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Summary 

 

Multi-agent decision problem under uncertainty is complicated since it involves a 

lot of interacting agents. The Pareto optimal set does not remain to be the Nash 

equilibria in multi-agent decision systems. Many graphical models have been 

proposed to represent the interactive decisions and actions among agents. Multi-

agent Influence Diagrams (MAIDs) are one of them, which explicitly reveal the 

dependence relationship between chance nodes and decision nodes compared to 

extensive form trees. However, when representing an asymmetric problem in 

multi-agent systems, MAIDs do not turn out to be more concise than extensive 

form trees.  

 

In this work, a new graphical model called Asymmetric Multi-agent Influence 

Diagrams (AMAIDs) is proposed to represent asymmetric decision problems in 

multi-agent decision systems. This framework extends MAIDs to represent 

asymmetric problems more compactly while not losing the advantages of MAIDs. 

An evaluation algorithm adapted from the algorithm of solving MAIDs is used to 

solve AMAID model. 

 



 VI

Value of information (VOI) analysis has been an important tool for sensitivity 

analysis in single agent systems. However, little research has been done on VOI 

in the multi-agent decision systems. Works on games have discussed value of 

information based on game theory. This thesis opens the discussion of VOI based 

on the graphical representation of multi-agent decision problems and tries to 

unravel the properties of VOI from the structure of the graphical models. Results 

turn out that information value could be less than zero in multi-agent decision 

systems because of the interactions among agents. Therefore, properties of VOI 

become much more complex in multi-agent decision systems than in single agent 

systems. Two types of information value in multi-agent decision systems are 

discussed, namely Nature Information and Moving Information. Conditional 

independencies and s-reachability are utilized to reveal the qualitative relevance 

of the variables.   

 

VOI analysis can be applied to many practical areas to analyze the agents’ 

behaviors, including when to hide information or release information so as to 

maximize the agent’s own utility. Therefore, discussions in this thesis will turn 

out to be of interest to both researchers and practitioners.   
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1 Introduction 

 

Decision making in our daily life is hard because the decision situations are 

complex and uncertain. Decision analysis provides decision makers a kind of 

tools for thinking systematically about hard and complex decision problems to 

achieve clarity of actions (Clemen 1996). If there is more than one person 

involved in the decision, the complexity of decision making is raised. Such 

decision problems are often modeled as multi-agent decision problems in which a 

number of agents cooperate, coordinate and negotiate with each other to achieve 

the best outcome in uncertain environments. In multi-agent systems, agents will 

be representing or acting on behalf of users and owners with very different goals 

and motivations in most cases. Therefore, the same problems under single agent 

systems and multi-agent systems would sometimes generate quite different 

outcomes and properties. 

  

The theories in multi-agent decision systems provide a foundation of this thesis. 

In this chapter, we will introduce the motivation of writing this thesis and define 

the basic problem addressed in this thesis. The last section of this chapter gives an 
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overview of the remainder of the thesis. 

 

1.1   Background and Motivation 

Making a good decision in a multi-agent system is complicated since both the 

nature of decision scenarios and the attributes of multiple agents have to be 

considered. However, such situation is always unavoidable since people are 

always involved into a large social network. Therefore, analyzing, representing 

and solving decision problems under such circumstances become meaningful.  

 

Many graphical models in single agent areas have been extended to model and 

solve decision problems in multi-agent areas, such as Multi-agent Influence 

Diagrams (MAIDs). MAIDs extend Influence Diagrams (IDs) to model the 

relevance between chance nodes and decision nodes in multi-agent decision 

systems. They successfully reveal the dependency relationships among variables, 

of which extensive game trees lack. However, in representing asymmetric 

decision problems, the specification load of a MAID is often worse than an 

extensive game tree. Hence, a new graphical model is needed for representing and 

solving these asymmetric decision problems. Examples in this thesis will show 

the practical value of our proposed models.  
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On the other hand, when agents make decisions in a decision system, information 

puts a direct influence on the quality of the decisions(Howard 1966). Agents can 

be better off or worse off by knowing a piece of information and the time to know 

this information. Information value plays an important role in the decision making 

process of agents. For example, in Prisoner’s Dilemma game, one prisoner can get 

higher payoff if he/she knows the decision of another prisoner. Since information 

gathering is usually associated with a cost, computing how much value of this 

information will add to the total benefit has been a focus for agents. 

 

Until now, researches on value of information (VOI) have been confined in the 

single agent decision systems. Information value involving multiple agents has 

been discussed in games. They use mathematical inductions and theorems to 

discuss the influence of information structure and agents’ payoff functions on the 

sign of information value. Many properties of VOI in multi-agent decision 

systems have not been revealed yet. Different kinds of information values have 

not been categorized. Recently, researches in decision analysis have developed 

graphical probabilistic representation to model decision problems. This work 

opens the discussion of VOI based on the graphical models.  
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1.2   Multi-agent Decision Problems 

This work is based on multi-agent decision systems, which have different 

characteristics from single agent decision systems. Firstly, a multi-agent decision 

problem involves a group of agents, while a single agent decision problem only 

involves one agent. Secondly, those agents have intervened actions or decisions 

because their payoff functions are influenced by other agents’ actions. Thirdly, 

each agent’s decision may be observed or not observed by other agents, while a 

decision maker always observes its previous decisions in a single agent decision 

system. Fourthly, agents can cooperate or compete with each other; Fifthly, agents 

have their individual objectives although they may seek a cooperative solution. 

Every agent is selfish and seeks to maximize its own utility, without considering 

others’ utilities. They cooperate with each other by sharing information. Because 

of these differences, decision problems in multi-agent decision systems and single 

agent decision systems are quite different. In multi-agent decision models, 

decision interaction among agents is an interesting and essential problem. The 

output of a multi-agent decision model may not always be a Pareto optimality set, 

but the Nash equilibria. However, in single agent systems, the output of the model 

is always a Pareto optimality set.       
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1.3   Objectives and Methodologies 

The goal of this thesis is to establish a new graphical model for representing and 

solving asymmetric problems in multi-agent decision systems, as well as 

discussing value of information in multi-agent decision systems. To achieve this 

goal, we carry out the stages as follows: 

 

First of all, we build a new flexible framework. The main advantage of this 

decision-theoretic framework lies in its capability for representing asymmetric 

decision problems in multi-agent decision systems. It encodes the asymmetries 

concisely and naturally while maintaining the advantages of MAID. Therefore, it 

can be utilized to model complex asymmetric problems in multi-agent decision 

systems. 

 

The evaluation algorithm of MAIDs is then extended to solve this model based on 

the strategic relevance of agents.  

  

1.4   Contributions 

The major contributions of this work are as follows: 

 

Firstly, we propose a new graphical model to represent asymmetric multi-agent 
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decision problems. Four kinds of asymmetric multi-agent decision problems are 

discussed. This framework is argued for its ability to represent these kinds of 

asymmetric problems concisely and naturally compared to the existing models. It 

enriches the graphical languages for modeling multiple agent actions and 

interactions. 

  

Secondly, the evaluation algorithm is adopted to solve the graphical model. 

Extending from the algorithm of solving MAIDs, this algorithm is shown to be 

effective and efficient in solving this model.  

 

Thirdly, we open the door of discussing value of information based on the 

graphical model in multi-agent decision systems. We define some important and 

basic concepts of VOI in multi-agent decision systems. Ways of VOI computation 

using existing MAIDs are studied.   

 

Fourthly, some important qualitative properties of VOI are revealed and verified 

in multi-agent systems, which also facilitate fast VOI identification in the real 

world.  

 

Knowledge of VOI of both chance nodes and decision nodes based on a graphical 

model can guide decision analyst and automated decision systems in gathering 
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information by weighing the importance and information relevance of each node. 

The methods described in this work will serve this purpose well.    

 

1.5   Overview of the Thesis 

This chapter has given some basic ideas in decision analysis, introduced the 

objective and motivation of this thesis and described the methodologies used and 

the contributions in a broad way.  

 

The rest of this thesis is organized as follows: 

 

Chapter 2 introduces related work involving graphical models and evaluation 

methods both in single agent decision system and multi-agent decision system. 

Most of current work on VOI computation in single agent decision systems is also 

covered. 

 

Chapter 3 proposes a graphical multi-agent decision model to represent 

asymmetric multi-agent decision problems. Four main types of asymmetric 

problems are discussed and the characteristics of this new model are highlighted. 

 

Chapter 4 presents the algorithm for solving this new decision model. The 
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complexity problem is discussed in this section as well. 

 

Chapter 5 defines VOI in multi-agent decision systems illustrated by a basic 

model of multi-agent decision systems. Different kinds of information value are 

categorized. A numerical example is used to illustrate some important properties 

of VOI in multi-agent decision systems. 

 

Chapter 6 verifies some qualitative properties of VOI in multi-agent decision 

systems based on the graphical model. 

 

Chapter 7 summarizes this thesis by discussing the contributions and limitations 

of the work. It also suggests some possible directions for future work.    
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2 Literature Review 

 

This chapter briefly surveys some related work: graphical models for representing 

single agent decision problems, graphical models for representing multi-agent 

decision problems, multi-agent decision systems, and value of information in 

single agent decision systems. This survey provides a background for a more 

detailed analysis in the following chapters and serves as a basis to the extension of 

these existing methodologies.  

 

2.1   Graphical Models for Representing Single Agent Decision 

Problems 

2.1.1  Bayesian Networks 

Bayesian networks are the fundamental graphical modeling language in 

probabilistic modeling and reasoning. A Bayesian network (Pearl 1998; 

Neapolitan 1990; Jensen 1996; Castillo et al. 1997) is a triplet (X, A, P) in which 

X is the set of nodes in the graph, A is the set of directed arcs between the nodes 

and P is the joint probability distribution over the set of uncertain variables. Each 
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node x X∈ is called a chance node in a BN which has an associated conditional 

probability distribution ( ( ))P x xπ ( ( )xπ  denotes all x ’s parents) associated. The 

arc between nodes indicates the relevance, probabilistic or statistical correlation 

relationship between the variables. ( | ( ))
x X

P p x xπ
∈

=∏ defines a multiplicative 

factorization function of the conditional probability of individual variables.  An 

example of BN is shown in Figure 2.1.  

a b

c d e

f  
Figure 2.1 An example of BN 

 

This BN contains six nodes { , , , , ,a b c d e f }. Each node in the BN has one 

conditional probability given its parents. Take node d  for example, ( )dπ ={ ,a b } 

and the conditional probability associated with it is ( | ( , ))p d a b . BN is an acyclic 

directed graph (DAG). The joint probability distribution of a BN is defined by its 

DAG structure and the conditional probabilities associated with each variable. 

Therefore, in Figure 2.1, the joint probability distribution can be represented as: 

( , , , , , ) ( ) ( ) ( | ) ( | ) ( | ) ( | ( , ))P a b c d e f p a p e p c a p f d p b e p d a b= .  

 

An important property of BNs is d-separation. The notion of d-separation can be 
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used to identify conditional independence of any two distinct nodes in the 

network given any third node. The definition (Jensen, 1996 & 2001) is given 

below:  

 

Definition 2.1 Let G be a directed acyclic graph and X, Y, Z are the three disjoint 

subsets of the nodes in G. Then X and Y are said to be d-separated by Z if for 

every chain from any node in X to any node in Y, the following conditions are 

satisfied: 

1. If an intermediate node A on the chain is in a converging connection(head-

to-head), neither A nor its descendants are in Z; 

2. If an intermediate node A on the chain is in a serial (head-to-tail) or 

diverging (tail-to-tail) connection, and A is in Z.  

 

Each chain satisfying the above conditions is called blocked, otherwise it is active. 

In this example, nodes d and e are d-separated given node b. 

 

Probabilistic inference in BNs has been proven to be NP-hard (Cooper 1990). In 

the last 20 years, various inference algorithms have been developed, including 

exact and approximate methods. The exact methods include Kim and Pearl’s 

message passing algorithm (Pearl 1988; Neapolitan 1990; Russell & Norvig 2003), 

junction tree method (Lauritzen & Spiegelhalter 1988; Jensen et al. 1990; Shafer 
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1996; Madsen & Jensen 1998), cutest conditioning method (Pearl 1988; 

Suermondt & Cooper 1991), direct factoring method (Li & Ambrosio 1994), 

variable elimination method (Dechter 1996) etc.  

 

The approximate methods include logic sampling method (Henrion 1988), 

likelihood weighting (Fung & Chang 1989; Shachter & Peot 1992), Gibbs 

sampling (Jensen 2001), self-importance sampling and heuristic-importance 

sampling (Shachter 1989), adaptive importance sampling (Cheng & Druzdzel 

2000) and backward sampling (Fung & Favero 1994). A number of other 

approximate inference methods have also been proposed. Since the exact 

inference methods usually require a lot of computational costs, approximate 

algorithms are usually used for large networks. However, Dagum and Luby (1993) 

showed that the approximate inference methods are also NP-hard within an 

arbitrary tolerance.  

 

Many extensions have been made to BNs in order to represent and solve some 

problems under special conditions. For example, the dynamic Bayesian networks 

(DBNs, Nicholson 1992; Nicholson & Brady 1992; Russell & Norvig 2003), 

probabilistic temporal networks (Dean & Kanazawa 1989; Dean & Wellman 

1991), dynamic causal probabilistic networks (Kjaerulff 1997) and modifiable 

temporal belief networks (MTBNs, Aliferis et al. 1995, 1997) to model time-
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dependent problems. All these representations and inferences are in the 

framework of single agent.    

 

2.1.2  Influence Diagrams  

An influence diagram (Howard & Matheson 1984/2005; Shachter 1986) is a 

graphical probabilistic reasoning model used to represent single-agent decision 

problems.  

 

Definition 2.2 An influence diagram is a triplet (N, A, P). Its elements can be 

defined as below:  

1. N= X D U∪ ∪ , where X denotes the set of chance nodes, D denotes the set 

of decision nodes and U denotes the set of utility nodes. A deterministic 

node is a special type of chance node.  

2. A is the set of directed arcs between the nodes which represents the 

probabilistic relationships between the nodes; 

3. P is the conditional probability table associated with each node. 

P= ( ( ))P x xπ  for each instantiation of ( )xπ  where ( )xπ  denotes all x ’s 

parents and x N∈ . 

 

Two conditions must be satisfied in an influence diagram: 
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1. Single Decision Maker Condition: there is only one sequence of all the 

decision nodes. In other words, decisions must be made sequentially 

because of one decision maker.  

2. No-forgetting Condition: information available at one decision node is 

also available at its subsequent decision nodes.   

   

In an influence diagram, rectangles represent the decision nodes, ovals represent 

the chance nodes and diamonds represent the value or utility. An example of the 

influence diagram is shown in Figure 2.2. This influence diagram comprises a set 

of chance nodes { , ,a b c }, a decision node d and value node v . The chance nodes 

a  and b  are observed before decision d, but not chance node c . The arc from one 

chance node to another chance node is called a relevance arc which means the 

outcome of the coming chance node is relevant for assessing the incoming chance 

node.  The arc from one chance node to one decision node is called an 

information arc which means the decision maker knows the outcome of the 

chance node before making this decision. The corresponding chance nodes are 

called observed nodes, denoted as the information set I(D). The arc from a 

decision node to a chance node is called an influence arc which means the 

decision outcome will influence the probability of the chance node.    
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a b

d V

c  
Figure 2.2 A simple influence diagram 

 

The evaluation methods for solving influence diagrams include the reduction 

algorithm (Shachter 1996, 1988) and strong junction tree (Jensen et al. 1994). The 

reduction algorithm reduces the influence diagram by methods of node removal 

and arc reversal. The strong junction tree algorithm first transforms the influence 

diagram into the moral graph, then triangulates the moral graph following the 

strong elimination order and finally uses the message passing algorithm to 

evaluate the strong junction tree constructed from the strong triangulation graph 

(Nielsen 2001).  

 

Influence diagrams involve one decision maker in a symmetric situation. Some 

extensions have been proposed to solve other problems under different situations. 

For example, Dynamic Influence Diagrams (DIDs, Tatman & Shachter 1990), 

Valuation Bayesian Networks (VBs, Shenoy 1992), Multi-level Influence 

Diagrams (MLIDs, Wu & Poh 1998), Time-Critical Dynamic Influence Diagrams 

(TDIDs, Xiang & Poh 1999), Limited Memory Influence Diagrams (LIMIDs, 

Lauritzen & Vomlelova 2001), Unconstrained Influence Diagrams (UIDs, Jensen 
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& Vomlelova 2002) and Sequential Influence Diagrams (SIDs, Jensen et al. 2004).  

