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SUMMARY 

 

Deterministic global optimization approach to bilinear process network 

synthesis is the focal point of this work. Process synthesis addresses the problem of 

finding the optimal arrangement of the chemical process flowsheet which is often 

represented as nonconvex programming problem exhibiting multiple local optimal 

solutions. Deterministic global optimization is required to obtain a guaranteed global 

optimal solution of such problems. Process synthesis problems which can be posed as 

bilinear programs, a class of nonconvex programs, are called as bilinear process 

network synthesis problems. 

The first section of this work addresses the practical application of 

deterministic global optimization approach in solving industrial bilinear process 

network problems. In this section, the optimal operation problem on an existing fuel 

gas network in a natural gas liquefaction plant is presented. A superstructure and a 

corresponding mathematical programming model are proposed to model the possible 

structural alternatives for the fuel gas network. Efficient representation of the 

superstructure enables the use of a commercial solver to locate the global optimal 

solution of such problem. The deterministic global optimization approach leads to the 

reduction in fuel-from-feed consumption. Further reduction is obtained through the 

integration of jetty boil-off gas as an additional fuel which is solved using the same 

procedure. 

The second section concentrates on the theoretical-algorithmic study of the 

deterministic global optimization technique in solving bilinear programs. The idea of 

using ab inito partitioning of the search domain to improve the relaxation quality is 

discussed. Such idea relies on piecewise under- and overestimators. It produces tighter 

 vi



relaxation as compared to conventional technique based on continuous linear 

programming which is often weak and thus slows down the convergence rate of the 

global optimization algorithm. Several novel modeling strategies for piecewise under- 

and overestimators via mixed-integer linear programming are proposed. They are 

evaluated using a variety of process network synthesis problems arising in the area of 

integrated water system design and non-sharp distillation column sequencing. Metrics 

are defined to measure the effectiveness of such technique along with some valuable 

insights on properties. Several theoretical results are presented as well. 
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Chapter 1 

INTRODUCTION 

 

1.1. Process Design and Synthesis 

Chemical process design is one of the most classic yet evergreen topics for 

chemical engineers. It often embodies the archetypal ultimate goal for many other 

chemical engineering activities. It is complex, requiring the use of numerous science 

and engineering know-how in an integrated manner to devise processing systems 

transforming raw materials into products that best achieve the desired objective. 

Chemical processes distinguish themselves from other engineering objects in the sense 

that they are typically designed for very long lifetimes while simultaneously capital 

and operating cost intensive. Thus, the prospective of having many years of continuing 

incurred costs emphasizes the importance of a good process design. It is well known 

that process design, an activity that may only account for around two to three percent 

of the project cost, determines significant percentages of capital and operating costs of 

the final process plant as well as its profitability. While empirical judgment is 

imperative, good process design is not a trivial task in the absence of systematic 

procedures. 

The preliminary phase for chemical process design is the flowsheet synthesis 

activity, also called as process synthesis. It poses a problem of arranging a set of 

processing equipments in the availability of a set of raw materials and energy sources 

to produce a set of desired products under certain performance criteria. It includes 

several steps. The first is to gather required information to uncover existing 

alternatives. Next, the process alternatives need to be represented in a concise manner 

for decision making. In order to do this, several criteria to asses and evaluate are 
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required the value of a certain design. These criteria are typically related with technical 

and economic performances. Due to the extensive amount of possible alternatives, a 

systematic procedure is required to generate and search among these alternatives. 

 

1.2. Superstructure 

The need to develop a systematic procedure for process design results in the 

birth of the so-called superstructure (Smith, 1995, Biegler et al., 1997). In a 

superstructure, several possible design alternatives are represented in a set of arcs and 

graphs. Typically arcs represent inteconnection in spatial, temporal, or logical domain 

of nodes symbolizing the resources (e.g. raw materials, energy utilities, processing 

equipments). This representation is later transformed in an optimization problem, 

which are typically a mathematical programming problem (Edgar et al., 2001). The 

objective function contains the technical and economic criteria that measure the 

performance of a proposed design such as maximizing profits, product yields, or 

minimizing costs, consumption of raw materials, consumption of energy. The 

constraints capture the physical nature of the design alternatives (e.g. total mass 

balance, component mass balance, and energy balance) as well as resource restrictions 

(availability of raw material and utilities) and quality specifications (product purity and 

environmental regulations). Equations involved in the objective function and 

constraints can be linear or nonlinear. Variables involved can be continuous and 

discrete. Continuous variables represent process variables such as flow rates, 

compositions, temperatures, and pressure. Discrete variables represent the logic of the 

process such as the existence of a certain stream and processing sequence recipe.  

A mathematical program which contains only linear equations and continuous 

variables is called as Linear Programming (LP) problem. If at least one integer 
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variable is added, the mathematical program becomes a Mixed-integer Linear 

Programming (MILP) problem. If at least one equation is nonlinear, the mathematical 

program becomes a Nonlinear Programming (NLP) problem. Mixed-integer Nonlinear 

Programming (MINLP) problem represents a situation where integer and continuous 

variables as well as nonlinear and linear constraints exist simultaneously. 

 

1.3. Nonconvex Programming and Deterministic Global Optimization 

Several process synthesis problems lead to a nonconvex programming problem 

which exhibits multiple local optimal solutions. Such a feature imposes difficulty, 

since obtaining the best of the best solutions (i.e. global optimal solution) is desirable 

in many process synthesis problems. Global optimization approach is required to 

obtain the global optimal solution of a nonconvex programming problem. While such 

approach may be attempted via heuristic methods such as genetic algorithm and 

simulated annealing, the obtained solution is not guaranteed to be the true global 

optimal solution. Another approach called as deterministic global optimization 

approach can provide such a guarantee. In addition, the deterministic approach can 

asses the solution quality by measuring the gap between the upper and lower bounds of 

the global optimal solution. 

Several nonconvex programming problems can be found in the field of 

blending and pooling problem, integrated water systems design, heat exchanger 

network design, and non-sharp distillation sequencing. For such problem, 

nonconvexities arise from the product of two different continuous variables: stream 

flow rates and compositions or steam flow rates and temperatures. Thus, the problem 

can be classified as bilinear programming problem (BLP). Such problem is important 

because it represents an omnipresent situation in most chemical process plants. 
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Moreover, bilinear term is one of the building blocks for a wider class of factorable 

nonconvex programming problem in which the nonconvex terms can be broken down 

into recursive sums and products of univariate terms. Factorable nonconvex 

programming is a powerful tool for a vast range of science and applications in 

chemical engineering and other fields. Throughout this thesis, process network 

synthesis problems which are modeled using BLP are termed as bilinear process 

network synthesis. 

 

1.4. Research Objective 

This work focuses on deterministic global optimization approach in solving 

bilinear process network synthesis. The objectives of this work are to: (1) develop a 

systematic methodology based on an industrial application of deterministic global 

optimization of bilinear process network, which is chosen to be a fuel gas network in a 

natural gas liquefaction plant (2) develop a novel strategy to improve the algorithm of 

deterministic global optimization approach in solving BLPs together with some 

theoretical and computational studies. 

 

1.5. Thesis Outline 

This thesis is divided into two main sections. The first section consists of 

Chapter 2 and 3. It discusses the practical importance of deterministic global 

optimization approach in solving BLPs. In this section a problem on a fuel gas network 

in a natural gas liquefaction plant is described. The problem is later represented using a 

superstructure which then transformed into a MINLP with bilinear terms. Efficient 

superstructure representation makes available the use of commercial solver BARON to 
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locate the global optimal solution. Significant amount of improvement is achieved in 

the form of fuel-to-feed consumption reduction. 

The second section consists of chapter 4, 5, and 6. This section focuses on a 

novel technique to obtain the bound of the global optimal solution. The novel 

technique is capable of locating tighter bound as compared to the conventional one. It 

relies on ab inito partitioning of the search domain, called as piecewise relaxation. 

Several novel modeling strategies for piecewise under- and overestimators are 

proposed in the frame of mixed-integer linear programming invoking a two-level 

relaxation hierarchy. These novel strategies are based on three systematic approaches 

(i.e. Big-M, Convex Combination, and Incremental Cost) and two segmentation 

schemes (i.e. arbitrary and identical). Computational and theoretical studies are 

performed on the models developed in the second part. The studies employ a variety of 

problems from process network synthesis (i.e. integrated water system design and non-

sharp distillation column sequencing). Computational study favors the novel models 

over the exisiting models based on disjunctive programming. Several properties of the 

models are observed and theoretically studied. Metrics to define the effectiveness of 

such model is introduced along with the theoretical background. 

Eventually, Chapter 7 summarizes the advances obtained from these works. 
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(In collaboration with Dr. Hassan Alfadala from Qatar University and  
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Data and models related to this work are the property of  

Qatargas Operating Company) 
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Chapter 2 

A REVIEW ON LIQUEFIED NATURAL GAS (LNG) 

 

2.1. Natural Gas 

Natural gas comes from reservoirs beneath the earth’s surface. Sometimes it 

occurs naturally, sometimes it comes to the surface with crude oil (associated gas), and 

sometimes it is being produced constantly such as in landfill gas. Natural gas is a fossil 

fuel, meaning that it is derived from organic material deposited and buried in the earth 

millions of years ago. Other fossil fuels are coal and crude oil. Together crude oil and 

gas constitute a type of fossil fuel known as “hydrocarbons” because the molecules in 

these fuels are combinations of hydrogen and carbon atoms. 

Natural gas is a highly combustible odorless and colorless hydrocarbon gas 

largely composed of methane (Figure 2.1). The other components in natural gas are 

ethane, propane and butane with trace amounts of nitrogen and carbon dioxide. Natural 

gas is the most environmentally friendly (Table 2.1) and one of the most abundant 

fossil fuels in the world, thus it is the economic and environmental fuel of choice. The 

demand for natural gas has been growing rapidly in recent years and is expected to 

grow at a much faster pace than crude oil. 

 

Figure 2.1. Typical Natural Gas Composition 
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Table 2.1. Comparison of air pollutant emissions between hydrocarbon fuels 

(http://www.eia.doe.gov/pub/oil_gas/natural_gas/analysis_publications/natural_gas_19

98_issues_trends/pdf/chapter2.pdf) 

Pollutant (Lb / 106 Btu of energy input) Natural Gas Oil Coal 

Carbon Dioxide 117,000 164,000 208,000 

Carbon Monoxide 40 33 208 

Nitrogen Oxides 92 448 457 

Sulfur Dioxide 1 1,122 2,591 

Particulates 7 84 2,744 

Mercury 0 0.007 0.016 

 

2.2. Liquefied Natural Gas 

Liquefied natural gas (LNG) is natural gas that has been processed to remove 

impurities and cooled to the point that it condenses to a liquid (Flynn, 2005; 

Timmerhaus and Reed, 2007), which occurs at a temperature of approximately -161oC 

at atmospheric pressure. Liquefaction reduces the volume by approximately 600 times 

and thus making it more economical to transport between continents in specially 

designed ocean vessels, whereas traditional pipeline transportation systems would be 

less economically attractive and could be technically or politically infeasible 

(Greenwald, 1998). Thus, LNG technology makes natural gas available throughout the 

world. 

The growing popularity of LNG is due to two reasons. First, there is a 

continuous and growing demand for fuel from the key markets of Asia, Europe and 

North America to meet the ever growing energy requirements. These end-user markets 

are thousand of miles from countries where there are vast resources of natural gas in 
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countries such as the Middle East and South America. Second, it will be more 

economical to transport the natural gas for long distance by ship as compared to via 

long pipelines. Furthermore, the geographical location of the importing and exporting 

countries prevents the use of long pipelines as the main transportation means.  

 

2.3. LNG Supply Chain 

In order to deliver natural gas in the form of LNG, several huge companies 

have to invest in a number of operations that is highly linked and dependent to each 

other called as LNG supply chain. The typical LNG supply chain consists of: 

exploration, production, liquefaction, shipping, regasification and distribution.  

The aim of the exploration stage is to find in the earth crust. Search for  natural 

gas deposits begins with geologists and geophysicists using their knowledge of the 

earth to locate the geographical areas. Geologists survey, map the surface & sub-

surface characteristics and extrapolate which areas are more likely to contain a natural 

gas reservoir. Geophysicists conduct further more tests to get more detailed data and 

uses the technology to find and map under rock formations.  

Production involves extraction and processing. Extraction deals with the 

withdrawal of natural gas from its sources inside earth’s crust. Later, natural gas 

undergoes some processing steps to satisfy pipeline requirements. These requirements 

include oil, water, and condensate removal. Processed natural gas is transported to 

liquefaction plant by pipeline. 

Liquefaction is to transform the natural gas feed into LNG which is then 

transported by a special ship from the exporting terminal to the importing terminal. 

LNG stored in tanks is vaporized or regasified to gas state (natural gas) before its 

connected to the transmission system. Regasification involves pressuring the LNG 
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above the transmission system pressure and then warmed by passing it through pipes 

heated by direct-fired heaters, seawater or through pipes that are in heated water. The 

vaporized gas is then regulated for pressure and enter the pipeline system for 

distribution. 

 

2.4. Natural Gas Liquefaction Plant 

A natural gas liquefaction facility is typically consists of several parallel units 

called as trains (Flynn, 2005). Each train is designed using similar technology and 

consists of similar processing parts. However, as the facility expands, it is possible that 

trains which were built earlier may have different technology and capacity as 

compared to the newly built trains. In each train, the natural gas feed typically 

undergoes several treatment processes to remove impurities (e.g. CO2, H2S, water), 

recover heavier hydrocarbon (e.g. propane and butane sold as different products or 

used as refrigerant), liquefaction to LNG, upgrading of methane content through N2 

rejection, and helium recovery. These trains are supported by utility plants assisting 

their operational needs such as steam, cooling water, and fuel. 

 

2.5. Fuel Gas Network in a Natural Gas Liquefaction Plant 

A natural gas liquefaction process is highly energy-intensive. Thus, efficient 

use of energy is very important. A key facility of natural gas liquefaction plant is the 

fuel gas system which is part of the plant utilities section. The function of this facility 

is to satisfy the plant energy demands. It is unique because the sources of fuel are 

coming from the plant itself. The fuel itself is used for generating power in the form of 

both electricity and steam to support plant operations in onsite and offsite area. Fuel 

gas system is designed considering the availability of tail gas in the plant, equipment 
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design requirements as the user of fuel gases and these have to be balanced in such 

manner that no flaring occur. 
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Chapter 3 

OPTIMIZATION OF FUEL GAS NETWORK 

IN A NATURAL GAS LIQUEFACTION PLANT 

 

3.1. The Fuel Gas Network 

The fuel gas network which is the focus of this study has several distinct 

components as discussed further (Qatargas operating manual). 

