cations with regards to feature unification. The two drawbacks of concatenated
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feature vector, namely excessively high dimensionality and distorted feature space

are no longer problems. Besides, inducing one feature at a time also gives maxi-

mum entropy model another advantage - capability of selecting optimal features in

maximum likelihood sense. Though boosting assigns different weights to features

and this property was taken advantage of in selecting features [44], it is generally

not recognized as capable of feature selection (in the maximum likelihood sense).

Another probabilistic approach to infer semantics from a whole bunch of features

is graphical models based on Bayes rule. For example, Wu et al. [94] created

an influence diagram to accommodate a wide range of features including contex-

tual information (location, time, camera parameters), holistic perceptual features

(derived from color, texture and shape), local perceptual features (SIFT-based

features) and semantic ontology.

There is a body of works that establish correlation between modalities such as

image and text for multimedia annotation or retrieval. Here is the classical scenario

- correlation is established during training when both media content and textual

labels are available and is applied on test data that has only media content. In a

strict sense such works do not comply with our definition of “multi-modal analysis”

as no text is available from test data. However, on consideration that establishing

correlation between modalities may be helpful in truly multi-modal scenarios, we

give a brief review of such works and cover them under “unified analysis”. This

group of works is based on language models that rooted in the area of human

language processing. The media content (images or video clips) may be described

using a visual language of visterms (analogous to words), thus correlation between

visterms and textual labels may be viewed as cross-lingual description. Mori et

al. [63] established correlation between visterms and words by creating a co-

occurrence table of visterms against words from the training set. Duygulu et al.

[28] viewed this problem as analogous to that of machine learning, and used IBM

translation models to solve it. Jeon et al. [49] viewed the problem as analogous

to that of cross-lingual retrieval, and adapted relevance-based language models to
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compute the posteriori probability of the annotation given the image. They called

the model Cross-Media Relevance Model (CMRM).

The last paragraphs on intertwined analysis, fusion of parallel analysis and unified

analysis summarize multi-modal works with respects to the pipeline. Feature

preparation wise, there are a few more issues.

One critical issue for video analysis is the judicious choice of features that can

be effectively extracted and that are capable of distinguishing different semantic

classes. Multiple modalities have expanded the pool of features by those derived

from ASR, the Web, meta-data from capturing devices such as camera parameters

or GPS. As feature pool grows big, abstracting low-level features to mid-level

entities may be helpful in reducing dimensionality and in statistical modeling of

semantic relationships at a higher level. Among popular features are “those related

to people (face, anchor, etc), acoustic (speech, music, pitch, significant pause,

etc), objects (image blobs, building, graphics, overlay text, etc), locations (indoor,

studio, city, etc), genres (weather, sports, commercials, etc), and productions

(camera operations, blank frames, etc)” [20].

Feature wrapping may be required by some algorithms such as maximum entropy

models and boosting. These algorithms need homogeneous binary features yet

raw multi-modal features usually have heterogeneous spatiotemporal characteris-

tics. Raw features are wrapped by measuring the change over time, quantizing

continuous values, or by telling logical predicates, e.g. if an anchor scene follows

a significant pause [44]. Feature wrapping is a useful tool to tackle asynchronism

between modalities. It even enhances performance of algorithms wherein it is not

required, such as SVM [44].

Feature selection in a systematic manner is generally desirable as fewer features

would enhance generalization and save computation. Maximum entropy models

[35] and feature reduction techniques such as principle component analysis (PCA)
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and independent component analysis (ICA) [93] are standard means to this end.

And they have been reported to enhance performance when other conditions were

kept the same. For example, the same number of features picked by maximum

entropy model outperformed those under boosting [44]. Nevertheless, it was also

found that SVM with no feature pruning still outperformed some other algorithm

with selected features, namely maximum entropy models [44].

2.4 Related Works on Fusion Schemes

Many multi-modal systems have a dedicated step to fuse features or results of

classifiers. This is especially the case for the works under the categories of “fusion

of parallel analysis” and “unified analysis”. This Section will review works with

regards to fusion schemes. The research scope to be reviewed may be wider than

multimedia analysis, including data fusion, sensor fusion, etc. As asynchronism

between features is an important concern in our problem, we will categorize works

into two groups, namely with no and with synchronization issue, respectively.

2.4.1 Fusion Schemes with No Synchronization Issue

As fusion of features has been reviewed previously, this Section focuses on fusion

of individual classifiers. This includes fusion schemes based on basis decisions, on

confidence values associated with decisions, and on modification of classifiers.

Fusion based on decisions attempts to establish the correlation between desired

final decision and basis decisions. This can be done in a direct or indirect manner,

sometimes learning is involved. Linear combination is a direct scheme and by far

the most straightforward. The central problem of using linear combination is how

to determine the weights. The most intuitive way is to fix weights empirically,

as Rui et al. did in [75]. More principled approaches may involve learning or

optimization. Yan et al. [105] learned weights by the EM algorithm in a way
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that the overall probability of classifiers producing decisions for the training data

gets maximized. Maison et al. [59] determined weights by minimizing the error

rate on the training data. Adaboost [38] and rankboost [23] can also be regarded

as fusion schemes by linear combination with learned weights. A generalization

to linear combination is ensemble fusion [3], which first formulates a number of

candidate normalization functions (for normalizing basis decisions so that they can

be compared) and fusion functions, then optimizes fusion performance over these

candidates. In recognition of non-linearity of the correlation, some researchers

chose non-linear models to perform fusion. For example, stacking SVMs were used

as a super-kernel non-linear fusion on basis decisions[41] [95]. Indirect approaches

include Bayesian classifier that finds correlation between desired final decision and

basis decisions from conditional probabilities [60].

Confidence based fusion schemes includes validity weighting [3], which assigns

weights to classifiers reflecting the number of positive training samples they have.

Sometimes, fusion is performed on the model or parameters of classifiers rather

than on basis decisions. Wu et al. [95] modeled SVM classifiers as kernel matrices

and the fused one as a new SVM with a new kernel matrix. The parameters are

linear combination of those from the original kernel matrices with the weights

minimizing generalization error.

2.4.2 Fusion with Synchronization Issue

This Section reviews works on fusing features or decisions that are asynchronous.

One group of methods is to manipulate asynchronous probabilities directly. Syeda-

Mahmood et al. [85] aimed to tell probability of a topical event occurring at a

given instant from two probabilities suggested by video and audio detectors. The

authors defined the fused probability as the sum of the basis probabilities minus

their product (to prevent overflow). The definition was not standard, nevertheless

it met the requirements of a probabilistic value and worked.
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Another group of methods wrap features or decisions to be fused with temporal

relation operators. Usually a fuzzy window is involved. Snoek et al. [81] needed to

fuse features from closed caption, visual and acoustic modalities. They wrapped

features using Allen time interval relations, i.e. precedes, meets, overlaps, etc, and

formed binary predicates based on wrapped features. The predicates were fed into

a maximum entropy classifier. Hsu et al. [45] used fuzzy windows when relating

intermediate outcomes from different modalities.

The third group of methods use some meta-classifiers that ease the requirement

on temporal correspondence. Xie et al. [100] proposed a layered dynamic mixture

model to discover patterns from news video. First, signals within individual infor-

mation streams were mapped to labels by supervised learning algorithms. These

labels were asynchronous, even though they may refer to the same semantic top-

ics. Then related labels from different streams were fused under a loose temporal

bag referring to a topic. The fusion was conducted by the EM algorithm that

maximized probabilities of labels being observed.

2.5 Related Works on Incorporating Handcrafted

Domain Knowledge to Machine Learning Pro-

cess

Machine learning may be a principled solution towards building domain mod-

els. Handcrafted or prior domain knowledge may facilitate this process. The

facilitation may be in choosing learning algorithms, choosing features or tuning

parameters.

Recent video retrieval systems have shown that it may be a feasible idea to classify
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queries into pre-defined classes and develop fusion models by taking advantage of

the prior knowledge and characteristics of each query class. Yan et al. [105]

considered four query classes of type named person, named object, general object

and scene, and explored a 2-level hierarchical query-dependent fusion model that

emphasizes text features. Chua et al. [24] further explored the use of external

knowledge, specialized detectors and pseudo relevance feedback in a single-level

query-dependent model with six query classes of person, sports, finance, weather,

disaster and general.

Graphical models, in particular Bayesian networks, are a commonly used tool

for representing knowledge. They are designed to reflect dependencies between

variables, and they provide a way to describe strength of the dependencies by

conditional probabilities. Intille et al. [47] used Bayesian networks to model rela-

tionships among play category, players’ trajectories and ball trajectory in Amer-

ican football video. Wu et al. [94] tried to annotate photos by fusing contextual

information (location, time, and camera parameters), visual content (holistic and

local perceptual features) and semantic ontology with a graphical model. Prior

knowledge helped to substantially reduce the hypothesis space to search for the

right model, e.g. exposure time depend on time thus there is an arc connecting

them.
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Chapter 3

PROPERTIES OF TEAM

SPORTS

3.1 Proposed Domain Model

As we have seen in review on event detection (Section 2.1), an effort to detect

events is essentially that to establish and enforce a domain model. The domain

model reflects on how we view the domain with regards to the task and how this

view affects our choice of analysis techniques. We describe our domain model in

this Chapter as the basis for detecting events. Note that what is described here is

essentially a “template” domain model that needs to be instantiated with domain

knowledge to cater to a particular game.

Common to all team sports videos is a distinct characteristic - alternating advances

towards two opposite targets, e.g. goalposts.

Definition 4 Advance

An advance is a continued movement towards one end of the field.

Definition 5 A draw

Draw refers to the state when both teams are contending in the middle of the field

and none of the teams are on the offensive.
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Definition 6 Break

A break refers to the state when play is not going on, for example, before the match

starts or after it ends, or when the ball gets out of bound and thus dead.

Definition 7 Phase

A phase is a segment of the match that corresponds to certain state of the game.

A phase can be an advance, draw or break.

This characteristic is the basis of a generic model for different games. Recognizing

the video structure in the perspective of advance is helpful to event detection, as

this structure helps in locating events. For example, score-related events happen

mostly at the ends of the advances, e.g., goals in soccer; launching of plays in

the beginnings of advances, e.g., punt-returns in American football, and referee

interventions between advances, e.g., yellow-card in soccer.

The proposed model comprises four parts describing different aspects of team

sports - temporal location specification, sequential relationship among events, se-

mantic composition and audiovisual patterns.

Temporal location specification

Events’ temporal locations are specified under the structure of team sports video.

This structure is described in the perspective of advance. Specifically, it is modeled

as a finite state machine with the states of advance in the left direction, advance

in the right direction, draw and break (Figure 3.1). Draw describes the state when

no team is on the offensive; this happens in free-going games e.g. soccer. Break

refers to the state when the ball is dead or the video is not showing on-going play.

A video segment that stays on a particular state is called a phase.

Instances of each event type only occur at certain phases; the conditions of such

phases are the events’ temporal location specification. For example, the tempo-

ral location specification for corner-kick is: it only occurs in an advance that is

preceded by an advance - break sequence, with the two advances in the same

direction.
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Figure 3.1: The structure of team sports video in the perspective of advance

Intermittent matches usually have substructures within a phase. For instance, in

American football, an advance is composed of a series of plays (called downs). For

these games, temporal locations may be specified on units at a level lower than

phase.

Sequential relationship among events

Games are guided by rules and tactics, and thus events may exhibit certain se-

quential patterns. Capturing the sequential relationship among events may help

in detecting events when some cues are missing or ambiguous.

Semantic composition

Semantically, an event is composed of a series of actions, wherein an action refers

to a single interaction between players or between players and context during the

development of the event.

A semantic composition model of an event type can be represented by an directed

graph

G := 〈A, T 〉 (3.1)

where A is the set of nodes representing actions with attributes and T is the set
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Figure 3.2: Semantic composition model of corner-kick.

of directed edges representing temporal transitions between actions. Each node

φ ∈ A has these attributes

φ := 〈action type, outcome, {pre tran}, {post tran}〉 (3.2)

where action type describes what action the player takes, outcome describes the

state of the ball or of related players or of the overall match as a result of the

action; pre tran := 〈pre node, pre cond〉 describes a transition from the preceding

node into the current node and the conditions to be met during the transition; and

post tran := 〈post node, post cond〉 describes a transition from the current into the

next node; {pre tran} and {post tran} are the sets of pre- and post-transitions.

The graph contains a number of paths connecting INIT and END. Any of these

paths is a valid development of the event. For each specific event, the paths

usually go through a common node, which helps to distinguish the event type

from others, such as the node kick-at-corner in Figure 3.2. Due to its distinction

and consistency, it is called the key action of the event type.

Audiovisual pattern

Structural units at various granularities, including phases, plays, and events, may

have audiovisual patterns. This makes it possible for them to be detected in the

feature space. Capturing these patterns may be done by a heuristic or machine-

learning approach. Some event types have relatively distinctive and consistent
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audiovisual patterns, such as goal in soccer; while others do not, such as offside in

soccer. Generally speaking, events’ audiovisual patterns are less consistent than

semantic composition models.

The proposed model can be enforced if the audiovisual signals and semantic-rich

external information sources are available. Section 3.3 will describe these two

forms of information.

3.2 Domain Knowledge Used in Both Frameworks

Domain knowledge instantiate a generic domain model and is the kernel that

enables a system to cater to a new game. For our task of event detection, the

domain knowledge involved is mainly about game rules, player database, event

models, and special visual effects. Specifically,

• Game rules are the rules that regulate the match. Most importantly, we

need to know the duration of the match and the field zones.

• Player database stores players’ names, affiliation and positions, which helps

in inferring possession or the direction of an advance from external informa-

tion sources.

• Event models define the target event types in a particular game and spec-

ify these four aspects of events - temporal location specification, sequential

relationship among events, semantic composition and audiovisual patterns.

• Special visual effects refer to production artifacts such as the channel logos

used to indicate replays, and canonical views that are associated with certain

content in the game, like the view of the goalpost in American football.

Knowledge of the special visual effects facilitates audiovisual analysis.

Although the domain knowledge involved covers a wide range of aspects, much of it
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can be acquired automatically. We categorize domain knowledge into three types

based on the amount of manual labor required during acquisition (See Figure 3.3).

Player database

Domain knowledge

I.

II. Event types

Production artifacts

Canonical views

Game rules
Event models

III.

Figure 3.3: Various levels of automation in acquiring different parts of domain
knowledge.

Acquisition of type I domain knowledge, the player database, can be fully auto-

mated. Player information can be extracted by issuing questions about teams and

players to a FADA question answering engine [106] which searches on the league’s

and clubs’ official websites [106].

Type II domain knowledge is automatically acquired, but needs human interven-

tion to confirm or annotate. Among this type are target event types, production

artifacts, and canonical views. Target event types are picked manually from a

suggested list that is extracted from Web corpus in the same way as player in-

formation. Canonical views and production artifacts are acquired by automatic

clustering of video contents and subsequent manual annotation.

Domain knowledge in type III, i.e., game rules and event models, is manually

built. However, efforts in building event models can still be partially automated.

Field zones are recognized by Bayesian classifiers. Action types and outcomes are

acquired the same way target event types are acquired. The audiovisual patterns

of some event types are acquired by machine-learning approaches, such as SVM.
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Note that the domain knowledge in type III is the most stable part in a game,

while that in type I and II is more “volatile”. Our data driven techniques for type

I and II minimize ad hoc efforts in acquiring domain knowledge and thus enhance

adaptability of the system.

For the testing games - soccer and American football, the domain knowledge

acquired is as follows: soccer’s phase types are left-advance, right-advance, draw and

break; target event types are goal, save, shot-off-target, penalty, free-kick, corner-

kick, yellow-card, red-card, substitution and offside; field zones are left-lower-corner,

left-upper-corner, left-third, middle-field, right-lower-corner, right-upper-corner and

right-third.

American football has only two phases - left-advance and right-advance since time-

outs are removed and there must be a team on the offensive at any moment;

target event types are touchdown, conversion, field-goal, punt, punt-return, fumble-

opponent, interception, touchback, kickoff, safety, fumble-own, incomplete-pass; field

zones are left-lower-corner, left-upper-corner, left-twenty-yard-area, middle-field, right-

lower-corner, right-upper-corner and right-twenty-yard-area.

