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SUMMARY 
 

The purpose of this research work is to develop a novel method to select carrier for 

supported liquid membrane systems to remove cadmium and to investigate the separation 

performance of a novel amphoteric PBI nanofiltration hollow fiber membrane for 

wastewater treatment.  

 

Theoretical prediction of the extraction capabilities for three kinds of carriers (Aliquat 

336, Kelex 100 and LIX 54) for cadmium in supported liquid membrane (SLM) systems 

using the quantum chemical computation method has been carried out in this work. The 

single point energy calculation results show that the energy changes in the complex 

formation process are in the order of Aliquat 336/Cd(II) > Kelex 100/Cd(II) > LIX 

54/Cd(II), with energy changes of -657.79, -329.19 and 96.32 kcal/mol, respectively. 

This prediction has been well verified by SLM flux as a function of carrier concentration 

in the membrane phase with the maximum fluxes of Aliquat 336, Kelex 100, LIX 54 

being 1.12×10-9, 1.5×10-10 and 7.9×10-11 mol/(cm2·s), respectively. This research work 

indicate that quantum chemical computation can be proposed for carrier selection in 

supported liquid membrane (SLM) systems for heavy metal ions removal. Generally, the 

more negative energy change for the carrier/Cd(II) system indicates the more favorable 

process for the formation of the complex and consequently the better the extraction 

capability of the carrier.  FTIR results also agree with the computational prediction quite 

well. Investigation on the influence of stirring rate and strippant on the cadmium flux 

reveals that a stirring rate of 400 rpm and the use of 1 mM EDTA as the strippant 
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constitute the optimal experimental conditions. It was also found that cadmium flux is a 

function of feed concentration at the low concentration stage and the cadmium flux is 

enhanced by appropriate addition of certain anion into the feed. This indicated that in the 

supported liquid membrane systems, heavy metal transmembrane flux can be enhanced 

effectively (with a flux increase by 91% in our case) by adding only small amount of 

anion(s) with less negative free energy of hydration.  

 
The feasibility of the removal of both anions (phosphate, arsenate and borate ions) and 

cations (copper ions) by employing a novel amphoteric polybenzimidazole (PBI) 

nanofiltration (NF) hollow fiber membrane has also been investigated. The membrane 

structure, charge characteristics and ion rejection performance of the fabricated PBI NF 

hollow fiber membrane have been systematically studied. The surface charge 

characterization of PBI membranes indicate that the PBI NF membranes have an 

isoelectric point near pH 7.0 and therefore have different charge signs based on the media 

pH due to the amphoteric structure of imidazole group within PBI molecules. This unique 

charge characteristic makes the PBI membrane a good candidate for the removal of both 

cations and anions, where the PBI membrane exhibits different charge signs at adjustable 

pH. Investigations on the rejection capability of typical anions, e.g. phosphate, arsenate 

and borate ions and typical heavy metal cations, e.g. copper ions, reveal that the PBI NF 

membrane exhibits better rejection performance for various ion removal. Their rejections 

are strongly dependent on the chemical nature of electrolytes, solution pH and the feed 

concentrations. The experimental results are analyzed by using the Speigler-Kedem 

model with the transport parameters of the reflection coefficient (σ) and the solute 
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permeability (P). The PBI NF membrane may have a potential industrial utility in the 

removal of various environmentally-unfriendly species. 
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1. CHAPTER ONE 

INTRODUCTION 

 

1.1 General Background Information 

 

In the 21st century, water resources have been the limiting factor for human development 

due to the growing population and increasing environmental pollution of the existing 

water resources [1]. 

 

The pollution of groundwater, rivers and lakes with contaminants caused large amount of 

wastewater. Wastewater may encompass a wide range of potential contaminants, such as 

toxic species, oxygen demanding wastes, pathogenic agents, organic & inorganic 

chemicals and minerals and sediments [2]. A continuously increasing world population as 

well as higher quality standards and expenses for drinking water make water treatment 

for water reuse an effective way to reduce water consumption. Therefore, wastewater 

treatment is very crucial for a lower water consumption. 

 

1.2 Conventional Wastewater Treatment Processes 

1.2.1 Adsorption 

 

Adsorption is the concentration of a substance at the interface or surface [3]. The 

adsorption at the interface or surface is largely due to binding forces between ions, atom 

and molecules of the adsorbate on the sorbent surface [4]. An ideal adsorbent should have 
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a very strong affinity for the target contaminants, and simultaneously have the ability to 

release the adsorbate from the adsorbent under a different condition so that the adsorbent 

can be regenerated. 

 

Since cost is an important consideration for selection adsorbent materials, natural 

materials, such as biopolymeric sorbent vermiculite and clays which are readily available 

in large quantities, cheap and environmentally-friendly have recently been paid 

increasing attention [5-8]. The commercial adsorbents used for the removal of 

contaminants from wastewater include a variety of gels, activated carbon, silica, activated 

alumina, zeolites, ion exchange resin and other resinous materials [9-13]. For example, 

activated alumina and ion exchange resin have been demonstrated to be effective in 

removing arsenic from water. Several different sorbents such as natural clays 

and biopolymeric sorbent vermiculite have been investigated in terms of decontamination 

of the discharged effluents and concentration of heavy metal ions [5-8]. The adsorption 

methods are confronted with some problems, such as poor selectivity and slow 

regeneration. 

 

1.2.2 Electrocoagulation 

 

In electrocoagulation process, the coagulant is produced by electrolytic oxidation of a 

certain anode material [14] and colloid matters are coagulated and separated with the 

direct current. During the electrocoagulation process, hydrogen gas evolution at cathode 

is accompanied with metal anode’s dissolution. The main advantages of 
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electrocoagulation are simple and can be easily operated. Wastewater treated by 

electrocoagulation produced clear, colorless, and odorless water. Furthermore, flocs 

generated by electrocoagulation can be treated easily and they are de-waterable. Main 

disadvantage of electrocoagulation is that anode electrodes need to be regularly replaced 

due to the dissolution of electrodes with oxidation. Another disadvantage is high 

conductivity of the water suspension is required and high usage of electricity is needed 

during the process [14]. The electrocoagulation process can be used in municipal or 

industrial wastewater treatment plants (WWTP) as well as in water treatment. 

 

1.2.3 Ion Exchange 

 

During the ion exchange process, exchange between counter ion on bead surface and ion 

in the solution with the different electrostatic force is reversibly occurred. In the process, 

cation, such as copper, nickel, cadmium, is exchanged with H+. Also, anion, as chlorides, 

sulfates and chromates is exchanged with OH-. This technology has been mainly used for 

water softening, pharmaceutical purification, production of ultra-pure water for 

semiconductor processes, purification in the food industry, etc. Ion exchange processes 

have also been demonstrated to remove heavy metal ions including copper and cadmium 

from the wastewater effectively [15, 16]. For ion exchange processes, it is difficult to 

develop novel ion exchange resins with highly selective functional groups for greater 

selectivity for the removal of contaminants alone. 
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1.2.4 Solvent Extraction 

 

Solvent extraction is a well known wastewater treatment for its ability to selectively 

separate and concentrate metals [17]. However, the solvent extraction process suffers 

from drawbacks, such as a large amount of solvent consumption, solvent degradation and 

inadequate decontamination efficiency [18].  

 

1.2.5 Precipitation 

 

Precipitation is a conventional process for wastewater treatment. This process offers a 

non-contaminating approach for wastewater treatment since the purposely added 

chemicals into the wastewater are generally precipitated out together with the 

contaminant. 

 

In comparison with aforementioned conventional wastewater treatment processes, 

membrane processes provide a number of advantages including higher standards, the 

potential for mobile treatment units and decreased environmental impact of effluents. 

Membrane processes are competitively efficient in removing particulate and dissolved 

contaminants, including microorganisms and toxic species. 

      

1.3  Pressure Driven Membrane Processes for Wastewater Treatment 
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Pressure-driven membrane processes as a wastewater treatment process have drawn an 

increasing attention. Various processes of pressure driven membrane processes, including 

microfiltration, ultrafiltration, nanofiltration and reverse osmosis can be used to purify a 

dilute solution. During these membrane processes, the solvent and various solute ions 

or/and molecules permeate through the membrane, whereas other particles and molecules 

or ions are retained to some extent dependent on the membrane structures. The pore sizes 

of the membranes become smaller from microfiltration through ultrafiltration and 

nanofiltration to reverse osmosis. Decision of which pressure-driven membrane process 

should be used is dependent on the chemical composition of waste to be removed.  

 

1.3.1 Microfiltration (MF) 

 

Microfiltration (pore sizes between 0.1 and 10µm) is typically used in drinking water 

treatment for the removal of particulate material，inorganic particles and the natural 

organic materials in the range 0.1–2.0µm [19, 20]. Microfiltration may also be act as a 

pre-treatment step before a more retentive membrane process such as nanofiltration (NF) 

or reverse osmosis (RO). 

 

In a conventional microfiltration process "dead-end filtration" during which the feed flow 

to the filter is perpendicular to its surface, is often used. This kind of microfiltration 

suffers from one disadvantage: the particles are retained on the surface of the membrane 

during the microfiltration, resulting in resistance to the permeate flow. In order to address 

this drawback, "crossflow microfiltration" (CFMF) where in the direction of feed flow is 
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made parallel to the surface of the filter has been modified from "dead-end filtration". 

Therefore, the resistance created by the retained particles on the membrane surface is 

reduced, thus resulting in a higher rate of throughput. Treatment of industrial wastewaters 

containing toxic heavy metal ions has been carried out with crossflow microfiltration. 

The performance has also been quantified and the comparison with traditional 

technologies for wastewater treatment has also been carried out [21]. Some of the 

important advantages of using CFMF in water treatment are: 1. Stable and high product 

water quality, 2. Bacterial decontamination without chemical addition. 3. Economical for 

small water supply systems. 4. Ultrapure water for industrial purposes. However, CFMF 

suffers disadvantage such as permeate flux decline with time, resulting from many 

phenomena such as concentration polarization, fouling, deposition, membrane 

compression, gel layer formation, internal clogging, etc. 

 

1.3.2 Ultrafiltration (UF) 

 

Ultrafiltration is a low-pressure membrane process used for fractionation of selected 

components by size, whose nature lies between microfilteration and nanofiltration. The 

pore size of ultrafiltration membranes range from 0.05 µm to 1nm. Ultrafiltration (UF) is 

used to remove a variety of small impurities in the production of natural protein products, 

blood components, recombinant proteins and industrial enzymes [22]. It also provides an 

excellent removal performance of all protozoan cysts of concern and most bacteria. Other 

applications can be found in paper industry, textile industry, metallurgy, leather industry 

and chemical industry [23, 24]. Among pressure-driven membrane technologies, 
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ultrafiltration process possesses special aspects in drinking water processes because of its 

capability of providing quality water at a relatively modest cost of capital and operation 

[25]. Moreover, some successful examples confirm the significance of ultrafiltration 

process, in which the UF process acts as the pretreatment for RO process [26, 27]. 

 

1.3.3 Nanofiltration (NF)  

 

The nature of nanofiltration process lies between those of ultrafiltration and reverse 

osmosis membranes and characterized by pore diameters of the order of nanometers. 

Compared to reverse osmosis membranes, the network of nanofiltration membranes is 

more open, enabling higher fluxes with lower pressures. Therefore, nanofiltration 

systems operate at a lower pressure (about half the pressure required for a reverse 

osmosis system) but retaining the same flux, resulting in lower energy costs and 

investment savings on lower pressure pump and piping. In addition, this kind of 

membrane structure implies that the retention of multivalent ions (Cu2+, Cd2+ and SO4
2-) 

is higher than monovalent ions (Na+ and Cl-) which are rather harmless. Compared to 

ultrafiltration membranes, nanofiltration membranes have a tighter structure and therefore 

have the ability to reject small organic molecules with molecular weights. It permits the 

retention of small molecules in the molecular mass range of 200 to 2000 Da.  

 

Nanofiltration has two interesting features: one is that the MWCOs (molecular weight of 

the solute that is 90% rejected by the membrane) range from 200 to 1000 due to the pore 

diameters ranging from 0.5 nm to 2 nm; another one is that most of NF membranes are 
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either positively-charged or negatively-charged [28]. Therefore, the NF separation 

mechanisms involve both steric-hindrance and electrostatic (Donnan) effects. For the 

separation of uncharged solutes, size effect is the governing factor to determine the solute 

permeation. However, the NF processes to separate the charged ions are mainly 

determined by the electrostatic interaction between the solute species and the charged NF 

membranes. Hence, for the transport of charged solutes, the membrane charge 

characteristics play a significant role. Due to this reason, for wastewater treatment aimed 

at the removal of charged heavy metals, nanofiltration is an increasingly attractive 

process. The performance of the nanofiltration separation process is determined by many 

factors including surface charge characteristics and the type of the nanofiltration 

membrane, feed pH, operating pressure, feed flowrate, temperature, membrane module 

configuration, feed concentration and percentage product recovery [29–35].  