3.1.1. Fuel Sources 

Fuel sources are located upstream in a fuel gas network. They are gases which 

can be utilized as fuel. There are two major sources of fuel: tail gases and feed gases. 

Tail gases are leftover gases which are neither nor product or recyclable. These gases 

correspond to production losses and therefore should be minimized by using them fully 

as fuel gases if possible. Excess tail gases which cannot be used as fuel are burned in 

flare. Tail gases are produced before and after the purification units. Tail gases 

produced before the purification units typically has low methane content and therefore 

low Wobbe Index (WI), while tail gases produced after the purification units typically 

has high methane content and high WI. 

Fuel gases taken from feed are used to fill the gap between plant energy 

demand and the amount of energy which can be provided by tail gases. However, the 

usage of feed as fuel decreases the quantity of LNG produced and hence should be 

minimized. 

During emergency event where the amount of tail gases and feed are not 

sufficient, fuel may be supplied by feedstock gases coming from the natural gas wells. 

However, these gases are rich in impurities which may be harmful to the fuel sinks. 

 



 13

3.1.2. Fuel Sinks 

Fuel sinks are located downstream of the fuel gas network. They transform 

potential energy contained by fuel into more practically useful form. Typical fuel 

consumers are process driver turbines, power generator turbines, boilers, and 

incinerators. Process turbines drive the refrigerant compressors. Power turbines and 

boilers provide the plant with necessary electricity and steam, respectively. For the 

sake of complicity, flare may also be included as one of the sinks although it does not 

produce energy and causes negative environmental effect. 

3.1.3. Fuel Source - Sink Compatibility 

Every sink has different fuel requirements based on its design while each fuel 

source has its own characteristic such as LHV (Lower Heating Value) and 

composition.  The interchangeability between these various fuels is measured by 

Wobbe Index (WI). Thus, each sink must be fed by fuel which satisfies a certain range 

of Wobbe Index. In order to achieve the desired WI specification, some operations 

such as mixing required.  

 

3.2. Problem Statement 

Here, we present two different problems. The first one is optimizing the 

operation of fuel gas network under the current conditions of fuel sources and sinks. 

The second one considers the integration of an additional fuel source named jetty boil-

off gas (BOG).  

3.2.1. Optimal Operation of the Existing Fuel Gas Network 

We consider the optimal configuration of the fuel gas network. The network 

consists of fuel gas sources, sinks, mixers, fuel sinks, and connecting pipelines. The 

objective of this study is to design a network which gives minimum fuel consumption. 
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The decisions which have to be determined are mixing and distribution 

scenarios. No chemical reactions, separations, and phase changes involved. Conditions 

of fuel sources, such as flow rate and composition are determined by the operating 

mode. The requirements imposed by fuel sinks are allowable WI range, and fuel 

energy content. Our problem can be summarized as follow: 

given: 

1. sources and sinks (existing and additional) and their characteristics 

2. fuel supply and demand, including quality requirements 

 determine: 

1. optimal fuel mixing and distribution scenario 

2. minimum fuel consumption 

3.2.2. Integrating Recovered Jetty Boil-off Gas as an Additional Fuel 

In addition, we consider an additional fuel source in the form of jetty BOG 

which is vapors generated during the loading of LNG into delivery ships. Hence, it is 

not produced continuously. For the purpose of this study, we use the average jetty 

BOG rate throughout the year which is a deterministic value based on the ship arrival 

schedule.  

It is desirable to integrate this additional fuel into the existing fuel gas network. 

However, integrating this additional fuel source optimally and satisfactorily within the 

existing fuel gas network is not a trivial task, as extra piping and/or equipment may be 

needed to accommodate this modification. Furthermore, this should be done without 

affecting the fuel quality requirements of existing equipments. 
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3.3. Solution Methodology 

In this work, we consider all possible scenarios in one superstructure and then 

formulate the selection of the best structure as an optimization problem. The problem 

is then solved to global optimality. The proposed approach is general in that it can be 

extended to any numbers of sources and sinks. 

3.3.1. Superstructure 

Figure 3.1 shows the proposed superstructure for this problem. Nodes i, m, and 

o represent fuel sources, mixers, and sinks, respectively while arcs represent 

interconnection between fuel sources, mixers, and sinks. It should be noted that the 

number of mixers in the superstructure is equal to the number of sinks concerned. One 

source node does not necessarily correspond to one physical source. Sources which 

have identical properties can be lumped into a single node. Similar concepts can also 

be applied to sinks. Using this strategy called reduced superstructure, the size of the 

problem is reduced and so does the computational effort required. 

 

 

 

 

 

 

 

 

 

Figure 3.1. Fuel gas network superstructure with P sources and Q sinks 
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3.3.2. Mathematical Programming Model 

Mathematical formulation is developed based on the given superstructure in 

such manner that nonlinearities are minimized. The model incorporates overall and 

component material balance as well as energy balance. The resulting formulation is a 

mixed-integer nonlinear programming (MINLP) problem with bilinear terms. 

Sets 

i fuel sources 

m mixers 

o fuel sinks 

c components 

 

Parameters 

supply and demand 

S(i) fuel supply of fuel source i 

D(o) energy demand of fuel sink o 

 

fixed operation costs 

FCP(i,m) fixed construction and operation cost for stream p(i,m) 

FCQ(m,o) fixed construction and operation cost for stream q(m,o) 

 

variable operation costs 

VCI(i)  variable operation cost for using fuel source i 

[VCI(i) > 0 if fuel source i is tail gas, VCI(i) < 0 if fuel source i is feed gas] 

VCO(o) variable operation cost for using fuel sink o 

[VCO(o) > 0 if fuel sink o is a flare, VCO(o) = 0 if fuel sink o is not a flare] 
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VCP(i,m) variable operation cost for stream p(i,m) 

VCQ(m,o) variable operation cost for stream q(m,o) 

 

fuel characteristics 

x(i,c)  composition of component c fuel source i 

f(i)  quality (Wobbe index) of fuel source i 

H(c)  individual lower heating value of component c 

 

sink composition requirements 

hU(o)  upper bound for quality (Wobbe index) of fuel entering sink o 

hL(o)  lower bound for quality (Wobbe index) of fuel entering sink o 

 

bounds for flow rates 

pU(i,m) upper bound for stream p(i,m) 

pL(i,m) lower bound for stream p(i,m) 

qU(i,m) upper bound for stream q(m,o) 

qL(i,m) lower bound for stream q(m,o) 

 

Binary Variables 

zp(i,m)  1 if stream p(i,m) exists in the optimal solution, 0 otherwise 

zq(m,o) 1 if stream q(m,o) exists in the optimal solution, 0 otherwise 

 

Continuous Variables 

p(i,m)  fuel flow rate from source i to mixer m 

q(m,o)  fuel flow rate from mixer m to sink o 



 18

y(m,c)  fuel composition exiting mixer m 

z(o,c)  fuel composition entering sink o 

g(m)                fuel quality exiting mixer m 

T  total costs 

 

( )

( )

min ( ) ( , ) ( , ) ( , ) ( , )

( , ) ( ) ( , ) ( , ) ( , )

i m

m o

T VCI i VCP i m p i m FCP i m zp i m

VCQ m o VCO o q m o FCQ m o zq m o

⎡ ⎤= + ⋅ + ⋅⎣ ⎦

⎡ ⎤+ + ⋅ + ⋅⎣ ⎦

∑∑

∑∑
        (3.1) 

Equation (3.1) evaluates the operational costs of the system and hence is the objective 

function. The first, second, fourth, and fifth terms describe the variable operating costs 

related to the usage of fuel source i, stream p, stream q, and the usage of fuel sink o, 

respectively. The third and sixth terms describe the fixed operating costs related to the 

existence of stream p and stream q, respectively.  

 

Equations (3.2) are the total balance at mixer m. 

∑∑ =
oi

omqmip ),(),(  m∀  (3.2) 

 

Equations (3.3) are the component balance at mixer m. 

[ ] ∑∑ ⋅=⋅
oi

omqcmycixmip ),(),(),(),(            m∀ c∀                        (3.3) 

 

Equations (3.4) are the component balance at sink o. 

[ ] ),(),(),( cozomzqcmy
m

=⋅∑  m∀ c∀  (3.4) 

 

Equations (3.5) are the quality balance at mixer m. Quality of fuel gas is assessed using 

Wobbe Index (WI). In this study, WI change due to mixing is assumed to be linear. 
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[ ] ∑∑ ⋅=⋅
oi

omqmgifmip ),()()(),(  m∀  (3.5) 

 

Equations (3.6) are the quality balance at sink o. 

[ ] ),(),(),(),( cohUomzqcmgcohL
m

≤⋅≤ ∑  m∀ c∀  (3.6) 

 

Equations (3.7) ensure that fuel usage is not exceeding the supply by fuel sources. 

)(),( iSmip
m

≤∑  i∀  (3.7)  

 

Equations (3.8) ensure that fuel going into fuel sink j satisfies the energy demand of 

the corresponding fuel sink. 

( ) )()(),(),( oDcHomqcoz
m c

≥⋅⋅∑∑  o∀  (3.8) 

 

Equation (3.9) ensure that only a single layer mixing exists in the network. 

1),( ≤∑
m

omzq  o∀  (3.9) 

 

Binary variable zq(m,o) models the interconnection between mixer m and sink o. 

Therefore, nonconvex bilinear terms in the component material balance can be exactly 

linearized. This reduction in nonlinearities significantly improves the computational 

performance of the MINLP. 

 

Equations (3.10) and (3.11) connect the logical relationship between continuous 

variable p and q representing stream flowrate and binary variable zp and zq, 

respectively.  
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),(),(),(),(),( mipUmizpmipmipLmizp ⋅≤≤⋅  i∀ m∀  (3.10) 

),(),(),(),(),( omqUomzqomqomqLomzq ⋅≤≤⋅  m∀ o∀  (3.11) 

 

3.4. Case Study 

An industrial fuel gas network in an LNG plant comprising three trains as 

depicted in Figure 3.2 was considered in this work. Later on, we integrate one 

additional fuel source which is jetty BOG. It consists of four major fuel sources and 

four major fuel sinks. Several sources and sinks belong to a certain train. The four 

major sources for fuel gas are: tankage boil off gas (BOG), fuel from feed (FFF), end 

flash gas (EFG), and high pressure (HP) flash gas. Tankage BOG are gases generated 

in the storage tanks due to heat leaks. FFF is part of the feed gases taken from the 

mercury removal unit outlet stream in each train. EFG comes from the top product of 

Nitrogen Rejection Unit (NRU) and HP flash gases are sour gas obtained from the acid 

gas removal unit in each train. Hence, the first source comes from the offsite facilities 

while the other three sources come from the process train itself. 

BOG, EFG, and HP flash gas usage corresponds to the production losses and 

called as tail gases. Therefore, they are expected to be fully consumed by the fuel gas 

system. Excess of these three sources are sent to the flare facilities. In the other hand, 

FFF usage is only to fill the gap between the plant power requirements and the amount 

of power which can be extracted from the other three sources (i.e. BOG, EFG, and HP 

flash gas). FFF is unwanted source of fuel since increasing FFF usage decreases the 

amount of feed gas flowing to the main cryogenic heat exchanger (MCHE) causing 

reduced LNG production. Therefore, FFF consumption should be minimized. Thus, a 

positive cost is associated with the use of FFF and flaring. 
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3.5. Results and Discussion 

The proposed model was implemented in GAMS 22.2 (Brooke et al., 2005) and 

solved using BARON 7.5 (Sahinidis, 1996) on a Dell Optiplex GX620 with Windows 

XP Professional operating system, Pentium IV HT 3 GHz processor, and 2 GB RAM.  

 

Figure 3.2. Existing fuel gas network 

The guaranteed best optimal solution suggests a significant FFF consumption 

reduction. Note that the BARON is able to locate the global optimal solution due to 

manageable size of our superstructure representation. BARON guarantees the global 

optimality of the solution since through the course of “branching” and “bounding” (in 

the context of BARON is “reducing”) the gap between the upper and lower bound is 

closed. In a global minimization problem, the upper bound is any feasible solution of 

the original problem and the lower bound is obtained from the relaxation problem. 

This enhancement corresponds to increasing LNG production rate and thus plant 

operation profitability. In the case of jetty BOG integration, the comparison between 

the fuel gas consumption before and after jetty BOG integration is shown in Table 3.1. 

It is shown that by integrating jetty BOG as additional fuel, the FFF consumption 
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decreases by about 15% overall. This reduction further increases the plant efficiency 

by reducing the use of FFF. 

 

Table 3.1. Fuel consumption before and after jetty BOG integration (flow unit) 

Fuel source Before After 

FFF 53.62 45.77 

Jetty BOG 0 50.21 
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Chapter 4 

A REVIEW ON DETERMINISTIC GLOBAL OPTIMIZATION ALGORITHM 

FOR BILINEAR PROGRAMS 

 

4.1. Introduction 

Many practical problems of interest in chemical engineering and other fields can 

be formulated as optimization problems involving bilinear functions of continuous 

decision variables. For instance, the mathematical programming formulations for the 

pooling problem (Haverly, 1978), integrated water systems synthesis (Takama et al., 

1980), process network synthesis (Quesada and Grossmann, 1995), crude oil 

operations scheduling (Reddy et al., 2004; Reddy et al., 2004), as well as fuel gas 

network design and management in Liquefied Natural Gas (LNG) plants (Wicaksono 

et al., 2006; Wicaksono et al., 2007) all involve bilinear products of continuous 

decision variables such as stream flows and compositions. The optimization 

formulations involving such bilinear functions, called bilinear programs (BLPs), 

belong to the class of nonconvex nonlinear programming problems that exhibit 

multiple local optima. For such problems, a local nonlinear programming (NLP) solver 

often provides a sub-optimal solution or even fails to locate a feasible one. However, 

the need for obtaining a guaranteed globally optimal solution is real, essential, and 

often critical, in many practical problems mentioned above. Understandably, this has 

led to a flurry of research activities (Biegler and Grossmann, 2004; Floudas et al., 

2005) in the last two decades on global optimization, which involves obtaining a 

theoretically guaranteed globally optimal solution to a nonconvex mathematical 

program. 
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4.2. Spatial Branch-and-Bound 

 While several global optimization algorithms (Grossmann, 1996; Floudas, 2000; 

Tawarmalani and Sahinidis, 2002; Floudas and Pardalos, 2004) exist today, the most 

common ones use the so-called spatial branch-and-bound framework (Horst and Tuy, 

1993; Tuy, 1998). This framework is similar to the standard branch-and-bound 

algorithm widely used in combinatorial optimization (Nemhauser and Wolsey, 1988). 