3.3 Audiovisual Signals and External Informa-

tion Sources

Enforcement of the domain model involves two sources of information - audiovisual

signals and external information sources. This Section describes their properties

and the main challenge in integrating them, namely the asynchronism between

them.
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3.3.1 Audiovisual Signals

Definition 8 Audiovisual signals

Audiovisual signals refer to the image stream and soundtrack produced by broad-

casting professionals.

The image stream consists of evenly paced pictures (called frames) edited from one

or more cameras; and the soundtrack is commentators’ voice in the background

of stadium noise and audience sound. Generally, sports TV producers observe

certain rules-of-thumb in shooting and adopt some cinematographic techniques in

editing [78], therefore the audiovisual signals may exhibit some video syntax.

Reviews on related works (Section 2.1) suggest that events can be indicated by

audiovisual patterns, particularly in some constrained scenarios. This is because

some level of correspondence exist between groups of events and audiovisual pat-

terns. However, analysis solely based on audiovisual signals generally performs

poorly. This seems to suggest the correspondence is not reliable, in other words,

indicating audiovisual patterns are not really distinctive or consistent. In our task

of detecting events from team sports video, reliability of audiovisual patterns vary

from event to event. Some events virtually have no distinctive patterns. For ex-

ample, an offside in soccer may appear like a regular cross. Similar drawback

exists for actions. Most actions suffer from lack of reliable audiovisual patterns.

This may be because actions are more specific with regards to semantics - they in-

volve interactions between semantic entities (players or contextual objects). These

semantic entities and their relations can hardly be mapped to consistent audio-

visual patterns. Detecting the ball reliably is already a hard problem, let alone

detecting it flying across the goal-line. Identifying actions probably needs more

semantic-rich information than simply audiovisual signals can provide.

Despite the unreliability in indicating semantics, audiovisual signals are good at

pinning time points. This would be beneficial to identifying boundaries of video

structural units. First of all, audiovisual signals enable the indexing of individual

frames. The frame, being the atomic temporal unit, can specify the boundaries
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precisely. Second, analysis on audiovisual signals could recognize artifacts such as

camera motion and commentators’ speech and hence able to find natural break-

down points as boundaries.

3.3.2 External Information Sources

Definition 9 External information source

External information sources refer to textual descriptions that do not come em-

bedded with the audiovisual stream.

Textual information extracted from audiovisual stream such as speech recognition

transcripts (ASR) is not considered as external information. Currently, external

information sources are prevalent, it is generated by human and can be found on

the Web, newspaper, TV or radio. Some typical external information sources are:

• match reports in newspapers and on the Web;

• studio reviews at half-time and end of the match;

• live commentary on the Web;

• live game logs on the Web, such as what ESPN provides for the English

Premier League (EPL) [1].

Figure 3.4 - 3.7 show some snapshots of external information sources from the

Web. Despite the various sport domains and formats, we can categorize the ex-

ternal information sources into two levels: compact and detailed.

• Compact descriptions are after-match summaries covering the full time match.

Examples are match reports for soccer (Figure 3.4) and recaps in American foot-

ball (Figure 3.5). A typical piece of compact description would document only

a few key events pivotal to the course of the match. Documentation of an event

would generally give names of players involved, their activities and outcomes. The

temporal granularity of the compact descriptions is generally minute rather than

second. The documentation of events is accurate in the sense that human users
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Figure 3.4: Example of soc-
cer match report (Source -
http://soccernet.espn.go.com/).

Figure 3.5: Example of Amer-
ican football recap (Source -
http://www.nfl.com).

Figure 3.6: Example of
soccer game log (Source -
http://soccernet.espn.go.com/).

Figure 3.7: Example of American
football play-by-play report (Source -
http://www.nfl.com).
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Chelsea’s dominance started as early as the fourth minute when Damien
Duff’s rasping daisy cutter was well held by Given.
But the breakthrough came in the 25th minute from an unlikely source.
Wayne Bridge’s left wing cross was missed by a host of players and the
ball fell to full-back Glen Johnson who took his time before blasting high
past Given.
Fourteen minutes later the Blues doubled their lead as another attack wide on
the left saw Duff whip in a cross from which Hernan Crespo tucked the ball
home from six yards.

Figure 3.8: Excerpt of a match report for soccer.

would generally be able to find the events in the proximity of the given time in the

video. However, the complex structure and varying syntax of the description make

extraction unreliable. Besides, documentation of events are generally incomplete.

A typical soccer match report would cover some goals, a few remarkable attempt-

on-goals1 and some other events such as serious fouls or substitutions. Statistics

show that about 10 ∼ 20% of all events are documented. Figure 3.8 shows an

excerpt of a match report for soccer.

• Detailed descriptions are generally live textcasts on the Web. They provide

realtime update for viewers to follow the match closely. Examples are game logs

for soccer (Figure 3.6) and play-by-play reports for American football (Figure 3.7).

Documentation of happenings are organized in time-indexed entries. The temporal

granularity of entries is in seconds, which is at the same level as that of actions.

Each entry would provide information on one or a few actions, including actions

performed, involved players, and outcomes. A large number of significant actions

are documented in detailed descriptions. However, most time stamps do not agree

with those found in the video. This phenomenon is called asynchronism between

the audiovisual signals and external information sources. More detail about the

asynchronism will be given in Section 3.3.3.

External information sources and audiovisual signals are complementary in de-

tecting events. On one hand, external information sources provide consistent

semantic-rich information that audiovisual signals lack. They provides interac-

1Attempt-on-goal is the union of shot-off-target and save.
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Figure 3.10: Formation of offset
- intermittent match

tions between objects (players, the ball, the pitch, the goalpost, etc), which help

to identify actions in the semantic composition models. It may also provide subtle

semantic entities directly, such as occurrences of foul or offside in soccer. This

semantic-rich information cannot be reliably detected by audiovisual analysis. On

the other hand, audiovisual signals are good at pinning events’ boundaries, at

which external information sources are poor. Therefore, it would be desirable to

perform an integrated analysis exploiting strengths of both.

3.3.3 Asynchronism between Audiovisual Signals and Ex-

ternal Information Sources

The asynchronism refers to the phenomenon in which a time instant is recorded

differently in audiovisual and text time lines. The asynchronism obscures the tem-

poral correspondence between the two time lines and thus hinders the integration

of audiovisual signals and external information sources. The asynchronism has

different causes with compact and detailed descriptions. Between audiovisual sig-

nals and compact descriptions, the asynchronism results from the use of different

temporal granularity in describing events. Also, the text time line may describe

happenings that are irrelevant to the events in video.

Causes of the asynchronism between detailed descriptions and audiovisual signals

are different. In a continuous match, e.g. soccer or hockey, human operator may

need some time before he/she can tell the type and outcome of an action or he/she

may anticipate a sure-fire action before it actually happens. This is illustrated
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in figures 3.9. In an intermittent match, e.g. American football, the video is

intermittent with timeouts (commercials, replays or narratives) between plays

whereas text is continuous on the match time line, as illustrated in Figure 3.10.

The difference in stamps of the same time instant is called offset.

The offset is random and could be large. Figure 3.11 shows distribution and some

statistics of offsets obtained from the game logs of 5 soccer matches. It suggests

that the value of offset is a random variable and does not follow a Gaussian

distribution, though the distribution looks like one. The absolute value of offset

could be as large as 50 seconds. The relative value (with respect to the duration of

the event) could be as large as 3, although most text entries overlap or adjoin with

the corresponding events. Random and non-trivial offsets make direct indexing

of event segments based on time stamps given in the external information sources

unreliable, especially when boundaries are considered. The problem requires more

sophisticated effort.

3.4 Common Operations

There are some common steps before each framework is performed. They include

parsing the video to units and timeout detection for American football. This

Section describes these steps.

3.4.1 The Processing Unit

The conventional processing unit for video indexing is the shot. However, shot

might not be a good choice for team sports video because the camera usually keeps

tracking the activity for a long time. A shot may contain too many evolutions

of actions to be called atomic. Another concern is the weak distinction between

intra-shot evolutions and gradual transitions between shots, resulting in unreliable

shot segmentation. Another option is a fixed length window [98]. However het-



60

erogeneousness in the video content makes it hard to find an appropriate length

in a principled way. Arbitrary cut-off may result in an evolution of event being

cut or unrelated content being grouped together.
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Figure 3.13: Parsing a team sports video to processing units

The chosen processing unit is the complete span of a camera motion. A more

detailed description of the processing unit is as follows. A unit is a continuous

video segment that is not intervened by camera cuts and conforms to one of

the following criteria: 1) during on-going play, a unit is the complete span of

a significant camera motion; 2) during video portions of on-going play with no
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significant camera motion, a unit is a continuous segment staying on the same field

zone; and 3) otherwise, a unit is a complete content-homogeneous segment, e.g.

a commercial or a replay. This choice ensures units having homogeneous content

with natural boundaries. Figure 3.13 shows the procedure for parsing a video into

units. The entities in thick-bounded boxes are generated units. Note that there

are many steps involving detection of semantic entities, which will be explained in

“3.4.2 Extraction of Features”. Processing units of semantic content (commercials,

narratives, replays, audience-scenes, zoom-ins and close-ups) are represented by their

semantic labels, whereas other units are represented by audiovisual features.

3.4.2 Extraction of Features

Most features used in both frameworks are semantic entities. The benefit of this

practice is to make the system more robust, to facilitate processing of high-level se-

mantics and to save training samples. This practice was also adopted by Duan [26]

and Lekha [18]. Extraction of these features and some basic processing steps are

described in the following paragraphs, mostly based on standard techniques. Note

that these features include those required in unit parsing steps.

• Camera cut detection. Change in chrominance and luminance exceeding a

threshold is regarded as a cut. The threshold is adapted by statistics of this

change in a fixed-length sliding window [36].

• Commercial detection. Commercials are detected by the presence of black

frames, high cut rate, still frames, and audio silence [52].

• Replay detection. Replays refer to the video segments showing activities

occurring a short while ago. In our experimental data, they are sandwiched

by logos, we detect them by detecting logos (see narrative detection).

• Narrative detection. Narratives refer to those segments that provide briefing

to viewers about the background information about the teams or players.

They are characterized by stereotypical scenes showing stationary commen-

tators or textual overlays. Since both logos and narratives are stereotypical
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scenes, they are detected by matching image sequences. Similarity between

images is obtained by CCV histograms with contribution from perceptually

similar colors [22]. Similarity between two image sequences is obtained by

longest common subsequence algorithm [18].

• Audience-scene detection. Audience scenes are signified by rich edges. Rich-

ness of edge is simulated from DCT coefficients in a way similar to [53].

• Focal distance categorization. Cameraman use arrangement of globals, zoom-

ins and close-ups to direct viewers’ attention. They are differentiated by

grass area ratio. An adaptive grass detector is in place by statistics of hues

from random frames.

• Camera motion estimation. Camera motion parameters are zoom, tilt and

pan factors. They build a projective transformation of which each pair of

intercoded macroblocks is an noisy sample. The factors are estimated by

regression [86]. After zoom, tilt and pan factors are obtained, the camera

motion pattern is quantized to a small discrete label set {pan-left, pan-right,

tilt-up, tilt-down, zoom-in, zoom-out, trivial}.

• Field zone categorization. Field zones are classified by näıve Bayes classifier

based on features of field region shape, region area, region corner position,

field line orientation and middle line position [6].

• Audio genre categorization. A series of SVM classifiers classifies each unit’s

audio content to one of these genres: whistle, cheering, speech, music, mu-

sic+speech, excited-speech and noise. The audio features used for the clas-

sification are: zero-crossing rate (ZCR), spectral power (SP), mel-frequency

cepstral coefficients (MFCC), linear prediction coefficient (LPC), short term

energy (STE), and linear prediction cepstral coefficients (LPCC).

The accuracy of commercial, replay, narrative, audience-scene, zoom-in and close-

up has a direct impact on the the accuracy of events. Their frame precision is in

the range of 0.71 ∼ 0.84 and frame recall in around 0.65 ∼ 0.85.
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3.4.3 Timeout Removal from American Football Video

Timeouts make the asynchronism between the audiovisual and text time lines be-

come larger as the match progresses. To make the integrated analysis possible,

timeouts need to be removed. Timeout and play are modeled by a HMM each and

are segmented by a hierarchical HMM. A similar approach was taken to segment

play and break in soccer([97]). The accuracy is satisfactory with frame-level pre-

cision of 82.6% and recall of 81.3% for play, thanks to timeout being signified by

commercials, replays and narratives. The detected plays are linked and linearly

scaled to the duration of a match (60 minutes). Note that the resultant video is

only an approximation of the actual match and offset still exists.

3.4.4 Criteria of Evaluation

To evaluate the quality of event detection, we consider both the correctness of

he event type being recognized as well as the accuracy in boundary. Hence in

this research, we choose frame precision and recall in evaluation. Segment-based

evaluation with tolerance like that used in [81] is not chosen because a suitable

tolerance is hard to find given the varying event durations.

3.5 Training and Test Data

Both frameworks use a common set of training and test data. Sources of the

experimental data are documented in Table 3.1. Some statistics are given in

Tables 3.2 and 3.3. All matches are in full length. Match reports and game logs

in soccer are obtained from www.soccernet.com; recaps and play-by-play reports

in American football are downloaded from www.nfl.com.
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When Where Teams Program TV net-
work

August
24, 2003

The Riverside Sta-
dium

Middlesbrough vs.
Arsenal

EPL ESPN

September
20, 2003

Molineux Stadium Wolverhampton vs.
Chelsea

EPL ESPN

Training September
21, 2003

Old Trafford Man Utd vs. Arsenal EPL ESPN

September
25, 2004

Villa Park Aston Villa vs. Crys-
tal Palace

EPL ESPN

September
25, 2004

White Hart Lane Tottenham vs. Man
Utd

EPL EPSN

November
8, 2003

Highbury Arsenal vs. Totten-
ham

EPL ESPN

Soccer November
9, 2003

Anfield Liverpool vs. Man
Utd

EPL ESPN

November
9, 2003

Stamford Bridge Chelsea vs. Newcas-
tle

EPL ESPN

Test December
7, 2003

St. Mary’s Sta-
dium

Southampton vs.
Charlton

EPL ESPN

December
13, 2003

Old Trafford Man Utd vs. Man
City

EPL ESPN

December
21, 2003

White Hart Lane Tottenham vs. Man
Utd

EPL ESPN

September
25, 2004

City of Manchester
Stadium

Man City vs. Arsenal EPL ESPN

September
26, 2004

Fratton Park Portsmouth vs. Ever-
ton

EPL ESPN

October
27, 2003

Sun Devil Stadium Miami Dolphins vs.
San Diego Chargers

NFL EPSN

November
2, 2003

Hubert H.
Humphrey
Metrodome

Green Bay Packers
vs. Minnesota
Vikings

NFL ESPN

Training September
26, 2004

Network Associates
Coliseum

Tampa Bay Bucca-
neers vs. Oakland
Raiders

NFL ESPN

October
4, 2004

M&T Bank Sta-
dium

Kansas City Chiefs
vs. Baltimore Ravens

NFL ESPN

American November
7, 2004

M&T Bank Sta-
dium

Cleveland Browns vs.
Baltimore Ravens

NFL ESPN

football November
14, 2004

Gillette Stadium Buffalo Bills vs. New
England Patriots

NFL ESPN

November
15, 2004

Texas Stadium Philadelphia Eagles
vs. Dallas Cowboys

NFL ESPN

Test November
21, 2004

Reliant Stadium Green Bay Packers
vs. Houston Texans

NFL ESPN

November
22, 2004

Arrowhead
Stadium

New England Patri-
ots vs. Kansas City
Chiefs

NFL ESPN

November
29, 2004

Lambeau Field St. Louis Rams vs.
Green Bay Packers

NFL ESPN

Table 3.1: Sources of the experimental data
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Training data Test data

Number of matches 5 8

Total duration 460 mins 785 mins

Number of goals 13 34

Number of saves 28 87

Number of shot-off-targets 62 124

Number of penalties 2 2

Number of corner-kicks 28 75

Number of free-kicks 17 31

Number of offsides 23 39

Number of substitutions 19 24

Number of yellow-cards 8 13

Number of red-cards 1 2

Table 3.2: Statistics of experimental data - soccer

Training data Test data

Number of matches 5 5

Total duration on match time line 308 mins 317 mins

Number of touchdowns 30 19

Number of conversions 30 19

Number of field-goals 14 16

Number of safeties 1 0

Number of punts 39 44

Number of punt-returns 23 20

Number of fumble-opponents 15 12

Number of interception 9 11

Number of touchbacks 7 4

Number of kickoffs 53 45

Number of fumbles-own 12 10

Number of incomplete-passes 12 7

Table 3.3: Statistics of experimental data - American football
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Chapter 4

THE LATE FUSION

FRAMEWORK

4.1 The Architecture of the Framework

The late fusion framework has three major modules (see Figure 4.1): (a) audiovi-

sual analysis, which processes the audiovisual signals, (b) text analysis, which pro-

cesses the external information sources, and (c) fusion, which combines outcomes

from the two analysis. The domain knowledge drives all of the three modules.