  

1.3.4 Reverse Osmosis 

 

Reverse osmosis is a membrane separation process that use generated pressure to force 

clean water through a membrane and consequently removes dissolved salts and 

contaminants, including chemicals, viruses and bacteria [36-38]. It is commonly used for 

wastewater treatment in the metal plating industry. Spatz [39] developed a novel method 

for recovering gold and rinsing water in an electroplating process with a reverse osmosis 

membrane. Hewitt and Dando [40] developed a reverse osmosis water recycling system 

for the treatment of contaminated water from rinsing baths. Sugita [41] invented a 

process for the recovery of precious metals such as gold with reverse osmosis process. 
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This process utilized a reverse osmosis membrane system to recover the metal salt from a 

wastewater stream. The metal ion was further concentrated with ion exchange columns.  

 

Many other authors have also reported the application of reverse osmosis to reduce TDS, 

hardness, nitrates, cyanides, fluorides, arsenic, heavy metals, salinity, colour and organic 

compounds, e.g., biological oxygen demand (BOD), chemical oxygen demand (COD), 

total organic carbon (TOC), total organic halides (TOX), trihalomethanes (THM), and 

pesticides, besides the elimination of bacteria, viruses, turbidity and TSS from surface 

water, groundwater, and seawater [42-76].  

 

A high flowrate is often used to reduce fouling. The high flowrate combined with higher 

operating pressures results in a higher energy requirement than other types of membranes. 

 

Membrane fouling, a complex phenomenon involving the deposition of organic, 

inorganic and biological material in the form of colloidal suspensions or particulates on 

the membrane surface, is a major problem of reverse osmosis process and it can have 

several negative effects: a decrease in water production because of a gradual decline in 

flux, an increase in applied pressure required for a constant rate of water production, a 

gradual membrane degradation which results in a shorter membrane life, decreased salt 

rejection [77].  

 

1.4 Membrane Process using concentration difference as  driving force for 

Wastewater Treatment---Supported Liquid Membrane (SLM) 
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In SLM, organic extractant, carrier, is imbedded in small pores of a polymer support and 

is kept there by capillary forces. The carrier usually binds selectively with targeted 

species in the feed phase and transports the species into the strip phase. If the organic 

liquid is immiscible with the aqueous feed and strip streams, SLM can be used to separate 

the two aqueous phases. It also contain a diluent which is generally an inert organic 

solvent to adjust viscosity and sometimes also a modifier to avoid so called third phase 

formation. The mechanism of supported liquid membrane is given in Figure 1.1. The 

following separated steps can be distinguished: (1) Dissolving of solute in the liquid 

membrane; (2) Complexation of the solute with the carrier at the feed phase/membrane 

interface; (3) The formed carrier-solute complex diffuses across the membrane; (4) 

Decomplexation of carrier-solute complex at the membrane/ stripping phase interface; (5) 

Release of the solute from the membrane phase in the stripping phase; (6) The carrier 

diffuses back to the feed phase/membrane interface. 

 

Feeding Phase           Liquid membrane with carrier     Stripping Phase 
                                                                

Figure 1.1 The mechanism of supported liquid membrane with mobile carrier 
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From the mechanism of the SLM, we can see that SLM process is somewhat similar to 

the solvent extraction process but with extraction and back-extraction performed in just 

one technological step. And supported liquid membrane extraction targets and removes 

the solute from bulk solutions based on chemical potential rather than by size difference, 

unlike the aforementioned pressure-driven membrane processes.  

 

Supported liquid membranes have received considerable attention due to characteristics 

such as ease of operation, low energy consumption, operation cost, high selectivity and 

rapid extraction capacity factors. Because of these factors, supported liquid membranes 

have been proposed as an alternative to liquid–liquid extraction, chromatography and ion 

exchange for separation and purification [78-80]. From a practical point of view, 

separation membranes find applications in the industrial [81, 82], biomedical, and 

analytical fields as well as in wastewater treatment [83-86].  

 

1.5 Thermally Driven Membrane Process for Wastewater Treatment—Membrane 

Distillation 

 

Membrane distillation is a thermally driven process involving transport of water vapour 

through the pores of hydrophobic membranes due to a transmembrane vapor pressure 

difference driving force provided by temperature and/or concentration differences across 

a membrane. The liquid feed to be treated by MD must be in direct contact with one side 

of the membrane and does not penetrate inside the dry pores of the membranes. In order 

to prevent liquid solutions from entering its pores, the hydrophobic membranes are used 
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in this process [87, 88]. And consequently, only volatile components of the feed may be 

transported through the membrane in the membrane distillation process. 

 

In the process of membrane distillation, the membrane only acts as a barrier to hold the 

liquid/vapor interfaces at the entrance of the membrane pores and it does not necessarily 

possess the ability of selection. The requirements for membrane distillation process are 

that the membrane must not be wetted and only vapor are present within membrane pores. 

To avoid pore wettability, the membrane material must be hydrophobic with high pure 

water contact angle. Normally, hydrophobic membranes are made from polyvinylidene 

fluoride (PVDF), polytetrafluoroethylene (PTFE), polyethylene (PE), polypropylene (PP).  

 

The main advantage of membrane distillation over the traditional distillation process is 

that membrane distillation can work with a large surface area per volume as can be found 

in hollow fiber and capillary modules [89]. 

 

1.6 Research Objectives and Outline of the Thesis 

 

Removal of toxic ions from dilute wastewater effluents through supported liquid 

membrane process has gained particular interest due to the advantages that this 

membrane technology offers many advantages, such as operational simplicity, low 

organic phase inventory, low energy consumption, high selectivity, etc.  
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Cadmium is mainly obtained as a by-product in the metallurgical processing of other 

metals such as copper, zinc and lead. Despite its toxicity, cadmium and its alloys are used 

in various industries such as chemicals, electroplating, electronics and other industries. 

Usually most often cadmium-bearing species enter the water system through industrial 

discharge and the poisoning by the metal or its compounds occurs through inhalation and 

ingestion. Therefore, it is important to removal cadmium and its alloys from liquid 

effluents to maintain a safer environment. 

 

The use of liquid membrane systems for cadmium transport had been reported in the 

literature [92-95], but apparently little comparison of computational study of membrane 

extraction for cadmium (II) in supported liquid membrane (SLM) systems with 

experimental study has been carry out. In this research work, experimental and 

computational studies on transport of cadmium through a supported liquid membrane will 

be investigated in order to further understand fundamental kinetics and mechanistic study 

of cadmium transfer through SLM system. 

 

Nanofiltration as a relatively new pressure-driven membrane process is also a significant 

membrane process for toxic ions removal because NF separation mechanisms involve not 

only steric-hindrance effect but also electrostatic (Donnan) effects, promising NF an 

effective method for charged ions removal. For the separation of uncharged solutes, size 

effect is the governing factor to determine the solute permeation. NF processes to 

separate the charged ions are mainly determined by the electrostatic interaction between 

the solute species and the charged NF membranes. There are a lot of investigations have 
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been done to evaluate the separation performance of cations, e.g. copper, and anions, e.g. 

borate ion, phosphate, arsenate or arsenite using respective NF membranes [94-97]. 

Generally, positively-charged NF membranes are only effective for cations removal, 

whereas negatively-charged NF membranes are only effective for anions removal. There 

is few amphoteric nanofiltration membranes reported which could exhibit different 

charges at different pH ranges, subsequently show efficient separation performance on 

both cations and anions based on the solution pH. Another objective of this work is to 

investigate the charge characteristics of a novel amphoteric polybenzimidazole (PBI) NF 

membrane and explore the potential of PBI NF membranes using as candidate membrane 

for the removal of both cations and anions which are environmentally concerned.  

 

In order to achieve the objectives, the scopes of this work have been drawn as follows: 

1. Fundamentally understand kinetics and mechanistic study of heavy metal transfer 

through SLM system 

2. Investigate the nanofiltration membrane charge properties 

3. Explore the potential of PBI NF membranes using as candidate membrane for the 

removal of both cations and anions 

 

General conclusions drawn from this thesis are summarized in Chapter Five. Inclusive in 

this ending chapter are some recommendations and suggestions for future research. 
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2. CHAPTER TWO 

LITERATURE REVIEW 

 

2.1 Metal Ions Removal by Supported Liquid Membrane 

2.1.1 Introduction 

 

Supported liquid membranes (SLM), which draws inspiration from facilitated transport in 

life science, e.g., oxygen transport through haemoglobin [1], has been used widely for the 

separation of ions [2-3]. In the SLM process, an organic phase containing a carrier 

separates two aqueous phases, one being the feed phase containing the species to be 

transported, say metal ions, and the other being the stripping phase. Liquid membrane is 

the organic phase which is immiscible with both aqueous phases. The carrier molecules 

chosen are those have finite solubility in the organic phase (the liquid membrane phase) 

and are insoluble to some extent in both aqueous phases and have strong affinity for the 

ions or molecules to be transported. The commonly accepted mechanism of the transport 

process in SLM systems is the following: 

 

The species, such as metal ions, are partitioned into the liquid membrane phase in the 

feed phse/membrane interface where they complex with the carrier. This complex travels 

from feed phase/membrane interface to the membrane/stripping phase interface where it 

decomplexes and the metal ions diffuse into the stripping phase. The carrier molecules 

travels back to the membrane/feed phase interface where it again complexes with the 

metal ions, and so on.  
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2.1.2 Modeling of SLM Transport Mechanisms for Metal Ions Removal 
 

The development of theoretical models accounting for the experimental results is 

essential to completely understand SLM transport mechanisms. Theoretical models 

provide explanation of the experimental results but also offer prediction of the behavior 

and performance of a system under different experimental conditions when experimental 

and system parameters are given (concentration of chemical in phases, forward and 

reverse rate constants, the membrane thickness, mass transfer coefficients of the species 

to be transported in the membrane, etc.). Such models have been proposed and applied in 

supported liquid membrane, both in flat sheet and hollow fiber configurations. 

 

A number of models have been proposed for various conditions such as interfacial 

complexation and decomplexation, mass transfer resistances within the membrane and 

different morphology and structures for flat sheet supported liquid membranes and 

hollow fiber supported liquid membrane and active transport, passive transport and 

diffusion have been extensively reviewed [4, 5]. A nonequilibrium approach addressing 

the transport in boundary layers of the aqueous liquid film has also been disscussed [6-8]. 

 

The transport of the metals ion through the supported liquid membrane system is 

considered to be composed of many elementary steps, expressed as follows [9-17]: 

 

(1) Diffusion of metal ions from the bulk feed phase to the aqueous stagnant layer on the 

feed phase side. (2) Complexation reactions between the carrier ligand and metal ions to 

be transported at the feed phase/membrane interface. (3) Transport of the formed 
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complex within the membrane from the feed phase/membrane interface to the stripping 

phase/membrane interface. (4) Release of the metal ion-carrier complex at the stripping 

interface. (5) The released metal ion diffuses from the stripping phase interface to the 

bulk phase across the aqueous diffusional layer. (6) Diffusion of the free carrier back to 

the feed phase/membrane interface. Considering the co- or countertransport of the 

chemical species serving as the driving forces for the transport process, additional steps 

can be included in the reaction mechanism: (7) The co- or counter species diffuse across 

the aqueous diffusional layers. (8) The co-or counter species react with the carrier ligand.    

 

In the description of the transport model, the following assumptions have been made: the 

complexation at the feed phase/membrane and decomplexation at stripping 

phase/membrane interface are fast; the diffusion of ions in both aqueous film layers is 

also fast; and the diffusion of carrier and regenerated carrier between feed 

phase/membrane interface and the stripping phase/membrane interface can be neglected. 

It is also assumed that all the diffusion processes can be determined by Fick’s diffusion 

equations. At the steady state, the metal flux density, NM, across the supported liquid 

membrane for each step is expressed as follows [18, 19]. 