The main difference is that the spatial branch-and-bound branches in continuous rather 

than discrete variables. Tight lower and upper bounds, efficient procedures for 

obtaining them, and clever strategies for branching are the main challenges in this 

scheme. For a minimization (maximization) problem, any feasible solution acts as a 

valid upper (lower) bound and can be obtained by means of a local NLP solver (e.g. 

CONOPT, MINOS, SNOPT). For lower (upper) bounds, however, the common 

approach is to solve a good convex (concave), linear or nonlinear, relaxation of the 

original problem to global optimality using a standard LP solver (e.g. CPLEX, OSL, 

LINDO, XA) or a local NLP solver. If the gap between the lower and upper bounds 

exceeds a pre-specified tolerance for any partition of the search space, that partition is 

branched further, until the gap reduces below the tolerance. 

 The development of this branch-and-bound approach has been the focus of much 

research during the last decade. BARON (Branch-And-Reduce Optimization 

Navigator), a commercial implementation of this framework, by Sahinidis (1996) has 

been a significant development. Ryoo and Sahinidis (1996) introduced a branch-and-

reduce approach with a range-reduction test based on Lagrangian multipliers. Zamora 

and Grossmann (1999) proposed a branch-and-contract global optimization algorithm 

for univariate concave, bilinear, and linear fractional functions. The emphasis was on 

reducing the number of nodes in the branch-and-bound tree through the proper use of a 
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contraction operator. This involved maximizing and minimizing each variable within a 

linear relaxation problem. Neumaier et al. (2005) presented test results for the software 

performing complete search to solve global optimization problems and concluded that 

BARON is the fastest and most robust. 

 The success of a spatial branch-and-bound scheme depends critically on the rate 

at which the gap between the lower and upper bounds reduces. For faster convergence, 

this gap must decrease quickly and monotonically, as the search space reduces. In 

other words, devising efficient procedures for obtaining tight bounds is a key challenge 

in global optimization, as both the quality of bounds and the time required to obtain 

them strongly influence the overall effectiveness and efficiency of a global 

optimization algorithm. As stated earlier, relaxation of the original problem is the most 

widely used procedure, so the quality of relaxation and the effort required for its 

solution are extremely critical. 

 

4.3. Convex Relaxation 

 Much research has focused on constructing a convex relaxation for factorable 

nonconvex NLP problems. This class of problems exclusively involves factorable 

functions, which are the ones that can be expressed as recursive sums and products of 

univariate functions (McCormick, 1976). Several researchers (Kearfott, 1991; Smith 

and Pantelides, 1999) proposed symbolic reformulation techniques to transform an 

arbitrary factorable nonconvex program into an equivalent standard form in which all 

nonconvex terms are expressed as special nonlinear terms such as bilinear and concave 

univariate terms. This approach employs the fact that all factorable algebraic functions 

involve one or more unary and/or binary operations. Transcendental functions, such as 

the exponential and logarithm of a single variable, are examples of the former and five 
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basic arithmetic operations of addition, subtraction, multiplication, division, and 

exponentiation form the latter. Therefore, these special nonlinear terms form the 

building blocks for factorable nonconvex problems that abound in a wide range of 

disciplines including chemical engineering. In addition to those mentioned earlier, 

many problems in process systems engineering such as process design, operation, and 

control fall within this scope. Thus, by addressing bilinear programs in this work, we 

are essentially addressing the much wider class of factorable nonconvex programs. 

 LP relaxation is the most widely used technique for obtaining lower bounds for a 

factorable nonconvex program. McCormick (1976) was the first to present convex 

underestimators and concave overestimators for the bilinear term on a rectangle. Later, 

Al-Khayyal and Falk (1983) theoretically characterized these under- and 

overestimators as the convex envelope for a bilinear term. Foulds et al. (1992) utilized 

the bilinear envelope embedded inside a branch-and-bound framework to solve a 

bilinear program for the single-component pooling problem based on total flow 

formulation. Tawarmalani et al. (2002) showed that tighter LP relaxations can be 

produced by disaggregating the products of a single continuous variable and a sum of 

several continuous variables. LP relaxation, however, is often weak, and thus other 

forms of relaxation have also been proposed. 

Androulakis et al. (1995) proposed a convex quadratic NLP relaxation, named 

αBB underestimator, which can be applied to general twice continuously differentiable 

functions. However, the tightness of such a relaxation for specific problems involving 

bilinear terms is inferior compared to its LP counterpart. Meyer and Floudas (2005) 

attempted to improve the tightness of the classical αBB underestimator via a smooth 

piecewise quadratic, perturbation function. 
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Sherali and Alameddine (1992) introduced a novel technique, called 

Reformulation-Linearization Technique (RLT), to improve the relaxation of a bilinear 

program by creating redundant constraints. Ben-Tal et al. (1994) proposed an 

alternative formulation for a bilinear program for the multicomponent pooling problem 

based on individual flow formulation and employed a Lagrangian relaxation to solve it 

within a branch-and-bound framework. Adhya et al. (1999) proposed another 

Lagrangian approach for generating valid relaxations for the pooling problem that are 

tighter than LP relaxations. Tawarmalani and Sahinidis (2002) showed that the 

combined total and individual flow formulation for the bilinear programs of 

multicomponent pooling and related problems proposed by Quesada and Grossmann 

(1995) produces a tighter LP relaxation compared to either the Lagrangian relaxation 

or the LP relaxation based on either the total or individual flow formulations alone. 

While the formulation of Quesada and Grossmann (1995) can be derived using the 

RLT, no theoretical and/or systematic framework exists to date for deriving RLT 

formulations with predictably efficient performance for general nonconvex programs.    

 

4.4. Piecewise Relaxation 

 An interesting recent development is the idea of ab initio partitioning of the 

search domain, which results in a relaxation problem that is a mixed-integer linear 

program (MILP) rather than LP, called as piecewise MILP relaxation. Some recent 

work has shown the promise of such an approach in accelerating the convergence rate 

in several important applications such as process network synthesis (Bergamini et al., 

2005), integrated water systems synthesis (Karuppiah and Grossmann, 2006), and 

generalized pooling problem (Meyer and Floudas, 2006). However, much work is in 

order to fully exploit the potential of such an approach. All previous works have 
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reported that the lower bounding problem in global minimization based on piecewise 

MILP relaxation is the most time consuming step. Moreover, it is solved repeatedly 

inside a global optimization framework (e.g. spatial branch-and-bound, outer 

approximation, or RLT) and thus many issues such as the quality and efficiency of 

piecewise MILP relaxation demand further attention. In this work, we develop, 

analyze, compare, and improve several novel and existing formulations for piecewise 

MILP under- and overestimators for BLPs that may arise solely or within some Mixed-

integer Bilinear Programming (MIBLP) problems. We demonstrate the superiority of 

our under- and overestimators as well as corresponding formulations using a variety of 

examples. 

 



 30

Chapter 5 

MODELING PIECEWISE UNDER- AND OVERESTIMATORS FOR 

BILINEAR PROGRAMS VIA MIXED-INTEGER LINEAR PROGRAMMING 

 

5.1. Problem Statement 

Our ultimate goal is to solve the following global optimization problem by employing 

piecewise mixed-integer relaxation. 

 { }Min ( ) subject to ( ) 0 and ( ) 0L U f= ≤ =≤ ≤P g hx x xx x x  

where x ∈ ℜn is a vector of continuous variables with bound vectors xL and xU, f(x) is 

an ℜn → ℜ scalar objective function, and g(x) and h(x) are vectors of ℜn → ℜ scalar 

functions representing the inequality and equality constraints. All functions are twice 

continuously differentiable and involve linear and bilinear terms only. 

 To achieve the above goal, we focus on developing several novel piecewise 

MILP under- and overestimators for the following nonconvex feasible region (S). 

 S = {(x, y, z) | z = xy, x ∈ ℜ, y ∈ ℜ, xL ≤ x ≤ xU, yL ≤ y ≤ yU } 

 

5.2. The Role of Relaxation in Solving Optimization Problem 

Relaxation involves outer-approximating the feasible region of a given problem and 

underestimating (overestimating) the objective function of a minimization 

(maximization) problem. A relaxation does not fully replace the original problem, but 

provides guaranteed bounds on its solutions. In a minimization (maximization) 

problem, the optimal solution of the relaxation problem provides a lower (upper) 

bound on the optimal objective function value of the original problem. Typically, a 

relaxation is achieved by bounding the complicating variables, terms, or functions in 
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the original problem by means of under-, over-, and/or outer-estimating variables, 

terms, or functions. 

 Several forms of relaxation exist in the literature. One form is the discrete-to-

continuous relaxation employed for solving discrete optimization problems, where 

discrete variables are treated as continuous variables. For instance, binary variables in 

a MILP are relaxed to be 0-1 continuous (Nemhauser and Wolsey, 1988). Another 

form is the continuous nonconvex-to-convex relaxation employed for solving 

nonconvex NLP. For example, the bilinear envelope suggested by McCormick (1976) 

and Al-Khayyal and Falk (1983) is widely used to relax bilinear terms in nonconvex 

programs. This relaxation involves replacing every occurrence of S in the original 

program by the following linear (convex) underestimators (Eqs. R1 and R2) and linear 

(concave) overestimators (Eqs. R3 and R4). 

z ≥ xyL + xLy – xLyL (R1) 

z ≥ xyU + xUy – xUyU (R2) 

z ≤ xyL + xUy – xUyL (R3) 

z ≤ xyU + xLy – xLyU (R4) 

Since the resulting relaxation is linear and continuous, it is called as LP relaxation 

(Figure 5.1). 

 

 

Figure 5.1. LP relaxation (McCormick, 1976) [one-level-relaxation] 

for bilinear programs 

 

NLP 

LP 

LP relaxation
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 The quality of a relaxation is the accuracy with which a relaxation approximates 

the original problem and/or its solution. The closer the approximation, the tighter is the 

relaxation. An important consideration in relaxation is the size of the relaxation 

problem. This can be measured in terms of the numbers of variables, constraints, and 

nonzeros involved in the formulation. Typically, a larger problem size is needed to 

achieve a tighter relaxation. While solving MILPs in a branch-and-bound framework, a 

tighter formulation is likely to require fewer nodes, while a smaller formulation is 

likely to require fewer iterations for each node. Therefore, the actual computational 

performance of a formulation is difficult to determine a priori because of the trade-off 

between tightness and size. 

 

5.3. Piecewise Relaxation 

 All the relaxations discussed previously are “continuous” in nature. Because a 

continuous convex relaxation can often be very weak or loose and may be very slow in 

lifting the lower bounds in a global minimization algorithm. As a remedy, several 

recent works (Bergamini et al., 2005; Karuppiah and Grossmann, 2006; Meyer and 

Floudas, 2006) have explored the idea of piecewise MILP relaxation, embedded inside 

a global optimization framework (e.g. outer approximation, spatial branch-and-bound, 

RLT), on several specific problems with promising results. The idea involves defining 

a priori several known partitions of the search space and combining the continuous 

nonconvex-to-convex relaxations of individual partitions into an overall composite 

relaxation. Because this involves convex relaxations of nonconvex functions over 

smaller regions (partitions) of the feasible region, the tightness of the overall discrete 

relaxation is improved as compared to the continuous relaxation over the entire 

feasible region. Each partition has its own distinct continuous nonconvex-to-convex 
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relaxation and only one partition is allowed to be active at any time. Combining these 

individual relaxations in a seamless manner requires switching between different 

partitions and thus discrete decisions. Clearly, such a relaxation is discrete rather than 

continuous in nature and thus can be formulated as a MILP problem. Because solving 

the resulting MILP problem normally requires discrete-to-continuous relaxation, the 

overall framework of piecewise MILP relaxation comprises relaxations at two levels as 

shown in Figure 5.2 (compared with LP relaxation, which only has one level as shown 

in Figure 5.1). The first one, or the first (upper) level relaxation, transforms the 

original problem with partitioned search domain into a MILP. The second one, or the 

second (lower) level relaxation, transforms the MILP into a LP (i.e. RMILP). A 

complex interplay of both relaxations determines the overall efficiency of the entire 

framework. 

 

 

 

Figure 5.2. Hierarchy of the piecewise MILP relaxation 

(two-level-relaxation) for bilinear programs 
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MINLP 

MILP 
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5.4. Disjunctive Programming Models 

The first step, as presented in the literature, in obtaining a piecewise MILP relaxation 

for a bilinear term is to define N partitions (Figure 5.3) of the search space in terms of 

N arbitrary but exhaustive segments of the range [xL, xU]. Let {[a(n), a(n+1)], n = 1, 2, 

…, N} denote these segments, where a(1) = xL, a(N+1) = xU, and d(n) = a(n+1) – a(n) 

> 0 for all n. Thus, the N search space partitions in the 2-D xy space are {[a(n), 

a(n+1)], [yL, yU]} for n = 1, 2, …, N. Clearly, each point in S must have its value of x in 

one of these N segments (or at the boundary of two adjacent segments). Then, using 

the convex envelope (Eqs. 5.R1 - R4) for each partition, an overall piecewise 

relaxation of S can be stated as the following special form (Bergamini et al., 2005) of a 

disjunctive program (Balas, 1979). 

( )
( ) ( )
( 1) ( 1)
( 1) ( 1)
( ) ( )

( ) ( 1)

L L

U U

L L

n U U

L U

W n
z x y a n y a n y
z x y a n y a n y
z x y a n y a n y
z x y a n y a n y
a n x a n
y y y

⎡ ⎤
⎢ ⎥≥ ⋅ + ⋅ − ⋅⎢ ⎥
⎢ ⎥≥ ⋅ + + ⋅ − + ⋅
⎢ ⎥

≤ ⋅ + + ⋅ − + ⋅⎢ ⎥
⎢ ⎥

≤ ⋅ + ⋅ − ⋅⎢ ⎥
⎢ ⎥≤ ≤ +
⎢ ⎥

≤ ≤⎢ ⎥⎣ ⎦

∨  (DP) 

where W(n) is the boolean variable (“true” or “false”) indicating the status of 

disjunction n. The disjunctive logic OR implies that only one disjunction must hold 

(W(n) = “true” for exactly one n). 
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Figure 5.3. Ab initio partitioning of the search domain 

 

 One advantage of disjunctive programming is that it enables a systematic 

transformation of abstract disjunctive logic into a concrete mathematical programming 

model. Raman and Grossmann (1994) showed its usefulness in modeling chemical 

engineering problems. While several systematic methods exist for transforming a 

disjunctive program into a mixed-integer program, the two most common are big-M 

reformulation (Williams, 1985) and convex-hull reformulation (Balas, 1979; Balas, 

1985; Balas, 1988). The pros and cons of these two reformulations are well known 

(Hooker, 2000; Vecchietti et al., 2003). A big-M reformulation is generally smaller in 

size than a convex-hull reformulation, as it does not need additional disaggregated 

variables and constraints. However, its relaxation is typically poorer, as a convex-hull 

reformulation has proven tightness. In contrast, a convex-hull reformulation invariably 

needs additional disaggregated variables and constraints and is typically larger, but is 

at least as tight as big-M reformulation. A rigorous numerical comparison on several 
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models is therefore required to gain the insight into the actual computational 

performance of competitive models. 