Compared to existing systems, the algorithms used in the late fusion framework

has the following novelties. First, the audiovisual analysis adopts a two-step

pipeline so that events can be detected locally after phases are segmented. Sec-

ond, the algorithms for processing compact or detailed descriptions are domain-

independent thus reusable. Third, three novel fusion schemes are proposed, which

are effective in fusing asynchronous items. Fourth, by making audiovisual and text

analysis independent, the system is extensible, i.e. it achieves stronger detection

capability given external information of increasing detail:

• With only audiovisual signals, the system achieves comparable detection

capability to state-of-the-art audiovisual-based systems.

• By incorporating compact descriptions, the system can ensure correct de-
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Figure 4.1: The late fusion framework.

tection of most important events, such as scorings, and those key events

that do not have consistent or distinctive audiovisual patterns, such as the

yellow-cards and substitutions in soccer matches.

• By utilizing detailed descriptions, the system can detect the full range of

events with their boundaries.

4.2 Audiovisual Analysis

Analysis on audiovisual signals generates a list of entries called video events, each

representing an event in terms of

video event := 〈start time, end time, event type〉 (4.1)
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Note that the audiovisual analysis only aims at detecting a subset of target event

types that have consistent and distinctive audiovisual patterns due to limitation

in capabilities. Audiovisual analysis has two steps: (a) global structure analysis,

which segments phases using a statistical learning method; and (b) localized event

classification, which identifies events locally using event-specific feature set and

algorithm. The use of divide-and-conquer pipeline minimizes the need for training

samples and particularly alleviates the data sparseness problem. It would con-

tribute to higher precision and recall in audiovisual-based event detection, and

ensure that our technique is able to detect a wide range of event types and deal

with full-length videos.

4.2.1 Global Structure Analysis

To segment the video sequence into phases, the global structure analysis uses a

two-layer hierarchical HMM (HHMM). The top layer of HHMM models inter-

phase transitions; and the bottom layer models the evolution in a phase. To

ensure the success of a learning-based approach, the judicious choice of features

is important. We select a set of features applicable to various domains, though

values of some features may be domain-specifci. They are extracted using the

techniques explained in “3.4.2 Extraction of Features”:

• Shot category. It categorizes a shot into one of these categories: commercial,

narrative, replay, audience-scene and on-going play.

• Focal distance. It categorizes a shot of on-going play into one of three types:

global, zoom-in and close-up. The arrangement of shots of different focal

distance conveys how the cameraman view the match’s progress.

• Canonical view. A canonical view is taken at a certain vintage position to

provide best coverage of a particular scene. It usually has strong correlation

with happenings in the match, e.g. a frontal view of the goalpost signifies a

field-goal or conversion in American football.

• Field zone. Change in field zone helps to reveal the direction of the advance.
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• Camera motion pattern. Panning and tilting help reveal the direction of the

advance. Also, zooming implies something of great interest, which may be

related to scoring attempts.

• Motion magnitude. Motion magnitude helps in differentiating break from

other phases. It is quantized to three levels - low, moderate, and intense.

q2
1

q3
1

q1
1

qn
1

A1,2
1 ...

q1,1
0

e1
0

q1,2
0

A’1,1

A1,2
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Figure 4.2: Global structure analysis using HHMM

The general topology of the two-layer HMM is given in Figure 4.2. Each node

qj
1(j = 1...n) at the top layer denotes a phase-level unit. It could represent all

instances of a phase type, e.g. a left-advance in soccer, or a group of instances

having a consistent audiovisual pattern, e.g. an advance starting with a return in

American football. The top-layer topology is ergodic, since domain knowledge says

in the most general case, a phase is free to transit into any other phase or remain

as it is. Under each top layer node, there is a number of states qj,k
0(j = 1..n, k =

1..m) representing evolution in this phase, plus an exit state ej
0, through which

the top layer node transits to another. The number of states m at the bottom layer
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is chosen from a number of candidate numbers that gives the best accuracy over

a validation set. The top- and bottom-layer HMM are trained separately using

Baum-Welch algorithm. The Viterbi path at the top layer indicates the phases

with boundaries.

4.2.2 Localized Event Classification

Following global structure analysis, phases conforming to the same temporal loca-

tion specifications are grouped. For example, a group of phases in soccer video is

advances which are sandwiched by two breaks. As a specification may host more

than one event type, every phase in this group need to undergo a series of classi-

fications to determine which event type (including null) it hosts. Note that this

operation implicitly models the sequential relationships among the event types in

the same group as exclusive of one another. The series of classifications are based

on audiovisual patterns of the possible event types, either in a heuristic or in a

learning-based method. Figure 4.3 illustrates this process.

Event types’ 

temporal location 

specifications

Audiovisual 

patterns of event 

types

Phases

Group n of 

phases

Group 1 of 

phases

Event 1 Event 2 Event m

Grouping

Series 1 of 

classification steps

Series n of 

classification steps

Figure 4.3: Localized event classification
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4.3 Text Analysis

Text analysis aims to generate a list of entries called text events, each representing

an event in terms of

text event := 〈start time, end time, event type〉 (4.2)

A piece of description needs to be classified as compact or detailed before it can be

processed as the two forms require different techniques. A SVM classifier is used

to perform the classification based on the following set of features: (a) number

of paragraphs (PG), (b) number of time entities (TE), and (c) number of player

names (PN), with TE and PN normalized by the length of the article. Experiments

show the differentiation of compact and detailed descriptions is reliable with the

accuracy of over 98%.

4.3.1 Processing of Compact Descriptions

Compact descriptions such as the match reports in soccer and recaps in Ameri-

can football are in free text form, and cover only important events of interest to

general readers. Due to the difficulty in processing free-form text with missing

information, the list of events detected would probably be error-prone and incom-

plete. We tackle this as an information extraction (IE) problem using rule-based

IE techniques.

Before the IE process starts, some domain knowledge needs to be put in place,

namely, player database and game rules. How to establish domain knowledge was

explained in “3.2 Domain Knowledge Used in Both Frameworks”. The IE process

has four steps:

1. We induce from the training samples syntactic rules indicative of times and

events using the GRID technique [96].
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2. We identify the time entities using the rules.

3. A window of terms [-x, +y] around each time entity is picked. Usually, x

and y are both set to be one sentence.

4. The window of terms is analyzed against all rules to see if it satisfies any

rule indicative of an event type.

When an event is found, its temporal boundaries are set to be one minute be-

fore and after the time entity, in view that the compact descriptions only give

coarse timing information. Usually, one article would only mention a handful of

important events; it is thus advisable to process a few (5 ∼ 7) articles. In case

of multiple events detected in the same term window, all are kept until the fusion

module makes a decision with the help of audiovisual cues.

4.3.2 Processing of Detailed Descriptions

Detailed descriptions of team sport matches are usually composed of entries. Each

entry roughly corresponds to an action, giving information on the time, action

type, the player who performs it, and outcome of the action. Descriptions in some

games may also give position information, e.g. in American football play-by-play

reports. Based on information extracted from entries as well as inter-entry context,

each entry is transformed into a node

φ := 〈action type, outcome, {pre tran}, {post tran}〉 (4.3)

which is the composing unit of event’s semantic composition model (Figure 3.2).

It is thus logical to transform the whole detailed description to a sequence of

L = φ1φ2...φL and detect events from L by model checking. Note that entries

of a detailed description could be in a field-delimited format, such as game logs

in soccer (Figure 3.6), or in free text, such as play-by-play reports in American

football (Figure 3.7). The two formats are handled differently when extracting

information from entries. For the former, it is convenient to check keywords, as

fields are usually filled by standard terms; whereas for the latter, rule-based IE
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techniques similar to those described in 4.3.1 are employed. Having a complete

sequence of L = φ1φ2...φL, occurrences of a particular event type can be identified

by checking all subsequences against the model (Figure 3.2). A more computation-

efficient alternative is to perform model checking around nodes that match the key

actions. From such a node, we keep crawling and analyzing preceding and following

nodes as long as they satisfy the model. The last nodes leading to INIT and END

respectively signal the detection of an event as well as mark the event’s first and

last actions. The event’s starting boundary is taken to be the first action’s recorded

time, and the ending boundary is estimated to be the last action’s recorded time

plus the average duration of this action derived from training data. Note that

events’ boundaries obtained in this way are only approximate. This is because:

(a) the time given in an entry is usually not accurate; and (b) the duration of the

last action is only an estimate. Identification of accurate boundaries requires the

audiovisual cues.

4.4 Fusion of Video and Text Events

Audiovisual analysis is accurate in pinning events boundaries while text analysis

is accurate in identifying event type. It is expected that fusion will take advantage

of both strengths. We investigate three fusion schemes that work in the late fusion

framework. They differ in the way offsets are modeled. The rule-based scheme

assumes that offsets cannot be numerically modeled; whereas aggregation models

offsets to follow a probabilistic distribution; and Bayesian inference models them

to be binary.

4.4.1 The Rule-Based Scheme

Following the guideline of “identifying the pair of items before fusing them”, the

rule-based scheme is accomplished in three steps.
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Aligning text events and phases

Given that there is no modeling of offsets, the alignment is sought by maximizing

the number of matches between text events and phases. Here a match between a

text event and a phase means that the phase conforms to the temporal location

specification of the text event (e.g., an advance followed by a break conforms to

goal ’s temporal location specification), are within a temporal range, and they occur

in the same sequential temporal order. As text events may overlap temporally,

such as a corner-kick and a resulting goal in soccer, and multiple text events may

occur in the same phase, such as a punt-return and a touchdown respectively in

the beginning and at the end of an advance in American football, a phase may

match multiple text events. The maximization problem is similar to the Longest

Common Subsequence (LCS) matching problem and can be solved by dynamic

programming technique.

Determining event type

This step resolves the conflicts in event type based on video and text events’

comparative accuracy. Pseudo code is given in procedure 1. If the fused event type

is suggested only by text analysis, we proceed with additional audiovisual analysis

to find the event’s location and temporal boundaries. During this process, some

distinctive characteristics in the events’ audiovisual patterns are utilized. Note

that these characteristics alone may not be discriminative enough to differentiate

between event types. An example of these audiovisual characteristics is the hard-

cut between an advance and a break in the audiovisual patterns of goal, save, and

shot-off-target.

Determining event boundaries

After video and text events agree on the event type, boundaries of the fused event

are determined as those of the video event.
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Algorithm 1 Pseudo-code for determining event type.

1: for phase such that phase is aligned to a textevent do
2: videoevent ← result of audiovisual analysis in phase
3: if videoevent.type == textevent.type then
4: event.type ← videoevent.type
5: else if F1 of audiovisual analysis on videoevent.type > F1 of text analysis

on textevent.type then
6: event.type ← videoevent.type
7: else
8: event.type ← textevent.type
9: find videoevent such that videoevent.type == event.type

10: end if
11: end for
12: for phase such that [phase] is aligned to no textevent do
13: videoevent ← result of audiovisual analysis in phase
14: if videoevent.type 6= null then
15: if text analysis is on detailed description then
16: event.type ← null
17: else
18: event.type ← videoevent.type
19: end if
20: else
21: continue
22: end if
23: end for
24: for textevent such that textevent is aligned to no phase do
25: discard textevent
26: end for
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4.4.2 Aggregation

As discussed earlier on, either video or text time line is intervened with offsets.

For soccer, the text time line is intervened with offsets and video time line is not;

but for American football, the reverse is true. For simplicity, we use offset time

line/analysis/event to respectively refer to the time line intervened with offsets,

analysis conducted on the time line, and the detected events. Similarly we use

non-offset time line/analysis/event to respectively refer to their corresponding

counterparts associated with accurate time line.

In general, the detection results of a particular event type can be depicted by a

likelihood curve on a time line. The idea of aggregation is for the likelihood curve

given by the offset analysis to migrate from the offset time line to the accurate

time line. By doing this, the two likelihood curves given respectively by the offset

and non-offset analysis are synchronized and can be combined. The whole process

is carried out in three steps as explained in the following.

1. Modeling the offset distributions for start/end of events. This is similar

to that of Yang et al.[107] that modeled the probability of a face occurring along

the time line with respect to when the name is mentioned.

2. Computing the likelihoods of the offset event given by the two analysis

on the accurate time line. Based on the two distributions showing probabilistically

when the offset event starts or ends on the accurate time line, we calculate the

probability of any time point t on the accurate time line being in the span of the

offset event.

Pin(t) =

∫ t

−∞
Ds(x) dx ·

∫ ∞

t

De(x) dx (4.4)

where Ds(x) and De(x) are distributions of the offset event’s start and end on

the accurate time line, respectively. Suppose offset event has event type i, the

likelihood of event type i at time point t seen by the offset analysis on the accurate

time line is:

Pi−O(t) = CiPin(t) (4.5)

where Ci reflects the confidence of the offset analysis on event type i. We take it

to be the precision of the offset analysis on i over the training set. Suppose event
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type j is detected by the non-offset analysis at time point t, the likelihood of event

type i at time point t seen by non-offset analysis is:

Pi−N(t) = Confusioni,j (4.6)

where Confusioni,j is the element of confusion matrix that indicates the percent-

age of type i samples out of all samples detected to be of type j. Note that the

confusion matrix includes the null event type.

3. Combining the likelihoods of the offset and non-offset analysis. Let

Pi−N(t), Pi−O(t) and Pi(t) denote the likelihoods seen by non-offset analysis, off-

set analysis, and the fused likelihood on the accurate time line. Then Pi(t) is

computed by

Pi(t) = wPi−N(t) + (1− w)Pi−O(t) (4.7)

If Pi(t) is greater than a threshold thr, the fused event at time point t on the accu-

rate time line is of type i. We find the optimal parameters (w, thr) by optimizing

the detection accuracy over a validation set using the gradient descent method.

4.4.3 Bayesian Inference

Different from aggregation, this scheme does not model the offsets in probabilistic

distribution. Instead, it only differentiates if the offset is within a maximum

allowed range. Unless specified, the following description is for a particular event

type p. Regarding whether p is present at time point t on the accurate time line,

there is a binary hypotheses: H0 - not-present, and H1 - present. The maximum

likelihood hypothesis is

arg max
i∈{0,1}

P (xN , xO | Hi) · P (Hi) (4.8)

where xO and xN are two variables derived from offset and non-offset analysis,

respectively. Usually, xO refers to whether p is detected in the maximum allowed

range, and xN refers to the event type of the detection by non-offset analysis

(it could be different from p) at time t. Since xO and xN are outcomes of two

independent analysis, we have:

arg max
i∈{0,1}

P (xN , xO | Hi) ·P (Hi) = arg max
i∈{0,1}

P (xN | Hi) ·P (xO | Hi) ·P (Hi) (4.9)
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where P (Hi), P (xN | Hi) and P (xO | Hi) are obtained from the training set.

4.5 Implementation of the Late Fusion Frame-

work on Soccer And American Football Video

We implement the framework on soccer and American football videos to test its

portability to different domains.

4.5.1 Implementation on Soccer Video

Domain knowledge

Soccer’s phases and events were listed Chapter 3. Event types in soccer are

grouped according to temporal location specifications:

• goal/save/shot-off-target/ offside - in an advance which is followed by a break,

• penalty/corner-kick/free-kick - in an advance, which is sandwiched by two

breaks, and if an advance precedes the first break, the two advances should

be in the same direction, and

• yellow-card/red-card/substitution - in a break in the midst of the match.

In the semantic composition models of these event types, actions are modeled

by a definite set of action types and outcomes. Action types and outcomes are

enumerated as follows.

action-type ∈ { dribble, pass, cross, shoot, goal-kick, block, clear, catch, throw,

substitute, parry, kick-at-penalty-spot, kick-at-corner,

kick-at-other-spots, unsportsmanlike-conduct} (4.10)
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outcome ∈ { success-catch, failed-catch, success-block, failed-block, success-clear,

failed-clear, offside, ball-over-bar, ball-out-of-goal-line,

ball-out-of-sideline, ball-inbounds, ball-on-target, ball-hit-woodwork,

scoring, players-in-attacking-third, players-in-defending-third,

foul-declaration, yellow-card-issuance, red-card-issuance,

open-play, play-stop} (4.11)

Soccer video has one canonical view - {behind-goal-post}, which captures activities

close to the goalpost from behind the goal net.