 

1. Diffusion of metal ions from the bulk of feed phase to the aqueous stagnant layer in the 

feed side [18, 19], 

+2 +2 +2 +2
M M f f i,1 f f i,1N =(D / )  ([M ] -[M ]  ) = k  ([M ] -[M ] )     (2.1)    δ  
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Where DM is the diffusion coefficient of metal ion in the feed phase, δ is the film layer 

thickness, and kf is the mass transfer coefficient of aqueous boundary layer at the feed 

phase side.  

 

2. Diffusion of metal ion-carrier complex from the membrane/feed phase interface to the 

stripping phase/membrane interface [18, 19], 

2
M R2M 2 i,1 2 i,2 m 2 i,1 2 i,2N = (D ,b ) ([R M] -[R M] )/l =k ([R M] -[R M] )     (2.2)   ε τ  

 
Where DR2M is the diffusion coefficient of the metal complex in the organic phase, ε is 

the porosity of membrane, τ is the tortuosity of the memrbane and l is the thickness of the 

membrane. 

 

3. Diffusion of metal ion from the stripping phase/membrane interface to the bulk 

stripping phase [18, 19],  

+2 +2 +2 +2
M M s i,2 s s i,2 sN = ( D / )  ([M ] -[M ] ) = k ([M ] -[M ] )    (2.3)δ  

 
ks is the mass transfer coefficient of aqueous boundary layer at the side of stripping phase. 

By rearrangement of Eqs. 2.1-2.3 the transport rate model of metal ion through supported 

liquid membrane can be obtained.  

 

2.1.3 Application of SLM for Heavy Metal Removal   

 

Table 2.1 summarizes the various extraction systems with Flat-Sheet SLM, including the 

removed ion, feed phase, stripping phase and carrier/dilute. From Table 2.1, one can see 
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that (1) SLM systems are effective way for heavy metal removal; (2) in order to obtain an 

effective SLM system, it is crucial to use proper stripping phase and carrier/dilute [20-49]. 

 
Table 2.1 Review of Extraction Systems with Flat-Sheet SLM 

 
 

Ions 
 

Feed 
 

Strip 
 

carrier/diluent 
 

Ca(II) 
 

Cl- 
 

0.001-0.1 M HNO3

 
HDEHP/n-dodecane 

 
Co(II) 

 
SO4

2-

 
H2SO4

 
HEH(EHP)/kerosene 

 
Co(II), Ni(II) 

 
1 M LiNO3, HNO3

 
1 M LiNO3, HNO3

 
HEH(EHP)/kerosene 

 
Co(II), Ni(II) 

 
0.5 M Na2SO4, pH 3-5 

 
0.9 N H2SO4

 
HDEHP/kerosene 

 
Co(II), Ni(II), Cu(II) 

 
NaAC+HAC, pH 5.0 

 
H2SO4, pH 2.3 

 
D2EHPA/kerosene 

 

 
Cs(I) 

 

1 M HNO3, 5.8 M 
LiNO3 + 

1 M HNO3
 

H2O 
 

DB21C7, B21C7, 
tBuB21C7, 

nDecB21C7/n-
hexylbenzene 

 

Cu(II) 0.01 M LiClO4, pH 6.0 
 

NaNO3,  
Na4P2O4 in 0.01 M 

LiOH, 
 

22DD + HDEP/ 
toluene + kerosene 

Cu(II) 
 

1.9 M NaAcO + 0.1 M 
AcOH, pH 6.0 

 

2 M H2SO4
 

HDEHP/dodecane 
 

Cu(II) 
 
 

sulfate, pH= 2.63 
 

0.5-2.0 M H2SO4
 

AcorgaP-50/n-octane, 
mesitylene 

 

 
Cu(II) 

 

1.47 M NH3, pH = 11 
 

1.5 M H2SO4
 

LIX 84/kerosene 
 
 

 
 

Cu(II) 
 

NaAC+HAC, pH 6-7 
 

1 M H2SO4
 

tetradentate 
hydroxamate/CHBr3

 
 
 

Cu(II), Cd(II), Cd(II) 

 
NaAC+HAC 

 
2 wt % HCl 

 
LIX 84/kerosene 

Cd(II) 0-0.8 M LiCl water bathocuproine/dibenzyl 
ether 

Cd(II), Ni(II), 
 
 

I-, NO3
-, Br-, Cl-

 
water 

 

tetradentate 
oxoiminato 

 
 

Cd(II), Cr(VI) 
 

 
Cd2+ : 1 M NaCl 

 

 
water 

 

 
Cd2+ : Alamine 
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Cr(III) 
 

sulfate, pH= 4.2-4.5 
 

water 
 

Cr3+ : DNNSA/o-
xylene, kerosene, n-

heptane, 
kerosene-o-xylene 

 
Ga(III) 

 

synthetic 
Bayer liquor 

 

1.5 M HCl 
 

Kelex100 + Versatic 
10/kerosene 

 
 
 

Ga(III) 
 
 

 
 

various pH values (0.5-
6.0) 

 

 
 

pH 0.5 
 

 
 

ODPHA/kerosene 
 

 
 

Hg(II) 
 

0.001-0.03 M NaNO2, 
pH 1-10 

 

0.001-0.009 M Na2S2O3, 
pH 1-10 

 

18C6, DC18C6, 
DB18C6, 

DA18C6, 15C5, 
DA15C5/CHCl3 

 
Hg(II), Ag(I) 

 

HNO3, HClO4
 

1 M H2SO4, 
 

BTPD/kerosene, 
dodecane 

 
 

Hg(II) 
 

HgCl2
 

DI water 
 

LPB/NPOE 
 

Mn(II) 
 

0.009 M Na2SO4+ 
acetate, pH 2-4.5 

 

9 M H2SO4
 

D2EHPA/kerosene 
 

 
Mo(VI) 

 

0.001-0.1 M HCl, pH 1-
3 
 

0.01-1 M NaOH 
 

TOA/xylene 
 

Mo(VI) 
 

0.001-0.1 M HCl 
 

0.01-1 M NaOH 
 

TOA/xylene 
 

 
Na(I), K(I), Rb(I) 

 

nitrate solution 
 

DI water 
 

DC18C6 + 2-NPOE + 
T2BEP + CTA + MeCl 

 
 

Ni(II) 
 

0.1 M HAC+NaAC 
 

0.1 M HNO3
 

D2EHPA/n-dodecane 
 

 
Au(III), Ir(IV), 

Pd(II), Pt(II), Ru 
 

0.1-5 M HCl 
 

0.1-4 M HNO3
 

TOA/kerosene 
 

Pd(II) 
 
 

0.5 M HCl 
 

0.1-4 M HNO3, 
0.1-3 M HClO4

 

TOA/kerosene 
 

Pd(II) 0.01-3 M HCl 2 M aqueous NH3
 

DETE/toluene 
 

 
Sr(II) 

 

synthetic solution 
 

DI water 
 

DC18C6/various 
 

Se(IV) 
 
 

2.25 × 10-3 M HCl 
 

0.24 M H2O2 in 10-3 HCl 
 

Na(DDTC)/kerosene 
 

Ti(IV) 
 

1-3 M H2SO4
 

0.1-2.5 M NH4F 
 

D2EHPA/CCl4
 

U(VI) H2SO4, pH 2.0  HEDPA CYANEX272/n-
dodecane 
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V(IV) 
 

0.5 M Na2SO4+H2SO4, 
pH 1.3-2.5 

 

pH 0.58-0.94 
 

D2EHPA/kerosene 
 

Y(III), Fe(III) 
 0.01 M H2SO4 1 M H2SO4

 
EHPA/kerosene 

 
 

 
Zn(II) 

 

0.1 M LiCl 
 

DI water 
 

bathocuproine/dibenzyl 
ether 

 
 
 

Zn(II) 
 

HAC+NaAC, pH 4.7 
 

0.1 M HCl 
 

CYANEX 272 
/dodecane 

 

 
 
 
 
2.2 Wastewater Treatment by Nanofiltration  

2.2.1 Mechanism of Nanofiltration Separations 

 

NF separation mechanisms involve both steric-hindrance and electrostatic (Donnan) 

effects. For the separation of uncharged solutes, size effect is the governing factor to 

determine the solute permeation. However, the NF processes to separate the charged ions 

are mainly determined by the electrostatic interaction between the solute species and the 

charged NF membranes. Hence, for the transport of charged solutes, the membrane 

charge characteristics play a significant role. Due to this reason, for wastewater treatment 

aimed at the removal of charged heavy metals, nanofiltration is an increasingly attractive 

process. Since the membrane charge characteristics play a significant role during the 

transport of charged solutes, the investigation of the membrane charge properties is of 

great importance. 

 

 

 32



2.2.2 Applications of Nanofiltration for Water & Wastewater Treatment 

 

The history of nanofiltration (NF) dates back to 30 years ago because reverse osmosis 

membranes use a considerable energy cost and produce very good, or often even too 

good quality water. Due to this reason, nanofiltration membranes with a reasonable water 

flux operating at relatively low pressures were developed. In the past decade, 

nanofiltration process has been extensively investigated for water and wastewater 

treatment and proved to be effective for removal of inorganic matters, inorganic matters, 

organic micropollutants and viruses and bacteria [50-92]. 

 

 

The feasibility of utilizing nanofiltration for like oil/water separation by NF has been 

investigated [93]. The investigation shows that nanofiltration can provide better 

separation than ultrafiltration without sacrificing flux.  

 

Hardness removal is still one of the most important purposes of nanofiltration today. The 

comparison between nanofiltration and lime softening for groundwater treatment has 

been conducted [94]. It shows the product quality is the most important advantage of 

nanofiltration. Product quality of nanofiltration is superior to that of lime softening due to 

the additional removal of color and turbidity. Other advantages of nanofiltration are the 

the smaller land requirements, flexibility, the absence of sludge to dispose. 

 
Actually, the removal of natural organic matter (NOM) is significant for most water 

treatment units and it can be done by nanofiltration effectively. Even though efficiency of 

 33



organics removal was lower than with reverse osmosis membranes, NF membranes still 

possess the capability of removing natural organic matter (NOM) and color [95-98].  

 

The application of nanofiltration for pesticides removal has been investigated by many 

authors [99-104]. The removal efficiencies varied a lot dependent on the nanofiltration 

membranes and the kind of the pesticides to be removed. A more extensive investigation 

on organic micropollutants removal has been conducted by Hofman et al. [103]. In this 

study, comparison of the rejection of four different mixtures of micropollutants with 

ultralow pressure reverse osmosis membranes and with tight nanofiltration membranes 

has been invesigated. 

 

Nanofiltration is also one of the important processes that can be used to meet regulations 

to decrease arsenic concentrations in drinking water [105]. The removal of Arsenic from 

surface water sources and from synthetic freshwater by RO and NF has been investigated 

by Waypa et al. [106]. Both As (III) and As (V) have been effectively rejected by RO and 

tight NF membranes (NF70, Dow/Filmtec) with various operational conditions. 
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3. CHAPTER THREE 

EXPLORASTION OF HEAVY METAL IONS TRANSMEMBRANE 

FLUX ENHANCEMENT ACROSS A SUPPORTED LIQUID 

MEMBRANE BY APPROPRIATE CARRIER SELECTION 

 

3.1 Introduction  

 

The supported liquid membranes (SLM) technique has received considerable attention 

over the past few decades because they offer a lot of advantages over conventional 

separation technologies, such as easy operation, low capital and operating costs, low 

energy consumption, continuous operation, high selectivity, relatively high fluxes, 

combination of extraction, stripping and regeneration processes into a single stage, uphill 

transport against concentration gradients, and small usage of amounts of extractants [1-5]. 

SLM has been demonstrated as an effective tool for the selective separation and recovery 

of resources from dilute solutions, particularly for the removal and recovery of toxic 

metals, e.g. cadmium or copper ions, from waste effluents [6].  

 

Transport of metal species through a supported liquid membrane involves a continuous 

recycle of the following processes: (1) metal complexation with the carrier; (2) the 

complex traveling from the feed/membrane interface to the membrane/stripping interface; 

(3) decomplexation and partition of metal species into the stripping phase; (4) the 

decomplexed carrier traveling back to the membrane/feed interface where it again 

complexes with the metal species [3]. The steps involving the complexation reactions are 
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very crucial. The structure and nature of organic carriers present in the membrane 

probably play a decisive role in determining the effectiveness of the extraction step. 

Therefore, the choice of suitable carriers is vital to obtain a high performance SLM. 