 

2.1.3  Asymmetric Problems in Single Agent Decision Systems  

A decision problem is defined to be asymmetric if 1) the number of scenarios is 

not the same as the elements’ number in the Cartesian product of the state spaces 

of all chance and decision variables in all its decision tree representation; or 2) the 

sequence of chance and decision variables is not the same in all scenarios in one 

decision tree representation.   

    

Although IDs are limited in its capability of representing asymmetric decision 

problems, it provides a basis for extension to solve asymmetric decision problems 

involving one decision maker, such as Asymmetric Influence Diagrams (AIDs, 

Smith et al. 1993), Asymmetric Valuation Networks (AVNs, Shenoy 1993b, 

1996), Sequential Decision Diagrams (SDDs, Covaliu and Oliver 1995), 

Unconstrained Influence Diagrams (UIDs, Jensen & Vomlelova 2002), Sequential 

Influence Diagrams (SIDs, Jensen et al. 2004) and Sequential Valuation Networks 

(SVNs, Demirer and Shenoy 2006). All these works aim to solve the asymmetric 

problems under the framework of single agent. None of them is able to represent 

the asymmetric problems in multi-agent decision systems.  
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2.1.3.1  Sequential Influence Diagrams 

Sequential Influence Diagrams (SIDs, Jensen et al. 2004) are a graphical language 

for representing asymmetric decision problems involving one decision maker. It 

inherits the compactness of IDs and extends the expressiveness of IDs in the 

meantime. There are mainly three types of asymmetries in the single agent 

decision systems: structural asymmetry, order asymmetry and the asymmetry 

combined with both structural and order. SIDs are proposed to effectively 

represent these three asymmetries. The SIDs can be viewed as the combination of 

the two diagrams. One diagram reveals the information precedence including the 

asymmetric information. The other diagram represents the functional and 

probabilistic relations. SIDs are also composed of chance nodes, decision nodes 

and value nodes. Figure 2.3 shows an example of SID.   

A
a1, a2

B
b1, b2

D1

n, m

D2

t, k

U1 |t

U2 |k

n

m

t|*

 
Figure 2.3 An example of SID; The * denotes that the choice D2=t is only allowed when 

1 1 1( ) ( ( ))D m D n A a= ∪ = ∩ = is satisfied. 

The dashed arrow in Figure 2.3 is also called structural arc which encodes the 

information precedence and asymmetric structure of the decision problem. A 

guard may be associated with a structural arc, which is composed of two parts. 

One part describes the fulfilled context. When the context is fulfilled, the arc is 
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open. The other part states the constraints when the context will be fulfilled. For 

example, in Figure 2.3, the guard n on the dashed arc from node D1 to A means 

the next node in all scenarios is A whenever D1=n and this guard only has one 

part because the context D1=n is unconstrained. However, the guard t|* on the 

dashed arc from node D2 to B means that the context D2=t is only allowed when 

1 1 1( ) ( ( ))D m D n A a= ∪ = ∩ = is satisfied. Therefore, it is composed of two parts. 

The solid arc serves as the same function as in IDs.   

 

The SIDs are solved by decomposing the asymmetric problem into small 

symmetric sub-problems which are then organized in a decomposition graph 

(Jensen et al. 2004) and propagating the probability and utility potentials upwards 

from the root nodes of the decomposition graph.   

 

2.1.3.2  Other Decision Models for Representing Asymmetric Decision 

Problems 

 One direct way to represent asymmetric decision problems to use refined 

decision trees called coalescence (Olmsted 1983) decision tree approach. This 

method encodes the asymmetries with a natural way which is easy to understand 

and solve. However, the disadvantage is the decision tree grows exponentially as 

the decision problem gets larger. The automating coalescence in decision trees is 
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not easy as well since it involves first constructing the uncoalesced tree and then 

recognizing repeated subtrees. Therefore, it is only limited to small problems. 

Asymmetric Influence Diagrams (AIDs, Smith et al. 1993) extend IDs using the 

notion of distribution tree which captures the asymmetric structure of the decision 

problems. The representation is compact but it has redundant information both in 

IDs and distribution trees. Asymmetric Valuation Networks (AVNs, Shenoy 1993b, 

1996) are based on valuation networks (VNs, Shenoy 1993a) which consist of two 

types of nodes: variable and valuation. This technique captures asymmetries by 

using indicator valuations and effective state spaces. Indicator valuation encodes 

structural asymmetry with no redundancy. However, AVNs are not as intuitive as 

IDs in modeling of conditionals. Besides, they are unable to model some 

asymmetries. Sequential Decision Diagrams (SDDs, Covaliu and Oliver 1995) 

use two directed graphs to model a decision problem. One is an ID to describe the 

probability model and another sequential decision diagram to capture the 

asymmetric and information constraints of the problem. This technique can 

represent asymmetry compactly but there is information duplication in the two 

graphs. The probability model in this approach cannot be represented consistently.    

 

2.2   Multi-agent Decision Systems 

The trend of interconnection and distribution in computer systems have led to the 
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emergence of a new field in computer science: multi-agent systems. An agent is a 

computer system which is situated in a certain environment and is able to act 

independently on behalf of its user or owner (Wooldridge & Jennings 1995). 

Intelligent agents have the following capabilities: 1) Reactivity: they can respond 

to the changes in the environment in order to satisfy its design objectives; 2) Pro-

activeness: they can take the initiative to exhibit goal-directed behavior; 3) Social 

ability: they can interact with other agents to satisfy their design objectives.  

 

A multi-agent system (Wooldridge 2002) is a system comprising a number of 

agents interacting with each other by communication. Different agents in the 

systems may have different “spheres of influence” with a self-organized structure 

to achieve some goals together (Jennings 2000). There are five types of 

organizational relationships among these agents (Zambonelli et al. 2001): Control, 

Peer, Benevolence, Dependency and Ownership. The interactions among different 

agents include competition and cooperation. Grouped in different organizations, 

different agents can interact with other agents both inside and outside of the 

organization to achieve certain objectives in a system, which is called a multi-

agent decision system.  

  

Currently, many studies carried out on multi-agent systems are connected with 

game theory. The tools and techniques discovered in game theory have found 
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many applications in computational multi-agent systems research. Efficient 

computation of Nash equilibria has been one of the main foci in multi-agent 

systems. Nash equilibrium is the state when no agent has any incentive to deviate 

from. Parts of the research focus on the probabilistic graphical models to 

represent games and compute Nash equilibria. For example, game tree (von 

Neumann and Morgenstern 1994) represents the agents’ actions by nodes and 

branches. Expected Utility Networks (EUNs, La Mura & Shoham 1999) and 

Game Networks (G nets, La Mura 2000) incorporate both the probabilistic and 

utility independence in a multi-agent system. Some algorithms have also been 

developed for identifying equilibrium in games. TreeNash algorithm (Kearns et al. 

2001a, 2001b) treats the global game as being composed of interacting local 

games and then computes approximate Nash equilibria in one-stage games. 

Hybrid algorithm (Vickrey & Koller 2002) is based on hill-climbing approach to 

optimize a global score function, the optima of which are precisely equilibria. 

Constraint satisfaction algorithm (CSP, Vickrey & Koller 2002) uses a constraint 

satisfaction approach over a discrete space of agent strategies.  

 

All these research work above adopts a game-theoretic way to represent the 

interaction between agents and seeks the equilibria among agents. Some related 

graphical models will be introduced in the next section. 
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2.3   Graphical Models for Representing Multi-agent Decision 

Problems 

2.3.1  Extensive Form Game Trees 

Extensive form tree is developed by von Neumann and Morgenstern when 

representing n-person games. A completed game tree is composed of chance and 

decision nodes, branches, possible consequences and information sets. The main 

difference between decision trees and game trees is the representations of 

information constraints. In decision trees, the information constraints are 

represented by the sequence of the chance and decision nodes in each scenario, 

while in game trees, the information constraints are represented by information 

sets.  

    

An information set is defined as a set of nodes where a player cannot tell which 

node in the information set he/she is at. Figure 2.4 shows a game tree for a market 

entry problem. The nodes connected by one dashed line are in the same 

information set.  

 

The disadvantage of the game tree is that it obscures the important dependence 

relationships which are often present in the real world scenarios.  
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Figure 2.4 Game tree of a market entry problem 

 

2.3.2  Multi-agent Influence Diagrams 

In multi-agent decision systems, multi-agent influence diagrams (MAIDs, Koller 

and Milch 2001) are considered as a milestone in representing and solving games. 

It allows domain experts to compactly and concisely represent the decision 

problems involving multiple decision-makers. A qualitative notion of strategic 

relevance is used in MAIDs to decompose a complex game into several 

interacting simple games, where a global equilibrium of the complex game can be 

found through the local computation of the relatively simple games. Formally, the 

definition of a MAID is given as follows (Koller and Milch 2001). 

 

Definition 2.3 A MAID M is a triplet (N, A, P). N= D Uχ ∪ ∪  is the set of 

uncertain nodes, where χ is the set of chance nodes which represents the 

decisions of nature, D = a aD∈Α∪ represents the set of all the agents’ decision nodes, 

a aU U∈Α= ∪ represents the set of all the agents’ utility nodes.  I is the set of 
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directed arcs between the nodes in the directed acyclic graph (DAG). Let x  be a 

variable and ( )xπ  be the set of x ’s parents. For each instantiation ( )xπ and x , 

there is a conditional probability distribution (CPD): ( ( ))P x xπ associated. 

If x D∈ , then ( ( ))P x xπ  is called a decision rule ( ( )xσ ) for this decision 

variable x . A strategy profile σ is an assignment of decision rules to all the 

decisions of all the agents. The joint distribution [ ] ( ( )) ( )M
x U x D

P P x x xσ
χ

π σ
∈ ∈

= ∏ ∏
∪

. 

 

It can be seen that a MAID involves a set of agents A . Therefore, different 

decision nodes and utility nodes are associated with different agents. The “no-

forgetting condition” is still satisfied in the MAID representation. However, in 

MAIDs, it means that the information available at the previous decision point is 

still available at subsequent decision point of the same agent.  

 

Once σ assigns a decision rule to all the decision nodes in a MAID M, all the 

decision nodes are just like chance nodes in BN and the joint distribution [ ]MP σ is 

the distribution over N defined by the BN. The expected utility of each agent a for 

the strategy profile σ is: 

EUa(σ)= [ ] uuU
aUU Udomu

⋅=Ρ∑ ∑
∈

Μ
∈

)(
)(

σ  

 

Definition 2.4 Giving decision rules for the decision nodes in the set aDε ⊂ , a 
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strategy εσ
∗  is optimal for the strategy profile in the MAID [ ]M ε− , where all the 

decisions not in ε have been assigned with decision rules,  εσ
∗  has a higher 

expected utility than any other strategy '
εσ  over ε . 

 

This definition illustrates that εσ
∗  is the local optimal solution of the decisions in 

[ ]M ε− . 

 

Definition 2.5 A strategy profile σ is a Nash equilibrium if ( )aDσ  is optimal for 

all the agents a A∈ . 

 

An example of MAID is shown in Figure 2.5. The MAID is a DAG which 

comprises of two agents’ decision nodes and utility nodes. They are represented 

with different colors. The total utility of each agent a  given a specific 

instantiation of N is the sum of the values of all a ’s utility nodes given this 

instantiation. In this figure, agent B’s total utility is the sum of B’s utility 1 and 2 

given an instantiation of all the nodes N. The dashed line in the graph represents 

the information precedence when agents make decisions. In this figure, agent A 

knows his first decision and B’s decision when A makes his/her second decision 

and B observes chance node 1 but not A’s first decision when he/she makes 

decision. 
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Figure 2.5 A MAID 

 

MAIDs address the issue of non-cooperative agents in a compact model and 

reveal the probabilistic dependence relationships among variables. Once a MAID 

is constructed, strategic relevance can be determined solely on the graph structure 

of the MAID and a strategic relevance graph can be drawn to represent the direct 

relevance relationships among the decision variables.   

 

We can then draw a strategic relevance graph to represent the strategic 

relationship by adding a directed arc from D to D’ if D relies on D’. Once the 

relevance graph is constructed, a divide-and-conquer algorithm (Koller and Milch 

2001) can be used to compute the Nash equilibrium of the MAIDs.  One example 

of the relevance graph of Figure 2.5 is shown in Figure 2.6.  
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Figure 2.6 A relevance graph of Figure 2.5 

 

With its explicit expression and efficient computing methods, a MAID provides a 

good solution for representing and solving non-cooperative multi-agent problems. 

On the other hand, this representation becomes intractably large under asymmetric 

situations. However, it provides a foundation for us for further development when 

dealing with asymmetric problems.    

 

Koller and Milch (2001) suggested extending MAIDs to asymmetric situations 

using context-specificity (Boutilier et al. 1996; Smith et al. 1993). Context can be 

defined as an assignment of values to a set of variables in the probabilistic sense. 

This suggestion may be able to integrate the advantages of game tree and MAID 

representations.   
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2.4   Value of Information (VOI) in Decision Systems 

2.4.1  Value of Information in Single Agent Decision Systems 

In single agent systems, VOI analysis has been used as an efficient tool for 

sensitivity analysis. Calculating VOI can help the decision maker to decide 

whether it is worthwhile to collect that piece of information and identify which 

piece of information is the most valuable one to acquire. VOI can be defined as 

the difference between expected value with information and without information. 

If the information is complete, then VOI is also called expected value of perfect 

information (EVPI). Otherwise VOI can be called expected value of imperfect 

information (EVIPI). In single-agent decision model, VOI is lower bounded by 0 

and upper bounded by EVPI. Therefore, calculating EVPI is important in VOI 

analysis.  

 

EVPI on an uncertain variable is the difference between expected value with 

perfect information of that variable and without (Howard, 1996b and 1967). 

Given a new piece of information X of the uncertain parameters in a decision 

model I , the EVPI of X is as follows 

0
( ) ( | , ) ( | )d dEVPI X E V X E Vε ε= −  

                                                                                                                      (2.1) 
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In this formula, 0,d d D∈ represents the best decision taken with and without 

information respectively. E denotes taking expectation and ε denotes the 

background information. ( | , )dE V X ε is the expected value given 

information X and background information ε . 
0

( | )dE V ε is the expected value 

given background informationε .  

 

From formula (2.1), we can see that EVPI ( ,X ε ) is the average improvement 

expected to gain resulting from the decision maker’s decision choice given the 

perfect information before making the decision. It represents the maximum 

amount one should be willing to pay for that piece of perfect information.   

 

2.4.2  Computation of EVPI 

Research on computing EVPI can be divided into two groups: qualitative analysis 

of EVPI and quantitative computation of EVPI. The quantitative computation 

includes the exact computation and approximate computation. 

 

The traditional economic evaluation of information is introduced by Howard 

(1966, 1967). In his evaluation, EVPI is calculated by the expected value given 

the outcomes of the variable minus the expected value without knowing the 

outcomes of the variable.  
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Value of evidence (VOE, Ezawa 1994) is a measure of experiment to find out 

what evidence we would like to observe and what the maximum benefit we can 

receive from the observation of an evidence. It is defined as:  

( )  ( \ , )  ( )J j J J jVOE X x Max EV X X X x Max EV X= = = −           

For the state space JΩ of node J.                                                                     (2.2)                                       

In Formula (2.2), J is the chance node and JX is the chance variable associated 

with it. jx  is one instantiation of JX . \ JX X is the set of chance variables 

excluding JX  and EV is the expected value. The EVPI given JX can be defined 

as: 

( ) ( \{ , }, \ , ) ( )J J J JEVPI X MaxEV X D X D X X MaxEV X= −  

For the state space JΩ of node J.                                                         (2.3) 

which can then be represented as a function of VOE: 

( )JEVPI X ( )*Pr{ }J j jVOE X x x= =∑  

For the state space JΩ of node J.                                                                   (2.4) 

From formula (2.3), we can see that the EVPI computed from VOE is the EVPI 

for all the decisions, assuming the evidence is observed before the first decision. 

Besides, the value of evidence can be negative, but the value of perfect 

information is always greater than or equal to 0. Note here the value of evidence 

is different from value of information, since a piece of evidence may have 
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negative impact on the total expected value, but information value can never be 

negative in single agent decision systems.  

 

Once the evidence jx is propagated, when the decision maker makes the next 

decision (remove decision node), this information is already absorbed. Hence by 

weighing the value of evidence for each jx with Pr{ }jx , we can compute the value 

of perfect information. The unconditional probability Pr{ }Jx can always be 

obtained by applying arc reversals (Shachter, 1986) between its predecessors, as 

long as they are not decision nodes.   

 

This method of calculating EVPI is based on VOE, the computation efficiency of 

which is based on the efficiency of propagation algorithm for influence diagram. 