Domain-dependent design and processing

The subset of event types detectable by audiovisual analysis is

{goal, attempt-on-goal1, penalty, corner-kick, free-kick}
while all event types are detectable by text analysis. The top layer of the HHMM

for global structure analysis has four nodes, each corresponding to a phase. After

experimenting with different numbers of states ranging from 2 to 9, we found that

3 states at the bottom layer give the best accuracy. Based on temporal location

specifications, events detectable by audiovisual analysis occur in two groups of

phases. One is “an advance which is followed by a break”, which may contain a

goal or an attempt-on-goal ; and the other is “an advance which is sandwiched by

two breaks”, which may contain a penalty, corner-kick, or free-kick. The series of

classifications for the two groups of phases are shown in Tables 4.1 and 4.2.

4.5.2 Implementation on American Football Video

Domain knowledge

American football’s phases are listed in “3.2 Domain Knowledge Used in Both

Frameworks”. There is a temporal unit at a level lower than phase - play. A

play is made up of a continuous segment of match; it reflects the intermittence of

1Attempt-on-goal is the union of save and shot-off-target
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Step Purpose Input Outcome Algorithm Features
(a) To differenti-

ate goals from
non-scoring
(union of
attempt-on-
goals and
none-of-the-
group)

Advances
satisfying tem-
poral location
specifications

Goals By rule: No ad-
vance between
this advance
and subsequent
presence of goal
videotext.

(a)Presence of
goal videotext.

(b) To differenti-
ate attempts-
on-goal from
none-of-the-
group

Advances
satisfying tem-
poral location
specifications,
goals excluded

Attempts-
on-goals

By rule: high
excitement level
in commentators
speech during
the advance
with close-ups
following the
advance

(a) Excitement
level; (b) Pres-
ence of sub-
sequent close-
ups.

Table 4.1: Series of classifications on group I phases (soccer)

Step Purpose Input Outcome Algori-
thm

Features

(a) To dif-
ferentiate
placed-kicksa

from none-of-
the-group

Advances
satisfying
temporal
location
specifica-
tions

Placed-
kicks

HMM (a) Focal distance; (b) Unit
duration; (c) Motion activity;
(d) Camera motion pattern.

(b) To differen-
tiate among
penalty,
corner-kick
and free-kick

Placed-
kicks

Penalties,
corner-
kicks and
free-kicks

Multi-
class
SVM

(a) Distance of the overall
camera motion along the fly-
ing of the ball; (b) Angle
of the overall camera motion
along the flying of the ball;
(c)-(e) Lengths of the three
longest field lines before the
flying of the ball; (f)-(h) An-
gles of the three longest field
lines before the flying of the
ball; (i) Duration of the zoom-
in shots in the preceding break
before the flying of the ball.

Table 4.2: Series of classifications on group II phases (soccer).

aPlaced-kick is the union of penalty, corner-kick and free-kick.
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the American football match. As events are usually bound in plays, play specifies

temporal locations of event types best:

• touchdown - in the second last play of an advance, which is followed by a

conversion as the last play;

• conversion - in the last play of an advance, which is preceded by a touchdown

as the second last play;

• field-goal/safety/punt/ fumble-opponent/interception/touchback - in the last

play of an advance;

• punt-return/kickoff/safety - in the first play of an advance;

• fumble-own/incomplete-pass - in any play of an advance.

Semantic composition models of event types are composed of action types and

outcomes.

action-type ∈ { tackle, pass, recover, forward-progress,

backward-progress, kick, punt-kick, snap} (4.12)

outcome ∈ { ball-passed, ball-intercepted, ball-out-of-end-line, return,

ball-dropped, ball-recovered, success-tackle, ball-out-of-bounds,

failed-tackle, scoring-touchdown, scoring-field-goal} (4.13)

American football has three canonical views: {facing-goal-post, snap-play, kick-and-dash}.
Facing-goal-post captures a player from behind in the background of goalpost; snap-

play shows an on-going play started from a snap scene; and kick-and-run depicts

a global view of the field when a long kick is made and both teams start to run

towards each other.
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Step Purpose Input Outcome Algorithm Features
(a) To differentiate

among conver-
sion, field-goal ,
safety and non-
scoring (union of
punt and none-of-
the-group)

Last
plays
of all
ad-
vances

conversion,
field-goal,
safety
and non-
scoring

By rule:
particu-
lar score
indicates
particular
event type

(a) Score update by
videotext.

(b) To differentiate
between punt and
none-of-the-group

Non-
scorings

Punt and
none-of-
the-group

SVM (a) Distance of the
overall camera motion
during the play; (b)
Angle of the overall
camera motion during
the play; (c) Presence
of canonical view of
kick-and-run.

Table 4.3: Series of classifications on group I plays (American football).

Step Purpose Input Outcome Algorithm Features
(a) To differenti-

ate between
turnover and
non-of-the-group

First
plays
of all
ad-
vances

return
and
non-of-
the-group

SVM (a)-(b) Number of
left/right pans dur-
ing the play; (c)-(d)
Overall distance of the
camera motion in the
left/right direction.

Table 4.4: Series of classifications on group II plays (American football).

Domain-dependent design and processing

The subset of event types detectable by audiovisual analysis is

{touchdown, conversion, field-goal, safety, punt, turnover2}
while all event types are detectable by text analysis. In global structure analysis,

the top layer HMM has four nodes, with two representing advances in the same

direction starting with a return and without a return, respectively. Experiments

with different numbers of states ranging from 2 to 9 show that 3 states at the

bottom layer give the best accuracy. In audiovisual analysis, events are bound in

plays. Play grouping is similar to phase grouping for soccer video. Two groups of

2Turnover is the union of punt-return and kickoff.
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plays are formed:

• conversion/field-goal/punt/safety - the last play of an advance;

• turnover - the first play of an advance.

Each group undergoes a series of classifications as Tables 4.3 and 4.4 show. Note

that as touchdown and conversion always come together, they are detected at one

go; and they are identified by particular bounding plays.

4.6 Evaluation of the Late Fusion Framework

We evaluate the global structure analysis, audiovisual and text analysis, and event

detection after fusion. Also we compare performance of various fusion schemes

under different conditions in order to find the best fusion scheme.

4.6.1 Evaluation of Phase Segmentation

Tables 4.5, 4.6, 4.7 and 4.8 show accuracy of detected phases of soccer and Amer-

ican football videos. Phases are sequences of frames bearing a label and thus we

evaluate both phase-level and frame-level accuracy. Phase-level accuracy measures

how many phases are missing or falsely detected giving a sketchy picture without

considering boundaries. Frame-level accuracy measures how close detected bound-

aries are to the ground truth as well as enables us to look into misclassifications.

Tables 4.5 and 4.7 show that misses and false positives are satisfactory for both

games. The error rates are around 0.05 ∼ 0.09 for advance, 0.06 ∼ 0.08 for break,

and 0.10 ∼ 0.11 for draw of both games. From Tables 4.6 and 4.8, we notice that

misclassification between any pair of phase types is not trivial, which suggests that

inaccurate boundaries are common. We also notice that: (a) frames belonging to

advances are more likely to be misclassified as draw than as break ; (b) frames
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Ground truth Misses False positives

Left-advance 976 84 69

Right-advance 943 79 52

Draw 465 47 49

Break 311 24 18

Table 4.5: Misses and false positives of soccer phases by the late fusion framework.

Ground Detected Recall F1

truth (a) (b) (c) (d)

Left-advance (a) 266530 217755 9316 21707 17752 .817 .813

Right-advance (b) 246028 6768 201742 20756 16762 .820 .802

Draw (c) 255119 19865 16254 201278 17722 .789 .781

Break (d) 409484 24498 29944 16880 338162 .826 .846

Detected total 1177161 268886 257256 260621 390398 - -

Precision - .810 .784 .772 .866 - -

Weighted F1a .815

Table 4.6: Frame-level accuracy of soccer phases by the late fusion framework.

aBased on items whose F1 values are available. Weighted according to frame frequency in
ground truth. This applies to all similar scenarios wherein weighted F1 is calculated.

Ground truth Misses False positives

Left-advance 63 3 4

Right-advance 63 5 5

Table 4.7: Misses and false positives of American football phases by the late fusion
framework.

Total in ground
truth

Left-
advance

Right-
advance

Other Recall F1

Left-advance 201935 174535 8205 19195 .864 .852

Right-advance 273279 12081 233039 28159 .853 .852

Other - 21257 32794 - - -

Detected - 207873 274038 - - -

Precision - .840 .850 - - -

Weighted F1 .852

Table 4.8: Frame-level accuracy of American football phases by the late fusion
framework
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belonging to break frames are more likely to be misclassified as advance than as

draw ; and (c) the misclassification between the opposite advances is significantly

lower than the average.

The results suggest that:

• The good accuracy may be attributed to three factors. First, the patterns

of alternating advances in opposite directions are distinct and are suitable

to use as a basis to analyze the structure of team sports videos. Second,

the camera motion pattern, motion magnitude and field zone are effective

in differentiating in-play from out-of-play and advances in different direc-

tions. Third, the hierarchical HMM is effective in segmenting concatenated

sequences characterized by different audiovisual evolution.

• Though audiovisual analysis is in general effective for phase segmentation,

the accuracy varies and depends on the distinctiveness and consistency of

audiovisual appearance of the phase type. The advance has consistent cam-

era motions while the break has replay logos. They are more distinct than

draw and therefore they achieve better accuracy.

• Most errors in phase segmentation come from errors in feature extraction

or inability of the audiovisual analysis to handle subtle differences between

phase types. The features refer to the shooting or editing artifacts, such as

camera motion, replay logos and close-ups (see unit parsing steps in 3.4.2).

False extraction of them would result in missing or runaway breaks or falsely

detected advances. Subtle difference between advance and draw in motion

magnitude and field zone account for most of the misclassifications between

them.

• Generally speaking, phase boundaries are inaccurate with a probabilistic al-

gorithm such as hierarchical HMM. This is particularly true with gradual

transitions such as between advance and draw. Fortunately, phase bound-

aries are not crucial for the purposes of localizing video events and aligning

phases to text events.
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As we know from the domain knowledge, the advance and break are more im-

portant than the draw because events’ temporal locations are mostly specified

with them. Therefore, we should minimize missing or falsely detected advances or

breaks.

4.6.2 Evaluation of Event Detection By Separate Audio-

visual/Text Analysis

Evaluation of event detection by audiovisual analysis

Tables 4.9 and 4.10 give the confusion matrices of soccer and American football

events, respectively, by audiovisual analysis only. They show that in general the

accuracy is not satisfactory. A small number of event types have relatively high

precision or recall values - the goal and penalty in soccer have recall of above 0.8,

and touchdown in American football has precision of above 0.8, too. However, the

majority of event types have recall and precision in the range of 0.5 ∼ 0.7. Note

that that misclassified frames are all associated with missing or falsely detected

events because video events have no boundary issue.

Looking into the error cases, we make the following observations.

• A significant number of errors are related to erroneous feature extraction. Er-

rors may exist in videotext, audio genre and camera motion pattern. Errors

in videotext would result in misclassification of goal, touchdown/conversion,

field-goal and punt ; errors in audio genre may cause errors in attempt-on-

goals ; and errors in camera motion pattern may result in misclassification

among corner-kick, free-kick and penalty as well as errors in turnover.

• When features are correctly extracted, the accuracy of an event type depends

mainly on how distinct its audiovisual patterns are and how well the classifier

captures this distinction. Some event types may have distinctive audiovisual

patterns, such as goals with scoring videotext and turnovers with a shift in

camera motion. However, many event types only have subtle differences, e.g.
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Ground Detected Recall F1

Truth (a) (b) (c) (d) (e) (f)

Goal (a) 17440 14726 853 0 0 0 1861 .844 .776

Attempt-on-goal (b) 65978 0 42303 0 5344 1242 17089 .641 .610

Penalty (c) 1532 0 0 1247 0 0 285 .814 .461

Corner-kick (d) 28627 0 1760 449 18040 5434 2944 .630 .636

Free-kick (e) 21640 0 975 2182 2704 11803 3976 .545 .573

Other (f) - 5767 26776 0 1989 1067 - - -

Detected total - 20493 72667 3878 28077 19546 - - -

Precision - .719 .582 .322 .643 .604 - - -

Weighted F1 .630

Table 4.9: Accuracy of soccer events by audiovisual analysis only.

Ground Detected Recall F1

truth (a) (b) (c) (d) (e) (f) (g)

Touchdown (a) 10426 7228 336 0 863 542 0 1457 .693 .745

Conversion (b) 3094 289 1673 711 0 175 0 246 .541 .537

Field-goal (c) 2937 0 314 1721 0 317 0 585 .586 .569

Safety (d) 0 - - - - - - - - -

Punt (e) 14629 0 382 238 0 7807 4601 1601 .534 .563

Turnover (f) 36832 0 139 0 0 2691 28425 5577 .772 .719

Other (g) - 1456 294 439 546 1594 9215 - - -

Detected total 67918 8973 3138 3109 1409 13126 42241 - - -

Precision - .806 .533 554 - .595 .673 - - -

Weighted F1 .675

Table 4.10: Accuracy of American football events by audiovisual analysis only.
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free-kick, corner-kick and penalty. It is hard for audiovisual-based classifiers

to grasp such subtle differences.

• Audiovisual analysis may effectively capture distinct audiovisual patterns

but may not distinguish different semantics associated to the same patterns.

For example, audiovisual analysis cannot distinguish punt-return and kickoff,

but can detect them as a whole (turnover). Besides, some event types have

no distinct or consistent audiovisual patterns and is beyond the capability

of audiovisual analysis, such as substitution.

These above discussion suggests that despite constraint from event localization,

audiovisual analysis cannot achieve satisfactory accuracy because of its limited

capabilities in capturing semantics.

Evaluation of event detection by text analysis

Tables 4.11 and 4.12 show how many events are correctly detected by text analysis

based on detailed descriptions. An event is considered correct if it appears in the

video within a temporal range (1 minute for soccer and 30 seconds for American

football) around the time given by the text. The Tables show that text analysis

can detect the full range of event types and is accurate in terms of misses and false

positives. For soccer, fewer than half of the event types (4 out of 10) have misses or

false positives, and the ratios of misses and false positives are all under or around

10% except that of the false positives of free-kick. Misses and false positives across

all event types amount to 22 as compared to a total of 431 instances in the ground

truth. For American football, a marginal number of event types (1 out of 12) have

misses or false positives. There is only 1 miss and 0 false positive for a total of

207 events in the ground truth. Although text analysis correctly indicates most

events, the frame-level accuracy based on the time stamps given in the text is

poor, with the recall and precision in the range of 0.3 ∼ 0.5.

We identify the error causes of text events as follows.
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Ground truth Misses False positives

Goal 34 0 0

Save 87 2 1

Shot-off-target 124 5 1

Penalty 2 0 0

Corner-kick 75 0 0

Free-kick 31 0 9

Offside 39 0 4

Substitution 24 0 0

Yellow-card 13 0 0

Red-card 2 0 0

Table 4.11: Misses and false positives of soccer events by text analysis.

Ground truth Misses False positives

Touchdown 19 0 0

Conversion 19 0 0

Field-goal 16 0 0

Punt 44 0 0

Punt-return 20 0 0

Fumble-opponent 12 0 0

Interception 11 0 0

Touchback 4 0 0

Kickoff 45 0 0

Safety 0 0 0

Fumble-own 10 0 0

Incomplete-pass 7 1 0

Table 4.12: Misses and false positives of American football events by text analysis.



90

• Occasional human errors in the logging of events in detailed descriptions

would result in misses or falsely detected events. Such logging errors include

both missing and false entries. Such errors account for all missing and falsely

detected events of types save and shot-off-target.

• Inconsistency between the ground truth and the game rule results in other

falsely detected events. The ground truth and the game rule may have

different definitions on some event types. A typical example is free-kick in

soccer. Free-kicks made in the middle or defending side of the field are

considered as free-kicks according to the game rule. However, they are not

regarded as positive instances in the ground truth. This accounts for all the

falsely detected free-kicks. Another scenario of inconsistency between the

ground truth and the game rule is when the camera fails to follow the match

closely. For example, the camera may fail to capture offsides whereas they

are logged.