5.4.1. Big-M Model 

 For the bilinear terms arising in a generalized pooling problem, Meyer and 

Floudas (2006) used a big-M reformulation for their piecewise MILP relaxation. 

Although their formulation was in the context of a specific problem, its main ideas can 

yield a complete big-M reformulation for DP. Such a complete formulation (BM) for 

an arbitrary S can be stated as follows. 

{1 if ( )  ( 1)( ) 0 otherwise
a n x a nnλ ≤ ≤ +=  n∀  (BM-0) 

1

( ) 1
N

n

nλ
=

=∑  (BM-1)  

[ ]( ) ( ) 1 ( )Lx a n n x nλ λ≥ ⋅ + ⋅ −  n∀  (BM-2a) 

[ ]( 1) ( ) 1 ( )Ux a n n x nλ λ≤ + ⋅ + ⋅ −  n∀  (BM-2b) 

[ ]( ) ( ) 1 ( )L Lz x y a n y y M nλ≥ ⋅ + ⋅ − − ⋅ −  n∀  (BM-3a) 

[ ]( 1) ( ) 1 ( )U Uz x y a n y y M nλ≥ ⋅ + + ⋅ − − ⋅ −  n∀  (BM-3b) 

[ ]( ) ( ) 1 ( )U Uz x y a n y y M nλ≤ ⋅ + ⋅ − + ⋅ −  n∀  (BM-3c) 

( 1) ( ) [1 ( , )]L Lz x y a n y y M i nλ≤ ⋅ + + ⋅ − + ⋅ −  n∀  (BM-3d)  

,L U L Ux x x y y y≤ ≤ ≤ ≤   (BM-4) 

Note that Meyer and Floudas (2006) did not explicitly present the equivalents of Eq. 

BM-3b to BM-3d for their specific generalized pooling problem. Note that M is a 

common notation for a sufficiently large number required for Big-M reformulation. 
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5.4.2. Convex-Hull Model 

 For the bilinear terms arising in general and specific (integrated water network) 

process synthesis problems, Bergamini et al. (2005) and Karuppiah and Grossmann 

(2006) proposed a convex-hull reformulation. Their formulation is meant for arbitrary 

segment lengths [any possible arrangements of d(n)]; hence, it is suitable for both 

identical [the space between the bounds of the partitioned variables is divided into 

equal intervals i.e. (1) ... ( )d d N= = ] and non-identical segment lengths [i.e. the space 

between the bounds of the partitioned variable is divided into different intervals i.e. 

(1) ... ( )d d N≠ ≠ ]. However, Karuppiah and Grossmann (2006) mentioned some issues 

with the use of non-identical segment lengths and used identical segment length 

exclusively in their reported examples. Although their formulation was intended for 

specific process synthesis problems, its main steps can be suitably modified for S in 

general. Then, for arbitrary segment lengths, a convex-hull formulation CH for S based 

on their main ideas can be stated as follows. 

 {1 if ( )  ( 1)( ) 0 otherwise
a n x a nnλ ≤ ≤ +=  (CH-0) 

 
1

( ) 1
N

n

nλ
=

=∑  (CH-1)  

 
1

( )
N

n

x u n
=

= ∑  (CH-2a) 

 ( ) ( ) ( ) ( 1) ( )a n n u n a n nλ λ⋅ ≤ ≤ + ⋅  n∀  (CH-2b)  

 
1

( )
N

n

y v n
=

= ∑   (CH-3a)  

 ( ) ( ) ( )L Uy n v n y nλ λ⋅ ≤ ≤ ⋅  n∀  (CH-3b)  

 
1

( ) ( ) ( ) ( ) ( )
N

L L

n

z u n y a n v n a n y nλ
=

⎡ ⎤≥ ⋅ + ⋅ − ⋅ ⋅⎣ ⎦∑   (CH-4a) 
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1

( ) ( 1) ( ) ( 1) ( )
N

U U

n

z u n y a n v n a n y nλ
=

⎡ ⎤≥ ⋅ + + ⋅ − + ⋅ ⋅⎣ ⎦∑  (CH-4b) 

 
1

( ) ( 1) ( ) ( 1) ( )
N

L L

n

z u n y a n v n a n y nλ
=

⎡ ⎤≤ ⋅ + + ⋅ − + ⋅ ⋅⎣ ⎦∑  (CH-4c)  

 
1

( ) ( ) ( ) ( ) ( )
N

U U

n

z u n y a n v n a n y nλ
=

⎡ ⎤≤ ⋅ + ⋅ − ⋅ ⋅⎣ ⎦∑  (CH-4d) 

 ,L U L Ux x x y y y≤ ≤ ≤ ≤   (CH-5) 

 

5.5. Novel Models 

 The previous two formulations (BM and CH) for S will serve as the bases for 

evaluating several novel and superior formulations that we develop next. In contrast to 

the literature, we use a rather intuitive and algebraic approach for our novel 

formulations. The first step towards our several formulations is to model the 

partitioning of x and later, to derive the piecewise bilinear under- and overestimators 

(Figure 5.4). 

 

Figure 5.4.Alternatives in constructing piecewise MILP under- and overestimators for 

bilinear programs 
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Big-M convex 
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length 

arbitrary identical 

construction step 
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Let d(n) = a(n+1) – a(n) for n = 1 to N–1. It is clear that every value of x must 

fall in one of the N partitions. This fact has been modeled in the literature using Eqs. 

CH-0 and CH-1 (or BM-0 and BM-1) as discussed earlier. Using the same binary 

variable, we can express x in two different ways. One is to define a differential variable 

[Δx(n)] for each segment as follows: 

[ ]
1

( ) ( ) ( )
N

n

x a n n x nλ
=

= ⋅ + Δ∑  (1a) 

0 ( ) ( ) ( )x n d n nλ≤ Δ ≤ ⋅  n∀  (1b) 

The other is to aggregate the differential variables [Δx(n)] into a single differential 

variable [Δx = Δx(1) + Δx(2) + … + Δx(N)] as follows. 

[ ]
1

( ) ( )
N

n

x a n n xλ
=

= ⋅ + Δ∑  (2a)  

[ ]
1

0 ( ) ( )
N

n

x d n nλ
=

≤ Δ ≤ ⋅∑  (2b)  

 As far as their eventual performances in a global optimization algorithm are 

concerned, the differences in the above two approaches are significant. On the other 

hand, since Eqs. 2 can be easily derived from Eqs. 1, thus the latter cannot be tighter 

than the former. However, these two represent the same relaxation constructed in 

different variable spaces. The projections of both Eqs. 1 and 2 on the space of original 

variables are equivalent as can be shown easily via Fourier-Motzkin Elimination of 

differential variables. It is indeed critical to give utmost attention to and exploit the 

special structure of the piecewise under- and overestimators to develop a competitive 

formulation/s, because as mentioned earlier, the piecewise MILP relaxations will be 

solved repeatedly in a global optimization algorithm and they typically consume most 

of the time in each iteration. Even slight improvements will affect the overall 
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efficiency of the global optimization algorithm, as any inefficiency in each step will 

propagate and eventually add up over iterations. 

 At this stage, it is useful to contrast our above modeling approaches (Eqs. 1 and 

Eqs. 2) with those (Eqs. BM-2 and CH-2) from the literature. In contrast to Eqs. CH-2, 

Eqs. 1 and 2 use differential variables [Δx(n) and Δx]. While both Eqs. 1 and CH-2 

disaggregate variables, Eqs. 1 disaggregate the differential variable Δx rather than x 

itself as done by Eqs. CH-2. This way, Eqs. 1 use N+1 constraints and Eqs. 2 use only 

3 constraints as compared to 2N+1 for Eqs. CH-2 and 2N for Eqs. BM-2. Furthermore, 

Eqs. 1 use N+1 [x and Δx(n)] and Eqs. 2 use two variables [x and Δx] as compared to 

N+1 [x and u(n)] for Eqs. CH-2 and one (x) for Eqs. BM-2. Bilinear under- and 

overestimators constructed from Eqs. 1 and 2 tend to have fewer nonzeros as compared 

to those constructed from CH-2 and BM-2. This is because the lower bound for each 

differential variable is zero. These are differences in model sizes, which as we see 

later, do affect the quality of relaxation and overall performance significantly. 

 Interestingly, the following binary variable is an equivalent alternative to λ(n) for 

modeling the partitioning of x. 

{1 if ( 1)( ) 0 otherwise
x a nnθ ≥ +=  1 ≤ n ≤ (N–1) (NF-0) 

( ) ( 1)n nθ θ≥ +  1 ≤ n ≤ (N–2) (NF-1) 

 The above variable has been used in several works (Dantzig, 1963; Padberg, 

2000; Oh and Karimi, 2001; Keha et al., 2004) for approximating separable nonlinear 

functions. In particular, Padberg (2000) showed that a piecewise MILP formulation 

based on θ(n) for separable nonlinear functions has the property of total unimodularity, 

which means that the corresponding polytope has more of integral extreme points. This 

improves the quality of such a formulation rendering it locally ideal (Padberg, 2000). 
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Using θ(n), we can express x in two ways. The first is in terms of an incremental 

variable [Δu(n)] in each partition called as local incremental variable. 

1

[ ( ) ( )]
N

L

n

x x d n u n
=

= + ⋅Δ∑  0 ≤ Δu ≤ 1      (3a) 

0 ( ) ( 1) ( 1) ( 2) ... (2) (1) (1) 1u N N u N N u uθ θ θ≤ Δ ≤ − ≤ Δ − ≤ − ≤ ≤ Δ ≤ ≤ Δ ≤  (3b) 

Note that Eqs. 3b make Eq. NF-1 redundant. 

 The second is in terms of one incremental variable [Δx] that is common to all 

partitions called as global incremental variable. 

[ ]
1

1
( ) ( )

N
L

n
x x d n n xθ

−

=

= + ⋅ + Δ∑  (4a)  

[ ]
1

1

0 (1) { ( 1) ( )} ( )
N

n

x d d n d n nθ
−

=

≤ Δ ≤ + + − ⋅∑  (4b) 

Similar to Eqs. 1 and 2, Eqs. 3 require more variables and constraints than Eqs. 

4, thus models based on the former would be larger. On the other hand, since Eqs. 4 

can be easily derived from Eqs. 3, the latter cannot be tighter than the former. 

However, both represent the same relaxation constructed in different variable spaces as 

can be trivially shown via Fourier-Motzkin Elimination of incremental variables. 

 Note that λ(n), θ(n), Δx(n), and Δu(n) are related by, 

(1) 1 (1)λ θ= −  

( 1) ( ) ( 1)n n nλ θ θ+ = − +  n = 1 to N–2 

( ) ( 1)N Nλ θ= −  

1

( ) ( ) ( ) [ ( )] 1
n

n

x n d n u n nλ
′=

⎞⎛ ′Δ = ⋅ Δ + − ⎟⎜
⎝ ⎠

∑  

 Note that we need (N–1) θ(n) variables for modeling the segments in each x-

domain as compared to N λ(n) (Figure 5.5). Furthermore, unlike λ(n), θ(n) does not 

require the typical disjunctive constraint (Eq. CH-0 or BM-0), as none, one, or several 
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θ(n) can be one simultaneously. In this approach, the incremental variable in a given 

partition builds up on the variables in the preceding partitions to represent x as in Eqs. 

3 and 4.  

 

Figure 5.5. Comparison between convex combination (λ) formulation and incremental 

cost (θ) formulation in modeling segments in x-domain 

 

 Our approaches for modeling x defer from the existing literature in one 

significant manner. Instead of invoking the DP reformulation strategies behind CH and 

BM, Eqs. 1-4 employ rather intuitive and algebraic strategies of expressing x explicitly 

in terms of the basic binary variables of piecewise mixed-integer linear relaxation and 

new incremental variables. Using these and some other unique modeling ideas, we 

now develop several novel MILP formulations for the piecewise relaxation of S. We 

allow arbitrary partitions (arbitrary or non-identical segment lengths) first, then we 

assume identical segment lengths. 

 

5.5.1. Big-M Models 

The first group of our models relies on Big-M. First, we take Eqs. 1 and reformulate 

the continuous convex relaxation of S using the big-M constraints presented for BM. 

This gives us NF1, which comprises Eqs. BM-0, BM-1, 1, BM-3, and BM-4. 

x 
θ(N-1) θ(2) θ(1) 

………. 

a(1) a(2) a(3) a(N) a(N+1) a(N-1) 

λ(1) λ(2) λ(3) λ(N-1) λ(N) 
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 A straightforward alternative formulation (NF2) can be obtained by replacing 

Eqs. 1 in NF1 by Eqs. 2. However, note that Δx can be eliminated from Eqs. 2 to 

obtain, 

[ ]
1

( ) ( )
N

n

x a n nλ
=

≥ ⋅∑  (5a)  

[ ]
1

( 1) ( )
N

n

x a n nλ
=

≤ + ⋅∑  (5b)  

Then, using Eqs. 5 in place of Eqs. 2, we get NF2. NF2 comprises Eqs. BM-0, BM-1, 

5, BM-3, and BM-4. 

 The differences (discussed earlier) in Eqs. 1, 5, and BM-2 make NF1 and NF2 

significantly different from BM. NF1 and NF2 use fewer constraints (see Table 6.1) 

than BM. While NF2 and BM use the same variables, NF1 uses N more variables. 

Thus, NF1 and NF2 are smaller in size. Furthermore and more importantly, we show 

later that both NF1 and NF2 are as tight as or tighter than BM for the same value of M. 

As stated earlier, NF2 uses far fewer variables and constraints, and is smaller than 

NF1. Since smaller size is often an advantage in big-M formulations, NF2 may 

actually outperform NF1. 

 

5.5.2. Convex Combination Models 

While NF1, NF2, and BM used the BM reformulation approach for piecewise 

relaxation, and CH used the CH reformulation approach; we now build on our 

algebraic approach to develop several novel formulations. Our second set of 

formulations is constructed using the convex combination approach (CC), which is 

based on the use of λ (Eq. CH-0) as binary variables and is free of big-M constraints. 

In this sense, CH is also a convex combination formulation. 
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 For our first convex combination formulation (NF3), we use the following 

differential variables. 