In practical usage, when the problem gets large, the computation of EVPI 

becomes intractable. Under this circumstance, some assumptions have been made 

to simplify the computation problem. Myopic value of information (Dittmer & 

Jensen 1997) computation is among one of them. The myopic assumption 

assumes that the decision maker can only consider whether to observe one more 

piece of information even when there is an opportunity to make more 

observations. This method of calculating the expected value of information is 

based on the strong junction tree framework (Jensen et al. 1994) corresponding  to 

the original influence diagram. The computation procedure for both scenarios, 
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with and without information, can make use of the same junction tree with only a 

number of tables expanded but not recalculated. Its disadvantage is its limitation 

in the myopic assumption.  

 

The approximate EVPI computations include the non-myopic approximation 

method (Heckerman et al. 1991) and Monte Carlo Simulation. The non-myopic 

approximation method is used as an alternative to the myopic analysis for 

identifying cost-effective evidence. It assumes linearity in the number of a set of 

tests which is exponential in the exact computation. The steps of this method are 

as follows. First, use myopic analysis to calculate the net value of information for 

each piece of evidence. Second, arrange the evidences in descending order 

according to their net values of information, and finally compute the net value of 

information of each m-variable subsequence of the pieces of evidence starting 

from the first to identify evidence whose observation is cost effective. Because 

this approach uses the central-limit theorem to compute the value of information, 

it is limited to the problem with independent or special dependent distribution 

evidences where the central-limit theorem is valid.  

 

Another traditional approximate method is Monte Carlo Simulation. According to 

each chance variable’s probability distribution, we can generate great amount of 

random numbers and the expected utility can be determined then (Felli & Hazen, 
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1998). Although this approach is easy to understand, it is not space and time 

efficient.   

 

Different from these quantitative methods, Poh and Horvitz (1996) proposed a 

graph-theoretic way to analyze information value. This approach reveals the 

dominance relationships of the EVPI on each chance nodes in the graphical 

decision models based on a consideration of the topology of the models. The 

EVPIs of chance nodes can then be ordered with non-numerical procedures. An 

algorithm based on d-separation is proposed to obtain a partial ordering of EVPI 

of chance nodes in a decision model with single decision node which is 

represented as an influence diagram expressed in canonical form (Howard, 1990).   

 

Xu (2003) extended this method with u-separation procedure to return a partial 

EVPI ordering of an influence diagram.      

 

Xu (2003) extended VOI computation to the dynamic decision systems. It is a 

computation based on dynamic influence diagrams (DIDs, Tatman & Shachter 

1990). Different from the VOI computation based on IDs, the discount factors are 

considered in dynamic decision systems. The steps are as follows: first, 

decompose DIDs into sub-networks with similar structures. Second, generate sub-

junction tree based on the sub-networks. Third, calculate the expected utility from 
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leaf to the root node.  

 

The above-mentioned work involves VOI analysis in single-agent decision 

systems. Until now, no research work has been done on VOI analysis in multi-

agent decision systems. Information value involving multiple agents has been 

discussed in games using mathematical inductions and theorems to discuss the 

influence of information structure and the agents’ payoff functions on the sign of 

information value.  
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3 Asymmetric Multi-agent Influence Diagrams: Model 

Representation 

 

In IDs and BNs, a naïve representation of asymmetric decision problem will lead 

to unnecessary blowup. The same problem will be confronted in MAIDs when 

they are used to represent the asymmetric problems. Therefore, it is important to 

extend MAIDs when asymmetric situations are confronted. 

 

This chapter discusses four kinds of asymmetric multi-agent decision problems 

commonly confronted and illustrates the Asymmetric Multi-agent Influence 

Diagrams (AMAIDs) by modeling these highly asymmetric multi-agent decision 

problems.  

 

3.1   Introduction  

There are mainly two popular classes of graphical languages for representing 

multi-agent decision problems, namely game trees and Multi-agent Influence 

Diagrams. Game trees can represent asymmetric problems in a more natural way, 
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but the specification load in a tree (i.e., the size of the graph) increases 

exponentially as the number of decisions and observations increases. Besides, it is 

not easy for game tree representation to explicitly reveal the dependence 

relationships between variables. MAIDs are a modification of influence diagrams 

for representing decision problems involving multiple non-cooperative agents 

more concisely and explicitly. A MAID decomposes the real-world situation into 

chance and decision variables and the dependence relationships among these 

variables. However, similar blow-up problems are confronted when using MAIDs 

to represent asymmetric multi-agent decision problem, sometimes even worse 

than game trees. Take centipede game for example. 

 

[Centipede Game]  

Centipede Game was first introduced by Rosenthal (1981) in game theory. In 

this game, two players take turns to choose either to take a slightly larger 

share of a slowly increasing pot, or to pass the pot to the other player. The 

payoffs are arranged so that if one passes the pot to one's opponent and the 

opponent takes the pot, one receives slightly less than if one had taken the pot. 

Any game with this structure but a different number of rounds is called a 

centipede game.  

 

Such a decision problem is called an asymmetric multi-agent decision problem. A 
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special aspect of asymmetric multi-agent decision problems is that the next 

decision to be made and the information available may depend on the agents’ 

previous decisions or chances moves. For example, in the Centipede game, the 

next player’s move depends on the previous player’s choice of whether to take or 

pass. There are several types of asymmetric multi-agent problems, and we will 

discuss them in detail in the next section. 

 

The above asymmetric decision scenario could not be solved using traditional 

methods of influence diagrams and extensions of the representation which have 

been reviewed in Chapter 2 such as the UIDs, SIDs, AIDs, AVNs and SDDs. The 

reason is that these formalisms emphasize the single agent based asymmetric 

decision problem. These graphical models do not take the interaction (or strategic 

relevance) among multiple agents into consideration.  

 

MAIDs extend the formalisms of BNs and IDs to represent decision problems 

involving multiple agents. With decision nodes representing the decisions of 

agents and chance nodes representing the information or observation, MAIDs do 

not only allow us to capture the important structure of the problem, but make 

explicit the strategic relevance between decision variables. However, in 

representing the asymmetric problem, a naïve representation of MAIDs leads to 

unnecessary blowup.  
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The representation of an asymmetric multi-agent decision problem requires a new 

graphical decision model extending from MAIDs. In our work, we integrate game 

tree and MAIDs together into one language called asymmetric multi-agent 

influence diagrams (AMAIDs). 

 

3.2   Asymmetric Multi-agent Decision Problems 

In this section we present four examples to illustrate four types of asymmetries 

usually confronted in multi-agent decision systems. These examples will also be 

used in the next section to illustrate our proposed graphical model. 

 

Considering the extensive form trees of the asymmetric problem, we can divide 

asymmetries in multi-agent decision systems into four types. 1) Different 

branches of the tree contain different number of nodes; 2) Different branches of 

the tree involves with different agents; 3) Player’s choices are different in 

different branches of tree; 4) Different decision sequences are associated with 

different branches of tree. 

 

3.2.1  Different Branches of Tree Containing Different Number of Nodes  

We illustrate this type of asymmetry by Centipede Game mentioned in the above 
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section.  

 

[Centipede Game] 

Here we adopt a more detailed version: Consider two players 1 and 2. At the 

start of the game, Player 1 has two small piles of coins in front of him; very 

small indeed in fact, as one pile contains only two coins and the other pile has 

no coins at all. As a first move, Player 1 must make a decision between two 

choices: he can either take the larger pile of coins (at which point he must also 

give the smaller pile of coins to the other player) or he can push both piles 

across the table to Player 2. Each time the piles of coins pass across the table, 

one coin is added to each pile, such that on his first move, Player 2 can now 

pocket the larger pile of 3 coins, giving the smaller pile of 1 coin to Player 1 

or he can pass the two piles back across the table again to Player 2, increasing 

the size of the piles to 4 and 2 coins. The game continues for either a fixed 

period of 100 rounds or until a player decides to end the game by pocketing a 

pile of coins. If none takes the pile after 100 rounds, then both of them will be 

given 100 coins.  
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(b) MAID representation of the Centipede Game 

 
Figure 3.1 Naive representations of Centipede Game 

 

Figure 3.1(a) shows the extensive form tree representation of this problem, with 

payoffs attached to each end node. In the graph, “A” represents player accepts the 

larger pile, while “P” represents that player passes to let the next player make a 

decision. Figure 3.1(b) shows the MAID representation of this problem. Decision 

node Di
n represents the decision made by agent i at the nth round. Value node Ui

n 

represents the utility associated with agent i at the nth round. As we can see, the 

extensive form does not show the dependence relationships between Player 1 and 

2’s decisions explicitly, although it concisely represents the asymmetric decision 
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problem compared to the MAID. The graph size of MAID is prohibitive. 

 

3.2.2  Different Branches of Tree Involves Different Agents 

[Killer Game] 

There is a popular game called “Killer” among university students. Here we 

describe the game using a revised version. The game’s rule is as follows. 

Suppose there are N players. In each round, they have to vote in order to 

decide who will be the suspect. The one who gets the highest votes will be 

“killed” (It means that this person is kicked out of the game and cannot vote 

again). If there is a tie in a vote, the one with the lowest index amongst those 

who are tied is “killed”. In the final round, a game of chance determines the 

winner between the remaining two players. To make it simple, we assume 

everyone is an independent individual. In other words, everyone’s decision is 

not controlled by others. The game ends when N rounds of voting have been 

completed. 

 

In the first round, there will be (N-1)N combinations of the possibilities, with N 

outcomes. There will be (N-2)N-1 combinations of the possibilities in the second 

round, with (N-1) outcomes. And third round, (N-3)N-2
 combinations , with (N-2) 

outcomes, so on and so forth. The game has to go on with N rounds. Using the 

game tree to represent this game, the game tree would be highly asymmetric. In 



Chapter 3: Asymmetric Multi-agent Influence Diagrams: Model Representation  

 42

each round, we represent one outcome with a sub-tree. It means that after 

everyone has voted in one round, some agent Ai is voted off and he/she is no 

longer able to vote in the next round. A different sub-tree in the same level may 

represent the case where a different agent Aj is voted off.  Following this rule, the 

game tree will be very large and the solving time complexity is O(n!). 

 

Figure 3.2 shows the MAID representation of this example, but the specification 

load of the graph is actually worse than the game tree. For example, the utilities 

U1
n, U2

n…Un
n in the last round contain all the information from the previous 

decisions. Even though deterministic nodes Ri are introduced to represent the 

agents who are voted off during that round i and F to represent the final result, the 

CPD table of each utility node still stores the values although a player Ai has 

already been voted off. This leads to the redundancy of information stored in the 

nodes. 

 

We do a further refinement of the MAID by introducing clusters of nodes in the 

extended model of Figure 3.2(b), represented by the dashed frames. This 

refinement makes the original MAID more compactly.  
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(a) MAID representation of the Killer Game 
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(b) A further refinement of the MAID model 
 

Figure 3.2 MAID representation of Killer Game 
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Those nodes in the same dashed frame are in the same cluster, which have the 

same parents and descendants. A cluster can include a set of decision nodes or 

utility nodes. If a cluster includes a set of decision nodes, it means that the 

decisions are made simultaneously. If a cluster includes a set of utility nodes, it 

simply represents a set of agents’ utility nodes under the same condition.  

 

In our extended work, we introduce clusters into our AMAID representation to 

make it more concise.  

 

3.2.3  Player’s Choices are Different in Different Branches of Tree 

[Take Away Game] 

Suppose there is a pile of N matches on the tables. Two players take turns to 

remove the matches from the pile. On the first move a player is allowed to 

remove any number of objects, but not the whole pile. On any subsequent 

move, a player is allowed to remove no more than what his or her opponent 

removed on the previous move. The one who removes the last one match from 

the table win the game.  

 

This decision problem has two special characteristics: (1) each player’s available 

choices might be changing every step. The scope depends on the choice made by 

the previous player. (2) The number of the game stages is unknown, depending on 
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the choices made by the players in each step.   

 

The game tree of this decision problem is highly asymmetric. The tree will be 

very large as it will have O(n!) leaves. However, our MAID representation is 

worse, not only in the specification load, but also in the expressiveness of MAID. 

Figure 3.3 shows the MAID representation of this problem. In this representation, 

it is hard for us to identify when the game will be ended. Besides, in each step, the 

MAID stores every choice of the players from 1 to N even though some of them 

are impossible. Therefore, redundancy is incurred.   

DA
1 DB

1 DA
n DB

n

UA
1 UB

1 UA
n UB

n

 
Figure 3.3 MAID representation of Take Away Game 

 

 

3.2.4  Different Branches of Tree Associated with Different Decision 

Sequences  

[War Game] 

Suppose country A plans to conquer countries B and C. A should decide 

whether to fight with B first or C first. The country which A has chosen to 
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fight first should then decide whether to make a coalition with another country 

or fight by itself. If it decides to make a coalition, the country who is 

requested should decide whether to help or not.  

 

This problem is asymmetric because the first decision maker A’s decision 

influences the decision sequences of the next two decision makers’ decisions. It is 

quite natural to represent this problem with a game tree. To represent it by a 

MAID we have to represent the unspecified ordering of the B and C’s decisions as 

a linear ordering of decisions. Figure 3.4 depicts an MAID representation of the 

War Game. 

DA

DC
2

DB
1

R

DC
1

DB
2

UA
1

UA
2, UB

1 UA
4, UB

3,
UC

1

UA
3, UB

2 UA
5, UB

4,
UC

2

 
Figure 3.4 MAID representation of the War Game 

 

3.3   Asymmetric Multi-agent Influence Diagrams 

In this section, we will describe the main features of asymmetric multi-agent 

influence diagrams (AMAIDs) by considering the AMAID representation of the 
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Centipede Game as described in the previous section. This idea is borrowed from 

the idea of Sequential Influence Diagrams (SIDs) when handling the asymmetric 

decision problems in single agent decision systems. 

 

Similar to a SID, An AMAID can be viewed as two diagrams superimposed onto 

each other. One diagram encodes the information precedence as well as 

asymmetric structure and the other encodes the probabilistic dependence relations 

for the chance nodes and deterministic functional relations for the utility node.   

Assuming a set of agents I, an AMAID M is a triplet (N, A, P). N C D U= ∪ ∪  is 

the set of uncertain nodes, where C is the set of chance nodes (represented by 

ellipses) which represents the decisions of nature, i I iD D∈= ∪ represents the set of 

all the agents’ decision nodes (represented by rectangles), i I iU U∈= ∪ represents 

the set of all the agents’ utility nodes (represented by diamonds). P is the joint 

probability distributions over all the nodes N. A is the set of directed arcs 

comprised of dashed arcs and solid arcs between the nodes in the graph. The 

dashed arc (also called contextual arc) encodes the information precedence and 

asymmetric structure, while the solid arc (also called probabilistic arc) encodes 

the probabilistic dependence and functional relations. In other words, if there is a 

dashed edge from X to Y, it means X is observed or decided before Y is observed 

or decided. The arc (X, Y) may be associated with an annotation g(X, Y) which 
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describes the context under which the next node in the set of scenarios is the node 

that the arc points to and we call it contextual condition. A context (Boutilier et al. 

1996, Zhang & Poole 1999, Poole & Zhang 2003) refers to an assignment of some 

actual values to a set of variables. We say the arc is open if the context is fulfilled. 

Otherwise, we say the arc is closed. 

D1
1

P, A

U1
1
, U2

1

D2
1

P,A
D1

99

P,A
D2

99

P,A
D1

100

P,A
D2

100

P,A

U1
198

, U2
198U1

2
,U2

2 U1
199

, U2
199 U1

200
, U2

200 U1
201, U2

201

P P P P P
U1

202, U2
202

P

 

Figure 3.5 An AMAID representation of the Centipede Game 

 

As shown in Figure 3.5, the dashed arc from D1
1 to D2

1encodes D1
1 is decided 

upon before D2
1 and asymmetric information is encoded by the contextual 

condition P associated with the dashed arc. The annotation P on the dashed arc 

from D1
1 to D2

1 means that whenever D1
1=P, the next node in all scenarios is D2

1. 

In other words, D1
1=P makes the value of D1

1 irrelevant to the payoff cluster (U1
1, 

U2
1) (in all scenarios, U1

1=0, U2
1=0). Whenever D1

1=P, we say that the dashed arc 

from D1
1 to D2

1 is open. The set of nodes referenced by the contextual condition g 

is called the domain of g, e.g. dom (g(D1
1, D2

1))={D1
1}. The set of contextual 

conditions are denoted by g, i.e., if g does not contain an annotation for the 
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dashed arc (X, Y), then we extend g with the annotation g(X, Y) ≡ 1. 

 

The decision node in an AMAID is composed of two parts. The part above 

encodes the name of the decision node, while the part below encodes the available 

choices of each decision. One utility node may encode the utilities of several 

agents, we call it a cluster of utility nodes and use arrays to describe them. As 

shown in Figure 3.5, the decision node D1
1

 has two available choices “A” and “P”, 

array (U1
i, U2

i) is used to describe every cluster of utility nodes.  