 

In past decades, various carriers for the separation of cadmium, the highly toxic metal ion, 

using SLM systems have been intensively examined for different experimental conditions 

[7-13]. However, to our best knowledge, no work has been done to theoretically predict 

the extraction power of carriers for Cd(II) in SLM systems. In this work, a reliable 

theoretical prediction based on quantum chemical computation has been proposed for the 

carrier selection based on the extraction process in a SLM system for Cd(II) removal, a 

typical and practically important example. The computational work can reduce the 

tedious laboratory experiments significantly and provide guidance when choosing an 

effective carrier for SLM systems.  

 

The quaternary ammonium salts Aliquat 336, hydroxyquinoline Kelex 100 have been 

proven to be effective extractants for Cd(II) and β-diketone LIX54 is also a possible 

extraction candidate for Cd(II) [10, 14, 15, 16]. The quaternary ammonium salts Aliquat 

336, hydroxyquinoline Kelex 100 and β-diketone LIX54 have different functional groups 

for complexation with Cd(II) [10, 14, 15, 16], resulting different extraction mechanisms 

with Cd(II). Therefore, they have been specifically chosen as the carrier candidates for 

Cd (II) removal through the SLM system in this work. Both experimental and 

computational results reveal Aliquat 336 is the best one. Subsequently, the systematic 

studies for Aliquat 336/Cd(II), with respects to the Cd(II) flux as a function of carrier 
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concentration, hydrodynamic conditions, stripping phase compositions, feed 

concentrations and anion additions in the feed were carried out.  

 

3.2 Experimental Section 

 

The quaternary ammonium salts Aliquat 336, hydroxyquinoline Kelex 100, β-diketone 

LIX54 were diluted in kerosene and used as the carriers in the liquid membrane phase. 

Cadmium (II) solutions were used as the feed phases by dissolving CdCl2.H2O in 1M HCl 

or deionized water. Hydrochloric acid, Ammonium acetate and 

ethylenediaminetetraacetic acid (EDTA) were employed as stripping phases in the SLM 

systems. A Whatman® PTFE membrane filter (England) was utilized as a membrane 

support, having a diameter of 4.7 cm and a thickness of 150 µm with ~80% porosity and 

an average pore size of 0.2 µm. The impregnated membrane after being blotted with a 

soft paper sheet to remove the extra oil was then placed in a cell holder of the SLM 

system. The SLM system had two Teflon® chambers holding the feed and strip solutions 

with volume of 37 ml each and the effective membrane surface area was 8.7 cm2. Both 

aqueous phases were mechanically stirred with Teflon® impellers in connection with an 

overhead mixer.  

 

Metal concentrations in the stripping phase were measured by a Perkin Elmer Optima 

3000 ICP-AES (Norwalk, CT). Membrane fluxes were determined by monitoring metal 

concentration in the stripping phase as the function of time based on the following 

equation: 
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sdC VJ
dt S

=                                                         (3.1) 

where V is the volume of the stripping phase; S is the effective surface area of the 

membrane; Cs is the molar concentration of metal in the stripping phase and t is the time 

elapsed.  

 

Carriers and their complexes formed after reaction with 10mM CdCl2 in 1M HCl (for 

Aliquat 336) or 10mM CdCl2 only (for the other two carriers) were analyzed by a Bio-

Red FTS135 FT-IR spectrometer to study the reaction mechanisms of the carriers with 

cadmium species. For readers’ information, CdCl2 in the concentrated HCl solution for 

Aliquat 336 extraction is because Aliquat 336, as an anion exchanger, only extracts 

CdCl4
2-, an effective component in the aqueous solution [16].  

 

In order to investigate the effect of sulfate and nitrate anions on cadmium flux, various 

amounts of sodium sulfate or sodium nitrate were added into the feed phase containing 

cadmium chloride and hydrochloric acid at 10mM and 1M, respectively. The 

concentrations of sulphate and nitrate in the aqueous phase were analyzed by using an ion 

chromatograph (Metrohm Model 702) equipped with a conductivity detector and a 

Hamilton PRP-X 100 anion column was used. It was operated at a flow rate of 2 ml/min 

with an eluent containing 1.7 mM NaHCO3 and 1.8 mM Na2CO3. 

 

3.3 Computational Methodology 
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Calculation and simulation for solving problems in chemical engineering are found to 

give reliable results [17-19], especially quantum chemical computations which are an 

increasingly important tool in chemical science and engineering. They are good 

approaches to theoretically select effective SLM carriers by providing the molecular 

structure-property relations, which is the key to bridge the relation of the carrier 

structures with their extractabilities. It is well known that for the organometallic 

compounds such as the cadmium-carrier complexes, density functional theory 

calculations generally perform well [20]. Therefore, the reaction processes of Cd (II) with 

these three carriers were analyzed with the first-principles density functional theory 

calculations. In the current work, quantum chemical computations were achieved based 

on the following procedure. Firstly, in order to obtain good initial coordinates for density 

functional theory optimization, the geometries of the carriers and cadmium-carrier 

complexes were mechanically minimized with the general Amber force field by using 

AMBER 8 [21]. Secondly, optimizations of the geometries of the carriers and the 

cadmium-carrier complexes were achieved with Becke's three-parameter hybrid 

functional coupled with the Lee-Yang-Parr correlation functional (B3LYP) level of 

theory at 3-21g basis set. The split-valence basis set 3-21g used here means that the inner 

shell orbitals are represented by three Gaussians, and the valence orbitals by two 

Gaussians for the first Slater type orbital (STO) and by one Gaussian for the second STO. 

Thirdly, the single point energies of the fully optimized geometries of the carriers and the 

cadmium-carrier complexes were calculated using B3LYP at the 3-21g basis set. All the 

first-principles density functional theory optimizations were performed with the 

GAUSSIAN 03 program suite [22]. Finally, the energy changes in complex formation 
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processes were calculated by ∆E = Σ E Products – Σ EReactants. The links between the 

quantum computation results and the extraction capabilities of the carriers are as follows: 

generally, the more negative energy change for the carrier/Cd(II) system, the more 

favorable process for the formation of the complex and consequently the better the 

extraction capability of the carrier.  

 

3.4 Results and Discussion  

3.4.1 Quantum Chemical Calculation Results 

 

The optimized Aliquat 336/Cd(II) geometry  (Figure 3.1A) shows the tetrahedral CdCl4
2- 

is surrounded by two NR4
+ species, with the same distances between cadmium and two 

nitrogen atoms. In the Kelex 100/Cd(II) complex (Figure 3.1B), Cd2+ as a magnetic 

nuclear center is surrounded by a trapezoid arrangement of two oxygen ligands and two 

nitrogen ligands, with different distances between Cd-O and Cd-N. From the optimized 

LIX54/Cd(II) geometries (Figure 3.1C), Cd2+ as a center is surrounded by a square planar 

arrangement of four oxygen ligands with all the same distances between cadmium and 

four oxygen atoms.

 

The single point energy calculation results show that the energy changes in the complex 

formation process are in the order of Aliquat 336/Cd(II) > Kelex 100/Cd(II) > LIX 

54/Cd(II), with energy changes of -657.79, -329.19 and 96.32 kcal/mol, respectively. 

The computational results reveal that Aliquat 336 is the best carrier for cadmium 

extraction followed by Kelex 100 and LIX54 is not suitable for Cd(II) extraction. 
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Figure 3.1 Optimized geometries of carrier/Cd (II) complexes. (A) Aliquat 336/Cd (II) 
complex. Energy change: -657.79 kcal/mol; distances of Cd-Cl are 2.55, 2.55, 2.58, 2.61 
Å; distances of Cd-N are 4.98 and 5.11Å. (B) Kelex 100/Cd (II) complex.  Energy 
change:-329.19 kcal/mol; distances of Cd-N are 2.26 and 2.29Å; distances of Cd-O are 
2.16 and 2.15 Å. (C) LIX54/ Cd (II) complex. Energy change: 96.32 kcal/mol; distances 
of Cd-O are all 2.16 Å. 
 

3.4.2 Formation of Cadmium Complexes with Carriers 

 

The active components of Aliquat 336, Kelex 100 and LIX 54 are tri-n-

octylmethylammonium chloride, 7-(4-ethyl-l-methyloctyl)-8-hydroxyquinoline and 1-

phenyl-1, 3-decanedione, respectively. The general reaction mechanisms involving 

Aliquat 336/Cd(II), Kelex 100/Cd2+ and LIX 54/Cd2+ complexes are described in the 

following expressions: 
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Figure 3.2 shows the IR spectra of carriers and their complexes after reaction with 

cadmium (II). The spectrum of the Aliquat 336 agrees with reference [23]. The spectra of 

both Aliquat 336 and Aliquat 336/Cd(II) complex have the strong peaks around 

2970~2860 cm-1, 1150~1092cm-1 and 725cm-1, which are the characteristic peaks of the -

CH3 group, C-N symmetric stretching vibration and -[CH2]n- group, respectively [24, 25]. 

The bands observed at 3500 ~3360cm-1 is assigned to the N-Cl stretching vibration. It 

shifts to the region 3530~3390cm-1 in the case of Aliquat 336/Cd (II) complex, probably 

due to the coordination of quaternary N with Cd2+. Cd-Cl vibrations of the four–

coordinated approximately tetrahedral species CdCl4
2- could not be identified, which 
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surely lie in the spectral range below 400 cm−1 as observed in some other similar 

complexes [26, 27]. 
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Figure 3.2. FTIR spectra of carriers and their complexes with cadmium (II). 

 

For the FTIR spectra of Kelex 100 and Kelex 100/Cd2+, both spectra have peaks at 1628, 

1578 and 1500 cm-1, which are the characteristic peaks of quinoline group [28]. The 

bands observed at 1500 and 1463 cm−1 involve a C-C/C-N stretching and C-H bending 

vibration associated with the pyridyl and phenyl groups. The bands recorded in the IR 

spectra contain absorption bands with peak positions at 1280, 1238 and 1113 cm−1, 

mainly originating from a C-H/C-C-N bending and C-N stretching vibrations [29]. There 

is a strong peak at 3394 cm-1 from O-H stretching vibration of Kelex 100 which shifting 

to 3391 cm-1 due to the coordination of O and N with Cd2+ since the coordination of the 

carrier with cadmium(II) results in the reduction of electron cloud and force constant, 

leading to a red shift of the absorption frequency [30].  
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The spectra of LIX 54 and the loaded organic phases are very similar and exhibit the 

main characteristic vibrational modes of LIX 54. This indicates that the non-extractability 

or low-extractability of LIX54 for cadmium species, agreeing well with the quantum 

chemical computational results. 

 

3.4.3 Influence of the Carrier Concentration on Cadmium Flux  

 

To determine the influence of the carriers’ concentrations on cadmium transport, their 

concentrations from 10 v/v % to 90 v/v % in kerosene were used to impregnate the 

membrane filters. Figure 3.3 clearly shows that the best carrier is Aliquat 336 followed 

by Kelex 100 at the correspondingly same carrier concentrations and LIX 54 is not a 

suitable carrier for cadmium (II). This is exactly in accordance with our computational 

results, i.e. the order of energy changes for carrier/Cd(II) formation processes, indicating 

that the quantum chemical computation method is an effective tool for prediction of the 

carriers’ extractabilities. Theoretically, the more negative energy change, the more 

favorable formation of the complex. In the treatment of industrial effluents, after 

consideration of the general reaction mechanisms involving carrier/heavy metal 

complexes, the energy changes in complex formation processes can be obtained via 

quantum chemical calculations. Carriers with more negative energy change can be 

selected for the specific heavy metal removal in the SLM systems. For example, from our 

calculation LIX54 is not a suitable carrier for cadmium removal from industrial effluents; 
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however, it is a good carrier for copper removal with energy change in LIX54/Cu (II) 

complex formation process at -99.33 kcal/mol [31]. 

 

As also can be seen from Figure 3.3, an increase in the carrier concentration results in an 

increase in the cadmium flux for all systems and flux reaches the maximum at a carrier 

concentration of 50 v/v % for Aliquat 336 and Kelex 100. Further increase in the 

cadmium removal rate is inhibited probably by the reduced cadmium-carrier diffusion 

coefficient in the membrane phase. The lower diffusion coefficient at higher carrier 

concentrations can be attributed to the increasing viscosity of the organic membrane 

phase [32]. In the subsequent systematically experimental studies, 50 v/v % of Aliquat 

336 in kerosene was used as the membrane organic phase. 