• Very rarely, the text analysis fails to identify the event because of occasional

inconsistency in phrasing. This accounts for the missing incomplete-pass.

From the results we derive these observations.

• Text is rather complete, accurate and consistent and therefore is a reliable

source of information that indicates events.

• As textual description of each event type is rather consistent in the use

of terms/phrases and they match to the unique semantic composition well,

thus they tend to be correctly classified, even though different semantic

compositions may share phrases.

• Despite its effectiveness in indicating events, text analysis does a poor job

in pinning event boundaries. Most detected events would be approximately

half the duration off the ground truth. And a significant number (around

10%) of detections are totally disjoint from the ground truth. The poor

frame-level accuracy is caused by the large offsets in soccer and imperfect
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Rule-based Aggregation Bayesian inference

Recall Precision F1 Recall Precision F1 Recall Precision F1

Goal .923 .913 .918 .756 .821 .787 .884 .876 .880

Save .834 .828 .831 .598 .794 .682 .777 .757 .767

Shot-off-target .831 .821 .826 .573 .659 .613 .752 .734 .743

Penalty .914 .922 .918 .862 .768 .812 .820 .853 .836

Corner-kick .817 .805 .811 .439 .679 .533 .756 .708 .731

Free-kick .958 .640 .767 .698 .625 .659 .743 .735 .739

Table 4.13: Comparing accuracy of soccer events by various fusion schemes.

timeout removal in American football. The underlying fact is that text is

clueless about audiovisual evolution of events.

4.6.3 Comparison among Fusion Schemes of Audiovisual

and Detailed Text Analysis

We would like to compare the fusion schemes to find the most effective one in

tackling the asynchronism problem. We will first look at the accuracy of different

fusion schemes side by side in order to acquire a general picture, and then we will

look into individual schemes regarding their particular strengths or weaknesses.

Table 4.13 compares the performance of each fusion schemes on soccer with de-

tailed text. As aggregation and Bayesian inference only support fusion of audiovisual-

detectable event types, the comparison is restricted to this subset. We observe that

the rule-based scheme consistently achieves the best performance, with aggrega-

tion being the worst, while Bayesian inference comes in between.

Aggregation has lower accuracy than the rule-based scheme probably because it

is sensitive to the diversity of offsets. When the diversity is large, there is a large

overlap between the distributions describing when the event starts and ends. In

this case, the probability Pin(t) (see Equation 4.4) is small and keeps the combined
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probability Pi(t) small (see Equation 4.7). Consequently, it becomes difficult to

distinguish positive and negative instances.

To study the impact of diversity on the performance of different schemes, we

conduct experiments with varying diversity. The study is between aggregation

and Bayesian inference because the rule-based fusion scheme is independent from

magnitude of offsets. To measure diversity, we define θ = R/S for each event type,

where R is the range of offset and S is the average temporal span of the event

type. We can vary the diversity by varying θ and keep text events proportionally

positioned. The experimental set-up is described as follows. We manipulate the

range of offsets by putting the text events at various temporal distances away from

the actual occurrence while keeping them proportionally positioned and the span of

events unchanged. For Bayesian inference, the maximum allowable range of offsets

is kept updated. We apply this manipulation to all occurrences of all event types.

In the aggregation scheme, w is kept constant, and there is an optimal threshold

thr for each θ. Figure 4.4 depicts how the optimal threshold, precision/recall rates

of aggregation, and precision/recall rates of Bayesian inference, change in response

to θ.

We can see from Figure 4.4 that as θ grows, the diversity of offset becomes larger,

both the accuracy of aggregation and Bayesian inference declines and that of ag-

gregation declines at a faster rate. The rapidly falling optimal threshold suggests

that positive and negative instances become increasingly difficult to distinguish

when the distribution of offsets get flatter (more diverse) and the accuracy dete-

riorates rapidly. On the other hand, although the accuracy of Bayesian inference

also declines, the rate is mild; and for the range of θ ≤ 3 which most offsets

fall under, the accuracy maintains well. This suggests that aggregation is more

sensitive to the diversity of offsets than Bayesian inference is.

Next, we focus on Bayesian inference. Table 4.13 shows that generally preci-

sion and recall of Bayesian inference are both poorer than those of the rule-based
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Figure 4.4: Sensitivity of performance of aggregation and Bayesian inference to θ

scheme. The difference is significant in precision of corner-kick and shot-off-target

and in recall of save. Poorer recall and precision may both be related to the max-

imum allowable ranges of offsets. As for precision, when the maximum allowable

ranges associated with multiple different text events overlap and a video event falls

into this overlap, the video event could lead to detection of multiple events, and

some of them could be false positives. This explains why event types with large

maximum allowable ranges such as corner-kick and shot-off-target suffer greater

loss in precision than other types. Large maximum allowable range may also

lead to loss in recall, especially when the event duration is short. The smaller

is the ratio of event duration over the maximum allowable range, the stronger

is P (xT = 1|H0), and the weaker is the evidence from the text event. When

the ratio gets smaller than a critical point (determined by ratio of P (xAV |H1)

and P (xAV |H0)), the positive hypothesis (H1) will lose to the negative hypothesis

(H0) and the event would be missing. When the maximum allowable range is set

universal for all event types, the event types with shorter durations would suffer

more, such as save. The negative effect of large maximum allowable range explains
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the decline of precision and recall of Bayesian inference in Figure 4.4.

The comparison of the fusion schemes may suggest the followings. First, aggre-

gation is sensitive to high diversity in offsets and thus is not a reliable choice.

Bayesian inference has comparable accuracy to rule-based schemes if most offsets

are in the normal range (θ ≤ 3). However, the accuracy of Bayesian inference

will suffer when the maximum allowable range becomes large. Bayesian inference

has another major drawback, that it is restricted to audiovisual-detectable event

types. Note that this drawback is shared by aggregation, too. Second, from the

domain modeling point of view, Bayesian inference has poorer performance than

the rule-based scheme because Bayesian inference is less specific in the modeling

of domain knowledge than the rule-based scheme is: temporal correspondence be-

tween video and text events is weaker; evidence from text event is weaker; and

knowledge about phase is not used. Third, the rule-based scheme is the best-

performing scheme among the three. Its good performance relies on two factors:

accurate and complete detection of text events and good structural analysis. The

results of phases and text events turn out to meet the requirements. These two

factors ensure quality alignment of phases and text events, which in turn ensures

accuracy of the fused events.

4.6.4 Evaluation of the Overall Framework

We test the performance of overall framework on soccer and American football and

compare the use of compact and detailed descriptions, respectively. We choose

the rule-based scheme as it performs the best and supports a wider range of event

types.

For integrated analysis of audiovisual signals and compact descriptions (see Tables

4.14), we derive the following observations:

• Incorporation of compact descriptions results in marginal improvement in

accuracy. This may be because the compact descriptions mentions only a

few events, and does not provide substantial help in recovering events missing
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Audiovisual only Audiovisual + match reports Audiovisual + game log

Recall Precision F1 Recall Precision F1 Recall Precision F1

Goal .795 .592 .679 .894 .892 .893 .923 .913 .918

Save .487 .498 .492 .525 .508 .516 .834 .828 .831

Shot-off-target .831 .821 .826

Penalty .911 .332 .487 .892 .929 .910 .914 .922 .918

Corner-kick .569 .686 .622 .539 .698 .608 .817 .805 .811

Free-kick .475 .382 .423 .531 .416 .467 .958 .640 .767

Offside 0 - - 0 - - .842 .795 .818

Substitution 0 - - .207 .913 .337 .831 .926 .876

Yellow-card 0 - - .354 .519 .421 .904 .926 .915

Red-card 0 - - .901 .919 .910 .899 .915 .907

Weighted F1 .533 .532 .842

Table 4.14: Comparing accuracy of soccer events by rule-based fusion with differ-
ent textual inputs.

from audiovisual analysis. Furthermore, unreliable analysis of free form text

may bring in false positive events.

• Compact descriptions helps in detecting some subtle events which cannot be

detected by audiovisual analysis, such as yellow-card/red-card, though the

detection of these event types is often incomplete. When these events are

detected, their boundaries are usually dependable, that is why frame-level

precision of substitution, yellow-card and red-card is high.

• Compact descriptions helps in ensuring detection of the most important

events. For example on goal, compact descriptions help achieve an accuracy

comparable to that by the detailed description.

For integrated analysis of audiovisual signals and detailed descriptions, we observe

that:

• Precision and recall are generally above 80% for all event types of soccer

and American football. The high accuracy is attributed to the fusion taking



96

Audiovisual only Audiovisual + play-by-play report

Recall Precision F1 Recall Precision F1

Touchdown .693 .806 .745 .831 .834 .832

Conversion .541 .533 .537 .855 .860 .857

Field-goal .586 .554 .569 .923 .912 .917

Punt .534 .595 .563 .803 .819 .811

Punt-return .843 .857 .850

Fumble-opponent .772 .673 .719 .865 .837 .851

Interception .883 .869 .876

Kickoff .842 .851 .846

Safety 0 - - 0 - -

Touchback - - - .899 .882 .890

Fumble-own - - - .812 .871 .840

Incomplete-pass - - - .822 .841 .831

Weighted F1 .675 .843

Table 4.15: Frame-level accuracy of American football events by the rule-based
fusion.

advantage of the strengths of both audiovisual and text analysis. Text anal-

ysis is accurate and complete in indicating events, but audiovisual analysis

is good at pinning boundaries.

• Besides, fusion of the two analysis can detect the full-range of event types,

including those that are undetectable by audiovisual analysis, i.e., offside,

substitution, yellow-card and red-card. Moreover, with the help of detailed

text, events that are not differentiable by audiovisual analysis can now be

differentiated, i.e. save vs. shot-off-target in soccer, and punt-return vs.

kickoff in American football.

• Although accuracy is high, there are still errors. Errors in text events are

present because text events are more trusted in the fusion process. Free-

kicks and offsides, that tend to be falsely detected in text events, are low in

precision; and missing saves and shot-off-targets are not recovered. Although

most text events are aligned to correct phases, some to the wrong phases as
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in the case of corner-kick.

The results obtained with the help of compact and detailed descriptions affirm the

conjecture that the framework is extensible: (a) given no external information,

the framework analyzes only audiovisual signals and is able to identify the overall

structure of video in terms of phases as well as scoring-related events; (b) when

given compact text, the framework can detect a wider range of event types and

ensure detection of the most important events; and (c) when given detailed text,

the fusion can handle the full-range of event types, and achieves high accuracy.

Typical error causes

Table 4.16 lists the typical errors incurred in the late fusion framework and their

percentage of occurrences. The percentages are calculated based on events that

are wrong either in terms of event type or in boundary. The error cases are

collected from soccer and American football videos combined, based on the rule-

based fusion scheme as it is the best-performing scheme. Table 4.16 suggests the

following sources of errors:

Error cause Percentage

(a) Missing documentation in detailed descriptions 7.6%

(b) False documentation in detailed descriptions 16.3%

(c) Erroneous model checking 1.1%

(d) Erroneous unit parsing or timeout detection 10.9%

(e) Erroneous phase segmentation 23.9%

(f) Erroneous alignment of text events to phases 6.5%

(g) Erroneous video events 0

(h) Erroneous boundary identification 31.5%

(i) Miscellaneous 2.2%

Table 4.16: Typical error causes in the late fusion framework

• Errors brought by text events (the sum of (a),(b) and (c)) take up a signif-

icant portion of approximately 25% in all errors. Most of them are due to

inaccurate documentation in the detailed descriptions. If audiovisual signals
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could come into play in filtering the inaccurate documentation, the system

would be less vulnerable to such errors. However, in practice, the text anal-

ysis is performed separately from audiovisual signals. In other words, the

integration of audiovisual signals and external information sources is only

partial - the system entirely relies on the text to identify the event types

even though the audiovisual signals may be helpful in some occasions. It is

conjectured that having audiovisual signals interfere with the text features

during analysis might help.

• Though phase segmentation and alignment of text events to phases are re-

liable in general, they are still a noticeable source of errors, accounting for

approximately 30% of all errors. More importantly, these errors will be ir-

reversible and will limit the overall accuracy under an upper bound because

the late fusion framework utilizes serial processing architecture. In view of

this, it is conjectured that a consolidated architecture might outperform a se-

rial one. Besides, it may also be desirable to utilize the external information

sources in phase segmentation.

• A large portion of errors (over 40%) are boundary-related. They may be

caused by errors during unit parsing or timeout detection. They may also

be erroneous boundaries of video events that pass on. Event boundaries not

conforming to the ground truth are acceptable as long as they give complete

and natural video segments.
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Chapter 5

THE EARLY FUSION

FRAMEWORK

Though the late fusion framework has achieved good accuracy in detecting the

full-range of event types, it has the following drawbacks: (a) late fusion prevents

full integration of audiovisual signals and text features to improve event detection

accuracy; and (b) in its serial processing architecture, errors made in phase seg-

mentation or alignment are irreversible and will limit the overall accuracy under

an upper bound. These two problems motivate us to explore a framework that

implements a closer integration and consolidated processing.

A Dynamic Bayesian Network-based framework described in this Chapter is such

a framework. It characterizes a consolidated probabilistic approach and early fu-

sion of audiovisual signals and external information sources. Compared to existing

DBN-based systems, our early fusion framework has the following novelties. First,

standard DBNs only handles fixed-rate inputs and enforces rigid correspondence

between them, but our early fusion framework accommodates loose correspon-

dence between external information source and audiovisual signals by treating

them differently. Second, the topology is specially designed (i.e., the diagonal

arcs between phase and event nodes) to model constraints derived from temporal

location specifications. We would like to investigate how the early fusion frame-
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work compares to the late fusion. The content of this Chapter covers network

design, implementation of the two targeted team sports, experimental results and

discussions.

5.1 The Architecture of the Framework

DBN inference

Parameter 

learning

Domain knowledge

Audiovisual 

signals

External 

information

Events

Figure 5.1: The early fusion framework.

As shown in Figure 5.1, the framework has a single step: the inference

of events (phases as by-products) by a Dynamic Bayesian Network (DBN) given

observations and learned parameters. The domain knowledge influences the design

of DBN topology, choice of learning and inference algorithms.

We explain why we choose DBN to build the framework. As a unified algo-

rithm, the early fusion framework is meant to directly leverage on the character-

istics of both audiovisual signals and text. Text correlates events with associated

phrases; while audiovisual signals contain spatiotemporal characteristics. Dynamic

Bayesian Network (DBN) is capable of modeling correlation and temporal charac-

teristics as it is Bayesian network spanning over time. Furthermore, DBN has the

capability to model hierarchical stochastic processes, as it is a generalization to
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hierarchical HMM (HHMM). This capability is very relevant as sports videos are

hierarchically stochastic inherently, e.g. the phase - event hierarchy. Therefore, it

becomes a natural choice to develop the early fusion framework.

5.2 General Description about DBN

This Section gives a general description of DBN and the next Section is dedicated

to the design of our particular system. Dynamic Bayesian Networks are directed

graphical models of stochastic processes. They are hybrid products inheriting from

both Bayesian Networks (BNs) and state-space models [64]. DBNs inherit from

BNs in the sense that DBNs are directed acyclic graphs (DAGs) and any variable

is independent from any other variables given its parents or its distribution is

specified by its prior in the case of no parents. They inherit from state-space

models in the sense that the models are characterized by some underlying hidden

state of the world that generates the observations, and that this hidden state

evolves over time. DBNs are an generalization of Hidden Markov Models (HMMs)

in that they allow more than one state variable and hence it is a more general

graph topology. In addition, DBNs allow state variables to be visible aside from

observation variables. They are also an generalization of Bayesian Networks (BNs)

in the sense that they model a Bayesian Network spanning over time. That is, a

DBN not only models the interdependencies between variables at each time slice

like what a Bayesian Network does, but also models the interdependencies across

time slices.