A scenario in an AMAID can be identified by iteratively following the open arcs 

from a source node (a node with no incoming dashed arcs) until a node is reached 

with no open outgoing arcs. In a MAID, a scenario requires one terminal node 

explicitly. However, this does not hold in AMAID. In the case D1
1=D, the 

scenarios end in D1
1 with a state of D, if D1

1 =A, the scenarios may end with a 

state of A at any decision nodes thereafter, except D1
1.  

Unlike MAID, AMAID is not an acyclic graph. It allows the temporal existence 

of directed cycles. However, the sub-graph representing each scenario must be an 

acyclic graph. In other words, the cycle should have at least one closed contextual 

arc in one scenario. For example, A and B are two manufacturing companies in 

the market. Company A has a new innovation and has to decide (DA) whether to 

license it out (L) or release as an open source to the public (R). If it licenses the 
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new technology out, then after a few years, other companies would also know the 

technology, which means that other companies can produce by mimicking. If it 

releases the innovation as an open source, then the other companies will know it 

immediately. B is another company who has to decide whether to incorporate A’s 

technology into its own product. If the technology is released to others, there will 

be a market feedback about the technology (F) immediately. Otherwise, there will 

be a feedback a few years later. The AMAID representation of this scenario is 

shown in Figure 3.6. As we can see from the figure, the AMAID is in a directed 

cycle. Only when the decision result of A is observed, the directed cycle can be 

broken. If DA=L, then the arcs 1 and 4 are closed, the cycle is broken. If DA=R, the 

arcs 2 and 3 are closed.          

DA=L

DA=R

DA=L DA=RDA

DB

F1

2

3

4

 

Figure 3.6 The cycle model 

A partial temporal order M≺ can be defined over the chance and decision nodes in 

an AMAID M. If and only if there is a directed path from X to Y in M but not from 

Y to X or Y is unobserved, we say X M≺ Y. In Figure 3.6, If DA=L, then DB M≺ F. If 

DA=R, then F M≺ DB.   
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Apart from the qualitative properties of AMAID, an AMAID also specifies the 

joint probability distributions over nodes N. Let x  be a variable and ( )xπ  be the 

set of x ’s parents (if for any ( )y xπ∈ , there is a directed arc y x→ or y --> x ). 

For each instantiation ( )xπ and x , there is a conditional probability distribution 

(CPD): ( ( ))P x xπ associated. If x D∈ , then ( ( ))P x xπ  is called a decision rule 

( ( )xσ )for this decision variable x . A strategy profile σ is an assignment of 

decision rules to all the decisions of all the agents. The joint distribution defined 

over N is [ ] ( ( )) ( )M
x C U x D

P P x x xσ π σ
∈ ∈

= ∏ ∏
∪

.  

 

Note that if for ( )y xπ∈ , there is a directed contextual arc y --> x with a 

contextual condition g: y = 1y associated, then the CPD table for 

x is 1( | ( ) \ , )P x x y y yπ = . Otherwise, the CPD table for x  is ( ( ))P x xπ . 

 

In an AMAID, there may be a series of utility nodes of an agent i , but they are 

under different contexts. We call it contextual utility. For example, the utility 

U1
1|(D1

1=A) means the utility is only available when D1
1=A. We call D1

1=A is the 

context statement of the contextual utility and those contextual variables involved 

in the context statement is called the domain of the context statement. Apparently, 

we cannot have a contextual variable with all its available choices in the context 

statement. Those utility variables specified with different contexts cannot be 

added together. Only those utility nodes unspecified can be an addend, assuming 
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the additive decomposition of the agent’s utility function by breaking an agent’s 

utility function into several variables. Consider the Centipede Game in Figure 3.5, 

the utility nodes U1
1, U1

2, …, U1
201 are all the utilities of agent 1, but they cannot 

be added together since they are contextual utilities. However, if let’s say when 

agent 1 makes the first decision (D1
1), there is the same amount of cost Ucost 

incurred, no matter what choice he makes. Then Ucost should be added to all the 

other contextual utilities. For all the utility nodes of agent i under the same 

context, we define a class. Those unspecified utility nodes should be added to 

every class.    

 

With the probability distribution, the utility for each agent can be computed. 

Suppose Ui={ 1 2, ,..., nU U U }. Every element of Ui should be in the same class. 

The total utility for an agent i if the agents play a given strategy profile σ can be 

computed with equation below: 

1

[ ] 1 [ ]
( ,..., ) ( ) 1 ( )

( ) ( ,... ) ( )
n i i

n

a M n k M
u u dom k U u dom U

EU P u u u P U u u
u u

σ σσ
∈ = ∈ ∈

= = =∑ ∑ ∑ ∑ i  

 

Let M be an AMAID with variables N and contextual condition g. If one variable 

X N∈ appears in the domain of the contextual condition g, we call this X a split 

variable. For a partial temporal order M≺ in an AMAID M, if there is no other 

split variables Y before X, i.e., Y M≺ X, then X is called an initial split variable. 
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If a split variable X is initiated (a specific value is assigned to X), then the 

contextual condition g with X included can be evaluated. If the contextual 

condition is evaluated to be false, then the associated contextual arc can be 

removed with all the variables that we can only reach by following that arc. 

Consider the AMAID representation of the Centipede Problem shown in Figure 

3.5. In this representation, D1
1

 is the initial split variable. After initiating D1
1 by 

assigning values A and P respectively, we get the following reduced AMAIDs 

shown in Figure 3.7.   

D1
1

P, A

U1
1
, U2

1

 

(a) Reduced AMAID M [ 1
1D A ] of the Centipede Game by the instantiation 

D1
1=A 
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1
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(b) Reduced AMAID M [ 1

1D P ]of the Centipede Game by the instantiation 

D1
1=P 
 

Figure 3.7 Reduced MAID by initiating D1
1 
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Below shows the AMAID representation of the other three asymmetric examples 
mentioned above.  
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Figure 3.8 AMAID representation of Killer Game (N=4) 
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Figure 3.9 AMIAD representation of Take Away Game 
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Figure 3.10 AMAID representation of War Game
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4 Asymmetric Multi-agent Influence Diagrams: Model 

Evaluation 

 

In multi-agent systems, the main computational task is to compute the Nash 

equilibrium. In the previous chapter, the decision models of AMAIDs have been 

developed to represent asymmetric multi-agent decision problems. This chapter 

will discuss the evaluation algorithms to solve proposed decision models. 

 

4.1   Introduction 

The multi-agent decision problems involve multiple interacting agents in an 

uncertain environment. One agent’s decision will influence another agent’s 

decisions which may in turn affect other agents’ decisions. The aim of a specific 

agent is to seek the optimal decision rule, given decision rules of other agents. 

Because of the intricate interactions among these agents, finding Nash 

equilibrium becomes extremely difficult. A straightforward and easy approach is 

to convert the AMAID into game tree and then use backward induction to solve 

the game tree. Unfortunately, this straightforward approach described above does 
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not provide any computational efficiency since it will create some unnecessary 

blowups. 

 

Koller and Milch (2001) proposed the definition of strategic relevance to break 

the complex game into a series of relatively simple games, taking advantage of 

the independence structure in a MAID which reduced the task of finding a global 

equilibrium to several relatively local computations. We will adopt this concept in 

our algorithm for evaluating AMAIDs.   

 

We begin the discussion by introducing some definitions related to strategic 

relevance (Koller & Milch 2001). 

Definition 4.1 S-Reachability 

A node D’ is s-reachable from a node D in a MAID M if there is some utility 

node DU U∈ such that if a new parent ˆ 'D were added to D’, there would be an 

active path in M from ˆ 'D  to U given ( ) { }Pa D D∪ , where a path is active in a 

MAID if it is active in the same graph, viewed as a BN. 

Definition 4.2 Relevance Graph 

The relevance graph for a MAID M is a directed graph, the nodes of which are 

the decision nodes of M. There is a directed arc between D’ to D, 'D D→ , if 

and only if D’ is s-reachable from D. 

Definition 4.3 Nash Equilibrium (Nash 1950) 
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A Nash equilibrium is a state that no agent has the incentive to deviate from 

its decision rule specified by the strategy profile, given no other agents 

deviate.  

 

4.2   Relevance Graph and S-Reachability in AMAID 

In order to apply the definition of relevance graph and s-reachability in AMAIDs, 

we would first extend an AMAID to de-contextualize AMAID.  

Definition 4.4 De-contextualize AMAID 

An AMAID containing no contextual utility node is called a de-contextualize 

AMAID. 

We can change an AMAID to a de-contextualize AMAID whenever a contextual 

utility node is met, and add a directed arc from the split variable X which is in the 

domain of contextual utility to the utility node. If an arc already exists, do nothing. 

For example, if the contextual utility node is represented as U1
1|(D1

1=A), we add 

an arc from the split variable D1
1

 to the contextual utility U1
1 and change 

contextual utility node to a normal form utility node by deleting the context 

conditions contained in the contextual utility node. The contextual utility node 

after removing the context statement is called de-contextualized utility node. 

 

After changing AMAID to De-contextualize AMAID, we can check the s-
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reachability of all the decision nodes in De-contextualize AMAID. 

 

Therefore, the steps of constructing the relevance graph of an AMAID are as 

follows: 

1.  For a decision node D’ and D in an AMAID M and there is some contextual 

utility node DU U∈ , De-contextualize the utility node U by using the method 

listed above. 

2. Add a new parent ˆ 'D  to D’ ; 

3. If there is an active path from ˆ 'D  to the de-contextualized U 

given ( ) { }Pa D D∪ , the node D’ is said to be s-reachable from a node D in the 

AMAID M. 

4. Check the s-reachability between every two decision nodes in the AMAID;    

5. Construct a new graph only which contains every decision node in M. If D’ is 

s-reachable from D, add a directed arc between D’ to D, 'D D→ . 

 

A path is said to be active if along this chain (the directed path), every 

intermediate node A satisfies: 

a) If A is a head-to-head node in the chain, A or its descendents are 

in ( ) { }Pa D D∪ ; 

b) If A is not a head-to-head node in the chain, A is not in ( ) { }Pa D D∪ .  

If there is dashed arc along the path, make sure the arc is open. 
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We take the AMAID of Centipede Game for example. Figure 4.1(a) shows the 

AMAID representation of Centipede Game by showing the contextual condition 

in contextual utilities explicitly. Take the contextual utility node (U1
200

,
 

U2
200)|(D1

1=P,...D1
100=A) for example, since D1

1
, …D1

100 are split variables 

contained in the domain of the contextual condition, we should add a directed arc 

from D1
1

, …D1
100

 to the contextual utility node (U1
200

,
 U2

200)|(D1
1=P,...D1

100=A) to 

de-contextualize it. Since the arc from D1
100 to contextual utility node (U1

200
,
 

U2
200)|(D1

1=P,...D1
100=A) already exists, there is no need to add another one. We 

get Figure 4.1(b) showing the graph after contextual utility node (U1
200

,
 

U2
200)|(D1

1=P,...D1
100=A) is de-contextualized.  
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(a) AMAID of Centipede Game 
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(b) AMAID after contextual utility node is de-contextualized 

Figure 4.1 De-contextualize contextual utility node 
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Figure 4.2(a) shows the De-contextualized AMAID of Centipede Game. Figure 

4.2(b) shows the relevance graph of Centipede Game according to the De-

contextualized AMAID. 
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 (a) De-contextualized AMAID of Centipede Game 
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1 D2

1 D2
100D1
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(b) Relevance graph of AMAID of the Centipede Game 

Figure 4.2 Constructing the relevance graph of the AMAID 

4.3   Solution for AMAID 

4.3.1  AMAID With Acyclic Relevance Graph 

The goal of evaluating the AMAIDs is to find an optimal decision rule iδ  for each 

decision node Di and to maximize each agent’s expected utility given other 
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agents’ chosen decision rule. The computation is based on the following 

expression: 

[( )]
( ) ( )

arg max ( pa ) ( | , pa )
i i i i

D a Di i

D D i D M i D
d dom D U U u dom U

d P U u d uσ
δ

δ δ
∗

∗ ∗

∈ ∈ ∈

= × = ⋅∑ ∑ ∑  

Where u is the utility function specified by each utility node U , σ is the strategy 

profile specified by the AMAID. 

 

In multi-agent decision problems, the agents’ decisions are always related. In 

order to optimize the decision rule of one decision node, the decision rule for 

those decisions that are relevant for it should be clarified first. Therefore, we can 

construct a topological ordering of the decision nodes in AMAID according to the 

constructed relevance graph. The topological ordering is an ordering D1, …Dn 

such that if Di is s-reachable from Dj, then i<j (Koller & Milch 2001). Each 

decision node relies only on the decision nodes that precede it. Therefore, we can 

compute the optimal decision rule of each decision node in this topological order 

so that when we are computing the optimal decision rule of one decision node, the 

decision rule of the decision nodes that it relies on has already been clarified. The 

algorithm for solving AMAID can be stated as follows:  

 

Algorithm 4.1 

Given an AMAID with an acyclic relevance graph 

1. Identify a topological ordering D1,…Dn of the relevance graph for M; 
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2. Let 
0σ be an arbitrary fully mixed strategy profile for M; 

3. For i=1 to n: 

                   Let δ be a decision rule for Di that is optimal for 
1iσ −
. 

                  Let 1( , )
i

i i
Dσ σ δ−

−= ; 

4. Output nσ as an equilibrium of M. 

All the above mentioned steps are the same as the steps of solving MAIDs except 

for the step 3. In the step 3, we want to find aδ such that for every instantiation 

pa
iD of ( )iPa D where 1[ ]

(pa ) 0i iDM
P

σ − , the probability distribution ( | Pa )
ii DDδ is 

a solution of: 

1
*

[( )]
( ) ( )

arg max ( ) ( | , pa )i i

i Di

i DM
P d dom D U U u dom U

P d P U u d u
σ −

∗ ∈ ∈ ∈

× = ⋅∑ ∑ ∑  

Here, U can be divided into two types: 1) the utility nodes which are the 

descendents of the decision Di, we use 0
iDU to denote it; 2) the contextual utility 

nodes whose domain contains the decision node Di if Di is a split variable, we use 

i i

C
D dU =  to denote it. Therefore, in step 3, in order to find a value * ( )id dom D∈ that 

maximizes: 

1 1
0

[( )] [( )]
( ) ( )

( | , pa ) ( | , pa )i ii i i
C
D dD i ii

i D i i D dM M
u dom U u dom UU U U U

P U u d u P U u D d u
σ σ− −

=

=
∈ ∈∈ ∈

= ⋅ + = = ⋅∑ ∑ ∑ ∑

 

We let P∗ assign probability 1 to *d and 0 to the other possible values of Di. The 

resulting nσ is always a pure strategy profile. 
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When we are performing this computation, all other decision nodes are changed 

into chance node with probability assigned by 1iσ − . Then we can use BN 

inference to obtain the optimal decision rule of Di which maximizes: 

1 1
0

[( )] [( )]
( ) ( )

( | , pa ) ( | , pa )i ii i i
C
D dD i ii

i D i i D dM M
u dom U u dom UU U U U

P U u d u P U u D d u
σ σ− −

=

=
∈ ∈∈ ∈

= ⋅ + = = ⋅∑ ∑ ∑ ∑

 

Take the AMAID of Centipede Game for example, 

According to the relevance graph in Figure 4.2(b), the topological ordering should 

be D2
100,…D1

1. 

Consider D2
100

 firstly, it has two contextual utility nodes associated, 

namely 100
2

C
D A

U
=

and 100
2

C
D P

U
=

. Therefore, in step 3, in order to find a value 

100*
2 { , }d A P∈ that maximizes: 

1

100 100
2 2

100 100
2 1[( )]

( )
( | , )i

C
D d

M
u dom UU U

P U u d d u
σ −

=
∈∈

= ⋅∑ ∑  

We let P∗ assign probability 1 to 100*
2d and 0 to the other possible values of 100

2D .  

After the decision rule for D2
100 is decided, the next decision node in the 

topological order is D1
100. At that time, the optimal decision rule for D2

100 has 

already been decided. Assume 100*
2d =A, then the split variable of D2

100 is initiated. 

The AMAID can therefore being reduced to AMAID 100
2[ ]M D A , which is 

shown in Figure 4.3. 
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Figure 4.3 Reduced AMAID 100

2[ ]M D A of the Centipede Game  

  

4.3.2  AMAID With Cyclic Relevance Graph 

The algorithm of solving AMAID with cyclic relevance graph is similar to the 

algorithm of solving MAID. The only difference is when converting the sub-

AMAID to a game tree, we use the asymmetric game tree. 