0.00E+00
2.00E-10
4.00E-10
6.00E-10
8.00E-10
1.00E-09
1.20E-09

0 20 40 60 80 100

Concentration of Carrier, v/v%

J,
 m

ol
/c

m
2  s

Aliquat 336
Kelex 100
LIX 54

 

Figure 3.3 Influence of carrier concentration on cadmium flux. Source phase: 10mM 
CdCl2 in 1M HCl for Aliquat 336, 10mM CdCl2 for other carriers. Stripping phase: 1mM 
EDTA. Stirring rate: 400rpm. 
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Our investigation on the long-term stability of the SLM systems has shown that up to 250 

hours’ running (the feed solution replaced by fresh one every 24 hours), the flux of Cd(II) 

remains unchanged. This indicates the carrier stays stably in the SLM systems over a 

expanded period of time for Cd(II) removal process. 

3.4.4 Influence of Stripping Phase Composition on the Transport of Cadmium (II)  

 

Since extraction and stripping processes are integral parts of SLM systems, which work 

together for the continuous transport of cadmium (II), it is important to investigate the 

influence of stripping phase composition to obtain an efficient SLM system. A lot of 

strippants have been used for cadmium extraction. However, there has no attention been 

paid to EDTA (ethylenediaminetetraacetic acid). The fluxes for various strippants, 

including 1 mM HCl, 2 M HCl, 1 mM CH3COONH4 and 1 mM EDTA, are 4.00×10-11, 

6.00×10-11, 5.90×10-10 and 1.12×10-9 mol/(cm2·s), respectively. These results show the 

most effective strippant is 1 mM EDTA. The effectiveness of EDTA much higher than 

that of CH3COONH4 can be attributed to its higher stability constant of EDTA-Cd(II) 

complex at 1016.6 than that of CH3COO--Cd(II), 1012.6 [33]. Thus, 1mM EDTA was used 

as the stripping phase throughout the subsequent experiments conducted. 

 

3.4.5 Influence of the Stirring Speed on Cadmium Flux 

 

Stirring in both aqueous phases could provide homogeneous environments and reduce the 

mass transfer resistances in a SLM system. It is important to investigate the influence of 

the stirring rate on the cadmium flux in order to obtain a higher performance of SLM 
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system. This investigation has been studied with feed and strip conditions being 

maintained as: 10 mM Cd (II) in 1M HCl and 1 mM EDTA, respectively. Experiments at 

the same stirring rates for both aqueous phases at 100, 200, 400, 600 and 800 rpm were 

carried out, resulting in fluxes of 4.8×10-10, 8.5×10-10, 1.12×10-9, 1.13×10-9, 1.15×10-9 

mol/(cm2·s), respectively. This shows the flux increase from 100 to 400 rpm, and beyond 

that a virtually constant cadmium flux is obtained, indicating a minimum aqueous 

diffusion layer thickness and the correspondingly minimum resistances in both feed and 

strip unstirring layers are reached at 400rpm. It can be assumed that the resistances of the 

aqueous unstirring layers to the overall mass transfer process to be constant when stirring 

speed is larger than 400 rpm [34]. Thus a stirring rate of 400 rpm was maintained 

throughout the subsequent investigations. 

 

3.4.6 Influence of Feed Cadmium (II) Concentration on Cadmium (II) Transport 

 

The results concerning cadmium (II) flux from the feed phase containing various 

concentrations of cadmium (II) are shown in Figure 3.4. As can be seen from Figure 3.4, 

the cadmium (II) flux increases with feed concentration from 4×10-3 M to 10-2 M and 

then reaches a plateau, in the concentration range of 1.2×10-2 M-1.6×10-2 M. At lower 

feed concentrations, the increase of the cadmium (II) flux indicates that the diffusion of 

cadmium (II) in the stagnant aqueous layers is the rate-controlling step. At higher metal 

concentrations, the carrier on the feed side of the membrane in this case is saturated with 

cadmium and the transport is limited by the diffusion of cadmium-carrier complexes 

through the membrane [35].
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Figure 3.4 Influence of initial concentration of Cd (II) on metal flux. Stripping phase: 
1mM EDTA. Carrier: 50 vol/vol % Aliquat 336. Stirring rate: 400rpm. 
 

3.4.7 Influence of Sulfate and Nitrate on Cadmium Flux 

 

Results from previous sections reveal that the SLM system has the highest performance 

with a cadmium flux of 1.12×10-9 mol/(cm2·s) when the experimental conditions are as 

follows: membrane phase, 50 vol/vol % Aliquat 336 in a PTFE membrane; stripping 

phase, 1mM EDTA; stirring speed, 400rpm; feed phase, 10mM CdCl2 in 1M HCl. In 

order to obtain a possible higher cadmium flux by introducing foreign anion and 

consequently propose a new method for the enhancement of metal ion flux, influence of 

additional anions in the feed solution on the cadmium flux has been studied. 
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To quantitatively determine influence of anion on the cadmium flux, we vary the 

concentration of additional sulfate and nitrate in the feed solution. The results are given 

in Figure 3.5A. 
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Figure 3.5 (A) Influence of concentration of added anion on metal flux. Stripping phase: 
1mM EDTA. Feed solution: 10mM CdCl2 in 1M HCl with various concentrations of salts. 
Carrier: 50 vol/vol % Aliquat 336. Stirring rate: 400rpm. (B) Influence of concentration 
of anions on the extractable CdCl4

2- species and the formed Cd-anion complex.  
 

In order to understand the results in Figure 3.5A, we introduce the following mechanism 

described by Lamb et al. [36]: 

(F F m nmCd nA Cd A )M+ =                                             (3.5) 

( ) (m n M M m n MCd A L Cd A L)+ =                                          (3.6) 

 

where Cd is cadmium cation, A is anion (sulfate, nitrate or chloride), CdmAn is cation-

anion pair, L is Aliquat 336, CdmAnL is cadmium complex associated with anion. 
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Subscripts F and M indicate species in the feed and membrane phase, respectively. Eqns 

3.5 and 3.6 are described by partition coefficient k and the equilibrium constant K, 

respectively.  

 

In Lamb et al.’s work [36], they derived eq (3.7) to describe the Cd(II) transmembrane 

flux: 

2

( )
1

F

F

L
Cd

DkKC CdJ
l kKCd

=
+

                                       (3.7) 

where JCd is the cadmium flux, D is the diffusion coefficient of the complex CdmAnL, l is 

the length of the diffusion path, CdF is the feed cadmium concentration and CL is the 

carrier concentration in the membrane phase. The K is the thermodynamic equilibrium 

constant defined by the concentration of the cadmium-anion-carrier complex in the 

organic membrane phase divided by the product of cadmium-anion concentration and 

carrier concentration in the organic membrane phase. 

 

From Eq. 3.7, we can identify that JCd increases as an increasing K and eventually levels 

off when K becomes very large. At very large K, k·K·CdF>>1 in Eq. 3.7 holds, Jcd is 

independent of K; whereas at low K value and k·K·CdF<<1, Eq. 3.7 reduces to Eq 3. 8  

 

                                      
2

FL
Cd

DkKC CdJ
l

=                                     (3.8) 

 

Partition coefficient k is related to the Gibbs free energy of partitioning between water 

and membrane, ∆Gp, by the equation  
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lnpG RT k                                            (3.9) ∆ = −

 

Thus, eq 3.8 becomes  

exp( / )Cd pJ B G RT= −∆                                       (3.10) 

where B=D·K·CL·CdF
2/l 

 

Furthermore, 

Cd A CdA
p p p pG G G G∆ = ∆ + ∆ + ∆                                           (3.11) 

where ∆Gp
Cd, ∆Gp

A, ∆Gp
CdA represent the free energies for partitioning of the Cd, anion 

and the interaction of the Cd with the anion within the membrane phase, respectively.  

 

And ∆Gp
A can be expressed by the equation 

A A
p g M gG G G→∆ = ∆ −∆ A

W→

T

                                     (3.12) 

where ∆Gg→M
A and ∆Gg→W

A are the free energies of transferring the anion from the gas 

phase to the membrane phase and that of the gas phase to water, respectively.  

Thus eq 3.11 becomes    

Cd A A CdA
p p g M g W pG G G G G→ →∆ = ∆ + ∆ −∆ + ∆                       (3.13) 

 

Combining eqs 3.10 with 3.13, we can get 

ln ( ) /A
Cd g WJ F G R→= + ∆                                         (3.14) 

where F= RTlnB-∆Gp
Cd-∆Gg→M

A-∆Gp
CdA and it can be assumed to be a constant [36].  
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From eq 3.14, it can be seen that Jcd is a function of ∆Gg→W
A. Values of ∆Gg→W

A for 

sulfate, chloride and nitrate are -238.7, -75.8 and -69.5 kcal/mol, respectively [37, 38]. 

This may contribute to the fact that Cd fluxes with nitrate addition in the feed solution are 

always higher than control while the fluxes are always lower when sulfate anions are 

added. It was also reported by He et al. [9] that the cadmium flux was promoted by 

adding I- (∆Gg→W
A at -61.4 kcal/mol) [37, 38] into the Cl- contained feed solution.  

   

As can be seen in Figure 3.5A, when NaNO3 is at lower concentrations, from 0 to 200 

mM, the Cd (II) flux increases gradually from 1.12×10-9 to 2.14×10-9 mol/(cm2·s), i.e. by 

91%. In this case the feed solution becomes a mixture of CdNO3 with CdCl2, which has a 

free energy of hydration between -75.8 and -69.5 kcal/mol, and the free energy of 

hydration of the mixture becomes less negative when the amount of CdNO3 increases 

with more nitrate addition. Therefore cadmium flux increases gradually. Similarly, this is 

the reason for the decrease of cadmium flux at low Na2SO4 concentration stage. However, 

cadmium flux deceases gradually from 2.14×10-9 to 1.13×10-9 mol/(cm2·s) when NaNO3 

concentration increases from 200mM to 1M. The decrease maybe due to the competition 

between NO3
- and CdCl4

2- to react with the carrier in the membrane phase, leading to less 

carrier for CdCl4
2- extraction. This argument can also be supported by the presence of 

12.8 ppm NO3
- in the stripping solution after 5-hour experiment with initial addition of 

1M NaNO3 in the feed. On the other hand, when the concentration of Na2SO4 increases 

from 100mM to 1M, the flux increases due to the fact that the concentration of Cd-sulfate 

complex increases significantly as shown in Figure 3.5B. This leads to an increase in the 

amount of extraction of Cd-sulfate complex based on eq 3.6 and consequently enhances 
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the total flux of Cd(II) in view of only about 10% decrease of CdCl4
2- as the extractable 

form. It is worth noting that, in the case with higher feed sulfate concentrations, Cd(II) 

flux increases but cannot reach as high as that of the control one.  

 

The effect of anion(s) addition into the feed plays an important role on the Cd(II) 

transmembrane flux through SLM system and holds significant implications. From our 

studies, an enhanced Cd(II) flux can be achieved by adding anion(s) with less negative 

free energy of hydration at appropriate concentrations.  

 

3.5 Summary 

 

1. Quantum chemical computation can be proposed for carrier selection in supported 

liquid membrane (SLM) systems for heavy metal ions removal.  The single point energy 

calculation results show that the energy changes in the complex formation process are in 

the order of Aliquat 336/Cd(II) > Kelex 100/Cd(II) > LIX 54/Cd(II), with energy changes 

of -657.79, -329.19 and 96.32 kcal/mol, respectively. Generally, the more negative 

energy change for the carrier/Cd(II) system indicates the more favorable process for the 

formation of the complex and consequently the better the extraction capability of the 

carrier. The computational results of the energy changes for the carrier/Cd(II) system 

show that Aliquat 336 is the best carrier for cadmium extraction followed by Kelex 100 

and LIX54 is not suitable for Cd(II) extraction.  
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2. In the supported liquid membrane systems, heavy metal transmembrane flux can be 

enhanced effectively (with a flux increase by 91% in our case) by adding only small 

amount of anion(s) with less negative free energy of hydration.  