Though DBNs may have generalizations in various aspects, the most commonly

used ones are based on the following set of assumptions. (a) The stochastic process

is on discrete time, and the index to the time slice increments by one every time

a new observation arrives. (b) The state at time t depend on the state at the

preceding time slice t − 1 and not any earlier time slices, i.e. the first-order
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Markov property. (c) The network topology and parameters do not change over

time despite the name “dynamic”, i.e. the model is time-invariant. In order to

tailor to our problem of video analysis, we also assume that states are discrete and

finite. This is because semantic labels (phases and events), which will be treated

as states, are all discrete. (e) The model has no input variables1. (f) Observation

only depends on the state in the same time slice. The following paragraphs give

a brief description on notation of DBNs.

A DBN is a directed acyclic graph with variables Zt = (Xt, Yt),

where

t is the index to the time slice,

Xt is the set of state variables at time slice t. Xt are discrete,

Yt is the set of observation variables at time slice t. Yt can be continuous

or discrete.

From the topology point of view, a DBN is a pair - (B1|B→), where B1 is a BN

which defines the prior P (Z1), and B→ is a two-slice temporal Bayesian Network

(2TBN) which defines P (Zt|Zt−1) by means of a DAG as follows:

P (Zt|Zt−1) =
N∏

i=1

P (Zi
t |Pa(Zi

t)) (5.1)

where

• N is the total number of variables (state and observation variables combined)

in one time slice,

• Zi
t is the i’th variable at time t, which is an element of Xt or Yt,

• Pa(Zi
t) are the parents of Zi

t in the graph. They can either be in the same

time slice or in the previous time slice. The arcs between slices must be from

older ones to newer ones, reflecting the flow of time. The arcs within a slice

are arbitrary, so long as the overall DBN is a DAG.

1Input variables reflect control from external forces. Anyway, this is irrelevant to video.
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From the parameter point of view, the variables in the first slice of a 2TBN do

not have any associated parameters, but each variable in the second slice of the

2TBN has an associated conditional probability distribution (CPD), which defines

P (Zi
t |Pa(Zi

t)) for all t > 1. Table 5.1 gives the most common priors and CPDs

for variables with discrete parents. Among P (Zi
t |Pa(Zi

t)), P (X i
t |Pa(X i

t)) defines a

state transition function, and P (Y i
t |X i

t) defines an observation function. The whole

parameter set Θ of a DBN consists of the priors, the state transition functions and

the observation functions.

Θ = {P (Zi
1), i = 1 . . . N}

∪ {P (X i|Pa(X i)), i = 1 . . . M}
∪ {P (Y i|Pa(Y i)), i = 1 . . . L} (5.2)

where

M and L are the numbers of state and observation variables, respectively.

Discrete parents Name CPD
None Multinomial P (Y = j) = π(j)
i Conditional multinomial P (Y = j|X = i) = A(i, j)
None Gaussian P (Y = y) = N (y; µ,Σ)
i Conditional Gaussian P (Y = y|X = i) = N (y; µi, Σi)

Table 5.1: Most common priors and CPDs for variables with discrete parents.

5.3 Our Early Fusion Framework

This Section explains our early fusion framework, including network structure,

choice of the observations, learning and inference algorithms, complexity issues

and how domain knowledge is incorporated to the framework.
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5.3.1 Network Structure

In designing the DBN to perform integrated audiovisual and text analysis, there

are some guidelines to be kept in mind.

• The framework should make the best effort in incorporating domain knowl-

edge. Domain knowledge provides constraints in addition to training data.

DBN may be more apt than other statistical learning algorithms in incorpo-

rating domain knowledge as its DAG topology may be expressive in sketching

semantic ontology.

• We should particularly exploit DBN’s capability in modeling hierarchical

stochastic processes. In our particular task, this hierarchy refers to the one

composed by phase - event as described in Section 3.1.

• The DBN should grasp different mechanisms - spatiotemporal evolution as-

sociated with audiovisual signals and correlation associated with text.

• Temporal correspondence between cues from the two forms of information

should be reasonably slackened to accommodate asynchronism.

• The time and space complexity should be contained to make the system

tractable. This involves constraining the number of layers, number of state

variables, sizes of CPDs and algorithms for learning and inference.

A 2TBN representation of the network structure is shown in Figure 5.2. The

network borrows the notation of hierarchy from HHMM, which dictates that the

Markov chains at adjacent levels are bonded by alignment - one step in the Markov

chain of the higher-level is aligned to the complete Markov chain at one level

lower. The network has three levels aside from the observation. From the top

downward, they represent phase, event, and hidden states of two independent

HMMs, respectively. There is not a level representing actions, because actions

are not well represented by audiovisual characteristics or completely covered by

text. There is an exit variable attached to each level but level 3 that signals the
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Figure 5.2: Network structure of the early fusion framework.
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Figure 5.3: The backbone of the network.

start-over of the Markov chain at the level. Level 3 has no exit variable because it

is not allowed to start over. To better explain the whole network structure, we will

look at one part at one time. Note that we will be using HMM notation (A, B, π)

in explaining Markov characteristics (A := {ai,j}: state transition probabilities,

B := {bj(k)}: emission probabilities, and π := {πj}): priors).

The backbone

Levels 2 and 3 form the backbone of the network. Horizontal arcs between phases

or between events mean phase and event form Markov chains, respectively. Hori-

zontal arcs associated with the two hidden node Q3a and Q3b represent two HMMs,

accounting for the visual and audio evolution, respectively. Vertical arcs mean

the Markov characteristics are subject to certain conditions. Specifically, Markov

characteristics of event is subject to the current phase. The HMMs of visual and

audio evolution are subject to the current event. The arc pointing from phase

to event across slice means that event’s conditional probability distribution may

be differentiated with regards to the preceding phase as well. So may the phase

variable. How the diagonal arcs interfere with Markov characteristics is explained

in the part on “The exit variables”.
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Figure 5.7: Exit variables (d)

The exit variables

The exit variable is a special state variable; it signals the start-over of Markov

chains at its own level and disables/enables the transition of the higher-level vari-

able. It has binary states: on (1) and off (0). Exit variable turned on means that

the current Markov chain has come to an end, and a new Markov chain is about

to start. As dictated by the alignment bond, this implies that the variable at the

higher level may transit and all exit variables at lower levels are on.

Figure 5.4 shows the level 2 exit variable with incoming arcs. Its CPD is inter-

preted as follows.

P (e2
t = 1|e3

t = e,Q1
t = k, Q2

t = i) =

{
0, if e = 0

a2
k(i, end), if e = 1

(5.3)

Figure 5.5 shows the level 1 exit variable with incoming arcs. This exit variable

signals that the two independent HMMs will come to an end simultaneously. Its
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CPD is interpreted as follows.

P (e3
t = 1|Q2

t = i, Q3a
t = p,Q3b

t = q) = a3a
i (p, end)a3b

i (q, end) (5.4)

Figure 5.6 shows how the level 2 exit variable interferes with the phase variable.

When e2
t is on, certain values (meaning certain events) of Q2

t may specify the

phase’s state transition probability in spite of normal Markov characteristics.

P (Q1
t+1 = j|e2

t = e,Q1
t = k,Q2

t = i) (5.5)

=





1, if e = 0, j = k

0, if e = 0, j 6= k

a1
i (k, j), if e = 1, i ∈ {certain events}

a1
normal(k, j), if e = 1, i /∈ {certain events}

Figure 5.7 shows how the exit variables interfere with the event variable. Only

when e3
t is on can the event variable advance a step along its Markov chain. In

normal case, the event variable’s Markov characteristics is only dependent on the

covering phase; however, under certain circumstances the first event of a phase

may be forced to obey a different Markov characteristics transiently. This is made

possible by e2
t being turned on.

P (Q2
t+1 = m|e2

t = e, e3
t = f, Q1

t = k, Q2
t = i, Q1

t+1 = j) (5.6)

=





1, if f = 0,m = i

0, if f = 0,m 6= i

a2
j(i,m), if f = 1, e = 0

π2
j |k, if f = 1, e = 1, k ∈ {certain preceding phases}

The observations

The observations F comprise those derived from three modalities.

F := F T ∪ F V ∪ FA (5.7)

where

F T , F V and FA denote observations derived from text, visual and audio

signals, respectively.
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Figure 5.8: Textual observations

F T are derived from detailed text. we

only expect the early fusion framework

to work with detailed text as compact

text provides too sparse recordings to

establish sound conditional probabil-

ities. There are a number of sepa-

rate observations derived from text, al-

though there is only one oval in Fig-

ure 5.2. The expanded illustration is shown in Figure 5.8. There are two types

of textual observations, aiming at capturing patterns based on slot-specific phrase

similarity and sequence similarity, respectively.

F T :=
{
fP
−n:n

} ∪ {
fS

1:m

}
(5.8)

where

fP are unigrams and fS are bigrams. The unigram lexicon is formed after

stemming and synonym consolidation. The bigram lexicon is formed based on the

unigram lexicon and is restricted to m most meaningful bigrams for complexity

concern. m is domain-dependent and is set empirically. n is half width of a

symmetric slot window positioned at the center of the current processing unit

(for explanation of the processing unit, please see “3.4.1 The processing unit”).

Textual observations associated to a processing unit are derived from terms in this

window. n may be dependent on the game and format of the textual description.

fP
i , i = −n : n is the phrase at the ith slot

fS
j = {true, false} , j = 1 : m refers to whether bigramj is included in the

window.

Some units of the video are represented by categorical labels (e.g. commercials,

narratives and replays) while others by numeric audiovisual features. To unify
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them, a discrete feature representation is adopted. The visual observation is

fV =





∈ {commercial, narrative, replay, audience-scene, canonical-scene}
or

camera motion pattern AND motion magnitude AND field-zone

For audio features, we choose only those that provide a general idea of the match

progress and the level of excitement. The values of the audio observation are

common to various games.

fA =





∈ {commercial, narrative, replay, audience-scene, canonical-scene}
or

∈ {whistle, cheering, speech, music, music+speech, excited-speech,

noise}

To avoid zero conditional probabilities due to incomplete coverage by the training

data, zero conditional probabilities are replaced by a very small float number

(10−9).

5.3.2 Learning and Inference Algorithms

The learning task of the whole DBN is split to several subtasks to exploit the fact

that a part of DBN can be estimated independently from the rest if all participating

variables are visible at all slices. In the case when this separable part of DBN is

a single variable and this variable is visible at all slices, we obtain its CPD by

counting the co-occurrences

CPDZi := {P (Zi = c)|Pa(Zi) = p), for all c and all p} (5.9)

P (Zi = c)|Pa(Zi = p)) =
number of (Zi = c, Pa(Zi) = p)

number of (Pa(Zi) = p)
(5.10)

This method applies to parameters associated with the phase and event variables

as well as the textual observations. In the case when this separable part contains

hidden variables, as in the case of visual and audio HMMs, the parameters can be

estimated by the Baum-Welch algorithm on a smaller scale. We use all observation
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sequences that are associated to the same event (visually and aurally separately)

as training sequences to estimate the corresponding (A, B, π) the way a regular

HMM does. Separation into independent subtasks reduces the time and space

complexity (see Table 5.2).

Time complexity Space complexity

Learning Standard
EM

O(T aKb2
), T ∼ (300, 1000), K ∼

(500, 1000)
O(ScTK), T ∼ (300, 1000), K ∼
(500, 1000)

Splitting
adopted

O(TK2), T ∼ (5, 15), K = 5 O(STK), T ∼ (5, 15), K = 5

Inference Offline O(TK2), T ∼ (300, 1000), K ∼
(500, 1000)

O(STK), T ∼ (300, 1000), K ∼
(500, 1000)

Online O(LdK2), L = 5, K ∼ (500, 1000) O(SLK), L = 5, K ∼ (500, 1000)

Table 5.2: Complexity control on the DBN.

aT: length of the sequence
bK: number of the states
cS: size of a forward/backward message
dL: lenght of the fixed lag

Because test sequences may be as long as having thousands of slices, we need

an online inference algorithm to achieve space tractability. We choose a fixed-lag

smoothing algorithm presented by Murphy [64] and will briefly explain it here.

The algorithm is based on a pair of forward-backward messages. Note that the

following formulas are based on HMM notation. A DBN made up of all discrete

nodes such as the one used in the early fusion framework is equivalent to a HMM.

The forward message αt(i) and backward message βt(i) are defined as

αt(i)
def
= P (Xt = i|y1:t) (5.11)

βt(i)
def
= P (yt+1:T |Xt = i) (5.12)

where the subscript t refers to the slice; 1 : t refers to all slices from 1 to t; i refers

to the i-th state X can take on. Inference γt(i)
def
= P (Xt = i|y1:T ) is obtained by
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combining the two messages

P (Xt = i|y1:T ) =
1

P (y1:T )
P (yt+1:T |Xt = i, y1:t)P (Xt = i, y1:t)

=
1

P (y1:T )
P (yt+1:T |Xt = i)P (Xt = i|y1:t)

or

γt ∝ αt. ∗ βt

where .∗ denotes elementwise product, i.e., γt(i) ∝ αt(i)βt(i).

The forward message

α can be recursively calculated as follows.

αt(j) = P (Xt = j|y1:t) =
1

ct

P (Xt = j, yt|y1:t−1)

where

P (Xt = j, yt|y1:t−1) =

[∑
i

P (Xt = j|Xt−1 = i)P (Xt−1 = i|y1:t−1)

]
P (yt|Xt = j)

(5.13)

and

ct = P (yt|y1:t−1) =
∑

j

P (Xt = j, yt|y1:t−1) (5.14)

In vector-matrix notation, this becomes

αt ∝ OtA
′αt−1 (5.15)

where A′ denotes the transpose of A and Ot(i, i)
def
= P (yt|Xt = i) is a diagonal

matrix containing the conditional likelihood of the evidence at time t.

The base case is

α1(j) = P (X1 = j|y1) =
1

c1

P (X1 = j)P (y1|X1 = j)

or

α1 ∝ O1π
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The backward message

Because P (yT+1:T |XT = i) = P (∅|XT = i) = 1, the base case is

βT (i) = 1

The recursive step is

P (yt+1:T |Xt = i) =
∑

j

P (yt+2:T |Xt+1 = j)P (yt+1|Xt+1 = j)P (Xt+1 = j|Xt = i)

(5.16)

or

βt = AOt+1βt+1

Combination of αT and βT

P (Xt = i|y1:T ) ∝ P (Xt = i|y1:t)P (yt+1:T |Xt = i)

Since P (Xt = i) is a probability, it is determined by normalization subject to∑
i P (Xt = i) = 1.

The fixed-lag smoothing

Fixed-lag smoothing estimates P (Xt−L|y1:t), where L > 0 is the lag. If the delay

can be tolerated, then this is clearly a more accurate estimate than the filtered

quantity P (Xt−L|y1:t−L), which does not take “future” evidence into account. On

the other hand, as an online algorithm it does not store all messages. The proce-

dure of fixed-lag smoothing is given in 5.9. The first part is the main routine, and

the second part is the the recursive part.

The notations are explained here. f is a forward message. As this is an online

algorithm, we cannot store all messages, instead we keep a wrap-around buffer

of length L + 1 - f [1 : L]. f [i] is the i-th entry in this buffer; k is a pointer to

the position in the buffer that contains the most recent forward message. The

algorithm assumes one-based indexing, and use the notation t ⊕ 1 and t ª 1 to



114

f [1] = Fwd1(y1)
for t = 2 : L

f [t] = Fwd(f [t− 1], yt)
k = L + 1
for t = L + 1 : ∞

(bt−L|t, f [1 : L], k) = FLS(yt, f [1 : L], k)

function (b, f [1 : L], k) = FLS(yt, f [1 : L], k)
L = length(f)
k′ = k ª 1
f [k] = Fwd(f [k′], yt)
b = BackT(f [k])
for τ = 1 : L

b = Back(b, f [k′])
k′ = k′ ª 1

k = k ⊕ 1

Figure 5.9: Pseudo-code for fixed-lag smoothing.

represent addition/subtraction modulo L. Fwd and Back are the forward and

backward passes; Fwd1 and BackT are their base cases. Definition and call to

function (b, f [1 : L], k) = FLS(yt, f [1 : L], k) are represented in MATLAB syntax.

5.3.3 Incorporating Domain Knowledge

Recall that domain knowledge associated with events of team sports generally has

four parts: (a) temporal location specification, (b) sequential relations between

events, (c) semantic composition and (d) audiovisual patterns.

phase B

event A

phase C

t

Figure 5.10: Constraint of event
A followed by phase C.

phase C

event A

phase B

t

Figure 5.11: Constraint of event
A preceded by phase C.
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Preceding phase Preceding event This phase Conditional probability

goal break 1

left-advance goal not break 0

... ... ...

corner-kick break 1

right-advance corner-kick not break 0

... ... ...