 

Definition 4.5 Strongly Connected Component (Koller & Milch 2001) 

A set S of nodes in a directed graph is a strongly connected component (SCC) 

if for every pair of nodes 'D D S≠ ∈ , there exists a directed path from D to D’. 

A maximal SCC is an SCC that is not a strict subset of any other SCC. 

 

The maximal SCCs of a relevance graph can be constructed in linear time. We 

can construct a component graph, and the nodes of which are the maximal SCCs 

of the relevance graph. We can find a topological ordering C1,…Cm of the 

component graph, such that if some element of Ci is s-reachable from some 

element of Cj, then i<j. 
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Algorithm 4.2 Given an AMAID M 

1.  Construct a component graph of the relevance graph for M; 

2. Identify a topological ordering C1,…Cm of the component graph; 

3. Let 0σ be an arbitrary fully mixed strategy profile for M; 

4. For i=1 to n: 

                   Let τ be a partial strategy profile for Ci that is a Nash equilibrium in 

M[ 1
i

i
Cσ −

− ]; 

5. Let 1( , )
i

i i
Cσ σ τ−

−= ; 

6. Output nσ as an equilibrium of M. 

In computing every partial strategy profile for Ci, we convert the sub-AMAID 

into an asymmetric game tree and then use backward induction to find the partial 

strategy τ .  

 

Take the AMAID of the Killer Game with n=4 for example. The relevance graph 

of it is shown as in Figure 4.4.  In this example, every component forms a sub-

AMAID. Then we can convert the sub-AMAID into three asymmetric game trees 

and use backward induction to find the partial strategyτ .  
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Figure 4.4 The relevance graph of the Killer Game 

 

4.4   A Numerical Example 

In this section, we take some numerical examples of the above Centipede Game.  

 

Figure 4.5 shows the numerical example of the Centipede Game. According to the 

relevance graph in Figure 4.5(c), the topological ordering should be D2
100,…D1

1. 
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(a) Game tree of the numerical example 
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(b) AMAID of the Centipede Game 
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(c) Relevance graph 

Figure 4.5 Numerical example of the Centipede Game 
 

Consider D2
100

 firstly, it has two contextual utility nodes associated, 

namely 100
2

C
D A

U
=

and 100
2

C
D P

U
=

. Therefore, in step 3, in order to find a value 

100*
2 { , }d A P∈ that maximizes: 

1

100 100
2 2

100 100
2 1[( )]

( )
( | , )i

C
D d

M
u dom UU U

P U u d d u
σ −

=
∈∈

= ⋅∑ ∑  

Therefore,  
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1
100 100 100

2 2 1[( )]
arg max[ ( ) ( 200 | , ) 200iM

P
P P d P P U d P d

σ −
∗

∗ = = ⋅ = = ⋅  

                      1
100 100 100

2 2 1[( )]
( ) ( 201| , ) 201]iM

P d A P U d A d
σ −+ = ⋅ = = ⋅  

After assigning an arbitrary fully mixed strategy profile for M, we can find 

100*
2d A= .  

We let P∗ assign probability 1 to 100*
2d =A and 0 to 100*

2d =P.  

After the decision rule for D2
100 is decided, the next decision node in the 

topological order is D1
100. At that time, The AMAID can be reduced to 

AMAID 100
2[ ]M D A , which is shown in Figure 4.6. 
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200 U1
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Figure 4.6 Reduced AMAID 100

2[ ]M D A  

 

Using the same method, we can get the optimal decision rule of D1
100

 is to assign 

probability 1 to 100*
1d A= and 0 to 100*

1d P= .  

Finally, we get the Nash equilibrium is ( 1*
1d A= ,… 100*

2d A= ).  

 

4.5   Discussions  

To demonstrate the potential savings resulting from our decision model, we take 

the Centipede Game and Killer Game for example. In the Centipede Game, whose 
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relevance graph is acyclic, we can reduce the AMAID step by step after deciding 

the optimal decision rule of one decision node. This is a computational saving 

compared to MAID.  

 

Besides, in the algorithm of deciding the optimal decision rule of each decision, 

the maximization function is reduced to:   

1
100 100 100

2 2 1[( )]
arg max[ ( ) ( 200 | , ) 200iM

P
P P d P P U d P d

σ −
∗

∗ = = ⋅ = = ⋅  

                      1
100 100 100

2 2 1[( )]
( ) ( 201| , ) 201]iM

P d A P U d A d
σ −+ = ⋅ = = ⋅  

 

While in MAID, the maximization function would be very large, since it contains 

a lot of impossible happenings. For example, it will contain items 

1
100 100

2 1[( )]
( 200 | , ) 200iM

P U d A d
σ − = = ⋅ , 1

100 100
2 1[( )]

( 200 | , ) 200iM
P U d P d A

σ − = = = ⋅ ,  

which in fact have probability 0. The algorithm for solving AMAID eliminates 

these impossible happenings automatically with contextual utility nodes.   

 

In the Killer Game, the algorithm ends up generating a sequence of n games, each 

with n decisions. Therefore, the computation complexity still remains to be O(n!). 

But the computation complexity is indeed lower than MAID as the contextual 

utilities in our AMAID eliminates many events with probability 0 and will not be 

worse than extensive form tree.   
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5 Value of Information in Multi-agent Decision Systems 

 

Value of information in multi-agent decision systems is quite important but much 

more complex than in single agent decision systems (Howard 1996, 1997). Agents 

can buy information to increase their expected utilities, but it is hard for them to 

decide the most valuable piece of information and the best time to buy that piece 

of information given their available resources. Agents can also release the 

information they have in hand to the other agents to influence the outcome of the 

system. But deciding what to share and when to share are the difficulties agents 

confronted. Other agents can also choose to believe the information or disbelieve 

it. We can also adopt Bayes’ Theorem to update agents’ believes, while this is not 

covered in our topic of discussion. This chapter defines value of information in 

multi-agent systems, followed by a numerical example. 

 

5.1   Incorporating MAID into VOI Computation 

Multi-agent influence diagram (Koller & Milch 2001) is a graphical representing 

model used to compute the Nash Equilibrium in games. The structure of MAIDs 
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can be used to provide efficient algorithms for finding equilibria in non-

cooperative games by dividing large games into smaller ones, which are proven to 

be more efficient than other algorithms based on game trees for certain type of 

games. Therefore, it can be used as a graphical representation to compute VOI in 

multi-agent systems.  

 

Let us start with a simple multi-agent influence diagram M shown in Figure 5.1. 

This model involves two agents A and B and considers the relevance of one 

chance variable N.  The expected utility of agent A if the agents play a given 

strategy profile σ is: 

[ ]
( )

( ) ( )
a a

a M
u dom U

a aEU P U u uσσ
∈

= =∑                                                                       (5.1) 

 The expected utility for agent B given the agents play strategy profile σ  is: 

[ ]
( )

( ) ( )
b b

b M b b
u dom U

EU P U u uσσ
∈

= =∑  

Assume aδ and bδ are the decision rules for the decision variables aD  and Db 

respectively. Then the optimal aδ
* forσ  is: 

arg max ( , )
b

a

a a D aEU
δ

δ σ δ
∗

∗ ∗=                                             

By (5.1), this is equivalent to: 

[ , ]
( )

arg max ( )
D ab

a a a

a a aM
u dom U

P U u u
σ δ

δ
δ ∗

∗

∗

∈

= =∑                               

Since [( , )] [( , )][ , ]
( )

( ) ( ) ( | )
D a D ab bD ab

a a

a M a M a aM
d dom D

P U u P d P U u dσ δ σ δσ δ ∗ ∗ ∗
∈

= = =∑  

                                     [( )]
( )

( ) ( | )
a a

a M a a
d dom D

d P U u dσδ ∗

∈

= =∑ , 
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Thus, the optimal aδ
* forσ  is 

[( )]
( ) ( )

arg max ( ) ( | )
a a a a a

a a M a a a
u dom U d dom D

d P U u d uσ
δ

δ δ
∗

∗ ∗

∈ ∈

= = ⋅∑ ∑  

                    [( )]
( ) ( )

arg max ( ) ( | )
a a a a a

a M a a a
d dom D u dom U

d P U u d uσ
δ

δ
∗

∗

∈ ∈

= × = ⋅∑ ∑                                                  

Similar to bδ , the optimal bδ
*for σ  is: 

arg max ( , )
a

b

b b D bEU
δ

δ σ δ
∗

∗ ∗=                                            

Which is equivalent to: 

[ , ]
( )

arg max ( )
D ba

b b b

b b bM
u dom U

P U u u
σ δ

δ
δ ∗

∗

∗

∈

= =∑                               

[( )]
( ) ( )

arg max ( ) ( | )
b b b b b

b b M b b b
d dom D u dom U

d P U u d uσ
δ

δ δ
∗

∗ ∗

∈ ∈

= × = ⋅∑ ∑  

Therefore, the Nash equilibrium σ ∗ for this MAID M is ( aδ
∗ , bδ

∗ ), and the 

expected utilities of agent A and agent B are: 

*[( )]
( ) ( )

( ) ( ) ( | )
a a a a

a a a a aM
d dom D u dom U

EU d P U u d u
σ

σ δ∗ ∗

∈ ∈

= × = ⋅∑ ∑  

*[( )]
( ) ( )

( ) ( ) ( | )
b b b b

b b b b bM
d dom D u dom U

EU d P U u d u
σ

σ δ∗ ∗

∈ ∈

= × = ⋅∑ ∑   

Note the difference between the expected value of multi-agent systems and single 

agent systems. When we compute VOI in single agent decision systems, we use 

the maximum expected utility and the optimal action of decision maker. However, 

in multi-agent systems, we use the maximum expected utility of each agent and 

the optimal decision rule of each agent given the decision rule of other agents. 

This implies that the action chosen by each agent may not be a Pareto optimality; 

but the given actions of the other agents, which means the action of each agent 

may not be an optimal one, but the optimal one given actions of the other agents. 

This is also the property of Nash equilibrium that no agent is willing to deviate 
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from the strategy specified by the strategy profile if the other agents do not 

deviate. Therefore, in multi-agent systems, the maximum expected utility of each 

agent is the expected value when all agents choose their strategies specified by 

Nash equilibrium for that decision model. 

 

N

Ua Ub

Da Db

 
Figure 5.1 A MAID without information to any agent 

 

Here we discuss the value of N in the multi-agent decision model (shown in 

Figure 5.1) by considering three situations: 1) the value of N is observed by agent 

A prior to making aD , while agent B does not observe N but he/she is aware that A 

knows N; 2) the value of N is observed by agent B prior to making Db, while 

agent A does not observe N but he/she is aware that B knows N; 3) the value of N 

is observed by both agents A and B prior to aD and Db, but they all know the other 

agent also observes N.  

5.1.1 N is Observed By Agent A Prior to aD   

Figure 5.2 shows the MAID under the situation that the value of N is observed by 

agent A prior to aD , while agent B does not observe N but he/she is aware that A 
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knows N , A knows B knows A knows N so on and so forth (Assumption of 

common knowledge1).  

 

The expected utility of agent A given a strategy profile σ if N is observed by 

agent A prior to aD  is 

[ ]
( )

( ) ( )
a a

a M a a
u dom U

EU P U u uσσ
∈

= =∑                                                                     (5.2) 

Assume aδ and bδ are the decision rules for the decision variables aD  and Db 

respectively. Then the optimal aδ
* forσ  is: 

arg max ( , )
b

a

a a D aEU
δ

δ σ δ
∗

∗ ∗=                                             

By (5.2), this is equivalent to: 

[ , ]
( )

arg max ( )
D ab

a a a

a a aM
u dom U

P U u u
σ δ

δ
δ ∗

∗

∗

∈

= =∑  

Breaking up the joint probability expression, we get 

[ , ]
( )

D ab
aM

P U u
σ δ ∗ =  

 = [( , )]
Pa (Pa ( ))

(Pa )
D a ab

D aa

M D
dom D

P σ δ ∗
∈
∑  

    [( , )] [( , )]
( )

( | Pa ) ( | , Pa )
D a a b a ab

a a

M a D M a a D
d dom D

P d P U u dσ δ σ δ∗ ∗
∈

× =∑  

The CPD table for a node in a BN does not influence the prior distribution of its 

parents, so [( , )]
Pa (Pa ( ))

(Pa )
D a ab

D aa

M D
dom D

P σ δ ∗
∈
∑ = [( )]

Pa (Pa( ))
(Pa )

a

D aa

M D
dom D

P σ
∈
∑ . Given 

values for D and its parents, a distribution does not depend on the CPD of D, so 

[( , )] ( | , Pa )
b a aM a a DP U u dσ δ ∗ = = [( )] ( | , Pa )

aM a a DP U u dσ = . 

                                                 
1 Common knowledge is the basic assumption in the games which is a special kind of knowledge for a group 
of agents. There is common knowledge P in a group of agents G if all agents in G know P, they all know that 
they know P, they all know that they all know that they know P, and so on and infinitum.   
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Therefore, 

[ , ]
( )

D ab
aM

P U u
σ δ ∗ =  

= [( )] [( )]
Pa (Pa ( )) ( )

(Pa ) ( | Pa ) ( | , Pa )
a a a

D a a aa

M D a D M a a D
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P d P U u dσ σδ ∗

∈ ∈
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Thus, the optimal aδ
* forσ  is: 

[( )]
( ) Pa (Pa( ))

arg max (Pa )
a

a a a D aa

a M D
u dom U dom D

P σ
δ

δ
∗

∗

∈ ∈
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                [( )]
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( | Pa ) ( | , Pa )
a a
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a D M a a D a
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d P U u d uσδ ∗

∈

× = ⋅∑  

Rearranging the summations, we get: 

aδ
∗

[( )]
Pa (Pa( )) ( )

arg max (Pa ) ( | Pa )
a a

a D a a aa

M D a D
dom D d dom D

P dσ
δ

δ
∗
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∈ ∈

= ∑ ∑  

                  [( )]
( )

( | , Pa )
a

a a

M a a D a
u dom U

P U u d uσ
∈

× = ⋅∑  

In this decision model, Pa
aD =n and ( )n dom N∈ , thus aδ

* is optimal forσ if and 

only if aδ
* is the solution of the following maximization problem: 

[( )]
( ) ( )

arg max ( ) ( | )
a a a

a M a
n dom N d dom D

P n d nσ
δ

δ δ
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∗ ∗

∈ ∈

= ∑ ∑  

         [( )]
( )

( | , )
a a

M a a a
u dom U

P U u d n uσ
∈

× = ⋅∑  

Similarly for agent B, bδ  is optimal forσ if and only if bδ  is the solution of the 

following maximization problem: 

[( )]
( ) ( )

arg max ( ) ( | )
b b b b b

b b M b b b
d dom D u dom U

d P U u d uσ
δ

δ δ
∗

∗ ∗

∈ ∈

= × = ⋅∑ ∑  

Therefore, the Nash equilibrium σ ∗ for this MAID M is ( aδ
∗ , bδ

∗ ), and the 

maximum expected utilities of agent A and agent B are: 

* *[( )] [( )]
( ) ( ) ( )

( ) ( ) ( | ) ( | , )
a a a a

a a a a aM M
n dom N d dom D u dom U

EU P n d n P U u d n u
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∈ ∈ ∈
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EU d P U u d u
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∈ ∈

= × = ⋅∑ ∑  
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N

Ua Ub

Da Db

 
Figure 5.2 A MAID with agent A knowing the information 

 

5.1.2  N is Observed By Agent B Prior to Db  

Figure 5.3 shows the MAID under the situation that the value of N is observed by 

agent B prior to Db, while agent A does not observe N but he/she knows that B 

knows N.  

 

The expected utility of agent A given a strategy profile σ  if N is not observed by 

agent A prior to aD  is: 

[ ]
( )

( ) ( )
a a

a M a a
u dom U

EU P U u uσσ
∈

= =∑  

The expected utility for agent B given the agents play strategy profile σ  if N is 

observed by agent B prior to Db is: 

[ ]
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( ) ( )
b b

b M b b
u dom U

EU P U u uσσ
∈

= =∑  

The optimal aδ
* and bδ

* forσ are: 
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Therefore, the Nash equilibrium σ ∗ for this MAID M is ( aδ
∗ , bδ

∗ ), and the 

maximum expected utilities of agent A and agent B are: 
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Figure 5.3 A MAID with agent B knowing the information 

 

5.1.3  N is Observed By Both Agents A and B 

Figure 5.4 shows the MAID under the situation that the value of N is observed by 

both agents A and B prior to aD and Db and it is the common knowledge that the 

value of N is revealed to both of them. 