 

3. The optimal conditions in our investigated SLM system for Cd(II) removal are as 

follows: membrane phase, 50 vol/vol % Aliquat 336 in an impregnated PTFE membrane; 

stripping phase, 1mM EDTA; stirring speed, 400rpm. 
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4. CHAPTER FOUR 

 CHARACTERIZATION AND INVESTIGATION OF AMPHOTERIC 

PBI NANOFILTRATION HOLLOW FIBER MEMBRANE FOR THE 

SEPARATION OF PHOSPHATE, BORON, ARSENATE AND COPPER 

IONS

 
 
4.1 Introduction 

 

Toxic species, such as phosphate, arsenate, borate and copper ions are known to have 

adverse effects on human health and a higher than allowed level of these toxic species in 

surface and ground waters has become a major health problem in many countries all 

around the world. The presence of phosphate in the effluent discharged to natural bodies 

has long been known to be responsible for the eutrophication [1]. Phosphate removal can 

be achieved by adsorption, precipitation and electrocoagulation [1-4]. Boron is a typical 

drinking water contaminant affecting the reproductability of living organisms. Boron and 

arsenic can be removed by adsorption, ion exchange, electrocoagulation method and 

precipitation etc [5-8]. For the adsorption process, activated alumina and ion exchange 

resin have been demonstrated to be effective in removing arsenic from water. Arsenate 

sorption occurs best at pH 6.0 ~ 8.0 where activated alumina surfaces are positively 

charged. Arsenite adsorption is strongly pH dependent and it exhibits a high affinity 

towards activated alumina at pH 7.6 [9]. Studies have shown that the ion exchange resin 

strongly adsorbed arsenite from pH 5 to 10 and arsenate from pH 1 to 5 [10]. For the 

precipitation process, four precipitation processes: alum coagulation, iron coagulation, 
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lime softening, and a combination of iron (and manganese) are useful for arsenic removal 

[11]. Concerns on the existence of heavy metal ions, e.g. copper ions, in the aquatic 

environment have also been a subject of importance due to their toxicity. A lot of 

treatment methods have been employed to remove heavy metal ions from the waste, such 

as extraction, sorption and ion exchange [12-15]. Several different sorbents such as 

natural clays, biopolymeric sorbent vermiculite and activated carbon have been 

investigated in terms of decontamination of the discharged effluents and concentration of 

heavy metal ions [16-19]. Ion exchange processes have also been demonstrated to 

remove heavy metal ions including copper from the wastewater effectively [20-21].  

 

However, the limitations of these technologies for these toxic species removal should be 

further considered. For example, the solvent extraction process suffers from drawbacks, 

such as a large amount of solvent consumption, solvent degradation and inadequate 

decontamination efficiency [22]. The adsorption methods are confronted with some 

problems, such as poor selectivity and slow regeneration. For ion exchange processes, it 

is difficult to develop novel ion exchange resins with highly selective functional groups 

for greater selectivity for the removal of contaminants alone.  

 

Membrane separation processes have been determined to be a feasible option for removal 

of toxic species, such as phosphate, arsenate, arsenite, borate and copper ions. Reverse 

osmosis (RO) membranes have been tested for the treatment of wastewater to reduce 

fresh water consumption and environmental degradation [23-25]. However, reverse 

osmosis (RO) still suffers from limitations such as the fouling of membranes, 
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consumption of a large amount of water, slow treatment, high operating pressures and 

low selectivity for the fractionation of monovalent ions. In order to overcome these issues, 

the use of low-pressure membrane processes has been investigated. For instance, the 

membrane distillation through porous membranes [26], the applications of liquid 

membranes [27-29] have been studied, but they also have many drawbacks in terms of 

toxic species removal efficiency, the volume of water consumption and process stability. 

Nanofiltration (NF) of wastewater for toxic species removal has also been carried out 

[30]. However, there has been little study reported on separation of many toxic species by 

using one only kind of NF membrane which not only useful for cations removal but also 

anions removal.  

 

Over the last 15 years, NF as a relatively new pressure-driven membrane process has 

received a lot of attention because NF has a widening range of application for liquid-

phase separations, such as in water treatment, pharmaceutical and biotechnology. 

Nanofiltration membranes perform separation in between those of porous ultrafiltration 

(UF) membranes and non-porous reverse-osmosis (RO) ones. NF has two interesting 

features: one is that the MWCOs (molecular weight of the solute that is 90% rejected by 

the membrane) range from 200 to 1000 due to the pore diameters ranging from 0.5 nm to 

2 nm; another one is that most of NF membranes are either positively-charged or 

negatively-charged [31]. Therefore, the NF separation mechanisms involve both steric-

hindrance and electrostatic (Donnan) effects. For the separation of uncharged solutes, 

size effect is the governing factor to determine the solute permeation. However, the NF 

processes to separate the charged ions are mainly determined by the electrostatic 
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interaction between the solute species and the charged NF membranes. Hence, for the 

transport of charged solutes, the membrane charge characteristics play a significant role. 

Consequently, the investigation of the membrane charge properties is of great importance. 

There are a lot of investigations have been done to evaluate the separation performance of 

cations, e.g. copper, and anions, e.g. borate ion, phosphate, arsenate or arsenite using 

respective NF membranes [32-35]. Generally, positively-charged NF membranes are only 

effective for cations removal, whereas negatively-charged NF membranes are only 

effective for anions removal. There is few amphoteric nanofiltration membranes reported 

which could exhibit different charges at different pH ranges, subsequently show efficient 

separation performance on both cations and anions based on the solution pH. The purpose 

of this work is to investigate the charge characteristics of the amphoteric 

polybenzimidazole (PBI) NF membranes and explore the potential of PBI NF membranes 

using as candidate membrane for the removal of both cations and anions which are 

environmentally concerned. The chemical structure of PBI is shown in Fig.4.1. Moreover, 

the PBI NF membrane in hollow fiber configuration is fabricated because of its many 

advantages over flat sheet membranes [36]. 
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Fig. 4.1. Chemical Structure of polybenzimidazole (PBI) 
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In this particular study, the primary research interests are located in the membrane charge 

characteristics determination based on the rejection of NaCl under different pH. Because 

the separation performance of different valent cations and anions is another important 

characteristic, nanofiltration of different types of salts is also performed, including types 

of 1-1 (NaCl), 1-2(Na2SO4), 2-1 (MgCl2) and 2-2 (MgSO4). Typical toxic anions of 

phosphate, borate ion, arsenite and arsenate and typical toxic cations of copper which 

have suspected teratogenetic properties and are suspect carcinogens [32-35, 37] are major 

concern in the water treatment and therefore separation performance of these toxic ions is 

also investigated. The effects of chemical nature of solutes, concentration of salts and the 

feed pH on the separation performance of the PBI membrane are systematically 

investigated.  

 

4.2. Experimental section 

 

4.2.1 Materials  

 

Various charged solutes were employed to study the transport properties and separation 

performance of the PBI NF membrane. They are NaCl, MgCl2, MgSO4, Na2SO4, 

CuSO4·5H2O, CuCl2, H3BO3, Na3PO4, Na2HPO4, NaH2PO4 and NaH2AsO4·7H2O 

purchased from Aldrich Sigma, Singapore. Properties of these ions are listed in Table 4.1 

[38-42]. NaOH (1.0N), KOH (1.0N) and HCl (1.0N) solutions were used to adjust the pH 

of feed solutions. All chemicals were used as received. Ultrapure water used in all 
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experiments was produced by a Milli-Q unit (MilliPore, USA) with a resistivity of 

18.2 MΩ cm. 

 

 

 

 

 

 

Table 4. 2. Pure water permeability (PWP), the effective pore radius (rp), geometric standard 
deviation (σp) , molecular weight cut off (MWCO) and ratio of membrane porosity over 
thickness (Ak/Δx) of PBI hollow-fiber membrane

0.1285251.530.3481.86

Ak/∆x 
[106 m-1]

MWCO 
(Da)

σprp

(nm)
Pure water permeability PWP, 

(l m-2 bar-1 h-1)

 

96.00.381.06SO4
2-

98.00.300.47H2PO4
-

1.00.289.31H+

63.50.420.72Cu2+

125.9----1.03H3AsO3

139.9----0.32HAsO4
2-

96.00.340.43PO4
3-

0.33

0.33

0.43

0.36

Hydrated Radius
(nm)

97.00.44HPO4
2-

24.00.72Mg2+

35.52.03Cl-

23.01.33Na+

MW
(g/mol)

Ion diffusivities
(10-9 m2/s)

Ions

Table 4.1. Ion and electrolyte diffusivities and hydrated radii (at 25ºC)
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4.2.2 PBI nanofiltration hollow fiber membrane 

 

The PBI nanofiltration hollow fiber membrane studied in this work was fabricated 

through the phase inversion process described elsewhere [43].  Fig. 4.2 illustrates its 

structure which consists of four types of morphologies: asymmetric outer-selective skin, 

an array of very small yet elongated fingerlike macrovoids near the outer layer, a spongy-

like substructure near the inner skin and porous inner skin. This kind of microstructure 

can withstand high transmembrane pressures. Table 4.2 summarizes its pure water 

permeability (PWP), the effective pore radius (rp), geometric standard deviation (σp) and 

molecular weight cut off (MWCO), while Fig. 4.3 shows its pore size distribution from 

the solute transport method [44]. A bundle of PBI hollow fibers were loaded in a stainless 

tube (20 cm in length) and sealed with epoxy at two ends to form a membrane module 

with the effective area of about 100 cm2, which was used to test the separation 

performance and the ion transport property. 
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Fig 4.2. Morphology of asymmetric PBI nanofiltration hollow fiber membrane. 

 

4.2.3 Nanofiltration experiments with PBI nanofiltration hollow fiber membranes  

The following describes the experimental designs and separation procedures:  

(1) Neutral solutes were dissolved in ultrapure water with concentrations of about 200 

ppm to form feed solutions. These feed solutions were circulated in the NF systems for 

about 0.5 h to ensure the systems reach the steady state. During the experiments, the 

temperatures of feed solutions were maintained at 20±0.1°С by employing a heat 

exchanger inside the feed tank. The NF experiments were carried out from lower 

molecular weights to higher molecular weights. The PBI NF membranes were thoroughly 

flushed by pure water between nanofiltration of different solutes with different molecular 
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weights. These rejections of different solutes and the molecular size of these neutral 

solutes were used to calculate NF membrane’s pore size distribution and mean pore size.  

(2) NaCl solutions at a concentration of 3.4 mM with different pH values were prepared.  

The rejections of these NaCl solutions by PBI NF membranes were tested under different 

pressures.  

(3) NaCl solutions with different concentrations (1mM, 3.4mM, 10mM and 100mM) 

were prepared. The rejections of these different concentrations of NaCl solutions by PBI 

NF membranes were tested under different pressures. 

(4) Copper chloride, copper sulphate, phosphate solutions, boron acid solution, As(V) 

were prepared by dissolving CuSO4·5H2O, CuCl2, Na3PO4, Na2HPO4, NaH2PO4, boric 

acid and NaH2AsO4·7H2O in ultrapure water, respectively. Unless otherwise stated, 

concentrations of all salts were 1mM and those of As(V) were at 0.1mM. The solution 

pH was modified by additions of KOH (1.0N) and HCl (1.0N) solutions. The NF of these 

slats was conducted as described in the step (1) with testing sequences from pH 5.5 to 

13.0 and finally pH 3.1.  

 

Concentrations of the neutral solute solutions were measured with a total organic carbon 

analyzer (TOCASI-5000A, Shimazu, Japan). The concentrations of choloride in the 

aqueous phase were analyzed by using an ion chromatograph (Metrohm Model 702) 

equipped with a conductivity detector and a Hamilton PRP-X 100 anion column was used.  
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Fig. 4.3. (a) Cumulative pore size distribution curves; 
(b) Pore size probability density function curves of the PBI hollow fiber membranes 

 

It was operated at a flow rate of 2 ml/min with an eluent containing 1.7 mM NaHCO3 and 

1.8 mM Na2CO3. The solution pH was measured by a pH meter (Orion PerpHect pH 

meter 370, USA). Concentrations of Cu(II), arsenic, boron and phosphorus were detected 

by a Perkin Elmer Optima 3000 ICP-AES (Norwalk, CT). Generally, the observed 

rejections during the NF are defined as follows: 

1 p
obs

C
R

C
= −

b

                                                         (4.1) 

where Cp and Cb are solute concentrations in the permeate and bulk feed side, 

respectively. The true or real rejection at the membrane surface, RT, is defined as: 

1 p
T

m

C
R

C
= −                                                           (4.2) 
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where Cm is the solute concentrations on the membrane surface. The real rejection of RT 

was obtained following the procedure described elsewhere [45].  
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Fig. 4.4. Real rejection as a function of permeate volume flux Jv with different NaCl 
concentrations. The curves are fitted by the Spiegler–Kedem equations 4.4-4.5. 

 

4.3 Results and Discussion 

 

4.3.1 Characterization of PBI membranes using NaCl solutions 

 

In order to investigate the charge and separation characteristics of PBI membranes, the 

nano-transport and separation of NaCl at different pressures and different concentrations 
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from 1 to 100 mol m-3 were conducted. As shown in Fig. 4.4, an increase in NaCl feed 

concentration results in a decrease in NaCl rejection. This is due to the anion shielding 

effect on the effective membrane charge density.  