[ ]
1

( ) ( ) ( )
N

n

x a n n x nλ
=

= ⋅ + Δ∑  (1a) 

Ly y y= + Δ  Δy ≤ yU – yL  

Substituting the above equations into z = xy, we obtain, 

[ ]
1 1

( ) ( ) ( )
N N

L

n n

z y x a n n y y x nλ
= =

= ⋅ + ⋅ ⋅Δ + Δ ⋅ Δ∑ ∑  (6) 

The second term in the above involves products of binary and continuous variables, 

which we linearize exactly by defining Δy(n) = λ(n)·Δy and using, 

∑
=

Δ+=
N

n
L nyyy

1
)(  (7a) 

0 ( ) ( ) ( )U Ly n y y nλ≤ Δ ≤ − ⋅  n∀  (7b) 

Using the above and Eq. CH-1, we simplify Eq. 6 to obtain, 

[ ]
1 1 1

( ) ( ) ( ) ( )
N N N

L

n n n

z y x a n y n x n y n
= = =

⎞ ⎞⎛ ⎛
= ⋅ + ⋅Δ + Δ ⋅ Δ⎟ ⎟⎜ ⎜

⎝ ⎝⎠ ⎠
∑ ∑ ∑  (8a) 

[ ]
1 1

( ) ( ) ( ) ( )
N N

L

n n

z y x a n y n x n y n
= =

= ⋅ + ⋅Δ + Δ ⋅Δ∑ ∑  (8b) 

Note that we have successfully converted the original BLP represented by S into a 

MIBLP represented by Eqs. CH-0, CH-1, CH-5, 1 or 2, 7, and 8. However, more 

importantly, we have expressed S in terms of one or more bilinear products of 

differential variables instead of one bilinear product (x·y) of original variables. Now, to 

convert this MIBLP into a MILP, we relax the bilinear terms in Eq. 8 using Eqs. R1 to 

R4. However, we have several options in this regard. We can relax any one of 

Δx(n)·Δy(n), Δx·Δy, Δx(n)·Δy, and Δx·Δy(n). Furthermore, while we must use Δy(n), 

we can use either Δx(n) or Δx as variables. Thus, we have eight possible options as 
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follows. Of these, the relaxations of ( ) ( )z n x n yΔ = Δ ⋅Δ  and ( ) ( ) ( )z n x n y nΔ = Δ ⋅Δ  

using Δx are not possible and the following six remain.  

1. Use Δx(n) as the variable and relax ( ) ( ) ( )z n x n y nΔ = Δ ⋅Δ . 

2. Use Δx(n) as the variable and relax ( ) ( )z n x n yΔ = Δ ⋅Δ . 

3. Use Δx(n) as the variable and relax ( ) ( )z n x y nΔ = Δ ⋅Δ . 

4. Use Δx(n) as the variable and relax z x yΔ = Δ ⋅Δ . 

5. Use Δx as the variable and relax z x yΔ = Δ ⋅Δ . 

6. Use Δx as the variable and relax ( ) ( )z n x y nΔ = Δ ⋅Δ . 

Note that Δz(n) ≥ 0 and Δz ≥ 0. Now, to use Eqs. R1 to R4 for the above options, we 

need the bounds of Δx(n), Δy(n), Δx, and Δy. Because the lower bounds for all are 

zero, Eq. R1 becomes redundant, and Eqs. R2 to R4 simplify as follows. 

z ≥ yUx + xUy – xUyU  (9a) 

z ≤  xUy  (9b) 

z ≤ yUx  (9c) 

This is also one significant difference between our approach and those in the literature. 

By transforming the lower bounds of all variables involved in the construction of the 

under- and overestimators for the bilinear term to zero, we reduce the size of the 

piecewise MILP relaxation problem in terms of both constraints and nonzeros. 

 From Eqs. 1b, 2b, and 7b, we identify the upper bounds of Δx(n), Δy(n), Δx, and 

Δy as Δa(n)·λ(n), (yU–yL)·λ(n), [ ]
1

( ) ( )
N

n

a n nλ
=

Δ ⋅∑ , and (yU–yL) respectively. Using them, 

we now relax ( ) ( ) ( )z n x n y nΔ = Δ ⋅Δ . Substituting Δz(n) for z, Δx(n) for x, Δy(n) for y, 

Δa(n)·λ(n) for xU, and (yU–yL)·λ(n) for yU in Eq. 10 and simplifying, we obtain our next 

formulation (NF3). NF3 comprises Eqs. CH-0, CH-1, CH-5, 1, 7, NF3-1, and NF3-2. 
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[ ]
1 1

( ) ( ) ( )
N N

L

n n

z y x a n y n z n
= =

= ⋅ + ⋅Δ + Δ∑ ∑  n∀   (NF3-1) 

( ) ( ) ( )U Lz n y y x nΔ ≤ − ⋅Δ  n∀   (NF3-2a) 

( ) ( ) ( )z n d n y nΔ ≤ ⋅Δ  n∀   (NF3-2b) 

( ) ( ) [ ( ) ( ) ( )] ( ) ( )U Lz n y y x n d n n d n y nλΔ ≥ − ⋅ Δ − ⋅ + ⋅Δ  n∀   (NF3-2c) 

NF3 is a novel formulation. In contrast to CH, NF3 relaxes the bilinear product 

[Δx(n)·Δy(n)] of differential and disaggregated variables rather than (x·y) itself as in 

CH. This may make NF3 as tight as or tighter than CH. 

Interestingly, the relaxations of ( ) ( )z n x n yΔ = Δ ⋅Δ  and ( ) ( )z n x y nΔ = Δ ⋅Δ  using 

Δx(n) and Δy(n) as variables also lead to NF3, making the first three options listed 

earlier for relaxation identical. For option 4, i.e. the relaxation of z x yΔ = Δ ⋅Δ  using 

Δx(n) as the variable, we get Eqs. CH-0, CH-1, CH-5, 1, 7, NF4-1, and NF4-2 as an 

alternate formulation (NF4). 

[ ]
1

( ) ( )
N

L

n

z y x a n y n z
=

= ⋅ + ⋅Δ + Δ∑  (NF4-1) 

1

( ) ( )
N

U L

n

z y y x n
=

Δ ≤ − ⋅ Δ∑  (NF4-2a) 

1

( ) ( )
N

n

z d n y n
=

Δ ≤ ⋅Δ∑  (NF4-2b) 

1

1 1

( ) [ ( 1) ( )] [ ( ) ( )]
N N

U L

n n

z y y x a n n d n y nλ
−

= =

⎡ ⎤
Δ ≥ − ⋅ − + ⋅ + ⋅Δ⎢ ⎥⎣ ⎦

∑ ∑  (NF4-2c) 

However, note that using Δx as a variable instead of Δx(n) can simplify the above 

considerably. Furthermore, this is exactly what option 5 gives us too. Thus, options 4 

and 5 both give us NF4, which comprises Eqs. CH-0, CH-1, CH-5, 2, 7, NF4-1, NF4-

2b, NF4-2c, and NF4-3. 

( )U Lz y y xΔ ≤ − ⋅Δ  (NF4-3) 
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 For the last option of relaxation, namely using Δx as the variable to relax Δz(n) = 

Δx·Δy(n), we find that the model is nonlinear, unless we use Δx(n) as a variable. And, 

if we do use Δx(n), then it just leads to an earlier model. Thus, we have exhausted all 

the options of relaxation. 

 Note that applying the Theorem of Balas (1985) to (DP), another formulation 

called as TCH, which cannot be looser than CH, can be constructed. TCH comprises 

of Eq. (CH-0) - (CH-3) and (TCH-1) - (TCH-2). Later, we discuss the connection 

between CH and TCH. Obviously, TCH belongs to the class of convex combination 

formulations. 

1

( )
N

n

z w n
=

=∑  (TCH-1) 

( ) ( ) ( ) [ ( ) ( )]L Lw n u n y a n v n y nλ≥ ⋅ + ⋅ − ⋅  n∀  (TCH-2a) 

( ) ( ) ( 1) [ ( ) ( )]U Uw n u n y a n v n y nλ≥ ⋅ + + ⋅ − ⋅  n∀  (TCH-2b) 

( ) ( ) ( 1) [ ( ) ( )]L Lw n u n y a n v n y nλ≤ ⋅ + + ⋅ − ⋅  n∀   (TCH-2c) 

( ) ( ) ( ) [ ( ) ( )]U Uw n u n y a n v n y nλ≤ ⋅ + ⋅ − ⋅  n∀   (TCH-2d) 

In Appendix, we show that all fomulations that belong to the class of convex 

combination have equivalent discrete-to-continuous tightness. We also show that their 

2nd level relaxations have a direct relationship with the bilinear envelope. However, in 

terms of model size, NF4 is clearly more attractive than NF3, CH, and TCH. 

5.5.3. Incremental Cost Models 

Our third approach employs the use of θ (Eq. NF-0) as binary variables and is called as 

incremental cost approach (IC) due to its incremental nature as described previously. 

First, we use the differential variable in Eq. 3a. 

1

[ ( ) ( )]
N

L

n

x x d n u n
=

= + ⋅Δ∑  0 ≤ Δu(n) ≤ 1 (3a) 



 48

Multiplying by y and defining Δw(n) = Δu(n)·Δy give us, 

1

( ) ( ) ( )
N

L L L

n

z x y y x x d n w n
=

= ⋅ + ⋅ − + ⋅Δ∑   (NF5-1)  

From Eq. 3b, we identify the bounds of [θ(1), 1] for Δu(1), [θ(n), θ(n–1)] for Δu(n) 

from n=2 to n=N–1, and [0, θ(N–1)] for Δu(N). Using these and the bounds of [0, yU–

yL] for Δy in Eqs. R1-R4, and defining Δv(n) = θ(n)·Δy for n<N, we obtain, 

( ) ( )w n v nΔ ≥ Δ  n∀ <N (NF5-2a) 

(1) ( ) (1)U L Uw y y u y yΔ ≥ − ⋅Δ + −   (NF5-2b) 

( ) ( ) [ ( ) ( 1)] ( 1)U Lw n y y u n n v nθΔ ≥ − ⋅ Δ − − + Δ −  n∀ >1 (NF5-2c) 

(1) Lw y yΔ ≤ −   (NF5-2d) 

( ) ( 1)w n v nΔ ≤ Δ −  n∀ >1 (NF5-2e) 

( ) ( ) ( )U Lw N y y u NΔ ≤ − ⋅Δ   (NF5-2f) 

( ) ( ) [ ( ) ( )] ( )U Lw n y y u n n v nθΔ ≤ − ⋅ Δ − + Δ  n∀ <N (NF5-2g) 

To linearize the bilinear product Δv(n) = θ(n)·Δy for n<N, we use the bounds of 

[Δu(n+1), Δu(n)] for θ(n) from Eq. 3b and [0, yU–yL] for Δy in Eqs. R1-R4 to obtain 

Eqs. NF5-2a, NF5-2c, NF5-2e, and NF5-2g. Thus, no additional constraints are 

required for linearizing the bilinear product Δv(n). Now, multiplying Eq. 3b by Δy 

gives us, 

0 ( ) ( 1) ( 1) ( 2) ... (2) (1) (1) Lw N v N w N v N w v w y y≤ Δ ≤ Δ − ≤ Δ − ≤ Δ − ≤ ≤ Δ ≤ Δ ≤ Δ ≤ −   

  (3c) 

Interestingly, Eqs. 3c are identical to Eqs. NF5-2a, NF5-2d, and NF5-2e. Thus, our 

new formulation (NF5) comprises Eqs. NF-0, CH-5, 3a-b, NF5-1, and NF5-2. 

 Note that the need for Δv(n) = θ(n)·Δy for n<N in NF5 arose, because we used 

the tightest possible bounds of Δu(n) in terms of θ(n) from Eq. 3b. If we use the looser 

bounds of [0, 1] for Δu(n), then we get the following in place of eq. NF5-2.  
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( ) Lw n y yΔ ≤ −  n∀  (NF6-1a) 

( ) ( ) ( )U Lw n y y u nΔ ≤ − ⋅Δ  n∀  (NF6-1b) 

( ) ( ) ( )U L Uw n y y u n y yΔ ≥ − ⋅Δ + −  n∀  (NF6-1c) 

Thus, our next formulation (NF6) comprises Eqs. NF-0, CH-5, 3a-b, NF5-1, and NF6-

1. In addition, we can use the following from Eq. 3c. 

0 ( ) ( 1) ... (2) (1) Lw N w N w w y y≤ Δ ≤ Δ − ≤ ≤ Δ ≤ Δ ≤ −  (NF6-2) 

Note that Eq. NF6-2 makes Eq. NF6-1a redundant, and NF6-2 is already included 

inside NF5 through Eq. 3c. 

 In contrast to all previous formulations (CH, BM, and NF1 - NF4), NF5 and NF6 

use one fewer binary variable for each bilinear term z and share the advantageous 

property mentioned earlier. Moreover, unlike the convex combination formulations 

presented previously, these incremental cost formulations do not require the 

disaggregation of y. It is clear that NF5 is as tight as or tighter than NF6, but NF6 uses 

fewer variables and constraints. Nevertheless, further study (see Appendix) shows that 

all the projected feasible regions of these formulations in the space of variables {x, y, 

z} are equivalent. 

 For our next formulation, we use the following global incremental variable 

from Eq. 4a, which is common for all partitions. The use of such variable makes NF7 

contains less continuous variables than NF5 and NF6. 