 

The expected utility of agent A given a strategy profile σ  if N is observed by 

agent A prior to aD  is: 



Chapter 5: Value of Information in Multi-agent Decision Systems 

 79
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The optimal aδ
* forσ  is: 
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Similarly for bδ
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aD =n, Pa

bD n= and ( )n dom N∈ , thus aδ
* and bδ

* are 

optimal for σ if and only if aδ
* and bδ

* are the solutions of the following 
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Therefore, the Nash equilibrium σ ∗ for this MAID M is ( aδ
∗ , bδ

∗ ), and the 

maximum expected utilities of agent A and agent B are:                            
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D a D b
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Figure 5.4 A MAID with both agents A and B knowing the information 

 

5.2   VOI in Multi-agent Systems – Some Discussions and 

Definitions 

In the previous section, we have discussed a simple multi-agent decision model 

with extension to three situations: all agents without information; part of the 

agents having the perfect information and all agents with perfect information. 

Having computed the expected utilities of each agent in each decision model, we 

can now define the VOI in multi-agent decision systems. 

 

Definition 5.1 In Multi-agent decision systems with a set of agents I, symmetric 

information is the information which is revealed to all the agents in the decision 

system. Asymmetric information is the information that is revealed to a confined 

subset of agents in the decision system.  
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Take the multi-agent decision model represented by Figure 5.2 for example, the 

information for observing the value of N before Da is the asymmetric information 

of agent A, since it is only revealed to agent A. In the decision model represented 

by Figure 5.4, the information for observing the value of N before Da and Db is the 

symmetric information, since the information is revealed to all the agents A and B 

in the system.  

 

In the single agent decision systems, VOI is calculated decision by decision. In 

other words, the same variable may have different values to different decisions. 

According to the “no-forgetting” rules that the information observed at one 

decision point is always available at subsequent decision points, it is not difficult 

to imagine that the information value viewed at an earlier decision point is no less 

than the value of same information viewed at the subsequent decision points. In 

multi-agent systems, this fact may not hold anymore.  

 

We first begin our discussion by defining VOI in multi-agent systems firstly. In all 

the definitions and calculations below, utility is the value measure.  
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Definition 5.2 An agent i has perfect recall with respect to a total 

order 1,..., nD D ( 1,..., n iD D D∈ ) if ( )k lD Pa D∈ and ( ) ( )k lPa D Pa D⊂ for all 

,k l iD D D∈ , k l≺ , where Di is a decision node of agent i. 

 

This definition implies the “no-forgetting” condition in multi-agent decision 

systems, which guarantees that any information that is observed before one 

decision point of a specific agent i, is also observed at subsequent decision points 

of agent i.  

 

Definition 5.3 In Multi-agent decision systems with a set of agents I, the expected 

value of information on an uncertain variable N before decision D  of agent i 

(where iD D∈ and iD is a decision node of agent i I∈ ) is the difference between 

the expected value of agent i given the state of N is known to agent i  before 

decision D in the system and the expected value of agent i without knowing the 

state of N. We use EVPIi (D|N) to denote it. 

 

This definition is based on the EVPI definition in single agent systems. The 

analysis of EVPI is helpful for a specific agent to decide which piece of 

information is more valuable to him/her or when to buy that piece of information 

will maximize its expected utility on the condition that the other agents do not 

know the information. However, in multi-agent systems, things are no longer that 
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simple. Agents are not only allowed to buy the information, but they could also 

release the information to other agents to influence their expected utilities.  

 

Therefore, it is important for agents to evaluate the value of information given a 

subset of agents also knows that information. Specially, what we evaluate most in 

games are the changes of expected value of each agent when the information is 

released to all the agents at the beginning of the game. We define expected value 

of symmetric information and expected value of perfect asymmetric information as 

follows.  

 

Definition 5.4 In Multi-agent decision systems with a set of agents I, the expected 

value of symmetric information on an uncertain variable N to an agent i I∈ , 

denoted by EVPSIi(N), is the difference between the expected value of agent i if 

the state of N is known before all agents’ decisions in the system and the expected 

value of agent i if the state of N remains unknown to any agent in the system. The 

expected value of perfect asymmetric information (EVPAI) of each agent i I∈ , 

denoted by EVPAIi ( D |N), is the difference between the expected value of agent 

i with perfect asymmetric information that is revealed to a subset of agents 

K ( K I⊂ ) and without it. 

 

Express it with the formula,  
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EVPSIi=EVi(with perfect symmetric information)-EVi(with no information); 

EVPAIi= EVi(with perfect asymmetric information)-EVi(with no information).  

 

The models described in Section 5.1 will be used to illustrate this definition. 

 

1) Model represented by Figure 5.1: Expected Utility without Information 

Assuming Nash equilibriumσ ∗  in the model without information represented by 

Figure 5.1 is ( aδ
∗ , bδ

∗ ),  

aδ
∗
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Thus the expected utilities of agents A and B are : 
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2) Model represented by Figure 5.2: Expected Utility with Asymmetric 

Information 

If agent A knows the information before making decision aD , Nash equilibrium 

aN Dσ ∗
→  in the model with asymmetric information N to A is ( , )

a aa N D b N Dδ δ∗ ∗
→ → , 
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The expected utilities of agents A and B are: 
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Therefore, the EVPAI of agent A is as follows: 

EVPAIa( aD |N)= ( )
aa N DEU σ ∗
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With agent A knowing the information, the expected value of agent B also will 

have a change. The difference can be expressed by the following formula: 

( )
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If bD  is not s-reachable from aD , which means that bδ
∗  is independent of the 

decision rule that σ ∗  assigns to aD , then 
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thus ( )
ab N DEU σ ∗

→ - ( )bEU σ ∗ =0, which means that the expected value of agent B 

will not change with agent A knowing the information if bD  is not s-reachable 

from aD  (refer to Chapter 6 for detailed proof).  

 

3) Model represented by Figure 5.4: Expected Utility with Full Information 

If both agent A and B know the information before making decision aD , Nash 

equilibrium 
abN Dσ ∗

→  in the model with symmetric information N to A is (
aba N Dδ ∗

→ , 

N Dabbδ →

∗ ). 
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The expected utilities of agent A and B are:  
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Therefore, 

EVPSIa(N)= ( )
aba N DEU σ ∗

→ - ( )aEU σ ∗  
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We can tell the difference between EVPSI, EVPAI and EVPI. EVPI computes the 

information decision by decision. Alternatively, it computes the information value 

difference among decisions given the same information. This is sufficient in 

single agent decision systems. However, in multi-agent decision systems, agents 

are interactive. Even if they do not know the information, the fact that other 

agents know the information may also influence their expected utility. Besides, 

we sometimes need to compare the value difference among agents given they 

have the same information. When taking the joint value of information into 

consideration, the problem gets more complex in multi-agent decision systems, 

and the joint value of information can involve different agents. Here we would 

confine our discussions in the computation of EVPI, EVPSI and EVPAI. 

 



Chapter 5: Value of Information in Multi-agent Decision Systems 

 88

5.3   Numerical Examples 

We use a numerical example to illustrate our above-mentioned example of VOI 

computation in MAS further. This numerical example is adopted from Bruno 

Bassan et al. (2003).  

 

A and B are two manufacturers in the market. The next year’s market competition 

will have two possible states: intense (S2) and not intense (S1), each with 

probability 1/2. Assume A and B both have two choices for their production 

quantities: large quantity and small quantity. For the different states and different 

choices, there are different payoffs associated with them. Below shows the two 

different payoff matrices S1 and S2 associated with the two different market states.  

 

  L S    L S 

S1= L 0,0 6,-3  S2= L -20,-20 -7,-16 

 S -3,6 5,5   S -16,-7 -5,-5 

Table 5.1 Utility matrices of the two manufacturers 

 

Consider these four situations: 1) the value of N is not revealed to both of the 

manufacturers; 2) the state value of N is revealed to manufacturer A before A 

makes its decision, while manufacturer B does not observe N and it is common 

knowledge that A knows N ; 3) the value of N is revealed to manufacturer B 
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before B makes its decision, while manufacturer A does not observe N and B 

knows N is a common knowledge;4) the value of N is observed by both agents A 

and B prior to their decisions, and it is common knowledge that they all observes 

N.  

 

The MAIDs, the corresponding relevance graphs and game trees under the four 

situations are shown in Figure 5.5. 

 

 

 

 

 

 

 

 

 

 

 



Chapter 5: Value of Information in Multi-agent Decision Systems 

 90

N

Ua Ub

Da Db

    

DA

DB      S

L
S

L

S

L
S

L

L

S

S

L

S2

S1

N

Player A

Player B

(0,0)

(6,-3)
(-3,6)

(5,5)

(-20,-20)

(-7,-16)

(-16,-7)

(-5,-5)  
 (a-1)                             (a-2)                                (a-3) 

(a) Graph representation under situation 1 

N

Ua Ub

Da Db

       

DA

DB      S

L
S

L

S

L
S

L

L

S

S

L

S2

S1

N

Player A

Player B

(0,0)

(6,-3)
(-3,6)

(5,5)

(-20,-20)

(-7,-16)

(-16,-7)

(-5,-5)    
 (b-1)                               (b-2)                                    (b-3) 

(b) Graph representation under situation 2 
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(d) Graph representation under situation 4 
Figure 5.5 The MAIDs, relevance graphs and game tree of manufacturer example 
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Solving the MAIDs by using the divide and conquer algorithm in cyclic relevance 

graphs of each situation, we get the following result of expected utilities.  

 

 B-Informed B-Uninformed 

A-Informed (-2.5, -2.5) (-8, -3.5) 

A-Uninformed (-3.5, -8) (0,0) 

Table 5.2 Expected utilities of the four situations 

 

In this numerical example, EVPSIi=EVi(With perfect symmetric information)-

EVi(With no information)=-2.5-0=-2.5. EVPIi=EVPAIi=EVi(With perfect 

asymmetric information to agent i)-EVi(With no information)=-8-0=-8. 

  

For each agent, the values of perfect symmetric information and perfect 

asymmetric information are both negative. This is unlike the situation in single 

agent decision systems where the decision maker is better off knowing the 

information. Therefore, in multi-agent decision systems, EVPI is not bounded by 

0, which means that knowing the information may be even worse than not 

knowing the information. This makes the VOI problem in multi-agent decision 

systems much more complex than in single agent systems. Information may be of 

no value in multi-agent decision systems. Because of this, agents can increase 

their own utilities by releasing the information to the other agents. It is also 



Chapter 5: Value of Information in Multi-agent Decision Systems 

 92

possible that the agents have to pay in order to choose not to know the 

information. 

 

If the utility matrices of agent A and B are changed to the following matrices 

without changing the game structure:  

  L S    L S 

S1= L 2,2 -1,-6  S2= L -20,-20 -5,-5 

 S -6,-1 -2,-2   S -5,-5 2,2 

Table 5.3 Utility matrices of the two manufacturers-Example 2 

 

The resulting solutions are: 

 B-Informed B-Uninformed 

A-Informed (2,2) (-1.5,-1.5) 

A-Uninformed (-1.5, -1.5) (0,0) 

Table 5.4 Expected utilities of the four situations-Example 2 

 

In this example, the EVPSI of each agent is 2, which is positive. EVPAI still 

remains to be negative.  

 

Although the value of information in multi-agent systems can be negative, 

whether it is negative or not is influenced by the utility function, which is beyond 
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our scope here. In this thesis, we would confine studies on the influence of graph 

structure to the value of information.  

 

From this example, we can get our justification below. 

Justification 5.1: In single agent decision systems, VOI is bounded by 0 and 

EVPI; While in multi-agent decision systems, VOI can be less than 0. 

 

Definition 5.5 The absolute value of VOI in MAS is how much the agents are 

willing to pay on that set of information. If VOI≤0, it is called the Escaping Cost, 

which is the cost the agents are willing to pay for escaping to know the 

information. If VOI ≥ 0, it is called Revealing Cost, which is the cost the agents 

are willing to pay for knowing the information.  

 

In the first numerical example 1, the escaping cost of agent A is –3.5 given B does 

not know the information and the revealing cost of agent A is 1 given B knows the 

information. 

 

In single agent decision systems, the information involved only has one type, the 

state of chance variables. Due to the “no-forgetting” condition in single agent 

decision systems, the decision maker will never forget the state of its previous 

decision variables. However, decisions made by one agent are not necessarily 



Chapter 5: Value of Information in Multi-agent Decision Systems 

 94

observed by other agents in multi-agent decision systems, as in the simultaneous 

games. Therefore, it is meaningful to discuss another type of information- the 

state of decision variables. By calculating the information of other agents’ 

decision variables, agents can decide whether to spy on other agents’ decision or 

whether agents can cooperate together if knowing the other agents’ decision will 

increase their total utilities.  

 

Definition 5.6 In multi-agent systems, the information coming from the chance 

node is called Nature Information; while the information coming from other 

agents’ decision node is called Moving Information.  

 

Note that this definition is based on the assumption of common knowledge, i.e. 

agent A knows agent B knows agent A know… and so on. Although in real life, if 

agent A spies on agent B’s action, agent B may not know agent A knows his/her 

action already, but this situation is not in our scope of discussion.  

 

In the commercial market, the competitor’s production type is a kind of nature 

information (For example, whether his production function is high cost or low 

cost); and what the competitor is going to produce is the moving information.  
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5.4   Value of Information for the Intervened Variables in Multi-

agent Decision Systems 

5.4.1  Problem 

In single agent decision systems, some IDs have chance nodes with decision 

nodes as their parents. These chance variables are called decision-intervened 

variables. In traditional EVPI computation in single agent decision systems, the 

decision-intervened variables are not taken into consideration since adding an arc 

from the decision-intervened variable to its parent (the decision node) will form a 

directed cycle, which is contradictory to the DAG foundation in graphical 

decision models. Not only the quantitative computation of VOI for intervened 

variables becomes a problem, but also the actual meanings of VOI for intervened 

variables. 

 

Assume a clairvoyant is able to provide us the perfect information about the 

future. Consider the following situation: one decision maker needs information 

about an uncertain variable X before his/her decision D, but X is influenced by his 

decision D. If the clairvoyant tells him the prefect information of X’s state x, the 

decision maker can adjust his/her action D to achieve the maximum utility. 

However, X is influenced by the decision D. By changing D, X may no longer be 

in the state x, which is contradictory to the perfect information assumption. 
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Otherwise, if the clairvoyant wants to provide perfect information, he/she must 

know the decision maker’s decision before he/she provides the perfect 

information of X. This indicates the decision maker’s action is predetermined, 

which is also contradictory to the freewill assumption of decision maker’s 

decision. 

 

However, knowing VOI of a decision-intervened variable can still facilitate 

decision maker’s decision in the practical use. In single agent decision systems, 

knowing VOI of decision-intervened variables provides the decision-maker an 

upper limit of the benefit that the current decision can achieve. This can be 

explained by a simple example shown in Figure 5.6. A farmer has to decide how 

many orange trees to grow in the coming year in order to achieve the maximum 

profit. However, the profit is also influenced by the price of the orange in the 

market. Assume this is a free market and the price of the product in the market is 

completely determined by the demand and supply. The farmer would like to pay 

for the information about the price of the product. In the meantime, the price of 

the product in the market next year is also influenced by the quantity the farmer is 

going to grow next year. In this example, the farmer may still be willing to know 

the exact price of the orange on the market of the next year before he/she grows 

any orange trees this year. Because knowing the price of the product helps the 

farmer to decide how many orange trees to grow or whether to grow any other 
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plants. If the price of the orange is below the cost, then the farmer can grow other 

plants in his/her field to avoid this loss.  

Quantity to
grow

Price of the
product on the

market

Profit

 
Figure 5.6 An ID of decision-intervened variables in single agent decision systems 

 

In multi-agent decision systems, discussing the VOI of the decision-intervened 

variables may be much more meaningful. We extend the above example to multi-

agent decision systems for further illustration. Figure 5.7 shows the MAID 

representation of the example. Assume there are two monopolists A and B on the 

market. The price of that product on the market is completely determined by the 

demand and the total quantities they produce. In the MAID representation of this 

example, the “price of the product on the market” chance node is influenced by 

two decisions nodes QA and QB, which means the price can only be known after 

the two decision nodes have been decided. If monopolist A can get the perfect 

information of the “Price” chance node, it can adjust its own decision to increase 

its profit, and so does monopolist B. If the information of the “Price” chance node 

is revealed to both of them, the situation becomes much more complex. We 

introduce the canonical form of MAID firstly.   
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Quantity to
produce-QA

Price of the
product on the

market

Quantity to
produce-QB

UA UB

 
Figure 5.7 MAID of decision-intervened variables in Multi-agent decision system 

 

5.4.2  Canonical Form of MAIDs 

When computing VOI of decision-intervened variables in single agent decision 

models, we cannot simply add an arc from the decision node to the chance node, 

since this will incur a cycle in the influence diagram. The requirement of the 

chance nodes not being the descendants of decision nodes when computing VOI 

in the influence diagrams can be satisfied by reformulating the influence diagrams 

into canonical form (Howard 1990, Heckerman 1995). An influence diagram is 

said to be in canonical form if there are no chance nodes that are descendants of 

decision nodes in IDs. We extend this definition to MAIDs by defining that a 

MAID is in canonical form if there are no chance nodes that are descendants of 

decision nodes in MAIDs. Then we can reformulate MAIDs with decision-

intervened chance nodes into canonical form following the Howard procedure of 

converting descendant chance nodes into deterministic nodes and introducing 
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mapping variables which are not influenced by the decision nodes. 