 

Solute transport phenomena of the nanofiltration process can be described by irreversible 

thermodynamics. Kedem and Katchalsky [46] proposed the relation of the volumetric 

flux Jv and the solute flux Js through a membrane based on the following equations: 

( ),

( ) (1 )
v P

s f P v

J L P

J P C C J c

σ π

σ

= ∆ − ∆

= − + −
                                            (4.3) 

Eq. 4.3 indicates that transport across a membrane is characterized by three transport 

parameters, i.e. the pure water permeability Lp, the reflection coefficient σ, the solute 

permeability P. When concentration difference between the feed side and the permeate is 

high, Spiegler and Kedem [47] improved this model to express in a differential form as 

follows: 

'( ) (1 )s v
dcJ P J
dx

σ= − + − c                                                 (4.4) 

where P’ is the local solute permeability defined as P’ = P∆x. Integrating Eq. 4.4 across 

the membrane thickness yields the Spiegler–Kedem equation: 

(1 )1 , exp( ((1 ) / ) )
1

P
T v

m

c FR whereF P J
c F

σ σ
σ
−

= − = = − −
−

                         (4.5) 

The Spiegler–Kedem equation usually applied when there is no electrostatic interaction 

between the membrane and the neutral solutes. From Eq. 4.5, one can see that the 

reflection coefficient σ corresponds to the maximum rejection at an infinitely high 

permeate volume flux. The values of σ and P can be determined directly from 
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experimental data of the real rejection RT, as a function of Jv by any best-fitting method. 

Fig. 4.5 shows their values plotted against NaCl concentrations.  
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 Fig. 4.5. Reflection coefficient and effective charge density of PBI membrane as a 
function of NaCl concentration.  

 

For a system of a 1-1 type electrolyte and NF, by combining the extended Nernst–Planck 

equation and the Donnan equilibrium theory, membrane parameters σ and P can be 

determined based on the Teorell-Meyer-Sievers (TMS) model with the following 

equations [48]: 

2 0.5

21
(2 1) ( 4)

(1 )( )k
s

AP D
x

σ
α ξ ξ

σ

= −
− + +

= −
∆                                             (4.6) 

where ξ is defined as the ratio of effective volume charge density (X) of membrane to 

the electrolyte concentration (Cm) at the membrane surface, α is the transport number of 
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cations in free solution defined as α = D1/(D1+D2). D1, D2 = 1.33×10-9, 2.03×10-9 m2 s-1, 

respectively, based on Table 4.1. Therefore, the effective charge density of PBI NF 

membrane can be determined as a function of NaCl concentration if σ and α are available, 

as shown in Fig. 4.5. At a higher NaCl concentration, the membrane seems to have a 

larger calculated charge density. The effective charge density φX can be related to NaCl 

concentration by the following empirical Eq. (4.7) as shown in Fig. 4.5 [48, 49]: 

n
mX KCφ =                                                            (4.7) 

The dependency of separation performance of the PBI NF membrane on surface charge, 

which is influenced by the pH of the contacted aqueous solutions, has been carried out.  

As shown in Fig. 4.6, a V-shape trend of NaCl rejection by the PBI membrane reflects 

the surface charge characteristics under different pH values, which are quite similar to the 

behavior of amphoteric ceramic membranes (which have the metal oxide group) [50, 51]. 

A minimum ion rejection appears at pH 7.0 (close to the pKa of the imidazole group 

within PBI molecules). This implies that the PBI membrane has an isoelectric point near 

pH 7.0 and has different charge signs based on pH of the media, i.e. may be positively 

charged at low pH and negatively charged at high pH. This phenomenon could be 

attributed to the unique amphoteric structure of imidazole group within PBI molecules.  
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Fig. 4.6. Rejection of NaCl (1.0 mol m-3, 20ºC) as a function of pH 
(Adjusting the solution pH through adding 1.0 N HCl or 1.0 N NaOH solutions) 

 

4.3.2 Transport of various single electrolytes through the PBI membrane  

 

Fig. 4.7 compares the separation characteristics of four types of single salts, i.e. NaCl, 

MgCl2, Na2SO4 and MgSO4, at the same molar concentration (1.0 mol m-3) and pH 7.0 

under different pressures and demonstrates that the PBI NF membrane exhibits different 

rejections to various valent anions and cations. The salt rejections follow the order of 

RT(MgCl2) > RT(MgSO4) > RT(Na2SO4) > RT(NaCl). Investigation shows that the PBI NF 

membranes demonstrate the highest rejection to divalent cations, a lower rejection to 

divalent anions and the lowest rejection to monovalent ions. The hydrated radii of ions as 
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listed in Table 4.1 are partially attributed to this rejection trend. In addition, the solute 
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Fig. 4.7.  Rejection of different salts as a function of pressure 
(Bulk solution concentration of single salt solutions: 1.0 mol m-3, pH 7.0).  

 

rejection increases with applied pressures. This observation can be explained by the fact 

that the water flux is linearly related to the applied pressure, whereas the solute flux is 

dependent on several factors: the concentration gradient over the membrane; the 

interaction between solute and water; and the water permeate flux. Therefore, the water 

permeate flux increases relatively faster than the solute flux with an increase in the 

applied pressure, resulting in a decrease in solute permeates’ concentration and therefore 

an increase in solute rejection. 
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4.3.3 Separation of phosphate  
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Fig. 4.8. Real rejection as a function of permeate volume flux Jv with different Na3PO4 
concentrations. The curves are fitted by the Spiegler–Kedem equations 4.4-4.5. 

3.30.98710 mM
3.00.9955 mM

2.40.9991 mM

Permeability 
[10-8 m·s-1]

Reflection coefficient
σ

Na3PO4

Table 4.3 σ and P of various concentrations of Na3PO4 determined from the 
Spiegler–Kedem equations.
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Fig. 4.8 shows the Na3PO4 rejection vs. reciprocal of permeate volume flux with various 

concentrations. The rejection of phosphate decreases with increasing concentration, 

which can be explained by the cation shielding effect on the membrane charge density. 

Solid lines in Fig. 4.8 were derived from the nonlinear least-squares regression analysis 

based on the Spiegler-Kedem equations. Table 4.3 summarizes the calculated σ and P, 

and shows that the lower the Na3PO4 concentration, the higher the reflection coefficient 

and the lower the solute permeability.  

26.00.87NaH2PO4

8.050.985Na2HPO4

2.400.999Na3PO4

Solute permeability

P [10-8 m·s-1]
Reflection coefficient

σ

Table 4.4 σ and P of Na3PO4, Na2HPO4 and NaH2PO4 at a concentration of 1mol m-3 

determined from the Spiegler–Kedem equations.

 

Fig. 4.9 shows the phosphate rejection in the sequence of RT(PO4
3-) > RT(HPO4

2-) > 

RT(H2PO4
-) at a concentration of 1.0 mol m-3. Table 4.4 tabulates the calculated σ and P 

of Na3PO4, NaH2PO4 and NaHPO4 by curves fitting with the aid of the Spiegler–Kedem 

equations. The reflection coefficient, σ, follows the trend of σ (PO4
3-)> σ (HPO4

2-) > σ 

(H2PO4
-), whereas the permeability P exhibit the trend of P (PO4

3-) < P (HPO4
2-) < P 
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(H2PO4
-). These sequences can be attributed to two factors: namely, the Donnan 

exclusion and size effects. The former suggests that enhanced charge exclusion occurs 

between the multivalent anion and the membrane, while the latter indicates a greater 

rejection for large size ions. The hydrated radii of these ions are as follows: rh(H2PO4
-) = 

0.30 nm, rh(HPO4
2-) = 0.33 nm, and rh(PO4

3-) = 0.34 nm [40].
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Fig. 4.9. Real rejection as a function of permeate volume flux Jv with different phosphate 

at a concentration of 1.0 mol m-3. The curves are fitted by the Spiegler–Kedem equations. 
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Fig. 4.10. Speciation of phosphate and rejection by PBI membrane as a function of 
feed solution pH (feed concentration =1 mol m-3 )
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In addition, the feed pH influences the membrane properties, e.g. surface charge signs, 

surface charge density, hydrophilicity and porosity because pH determines the major 

phosphate species based on the phosphate-H2O equilibrium as shown in Fig 4.10. As is 

clearly showed, H3PO4 species is predominant in the range of pH 3.0-4.7. Around pH 7.2, 

monovalent anions of H2PO4
- and divalent HPO4

2- co-exist and their fractions are 

dependent on the solution pH. In the range of pH 7.2-11.0, the major phosphate species 

present becomes divalent anions of HPO4
2- and the membrane may be negatively charged, 

which consequently results in an increase in the rejection of phosphate. As the pH>12.3, 

the major phosphate species becomes trivalent PO4
3-. From the rejection curve, the 

phosphate rejection increase from 66.2% to 84.7% when the pH of solution increases 

from 4.3 to 7.2. This observation can be attributed to the combination of the increase of 

HPO4
2– percentage and the membrane becoming increasingly negative. From pH 7.2 to 

12.3, the phosphate rejection rises from 84.7% to 99.4%.  Similarly, this is due to the fact 
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that the PO4
3− percentage increases and the negatively-charged PBI membrane. Thus, the 

solution pH has the dominant effect on the phosphate rejection because pH determines 

the ionization fraction of phosphate, their sizes, and the surface charge characteristics of 

the PBI membranes. 

4.3.4 Separation of arsenate As(V) 
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Fig. 4.11 Speciation of arsenate As(V) and rejection by PBI membranes as a 
function of feed solution pH (feed concentration = 1 mol m-3 )
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The increase in As (V) rejection with pH can be attributed to two reasons. Firstly, as can 

be seen from the ionization fraction curve of As(V), the speciation of As(V) changes 

from monovalent (H2AsO4
-, pKa2 ~ 6.9) to divalent (HAsO4

2-). The rejection of H2AsO4
- 

is much lower than divalent species due to the enhanced electrostatic interaction between 

divalent ions with the membrane. Secondly, as pH increases above 7.0, the PBI 

membrane charge becomes negative, which is the same charge sign with the anions. 
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Therefore, the charge exclusion becomes more significant at pH > 7.0 and so does the 

rejection.  

H3AsO4 ⇌ H2AsO4
− + H+ ⇌ HAsO4

−2 + 2H+ ⇌ HAsO4
−3 + 3H+, pKa 2.2, 6.9, 11.5       (4.8) 

The rejection of As (V) as a function of pH values also measured in the presence of 

10mol m-3 NaCl. The rejection has been promoted when the NaCl is present; this is most 

likely attributed to the presence of the more mobile Cl- co-ions as shows in the Table 4.1. 

Therefore, it is expected that the As(V) removal could increase in the presence of the 

more permeable ion. 

 

4.3.5 Boron separation by PBI NF membranes 

 

Boron separation experiments were carried out under different pH values from 4 to 11 

adjusted by 1N NaOH or 1N HCl. However, the boron acid concentration was fixed at 

1.0 mol m-3. Generally, boron exists in natural water in the form of boric acid, and the 

dissociation of boric acid is dependent on the solution pH as illustrated below. The pKa 

value of B(III)-H2O equilibrium equals to 9.1 [52]. 

B(OH)3 + H2O ⇌ B(OH)4
− + H+, pKa  9.1                                (4.9) 
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Fig. 4.12. Ionization of boric acid and rejection by PBI membranes as a function of 
solution pH (feed concentration = 1 mol m-3 )
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Fig. 4.12 shows that boric acid can be efficiently rejected only in the dissociated ionic 

form which occurs at a relatively high pH (i.e., >10). The rejection of boron increases 

from 25% to 70% when the feed pH increases from 9.0 to 11.0. Similar to the previous 

As(V) case, the increase in rejection can be attributed to three reasons. As can be seen 

from the ionization fraction curve of boron acid, the speciation of boron acid changes 

from uncharged B(OH)3 to monovalent anion B(OH)4
−. Since the rejection of the 

uncharged species is much lower than monovalent species, the former has a less rejection 

than the latter. In addition, based on the Cerius2 molecular simulation as shown in Fig. 