Table 5.3: Illustrative CPD of the phase variable in Figure 5.10 with diagonal arc
from event to phase across slice.

Preceding phase Preceding event This phase Conditional probability

break (0,1)

left-advance any draw (0,1)

left-advance (0,1)

... ...

break (0,1)

right-advance any draw (0,1)

left-advance (0,1)

... ...

Table 5.4: Illustrative CPD of the phase variable in Figure 5.10 with no diagonal
arc across slice.

Modeling temporal location specifications

The temporal location specifications point out hosting phases’ types and condi-

tions. Hosting phases’ types are modeled by conditional probabilities P (Q2|Q1).

Modeling hosting phases’ conditions is attempted by diagonal arcs. They help

impose constraints concerning events and adjacent phases derived from domain

knowledge (see Chapter3.1). Figures 5.10 and 5.11 constrain the phase in terms

of what follows or precedes, respectively. Take the corner-kick for example (in

Figure 5.10 scenario), the effect of diagonal arc on the conditional probability dis-

tribution (CPD) of the phase node is illustrated in Table 5.3 and 5.4. The diagonal

arcs not only improve accuracy of detected events, but that of phases since the

event and phase nodes are inferred simultaneously by a unified algorithm. Exper-

iments show that 1/3 of missing breaks, 1/3 of false positives of left advances and
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1/4 of false positives of right advances are reduced; and 13 misplaced events get

corrected with the help of diagonal arcs. However, arcs across slices as a means of

modeling constraints are not handy. They provide limited modeling capability at

the cost of more expensive computation and scattering of training samples. In our

case, diagonal arcs can only model the conditions in terms of adjacency of phases

to events at one (either the starting or the ending) boundary. Modeling conditions

on both boundaries or involving phases further away (e.g. those of corner-kick,

free-kick or penalty) would entail more complex model structure. Considering

their cost-effectiveness, such models are opted out.

Modeling sequential relations between events

As a stochastic algorithm, DBN effectively models sequential relations between

events in transition probabilities. By contrast, the late fusion framework failed to

provide this modeling.

Modeling semantic composition

Detailed text descriptions generally use a limited vocabulary and exhibit strong

syntactic patterns. Therefore pattern-based matching may be a solution to mod-

eling semantic composition. Sequential patterns are desirable as an event instan-

tiates a path of the semantic composition model. To achieve good generality

and to keep CPDs small, bigrams are employed for inducing sequential patterns.

Unigrams play a supplementary role in the circumstances where descriptions are

sparser and consistent bigrams are not available for every event type. Table 5.5

shows that neither unigrams nor bigrams alone would be sufficient to tell positives

from negatives. However, the combination of them would. The idea of grasping

patterns by unigrams and bigrams is similar to that described in [25]. Wrapping

of unigrams and bigrams is important because the system needs to differentiate

positive and negative instances well in the asynchronous circumstance and in the

meantime keeps the CPD small. Table 5.6 compares frame-level accuracy of var-

ious wrappings of unigrams or bigrams in a Bayesian network. It suggests the

wrapping of slot-based unigrams and presence-based bigrams performs the best.

Positives have disparate composite conditional probabilities from negatives as they
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Unigram(u) P (u =
1|e = 1)

P (u =
1|e = 0)

Bigram(b) P (b =
1|e = 1)

P (b =
1|e = 0)

Goal score 1 .0013 shot - score .9412 0

Save save .9770 .0021 shot - save .7356 .0007

Shot-off-target shot .9597 .0501 assist - shot .4758 .0029

Penalty penalty 1 0 - - -

Corner-kick corner-kick 1 .0035 corner-kick - shot .1333 .0014

Free-kick free-kick 1 .0168 foul - free-kick .8065 .0060

Offside offside 1 .0027 assist - offside .1795 .0020

Substi-tution substitute 1 0 assist - substitute .3333 -

Yellow-card yellow-card 1 0 foul - yellow-card 1 0

Red-card red-card 1 0 foul - red-card 1 0

Table 5.5: Strength of best unigrams and bigrams

Recall Precision F1

Unigrams only (a) .608 .629 .618

Bigrams only (b) .239 .574 .337

Presence-based unigrams + bigrams (c) .670 .541 .599

Slot-based unigrams + bigrams (d) .637 .703 .668

Time slice-based unigrams + bigrams (e) .359 .427 .390

Table 5.6: Frame-level accuracy of various textual observation schemes
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match multiple slots and match them at correct positions. Bigrams also help in

filtering out negatives. Offsets are learned by slot-based statistics. Slot accommo-

dates asynchronism better than slice, i.e. evenly paced temporal unit. CPD size is

kept the smallest by having the observations independent. Despite the effective-

ness of the textual observations in general, they are still subject to noise brought

by irrelevant unigrams and randomness in offsets.

Modeling audiovisual patterns

Modeling of audio and visual evolution is attempted by a dedicated hidden node

in the DBN each. However the effectiveness of the modeling is limited, as the

evolution of different event types is heterogenous and cannot be effectively cap-

tured by a fixed number of states. Some event types don’t even have consistent

stochastic patterns, e.g. shot-off-target and save.

5.4 Implementation of the Early Fusion Frame-

work on Soccer and American Football Video

Domain-dependent design or processing in the early fusion framework is mainly

on definition of the phase and event variables, the single-phrase and bigram lexi-

cons for deriving textual observations, and domain-dependent visual features for

deriving visual observations.

5.4.1 Implementation on Soccer Video

Phase types are defined in “3.2 Domain Knowledge for Both Frameworks”, that

is, {left-advance, right-advance, draw, break}.

For the values of the event variable, we define a superset of the target events

listed in “3.2 Domain Knowledge for Both Frameworks”. This is because the

whole duration of the video should be covered exhaustively by the DBN, which is
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not possible with the target events alone. For instance, there are advances that do

not end with an attempt at the goal; there are passes at the beginning of advances

that do not pose any pressure on the opponents. In view of these facts, we define

some “padding” events in addition to the target events, and the complete value

set of the event variable is

event ∈ { goal, save, shot-off-target, penalty, corner-kick, free-kick,

offside, initial-pass, premature-offense, attack,

midfield-competition, yellow-card, red-card, substitution,

not-in-play, editing-artifact} (5.17)

where

initial-pass - the part when a goal keeper and defensive players dribble or pass the

ball slowly in the defending side.

premature-offense - the part when the advance is futile before the offensive team

can pose any significant pressure on the defenders.

midfield-competition - the part when two teams are competing for control of the

ball in the middle of the field. This is the only event that may take place during

a draw phase. The purpose of using two synonyms at the phase and event levels

is to keep the hierarchy clear-cut.

attack - the part when the offensive team poses significant pressure on the defend-

ers, however, there are no attempts on goals.

not-in-play - the part when the play is not going on nevertheless the image is still

on the pitch.

editing-artifact - the part when the image shows commercials, replays or narratives

resulting from editing.

The two lexicons of unigrams and bigrams are given in the appendix. The size of

bigram lexicon is empirically set as m = 10. Soccer has one domain-dependent

visual features for deriving visual observation - player-density.

player-density ∈ { low, high} (5.18)
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Player density can indicate intenseness of the ongoing play, thus it is helpful in

differentiating stages within an advance, e.g., to recognize initial-pass from attack.

It is obtained from the number of players visible. A unit having visible players less

than a threshold (n = 6) is said to be low in density and high otherwise. Players

are detected in the way described in [6]. First, blobs of individual players or

groups of players are segmented out from the pitch by color differencing. Players

are then identified by adaptive template matching, using an elliptical template

that has the height/width ratio equal to the median of the height/width ratios of

the blobs extracted (outliers excluded). To remedy missing detections resulting

from occlusion, numbers of players obtained from individual frames are smoothed

over the unit before the average is taken as the unit’s number of players.

5.4.2 Implementation on American Football Video

Phase types are defined in “3.2 Domain Knowledge for Both Frameworks”, that

is, {left-advance, right-advance}.

The value set of the event variable is a union of the target events and padding

events, namely

event ∈ { touchdown, conversion, field-goal, punt, punt-return, fumble-opponent,

interception, touchback, kickoff, safety, fumble-own,

incomplete-pass, pass, rush} (5.19)

where

rush - a play wherein the offensive team tries to move the ball forward by running

with it.

pass - a play wherein a forward pass is made, whether it is successfully received

or it is incomplete.

The two lexicons of unigrams and bigrams are given in the appendix. The size

of bigram lexicon is empirically set as m = 5. American football has no domain-

dependent visual features for deriving visual observation.
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5.5 Evaluation of the Early Fusion Framework

5.5.1 Evaluation of Phase Segmentation

Although phases are only the by-products of DBN, we still evaluate their accuracy

for it may be related to overall events’ accuracy. We would also like to use phases as

a benchmark to compare the two frameworks. Tables 5.7 and 5.8 show the accuracy

of soccer phases, while Tables 5.9 and 5.10 show that of American football phases.

In general, phase accuracy in terms of misses and false positives by the early fusion

framework is satisfactory. All phase types have misses or false positives close to

or fewer than 10% of their instances in the ground truth. The worst-performing

phase type is draw ; however it has the least impact on event detection. The best-

performing phase types are the two advances in American football, which achieved

zero misses or false positives. Compare to the results by the late fusion framework,

the early fusion framework has: (a) significant improvement in reducing misses and

false positives of advances (both in soccer and in American football) and in misses

of break ; (b) slight improvement in false positives of draw and break ; and (c) a

few more misses in draw. Generally speaking, the accuracy of phases in term of

misses and false positives produced by the early fusion framework is better than

that of the late fusion framework. As for the frame-level accuracy, however, the

improvement is not as significant. Recall rates are in the range of 0.75 ∼ 0.88,

and precision rates in 0.79 ∼ 0.87 as compared to the ranges of 0.79 ∼ 0.86 for

recall and 0.77 ∼ 0.87 for precision by the late fusion framework.

In the perspective of phase segmentation, the early fusion framework is similar to

the hierarchical HMM used in the late fusion framework except for the additions

of text cue and of the event node. We will discuss how text cue and the event

node affect the results as follows.
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Ground truth Misses False positives

Left-advance 976 54 46

Right-advance 943 41 36

Draw 465 51 42

Break 311 15 15

Table 5.7: Misses and false positives of soccer phases by the early fusion framework.

Ground Detected Recall F1

truth (a) (b) (c) (d)

Left-advance (a) 266530 221825 9243 19042 16420 .832 .825

Right-advance (b) 246028 8479 203475 18296 15778 .827 .821

Draw (c) 255119 22139 20436 191694 20850 .751 .770

Break (d) 409484 18905 16765 14067 359747 .879 .875

Detected total 1177161 271348 249919 243099 412795 - -

Precision - .817 .814 .789 .871 - -

Weighted F1 .829

Table 5.8: Accuracy of soccer phases by the early fusion framework.

Ground truth Misses False positives

Left-advance 63 1 0

Right-advance 63 2 0

Table 5.9: Misses and false positives of American football phases by the early
fusion framework.

Ground Detected Recall F1

truth (a) (b)

Left-advance (a) 201935 176824 6442 .876 .855

Right-advance (b) 273279 11435 234415 .858 .861

Other - 23584 30068 - -

Detected - 211843 270925 - -

Precision - .835 .865 - -

Weighted F1 .859

Table 5.10: Accuracy of American football phases by the early fusion framework.
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Text is accurate but incomplete in the coverage of phases. It covers all American

football advances, approximately 90% of soccer advances, 10% of breaks and no

draws. Though little text on break or draw is available, text still helps in these two

phase types. To be more specific, text has these effects: a) it ensures detection

of all documented advances on top of those having consistent audiovisual appear-

ances; (b) it reduces missing breaks by ensuring detection of score-attempting

events (such as goal and corner-kick) and through diagonal arcs; (c) it helps to

reduce false positives of break and draw by reducing missing advances and breaks ;

and (d) in a stochastic algorithm such as DBN, text plays an anchoring role by en-

suring detection of advances at some points and taking advantage of propagation.

However, text provides little clue to pinning boundaries.

Addition of the event node helps in phase-level accuracy but has negative effects in

frame-level accuracy. It helps in the sense that it serves as the intermediary for text

to function; and text is shown to be effective in indicating phases. The event node

has negative effects as it replaces the original mapping of audiovisual evolution

to phase with three mappings, namely audiovisual evolution to event, text to

event and sequential pattern of events to phase. As a result, the system becomes

more complex and less robust. Moreover, the mapping of audiovisual evolution

to phase was consistent based on a small set of relevant features - camera motion

pattern, motion magnitude and field zone. Yet the three new mappings are not as

consistent: (a) mapping of audiovisual patterns to event may not effectively model

all event types by a Markov process and a universal set of features. Therefore,

event boundaries are usually inaccurate, even though the events may be indicated

by the text. Poor event boundaries would implicate phase boundaries; (b) mapping

of text to event would not work when text is unavailable; and (c) mapping of

sequential pattern of events to phase may not capture all variations by one Markov

process. Because of the negative effect of the event node, the improvement in

frame-level accuracy is far less significant than reduction in misses and falsely

detected phases.
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5.5.2 Evaluation of Event Detection

Tables 5.11 and 5.12 give the frame-level accuracy of soccer and American football

events by the early fusion framework, respectively. Confusion matrices help us to

conduct error analysis.

The accuracy is acceptable - with F1 values of most event types in both games

in the range of 0.70 ∼ 0.85; weighted F1 is 0.738 for soccer and 0.804 for Amer-

ican football. Nevertheless, the accuracy by the early fusion framework is lower

as compared to that by the late fusion framework. For most soccer event types,

F1 value is lower by a magnitude in the range of 0.04 ∼ 0.16, and the weighted

F1 is lower by 0.11; for American football the corresponding range is 0 ∼ .15 for

F1 value, and lower by 0.04 in weighted F1. Comparing Tables 5.11 and 5.12 we

find that the confusion between event types in American football is significantly

less than that in soccer because events are well separated by timeout in Amer-

ican football and confusions are unlikely to occur. In general, the early fusion

framework is poorer than late fusion framework in identifying boundaries, and

a continuous game suffers more than an intermittent game. A continuous game

relies on the early fusion framework’s capability of modeling boundaries, whereas

an intermittent game mainly relies on the quality of timeout detection. Because

of this distinction, we discuss the two kinds of games separately.