 

The algorithm developed by Heckerman and Shachter (1995) for constructing 

canonical form of generic influence diagram is as follows. 

 

Given a decision problem with respect to the set of decision nodes D and set of 

chance nodes C: 

1. Add a node to the diagram corresponding to each variable inC D∪  

2. Order the variables X1, …Xn in C in the order that the variables 

unresponsive2 to D comes first 

3. For each variable iX C∈ that is responsive to D, 

a) Add a causal-mapping-variable chance node Xi(Vi) to the diagram, where 

1 1{ ,..., }i iV D X X −⊆ ∪  

b) Make Xi a deterministic node with parents Vi and Xi(Vi) 

4. Assess independencies among the variables that are unresponsive to D 

We now extend this algorithm to the MAIDs to construct canonical form 

MAIDs. 

 

Definition 5.7 A MAID is said to be in canonical form if (1) all chance nodes that 

                                                 
2 In Heckerman and Shachter (1995), a chance node X is unresponsive to decision D means X has the same 
outcome no matter what D is taken. In other word, X is probabilistically independent of D if X is 
unresponsive to D, but not vice versa.  
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are responsive to D are descendants of one or more decision nodes and (2) all 

chance nodes that are descendants of one or more decision nodes are deterministic 

nodes. Thus, there are no chance nodes that are descendants of decision nodes in 

the MAIDs. 

 

We can now construct the canonical form of the MAID shown in Figure 5.8 as 

follows. 

Price of the
product on the

m arket

Q uantity to
produce-Q A

Q uantity to
produce-Q B

U A U B

Price (Q A, Q B)

 
Figure 5.8 Canonical Form of MAID 
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5.4.3 Independence Assumption in Canonical Form of MAID 

D A D B

X
 

(a) 

 

DA DB

X’

X(da1, db1) X(da2, db2) X(dam, dbm)
 

(b) 

 

D A D B

X ’

X(da1, db1) X (da2, db2) X (dam, dbm)

 

(c) 

Figure 5.9 Convert MAID to canonical form; (a) is the original MAID, (b) is the 
canonical form assuming independence and (c) is the canonical form under general 

dependence relationship. 
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When changing MAIDs to canonical form, if the decisions DA and DB have k and l 

instances respectively, the chance variable X has n states, then X(Dai,Dbj) has nkl 

instances, while the deterministic variable X’ still has n states. In the original 

MAID the random variable X has only k l n⋅ ⋅ instances, so it is necessary to 

assign more probabilities for the equivalent conversion. The independence 

assumption between variables X(Dai,Dbj) represented in figure5.9(b) simplifies 

this conversion. In figure5.9(b), we have 

P((Xp,Dai,Dbj),(Xq,Dar,Dbt))=P(Xp,Dai,Dbj) ⋅P(Xq,Dar,Dbt), and the number of 

probabilities that need assigning is reduced from nkl to k l n⋅ ⋅ . Other probabilities 

can be derived from these k l n⋅ ⋅ outcomes. 

 

The dependencies among the mapping variables may lead to more complex 

computation of VOI. However, when there is no specified information about the 

dependencies, we can assume independence to simplify our computation.    
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6  Qualitative Analysis of VOI in Multi-agent Systems 

 

Under many complex situations, computing the exact value of information is very 

time-consuming and resource-consuming. Sometimes some quick justification 

about value of information is needed than the one that is more accurate but time-

consuming. In this chapter, we will analyze VOI in multi-agent systems by 

reviewing some results obtained in single agent systems and present extensions in 

multi-agent systems. Our study is based on the multi-agent models in canonical 

form, which is already introduced in the previous chapter.  

 

6.1   Introduction 

As mentioned earlier, value of information has already been discussed 

quantitatively and qualitatively in single agent systems based on the graphical 

models. Most of the work on value of information in games is based on the 

extensive game tree and the discussion topics are also limited, for example to the 

influence of utility functions on information value. No research has been done on 

value of information based on the graphical model in multi-agent systems. Many 
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important properties of information value in multi-agent systems have been 

omitted so far.  

 

The complexity of exact computation of EVPI in an arbitrary single agent 

decision model with arbitrary utility function is known to be intractable. Even 

with the simplified assumptions that a decision maker is risk neutral or has a 

constant degree of risk aversion, the problem still remains intractable. Things 

become more complex in multi-agent systems.  

 

Such situations motivated researchers to discuss value of information in a 

qualitative way by computing the information value indirectly. An earlier work 

(Poh & Horvitz, 1996) discussed the qualitative relationship about the information 

relevance of chance variables in graphical models based on a consideration of the 

topology of the models, most of which are based on the notion of d-separation.  

 

A similar concept has also existed in multi-agent systems, which is called s-

reachability. Without s-reachability, one decision cannot be relevant to another. 

Unlike d-separation in BNs, s-reachability is not necessarily a symmetric relation. 

 

As we have defined in chapter 5, the information value in multi-agent systems has 

two types, one is nature information coming from the chance node, another is 
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moving information from the decision node. We will discuss them respectively. 

 

6.2   Value of Nature Information in Multi-agent Decision Systems 

Theorem 6.1 Given a general MAID M with a set of agents A, C is the set of 

chance nodes, aD is the set of decision nodes of agent a and aU is the set of value 

nodes of each agent a , where a A∈ . Let aD D∈ be a decision node of 

agent a , N C∈ be an uncertain chance variable. If aN U D⊥ , then 

( ) 0aEVPI D N =  and { / }( ) 0b A aEVPAI D N∈ = . 

 

Proof: We use M to denote the model N is not observed by D, and use MD|N to 

denote the model after N is observed by D. 

 

According to the definition of Nash equilibrium that no agent has the incentive to 

deviate from its decision rule specified by the strategy profile, given no other 

agents deviate. 

 

Firstly, we are going to verify that the optimal decision rule of D will not change 

if the decision rules of other decisions do not change.  

 

a) In the general MAID model M:  
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Let Dδ  be a decision rule for the decision variable aD D∈  and σ be a strategy 

profile for M. Then Dδ  is optimal forσ  if and only if the probability distribution 

satisfies the following maximization problem: 

, *[( )]
( )

arg max ( )
D D

D a

D M
U U u dom U

P U u u
δσ

δ
δ

−∗

∗

∈ ∈

= = ⋅∑ ∑ , 

The events ( , , ( ) paDU u D d Pa D= = = ) for ( )d dom D∈ , ( ( ))Dpa dom Pa D∈  

form a partition of event U u= , so we can express 
, *[( )] ( )

D DMP U u
δσ−

= as the sum 

of the probabilities of these more specific events. By breaking up the joint 

probability we get: 

, *[( )] ( )
D DMP U u
δσ−

=  

 =
, *[( )]

pa ( ( ))
(pa )

D D
D

M D
dom Pa D

P
δσ−

∈
∑  

, * , *[( )] [( )]
( )

( | pa ) ( | , pa )
D DD DM D M D

d dom D

P d P U u d
δ δσ σ− −

∈

× =∑  

The CPD for a node in a Bayesian network has no prior distribution over its 

parents, so 
, *[( )] (pa )

D DM DP
δσ−

= [( )] (pa )M DP σ  and 
, *[( )] ( | pa )

D DM DP d
δσ−

 = ( pa )D Ddδ ∗ . 

, *[( )] ( | , pa )
D DM DP U u d
δσ−

= = [( )] ( | , pa )M DP U u dσ = , because a distribution does not 

depend on the CPD for D given values of D and its parents. Therefore, 

, *[( )] ( )
D DMP U u
δσ−

=  

= [( )]
pa ( ( ))

(pa )
D

M D
dom Pa D

P σ
∈
∑  

   [( )]
( )

( | pa ) ( | , pa )D D M D
d dom D

d P U u dσδ ∗

∈

× =∑  

Thus, Dδ is optimal for σ  if and only if it satisfies the following maximization 

problem: 
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[( )]
pa ( ( )) ( )

arg max (pa ) ( pa )
D D

D M D D D
dom Pa D d dom D

P dσ
δ

δ δ
∗

∗ ∗

∈ ∈

= ∑ ∑  

     [( )]
( )

( | , pa )
a

M D
U U u dom U

P U u d uσ
∈ ∈

× = ⋅∑ ∑  

Therefore,  

[( )]
pa ( ( )) ( )

( ) max (pa ) ( pa )
D

D

a M D D D
dom Pa D d dom D

EU M P dσ
δ

δ
∗

∗

∈ ∈

= ∑ ∑  

[( )]
( )

( | , pa )
a

M D
U U u dom U

P U u d uσ
∈ ∈

× = ⋅∑ ∑  

 

b)   If N is observed before D, in model MD|N 

We are going to verify that ( pa )D Ddδ ∗  will not change if the decision rules of 

other decision nodes do not change.  

 

Assume 'σ is a strategy profile for M(D|N) that only differs fromσ  only at D and a 

decision rule 'Dδ . Let 'DPa denote the new parents of D in model MD|N. 

' { , }D DPa Pa N= , then 'Dδ is optimal for 'σ  if and only if the probability 

distribution satisfies the following maximization problem: 

[( ')]
' pa ( ( )) ( )

' arg max (pa , ) ' ( pa , )
D D

D M D D D
dom Pa D d dom D

P n d nσ
δ

δ δ
∗

∗ ∗

∈ ∈

= ∑ ∑  

            [( ')]
( )

( | , pa , )
a

M D
U U u dom U

P U u d n uσ
∈ ∈

× = ⋅∑ ∑  

Therefore, 

| [( ')]
' ( ) pa ( ( )) ( )

( ) max (pa , ) ' ( pa , )
D

D

a D N M D D D
n dom N dom Pa D d dom D

EU M P n d nσ
δ

δ
∗

∗

∈ ∈ ∈

= ∑ ∑ ∑  

[( ')]
( )

( | , pa , )
a

M D
U U u dom U

P U u d n uσ
∈ ∈

× = ⋅∑ ∑  

Since a aN U D⊥ , thus, 
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[( ')] ( | , pa , )M DP U u d n uσ = ⋅ = [( ')] ( | , pa )M DP U u d uσ = ⋅  

So we get: 

| [( ')]
' ( ) pa ( ( )) ( )

( ) max (pa , ) ' ( pa , )
D

D

a D N M D D D
n dom N dom Pa D d dom D

EU M P n d nσ
δ

δ
∗

∗

∈ ∈ ∈

= ∑ ∑ ∑  

               [( )]
( )

( | , pa )
a

M D
U U u dom U

P U u d uσ
∈ ∈

× = ⋅∑ ∑  

Because , '*'
DD δσ σ−= , by rearranging the summations, we get: 

|( )a D NEU M  

=
, '* , '*[( )] [( )]

' pa ( ( )) ( ) ( )
max ( | pa , ) (pa , )

D DD D
D

D

M D M D
dom Pa D d dom D n dom N

P d n P n
δ δσ σ

δ ∗ − −
∈ ∈ ∈
∑ ∑ ∑  

, '*[( )]
( )

( | , pa )
D D

a

M D
U U u dom U

P U u d u
δσ−

∈ ∈

× = ⋅∑ ∑  

Using the chain rule, 

, '*| [( )]
' pa ( ( )) ( ) ( )

( ) max ( , pa , )
D D

D
D

a D N M D
dom Pa D d dom D n dom N

EU M P d n
δσ

δ ∗ −
∈ ∈ ∈

= ∑ ∑ ∑  

, '*[( )]
( )

( | , pa )
D D

a

M D
U U u dom U

P U u d u
δσ−

∈ ∈

× = ⋅∑ ∑  

Marginalizing N, we get: 

, '*| [( )]
' pa ( ( )) ( )

( ) max ( , pa )
D D

D
D

a D N M D
dom Pa D d dom D

EU M P d
δσ

δ ∗ −
∈ ∈

= ∑ ∑  

                
, '*[( )]

( )
( | , pa )

D D
a

M D
U U u dom U

P U u d u
δσ−

∈ ∈

× = ⋅∑ ∑  

          =
, '* , '*[( )] [( )]

' pa ( ( )) ( )
max (pa ) ( | pa )

D DD D
D

D

M D M D
dom Pa D d dom D

P P d
δ δσ σ

δ ∗ − −
∈ ∈
∑ ∑  

   
, '*[( )]

( )
( | , pa )

D D
a

M D
U U u dom U

P U u d u
δσ−

∈ ∈

× = ⋅∑ ∑  

Since the CPD for a node in BN has no effect on the prior distribution over its 

parents, so 
, '*[( )] [( ')] [( )](pa ) (pa ) (pa )

D DM D M D M DP P P
δσ σ σ−

= = . And 

, '*[( )] [( ')] [( )]( | , pa ) ( | , pa ) ( | , pa )
D DM D M D M DP U u d u P U u d u P U u d u
δσ σ σ−

= ⋅ = = ⋅ = = ⋅  

because a distribution does not depend on the CPD for D given values for D and 

its parents.  
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We get: 

|( )a D NEU M
, '*[( )] [( )]

' pa ( ( )) ( )
max (pa ) ( | pa )

D D
D

D

M D M D
dom Pa D d dom D

P P d
δσ σ

δ ∗ −
∈ ∈

= ∑ ∑  

                [( )]
( )

( | , pa )
a

M D
U U u dom U

P U u d uσ
∈ ∈

× = ⋅∑ ∑  

We use ' ( pa )DP d∗  to denote 
, '*[( )] ( | pa )

D DM DP d
δσ−

 

|( )a D NEU M [( )]
' pa ( ( )) ( )

max (pa ) ' ( pa )
D

M D D
P dom Pa D d dom D

P P dσ∗

∗

∈ ∈

= ∑ ∑  

              [( )]
( )

( | , pa )
a

M D
U U u dom U

P U u d uσ
∈ ∈

× = ⋅∑ ∑           

Since  

, *[( )] [( )]
pa ( ( )) ( )

( ) max (pa ) ( pa )
D D

D
D

a M D M D
dom Pa D d dom D

EU M P P d
δσ σ

δ ∗ −
∈ ∈

= ∑ ∑  

              [( )]
( )

( | , pa )
a

M D
U U u dom U

P U u d uσ
∈ ∈

× = ⋅∑ ∑  

We use ( pa )DP d∗  to denote 
, *[( )] ( pa )

D DM DP d
δσ−

, 

[( )]
pa ( ( )) ( )

( ) max (pa ) ( pa )
D

a M D D
P dom Pa D d dom D

EU M P P dσ∗

∗

∈ ∈

= ∑ ∑  

                [( )]
( )

( | , pa )
a

M D
U U u dom U

P U u d uσ
∈ ∈

× = ⋅∑ ∑  

Compare the expression ( )aEU M with |( )a D NEU M , we can find that for any 

( )d dom D∈ , , ( )DU U u dom U∈ ∈ , the two maximization problems are the same, 

i.e. any ' ( pa )DP d∗  will be a solution of ( )aEU M and any ( pa )DP d∗  is also a 

solution of |( )a D NEU M . Therefore, ( )aEU M = |( )a D NEU M .  

That is to say, agent a will not deviate from his/her action at D given the value of 

the original parents of D, if other agents do not deviate from the strategy specified 

by Dσ− . 

              

From the discussion above, we can also see that 
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[( )]
' ( ) ( )

' ( pa ) arg max ' ( pa ) ( | , pa )
a

D D M D
P d dom D U U u dom U

P d P d P U u d uσ
∗

∗ ∗

∈ ∈ ∈

= = ⋅∑ ∑ ∑  

and  

'' ( pa ')DP d∗  

[( )]
'' ( ) ( )

arg max '' ( pa ') ( | , pa )
a

D M D
P d dom D U U u dom U

P d P U u d uσ
∗

∗

∈ ∈ ∈

= = ⋅∑ ∑ ∑  

Therefore, we can get 

'' ( pa ')DP d∗ = ' ( pa )DP d∗ = ( pa )DP d∗ , 

which is 

'' ( pa , )DP d n∗ = ( pa )DP d∗  

This tells us that given the value of D’s original parents, if aN U D⊥ , then the 

value of N will not change the optimal probability distribution of D. While the 

CPD table of D becomes large, since D has a new parent N in the new model MD|N. 

If the decision node D has m parents in model M, each with t values, and D has n 

choices associated with it, N has p values. The size of the original CPD table of D 

is mn t× , but is mn t p× × after N is observed by D. 