4.13, the monovalent anion B(OH)4
− is more like a sphere with the diameter of 6.8 Å, 

whereas the uncharged B(OH)3 molecule is flat and more like a plate with 4.6 Å in length 

and 1.4 Å in thickness. Therefore, by taking the molecular configuration into account, the 

steric hindrance for a monovalent B(OH) 4
− anion should be much greater than that of an 

uncharged B(OH)3 molecule. Furthermore, as the pH value increases, the PBI membrane 
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becomes more negative charged, and therefore the repulsion between B(OH) 4
− and 

membrane increases, which resulting in an enhancement in boron rejection. This 

phenomenon has also been observed by other investigators [53, 54]. Because the highest 

boron rejection is still less than 80%, it can be concluded that boron cannot be simply 

removed by one-stage nanofiltration. Therefore, a combination with adsorption and/or 

ion-exchange to partially remove the boron and then followed by a multiple stage of NF 

systems operated at pH values of 10-11 is necessary for the effective removal of boron 

before discharging into the environment. 

Fig. 4.13. Molecular configurations simulated from Cerius 2

H3BO3                                                         B(OH)4
-

 

 4.3.6 Separation of copper sulfate and copper chloride  

Because the free copper Cu(II) cations could precipitate out from neutral or alkaline 

solutions, rejection of copper cations by the PBI membrane is conducted in acidic 

solutions of various pH levels with the presence of CuSO4 or CuCl2 as depicted in Fig. 
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4.14. For both CuSO4 and CuCl2 solutions, the rejection of Cu(II) cation is found to 

be increased with increasing solution pH level. This is due to the fact that the PBI 

membrane is positively charged at pH < 7.0, but the positive charge decreases with 

increasing pH value, resulting in the low permeate of the anions; therefore in order to 

maintain the electroneutrality of the permeate solution, rejection of the Cu2+ increases. 

Fig. 4.14. Rejection of Cu (II) vs. solution pH under different pressures. 
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In addition, the rejection of CuCl2 is much higher than that of CuSO4 due to effect of 

counter anions although SO4
2- has a bigger size than Cl-. For the stronger ionic charge 

density of SO4
2- than that of Cl-, the rejection of Cu2+ by the positively charged PBI 

membrane would be weakened accordingly. That is to say, the decreased rejection with 

the multi-valent anions is attributed to the stronger attraction between the negative 

charged SO4
2- and the positively charged PBI membrane.  
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Fig. 4.15. Real rejection as a function of permeate volume flux Jv with the different CuCl2
concentrations. The curves are fitted by the Spiegler–Kedem equations. pH 5.0
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Fig. 4.16. Real rejection as a function of permeate volume flux Jv with the different 
CuSO4 concentrations. The curves are fitted by the Spiegler–Kedem equations.
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Fig. 4.15 and 4.16 show the rejections of CuCl2 and CuSO4, respectively, as a function of 

permeate flux with various concentrations at about pH 5. The membrane parameters are 

fitted based on the Spiegler-Kedem equation. The rejection of PBI hollow-fiber 
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membrane to CuCl2 and CuSO4 increase with the growth of the permeate flux. Actually, 

this is a generally true because the increase of the applied pressure results in a higher 

water flux whereas the cation and anion are sterically and electrically hindered. 

Rejections of Cu2+ cation in CuCl2 and CuSO4 solutions decrease with increasing feed 

concentration. The reason is that increasing the chloride and sulfate concentration 

involves the formation of a screen which gradually neutralizes the charge of the 

membrane. The decrease in the effective charge of the PBI membrane leads to the 

decreased Cu2+ rejection since the electrostatic effects of the membrane become weaker. 

This result can be linked to the dependence of the effective charge density of the 

membrane on the electrolyte concentrations. 

CuSO4

CuCl2

2.410.78210
2.140.8625
1.520.9911

(mol m-3)
0.620.88010
0.530.9375

0.0440.9991
(mol m-3)

P [10-7 m·s-1]σConcentration

Table 4.5 σ and P of various concentrations of CuCl2 and CuSO4 determined from the 
Spiegler–Kedem equations.

 

Table 4.5 summarizes the calculated σ and P as a function of CuCl2 and CuSO4 

concentration with the aid of the data fitting method using the Spiegler-Kedem equation. 

The reflection coefficient of CuCl2 by the PBI membrane is higher than that of CuSO4 at 
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each concentration. This result is consistent with Figure 4.14, indicating that the NF PBI 

membrane exhibits a higher degree of membrane perfection (i.e., higher reflection 

coefficient) in the CuCl2 solution than in the CuSO4 solution. In other words, the degree 

of membrane perfection apparently play a comparable role as membrane charge 

characteristics when comparing the rejection of CuCl2 and CuSO4 via the PBI NF 

membrane.  Table 4.5 also shows that the Cu2+ permeability increases with an increase in 

solution concentration. This phenomenon may arise from the fact that the effective area 

of the membrane pore becomes larger due to decreased thickness of electrical double 

layer (EDL) [55]. Similar observations have been reported in the literature in NF 

membrane separation data [56, 57]. 

4.3.7 Comparison with other NF membranes   

 

Van Voorthuizen et al [58] employed commercial membranes NF 90 and NF 200 to 

separate Na2HPO4 at a concentration of 1mol m-3 with rejections of 98% and 97%, 

respectively. Visvanathan and Roy [59] demonstrated that Desal-5 NF membranes 

rejected phosphate at a rejection of 95%-99%. The investigated PBI membranes exhibit a 

comparable rejection, 98.2%, with these commercial NF membranes at the same 

concentration indicating that the PBI membrane is a good candidate for phosphate 

removal. Sato et al [60] investigated three kinds of NF membranes, ES-10, NTR-729HF 

and NTR-7250 for arsenate removal at pH 6.8 with rejections of 85%-86%, 91%-94%, 

95-97%, respectively. And their rejections for arsenite removal are 10-15%, 15%-25%, 

60%-80%. At pH 6.8, the rejections of arsenate and arsenite by PBI NF membranes in 
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this work are 87.7% and 33%, respectively. The rejections of both arsenate and arsenite 

are comparable with or even better than those of commercial membranes. Dydo et al [61] 

employed three NF membranes, BW-30, TW-30 and NF-90, to separate borate ions under 

41atm at various pH in the range from 8.0 to 11.0. At pH of 11.0, the boron rejections for 

BW-30, TW-30 and NF-90 membranes are 98.4%, 97.6% and 97.2%, respectively. 

Whereas the boron rejection for the PBI NF membrane is 71% at pH of 11.0 under the 

operating pressure of 15 bar in this work. It is expectable that the boron rejection for the 

PBI NF membrane will increase with the applied pressure to a value which is comparable 

with that of the above-mentioned commercial membranes. Investigation of the 

performance of Desal polyamide composite membrane on copper removal has been 

carried out [62]. The copper rejection of CuSO4 and CuCl2 for the Desal polyamide 

composite membrane at a constant pressure (Δp=100psi) and at pH 4.5 is 98.1% and 

93.1%, respectively. Nanomax 50 has also been investigated for copper removal at a 

pressure of 10 bar and at pH 4.5 with copper rejections of 98.4% and 82.8% for CuSO4 

and CuCl2, respectively [56]. According to Fig. 4.15, the copper rejection of CuSO4 and 

CuCl2 for the PBI NF membrane at a constant pressure of 10 bar and at pH 4.5 is 99.2% 

and 92.5%, respectively. These results indicate that PBI membranes exhibit better 

performance than the commercial NF membranes in terms of the rejections under similar 

operating conditions.  

 

In summary, the PBI NF membranes fabricated in this work have comparable or even 

better performance than commercial membranes for the separation of phosphate, arsenate, 
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arsenite and copper ions. The PBI NF membrane is also a promising candidate for the 

separation of borate ions.  

 

4.4 Summary 

 

Polybenzimidazole nanofiltration membrane is clearly verified as an amphoteric charged 

membrane by the V-shape trend of NaCl rejection under different pH values due to the 

amphoteric imidazole groups within PBI molecules. Rejection performance of phosphate, 

arsenate, arsenite and borate ions shows the rejection of theses toxic anions is strongly 

dependent on the pH because solution pH determines the major species of these anions, 

their sizes, and the surface charge characteristics of the PBI membranes in aqueous 

solution. Divalent heavy metal cations, Cu(II), can be effectively removed by this PBI 

hollow-fiber membrane from their sulfate salt and chloride salt solutions, whose 

rejections are dependent on the solution pH and the accompany anions. Comparison with 

other commercial membranes indicates that the PBI NF membranes have comparable or 

better separation performance for P, As and Cu removal. The PBI NF membrane is a 

promising candidate for boron removal. 
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5. CHAPTER FIVE 

CONCLUSION AND RECOMMENDATIONS 

 

5.1 Conclusion 

 

The important findings, results and conclusions for different aspect of this work are 

derived and summarized as below. 

 

5.1.1 Supported Liquid membrane Systems for Cadmium Removal 

 

1. Quantum chemical computation can be proposed for carrier selection in supported 

liquid membrane (SLM) systems for heavy metal ions removal.  

 

2. In the supported liquid membrane systems, heavy metal transmembrane flux can be 

enhanced effectively (with a flux increase by 91% in our case) by adding only small 

amount of anion(s) with less negative free energy of hydration.  

 

3. The optimal conditions in our investigated SLM system for Cd(II) removal are as 

follows: membrane phase, 50 vol/vol % Aliquat 336 in an impregnated PTFE membrane; 

stripping phase, 1mM EDTA; stirring speed, 400rpm. 
  
4. A separation factor of 15.7 for Cd(II) over Zn(II) is achieved and the stability of this 

SLM system is promising for future practical application.  
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5.1.2 Polybenzimidazole Nanofiltration Membrane for Water and Wastewater 

Treatment 

 

Polybenzimidazole nanofiltration membrane is clearly verified as an amphoteric charged 

membrane by the V-shape trend of NaCl rejection under different pH values due to the 

amphoteric imidazole groups within PBI molecules. Rejection performance of phosphate, 

arsenate, arsenite and borate ions shows the rejection of theses toxic anions is strongly 

dependent on the pH because solution pH determines the major species of these anions, 

their sizes, and the surface charge characteristics of the PBI membranes in aqueous 

solution. Divalent heavy metal cations, Cu(II), can be effectively removed by this PBI 

hollow-fiber membrane from their sulfate salt and chloride salt solutions, whose 

rejections are dependent on the solution pH and the accompany anions. Comparison with 

other commercial membranes indicates that the PBI NF membranes have comparable or 

better separation performance for P, As and Cu removal. The PBI NF membrane is a 

promising candidate for boron removal. 

 

5.2 Recommendations 

 

The use of supported liquid membrane (SLM) for the removal of metal ions from 

wastewaters has been proposed as a promising separation technique [1, 2]. Supported 

liquid membrane (SLM) appears to be a promising method because it potentially offers a 

lot of advantages over other conventional separation technologies, such as easy operation, 
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low capital and operating costs, low energy consumption, continuous operation, high 

selectivity, relatively high fluxes, combination of extraction, stripping and regeneration 

processes into a single stage, uphill transport against concentration gradients, and small 

usage of amounts of extractants. SLM has received considerable attention over the past 

few decades and it has been demonstrated as an effective tool for the selective separation 

and recovery of resources from dilute solutions, particularly for the removal and recovery 

of metal ions. However, there have been very few large industrail applications of SLM 

due to lack of stability although SLMs have been widely studied for the separation and 

concentration of a variety of compounds. Various mechanisms have been proposed for 

SLM instability: loss of carrier from the oganic phase by dissolution, memabrane pores 

wetting, pressure difference or osmotic pressure gradient over the membrane [3, 4], and 

attrition of the organic film [5] or emulsion formation [5, 6]. SLM stability is also 

affected by the type of memrbane support and its pore size [7], organic solvent for the 

carrier, preparation method [8], etc.  

 
PVDF (poly (vinylidene fluoride) (HSV 900), as proposed, could be used as the 

polymeric microporous support for SLM preparation with a reasonably high stability. 

Because of its superior chemical resistance and high hydrophobicity, it may have 

potential to possess the ability to separate two aqueous solutions in harsh chemical 

environments with prolonged stability. To prove this hypothesis, both symmetric and 

asymmetric membranes can be fabricated by both casting and solution spinning using the 

phase inversion method to study: 1) the science and engineering of solution spinning of 

flat PVDF microporous membranes; 2) the possibility of the enhancement of the stability 

of the spun PVDF membrane using in SLM systems; 3) Effect of various nonsolvent 
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additives, including  Ethanol, Methanol, water, dodecane on membrane structure, 

stability and performance for cadmium removal; 4) Effect of the spinning conditions, 

including the temperature and the nonsolvent additive concentration on the membrane 

structure, stability and separation performance for cadmium removal. 
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