[ ]
1

1
( ) ( )

N
L

n
x x d n n xθ

−

=

= + ⋅ + Δ∑  (4a)  

Using the above and defining Δv(n) = θ(n)·Δy and Δw = Δx·Δy, we obtain, 

1

1

[ ( ) ( )]
N

L L L L

n

z y x x y x y d n v n w
−

=

= ⋅ + ⋅ − ⋅ + ⋅Δ + Δ∑  (NF7-1) 
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For linearizing Δv(n) = θ(n)·Δy, we use the bounds [θ(2), 1] for θ(1), [θ(n+1), θ(n–1)] 

for Δθ(n) with n from 2 to N–1, [0, θ(N–1)] for θ(N), and [0, yU–yL] for Δy in Eqs. R1-

R4 to obtain, 

0 ( 1) ( 2) ... (2) (1) Lv N v N v v y y≤ Δ − ≤ Δ − ≤ ≤ Δ ≤ Δ ≤ −  (NF7-2a) 

(1) ( ) (1)U L Uv y y y yθΔ ≥ − ⋅ + −   (NF7-2b) 

( ) ( ) [ ( ) ( 1)] ( 1)U Lv n y y n n v nθ θΔ ≥ − ⋅ − − + Δ −   2 2n N≤ ≤ −  (NF7-2c) 

( 1) ( 1) U Lv N N y yθ ⎡ ⎤Δ − ≤ − ⋅ −⎣ ⎦   (NF7-2d) 

Finally, to linearize Δw = Δx·Δy, we use the bounds 

[0, [ ]
1

1
(1) { ( 1) ( )} ( )

N

n
d d n d n nθ

−

=

+ + − ⋅∑ ] for Δx and [0, yU–yL] for Δy in Eqs. 9. This gives 

us, 

{ }
1

1

(1) ( ) ( 1) ( ) ( )
N

L

n

w d y y d n d n v n
−

=

⎡ ⎤Δ ≤ ⋅ − + + − ⋅Δ⎣ ⎦∑  (NF7-3a) 

( )U Lw y y xΔ ≤ − ⋅Δ
 (NF7-3b) 

{ } { }
1

1

( ) (1) ( ) ( 1) ( ) ( ) ( ) ( )
N

U L U U L

n

w x y y d y y d n d n v n y y nθ
−

=

⎡ ⎤Δ ≥ Δ ⋅ − + ⋅ − + + − ⋅ Δ − − ⋅⎣ ⎦∑  

 (NF7-3c) 

 NF1-NF7 all allowed arbitrary partitions of x. As mentioned earlier, the 

previous works (Karuppiah and Grossmann, 2006; Meyer and Floudas, 2006) found it 

easier to use identical rather than arbitrary segments. However, they did not fine-tune 

their formulations for the special and simplified case of identical segments. We now 

develop three such formulations and show that such tailoring does indeed lead to a 

more compact formulation, which can have significant effect on computational 

performance. 
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5.5.4. Models with Identical Segment Length 

We use one single segment length (d) for all partitions. Thus, 

d(n) = d = (xU – xL) / N 

dnxna L ⋅−+= )1()(  Nn <∀  (11) 

 One major consequence of using identical segments is that we need not use N 

differential variables [Δx(n)] any more. One single Δx and Eqs. 2 are sufficient without 

compromising tightness. With this, Eqs. 2 reduce to, 

[ ]
1

( 1) ( )
N

L

n

x x d n n xλ
=

= + ⋅ − ⋅ + Δ∑  (12a)  

0 x d≤ Δ ≤  (12b)  

We right away reduce one constraint, as Eq. 12b, in contrast to Eq. 2b, is just a bound. 

Substituting from Eqs. 11 and 12a into Eq. 9b, and relaxing ( ) ( )z n x y nΔ = Δ ⋅Δ  as done 

previously forces us to use Δx(n) again to avoid nonlinearity. In other words, our first 

formulation (NF8) for identical segments is nothing but NF3 simplified for identical 

segments. It comprises Eqs. CH-0, CH-1, CH-5, 12b, 7, NF3-2a, NF8-1, NF8-2, and 

NF8-3. 

[ ]
1

( 1) ( ) ( )
N

L

n

x x d n n x nλ
=

= + ⋅ − ⋅ + Δ∑  (NF8-1)  

[ ]
1 1

( 1) ( ) ( )
N N

L L L L

n n

z y x x y x y d n y n z n
= =

= ⋅ + ⋅ − ⋅ + ⋅ − ⋅Δ + Δ∑ ∑  (NF8-2) 

( ) ( )z n d y nΔ ≤ ⋅Δ  n∀  (NF8-3a) 

( ) ( ) ( ) ( ) ( ) ( )U L U Lz n y y x n d y n d y y nλΔ ≥ − ⋅Δ + ⋅Δ − ⋅ − ⋅  n∀  (NF8-3b) 

 Then, by relaxing x yΔ ⋅Δ  rather than ( )x y nΔ ⋅Δ , we obtain our second 

formulation (NF9) for identical segments. It comprises Eqs. CH-0, CH-1, CH-5, 7, 

NF4-3, NF9-1, and NF9-2. 
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[ ]
1

( 1) ( )
N

L L L L

n

z y x x y x y d n y n z
=

= ⋅ + ⋅ − ⋅ + ⋅ − ⋅Δ + Δ∑  (NF9-1) 

( )Lz d y yΔ ≤ ⋅ −  (NF9-2a) 

( ) ( )U L Uz y y x d y yΔ ≥ − ⋅Δ + ⋅ −  (NF9-2b) 

Note that NF9 uses fewer constraints and variables than NF8, but NF8 should be as 

tight as or tighter than NF9. 

Our third formulation (NF10) for identical segments is obtained from NF7, 

where we can set d(n+1) – d(n) = 0. In this formulation, Eq. 4b reduces to Eq. 12b, 

Eqs. NF7-3 reduce to Eqs. NF4-3 and NF9-2, and Eq. 4a becomes, 

1

1

( )
N

L

n
x x d n xθ

−

=

= + ⋅ + Δ∑  (NF10-1)  

Therefore, NF10 comprises Eqs. 12b, NF-1, NF4-3, NF7-1, NF7-2, NF9-2, and NF10-

1. 

While the relative sizes and tightness of BM, CH, TCH, and NF1-NF10 are clear 

(see Table 6.1), it is difficult to predict the best of them in overall computational 

efficiency. Therefore, it is necessary for us to evaluate them numerically on a variety 

of problems. However, they all possess stronger discrete-to-continuous relaxations as 

compared to BM. 

 

 

 

 

 

 

 

 



 53

Chapter 6 

COMPUTATIONAL AND THEORETICAL STUDIES ON 

PIECEWISE UNDER- AND OVERESTIMATORS FOR BILINEAR 

PROGRAMS 

 

6.1. Case Studies 

We use two case studies from the literature to derive three test problems (Examples 1, 

2a, and 2b) for a comprehensive numerical comparison of the effectiveness of various 

models (BM, CH, TCH, and NF1-NF10). The first case study, from which we derive 

Example 1, is from Karuppiah and Grossmann (2006). It involves integrated water 

network synthesis. The second, from which we derive Examples 2a and 2b, is from 

page 44-46 of Floudas et al. (1999). It involves the sequencing of distillation columns 

for non-sharp separation of a 3-component mixture (propane, isobutene, and n-butane) 

into two products. Since a complete global optimization algorithm is not the focus of 

this paper, we restrict ourselves to the lower-bounding problem at the root node only. 

Thus, our approach in this work is to embed the various models (BM, CH, TCH, and 

NF1-NF10) within the respective mathematical programming formulations used by the 

two case studies in the literature and solve for lower bounds at the root nodes. Since 

the reader can refer the original references for full details on the two test case studies, 

we mention only those details that are different and/or essential for an adequate 

understanding of this work. 

 A fair, well-planned, extensive, and comprehensive procedure is essential 

(Karimi et al., 2004) for a reliable assessment of MILP models based on a numerical 

study. To achieve a solid comparison, we solve the three test problems (Examples 1, 
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2a, and 2b) for several numbers of partitions and several sets of grid-point positions. 

For generating the latter in a convenient manner, we use the following. 

1( ) ( )L U Lna n x x x
N

γ−⎛ ⎞= + ⋅ −⎜ ⎟
⎝ ⎠

 γ ≥ 0, n N∀ <  

( ) Ua N x=  

( )1( ) U Ln nd n x x
N N

γ γ⎡ ⎤−⎛ ⎞ ⎛ ⎞= − ⋅ −⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

 n∀  

As γ → 1, the interior grid points (those except the first a(1) = xL and last points a(N) = 

xU) become equally distributed, and as γ → 0 (∞), they move towards xU (xL). Thus, γ = 

1 corresponds to the case of identical segment lengths. 

 For all runs, we used a Dell Precision PW690 workstation with 3 GHz Intel 

Xeon single CPU, 64 GB RAM, and Windows XP Professional x64 as the operating 

system. GAMS 22.2 / CPLEX 10 was used for all the LP and MILP problems, and 

GAMS 22.2 / CONOPT 3 for all the NLP problems. The relative gap tolerance was set 

to zero in all cases to ensure solution optimality. We used M = (xU – xL)·(yU – yL) in all 

big-M constraints for a bilinear product xy. 

 

6.1.1. Integrated Water Sytems Design Problem 

We use Example 4 from Karuppiah and Grossmann (2006) as the basis for our 

Example 1. For referencing the details in the original case study, we use KG to denote 

Karuppiah and Grossmann (2006). Thus, we call the original case study as Example 

KG-4, and use the same notation for equations, figures, tables, and sections in 

Karuppiah and Grossmann (2006). Example KG-4 is the largest problem in the study 

of Karuppiah and Grossmann (2006), and was represented as having industrial scale by 

them. It involves five process units using water, three water-treatment units, and three 



 55

contaminants. The problem was represented (Fig. KG-18) as a superstructure similar to 

that in Takama et al. (1980). The nodes in the superstructure are mixers, splitters, 

water-using processes, and water-treatment plants, and the arcs are the streams 

connecting the units. The mathematical programming formulation proposed by 

Karuppiah and Grossmann (2006) employs flow and composition variables for each 

stream (arc), and total (Eq. KG-2, KG-4, KG-6, and KG-8) and component mass 

balances (Eq. KG-5, KG-7, and KG-9) for all unit (node). All balances are linear 

except the component mass balances (Eq. KG-3) for mixers, which are bilinear. Tables 

KG-7 and Table KG-8 in section KG-7.4 list all the numerical data for this Example. 

 The problem is a BLP, where nonconvexities are due to the mixing of water 

streams with different compositions. It contains 348 variables, 312 constraints, and 234 

bilinear terms (Table KG-9a). While Example KG-4 included concave univariate terms 

describing the size effect of plant design in the objective function (Eq. KG-1b), we use 

a linear objective function in our study, as such nonconvexities are not the primary 

focus of this study. Thus, our objective in Example 1 is to minimize the total amount 

of fresh water usage and wastewater treated (Eq. KG-1a). This is the only difference 

between Examples KG-4 and Example 1. 

 As for the solution algorithm, we use the non-redundant bound-strengthening 

cuts (Eq. KG-15), the logical cuts (Eq. KG-16), the akin bound-contraction pre-

processing procedure (Step 1 of Section KG-6), and the partitioning of the total flow 

rate variables as done by Karuppiah and Grossmann (2006). 

 For this example, we used N = 2, N = 3, and N = 4 for each of BM, CH, TCH, 

and NF1-NF10 and ten different sets of grid-point positions (γ = 0.25, 0.50, 0.75, 1.00, 

1.50, 2.00, 2.50, 3.00, 3.50, and 4.00) for each N.  
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6.1.2. Non-sharp Distillation Column Sequencing Problem 

The case study from page 44-46 of Floudas et al. (1999) is also a BLP with 

nonconvexities due to the products of flow rates and compositions. It comprises 24 

variables, 18 constraints, and 12 bilinear terms. In this case, we partition along all flow 

rate variables. We use two sets of variable bounds in this case study. In Example 2a, 

we use the variable bounds (upper and lower) reported by Floudas et al. (1999). In 

Example 2b, we contract the upper bounds on all flow rate variables to 180 kgmol/h 

and use a new lower bound of 10 kgmol/h for the flow rate of stream 18. The bounds 

on other variables were kept unchanged. Note that these new bounds still contain the 

global optimum of the original problem as reported. 

 For Examples 2a and 2b, we used N = 10, N = 12, and N = 15 for each of BM, 

CH, TCH, and NF1-NF10 and the same ten sets of grid-point positions (γ = 0.25, 0.50, 

0.75, 1.00, 1.50, 2.00, 2.50, 3.00, 3.50, and 4.00) for each N. We used larger numbers 

of partitions for these examples, because we wanted to examine the effects of large 

numbers of segments. This particular case study made it possible for us to do this, 

because it is much smaller than Example 1. Having larger numbers of segments also 

magnifies the differences in the computational performances of the various models, 

which makes model ranking easier and more reliable. 

 

6.2. Computational Performance Analysis 

For evaluating the computational performance of various models, we use relative 

rather than absolute solution times to eliminate the effect of problem-to-problem 

variation. This enables us to compare several different formulations across a variety of 

test problems with different numbers of segments, grid-point positions, variable 

bounds, and problem structures. As suggested by several researchers (Bixby, 2004; Liu 
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and Karimi, 2007), geometric mean relative rank (GMRR) is a useful measure in this 

regard. As suggested by Liu and Karimi (2007), GMRR can also be used to obtain 

relative model ranks for not just solution times, but also other criteria such as numbers 

of binary variables, continuous variables, constraints, nodes, as well as optimal MILP 

and RMILP values. GMRR(m,c) for a formulation or model m and criterion c is 

defined as: 

*
1

( , )( , )
( )

P
p

p

C m pGMRR m c
C p=

= ∏  

Where, p refers to a test problem, P is the total number of problems, C(m,p) is the 

value of criterion c for problem p, and C*(p) is the best value of criterion c across all 

models used to solve problem p. We use the minimum as the best for criteria such as 

solution times, and numbers of binary variables, continuous variables, and constraints, 

while maximum as the best C*(p) for MILP and RMILP values. We set 4000 CPU s as 

the maximum solution time for each run. If a model fails to attain the global optimal 

solution within 4000 CPU s, then we take its solution time as 8000 CPU s. 

 Table 6.1 clearly shows that formulations differ significantly in computational 

performance. Since the lower-bounding problem is typically the most time-consuming 

step in each iteration and is solved repeatedly, even a slight improvement in the 

computational efficiency of a lower-bounding procedure can significantly affect the 

overall efficiency of a global minimization algorithm (e.g. outer-approximation, spatial 

branch-and-bound). Based on Table 6.1, NF4, NF6 and NF7 seem to be the best 

among the models with arbitrary segment lengths. These three formulations have CPU 

time GMRRs of 1.33, 1.73, and 1.23, respectively, which are significantly better than 

those of the existing formulations from the literature [GMRR(BM, CPU time) = 15.05, 

GMRR(CH, CPU time) = 2.35]. However, NF9 and NF10 offer even better 
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performance although restricted to cases involving only identical segment length 

[GMRR(NF9, CPU time) = 1.21, GMRR(NF10, CPU time) = 1.21]. On the other hand, 

the big-M based formulations (BM, NF1-NF2) are not at all competitive in terms of 

solution efficiency, having CPU time GMRRs of 9.26 to 15.05. TCH [GMRR(TCH, 

CPU time) = 4.34] which theoretically represents the true convex hull 2nd level 

relaxation generally performs better than BM formulations although less competitive 

compared to other formulations. 