 

This also implies that if any of ( )Pa D is independent of aU , then the CPD table 

of it will not have influence on the optimal choice of D.    

 

Secondly, we are going to verify that any agent will not deviate from his/her 

strategy at any of their decision node D’ which is different from D, given other 

agents do not deviate from their strategies at other decision nodes. 
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a) In a general MAID model M:  

Let δ  be a decision rule for any decision variable D’ in model M except D, and 

σ be a strategy profile for M. Assume D’ belongs to any agent i, i I∈ . δ  is 

optimal forσ if and only if the probability distribution satisfies the following 

maximization problem: 

'

[( )] ' '
pa ( ( ')) ' ( ')

arg max (pa ) ( ' pa )
D

M D D
dom Pa D d dom D

P dσ
δ

δ δ
∗

∗ ∗

∈ ∈

= ∑ ∑  

         [( )] '
( )

( | ', pa )
i

M D
U U u dom U

P U u d uσ
∈ ∈

× = ⋅∑ ∑  

If
'

[( )] '
pa ( ( '))

(pa )
D

M D
dom Pa D

P σ
∈
∑ =0, the maximization problem is trivial, since all 

distributions yield a value of zero. Thus, it is necessary and sufficient that for all 

'paD  such that 
'

[( )] '
pa ( ( '))

(pa )
D

M D
dom Pa D

P σ
∈
∑ >0, the distribution '( ' pa )DDδ be a 

solution of the following maximization problem: 

' [( )] '
' ( ') ( )

arg max ( ' pa ) ( | ', pa )
i

D M D
d dom D U U u dom U

d P U u d uσ
δ

δ δ
∗

∗ ∗

∈ ∈ ∈

= × = ⋅∑ ∑ ∑    (6.1) 

' [( )] '
' ( ') ( )

( ) max ( ' pa ) ( | ', pa )
i

i D M D
d dom D U U u dom U

EU M d P U u d uσ
δ

δ
∗

∗

∈ ∈ ∈

= × = ⋅∑ ∑ ∑   

 

b)   If N is observed before D, in model MD|N 

Let 'δ  be a decision rule for the same decision variable D’ in model MD|N as in M, 

and 'σ be a strategy profile for MD|N which differs fromσ only at D’ . Then 'δ  is 

optimal for 'σ if and only if the probability distribution satisfies the following 

maximization problem: 

' [( ')] '
' ( ') ( )

' arg max ' ( ' pa ) ( | ', pa )
i

D M D
d dom D U U u dom U

d P U u d uσ
δ

δ δ
∗

∗ ∗

∈ ∈ ∈

= × = ⋅∑ ∑ ∑  

Since 'σ is the strategy profile which differs fromσ only at D’ and a distribution 
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does not depend on the CPD for D’ given values for D’ and its parents. 

Therefore, [( ')] '( | ', pa )M DP U u d uσ = ⋅ = [( )] '( | ', pa )M DP U u d uσ = ⋅  

By substituting, we get 

' [( )] '
' ' ( ') ( )

' arg max ' ( ' pa ) ( | ', pa )
i

D M D
d dom D U U u dom U

d P U u d uσ
δ

δ δ
∗

∗ ∗

∈ ∈ ∈

= × = ⋅∑ ∑ ∑  (6.2) 

The two maximization problems of (1) and (2) are the same, we get 'δ ∗=δ ∗ . 

That is to say, no matter N is observed before D or not, the optimal decision rule 

of any decision node except D will not change, if N is independent of aU  given D. 

Thus, the expected utilities of other agents will not change after N is observed by 

D. 

 

Therefore, ( ) 0aEVPI D N =  and { / }( ) 0b A aEVPAI D N∈ = .             

 

Theorem 6.2: Given a general MAID M in canonical form with a set of agents A, 

C is the set of chance nodes, iD is the set of decision nodes of agent a and iU is the 

set of value nodes of each agent a , where a A∈ . Let aD D∈ be a decision node of 

agent a , N C∈ be an uncertain chance variable. In both decision models M and 

MD|N, if for any decision node D’ of agent b, D is not s-reachable from D’, and D’ 

is not a descendant of D.  If for { \ }' { }i A a iD D∈⊂ ∪ ,  then { / }( ) 0i A aEVPAI D N∈ = , 

whereb A∈ , ' { \ }a A aD D D∈⊂ ∪ . 

 

Proof: Let δ be a decision rule for a decision variable D in the MAID M, 'δ be a 
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decision rule for D’, |D Nδ  be a decision rule for the decision variable D in the 

MAID MD|N and |'D Nδ be a decision rule for the decision variable D’ in the MAID 

MD|N. σ be a strategy profile for M and 'σ be a strategy profile for MD|N. 

Since any D’ is not s-reachable from D, then changingσ at D will not affect the 

optimality of 'δ (According to algorithm of solving MAID). Therefore, except δ , 

any optimal decision rule of any decision variable will not change, i.e. | 'D Nδ ∗= 'δ ∗ . 

The distribution of 'δ should be a solution of the following maximization problem: 

' [( )] '
' ' ( ') ( )

' arg max ' ( ' pa ) ( | ', pa )
i

D M D
d dom D U U u dom U

d P U u d uσ
δ

δ δ
∗

∗ ∗

∈ ∈ ∈

= × = ⋅∑ ∑ ∑  

After N is observed by D, the distribution of |'D Nδ ∗ should be a solution of the 

following maximization problem:  

|

| | ' [( ')] '
' ' ( ') ( )

' arg max ' ( ' pa ) ( | ', pa )
D N i

D N D N D M D
d dom D U U u dom U

d P U u d uσ
δ

δ δ
∗

∗ ∗

∈ ∈ ∈

= × = ⋅∑ ∑ ∑  

Since | 'D Nδ ∗= 'δ ∗ , the two maximization problems should be the same. And the 

induced M, MD|N are two identical BNs which only differs at the CPD table they 

assign to D, then 

[( )] '( | ', pa )M DP U u d uσ = ⋅ = [( ')] '( | ', pa )M DP U u d uσ = ⋅  

'

[( ')] ' '
' pa ( ( ')) ( ')

' arg max (pa ) ' ( ' pa )
D

M D D
dom Pa D d dom D

P dσ
δ

δ δ
∗

∗ ∗

∈ ∈

= ∑ ∑  

           [( ')] '
( )

( | ', pa )
b

M D
U U u dom U

P U u d uσ
∈ ∈

× = ⋅∑ ∑   

'

| [( ')] ' '
' pa ( ( ')) ( ')

( ) max (pa ) ' ( pa )
D

b D N M D D
dom Pa D d dom D

EU M P dσ
δ

δ
∗

∗

∈ ∈

= ∑ ∑  

[( ')] '
( )

( | ', pa )
b

M D
U U u dom U

P U u d uσ
∈ ∈

× = ⋅∑ ∑  

For those { \ }' { }i A a aD D∈⊂ ∪ , D’ is not a descendant of D, then 
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|( )b D NEU M is equal to: 

'

[( )] ' '
pa ( ( ')) ( ')

( ) max (pa ) ( pa )
D

b M D D
dom Pa D d dom D

EU M P dσ
δ

δ
∗

∗

∈ ∈

= ∑ ∑  

    [( ')] '
( )

( | ', pa )
b

M D
U U u dom U

P U u d uσ
∈ ∈

× = ⋅∑ ∑  

Therefore, { / }( ) 0i I aEVPAI D N∈ = .                                  

 

6.3   Value of Moving Information in Multi-agent Decision Systems 

Theorem 6.3: Given a general MAID M in canonical form with a set of agents A, 

C is the set of chance nodes, aD is the set of decision nodes of agent a and aU is 

the set of value nodes of each agent a , where a A∈ . Let aD D∈ be a decision node 

of agent a , N C∈ be an uncertain chance variable. If for any decision node D’ of 

agent b, D is not s-reachable from D’, whereb A∈ , ' { \ }a A aD D D∈⊂ ∪ , then the 

moving information of D to D’ is equal to 0, i.e. ( ' | )i AEVPI D D∈ =0. 

 

Proof: Since D is not s-reachable from D’, therefore, D’ does not rely on D. 

Changing the decision rule of D will not affect the optimal decision rule of D’. 

  

Let δ be a decision rule for a decision variable D in the MAID M, 'δ be a 

decision rule for D’, σ be a strategy profile for M and 'σ be a strategy profile for 

MD|D’.  

In order to verify that the optimal *σ  in M will still remain to be the Nash 
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equilibrium in model MD|N
., we verify below that no agent will deviate from its 

decision rule given other agents do not deviate. 

 

When D is observed before D’, the value of D=d is revealed to D’. To D’, it is 

like agent a takes D=d with probability 1. Since we know no matter how the 

decision rule D takes, it will not change the decision rule of D’. Therefore, by 

observing D, the optimal decision rule of D’ will not be changed. Therefore, 'δ  

will remain to be the same, i.e, ' ''( ' | ) '( ' | , )D DD Pa D Pa Dδ δ= . 

 

Since decision node D is not s-reachable from any D’, we can know that the 

optimal decision rule of any decision node D’ will not change.   

 

If D’ is not s-reachable from D, changing the decision rule of D’ will not change 

the optimal decision rule of D; the optimal decision ruleδ of D will remain the 

same. If D’ is s-reachable from D, D relies on D’, since 'δ will remain the same, 

the optimal decision rule of D will not change. 

 

Therefore, the optimal decision rule of every decision node will not change. The 

Nash equilibrium remains to be the same. As the CPD table in M and MD’|D are all 

the same, the utility of each agent will not change. Therefore, the moving 
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information of D to D’ is equal to 0, i.e. ( ' | )i AEVPI D D∈ =0.       

    

Theorem 6.4: Given a general MAID M with a set of agents A, C is the set of 

chance nodes, aD is the set of decision nodes of agent a and aU is the set of value 

nodes of each agent a , where a A∈ . Let aD D∈ be a decision node of 

agent a , N C∈ be an uncertain chance variable. If for any decision node D’ of 

agent i, { \ }i A a∈ , then the moving information of D to D’ is also larger or equal 

to 0,  i.e. { / }( ' | )i A aEVPI D D∈ 0≥ . 

 

Proof: If D is not s-reachable from D’, from Theorem 6.3, { / }( ' | )i A aEVPI D D∈ =0. 

 

If D is s-reachable from D’, by observing D, the decision rule of D’ might change, 

in the condition that ( ') ( )i iEU EUσ σ where σ is a strategy profile for M 

and 'σ is a strategy profile for MD|D’. Otherwise, given the decision rule of other 

decision nodes does not change, the agent has no incentive to change its optimal 

decision rule of D’ and D will therefore remain to be the same. In other words, the 

Nash equilibrium will change only when the expected utility of agent i increases 

by changing its decision rule. Otherwise, he/she can take his/her original decision 

rule. Therefore, { / }( ' | )i A aEVPI D D∈ 0≥ .                               
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6.4   Examples 

Let us consider an example of the application of these properties. Consider the 

decision model shown in Figure 6.1; Using Theorem 6.1, since 2
4 |a aN U D⊥ , we 

can know that 2
4( ) 0a aEVPI D N =  and 2

4( ) 0b aEVPAI D N = . This means that 

after N4 is observed by agent a before making decision 2
aD , the expected utility of 

both agents a andb will not change. 

Da
1

N1

N2

Ub
2

Db Da
2

Ua

Ub
1

N3

N4

 

(a) MAID M of the simple example 

 

Da
1Db Da

2

 

(b) Relevance graph of the MAID M shown in (a) 

Figure 6.1 An example of VOI properties 
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Similarly, since 1 2
3 { , } |b b bN U U D⊥ , using Theorem 6.1, we can infer 

3( ) 0b bEVPI D N =  and 3( ) 0a bEVPAI D N = . 

 

Figure 6.2 shows the new MAID model 2
3|aD N

M after N3 is observed by 2
aD and its 

corresponding relevance graph. Since 2
aD is not s-reachable from bD in both model 

M and new model 2
3|aD N

M , and bD is not a descendant of 2
aD . Hence, using 

Theorem 6.2, we can infer that 2
3( ) 0b aEVPAI D N = .  

Da
1

N1

N2

Ub
2

Db Da
2

Ua

Ub
1

N3

N4

 

(a) MAID 2
3|aD N

M  

Da
1Db Da

2

 

(b) Relevance graph of the MAID 2
3|aD N

M   

Figure 6.2 New model 2
3|aD N

M , after N3 is observed by 2
aD  
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Since both 1
aD and 2

aD are not s-reachable from bD , the moving information 

from 1
aD , 2

aD to bD will equal to 0, i.e. 1( | ) 0a b aEVPI D D = , 1( | ) 0b b aEVPI D D = , 

2( | ) 0a b aEVPI D D = and 2( | ) 0b b aEVPI D D = , according to Theorem 6.3. 

 

The moving information from decision node bD to decision nodes 1
aD and 2

aD will 

always be larger or equal to 0, i.e. 2( | ) 0a a bEVPI D D ≥ and 1( | ) 0a a bEVPI D D ≥ , 

according to Theorem 6.4. 
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7 Conclusion and Future Work 

 

In this chapter, a summary of the merits and the limitations of the work conducted 

is presented and possible extensions are suggested to conclude this thesis. 

 

7.1  Conclusion 

In this study, we developed a graphical model for representing and solving 

asymmetric multi-agent decision problems in an uncertain environment and 

extended the computation of information value to multi-agent decision systems. 

 

Firstly, we developed a new framework to represent asymmetric multi-agent 

decision problems, called Asymmetric Multi-agent Influence Diagrams 

(AMAIDs). Four main types of asymmetric problems are discussed by giving out 

illustrative examples. Our model is compared with the existing models in 

representing them. An AMAID is a probabilistic model that is composed of two 

parts; One part encodes the information precedence as well as asymmetric 

structure and the other encodes the probabilistic dependence relations for the
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 chance nodes and deterministic functional relations for the utility node. The 

asymmetric structures and information precedence are represented by contextual 

arcs. An AMAID does not only represent the asymmetric problems more 

concisely, but also solves some problems such as order asymmetry which cannot 

be represented by normal MAID.  

 

Secondly, we proposed the evaluation algorithm for solving the decision model of 

AMAIDs. This evaluation algorithm is extended from the evaluation algorithm for 

solving MAIDs. S-reachability is identified by converting an AMAID to a de-

contextualized AMAID.  

 

Thirdly, value of information is discussed and defined in multi-agent decision 

systems. We incorporate MAIDs into our computation of VOI by illustrating three 

different information conditions in a basic MAID model: with all agents knowing 

the information, with part of the agents knowing the information and with no 

information. According to the number of agents knowing the information in the 

system, we divide the information in multi-agent decision systems into two types: 

symmetric information and asymmetric information. According to the information 

source, we divide the information into another two types: nature information and 

moving information. Three concepts: expected value of perfect information, 

expected value of perfect asymmetric information and expected value of perfect 
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symmetric information are defined and compared in the multi-agent systems. 

 

Numerical examples are given to illustrate the computation of VOI based on the 

decision model of MAIDs. The property that VOI can be less than 0 in multi-

agent systems is shown by the example. We define another two concepts of 

escaping cost and revealing cost with respect to the sign of VOI. 

 

Fourthly, value of information for the intervened variables in multi-agent decision 

systems is discussed. The algorithm developed by Heckerman and Shachter (1995) 

for constructing the canonical form of influence diagram is extended to construct 

the canonical form of multi-agent influence diagram. 

 

Finally, we revealed and verified some properties of nature information value and 

moving information value in multi-agent decision systems based on the graphical 

model of MAIDs. These properties discussed reveal the qualitative relationship 

about the information relevance of chance variables and decision variables based 

on the topology of the models, mostly on the notion of conditional independence 

and s-reachability in MAID. These properties can be used to guide researchers 

and practitioners in some fast identification.  
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7.2  Future Work   

This work proposes a new model to solve asymmetric decision problems and 

opens the discussion of information value in multi-agent decision systems. 

Therefore, the first possible extension is to see whether AMAID model can also 

be used for computing VOI in asymmetric decision problems.  

 

Secondly, some interesting properties of VOI in multi-agent decision systems still 

remain unrevealed. Research still needs to be conducted on VOI in multi-agent 

decision systems. 

 

Thirdly, The VOI computation in multi-agent decision systems mainly depends on 

the computation method of Nash equilibrium of the decision model. Therefore, 

finding new efficient inference methods will facilitate the VOI computation.   

 

Fourthly, the properties of VOI discussed in this work can be applied to solve 

various real-world problems and analyze the actions of the agents. 

 

Last but not least, information problems involving trust, imperfect information 

and signaling are interesting problems that remain to be discussed, which can also 

be analyzed based on the graphical models.   
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