Most soccer event types have similar accuracy (F1 in the range 0.70 ∼ 0.78) as text

plays a pre-dominant role and boundary modeling of different event types does

not vary much. The best-performing event types are red-card and penalty. Their

textual cue is reliable and their boundaries are clear-cut and well captured. Shot-

off-target, free-kick, offside are the worst-performing event types. Their textual

cue is less reliable, resulting in more confusion between them and other event

types. This is also evidenced by more misses or false positives of these event

types. The accuracy of different American football event types is also similar but

this is due to timeouts. Accuracy is mainly determined by the quality of timeout

detection rather than confusion between event types. And this quality does not
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Ground
truth

(a) (b) (c) (d) (e) (f) (g) (h) (i)

Goal (a) 9054 6235 0 0 0 429 291 0 158 0

Save (b) 26851 0 21889 245 54 402 317 0 429 0

Shot-off-target (c) 39127 0 1914 27687 0 372 356 376 529 443

Penalty (d) 1456 0 0 0 1103 0 0 0 0 0

Corner-kick (e) 27482 209 527 227 0 21433 0 113 0 0

Free-kick (f) 21082 151 392 460 0 0 16597 0 178 0

Offside (g) 9239 0 334 253 0 389 0 5015 639 0

Initial-pass (h) 89723 0 0 2069 0 0 0 192 62731 3722

Premature-offense (i) 55117 0 0 338 0 0 1291 0 4465 37421

Attack (j) 233427 496 3756 6141 0 4287 4372 1438 21714 9453

Midfield-competition (k) 255119 121 1147 1292 0 0 594 166 8723 3012

Yellow-card (l) 14166 0 0 0 0 0 0 0 0 1486

Red-card (m) 2234 0 0 0 0 0 0 0 0 0

Substitution (n) 29827 0 0 0 0 339 0 0 0 532

Not-in-play (o) 166361 142 129 0 0 1314 1026 711 1450 2797

Editing-artifact (p) 196896 0 239 392 0 370 0 272 385 1412

Detected 1177161 7354 30327 39104 1157 29335 24844 8283 101401 60278

Precision - .848 .722 .708 .953 .731 .668 .605 .619 .621

Weighted F1 .738

(j) (k) (l) (m) (n) (o) (p) Rec. F1

Goal (a) 1683 258 0 0 0 0 0 .689 .760

Save (b) 2402 641 0 0 0 472 0 .815 .766

Shot-off-target (c) 4350 1421 0 0 0 623 1056 .708 .708

Penalty (d) 0 0 0 0 0 353 0 0.758 .844

Corner-kick (e) 3827 0 162 0 0 591 393 .780 .754

Free-kick (f) 1003 0 0 0 0 2301 0 .787 .723

Offside (g) 1493 574 0 0 0 308 234 .543 .572

Initial-pass (h) 10181 5135 0 0 0 2766 2927 .699 .656

Premature-offense (i) 4967 3416 0 0 0 878 2341 .679 .649

Attack (j) 139130 25377 0 0 572 12558 4133 .596 .617

Midfield-competition (k) 25820 193394 1063 0 2578 10822 6387 .758 .774

Yellow-card (l) 0 0 10911 0 832 937 0 .770 .779

Red-card (m) 0 0 0 1786 0 448 0 .799 .889

Substitution (n) 320 2136 0 0 22009 4346 145 .738 .722

Not-in-play (o) 11195 11838 1710 0 4689 123923 5437 .745 .747

Editing-artifact (p) 10930 693 0 0 425 4091 177687 .902 .894

Detected 217301 244883 13846 1786 31105 165417 200740 - -

Precision .640 .790 .788 1 .708 .749 .885 - -

Weighted F1

Table 5.11: Accuracy of soccer events by the early fusion framework
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Ground
truth

(a) (b) (c) (d) (e) (f) (g) (h)

Touchdown (a) 10426 8516 0 0 0 0 0 0 0

Conversion (b) 3094 0 2462 0 0 0 0 0 0

Field-goal (c) 2937 0 0 2368 0 0 0 0 0

Punt (d) 14629 0 0 0 11087 1863 0 0 0

Punt-return (e) 10397 0 0 0 0 8230 0 0 0

Fumble-opponent (f) 2851 0 0 0 0 0 2281 0 0

Interception (g) 2438 0 0 0 0 0 0 2049 0

Touchback (h) 1193 0 0 0 0 0 0 0 790

Kickoff (i) 22646 0 0 0 0 0 0 0 0

Safety (j) 0 0 0 0 0 0 0 0 0

Fumble-own (k) 2036 0 0 0 0 0 0 0 0

Incomplete-pass (l) 1186 0 0 0 0 0 0 0 0

Rush (m) 271849 0 0 0 437 583 0 0 0

Pass (n) 129532 0 0 0 0 416 0 0 0

Other - 1751 657 890 2084 897 444 476 105

Detected - 10267 3119 3258 13608 11989 2725 2525 895

Precision - .829 .789 .727 .815 .686 .837 .811 .883

Weighted F1 0.804

(i) (j) (k) (l) (m) (n) Other Recall F1

Touchdown (a) 0 0 0 0 0 0 1910 .817 .823

Conversion (b) 0 0 0 0 0 0 632 .796 .793

Field-goal (c) 0 0 0 0 0 0 569 .806 .764

Punt (d) 0 0 0 0 0 0 1679 .758 .785

Punt-return (e) 0 0 0 0 712 291 1164 .792 .735

Fumble-opponent (f) 0 0 0 0 267 142 161 .800 .818

Interception (g) 0 0 0 0 0 184 205 .840 .826

Touchback (h) 290 0 0 0 0 0 113 .662 .757

Kickoff (i) 19145 0 0 0 465 0 3036 .845 .843

Safety (j) 0 0 0 0 0 0 0 - -

Fumble-own (k) 0 0 1597 0 283 0 156 .784 .834

Incomplete-pass (l) 0 0 0 875 0 172 139 .738 .766

Rush (m) 521 0 0 0 236231 1756 32321 - -

Pass (n) 0 0 0 0 1891 110196 17029 - -

Other 2798 0 196 224 27492 17224 - - -

Detected 22754 0 1793 1099 267341 129965 - - -

Precision .841 - .891 .796 - - - - -

Weighted F1

Table 5.12: Accuracy of American football events by the early fusion framework
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vary much across event types or across frameworks.

Typical error causes

Table 5.13 lists the typical causes of errors of the early fusion framework except

erroneous modeling of audiovisual patterns. Erroneous modeling of audiovisual

patterns is put aside because it accounts for over 80% of errors and makes the

other causes of errors look trivial. The Table suggests that:

Error cause Percentage

(a) Obscured conditional probability 9.2%

(b) Erroneous unit parsing or timeout detection 11.5%

(c) Bias towards longer event types 9.2%

(d) Bias towards event types having large priors 21.8%

(e) Irrelevant unigrams or bigrams in the textual observations 28.7%

(f) Insufficient training data 1.1%

(g) Miscellaneous 18.4%

Table 5.13: Typical error causes in the early fusion framework

• The typical causes of errors in the two frameworks are different except for

erroneous parsing of units and detection of timeouts. In the late fusion

framework, the errors are mostly related to the quality of individual sub-

tasks, whereas those in the early fusion framework are factors that affect the

descriptiveness of probabilities.

• Among the listed error types, irrelevant unigrams or bigrams in the textual

observations accounts for the most errors. Because the textual observations

are derived from a phrase window with a fixed number of slots, but the

number of phrases belonging to the event types varies, hence some irrele-

vant phrases may be included and incur non-trivial probabilities. The event

types having shorter descriptions suffer more seriously, such as offside and

substitution. Generally this type of errors only results in misclassification in

the boundaries of events.

• The early fusion framework is found to be biased towards event types with

larger priors. The mechanism of DBN is such that all event types compete
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for generating the observations and the winner is recognized as the event

type. The prior of each event type plays a part in the competition serving

as a multiplier. Therefore an event type with a larger prior is more favored.

This bias would generally not result in misses or false positives of events, as

text cue is strong. However, it would have a negative effect on identifying

the boundary between two adjacent events. For example, this bias partially

accounts for the misclassifications of goal, save, shot-off-target and corner-

kick frames as attack. Another effect of the bias is that event types with

small priors generally have low recall and high precision, as evidenced by

penalty, red-card and offside.

• The text phrases used in some events may be a subset of that used in other

event types. For example, phrases used in shot-off-target may be a subset of

those used in save, and phrases of punt is a subset of those of punt-return.

This poses difficulties in the early fusion framework to differentiate the pair.

Instances of the shorter event type are likely to be misclassified as the longer

one because the common phrases would induce a non-trivial probability for

the longer event type. However it is unlikely to be the other way round, as

the terms unique to the longer event type would keep the probability low for

the shorter one. Such errors cause mostly instances of shot-off-target being

misclassified as save or instances of punt as punt-return.

• Conditional probabilities of phrases are obscured by missing or false docu-

mentation. As a result, the cues of some phrases are undermined, e.g. “shot”

and “free-kick”. This may lead to the misclassifications of some documented

events.

• Though insufficient training data is only a marginal source of error, it de-

serves notice. It highlights the fact that as a probabilistic approach, the

performance of the early fusion framework is subject to the availability of

sufficient training data. Although training data provided by 5 full matches

(for soccer and American football each) are sufficient to induce common

transition patterns, they are insufficient to induce rare ones, such as those
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related to penalty, red-card, or safety, etc. In fact, this deficit results in

missing of save following a penalty as the case is unseen in the training data.

• The DBN is poor at capturing audiovisual patterns of individual event types.

The audiovisual patterns of different event types are heterogenous. It is hard

to capture them using a uniform stochastic algorithm and a fixed feature set.

Worse still, some event types do not have consistent audiovisual patterns,

especially the padding event types, such as initial-pass. Their inaccurate

boundaries would interfere with boundaries of neighboring events.

Comparison of the early and late fusion frameworks

We also notice the following differences of the early fusion framework from the

late fusion framework.

• An advantage the early fusion framework has over the late fusion framework

is that it leverages text and audiovisual cue simultaneously. Although text

cue is generally reliable, it may not be so on particular event types. free-kick

is such an even type. Free-kicks made in mid-field or the defending third

of the field are documented but are recognized as negative instances in the

ground truth; and the number of this case is significant. Depending largely

on the text cue, the late fusion framework is hit severely with a result of 9

false positives. As audiovisual cue is leveraged in the early fusion framework

to filter out free-kicks made in mid-field or the defending third, the situation

is significantly mitigated - the number of false positives drops to 3.

• The early fusion framework utilizes a consolidated pipeline in which phases

are detected simultaneously with events. Phase segmentation and event de-

tection are performed at the best effort with the help of external information.

Results show that phases are more accurate by the early fusion framework

than by the late fusion framework. However, due to other factors, this ad-

vantage is not translated to higher accuracy of detected events.

• A weakness of DBN is its complexity. First, a complex model may be subject

to noise brought by irrelevant features, such as irrelevant textual observations
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in the textual window. Second, errors propagate more easily in a complex

model, e.g. errors in earlier slices may bring about errors in subsequent

slices.

• The poorer performance in frame-level accuracy of the early fusion frame-

work as compared to the late fusion framework results from poorer repre-

sentation of the domain knowledge. It is poorer in three aspects. First, the

early fusion framework can rule out an event’s impossible hosting phases,

however it cannot constrain the phase on both the start and the end. For

example, temporal location specification of corner-kick has rather complex

constraint - a corner-kick takes place “in an advance, which is sandwiched

by two breaks, and if an advance precedes the first break, the two advances

should be in the same direction”. Second, modeling of semantic composition

by linguistic statistics may introduce noise from irrelevant phrases. Third,

audiovisual patterns are poorly captured by a complex unified stochastic

model. Theoretically, the early fusion framework is superior to the late

fusion framework in modeling sequential relationship among event types.

However, this is not demonstrated in our experiments, probably because the

text cue is reliable enough and relationship modeling provides little extra

help. In the situations where external information is not reliable or com-

plete, the capability of modeling sequential relations between events may be

helpful.
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Chapter 6

CONCLUSIONS AND FUTURE

WORK

This thesis proposes integrated analysis of audiovisual signals and external infor-

mation sources for detecting events in team sports video. Two frameworks are

developed, namely the late fusion and the early fusion frameworks. Asynchro-

nism between the audiovisual signals and the external information sources is the

key issue in designing them. The late fusion framework has two modules to pro-

cess audiovisual signals and external information source separately, with a third

module to fuse their outcomes. In the early fusion framework, audiovisual signals

and external information source are processed together by a Dynamic Bayesian

Network.

Key findings are:

• External information sources are helpful in detecting events from team sports

video. The help varies as the level of detail of the description varies. The

compact descriptions ensure the detection of the most important events,

while the detailed descriptions enable the detection of the full range of events.

Providing complete and accurate cue about events, detailed descriptions play

a crucial role in both frameworks.

• In the task of detecting events with boundaries, integrated analysis of au-
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diovisual signals and external information sources outperforms analysis of

a single source of information, thanks to exploitation of their complemen-

tary strengths. In terms of weighted F1, the audiovisual analysis achieves

0.63 ∼ 0.68 and the text analysis 0.3 ∼ 0.5, whereas the integrated analysis

could achieve 0.84 by the late fusion framework and 0.74 ∼ 0.80 by the early

fusion framework.

• The event model, which comprises temporal location specification, sequential

relationship between events, semantic composition and audiovisual patterns,

well captures the domain knowledge of team sports video and is effective in

making both frameworks work.

• Both frameworks are effective in tackling asynchronism and give acceptable

results.

• The late and early fusion framework each has strengths and weaknesses.

The strengths of the late fusion framework are: (a) the incorporation of the

domain knowledge is more complete and effective; and (b) it is extensible

in the sense that it achieves different detection capabilities given external

information at different levels of detail. Its weaknesses are: (a) the integra-

tion of the audiovisual signals and the externa information is only partial -

errors entailed by the external information can hardly be corrected by the

audiovisual signals; and (b) the representation of domain knowledge in the

system is not automated.

• The strengths of the early fusion framework are: (a) it enables closer inte-

gration of the audiovisual signals and the external information so that the

audiovisual signals can correct errors in the external information; (b) it has a

higher level of automation in representing domain knowledge; and (c) it has

the capability to model rich sequential relations between events. Its weak-

nesses are: (a) the incorporation of the domain knowledge is less complete

and less effective, in particular the heterogenous audiovisual patterns are

poorly captured; (b) it has a complex structure and a large number of pa-

rameters, which may partially account for the poorer accuracy; (c) the fixed
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feature set it uses is vulnerable to noise, in particular, irrelevant phrases in

the textual observations; and (d) it is biased towards event types with larger

priors or with longer strings of phrases. For our test games - soccer and

American football with detailed descriptions available, all these strengths

and weaknesses put together, the late fusion framework performs better than

the early fusion framework both in terms of the number of detected events

and frame-level accuracy.

The main contributions of this thesis are:

• We proposed integrated analysis of audiovisual signals and external infor-

mation. We developed two frameworks to perform the integrated analysis.

Both frameworks were demonstrated to outperform analysis of single source

of information in terms of detection accuracy and the range of event types

detected.

• We proposed a domain model common to the team sports, on which both

frameworks were based. By instantiating this model with specific domain

knowledge, the system can adapt to a new game.

• We investigated the strengths and weaknesses of each framework and sug-

gested that the late fusion framework probably performs better because it

represents the domain knowledge more completely and effectively.

The research work can be strengthened or extended in the following areas.

• First, parsing steps and timeout detection need to be more accurate and this

would significantly improve the final accuracy of event detection.

• Second, we are interested in applying the proposed system to a wider range

of team sports, such as basketball, rugby league, rugby union, hockey, ice

hockey and Australian rules football. We expect the system to work on these

games with minor adaptation because these games have consistent structure



134

composed of alternating advances. Many techniques described in the thesis

can be reused, namely the hierarchical HMM for phase segmentation, tech-

niques for processing compact and detailed descriptions, algorithms used in

the late fusion framework, the DBN and algorithms to determine unigrams

or bigrams. Effort will mainly be required in loading domain specifics, par-

ticularly in building event models and identifying domain-specific visual ef-

fects. To discover audiovisual patterns of event types, maximum entropy

and decision tree methods may be helpful in selecting features and in form-

ing threshold-based rules, respectively. They are domain-independent tech-

niques, though not detailed in the thesis. Temporal locations, semantic

composition and domain-specific visual effects may have to rely on domain

experts to build. Fortunately this effort is in a manageable scale. In addi-

tion, domain-specific mid-level semantic entities may be involved in event

models, e.g. score board and screen clock. They can be detected using

techniques reported in the literature.

• Third, the current system is not real time because the global structure anal-

ysis in late fusion framework or the whole of early fusion framework is done

offline. It would be desirable to make the system real time or semi-real time

so that it can support diverse application needs. Two efforts may be re-

quired. The first addresses the modification to the algorithms. An online

inference algorithm need to be in place for HHMM or DBN. The second is to

reduce the overall computation load. Possibly the system needs to rely more

on inexpensive text analysis to save expensive audiovisual computation.

• Fourth, as a generalization of the two sources of information (audiovisual

signals and textual descriptions), the system may incorporate even more au-

diovisual channels to achieve better accuracy. World Cup 2006 was aired

with additional cameras on top of each end besides the main camera. Mul-

tiple audiovisual channels would help in disambiguating video events.

• Fifth, it may be desirable to support personalized question answering based

on the events detected. The questions could be asked on plays, events,
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tactics or combinations. With rich textual description available, indexing of

this information would be realistic. Efforts may be mainly on modeling of

personal profiles.
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Appendix

Unigram lexicon of soccer

kickoff, goal-kick, free-kick, corner-kick, penalty, score, shot, save, offside, assist,

pass, block, clear, miss, catch, parry, tip-over, throw-in, open-play, attack, defend,

foul, yellow-card, red-card, substitution, out-of-play

Bigram lexicon of soccer

shot - score, shot - save, shot - clear, shot - miss, assist - shot, corner-kick - shot,

foul - free-kick, assist - offside, assist - clear, corner-kick - clear

Unigram lexicon of American football

pass, no-gain, punt, catch, penalty, incomplete, field-goal, tackle, touchback, inter-

cept, kick, recover, touchdown, conversion, fumble, safety

Bigram lexicon of American football

pass - incomplete, pass - intercept, punt - catch, kick - touchback, fumble - recover
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