 

Table 6.1. Characteristics and GMRRs of various model/performance criteria of 

various models 

Feature or criterion BM NF1 NF2 CH TCH NF3 NF4 NF5 NF6 NF7 NF8 NF9 NF10

model type BM CC IC CC IC 

type of segments Arbitrary Identical 

GMRRs of models for various model / performance criteria 

CPU time (s) 15.05 10.32 9.26 2.35 4.34 2.93 1.33 2.21 1.73 1.23 1.54 1.21 1.21 

Nonzeros 2.11 2.14 1.96 2.15 2.65 2.11 1.41 1.97 1.53 1.62 1.91 1.00 1.27 

constraints 2.49 2.20 1.88 2.20 3.56 2.38 1.05 2.49 2.18 1.65 2.00 1.00 1.60 

binary variables 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.00 1.00 1.00 1.25 1.25 1.00 

continuous variables 1.00 3.22 1.00 5.53 7.81 7.81 4.14 7.28 5.53 3.70 7.81 4.14 3.70 

Nodes 37.28 16.25 22.56 2.40 3.11 2.77 2.25 1.66 1.67 1.23 1.65 1.83 1.49 

MILP objective 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

RMILP objective 0.89 0.90 0.90 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Note: BM = Big-M; CC = Convex Combination; IC = Incremental Cost 
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 All convex combination and incremental cost formulations provide the  same 

lower bound for the 2nd level relaxation; they all have a GMRR(m, RMILP) = 1. In 

other words, their RMILP values are identical to the value for LP relaxation. Further 

study (see Appendix) shows that the 2nd level relaxation of the convex combination 

and incremental cost formulations recovers the convex envelope of the bilinear terms 

in the continuous space of original variables {x, y, z}. This issue is discussed in the 

following section (see Remark and Appendix). Since all these convex combination and 

incremental cost models exhibit similar tightness in the 2nd level relaxation, their size 

plays an important role in the ease of solving them. TCH, NF3, and NF5, do not 

perform better due to their considerably larger sizes, while having similar 2nd level 

relaxation quality as those of smaller models, i.e. NF4, NF6, and NF7 (see Table 1). 

This fact also serves as the incentive towards the use of identical segment length, since 

identical segment length formulations offer smaller size. Conversely, with their worse 

values of GMRR(m, RMILP), the big-M based formulations are significantly looser 

compared to all other formulations, which causes their poor performance. This is 

because the partitioned feasible regions in the piecewise relaxation are disjoint. 

 All incremental cost models use the fewest binary variables [GMRR(m,binary) = 

1 vs. GMRR(m,binary) = 1.25 for others]. The models employing identical segment 

lengths generally use fewer nonzeros compared to their more general counterparts. For 

instance, GMRR(NF9,nonzeros) = 1 as compared to GMRR(NF4,nonzeros) = 1.41. In 

fact, NF9 has the fewest nonzeros of all models. 

 Nevertheless, no single model outperforms all others in all cases. For instance, in 

Example 1 with N = 4 and γ = 4, NF4 takes 151.8 CPU s, while NF7 takes 502.1 CPU 

s, although GMRR analysis ranks NF7 better than NF4 in the CPU time. Several 

external factors, other than model size and relaxation quality, such as the algorithm 
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implemented inside CPLEX are equally important. This makes it even harder to predict 

accurately the performance of a certain formulation. However, as suggested by Liu and 

Karimi49 for batch process scheduling problems, the idea of using competitive models 

or formulations in parallel in multi-CPU machines, may be worth exploring. In this 

parallel lower bounding scheme, several competitive formulations run together in each 

iteration to compute the lower bound for the global minimization problem and once 

one of the formulations finds the optimal 1st level relaxation solution, all other 

formulations are stopped and the global optimization algorithm proceeds to the next 

step. In that sense, it is crucial to develop several competitive models as we have done 

in this work. Specifically for this work, NF4, NF6, and NF7 in tandem seem the best 

choice for arbitrary segment lengths. Moreover, NF9 and NF10 seem the best for 

identical segment lengths. 

 

6.3. Theoretical and Observed Properties 

Although our main aim in this study is to develop and evaluate different formulations 

or models for piecewise MILP relaxation, it is useful to analyze our results further to 

gain some valuable insights into the properties of such relaxations. These insights may 

prove useful in improving existing algorithms or developing novel algorithms, which 

we hope to report in near future. 

 The main goal of piecewise relaxation is to improve the quality of overall 

piecewise MILP relaxation compared to the conventional LP relaxation which uses one 

segment. Therefore, it would be good to measure the improvement in relaxation 

quality by means of some metrics. Recall that the piecewise relaxation involves two 

levels. The 1st level involves the relaxation of a NLP into a MILP, and the 2nd level 

involves the relaxation of the MILP into a RMILP. To measure the extents of 
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improvements in the qualities of these two relaxations solely due to piecewise 

partitioning, we define two gains, namely piecewise gain (PG) and relaxed piecewise 

gain (RPG) for a model m in a global minimization problem as follows. 

( , , , ) ( ) , if ( ) 0
( )( , , , )
( , , , ),otherwise

MILP m p N g LP p LP p
LP pPG m p N g

MILP m p N g

−⎧ ≠⎪= ⎨
⎪
⎩

 

( , , , ) ( ) , if ( ) 0
( )( , , , )
( , , , ),otherwise

RMILP m p N g LP p LP p
LP pRPG m p N g

RMILP m p N g

−⎧ ≠⎪= ⎨
⎪
⎩

  

where, p is a NLP problem solved by model m that uses N segments and set g of grid-

point positions, LP(p) is the optimal objective value of the LP (1-segment) relaxation 

of p, MILP(m,p,N,g) is the optimal objective value of the 1st level relaxation (piecewise 

MILP model m), and RMILP(m,p,N,g) is the optimal objective value of the 2nd level 

relaxation (the RMILP of m). For a global maximization problem, the numerators in 

the definitions of PG and RPG are multiplied by -1. 
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Table 6.2. Piecewise gains (PG) for various N (number of segments) and γ (grid 

positioning) 

Example N
γ =  

0.25 

γ =  

0.50 

γ = 

0.75

γ = 

1.00

γ =  

1.50 

γ = 

2.00

γ =  

2.50 

γ =  

3.00 

γ =  

3.50 

γ = 

4.00

2 0 0 0 0 0 0.021 0.045 0.063 0.075 0.084

3 0 0 0 0 0.05 0.074 0.088 0.097 0.102 0.1041 

4 0 0 0 0.028 0.074 0.093 0.103 0.107 0.108 0.108

10 0 0 0 0 0.219 0.348 0.373 0.307 0.347 0.291

12 0 0 0 0 0.304 0.403 0.406 0.408 0.355 0.3142a 

15 0 0 0 0 0.454 0.492 0.508 0.472 0.485 0.438

10 0 0 0 0 0.188 0.189 0.214 0.18 0.185 0.136

12 0 0 0 0.089 0.246 0.229 0.225 0.207 0.184 0.2462b 

15 0 0 0 0.136 0.262 0.277 0.25 0.246 0.243 0.214
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Table 6.3. Relaxed piecewise gains (RPG) for various N (number of segments) and γ 

(grid positioning) 

Example 1 2b 

γ N BM NF1 NF2 N BM NF1 NF2 

0.25 -0.055 -0.055 -0.055 -0.210 -0.177 -0.177 

0.50 -0.060 -0.060 -0.060 -0.212 -0.191 -0.191 

0.75 -0.064 -0.064 -0.064 -0.214 -0.202 -0.202 

1.00 -0.068 -0.068 -0.068 -0.216 -0.209 -0.209 

1.50 -0.075 -0.075 -0.075 -0.218 -0.216 -0.216 

2.00 -0.082 -0.082 -0.082 -0.219 -0.218 -0.218 

2.50 -0.087 -0.087 -0.087 -0.219 -0.219 -0.219 

3.00 -0.091 -0.091 -0.091 -0.220 -0.220 -0.220 

3.50 -0.094 -0.094 -0.094 -0.220 -0.220 -0.220 

4.00 

2 

-0.097 -0.097 -0.097 

10

-0.220 -0.220 -0.220 

0.25 -0.072 -0.058 -0.058 -0.212 -0.178 -0.178 

0.50 -0.076 -0.065 -0.065 -0.214 -0.193 -0.193 

0.75 -0.080 -0.071 -0.071 -0.215 -0.204 -0.204 

1.00 -0.083 -0.076 -0.076 -0.216 -0.211 -0.211 

1.50 -0.089 -0.085 -0.085 -0.218 -0.217 -0.217 

2.00 -0.094 -0.092 -0.092 -0.219 -0.219 -0.219 

2.50 -0.097 -0.096 -0.096 -0.220 -0.219 -0.219 

3.00 -0.099 -0.098 -0.098 -0.220 -0.220 -0.220 

3.50 -0.100 -0.100 -0.100 -0.220 -0.220 -0.220 

4.00 

3 

-0.101 -0.101 -0.101 

12

-0.220 -0.220 -0.220 

0.25 -0.080 -0.060 -0.060 -0.213 -0.180 -0.180 

0.50 -0.084 -0.068 -0.068 -0.215 -0.195 -0.195 

0.75 -0.087 -0.075 -0.075 -0.216 -0.206 -0.206 

1.00 -0.090 -0.082 -0.082 -0.217 -0.212 -0.212 

1.50 -0.094 -0.091 -0.091 -0.219 -0.218 -0.218 

2.00 -0.097 -0.096 -0.096 -0.219 -0.219 -0.219 

2.50 -0.099 -0.099 -0.099 -0.220 -0.220 -0.220 

3.00 -0.101 -0.100 -0.100 -0.220 -0.220 -0.220 

3.50 -0.101 -0.101 -0.101 -0.220 -0.220 -0.220 

4.00 

4 

-0.102 -0.101 -0.101 

15

-0.220 -0.220 -0.220 

Note: Convex Combination and Incremental Cost Formulations give RPG = 0 for all 

cases tested. 
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PG = 0 and RPG = 0 mean no gains from the piecewise relaxation, with higher values 

being more desirable. Positive value of PG (RPG) indicates that the 1st (2nd) level 

relaxation is stronger than the LP relaxation while negative value of PG (RPG) points 

the other way. Table 6.2 and 6.3 show the values of PG and RPG, from which we draw 

the following observations. 

Remark 1: RPG(m,p,N,g) ≤ 0 irrespective of m, N, and g for every p, as 

RMILP(m,p,N,g) ≤ LP(p) [RMILP(m,p,N,g) ≥ LP(p)] in a global minimization 

(maximization) problem as proven in Theorem 1 of Appendix. 

Remark 2: RPG(m,p,N,g) = 0 for all convex combination and incremental cost type 

models (TCH, CH, NF3-NF10) for all test runs in this work. 

Interestingly, the bounds provided by all convex combination and incremental cost 

formulations in the 2nd level relaxation are the same and they are equivalent with the 

bounds provided by the convex continuous envelope. Even in all the case studies 

performed in this work, the optimal values of all variables obtained by the 2nd level 

relaxation of the convex combination and incremental cost formulations are the same 

with the ones obtained by the LP relaxation. Further study shows that the projections 

of all convex combination and incremental cost formulations into the space of original 

variables {x, y, z} yield the same feasible region as the one represented by the 

continuous convex envelope (see Appendix). This fact explains the result stated in 

Remark 2. 

Remark 3: RPG(m,p,N,g) < 0 for several test runs using the big-M based models (BM, 

NF1, and NF2). 

This is not surprising, as the big-M based models are known to give looser 2nd level 

relaxations than convex-hull reformulations in many problems, and indeed do so 

prominently in this work. Interestingly, big-M formulations can give RPG = 0, even 
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when the variable bounds are very loose as seen in Example 2a. Moreover, RPG for 

BM is identical to those of NF-1 and NF-2 in Example 1 for N = 2 irrespective of grid-

point positioning. This is possible because these three formulations become more 

similar for N = 2 compared to higher values of N. 

Remark 4: RPG(m,p,N,g) varies with N, g, big-M values, and variable bounds for the 

big-M based models (BM, NF1, and NF2). 

This is in contrast to the convex combination and incremental cost models (CH, NF3-

NF10) that have RPG = 1 irrespective of m, N, g, and variable bounds for the problems 

tested in this work. While looser 2nd level relaxations may be expected from big-M 

models, it is interesting to note that their relaxations could be worsened by poor 

choices of N, g, big-M, and variable bounds. 

Remark 5: RPG(NF1,p,N,g) ≥ RPG(BM,p,N,g) and  RPG(NF2,p,N,g) ≥ 

RPG(BM,p,N,g). 

Although all three models (BM, NF1, and NF2) use big-M constraints, the difference 

between BM and the other two is that the latter do not use big-M constraints for 

modeling the partitioning of x. As discussed previously, a MILP piecewise relaxation 

model for S involves two disjunctive modeling, one for partitioning x and the other for 

the bilinear under- and overestimators. While all three models (BM, NF1, and NF2) 

use the same constraints for the bilinear under- and overestimators, BM uses big-M 

type constraints for modeling x partitions with ( ) La n x−  and ( 1)Ux a n− +  as big-M 

values. By modeling x partitions without using the big-M constraints, NF1 and NF2 

achieve better RPG values. 

Remark 6: PG(m,p,N,g) ≥ 0 irrespective of m, N, and g for every p, as MILP(m,p,N,g) 

≥ LP(p) [MILP(m,p,N,g) ≤ LP(m,p)] in a global minimization [maximization] problem 

as proven in Theorem 2 of Appendix. 
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Remark 7: For given p, N, g, and variable bounds, PG(m,p,N,g) is the same for all m, 

but computational efficiency varies. 

This is because all models have the same optimal MILP objective for any given p 

irrespective of N and g. It is important to note that the optimal here refers to a MILP 

solution with zero relative gap. However, big-M based models (BM, NF1, NF2) are far 

slower than the remaining models as discussed before. 

Remark 8: For a given p, PG(m,p,N,g) depends on N, g, and variable bounds. 

Normally PG(m,p,N,g) increases with larger N for given m, p, g, and variable bounds 

as the tightness of the 1st level relaxation improves. However, when the variable 

bounds are loose, as for instance in Example 2a where identical segment length was 

used (γ = 1), increasing N from 10 to 15 has no effect on PG (PG remains at the value 

of 0). Therefore, tight variable bounds are crucial. For instance, consider Example 2b, 

where identical segment length was used with tighter bounds, increasing N from 10 

(PG = 0) to 15 (PG = 0.136) has relatively significant effect on PG. Nevertheless, PG 

may not improve through tighter bounds, despite the fact that the 1st level relaxation 

becomes tighter. This is because the variable bounds change the LP(p) value as well. 

For instance, where N = 10 and γ = 1.50, PG = 0.219 in Example 2a (looser variable 

bounds), while PG = 0.188 in Example 2b (tighter variable bounds). 

 It is expected, and clear from our results, that grid-point positioning affects PG. 

However, more significantly, the use of identical segment length (via special 

formulations such as NF9-NF10) is not necessarily the best for attaining a higher PG, 

even though it seems more efficient for each lower bounding computation. This is 

evident from the results on Examples 1 and 2 in Table 6.2. For instance, examine 

Example 2a for N = 15 and grid points positioned via γ = 2.50 gives a considerably 

higher PG (0.508) as compared to that for identical segment length positioning (PG = 
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0). Thus, note that using identical segments need not be the best overall for a global 

optimization algorithm, because of the tradeoff between PG and the computational 

efficiency for each lower bounding problem. 
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Chapter 7 

CONCLUSIONS 

 

7.1. Optimization of Fuel Gas Network in a Natural Gas Liquefaction Plant 

In this work, we demonstrated that our superstructure and MINLP model for 

fuel gas network are efficient and practically useful. Our approach is able to globally 

optimize the fuel gas network synthesis problem for both operational and retrofit 

purposes. We showed using industrial case study that our methodology can optimize 

the fuel gas network to significantly reduce the FFF consumption. Further reduction of 

FFF consumption was achieved by integrating the available jetty BOG. 

 

7.2. Modeling Piecewise Under- and Overestimators for Bilinear Programs via Mixed-

integer Linear Programming 

In this paper, we presented eleven novel formulations (i.e. TCH and NF1 - NF10) for 

piecewise MILP under- and overestimators for global optimization of bilinear 

programs. These were derived using three systematic approaches: big-M, convex 

combination, and incremental cost, and two segmentation schemes: arbitrary and 

identical segment lengths. These systematic approaches and segmentation schemes can 

also derive the existing formulations. We compared their performance with the 

existing formulations in the literature (i.e. BM and CH) using two case studies arising 

in process network synthesis: integrated water systems synthesis and non-sharp 

distillation column sequencing. Based on several runs with various numbers of 

segments, grid-points positioning, and variable bounds, we demonstrated that our 

novel formulations give superior relaxation tightness as compared to existing BM 

formulations, especially those constructed via convex combination and incremental 
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cost approaches. Some of them are much more compact than those existing in the 

literature, with no loss of relaxation quality. Note that the incremental cost 

formulations require one less binary variable for modeling segments in each x-domain 

as compared to other formulations. Further reduction in formulation size is achieved 

through the use of identical segment length. In general, our novel formulations are 

more efficient than all existing formulations. NF4, NF6, and NF7 in tandem seem the 

most competitive choice for arbitrary segment lengths, while NF9 and NF10 seem the 

best for identical segment length. Parallel use of convex combination and incremental 

cost formulations with compact size seem favorable for practical purpose. On the other 

hand, big-M formulations, with their considerably inferior relaxation quality, seem not 

competitive for piecewise relaxation in this study. 

 

7.3. Computational and Theoretical Studies on Piecewise Under- and Overestimators 

for Bilinear Programs 

Piecewise relaxation involves two levels. The 1st level transforms the original 

nonconvex NLP into a MILP. The 2nd level transforms the MILP into a LP. In this 

work, we introduced PG (piecewise gain) and RPG (relaxed piecewise gain) as metrics 

to measure the effectiveness of piecewise relaxation by comparing the tightness of the 

LP relaxation with those of the 1st and 2nd level relaxations, respectively. Number of 

segments, grid-points positioning, and variable bounds are among the factors that 

affect PG and RPG. The use of identical segment length is not necessarily the best for 

attaining a higher PG while PG does not depend on formulation. All formulations are 

shown and proved to have PG ≥ 0 and RPG ≤ 0 with RPG = 0 is a necessary condition 

for those representing convex hull type relaxation of the 2nd level relaxation. All 

convex combination and incremental cost formulations have RPG = 0.  
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Appendix 

Theoretical Results on Piecewise Under- and Overestimators for 

Bilinear Programs 

Appendix: Theoretical Results 

Let m denotes a piecewise MILP under- and overestimators model for bilinear term xy 

over rectangle ,L U L Ux x x y y y≤ ≤ ≤ ≤ . m is based on partitioning the bilinear 

envelope of the original domain with arbitrary number of segments on x (e.g. BM, CH, 

TCH, and NF1-NF10 presented in this paper). Let p denotes a BLP problem. Let LR(p) 

denotes the feasible region representing the 1-segment LP relaxation [convex envelope 

for bilinear term represented by Eqs. (R-1) - (R-4)] of p in the space of variables {x, y, 

z}. Furthermore, let RMR(m,p) and MR(m,p) respectively denote the projected feasible 

regions of the 2nd and 1st level relaxations of m for p in the same space of variables {x, 

y, z}. 

 

Theorem 1. LP(p) ⊆  RMR(m,p) 

 

Proof: 

 

Let ( , )u x y z≤  and ( , )o x y z≥  denote the continuous linear under- and overestimators 

for the bilinear term xy over rectangle ,L U L Ux x x y y y≤ ≤ ≤ ≤  representing the facets 

of RMR(m,p), respectively. Comparing them to the bilinear envelope (Eqs. (R-1) – (R-

4)), it is clear25 that 

 

( , ) max( , )L L L L U U U Uu x y x y x y x y x y x y x y≤ ⋅ + ⋅ − ⋅ ⋅ + ⋅ − ⋅  
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and 

 

( )( , ) min ,U L U L L U L Uo x y x y x y x y x y x y x y≥ ⋅ + ⋅ − ⋅ ⋅ + ⋅ − ⋅ . 

 

over ,L U L Ux x x y y y≤ ≤ ≤ ≤ . Thus, LP(p) is either contained within RMR(m,p) or 

equivalent to RMR(m,p). 

 

Proposition 1. RMR(CC,p) = LP(p) [Projection of a convex combination model (CC) in 

the space of variables {x, y, z} produces the facet constraints described by Eqs. (R-1) - 

(R-4).] 

 

Proof: 

 

This can be done via Fourier-Motzkin elimination. 

 

Consider model (CH). All u(n), v(1), and λ(1) from Eqs. (CH-4a) and (CH-4c) as well 

as all u(n), v(N) and λ(N) from Eqs. (CH-4b) and (CH-4d) can be eliminated by 

utilizing Eqs. (CH-1), (CH-2a), and (CH-3a). 

  

( ) ( )
2 2

( ) (1) ( ) ( ) (1) ( )
N N

L L L L L

n n
z x y x y x y a n a v n a n a y nλ

= =

⎡ ⎤⎡ ⎤≥ ⋅ + ⋅ − ⋅ + − ⋅Δ − − ⋅ ⋅⎣ ⎦ ⎣ ⎦∑ ∑  (A-1) 

( ) ( )
1 1

1 1
( 1) ( 1 ( ) ( 1) ( 1 ( )

N N
U U U U U

n n
z x y x y x y a n a N v n a n a N y nλ

− −

= =

⎡ ⎤⎡ ⎤≥ ⋅ + ⋅ − ⋅ + + − + ⋅Δ − + − + ⋅ ⋅⎣ ⎦ ⎣ ⎦∑ ∑
 

 (A-2)  
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[ ] ( )
1 1

1 1
( 1) ( 1) ( ) ( 1) ( 1) ( )

N N
L U U L L

n n
z x y x y x y a n a N v n a n a N y nλ

− −

= =

⎡ ⎤≤ ⋅ + ⋅ − ⋅ + + − + ⋅Δ − + − + ⋅ ⋅⎣ ⎦∑ ∑
 

 (A-3) 

( ) ( )
2 2

( ) (1) ( ) ( ) (1) ( )
N N

U L L U U

n n
z x y x y x y a n a v n a n a y nλ

= =

⎡ ⎤⎡ ⎤≤ ⋅ + ⋅ − ⋅ + − ⋅Δ − − ⋅ ⋅⎣ ⎦ ⎣ ⎦∑ ∑  (A-4) 

 

Multiply both sides of ( ) ( )Ly n v nλ⋅ ≤  from Eq. (CH-2b) with ( ) (1)a n a−  and 

( 1) ( 1)a n a N+ − + . 

 

[ ] [ ]( ) (1) ( ) ( ) (1) ( ) 0La n a y n a n a y nλ− ⋅Δ − − ⋅ ⋅ ≥  2n∀ >  (A-5) 

[ ] [ ]( 1) ( 1) ( ) ( 1) ( 1) ( ) 0La n a N v n a n a N y nλ+ − + ⋅Δ − + − + ⋅ ⋅ ≤  1n N∀ < +  (A-6) 

 

Multiply both sides of ( ) ( )Uv n y nλ≤ ⋅  from Eq. (CH-2b) with ( 1) ( 1)a n a N+ − +  and 

( ) (1)a n a− . 

 

[ ] [ ]( 1) ( 1) ( ) ( 1) ( 1) ( ) 0Ua n a N y n a n a N y nλ+ − + ⋅Δ − + − + ⋅ ⋅ ≥  1n N∀ < +  (A-7) 

[ ] [ ]( ) (1) ( ) ( ) (1) ( ) 0Ua n a y n a n a y nλ− ⋅Δ − − ⋅ ⋅ ≤  2n∀ >  (A-8) 

 

The last two terms of Eqs. (A-1) – (A-4) can be eliminated by using Eqs. (A-5), (A-7), 

(A-6), and (A-8), respectively. The final result is equivalent with Eqs. (R-1) – (R-4). 

Since the latter represents the bilinear envelope, it is clear that the remaining facets 

generated via Fourier-Motzkin Elimination are redundant. 
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Consider model (TCH). Consider the following one facet of the piecewise MILP 

under- and overestimators of model (TCH). ( )z NΔ  from Eq. (TCH-2a) can be 

eliminated by utilizing 
1

1
( ) ( )

N

n
z N z z n

−

=

Δ = − Δ∑ from Eq. (TCH-1). 

 

( ) ( ) ( ) ( ) ( ) ( )L Lz n x N y a N y N a N y NλΔ ≥ Δ ⋅ + ⋅Δ − ⋅ ⋅  n N∀ <  (A-9a) 

1

1
( ) ( ) ( ) ( ) ( ) ( )

N
L L

n
z z n x N y a N y N a N y Nλ

−

=

− Δ ≥ Δ ⋅ + ⋅Δ − ⋅ ⋅∑   (A-9b) 

 

It is clear that ( 1)z NΔ − from Eq. (A-9a) can be eliminated by utilizing Eq. (A-9b) 

resulting in 

 

( ) ( ) ( ) ( ) ( ) ( )L Lz n x N y a N y N a N y NλΔ ≥ Δ ⋅ + ⋅Δ − ⋅ ⋅  1n N∀ < −  (A-10a) 

2

1 1
( ) ( ) ( ) ( ) ( ) ( )

N N
L L

n n N
z z n x n y a n y n a n y nλ

−

= = −

− Δ ≥ Δ ⋅ + ⋅Δ − ⋅ ⋅∑ ∑   (A-10b) 

 

Repeating the same steps until the entire remaining ( )z nΔ  are eliminated produces Eq. 

(CH-4a). Using the same steps for the other three facets of (TCH) produces Eqs. (CH-

4b) – (CH-4d). From this point, the next steps follow directly from those of (CH) 

described previously. 

 

Consider (NF3). (NF3) is related to (TCH) via 

 

( ) ( ) ( ) ( )u n a n n x nλ= ⋅ + Δ  n∀  

( ) ( ) ( )Lv n y n y nλ= ⋅ + Δ  n∀  
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( ) ( ) ( ) ( ) ( ) ( ) ( )L Lw n y x n a n y n y a n n z nλ= ⋅Δ + ⋅Δ + ⋅ ⋅ + Δ  n∀  

 

Thus, it is clear that the same result applies for (NF3). It can be easily shown as well 

that the same result also applies for the other Convex Combination models. 

 

Corrolary. LP(p) ⊆  RMR(BM,p) 

 

Proof: 

 

It is clear42 that for a disjunctive program that the discrete-to-continuous relaxation 

quality of a model obtained from convex hull reformulation is tighter than or as tight 

as those of big-M. We already showed that RMR(CC,p) = LP(p) in Proposition 1. 

Since one model of CC can be obtained from convex hull reformulation, it is clear that 

LP(p) ⊆  RMR(BM,p). 

 

Proposition 2. RMR(IC,p) = LP(p) [Projection of an incremental cost model IC in the 

space of variables {x, y, z} produces the facet constraints described by Eqs. (R-1) - (R-

4).] 

 

Proof: 

 

This can be done using Fourier – Motzkin Elimination via similar arguments used in 

the proof of Proposition 1. 
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Remark: Theorem 1 and Proposition 1 - 3 implies that RPG(m,p,N,g) ≤  0, 

RPG(BM,p,N,g) ≤  0 and RPG(CC,p,N,g) = RPG(IC,p,N,g) = 0. 

 

Theorem 2. MR(m,p) ⊆  LP(p) 

 

Proof:  

 

As depicted by (DP), MR(m,p) is defined as the bilinear envelope over partition n* 

which ( *) 1nλ =  for Big-M and Convex Combination models or equivalently 

(1) ... ( *) 1nθ θ= = = , ( * 1) ... ( 1) 0n Nθ θ+ = = − =  for Incremental Cost models. Hence, 

MR(m,p) is defined as the following. 

 

( *) ( *)L Lz x y a n y a n y≥ ⋅ + ⋅ − ⋅       

( * 1) ( * 1)U Uz x y a n y a n y≥ ⋅ + + ⋅ − + ⋅     

( * 1) ( * 1)L Lz x y a n y a n y≤ ⋅ + + ⋅ − + ⋅     

( *) ( *)U Uz x y a n y a n y≤ ⋅ + ⋅ − ⋅       

( *) ( * 1), L Ua n x a n y y y≤ ≤ + ≤ ≤  

 

Since ( )L Ux a n x≤ ≤  for any n and thus ( *)L Ux a n x≤ ≤  and ( * 1)L Ux a n x≤ + ≤ , it is 

clear that 

 

( *) ( *)L L L L L Lx y a n y a n y x y x y x y⋅ + ⋅ − ⋅ ≥ ⋅ + ⋅ − ⋅  

( * 1) ( * 1)U U U U U Ux y a n y a n y x y x y x y⋅ + + ⋅ − + ⋅ ≥ ⋅ + ⋅ − ⋅  

 



 82

and  

 

( * 1) ( * 1)L L L U U Lx y a n y a n y x y x y x y⋅ + + ⋅ − + ⋅ ≤ ⋅ + ⋅ − ⋅  

( *) ( *)U U U L L Ux y a n y a n y x y x y x y⋅ + ⋅ − ⋅ ≤ ⋅ + ⋅ − ⋅  

 

over ( *) ( * 1), L Ua n x a n y y y≤ ≤ + ≤ ≤ . This completes the proof. 

 

Remark: Theorem 2 implies that PG(m,p,N,g) ≥  0, which supports the use of 

piecewise MILP under- and overestimators. 




